Program Verification with Separation Logic and
Rely Guarantee
Victoria University of Wellington

..........

i

Allan Martinez Tabilog

Thesis submitted in fulfillment of the requirements for the degree
of Master of Science in Computer Science
2017



Abstract

This thesis explores two kinds of program logics that have become important for
modern program verification - separation logic, for reasoning about programs that
use pointers to build mutable data structures, and rely guarantee reasoning, for
reasoning about shared variable concurrent programs. We look more closely into
the motivations for merging these two kinds of logics into a single formalism that
exploits the benefits of both approaches - local, modular, and explicit reasoning
about interference between threads in a shared memory concurrent program. We
discuss in detail two such formalisms - RGSep and Local Rely Guarantee (LRG),
in particular we analyse how each formalism models program state and treats the
distinction between global state (shared by all threads) and local state (private
to a given thread) and how each logic models actions performed by threads on
shared state, and look into the proof rules specifically for reasoning about atomic
blocks of code. We present full examples of proofs in each logic and discuss their
differences. This thesis also illustrates how a weakest precondition semantics
for separation logic can be used to carry out calculational proofs. We also note
how in essence these proofs are data abstraction proofs showing that a data
structure implements some abstract data type, and relate this idea to a classic
data abstraction technique by Hoare. Finally, as part of the thesis we also present
a survey of tools that are currently available for doing manual or semi-automated
proofs as well as program analyses with separation logic and rely guarantee.
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Chapter 1

Introduction

Deductive program verification is a branch of formal methods that aims to demon-
strate the correctness of computer programs mathematically, by axiomatising
reasoning about programs within a formal logic and then constructing formal
proofs. One of the first such axiomatisations, known as Hoare logic, was invented
by C.A.R Hoare in 1969 [15]. Hoare logic is a logic for proving that an imperative
program satisfies its specification. Over the past decades there has been great
progress in this area, including various extensions of Hoare logic for different
kinds of programming languages, as well as tool support for these formalisms.
Two major developments involve a formalism known as separation logic and a
formalism called rely-guarantee reasoning, which are the main focus of this thesis.

Separation logic is an extension of Hoare logic for reasoning about programs
that manipulate mutable data structures. It extends Hoare logic with assertions
that can talk about disjoint resources and supports “local reasoning”, i.e. where
proofs only mention those resources that are touched by a program (its memory
footprint), instead of having to specify the global state of the system. The logic
provides connectives such as the “separating conjunction” to precisely express the
disjointness of program states and hence facilitate reasoning about e.g. the ab-
sence of pointer aliasing. There have been many developments with this logic in
the recent years, including extensions to concurrent programs and object-oriented
programs, and various techniques and tools for automatic program analyses.

One weakness of separation logic, specifically when dealing with concurrent
programs, is that it relies on the use of invariants to describe constraints on shared
state. This leads to the heavy use of auxiliary variables, as shown for example,
in a published proof of a non-blocking stackF_-I using concurrent separation logic

IThe term “non-blocking” encompasses a range of guarantees that can be made regarding
the progress of concurrent programs: lock-free ensures that the delay of a thread does not



[32]. There is another well-known formalism in the program verification litera-
ture that can be used to naturally describe interference on shared state, i.e. “rely
guarantee reasoning”. Created by Cliff Jones in 1983 [21, 22], rely guarantee
is a method that explicitly takes into account the interference between a pro-
gram and its environment (other programs) that arise especially in the context
of shared-variable concurrent programming. In a rely-guarantee specification of
a concurrent program, the “rely” condition is a relation that summarises the in-
terference that a program can tolerate from its environment and the “guarantee”
condition is a relation that summarises the interference that a program can pro-
duce on its environment.

Given these formalisms it was naturally considered by researchers that a for-
malism merging the strengths of separation logic and rely guarantee would be of
great benefit to the verification of concurrent programs. A seminal work on this
topic is the formalism called RGSep which was constructed by Viktor Vafeiadis
and Matthew Parkinson in the paper “A Marriage of Rely Guarantee and Sep-
aration Logic” [43]. In the RGSep formalism, program state is split into two
parts — shared state and local state — which are disjoint, although it is possible
to turn one into the other. RGSep uses “actions” to describe atomic updates to
the shared state and encodes rely and guarantee conditions as sets of actions. In
his PhD thesis, Vafeiadis demonstrates the use of RGSep in the verification of
various concurrent data structures, including some which use non-blocking syn-
chronisation.

Another formalism which merges separation logic and rely guarantee is Feng’s
local rely guarantee [13]. Local rely guarantee lifts the separating conjunction
operator of sequential separation logic from being an operator on states to be-
come an operator on state transitions (i.e. actions), and lifts this further to rely
and guarantee conditions, which are just sets of actions. Feng’s formalism also
makes it possible to reason formally about “sub-transitions”, which are actions
operating over disjoint resources; it also weakens the requirement (from the orig-
inal rely guarantee formalisms) that all resources should be known globally and
allows hiding of resources from the environment.

Given all this context, in this research project we aim to compare RGSep and
LRG, understand their motivations for merging separation logic and rely guar-
antee, and compare their similarities and differences. We also aim to construct

cause delays in other threads, wait-free means that every thread completes execution in a
finite number of steps, and obstruction-free means that when executing in isolation, a thread
eventually finishes in a finite number of steps



example proofs within each formalism and also find a way to carry out proofs in
a more calculational way using weakest precondition semantics. As part of this
project we also want to do a survey of tools that are available for doing proofs or
program analyses with separation logic and rely guarantee.

The rest of the thesis is structured as follows: in chapter [2] we discuss the
basics of separation logic and rely guarantee, as well as weakest precondition
and strongest postcondition semantics and techniques for generating verification
conditions; in chapter |3| we discuss logics that combine rely guarantee and sepa-
ration logic; in chapter |4 we illustrate the use of weakest precondition semantics
in separation logic proofs and also propose a way of enriching specifications by
extending the assertion language with elements from Hoare’s data abstraction
technique. We conclude in chapter |5 and finally we include an appendix in which
we survey some useful tools for doing proofs or program analyses in separation
logic or rely guarantee.



Chapter 2

Background

In this chapter we discuss the key ideas and formalisms of separation logic, concur-
rent separation logic, and rely guarantee. We also discuss a weakest precondition
semantics for separation logic. The aim of this chapter is to provide enough detail
on these formalisms that we can use and build on in subsequent chapters.

2.1 Separation Logic

Separation logic is an extension of Hoare logic for reasoning about pointer pro-
grams, i.e., programs that access and mutate data structures via pointers. In this
section we present the basics of separation logic. We consider a simple imperative
programming language with commands that support pointers, whose syntax is
given in figure

This language is built up of the skip command, sequential composition, as-
signment, conditional, iteration, record creation, field lookup, field update, and
record deletion. A record p just a set of fields and their corresponding values;
formally, it has the syntax [f; : F1, ... f, : E,] where the f; are from a collection
of field names and the E) are expressions denotaing values, formally specified
below. Execution of the statement r:= new(p) creates a new instance of the
record p on the heap, pointed to by the variable r, and executing delete(r)
deletes the record pointed to by r. Lookup of the value of a field f; of r is done
by executing the command x := fi(r), which retrieves that value and stores it
in the variable z. Updating the value of a field fi of r is done by executing the
statement fy(r) := F where E is some expression.

Let us define a formal semantics for this language. First we need to define



Cu=skip|x := E|C;C | if b then C else C | while b doc |
r :=new (fi:Fy,...fn:Ey) | x := £fi(r) | fx(r) :==E | delete (r)

Figure 2.1: Syntax of a simple imperative language

our semantic domains: values, stores, and heaps:

Val = Int U Loc U Atom (2.1.1)
Store = Var =y, Val (2.1.2)
Heap = Loc — i, Val (2.1.3)

The set Val of values is the union of three other sets: Int for integers, Loc
for locations, and Atom for atoms. The last set contains constant symbols and
here the only atom of interest is nil, which represents the null pointer.

Stores and heaps are used to model program state. A store represents a
program stack and is modelled as a finite partial function from the set of variables
(identifiers) to values. A heap represents a program heap, i.e., the storage for
dynamically allocated objects, and is modelled as a finite partial function from
locations to values. In our programming model, the objects that reside in the
heap are the record structures that we have defined above.

The semantics discussed in section is a small-step operational semantics.
This captures the notion of a program as the execution of a sequence of atomic
steps. We choose this semantic style because later we shall be interested in
reasoning about concurrency, in which programs are modelled as interleaving of
atomic steps of multiple processes. The meaning of skip, sequential composition,
conditional, and iteration are standard. The pointer-accessing commands require
more explanation.

2.1.1 Small-step operational semantics of the program-
ming language

The semantics is defined as a relation — between configurations, of which there

are two kinds: non-terminal configurations C, s, h € Command x Store x Heap

and terminal configurations s,h € Store x Heap. This is defined in figure 2.2

The rules for the imperative commands are standard, see e.g. [45], and the rules
for the heap-accessing commands are adapted from [18]. Explanation follows:

e the skip command does nothing, thereby leaving the program state un-
changed

e the assignment statement x:=E updates the store such that the variable
x has the value [E]s of the expression £ in state s. (Note: we haven’t
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skip,s,h — s, h
xr:=FE,s,h — slx — [E]s]|,h

c1,8,h — ' W
C1; Cg, S, h — Cll;CQa 8,7 h’

[b]s

if b then ¢ else c¢o,5,h —> cq1,8,h

—[o]s
if b then ¢, else c¢o,8,h —> o, 8, h

while b do ¢,s,h —> if b then c¢; while b do ¢ else skip,s,h

l € Loc | ¢ dom(h)
[Ei]s =v1  [Exs=vs ... [En]s=uv,

r :=mnew (fi:Ey, fo:FEa ... fu:Ey),8,h — slr—=1],h[l — vy,v9,..

[E]s =1¢€ Loc [ € dom(h) h(l) =
x = fi(E),s,h — slx — m(r)],h

[E]s=1¢€ Loc 1€ dom(h) h(1)

= [E]s =7
fi(E) :=E' s,h — s,h]l — [ v']]

l € Loc 1&dom(h) [E]s =1
delete(F),s,h — s,(h —1)

U]

Figure 2.2: Small-step semantics of commands




specified the syntax and semantics for arithmetic and boolean expressions
yet, but this should be standard. For now it suffices to think of such
expressions as functions from stores to values, hence the expression [E]s
denotes a value).

the sequential composition c;; ¢y of two commands ¢; and ¢, executes by
first executing ¢, thereby updating the state and transforming ¢; into ¢/,
and then executing c}; ¢z in the updated state

there are two rules for the conditional command if b then ¢; else cy. If
the guard b holds in the state s then the command c¢; executes from the
original state; otherwise ¢y executes. (Note: we haven’t defined boolean
expressions and their semantics yet, but that should be standard. Also, we
assume that the expression of the guard does not mutate the initial state
of the conditional command).

the iteration command “unwinds” into the equivalent conditional command;
it executes until the guard b fails to hold.

The next definitions describe how heap-accessing commands modify the program

state:

Record creation: the command new (f; : Ey, fo : Es,..., [, : E,) creates
a new record object in the heap with its fields fi,..., f, intialised to the
values of the expressions Fji, ..., E,. Here the location [ of the new record

must not already be an allocated address (i.e. it should not already be in
the domain of the current heap). For now we assume that execution of
new will always succeed, i.e. it will always return a previously unallocated
address.

Field lookup: we define the projection operator m; for « = 1,2,...,n such
that m;r evaluates to the the value of the ¢th field of the record r. Then
the command x := f;(F) first evalutes the expression E; if that evaluates
to the address [ of a record r in the current heap, it then stores the value
of the 7th field of r in the variable x.

Field update: provided that the expression F evaluates to the address [ of
a record r in the current heap, updating the ith field of £ to the value of £’
results in a heap where [ maps to the updated record r with field ¢ having
new value v'.

Record deletion: provided that E evaluates to an address [ in the domain
of the current heap, executing delete (E) results in an updated heap where



P,Q,R == B|false| P=Q|Vx-P Classical logic
|emp | E— F | P % Q| P — Q Spatial assertions

Figure 2.3: Assertion language of separation logic

the location [ is removed. The updated heap is denoted by the expression
h — [, which is just like the heap h except that dom(h — 1) = dom(h) \ {{}

For the last three commands above, the program goes into an error state whenever
the expression E does not evaluate to an address of a record in the current heap.
In this case we also say that the configuration C| s, h is “stuck” when C' causes a
memory fault, i.e. references an expression that denotes a memory location that
is not in the domain of hA. Formally, the configuration C| s, h is said to be stuck
when there is no configuration K such that C',s,h — K. On the other hand we
say that C,s,h is safe when there is a configuration K such that C,s,h — K
where K is a terminal configuration, or when C| s, h is not stuck.

2.1.2 Assertion language of separation logic

Next we shall consider the assertion language of separation logic. This is sum-
marised in figure 2.3] There are two kinds of assertions: classical predicate logic
, which are already used in Hoare logic, including standard boolean expressions
B (variables P, Q,..., as well as =P, PV Q, PN Q, P — @); and “spatial
assertions” for talking about the program heap:

e emp — an assertion that is true of an empty heap

e F +— F — the “points-to” assertion, denoting a singleton heap, where the
expression F, evaluating to a location, points to the value denoted by ex-
pression F

e P x () — “separating conjunction”, asserting that the current heap can be
split into two disjoint parts which separately satisfy the assertions P and

Q

o P—x() — “separating implication”, asserting that if the current heap is ex-
tended with a heap that satisfies P then the resulting extension satisfies

0.

We give a formal semantics for this assertion language in terms of a satisfaction
relation s, h |= P, which says that the assertion P is true (or holds) in a given
store s and heap h. We are assuming here that the domain of the store s contains
all the free variables of the assertion P. Also, given two heaps h and h', h#h'




denotes that h and A’ are domain-disjoint, and h * h’ denotes the union of the
two domain-disjoint heaps.

s,h =B iff [B]s = true (2.1.4)
s,h = Ew— F iff dom(h) = {[F]s} and h([E]s) = [F]s (2.1.5)
s,h = false  iff never (2.1.6)
s,hi=EP=Q iffif s,h|=Pthens hl=Q (2.1.7)
s,h =V P iftVoeVal-slx—v,h =P (2.1.8)
s,h = emp iff h =[] i.e. the empty heap (2.1.9)
s,h = PxQ  iff 3hg, hy - ho#hy and hg x hy = h and s, hy = P and s,hy = Q

(2.1.10)
s,h|E P—=Q it VI'- if W#h and s,h = P then s,hxh' E Q (2.1.11)

2.1.3 Some properties of separation logic connectives

We present some properties of the connectives of separation logic that will be
useful in proofs. First we define a semantic consequence relation between formulae
of separation logic. The relation P = @ holds between formulae P and @ iff for
all s,h, if s;h = P then s,h = @Q. We are assuming here that dom(s) D
free(P) U free(Q). The following are some useful properties:

e Pxemp=empx P =P (emp as the unit of x)

Px(Qx*R)= (P Q) * R (associativity of ast)

P x@Q = Q@ * P (commutativity of x)
If PEPand @ FE Qthen PPxQ = Px*xQ
If R+ P = Q then R = P—Q

If RE=P—(Q and R = P then R+ R' = Q

2.1.4 Separation logic specifications and inference rules

The notion of a program specification in separation logic is similar to the Hoare
triple. If C'is a program that is constructed as per the syntax defined above, and
P and @ are separation logic assertions, then a separation logic triple has the
form {P} C {Q}. We formally define a semantics for triples as follows: we say
that {P} C' {Q} holds when, for all states s, h, if s, h = P then the configuration
C, s, h does not get stuck, i.e. abort or cause memory faults (as given in section

, and if C,s,h — (s, h’) for some terminal configuration ', 1/, it follows

9



that ', b/ = Q.

The inference rules are classified into “small axioms” and “structural rules”. The
small axioms are so-called because each axiom mentions only the area of heap
that is accessed by a command. One axiom is given for each command. Structural
rules are inference rules that do not involve program constructs, but deal with

triples as whole. The small axioms are:

{emp} r:=new(f; : Ey,..., fn: E) {r—=|[fi: E1,..., [1: E.}
{Ew=fii By fin By fo ER] AN[Ei]s = v}

x = fi(E)

{.QZIU/\E'—) [fliEl,...,fiiEi ann]}

{E|—> [fl:Ela"'7f7;:Ei7"'fn:En:|}

fz(E> = El

{Ei—) [fl:Ela---7fi:E/7"~fn:En]}

{E +— —} delete(E) {emp}

The structural rules are:
e [rame Rule
(P} C1G} where fv(R) Nmod(C) = &

{P*xR} C {Q* R}

e Rule of Consequence

Pr=pr {P}C{Q} Q=

{P}yo{Qy

(2.1.12)

(2.1.13)

(2.1.14)

(2.1.15)

The rule of consequence is taken from Hoare logic. The frame rule is unique to
separation logic and it formalises the idea of local reasoning. Intuitively the rule
says that if a command modifies a portion of state, it leaves any other disjoint
portion unmodified. The side condition of the rule requires that the command
does not modify any variable that the other disjoint portion talks about.

