Providing Acceleration for

Mobile Gaming as A Service

Elliott (Jiaqi) Wen

A thesis
submitted to the Victoria University of Wellington
in fulfilment of the
requirements for the degree of
Master of Science

in Computer Science.

Victoria University of Wellington
2016

Abstract

In recent years, the mobile gaming industry has made rapid progress.
Developers are now producing numerous mobile games with increasingly
immersive graphics. However, these resource-hungry applications inevitably
keep pushing well beyond the hardware limits of mobile devices. The lim-
itations causes two main challenging issues for mobile game players. First,
limited computational capabilities of smart devices are preventing rich
multimedia applications from running smoothly. Second, the minuscule
touchscreens impede the players from smoothly interacting with devices
as they can do with PCs.

This thesis aims to address the two issues. Specifically, we implement
two systems, one for the application accelerations via offloading and the
other for alternative interaction approach for mobile gaming. We identify
and describe the the challenging issues when developing the systems and
describe our corresponding solutions.

Regarding the first system, it is well recognized the performance of
GPUs on mobile devices is the bottleneck of rich multimedia mobile ap-
plications such as 3D games and virtual reality. Previous attempts to tackle
the issue mainly mirgate GPU computation to servers residing in remote
datacenters. However, the costly network delay is especially undesir-
able for highly-interactive multimedia applications since a crisp response
time is critical for user experience. In this thesis, we propose GBooster,
a system that accelerates GPU-intensive mobile applications by transpar-
ently offloading GPU tasks onto neighboring multimedia devices such
as SmartTV and Gaming Consoles. Specifically, GBooster intercepts and
redirects system graphics calls by utilizing the Dynamic Linker Hooking

technique, which requires no modification of the apps and mobile sys-
tems. Besides, GBooster intelligently switches between the low-power
Bluetooth and the high-bandwidth WiFi interface to reduce energy con-
sumption of network transmissions. We implemented the GBooster on the
Android system and evauluate its performance. The results demonstrate
that GBooster can boost applications’ frame rates by up to 85%. In terms of
power consumption, GBooster can achieve 70% energy saving compared
with local execution.

Second, we investigate the potential of built-in mobile device sensors
to provide an alternative interaction approach for mobile gaming. We
propose UbiTouch, a novel system that extends smartphones with vir-
tual touchpads on desktops using built-in smartphone sensors. It senses a
user’s finger movement with a proximity and ambient light sensor whose
raw sensory data from underlying hardware are strongly dependent on
the finger’s locations. UbiTouch maps the raw data into the finger’s posi-
tions by utilizing Curvilinear Component Analysis and improve tracking
accuracy via a particle filter. We have evaluate our system in three sce-
narios with different lighting conditions by five users. The results show
that UbiTouch achieves centimetre-level localization accuracy and poses
no significant impact on the battery life. We envisage that UbiTouch could

support applications such as text-writing and drawing.

Acknowledgments

Undertaking this degree has been truly life-changing experience for me
and it would not have been possible for me to do so without the valuable
support and guidance I received from many people.

First and foremost, I would like to express my profound gratitude to
my supervisors Prof Winston Seah and Dr Bryan Ng for all the support
and encouragement they gave me. During my quest to the master degree,
they have constantly provided me with systematic research guidance and
valuable financial support, which enable me to obtain the degree. Their
kindness and patience towards me gave me an indelible impression that
having such an invaluable opportunity to learn from them must be one of
the most fortunate things in my life.

My thanks also go to Miss Victoria Wong, who has been the stalwart
supporter constantly regardless of my fickle moods and immatureness.
Moreover, I wish to acknowledge support from Miss Madelyn Ma, with-
out whom I could have obtained this degree much earlier. Finally, my
deepest appreciation belongs to my family members for their constant
support and encouragement. Without them, I would have never been able
to go so far.

