
Distributed Processing of
Blind Source Separation

by

Seyed Reza Mir Alavi

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Engineering and Computer Science.

Victoria University of Wellington
2017

Abstract

Communication is performed by transmitting signals through a medium. It is
common that signals originating from different sources are mixed in the transport
medium. The operation of separating source signals without prior information
about the sources is referred to as blind source separation (BSS). Blind source
separation for wireless sensor networks has recently received attention because of
low cost and the easy coverage of large areas. Distributed processing is attractive
as it is scalable and consumes low power. Existing distributed BSS algorithms
either require a fully connected pattern of connectivity, to ensure the good per-
formance, or require a high computational load at each sensor node, to enhance
the scalability. This motivates us to develop distributed BSS algorithms that
can be implemented over any arbitrary graph with fully shared computations
and with good performance.
This thesis presents three studies on distributed algorithms. The first two stud-
ies are on existing distributed algorithms that are used in linearly constrained
convex optimization problems, which are common in signal processing and ma-
chine learning. The studies are aimed at improving the algorithms in terms
of computational complexity, communication cost, processors coordination and
scalability. This makes them more suitable for implementation on sensor net-
works, thus forming a basis for the development of distributed BSS algorithms
on sensor networks in our third study.
In the first study, we consider constrained problems in which the constraint
includes a weighted sum of all the decision variables. By formulating a con-
strained dual problem associated to the original constrained problem, we were
able to develop a distributed algorithm that can be run both synchronously and
asynchronously on any arbitrary graph with lower communication cost than tra-
ditional distributed algorithms.
In the second study, we consider constrained problems in which the constraint is
separable. By making use of the augmented Lagrangian function and splitting

the dual variable (Lagrange multiplier) associated to each partial constraint, we
were able to develop a distributed fully asynchronous algorithm with lower com-
putational complexity than traditional distributed algorithms. The simplicity of
the algorithm is the consequence of approximating the constraint on the equality
of the decoupled dual variables. We also provide a measure of the inaccuracy in
such an approximation on the optimal value of the primal objective function.
Finally, in the third study, we investigate distributed processing solutions for BSS
on sensor networks. We propose two distributed processing schemes for BSS that
we refer to as scheme 1 and scheme 2. In scheme 1, each sensor node estimates
one specific source signal while in scheme 2, by formulating a consensus opti-
mization problem, each sensor node estimates all source signals in a fully shared
computation manner. Our proposed algorithms carry the following features:
low computational complexity, low power consumption, low data transmission
rate, scalability and excellent performance over arbitrary graphs. Although all
of our proposed algorithms share the aforementioned properties, each of them
is superior in one or some of the features compared to the others. Comparative
experimental results show that among all our proposed distributed BSS algo-
rithms, a variant of scheme 1 performs best when all features are considered.
This is achieved by making use of the concept of pairwise mutual information
along with adding a sparsity assumption on the parameters of the model that is
used in BSS.

iii

Acknowledgments

This PhD has consistently challenged me over the last three years. Although
the process of fulfilling all the requirements had stretched me to my limits, I
would not have been able to complete it without the assistance of a few very
special people. I would like to express my sincere gratitude to my supervisor,
Prof. Bastiaan Kleijn, for his unwavering support and much needed words of
wisdom over the years.
This would not have been possible without the encouragement and support from
my loving parents. Words cannot express how grateful I am for all the sacrifices
you have made on my behalf. And to my loving wife, who had to put up with
all my stress and mischief, thank you, you’re the greatest!

iv

v

Publications of the thesis

The contents of this thesis have been published or will appear in the form of the
following papers,

I S. R. Mir Alavi, W. B. Kleijn, “Distributed linear blind source separa-
tion over wireless sensor networks with arbitrary connectivity patterns”, in
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2016.

II S. R. Mir Alavi, W. B. Kleijn, “Communication efficient asynchronous dis-
tributed linearly constrained convex optimization with O(1/k) rate of con-
vergence“. Submitted for publication.

III S. R. Mir Alavi, W. B. Kleijn, “Fully asynchronous distributed optimization
over graphs using a regularized augmented Lagrangian function and its
application to the consensus problem”, in To be submitted for publication.

IV S. R. Mir Alavi, W. B. Kleijn, “Distributed adaptive linear blind source
separation over arbitrary graphs“. Submitted for publication.

vi

vii

Acronyms

ADMM Alternating Direction Method of Multipliers

AMM Augmented Method of Multipliers

ATC Adapt Then Combine

BP Belief Propagation

BSS Blind Source Separation

CTA Combine Then Adapt

DFT Discrete Fourier Transform

EM Expectation Maximization

FA Factor Analysis

GaBP Gaussian Belief Propagation

GLiCD Generalized Linear Coordinate Descent

ICA Independent Component Analysis

viii

ID Identification

LiCD Linear Coordinate Descent

LMS Least Mean Square

MAP Maximum A Posteriori

ML Maximum Likelihood

MMI Minimum Mutual Information

MSD Mean Square Deviation

MSE Mean Squared Error

NFA Non-linear Factor Analysis

NICA Non-linear Independent Component Analysis

NLMS Normalized Least Mean Square

NLPCA Non-Linear Principle Component Analysis

NMSE Normalized Mean Squared Error

PCA Principle Component Analysis

PGMs Probabilistic Graphical Models

RLS Recursive Least Square

SIR Signal to Interference Ratio

ix

SNR Signal to Noise Ratio

WSN Wireless Sensor Network

x

CONTENTS xi

Contents

Acknowledgments iii

Publications of the thesis v

Acronyms vii

1 Introduction 1
1.1 Motivation and approaches . 1
1.2 Contributions of the thesis . 4
1.3 Structure of the thesis . 5

2 Linear blind source separation 7
2.1 The basic model . 8
2.2 Classical approaches . 9
2.3 Principal component analysis . 11
2.4 Factor analysis . 13
2.5 Independent Component analysis 14

2.5.1 Maximization of non-gaussianity 15
2.5.2 Minimization of average mutual information 17
2.5.3 Maximization of information 18
2.5.4 Maximization of likelihood function 19
2.5.5 Natural gradient based optimization 20

2.6 Difficulties and ambiguities . 21

3 Distributed optimization techniques based on separability 25
3.1 Diffusion . 26
3.2 Belief propagation on PGMs . 31

xii CONTENTS

4 A communication-efficient asynchronous distributed algorithm 37
4.1 Introduction . 37
4.2 Related Work . 40
4.3 Proposed Approach . 46

4.3.1 Convergence rate . 50
4.3.2 Remark . 51

4.4 Experimental Results . 51
4.5 Summary . 55

5 Fully asynchronous distributed optimization 57
5.1 Introduction . 57
5.2 Review of distributed ADMM-based algorithms 62

5.2.1 Synchronous distributed consensus ADMM 63
5.2.2 Asynchronous distributed consensus ADMM 64

5.3 Fully asynchronous distributed algorithm 64
5.3.1 The general problem . 65
5.3.2 Convergence proof . 72
5.3.3 An alternative synchronous update 73
5.3.4 Consensus optimization via Async-AMM 75

5.4 Experimental Results . 76
5.5 Summary . 81

6 Distributed processing of linear BSS over arbitrary graphs 83
6.1 Introduction . 83
6.2 Centralized blind source separation 85

6.2.1 Maximum-Likelihood Approach 86
6.2.2 Minimum Average Mutual Information Approach 89

6.3 Distributed Processing Approach 91
6.3.1 Scheme 1 . 91
6.3.2 Scheme 2 . 101
6.3.3 Required output power . 111

6.4 Experimental Results . 112
6.4.1 Experimental Setup . 112
6.4.2 Results . 114

CONTENTS xiii

6.5 Summary . 119

7 Conclusions 121

Appendices 125

A 127
A.1 Proof of the inequality in (5.30) and (5.31) 127

B 131
B.1 Derivation of the simple synchronous algorithm from AMM 131

C 133
C.1 Derivation of the stable BSS algorithm 133

xiv CONTENTS

Introduction 1

1
Introduction

1.1 Motivation and approaches

Radio and acoustic signals play a significant role in communication. It is natural
that signals transmitted from independent sources are mixed during transmis-
sion before they are observed. As each source signal typically carries its own
information independent of the other source signals, it is common that one needs
to extract the original source signals from their mixture. Blind source separation
(BSS) is a strategy that can be used for this purpose, e.g., [38, 198].

The term “blind” in BSS refers to an operation without or with poor information
about the source signals and the mixing process. However, to obtain satisfac-
tory results, one must consider an appropriate model for the mixing process.
For example, in acoustics the input-output data relationship in a time-invariant
reverberant environment requires a convolutive model while a much simpler mul-
tiplicative model is satisfactory in a delay-restricted environment. The proposed
solutions for the multiplicative models, known as linear BSS algorithms, can
also be applied to convolutive mixtures by transferring the observed data to the
frequency domain via Fourier Transform which results in a multiplicative model
for each frequency bin [89,128,147,171].

2 Introduction

Blind source separation has many applications in audio signal processing, for ex-
ample [184]. It has been also widely used in image processing [18, 117], biomed-
ical [122, 183], and finance [16, 119]. An example application of BSS in audio
signal processing is in the cocktail party problem where the objective is to focus
on a single conversation in an environment with multiple overlapping voices.

BSS algorithms can be divided into batch algorithms and adaptive algorithms.
Both approaches are generally iterative methods. Batch algorithms use the entire
observed data for optimization in each iteration, while in adaptive algorithms
only a single observation (current observed data) is used, using the stochastic
gradient method. This property of adaptive algorithms makes them suitable for
real-time applications and in scenarios where the underlying sources are allowed
to be mobile, albeit with slow rate of movement.

Many approaches have been introduced in the literature to address BSS. One of
the well-known approaches is the independent component analysis (ICA). In ICA
different objective functions in terms of the parameters of the model are formu-
lated. This is motivated by applying optimization techniques to the functions to
estimate the parameters as well as the sources. The objective functions are gener-
ally categorized into functions that measure the dependency or non-gaussianity
of the estimated source signals. Examples of those are kurtosis [143], negen-
tropy [84], mutual information [11] and likelihood function [113]. The quality of
separation can be different depending on what objective function and assump-
tions is used [99,102,134].

To perform the blind source separation a set of different mixture signals must
be recorded. This can be achieved by a set of sensors (microphones) at different
spatial locations. Wireless sensor networks (WSN) [3, 4, 182, 196] are a natural,
low-cost means for capturing the signals. In contrast to wired networks of sensors,
WSNs facilitate a good coverage of an area where signals of interest are present
at a low deployment cost.

Algorithms for blind source separation of signals acquired over sensor networks
can be based on centralized processing or on de-centralized processing. In the
centralized processing approach, e.g., [44, 157], the recordings of all sensors are
sent to a centralized processing unit that performs the separation procedure.
Limitations of the centralized approach include the need for powerful processing
hardware, high power consumption of the transmission, and lack of scalability

1.1 Motivation and approaches 3

[63]. It may be even impossible to apply centralized approach due to the high
physical length of the links and interference.

In contrast to the centralized approaches, the de-centralized, in-network process-
ing approaches have the potential to be scalable and have a low power consump-
tion of the transmission [129,154]. In fact the de-centralized processing is a more
realistic approach for real-world large scale problems.

A simple form of de-centralized BSS was discussed in [45, 123], where the sep-
aration procedure is pararallelized over a number of processors. However, the
methods in [45, 123] retain the need to aggregate the observations of all sensors
in each individual node. This imposes the need for a full connectivity pattern
over the graph of the network and, hence, restricts the scalability of the BSS
algorithm. A more scalable distributed algorithm is introduced in [79], but at
the cost of a significantly higher computational load at each sensor node.

Regardless of the lack of research on distributed BSS, there is research on dis-
tributed algorithms for a variety of applications in signal processing, machine
learning and statistics [131, 145]. In the latter fields usually a constrained or
unconstrained optimization problem is formulated. The objective function and
constraint would be different depending on the application.

To develop distributed algorithms for the constrained and unconstrained prob-
lems, it is assumed that the primal objective is separable (forms a sum of N
functions). The separability of the objective function allows implementation of
distributed algorithms on a network of N agents (processors), where each agent
handles a small portion of the optimization task.

In the case of constrained problems, existing distributed algorithms rely on either
the Lagrangian or the augmented Lagrangian function that is associated with
the constrained optimization problem. Methods based on the Lagrangian have
a convergence rate of O(1/

√
k), meaning that the error of estimation decreases

by a factor of 1/
√
k where k denotes the iteration counter. For the constrained

problems, in which the constraint includes a weighted sum of all the decision
variables, Lagrangian-based methods require a communication graph with star
topology, where there is a master agent to which all other agents are connected.
Methods based on the augmented Lagrangian have a quicker rate of convergence,
O(1/k), at the cost of requiring a fully connected network.

4 Introduction

1.2 Contributions of the thesis

In this thesis, we investigate distributed forms of the adaptive BSS algorithm.
The objective of the thesis is to develop distributed algorithms that can be ap-
plied over wireless sensor networks, where each sensor node is equipped with a
microphone and a microprocessor, to track the source signals in a real-time pro-
cessing fashion. An example real world application of the proposed distributed
BSS algorithms is in audio source separation in cocktail parties. The proposed
distributed BSS algorithms are aimed to be applied over any connected network
with any connectivity pattern. Applying the proposed algorithms over a well de-
signed sparse network reduces the energy consumption for data transmission and
enhances the scalability as opposed to the centralized processing approaches. An
appropriate design of the network means that no transmission over long distances
is required. We confirm the strong performance of the proposed distributed
BSS algorithms with experiments for the case of delay-restricted environments
where the observations are obtained from the linear instantaneous mixture of the
sources. The method can be easily extended to apply to convolutional scenarios
using conventional frequency domain approaches [89, 128, 171]. For a thorough
review of the frequency domain approaches in the centralized case the reader is
referred to [85,147].
In this thesis, we also investigate efficient distributed algorithms for linearly con-
strained problems. Efficiency of the proposed distributed algorithms is in terms
of the required communication processes, required bandwidth for a given commu-
nication channel and the computational complexity at each agent over a network
of agents. The proposed distributed algorithms not only can be applied on blind
source separation but also can be implemented in a variety of applications in
signal and image processing such as the basis pursuit problem [27, 33], image
denoising [153,160] and the consensus problem [22,124,137,168].
The most important contributions of this thesis are summarised as follows:

• Development of a communication-efficient asynchronous distributed algo-
rithm for linearly constrained convex optimization problems, where all the
primal variables are coupled by a global single block linear constraint.

• A straightforward derivation of a fully asynchronous distributed algorithm

1.3 Structure of the thesis 5

with low computational complexity and its application to the consensus
problem.

• Reducing the communication cost and channel bandwidth requirements in
synchronous distributed optimization over wireless sensor networks.

• Development of a stable blind source separation algorithm for non-stationary
signals, where the optimization is performed over the mixing matrix.

• Distributed processing of sparse blind source separation over arbitrary con-
nected graphs with minimum power consumption of the transmission.

• Distributed processing of the blind source separation over arbitrary graphs
with the performance analogous to the corresponding centralized algorithm.

1.3 Structure of the thesis

The rest of this thesis is organized as follows:
In Chapter 2, we review approaches that are proposed for the linear blind source
separation. The main focus of Chapter 2 is on the linear instantaneous mixing
model and investigates sophisticated methods as solution for the blind source
separation problem.
In Chapter 3 we show how separability of the objective function of an optimiza-
tion problem allows us to develop distributed algorithms on a network of agents.
We will see that separability allows us to allocate separate tasks to each agent
of the network. The main focus of this chapter is on unconstrained optimization
problems.
In Chapter 4, we investigate distributed algorithms as efficient solutions for the
linearly constrained problems with separable objective functions, where the con-
straint includes a weighted sum of all the primal variables. In this chapter we
propose a distributed algorithm that can be applied over any connected graph
with any connectivity pattern in contrast to the traditional algorithms. The
main part of Chapter 4 is presented in publication II.
In Chapter 5, we consider the linearly constrained optimization problems, where
there are more than one block of constraint. In this chapter we propose a fully

6 Introduction

asynchronous distributed algorithm with low computational complexity and in-
vestigate its application in the consensus problem. We also derive synchronous
algorithms with low channel bandwidth requirements. The main part of Chapter
5 is presented in publication III.
In Chapter 6, we propose distributed algorithms for blind source separation over
sensor networks. The proposed algorithms in this chapter can be applied over
any arbitrary graph. A summary of Chapter 6 is presented in publication I while
the main part of it is presented in publication IV.

Linear blind source separation 7

2
Linear blind source separation

Learning from data efficiently requires the existence of a representative model for
the data a-priori. In general, any observed data in real-world can be represented
either by a linear or a non-linear model. Consider a non-linear relationship
between a set of source signals, S(t), and their observations as, b(t), in presence
of additive noise, n(t), as:

bN×1(t) = F (SM×1(t)) + nN×1(t), t = 1, ..., T (2.1)

where F (.) : RM → RN is a non-linear function. Given the model in (2.1),
the objective of the non-linear blind source separation problem is to learn the
source vector S(t), ∀t = 1, ..., T given only the observed data, b, without any
prior knowledge about the sources, the number of them and the function F (.).
However, in non-linear BSS it is usually assumed that the number of observations
are greater than or equal to the number of original sources. The ambiguity about
both the sources and the function F (.) makes the non-linear BSS problem highly
vague and makes the estimation problem highly difficult, at-least compared to the
linear models. Regardless of the latter issues there are many learning methods,
such as Non-Linear Principle Component Analysis (NLPCA), Non-linear Factor
Analysis (NFA), Non-linear Independent Component Analysis (NICA), etc, that

8 Linear blind source separation

has been successfully applied for non-linear BSS [101,105,159,193,195,210].
Compared to non-linear models, linear models are much simpler while they are
able to capture the underlying nature of the observed data in a wide range of
applications. For example in the cocktail party problem, two linear generative
models can well represent the set of observed data depending on the level of
reverberation in the environment of the talkers. The observed data can be well
modelled with a simple linear (instantaneous) model in a delay-restricted en-
vironment while they are well modelled with a linear convolutive model in an
environment with high level of reverberation. The complexity of the convolutive
models can be reduced by transferring the observed data to the frequency do-
main via Fourier Transform and making a linear instantaneous model for each
frequency bin. Therefore this thesis only reviews the classical approaches that are
introduced for linear instantaneous blind source separation as they can be easily
applied to address the cocktail party problem both in echoic and delay-restricted
environments as well as many other problems in engineering.
This chapter starts with introducing the model that is used in linear instan-
taneous BSS in Section 2.1. It discusses the conventional approaches for linear
instantaneous BSS in Section 2.2. Section 2.3 and 2.4 explains the Principal Com-
ponent Analysis (PCA) and Factor Analysis (FA) respectively as approaches that
deals with the second order statistics of the data. Section 2.5 describe the Inde-
pendent Component Analysis (ICA) as a sophisticated approach that deals with
higher order statistics of the data. Finally Section 2.6 discusses the difficulties
and ambiguities that exist in ICA algorithms and BSS problem.

2.1 The basic model

The following generative model describes the input-output data relationship be-
tween a set of source signals as the input and their mixture as the output where
the mixture is obtained from a linear instantaneous mixture of the sources plus
possibly some additive noise:

bN×1(t) = AN×MSM×1(t) + nN×1(t), t = 1, ..., T (2.2)

where bN×1(t) = [b1(t), ..., bN(t)]T , bi(t) contains the observations at the ith sensor
(microphone) at time index t and SM×1(t) = [S1(t), ..., SM(t)]T , Si(t) contains

2.2 Classical approaches 9

the magnitudes of the ith source signal at time index t, A is the mixing matrix
and n contains the magnitudes of the noise signals.
In most of BSS methods, for the purpose of simplicity, the noise is omitted in
(2.2) and it is assumed that the number of sensors is equal to the number of
sources, N = M , so (2.2) reduces to:

b(t) =
N∑
i=1

AiSi(t), t = 1, ..., T (2.3)

where Ai is the ith column of the matrix A.
Considering the equation (2.3), the objective of linear blind source separation
methods is to make an estimation over the elements of the matrix SM×T with-
out or with poor information about the matrix A and by relying only on the
observations on the matrix bN×T .

2.2 Classical approaches

There have been proposed many approaches in the literature as solutions for
linear instantaneous blind source separation. In overall, they can be divided into
two categories. The first category includes approaches that use the second order
statistics of the data, e.g. variance, and try to decorrelate the observed data as
a solution for separation. Example methods of the first category are principal
component analysis [1, 81, 93, 146, 190] and factor analysis [66, 100, 177]. The
second category includes approaches that use the higher order statistics of the
data, e.g. third or forth moments, and try to maximise the independency over
the set of observed data as a solution for separation. Independent component
analysis is an approach that sits in the second category. There are many ICA
algorithms proposed in the literature. A thorough review of the ICA algorithms
is presented in [35,69,87,107].
The independency in the ICA can be defined from different perspectives. Accord-
ing to the knowledge extracted from the central limit theorem the independency
of a set of random variables is measured as a distance to normality. The more
the non-Gaussian a variable is the more independent it is assumed, since it can
not be represented as a weighted sum of other independent variables. The ab-
solute value of kurtosis and the negative differential entropy (neg-entropy) are

10 Linear blind source separation

two objective functions that are used for this purpose. Example algorithms that
use the kurtosis and the neg-entropy are presented in [84, 106, 118, 139]. From
the information-theoretic view point, the average mutual information of a set of
random variables is a measure to their mutual dependence. So the minimiza-
tion of average mutual information can leads to the independency. Example
algorithms that use the average mutual information as the objective function
are presented in [78, 150, 194]. An alternative approach to minimization of av-
erage mutual information is based on a maximum-likelihood estimation. In the
maximum-likelihood based blind source separation, the objective is to maximize
the likelihood of the ICA model where a prior independency is considered over the
sources. The latter independency is defined by representing the joint distribution
of the sources as the product of their marginal distributions. Example ICA al-
gorithms based on maximum-likelihood approach are presented in [109,142,151].
Another objective function that can be used for blind source separation as a
measure of independency is derived from the neural network viewpoint [20]. In
this approach, the independent sources are estimated by maximizing the output
entropy of a separation neural network. The principle of maximizing the output
entropy of a neural network, information maximization or infomax, is equivalent
to the maximum-likelihood estimation if an appropriate activation function is
used for activating the neurons of the network. The connection between infomax
and maximum-likelihood is determined in [29,149].

In problems in which the original sources are inherently independent, ICA is the
best candidate for source separation in comparison with the methods that only
assume a prior decorrelation about the sources, e.g. PCA and FA. For example
in the cocktail party problem, where the underlying sources are human speech
signals, assuming a prior independency about the sources is realistic since the
process of speech production in different people is independent of each other. In
fact not only the human speech signals but also many signals that are produced
by different individual sources tend to have independent structure. Therefore in
this thesis we aim to apply ICA as a technique for blind source separation. Not
only from our perspective but it has also been widely used as a method for BSS
since 1980s.

2.3 Principal component analysis 11

2.3 Principal component analysis

Principal component analysis was first introduced by Karl Pearson in 1901. It is
a statistical approach that uses an orthogonal transformation to convert a set of
correlated data into a set of uncorrelated data known as principal components.
As independency of a set of data implies the uncorrelatedness, the reverse relation
does not necessarily hold, PCA was used as a method for separation. PCA uses
the following steps for de-correlation:
Step 1: Centering the data as:

bc = b− µb (2.4)

where µb = [µb,1, ..., µb,N]T , µb,i = 1
T

∑T
t=1 bi(t).

Step 2: Orthogonal transformation as:

YP = V T bc (2.5)

where V is a matrix that is made by stacking all the eigenvectors of the covariance
matrix, Cbc = 1

T
bcb

T
c , of the centered data and YP contains the de-correlated

data. It can be easily verified from the following equality that the data in YP are
decorrelated:

1

T
YPY

T
P =

1

T
V T bcb

T
c V = V TCbcV = V TV DV TV = D (2.6)

where D is a diagonal matrix that contains the eigenvalues of the covariance
matrix, Cbc , and V T = V −1 as it is an orthogonal matrix. The diagonality of D
implies that the data in YP have pairwise zero covariance.

PCA can also be used for dimensionality reduction by considering only k eigenvec-
tors, where k < N , that correspond to the k largest eigenvalues of the covariance
matrix in equation (2.5).

Fig. 2.1 visualises the effect of PCA over a set of mixed data where the underlying
sources have Laplacian distributions. The results in Fig. 2.1 were obtained
by using 2 original sources (human speech signals) with 44000 samples. From
Fig. 2.1 we see the lack of an additional rotation for extracting the original
distributions. However, this is not the case for symmetric Gaussian distributions
as they are not distinguishable with different rotations. Therefore PCA can only

12 Linear blind source separation

(a)

(b) (c)

Figure 2.1: Visualisation of the scatter plot of the data. a) The scatter plot of
the original sources. b) The scatter plot of the mixed (observed) data. c) The
scatter plot of decorrelated data using PCA.

be meaningful in the sense of separation if the underlying sources have Gaussian
distributions. The aforementioned limitation of the principal component analysis
makes it less practical for blind source separation. However, PCA can facilitate
the separation procedure by reducing redundancy over the set of observed data as
a preprocessing technique for independent component analysis (ICA) algorithms.

It is good to notice the connection between PCA and whitening. A set of zero
mean data are said to be white if their covariance matrix is equal to identity
matrix. The whitening is performed over a set of zero mean data through the
following transformation:

YW = V TD
−1
2 V bc (2.7)

where YW contains the whitened data that can be verified from the following

2.4 Factor analysis 13

equality:

1

T
YWY

T
W =

1

T
V D

−1
2 V T bcb

T
c V D

−1
2 V T = V D

−1
2 V TCbcV D

−1
2 V T

= V D
−1
2 V TV DV TV D

−1
2 V T = I

(2.8)

Similar to PCA, whitening can also be used for decorrelation. In contrast to
PCA, whitening produces decorrelated data with normalized variances.

2.4 Factor analysis

Factor analysis is a method that can describe a set of possibly correlated variables
in terms of potentially lower number of uncorrelated factors. There is a strong
relationship between factor analysis and principal component analysis but they
are not necessarily the same. FA uses different model assumptions compared to
PCA. In factor analysis the model in (2.2) is used and it is also assumed that the
factors S(t) have a Gaussian distribution with identity covariance matrix as:

S(t) ∼ N (0, I) (2.9)

where N (0, I) denotes a normal distribution with zero mean and identity co-
variance matrix. The identity covariance matrix implies that the factors are
decorrelated. Using (2.9) in the model (2.2) results in a distribution for the
observed data as:

b(t) ∼ N (AS(t) + µn,Σn) (2.10)

where µn and Σn are the mean and covariance of the noise respectively and Σn

is a diagonal matrix.
By denoting the parameters of the model, (A,µn,Σn), with θ we can formulate a
likelihood for the parameters as:

p(b|S, θ) =
T∏
t=1

p(b(t)|S(t), θ) =
T∏
t=1

N (b(t);AS(t) + µn,Σn) (2.11)

where it is assumed that the factors S(t) and noise n(t) are independent at
different time. To estimate the parameters, one can apply point estimate methods
on (2.11), for example a maximum-likelihood approach. However, the maximum-
likelihood method is suitable when there is no latent variable (unobserved factors)

14 Linear blind source separation

in the model. To overcome the latter issue, Expectation Maximizations (EM)
algorithm suggests the following iterates to find the appropriate value of the
parameter θ:
Expectation step: Find the posterior of S:

p(S|b, θt−1) (2.12)

Maximization step: Find the parameter that maximizes the following:

θt = argmax
θ
Ep(S|b,θt−1)[log p(S, b|θ)] (2.13)

where Eq[.] denotes the expectation over q. Expectation maximization is a
method for maximizing the likelihood of the parameters where there is some
unobserved latent variables in the model. EM guarantees that the likelihood will
not decrease at each iteration. After estimating the parameters, θ, one can find
the most probable values of the factors S via the Maximum a Posteriori (MAP)
method as:

SMAP = argmax
S

p(S|b, θo) (2.14)

where θo is evaluated after the convergence of the EM algorithm.
Although by making use of factor analysis one can easily represent a set of
observed data in terms of a set of uncorrelated factors but its basic version
can not be used to represent the observed data in terms of a set of independent
components (sources) [175]. In addition, the prior Gaussianity assumption about
the factors reduce the flexibility of the FA in learning the linear models in which
the sources (factors) have distributions other than Gaussian.

2.5 Independent Component analysis

Independent component analysis [37,39,94] is a statistical approach that aims to
estimate a set of individual components from their mixture through a transfor-
mation over the mixed data as:

y = Wb (2.15)

where W is the transformation matrix and y is an estimate of the individual
components.
Independency assumption over the individual components is the key for separa-
tion in the ICA based algorithms. There are different measurement tools that

2.5 Independent Component analysis 15

can measure the independency, which we discuss in the following sections.

2.5.1 Maximization of non-gaussianity

According to the knowledge extracted from the central limit theorem [13, 156],
the distribution of a scalar random variable bj defined as

bj =
N∑
i=1

aiSi (2.16)

where ai’s are sufficiently big constants and Si’s are independent identically dis-
tributed scalar random variables, tends to have a Gaussian distribution regardless
of the distribution of Si’s. So we can see the connection between the dependency
of the variable bj and its Gaussianity. The more the non-Gaussian a variable is,
the more independent it is assumed, since it can not be represented as a weighted
sum of a set of independent random variables [85]. Therefore one may need to
find an appropriate transformation, W , over the observed data, as samples of the
random variable b, that maximize the non-Gaussianity of the estimated compo-
nents, y.

Kurtosis

One of the objective functions that can be used to measure the Gaussianity of
a distribution is the Kurtosis [17, 41, 163]. Kurtosis is a measurement tool that
measures the tailedness and describe the shape of a distribution. For a zero mean
random variable x the kurtosis is defined as:

kurt(x) = E[x4]− 3(E[x2])2 (2.17)

where E[.] denotes the expectation operator.
Kurtosis can be both positive and negative. For super-Gaussian distributions,
distributions that decay at least as fast as Gaussian, kurtosis is positive while
for the sub-Gaussian distributions, those that decay at most as fast as Gaussian,
kurtosis is negative. Interestingly for a Gaussian distribution the kurtosis is
zero and as was mentioned earlier it is a non-zero value for most non-Gaussian
distributions. Therefore maximizing the absolute value of the kurtosis is an
appropriate objective for maximizing the non-gaussianity of the data. However,

16 Linear blind source separation

the kurtosis is so sensitive to the outliers [64,82,121]. Although kurtosis has been
used for ICA [106,114] it is not considered as a robust method for measuring the
non-gaussianity since it is evaluated from the measured data, which may contain
irrelevant samples.

Neg-entropy

Another effective objective that can measure the Gaussianity is the neg-entropy
[26, 67]. In fact it is an optimal estimator of the Gaussianity [87]. For a scalar
random variable x the neg-entropy is defined as:

J(x) = H(xgauss)−H(x) (2.18)

where xgauss is a Gaussian random variable with the same variance as x and H(x)

is the differential entropy [40,144] defined as:

H(x) = −
∫

p(x)logp(x)dx (2.19)

where p(x) is the probability density function of x.

According to the information theory, the differential entropy of a random variable
is a measure of information content of the variable. Among all the distributions
with the same variances, Gaussian distribution has the maximum deferential en-
tropy. Therefore one can use (2.18) as a distance to normality. Neg-entropy is a
non-negative value and is only zero for Gaussian distributions. So maximization
of the neg-entropy can lead to estimation of the independent components. How-
ever, using (2.18) requires the estimation of the probability density functions,
p(.), from the observed data, which is computationally demanding. The latter
issue caused to use an approximate estimate of the neg-entropy. An example
approximation of the neg-entropy for a zero mean unit variance random variable
x is proposed in [83] as:

J(x) ∝ [E[G(xgauss)]− E[G(x)]]2 (2.20)

where G can be any non-quadratic function. The most useful choices of the
function G includes:

G1(x) =
1

a1
logcosh(a1x), G2(x) = −exp(−x

2

2
), G3(x) =

x4

4
(2.21)

2.5 Independent Component analysis 17

where 1 ≤ a1 ≤ 2 is a constant. It is shown in [84] that G2 and G3 are more
appropriate when the underlying independent components have super-Gaussian
and sub-Gaussian distributions respectively while G1 is a general purpose func-
tion.

2.5.2 Minimization of average mutual information

Another approach for measuring the independency inspired from the informa-
tion theory is using the concept of average mutual information. Mutual informa-
tion between two random variables y1 and y2, quantifies the similarity between
their joint distribution, p(y1, y2), and the product of their marginal distribution,
p(y1)p(y2). For a set of independent random variables yi, i = 1, ..., N the average
mutual information is zero and the following equality holds:

p(y1, ..., yN) =
N∏
i=1

p(yi) (2.22)

Average mutual information between a set of random variables yi, i = 1, ..., N

(not necessarily independent), measures the distance between the left and right
side of the equality in 2.22 via the following formula:

I(y1, ..., yN) =
N∑
i=1

H(yi)−H(y1, ..., yN) (2.23)

where H denotes the differential entropy.