10



2.2 Concurrent separation logic

Separation logic has been extended to concurrent separation logic (CSL) by Peter
O’Hearn and Stephen Brookes [8, B0] to support reasoning about programs that
access shared resources. For this the simple imperative language given in figure
is extended with constructs for concurrent programming — see figure 2.5/ The
new constructs are:

e Resource declaration: The basic computational model used by CSL consists
of multiple processes sharing a set of resources (shared data structures). To
support this the programming language allows the declaration of resources
which have a name r and an associated set of protected variables. There
are a few well-formedness constraints for resource declarations (carried over
from Owicki-Gries [31]): a variable is said to belong to a resource r if it
is in the associated variable list in a resource declaration. The following
requirements must hold:

1. A variable belongs to at most one resource

2. If a variable x belongs to a resource r, it cannot appear in a parallel
process except when inside a critical region for r

3. If a variable x is modified in one process, it cannot appear in another
unless it belongs to a resource.

e Conditional critical region (CCR): Access by processes to shared resources
is controlled via the CCR, which has the form

with r when b do C endwith

Here, r is the name of a resource, b is a heap-independent boolean expression
and C' is a command. A process that executes a CCR tries to acquire the
resource r and then evaluates the boolean guard b. If b holds, it proceeds
to execute the command C. Otherwise, it releases the resource and tries
again. As noted in [30], a CCR is a unit of mutual exclusion; two with
commands for the same resource cannot be executed simultaneously. The
execution of a CCR for a resource r can only proceed if no other region for
r is currently executing and the boolean guard holds; othewise a process
must wait until the conditions for it to proceed are fulfilled.

e Parallel composition: The construct
Coll..- |l Ca

denotes interleaved execution of the commands C; through C,.

11



nat;
resource ry(variable list),. .., ry(variable list);

Ci|l ... | Ca

Figure 2.4: Format of a CSL program

Cu=skip|x := E|C;C | if b then C else C | while b do c |
r :=new (fi:FEy,...fn: E,) | x := fi(r) | fx(r) :==E | delete (r)
resource ry(variable list),. .., ry(variable list) |
with r when b do C |
Ci|l .. || Ca

Figure 2.5: Syntax of a simple imperative language with shared variable con-
currency

In CSL as presented in [30], every program must be written in a certain restricted
form shown in figure [2.4] Here, init stands for an intialisation sequence, whose
effect is to establish the invariants maintained by the shared resources. The
resource statement declares a set of shared resources with names r;, and asso-
ciated lists of protected variables. Finally, the main body of a CSL program is a
parallel composition C || ... || C, of n commands.

Next we introduce the proof rules for these programming constructs. To reason
about a program of the form given in figure [2.4] we must first specify a formula
called the resource invariant RI,, for each resource r;. These formula must satisty
the following constraints:

1. Any command x := ... that updates a variable  which is free in RI,, must
occur within a critical region for r;.

2. Every resource invariant must be a precise assertion. This is a technical
term in separation logic: an assertion P is said to be precise if for all stores
s and heaps h, there is at most one heap A’ that is a subheap of h such that
s, E P.

12




e The proof rule in CSL for a concurrent program is as follows:

{P} init {RL, «...«RI, =P} {P}YCy|...| C.{Q}
{P}
mnit;
resource ry(variable list),... ry(variable list) ;
Coll - [l Cn

{RI,, x...% RI, *Q}

The entire program has precondition P and the postcondition has two parts:
RI,. *...x RI, , which is the conjunction of all the resource invariants,
re-established on termination, and (), which is the overall postcondition
established by the program on termination. In order to prove that the CSL
program satisfies its specification, it suffices to prove two things:

1. The initialisation sequence separately establishes the conjunction of
the resource invariants of all resources as well as some condition P,
which can be thought of as an additional portion of state that is given
to the parallel processes for access outside of critical regions; and

2. The parallel composition satisfies its specification {P'} C; || ... |
C, {Q}. This is shown by applying the following rule for parallel
composition:

{Pi} G @i} AP} G {Qn})
{Prx...«P,}C | ... [| Cn {Q1%...xQn}

together with the rule of consequence, generating two proof obliga-
tions: P’ = Py *...x P, and Q1 x...* Q, = Q. The rule for parallel
composition has the side condition that no variable that is free in P,
or Q; is modified in C; when j # i.

e The proof rule for the conditional critical region is as follows:

{(P*RI,)A\b} C {Q* RI.}
{P} with r when b do C endwith {Q}

subject to the side condition that no other process modifies variables that
are free in P or Q).

The idea with this rule is that when inside a critical region, the process
executing the code C' can access the state associated with the resource
(RI,) as well as the state that is local to the process, while when outside
a critical region, command reasoning proceeds without knowledge of the
resource’s state.

13



Ownership transfer in CSL. Another key feature of CSL is the support for
reasoning about transfer of ownership of portions of program state between pro-
cesses. This is illustrated by the code in figure 2.6 Suppose that we have a one-
place buffer that is used by processes to store a pointer to an object. Using CSL
we can reason about the following code, which involves two concurrent processes,
one storing a pointer and the other retrieving a pointer from the buffer. This
code is effectively sequential because the getter blocks until the putter finishes
storing the pointer into the buffer, but this is a simple illustration of ownership
transfer. The left process executes put(buf f,c) to store the pointer ¢ into the

put (buff, c): get (buff, y):

with buff when not full do | with buff when full do
buff := c; full := true y:= buff; full := false

end with end with

Figure 2.6: Code for a putter and getter process in parallel execution

buffer buf f. The buffer has the following resource invariant:
Rlpups £ (—full Aemp) V (full Nbuf f — )

The boolean variable full is true when the buffer owns the pointer bu f f and false
when it is empty. In CSL it has been suggested to gove the points-to assertion
“F +— F” an “ownership reading”: “I own the location E” (and hence have
the ability to access it). So here we can think of the putter code as transferring
ownership of the pointer ¢ from the left process to the buffer. The right process, on
the other hand, acquires ownership of the pointer ¢ from the buffer by executing
get(buf f,y). A proof outline for each of the parallel branches of figure are
given in figures and 2.8 In figure 2.7, the process starts execution with
ownership of the pointer c. When it acquires the resource bu f f in the conditional
critical region, it assumes that the resource invaiant Rl s holds. The proof steps
from (a) to (b) are justified by the following steps:

Rlpufr N = full

= ((=full Nemp) V (full Ne— ) A= full

= ((=full A= full Nemp) V (= full A full Ac— )
= ((=full Nemp) V (False A ¢ — _)

— ((=full Nemp) V False

= —full Nemp

The justification for proof steps (c) to (d) is similar, and also uses the following
lemma:

(PNemp)*Q = (PAQ)xemp

14




fers )

with buff when not full do
{(RIyupr AN~ full) xc— _} (a)
{(=full Nemp) xc— _} (b)

buff := ¢;
{(=full Nemp) xbuff— _}
full := true;

{(full Nemp) xbuff— _} (c)
{(full Nbuff — _)xemp} (d)
{RIpsf * emp} (e)

end with

{emp}

Figure 2.7: Proof outline for put(buf f,c)

which holds as long as P is a heap-free assertion and () is any assertion. The
resource invariant is re-established from steps (d) to (e) because full A buff
= (full Nbuff — )V (= full Nemp) = Rl rr. When the process exits the
CCR, the assertion that holds of the final state is emp, i.e. the process does not
own any heap; thus it has relinquished ownership of the pointer ¢ to the buffer.
The proof outline for get(buff,y) is shown in figure . This proves that the
process executing get() gains ownership of the pointer from the buffer.

Comparison of the parallel composition rule with Owicki-Gries. The
presentation of this version of CSL is based on that of Owicki-Gries [31], specif-
ically the use of resources and resource invariants and the use of conditional
critical regions. In Owicki-Gries the rule for parallel composition is given as fol-
lows (with the notation slightly adjusted to be consistent with the one used here):

If: {P} Cy {Q1}...{P.} C, {Qn.} and no variable that is free in P; or Q; is
modified in Cj when j # 7, and all variables in I, belong to the resource 7, then:

{PANPyyA...\NP,\RI}
resource 1 : cobegin C || Cy || ... || C, coend

{Qi ANQa A ... ANQ, ARILY}

The differences are:

1. the Owicki-Gries rule uses ordinary logical conjunction whereas CSL uses
separating conjunction, therefore the former is unsound in the presence of
pointers and aliasing;
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{emp}

with buff when full do
{(RIyup¢ N full) * emp}
{(full Nbuf f — _) xemp}
y := buff;
{(full Ny — _) xemp}
full := false;
{(=full Ny — ) x emp}
{(=full Nemp) xy — _}
{Rlyups xy — -}

end with

{ly— -}

Figure 2.8: Proof outline for get(buf f,y)

2. the former requires all variables of RI, to belong to r, while in CSL the
requirement is that whenever a variable x is modified by a command and
x is free in some RI, then the command must occur only within a critical
region for r; and

3. the former explicitly includes the resource invariant in the pre- and post-
condition; in the CSL rule this is implicit because parallel composition is
always used in the context of a bigger program, which has an intialisation
sequence that ensures that the conjunction of all the resource invariants
holds outside critical sections. But the idea is the same — the resource
invariants are expected to hold at all times when outside a critical sec-
tion. In CSL this is ensured by the intialisation sequence and the rule for
CCR, which requires any process that accesses a resource to re-establish
the resource invariant after using the resource.

2.3 Rely guarantee reasoning

Rely guarantee is a method invented by Jones [21], 22] for reasoning about inter-
fering programs. In Hoare logic, the pre-condition P of a program restricts the
initial states that the program can execute in; it can be considered as an assump-
tion that a programmer can make about the environment of the program so that
it will run correctly. On the other hand the post-condition ) describes the effect
of the program on the state. It can be modelled either as a predicate on state or a
relation between the initial and final state, as done by Jones in his VDM formal-
ism. Hoare triples { P} C {Q} are sufficient to reason about sequential programs,
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which can be thought of as transforming some initial state to some final state;
however for concurrent programs one must also consider the interactions between
a program and other running processes (i.e. the environment) and the possible
interference on the shared state. For this, rely guarantee extends pre- and post-
conditions to include rely and guaratee conditions, which are relations between
the intial and final states of a step of an execution by the environment or the
program under consideration. A rely condition encodes the interference that the
program can tolerate from the environment, and a guarantee condition encodes
the interference that the program can produce on the shared state. To elaborate
on this, it would be useful to present the computational model in terms of a modi-
fied small-step semantics, where the environment steps and the steps taken by the
program or one of its components is made explicit. Such a semantics is given, for
example in [29] and [Moreira et al.]. We can define a small-step relation where

the transitions between configurations are labelled as follows: C, o BLINYo/ o',
where C' denotes a command, o denotes a state, and § = {e, ¢}, with —~5 denot-
ing a step by the environment, and — denotes a step by a program component.
We then allow environment steps to modify the state component of a configu-
ration but not the command component: C,o0 — C,¢’. Component steps are
allowed to modify both the command and state components of configurations.
The definition of component steps will be the same as in figure 2.2 except that
all transitions are labelled (—). With this formal semantics, we can define a

computation as a sequence of interleaved transitions taken by both the environ-

5 5 b
ment and the program components: Cy,01 — Cs,00 — ... — Ci, 04 ...

In this way we can formalise reasoning about interference and rely and guaran-
tee conditions (this would be particularly useful in proofs of soundness of the
inference rules presented below).

Rely guarantee specifications have the form { R, P} C' {Q, G} and the meaning
of this is that: if the program starts execution in a state satisfying pre-condition
P, every execution step of the environment affects the shared state according to
the rely condition R, and every execution step of the program affects the shared
state according to the guarantee condition (G, then if the program terminates the
final step satisfies the post-condition ). The inference rules for rely guarantee are
presented in figure , which is adapted from [Moreira et al.]ﬂ. The inference
rules are explained below. Firstly note that some of these rules require showing
the stability of pre- and post-conditions with respect to the rely condition. This
is because in the computation model as explained above, a program step can
be preceeded by zero or more environment steps and followed by zero or more

!There are various presentations of RG inference rules but we chose to use this one because
the rules are formulated in a goal-oriented way, which makes it amenable to mechanisation, as
will be explained later.
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Figure 2.9: Stability of Pre and Post with respect to a rely condition R

environment steps. Formally stability of an assertion P with respect to a relation
R is defined as follows [Moreira et al.l:

stable R P 2Vo,0' € - P(0) = (0,0') € R = P(d')

where Y denotes the set of all states. If o is a state that satisfies a precondition
P and if the environment takes a step that updates that state to the state o,
then the updated state still satisfies the precondition P, thereby allowing the
environment to “move” the satisfiability of the precondition to the state where
the actual execution of C' starts; and equally for a postcondition. Figure [2.9
illustrates this idea: here, 0 € Pre is updated by the environment interference R
to a state o’ that is also in Pre, where the execution of C' actually starts. The
execution terminates in state 7 € Post, which the environment transitions to 7/,
which is still in Post.

Explanation of the inference rules presented in figure 2.11} for the standard
imperative commands, the basic idea is to assume that the inference rules from
Hoare logic are still sound, and then add any necessary premisses in the rule to
ensure that the rules remain sound in the presence of interference. This means
checking that the pre- and post-conditions as well as any boolean guards are
stable with respect to the rely condition.

1. Rule for skip
The skip command does not involve any program steps hence no state
transitions. The proof obligations are to show the stability of P and @)
with respect to the rely condition and also to show that P implies ().

2. Rule for assignment
For this we need to show the stability of P and @, that P implies Q[e/x]
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as with standard Hoare logic, and also that the change in state due to the
assignment is included in the guarantee condition.

. Rule for sequential composition

We need to show that the commands C and C satisfy their own specifica-
tions. Each specification uses the same rely and guarantee condition, and
the postcondition of C becomes the precondition of C5, as per standard
Hoare logic.

. Rule for conditional

We need to show that each branch of the conditional satisfies its own spec-
ification, and that the boolean guard and the precondition of the whole
conditional are stable with respect to the rely condition.

. Rule for while
We need to show that the body of the loop satisfies its own specification
and the boolean guard is stable with respect to the rely condition.

. Rule for atomic

An atomic block ensures that the enclosed command C' executes without
interference from the environment. In this case we must then show that
the command is a valid sequential command in the absence of interference,
i.e., when the rely condition is just the identity relation ID on states.
Moreover, the atomic block can suffer environmental interference before or
after the execution of the block, hence we must show that the pre- and
post-condition are stable with respect to a rely condition R that is not
necessarily the identity relation. Figure illustrates this idea.

. Rule of consequence

This is just an extension of the rule of consequence of Hoare logic. In ad-
dition to strengthening the precondition and weakening the postcondition,
this rule also allows for strengthening the rely condition by replacing it with
R C R’ and weakening the guarantee condition by replacing it with G 2 G'.

. Rule for parallel composition

Firstly we need to show that each component program satsifies its own
specification. Then we show that the rely and guarantee conditions of the
component programs satisfy certain relationships: given a component Cj,
it must be able to tolerate interference from the environment as well as
from the actions of the other component C; (for i # j); hence we must
show that RUG; C R; for ¢ # j. In addition we must show that the
guarantee condition of the parallel composition is at least equal to the
union of the guarantee condition of each component (hence G; UGy C G.
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P o .—'—.
Pre Post

(a) Non-atomic execution of the command sequence Ci;...;C, interleaved
with environmental interference

(b) Atomic execution of Ci;...;C, — interference only happens
before or after the execution

Figure 2.10: Non-atomic vs. atomic execution

Finally, since the parallel composition starts execution in a common state
satisfying P we must show that this state is at least the intersection of
the preconditions of each component P, N P, and equally, the terminal
state of the composition at least contains the intersection of the component
postconditions i.e. Q1 N Q2 C Q.

Note re. scope of rely and guarantee conditions. In the papers by Jones
and susbequent studies of rely guarantee, the formalism assumes a programming
model in which there is one shared, global state. There is the question of whether
or not the specification of rely and guarantee conditions must cover the entire
global state. Most examples (of small to medium-sized programs) do specify the
entire state. More recent developments such as RGSep and LRG (discussed in
the next chapter) do claim that traditional rely guarantee conditions must specify
the entire state, and improve upon these by using separation logic concepts to
prove the ability to specify local states or parts of the shared state.