111

iv

Contents

1 Introduction 1

1.1 Problem Statements 2

1.1.1 Limited Computational Resources and Battery Life . 2

1.1.2 Limited Smartphones’ Input Space 3

1.2 Research Framework 4

1.3 Research Questions and Contributions 6

14 OrganizationoftheThesis 8

2 Literature Review 9
2.1 Literature Review on Mobile Application Acceleration

2.1.1 Mobile Cloud Computing and Mobile Cloud Gaming 9

212 OffloadingMethods 12

213 EnergyEfficiency 14

2.2 Literature Review on Mobile Interaction 16

221 Extending Smartphones’ Input Space 16

2.2.2 Built-in Sensor Based Input Approaches 17

2.2.3 Virtual Touch Surface 17

3 GBooster 19

3.1 Motivations e 19

32 SystemOverview 22

3.3 Enable GPU Task Offloading 24

3.3.1 Intercepting and Rewriting OpenGL ES Functions . . 24

v

CONTENTS

3.3.2 Forwarding Graphics Commands
3.3.3 Executing Commands and Retrieving Results

3.4 Energy-saving Network Transmission
3.4.1 Eliminating Redundancy of Network Traffic
3.4.2 Enabling Transmission via Low-Power Interfaces

3.5 Harnessing Capacities from Multiple Service Devices
3.5.1 Parallelizing GPU Computation
3.5.2 Maintaining State Consistency among Devices
3.5.3 Assigning Requests to Devices

3.6 System Evaluation
3.6.1 Sample Games and Devices
3.6.2 Application Acceleration
363 PowerSaving
3.6.4 Multiple Devices
3.6.5 Performance on non-gaming apps
3.6.6 Comparison with Cloud-based Solutions
3.6.7 SystemOverhead

3.7 Conclusion

UbiTouch
41 SystemOverview
42 A Peek at Trailing a Finger Using ALSandPS.
4.3 Obtaining Finger Locations from Raw Sensor Data
4.4 Improving Tracking Accuracy via a Hidden Markov Model .
45 Touch Action Detection.
4.6 Runtime Calibration and Adaptation
47 System Evaluations
471 Accuracy of Finger Tracking
4.7.2 Accuracy of Touch Action Detection
473 PowerConsumption

474 ApplicationTests

CONTENTS vii

48 Conclusion L o o 68

5 Conclusions and Suggestions for Future Research 69
51 Conclusions 69
5.2 Suggestions for Future Research 70
521 GBooster 71

522 UbiTouch 72

viii CONTENTS

Chapter 1
Introduction

The mobile gaming industry is booming rapidly. According to Global
Games Market Report [25], mobile gamers worldwide will generate a to-
tal of $99.6 billion in revenues in 2016, up 8.5% compared to 2015. For
the first time, mobile gaming will take a larger share than personal com-
puter (PC) with $36.9 billion, up 21.3% globally and mobile games have
become the most important digital platform for gamers and publishers
alike. The game developers are producing mobile games with increas-
ingly high-definition 3D graphical interfaces and visual effects. On the
other hand, mobile gamers become more demanding and continue to in-
crease their expectations.

Last decades have witnessed tremendous increase in mobile device
performance. Smart devices are now equipped with the increased pro-
cessing power, better battery life, vastly improved networking speeds, and
sensitive touch-screens. According to the survey [26], the mainstream cen-
tral process units (CPUs) of mobile devices provide a 50 times increase in
performance over chips from five years ago, consuming 75 percent less
energy than chips from three years ago. However, despite the promising
progress, when handling the tasks formerly reserved for the desktop PCs,
especially gaming, the mobile devices are still facing two main challenges.

The first challenge lies in limitations of computational resources and bat-

1

2 CHAPTER 1. INTRODUCTION

tery life. While the other one arises from the limited size of touchscreens,
which prevent players from smoothly interacting with devices as they can
do with PCs.

1.1 Problem Statements

In this section, we will elabroate the two main challenging issues related

to mobile gaming, which motivate this work.

1.1.1 Limited Computational Resources and Battery Life

Multimedia applications such as gaming and augmented reality are pro-
liferating in mobile devices nowadays. As current devices are still fac-
ing constraints of processing capabilities and battery power due to their
minuscule physical sizes, the resource-hungry applications are inevitably
pushing the limit of the devices, causing the applications’ running in a low
frame rate and leading to a short battery lifetime.