According to [144] the average mutual information between a set of random
variables yi that are obtained via an invertible linear transformation y = Wb,
where y = [y1, ..., yN]T , can be written as:

I(y1, ..., yN) =
N∑
i=1

H(yi)−H(b)− log|detW | (2.24)

By comparing 2.24 with 2.18 and assuming that the variables yi, i = 1, ..., N in
(2.24) have equal variances, we establish the following equality:

I(y1, ..., yN) = C −
N∑
i=1

J(yi) (2.25)

18 Linear blind source separation

where C is a constant.

(2.25) shows the relationship between the neg-entropy and average mutual infor-
mation. From (2.25) we see that minimization of the average mutual information
of a set of random variables is equivalent to maximization of the non-gaussianity
of each individual variable. Therefore by minimizing the average mutual infor-
mation between the transformed version of the observed data one can estimate
the independent components. The separation can be achieved by finding the ap-
propriate transformation matrix W that minimizes I(y1 = W1b, ..., yN = WNb),
where Wi denotes the ith row of the matrix W . By making use of numerical op-
timization techniques such as gradient descent one can evaluate the appropriate
de-mixing matrix W .

2.5.3 Maximization of information

As was mentioned earlier, the entropy of a random variable measures the in-
formation content of the variable. From the coding theory, we know that the
join entropy of a set of random variables yi, i = 1, ..., N is the coding length of
the variables. In fact it measures the required coding length for coding a set of
random variables in the unit of bits. The more independent the variables are,
the more bits is required for coding. This results in using the joint entropy as
an alternative measurement tool for measuring independency.

Maximizing the joint entropy of a set of random variables is equivalent to max-
imizing their independency. [20, 135] used the latter concept to estimate the
independent components via the neural networks. To estimate the independent
components via the neural networks one can consider the observed data, b, as
the input to a network which its outputs is obtained as Φi(Wib), where Wi is
the ith row of the matrix W and is the weight vector of the ith neuron and
Φi(.) is a non-linear activation function, and find the optimal weight vectors that
maximizes:

H(Φ1(W1b), ...,ΦN(WNb)) (2.26)

with suitable choice of non-linear function, Φi(.), maximization of (2.26) leads
to separation of the independent components [20]. In fact, the estimated sources
are calculated by applying learning rules on the neural networks whose activation
functions are able to capture the underlying distribution of the original source

2.5 Independent Component analysis 19

signals.

2.5.4 Maximization of likelihood function

Making use of the generative model in (2.3), one can estimate the independent
components, Si, by maximizing the likelihood of the model. The likelihood
function for a set of observed data b(t), t = 1, ..., T given the model (2.3) is
written as:

p(b|A) =
T∏
t=1

p(b(t)|A) (2.27)

where p(b(t)|A), the probability of the data at time index t is evaluated as:

p(b(t)|A) =

∫
p(b(t)|A, S)p(S)dS (2.28)

Including the prior independency assumption about the random variables Si,
i = 1, ..., N as p(S) =

∏N
i=1 p(Si) into the equation (2.28) and maximizing (2.27)

leads to separation of the independent components [109]. For numerical stability,
maximization is usually performed over the log of (2.27). Optimizing (2.27)
leads to an optimization in terms of mixing matrix A. Alternatively, one can
formulate a likelihood function in terms of the de-mixing matrix W . According
to the probability theory, the probability of b = AS can be written in terms of
the probability of S and the linear transformation matrix A as:

pb(b) =
1

|detA|
pS(S) (2.29)

by substituting W = A−1 and making use of the model in (2.3), (2.29) can be
written as:

pb(b) = |detW |pS(Wb) (2.30)

Including the prior independency assumption about the variables Si, i = 1, ..., N ,
for a set of observed data across time t = 1, ...T the likelihood can be formulated
as:

L(W) =
T∏
t=1

pb(b(t)) = |detW |T
T∏
t=1

N∏
i=1

pi(Wib(t)) (2.31)

for numerical stability purposes, one can use the log of (2.31) as the objective
function:

logL(W) =
T∑
t=1

N∑
i=1

logpi(Wib(t)) + T log|detW | (2.32)

20 Linear blind source separation

By comparing (2.32) with (2.24) we see that the following relationship holds:

logL(W) = −TI(y1, ..., yN)− TH(b) (2.33)

where H(b) is a constant. Therefore, maximization of log-likelihood, logL(W),
is equivalent to minimization of the average mutual information.

2.5.5 Natural gradient based optimization

After obtaining a variety of objective functions for independent component anal-
ysis, one needs to apply numerical optimization methods over those functions to
extract the independent components. The standard stochastic gradient [7, 189]
seems to be one solution for this purpose. However, applying the standard
stochastic gradient is only meaningful over parameter spaces with Euclidean
structure.

It has been observed that the parameter space of blind source separation, the
space of non-singular matrices, behaves like a Riemannian manifold. In a non-
linear space like the space of non-singular matrices, the standard gradient descent
does not give the steepest direction of the objective function but the natural
gradient [8] does. The natural gradient of a function K(W) is defined as:

∇̃K(W) = Z−1∇K(W) (2.34)

where ∇ denotes the ordinary gradient and the matrix Z is the Riemannian
metric tensor.

It has been demonstrated in [8] that the space of invertible matrices W has a
metric tensor as Z = (WW T)−1. Using the invariance property of the inner
product under translation in a Riemannian space, [14, 174] introduced different
natural gradient formulations for the parameter space of blind source separation
as:

∇̃LK(W) = WW T∇K(W)

∇̃RK(W) = ∇K(W)W TW

∇̃LRK(W) = WW T∇K(W)W TW

∇̃RRK(W) = ∇K(W)W TW TWW

∇̃LLK(W) = WWW TW T∇K(W)

(2.35)

2.6 Difficulties and ambiguities 21

Considering the average mutual information as the objective function and ap-
plying the ordinary gradient leads to the following update [11]:

W (t+ 1) = W (t) + µ(I − g(yT (t))y(t))W T−1

(t) (2.36)

where g(.) is a non-linear function and µ is the learning rate.

Applying the natural gradient in the form of ∇̃R instead of the ordinary gradient
leads to a more numerical stable update as:

W (t+ 1) = W (t) + µ(I − g(yT (t))y(t))W (t) (2.37)

2.37 is more numerically stable than 2.36 since it does not include the inverse of
the matrix W .

2.6 Difficulties and ambiguities

One of the ambiguities that exists in independent component analysis is about
the correct scaling of the estimated sources. As there is neither information
about the mixing matrix A nor about the sources S any scaled version of the
sources as RS, where R is an arbitrary diagonal scaling matrix, can still satisfy
the ICA model as:

b = AR−1RS (2.38)

Another ambiguity that exist in ICA is about the correct permutation of the
estimated sources. In fact any permuted version of the sources as PS, where P
is the permutation matrix, can also be a solution given by the ICA algorithms
as it also satisfies the model:

b = AP−1PS (2.39)

Therefore the following relationship holds between the estimated sources, y, as
the output of the ICA algorithms and the original sources, S:

y = RPS (2.40)

However, learning a scaled and permuted version of the sources is not too prob-
lematic in many applications especially in the cocktail-party problem in a delay-
restricted environment using time domain approaches where the underlying sources

22 Linear blind source separation

are speech or music signals.

In a delay-restricted environment, the instantaneous linear model 2.3 is an ap-
propriate generative model while in an echoic environment the following model
mimics the real nature of the mixing process between the jth source and ith sensor
(microphone):

bi(t) = hij(t) ∗ Sj(t) (2.41)

where hij(t) is the impulse response of the room between the jth source and ith

microphone and ∗ denotes the convolution operator.

To be able to apply the linear multiplicative ICA algorithms over the convolutive
models with low computational complexity, one can divide the observed data into
a set of frames and then apply the short-time Discrete Fourier Transform (DFT)
on each frame to produce a linear multiplicative model for each frequency bin
as:

b(f, k) = H(f)S(f, k) (2.42)

where H(f) is a complex mixing matrix in the frequency domain and k denotes
the frame index.

The multiplicative ICA algorithms can easily be applied on (2.42) for a set of
frames, k = 1, ..., K, to estimate S(f, k). After estimating S(f, k), we can re-
construct the time series signal S(t) at the frame index k by using the inverse
DFT. However, reconstructing the spectrum of the signal correctly requires to
have a correct knowledge about the permutation and scaling of the estimated
spectrum at each frequency bin. This is because the spectrum at the frame k
is reconstructed by concatenating S(f, k) across different frequency bins. Con-
catenation with different permutations do not allow to reconstruct the spectrum
for each source signal correctly. The scaling ambiguity results in reconstructing
a filtered spectrum of the signals. Therefore, permutation and scaling problems
would be a burden in convolutive models. There are a variety of approaches that
have addressed the aforementioned issue, which can be found in [53,88,165,178].

It is also good to mention that the multiplicative ICA algorithms have also the
potential to be applied directly on, without the need for a transformation to the
frequency domain, a set of observations that are recorded in an anechoic envi-
ronment, where there is at least a delay between the source signals and their
observed versions via the microphones, if there is a limit on the number of de-
lays and sources. In fact, by considering the delayed versions of the sources

2.6 Difficulties and ambiguities 23

as independent components the multiplicative ICA algorithms can be easily ap-
plied to estimate the sources and their delayed versions as long as the total
number of sources and delayed versions do not exceed the number of observa-
tions (microphones). The latter condition guarantees that the ICA problem is
not under-determined. The (over) determinacy is a necessary condition in the
standard independent component analysis (ICA) algorithms as otherwise the
decomposition is not guaranteed to be unique.
Regardless of the convolutive or instantaneous multiplicative model of the mix-
ing process, to address the cocktail-party problem via BSS algorithms, there is
the need of a set of sensors (microphones) to capture the mixture data. Blind
source separation via wireless sensor networks has recently drawn more attention
in comparison with the wired sensors because of low cost and broad areal cover-
age. As was mentioned in Chapter 1, in the context of wireless sensor networks
research on BSS can be divided into centralized and de-centralized processing
approaches. The centralized processing approach in general carries limitations
such as powerful hardware requirements, high power consumption of the trans-
mission and lack of scalability [63]. To overcome the latter issues we investigate
distributed (in-network) processing solutions and its application in blind source
separation in this thesis.
In the next chapter we discuss distributed algorithms for the unconstrained prob-
lems with separable objective function. We review the diffusion strategy and
belief propagation on probabilistic graphical models as example techniques.

24 Linear blind source separation

Distributed optimization techniques based on separability 25

3
Distributed optimization techniques
based on separability

Distributed and parallel processing is a fast developing research area. Various
technologies are used to build distributed systems. A distributed system is a
collection of autonomous agents (processors) referred to as nodes which are con-
nected through a network. The connectivity of the nodes allows them to coor-
dinate their activities and share the resources of the system. The cooperation
between the nodes allows the user to perceive the system as a single computing
unit.

The distributed computing has several advantages compared to the centralized
computing, such as: lower cost, reduced processing time and higher flexibil-
ity [162]. Instead of investing on expensive mainframe and supercomputers for
centralized computing, one can distribute the data processing over a few mini-
computers that cost much less than mainframe machines. By splitting the prob-
lems into modules and allocating them to different agents that run simultane-
ously and in parallel, we can also reduce the processing time. Parallel processing
is a branch of distributed processing in which all the machines simultaneously
execute the same task in order to increase the processing speed. The other ad-

26 Distributed optimization techniques based on separability

vantage of distributed computing is flexibility, meaning that individual nodes can
be located at different locations, e.g. near the resources, to do a single global
task. The aforementioned benefits motivate us to follow approaches towards data
splitting, to be able to allocate them to different machines, for solving our big
problems. On the other hand there are many network-structured optimization
problems that arises in a variety of applications in engineering [22,111,125,192].
In those applications the problem inherently is separable since the objective func-
tion of the optimization forms a sum of partial functions. The separability of
the objective function allows to develop distributed algorithms over a network of
nodes.

The problems with separable objective function can be divided into two cate-
gories. The first category includes the unconstrained problems and the second
one includes the constrained problems. In this chapter we discuss two example
distributed methods, known as diffusion and Belief Propagation (BP) on Prob-
abilistic Graphical Models (PGMs), of the unconstrained problems. In Chapter
4 and 5, we discuss the problems of the second category. We first start with a
discussion on diffusion method in Section 3.1 followed by a discussion on PGMs
in Section 3.2.

3.1 Diffusion

Consider the problem of minimizing a global cost function J(w) which is the sum
of N local cost functions Jk(w), k = 1, ..., N as:

min
w
J(w) =

N∑
k=1

Jk(w) (3.1)

The problems of the form above arise in many applications such as target lo-
calization, online machine learning and distributed sensing. In the distributed
sensing application one can consider a network of N agents that are interested
in estimating the parameters of a physical model. In the latter scenario we can
assume that each agent k receives a filtered version of a sequence, uk(i), in pres-
ence of additive noise as dk(i) over time i ≥ 0. The relationship between uk(i)

3.1 Diffusion 27

and dk(i) can be modelled as follows:

dk(i) =
M−1∑
m=0

βmuk(i−m) + vk(i), i ≥ 0 (3.2)

where {β0, ..., βM−1} are the parameters of the model and vk(i) is the additive
noise.

The equation (3.2) can also be written in a vector form as:

dk(i) = uk,iw
o + vk(i), k = 1, . . . , N (3.3)

where wo = [β0, ..., βM−1]T and uk,i = [uk(i), ..., uk(i−M + 1)].

Making use of the equation (3.3), to estimate the parameter vector wo, [167]
introduced a network objective as:

min
w

N∑
k=1

E|dk(i)− uk,iw|2 (3.4)

where
∑N

k=1 E|dk(i) − uk,iw|2 is the global cost function and E denotes the ex-
pectation operator.

Making use of the separability of the global cost function in (3.4), one can assign
local cost function as Jk(w) = E|dk(i) − uk,iw|2 to each agent k, k = 1, ..., N .
To estimate the parameter wo and satisfying the network objective, each agent
k is then responsible in minimizing its own cost function Jk(w) using its own
resources, uk(i) and dk(i). There are many adaptive algorithms [68, 70], such as
Least Mean Square (LMS), Normalized Least Mean Square (NLMS) and Recur-
sive Least Square (RLS), that can be used for this purpose. For the purpose of
simplicity [167] uses the LMS algorithm for minimizing Jk(w) which leads to the
following updates:

wk,i = wk,i−1 + µu∗k,i(dk(i)− uk,iwk,i−1) (3.5)

where µ is the step size and u∗k,i denotes the complex conjugate of uk,i.

Assume a non-cooperative scenario in which each agent is interested in minimiz-
ing its local cost function via the LMS algorithm (3.5) without any cooperation
with other agents. For this scenario the Mean Square Deviation of each agent,

28 Distributed optimization techniques based on separability

MSDncop,k, and the network, MSDncop,network, is evaluated as:

MSDncop,k = lim
i→∞

E ‖ w̃k,i ‖2≈ µM

2
σ2
v,k (3.6)

MSDncop,network =
µM

2

1

N

N∑
k=1

σ2
v,k (3.7)

where w̃k,i = wo−wk,i and σ2
v,k is the variance of the noise at agent k. Equations

(3.6)-(3.7) allow to measure the performance of the network and each agent in
correct estimation of wo in a non-cooperative manner. For a detailed derivation
of (3.6) and (3.7) the reader is referred to [166, p. 362].

It is good to compare the distributed non-cooperative scenario with the central-
ized processing scenario. By making use of the LMS algorithm, in a centralized
processing manner the parameter w is updated as follows:

wi = wi−1 + µ
1

N

N∑
k=1

u∗k,i(dk(i)− uk,iwi−1) (3.8)

It has been shown in [167] that using (3.8) leads to a MSD as:

MSDcent =
µM

2

1

N
(

1

N

N∑
k=1

σ2
v,k) (3.9)

Comparing (3.9) with (3.7) we see a decrease of performance by a factor of 1
N

in
the non-cooperative strategy compared to the centralized processing. Therefore
we can conclude that splitting a global objective and allocating modules to a set
of agents without considering additional assumptions may lead to a lower perfor-
mance compared to the centralized approach. A natural solution for maintaining
the performance when applying the distributed processing is to build a commu-
nication platform between the nodes of the network. Diffusion strategy [167] uses
the latter solution and propose two distributed algorithms known as Combine
then Adapt (CTA) and Adapt then Combine (ATC).

Fig. 3.1 shows a sample communication graph of diffusion strategy. As it can be
seen from the Fig. 3.1 each edge that connects two neighbour agents is weighted
by two scalars. For convergence purposes the scalars should satisfy the following

3.1 Diffusion 29

Figure 3.1: Illustration of a sample communication graph of diffusion strategy
with N nodes. The neighbour of node k, denoted by N(k), includes {2, h, 6, k}.

properties [167]:

ahk ≥ 0,
∑

h∈N(k)

ahk = 1, ahk = 0 if h /∈ N(k) (3.10)

where N(k) denotes the neighbours of node k include k itself. In fact the matrix
A ≡ [ahk], which is made by collecting the scalars ahk, h, k = 1, ..., N , would be
a left stochastic matrix as the result of consideration of the conditions in (3.10).
A left stochastic matrix is a real square matrix, with each column summing to
one. This property of the matrix A allows the agents to reach to a consensus
about the estimation of the parameter vector wo, since A satisfies the required
conditions for development of distributed averaging algorithms over network of
agents, see, e.g. [191].

Making use of the condition (3.10), the CTA algorithm uses the following updates
in a cooperative manner to estimate the parameters of the model:

ψk,i−1 =
∑

h∈N(k)

ahkwh,i−1

wk,i = ψk,i−1 + µu∗k,i(dk(i)− uk,iψk,i−1)

(3.11)

This means that each agent k is responsible in updating its expectation about
the parameter wo, denoted by wk, using the expectation of the neighbour agents
and then send it to its neighbour agents. Consequently the information that
needs to be transmitted between two neighbour agents in the network is their
expectation about the parameter vector.

By changing the order of the combination step and adaptation step, ATC algo-

30 Distributed optimization techniques based on separability

rithm suggests the following updates:

ψk,i = wk,i−1 + µu∗k,i(dk(i)− uk,iwk,i−1)

wk,i =
∑

h∈N(k)

ahkψk,i
(3.12)

It has been demonstrated in [207] that the diffusion methods (CTA & ATC) have
a comparable performance to the centralized method. For a doubly stochastic
matrix A (a real square matrix, with each column and row summing to one) the
MSD of the diffusion methods is evaluated as [167]:

MSDdiff,k ≈ MSDdiff,network ≈
µM

2

1

N
(

1

N

N∑
k=1

σ2
v,k) (3.13)

Although requiring the matrix A to be a doubly stochastic matrix is more than
the requirement that is needed for convergence, it allows the agents to have the
same performance as the network. It is good to notice that in distributed sens-
ing via diffusion strategy, each node of the network captures the same physical
behaviour (medium) for different excitation signals. In diffusion strategy it is
also assumed that the nodes have knowledge about the excitation signals and
the only unknown is the parameter of the physical model. This is in contrast to
the blind source separation scenario where both the parameters of the physical
model and the source signals are unknown and each node receives the source
signals through different physical transmission medium. Therefore, the diffusion
algorithms (CTA and ATC) that were discussed in this section can not be di-
rectly applied for distributed BSS. However, by giving an explanation about the
diffusion strategy and its application on distributed sensing, we saw that how a
separable objective function can be allocated to a set of agents. We also noticed
the importance of communication between the agents in distributed systems. In
the next section we show how inference on probabilistic graphical models can
lead to a distributed algorithm through an example application in solving the
systems of linear equations.

3.2 Belief propagation on PGMs 31

3.2 Belief propagation on PGMs

Graphical representation of probabilistic models of a set of random variables
can help us to visualize the conditional dependence structure of the random
variables [185]. Making use of the conditional dependence structure enables us
to optimize the computational complexities of the inference problems. There
are different types of probabilistic graphical models such as, Bayesian network,
Markov network and Factor graphs [103].
In PGMs each vertex denotes a random variable and each edge express the depen-
dency between the variables that are connected via that edge. Fig. 3.2 visualizes
different possible graphical models for a set of random variables, (x1, x2, x3, x4),
whose joint probability distribution is represented as

p(x1, x2, x3, x4) = p(x4|x2)p(x3|x1)p(x3|x2)p(x2)p(x1) (3.14)

From the Fig. 3.2 we see that among the depicted graphical models, Markov
graph reveals interesting properties compared to the Bayesian and Factor graphs.
The properties include the non-discriminatory representation of the nodes com-
pared to Factor graphs and non-causal (unidirectional) relationship between the
nodes compared to the Bayesian graph. The discrimination between the nodes
in Markov graph is eliminated by considering one set of corresponding nodes.
This is in contrast to the factor graph that is a bipartite graph consisting of two
different set of nodes, where each set is comprised of corresponding nodes. The
aforementioned properties make a connection between the Markov graph and the
communications graph of distributed systems. Thus, creating any distributed al-
gorithm over the Markov graph can be easily applied on the graph of distributed
systems.
There are many inference methods on PGMs that lead to distributed algorithms.
Examples of the inference methods are sum-product, max-product and max-sum
[34]. The latter methods use the message passing (belief propagation) techniques
[132] to calculate either the marginal distribution or the most probable state of
the random variables. We now through an example inference on Markov graph
show how a distributed algorithm for solving the system of linear equations can be
built. Solving the system of linear equations has many applications in engineering
and information science.

32 Distributed optimization techniques based on separability

(a) Bayesian graph (b) Factor graph

(c) Markov graph

Figure 3.2: Illustration of graphical models for a set of random vari-
ables whose joint probability distribution is represented as p(x1, x2, x3, x4) =
p(x4|x2)p(x3|x1)p(x3|x2)p(x2)p(x1).

Consider the problem of solving a system of linear equations:

b = Ay (3.15)

where b ∈ RN is the observation vector, A ∈ RN×N is a data matrix whose ele-
ments are the coefficients of the system and the objective is to find the unknown
vector y ∈ RN . By assuming that the matrix A is full rank, the solution of the
above problem is obtained via the following equation:

y = A−1b (3.16)

It has been demonstrated in [169] that for a symmetric matrix A the minimizer
of the following quadratic function, q(S), is the solution of the systems of linear
equations:

q(S) =
STAS

2
− bTS (3.17)

Proof (for a symmetric matrix A):

dq(S)

dS
= AS − b (3.18)

3.2 Belief propagation on PGMs 33

setting (3.18) to zero results in:

AS = b ⇒ S = A−1b (3.19)

Therefore any function, f(S), of the form below would have its maximizer at
S = A−1b:

f(S) =
1

z
exp(−q(S)) (3.20)

where z is a positive constant. Denoting A−1b by µ and by expanding (3.20), [169]
established the following equality:

f(S) =
1

z
exp(−S

TAS

2
+ bTS)

=
1

z
exp(

µTAµ

2
)exp(−S

TAS

2
+ µTAµ− µTAµ

2
)

=
1

ζ
exp(−(S − µ)TA(S − µ)

2
)

= N (µ,A−1)

(3.21)

where ζ = zexp(−µTAµ
2

) and N (µ,A−1) denotes a Gaussian distribution with
mean vector µ and covariance matrix A−1.

According to the equality in (3.21), finding the maximizer of the function f(S)

corresponds to finding the most probable state of the Gaussian distribution
N (µ,A−1).

Thus, the problem of finding the solution of the system of linear equation can be
formulated as:

y = argmax
S

f(S) (3.22)

where f(S) = N (µ,A−1) is a multi-variable Gaussian distribution.

Because of the factorability property of the Gaussian distribution, we can split
the objective function f(S) as below:

f(S) ∝
N∏
i=1

Φi(Si)
∏
{i,j}

Ψij(Si, Sj) (3.23)

where Φi(Si) = exp(biSi − AiiS
2
i

2
), Ψij(Si, Sj) = exp(−SiAijSj) and Si denotes

the ith element of the vector S. To solve the problem (3.22), we can apply
the inference methods on a Markov graph that is induced from the separable
Gaussian distribution (3.23), where the functions Φi(Si) and Ψij(Si, Sj), ∀i, j =

34 Distributed optimization techniques based on separability

Figure 3.3: Illustration of a Markov graph that corresponds to a separable Gaus-
sian distribution p(S), where p(S) ∝

∏N
i=1 Φi(Si)

∏
{i,j}Ψij(Si, Sj). For the pur-

pose of simplicity only 4 variables, (1, i, j, N) are depicted.

1, ..., N , are appropriately allocated to the nodes of the graph. Fig. 3.3 illustrates
the Markov graph that is induced from the distribution in (3.23), where A is a
symmetric dense matrix, and shows how the functions Φi(.) and Ψij(., .) are
allocated to the nodes and edges. It is good to note that the connectivity of the
nodes of the graph in Fig. 3.3 depends on the non-zero elements of the matrix A.
This is because the conditional dependency of the variables Si and Sj depends
on the ijth element of the matrix A.

Allocation of the partial functions Φi(Si) and Ψij(Si, Sj), ∀i, j = 1, ..., N , into
different nodes converts the inference problem (3.22) into a distributed inference
problem. It has been shown in [169] that applying the max-product as inference
tool for maximizing f(S) on the Markov graph, leads to an iterative procedure
in which each vertex i will be responsible for estimating its own variable Si
through cooperation with its neighbouring nodes. The messages that need to be
transmitted between the nodes will be in the form of scalar Gaussian distributions
that are usually encoded with two scalars, mean and variance. Because of the
Gaussianity of the messages the method is also referred to as Gaussian Belief
Propagation (GaBP).

By applying the GaBP algorithm [169] on a distributed system whose communi-
cation graph corresponds to a Markov graph that is induced from the distribution
N (µ,A−1), we are able to find the solution of the system of linear equations dis-
tributively and cooperatively, in which each agent is responsible for estimating
its own unknown variable.

3.2 Belief propagation on PGMs 35

Distributed processing of the system of linear equations via the probabilistic ap-
proach not only leads to an iterative algorithm [15] that is inherently simple,
requiring only additions and multiplications, but also allows us to exploit the
sparsity structure of the matrix A and therefore reduce the computational com-
plexity of calculating the direct matrix inversion in large scale problems [164].

It is important to note that the convergence of the GaBP, as a solver of system
of linear equations, is restricted to symmetric and walk-summable matrices. A
positive definite matrix A, with all ones on its diagonal, is walk-summable if the
spectral radius of the matrix B̄ = [|Bij|]ni,j=1, where B = I −A, is less than one.
However, the convergence of GaBP for general matrices was fixed in [92] with
the cost of adding additional iterations and communications between the nodes.

There are other variants of GaBP algorithm such as Linear Coordinate Descent
(LiCD) [201] and Generalized Linear Coordinate Descent (GLiCD) [200] mes-
sage passing algorithms that are optimized in terms of computation, storage and
required transmission bandwidth between the nodes. An example application of
GLiCD in distributed beamforming can be found in [77].

Distributed algorithms for solving the system of linear equations, for example
GaBP or GLiCD, can also be applied in distributed blind source separation. For
example in ICA algorithms that are based on estimating the mixing matrix, after
evaluating the appropriate mixing matrix A, one can estimate the sources S as
S = A−1b, where b denotes the observed data. By using the GLiCD algorithm we
can estimate the sources in a distributed fashion over a network of nodes, where
each node i has access to his own observed data bi and is responsible in estimat-
ing its own source Si, given an estimation on the mixing matrix. However, the
convergence of GaBP and GLiCD for general matrices A, (not necessarily sym-
metric walk-summable), requires considerable amount of communication between
the nodes. In wireless sensor networks, where the energy of each sensor node is
supplied by a small battery, high communication will decrease the life-time of
the sensor nodes. Therefore we do not pursue applying GLiCD as a distributed
algorithm for source estimation in this thesis.

In the next chapter we consider a globally constrained optimization problem and
investigate distributed processing algorithms as solutions for the problem. There
are a variety of problems in signal processing and machine learning which can
be cast into the globally constrained optimization problem, for example robust

36 Distributed optimization techniques based on separability

principle component analysis [28, 208], basis pursuit problem [27, 33] and image
denoising [153,160].

A communication-efficient asynchronous distributed algorithm 37

4
A communication-efficient asynchronous
distributed algorithm

4.1 Introduction

In this chapter, we consider linearly constrained convex optimization problems
withN ≥ 2 blocks of variables where the constraint includes a weighted sum of all
the decision variables. These forms of problems arise in many applications such as
machine learning, compressive sensing and statistics [28,31,58,131,145,148,176].
For problems with separable objective function, it is desirable to develop parallel
algorithms to solve the problem. Parallelization of the algorithm facilitates the
optimization of the objective function for the case of a very large number of
decision variables.

To address the constrained problem, it is first converted to an unconstrained op-
timization by forming a Lagrangian function [21,181]. Assuming that a solution
exists for the constrained problem, the optimal point of the decision variables
together with the Lagrange multiplier (dual variable) will be evaluated at the
saddle point of the Lagrangian function [24,181]. To evaluate the optimal point,
one can first formulate a dual problem, find the optimal point of the dual variable

38 A communication-efficient asynchronous distributed algorithm

from the dual function, and then find the optimal point of the decision variables
from the Lagrangian function [25]. To achieve the latter it is easier to start from
an initial point and follow a primal-dual algorithm in which the dual and primal
variables are evaluated from the Lagrangian function one after another in an
iterative procedure.

An example primal-dual algorithm is the dual ascent method or dual sub-gradient
method [25,170]. One of the challenges in the dual ascent method is that specific
assumptions need to be satisfied for convergence. Given the convergence guar-
antee, the dual ascent method has a slow rate of convergence of O(1/

√
k) for

general convex functions, where k denotes the iteration counter. Although the
dual ascent method does not benefit from a good convergence property it natu-
rally leads to a parallel algorithm known as dual decomposition [49] for problems
with separable objective functions. Applying the dual decomposition algorithm
over a network of agents suggests a star pattern of connectivity in which a mas-
ter agent, to which all other worker agents are connected, is responsible for the
update of the dual variable and the worker agents are responsible for the update
of the primal or decision variables.

To improve the convergence property of the dual ascent method a penalty term
is added to the Lagrangian function, forming an augmented Lagrangian [76]. A
well-known primal-dual method that is applied over the augmented Lagrangian
is the method of multipliers [76, 127]. A drawback of the method of multipliers
is that the primal variables need to be updated jointly, which no longer allows
a parallel update. The latter deficiency is the consequence of the existence of
the penalty term in the augmented Lagrangian, which couples all the primal
variables.

Motivated by decoupling the primal update, the Alternating Direction Method
of Multipliers (ADMM) [55] was proposed to add decomposability of the update
of the decision variables to the method of multipliers. It was first introduced in
1970s and has been popular in recent years; a thorough review of the ADMM
and its convergence analysis can be found in [24,48]. ADMM updates the primal
variables alternately, similarly to a Gauss-Seidel procedure. It was developed for
two blocks of variables (N = 2) and its convergence was investigated and proved
in [54] for constrained problems with two blocks of decision variables. An exten-
sion of ADMM from two blocks of variables to N > 2 blocks of variables suggests

4.1 Introduction 39

a Gauss-Seidel iterative procedure over the updates of the primal variables and
is known as Gauss-Seidel ADMM [72]. The problem with Gauss-Seidel ADMM
is that the primal variables are updated sequentially, which does not allow for
parallelization. It is more desirable to run the updates of the primal variables in
Gauss-Seidel ADMM in parallel. An algorithm that satisfies the latter desire is
Jacobi ADMM.

Although Gauss-Seidel ADMM and Jacobi ADMM have been applied successfully
to some problems [187], neither of them is necessarily convergent for N > 2

blocks of variables [32]. [71] introduced and discussed specific assumptions by
which the Jacobi ADMM is guaranteed to converge for multi-blocks of variables.
Generally the requirement for the convergence of Jacobi ADMM consists of a
conservative movement towards the saddle point of the augmented Lagrangian
function [71, 75]. The penalty term in the augmented Lagrangian implies that
a primal-dual algorithm based on the augmented Lagrangian over a network of
agents imposes a fully connected network in which a master node is responsible for
the update of the dual variable and all remaining (worker) agents are responsible
for the update of the primal or decision variables.

In this chapter we develop a primal-dual algorithm that exploits both Lagrangian
and augmented Lagrangian functions. We evaluate the primal variables from a
Lagrangian type function to benefit from the full separability of the primal vari-
ables of the Lagrangian function. The difference between the proposed primal-
dual algorithm and the dual decomposition algorithm is that the dual variable
is evaluated from a dual function instead of being evaluated directly from the
Lagrangian function. To be able to benefit from a parallel optimization in the
dual problem, we convert the dual problem to a consensus problem in which the
objective function would be separable across the agents. The advantage of con-
verting the dual problem to a consensus problem for development of distributed
algorithms for a specific kind of problems and its application to distributed signal
processing has been recently highlighted in [?]. We address the consensus prob-
lem by formulating an augmented Lagrangian function and evaluate its saddle
point using the Bi-ADMM algorithm [202] as a distributed algorithm. Making
use of the aforementioned augmented Lagrangian, the proposed primal-dual algo-
rithm converges both synchronously and asynchronously with the rate of O(1/k)

where k denotes the iteration counter for optimization of the consensus prob-

40 A communication-efficient asynchronous distributed algorithm

lem. The asynchronism of the updates of the variables allows the algorithm to
be applied in real-world scenarios in which coordination of a set of distinct and
disparate agents is demanding, for example in heterogeneous networks.