There is also the general, related question of what can be done to program vari-
ables that are not mentioned in assertions about program state. There are at
least two different approaches:

e Using explicit frames e.g. in refinement calculus, the specification construct
w : P — “modify any of the variables in the list w such that P holds.
This sets out explicitly what can be modified hence, = is modifiable iff
x € w. Separation logic takes the same approach, where assertions specify
the memory footprints of commands.

e In Hoare logic, if a variable is not mentioned it may be modified. For
example, the triple {x = 0} y := 1 {x = 0} is provable. Here y does
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stable R P stable R @) P=qQ
{R, P} skip {Q,G}

(SKIP)

stable R P
stable R Q  VseX-(s,s[E/x])e G P = Q[E/x]
{R,P} z:=FE{Q,G} (

ASSIGN)

(R.P}C1{Q.G) {RQ}C{Q.C)

(R, P} Cy:Cs {Q, G SEQ

stable R [B] {R,P N B} C, {Q,G}
stable R [-B] stable R P {R,P N—-B} C, {Q,G}

. _ (COND)
{R, P} if B then C; else Cy fi {Q,G}

stable R [B] stable R [-B] {R,B NP} C{P G} (
{R, P} while B do C done {—B A P,G}

WHILE)

stable R P
stable R @) {ID,P} C {Q,G}

{R, P} atomic(C) {Q, G}

(ATOMIC)

P=P RCR
Q=0 GCcG {R,P}C{Q, G}

{R. P} C{Q.G) R
RUG{CR
{Ry, P} Cy {Q1,G1} RUGIERz PCP NP
{R2, Po} Cy {Q2, G2} G UCz_C(l;’ QiNQCQ
1 2 C
(PAR)

{B, P} Cy || G2 {Q, G}

Figure 2.11: Inference rules for rely guarantee
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not occur freely in the pre- or post-condition but can be modified by a
command. To get around this, either mention y explicitly, or use “ownership
assertions” like in some versions of separation logic (e.g see [7]).

End of Note.

2.4 Weakest precondition calculus for separa-
tion logic

In his paper [11], Dijkstra presented the notion of predicate transformer semantics
of programs which views programs as functions that map state predicates to state
predicates. This is an equivalent re-formulation of Hoare logic: while Hoare logic
is a deductive system, predicate transformer semantics are complete strategies
for building valid deductions in Hoare logic and reduce the problem of proving
a Hoare triple to that of finding a first-order formula whose validity implies the
provability of the Hoare triple. Dijkstra first introduced the weakest precondition
(wp) as an example of a predicate transformer. Formally the relationship between
Hoare triples and wp is given by - {P} C {Q} <= (P = wp(C,Q)). The
wp equations for the standard imperative programming commands are given by
Dijkstra in [L1].

The weakest precondition calculus for (sequential) separation logic is given in
some of the early papers on separation logic. In [I8] the authors present the logic
of bunched implications (BI) as an assertion language for mutable data structures.
In their discussion of the completeness of the logic, the authors show that the
assertion language allows the weakest precondition to be expressed. They show
how the wp for each atomic statement can be expressed in the logic, together
with a proof that these assertions are indeed the weakest preconditions. The wp
equations for SL are also presented by John Reynolds in [34] where he includes
“backwards reasoning” formulations of the small axioms of separation logic. Here
we present a version of the weakest precondition calculus for the language we are
working with, which supports records in the heap.

As discussed in section we are working with a version of separation logic
in which the heap stores records of the form (f; : Ey,..., f, : E,) where the fj
are field names and FEj, expressions denoting values (which can be pointers to
records, hence allowing for the construction of complex linked data structures).
Here we present the weakest preconditions for heap-altering commands, where
P is an arbitrary postcondition. Note that these equations assume that records
have two fields (as that will suffice for most of the examples we will be treating)
but the extension to n > 2 fields should be straightforward.
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Record creation

wp(r :=new(f1 :eq, fa:e], P)=Yr"-r"— [fi:e1, fo: e Pl /r
(2.4.1)

Field lookup

wp(x = fi(r), P)=3a-Pla/x]ANTb-r— [fi:a, fr:] (2.4.2a)
3b- Plb/z) A Ja-r— [fi:a, fr:] (2.4.2b)

°
&
o
o
=

i
o
o
=+
o

wp(fi(r):=d, P)=3ab-r— [fi:a, fo:b]x((r—d,b)—P) (2.4.3a)
wp(fo(r) =0, P)=3ab-r— [f1:a, fr: 0] % ((r— a,b)—P) (2.4.3b)

Record deallocation

wp(delete(r), P) =P x3ab-r — [f1:a, fo: D] (2.4.4)

The benefit of wp calculus is that it can be used to do proofs in a “calcula-
tional style” by working backwards and deriving verification conditions from the
separation logic specifications. We shall demonstrate the use of this in chapter [4]
where we present some fully worked-out proofs.
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Chapter 3

Combining separation logic with
rely guarantee

In this chapter we consider various formalisms which combine separation logic
with rely guarantee. RGSep, developed by Viktor Vafeiadis and Matthew Parkin-
son ([39, 43]), and Local Rely Guarantee (LRG) by Xinyu Feng ([13]) both
combine the strengths of separation logic (local reasoning) and rely guarantee
(reasoning about interference). This combination has shown to be beneficial to
correctness proofs of fine-grained concurrent algorithms (e.g. see Vafeiadis PhD
thesis [39]). RGSep is interesting because it is the first logic that combines ideas
from SL and RG, and Vafeiadis has done substantial proofs of algorithms with
it, and LRG is interesting because it explores the SL+RG combination further,
as discussed in this chapter, although there has not been much work in terms of
practical proofs with LRG as compared to RGSep.

This chapter is organised as follows: first we discuss the motivations for com-
bining SL and RG in a single formalism; we then discuss the key ideas and features
of RGSep, and then we discuss LRG; we then present proofs of a simple counter
and a linked list stack in both formalisms, and then compare these proofs.

Note on notation In our introduction to rely guarantee in section we use
the notation {R, P} C' {Q,G} to denote a rely-guarantee specification. In this
chapter we shall switch to a different notation used by Vafeiadis, et. al. in their
papers: C sat (P, R,G,Q). This denotes that the program C' satisifies the rely-
guarantee specification expressed as a 4-tuple (precondition P, rely condition R,
guarantee condition G, postcondition ()). The semantics is exactly the same.
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3.1 Motivations for merging separation logic and
rely guarantee

The basic problem with reasoning about shared variable concurrency is reasoning
about inter-thread interference —i.e. showing that updates by different processes
to the shared state are totally disjoint, or can be controlled via some synchro-
nisation mechanism such that the resulting updates are not in conflict or leave
the shared data structure in some invalid state. Rely guarantee reasoning pro-
vides a nice way to reason about interference via rely and guarantee conditions,
which are relations that precisely describe state updates performed either by the
components of a program or by the environment. However, the main weakness
of rely guarantee is that the checking for interference is done globally — it must
be checked against every state update even when it is obvious that an update
cannot interfere with everything else (as noted by Vafeiadis in [43]). On the other
hand, separation logic enables modular reasoning — the separating conjunction
(*) operator plus the frame rule can be used to remove irrelevant state out of a
specification and focus only on the state that matters for the execution of a com-
ponent or thread. While CSL was invented as an extension of SL for concurrency
and is good for reasoning about “ownership transfer” of state between process,
its main weakness is that it uses invariants to specify thread interaction — this
makes the expression of the relational nature of interference difficult and often
requires auxiliary variables. So what is needed is a single formalism that will
exploit the benefits of both approaches — local, modular, explicit reasoning about
interference between threads in a shared variable concurrent program. This is the
main motivation for the formalisms that we will discuss in detail in this chapter.

3.2 Key ideas and features of RGSep

RGSep combines ideas from separation logic and rely guarantee in the following
ways:

e Enabling local reasoning by splitting the model of program state into local
and shared parts

e Use of separating conjunction (x) to allow splitting of local state into dis-
joint parts

e Use of local reasoning when describing thread interference on shared state
(this includes the application of the “ownership transfer” concept to de-
scribe updates to shared state (explained in section [2.2])
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e Use of the SL “magic wand” operator to reason about the stability of as-
sertions with respect to thread interference

We discuss each of these in turn.

3.2.1 RGSep model of program state

In RGSep, program state is split into two components, local and shared, where
each component can be thought of as a finite partial function from locations to
values. The domains of the two components are required to be disjoint, so that
the total state is simply the disjoint union of the two components. In RGSep the
assertion language makes a syntactic distinction between assertions on local state
and assertions on shared state: local state is described by “unboxed assertions”
P and shared state by “boxed assertions” . When the separating conjunction
(%) is used to join two local assertions P * () it denotes the splitting of the local
state into disjoint parts; however when it is used to conjoin to boxed assertions
as in * this reduces to the assertion , i.e., both P and @) are true
of the shared state. This does not mean though that the separating conjunction
cannot be used inside a boxed assertion i.e. — the shared state can also
be split into disjoint parts just like local state. For example, if a variable L points
to a linked list modelling a sequence « on the heap that is globally shared, the
assertion describing it is |3t - L — (hd «),t = list(t, tl «)| (Note: in his first
paper on RGSep (J43]) Vafeiadis constructs a model of state where there can be
multiple local states (owned by different threads) but only one region of shared
memory that is shared by all threads and the paper says, somewhat misleadingly,
that one can split local state but not shared state. But what he is saying is that
one cannot use * to conjoin boxed assertions because there is only one region of
shared state; in a later version of RGSep in his PhD thesis Vafeiadis presents a
model where there can be multiple regions of shared states and it is possible to
conjoin boxed assertions e.g. T * 8 where r and s are distinct regions of
shared state).

3.2.2 Parallel composition

A key insight of Vafeiadis in RGSep is to use the separating conjunction con-
nective (%) from separation logic in rely guarantee specifications. Recall that in
separation logic, if P*() is true of some resource (e.g. a heap), then that resource
can be split into two disjoint parts, where P holds of one part and () holds of
the other. In the rely guarantee inference rule for disjoint parallel composition,
where C; and Cy are programs executed by separate threads and accessing dis-
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joint parts of program state, Vafeiadis introduced the separating conjunction in
the pre- and post-conditions for the parallel composition:

Ch sat (P, RU G2, Gy,Q1) Cy sat (Py, RUGq,Ga,Q2)
Ch || Cy sat (Py* Po, R,G1 U G, Q1 % Q2)

This expresses the idea that the two parallel components operate on disjoint parts
of program state. Note that the assertions P;, (); in the pre- and post-conditions
can talk about both local and shared state, and a syntactic distinction is made
between the two (discussed above).

3.2.3 Local reasoning about shared state

RGSep uses “actions” to describe changes performed to the shared state. An
action is of the form P ~~ @ where P and @) are (separation logic) assertions.
Intuitively an action replaces part of the state that satisfies P with a part that
satisfies (), leaving the rest unchanged, in the spirit of local reasoning of separa-
tion logic. Formally, an action is defined as follows: given program states hq, hs,
and hg, an interpretation ¢ that maps logical variables to values, and separation
logic assertions P and (), an action is given by the following relation:

[[P ~ Q]] = {(hl O] ho,hg G} ho)‘hl,i ):SL P and h27’é ):SL Q}

where h; is the initial state that is transformed into the final state hy and hg is
the frame, i.e. the part of the state that is unchanged.

RGSep also extends the frame rule from separation logic. Recall the frame rule
from section 2. 1.4

{r} C{Q}
{P xR} C {Q* R}

This says that if C satisfies the specification which turns P into @) then it also
satisfies the bigger specification which turns P * R into Q) x R, where R (the
“frame”) is a piece of state that is disjoint from both P and @, and where the
side condition ensures that the code of C' does not modify any variable mentioned
by the frame. The extension to RGSep is

where fv(R) Nmod(C) = &

- C sat (P, R,G,Q)

O sl (PrR.RG QR [lable B (RUG)
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This says that if C' can run safely without the extra state R/, then it can run
safely with R’. Since in general the frame R’ can mention the shared state, we
require it to be stable under the union of the rely and guaratee conditionsﬂ

Ezamples.

1. Action incrementing the value of a counter x, where M, N are logical vari-
ables, which are existentially bound with scope ranging over the pre- and
post-conditions:

r—= M~z NAN>M

2. For some suitable definition of the predicate Stack(x), this is an action that

describes pushing a node M onto a stack whose top is currently pointing
to N:

Top — N x Stack(N) ~» Top — M * M +— N x Stack(N)

Having modelled state updates as actions, rely and guarantee specifications are
then modelled as sets of actions in RGSep

Example. Given a simple counter that stores a monotonically increasing value
(this is treated in detail in section we define the following actions to model
(a) incrementing the value of the counter by exactly one and (b) increasing the
value of the counter by an arbitrary amount:

Incy 23AB -ctr—wval : A~ ctr—val: BAB=1+ A
Incy 2 3AB -ctr — val : A~ ctr — val : BAA<B

then we can define the rely and guarantee conditions for a system of concurrent
threads incrementing the counter, where the environment is allowed to increase
the value of the counter by an arbitrary amount as follows:

R = {Incy}
G = {Inci}

Stability of assertions with respect to an (RGSep) action. Rely guaran-
tee proofs require showing that every pre- and post-condition in a proof is stable
under interference from the environment. Recall that in section 2.3] we defined

'Note: in the previous version there was a requirement that C' “contains no atomics” but
Vafieadis removed that in the (later) version of RGSep, presented in his thesis, as it is too
limiting.
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Figure 3.1: Septraction: removing P from S
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P — Q
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(P—-® S)*Q=15

Figure 3.2: State update modelled by septraction

what it means for an assertion to be stable with respect to a relation (e.g. a rely
condition). RGSep extends this concept to define the stability of an assertion with
respect to an RGSep action: given an assertion S and an action a = P ~» @, S
is said to be stable with respect to a if and only if g, (P —® S)*Q = S. Here
( —® ) is the “septraction” operator, which is the existential dual of the “magic
wand” (—«) operator from separation logic EI It is formally defined as:

s,hl=gy P —® S iff 30 - h#h and s, b/ =g, P and s,h b/ =g, S

where s is a store, h a heap, and h’ a heap that is disjoint from h. The definition
says that for a given heap h there is a heap A’ that satisfies the assertion P and
the heap that results from extending h with A’ satisfies S. Thinking backwards
one can think of this as “subtracting P from S” (see figure [3.1)). Given this, we
can model a state update using septraction: from a state S, replace the part that
satisfies P with one satisfying @, i.e. (P —® S) xQ (see figure[3.2)).

3.3 Key ideas and features of Local Rely Guar-
antee

Like RGSep, LRG also splits program state into thread-private and shared parts,
with RG reasoning applied only to the shared part. However it borrows even
more from separation logic to support the following features:

2Formally the relationship between the two is P —® @Q <= —(P——Q)
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e More fine-grained model of program state

e Separating conjunction lifted to actions

e Extensions of the frame rule to support local rely and guarantee conditions
e Extensions to allow hiding of some resources by a subset of threads

The key result of LRG is that it relaxes the original restriction from rely guarantee
reasoning that R and G specify all of shared state (see note at the end of section
. Now it is possible to split shared state, talk about “local” rely and guarantee
conditions, and introduce scope (as well as hide some shared resources) to allow
for proofs of more fine-grained algorithms.

3.3.1 Model of program state

LRG allows for a more fine-grained model by allowing not just a splitting of state
into local and shared but also a further splitting of shared state into parts that
can be separately owned by different sets of threads. It supports the following
sharing patterns:

e State owned locally by a thread
e State shared by a group of threads
e State shared globally by all threads

These patterns of sharing are enabled by a “hiding” rule (described below). It
allows, for example, for a parent thread to distribute its own local resources to
the threads it spawns.

3.3.2 Actions and the separating conjunction

In LRG, actions are used to specify state transitions over both local and shared
state. They are of the form P x (), which means that the initial state of the
transition satisfies P and the final state satisfies (). An identity transition that
satisfies P is denoted by [P]. It is possible to compose two actions using the x*
operator. Intuitively, a x @’ is an action over a state that can be split into two
disjoint parts, where each component action operates over a disjoint part, and the
resulting final states are also disjoint (see figure . The semantics of an action
is given over pairs of triples o = (s,4, h) where s is a store, 7 an interpretation
for logical variables, and h a heap.
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01 o

02 Oq

Figure 3.3: The action a * @’ operating over disjoint pieces of state

(0,0 ) EPxQ iffoi=0c"iand o =g, Pand o' =g Q
(0,0") E [P] iff o =0"and o gp P
(0,0'Y Eaxd  iff for some o1,09,07,05 have 0 = 01 W oy and o’ = o} W o)

and (01,07) E a and (09,0%) | d

Besides * the other logical operators are also lifted to actions. The following are
special actions in LRG:

e The empty action: Emp £ emp x emp where emp denotes empty store and
empty heap

e The arbitrary action: True £ true x true

e The identity transition Id = [true]

3.3.3 Local rely and guarantee conditions and the frame
rule

Since rely and guarantee conditions are just actions, and LRG lifts the separating
conjunction to actions, it is now possible to split rely and guarantee conditions as
well. Hence R x R’ describes two sub-actions R, R’ that occur over disjoint parts
of shared state (equivalently for guarantees, G « G'). The frame rule can now be
extended to:

= C sat ((p,r), R, G,(q,7"))
FC sat ((p,r*m), R+ R',G G (q,r" *m))

m stable wrt to R’

Here we have written the pre- and post-conditions as pairs ([, s) where [, s are
local and shared state, respectively. (Also note that we have written an RG
specification as - C sat (p, R, G, q) where Feng et. al. write R; G F {p}{C}{q},
and I'm thinking of switching back to that later).
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= C sat (P,0,0,Q)

(P~Q)CG

stable under R ATOMIC
+ atomic(B) {C} sat (IE, R, Ga) | |

Figure 3.4: Proof rule for atomic blocks in RGSep

3.3.4 Hiding of shared resources by a subset of threads

LRG allows hiding of the local sharing of resources by a subset of threads via the
hiding rule:

FC sat ((p,r*m),Rx R',Gx G, (q,r" *m'))
l_CS_a/t(p*m7T’R7G7q*m/7rl)

This rule says that if the resource specificed by m and m’ is shared locally inside
C, and transitions over the resource are specified by R', G’, then we can treat it
as private and hide R'G’ as well so that it is invisible from the outside world.