Considerable research works such as MAUI [40] and CloneCloud [37]
attempt to alleviate these issues by offloading CPU computation tasks to
cloud. However, the existing systems barely benefit mobile gaming appli-
cations. It is due to that although a multi-media mobile application gener-
ally involves CPU and GPU computation, it is often the case that the appli-
cation is limited by GPU performance. To bridge the gap, a small number
of studies focusing on offloading GPU tasks have been carried out. For
instance, OnLive [13] and G-Cluster [46] feature a remote-rendering archi-
tecture, in which, multimedia applications run in cloud servers and the
screen-shots of the applications are delivered to users through the Inter-
net. Meanwhile, the users’ control inputs are transmitted and replayed in
the servers. Recently, a more sophisticated Component-based offloading
architecture has been proposed in [35]. Instead of executing entire applica-

tions in cloud servers, it distributes the application’s independent compo-

1.1. PROBLEM STATEMENTS 3

nents to either cloud servers or local devices for execution, as determined
by the devices” current workloads and their network connectivities.

Despite the promising results obtained, these systems mentioned above
possess certain limitations. In particular, the existing platforms only allow
users to use a limited number of applications that have been deployed in
the cloud beforehand. Besides, as the cloud tends to be remotely located,
the network delay incurred by transferring screen-shot frames in remote-
rendering platforms can be very costly. This is especially undesirable for
some highly-interactive applications such as action games involving mul-
tiples players, where a crisp response time is critical to the user’s experi-
ence. Though the Component-based architecture may alleviate the latency
issue by avoiding screen-shot transmission, it causes unbearable burden
to developers who are required to modify and recompile source codes for
legacy software.

It can be seen that there exists a research gap for acclerating multimedia

applications and reduce their energy consumption via offloading.

1.1.2 Limited Smartphones’ Input Space

Unlike desktop computers which mainly use a mouse for input, mobile
devices and tablets mainly use the touchscreens as the input source. Al-
though the touchscreen provides a straightforward way for users to in-
teract with the devices, it indeed possesses several significant drawbacks
compared with the mouses, which are listed in table.1.1. These limitations
may impede players from enjoying the smooth interaction with the mobile
games.

This difficulty has motivated various researchers to explore alterna-
tive interaction technologies for mobile devices. Notable systems such as
RF-IDraw [75] and TypingRing [66] have been able to achieve very good
tracking accuracy. However, they rely heavily on peripheral devices such
as extra RFID tags and cameras, which may significantly limit the porta-

4 CHAPTER 1. INTRODUCTION

Table 1.1: Comparsion between mouses and touchscreens

Mouse Touchscreen
Low (fat-fi
Precision High ow (fat-finger
problem)
No, thus allowing f ti
Obscures view of screen .O U arowing for cCOntnuous Yes
visual feedback
Suitable for huge screens | Yes No
Number of controls 3: left/right button, scroll wheel |1

bility of smart devices. To address the portability issue, researchers have
attempted to take advantage of built-in sensors to achieve the same pur-
pose. For example, Finger-in-Air [64] utilizes a smartphone camera to
estimate users’ finger gestures. UbiK [76] leverages microphones on a
smartphone to detect keystroke locations, enabling text-input on a sheet
of paper where a keyboard outline is printed. UbiK [76] is solely designed
for distinguishing different keys a user presses. It may not support appli-
cations that require continuous finger tracking, for instance, handwriting
input or drawing. Despite the promising results obtained, vision-based
systems [64] require the camera module to be continuously switched on.
This could drain the battery quickly and its performance may be nega-
tively impacted by the low-light environment.

Therefore, how to utilize built-in low-power sensors to constantly lo-
calize and track a users finger, enabling touchpad-like input experience to
better support mobile gaming remains unsolved.

1.2 Research Framework

In this thesis, we propose a framework that aims to address the two chal-
lenging issues mentioned above. Specifically, the framework aims to the

following objectives.

1.2. RESEARCH FRAMEWORK 5

1. Run GPU-intensive multimedia applications. The framework en-
ables smart devices to run a multimedia application with high de-
manding requirement of graphics processing, regardless of their hard-

ware capabilities.

2. Extend battery life. The framework reduces energy consumption
incurred by heavy GPU utilization, thus extend the battery life. It
would be particularly useful when the battery is running low, but

the users still want to use their devices for a longer time.