Another outcome of the proposed approach arises from converting the dual prob-
lem to a consensus problem which allows the primal-dual algorithm to be applied
over any graph with any connectivity patterns as long as the graph is connected.
By applying the proposed primal-dual algorithm over a sparse connected graph
we can reduce the total communication complexity.

The remainder of this chapter is organized as follows; In Section 4.2 we review the
related works and the algorithms that they introduce as a solution to the problem
(4.1). In Section 4.3 we introduce the proposed algorithm. The evaluation of the
proposed approach is presented in Section 4.4. It is followed by a conclusion in
Section 4.5.

4.2 Related Work

Consider the following optimization problem with N ≥ 2:

minimize
N∑
i=1

fi(xi)

subject to
N∑
i=1

Aixi = c

xi ∈ χi , i = 1, ..., N

(4.1)

where (xi, Ai, c) ∈ (Rni ,Rm×ni ,Rm), χi is a convex set and fi : Rni → R∪{+∞}
is a closed, proper and convex function.

In order to incorporate the constraint into the objective term in the problem
(4.1) the Lagrangian function is constructed as:

L(x1, ..., xN , λ) =
N∑
i=1

fi(xi)− λT (
N∑
i=1

Aixi − c) (4.2)

where λ ∈ Rm is the Lagrange multiplier or the dual variable.

Assuming that a solution exists for the problem (4.1) as (x∗1, ..., x
∗
N), it can be

4.2 Related Work 41

master worker

workerworkerworker

worker

worker worker worker

Figure 4.1: Illustration of the graph of dual decomposition method.

obtained by first evaluating the λ∗ from the dual problem as:

λ∗ = argmax
λ

g(λ) (4.3)

where g(λ) = infx1∈χ1,...,xN∈χN L(x1, ..., xN , λ) is the dual function and then cal-
culating the (x∗1, ..., x

∗
N) from the Lagrangian function as:

(x∗1, ..., x
∗
N) = arg min

x1∈χ1,...,xN∈χN
L(x1, ..., xN , λ

∗) (4.4)

To simplify (4.3) and constructing a parallel optimization, the dual decompo-
sition algorithm considers the following iterative updates as an alternative to
(4.3)-(4.4) [49]:

xk+1
i = arg min

xi∈χi
fi(xi)− λk

T

Aixi , i = 1, ..., N

λk+1 = λk − αk(
N∑
i=1

Aix
k+1
i − c)

(4.5)

where
∑N

i=1 (Aixi−c) is the gradient of g(λ) and k denotes the iteration counter.
With a suitable choice of αk and assuming that some specific assumptions hold
[137] (e.g. fi(xi) is not a nonzero affine function of xi), the updates in (4.5) are
guaranteed to converge to the saddle point, (x∗1, ..., x

∗
N , λ

∗), of L(x1, ..., xN , λ). By
following (4.5) the xi-subproblems can be solved fully in parallel over a network
of agents with a communication graph visualized in Fig. 4.1.

As was mentioned earlier the dual decomposition algorithm has a slow rate of

42 A communication-efficient asynchronous distributed algorithm

convergence for general convex functions which makes it impractical in many
applications. To improve the convergence properties of the dual decomposition
method and bring robustness to it the method of multipliers was introduced
[76,152]. The method of multipliers exploits the augmented Lagrangian function
by adding a penalty term to the Lagrangian function as:

Lρ(x1, ..., xN , λ) =
N∑
i=1

fi(xi)− λT (
N∑
i=1

Aixi − c) +
ρ

2
||

N∑
i=1

Aixi − c||22 (4.6)

where ρ is a positive constant.

ADMM is the multipliers method that uses partial updates in an alternating
manner similar to the Gauss-Seidel updates. ADMM was developed for two
blocks of variables, N = 2, in which it updates the variables as follows:

xk+1
1 = arg min

x1∈χ1

Lρ(x1, x
k
2, λ

k)

xk+1
2 = arg min

x2∈χ2

Lρ(x
k+1
1 , x2, λ

k)

λk+1 = λk − ρ(
N∑
i=1

Aix
k+1
i − c)

(4.7)

ADMM converges in far more general conditions with a quicker rate of conver-
gence than the dual decomposition method and its convergence for N = 2 has
been proven [54]. A trivial solution to apply ADMM for multi-blocks of variables,
N ≥ 2, is to consider the following updates for xi-subproblems:

xk+1
i = arg min

xi∈χi
Lρ(x

k+1
1 , ..., xk+1

i−1 , xi, x
k
i+1, ..., x

k
N , λ

k) (4.8)

which leads to the well-known Gauss-Seidel ADMM algorithm.

4.2 Related Work 43

Algorithm 1 Gauss-Seidel ADMM
Initialize xi, i = 1, ..., N and λ
while the stopping criteria is not met do

for i = 1, ..., N [sequentially] do
xk+1
i = argminxi∈χi fi(xi)− λk

T
Aixi+

ρ
2
||
∑i−1

j=1 Ajx
k+1
j + Aixi +

∑N
j=i+1Ajx

k
j − c||22

end for
λk+1 = λk − ρ(

∑N
i=1 Aix

k+1
i − c)

k ← k + 1

end while

Algorithm 1 shows the entire updating procedure in the Gauss-Seidel ADMM.
As it can be seen from Algorithm 1 the primal variables are updated sequentially
which no longer allows for parallelization. To be able to develop a parallel al-
gorithm corresponding to Algorithm 1, one can replace the xi updates with the
following updates:

xk+1
i = arg min

xi∈χi
Lρ(x

k
1, ..., x

k
i−1, xi, x

k
i+1, ..., x

k
N , λ

k) (4.9)

which leads to well-known Jacobi ADMM algorithm as shown in Algorithm 2.
However, neither of the Jacobi and Gauss-Seidel versions of the ADMM are
guaranteed to converge.

Algorithm 2 Jacobi ADMM
Initialize xi, i = 1, ..., N and λ
while the stopping criteria is not met do

for i = 1, ..., N [in parallel] do
xk+1
i = argminxi∈χi fi(xi)− λk

T
Aixi + ρ

2
||Aixi +

∑
j 6=iAjx

k
j − c||22

end for
λk+1 = λk − ρ(

∑N
i=1 Aix

k+1
i − c)

k ← k + 1

end while

[32, 42] showed that the mutual orthogonality of the matrices Ai is a sufficient
condition for convergence of the Jacobi and Gauss-Seidel ADMM algorithms.
In [65, 71, 75, 91] it was suggested to combine an under-relaxation step with the

44 A communication-efficient asynchronous distributed algorithm

output of the Jacobi ADMM to guarantee its convergence for general matrices
Ai as:

wk+1 = wk − β(wk − w̃k) (4.10)

where β > 0 is a constant step size, wk = [xk1, ..., x
k
N , λ

k]T is the input to the
Jacobi ADMM algorithm and w̃k is its output.

Algorithm 3 UR-Jacobi ADMM
Initialize xi, i = 1, ..., N and λ
while the stopping criteria is not met do

for i = 1, ..., N [in parallel] do
x̃k+1
i = argminxi∈χi fi(xi)− λk

T
Aixi + ρ

2
||Aixi +

∑
j 6=iAjx

k
j − c||22

end for
λ̃k+1 = λk − ρ(

∑N
i=1 Aix̃

k+1
i − c)

Generate wk+1 using (4.10) with β = η(1−
√

N
N+1

)

and η ∈ (0, 2)

k ← k + 1

end while

Using (4.10) with an appropriate upper bound on β the Jacobi ADMM is guaran-
teed to converge. The difference between [65, 75, 91] and [71] is the assumptions
that they consider for the value of N and β. In fact the algorithms in [65] and [75]
are developed for N = 2 and N = 3 respectively while [91] and [71] are designed
for N ≥ 2. Between [91] and [71], [71] introduces a larger upper bound for β.
The entire updating procedure of [71] is shown in Algorithm 3 and we refer to
it as under-relaxation based Jacobi ADMM (UR-Jacobi ADMM). Another effec-
tive approach that has been proposed to guarantee the convergence of the Jacobi
ADMM is the Proximal Jacobi ADMM [42]. In the Proximal Jacobi ADMM
a proximal term of the form of 1

2
||xi − xki ||2Pi , where Pi is a symmetric positive

semi-definite matrix, is added to each xi-subproblem and a damping parameter,
γ > 0, controls the update of the dual variable as shown in Algorithm 4. The
proximal terms together with the damping parameter play the same role as the
under relaxation step (4.10) which leads to a conservative movement towards the
saddle point of the augmented Lagrangian function. The advantage of the Prox-
imal Jacobi ADMM compared to the UR-Jacobi ADMM is that the existence of
the proximal terms can lead to an easier subproblem by choosing the appropriate

4.2 Related Work 45

master worker

workerworkerworker

worker

worker worker worker

Figure 4.2: Illustration of the graph of methods based of augmented Lagrangian.

Algorithm 4 Proximal Jacobi ADMM
Initialize xi, i = 1, ..., N and λ
while the stopping criteria is not met do

for i = 1, ..., N [in parallel] do
xk+1
i = argminxi∈χi fi(xi)− λk

T
Aixi + ρ

2
||Aixi +

∑
j 6=iAjx

k
j − c||22+

1
2
||xi − xki ||2Pi

end for
λk+1 = λk − γρ(

∑N
i=1Aix

k+1
i − c)

k ← k + 1
end while

matrices Pi. For example by choosing Pi = Di−ρATi Ai, where Di is an arbitrary
well-conditioned diagonal matrix, one can cancels the quadratic term ρ

2
xiA

T
i Aixi

that appears in the xi-subproblem. This cancellation would be an advantage
when ATi Ai is ill-conditioned or computationally expensive to invert. In addi-
tion the proximal terms make each subproblem strongly convex when they are
just convex which leads to a more stable algorithm [42]. It is important to note
that the aforementioned Algorithms 1, 2, 3 and 4 that utilize the augmented
Lagrangian function require a communication graph as illustrated in Fig. 4.2. A
master agent is responsible for the update of the dual variable and the worker
agents are responsible for the update of the primal variables.

46 A communication-efficient asynchronous distributed algorithm

4.3 Proposed Approach

In this section we propose a primal-dual form algorithm that eliminates the
need for a master agent. It utilizes a Lagrangian type function to evaluate the
primal variables and an augmented Lagrangian type function to evaluate the
dual variable from a constrained optimization problem. This results to enjoy
the full parallelization of the xi-subproblems of the Lagrangian function and the
superior convergence property of the augmented Lagrangian based methods, e.g.
a convergence rate of O(1/k).

We split the dual variable by introducing N copies of it, denoted by λ1, ..., λN .
Then we consider the following Lagrangian function:

L(x1, ..., xN , λ1, ..., λN) =
N∑
i=1

fi(xi)−
N∑
i=1

λTi (Aixi −
c

N
) (4.11)

The dual function of the above Lagrangian function can then be formulated
as:

g(λ1, ..., λN) = inf
x1∈χ1,...,xN∈χN

L(x1, ..., xN , λ1, ..., λN)

=
N∑
i=1

[inf
xi∈χi
{fi(xi)− λTi Aixi}+ λTi

c

N
]

=
N∑
i=1

[−f ∗i (ATi λi) + λTi
c

N
]

(4.12)

where f ∗ denotes the convex conjugate, also referred to as the Legendre Fenchel
transform, of f [80,158]. By introducing a new local function hi(λi) = f ∗i (ATi λi)−
λTi

c
N

the dual problem associated to the Lagrangian function (4.11) can be writ-
ten in the form of a consensus problem over a graph G = (ν, ε), where ν denotes
the set of nodes with cardinality N = |ν| and ε denotes the set of edges, as:

min
λi

∑
i∈ν

hi(λi)

s.t. λi = λj ∀(i, j) ∈ ε
(4.13)

The objective is now to find the optimal dual variable λ∗i , i ∈ ν from (4.13)
in a distributed manner over the graph G and to evaluate the optimal primal

4.3 Proposed Approach 47

variables from the Lagrangian function (4.11) in parallel as:

x∗i = arg min
xi∈χi

fi(xi)− λ∗
T

i Aixi (4.14)

The optimization problem consisting of (4.13) and (4.14) forms our proposed al-
ternative optimization of problem (4.1). It is important to note that the proposed
approach requires the calculation of the convex conjugate function compared to
the traditional methods.

Numerous distributed algorithms can be used to solve consensus problems of the
form of (4.13), both synchronously and asynchronously, e.g. [90, 188, 202, 206].
Among the latter algorithms the Bi-ADMM algorithm [202] activates one agent
rather than one edge per iteration, thus eliminating the need for coordination
between agents both locally and globally. Therefore, we use the Bi-ADMM
algorithm to address (4.13) in this thesis. The Bi-ADMM algorithm exploits an
augmented primal-dual Lagrangian function for problems of form (4.13) as:

LI(λ1, ..., λN , δ) =
∑
i∈ν

[hi(λi)−
∑

j∈N(i)\i

sign(j − i)δTj|iλi − h∗i (
∑

j∈N(i)\i

sign(j − i)δi|j)]

∑
(i,j)∈ε

(
1

2
||λi − λj||22 −

1

2
||δi|j − δj|i||22)

(4.15)
where h∗i is the convex conjugate of hi, δ = [δT1 , ..., δ

T
N]T , δi denotes the vector

obtained by vertically concatenating all δi|j, j ∈ N(i)\i, δi|j is the dual variable
associated to the constraint, λi = λj, on the edge (i, j) which is held at node i,
and N(i) denotes the neighbours of node i including i itself and N(i)\i excludes
node i from its neighbours.

Using the above augmented primal-dual Lagrangian, the Bi-ADMM algorithm
converges to its saddle point with O(1/k) rate of convergence [204] both syn-
chronously and asynchronously regardless of the topology of the graph G, as
long as the graph is connected [202].

We consider the following two assumptions.
Assumption 1: The KKT conditions [96, 97, 104] hold for the problem (4.1)
as:

ATi λ
∗ ∈ ∂fi(x∗i) , i = 1, ..., N

N∑
i=1

Aix
∗
i = c

(4.16)

48 A communication-efficient asynchronous distributed algorithm

In other words, there exists a saddle point (x∗1, ..., x
∗
N , λ

∗) for the Lagrangian
function (4.2) that satisfies the following inequality:

L(x∗1, ..., x
∗
N , λ) ≤ L(x∗1, ..., x

∗
N , λ

∗) ≤ L(x1, ..., xN , λ
∗) (4.17)

Assumption 2: The augmented primal-dual Lagrangian function (4.15) has a
saddle point.

Assuming that Assumption 2 holds, Bi-ADMM uses the following updates to
iteratively approach the solution of (4.13):

λk+1
i =argmin

λi
[hi(λi) +

∑
j∈N(i)\i

{−sign(j − i)λTi δkj|i +
1

2
||λi − λkj ||22}]

δk+1
i|j =δkj|i + sign(j − i)(λkj − λk+1

i)

(4.18)

By combining (4.18) with (4.14) we can associate a primal point xki to each
dual point λki at each iteration, similarly to primal-dual algorithms. Algorithm 5
and 6 show the proposed distributed algorithm for the case of synchronous and
asynchronous updates respectively. We refer to the proposed algorithms as dual
decomposition Bi-ADMM (DDBi-ADMM).

Algorithm 5 DDBi-ADMM (synchronous version)
Randomly initialize xi, λi and δi,j ∀i, j ∈ ν
do [in parallel]

xk+1
i = argminxi∈χi fi(xi)− λk

T

i Aixi

λk+1
i = argminλi [hi(λi) +

∑
j∈N(i)\i{−sign(j − i)λTi δkj|i + 1

2
||λi − λkj ||22}]

δk+1
i|j = δkj|i + sign(j − i)(λkj − λk+1

i) ∀ j ∈ N(i)\i
k ← k + 1

while the stopping criteria is not met

4.3 Proposed Approach 49

Algorithm 6 DDBi-ADMM (asynchronous version)
Randomly initialize xi, λi and δi,j ∀i, j ∈ ν
while the stopping criteria is not met do

Randomly choose an agent i
xk+1
i = argminxi∈χi fi(xi)− λk

T

i Aixi

λk+1
i = argminλi [hi(λi) +

∑
j∈N(i)\i{−sign(j − i)λTi δkj|i + 1

2
||λi − λkj ||22}]

δk+1
i|j = δkj|i + sign(j − i)(λkj − λk+1

i) ∀ j ∈ N(i)\i
(xk+1

j , λk+1
j , δk+1

j) = (xkj , λ
k
j , δ

k
j) ∀ j ∈ ν , j 6= i

k ← k + 1

end while

From the Algorithm 5 and 6 we see that the synchronous version of the DDBi-
ADMM algorithm is identical to the asynchronous version except that at each
iteration all agents are active and update their variables xi, λi and δi in parallel.
One of the advantages of the proposed algorithm is that it can be implemented
over any graph as long as the graph is connected, by connectivity we mean
that the graph is not separated and there is at least a path between any pair
of nodes. By applying the DDBi-ADMM algorithm over a sparse graph we
can reduce the total number of communication processes per iteration. The
communication process is referred to as data sharing between one pair of agents
that are linked via an edge on the graph. For example by applying the proposed
method over a sparse graph with |ε| edges we can reduce the total communication
processes by a factor O(N(N−1)

2|ε|) compared to the traditional algorithms that
exploit the augmented Lagrangian function as the total number of edges over
a dense graph is N(N−1)

2
. It is important to note that the messages that are

transmitted between two worker agents i and j in the augmented Lagrangian
based methods are comprised of xi and xj. This is in contrast to the proposed
approach in which the messages that are transmitted between two worker agents
i and j are comprised of λi, λj, δi|j, δj|i. Since (λi, λj, δi|j, δj|i) ∈ Rm ∀ (i, j) ∈ ε,
for a given communication channel on the edge (i, j) we can also save on the
transmission bandwidth if m <

ni+nj
4

.
By comparing the Proximal Jacobi ADMM with the DDBi-ADMM algorithm
we see that the convergence of the Proximal Jacobi ADMM is guaranteed only
for Pi = τiI or Pi = τiI − ρATi Ai [42], where I is an identity matrix, with

50 A communication-efficient asynchronous distributed algorithm

τi > ρ(N
2−γ −1)||Ai||2 or τi > ρN

2−γ ||Ai||
2 respectively. Calculating ||Ai|| introduces

the computational complexity of evaluating eigen values of the matrixATi Ai. This
is in contrast to the DDBi-ADMM algorithm that only requires the computation
of the convex conjugate function.

4.3.1 Convergence rate

As was mentioned earlier, the proposed alternative optimization problem to the
problem (4.1) is comprised of the consensus problem (4.13) and xi-subproblems
(4.14). As evaluating the solutions to the xi-subproblems (4.14) does not require
an iterative procedure, the convergence rate of the proposed approach will depend
only on the iterative algorithms that address the problem (4.13). As we used the
Bi-ADMM algorithm as a distributed solution to the consensus problem (4.13),
the convergence rate of the proposed algorithm is the same as the Bi-ADMM
algorithm. According to [202] we have the following inequalities:

0 ≤
∑
i∈ν

∑
j∈N(i)\i

[−sign(j − i)(δ̄Ki|j − δ∗i|j)T λ̄Kj − (λ̄Ki − λ∗i)T

.sign(j − i)δ̄Kj|i] + p(Λ̄K , δ̄K) ≤ O(1/K)

(4.19)

0 ≤
∑
i∈ν

∑
j∈N(i)\i

[−sign(j − i)(δ̆Ki|j − δ∗i|j)T λ̆Kj − (λ̆Ki − λ∗i)T

.sign(j − i)δ̆Kj|i] + p(Λ̆K , δ̆K) ≤ O(1/K)

(4.20)

that hold for the synchronous and asynchronous updating schemes respectively
where (Λ̄K , δ̄K) = (1

K

∑K
k=1 Λk, 1

K

∑K
k=1 δ

k), Λ = [λT1 , ..., λ
T
N]T , K denotes the

total number of iterations and p(Λ, δ) is defined as:

p(Λ, δ) =
∑
i∈ν

[hi(λi) + h∗i (
∑

j∈N(i)\i

sign(j − i)δi|j) (4.21)

For the asynchronous updating scheme, it is assumed that at each iteration node
i = mod(k,N) + 1 is activated where mod denotes the modulo operator and the
total number of iterations is (K − 1)N , which is comprised of K segments of N
iterations and (Λ̆K , δ̆K) = (1

K

∑K
k=1 ΛkN , 1

K

∑K
k=1 δ

kN).

The inequalities (4.19) and (4.20) are derived based on the variational inequalities
which have been the basis for the convergence analysis of ADMM based algo-
rithms and have been used in many papers, e.g. see [43,74]. For detailed deriva-

4.4 Experimental Results 51

tion and the proof of the above inequalities the reader is referred to [202,204].

4.3.2 Remark

In the following we summarize the advantages and disadvantages of the proposed
approach. The advantages of the proposed approach include: 1) It converges
without requiring conservative movements (e.g. without requiring the under-
relaxation steps as in (4.10) which imply consideration of a smaller step towards
the output of ADMM). 2) It converges with the rate of O(1/k). 3) It can be
implemented both synchronously and asynchronously. 4) It provides a commu-
nication efficient platform for distributed optimization. The disadvantages of the
proposed approach include: 1) It requires the calculation of the convex conjugate
function. 2) It is not applicable when fi(xi) is an affine function of xi.

4.4 Experimental Results

Many problems can be cast into the problems of the form (4.1). Examples
include the basis pursuit problem [27,33], the exchange problem [179,180], robust
principal component analysis [28,208] and image denoising [153,160].
To evaluate the performance of the DDBi-ADMM algorithm we implement it on
the exchange problem, which is defined as:

minimize
N∑
i=1

fi(xi)

subject to
N∑
i=1

xi = 0

(4.22)

and compare the results with the UR-Jacobi ADMM Algorithm 3 and the Prox-
imal Jacobi ADMM Algorithm 4. In order to assess the performance of the
DDBi-ADMM algorithm in terms of the consistency of agents in estimation of
the variables λi, i = 1, ..., N we added a consistency controlling parameter ζ to
the update of the dual variables δ as below:

δk+1
i|j = δkj|i + ζsign(j − i)(λkj − λk+1

i) (4.23)

in all of our experiments in this chapter.

52 A communication-efficient asynchronous distributed algorithm

0 50 100 150 200

iteration

10
-10

10
-5

10
0

10
5

O
b

je
c
ti
v
e

 V
a

lu
e

Sync DDBi-ADMM Dense
Sync DDBi-ADMM Sparse
Proximal Jacobi ADMM
UR-Jacobi ADMM

0 500 1000 1500

iteration

10
-20

10
-15

10
-10

10
-5

10
0

O
b

je
c
ti
v
e

 V
a

lu
e

Async DDBi-ADMM Dense
Async DDBi-ADMM Sparse

(a) Objective

0 50 100 150 200

iteration

10
-4

10
-3

10
-2

10
-1

10
0

10
1

R
e

s
id

u
a

l

Sync DDBi-ADMM Dense
Sync DDBi-ADMM Sparse
Proximal Jacobi ADMM
UR-Jacobi ADMM

0 500 1000 1500

iteration

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

R
e

s
id

u
a

l

Async DDBi-ADMM Dense
Async DDBi-ADMM Sparse

(b) Residual

Figure 4.3: Illustration of the convergence behaviour of the DDBi-ADMM algo-
rithm over a network with 9 agents with objective as

∑9
i=1 fi(xi) and residual as

||
∑9

i=1 xi||2.

The functions fi(xi) were considered as 1
2
||Gixi − di||22 where Gi ∈ Rq×ni and

di ∈ Rq. In the experiments we set ni = 10, ∀ i = 1, ..., N , q = 10 and ζ = 0.9.

For the Proximal Jacobi ADMM algorithm we set Pi = ρ(N
2−γ −1) and γ = 1 and

for the UR-Jacobi ADMM algorithm we set η = 1.99. The latter settings are the
optimal settings for the competing algorithms. The aforementioned parameter
values are optimal since they provide the maximum step length towards the
optimal solution. They are also the extremum values that the parameters can
take such that the convergence is guaranteed [42,71]. To make a fair comparison
between the algorithms we set ρ = 1.

We also evaluated the performance of the algorithms in terms of the scale of
the problem. Fig. 4.3 shows the average results after 20 trials for a small scale
problem with N = 9. Fig. 4.4 shows the confidence interval of the results in
Fig. 4.3. In Fig. 4.5 we plot the average results after 20 trials for a large scale
problem with N = 121 agents. For the asynchronous case we assumed that at
each iteration one agent is activated with a uniform probability distribution.

4.4 Experimental Results 53

(a) Sync DDBi-ADMM Dense (a) UR-Jacobi ADMM

(b) Sync DDBi-ADMM Sparse (c) Proximal Jacobi ADMM

Figure 4.4: Illustration of the confidence interval of the mean of the objective
value when the algorithms are applied in a synchronous updating manner on a
network of 9 agents.

To asses the convergence rate of the DDBi-ADMM algorithm over sparse com-
munication graphs, in each of the experiments we also applied the algorithm
separately over a sparse graph. To derive the connectivity pattern of the sparse
graphs we assumed that the agents are located on a 2 dimensional x-y plane in
the form of a

√
N ×

√
N grid where the distance between any two consecutive

agents in the x axis and y axis is equal to ld. We derived a communication graph
by producing a link between any two agents when their distance was less than
or equal to ld.

From the results in figures 4.3 and 4.5 we see that the Sync DDBi-ADMM has
superior performance in optimization of the objective function and a compara-
ble performance in optimization of the linear constraint in comparison with the
other two algorithms. This results from the fact that DDBi-ADMM exploits a
Lagrangian type function (without any penalty term) for estimation of the op-

54 A communication-efficient asynchronous distributed algorithm

0 50 100 150 200

iteration

10
-5

10
0

10
5

O
b

je
c
ti
v
e

 V
a

lu
e

Sync DDBi-ADMM Dense
Sync DDBi-ADMM Sparse
Proximal Jacobi ADMM
UR-Jacobi ADMM

0 500 1000 1500

iteration

10
-4

10
-2

10
0

10
2

10
4

O
b

je
c
ti
v
e

 V
a

lu
e

Async DDBi-ADMM Dense
Async DDBi-ADMM Sparse

(a) Objective

0 50 100 150 200

iteration

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
e

s
id

u
a

l

Sync DDBi-ADMM Dense
Sync DDBi-ADMM Sparse
Proximal Jacobi ADMM
UR-Jacobi ADMM

0 500 1000 1500

iteration

10
0

10
1

R
e

s
id

u
a

l

Async DDBi-ADMM Dense
Async DDBi-ADMM Sparse

(b) Residual

Figure 4.5: Illustration of the convergence behaviour of the DDBi-ADMM algo-
rithm over a network with 121 agents with objective as

∑121
i=1 fi(xi) and residual

as ||
∑121

i=1 xi||2.

timal primal variables, as the minimizer of the objective function, while it uses
a corresponding dual function as the implicit minimizer of the residual of the
primal constraint. The results in figures 4.3 and 4.5 imply that not only the
proposed algorithm is superior in terms of the required communication steps
but also its superior in terms of the communication overhead. This is because
lower number of iterations and consequently lower number of packets and bits
are transmitted to reach to a certain level of accuracy.

Fig. 4.6 shows the objective as
∑N

i=1 fi(xi) and the residual as ||
∑N

i=1 xi||2 after
200 iterations for different values of ζ using the Sync DDBi-ADMM algorithm
over the dense graphs. From the results in Fig. 4.6 we see that the residual
of the primal constraint as well as the objective value depends on the value of
the parameter ζ and the optimal value of ζ is attained at the values other than
1, which is the case when ordinary Bi-ADMM is applied. The aforementioned
dependency is the consequence of controlling the consistency of the neighbour
agents in estimation of λis via ζ.

4.5 Summary 55

0 0.2 0.4 0.6 0.8 1
ζ

10
-10

10
-8

10
-6

10
-4

10
-2

O
b

je
c
ti
v
e

 V
a

lu
e

N = 9

0 0.2 0.4 0.6 0.8 1
ζ

10
-6

10
-5

10
-4

10
-3

10
-2

O
b

je
c
ti
v
e

 V
a

lu
e

N = 121

(a) Objective

0 0.2 0.4 0.6 0.8 1

ζ

10
-4

10
-3

10
-2

10
-1

R
e

s
id

u
a

l

N = 9

0 0.2 0.4 0.6 0.8 1

ζ

10
-3

10
-2

10
-1

R
e

s
id

u
a

l

N = 121

(b) Residual

Figure 4.6: Illustration of the performance of the Sync DDBi-ADMM algorithm
over the dense graphs for different ζ.

4.5 Summary

In this chapter we introduced a primal-dual algorithm called DDBi-ADMM as a
solution for linearly constrained convex optimization problems where all primal
variables are coupled by a global single block linear constraint. The algorithm
exploits both a Lagrangian type function and an augmented Lagrangian type
function and converges with O(1/k) rate of convergence. The proposed algo-
rithm can be applied both synchronously and asynchronously over any connected
graph. In contrast to the traditional methods such as Jacobi ADMM, UR-Jacobi
ADMM and Proximal Jacobi ADMM, the proposed algorithm is more efficient
in terms of required communication per iteration. The DDBi-ADMM algorithm
also provides efficiency in terms of the required transmission bandwidth in cases
m <

ni+nj
4

.

In the next chapter, we investigate distributed algorithms for the constrained
problems with general linear equality constraints, where the constraint is separa-
ble. In these kind of problems, each partial constraint includes a pair of decision

56 A communication-efficient asynchronous distributed algorithm

variables that results in making a link (edge) between the nodes that hold the de-
cision variables on the graph of the problem. We will see how we can formulate a
consensus problem by a simple reformulation on the general linearly constrained
problem.

Fully asynchronous distributed optimization 57

5
Fully asynchronous distributed opti-
mization

5.1 Introduction

In this chapter, we consider the following constrained optimization problem over
a network of nodes denoted by the set ν with cardinality N = |ν|

min
x1,...,x|ν|

∑
i∈ν

fi(xi)

s.t. Ai→jxi + Aj→ixj = cij ∀(i, j) ∈ ε,
(5.1)

where ε denotes the set of all edges of the network with cardinality M = |ε|, the
global objective function is f(x) =

∑
i∈ν fi(xi), x = [xT1 , ..., x

T
|ν|]

T , (xi, xj, Ai→j, Aj→i, cij) ∈
(Rni ,Rnj ,Rnij×ni ,Rnij×nj ,Rnij), cij = cji ∀(i, j) ∈ ε, Ai→j and Aj→i are arbitrary
matrices and fi : Rni → R∪ {+∞} is a closed, proper and convex function. The
problem (5.1) arises in many massive data processing applications such as wire-
less communications, telecommunications and cloud learning [51, 202, 203, 209].
In these applications it is generally challenging to store the data in one loca-
tion and to process the data in one single processor, and approaches towards its

58 Fully asynchronous distributed optimization

solution have been considered in information processing, signal processing and
machine learning communities.

Because of the separability of the objective function in the problem (5.1), it can
be formulated as a distributed optimization. The distributed optimization can
be performed over a network of N nodes that cooperatively try to solve a global
problem using local information and functions. To address the problem (5.1), it
is usually first converted to the following problem [187,188]:

min
x,z

∑
i∈ν

fi(xi) + Iξ(z)

s.t. Dx+Hz = c,

(5.2)

where Iξ(z) =
∑

(i,j)∈ε Iξij(zij) is an indicator function of a convex set ξ defined
as

Iξ(z) =

 0 if z ∈ ξ

+∞ otherwise
(5.3)

z is a column vector that is created by stacking all zij, (i, j) ∈ ε, zij = [zi
T

ij , z
jT

ij]T

and the convex sets ξ and ξij ⊂ ξ are given by

ξ =
{
z : ziij + zjij = 0 ∀(i, j) ∈ ε

}
ξij =

{
zij : ziij + zjij = 0 (i, j) ∈ ε

} (5.4)

The constraints in (5.1) are preserved in (5.2) by enclosing their structure into
the matrices D and H and the vector c as:

D =


A1 0 . . . 0

0 A2 . . . 0
...

...
0 0 . . . AN

 , H = I, c =


c1

c2

...
cN

 (5.5)

where Ai and ci are obtained by vertically stacking all Ai→j and cij, j ∈ N(i)\i1

respectively and I is an identity matrix. For example, by making use of the
constraint in (5.2) and exploiting the indicator function Iξij(zij), the constraint

1N(i) denotes the neighbours of node i include i itself and N(i)\i excludes node i from its
neighbours.

5.1 Introduction 59

on the edge (i, j) of the original problem (5.1) can be represented as:

Ai→jxi + ziij =
cij
2

(5.6)

Aj→ixj + zjij =
cij
2

(5.7)

By summing (5.6) with (5.7) we obtain the same constraint at the edge (i, j) of
the original problem.