3.4 Example proofs and comparison

3.4.1 Example proof 1: A simple atomic counter

In this and the subsequent section, we present some examples to illustrate proofs
within RGSep and LRG. Refer to figure for the RGSep inference rules and
[3.6] for the LRG inference rules.

In this section we prove the correctness of concurrent code that uses a counter
whose value can be atomically incremented. Listing shows the initialisation
of the counter and listing shows the code for incrementing the value of the
counter. Figure shows the counter data structure, a record with a single
field named wal, and figure shows the pre- and post-states of the counter

incrementation.

Listing 3.1: Initialisation of a simple counter

1£init(){ ctr := new (val: 0) }

1

2

Listing 3.2: Incrementing the value of the simple counter

inc () {

atomic (true) {
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TS TS5 CC [G-EXACT]

P~QeG

Pooce 6AX]

P~ S*xQ CG Pyx S~ (Q CG

PixPw Qi rQ;CC -5
P[e/f] - g[eg/g cg U
o, P = P ]1; - ggg C; Er @ = Q6 cong
PrP~QxFCG 1 copRM]

P~QCG

Figure 3.5: RGSep rules for actions allowed by a guarantee condition

P=B=8B
{PAB} C{Q}
Sta(P,Q, R * Id)
Px Q= Gxtrue
PVvVQ=1Ixtrue
I>RG

atomic(B) {C} sat (R,G,I,P,Q) [ATOMIC]

Figure 3.6: Proof rule for atomic blocks in LRG
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ctr— 0 | .val

(a) Counter data struc-
ture

ctr—y a | val l—— ctr—l +a .vali

(b) Incrementing a counter

Figure 3.7: A simple counter

t = val(ctr
val(ctr) =
return t

);
t + 1;

}
}

In the next subsections we treat the correctness of concurrent programs that use
this counter. We shall do the proofs in RGSep and LRG in order to compare these
two formalisms. Note (as defined in previous sections) that RGSep specifications
are b-tuples - C' sat (P, R,G,Q), with the pre- and post-conditions P, Q being
pairs (,s) specifying local and shared state, while LRG specifications are 6-
tuples C' sat (P,R,G,1,Q). In the latter, the “fencing invariant” I specifies
the boundaries between the shared and local parts of state (or equivalently, the
boundaries of the rely and guarantee actions), while in the former this is not
required because it explicitly splits state into shared and local parts.
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{{3A - ctr — val : A]}
inc () {

atomic (true) {
{34 - ctr — val : A}
{lctr — val : A}

local t := val(ctr);
{letr — val : Alxt— A}
val(ctr) = t + 1;

{‘ctr%val:t%—l‘*t%fl}
{‘ctr%val:AJrl‘*tHA}
{lctr —val : A+ 1NA<A+1|xt— A}
{{3A,B-ctr —wval : BANA< B|xt+— A}

return t

}

}
{3A,B-ctr —wval : BAA< B}

Figure 3.8: Proof outline for inc()

3.4.2 Simple counter: RGSep proof

First we define the rely and guarantee conditions. We assume that the environ-
ment can increment the counter and a thread can do the same. Hence:

R23A -ctr—wval: A~ 3JA, B -ctr—val : BAA< B
G23A -ctr—wval : A~ JA B -ctr—wval: BAB=1+A
Also, the pre- and post-conditions are:
P23A ctr—wval: A
Q423A,B-ctr—wval: BANA<B

We annotate the code with assertions as shown in figure |3.8 The atomic rule
(see figure [3.4]) applies, and the proof obligations are:

Finc sat (3A - ctr — val : A,0,0,3A, B - ctr — val : BN A < B) (3.4.1a)
(A - ctr — val : A) (3.4.1b)
~ (JA,B -ctr—wval : BANA< B)C3JA-ctr—wval: A~ 3JA B -ctr—val: BAB=1+A
(3A, B - ctr — wval : BN A< B) (3.4.1c)

stable under (3A-ctr—wval: A~ 3JA B-ctr—wval: BANA<B)
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Intuitively, these proof obligations require that:

1. the code for inc is sequentially correct, i.e., it is correct in the absence of
interference (formally expressed by setting the rely and guarantee conditions
to be just empty sets)

2. the action that models the overall effect of inc is allowed by the guarantee
condition

3. the post-condition is stable under interference (i.e. wrt to the rely condi-
tion)

3.4.3 Simple counter: LRG proof

Suppose that a thread calls ctr.inc() in an environment where other threads are
allowed to do the same. We want to show that the following specification holds:

inc sat (P,R,G,1,Q)
where

P2 3a-ctr—wval:a
Q2 3a,b-ctr —wval :bA(a+1=0)
R 2 3a-ctr v val : a x ctr — val : a
G 2 3a-ctr — wval : ax ctr v+ val : (a+1)
I£ 3 -ctr—w
where a, b are logical variables.

For this proof, the ATOMIC rule (figure is applicable. The following are the
proof obligations:

P = (B =B) (3.4.2a)
{P A B} inc {Q} (3.4.2b)
Sta({P,Q}, R * Id) (3.4.2¢)
P x Q= Gx*true (3.4.2d)
PV Q= 1Ixtrue (3.4.2¢)
I>R,G (3.4.2f)
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|Proof of B.4.2al] LRG uses the “variables as a resource” formulation of sep-
aration logic. In this formulation, an expression of the form F = FE is not
necessarily a tautology; it does not suffice for F to be true at a given store — the
store must also contain the variables needed to evaluate the expression F. This
proof obligation is a consequence of this. However in this case the proof is trivial
— P = B = B with B = true means no variables are required to evaluate the
expression B; this P = true which reduces to true. [J

| Proof of B.4.2H| This amounts to a proof of the sequential specification for
inc. We want to show:

{3a - ctr — val : a A true}
t:=val(ctr); val(ctr) :=t + 1; return t
{Ja,b-ctr — val :bA(a<b)}

Proof: A proof outline is shown in 3.8 O

| Proof of B.4.2d| We want to show the stability of the pre-condition and post-
condition under rely condition, which is an action that preserves the value of the
counter. The proof for the pre-condition is straightforward. Fix o,0’ € ¥ and let
o | Ju-ctr — wval : v. Instantiating v to vy we obtain o = ctr — wval : vy.
Now suppose that 0,0’ = Jv - ctr — wval : v X ctr — wval : v and by in-
stantiating, 0,0’ = ctr — wal : vy X ctr — wval : vg. This implies that
(0 E ctr — wval : vg) => (¢’ = ctr — wval : vy) and the result follows by
modus ponens.

The stability of the post-condition holds intuitively because the rely condition
does not modify the value of the counter. Hence if in the pre-state of an environ-
ment transition, ctr — val : by for some value by such that by = ag + 1 then in

the post-state the counter still has the same value and the relation by = ag + 1
still holds. [J

| Proof of B.4.2d] We want to show

(Ja - ctr — wval : a) x (Fa,b-ctr = val : bA (a+1=0))
= (Ja - ctr = wval : a) X (ctr = val : (1 + a) *x T'rue)

Proof: To prove this we will need a rule or lemma for expanding the scope of a
quantifier over an action, i.e.

dr - Pr x Jz- Q= 3z - (Pr x Q)
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or even a stronger lemma
dr - Pxr X Jdz-Qx = 3z - (Pxr X Qx)
With this we can rewrite the proof obligation to

(3a,b - ctr — val : a X ctr = val : bA (a+1=0))
= (Ja - ctr — val : a) x (ctr — val : (14 a) * T'rue)

Instantiating all the quantified variables gives

(ctr — wval : ag X ctr — val : by A (ag + 1 = b))
= (ctr — val : ag) X (ctr — val : (1 + ag) * True)

and we can rewrite the left hand side of the implication to

(ctr — val : ag X ctr — val : 1+ ag)
= (ctr — wval : ag) X (ctr — val : (1 + ag) * True)

This implication holds because of the following rule for actions:

p=p q=>(
pxqg=p xq

and also because

ctr — val : (14 ap)
= ctr — val : (14 ag) * Emp
= ctr — val : (14 ag) * True

O

| Proof of B.4.2d] We want to show

(Ja-ctr —wval - a) V (Ja,b-ctr —val : bA(a+1=05)) = Fv-ctr — v*True

Proof: We show that the two disjuncts individually imply the right hand side.
First:

da - ctr — val : a

= Jdv-ctr —wval : v

= Jdv-ctr — val : vx Emp
= Jv-ctr — val : v*xTrue
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Also:

Jda,b-ctr — val : b A (a+1=0)
=db-ctr—wval : b= Jv-ctr —wval : v
= Jv-ctr — val : v+ Emp

= Jdv-ctr — val : v*xTrue

O

|Proof of B.4.2f] We want to show

Fv-ctr—=v>da-ctr—wval :axctr— val : a

and
Ju-ctr— v > Ja-ctr —wval :a x ctr — val : (1 + a)

Proof: Recall that I > a holds iff the following conditions hold:
(i) [I]=a
(i) a=IxI

(iii) precise(I)

Hence we show the following:

(i) [Bv-ctr — val : v] = v - ctr — val : v X ctr — val : v
Proof: this is trivial because [Jv - ctr — val : v] = Jv - ctr — val : v X ctr —
val : v

(ii)
Jv - ctr — val : v X ctr — val : v

= Jv-ctr—=val : v X ctr — val : v x Jv-ctr — val : v X ctr — val : v

Proof : this follows immediately from the lemma dz - Pz x Qx = Jx - Px X
dx - Q.

(iii) precise(Jv - ctr — wval : v)

Proof: Follows from a standard result in separation logic showing that £ —
I is a precise assertion, and so is 4F' - £ — F. [
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(a) A stack record and a node
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L~
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(b) Top of stack pointer

Figure 3.9: Stack data structure

3.4.4 Example proof 2: a linked-list stack

In this section we treat a simple linked-list stack data structure. Firstly we define
two kinds of records: a stack record and a node record. A stack record has only
one field, called “top”, which is a pointer to a node record. The node record has
two fields: wal, which is a value of some type T, and next, which is a pointer
to a node (figure [3.9(a)). The top field of a stack points to the “top of stack”
and is the only way to access the data structure (figure [3.9(b)). We show the
listings for the initialisation and the push and the pop operations. To support
concurrent access, the operations enclose all updates to the top pointer within an
atomic block.

Listing 3.3: Initialising the stack

[init(S:Stack) { top(S) := nil }

Listing 3.4: Push operation for the stack

push (S:Stack, v: T) {
local n := new [data: v, next: nil];
atomic (true) {
next (n) := top(S);
top(S) = n

}
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10

11

12

return true;

}

Listing 3.5: Pop operation for the stack

pop(8): T {
local 1, n;
atomic (true) {
if (top(S) = nil) {

1 := nil;
} else {
1 := val(top(S));
n := next(top(S));
top(S):= n;
}
return 1;

}

3.4.5 Linked list stack: RGSep proof

For our RGSep proofs we firstly want to define a predicate that asserts that
a variable points to a stack data structure. This predicate will also define a
correspondence between an abstract sequence of values and the values stored
on the stack. For this proof it is convenient to define a mathematical sequence
that provides a prepend operation. We let () denote an empty sequence and
a— s denote prepending the value a to the sequence s such that the head of the
sequence is hd(a™s) = a and the tail is tl(a”s) = s. Given this we can define
a predicate Stack(S, o) that asserts that S is a stack with contents modelled by
the sequence o. The predicate is a disjunction of two assertions: the first disjunct
holds of an empty stack, and the second disjunct holds of a non-empty stack:

stack(S, o) =(o = () A top(S) = nil (3.4.3)
V
(Ja,as -0 =a"as) AN3t-top(S) — t* Ju-lseg(a"as)(t,u)

where lseg a (i,j) is the list segment assertion from separation logic (see e.g.,
chapter 4 of the lecture notes from [33]): it asserts that there is a list segment
between locations ¢ and j that contains a list segment « and is defined inductively
as follows:

Iseg ) (i,7) £ emp ANi=j (3.4.4)
Iseg (a"as) (i,k) = 3j-iv> a,j *lseg as (i, k)
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Figure 3.10: A list segment (bounded by the dashed area) satisfying the asser-
tion shown

Note that the right endpoint j in Iseg « (i, j) is the value of the next pointer of the
last node in the list segment, and is not actually contained in the segment. This is
illustrated in figure[3.10] Having defined the stack invariant, we now proceed with
the RGSep proof. First we define the actions that correspond to the updates to
the shared stack that are performed by the push(S,v) and pop(S) actions. Note
that we have defined two pop actions — one corresponding to popping an empty
stack and another to a non-empty stack.

push(S,v) £ stack(S, o) ~ stack(S, v"o) (3.4.5)
popr(S) = stack(S, () ~ stack(S, () (3.4.6)
popne(S) = stack(S, a” o) ~ stack(S, o)) (3.4.7)

The interpretations of these actions are straightforward: push(S,v) updates the
shared stack such that if in the pre-state the stack contains sequence o, then
in the post-state the value v is prepended onto it by the push action. Popping
an empty stack leaves the stack unchanged, while popping a non-empty stack
updates the stack such that the post-state contains the tail of the sequence from
the pre-state.

Proof of push(S,v) in RGSep. We want to prove that push(S,v) satisfies its
specification:
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where

P £ emp x| stack(S, o) (3.4.8)
R = 3o - stack(S, o) ~ stack(S, o) (3.4.9)
G £ Jo,v - stack(S, o) ~ stack(S, v" o) (3.4.10)
Q = emp x| stack(S, v"o) (3.4.11)

In the precondition P and postcondition (), emp is the local state and the boxed
assertion is the shared state. The rely condition is an action that preserves the
stack invariant, and the guarantee condition is an action that allows for values to
be prepended to the sequence of values contained in the stack, while preserving
the stack invariant. We annotate the push code as shown below:

{| stack(S, o)}
push (S:Stack, v: T) {

local n := new [data: v, next: nil];
{n — v, nil x| stack(S, o) |}
atomic (true) {
{n — v, nil x| stack(S, o)}

o= () Atop(S) = nil
n— v, ml * \Y,
da,as -0 =a"as A 3t-top(S) — tx Ju-lseg a"as (t, u)

n— v, nil * |o= () Atop(S) = nil

n— v, nil * |Ja,as-o0=a"asAJt-top(S) — txJu-lseg a"as (t, u)

n v, nil x |o= () Atop(S) = nil

| =, nil ok |3a,as-0 =a"as A3t-top(S) = tx Ju- I -t a,u xlseg as (v, )

n— v, nil x |o= () Atop(S) = nil

| n— v, nil

*

Jda,as -0 =a"as Ntop(S) — t xt — a,u’ *lseg as (v, u)
next (n) := top(S);
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n v, nil x |o= () Atop(S) = nil

vV
n—uv, t * |Ja,as-0=a"as Atop(S) — txt > a,u xlseg as (v, )
top(S) = n

(

o= () ANtop(S) — n*xn— v, nil
V
Jda,as -0 =a"as ANtop(S) = nxn— v, txt—a, u' *xlsegas (v, u)

top(S) — nxlseg v () (n, nil)
V
da,as -0 =a"as ANtop(S) — nxlseg v o (n, u)

{| stack(S,v"0) |}
¥

return true;

}
{| stack(S, v" o)

—

Proof details:
For the push(S,v) operation, the main part of the proof involves the ATOMIC
rule (figure , which gives the following proof obligations:

Fnext(n) := top(8); top(8) := n sat (P,0,0,Q) (3.4.12a)
(P~Q)CG (3.4.12b)

stable under R (3.4.12¢)

where

P2nw— v, nil x|3a,as -0 =a"as Atop(S) — txt — a,u * [seg as (v, u)
Q = | stack(s,v"0)

R =30 - stack(s, o) ~ stack(S, o)
G=R

Proof of [3.4.12al In the absence of rely and guarantee conditions, this is just
a (sequential) proof of the body of the atomic block, which is shown in the proof
outline. {End of proof.}
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Proof of 3.4.12bl We want to show that
stack(S, o) ~» stack(S,v™ o) C stack(S, o) ~> stack(S,v™" o)

This follows immediately from the rule G-AX in figure . {End of proof.}

Proof of [3.4.12c. 'We want to show that

stack(S,v"c) | stable under stack(S,o) ~ stack(S, o)

Recall from section that for an assertion S and a rely condition R £ P ~~ Q,
stability of S with respect to R is defined as

S;i[P~Q]=85 < (P-® S)*xQ =195
Hence we must show that
(stack(S,o) —® stack(S,v"0)) * stack(S, o) = stack(S,v" o)

The intuition behind this is that since the environment preserves the stack in-
variant Jo.stack(S, o) it necessarily preserves the postcondition, which is just
another form of the stack invariant. To show this in detail, one must unwind
the definition of the stack invariant and use properties of septraction ( —® )
operator.