3. Provide smooth interaction experience for players. The framework
aims to enhance smartphones with virtual touchpads through the
built-in smartphone sensors to provide smoother interaction for mo-
bile gaming.

In this thesis, we implement our framework with two main systems
named GBooster and UbiTouch respectively. Specifically, to address the is-
sue resulted from limited computational resources, we introduce GBooster,
a system that accelerates multimedia mobile applications by seamlessly
leveraging ambient computation capacities. GBooster utilizes a novel GPU
computation offloading technique to accelerate GPU-intensive mobile ap-
plications. Without modification and deployment of the applications, this
technique transparently offloads GPU tasks onto neighboring multime-
dia devices such as gaming consoles, personal computers, and Smart TVs.
As the devices are located at the close physical proximity to users, the
network connections tend to have tiny communication delays and a high
bandwidth, thereby guaranteeing the user’s experience for highly-interactive
applications.

To tackle the issue resulted from the limited input space of mobile
devices, we propose UbiTouch, a novel system that achieves the goal of
augmenting smartphones with virtual touchpads by leveraging built-in
smartphone sensors. Specifically, the smartphone’s proximity sensor (PS)

and ambient light sensor (ALS) are utilized to sense the movement. Mean-

6 CHAPTER 1. INTRODUCTION

while, the microphone and gyroscope sensors are used to detect touch ac-
tions such as tapping and dragging. These sensors are readily available in

almost every smart device and of low-power consumption.

1.3 Research Questions and Contributions

In this thesis, we elaborate research issues of the two systems and demon-
strate the corresponding solutions for them.

Regarding the GBooster, the practical implementation entails substan-
tial challenges. First of all, we expect to accelerate every mobile game
which may be implemented using different graphics engines or even dif-
ferent programming languages. It is considered to be challenging to pro-
pose a universal GPU task offloading technique for the apps. Secondly,
Though offloading compute-intensive GPU tasks save considerable amounts
of power, the extra energy cost incurred by the network transmission can
still significantly drain a cell phone’s battery. How to reduce energy over-
head of network communication without degrading system performance
remains a non-trivial issue. Finally, in a real-world environment where
multiple users simultaneously access the services provided by a number of
multimedia devices, how to efficiently incorporate distributed computa-
tion capacities of the devices and meet the requirement of the multi-users
is not a simple task.

In this thesis, we develop practical solutions to cope with the above
challenges. To enable offloading for all multimedia applications, we inter-
cept system graphics calls and redirect them to nearby devices. This ap-
proach requires no modification and deployment of the apps beforehand.
To lower down the energy overhead of offloading, GBooster first elimi-
nates redundant data in network traffic and intelligently switches between
the high-throughput high-power WiFi interface and the low-throughput
low-power Bluetooth interface based on the traffic volume. To handle re-

quests from multiple users efficiently, GBooster adopts a task allocation

1.3. RESEARCH QUESTIONS AND CONTRIBUTIONS 7

mechanism that takes requests” workload and priority into consideration.
We will discuss the details in Chapter .3.

As for the second system UbiTouch, the key challenge lies in achieving
fine-grained localization and tracking using sensors that are originally de-
signed to provide coarse-grained information. An ALS is typically used to
measure the luminance of ambient lighting [59]. Readings from this sensor
are not directly related to a finger’s movement. Similarly, a PS is designed
to detect the presence of nearby objects and merely reports binary distance
values representing “near” or “far” to smartphone operating systems [47],
which does not benefits the tracking. In this paper, we take a closer exam-
ination of the internal structures and underlying mechanisms of the sen-
sors [30] and uncover the potential for these sensors to be used to achieve

our goal.

Specifically, we implement UbiTouch as a system with three key com-
ponents: finger tracking, touch action detection, and run-time calibra-
tion. We introduce a finger localization framework that adapts Curvilinear
Component Analysis for mapping the raw sensor data to two-dimensional
coordinates. It then estimates the finger movement trajectories by utiliz-
ing a particle filter which integrates the historic finger locations to boost
the tracking accuracy. We also propose a touch action detection algorithm
to capture touch tapping and dragging events on ordinary surfaces by ap-
plying hypothesis testing techniques on audio signals from microphones.
To provide reliable results, we leverage the built-in gyroscope to combat
the environment noises. Additionally, we design a runtime calibration
mechanism that takes advantage of extra run-time user feedback data to
re-calibrate the tracking algorithm and combat minor variation of back-

ground light conditions. The details will be elaborated in Chapter. 4.