The aforementioned conversion is motivated by the ability to use the ADMM
algorithm as a distributed algorithm that alternates between optimizing only two
variables x and z. The convergence of the ADMM algorithm is only guaranteed
over the problems with two blocks of variables [32,54]. By applying the ADMM
algorithm over problem (5.2), one can still enjoy the separability of f(x) when
one optimizes the variable x by allocating the optimization of xi to the ith node
of the network. However, the introduced auxiliary variable z in (5.2) requires the
existence of a local master node, for each pair of the worker nodes (νi, νj) that are
connected by the edge (i, j) ∈ ε, to handle the optimization of the local variable
zij. This not only increases the computational complexity but also requires a
change on the graphic structure of the network. Therefore it is more desirable to
develop distributed algorithms for the problems of the form (5.1) rather than (5.2)
since it does not include the auxiliary variable z. Nevertheless many applications
of (5.2) exist. Examples are distributed consensus optimization problems such
as demodulation [209], diffusion adaptation [167] and dual averaging [46].

Literature review
In a great number of recent studies, researchers put their effort in finding a
distributed solution for problems of the form (5.1) by using (5.2) rather than
using (5.1) directly. However, many of the proposed solutions have limitations.
One such limitation is the sublinear rate, O(1/

√
k) where k denotes the iteration

counter, of convergence of subgradient methods [23,136,155,167] that exploit the
Lagrangian function. The latter limitation was addressed by using the augmented
Lagrangian function and applying the alternating direction method of multipliers
(ADMM) [24]. ADMM is a special case of the Douglas-Rachford splitting method
[47, 116], which has the best known convergence rate O(1/k) for the general
convex problems. Basic ADMM is also subject to limitations. For example it

60 Fully asynchronous distributed optimization

requires synchronous updating of the nodes, which makes it impractical in real-
world scenarios when coordination of a set of distant agents is difficult.

To reach to the solution of constraint problems, e.g. (5.2), one can start from an
initial value for the primal variables, (x,z), and Lagrange multipliers (dual vari-
ables) and then iteratively update their values. Algorithms with asynchronous
updating are often more practical than algorithms with synchronous updating.
ADMM with asynchronous updating for problems that exploit the auxiliary vari-
able z, e.g. (5.2), is introduced in [90,188,206]. The problems that are considered
in [90,188,206] are consensus-based optimization problems that are a special case
of (5.2). In [188] a local variable zij is allocated to each pair of nodes (νi, νj)

that are connected by the edge (i, j) ∈ ε while in [90] the nodes are partitioned
into L subsets B ⊂ ν,  = 1, ..., L with cardinality 2 ≤ |B| < N and a local
variable z is allocated to each subset B. In fact [90] is a generalized version
of [188] and they are equivalent to each other for the special case of |B| = 2 ∀.
The asynchrony in [90, 188] is achieved by activating an edge or subset of edges
in [188] or activating a subset or subsets of the nodes in [90], of the original graph
G, at a time and updating their local variables xi’s and the local variable zij or
z of their local master node in an alternating manner. The drawback of the
algorithms of [90,188] is that, although there is no requirement for a global clock
to coordinate the update of all the nodes, there is the need for a local clock for
each set of nodes that are connected to a local master node. [206] eliminated the
need for any clock by making use of a partial barrier mechanism [6] in which the
master node updates its variable after it receives at least one update from its al-
located worker nodes. However, in [206], in contrast to [90,188], a global variable
z (a global master node) is applied which conflicts with the de-centralized nature
of the problem. It is good to note that the distributed asynchronous algorithms
of [90,188,206] also have the computational complexity of two minimizations and
one gradient step per iteration: optimization of the primal variable x and auxil-
iary variable z and a gradient step towards the optimum point of the Lagrange
multiplier.

Full asynchronism
In the asynchronous Bi-ADMM [202] algorithm, the computational complexity
of evaluation of the variable z is reduced by considering the problem of the form
(5.1). By considering the problem of the form (5.1) they could also preserve the

5.1 Introduction 61

graphic structure of the network by eliminating the need for local or global master
node(s). To be able to eliminate the need for any local clock, [202] splits the local
dual variable associated to each local constraint by introducing two copies of it
and allocating the update of each copied version separately to the nodes that are
connected via that local constraint. This allows the development of a fully asyn-
chronous distributed algorithm in the sense that at each iteration one node or a
subset of nodes can be activated without the need for any coordination. To build
consistency between the copied versions of the local dual variables, a constrained
dual problem is formulated. The constrained dual problem in Bi-ADMM algo-
rithm results in the formulation of a primal-dual augmented Lagrangian function
that requires the additional complexity of evaluating conjugate functions.

Contribution
In this chapter, we consider constrained problems of the form (5.1) and convert it
to an unconstrained optimization problem with a new objective function that is
simpler than the primal-dual augmented Lagrangian function that is introduced
in [202]. By making use of the penalty method [52,120,172], the proposed objec-
tive function is formed by adding a penalty term to the augmented Lagrangian
function, which forms a regularized augmented Lagrangian function. Similar to
the primal-dual augmented Lagrangian used in Bi-ADMM [202], the proposed
regularized augmented Lagrangian allows the activation of one node or a subset
of nodes per iteration. This consequently leads to a fully asynchronous algorithm
without the need for any local or global master node(s) and any clock for coor-
dination. However, in contrast to the primal-dual augmented Lagrangian func-
tion that is introduced in [202], the proposed regularized augmented Lagrangian
function does not require calculation of the conjugate function. By exploiting the
problems of the form (5.1) rather than (5.2), the proposed method has the advan-
tage of low computational complexity by eliminating the update of the variable
z in comparison with the basic ADMM-based algorithms [90,188,206] and allows
the preservation of the graphic structure of the network similar to [202].

In order to decouple the update of dual variable λij associated to the constraint
on the edge (i, j), similar to [202] we introduce two copies of the dual variable
as λi|j and λj|i, where λi|j is the variable that is held at node i and λj|i is the
variable that is held at node j. However, in contrast to [202], instead of the
formulation of an augmented Lagrangian function for the dual problem we add

62 Fully asynchronous distributed optimization

a penalty function in the form of ||λi|j − λj|i||22 to the augmented Lagrangian of
the primal problem to relax the assumption that λi|j=λj|i. Since the constraint
on the equality of λi|j=λj|i is approximated, as a consequence of using a penalty
function, the inaccuracy in such an approximation may affect the final solution
of the problem. Therefore, we provide a measure of the inaccuracy in such an
approximation on the optimal value of the objective function.

The added penalty term allows the decoupling of the update of the dual variable
λij and associates the update of λi|j and λj|i separately with the node i and j.
This results in activating the nodes independently, similar to but in a simpler
way than [202], in which the updates of the primal and dual variables can take
place separately in each node. Existence of the penalty function also results in
a strongly concave regularized augmented Lagrangian function in terms of the
dual variables for fixed primal variables. The strong concavity of the regularized
augmented Lagrangian function converts the gradient step towards the optimum
point of the dual variables to a maximization step at each node. This makes
the optimization procedure of the dual variables more stable than the gradient
optimization, since they will have a finite and closed-form solution.

The remainder of this chapter is organized as follows. In Section 5.2 we briefly
discuss the existing synchronous and asynchronous distributed algorithms that
have been used in the literature. In Section 5.3 we explain the proposed asyn-
chronous distributed algorithm. The evaluation of the proposed asynchronous
algorithm is presented in Section 5.4. It is followed by a conclusion in Section
5.5.

5.2 Review of distributed ADMM-based algorithms

In this section, we review the synchronous and asynchronous distributed ADMM-
based algorithms that were introduced to address the consensus-based optimiza-
tion problems by making use of the problems of the form (5.2). In Section 5.2.1 we
discuss the synchronous algorithm followed by a discussion on the asynchronous
algorithm in Section 5.2.2.

5.2 Review of distributed ADMM-based algorithms 63

5.2.1 Synchronous distributed consensus ADMM

In distributed synchronous consensus ADMM-based methods the constraint prob-
lem 5.2 can be reduced to:

min
x1,...,x|ν|,z

∑
i∈ν

fi(xi)

s.t. xi − z = 0, ∀i ∈ ν.
(5.8)

To convert the above problem into an unconstrained problem, the augmented
Lagrangian function is used as an objective function:

Lρ(x, z, λ) =
∑
i∈ν

{fi(xi) + λTi (xi − z) +
ρ

2
||xi − z||22}, (5.9)

where ρ > 0 and is the penalty parameter, z and λi are the auxiliary (consensus)
variable and the ith dual variable respectively and λ = {λi|i ∈ ν}.
According to [24], by making use of the augmented Lagrangian function in (5.9),
the solution for the problem (5.8) can be obtained via the ADMM algorithm
as:

xk+1
i = argmin

xi
(fi(xi) +

ρ

2
||xi − zk + (λki /ρ)||22), ∀i ∈ ν

zk+1 = argmin
z

(
∑
i∈ν

ρ

2
||xk+1

i − z + (λki /ρ)||22)

λk+1
i = λki + ρ(xk+1

i − zk+1), ∀i ∈ ν

(5.10)

where k is the iteration number. The algorithm in (5.10) is referred to as alter-
nating direction method of multipliers since there is an alternation between the
optimization of the variables xi’s and z.

The updates in (5.10) can be carried out in a distributed processing manner by
assigning the updates of xi and λi over a set of N = |ν| worker nodes and the
updates related to z to a global master node over a communication graph with
star topology. However, the z update (5.10) requires the updates of all xi, i =

1, ..., N in the worker nodes to be done before the update in the master node
takes place. This leads to the need for a global clock to coordinate the updates
of the master and worker agents that form a synchronous updating scheme. In
large-scale problems and especially when there is a set of disparate agents with
different processing speeds, the synchronous update becomes a burden. In the
following we refer to (5.10) as Sync-ADMM.

64 Fully asynchronous distributed optimization

5.2.2 Asynchronous distributed consensus ADMM

To eliminate the need for coordination of all the nodes of a network and the need
for a global master node, in [188] and [90] an asynchronous de-centralized version
of the ADMM algorithm was introduced. By partitioning the set of all the nodes
into smaller subsets and allocating a local consensus variable to each subset,
at each iteration only an arbitrary subset of the nodes along with their local
master node, which holds the local consensus variable, are activated. This allows
elimination of the need for a global clock. However, since there is the need for
an alternation between optimization of the primal variables of the active worker
nodes and the local consensus variable of their local master node, there is the
need for a local clock to coordinate their updates.

The Async-ADMM algorithm [90] introduces a subset B ⊂ ν and considers a
collection of B1, ..., BL such that

⋃L
=1B = ν and assumes that at each iteration

one subset B is activated. The updates of Async-ADMM can be summarized as
follows:

xk+1
i = argmin

xi
(fi(xi) +

ρ

2
||xi − zk + (λki,/ρ)||22), i ∈ B

zk+1
 = argmin

z
(

|B|∑
i=1

ρ

2
||xk+1

i − z + (λki,/ρ)||22)

λk+1
i, = λki, + ρ(xk+1

i − zk+1
),

(5.11)

where λi, = {λi|i ∈ B} and z is the local consensus variable. The second
minimization together with the gradient step in equation (5.11) leads to the
need for a local clock.

5.3 Fully asynchronous distributed algorithm

In this section we discuss a straightforward but novel derivation of a fully asyn-
chronous distributed algorithm that eliminates the need for any coordination
across the nodes. We first derive an algorithm for the general problem (5.1) in
Section 5.3.1 and provide a convergence proof in Section 5.3.2. In Section 5.3.3
we introduce an efficient synchronous update that can only be applied to syn-
chronous systems followed by the derivation of a fully asynchronous algorithm
for the consensus-based problems in Section 5.3.4.

5.3 Fully asynchronous distributed algorithm 65

Figure 5.1: Illustration of the graph of the problem (5.1) for a sample network
of 5 nodes.

5.3.1 The general problem

To eliminate the need for any master node and to reduce the computational com-
plexities that are introduced by considering the auxiliary variable z, we consider
the problem of the form (5.1). The problem (5.1) can be considered as a general
problem since it includes arbitrary matrices Ai→js. In this section we discuss
in detail how the general problem can be formulated as a consensus problem by
using special forms of Ai→js. Fig 5.1 illustrates a representative graph of this
problem. According to the graphical structure of the problem, the augmented
Lagrangian of the problem for a graph G=(ν, ε) with |ν| = N can be written
as:

Lρ(x, λ) =
∑
i∈ν

fi(xi) +
∑

(i,j)∈ε

λTij(cij − Ai→jxi − Aj→ixj)

+
∑

(i,j)∈ε

ρ

2
||cij − Ai→jxi − Aj→ixj||22,

(5.12)

where λ = {λij|(i, j) ∈ ε}.

Assuming that the KKT conditions [96, 97, 104] hold for the problem (5.1), the
solution of the problem can be evaluated at the saddle point (x∗, λ∗) of the
augmented Lagrangian (5.12) by following a min-max procedure

(x∗, λ∗) = argmax
λ

min
x
Lρ(x, λ). (5.13)

To benefit from the separability of the objective function, f(x), in evaluation
of (x∗, λ∗) from (5.13), one can arbitrarily choose an initial value for (x,λ) and
update their values iteratively by making use of the min-max optimization pro-

66 Fully asynchronous distributed optimization

cedure in (5.13) as below

xk+1
i =argmin

xi
(fi(xi)−

∑
j∈N(i)\i

λk
T

ij (Ai→jxi)

+
∑

j∈N(i)\i

ρ

2
||cij − Ai→jxi − Aj→ixkj ||22), i ∈ ν

(5.14)

λk+1
ij = λkij + ρ(cij − Ai→jxki − Aj→ixkj), j ∈ N(i)\i (5.15)

where N(i) denotes the neighbours of node i include i itself and N(i)\i excludes
node i from its neighbours. In (5.15) a gradient ascent step is used for opti-
mization of the dual variables since Lρ(x, λ) is an affine function of λ for any
given values of x and does not have a maximum. The gradient step in (5.15) is
guaranteed to approach iteratively to the maximum of the dual function g(λ),
see for example [21,24], that is defined as

g(λ) = min
x
Lρ(x, λ). (5.16)

Although by using the updates (5.14)-(5.15) we are one step closer to elimination
of the need for coordination between the nodes as a consequence of eliminating
the variable z, the dual update (5.15) requires access to the simultaneous primal
updates xki and xkj which brings the need for a local clock to coordinate the
updates of the neighbour nodes i and j. It also suggests the existence of a
local master node for any pair of nodes (νi, νj), that are connected, to handle the
optimization of their local dual variable λij. To address this problem we decouple
the dual update (5.15) by introducing two copies of the dual variable λij as λi|j
and λj|i with the constraint that λi|j = λj|i. We then add a quadratic penalty
term in the form of ||λi|j−λj|i||22 to the augmented Lagrangian, as an application
of the penalty method [52, 120, 172] to the method of multipliers [76, 127]. This
penalizes the violation of the constraint, λi|j = λj|i, which leads to the following
regularized augmented Lagrangian function:

L̂ρ,α(x, λ) =
∑

(i,j)∈ε

L̂ijρ,α(xi, xj, λi|j, λj|i), (5.17)

where λ = {λi|i ∈ ν}, λi = {λi|j|j ∈ N(i)\i} and L̂ijρ,α(xi, xj, λi|j, λj|i) is the
regularized augmented Lagrangian function associated with the constraint on

5.3 Fully asynchronous distributed algorithm 67

the edge (i, j), which is perceived by the node i as L̂(ij),i
ρ,α (xi, xj, λi|j, λj|i) defined

as

L̂(ij),i
ρ,α (xi, xj, λi|j, λj|i) =

1

vi
fi(xi) + λTj|i(cij − Ai→jxi − Aj→ixj)

+
ρ

2
||cij − Ai→jxi − Aj→ixj||22 −

1

(2α)
||λi|j − λj|i||22,

(5.18)
where vi = |N(i)\i|, ρ

2
||cij−Ai→jxi−Aj→ixj||22 is the penalty term (the augmen-

tation) that is related to the constraint, Ai→jxi + Aj→ixj = cij, of the primal
problem and 1

(2α)
||λi|j−λj|i||22 is the added regularization term for restricting the

violation of the constraint λi|j = λj|i.

L̂ijρ,α(xi, xj, λi|j, λj|i) is also perceived by the node j as L̂(ij),j
ρ,α (xi, xj, λi|j, λj|i) de-

fined as

L̂(ij),j
ρ,α (xi, xj, λi|j, λj|i) =

1

vj
fj(xj) + λTi|j(cij − Ai→jxi − Aj→ixj)

+
ρ

2
||cij − Ai→jxi − Aj→ixj||22 −

1

(2α)
||λi|j − λj|i||22.

(5.19)
It should be noted that α needs to be a positive value (α > 0) since otherwise
the penalty term, 1

(2α)
||λi|j−λj|i||22, will not have a minimum. To avoid confusion

we refer to ρ and α as primal and dual penalty parameters respectively.

Throughout this chapter we make the following assumption:
Assumption 1:The regularized unaugmented Lagrangian function, L̂0,α, has a
saddle point u∗ = (x∗, λ∗). Namely, (x∗, λ∗) satisfies the KKT conditions :∑

j∈N(i)\i

ATi→jλ
∗
j|i ∈ ∂fi(x∗i) , ∀i ∈ ν

Ai→jx
∗
i + Aj→ix

∗
j = cij ,∀(i, j) ∈ ε.

(5.20)

Assuming that the Assumption 1 is satisfied, we can evaluate the solution of the
problem (5.1), by making use of the regularized augmented Lagrangian (5.17),
through the following min-max procedure:

xk+1
i = argmin

xi

∑
(i,j)∈ε

L̂(ij),i
ρ,α (xi, x

k
j , λ

k
j|i), i ∈ ν

λk+1
i = argmax

λi

∑
(i,j)∈ε

L̂(ij),j
ρ,α (xk+1

i , xkj , λ
k
j|i), i ∈ ν

(5.21)

68 Fully asynchronous distributed optimization

where node i is responsible for the update of xi and λi.

The updates in (5.21) can be run both synchronously and asynchronously over a
network of N agents. In the synchronous updating scheme at each iteration all
the nodes are activated and update the variables xi and λi. By partitioning the
nodes into L subsets C ⊂ ν,  = 1, ..., L with cardinality 1 ≤ |C| < N where⋃L
=1C = ν, in the asynchronous updating scheme only a subset C of nodes are

activated at each iteration and receive the new updates. It is important to note
that the distinct subsets Cs are not necessarily disjoint and the probability of
activation of each subset must be greater than zero.

Using (5.21) leads to the following updates for each node:

xk+1
i = argmin

xi
{fi(xi) +

∑
j∈N(i)\i

[−λkTj|i (Ai→jxi)

+
ρ

2
||cij − Ai→jxi − Aj→ixkj ||22]}, i ∈ ν

(5.22)

λk+1
i|j = argmax

λi|j
{λTi|j(cij − Ai→jxk+1

i − Aj→ixkj)

− 1

(2α)
||λi|j − λkj|i||22}, j ∈ N(i)\i.

(5.23)

Algorithm 7 shows the proposed asynchronous algorithm where C̄ denotes the
complement of set C. By comparing the proposed algorithm with the Bi-ADMM
algorithm [202] we see that xi update (5.22) is similar to the xi update in [202, eq.
(8)] for ρ = 1 while the dual variables in (5.23) are updated without the need of
calculating a conjugate function in comparison with [202, eq. (9)].

As was mentioned earlier, the inaccuracy in approximation of the constraint
λi|j = λj|i may affect the final solution of the problem. In order to measure the
effect of such an approximation on the optimal value of the objective function
and the residual of the constraint in (5.1), without loss of generality, we consider
a connected graph of two nodes (N=2) that is comprised of node i and node
j. For the purpose of simplicity, we then compare the unaugmented Lagrangian
function, L0(x, λ), in (5.12) with the regularized unaugmented Lagrangian func-
tion, L̂0,α(x, λ), in (5.17). Accordingly, we introduce the following notations and
functions. We denote by δij the difference between the optimal dual variables
λ∗i|j and λ

∗
j|i as δij = λ∗i|j − λ∗j|i. We use ĝi(λi|j, λj|i) to denote the dual function

5.3 Fully asynchronous distributed algorithm 69

that is perceived by the node i, which is evaluated as:

ĝi(λi|j, λj|i) = min
xi

L̂
(ij),i
0,α (xi, xj, λi|j, λj|i)

= gi(λj|i)−
1

(2α)
||λi|j − λj|i||22

(5.24)

where gi(λj|i) is defined as:

gi(λj|i) = min
xi
{fi(xi)− λTj|i(Ai→jxi)} (5.25)

We also use ĝj(λi|j, λj|i) to denote the dual function that is perceived by the node
j, which is evaluated as:

ĝj(λi|j, λj|i) = min
xj

L̂
(ij),j
0,α (xi, xj, λi|j, λj|i)

= gj(λi|j)−
1

(2α)
||λi|j − λj|i||22

(5.26)

where gj(λi|j) is defined as:

gj(λi|j) = min
xj
{fj(xj)− λTi|j(Aj→ixj)} (5.27)

Finally, we denote by ĝij(λi|j, λj|i) the global dual function, the function that
is derived from the global regularized Lagrangian function L̂0,α(xi, xj, λi|j, λj|i),
which is represented as:

ĝij(λi|j, λj|i) = gi(λj|i) + gj(λi|j)−
1

(2α)
||λi|j − λj|i||22 (5.28)

We now derive the global dual function, gij(λij), from the original Lagrangian
function, L0(xi, xj, λij), which is represented as:

gij(λij) = min
xi,xj

L0(xi, xj, λij)

= min
xi,xj
{fi(xi) + fj(xj) + λTij(cij − Ai→jxi − Aj→ixj)}

= min
xi
{fi(xi)− λTij(Ai→jxi)}+ min

xj
{fj(xj)− λTij(Aj→ixj)}

= gi(λij) + gj(λij)

(5.29)

where the last equality in (5.29) is achieved by making use of the definitions in
(5.25) and (5.27).

70 Fully asynchronous distributed optimization

It should be noted that the dual function gij(λij) is a concave function [25,
Chapter 5], with its maximum is attained at λ∗ij. By substituting λ∗ij into (5.29)
we reach the following relationship:

gij(λ
∗
ij) = gi(λ

∗
ij) + gj(λ

∗
ij)

≤ gi(λ
∗
j|i) + gj(λ

∗
i|j)

(5.30)

By introducing ∆ as ∆ = gij(λ
∗
ij)− (gi(λ

∗
j|i) + gj(λ

∗
i|j)), we will have

∆ = 0 if δij = 0,

∆ < 0 if δij 6= 0.
(5.31)

The proof of the inequality in (5.30) and correctness of the conditions in (5.31)
can be found in the Appendix A. By making use of the inequality in (5.30) and
the equality in (5.28), we establish the following relationship

ĝij(λ
∗
i|j, λ

∗
j|i) = gi(λ

∗
j|i) + gj(λ

∗
i|j)−

1

(2α)
||λ∗i|j − λ∗j|i||22

≥ gij(λ
∗
ij)−

1

(2α)
||λ∗i|j − λ∗j|i||22,

(5.32)

which can be reduced to the following equality:

ĝij(λ
∗
i|j, λ

∗
j|i) = gij(λ

∗
ij)−

1

(2α)
||λ∗i|j − λ∗j|i||22 −∆. (5.33)

By making use of the optimality conditions in (5.20), we can apply the strong
duality on ĝij(λ∗i|j, λ

∗
j|i), which leads to the following relationship:

P ∗(δij) = ĝij(λ
∗
i|j, λ

∗
j|i)

= gij(λ
∗
ij)−

1

(2α)
||λ∗i|j − λ∗j|i||22 −∆

= P ∗(0)− 1

(2α)
||δij||22 −∆.

(5.34)

where P ∗(δij) and P ∗(0) are the optimal value of the objective function that are
attained when the regularized (augmented) Lagrangian function in (5.17) and
the original (augmented) Lagrangian function in (5.12) are used respectively. By

5.3 Fully asynchronous distributed algorithm 71

setting δij to zero in the above equation we reach the following equality

P ∗(0) = P ∗(0). (5.35)

From the equality in (5.34), we see that P ∗(δij) can be even less than P ∗(0),
P ∗(δij) < P ∗(0), if the following inequality holds:

∆ >
−1

(2α)
||δij||22. (5.36)

In other words, with the assumption that the condition in (5.36) is met, the
inaccuracy in satisfying the constraint λi|j = λj|i not only does not increase
the value of the objective function but also decreases it. However, such an
approximation increases the residual of the constraint Ai→jxi + Aj→ixj = cij.
To measure the residual of the constraint as a function of δij, we consider the
optimization in (5.23), which has a closed-form solution as

λk+1
i|j = λkj|i + α(cij − Ai→jxk+1

i − Aj→ixkj). (5.37)

Accordingly, at the optimal values of the dual and primal variables we have the
following equality:

λ∗i|j − λ∗j|i = α(cij − Ai→jx∗i − Aj→ix∗j), (5.38)

thus, the residual of the constraint as a function of δij is evaluated as:

R(δij) =
λ∗i|j − λ∗j|i

α

=
δij
α
.

(5.39)

As the proposed algorithm is derived by adding a penalty term, in terms of
the dual variable, to the method of multipliers, we refer to it as asynchronous
Augmented Method of Multipliers (Async-AMM) algorithm.

It is good to note that although the updates in (5.22)-(5.23) can be run both
synchronously and asynchronously, the synchronous updates (5.14)-(5.15) can be
reformulated to simpler synchronous updates, which we discuss in more details
in Section 5.3.3.

72 Fully asynchronous distributed optimization

Algorithm 7 Fully Asynchronous Distributed Augmented Method of Multipliers
algorithm (Async-AMM).

Randomly initialize x0
i and λ0

i ∀i ∈ ν, k ← 0
repeat

Find the active set C
for node i ∈ C do

Update xi using equation (5.22)
Update λi using equation (5.23)

end for
(xk+1

j , λk+1
j) = (xkj , λ

k
j) ∀ j ∈ C̄

k ← k + 1
until a stopping criteria is met

5.3.2 Convergence proof

Before presenting the convergence proof, we first introduce the following nota-
tions. We denote by Ai, λi, yi and ci the matrix and vectors that are obtained
by vertically stacking all Ai→j, λi|j, xj and cij, j ∈ N(i)\i respectively. We use
Bi to denote a block diagonal matrix, possibly non-square, whose main diagonal
is comprised of all Aj→i, j ∈ N(i)\i. We denote by A and B as block diagonal
matrices, possibly non-square, whose main diagonals are comprised of all Ai and
Bi, i ∈ ν respectively. Finally we let λ, y and c̄ denote the vectors that are
obtained by vertically stacking all λi, yi and ci, i ∈ ν respectively.

To evaluate the convergence of the AMM algorithm, without loss of generality,
we assume that all the nodes are activated for each iteration. Given the afore-
mentioned assumption, the first-order optimality conditions of the optimization
problems in (5.22) and (5.23) are written by the following variational inequali-
ties [50], which are a special form of the KKT conditions (5.20):

fi(xi)− fi(xk+1
i)+

(xi − xk+1
i)T{

∑
j∈N(i)\i

−ATi→j[λki|j + α(cij − Ai→jxki − Aj→ixk+1
j)]} ≥ 0,∀i ∈ ν.

(5.40)
(5.40) can be written in a compact form as:

fi(xi)− fi(xk+1
i)+

(xi − xk+1
i)T{−ATi [λki + α(ci − Aixki −Biy

k+1
i)]} ≥ 0,∀i ∈ ν.

(5.41)

5.3 Fully asynchronous distributed algorithm 73

Summing (5.41) over all i ∈ ν leads to the following inequality

f(x)− f(xk+1)+

(x− xk+1)T{−AT [λk + α(c̄− Axk −Byk+1)]} ≥ 0,
(5.42)

which is a subset of the first-order optimality conditions of the following scheme:

yk+1 = argmin
y
L̃α(y, xk, λk)

xk+1 = argmin
x
L̃α(yk+1, x, λk)

λk+1 = λk + α(c̄− Axk+1 −Byk+1)

(5.43)

where L̃α(y, x, λ) = f(x) + λT (c̄− Ax−By) + α
2
||c̄− Ax−By||22.

In fact (5.43) is an application of the original ADMM to two blocks of primal
variables, for which convergence was proven in [54]. Since the condition (5.42)
is met, the iterative updates (5.22)-(5.23) are convergent. Therefore, we can
conclude that there is no necessity for applying the auxiliary variable z for the
problems of the form (5.1), with separable constraints where each constraint
only includes a weighted sum of two primal variables, for convergence purposes.
Indeed, applying the auxiliary variable z is only meaningful for problems in which
the constraint includes a weighted sum of N > 2 blocks of primal variables and
is referred to as variable splitting method, see for example [22,24,187]. It is good
to note the role of the dual penalty parameter α in (5.37) and (5.40). Since the
dual penalty parameter α plays the role of the primal penalty parameter ρ in
(5.15), as the appropriate learning rate for the update of the dual variable [24],
its acceptable range of values is limited to 0 < α ≤ ρ.

5.3.3 An alternative synchronous update

We saw that by exploiting the regularized augmented Lagrangian function (5.17)
not only an asynchronous updating scheme but also a synchronous updating
scheme can be made by activating all the nodes per iteration and using the
updates in (5.22)-(5.23). In this section we aim to introduce new synchronous
updates to be used as an alternative to the updates (5.22)-(5.23) in synchronous
systems, because of their simplicity.

Since in synchronous optimizations there is no need to decouple the update of

74 Fully asynchronous distributed optimization

the dual variables by splitting the dual variables, they would not have the need
to add a penalty term to the augmented Lagrangian function. Therefore, one
can directly exploit the augmented Lagrangian function (5.12) for the problems
of the form (5.1). As we saw earlier, making use of the augmented Lagrangian
function (5.12) led to the updates in (5.14)-(5.15). To simplify (5.14)-(5.15),
we consider

∑
j∈N(i)\i λ

kT

ij Ai→j as the data that is needed at node i at the kth

iteration for the update of the primal variable xi. Accordingly, we introduce the
variable βki defined as:

βki =
∑

j∈N(i)\i

−ATi→jλkij. (5.44)

Making use of the equation (5.15), by substituting λkij with λk−1
ij + ρ(cij −

Ai→jx
k−1
i − Aj→ixk−1

j) in equation (5.44) we have:

βki =
∑

j∈N(i)\i

−ATi→j{λk−1
ij + ρ(cij − Ai→jxk−1

i − Aj→ixk−1
j)}

=
∑

j∈N(i)\i

−ATi→jλk−1
ij + ρ

∑
j∈N(i)\i

−ATi→j(cij − Ai→jxk−1
i − Aj→ixk−1

j)

= βk−1
i + ρ

∑
j∈N(i)\i

−ATi→j(cij − Ai→jxk−1
i − Aj→ixk−1

j)

(5.45)

Therefore, the updates in (5.14)-(5.15) reduce to the following updates:

xk+1
i =argmin

xi
(fi(xi) + βk

T

i xi +
∑

j∈N(i)\i

ρ

2
||cij − Ai→jxi − Aj→ixkj ||22), i ∈ ν

(5.46)

βk+1
i = βki + ρ

∑
j∈N(i)\i

−ATi→j(cij − Ai→jxki − Aj→ixkj), i ∈ ν (5.47)

By comparing (5.46)-(5.47) with (5.22)-(5.23) we see that using (5.22)-(5.23)
require the need for calculating and sending a unique message λi|j to each neigh-
bour j ∈ N(i)\i in contrast to (5.46)-(5.47). The update in (5.47) has also the
following properties:
Claim 1: By using (5.47) we are able to reduce the required memory at the
node i if ni < |N(i)\i|nij, since βi ∈ Rni and λi ∈ R|N(i)\i|nij .
Claim 2: By using (5.47) we are able to reduce the number of transmitted
messages by a factor N̄ + 1, where N̄ is the average degree (average number
of neighbours of the nodes) of the network, as there is no need neither to send

5.3 Fully asynchronous distributed algorithm 75

different messages as λi|j, j ∈ N(i)\i nor to send βi to any neighbour.
Claim 3: By using (5.47) we are able to reduce the required transmission band-
width for data transmission by a further factor 2 as the messages are only com-
prised of the primal variables instead of the primal and dual variables.

It is good to mention that a simple synchronous update can also be derived from
the synchronous AMM updates (5.22)-(5.23) as:

xk+1
i =argmin

xi
(fi(xi) + βk

T

i xi +
∑

j∈N(i)\i

ρ

2
||cij − Ai→jxi − Aj→ixkj ||22), i ∈ ν

(5.48)

βk+1
i = βk−1

i + α
∑

j∈N(i)\i

−ATi→j(2cij − 2Ai→jx
k
i − Aj→ixk−1

j − Aj→ixk+1
j), i ∈ ν.

(5.49)
Details of the derivation of the above updates can be found in Appendix B. (5.49)
has almost the same properties as (5.47) but it requires additional storage to store
βk−1
i and xk−1

j , j ∈ N(i)\i. Therefore, it is recommended to use (5.22)-(5.23) in
asynchronous systems while in synchronous systems the updates in (5.46)-(5.47)
are recommended.