Proof of pop(S) in RGSep. We want to prove that pop(S) satisfies its speci-
fication:

F pop(S) sat (P, R,G,Q) (3.4.13)
where
P £ emp x| stack(S, o) (3.4.14)
Q £ emp * | stack(S, o (3.4.15)
R £ Jo - stack(S, o) ~ stack(S, o) (3.4.16)
R = Jo - stack(S, o) ~ stack(S, o) (3.4.17)

The proof outline for pop(.S) is shown below:
{| stack(S, o)}

pop(S): T {
local 1, n;
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atomic (true) {

{| stack(S, o) |}

o= () Ntop(S) = nil
V

Jda,as -0 =a"as A3t -top(S) — txJu-lseg a"as (t, u)

—

op(S) = nil |}

o= () Ntop(S) = nil
V

Jda,as -0 =a"as A 3t-top(S) — txJu-lseg a"as (t, u)

{| stack(S, o) |}

} else {

{|Fa,as -0 =a"as A3t -top(S) —t+Ju-lseg a"as (t, u)[}

{|Fa,as -0 =a"as A3t -top(S) —txJu,u -t — a, u' xlseqgas (v, u)[}

1 := val(top(S));

{|3a,as -0 =a"as A3t top(S) — t*Ju,u' -t — a, u' xlseg as (v, u)|*xl=a}

—

Jda,as -0 =a"as ANtop(S) — t*xt— a, u' *xlseg as (v, u)|xl =a}

:= next(top(S));

n
{|Fa,as -0 =a"as ANtop(S) — t*xt— a, v *xlseg as (v, u)|xl=a*n+— u'}

top(S):= n;

{|3a,as -0 =a"as Atop(S) — u' *xlseg as (v, u)
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{ stack(S, tl(o)|*xl=axn—u *xt—a, u'}

}

return 1;

}

—

stack(S, tl(o) |}

Proof details:
The form of the pop(S) operation is just an atomic block, similar to the push(S, v)
operations, hence the proof obligations are similar:

- C sat (P,0,0,Q) (3.4.18a)
(P~Q)CC (3.4.18D)

stable under R (3.4.18c¢)

where

£ (the body of the atomic block)
stack(S, o)
stack(S,tl(o))

R = 3o - stack(S, o) ~ stack(S, o)
G = Jo - stack(S, o) ~ stack(S, ti(o))

lI>

C
p
Q

lI>

3.4.6 Linked list stack: LRG proof

For the proofs of push(S, v) and pop(S) in LRG, we can make use of the same
stack invariant that we defined for the RGSep proofs. However for LRG, in
defining the rely and guarantee conditions R, G we also need to find a “fencing
invariant” I such that I > R and I > G. In this case we choose R = stack(S, o)
stack(S, o), i.e we rely on the environment to preserve the stack invariant, and
the guarantee conditions are the same as for the RGSep proofs, i.e. we have

G push(S,v) £ Qpusn = stack(S, o) x stack(S,v™ o) (3.4.19)
A

Grop(s) = Apop = stack(S, o) x stack(S, t(c)) (3.4.20)
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We choose the fencing invariant I £ stack(S, o) and for p € {R, Gpush, Gpop} We
can show formally that I > p by showing that the following conditions hold:

[stack(S, 0)] = agush,pop) (3.4.21)
U(push.pop) = Stack(S, o) x stack(S, o) (3.4.22)
precise(stack(S, o)) (3.4.23)

The proof outlines will be the same as with RGSep, and the applicable inference
rule for both operations is the ATOMIC rule. The proof obligations that are
unique to LRG are as follows:

For the proof of push(S,v):

Sta({stack(S, o), stack(S, v" o)}, stack(S, o) x stack(S, o) * Id)
stack(S, o x stack(S, v o) = stack(S, o x stack(S, v~ o) * True
stack(S, o)V stack(S, v" o) = stack(S, o) * True

stack(S, o) > stack(S, o) x stack(S, o)

stack(S, o) > stack(S, o) x stack(S, v" o)

3.4.24
3.4.25
3.4.26
3.4.27
3.4.28
3.4.29

A~~~ /N I/~ /—~ —
~— N — ~— ~—

For the proof of pop(S):

Sta({stack(S, o), stack(S, ti(o))}, stack(S, o) x stack(S, o) * Id)
stack(S, o x stack(S, tl(o)) = stack(S, o x stack(S, tl(c)) * True
stack(S, o) V stack(S, tl(c)) = stack(S, o) % True

stack(S, o) > stack(S, o) x stack(S, o)

stack(S, o) > stack(S, o) x stack(S, ti(o))

3.4.7 Discussion of proofs

The main difference between the LRG and RGSep proofs so far have been in
the treatment of the shared state: RGSep divides the shared and local states
explicitly, but LRG does not, and requires a “fencing invariant” to specify the
boundaries of an action on the shared state. Otherwise we can see that the idea
of the RGSep proof and the LRG proof are the essentially the same. However,
LRG has more proof obligations for the atomic block than RGSep, and the latter
are all covered by the former. The proof obligations that are required specifically
by LRG stem from 1) LRG’s use of “variables as resource” logic (the first proof
obligation) and 2) the fact in LRG there is no syntactic distinction between shared
and local state assertions, and the fencing invariant [ specifies the boundary
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between shared and local. The fifth proof obligation for LRG, which involves
is also a requirement for showing that the invariant of the counter holds before
and after program execution (i.e. the invariant is implied by the pre- and post-
conditions). The sixth proof obligation is to show that the rely and guarantee
conditions are fenced by I.
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Chapter 4

Data abstraction and weakest
preconditions in separation logic

The main aim of this chapter is to illustrate how to do separation logic proofs
in a calculational way using verification conditions derived from the weakest pre-
condition semantics defined in section For this we present fully worked-out
examples of proofs of correctness of an array-based and linked-list sequential
stack data structures. In addition, since the proofs are in essence data abstrac-
tion proofs showing a data structure implements an abstract data type, we relate
it to a classic proof technique developed by Hoare. We first discuss that tech-
nique, and then note how it relates to sequential separation logic proofs, and then
present the proofs.

4.1 Data abstraction technique due to Hoare

In a paper [16] written in 1972, C.A.R. Hoare presents a proof technique for
showing that a data structure implementation correctly represents an abstract
data type. In this section we present a slight adaptation of the ideas from that
paper. Let T be some abstract data type. Suppose that T' supports n opera-
tions opy,...op,, through which the state of an instance of T" may be queried
or updated. We define an “abstract program” to be a program that operates
on an instance t of T" by calling one or more of its allowed operations in order
to transform it. We say that the abstract program operates in abstract state
space. Also suppose that the abstract type T has one one or more concrete
implementations using concrete data structures; we call such implementations
“concrete programs” operating on concrete state space. The essence of Hoare’s
proof method is to show some kind of simulation between a concrete program
and the related abstract program. For example, let T" be a mathematical set, and
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t-init() =t:=0
t-insert(i) =t:=t U {i}
t - remove(i) = t:=t N —{i}
t-has(i) =i €t

Figure 4.1: Set operations and their intended effects

let s be an instance of 7. Then the set operations define some of the allowed
operations on the abstract set:

e s-insert(i) — insert a value ¢ into the set s
e s-remove(i) — remove the value ¢ from the set s
e s-has(i) — test to see if the value i is contained in the set s

Let t be an instance of some abstract type 7" and let op be some operation
defined on 7. Assume that an invocation of an abstract operation of the form
t-op(ay,...,a,), where the ay is a set of arguments, will transform ¢ such that
its resulting state is given by ¢(¢,aq,...a,) for some function ¢. Intuitively
¢ is a function that models the “intended effect” of op. Then the invocation ¢ -
op(ay, ..., a,) is equivalent to the assignment statement ¢:=¢(t,a; ..., a,). When
this holds we say that op models ¢. See figure 7?7 for examples. The invocation of
op satisfies the following Hoare logic specification, where S is some state predicate:

{Sottar,an} t-oplar,. .. an) {S}

With these ideas, we may now define correctness.

Definition of correctness of data representations. A concrete represen-
tation of an abstract data type T is correct if every operation op of T" models
the intended function ¢ for that operation, and if the initialisation sequence for
the concrete representation yields a value that models the corresponding abstract
initial value. Formally this entails showing the validity of Hoare triples as above
for each operation op. Consequently, a program operating on abstract variables
may be validly replaced by one carrying out equivalent operations on the concrete
representation.
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Abstraction functions and representation invariants. A requirement for
the proof technique is a formal definition of the relationship between the abstract
state and the concrete state. This can be done by providing an abstraction
function A(cy, ..., c,) which maps concrete variables ¢ to the abstract variables
which they represent. For example, suppose that an array A with 1-based indexing
is used to represent a set of integers; then the function

A(m,A) = {i : integer|3k -1 < k <m A A[k] =i}

maps the first m elements of the array to the abstract values in the set which the
array represents. In general A will be a many-to-one function as there are many
possible concrete representations of abstract values. If we then let ¢ denote the
abstract value A(cq, ..., c,) before the execution of op then we must prove that
after execution, the following holds:

Alery ... en) = o(t, v, ..., 0p)

where the v are the formal parameters of op. In terms of Hoare logic, we need
to prove the following triple:

{t=Aler,...,cn)} op {Alcy, ... cn) = ot v1,...,00)}

In addition to abstraction functions, another requirement for the proof method is
the representation invariant. This is a condition I(cy,...,c,) that defines some
relationship between the concrete variables, thus constraining the possible com-
binations of values which they may take. Each operation (except initialisation)
may assume that I holds when the operation is entered, and must then ensure
that I holds on completion. In the running example of the set data type, the
correctness of the remove () operation depends on the array elements A[k] being
all distinct. This can be expressed by the following representation invariant:

I = size(A(m,A) =m

4.2 Relation to separation logic

Here we discuss how the data abstraction technique can be incorporated with
sequential separation logic.

We note that we can generalise Hoare’s abstraction functions to abstraction

relations, and then use the assertion language of separation logic to specify these
relations. This is based on the observation that a separation logic assertion can
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be read as a kind of specification of a relationship between concrete states (pro-
gram variables) and abstract (mathematically-specified) states. Indeed in his
2002 paper on separation logic [34], Reynolds remarks that in order to specify a
program adequately, it is usually necessary to describe more than the form of its
structures or the sharing patterns between them; one must relate the states of
the program to the abstract values that they denote. He gives the example of a
list-reversal program — “to specify such a program, it would hardly be enough to
say that if the heap location denoted by 7 is a list before execution, then the heap
location j will be a list afterwards. One needs to say that if 7 is a list representing
the sequence « before execution, then afterwards j will be a list representing the
sequence that is the reflection of a. To do this, it is necessary to define the set of
abstract values (sequences, in this case), along with their primitive operations,
and then to define predicates on the abstract values by structural induction.”

Given this we can view the following inductively defined predicate expressing
that some heap location points to a structure that models an abstract sequence
as a kind of abstraction relation:

list e i 2 empANi= nil (4.2.1)
list (a-a)i=3j-ivr>a,j* listaJ

We then redefine the proof obligations for each operation op of an abstract
data type instance t to be the following set of Hoare triples:

{A(t.0)} t-oplar, ... an) {A(e(t),0)}

where A is an abstraction relation and ¢ denotes a list of concrete variables.

In the next sections we illustrate these ideas, as well as the use of the weakest
precondition calculus, in a proof of correctness of stack data structure.

4.3 Proof of correctness of an array-based se-
quential stack

First we define the algorithm and its data structures. Here is a simple sequential
last-in first-out (LIFO) stack that uses an array to store its values. In order to
ensure the LIFO discipline, a value can only be inserted to the designated top of
the stack and likewise, a value can only be removed from the top of stack. Let us
just assume for now that the values are integers. The data structure consists of an
integer array S, indexed from 0, and an integer top which stores the index of the
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top of the stack. There are three operations: init for initializing the structure,
push for inserting a value on to the top of the stack, and pop for removing a value
from the top of the stack.

The operation nit firstly allocates space for a new array and sets the top of
stack pointer top to -1, which indicates that the stack is initially empty.

Listing 4.1: Initialisation code for the stack

def init =
S = new int [N]; top := —1
end

We define the return values of the push() and pop() operations to be members
of the type Z U {FULL,EMPTY} where FULL and EMPTY are special
values denoting a full stack and an empty stack respectively. We also use a
special variable ret to indicate the return value. The operation push(v) inserts
a value v of type integer to the stack. If the stack is full, it sets ret to FULL.
Otherwise, it increments top to point to the next available slot, writes the value
to that slot, and sets ret to v.

Listing 4.2: Pushing a value onto the stack

def push(v) =
if top + 1 = N then

ret := FULL
else
top := top + 1;
S[top]| = v;
ret = v;
endif
end

The pop operation sets ret to EM PTY when the stack is empty; otherwise it
saves the value of S[top| to a temporary variable, decrements top and returns the
temporary variable.

Listing 4.3: Popping the stack

def pop() =
if top = -1
then ret := EMPTY
else
val = S[top];
top := top — 1;
ret := val;
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endif
end

We verify the algorithm using a combination of separation logic and Hoare’s
data refinement technique. Following the latter technique, we show that the
concrete stack implementation given above is a correct data representation of
a stack, i.e., the procedures defined above model the intended abstract stack
operations. Abstractly we model a stack as a finite sequence o of values. We then
show that the procedures of the data structure we have defined above correspond
to the following operations on the sequence o:

S.init() =0 =€ (4.3.1a)
S.push(v) = o := append(o,v) (4.3.1b)
S.pop() = o := butlast(o) (4.3.1¢)

i.e. init() results in a state that corresponds to the empty sequence €, push(v)
models appending a value v to o, and pop() models removing the last element
from o. To show this we first define an abstraction function, i.e. a function that
maps the set of concrete variables to the abstract state that it represents. For
this data structure we know intuitively that the abstraction function maps the
contents of the section of the array S from index 0 through to index top to the
value of the sequence o. Hence we want to define a function that turns an array
section into a sequence. Following a standard technique in the literature (see e.g.
[14]) we can view an array as a function from indexes to values (and consequently,
array subscripting is just function application of an array to an index to obtain
a value). In this instance the set of indexes is the set I,,, = {i|0 < i < top}. We
can then define the required abstraction function as

A(S,top) = map S Iy (4.3.2)

where map is a higher-order function that takes a function and a sequence returns
a new sequence which is the result of applying the function to every member of
the input sequence:

map = Af - AL - if L = € then € else (f (head L))#(map f (tail L)) (4.3.3)

In order to show (4.3.1a)) it suffices to show that the following Hoare triple is
true:

{True} S.nit() {A(S,top) =€ Atop < N} (4.3.4)

This means that the initialisation procedure establishes a concrete state that
maps to the desired abstract state (the empty sequence €). The additional con-
junct that must be shown, i.e., top < N is a structural invariant which expresses
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the constraint that the top pointer never goes beyond the bounds of the array.

To show (4.3.1b)), we must establish the triple
{A(S,top) = o Ntop < N}

S.push(v)

{((ret = FULL N A(S,top) = o) V (ret = v A A(S, top) = append(c,v)) A (top < N)}
(4.3.5)

To show , we must establish the triple

{A(S,top) = o Ntop < N}

S.pop()

{((ret = EMPTY AN A(S,top) = o)V (ret =v A A(S, top) = butlast(c)) A (top < N)}
(4.3.6)

Proof of [4.3.4]

To prove (4.3.4) we must show that True = wp(init(), A(S, top) = eAtop < N).
The wp calculation is as follows:

wp(S.init(), A(S, top) = € Atop < N)

= wp(A := new int[N]; top := -1, A(S, top) = e Atop < N)

[
= wp(A := new int[N], A(S,—1) =e A—1 < N)
= wp(A := new int[N], A(S, —1) = e A True)
= wp(A := new int[N],map S ) = ¢)
= wp(A = new int[N],e = ¢)
N], T

= wp(A := new int[N], True)

{End of proof.}

Proof of 4.3.5]

Let POST = ((ret = FULL A A(S,top) = o) V (ret == v A A(S,top) =
append(c,v)) Atop < N. Since the body of the push() procedure is a two-armed
conditional, the weakest precondition has the form

wp(push(v), POST) =

top == N — 1 = wp(ret := FULL, POST)
A
—(top == N — 1) = wp(top := top + 1; S[top| := v; ret := True , POST)
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Calculating the wp in the true branch:

wp(ret := FULL, POST)

= wp(ret := FULL, ((ret = FULL AN A(S,top) = o) V (ret == v A A(S, top) = append(c,v)) A top -
= ((FULL = FULL N A(S,top) =0)V (FULL = v A A(S, top) = append(o,v)) Atop < N))

= ((True N A(S,top) = o) V (False N A(S, top) = append(o,v)) A top < N))

= (A(S, top) = o V False) AN top < N

= A(S,top) = o Ntop < N

Calculating the wp in the false branch:

wp(top := top + 1; S[top] := v; ret := v,

((ret = FULL N A(S,top) = o) V (ret == v A A(S, top) = append(o,v)) Atop < N))
= wp(top := top + 1; S[top| := v,

((v=FULL N A(S,top) =0) V (v =uv A A(S,top) = append(c,v)) AN top < N))
= wp(top := top + 1; S[top| := v,

((False N A(S,top) = o) V (True A A(S, top) = append(o,v)) A top < N))

= wp(top := top + 1; S[top| := v, (False V A(S, top) = append(o,v) A top < N)
wp(top := top + 1; S[top] := v, A(S, top) = append(c,v) A top < N

wp(top := top + 1, A(S @ {top — v}, top) = append(o,v) ANtop < N

A(S @& {top+ 1 — v}, top + 1) = append(o,v) ANtop+1 < N

= map (S & {top+ 1 — v}) Lipps1 = append(o,v) Ntop+1 < N

Hence the verification condition is

A(S,top) =0 ANtop < N =
(top=N — 1= A(S,top) = 0o Ntop < N) A
(=(top =N — 1) = map (S @& {top + 1 — v}) Lippr1 = append(o,v) Atop+1 < N)

The first conjunct on the RHS easily follows from the LHS. To show the second
conjunct:

A(S,top) =0 ANtop < N =
(=(top=N —1) = map (S & {top+ 1 — v}) Liypi1 = append(o,v) Atop+1 < N)

ie.
A(S top) =0 ANtop < NAN—=(top=N — 1) =
map (S & {top+ 1+ v}) L1 = append(o,v) Atop+1 < N)
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From the LHS it follows that top < N — 1 from which follows that top+1 < N,
establishing the second conjunct on the RHS. Also from the LHS it follows that
A(S, top) = o which rewrites to map S I,, = 0 hence we must show that

map S Iy = 0 = map (S & {top+ 1 — v}) Lipp+1 = append(o,v)

To show this note that the map expression of the consequent can be rewritten to

map (S @ {top+ 1 — v}) Ligpia
= (map S Liop)#(S @ {top+ 1 — v}) (top + 1))
= o#v
= append(o,v)

{End of proof.}

Proof of

We shall omit the details of the proof of 4.3.6, The more interesting part in-
volves showing the identity map S Ijp—1 = butlast(c) which holds assuming
map S Iioy = 0.

4.4 Linked data structures

In this section we shall treat linked-list data structures, beginning with stacks.
We are mainly interested in finding out how to express assertions and invariants
in separation logic and how to mechanise some parts of the proof using weakest
preconditions.

4.4.1 Traversing a linked list

As a simple exercise we construct a proof of the following simple algorithm for
traversing a linked list. Let L be a pointer to a linked list. Every node of a list
is a record type that has a field next which points to the next node on the list.
We write next(t) to mean accessing the next field of node t:

Listing 4.4: Traversing a linked list

t = L;

while t != nil do
t := next(t)

end

58



(0793 / cee A1 / (077

ar aRr

Figure 4.2: Idea for loop invariant: the pointer ¢ conceptually separates the list
into two list segments: the shaded region representing o, and unshaded region
region ag, with a = ay —~ ag.

What are the pre- and post-conditions and loop invariant for this piece of code?
The pre-condition should say that L points to a linked list and likewise for the
postcondition, since the loop does not modify the list at all. We shall express
this using an assertion in separation logic that describes singly-linked lists on the
heap. We let a be a mathematical sequence and let € be the empty sequence. We
write list a (¢, j) when there is a list segment from i to j that represents the
sequence «. This is inductively defined on the structure of sequences:

list € (i, j) 2 empAi=j (4.4.1a)
list a-a (i, j) £3k-i—a,kx list a (k, j) (4.4.1b)

With these definitions we can define the pre- and post-conditions as
pre = post = list a (L, nil) (4.4.2)

Now we must define the loop invariant. Looking at the code, the list traversal
is done by using a node pointer ¢ which initially points to the same node that L
points to, which is the head of the list head(L). Then t is made to follow the next
pointer of every node until it points to n:l, at which point the loop terminates.
Every time that the loop body executes, ¢ points to a node on the list and one
can think of it as partitioning the list into two list segments: the first segment
is from the head to the node just before the one pointed by ¢, and the second
segment from ¢ to the end of the list. One can think of the first segment as
representing a sequence o, and the second segment as representing a sequence
ar, where ay; —~ ag = «. This is illustrated in figure This idea suggests
the following loop invariant:

Jag - Jag - (a=ar ~ag) A list ap (L, t) * list ag (¢, nil) (4.4.3)
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The proof of the list traversal algorithm amounts to proving that is indeed

a loop invariant:

1. Show that the initialisation establishes (4.4.3))

{list « (L, nil) }
t =L

{Jas-Jag - (a=ar ~ag) A list ap (L, t) * list ag (¢, nil) }
(4.4.4)

2. Show that the loop body preserves (4.4.3))

{Bag-Jag - (a =ar ~ag) A list ap (L, t) * list ag (¢, nil) ) At # nil}
t := next(t)

{3ar - Jag - (a =ap —~ag) A list ag (L, t) = list ag (t, nil) }
(4.4.5)

3. Show that the conjunction of (4.4.3) and the negation of the guard implies
the postcondition.

(Jag - Jag - (e =ap ~ag) A list ag (L, t) * list ag (¢, nil) ) ANt =nil =

list a (L, nal)
(4.4.6)

Proof of 4.4.4]

wp(t ==L, Jag-Jag - (o =ap —~ag) A list ag (L, t) = list ag (t, nil) )
=Jag-Jag - (a=ag ~ag) A list ap (L, L) * list ag (L, nil)
=(a=e~a)A liste (L, L) x list a (L, nil)

= True A emp x list « (L, nil)

= list a (L, nil)

Hence the V.C. is just list o (L, nil) = list a (L, nil) .
{End of proof.}
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Proof of 4.4.5]

{Proof synopsis}

First calculate the weakest precondition:

wp(t = next(t), Ja, - Jag - (@ =ar —~ag) A list ap (L, t) * list ag (t, nil) )

= Ja, - Jag - (@ = ag —~ ag) A list ag (L, next(t)) = list ag (next(t), nil)
and then prove the verification condition:

Jag - Jag - (a=ag ~ag) A list ag (L, t) = list ag (¢, nil) ) At # nil

=

Jag - Jag - (a=ag ~ ag) A list ap (L, next(t)) * list ag (next(t), nil)
To see why this is true, we instantiate the subsequences on the left side of the im-

plication to az := A and ag := p and those on the right hand side to A —~ head(p)
and tail(p) respectively, and argue that the following property of sequences hold:

a=\~p<= a= (N~ head(p)) — tail(p) (4.4.7)
We also show that the following holds, assuming that t # nail:

list A (L, t) * list p (¢, nil) = list (A —~ head(p)) (L, next(t)) * list (tail(p)) (next(t), nil)
(4.4.8)
{End of proof.}

Proof of 4.4.6

(Jag - Jag - (a =ap ~ag) A list ap (L, t) = list ag (t, nil) ) At = nil
— Jda, - Jag - (@ = ap —~ ag) A list ag (L, nil) = list ag (nil, nil)
= (a=a ~¢€) A list a (L, nil) = list € (nil, nil)

= True A list o (L, nil) * emp

= list o (L, nil)

{End of proof.}

4.4.2 Linked-list implementation of a stack

We present a stack as a singly-linked list of records called nodes where every node
has two fields named data and next, and a pointer top to the head of the linked
list. Initially top is set to nil. The push() and pop() operations are shown in the
listings.
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Listing 4.5: Linked list stack: push

def push(val)

n := new node ();
data(n) := val;
next(n) := top;
top := n;

end

Listing 4.6: Linked list stack: pop

def pop ()
if (top = nil) then
ret := STACKEMPTY;
else
t = top;
ret := data(t)
top := mnext(t);
free(t);
end if
end

The verification of these procedures can be done within separation logic, by prov-
ing that the following triples hold:

{ list « (top, nil) } S.push(v) { list (v - «) (top, nil) } (4.4.9a)
(ret = STACK_EMPTY A (a=¢))
{ list « (top, nil) } S.pop() v
(ret = head(a) A list tail(«) (top, nil) )
(4.4.9b)

In this section we shall not give wp proofs in detail. For now we shall present
the proofs of [4.4.9a] and [4.4.9b] using “proof outlines”. A proof outline is a form
of “condensed proof” that uses forward reasoning and shows the intermediate
assertions that hold at points between the initial and final states of a program.
In principle it is possible to work out the full details of a proof from the proof
outline.

In the following proofs we shall use the weakest precondition calculus defined in
the background section (see section .

Proof outline for push()
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def push(val)
{ list « (top, nil) }

n := new node();

{ list « (top, nil) *n+— [data : 0, next : nil]}
data(n) = v;

next(n) := top;

{ list « (top, nil) *n > [data : v,next : top|}
=—{n — [data : v,next : top] * list « (top, nil) }
—{ list v (n, top) * list « (top, nil) }
—{ list v -« (n, nil) }

top := n;
{ list v - « (top, nil) }
end

Proof outline for pop()

def pop ()
{ list « (top, nil) }
if (top = nil) then

{ list « (top, nil) Atop = nil}
= { list « (nil, nil) }
—{a=¢}
ret := STACKEMPTY
{ret = STACK_EMPTY N« = €}

else
{ list « (top, nil) Atop # nil}
t = top;

{ list « (t, nil) Nt nil}
=—={3In -t — [data : head(a), next : n] * list tail(a) (n, nil) }

ret := data(t)

{3In -t — [data : head(a),next : n] x list tail(a) (n, nil) Aret = head(a
top := next(t);

{t — [data : head(a),next : top] = list tail(a) (top, nil) Aret = head(«)
free(t);

{emp * list tail(«) (top, nil) Aret = head(a)}
={ret = head(a) A list tail(c) (top, nil) }
end if
end
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Chapter 5

Conclusions and Future Work

In this thesis we studied in detail two formalisms that merge separation logic
and rely guarantee reasoning: RGSep and Local Rely Guarantee (LRG). We saw
that both formalisms effectively combine the strengths of SL and RG to provide
a single formalism that supports local, modular, and explicit reasoning about
interference between threads in a shared variable concurrent program. We have
studied in detail their features and noted similarities and differences:

e Both apply the concept of local reasoning to the rely and guarantee condi-
tions, which were previously only treated globally in the original formula-
tions of rely guarantee logic.

e RGSep has syntax for assertions on shared vs. private state while LRG has
none; the latter uses the concept of a "fencing invariant” to determine the
boundary between shared and private state

e Both logics model updates against shared state in essentially the same way
as actions, but LRG offers more ways to combine actions together

o LRG offers more ways to do local reasoning about rely and guarantee rea-
soning through its extended frame rule and hiding rule

We also constructed full proofs of correctness of simple but interesting algo-
rithms in both formalisms and noted the differences in the proofs, in particular
the differences in the proof obligations, and how these stem from the way in which
each logic models program state and state updates.

In this thesis we also explored the use of a weakest precondition (wp) cal-
culus in separation logic proofs through fully worked-out examples of proofs of
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correctness of array-based and linked-list stack algorithms. We illustrated how
wp calculus can help do proofs in a more calculational way . We also noted how
these proofs are essentially data abstraction proofs that show how each stack data
structure implements a stack abstract data type, and related this to a classic data
abstraction technique by Hoare.

A possible direction for future work is to explore the more advanced features
of LRG, specifically its extension of the frame rule and its hiding rule in proofs of
algorithms that involve more fine-grained concurrency. Furthermore it would be
interesting to see how the wp calculus for separation logic can applied to either
RGSep or LRG and how this can be encoded within a proof assistant to achieve
some degree of proof automation.

65



Bibliography

[1] Appel, A. W. (2011). Verismall: Verified smallfoot shape analysis. In Jouan-
naud, J. and Shao, Z., editors, Certified Programs and Proofs - First Inter-
national Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Pro-
ceedings, volume 7086 of Lecture Notes in Computer Science, pages 231-246.
Springer.

2] Appel, A. W. and Blazy, S. (2007). Separation logic for small-step cminor.
CoRR, abs/0707.4389.

[3] Berdine, J., Calcagno, C., and O’Hearn, P. W. (2005a). Smallfoot: Modular
automatic assertion checking with separation logic. In de Boer, F. S., Bon-
sangue, M. M., Graf, S., and de Roever, W. P., editors, Formal Methods for
Components and Objects, Jth International Symposium, FMCO 2005, Amster-
dam, The Netherlands, November 1-4, 2005, Revised Lectures, volume 4111 of
Lecture Notes in Computer Science, pages 115-137. Springer.

[4] Berdine, J., Calcagno, C., and O'Hearn, P. W. (2005b). Symbolic execution
with separation logic. In Yi, K., editor, Programming Languages and Systems,
Third Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005,
Proceedings, volume 3780 of Lecture Notes in Computer Science, pages 52—68.
Springer.

[5] Berdine, J., Calcagno, C., and O’Hearn, P. W. (2012). Verification condition
generation and variable conditions in smallfoot. CoRR, abs/1204.4804.

[6] Berdine, J., Cook, B., and Ishtiaq, S. (2011). Slayer: Memory safety for
systems-level code. In CAV.

[7] Bornat, R., Calcagno, C., and Yang, H. (2006). Variables as resource in
separation logic. Flectronic Notes in Theoretical Computer Science, 155:247—
276.

[8] Brookes, S. (2007). A semantics for concurrent separation logic. Theoretical
Computer Science, 375(1):227-270.

66



[9] Calcagno, C., Parkinson, M., and Vafeiadis, V. (2007). Modular safety check-
ing for fine-grained concurrency.

[10] Chang, B. E., Rival, X., and Necula, G. C. (2007). Shape analysis with
structural invariant checkers. In Static Analysis, 14th International Sympo-
sium, SAS 2007, Kongens Lyngby, Denmark, August 22-24, 2007, Proceedings,
pages 384-401.

[11] Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal
derivation of programs. Communications of the ACM, 18(8):453-457.

[12] Distefano, D. and Parkinson, M. J. (2008). jstar: towards practical verifi-
cation for java. In Harris, G. E., editor, Proceedings of the 23rd Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA,
pages 213-226. ACM.

[13] Feng, X. (2009). Local rely-guarantee reasoning. In ACM SIGPLAN Notices,
volume 44, pages 315-327. ACM.

[14] Gries, D. (2012). The science of programming. Springer Science & Business
Media.

[15] Hoare, C. A. R. (1969). An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576-580.

[16] Hoare, C. A. R. (1972). Proof of correctness of data representations.
Springer.

[17] Hobor, A., Appel, A. W., and Nardelli, F. Z. (2008). Oracle semantics for
concurrent separation logic. In Drossopoulou, S., editor, Programming Lan-
guages and Systems, 17th Furopean Symposium on Programming, ESOP 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings,
volume 4960 of Lecture Notes in Computer Science, pages 353-367. Springer.

[18] Ishtiaq, S. S. and O’Hearn, P. W. (2001). Bi as an assertion language for
mutable data structures. In ACM SIGPLAN Notices, volume 36, pages 14—26.
ACM.

[19] Jacobs, B. and Piessens, F. (2008). The verifast program verifier. Techni-
cal report, Department of Computer Science, Katholieke Universiteit Leuven,
Belgium.

67



[20] Jacobs, B., Smans, J., and Piessens, F. (2010). A quick tour of the verifast
program verifier. In Ueda, K., editor, Programming Languages and Systems -
8th Astan Symposium, APLAS 2010, Shanghai, China, November 28 - Decem-
ber 1, 2010. Proceedings, volume 6461 of Lecture Notes in Computer Science,
pages 304-311. Springer.

[21] Jones, C. B. (1983a). Specification and design of (parallel) programs.

[22] Jones, C. B. (1983b). Tentative steps toward a development method for
interfering programs. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 5(4):596-619.

23] Magill, S., Tsai, M., Lee, P., and Tsay, Y. (2008). THOR: A tool for reason-
ing about shape and arithmetic. In Gupta, A. and Malik, S., editors, Computer
Aided Verification, 20th International Conference, CAV 2008, Princeton, NJ,
USA, July 7-14, 2008, Proceedings, volume 5123 of Lecture Notes in Computer
Science, pages 428-432. Springer.

[24] Mansky, W. (2008). Automating separation logic for concurrent ¢ minor.
Undergraduate Thesis.

[Moreira et al.] Moreira, N., Pereira, D., and de Sousa, S. M. On the mechani-
sation of rely-guarantee in coq.

[26] Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., and Birkedal, L.
(2008a). Ynot: dependent types for imperative programs. In Proceeding of the
13th ACM SIGPLAN international conference on Functional programming,
ICFP 2008, Victoria, BC, Canada, September 20-28, 2008, pages 229-240.

[27] Nanevski, A., Morrisett, J. G., and Birkedal, L. (2008b). Hoare type theory,
polymorphism and separation. J. Funct. Program., 18(5-6):865-911.

[28] Nguyen, H. H., David, C., Qin, S., and Chin, W. (2007). Automated ver-
ification of shape and size properties via separation logic. In Cook, B. and
Podelski, A., editors, Verification, Model Checking, and Abstract Interpreta-
tion, 8th International Conference, VMCAI 2007, Nice, France, January 14-
16, 2007, Proceedings, volume 4349 of Lecture Notes in Computer Science,
pages 251-266. Springer.

[29] Nieto, L. P. (2003). The rely-guarantee method in isabelle/hol. In Program-
ming Languages and Systems, pages 348-362. Springer.