5.3.4 Consensus optimization via Async-AMM

The Async-AMM algorithm that is introduced in Section 5.3.1 can also be applied
as an asynchronous distributed solver for the consensus optimization problems.
Indeed, by substituting Ai→j, Aj→i and cij with sign(j − i)Im, sign(i− j)Im and
0 respectively, where Im is an identity matrix of size m, the constrained convex
problem (5.1), with general form of linear equalities, reduces to a consensus
optimization problem of the form below:

min
x1,...,x|ν|

∑
i∈ν

fi(xi)

s.t. xi = xj ∀(i, j) ∈ ε.
(5.50)

76 Fully asynchronous distributed optimization

By making use of the aforementioned settings for Ai→j, Aj→i and cij, the Async-
AMM updates reduce to the following updates:

xk+1
i = argmin

xi
{fi(xi) +

∑
j∈N(i)\i

[−sign(j − i)λkTj|ixi +
ρ

2
||xi − xkj ||22]}, i ∈ ν

(5.51)

λk+1
i|j = argmax

λi|j
{sign(j − i)λTi|j(xkj − xk+1

i)− 1

(2α)
||λi|j − λkj|i||22}, j ∈ N(i)\i.

(5.52)
For the consensus problems of the form (5.50), the alternative synchronous up-
dates (5.46)-(5.47) and (5.48)-(5.49) also reduce to the following updates (5.53)-
(5.54) and (5.55)-(5.56) respectively:

xk+1
i =argmin

xi
(fi(xi) + βk

T

i xi +
∑

j∈N(i)\i

ρ

2
||xi − xkj ||22), i ∈ ν (5.53)

βk+1
i = βki + ρ

∑
j∈N(i)\i

(xki − xkj), i ∈ ν (5.54)

xk+1
i =argmin

xi
(fi(xi) + βk

T

i xi +
∑

j∈N(i)\i

ρ

2
||xi − xkj ||22), i ∈ ν (5.55)

βk+1
i = βk−1

i + α
∑

j∈N(i)\i

(2xki − xk−1
j − xk+1

j), i ∈ ν (5.56)

By using the updates in (5.53)-(5.54) or in (5.55)-(5.56), there is no need to assign
an identification (ID) number to the nodes of the network as a consequence of
elimination of the sign function in comparison with (5.51)-(5.52). However, as
was mentioned earlier the updates in (5.53)-(5.54) or in (5.55)-(5.56) can only be
applied to synchronous systems while the updates in (5.51)-(5.52) can be applied
to both synchronous and asynchronous systems.

5.4 Experimental Results

In order to evaluate the performance of the Async-AMM algorithm, we applied
it to a consensus optimization problem over a graph, G = (ν, ε), of 25 nodes and

5.4 Experimental Results 77

40 edges with grid connectivity pattern defined as below:

min
w1,...,w25

25∑
i=1

fi(wi)

s.t. wi = wj ∀(i, j) ∈ ε,

(5.57)

where fi(wi) = 1
2
||di − Uiwi||22. We assumed that each node i has access to its

own local data di and Ui and cooperatively try to estimate a parameter vector
wo2×1 that satisfies the following equality:

d25×1 = U25×2w
o
2×1, (5.58)

where di and Ui are the ith row of the vector d and matrix U respectively. By
solving the problem (5.57) in a distributed processing manner, each node i is
aimed to have an estimate on wo via the variable wi using its own local function
fi(wi).

In the experiments, by making use of (5.58), we generated the elements of the
vector d by sampling the elements of the matrix U and the vector wo from a
Gaussian distribution with zero mean and unit variance. Fig. 5.2 illustrates
the convergence rate of the Async-AMM algorithm in terms of the number of
iterations required to reach to a target MSE=10−10 for different values of the
primal penalty parameter, ρ, (with the definition MSE = 1

25

∑25
i=1 ||wi − wo||22).

The results in the Fig. 5.2 were obtained by setting α = ρ and activating

0.01 0.02 0.05 0.1 0.2 0.3 0.5 1 2 3 5 10 20
parameter ρ

0

0.5

1

1.5

2

2.5

it
e

ra
ti
o

n
s

×10
4

Figure 5.2: Illustration of the impact of the parameter ρ on the performance of
Async-AMM.

78 Fully asynchronous distributed optimization

one node per iteration, where at each iteration the node i =mod(k, 25) + 1

was activated. From the results in Fig. 5.2 we see that the optimal range of
the parameter is 0.2 ≤ ρ ≤ 1 and the fastest convergence rate is obtained by
setting the primal penalty parameter ρ to 0.5. It is good to note that there is
an alternative way of calculating the optimal value of the parameter ρ in which
the optimal value is evaluated theoretically through an optimization process,
see e.g. [56]. However, there is not a closed-form formula, for calculation of
the optimal value of the penalty parameter, to be used for different problems
with different objective functions. So for the sake of simplicity we evaluated the
optimal value experimentally.

Fig. 5.3 shows the MSE of the estimated parameter vector for different dual
penalty parameter α using the optimal primal penalty parameter ρ = 0.5. From
the results in Fig. 5.3 it was observed that the Async-AMM algorithm has fastest
convergence for α = 0.4 and diverges for α > ρ.

Fig. 5.4 illustrates the Normalised Mean Squared Error (NMSE) between the es-
timated parameter vector at the nodes of the network, at the target MSE=10−10,
as a measurement tool that measures the consensus between the nodes, where we
used the definition NMSE=

(1/M)
∑

(i,j)∈ε ||wi−wj ||22
(1/2)

∑
(i,j)∈ε(||wi||22+||wj ||22)

. The results in the Fig. 5.4
were obtained by setting the primal penalty ρ to 0.5. By comparing the results
in figures 5.3 and 5.4 we see that although Async-AMM has a slow convergence
rate for small α, more consensus is obtained between the nodes of the network.
The higher consensus between the nodes for small α is the consequence of re-

0 0.5 1 1.5 2 2.5 3

iteration ×10
4

10
-35

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

M
S

E

α=0.01

α=0.03

α=0.05

α=0.07

α=0.09

α=0.2

α=0.3

α=0.4

α=ρ=0.5

Figure 5.3: Illustration of the convergence behaviour of Async-AMM for different
parameter α at the given ρ = 0.5.

5.4 Experimental Results 79

0.01 0.1 0.2 0.3 0.4 0.5=ρ
parameter α

0

1

2

3

4

5

6

N
M

S
E

×10-12

Figure 5.4: Illustration of the consistency of the agents in distributed consensus
optimization in the form of NMSE across different α at the target MSE=10−10

using Async-AMM.

maining a lower residual for the equality constraints in (5.57) after convergence
of the algorithm since α plays the role of learning rate, ρ, in the update of dual
variable.

We compared the performance of the AMM algorithm with ADMM and Bi-
ADMM algorithms and the results are plotted in Fig. 5.5. Fig. 5.5-a compares
the algorithms in the asynchronous updating scheme while Fig. 5.5-b compares
them in the synchronous updating scheme. For the synchronous case we used the
alternative updates (5.55)-(5.56) and we referred to it as Sync-AMM. The results
in Fig. 5.5 were obtained by setting ρ to 0.5 and α to 0.4 for AMM and setting
ρ to 1 for ADMM since they were the optimal values for the algorithms. We

0 0.5 1 1.5 2 2.5 3
iteration ×104

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

105

M
S

E

Async-AMM
Async-Bi-ADMM
Async-ADMM

(a) Asynchronous

0 500 1000 1500 2000 2500 3000
iteration

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

105

M
S

E

Sync-AMM
Sync-Bi-ADMM
Sync-ADMM

(b) Synchronous

Figure 5.5: Comparative performance of AMM, Bi-ADMM and ADMM.

80 Fully asynchronous distributed optimization

1 5 10 15 20 25
node ID

0

500

1000

1500

2000

2500

3000

n
u

m
b

e
r

o
f

ti
m

e
s
 b

e
in

g
 a

c
ti
v
a

te
d

(a) Experiment 1

1 5 10 15 20 25
node ID

0

500

1000

1500

2000

2500

3000

n
u

m
b

e
r

o
f

ti
m

e
s
 b

e
in

g
 a

c
ti
v
a

te
d

(b) Experiment 2

Figure 5.6: Histogram of the sampled IDs.

0 0.5 1 1.5 2 2.5 3
iteration ×104

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

105

M
S

E

Experiment 1
Experiment 2

Figure 5.7: Illustration of the convergence behaviour of the network.

evaluated the optimality of ρ = 1 for ADMM through the same procedure that
was done for extraction of the results in Fig. 5.2. For the case of Async-AMM and
Async-Bi-ADMM we activated one node per iteration, where at each iteration
the node i = mod(k, 25) + 1 was activated. For the case of Async-ADMM, at
each iteration we activated one edge (one pair of nodes that are connected by an
edge) of the graph along with their local master node, where at each iteration
the edge m = mod(k, 40) + 1 was activated.

From the results in Fig. 5.5 we see that although a lower number of nodes par-
ticipated per iteration using Async-AMM and Async-Bi-ADMM in comparison
with Async-ADMM, they have a quicker rate of convergence. The results in Fig.
5.5-a imply that the auxiliary variable z that is used in Async-ADMM is not
necessarily required to be used for convergence purposes and also imply the good

5.5 Summary 81

performance of Async-AMM. It also implies that applying Async-AMM results
in lower communication cost since it requires lower number of iterations and
consequently lower number of exchanged messages to reach to a certain level of
accuracy. For the synchronous case, Sync-ADMM converges faster than Sync-
AMM and Sync-Bi-ADMM since it exploits a global master (centralized) node
in contrast to AMM and Bi-ADMM. From the results in Fig. 5.5 we also see
different steady state response for each algorithm. This is based on the fact that
although the algorithms converge with the rate of O(1/k), the are other factors
in the function O(.) that affect both the learning rate as well as the steady state
solutions. These factor generally depend on how the algorithms are derived and
the parameters therein.
To evaluate the convergence rate of the proposed algorithm in terms of the
amount of activation (participation) of the nodes, we did two experiments. In the
two experiments we used different probability distributions for activation of the
nodes. The probability distributions that we used include a uniform distribution
along with a specific self-designed distribution that gives higher probability to a
set of nodes compared to the others. To activate a node per iteration we sampled
its identification number from the probability distributions. Fig. 5.6 displays the
histogram of the sampled IDs, where we used 30000 iterations. Fig. 5.7 illus-
trates the convergence rate of Async-AMM for the two experiments where ρ and
α were set to 0.5 and 0.4 respectively. From Fig. 5.7 we see that the convergence
rate of the network is sensitive to the activation of the most passive node(s).

5.5 Summary

In this chapter, we introduced a fully asynchronous distributed algorithm for
linearly constrained problems with more than one block of constraint. The al-
gorithm was derived from a problem in which the auxiliary variable z was elim-
inated. As a consequence of eliminating the variable z, the proposed algorithm
has lower computational complexity than the basic ADMM-based methods. By
making use of the penalty method we were allowed to active one node per it-
eration similar to, but simpler than, Bi-ADMM. We also introduced efficient
synchronous algorithms for the purpose of usage in synchronous systems. By
tuning the parameter α in the proposed algorithm we were able to control the

82 Fully asynchronous distributed optimization

consistency of the agents in the consensus application. The experimental results
show that the proposed Async-AMM has faster convergence rate in comparison
with the Async-ADMM [90] and Async-Bi-ADMM [202].
In the next chapter, we discuss distributed algorithms for blind source separa-
tion. The AMM algorithm that was proposed in this chapter forms a basis for
distributed processing in Chapter 6.

Distributed processing of linear BSS over arbitrary graphs 83

6
Distributed processing of linear BSS
over arbitrary graphs

6.1 Introduction

In this chapter, we implement distributed forms of the extended version of the
adaptive BSS algorithm of [11, 109] over wireless sensor networks. We propose
two distributed forms and refer to them as scheme 1 and scheme 2.

In scheme 1, each sensor node computes the estimate of one specific source signal
based on the assumption that the parameter matrices of the BSS algorithm, the
mixing or de-mixing matrices, have a similar sparsity structure as the Laplacian
matrix of the graph of the network. Thus, a scalable algorithm can be obtained
over graphs with pre-specified sparse connectivity patterns.
For scheme 1 algorithms that optimize the de-mixing matrix, the sources can
be estimated at each node instantaneously by a weighted sum of the observed
signals of the neighbour nodes. For scheme 1 algorithms that optimize the mix-
ing matrix, the sources can be estimated in a distributed processing manner by
converting the graph of the network into a probabilistic graphical model, without
any changes in its connectivity pattern, and then using belief propagation algo-

84 Distributed processing of linear BSS over arbitrary graphs

rithms [169,200,201] in an iterative manner to find the sources. After estimating
the sources, in both mixing and de-mixing based BSS algorithms, the parame-
ters can be updated at each node by communicating with the neighbour nodes.
Applying the first scheme over the BSS algorithms that optimize the de-mixing
matrix has the advantage of low communication cost and transmission power.

In scheme 2 each sensor node computes estimates of all source signals. It consists
of two steps for each time sample. In the first step it solves a constrained convex
optimization problem to estimate the sources given the current observations and
the current estimate of the parameters. The objective function of the optimiza-
tion problem forms a sum of N convex functions, over a graph G = (ν, ε) where
ν denotes the set of nodes with cardinality N = |ν| and ε denotes the set of
edges, each associated with an individual node of the network. By using the
AMM algorithm, which was discussed in the Chapter 5, a distributed solution
to the constrained problem can be obtained. In the second step, the parameters
are updated given the newly estimated sources. The second step is local and
requires no communication across the nodes. The proposed distributed process-
ing strategy enables the algorithm to be implemented on connected graphs of
any connectivity pattern without significant degradation of the performance of
the BSS algorithm over that of a corresponding centralized algorithm. The sec-
ond scheme is particularly computationally efficient if there is a low number of
sources while there are higher number of sensor nodes.

When our distributed BSS algorithms (scheme 1 & 2) are applied to a properly
designed sparse network, the energy requirement for data transmission is low. An
appropriate selection of the connections means that no transmission over long
distances is required.

In publication I [5], we applied the scheme 2 on BSS algorithms that optimize the
mixing matrices. In the rest of this chapter we will see that applying the scheme
2 on BSS algorithms that optimize the de-mixing matrices requires lower trans-
mission power compared to the mixing matrix based BSS algorithms. As was
mentioned earlier the latter privilege is also seen in the scheme 1 since applying
the mixing matrix based BSS algorithms in the form of scheme 1 require iter-
ative procedure for source estimation in comparison with the de-mixing matrix
based approaches. Finally we will see that for the de-mixing matrix based BSS
algorithms, the minimum transmission power and higher scalability is achieved

6.2 Centralized blind source separation 85

when the scheme 1 is applied in comparison with the scheme 2.
We ascertained the performance of the proposed distributed BSS with experi-
ments for the case of delay-restricted environments where the observations are
obtained from the linear instantaneous mixture of the sources. The method is
easily extended to apply to convolutional scenarios using conventional frequency
domain approaches.
The remainder of this chapter is organized as follows. In Section 6.2 we for-
mulate the linear BSS problem and introduce a mixing and a de-mixing matrix
based centralized processing solution for the problem. In Section 6.3, we propose
distributed processing solution for the linear BSS algorithms. We discuss the
experimental results in Section 6.4 followed by a conclusion in Section 6.5.

6.2 Centralized blind source separation

In this section we formulate the linear BSS problem and review two centralized
algorithms [11,109] that can be used as a solution for the problem.
As was mentioned in Chapter 2, a linear model can be used to describe N -
dimensional observations that are the result of an instantaneous mixing of M
sources and additive noise:

bN×1(t) = AN×MsM×1(t) + nN×1(t), t = 1, ..., T (6.1)

where we provided dimensionalities as subscripts, and where s, b and n denotes
the source, observed and noise data respectively and A is the mixing matrix. We
denote by s(t), b(t) and n(t) the samples of the random vectors s(t), b(t) and
n(t) at time index t respectively.
In BSS, it is assumed that only data observations, b(t), are available while there
is no information on the matrix A, s(t) and n(t). The objective is to estimate s(t)
for t = 1, ..., T . Many algorithms have been proposed such as [11,12,57,86,109],
as a solution for linear BSS. Their differences are in the prior assumption about
the size of N and M , the existence of noise in the model and the objective or
cost function that they use for optimization purposes.
In the following two subsections we briefly discuss two centralized BSS algorithms
that enjoy the equivariant property, that is, the performance of separation is

86 Distributed processing of linear BSS over arbitrary graphs

independent of the hardness of the mixture for example when the mixing matrix
is ill-conditioned [11,30,36].

6.2.1 Maximum-Likelihood Approach

In this section we discuss an adaptive BSS algorithm based on the optimization
of mixing matrix. To extract a set of signals from their mixture, requires a set
of conditions to be satisfied. A natural and sufficient set of conditions is time-
invariance of the mixing and source signals that are both stationary and mutually
independent. Following [113] we also assume that the signals are white,

p(b(1), ...,b(T)|A) =
T∏
t=1

p(b(t)|A). (6.2)

As we assume no time dependencies we will omit the time argument where that
causes no confusion.
As objective function we use the likelihood function p(b(t)|A). Using the law of
total probability, it can be expressed as:

p(b|A) =

∫
p(b|s, A)p(s)ds. (6.3)

By assuming a Gaussian additive noise, the conditional probability p(b|s, A) can
be modelled with a Gaussian distribution.
To satisfy the independence assumption over the sources, a fully factorizable prior
distribution p(s) should be used in (6.3). For over-complete (under-determined)
representations (N < M), there is not a unique expression for the observations.
Therefore, it is natural to look for priors that assume sparse representations,
e.g. priors with high kurtosis such as Laplacian, since only N non-zero values
out of M values are required to represent the observations [113]. As [109] is
basically developed for over-complete representations, a (fully factorizable) zero
mean Laplacian prior with diagonal covariance matrix is used for the distribution
of the sources. The Laplacianity of the prior itself makes the integral in (6.3)
intractable. Therefore in [109] an approximation of the logarithm of (6.3) is used
as the objective function. To derive a learning rule, one can use a gradient ascent
algorithm to maximize logp(b|A). In [109] a stochastic natural gradient [8] ascent

6.2 Centralized blind source separation 87

is used to stabilize the learning algorithm:

4A ∝ AAT
∂

∂A
logp(b|A) ≈ −AF [y], (6.4)

which by using the stochastic learning rule leads to the following update:

A(t+ 1) = A(t)− µ(t)A(t)F [y(t)], (6.5)

where F [y(t)] = I − ψ[y(t)]y(t)T , y(t) is an estimate of s(t), I is the identity
matrix, µ(t) > 0 is a variable learning rate and ψ is the marginal score function
defined as:

ψ[y] = [ψ1[y1], ..., ψM [yM]]T

ψi[yi] = − d

dyi
ln p(yi).

(6.6)

For Laplacian priors, ψi[yi] can be approximated as sign[yi].

According to [109, 113] for over-complete (under-determined) representations
(N < M), y(t) is obtained by a probabilistic formulation as:

y(t) =argmax
s

p(s|b(t), A(t))

=argmax
s

p(b(t)|A(t), s)p(s).
(6.7)

However in this chapter we assume that the number of observations (sensor
nodes) is greater than or equal to the number of sources (N ≥M). For the case
of low noise and under-complete (over-determined) representations (N ≥ M),
where A is full column rank, we are able to relax the prior sparsity assumption
over the source signals and can estimate the sources at time index t via the
following transformation:

y(t) = A†(t)b(t) (6.8)

where A†(t) is the pseudo inverse of the approximation of A at time index t.
However, in the over-determined representations (N ≥M), we can still preserve
the sparsity assumption about the source signals, by using a zero mean Laplacian
prior and considering the sign function as the marginal score function, when
estimating the mixing matrix. The motivation for considering the zero mean
Laplacian distribution, as a distribution with high kurtosis, is to be able to
capture the underlying distribution of human speech signals.

88 Distributed processing of linear BSS over arbitrary graphs

As no information is available about the energy of the source signals, an arbitrary
diagonal matrix is used as a prior assumption over the covariance matrix of the
sources. The latter assumption forces the columns of the matrix A to be updated
such that the variance of the corresponding estimated source signal to be equal
to the arbitrary fixed value over time. This results in numerical instability over
the elements of mixing matrix A in the time periods in which at least some of
the sources are silent. A scaled version of the columns of the mixing matrix AΩ,
where Ω is a diagonal scaling matrix containing large factors, will be learned to
compensate the silence periods of the sources. According to [10] the trajectory of
learning will be orthogonal to the set of all possible mixing matrices that are only
different in terms of their column vectors’ norm if F [y(t)] is chosen as follows:

F [y(t)] = Λ(t)− ψ[y(t)]y(t)T (6.9)

where Λ(t) = diag[diag[ψ[y(t)]y(t)T]]. It should be noted that diag of a matrix
returns the diagonal elements of that matrix in a vector form and diag of a vector
creates a diagonal matrix whose diagonal elements are defined in the vector. This
means that the diagonal elements of F [y(t)] are zero. [10] is proposed to be used
in the de-mixing matrix based BSS algorithms while with a similar methodology
we applied it to the mixing matrix based approaches. The proof of the correctness
of Λ(t) for the mixing matrix based BSS algorithm can be found in Appendix C.
The main purpose of the equation (6.9) is to preserve the stability of the BSS
algorithm when the number of sources is overestimated.

Algorithm 8 summarizes our target BSS algorithm based on maximum likelihood
where N ≥ M . Applying the Algorithm 8 in cases where the real number of
original sources, M , is overestimated by P > M , leads to estimating M original
source signals together with P −M zero signals if the noise level in the linear
model (6.1) is zero. The aforementioned outcome is the consequence of using Λ(.),
as the stability controller of the BSS algorithm, along with using an appropriate
marginal score function, ψ[.], that can capture the underlying distribution of M
original source signals as well as the zero signals as signals with high kurtosis.

6.2 Centralized blind source separation 89

Algorithm 8 An on-line centralized linear BSS Algorithm based on optimization
of mixing matrix for a time sequence of T time samples.
Randomly initialize A
for t = 1, ..., T do

y(t) = A†(t)b(t)
A(t+ 1) = A(t)− µ(t)A(t)(Λ(t)− ψ[y(t)]y(t)T)

end for

6.2.2 Minimum Average Mutual Information Approach

In this section we discuss an adaptive BSS algorithm based on the optimization
of de-mixing matrix. As was mentioned in the previous section, to extract a set
of signals from their mixture a set of conditions need to be satisfied. One of
the crucial conditions, particularly for statistically independent source signals, is
the prior independency assumption about the source signals. In a mathematical
framework, the dependency between a set of random variables, y1, ...,yM , can be
measured by the Kullback-Leibler divergence [40] between the joint and marginal
distributions of the random variables and is defined as:

K(W) =

∫
p(y)log

p(y)∏M
i=1 pi(yi)

(6.10)

where y = [y1, ...,yM]T and W is the transformation matrix that maps the input
data b to the output data y as y = Wb. The Kullback-Leibler divergence of
(6.10) is sometimes referred to as the average mutual information [11]

K(W) = −H(y) +
M∑
i=1

H(yi) (6.11)

where H(.) is the differential entropy.

Minimization of the average mutual information (6.11) leads to separation of
the sources. To develop an on-line learning rule, one can use a gradient descent
algorithm. In [11] the natural gradient descent is used to increase the stability
of the learning algorithm as:

4W ∝ ∂K(W)

∂W
W TW, (6.12)

90 Distributed processing of linear BSS over arbitrary graphs

Algorithm 9 An on-line centralized linear BSS Algorithm based on optimization
of de-mixing matrix for a time sequence of T time samples.

Randomly initialize W
for t = 1, ..., T do

y(t) = W (t)b(t)
W (t+ 1) = W (t) + µ(t)(Λ́(t)− ϕ[y(t)]y(t)T)W (t)

end for

which implies
W (t+ 1) = W (t) + µ(t)F́ [y(t)]W (t), (6.13)

where F́ [y(t)] = I − ϕ[y(t)]y(t)T and y(t) = W (t)b(t).

In [11] the entropy is approximated using a truncated Gram-Charlier expan-
sion. The latter approximation results to a component-wise non-linear polyno-
mial function (known as activation function from neural network point of view)
ϕ[y(t)] of degree 11. The correct choice of ϕ[y(t)] depends on the distribution of
the original sources. The hyperbolic tangent is a widely used [2, 20, 108] activa-
tion function which functions well for super Gaussian distributions, distributions
with high kurtosis, such as Laplacian distribution. Therefore we substitute the
polynomial function with the hyperbolic tangent:

ϕ[y] = [ϕ1[y1], ..., ϕM [yM]]T

ϕi[yi] = ϑtanh(θyi),
(6.14)

where ϑ and θ are positive constants. In fact, ϑtanh(θyi) can be interpreted as the
marginal score function derived from a smooth approximation of the Laplacian
distribution as:

ϑtanh(θyi) = − d

dyi
ln p̂(yi) (6.15)

where p̂(yi) is the approximate zero mean Laplacian distribution defined as:

p̂(yi) =
1

ζ
cosh−ϑ/θ(θyi) (6.16)

where ζ is a normalizing coefficient.

As was mentioned earlier the motivation for considering the Laplacian distribu-
tion is to make the algorithm suitable for separation of human speech signals.

According to [10], the adaptive BSS algorithm based on minimization of the aver-

6.3 Distributed Processing Approach 91

age mutual information can also be extended to be more stable in situations where
the number of sources is overestimated by using F́ [y(t)] = Λ́(t) − ϕ[y(t)]y(t)T

where Λ́(t) = diag[diag[ϕ[y(t)]y(t)T]].
It is important to note that the adaptive learning rule (6.13) is proposed to
be used in noiseless determined cases (N = M,n(t) = 0 ∀t). However, the
applicability of (6.13) for over-determined (N > M) noisy observations has been
proved in [205].
Algorithm 9 summarizes our target BSS algorithm based on minimum average
mutual information where N ≥ M . Corresponding to the mixing matrix based
BSS Algorithm 8, applying the Algorithm 9 in cases where the real number of
original sources, M , is overestimated by P > M , leads to estimating M original
source signals together with P −M zero signals if the noise level in the linear
model (6.1) is zero.

6.3 Distributed Processing Approach

In this section we discuss distributed solutions to the BSS problem. We propose
two distributed schemes and we denote them as scheme 1 and scheme 2. In
scheme 1 each node estimates one specific source signal while in scheme 2 each
node estimates the entire source signals through a consensus optimization pro-
cess. Both schemes enjoy a fully shared computation process, which is achieved
by partitioning the source separation algorithm and allocating partial modules
to each node of the network. In Section 6.3.1 we apply the BSS algorithm over
graphs in the form of scheme 1. In Section 6.3.2 we develop distributed BSS
algorithms over graphs in the form of scheme 2.

6.3.1 Scheme 1

In this section we first explain implementation of scheme 1 on the de-mixing
matrix based BSS Algorithm 9 followed by an explanation on implementation
of scheme 1 on the mixing matrix based BSS Algorithm 8. In the sequel, we
implement the de-mixing matrix based BSS Algorithm 9 on arbitrary graphs in
the form of scheme 1 followed by introducing a simpler algorithm along with
exploiting an l1 norm regularization for parameters’ update.

92 Distributed processing of linear BSS over arbitrary graphs

De-mixing matrix based approach

To develop distributed algorithms for blind source separation, one can partition
the source estimation and the parameter update steps, in the Algorithms 8 and
9, and allocate each of them to a sensor node on a network of nodes. In this fully
shared computation strategy, each sensor node would be responsible for tracking
a specific source signal while participating in optimization of a partition of the
mixing or de-mixing matrix. To see how one can develop the aforementioned dis-
tributed learning strategy, let us consider a fully connected bi-directional graph
of N nodes in which the edge between the node i and j is weighted by the (ij)th

and (ji)th element of the parameter matrix (W or A). Making use of the de-
mixing matrix based BSS Algorithm 9, we can allocate the task of estimation
of the ith source signal (the ith row of y(t)) to the ith node of the graph as a
weighted sum of the observation of the neighbour nodes:

yi(t) =
N∑
k=1

Wikbk(t), (6.17)

where only the ith row of the de-mixing matrix, W , is used. To update the de-
mixing matrix, we can also allocate the update of the ith column of W to the ith

node of the graph as:

Wmi(t+ 1) = Wmi(t) + µ(t)F́ [y(t)]mW
i(t), m = 1, ..., N (6.18)

where F́ [y(t)]m and W i(t) denotes the mth row and ith column of F́ [y(t)] and
W (t) respectively. Using a column-wise update, the update of each element of the
column vector requires an observation only on the last estimate of that column
as can be verified in (6.18). Applying (6.17)-(6.18) on a network of nodes has
exactly the same performance, e.g. signal to interference ratio, as the centralized
Algorithm 9 if the graph of the network is fully connected. In the aforementioned
fully connected network, M (the number of original sources) nodes will track M
source signals while the others will estimate the zero signals if the noise level
is zero. Using the aforementioned distributed processing technique, the entire
network enjoy a fully shared computation. We refer to this approach as scheme
1.

6.3 Distributed Processing Approach 93

Mixing matrix based approach

We are also able to apply the scheme 1 on themixing matrix based BSS Algorithm
8. However, in order to estimate the ith source signal at node i via Algorithm 8,
there is the need for calculation of the ith row of the inverse matrix of A. Direct
calculation of the inverse of a matrix eliminates the ability for a fully shared
computation and suggests a centralized processing unit. To eliminate the need
for direct calculation of the inverse matrix, we can follow the iterative algorithms
such as GaBP [169] or LiCD [201], that was discussed in Chapter 3, to estimate
the ith source at node i using only the ith column of the mixing matrix A. After
estimating the source signals on a fully connected graph, to update the mixing
matrix we can allocate the update of the ith row of A to the ith node of the graph
as:

Aim(t+ 1) = Aim(t)− µ(t)Ai(t)F [y(t)]m, m = 1, ..., N (6.19)

where F [y(t)]m and Ai(t) denotes the mth column and ith row of F [y(t)] and
A(t) respectively. Using a row-wise update, the update of each element of the
row vector requires an observation only on the last estimate of that row as can
be verified in (6.19). With the assumption that sufficient number of iterations
are used for the convergence of the message passing algorithms [169, 201], ap-
plying the mixing matrix based BSS Algorithm 8 in the form of scheme 1 on a
fully connected network has similar performance to its corresponding centralized
algorithm.
It is important to note that applying the mixing matrix based BSS Algorithm
8 in the form of scheme 1 requires tens of thousands of iterations, specially for
general matrices (matrices that are not necessarily symmetric walk-summable)
[201], to estimate the source signals. This is in contrast to the de-mixing matrix
based BSS Algorithm 9 in which the sources are obtained as a weighted sum
of the observations of the nodes, without the need for iterations, as shown in
(6.17). Since in each iteration of the message passing algorithms there is the
need for communication between the nodes, the total power consumption of
the transmission at each node increases linearly, proportional to the number of
iterations, as:

PTx,Total = kPTx, (6.20)

where PTx and k denote the power consumption of the transmission at each node
and the total number of iterations respectively. Because of the aforementioned

94 Distributed processing of linear BSS over arbitrary graphs

issue and to conserve energy on a WSN we do not pursue implementing the
mixing matrix based BSS Algorithm 8 in the form of scheme 1 in this thesis.

De-mixing matrix based BSS on arbitrary graphs

Not only the distributed processing of mixing matrix based BSS Algorithm 8 in
the form of scheme 1 would be a burden, but also distributed processing of the
de-mixing matrix based BSS Algorithm 9 in the form of scheme 1 on a fully con-
nected graph may conflict with the scalable nature of the distributed processing
approaches. It may even result in a high power consumption of the transmission
on large-scale problems since there is the need for transmission to long distances.
To overcome the aforementioned issue one may think of applying the scheme 1 on
a properly designed sparse network. A properly designed network is a network
in which there is no connection between the nodes with long distances.

Applying the de-mixing matrix based BSS Algorithm 9 in the form of scheme 1
on a sparse static graph G = (ν, ε) with |ν| = N imposes the following constraint
over the domain of the objective function (here the average mutual information
function) that is used for BSS:

W ∈ C1,

C1 = {W ∈ RN×N |Wij = 0 if (i, j) /∈ ε}.
(6.21)

Any de-mixing matrix W in the set C1 will have the same sparsity structure as
the Laplacian matrix of the graph. The Laplacian matrix Q of a graph G = (ν, ε)

is a matrix whose elements are evaluated as follows:

Qij =


−1 (i, j) ∈ ε

deg{νi} i = j

0 otherwise

(6.22)

where deg{νi} denotes the degree of the node i.

Fig. 6.1 shows a sample graphical representation of the scheme 1. Given the
constraint in (6.21), we can formulate a constrained optimization problem for

6.3 Distributed Processing Approach 95

1

2

3 4

5

6

7

N

i

W67

W76

W12

W21

Wii

Figure 6.1: Illustration of a sample graph of scheme 1. The neighbour of node i
includes {1, i, N}.

distributed BSS on an arbitrary graph as:

min
W

K(W)

s.t. W ∈ C1

(6.23)

To address the constrained problem in (6.23) one can use the projected gradient
descent method [61, 112]. Minimization of the objective function, K(W), on a
feasible set C1 via the projected gradient descent method is defined by:

W (t+ 1) = ΠC1(W (t)− µ(t)∇K(W)) (6.24)

where ΠC1 denotes the projection into feasible set C1. There are other variants of
projected gradient method, e.g. projected stochastic gradient descent method,
where a stochastic gradient descent is used for minimization of the objective
function.