[30] O’hearn, P. W. (2007). Resources, concurrency, and local reasoning. Theo-
retical computer science, 375(1):271-307.

68



[31] Owicki, S. and Gries, D. (1976). Verifying properties of parallel programs:
An axiomatic approach. Communications of the ACM, 19(5):279-285.

[32] Parkinson, M., Bornat, R., and O’Hearn, P. (2007). Modular verification of
a non-blocking stack. In ACM SIGPLAN Notices, volume 42, pages 297-302.
ACM.

[33] Reynolds, J. (2011). Introduction to separation logic (course).

[34] Reynolds, J. C. (2002). Separation logic: A logic for shared mutable data
structures. In Logic in Computer Science, 2002. Proceedings. 17th Annual
IEEE Symposium on, pages 5b5-74. IEEE.

[35] Stewart, G., Beringer, L., and Appel, A. W. (2012). Verified heap the-
orem prover by paramodulation. In Thiemann, P. and Findler, R. B., edi-
tors, ACM SIGPLAN International Conference on Functional Programming,
ICFP’12, Copenhagen, Denmark, September 9-15, 2012, pages 3—14. ACM.

[36] Tuch, H., Klein, G., and Norrish, M. (2007). Types, bytes, and separa-
tion logic. In Hofmann, M. and Felleisen, M., editors, Proceedings of the
34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2007, Nice, France, January 17-19, 2007, pages 97-108. ACM.

[37] Tuerk, T. (2008). A separation logic framework in hol. In Otmane Ait Mo-
hamed, C. M. and Tahar, S., editors, Theorem Proving in Higher Order Logics:
Emerging Trends Proceedings, pages 116-122.

[38] Tuerk, T. (2009). A formalisation of smallfoot in HOL. In Berghofer, S., Nip-
kow, T., Urban, C., and Wenzel, M., editors, Theorem Proving in Higher Or-
der Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany,
August 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer
Science, pages 469-484. Springer.

[39] Vafeiadis, V. (2008). Modular fine-grained concurrency verification. PhD
thesis, University of Cambridge.

[40] Vafeiadis, V. (2009). Shape-value abstraction for verifying linearizability.
In Jones, N. D. and Miiller-Olm, M., editors, Verification, Model Checking,
and Abstract Interpretation, 10th International Conference, VMCAI 2009, Sa-
vannah, GA, USA, January 18-20, 2009. Proceedings, volume 5403 of Lecture
Notes in Computer Science, pages 335-348. Springer.

69



[41] Vafeiadis, V. (2010a). Automatically proving linearizability. In Touili, T.,
Cook, B., and Jackson, P., editors, Computer Aided Verification, 22nd Interna-
tional Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings,
volume 6174 of Lecture Notes in Computer Science, pages 450-464. Springer.

[42] Vafeiadis, V. (2010b). Rgsep action inference. In Barthe, G. and
Hermenegildo, M. V., editors, Verification, Model Checking, and Abstract In-
terpretation, 11th International Conference, VMCAI 2010, Madrid, Spain,
January 17-19, 2010. Proceedings, volume 5944 of Lecture Notes in Computer
Science, pages 345-361. Springer.

[43] Vafeiadis, V. and Parkinson, M. (2007). A marriage of rely/guarantee and
separation logic. In CONCUR 2007-Concurrency Theory, pages 256-271.
Springer.

[44] Villard, J., Lozes, E., and Calcagno, C. (2010). Tracking heaps that hop with
heap-hop. In Esparza, J. and Majumdar, R., editors, Tools and Algorithms
for the Construction and Analysis of Systems, 16th International Conference,
TACAS 2010, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Pro-
ceedings, volume 6015 of Lecture Notes in Computer Science, pages 275-279.
Springer.

[45] Winskel, G. (1993). The formal semantics of programming languages: an
introduction. MIT press.

70



Appendix A

Survey of Tools for Separation
Logic and Rely Guarantee

A.1 Introduction

This is a survey of the literature on formalisations of separation logic (and related
logics) within interactive proof assistants as well as other related tools. We also
include an annotated bibliography. Separation logic tools can be classified under
two general categories: a) those which support full functional verification within
an interactive proof assistant utilising an embedding of separation logic and a
verification condition generator (vgc); b) automated tools which aim to verify
more limited program properties - this category includes shape analysis, model
checking, and separation logic decision procedures.

A.2 Verification within proof assistants

A.2.1 Holfoot

Logic Abstract Separation Logic

Technique Theorem Proving (with some degree of automation)
Kinds of proof | Full functional correctness

Proof Assistant | HOL4

Tuerk, T. (2008). A separation logic framework in hol. In Otmane Ait Mohamed,
C. M. and Tahar, S., editors, Theorem Proving in Higher Order Logics: Emerging
Trends Proceedings, pages 116-122

The author proposes building a separation logic framework that is general
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enough to express different flavours of SL and that can be easily instantiated into
different programming languages. A formalisation of Abstract Separation Logic
in HOL is presented as a first step towards the proposed framework.
Contributions:

e A formalisation of Abstract Separation Logic in HOL, extended with pro-
cedure calls.

e Formalisation of a big part of the “variables as a resource” formulationof
SL

e Implementation of a fully automated tool for a language that is very similar
to smallfoot

Tuerk, T. (2009). A formalisation of smallfoot in HOL. In Berghofer, S., Nipkow,
T., Urban, C., and Wenzel, M., editors, Theorem Proving in Higher Order Logics,
22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-
20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer Science, pages

469-484. Springer

An HOL encoding of abstract separation logic with procedures (as described in
the previous citation) is used as the basis for a tool that can parse Smallfoot spec-
ifications and verify most of these fully automatically. In addition the tool can
reason about the content of data structures and not just their shapes, thereby
enabling the verification of fully functional specifications. Nontrivial examples
that have been verified with the tool include parallel mergesort and an interacive
filter function for singly-linked lists. The paper is also useful for its concise pre-
sentation of abstract separation logic.

Note: Holfoot supports verification of concurrent programs using conditional
critical regions and parallel composition. Tuerk has demonstrated this with at
least two example verifications of parallel mergesort and parallel tree disposal.

A.2.2 Ynot
Logic Hoare and separation logic
Technique Theorem Proving

Kinds of proof | Functional correctness
Proof Assistant | Coq

Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., and Birkedal, L. (2008a).
Ynot: dependent types for imperative programs. In Proceeding of the 15th ACM
SIGPLAN international conference on Functional programming, ICFP 2008, Vic-
toria, BC, Canada, September 20-28, 2008, pages 229-240
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Ynot is an axiomatic extension of Coq that supports writing, reasoning about,
and extracting higher-order dependently-typed programs with side effects. Ynot
adds to Coq support for effectful computations such as non-termination, access-
ing a mutable store, and throwing/catching exceptions. Ynot is based on Hoare
Type Theory (see related paper). Ynot has been used to build modules that
implement imperative maps with support for effectul iterators.

polymorphism and separation. J. Funct. Program., 18(5-6):865-911

Nanevski, A., Morrisett, J. G., and Birkedal, L. (2008b). Hoare type theory,

Proposes a novel approach to specification and verification that smoothly com-
bines dependent types and a Hoare-style logic for a language with higher-order
functions and imperative commands. The key mechanism is a type constructor
for Hoare (partial) triples { P} = : A {Q} which describes the effect of imperative
commands. Intuitively, this type can be ascribed to a stateful computation if,
when executed in a heap satisfying the precondition P, the computation either
diverges or results in a heap satisfying the postcondition () and returns a result
of type A.

Hoare types can be viewed as a kind of monad, which in functional program-
ming is a datatype that represents effectful computations. In Hoare type theory,
the supported operations on state involve allocation, deallocation, lookup, and
strong update, such that a location may be updated with values of varying types.
Hoare types can be nested, combined with other types, and abstracted within
terms, types, and predicates alike, thus improving upon the data abstraction
and information hiding mechanisms of the original Hoare logic, and leading to a
unified system for specifying, programming, and reasoning about programs.

A.2.3 Concurrent C minor

Logic Concurrent Separation Logic
Technique Theorem Proving

Kinds of proof | Functional correctness

Proof Assistant | Coq

The research work around C Minor and Concurrent C Minor is part of the
project of building a “verified software toolchain” at Princeton University (http:
//vst.cs.princeton.edu). In this context, the C Minor / Concurrent C Mi-
nor languages are typically used as intermediate languages between C and some
low-level language and the semantics for these have been mechanised and proved-
sound separation logics have been built as well.
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Appel, A. W. and Blazy, S. (2007). Separation logic for small-step cminor. CoRR,
abs/0707.4389

C minor is a mid-level imperative programming language ; there are proved-
correct optimizing compilers from C to Cminor and from Cminor to assemly
langueg. In this paper the authors redesign the language to make it suitable for
Hoare logic reasoning, and then construct a separation logic for it. A small-step
semantics is constructed, and a machine-checked proof of soundness of the sep-
aration logic w.r.t. to the semantics is constructed in the Coq proof assistant.
The small-step semantics is based on continuations mainly to allow a uniform
representation of statement execution. The small-step semantics deals with non-
local control constructs (return, exit) and is designed to extend to a concurrent
setting. In their construction of SL, the authors extended classical Hoare logic to
sextuples in order to take account of the nonlocal constructs. The authors have
also proved semantic equivalence between their small-step semantics and the big-
step semantics of Leroy’s CompCert certified compiler; hence the programs that
they prove in the separation logic can also be compiled by CompCert.

Hobor, A., Appel, A. W., and Nardelli, F. Z. (2008). Oracle semantics for concur-
rent separation logic. In Drossopoulou, S., editor, Programming Languages and
Systems, 17th Furopean Symposium on Programming, ESOP 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4960 of
Lecture Notes in Computer Science, pages 353-367. Springer

Concurrent Cminor is an extension of Cminor with support for shared memory,
spawnable threads, and first-class locks. In this paper the authors present a
modular operational semantics for Concurrent Cminor, as well as a concurrent
separation logic with first class locks and threads, and prove its soundness w.r.t.
the semantics.

Mansky, W. (2008). Automating separation logic for concurrent ¢ minor. Under-
graduate Thesis

In this undergraduate thesis the author demonstrates the implementation of sep-
aration logic for Concurrent C Minor within Coq. The syntax and semantics of
Concurrent C Minor is formalised and semi-automated tactics for C Minor are
extended to build a framework for proofs of safety of concurrent programs. In
addition the author describes a thread-modular shape analysis algorithm for in-
ferring lock invariants (due to Gotsman, et.al.) and uses it to transform a simple
C-like language into verified Concurrent C Minor.
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A.2.4 LA4.verified

Logic Separation Logic

Technique Theorem Proving

Kinds of proof | Safety and functional correctness
Proof Assistant | Isabelle

The L4.verified project is a project within the National ICT Australia (http:
//ssrg.nicta.com.au/projects/TS/14.verified/) with the aim of formally
verifying the correctness of the L4 operating system microkernel.

Tuch, H., Klein, G., and Norrish, M. (2007). Types, bytes, and separation logic. In
Hofmann, M. and Felleisen, M., editors, Proceedings of the 34th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2007,
Nice, France, January 17-19, 2007, pages 97-108. ACM

Extends previous work (described in the paper ” Unified Memory Model for Point-
ers”) in which the authors present a formalisation of the low-level, untyped ma-
chine state in a way that is suitable for proof abstractions and its application
to the verification of the virtual memory subsystem of the L4 OS microkernel.
In this paper the implementation is extended to reflect the real semantics of a
significant, strict subset of C; also the memory model is extended to support sep-
aration logic constructs and a shallow embedding is done in Isabelle; case studies
are presented of a simple list reversal and a full formal verification of the L4
kernel memory allocator.

A.3 Automated tools

A.3.1 Smallfoot

Logic Concurrent separation Logic

Technique Shape Analysis

Kinds of proof | Memory safety, data structure invariants
Proof Assistant | n/a

Smallfoot is an automatic verification tool that checks separation logic specifica-
tions of sequential and concurrent programs that manipulate recursive dynamically-
allocated (linked) data structures.
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Berdine, J., Calcagno, C., and O’Hearn, P. W. (2005a). Smallfoot: Modular au-
tomatic assertion checking with separation logic. In de Boer, F. S., Bonsangue,
M. M., Graf, S., and de Roever, W. P., editors, Formal Methods for Compo-
nents and Objects, 4th International Symposium, FMCO 2005, Amsterdam, The
Netherlands, November 1-4, 2005, Revised Lectures, volume 4111 of Lecture Notes
in Computer Science, pages 115-137. Springer

This paper is a tutorial-style introduction to Smallfoot, which is a tool for check-
ing certain lightweight specifications in separation logic. The assertions describe
the shapes of data structures rather than their detailed contents, and this allows
reasoning to be fully automatic. The input language allows first-order procedure
with reference and value parameters, and operations for allocating, deallocat-
ing, reading, and mutating heap cells. Smallfoot requires annotations for pre-
and post-conditions and loop invariants; in addition it supports annotations for
concurrency, based on a concurrent extension of separation logic.

On a high level the way Smallfoot works is that it chops an annotated program
into Hoare triples for certain symbolic instructions. The validity of these triples
is then decided using a symbolic execution mechanism (discussed in a related
paper). The symbolic execution reduces these triples into entailments P + @,
which are the verification conditions. The vcg algorithm is discussed in another
related paper.

The paper presents examples of the use of Smallfoot to verify shape properties
of linked lists, trees, and double-ended queues.

Berdine, J., Calcagno, C., and O’Hearn, P. W. (2005b). Symbolic execution
with separation logic. In Yi, K., editor, Programming Languages and Systems,
Third Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005,
Proceedings, volume 3780 of Lecture Notes in Computer Science, pages 52—68.
Springer

This paper describes the symbolic execution mechanism used by Smallfoot. It is
a method for automatically proving Hoare triples for loop-free code within Sepa-
ration Logic, for certain pre- and post-conditions which model “symbolic heaps”.
Intuitively a symbolic heap is a notion of program state that separates state into
two parts: a pure (heap-independent) part and spatial (heap-dependent) part. In
this heap model a location maps to a record of values. Formally a symbolic heap
has the form IT|X where II is the pure part and X the spatial part. The symbolic
execution mechanism applies a set of operational and rearrangement rules for
turning a Hoare triple of the form {II|X} C {II'|X'}, where C' is an (inductively-
defined) loop-free program, into a set of entailments of the form IT|3 - T[>

The paper also discusses a proof theory to for entailments II|X F IT'|X" and a
method for inferring frame axioms.
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Berdine, J., Calcagno, C., and O’Hearn, P. W. (2012). Verification condition
generation and variable conditions in smallfoot. CoRR, abs/1204.4804

This paper is a technical note to accompany the two papers above and describes:
e the variable conditions that Smallfoot checks
e the analysis used to check them

e the algorithm used to compute a set of verification conditions corresponding
to an annotated program, and

e the treatment of concurrent resource initialisation code

A.3.2 Space Invader

Space Invader is a prototype analyser for C programs based on separation logic.
It was developed between 2005-2008 and is no longer currently being maintained.
The website refers instead to the tools SLAyer and Predator.

A.3.3 SLAyer

Logic Separation Logic
Technique Program analysis
Kinds of proof | Memory safety
Proof Assistant | n/a

SLAyer is an automatic formal verification tool in development within Microsoft
Research which is aimed at proving properties of programs that may involve
reasoning inductively about data-structures. This is in response to the shortfalls
of first-generation software model checking tools, like SLAM or BLAST, which are
able only to build a shallow finite approximation of the data-structures created
during a program’s execution.

The initial goal of the SLAyer project is to develop an automatic tool that
will allow us to prove non-trivial properties of data-structures constructed during
the execution of industrial software components with 100,000 lines of code or less.

level code. In CAV

Berdine, J., Cook, B., and Ishtiaq, S. (2011). Slayer: Memory safety for systems-

This paper describes SLAyer, a program analysis tool designed to automatically
prove memory safety of industrial systems code. The authors discuss its imple-
mentation as well as their experience in applying the tool to Windows device
drivers. This paper accompanies the first release of SLAyer.
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SLAyer can prove the absence of memory safety errors such as dangling pointer
dereferences, double frees and memory leaks. Towards this goal, SLAyer searches
for invariants that form proofs in separation logic. The algorithms implemented
in the tool are aimed at verifying moderately sized (10K - 30K LOC) systems
code written in C. It is fully automatic and does not require any annotations or
hints from the user.

The assertion language used by SLAyer is an extension of that used by Small-
foot. The pure, heap-independent part of the logic, which includes formulas for
linear arithmetic and equality over addresses, is passed through to the Z3 SMT
solver. Proof search is performed using a sequent calculus that includes deduc-
tion rules specific to the fragment’s atomic formulas. A particular collection of
axioms involving — and [s are built into the calculus. SLAyer uses a version
of the Reps-Horowitz-Sagiv algorithm to perform a whole-program interproce-
dural analysis. Individual instructions, including specification statements, are
symbolically executed following Smallfoot.

A.3.4 SmallfootRG

Logic RGSep
Technique Shape analysis
Kinds of proof | Memory safety
Proof Assistant | n/a

SmallfootRG is an extension of Smallfoot with Vafeiadis and Parkinson’s combi-
nation of rely/guarantee and separation logic. It is now obsolete and superseded
by a tool called Cave (see next section).

Calcagno, C., Parkinson, M., and Vafeiadis, V. (2007). Modular safety checking

for fine-grained concurrency

Main contribution: the authors automate a suitable subset of RGSep and
implement a modular tool that automatically verifies safety properties of class of
intricate concurrent algorithms.

The tool symbolically executes the code and produces verification conditions
that, if proved valid, imply that the program is correct wrt the user-supplied
pre/post-condition pairs. The tool splits the state (i.e. the program heap) into
local and shared state and maintains this partition throughout the symbolic ex-
ecution. The assertions are restricted to a fragment of separation logic that is
suitable for symbolic execution as used by the smallfoot tool. The tool starts with
the precondition and then symbolically executes the code to derive a postcondi-
tion, and then checks that this derived postcondition implies the user-supplied
postcondition.
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In order to handle fine-grained concurrency, the tool requires the user to
describe therad interference in terms of action annotations. The tool is limited
to checking the following safety properties: data integrity, memory leaks, and
race conditions.

Other technical contributions include:

e Enriching the set of SL operators that are handled automatically
e A procedure for calculating the interference imposed by the environment
e A symbolic execution of RGSep assertions

e An automatic safety checker for list-manipulating programs

Verification of a series of fine-grained concurrent algorithms

A.3.5 Cave: Concurrent Algorithm VErifier
Logic RGSep

Technique Program analysis
Kinds of proof | Memory safety and linearizability
Proof Assistant | n/a

Cave is an automated verification tool for proving memory safety and linearizabil-
ity (that is, atomicity and functional correctness) of concurrent data structures.
The tool consists of a program analyser implementing the RGSep action infer-
ence algorithm using the shape-value abstract domain, as well as a procedure for
searching for linearisation point assignments. There is also a prototype extension
of Cave for verifying lock-freedom of concurrent algorithms.

Vafeiadis, V. (2010a). Automatically proving linearizability. In Touili, T., Cook,
B., and Jackson, P., editors, Computer Aided Verification, 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings, volume
6174 of Lecture Notes in Computer Science, pages 450-464. Springer

The main contribution of this paper is an algorithm for verifying linearizability
of a concurrent shared data structure (which we shall also call a “library”). The
algorithm is implemented in a tool called CAVE which is then used to verify a
number of practical concurrent stack, queue, and set algorithms in the literature.
A key insight used in the algorithm is that linearisation points of an operation can
occur both in “pure” executions, i.e., those which complete without modifying
the shared state, and in “effectful” operations, i.e. those which modify the shared
state. A procedure is given for constructing a “pure linearizability checker” which
identifies potential linearisation points for any pure executions of an operation. A
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procedure is then given for identifying all candidate linearisation points and then
all the operations are then instrumented with these linearisation points. These
instrumented operations are then validated by a verification procedure. This ver-
ification procedure constructs the most general client of the library, which is a
client consisting of a constructor for the library followed by an unbounded paral-
lel composition of threads, each of which non-determinstically executes one of the
library’s operations in a loop. The procdure then uses an automatic static anal-
ysis technique to prove that the library is memory safe and that the assertions
in any assert statement in the library are always satisfied. The static analysis
procedure is the RGSep action inference technique, described in a separate paper.

Vafeiadis, V. (2010b). Rgsep action inference. In Barthe, G. and Hermenegildo,
M. V., editors, Verification, Model Checking, and Abstract Interpretation, 11th
International Conference, VMCAI 2010, Madrid, Spain, January 17-19, 2010.
Proceedings, volume 5944 of Lecture Notes in Computer Science, pages 345-361.
Springer

This paper presents an algorithm for calculating (i.e. automatically inferring) a
set of RGSep actions that overapproximate the interference that a thread causes
to its concurrent environment.

Vafeiadis, V. (2009). Shape-value abstraction for verifying linearizability. In
Jones, N. D. and Miiller-Olm, M., editors, Verification, Model Checking, and
Abstract Interpretation, 10th International Conference, VMCAI 2009, Savannah,
GA, USA, January 18-20, 2009. Proceedings, volume 5403 of Lecture Notes in
Computer Science, pages 335-348. Springer

Contributions: Presents a simple proof method for verifying linearizability given
a set of linearisation points (the user must annotate the locations of the Lp’s).
The method can handle Ip’s occuring in a different thread other than the one
being verified. The technique employs a shape analysis technique that can re-
member an adjustable amount of information about the values being stored by
the data structure. It also employs a version of RGSep with simplified proof rule
for atomic sections, thereby simplifying action specifications for operations such
as CAS. The tool compares favourably with other known tools, and succeeded in
proving several concurrent algorithms that are known to be linearizable.
The technique makes the following assumptions:

e Memory model is sequentially consistent (what is the implication of this
assumption)? This means that parallel composition can be viewed as trace
interleaving

e the program must be accurately analysable by shape analysis - this limits

80



the analysis to programs operating on linked lists
e The user must annotate the locations of the linearisation points.
e The user must describe the interference imposed by the module.

More details on the technique: Given a linked list data structure with and algo-
rithms for its operations including an init() operation for setting up the initial
state of the data structure, the tool proves linearizability as follows: First the
user provides the following additional inputs:

1. The user annotates the locations of the linearisation points in the code

2. The user specifies a set of "actions” i.e. precondition-postcondition pairs
that summarise the possible atomic effects of the algorithms. These actions
are specified in separation logic. If the user does not supply these, the
tool can extract the specification by symbolically executing the code in a
sequential environment

The technique then does the following:

1. Infers an abstraction map i.e. a relation between the concrete states and
the abstract states of the data structure

2. Inlines the specifications in the parts of the code annotated with Ip’s
3. Checks automatically that the following properties hold:

(a) the abstraction map is an invariant of the system: it does this by
first inferring the postcondition of the init() method and then applies
a "stabilization” algorithm which is a fixed point computation that
approximates an assertion that is invariant wrt to the actions specified
by the user.

(b) Every method execution trace, whether terminating or not, has at
most one Ip

(c) Every terminating execution trace of a method has at least one lp

(d) Whenever a method terminates, it returns the same value as the speci-
fication embedded at the Ip (b,c, and d are done by symbolic execution)
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A.3.6 Hip

Logic Separation Logic

Technique Shape analysis and decision procedures
Kinds of proof | Shape and size properties

Proof Assistant | n/a

Nguyen, H. H., David, C., Qin, S., and Chin, W. (2007). Automated verification of
shape and size properties via separation logic. In Cook, B. and Podelski, A., edi-
tors, Verification, Model Checking, and Abstract Interpretation, 8th International
Conference, VMCAI 2007, Nice, France, January 1/-16, 2007, Proceedings, vol-
ume 4349 of Lecture Notes in Computer Science, pages 251-266. Springer

Contributions:

e Provides a shape predicate specification mechanism that can capture a
wide range of data structures together with size properties, such as var-
ious height-balanced trees, priority heaps, and sorted lists.

e Provides a mechanism to soundly approximate each shape predicate by a
heap-independent invariant

e Designs a new procedure to check entailment of separation heap constraints;
the procedure uses unfold /fold reasoning to deal with shape definitions

e Developed a prototype verification system with the above features.

A.3.7 JStar
Logic Separation logic
Technique Theorem proving, symbolic execution, and abstract interpretation

Kinds of proof | Functional correctness of object-oriented programs

Proof Assistant | n/a

Distefano, D. and Parkinson, M. J. (2008). jstar: towards practical verification
for java. In Harris, G. E., editor, Proceedings of the 23rd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA, pages 213-226.
ACM

Presents an automatic verification tool based on separation logic aiming at object-
oriented programs written in Java. It integrates a theorem prover and a symbolic
execution and abstraction techique for SL that are tailored to OO verification.
The abstract interpretation technique is able to perform fixed point computations
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on properties resulting in the combination of heap information as well as data
contents. It also automatically infers loop invariants.

Demonstrates the use of the tool in verifying some OO design patterns: visitor,
subject/observer, factory, and pooling,.

Note that there is also a jStar eclipse plugin for better usability. See (http:
//research.microsoft.com/apps/pubs/default.aspx?id=180042)

A.3.8 Verifast

Logic Separation logic

Technique Symbolic execution / SMT

Kinds of proof | Full functional correctness of lock-free data structures
Proof Assistant | n/a

VeriFast is a verifier for single-threaded and multithreaded C and Java programs
annotated with preconditions and postconditions written in separation logic. To
enable rich specifications, the programmer may define inductive datatypes, prim-
itive recursive pure functions over these datatypes, and abstract separation logic
predicates. To enable verification of these rich specifications, the programmer
may write lemma functions, i.e., functions that serve only as proofs that their
precondition implies their postcondition. The verifier checks that lemma func-
tions terminate and do not have side-effects. Since neither VeriFast itself nor
the underlying SMT solver need to do any significant search, verification time is
predictable and low.

Jacobs, B. and Piessens, F. (2008). The verifast program verifier. Technical re-
port, Department of Computer Science, Katholieke Universiteit Leuven, Belgium

Jacobs, B., Smans, J., and Piessens, F. (2010). A quick tour of the verifast
program verifier. In Ueda, K., editor, Programming Languages and Systems -
8th Asian Symposium, APLAS 2010, Shanghai, China, November 28 - December
1, 2010. Proceedings, volume 6461 of Lecture Notes in Computer Science, pages
304-311. Springer

A.3.9 VeriSmall

Logic Separation logic
Technique Shape analysis
Kinds of proof | Shape propertes
Proof Assistant | Coq
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http://research.microsoft.com/apps/pubs/default.aspx?id=180042

Appel, A. W. (2011). Verismall: Verified smallfoot shape analysis. In Jouannaud,
J. and Shao, Z., editors, Certified Programs and Proofs - First International Con-
ference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings, volume
7086 of Lecture Notes in Computer Science, pages 231-246. Springer

Implements a version of Smallfoot in Coq that uses a ”paramodulation”-based
heap theorem prover (see notes below). The implementation is extractable to an
effiicient ML program. The program is verified correct wrt the Separation Logic
for CMinor, which in turn is verified correct with respect to Leroy’s operational
semantics for CMinor.

How the tool relates to Smallfoot:
This is a re-implementation of Smallfoot in Coq. Specifically the author re-
implements the following in Gallina (which is Coq’s specification language):

e Smallfoot’s decision procedures for entailment, and its soundness proof

e The algorithms for rearrangement of preconditions to isolate conjuncts of
the form e — ¢’

e The symbolic execution mechanism, and its soundness proof

The author does not implement a frame inference mechanism (which Smallfoot
does).

How the tool relates to Holfoot:

As the author notes: Holfoot is “proof-generating” rather than “verified”. Holfoot
moves from fully automatic shape proofs to semiautomatic functional correctness
proofs, generating lemmas that must be manually proven (or proven with an SMT
solver). Holfoot does not connect to a semantics of a real programming language
but to an abstract local-action semantics. In contrast, the author focuses on an
efficient and verifiable static analysis algorithm for a real programming language
connected to a real compiler, but unlike Holfoot do not progress from shape anal-
ysis to functional correctness proofs.

What paramodulation is and what can it do:

Paramodulation is a resolution theorem-proving algorithm. In a paper by
Navarro and Rybalchencko (“Separation Logic + Superposition Calculus = Heap
Theorem Prover”) the authors apply paramodulation to the heap entailment
decision problem and obtain a program that is significantly faster than the origi-
nal Smallfoot implementation. Paramodulation permits modular introduction of
theories, including “superposition calculus”, which is a theory of equalities and
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inequalities. Navarro and Rybalchenko extend paramodulation with superposi-
tion and with Smallfoot’s spatial terms to yield a “heap theorem prover”. In his
work, Appel implements this heap theorem prover within Coq (more details on
this in a related paper — see the reference for VeriStar in the next section).

A.3.10 VeriStar

Logic Separation Logic
Technique Theorem proving
Kinds of proof | Heap entailments
Proof Assistant | Coq

Stewart, G., Beringer, L., and Appel, A. W. (2012). Verified heap theorem prover
by paramodulation. In Thiemann, P. and Findler, R. B., editors, ACM SIG-
PLAN International Conference on Functional Programming, ICFP’12, Copen-
hagen, Denmark, September 9-15, 2012, pages 3-14. ACM

VeriStar is a verified theorem prover for a decidable subset of separation logic. It
is

e purely functional — implemented in Gallina (the pure functional language

embedded in Coq)

e machine-checked — there is a proof in Coq that whenever the tools says that
an entailment is valid, the entailment holds in a proved-sound separation
logic for C minor

e end-to-end — when the analysis + prover says that a C minor program is
safe, the program will be compiled to a semantically equivalent assembly
language program that runs on real hardware

e efficient — the prover implements a state-of-the-art algorithm based on
paramodulation for deciding heap entailments and uses highly tuned veri-
fied functional data structures

e modular — Veristar can be retrofitted to other static analyses as a compatible
entailment checker and its soundness proof can be easily ported to other
separation logics
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A.3.11 Thor

Logic Separation logic

Technique Shape analysis and decision procedures
Kinds of proof | Memory safety and arithemtic properties
Proof Assistant | n/a

Magill, S., Tsai, M., Lee, P., and Tsay, Y. (2008). THOR: A tool for reasoning
about shape and arithmetic. In Gupta, A. and Malik, S., editors, Computer
Aided Verification, 20th International Conference, CAV 2008, Princeton, NJ,
USA, July 7-14, 2008, Proceedings, volume 5123 of Lecture Notes in Computer
Science, pages 428-432. Springer

THOR stands for Tool for Heap-Oriented Reasoning. The tool’s goal is to prove
properties of programs that manipulate heap-based data structures. The tool
currently supports proving memory safety of programs that manipulate doubly-
linked lists and also supports arithmetic reasoning via the approach described
another paper. In this context “arithmetic reasoning” refers to the ability to
prove properties involving arithmetic inequalities over integer program variables,
integers stored in the heap, and list lengths. The tool outputs “arithmetic ab-
stractions”, which are purely stack-based programs with the property that un-
reachability of the error state in the arithmetic program implies memory safety of
the original program. Such programs provide an interesting source of examples
for tools targeting arithmetic reasoning.

A.3.12 HeapHop

Logic Separation logic

Technique Verification condition generation

Kinds of proof | Memory safety, race freedom, functional correctness
Proof Assistant | n/a

Villard, J., Lozes, E., and Calcagno, C. (2010). Tracking heaps that hop with
heap-hop. In Esparza, J. and Majumdar, R., editors, Tools and Algorithms for the
Construction and Analysis of Systems, 16th International Conference, TACAS
2010, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume
6015 of Lecture Notes in Computer Science, pages 275-279. Springer

Heap-Hop can check concurrent programs that manipulate the heap, particularly
list and tree structures, and that synchronise using Hoare monitors and copyless
message passing (i.e. passing pointers instead of data structures). Heap-hop also
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supports checking programs that communicate asynchronously via channels. It is
based on vegen and checking and requires the user to provide pre/post-conditions
and loop invariants. In order to establish global properties such as absence of
memory leaks and progress properties, Heap-Hop uses “contracts”, which is a
form or session type or communicating finite state machine that dictates which
messages are admissible on a channel. Heap-hop can prove the following proper-
ties:

e memory safety —i.e. a program does not fault on memory accesses
e race freedom

e contract obedience

e compliance with user specifications (pre/post-conditions)

e deadlock freedom

e absence of memory leaks

The tool has been used in several case studies including concurrent programs for
copyless list transfer, communication protocols, and parallel tree disposal.

A.3.13 Xisa (Extensible Inductive Shape Analysis

Logic Separation logic
Technique Shape analysis
Kinds of proof | Shape properties
Proof Assistant | n/a

Xisa is an automatic program analysis and verification tool for reasoning about re-
cursive data structures, such as pointer-based lists and trees. The Xisa approach
is unique in that it utilizes high-level, program developer-oriented specifications
to focus the analysis to properties of interest to the developer.

Chang, B. E., Rival, X., and Necula, G. C. (2007). Shape analysis with structural
invariant checkers. In Static Analysis, 14th International Symposium, SAS 2007,
Kongens Lyngby, Denmark, August 22-2/4, 2007, Proceedings, pages 384—401

A.4 Tabular summary of tools
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Tool Logic Concurrency Technique Properties
theorem static symbolic decision | full cor- memory shape
proving analysis  execu- proce- rectness safety invari-

tion dures ants

Holfoot Abstract SL v v X X X v X v

Ynot Hoare Logic / SL | x v X X X v X X

Concurrent C Minor | Concurrent SL v v X X X v X X

L4.verified SL X v X X X v X X

Smallfoot Concurrent SL v X v v v X v v

Space Invader SL X X v X X X v X

SmallfootRG RGSep v X v v v X v v

CAVE RGSep v X v v v X v v

Hip SL X X v v v X X v

JStar SL X v v v X v X X

Verifast SL v X X v v (SMT) | v X X

Verismall Concurrent SL v X v v v X v v

Veristar SL X v X X v X X v

Thor SL X X v X v X v X

HeapHop SL v v X X X v v X

Xisa SL X X v X X X v v

Table A.1: Summary of separation logic tools
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