Making use of the stochastic natural gradient descent learning rule, used in the
Algorithm 9 for minimization of the objective function (average mutual informa-
tion), projection into the set C1 suggests the following updates at the ith node
of an arbitrary graph G = (ν, ε):

yi(t) =
∑
k∈N(i)

Wik(t)bk(t), (6.25)

Wmi(t+ 1) = Wmi(t)− µ(t)
∑

k∈N(i)\m

ϕm[ym(t)]yk(t)Wki, ∀m ∈ N(i), (6.26)

where N(i) denotes the neighbours of node i include i itself and N(i)\m excludes
node m from the neighbours of node i.

96 Distributed processing of linear BSS over arbitrary graphs

Algorithm 10 shows the distributed BSS algorithm based on the minimum aver-
age mutual information in form of scheme 1 on an arbitrary graph.

Pairwise mutual information minimization

It is good to compare (6.25)-(6.26) with (6.17)-(6.18). In our comparison we
assume that the number of sources is equal to the number of observations (N =

M). Given the aforementioned assumption, it can be easily verified that in (6.18)
each element, Wij, of the ith row of de-mixing matrix is evaluated as:

Wij = argmin
Wij

N∑
k=1,k 6=i

I(yi,yk), j = 1, ..., N (6.27)

where I(yi,yj) is the mutual information between yi and yj defined as:

I(yi,yj) = H(yi) +H(yj)−H(yi,yj)

= H(yi)−H(yi|yj)

= H(yj)−H(yj|yi)

(6.28)

From (6.27) we see that the ith row of the de-mixing matrix aims to learn a di-
rection such that the projection of the observed data in that direction extracts a
source signal, say the ith source signal, that is independent to (N−1) other source
signals. The aforementioned projection is achieved via (6.17), where N observa-
tions are used. In fact N source signals contribute in learning the appropriate
direction of the projection while N observations are used in such a projection.
This equality between the number of observations and the total number of sources
makes the BSS problem to be determined. The (over) determinacy is a necessary
condition in the standard independent component analysis (ICA) algorithms as
otherwise the decomposition is not guaranteed to be unique from the centralized
point of view.
In contrast to (6.18), in (6.26) each non-zero element, Wij, (i, j) ∈ ε, of the ith

row of the de-mixing matrix is evaluated as:

Wij = argmin
Wij

∑
k∈N(j)\i

I(yi,yk), ∀j ∈ N(i) (6.29)

From the (6.29) we see that the ith row of the sparse de-mixing matrix is aimed to
learn a direction such that the projection of the observed data in that direction

6.3 Distributed Processing Approach 97

Algorithm 10 An on-line de-centralized linear BSS Algorithm based on min-
imization of average mutual information (Scheme1-MAMI) for a time sequence
of T time samples.

Initialize Wii(1) = 1,Wij(1) = Wji(1) = 0 for all i ∈ ν, (i, j) ∈ ε
for t = 1, ..., T do

Estimate yi(t) at node i using (6.25).
Update Wmi(t),m ∈ N(i) at node i using (6.26).

end for

extracts a source signal independent to TS − 1 other source signals, where TS is
calculated as:

TS = |
⋃

k∈N(i)

N(k)|, (6.30)

and
⋃

denotes the union operator. This is when only |N(i)| observations are
used in such a projection, see (6.25). The aforementioned inconsistency between
the number of contributed sources, TS, and the number of used observations,
|N(i)|, makes the BSS problem in the ith node somehow under-determined, since
|N(i)| ≤ TS. Therefore, we expect a significant degradation of the performance
of the BSS Algorithm 9 when is applied in the form of scheme 1 over graphs with
high degree of sparsity.

In order to resolve the under-determinacy problem we suggest to evaluate Wij

only as a minimizer of I(yi,yj) instead of the minimizer of the average mutual
information

∑
k∈N(j)\i I(yi,yk) as below:

Wij = argmin
Wij

I(yi,yj), ∀j ∈ N(i)\i (6.31)

where we excluded the Wii, ∀i ∈ ν from learning.

Using (6.31) reduces TS to |N(i)| and makes the BSS problem at the ith node
somewhat determined. However, the real indeterminacy at the ith node depends
on the real number of original independent sources that contribute in the local
observations bj, j ∈ N(i). Therefore the indeterminacy completely vanishes if
the following condition is satisfied:
Condition 1 : Given the learning rule (6.31), to be able to estimate one source
signal at the node i it is necessary that |N(i)|, the number of local observations,
to be greater than or equal to the total number of independent sources that
contribute in the local observations bj, j ∈ N(i).

98 Distributed processing of linear BSS over arbitrary graphs

Making use of the stochastic natural gradient learning rule, evaluation ofWij via
(6.31) suggests the following update:

Wij(t+ 1) = Wij(t)− µ(t)ϕi[yi(t)]yj(t)Wjj, i 6= j. (6.32)

Since in the aforementioned learning strategy, each element of the de-mixing
matrix is evaluated as a minimizer of only the mutual information between a pair
of nodes, we refer to it as the minimum pairwise mutual information approach.
It is good to note that the distributed implementation of the minimum pairwise
mutual information based BSS over arbitrary graphs in the form of scheme 1
enables tracking of a specific source signal in the nodes that are at least two
communication hops apart. Algorithm 11 shows the distributed BSS algorithm
based on the minimum pairwise mutual information in form of scheme 1 on an
arbitrary graph.
Making use of the distributed BSS Algorithm 11 over a graph with the assump-
tion that the condition 1 is met, the estimated sources at an arbitrary subset
of nodes would be mutually independent if the sub-graph of the subset nodes is
fully connected. The full connectivity of the sub-graph implies a pairwise inde-
pendence over all pairs of estimated sources in the subset nodes which in turn
implies mutual independence according to [37, Theorem 11].
Since pairwise independence implies the mutual independence in linear instanta-
neous ICA [37, Theorem 11], implementation of the minimum pairwise mutual
information Algorithm 11 on a fully connected graph, or in a centralized process-
ing manner, leads to minimization of K(W) in (6.10) similar to the centralized
Algorithm 9.
The centralized update of the de-mixing matrix for minimization of the pairwise
mutual information is defined as:

W (t+ 1) = W (t) + µ(t)F́ [y(t)]diag[diag[W (t)]]. (6.33)

where F́ [y(t)] = Λ́(t) − ϕ[y(t)]y(t)T . By initializing the de-mixing matrix with
the identity matrix, (6.33) reduces to:

W (t+ 1) = W (t) + µ(t)F́ [y(t)]. (6.34)

By comparing (6.34) with (6.13) we see a reduction of computational complex-
ity in (6.34) compared to (6.13). However, by using (6.34) instead of (6.13)

6.3 Distributed Processing Approach 99

Algorithm 11 An on-line de-centralized linear BSS Algorithm based on mini-
mization of pairwise mutual information (Scheme1-MPMI) for a time sequence
of T time samples.

Initialize Wii(1) = 1,Wij(1) = Wji(1) = 0 for all i ∈ ν, (i, j) ∈ ε
for t = 1, ..., T do

for all i ∈ ν do
yi(t) =

∑
k∈N(i) Wik(t)bk(t).

Wmi(t+ 1) = Wmi(t)− µ(t)ϕm[ym(t)]yi(t)Wii(t), m 6= i.
Wii(t+ 1) = Wii(t).

end for
end for

we may lose the equivariant property since the serial update (6.13) is replaced
with the parallel update (6.34) [30]. It is good to note that the simple parallel
update (6.34) has been already investigated for centralized applications in some
literatures, e.g. [130,173].

l1 norm regularization

According to the condition 1, in order to achieve a successful separation at the
ith node of a network via Algorithm 11, the number of neighbours of the ith node
should be greater than or equal to the number of local original sources that are
captured by its neighbours. Since there may not be an exact prior knowledge
about the number of original sources, we are motivated to design graphs with
high degree of vertices. This can be achieved by increasing the distance threshold
of friendship between the nodes, where each node is connected to another node
if their distance is less than the distance threshold.
Due to the physical nature of the sound, increasing the distance threshold of
friendship between the nodes can reduce the correlation between the observa-
tions of the nodes that are two communication hops apart. This itself enables
a node to use the observations of a high number of relevant nodes for track-
ing a source signal at a particular location. However, increasing the distance
threshold of friendship between the nodes results in communication between the
nodes that are relatively far which consequently increases the required transmis-
sion power, channel congestion and interference. This increment in transmission
power will be redundant when the number of local original sources around a node

100 Distributed processing of linear BSS over arbitrary graphs

is sufficiently low.
To tackle the aforementioned problem, one can think of eliminating the need
for transmission of non-informative messages between the nodes, e.g. messages
that contain zero values, to reduce the required transmission power. Since the
message that is transmitted from node i to node j at time index t is comprised of
Wji(t)bi(t) and yi(t), we consider it as a zero valued message if both Wji(t)bi(t)

and yi(t) are zero.
We consider the following condition:
Condition 2 : The noise level in the linear model (6.1) is zero. This condition
provides the opportunity of tracking either original signals or zero signals without
the possibility of tracking noise signals.
With the assumption that the condition 2 is met, to investigate in which case
we can have or produce zero valued messages, let us consider a fully connected
graph G = (ν, ε) with |ν| = N . We assume that there are M < N original
sources that need to be tracked via the nodes of the graph G. As was mentioned
earlier, in the aforementioned graphM nodes will trackM original source signals
while N −M nodes will track the zero signals. Accordingly, we define two sets,
ΘS and ΘZ , where ΘS and ΘZ denotes the set of nodes that track the source
signals and zero signals respectively. Since all the messages that are transmitted
from the node with ID ∈ ΘS to its neighbours include the estimation of a non-
zero source signal, yID(t), therefore there is not the possibility of having zero
valued messages at those nodes. However, for all the nodes with ID ∈ ΘZ , half
of the transmitted messages are zero since yID(t) = 0,∀ID ∈ ΘZ . The other half
of the the transmitted messages from the nodes with ID ∈ ΘZ is comprised of
WkID(t)bID(t), k = 1, ..., N , which are not necessarily zero.
To guarantee having zero valued messages at nodes with ID ∈ ΘZ , we consider
the following condition:
Condition 3 : All the messages that need to be transmitted from the node with
ID ∈ ΘZ will be zero valued if WkID(t) = 0, k = 1, ..., N . In another word the
IDth column of the de-mixing matrix, the column that is kept at node ID, should
be zero.
A natural solution for satisfying the equality, WkID(t) = 0, is to encourage
sparsity on the elements of de-mixing matrix. Since the M observations of
the nodes with ID ∈ ΘS are adequate for separation of all M original source

6.3 Distributed Processing Approach 101

signals, by encouraging sparsity we expect elimination of the need for observa-
tions of the nodes with ID ∈ ΘZ by learning N − M zero valued columns as
WkID(t) = 0, k = 1, ..., N , ID ∈ ΘZ .
In order to encourage sparsity on the non-zero elements of the de-mixing matrix,
e.g. the weights Wij and Wji on the edge (i, j) ∈ ε, we can add an l1 norm
regularization term to (6.31) as below:

Wij = argmin
Wij

{I(yi,yj) + γ|Wij|}, ∀j ∈ N(i)\i (6.35)

where γ is the regularization parameter.
Making use of the stochastic natural gradient learning rule, evaluation ofWij via
(6.35) suggests the following update:

Wij(t+ 1) = Wij(t)− µ(t){ϕi[yi(t)]yj(t)Wjj(t) + γsign[Wij(t)]}, i 6= j.

(6.36)
By using (6.36) and assigning thresholds τy and τW to the magnitudes of the
sources and the elements of the de-mixing matrix respectively, we can refuse of
transmitting a message from node i to node j if |Wji(t)| < τW and |yi(t)| < τy.
Any unreceived message from node i to node j can be retrieved as zero at node
j.
Algorithm 12 shows the distributed BSS algorithm based on the l1-regularized
minimum pairwise mutual information in form of scheme 1 on an arbitrary graph.

6.3.2 Scheme 2

In this section, similar to the Section 6.3.1, we develop distributed algorithms
that can be applied for the graphical structure of the network. The distributed
algorithms are aimed to be the distributed versions of the centralized mixing and
de-mixing matrix based BSS Algorithms 8 and 9. In our proposed distributed
algorithms, in the form of scheme 2, each node is aimed to compute the estimates
of all source signals. To develop distributed algorithms in the form of scheme 2
we follow the following procedures: Firstly, as in common situations there is no
prior information about the number of sources, we allocate a source vector of high
dimensionality P , to each node of the network, and the algorithm is assumed to
separate at most P sources if there are at least P sensor nodes. Secondly, we

102 Distributed processing of linear BSS over arbitrary graphs

Algorithm 12 An on-line de-centralized linear BSS Algorithm based on min-
imization of l1-regularized pairwise mutual information (Scheme1-MPMI-l1) for
a time sequence of T time samples.

Initialize Wii(1) = 1,Wij(1) = Wji(1) = 0 for all i ∈ ν, (i, j) ∈ ε
for t = 1, ..., T do

if |Wmi(t)| < τW & |yi(t)| < τy, ∀i ∈ ν,m ∈ N(i)\i then
Wmi(t) = 0 and yi(t) = 0
node i refuses sending Wmi(t)bi(t) and yi(t) to node m.

end if
for all i ∈ ν do

yi(t) =
∑

k∈N(i) Wik(t)bk(t).
Wmi(t+ 1) = Wmi(t)− µ(t){ϕm[ym(t)]yi(t)Wii(t) + γsign[Wmi(t)]},

m 6= i.
Wii(t+ 1) = Wii(t).

end for
end for

split the data across the nodes according to the splitting structure illustrated in
Fig. 6.2. Considering the latter procedure we propose the following distributed
solutions for on-line linear BSS.

Distributed source estimation

The centralized BSS Algorithms 8 and 9 consist of two steps per observation.
In the first step, the sources are estimated given the current observations and
the current estimate of the parameters. To estimate the sources in a distributed
processing manner, we propose two distributed algorithms where one benefits
from a fusion center while the other is fully de-centralized.
Fusion-center based:
The proposed fusion-center based distributed algorithm for source estimation can
be applied to both Maximum-Likelihood (ML) and Minimum Average Mutual
Information (MAMI) based BSS Algorithms 8 and 9.
Fusion-center approach to ML based BSS:
In the maximum-likelihood based BSS algorithm 8 the sources are estimated as
y(t) = A†(t)b(t) which can be represented in the form of a least square problem
as y(t) = argminy ||A(t)y− b(t)||2. Due to the advantageous mathematical prop-
erties of quadratic objective functions, such as being differentiable, we consider

6.3 Distributed Processing Approach 103

f(y) = 1
2
||A(t)y − b(t)||22 as the objective function. Using the splitting structure

introduced in Fig. 6.2 we split the objective function as f(y) =
∑N

i=1 fi(y
{i})

where fi(y{i}) = 1
2
||Ai(t)y{i} − bi(t)||22, Ai(t) and bi(t) are the ith row of the ma-

trix A(t) and vector b(t) respectively and y{i} is the ith copy of the variable yP×1

that lives in node i. The optimization problem for distributed source estimation
can then be formulated as:

min
y

N∑
i=1

1

2
||Ai(t)y{i} − bi(t)||22

s.t. y{i} = z for i = 1, ..., N,

(6.37)

where z is an auxiliary variable.
The augmented Lagrangian [76] for the problem (6.37) can be formulated as:

Lρ(y, z, u) =
N∑
i=1

{1

2
||Ai(t)y{i} − bi(t)||22 +

ρ

2
||y{i} − z + ui||22} (6.38)

Making use of the augmented Lagrangian above, a distributed processing solution
for the problem (6.37) can be obtained by following the ADMM algorithm [24,
48,73]:

y{i,k+1}(t) = argmin
y{i}

(
1

2
||Ai(t)y{i} − bi(t)||22

+
ρ

2
||y{i} − zk + uki ||22)

zk+1 =
1

N

N∑
i=1

(y{i,k+1}(t) + uki)

uk+1
i = uki + y{i,k+1}(t)− zk+1.

(6.39)

where k denotes the iteration counter.
Fusion-center approach to MAMI based BSS:
According to Algorithm 9, the sources are estimated at each time sample as
y(t) = W (t)b(t) which can be represented as a quadratic optimization as y(t) =

argminy
1
2
||y −W (t)b(t)||22. Using the splitting structure introduced in Fig. 6.2,

we split the objective function g(y) = 1
2
||y −W (t)b(t)||22 on a column-by-column

basis as g(y) =
∑N

i=1 gi(y
{i}) where gi(y{i}) = 1

2
||y{i} −NW i(t)bi(t)||22 and W i(t)

and bi(t) are the ith column of matrixW (t) and ith row of vector b(t) respectively.

104 Distributed processing of linear BSS over arbitrary graphs

(a) De-mixing matrix (b) Mixing matrix

Figure 6.2: Illustration of the splitting structure of the data. Red circles represent
the elements of the mixing and de-mixing matrices. Blue squares represent the
observations at each node.

The optimization problem can then be formulated as:

min
y

N∑
i=1

1

2
||y{i} −NW i(t)bi(t)||22

s.t. y{i} = z for i = 1, ..., N,

(6.40)

where z the auxiliary variable.
The augmented Lagrangian function for the problem (6.40) is formulated as:

Lρ(y, z, u) =
N∑
i=1

{1

2
||y{i} −NW i(t)bi(t)||22 +

ρ

2
||y{i} − z + ui||22} (6.41)

By implementing the ADMM algorithm on the augmented Lagrangian above, a
distributed processing solution for source estimation is obtained:

y{i,k+1}(t) = argmin
y{i}

(
1

2
||y{i} −NW i(t)bi(t)||22

+
ρ

2
||y{i} − zk + uki ||22)

zk+1 =
1

N

N∑
i=1

(y{i,k+1}(t) + uki)

uk+1
i = uki + y{i,k+1}(t)− zk+1.

(6.42)

The existence of the variable N in the algorithm above requires prior knowledge
about the total number of sensor nodes. In real-world applications where one
does not have exact information about the total number of nodes, an approximate

6.3 Distributed Processing Approach 105

value can be used. In those situations a scaled version of the sources will be
learned.

By looking to the ADMM updates (6.39) and (6.42) we see that at each iteration
there is the need of aggregation of y{i} and ui into a fusion node, calculating
the average and then broadcasting the result to each sensor node. Fig. 6.3-a
illustrates a sample connectivity pattern of the sensor nodes in fusion-center ap-
proach.
De-centralized based:
Its good to note that the fusion-center approach carries similar limitations to the
centralized approach, such as high power consumption of the transmission and
lack of scalability especially in large-scale problems, since there is the need for
communication to a particular location. This motivates us to implement a fully
de-centralized algorithm as a distributed solution for source estimation. The
de-centralized algorithm that we consider in this paper can be applied to both
maximum-likelihood and minimum average mutual information based BSS Algo-
rithms 8 and 9. We first discuss the de-centralized solution for source estimation
in ML based BSS Algorithm 8 and then the de-centralized processing of source
estimation in MAMI based BSS Algorithm 9.
De-centralized approach to ML based BSS:
Similar to the fusion-center approach we consider f(y) = 1

2
||A(t)y− b(t)||22 as the

objective function with the same separability structure as f(y) =
∑N

i=1 fi(y
{i})

where fi(y{i}) = 1
2
||Ai(t)y{i} − bi(t)||22. We then consider the following optimiza-

tion problem over a graph G = (ν, ε) with |ν| = N as:

min
y

∑
i∈ν

1

2
||Ai(t)y{i} − bi(t)||22

s.t. y{i} = y{j} ∀(i, j) ∈ ε
(6.43)

A de-centralized distributed solution for the problem above can be achieved using
distributed algorithms [90,188,202] and AMM algorithm which was proposed in
Chapter 5. The de-centralization is the consequence of eliminating the global
auxiliary variable z. To address (6.43) we use the AMM algorithm because of its
simplicity, superior convergence property and its two other major properties; 1)
Its asynchronous version does not require any clock for coordination of the nodes.
2) Its synchronous version is optimized in terms of the number of transmitted

106 Distributed processing of linear BSS over arbitrary graphs

messages and the required transmission bandwidth. Without loss of generality,
in this chapter we only apply the synchronous version of AMM algorithm. As was
discussed in Chapter 5, AMM formulates the following regularized augmented
Lagrangian function for the problem (6.43) as shown below:

L̂ρ,α(y, λ) =
∑
i∈ν

{1

2
||Ai(t)y{i} − bi(t)||22 +

∑
j∈N(i)\i

[sign(j − i)λTj|i(y{j} − y{i})

+
ρ

2
||y{i} − y{j}||22 −

1

(2α)
||λi|j − λj|i||22]},

(6.44)
where λi|j is the dual variable that is held at node i and is related to the constraint
on the edge (i, j). The solution to the problem (6.43) can be obtained by finding
the saddle point of the augmented Lagrangian 6.44 as:

(y∗, λ∗) = argmax
λ

min
y
L̂ρ,α(y, λ) (6.45)

where (y∗, λ∗) is the saddle point.

Sync-AMM algorithm leads to the following updates for approaching to the sad-
dle point:

y{i,k+1}(t) =argmin
y{i}
{1

2
||Ai(t)y{i} − bi(t)||22 + βk

T

i y{i} +
∑

j∈N(i)\i

ρ

2
||y{i} − y{j,k}(t)||22}

βk+1
i =βk−1

i + α
∑

j∈N(i)\i

(2y{i,k}(t)− y{j,k−1}(t)− y{j,k+1}(t)),

(6.46)
where βki = −

∑
j∈N(i)\i sign(j − i)λkj|i.

De-centralized approach to MAMI based BSS:
By using g(y) = 1

2
||y − W (t)b(t)||22 as the objective function and considering

the same splitting structure mentioned earlier as g(y) =
∑N

i=1 gi(y
{i}) where

gi(y
{i}) = 1

2
||y{i}−NW i(t)bi(t)||22 and formulating an optimization problem over

a graph G = (ν, ε) with |ν| = N as:

min
y

∑
i∈ν

1

2
||y{i} −NW i(t)bi(t)||22

s.t. y{i} = y{j} ∀(i, j) ∈ ε
(6.47)

a de-centralized processing solution for source estimation can be obtained by

6.3 Distributed Processing Approach 107

1

2

3

4

255

6

7

8

9

10

11

12

14

15

16

17

18

19

20

21

22

23

24

(a) Fusion-center
1

2

3

4

255

6

7

8

9

10

11

12

14

15

16

17

18

19

20

21

22

23

24

13

(b) De-centralized

Figure 6.3: Illustration of a sample connectivity pattern of the graph of scheme
2.

formulating the regularized augmented Lagrangian function as:

L̂ρ,α(y, λ) =
∑
i∈ν

{1

2
||y{i} −NW i(t)bi(t)||22 +

∑
j∈N(i)\i

[sign(j − i)λTj|i(y{j} − y{i})

+
ρ

2
||y{i} − y{j}||22 −

1

(2α)
||λi|j − λj|i||22]},

(6.48)
and finding its saddle point via Sync-AMM algorithm as:

y{i,k+1}(t) =argmin
y{i}
{1

2
||y{i} −NW i(t)bi(t)||22 + βk

T

i y{i} +
∑

j∈N(i)\i

ρ

2
||y{i} − y{j,k}(t)||22}

βk+1
i =βk−1

i + α
∑

j∈N(i)\i

(2y{i,k}(t)− y{j,k−1}(t)− y{j,k+1}(t)),

(6.49)
Fig. 6.3-b illustrates a sample connectivity pattern of the sensor nodes in de-
centralized approach.
Heuristic based on distributed averaging:
An alternative method for de-centralized processing of source estimation in MAMI
based BSS Algorithm 9 is to convert the constraint optimization problem (6.47)
into a distributed averaging problem. This can be achieved by considering a net-
work of N nodes where each node has an initial value as y{i,1}(t) = NW i(t)bi(t)

and the objective is to estimate the average value y(t) = 1
N

∑N
i=1NW

i(t)bi(t) at
each node by only communicating with the neighbouring nodes.
There exist many distributed averaging methods such as [59,126,133,191]. Among
the latter methods, [191] reveals superior convergence. Making use of [191] in

108 Distributed processing of linear BSS over arbitrary graphs

Algorithm 13 An on-line de-centralized linear BSS Algorithm based on max-
imization of likelihood (Scheme2-ML) for a time sequence of T time samples.
At each time t, the algorithm estimates the source samples as the consensus of
y{i}(t) given A(t) and observations b(t), and then updates the mixing matrix
A(t).

Initialize Ai, i ∈ ν
for t = 1, ..., T do

Initialize y{i,1}(t) = β0
i = β1

i = 0 ∀i ∈ ν, k ← 1
do [in parallel]

y{i,k+1}(t) =argmin
y{i}

{1
2
||Ai(t)y{i} − bi(t)||22 + βk

T

i y{i}+∑
j∈N(i)\i

ρ
2
||y{i} − y{j,k}(t)||22}

βk+1
i = βk−1

i + α
∑

j∈N(i)\i(2y
{i,k}(t)− y{j,k−1}(t)− y{j,k+1}(t))

k ← k + 1
while hk >= εp
for all i ∈ ν [in parallel] do

Ai(t+ 1) = Ai(t)− µ(t)Ai(t)F [y{i,k−1}(t)]
end for

end for

our problem, suggests the following updates for estimating y(t) at each node over
a graph G = (ν, ε) as:

y{i,k+1}
p (t) = Hiiy

{i,k}
p (t) +

∑
j∈N(i)\i

Hijy
{j,k}
p (t)

where y{i}(t) = [y
{i}
1 (t), ..., y

{i}
P (t)]T

(6.50)

where H is output of the following optimization:

min
H
||H − (1/N)11T ||2

s.t. H ∈ S , H = HT , H1 = 1
(6.51)

where S = {H ∈ RN×N |Hij = 0 if (i, j) /∈ ε and i 6= j} and 1 denotes a vector
with all coefficients one.

Using (6.50) instead of (6.49) requires lower communication bandwidth and sim-
plifies the computational complexity. However, the Lagrangian-based algorithm
(6.49) can sustain communication link failure and displays faster convergence
in graphs with high degree of sparsity in comparison with distributed averaging
(6.50). The distributed averaging (6.50) cannot sustain communication link fail-

6.3 Distributed Processing Approach 109

Algorithm 14 An on-line de-centralized linear BSS Algorithm based on min-
imization of average mutual information (Scheme2-MAMI) for a time sequence
of T time samples. At each time t, the algorithm estimates the source samples
as the consensus of y{i}(t) given W (t) and observations b(t), and then updates
the de-mixing matrix W (t).

Initialize Wi, i ∈ ν
for t = 1, ..., T do

Initialize y{i,1}(t) = β0
i = β1

i = 0 ∀i ∈ ν, k ← 1
do [in parallel]

y{i,k+1}(t) =argmin
y{i}

{1
2
||y{i} −NW i(t)bi(t)||22 + βk

T

i y{i}+∑
j∈N(i)\i

ρ
2
||y{i} − y{j,k}(t)||22}

βk+1
i = βk−1

i + α
∑

j∈N(i)\i(2y
{i,k}(t)− y{j,k−1}(t)− y{j,k+1}(t))

k ← k + 1
while hk >= εp
for all i ∈ ν [in parallel] do

W i(t+ 1) = W i(t) + µ(t)F́ [y{i,k−1}(t)]W i(t)
end for

end for

ure as the deduced matrix H would no longer satisfy the constraint H1 = 1.
This is in contrast to the Lagrangian-based algorithm (6.49) that requires the
deduced subgraph to be only connected. So depending on the availability of re-
sources in a given network one can use either (6.50) or (6.49) as a de-centralized
solution for source estimation in MAMI based BSS Algorithm 9.

Distributed parameter update

ML based BSS:
After estimating the sources, by preserving the splitting structure described in
Fig. 6.2 each node can update its own parameter without the need for any
communication with the neighbour nodes as:

Ai(t+ 1) = Ai(t)− µ(t)Ai(t)(Λ
{i}(t)− ψ[y∗{i}(t)]y∗{i}(t)T) (6.52)

where Λ{i}(t) = diag[diag[ψ[y∗{i}(t)]y∗{i}(t)T]].
MMI based BSS:
By preserving the splitting structure shown in Fig. 6.2 each node can update its

110 Distributed processing of linear BSS over arbitrary graphs

own parameter locally as follows:

W i(t+ 1) = W i(t) + µ(t)(Λ́{i}(t)− ϕ[y∗{i}(t)]y∗{i}(t)T)W i(t) (6.53)

where Λ́{i}(t) = diag[diag[ϕ[y∗{i}(t)]y∗{i}(t)T]].

Algorithms 13 and 14 show the distributed BSS algorithm based on ML and
MAMI in the form of scheme 2 respectively where hk =

∑
i∈ν
∑

j∈N(i)\i
1
2
||y{i,k}(t)−

y{j,k}(t)||2, εp =
√
Pεabs + εrel maxi∈ν{||y{i,k}(t)||2} and εabs > 0 and εrel > 0.

Convergence Analysis:
Finding a solution for the constrained problems (6.37) and (6.43) requires fol-
lowing the algorithms (6.39) and (6.46) in the form of a min-max optimization.
However, the minimization steps in (6.39) and (6.46) have a solution set in a P−1

dimensional space. This is because the function fi(y{i}) = 1
2
||Ai(t)y{i} − bi(t)||22

is a convex function with a P − 1 dimensional solution set. Therefore the min-
imization steps in (6.39) and (6.46) may not be highly informative about the
direction of optimization towards the saddle point of the augmented Lagrangian
function in the early iterations. In fact the ambiguity in finding the exact solu-
tion among all possible solution set vanishes when the constraints in (6.37) and
(6.43) are satisfied and that is attained when the iteration evolves. Thus the
convexity of the objective function results in a sub-linear convergence rate for
source estimation in the mixing matrix based BSS algorithms. The rate of con-
vergence is expected to decrease by increasing the dimensionality of the source
vector, P . The sub-linear convergence rate of the ADMM based algorithms for
general convex functions has been determined in [115].

In contrast, finding the solution for the problems (6.40) and (6.47) requires follow-
ing a min-max algorithm in which the minimization is performed over a strictly
convex function in the form of gi(y{i}) = 1

2
||y{i} − NW i(t)bi(t)||22 with a unique

minimizer in each node. Therefore the minimization steps in (6.42) and (6.49)
give the highest possible information about the direction towards the saddle point
of the augmented Lagrangian function. This results in a linear convergence rate
in source estimation in de-mixing matrix based BSS algorithms where the conver-
gence rate is irrespective to the dimensionality of the source vector. The linear
convergence rate of the ADMM based algorithms for strictly convex functions
has been determined in [43].

To compare the convergence rate of algorithm (6.49) with the distributed aver-

6.3 Distributed Processing Approach 111

aging algorithm (6.50) in terms of the degree of sparsity of the graph, we recall
the per-iteration convergence factor, riter, and its associated convergence time,
τiter, for distributed averaging that are defined in [191] as:

riter = sup
x
{k}
p 6=x̄p

||x{k+1}
p − x̄p||2
||x{k}p − x̄p||2

= ||H − (1/N)11T ||2, (6.54)

where x{k}p = [y
{1,k}
p , ..., y

{N,k}
p]T for p = 1, ..., P in our BSS problem and

τiter =
1

log(1/riter)
. (6.55)

From (6.54) and (6.55) we see that the convergence time has a direct relationship
with the value of ||H − (1/N)11T ||2. Increasing the sparsity of a graph is equiv-
alent to decreasing the degree of freedom, the number of non-zero elements of
H, in correct estimation of H as a minimizer of ||H − (1/N)11T ||2 and therefore
increasing the convergence time. This is in contrast to the algorithm (6.49) as
increasing the sparsity of the graph is equivalent to decreasing the number of con-
straints and their corresponding dual variables which consequently decreases the
dimensionality of the search space for finding the saddle point of the augmented
Lagrangian function.

6.3.3 Required output power

One of the major factors that influences the WSN design is the power con-
sumption. Power consumption can be divided to three domains: sensing, data
processing and communication. According to [4], the maximum power is con-
sumed in data communication. [186] approximated the required output power
for a reliable data transmission between the nodes of the WSN as:

PTx(d) = εqη (6.56)

where ε is a constant that depends on the characteristic of the transmitting and
receiving antennas, q denotes the range of transmission and η is the path loss
exponent which is about 2 for free space. Equation (6.56) allows the evaluation
of the power consumption of the sensor nodes when the proposed distributed
BSS algorithms are applied.
Table 6.1 compares the properties of the distributed de-centralized BSS algo-

112 Distributed processing of linear BSS over arbitrary graphs

Table 6.1: Properties of the proposed distributed de-centralized BSS algorithms.

S1-MAMI S1-MPMI S1-MPMI-l1 S2-ML S2-MAMI
CB 256 bit/t 256 bit/t 256 bit/t 128P bit/k 128P bit/k
CC O(|N(i)|) O(|N(i)|) O(|N(i)|) O(P 3 + P |N(i)|) O(5|N(i)|+ 4P)
CS 1 per t 1 per t 1 per t k per t k per t
EP Yes No No Yes Yes
PC O(N ¯εqη) O(N ¯εqη) O(M ¯εqη) O(kN ¯εqη) O(kN ¯εqη)
PG Non-uniform Non-uniform Non-uniform Uniform Uniform

S/A Sync in t Sync in t Sync in t
(Sync in t)

(Sync/Async
in k)

(Sync in t)
(Sync/Async

in k)

rithms that was proposed in this chapter. We used the following notations in
the table, CB: The maximum required communication bandwidth per communi-
cation channel, where we assumed that 64 bit is required to represent a scalar.
CC: The computational complexity at the ith node of the network. CS: The
required communication steps. EP: Equivariant property. PC: The total power
consumption of the network at each time sample t. PG: The performance of the
algorithm on graphs with different connectivity pattern. S/A: Synchronous or
Asynchronous.

6.4 Experimental Results

To evaluate the performance of the proposed distributed BSS algorithms we
simulated a low noise delay-restricted environment where the observations are
obtained from a linear instantaneous mixture of the sources. To set up a con-
nectivity pattern over the sensor nodes we used the dm-neighbourhood graph
strategy in which each node is connected to other nodes if their pairwise dis-
tances are smaller than or equal to dm.

6.4.1 Experimental Setup

In the experiments four source signals along with 25 sensor nodes were used.
Fig. 6.4 shows the position of the sensor nodes and the sources. A total of
6 different connectivity patterns (via setting dm, where dm denotes the thresh-
old of friendship between the nodes, to different values) were also used in the

6.4 Experimental Results 113

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1 2 3 4 50-1-2-3-4-5

0

1

2

3

4

5

-1

-2

-3

-4

-5

x (m)

y
 (

m
)

Source

Sensor Node

Figure 6.4: Illustration of the position of sensor nodes and sources.

experiments.
Speech signals of 6 seconds in length with the variances equal to one were used
as the original source signals. The speech signals were sampled with a sampling
frequency of 16 kHz. The observations of the sensor nodes were corrupted by
zero mean Gaussian noises with variances equal to 0.02. The elements of the
original mixing matrix were created by sampling from a zero mean unit variance
normal distribution. The parameters of the hyperbolic tangent ϑ and θ were set
to 1 and 100 respectively.

Scheme 1

For the case of distributed BSS algorithms in the form of scheme 1, the identity
matrix was used as an initial value for the de-mixing matrix W25×25. A con-
stant step size µ = 1× 10−4 was used for Scheme1-MAMI, Scheme1-MPMI and
Scheme1-MPMI-l1 algorithms. The regularization parameter γ and the thresh-
olds τy and τW were set to 0.02, 0.01 and 1 × 10−4 respectively. For the case of
Scheme1-MPMI-l1 algorithm, no noise was considered at the sensor nodes.

Scheme 2

For the case of distributed BSS algorithms in the form of scheme 2, the number
of sources where over estimated at each node as 6 and a mixing and a de-mixing
matrix of dimension 25× 6 and 6× 25 were used respectively. The initial values

114 Distributed processing of linear BSS over arbitrary graphs

0 2 4 6 8

sample index 10
4

-20

0

20

m
a
g
n
it
u
d
e a)

0 2 4 6 8

sample index 10
4

-20

0

20

m
a
g
n
it
u
d
e b)

0 2 4 6 8

sample index 10
4

-20

0

20

m
a
g
n
it
u
d
e c)

0 2 4 6 8

sample index 10
4

-20

0

20

m
a
g
n
it
u
d
e d)

0 2 4 6 8

sample index 10
4

-5

0

5

m
a
g
n
it
u
d
e e)

0 2 4 6 8

sample index 10
4

-1

0

1

m
a
g
n
it
u
d
e f)

0 2 4 6 8

sample index 10
4

-5

0

5

m
a
g
n
it
u
d
e g)

0 2 4 6 8

sample index 10
4

-10

0

10

m
a
g
n
it
u
d
e h)

0 2 4 6 8

sample index 10
4

-10

0

10

m
a
g
n
it
u
d
e i)

0 2 4 6 8

sample index 10
4

-2

0

2

m
a
g
n
it
u
d
e j)

Figure 6.5: Visualization of the original and separated signals. (a-d) Original
source signals. (e-j) Separated signals.

of the elements of the mixing and de-mixing matrices were obtained by sampling
from a zero mean and unit variance normal distribution. A constant step size µ
equal to 2×10−3 and 1×10−4 was used for ML and MAMI based BSS algorithms
respectively. The parameters ρ and α were set to 1 and 0.5 respectively. We
used εabs = 1× 10−10 and εrel = 1× 10−10 as a stopping criteria to terminate the
iterations for source estimation.

6.4.2 Results

To assess the performance of the maximum-likelihood based BSS algorithm in
source separation when the number of sources is overestimated, we applied Al-

6.4 Experimental Results 115

0 2 4 6 8

sample index 10
4

0

10

20

30

40

50
S

IR
 i
n

 d
B

d
m

=12 m

0 2 4 6 8

sample index 10
4

0

10

20

30

40

50

S
IR

 i
n

 d
B

d
m

=8.5 m

0 2 4 6 8

sample index 10
4

-40

-20

0

20

40

S
IR

 i
n

 d
B

d
m

=7.4 m

0 2 4 6 8

sample index 10
4

-40

-20

0

20

40

S
IR

 i
n

 d
B

d
m

=5.8 m

Figure 6.6: Illustration of the average SIR of the non-zero estimated signals using
Scheme1-MAMI algorithm.

gorithm 8 in a centralized processing manner and in a noiseless scenario, where
we used the setup of scheme 2, and the result of separation is illustrated in Fig.
6.5. From Fig. 6.5 we see that out of six estimated sources two of them are zero
output.

Fig. 6.6 shows the average Signal to Interference Ratio (SIR) of the non-zero
estimated signals across time when the Scheme1-MAMI algorithm is applied for
different dm. From the results in Fig. 6.6 we see a significant degradation of the
performance of Scheme1-MAMI algorithm over graphs with high degree of spar-
sity. Fig. 6.7 shows the average SIR of the non-zero estimated signals across time
when Scheme1-MPMI and Scheme1-MPMI-l1 algorithms are applied for different
dm. Implementation of Scheme1-MPMI and Scheme1-MPMI-l1 algorithms over
the graphs with dm = 12 m led to estimation of the sources at only the node 1,
14, 17 and 23 while over the graphs with dm = 8.5 m, dm = 7.4 m and dm = 5.8

m led to estimation of the sources at the aforementioned nodes along with some
other nodes of the network. From the results in Fig. 6.7 we see the good per-
formance of the algorithms over sparse graphs. Table 6.2 compares the l1 norm
of the columns of the de-mixing after implementation of Scheme1-MPMI and
Scheme1-MPMI-l1 algorithms on a fully connected graph (dm = 12 m) at time
t = 6s, where we excluded Wii, i = 1, ..., 25 from W when calculated the norms.
To make a fair comparison, the results in Table 6.2 are obtained by eliminating

116 Distributed processing of linear BSS over arbitrary graphs

0 2 4 6 8

sample index 10
4

0

10

20

30

40

50

S
IR

 i
n
 d

B

d
m

=12 m

0 2 4 6 8

sample index 10
4

0
10
20
30
40
50

S
IR

 i
n
 d

B

d
m

=8.5 m

0 2 4 6 8

sample index 10
4

0

10

20

30

40

50

S
IR

 i
n
 d

B

d
m

=7.4 m

0 2 4 6 8

sample index 10
4

0

10

20

30

40

50

S
IR

 i
n
 d

B

d
m

=5.8 m

(a) Scheme1-MPMI

0 2 4 6 8

sample index 10
4

0

10

20

30

40

50

S
IR

 i
n
 d

B

d
m

=12 m

0 2 4 6 8

sample index 10
4

0
10
20
30
40
50

S
IR

 i
n
 d

B

d
m

=8.5 m

0 2 4 6 8

sample index 10
4

0

10

20

30

40

50
S

IR
 i
n
 d

B
d

m
=7.4 m

0 2 4 6 8

sample index 10
4

0

10

20

30

40

50

S
IR

 i
n
 d

B

d
m

=5.8 m

(b) Scheme1-MPMI-l1

Figure 6.7: Illustration of the average SIR of the non-zero estimated signals using
Scheme1-MPMI and Scheme1-MPMI-l1 algorithms.

Table 6.2: l1-norm of the columns of the de-mixing matrix W , where Wii, i =
1, ..., 25 are excluded. Here the value that corresponds to WE is the average
norm of all the columns excluding W 1, W 14, W 17 and W 23.

Column W 1 W 14 W 17 W 23 WE

Scheme1-MPMI 3.0096 3.6087 2.8780 4.1454 1.1036

Scheme1-MPMI-l1 7.0968 8.2470 6.7427 8.7030 0.0361

6.4 Experimental Results 117

0 2 4 6 8

sample index 10
4

0

10

20

30

40

50
S

IR
 i
n

 d
B

d
m

=12 m

0 2 4 6 8

sample index 10
4

0

10

20

30

40

50

S
IR

 i
n

 d
B

d
m

=8.5 m

0 2 4 6 8

sample index 10
4

0

10

20

30

40

50

S
IR

 i
n

 d
B

d
m

=7.4 m

0 2 4 6 8

sample index 10
4

0

10

20

30

40

50

S
IR

 i
n

 d
B

d
m

=5.8 m

Figure 6.8: Illustration of the average SIR of the non-zero estimated signals
using Scheme2-ML and Scheme2-MAMI algorithms. Red) Scheme2-ML. Blue)
Scheme2-MAMI.

the noise at the sensor nodes for the case of Scheme1-MPMI algorithm. From
the results in Table 6.2 we see that all the elements of the de-mixing matrix,
excluding Wii, i = 1, ..., 25, that are kept at the nodes which estimate the zero
signals take small values when Scheme1-MPMI-l1 is applied.

In Fig. 6.8 the average SIR of the non-zero estimated signals is plotted across

Table 6.3: The required RF output power over different graphs.

dm 4.5 5.8 7.4 8.5 12
Scheme1-MAMI 506ε 800ε 1280ε 1664ε 2160ε
Scheme1-MPMI 506ε 800ε 1280ε 1664ε 2160ε

Scheme1-MPMI-l1 411ε 578ε 861ε 994ε 1155ε

Table 6.4: The required RF output power for different target MSEs over a graph
with dm = 4.5 m.

MSE 10−5 10−10 10−15 10−20

Scheme2-MAMI 38962ε 66286ε 93104ε 120428ε
Scheme2-ML 66792ε 212014ε 452870ε 694232ε

118 Distributed processing of linear BSS over arbitrary graphs

0 200 400 600 800 1000
iteration

-50

0

50

100

150

200

250

300

350

S
N

R
 i
n

 d
B

Mixing

De-mixing

(a) De-centralized dm = 12 m

0 200 400 600 800 1000
iteration

-50

0

50

100

150

200

250

300

350

S
N

R
 i
n

 d
B

Mixing

De-mixing

(b) De-centralized dm = 2 m

0 200 400 600 800 1000
iteration

-50

0

50

100

150

200

250

300

350

S
N

R
 i
n

 d
B

Mixing

De-mixing

(c) Fusion-center

Figure 6.9: Comparative performance of mixing and de-mixing matrix based BSS
algorithms in distributed source estimation in the form of scheme 2.

time when Scheme2-ML and Scheme2-MAMI algorithms are applied for different
dm. From the results in Fig. 6.8 we see a uniform performance of the algorithms
over different graphs.

To compare the convergence rate of the distributed mixing and de-mixing matrix
based BSS algorithms in distributed source estimation, in the form scheme 2, we
plotted the average SNR of the estimated sources over the sensor nodes for the
two algorithms at time sample 48000 in the utterances (t = 3s) as shown in
Fig. 6.9, where we used the definition SNRi = 10log10(

||A†(t)b(t)||22
||A†(t)b(t)−y{i,k}(t)||22

) and

SNRi = 10log10(
||W (t)b(t)||22

||W (t)b(t)−y{i,k}(t)||22
) for mixing and de-mixing matrix based BSS

algorithms respectively. From the results in Fig. 6.9 we see a quicker rate
of convergence when the de-mixing matrix based BSS algorithm is applied in
comparison with the mixing matrix based BSS algorithm.

Fig. 6.10 compares the performance of the Lagrangian-based update (6.49) and
distributed averaging update (6.50) in distributed source estimation over a graph

6.5 Summary 119

0 100 200 300 400
iteration

-50

0

50

100

150

200

250

300

350

S
N

R
 i
n
 d

B

Distributed Averaging

Lagrangian

Figure 6.10: Illustration of the average SNR of the estimated signals in commu-
nication link failure scenario over a graph with dm = 2.

with dm = 2 when the network encounters with communication link failure. In
Fig. 6.10 it is assumed that the edges (4,5) and (13,18) are missed after 200
iterations at the time sample 48000. From the results in Fig. 6.10 we see that
the Lagrangian-based update (6.49) can adapt itself to the new graph which is
in contrast to the distributed averaging update (6.50).
In Table 6.3, the average required transmission power for source estimation per
time sample over different graphs is shown when Scheme1-MAMI, Scheme1-
MPMI and Scheme1-MPMI-l1 algorithms are applied. Table 6.4 shows the re-
quired transmission power for source estimation at the time sample 48000 for
reaching to the target MSEs using Scheme2-ML and Scheme2-MAMI algorithms,
where we used the definition MSE = 1

N

∑N
i=1 ||A†(t)b(t)− y{i,k}(t)||22 and MSE =

1
N

∑N
i=1 ||W (t)b(t)− y{i,k}(t)||22 for ML and MAMI based BSS algorithms respec-

tively.

6.5 Summary

In this chapter we introduced two schemes for in-network processing of adaptive
linear BSS. The minimum transmission power is attained when the scheme 1 is
applied over the de-mixing matrix based BSS algorithms. However the separa-
tion performance of the BSS algorithms that are applied in the form of scheme
1 depend on the connectivity pattern of the graph of the network. On the con-
trary, distributed implementation of the BSS algorithms in the form of scheme 2

120 Distributed processing of linear BSS over arbitrary graphs

allows to achieve a uniform separation performance over any arbitrary connected
graph. It has also been observed that a quicker rate of convergence for distributed
source estimation is obtained over the de-mixing matrix based BSS algorithms
in comparison with the corresponding mixing matrix based BSS algorithms in
both schemes. In addition the scheme 1 is more scalable than scheme 2 as there
is no need for a consensus across all the nodes in the network when the scheme
1 is applied.

Conclusions 121

7
Conclusions

This dissertation addressed a novel research topic in engineering, Distributed
Blind Source Separation [79, 98]. Blind source separation has a variety of appli-
cations such as in Audio Signal Processing [184], Biomedical [122, 183], Astron-
omy [140] and Finance [16,119]. This thesis focused on the application of BSS in
audio signal processing for source tracking over sensor networks in a distributed
processing manner. The BSS algorithms that were considered in this thesis are
based on statistical methods that investigate mixing or de-mixing models which
maximize the independency of the estimated sources as a solution for separation.
Making use of the stochastic gradient method, we were able to develop adaptive
algorithms for source tracking in a real-time processing manner. We used the
natural gradient [8] extension of the adaptive algorithm as it was more stable.
In the context of blind source separation, the main focus of this thesis was on the
linear generative models in which the observations are obtained from the linear
instantaneous mixture of the sources. Therefore, direct implementation of the
proposed distributed BSS algorithms is suited for scenarios in which there is a
linear multiplicative mixing model between the recordings and the sources. An
example scenario is source tracking in a cocktail party in an anechoic room.
We investigated two schemes for distributed BSS over sensor networks. In scheme
1, for the case of de-mixing matrix based BSS algorithm, each sensor node was

122 Conclusions

responsible for extracting one source via receiving a weighted sum of the ob-
servations of its neighbour nodes. Using scheme 1 facilitates the instantaneous
estimation of the sources without requiring iterative procedures for the case of
de-mixing matrix based BSS algorithm. Eliminating the iterative procedures led
to achieving low transmission power for source tracking over wireless sensor net-
works. By applying the first scheme over a well designed sparse network we were
also able to eliminate the need for transmission to long distances. However, the
separation performance of the BSS algorithms that are applied in the form of
scheme 1 depend on the connectivity pattern of the graph of the network.

In the second scheme, we formulated a consensus problem for source estimation.
This allowed an estimation of all sources in each sensor node. In contrast to the
scheme 1, the separation performance of the scheme 2 was irrespective to the
connectivity pattern of the graph of the network. In fact its performance is anal-
ogous to the corresponding centralized algorithm. However, scheme 2 requires
an iterative procedure for source estimation, which lead to a higher transmission
power compared to the scheme 1. In comparison with the traditional centralized
processing approaches, the proposed distributed de-centralized schemes elimi-
nated the need for transmission to a centralized location.

In overall, the de-mixing matrix based BSS algorithms, that we considered in
this thesis outperform the mixing matrix based BSS algorithms when are im-
plemented in a distributed processing manner. Applying the de-mixing based
BSS algorithm in the form of scheme 2 leads to a strictly convex optimization
problem for source estimation at a given parameter matrix. The strict convexity
of the objective function of the problem results in a quicker rate of convergence
of distributed ADMM based algorithms in comparison with the optimization
problems with convex objective functions. If fewer iterations are required for the
convergence of the ADMM based algorithms, then less transmission power will
be consumed. Therefore, the most obvious line of future work is to accelerate
the convergence of the proposed AMM algorithm. There are a variety of acceler-
ated gradient and ADMM based algorithms that can be used as a starting point,
e.g. [19, 60,62,95,138,141].

The performance of the adaptive BSS algorithms that we considered in this thesis
depends on the distribution of the original signals. In order to make the algo-
rithm suitable for the Laplacian distributions we had to choose the appropriate

Conclusions 123

activation function, e.g. tanh(.). This may limit the performance of the proposed
distributed BSS algorithm to a particular set of source signals. Thus, a future
line of the work is to apply the proposed distributed schemes on the adaptive
BSS algorithms that can be used for any distribution of the sources. Example
references for the universally convergent adaptive BSS algorithms can be found
in [9, 110,199].
Some of the work presented in this dissertation concentrated on improvements of
distributed algorithms for linearly constrained convex optimization problems. We
considered two forms of problems. For the problems in which all primal variables
are coupled by a global single block linear constraint, the improvements include:
eliminating the need for a master node (centralized location), reduced commu-
nication requirements and an asynchronous updating scheme. For the problems
with a separable constraint, the improvements include: reduced computational
cost, reduced transmission bandwidth and the elimination of the need for any
coordination between the nodes of a network. Since many problems can be cast
into linearly constrained convex optimization problems, the improvements that
were presented in this thesis can be applied in a variety of applications such as
in signal an image processing, machine learning and statistics.
The distributed BSS algorithms that were presented in this thesis can easily be
applied to the scenarios in which the observations are obtained from a convolutive
mixture of the sources. To achieve the latter, the observed data need to be
first transferred to the frequency domain via Fourier Transform to produce a
multiplicative model for each frequency bin. By making use of the aforementioned
Time-Frequency domain approach, we are able to apply the presented methods
for distributed source separation in cocktail parties in reverberant environments.
However, using the Time-Frequency domain approach may result in permutation
and scaling problems which can be addressed by the proposed methods in [53,88,
165, 178]. A future line of work is to use the permutation and scaling solutions
along with our proposed distributed methods to develop distributed algorithms
for source tracking in convolutive models.

124 Conclusions

125

Appendices

127

A
A.1 Proof of the inequality in (5.30) and (5.31)

Since gi(λj|i) and gj(λi|j) are pointwise minimum of an affine function of λj|i
and λi|j respectively, they are concave [25, chapter 5]. Accordingly, we denote
by Ci and Cj the optimal set, the set of all maximizers, of gi(λj|i) and gj(λi|j)

respectively. We then denote by λoj|i ∈ Ci and λoi|j ∈ Cj one of the optimal points
of the functions gi(λj|i) and gj(λi|j) that are evaluated as:

λoj|i = argmax
λj|i

gi(λj|i)

λoi|j = argmax
λi|j

gj(λi|j).
(A.1)

According to the basic property of the maximum [161,197], we have the following
relationship for any arbitrary functions gi(.) and gj(.)

max
λ
{gi(λ) + gj(λ)} ≤ max

λ1
gi(λ1) + max

λ2
gj(λ2). (A.2)

The equality in (A.2) holds when Ci ∩ Cj 6= ∅, where ∅ denotes the empty set.

According to (5.29) and by making use of (A.1) and (A.2) we can establish the

128

following relationship:

max
λ
{gi(λ) + gj(λ)} = max

λ
gij(λ)

= gij(λ
∗
ij) ≤ gi(λ

o
j|i) + gj(λ

o
i|j).

(A.3)

We now recall the global dual function ĝij(λi|j, λj|i) from which λ∗i|j and λ
∗
j|i are

evaluated. In fact, λ∗i|j and λ
∗
j|i are obtained as:

(λ∗i|j, λ
∗
j|i) = arg max

λi|j ,λj|i
ĝij(λi|j, λj|i)

= arg max
λi|j ,λj|i

{gi(λj|i) + gj(λi|j)−
1

(2α)
||λi|j − λj|i||22}.

(A.4)

From (A.4) we see that λ∗j|i and λ
∗
i|j are evaluated as a trade-off between maxi-

mizing gi(λj|i) and gj(λi|j) and minimizing δij = λ∗i|j − λ∗j|i.

We consider two cases for the optimization in (A.4), one in which Ci ∩ Cj 6= ∅
and one in which Ci ∩ Cj = ∅.
Case Ci ∩ Cj 6= ∅:
Since the intersection of Ci and Cj is a non-empty set, there exists at least an
optimal point that is the global maximizer of gi(λj|i) and gj(λi|j) and the global
minimizer of 1

(2α)
||λi|j −λj|i||22. Therefore λ∗j|i and λ∗i|j would satisfy the following

relationships:

δij = λ∗i|j − λ∗j|i = 0

gij(λ
∗
ij) = gi(λ

∗
j|i) + gj(λ

∗
i|j) = gi(λ

o
j|i) + gj(λ

o
i|j).

(A.5)

Thus, ∆ = gij(λ
∗
ij)− (gi(λ

∗
j|i) + gj(λ

∗
i|j)) = 0.

Case Ci ∩ Cj = ∅:
For the case of Ci ∩ Cj = ∅, there does not exist any common optimal point
as a maximizer of gi(λj|i) and gj(λi|j). Therefore, the optimization in (A.4)
leads to evaluation of such λ∗j|i and λ

∗
i|j that are not either a global maximizer of

gi(λj|i) and gj(λi|j) nor the global minimizer of 1
(2α)
||λi|j − λj|i||22, since they are

obtained as a trade off between the aforementioned maximizer and minimizer.
Consequently, λ∗j|i and λ∗i|j would be two distinct values that would satisfy the

A.1 Proof of the inequality in (5.30) and (5.31) 129

following relationships:

δij = λ∗i|j − λ∗j|i 6= 0

gij(λ
∗
ij) < gi(λ

∗
j|i) + gj(λ

∗
i|j) < gi(λ

o
j|i) + gj(λ

o
i|j).

(A.6)

Hence, ∆ = gij(λ
∗
ij)− (gi(λ

∗
j|i) + gj(λ

∗
i|j)) < 0.

Finally, according to (A.5) and (A.6) we can establish the following condi-
tions:

∆ = 0 if δij = 0,

∆ < 0 if δij 6= 0.
(A.7)

130

131

B
B.1 Derivation of the simple synchronous algo-

rithm from AMM

According to (5.23) the dual variable λi|j is updated as follows:

λk+1
i|j = argmax

λi|j
{λTi|j(cij − Ai→jxk+1

i − Aj→ixkj)−
1

(2α)
||λi|j − λkj|i||22}. (B.1)

The function on the right side of the equation (B.1), which we denote it by
hk(λi|j), is a strictly concave function with a unique maximizer. To derive the
maximizer of the function, we take its gradient with respect to λi|j as:

∇hk(λi|j) = cij − Ai→jxk+1
i − Aj→ixkj −

1

α
(λi|j − λkj|i). (B.2)

By setting ∇hk(λi|j) to zero, λk+1
i|j is evaluated as:

λk+1
i|j = λkj|i + α(cij − Ai→jxk+1

i − Aj→ixkj). (B.3)

By looking to the equation (5.22) we see that there is the need for calculation
of
∑

j∈N(i)\i λ
kT

j|iAi→j for updating the primal variable xi. To simplify the afore-

132

mentioned computation, we consider:

βki =
∑

j∈N(i)\i

−ATi→jλkj|i, (B.4)

as the data that is needed at node i at the kth iteration.
Making use of the equation (B.3), by substituting λkj|i with λk−1

i|j + α(cij −
Ai→jx

k−1
i − Aj→ixkj) in equation (B.4) we have:

βki =
∑

j∈N(i)\i

−ATi→j{λk−1
i|j + α(cij − Ai→jxk−1

i − Aj→ixkj)}, (B.5)

we can follow the procedure and substitute λk−1
i|j , in (B.5), with λk−2

j|i + α(cij −
Ai→jx

k−1
i − Aj→ixk−2

j) which leads to:

βki =
∑

j∈N(i)\i

−ATi→j{λk−2
j|i + α(cij − Ai→jxk−1

i − Aj→ixk−2
j) + α(cij − Ai→jxk−1

i − Aj→ixkj)}

=
∑

j∈N(i)\i

−ATi→jλk−2
j|i + α

∑
j∈N(i)\i

−ATi→j(2cij − 2Ai→jx
k−1
i − Aj→ixk−2

j − Aj→ixkj)

= βk−2
i + α

∑
j∈N(i)\i

−ATi→j(2cij − 2Ai→jx
k−1
i − Aj→ixk−2

j − Aj→ixkj).

(B.6)
Therefore, the updates in (5.22) and (5.23) can reduce to the following updates
in the synchronous case:

xk+1
i =argmin

xi
(fi(xi) + βk

T

i xi +
∑

j∈N(i)\i

ρ

2
||cij − Ai→jxi − Aj→ixkj ||22) (B.7)

βk+1
i = βk−1

i + α
∑

j∈N(i)\i

−ATi→j(2cij − 2Ai→jx
k
i − Aj→ixk−1

j − Aj→ixk+1
j). (B.8)

133

C
C.1 Derivation of the stable BSS algorithm

The set of all N ×N invertible matrices A, the parameter matrices of the blind
source separation, forms a Lie group, Gl(N). Gl(N) is an N2 dimensional non-
linear space or manifold. In this N2 dimensional space we can define a subspace
for all matrices with equivalent property. The equivalence can be defined in terms
of the directions of the column vectors of the matrices. By making use of the
aforementioned property, we can define an N dimensional subspace that consists
of all matrices that are only different in terms of the scale of their column vectors.
We consider the matrices that forms this subspace equivalent and define a class
CA for them as:

CA = {A′|A′ = AΛ}, (C.1)

where Λ = diag[λ11, λ22, ..., λNN] is an arbitrary diagonal scaling matrix.

We refer to all those matrices that belong to CA with AC . Let dAC be a direction
tangent to CA. To avoid stability problems that are related to learning scaled
version of the columns of the parameter matrix A, we are interested in trajectories
of learning that are orthogonal to CA. To obtain these trajectories we require

134

the following equality to hold

< dA, dAC >A= 0. (C.2)

The inner product < dA, dAC >A can be represented as

< dA, dAC >A=< A−1dA,A−1dAC >I . (C.3)

By substituting dAC with AdΛ in (C.3), it reduces to

< dA, dAC >A =< A−1dA, dΛ >I

=
∑
i,j

{A−1dA}ijdλij

=
N∑
i=1

{A−1dA}iidλii

(C.4)

where {A−1dA}ij denotes the ijth element of the matrix A−1dA. Therefore,
< dA, dAC >A would be zero if {A−1dA}ii be equal to zero for i = 1, ..., N .
From (6.5) we have:

A(t+ 1) = A(t)− µA(t)F [y(t)] (C.5)

Thus, dA = −µA(t)F [y(t)] at time index t and consequently:

A−1dA = −µF [y(t)]. (C.6)

Therefore, to satisfy the orthogonality of dA and dAC , {F [y(t)]}ii should be zero
for i = 1, ..., N .
Let F [y(t)] to be equal to Λ(t)−ψ[y(t)]y(t)T , where Λ(t) is an arbitrary diagonal
matrix at time index t. To satisfy the condition {F [y(t)]}ii = 0, Λ(t) should be
chosen as follows:

Λ(t) = diag[diag[ψ[y(t)]y(t)T]]. (C.7)

BIBLIOGRAPHY 135

Bibliography

[1] Abdi, H., and Williams, L. J. Principal component analysis. Wiley
Interdisciplinary Reviews: Computational Statistics 2, 4 (2010), 433–459.

[2] Adalı, T., Kim, T., and Calhoun, V. Independent component anal-
ysis by complex nonlinearities. In Proc. ICASSP (2004), vol. 5, Citeseer,
pp. 525–528.

[3] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci,

E. A survey on sensor networks. Communications magazine, IEEE 40, 8
(2002), 102–114.

[4] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci,

E. Wireless sensor networks: a survey. Computer networks 38, 4 (2002),
393–422.

[5] Alavi, S. M., and Kleijn, W. B. Distributed linear blind source sepa-
ration over wireless sensor networks with arbitrary connectivity patterns.
In International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2016), IEEE, pp. 3171–3175.

[6] Albrecht, J. R., Tuttle, C., Snoeren, A. C., and Vahdat, A.

Loose synchronization for large-scale networked systems. In USENIX An-
nual Technical Conference, General Track (2006), pp. 301–314.

[7] Amari, S. A theory of adaptive pattern classifiers. IEEE Transactions on
Electronic Computers, 3 (1967), 299–307.

[8] Amari, S. Natural gradient works efficiently in learning. Neural compu-
tation 10, 2 (1998), 251–276.

136 BIBLIOGRAPHY

[9] Amari, S., Chen, T., and Cichoki, A. Stability analysis of adaptive
blind source separation, accettato da neural networks. Paris’ ICA and BSS
(1997).

[10] Amari, S., Chen, T. P., and Cichocki, A. Nonholonomic orthogonal
learning algorithms for blind source separation. Neural computation 12, 6
(2000), 1463–1484.

[11] Amari, S., Cichocki, A., and Yang, H. H. A new learning algorithm
for blind signal separation. Advances in neural information processing sys-
tems (1996), 757–763.

[12] Amari, S.-I. Natural gradient learning for over-and under-complete bases
in ica. Neural Computation 11, 8 (1999), 1875–1883.

[13] Araujo, A., and Giné, E. The central limit theorem for real and Banach
valued random variables, vol. 431. Wiley New York, 1980.

[14] Arcangeli, A., Squartini, S., and Piazza, F. An alternative nat-
ural gradient approach for ica based learning algorithms in blind source
separation. In 12th European Signal Processing Conference (2004), IEEE,
pp. 593–596.

[15] Axelsson, O. Iterative solution methods. Cambridge university press,
1996.

[16] Back, A. D., and Weigend, A. S. A first application of independent
component analysis to extracting structure from stock returns. Interna-
tional journal of neural systems 8, 04 (1997), 473–484.

[17] Balanda, K. P., and MacGillivray, H. Kurtosis: a critical review.
The American Statistician 42, 2 (1988), 111–119.

[18] Bartlett, M. S. Face image analysis by unsupervised learning, vol. 612.
Springer Science & Business Media, 2012.

[19] Beck, A., and Teboulle, M. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM journal on imaging sciences
2, 1 (2009), 183–202.

BIBLIOGRAPHY 137

[20] Bell, A. J., and Sejnowski, T. J. An information-maximization ap-
proach to blind separation and blind deconvolution. Neural computation
7, 6 (1995), 1129–1159.

[21] Bertsekas, D. P. Nonlinear programming. Athena scientific Belmont,
1999.

[22] Bertsekas, D. P., and Tsitsiklis, J. N. Parallel and distributed com-
putation: numerical methods, vol. 23. Prentice hall Englewood Cliffs, NJ,
1989.

[23] Bianchi, P., and Jakubowicz, J. Convergence of a multi-agent pro-
jected stochastic gradient algorithm for non-convex optimization. IEEE
Transactions on Automatic Control 58, 2 (2013), 391–405.

[24] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. Dis-
tributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends R© in Machine Learning 3,
1 (2011), 1–122.

[25] Boyd, S., and Vandenberghe, L. Convex optimization. Cambridge
university press, 2004.

[26] Brillouin, L. The negentropy principle of information. Journal of Applied
Physics 24, 9 (1953), 1152–1163.

[27] Bruckstein, A. M., Donoho, D. L., and Elad, M. From sparse
solutions of systems of equations to sparse modeling of signals and images.
SIAM review 51, 1 (2009), 34–81.

[28] Candès, E. J., Li, X., Ma, Y., and Wright, J. Robust principal
component analysis? Journal of the ACM (JACM) 58, 3 (2011), 11.

[29] Cardoso, J.-F. Infomax and maximum likelihood for blind source sepa-
ration. IEEE Signal Processing Letters (1997).

[30] Cardoso, J.-F., and Laheld, B. H. Equivariant adaptive source sepa-
ration. IEEE Transactions on signal processing 44, 12 (1996), 3017–3030.

138 BIBLIOGRAPHY

[31] Chandrasekaran, V., Parrilo, P. A., and Willsky, A. S. La-
tent variable graphical model selection via convex optimization. In 48th
Annual Allerton Conference on Communication, Control, and Computing
(Allerton) (2010), IEEE, pp. 1610–1613.

[32] Chen, C., He, B., Ye, Y., and Yuan, X. The direct extension of admm
for multi-block convex minimization problems is not necessarily convergent.
Mathematical Programming 155, 1-2 (2016), 57–79.

[33] Chen, S., and Donoho, D. Basis pursuit. In Conference Record of the
Twenty-Eighth Asilomar Conference on Signals, Systems and Computers
(1994), vol. 1, IEEE, pp. 41–44.

[34] Christopher, M. B. Pattern recognition and machine learning. Company
New York 16, 4 (2006), 049901.

[35] Cichocki, A., and Amari, S.-i. Adaptive blind signal and image pro-
cessing: learning algorithms and applications, vol. 1. John Wiley & Sons,
2002.

[36] Cichocki, A., Unbehauen, R., Moszczynski, L., and Rummert, E.

A new on-line adaptive learning algorithm for blind separation of source
signals. In Proc. ISANN (1994), vol. 94, pp. 406–411.

[37] Comon, P. Independent component analysis, a new concept? Signal
processing 36, 3 (1994), 287–314.

[38] Comon, P., and Jutten, C. Handbook of Blind Source Separation:
Independent component analysis and applications. Academic press, 2010.

[39] Comon, P., Jutten, C., and Herault, J. Blind separation of sources,
part ii: Problems statement. Signal processing 24, 1 (1991), 11–20.

[40] Cover, T. M., and Thomas, J. A. Elements of information theory.
John Wiley & Sons, 2012.

[41] DeCarlo, L. T. On the meaning and use of kurtosis. Psychological
methods 2, 3 (1997), 292.

BIBLIOGRAPHY 139

[42] Deng, W., Lai, M. J., Peng, Z., and Yin, W. Parallel multi-block
ADMM with O(1/k) convergence. arXiv preprint arXiv:1312.3040 (2013).

[43] Deng, W., and Yin, W. On the global and linear convergence of the gen-
eralized alternating direction method of multipliers. Journal of Scientific
Computing (2012), 1–28.

[44] Dmochowski, J. P., Liu, Z., and Chou, P. A. Blind source separation
in a distributed microphone meeting environment for improved teleconfer-
encing. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2008), IEEE, pp. 89–92.

[45] Du, H., Qi, H., and Wang, X. A parallel independent component analy-
sis algorithm. In 12th International Conference on Parallel and Distributed
Systems (ICPADS) (2006), vol. 1, IEEE, pp. 151–160.

[46] Duchi, J. C., Agarwal, A., and Wainwright, M. J. Dual averaging
for distributed optimization: convergence analysis and network scaling.
IEEE Transactions on Automatic control 57, 3 (2012), 592–606.

[47] Eckstein, J., and Bertsekas, D. P. On the douglasâĂŤrachford split-
ting method and the proximal point algorithm for maximal monotone op-
erators. Mathematical Programming 55, 1-3 (1992), 293–318.

[48] Eckstein, J., and Yao, W. Augmented Lagrangian and alternating
direction methods for convex optimization: A tutorial and some illustrative
computational results. RUTCOR Research Reports 32 (2012).

[49] Everett III, H. Generalized lagrange multiplier method for solving prob-
lems of optimum allocation of resources. Operations research 11, 3 (1963),
399–417.

[50] Facchinei, F., and Pang, J.-S. Finite-dimensional variational inequal-
ities and complementarity problems. Springer Science & Business Media,
2007.

[51] Forero, P., Cano, A., Giannakis, G. B., et al. Distributed clus-
tering using wireless sensor networks. IEEE Journal of Selected Topics in
Signal Processing 5, 4 (2011), 707–724.

140 BIBLIOGRAPHY

[52] Freund, R. M. Penalty and barrier methods for constrained optimization.
Lecture Notes, Massachusetts Institute of Technology (2004).

[53] Fujieda, M., Murakami, T., and Ishida, Y. An approach to solving
a permutation problem of frequency domain independent component anal-
ysis for blind source separation of speech signals. International Journal of
Biological and Life Sciences 1 (2005), 4.

[54] Gabay, D. Chapter ix applications of the method of multipliers to varia-
tional inequalities. Studies in mathematics and its applications 15 (1983),
299–331.

[55] Gabay, D., and Mercier, B. A dual algorithm for the solution of non-
linear variational problems via finite element approximation. Computers
& Mathematics with Applications 2, 1 (1976), 17–40.

[56] Ghadimi, E., Teixeira, A., Shames, I., and Johansson, M. Opti-
mal parameter selection for the alternating direction method of multipliers
(admm): quadratic problems. IEEE Transactions on Automatic Control
60, 3 (2015), 644–658.

[57] Girolami, M. A variational method for learning sparse and overcomplete
representations. Neural computation 13, 11 (2001), 2517–2532.

[58] Glowinski, R. Numerical methods for nonlinear variational methods,
1984.

[59] Godsil, C., and Royle, G. Algebraic graph theory. Graduate Texts in
Mathematics 207 (2001).

[60] Goldfarb, D., Ma, S., and Scheinberg, K. Fast alternating lineariza-
tion methods for minimizing the sum of two convex functions. Mathematical
Programming 141, 1-2 (2013), 349–382.

[61] Goldstein, A. A. Convex programming in hilbert space. Bulletin of the
American Mathematical Society 70, 5 (1964), 709–710.

BIBLIOGRAPHY 141

[62] Goldstein, T., O’Donoghue, B., Setzer, S., and Baraniuk, R.

Fast alternating direction optimization methods. SIAM Journal on Imaging
Sciences 7, 3 (2014), 1588–1623.

[63] Gowrishankar, S., Basavaraju, T. G., Manjaiah, D. H., and

Sarkar, S. K. Issues in wireless sensor networks. In Proceedings of
the World Congress on Engineering (2008), vol. 1, pp. 978–988.

[64] Grubbs, F. E. Procedures for detecting outlying observations in samples.
Technometrics 11, 1 (1969), 1–21.

[65] Han, D., Yuan, X., and Zhang, W. An augmented lagrangian based
parallel splitting method for separable convex minimization with applica-
tions to image processing. Mathematics of Computation 83, 289 (2014),
2263–2291.

[66] Harman, H. H. Modern factor analysis. University of Chicago Press,
1976.

[67] Haykin, S., and Network, N. A comprehensive foundation. Neural
Networks 2, 2004 (2004).

[68] Haykin, S., and Widrow, B. Least-mean-square adaptive filters, vol. 31.
John Wiley & Sons, 2003.

[69] Haykin, S. S. Unsupervised adaptive filtering: Blind source separation,
vol. 1. Wiley-Interscience, 2000.

[70] Haykin, S. S. Adaptive filter theory. Pearson Education India, 2008.

[71] He, B., Hou, L., and Yuan, X. On full jacobian decomposition of the
augmented lagrangian method for separable convex programming. SIAM
Journal on Optimization 25, 4 (2015), 2274–2312.

[72] He, B., Tao, M., and Yuan, X. Alternating direction method with gaus-
sian back substitution for separable convex programming. SIAM Journal
on Optimization 22, 2 (2012), 313–340.

142 BIBLIOGRAPHY

[73] He, B., and Yuan, X. On the o(1/n) convergence rate of the douglas-
rachford alternating direction method. SIAM Journal on Numerical Anal-
ysis 50, 2 (2012), 700–709.

[74] He, B., and Yuan, X. On the direct extension of admm for multi-
block separable convex program-ming and beyond: from variational in-
equality perspective. Manuscript, http://âĂŃ www.âĂŃ optimizationon-
liâĂŃ ne.âĂŃ org/âĂŃ DB_âĂŃ HTML 3 (2014), 4293.

[75] He, B.-S. Parallel splitting augmented lagrangian methods for monotone
structured variational inequalities. Computational Optimization and Ap-
plications 42, 2 (2009), 195–212.

[76] Hestenes, M. R. Multiplier and gradient methods. Journal of optimiza-
tion theory and applications 4, 5 (1969), 303–320.

[77] Heusdens, R., Zhang, G., Hendriks, R. C., Zeng, Y., and Kleijn,

W. B. Distributed mvdr beamforming for (wireless) microphone networks
using message passing. In International Workshop on Acoustic Signal En-
hancement; Proceedings of IWAENC (2012), VDE, pp. 1–4.

[78] Hild II, K. E., Erdogmus, D., and Principe, J. C. On-line minimum
mutual information method for time-varying blind source separation. In
Proceedings of the 3 rd International Symposium on Independent Compo-
nent Analysis and Signal Separation, ICA 2001 (2001), pp. 126–131.

[79] Hioka, Y., and Kleijn, W. B. Distributed blind source separation
with an application to audio signals. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2011), IEEE, pp. 233–
236.

[80] Hiriart-Urruty, J.-B., and Martınez-Legaz, J.-E. New formulas
for the legendre–fenchel transform. Journal of mathematical analysis and
applications 288, 2 (2003), 544–555.

[81] Hotelling, H. Analysis of a complex of statistical variables into principal
components. Journal of educational psychology 24, 6 (1933), 417.

BIBLIOGRAPHY 143

[82] Huber, P. J. Projection pursuit. The annals of Statistics (1985), 435–475.

[83] Hyvarinen, A. New approximations of differential entropy for indepen-
dent component analysis and projection pursuit. Advances in neural infor-
mation processing systems 10, 2 (1998), 273–279.

[84] Hyvärinen, A. Fast and robust fixed-point algorithms for independent
component analysis. IEEE Transactions on Neural Networks 10, 3 (1999),
626–634.

[85] Hyvärinen, A., Karhunen, J., and Oja, E. Independent component
analysis, vol. 46. John Wiley & Sons, 2004.

[86] Hyvärinen, A., and Oja, E. Independent component analysis: algo-
rithms and applications. Neural networks 13, 4 (2000), 411–430.

[87] Hyviirinen, A., Karhunen, J., and Oja, E. Independent component
analysis. Wileyand Sons (2001).

[88] Ikram, M. Z., and Morgan, D. R. A beamforming approach to per-
mutation alignment for multichannel frequency-domain blind speech sepa-
ration. In International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP) (2002), vol. 1, IEEE, pp. I–881.

[89] Ikram, M. Z., and Morgan, D. R. Permutation inconsistency in blind
speech separation: investigation and solutions. IEEE Transactions on
Speech and Audio Processing 13, 1 (2005), 1–13.

[90] Iutzeler, F., Bianchi, P., Ciblat, P., and Hachem, W. Asyn-
chronous distributed optimization using a randomized alternating direc-
tion method of multipliers. In 52nd Annual Conference on Decision and
Control (CDC) (2013), IEEE, pp. 3671–3676.

[91] Jiang, Z., and Yuan, X. New parallel descent-like method for solv-
ing a class of variational inequalities. Journal of optimization theory and
applications 145, 2 (2010), 311–323.

144 BIBLIOGRAPHY

[92] Johnson, J. K., Bickson, D., and Dolev, D. Fixing convergence of
gaussian belief propagation. In IEEE International Symposium on Infor-
mation Theory (ISIT) (2009), IEEE, pp. 1674–1678.

[93] Jolliffe, I. Principal component analysis. Wiley Online Library, 2002.

[94] Jutten, C., and Herault, J. Blind separation of sources, part i: An
adaptive algorithm based on neuromimetic architecture. Signal processing
24, 1 (1991), 1–10.

[95] Kadkhodaie, M., Christakopoulou, K., Sanjabi, M., and Baner-

jee, A. Accelerated alternating direction method of multipliers. In Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2015), ACM, pp. 497–506.

[96] Karush, W. Minima of functions of several variables with inequalities as
side constraints. PhD thesis, MasterâĂŹs thesis, Dept. of Mathematics,
Univ. of Chicago, 1939.

[97] Kjeldsen, T. H. A contextualized historical analysis of the kuhn–tucker
theorem in nonlinear programming: The impact of world war ii. Historia
mathematica 27, 4 (2000), 331–361.

[98] Kleijn, W. Distributed blind source separation, Oct. 23 2012. US Patent
8,295,762.

[99] Klemm, M., Haueisen, J., and Ivanova, G. Independent component
analysis: comparison of algorithms for the investigation of surface electrical
brain activity. Medical & biological engineering & computing 47, 4 (2009),
413–423.

[100] Knott, M., and Bartholomew, D. J. Latent variable models and
factor analysis. No. 7. Edward Arnold, 1999.

[101] Koehler, T.-W. L. B.-U. Blind source separation of nonlinear mixing
models. Neural Networks for Signal Processing VII (1997), 406.

BIBLIOGRAPHY 145

[102] Koldovskỳ, Z., and Tichavskỳ, P. Comparison of independent com-
ponent and independent subspace analysis algorithms. In Signal Processing
Conference, 2009 17th European (2009), IEEE, pp. 1447–1451.

[103] Koller, D., and Friedman, N. Probabilistic graphical models: princi-
ples and techniques. MIT press, 2009.

[104] Kuhn, H., and Tucker, A. Proceedings of 2nd berkeley symposium,
1951.

[105] Lappalainen, H., and Honkela, A. Bayesian non-linear independent
component analysis by multi-layer perceptrons. In Advances in independent
component analysis. Springer, 2000, pp. 93–121.

[106] LeBlanc, J. P., and De Leon, P. L. Speech separation by kurtosis
maximization. In Acoustics, Speech and Signal Processing, 1998. Proceed-
ings of the 1998 IEEE International Conference on (1998), vol. 2, IEEE,
pp. 1029–1032.

[107] Lee, S. Blind source separation and independent component analysis: A
review. Neural Information Processing- Letters and Reviews 6, 1 (2005).

[108] Lee, T. Independent component analysis: theory and applications. Kluwer
Academic Publishers, 1997.

[109] Lee, T., Lewicki, M. S., Girolami, M., and Sejnowski, T. J. Blind
source separation of more sources than mixtures using overcomplete repre-
sentations. IEEE Signal Processing Letters 6, 4 (1999), 87–90.

[110] Lee, T.-W., Girolami, M., and Sejnowski, T. J. Independent compo-
nent analysis using an extended infomax algorithm for mixed subgaussian
and supergaussian sources. Neural computation 11, 2 (1999), 417–441.

[111] Lesser, V., Ortiz Jr, C. L., and Tambe, M. Distributed sensor net-
works: A multiagent perspective, vol. 9. Springer Science & Business Media,
2012.

146 BIBLIOGRAPHY

[112] Levitin, E. S., and Polyak, B. T. Constrained minimization methods.
USSR Computational mathematics and mathematical physics 6, 5 (1966),
1–50.

[113] Lewicki, M., and Sejnowski, T. Learning overcomplete representa-
tions. Neural computation 12, 2 (2000), 337–365.

[114] Li, H., and Adali, T. A class of complex ica algorithms based on the kur-
tosis cost function. Neural Networks, IEEE Transactions on 19, 3 (2008),
408–420.

[115] Lin, T., Ma, S., and Zhang, S. On the sublinear convergence rate of
multi-block admm. Journal of the Operations Research Society of China 3,
3 (2015), 251–274.

[116] Lions, P.-L., and Mercier, B. Splitting algorithms for the sum of two
nonlinear operators. SIAM Journal on Numerical Analysis 16, 6 (1979),
964–979.

[117] Liu, C., and Wechsler, H. Independent component analysis of gabor
features for face recognition. IEEE Transactions on Neural Networks 14,
4 (2003), 919–928.

[118] Liu, W., and Mandic, D. P. A normalised kurtosis-based algorithm for
blind source extraction from noisy measurements. Signal Processing 86, 7
(2006), 1580–1585.

[119] Lu, C.-J., Lee, T.-S., and Chiu, C.-C. Financial time series forecast-
ing using independent component analysis and support vector regression.
Decision Support Systems 47, 2 (2009), 115–125.

[120] Luenberger, D. G. Introduction to linear and nonlinear programming,
vol. 28. Addison-Wesley Reading, MA, 1973.

[121] Maddala, G. S., and Lahiri, K. Introduction to econometrics, vol. 2.
Macmillan New York, 1992.

BIBLIOGRAPHY 147

[122] Makeig, S., Bell, A. J., Jung, T.-P., Sejnowski, T. J., et al. In-
dependent component analysis of electroencephalographic data. Advances
in neural information processing systems (1996), 145–151.

[123] Margaris, A. I., and Diamantaras, K. I. A parallel implementation
of the natural gradient BSS method using MPI. In 2nd Int. Conference on
Experiments/Process/System Modeling/Simulation & Optimization (2007).

[124] Mateos, G., Bazerque, J. A., and Giannakis, G. B. Distributed
sparse linear regression. IEEE Transactions on Signal Processing 58, 10
(2010), 5262–5276.

[125] McDonald, R., Hall, K., and Mann, G. Distributed training strate-
gies for the structured perceptron. In Human Language Technologies: The
Annual Conference of the North American Chapter of the Association for
Computational Linguistics (2010), Association for Computational Linguis-
tics, pp. 456–464.

[126] Merris, R. Laplacian matrices of graphs: a survey. Linear algebra and
its applications 197 (1994), 143–176.

[127] Miele, A., Moseley, P., Levy, A., and Coggins, G. On the method
of multipliers for mathematical programming problems. Journal of Opti-
mization Theory and Applications 10, 1 (1972), 1–33.

[128] Mitianoudis, N., and Davies, M. E. Audio source separation of con-
volutive mixtures. IEEE Transactions on Speech and Audio Processing 11,
5 (2003), 489–497.

[129] Moallemi, C. C., and Roy, B. V. Distributed optimization in adaptive
networks. In Advances in Neural Information Processing Systems (2003).

[130] Moreau, E., and Maachi, O. High-order contrasts for self-adaptive
source separation. International Journal of Adaptive Control and Signal
Processing 10, 1 (1996), 19–46.

[131] Mota, J. F., Xavier, J. M., Aguiar, P. M., and Puschel, M. D-
admm: A communication-efficient distributed algorithm for separable op-

148 BIBLIOGRAPHY

timization. IEEE Transactions on Signal Processing 61, 10 (2013), 2718–
2723.

[132] Murphy, K. P., Weiss, Y., and Jordan, M. I. Loopy belief propa-
gation for approximate inference: An empirical study. In Proceedings of
the Fifteenth conference on Uncertainty in artificial intelligence (1999),
Morgan Kaufmann Publishers Inc., pp. 467–475.

[133] Murray, R. O. S., and Murray, R. M. Consensus protocols for net-
works of dynamic agents. In Proceedings of the American Controls Con-
ference (2003).

[134] Mutihac, R., and Mutihac, R. C. A comparative study of indepen-
dent component analysis algorithms for electroencephalography. Romanian
reports in physics 59, 3 (2007), 827–853.

[135] Nadal, J.-P., and Parga, N. Nonlinear neurons in the low-noise limit:
a factorial code maximizes information transfer. Network: Computation in
neural systems 5, 4 (1994), 565–581.

[136] Nedić, A., and Ozdaglar, A. Distributed subgradient methods for
multi-agent optimization. IEEE Transactions on Automatic Control 54, 1
(2009), 48–61.

[137] Nedic, A., and Ozdaglar, A. Cooperative distributed multi-agent opti-
mization. Convex Optimization in Signal Processing and Communications
340 (2010).

[138] Nesterov, Y. A method of solving a convex programming problem with
convergence rate o(1/k2). In Soviet Mathematics Doklady (1983), vol. 27,
pp. 372–376.

[139] Novey, M., and Adali, T. Complex ica by negentropy maximization.
IEEE Transactions on Neural Networks 19, 4 (2008), 596–609.

[140] Nuzillard, D., and Bijaoui, A. Blind source separation and analysis
of multispectral astronomical images. Astronomy and Astrophysics Sup-
plement Series 147, 1 (2000), 129–138.

BIBLIOGRAPHY 149

[141] Ouyang, Y., Chen, Y., Lan, G., and Pasiliao Jr, E. An accelerated
linearized alternating direction method of multipliers. SIAM Journal on
Imaging Sciences 8, 1 (2015), 644–681.

[142] Pahm, D., Garrat, P., and Jutten, C. Separation of a mixture of
independent sources through a ml approach. In Proc. European Signal
Processing Conf (1992), p. 771.

[143] Papadias, C. B. Globally convergent blind source separation based on
a multiuser kurtosis maximization criterion. IEEE Transactions on Signal
Processing 48, 12 (2000), 3508–3519.

[144] Papoulis, A., and Pillai, S. U. Probability, random variables, and
stochastic processes. Tata McGraw-Hill Education, 2002.

[145] Parikh, N., and Boyd, S. Block splitting for distributed optimization.
Mathematical Programming Computation 6, 1 (2014), 77–102.

[146] Pearson, K. Liii. on lines and planes of closest fit to systems of points
in space. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 2, 11 (1901), 559–572.

[147] Pedersen, M. S., Larsen, J., Kjems, U., and Parra, L. C. A
survey of convolutive blind source separation methods. Multichannel Speech
Processing Handbook (2007), 1065–1084.

[148] Peng, Y., Ganesh, A., Wright, J., Xu, W., and Ma, Y. Rasl:
Robust alignment by sparse and low-rank decomposition for linearly cor-
related images. IEEE Transactions on Pattern Analysis and Machine In-
telligence 34, 11 (2012), 2233–2246.

[149] Perlmutter, B., and Parra, L. C. Maximum likelihood blind source
separation: A context-sensitive generalization of ica. In Neural Information
Processing Systems (1997), vol. 9, pp. 613–619.

[150] Pham, D.-T. Fast algorithms for mutual information based indepen-
dent component analysis. Signal Processing, IEEE Transactions on 52,
10 (2004), 2690–2700.

150 BIBLIOGRAPHY

[151] Pham, D. T., and Garat, P. Blind separation of mixture of independent
sources through a maximum likelihood approach. In In Proc. EUSIPCO
(1997), Citeseer.

[152] Powell, M. J. A method for non-linear constraints in minimization prob-
lems. UKAEA, 1967.

[153] Qin, Z., Goldfarb, D., and Ma, S. An alternating direction method
for total variation denoising. Optimization Methods and Software 30, 3
(2015), 594–615.

[154] Rabbat, M., and Nowak, R. Distributed optimization in sensor net-
works. In Proceedings of the 3rd International Symposium on Information
Processing in Sensor Networks (2004), ACM, pp. 20–27.

[155] Ram, S. S., Nedić, A., and Veeravalli, V. V. Distributed stochas-
tic subgradient projection algorithms for convex optimization. Journal of
optimization theory and applications 147, 3 (2010), 516–545.

[156] Rice, J. Mathematical statistics and data analysis. Nelson Education,
2006.

[157] Robledo-Arnuncio, E., and Juang, B. H. Blind source separation
of acoustic mixtures with distributed microphones. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (2007),
vol. 3, IEEE, pp. III 949 – III 952.

[158] Rockafellar, R. Conjugates and legendre transforms of convex func-
tions. Canad. J. Math 19 (1967), 200–205.

[159] Rojas, F., Rojas, I., Clemente, R., and Puntonet, C. Nonlinear
blind source separation using genetic algorithms. In Proceedings of Inter-
national Conference on Independent Component Analysis (2001).

[160] Rudin, L. I., Osher, S., and Fatemi, E. Nonlinear total variation based
noise removal algorithms. Physica D: Nonlinear Phenomena 60, 1 (1992),
259–268.

BIBLIOGRAPHY 151

[161] Rudin, W. Principles of mathematical analysis (international series in
pure & applied mathematics).

[162] Rumelhart, D. E., McClelland, J. L., Group, P. R., et al. Par-
allel distributed processing, vol. 1. IEEE, 1988.

[163] Ruppert, D. What is kurtosis? an influence function approach. The
American Statistician 41, 1 (1987), 1–5.

[164] Saad, Y. Iterative methods for sparse linear systems pws. New York
(1996).

[165] Sawada, H., Mukai, R., Araki, S., and Makino, S. A robust and
precise method for solving the permutation problem of frequency-domain
blind source separation. IEEE Transactions on Speech and Audio Process-
ing 12, 5 (2004), 530–538.

[166] Sayed, A. Adaptive filters. hoboken. NJ: John Wiley & Sons 10 (2008),
9780470374122.

[167] Sayed, A. H., Tu, S.-Y., Chen, J., Zhao, X., and Towfic, Z. J.

Diffusion strategies for adaptation and learning over networks: an exam-
ination of distributed strategies and network behavior. IEEE Signal Pro-
cessing Magazine 30, 3 (2013), 155–171.

[168] Schizas, I. D., Ribeiro, A., and Giannakis, G. B. Consensus in ad
hoc wsns with noisy linksâĂŤpart i: Distributed estimation of deterministic
signals. IEEE Transactions on Signal Processing 56, 1 (2008), 350–364.

[169] Shental, O., Siegel, P. H., Wolf, J. K., Bickson, D., and Dolev,

D. Gaussian belief propagation solver for systems of linear equations.
In IEEE International Symposium on Information Theory (ISIT) (2008),
IEEE, pp. 1863–1867.

[170] Shor, N. Z. Minimization methods for non-differentiable functions, vol. 3.
Springer Science & Business Media, 2012.

[171] Smaragdis, P. J. Information theoretic approaches to source separation.
PhD thesis, Massachusetts Institute of Technology, 1997.

152 BIBLIOGRAPHY

[172] Smith, A. E., and Coit, D. W. Penalty functions. Handbook on Evolu-
tionary Computation, pages C 5 (1997), 1–6.

[173] Sorouchyari, E. Blind separation of sources, part iii: Stability analysis.
Signal processing 24, 1 (1991), 21–29.

[174] Squartini, S., Piazza, F., and Shawker, A. New riemannian metrics
for improvement of convergence speed in ica based learning algorithms. In
Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium
on (2005), IEEE, pp. 3603–3606.

[175] Sternberg, R. J. Metaphors of mind: Conceptions of the nature of
intelligence. Cambridge University Press, 1990.

[176] Tao, M., and Yuan, X. Recovering low-rank and sparse components
of matrices from incomplete and noisy observations. SIAM Journal on
Optimization 21, 1 (2011), 57–81.

[177] Thompson, B. Exploratory and confirmatory factor analysis: Under-
standing concepts and applications. American Psychological Association,
2004.

[178] Toyama, K., and Plumbley, M. D. Using phase linearity in frequency-
domain ica to tackle the permutation problem. In International Conference
on Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. (2009),
IEEE, pp. 3165–3168.

[179] Uzawa, H. Market mechanisms and mathematical programming. Econo-
metrica: Journal of the Econometric Society (1960), 872–881.

[180] Uzawa, H. Walras’ tatonnement in the theory of exchange. The Review
of Economic Studies 27, 3 (1960), 182–194.

[181] Vapnyarskii, I. Lagrange multipliers. Hazewinkel, Michiel, Encyclopedia
of Mathematics, Springer, ISBN (2001), 978–1.

[182] Vieira, M. A. M., Coelho Jr, C. N., da Silva, D., and da Mata,

J. M. Survey on wireless sensor network devices. In Conference on Emerg-

BIBLIOGRAPHY 153

ing Technologies and Factory Automation (ETFA) (2003), vol. 1, IEEE,
pp. 537–544.

[183] Vigário, R., Särelä, J., Jousmiki, V., Hämäläinen, M., and Oja,

E. Independent component approach to the analysis of eeg and meg record-
ings. IEEE Transactions on Biomedical Engineering 47, 5 (2000), 589–593.

[184] Vincent, E., Févotte, C., Gribonval, R., Benaroya, L., Rodet,

X., Röbel, A., Le Carpentier, E., and Bimbot, F. A tentative
typology of audio source separation tasks. In 4th Int. Symp. on Independent
Component Analysis and Blind Signal Separation (ICA) (2003), pp. 715–
720.

[185] Wainwright, M. J., and Jordan, M. I. Graphical models, exponential
families, and variational inference. Foundations and Trends R© in Machine
Learning 1, 1-2 (2008), 1–305.

[186] Wang, Q., Hempstead, M., and Yang, W. A realistic power con-
sumption model for wireless sensor network devices. In 3rd Annual IEEE
Communications Society on Sensor and Ad Hoc Communications and Net-
works (SECON) (2006), vol. 1, IEEE, pp. 286–295.

[187] Wang, X., Hong, M., Ma, S., and Luo, Z.-Q. Solving multiple-
block separable convex minimization problems using two-block alternating
direction method of multipliers. arXiv preprint arXiv:1308.5294 (2013).

[188] Wei, E., and Ozdaglar, A. On the o(1/k) convergence of asynchronous
distributed alternating direction method of multipliers. In Global Con-
ference on Signal and Information Processing (GlobalSIP) (2013), IEEE,
pp. 551–554.

[189] Widrow, B. A statistical theory of adaptation. Adaptive Control Systems
(eds.: Caruthers, FP and Levenstein, H.). Pergamon Press, Oxford 196
(1963), 97–122.

[190] Wold, S., Esbensen, K., and Geladi, P. Principal component analy-
sis. Chemometrics and intelligent laboratory systems 2, 1 (1987), 37–52.

154 BIBLIOGRAPHY

[191] Xiao, L., and Boyd, S. Fast linear iterations for distributed averaging.
Systems & Control Letters 53, 1 (2004), 65–78.

[192] Xiao, L., Boyd, S., and Kim, S.-J. Distributed average consensus with
least-mean-square deviation. Journal of Parallel and Distributed Comput-
ing 67, 1 (2007), 33–46.

[193] Yalcin, I., and Amemiya, Y. Nonlinear factor analysis as a statistical
method. Statistical science (2001), 275–294.

[194] Yang, H. H., and Amari, S.-i. Adaptive online learning algorithms for
blind separation: maximum entropy and minimum mutual information.
Neural computation 9, 7 (1997), 1457–1482.

[195] Yang, H. H., Amari, S.-I., and Cichocki, A. Information theoretic
approach to blind separation of sources in non-linear mixture. Signal Pro-
cessing 64, 3 (1998), 291–300.

[196] Yick, J., Mukherjee, B., and Ghosal, D. Wireless sensor network
survey. Computer networks 52, 12 (2008), 2292–2330.

[197] Zakon, E. Mathematical analysis. The Trillia Group, 2004.

[198] Zarzoso, V., and Nandi, A. Blind source separation. In Blind Estima-
tion Using Higher-Order Statistics. Springer, 1999, pp. 167–252.

[199] Zarzoso, V., and Nandi, A. K. Adaptive blind source separation for
virtually any source probability density function. IEEE Transactions on
signal processing 48, 2 (2000), 477–488.

[200] Zhang, G., and Heusdens, R. Generalized linear coordinate-descent
message-passing for convex optimization. In International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2012), IEEE, pp. 2009–
2012.

[201] Zhang, G., and Heusdens, R. Linear coordinate-descent message pass-
ing for quadratic optimization. Neural computation 24, 12 (2012), 3340–
3370.

BIBLIOGRAPHY 155

[202] Zhang, G., and Heusdens, R. Bi-alternating direction method of mul-
tipliers over graphs. In International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (2015), IEEE.

[203] Zhang, G., Heusdens, R., and Kleijn, W. B. Large scale lp decoding
with low complexity. IEEE Communications Letters 17, 11 (2013), 2152–
2155.

[204] Zhang, G., Heusdens, R., and Kleijn, W. B. On the convergence
rate of the bi-alternating direction method of multipliers. In International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014),
IEEE, pp. 3869–3873.

[205] Zhang, L.-Q., Cichocki, A., and Amari, S. Natural gradient algo-
rithm for blind separation of overdetermined mixture with additive noise.
IEEE Signal Processing Letters 6, 11 (1999), 293–295.

[206] Zhang, R., and Kwok, J. Asynchronous distributed admm for consen-
sus optimization. In Proceedings of the 31st International Conference on
Machine Learning (ICML) (2014), pp. 1701–1709.

[207] Zhao, X., and Sayed, A. H. Performance limits for distributed estima-
tion over lms adaptive networks. IEEE Transactions on Signal Processing
60, 10 (2012), 5107–5124.

[208] Zhou, Z., Li, X., Wright, J., Candes, E., and Ma, Y. Stable princi-
pal component pursuit. In IEEE International Symposium on Information
Theory Proceedings (ISIT) (2010), IEEE, pp. 1518–1522.

[209] Zhu, H., Cano, A., and Giannakis, G. B. Distributed consensus-
based demodulation: algorithms and error analysis. IEEE Transactions on
Wireless Communications 9, 6 (2010), 2044–2054.

[210] Zhu, X.-L., Zhang, X.-D., Ding, Z.-Z., and Jia, Y. Adaptive nonlin-
ear pca algorithms for blind source separation without prewhitening. IEEE
Transactions on Circuits and Systems I: Regular Papers 53, 3 (2006), 745–
753.