8 CHAPTER 1. INTRODUCTION

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents a lit-
erature review for mobile gaming. Chapter 3 elaborates the design of
the GBooster prototype. Chapter 4 demonstrates the implementation of
UbiTouch system, which serves as a human computer interface for mobile
gamers. Finally, we conclude the thesis and discuss the directions of future

works in Chapter 5.

Chapter 2
Literature Review

This chapter provides an overview of mobile application acceleration and

a review of mobile interaction technologies.

2.1 Literature Review on Mobile Application Ac-

celeration

We start this section with a short overview of Mobile Cloud Computing,
which is the core technique of mobile application acceleration. We then
narrow our focus on Mobile Cloud Gaming, which has drawn a great
amount of attention from various researchers recently. We elaborate exist-
ing works in several research areas such as offloading techniques, energy

efficiency, network communication, and security and privacy.

2.1.1 Mobile Cloud Computing and Mobile Cloud Gam-

ing

Mobile devices are increasingly becoming an essential part of human life.
Mobile users nowadays are offered various services from mobile applica-

tions in various categories such as entertainment, health, games, business,

9

10 CHAPTER 2. LITERATURE REVIEW

social networking, travel and news. Nevertheless, the mobile devices are
still facing many challenges in their resources (e.g., battery life, storage,
and bandwidth) and communications (e.g., mobility and security). The
limited resources significantly impede the improvement of service quali-
ties.

Recently, Cloud computing (CC) [88] has been widely recognized as
the next generation computing infrastructure. CC allows users to utilize
infrastructure (e.g., servers, networks, and storages), platforms (e.g., mid-
dleware services and operating systems), and software (e.g., application
programs) provided by cloud providers at low cost. Moreover, CC entitles
users to utilize resources elastically in an on-demand fashion. Therefore,
applications can be rapidly provisioned and released with the minimal
management efforts.

With the explosion of mobile applications and the support of CC for a
variety of services for mobile users, mobile cloud computing (MCC) [43]

is introduced as an integration of CC into the mobile environment.

Definition of MCC

Formally, MCC is defined by The MCC forum [11] as follows.

Mobile cloud computing at its simplest, refers to an infrastruc-
ture where both the data storage and data processing happen
outside of the mobile device. Mobile cloud applications move
the computing power and data storage away from mobile phones
and into the cloud, bringing applications and MC to not just
smartphone users but a much broader range of mobile sub-

scribers.

In short, MCC provides mobile users with the data processing and storage
services in clouds. The mobile devices do not need a powerful specifica-

tion since all the complicated computation can be done in the cloud.

2.1. LITERATURE REVIEW ON MOBILE APPLICATION ACCELERATION11

Advantages of MCC

MCC brings about a great number of advantages as follows.

1. Improving processing power. Mobile cloud computing benefits in
reducing the running time of compute-intensive applications per-
formed on the limited-resource devices. With MCC, the complicated
computation can be moved to cloud with powerful capabilities and
processed efficiently.

2. Extending battery lifetime. Battery is one of the main constraint of
mobile devices. Offloading technique is proposed to migrate the
complicated computations from resource-limited devices to resource-
ful machines in clouds. It eliminates a long application execution

time which results in a large amount of power consumption.

3. Enhancing data storage capacity. Storage capacity is another con-
straint for mobile devices. MCC could enable mobile users to store
and access the data on the cloud. Therefore, the users can save con-

siderable amounts of storage space of there smart devices.

4. Dynamic provisioning. MCC provides a flexible way for elastic on-
demand provisioning of resources on a fine-grained, self-service ba-
sis. It enables mobile users to run their applications without ad-

vanced reservation of resources.

5. Scalability. Owning to dynamic provisioning, the deployment of mo-
bile applications can scale to meet the unpredictable user demands.

Service providers can freely expand or shrink an application service.

MCC Applications

MCC supports various kinds of mobile applications such as mobile com-
merce, mobile learning and mobile health-care. Take mobile commerce

12 CHAPTER 2. LITERATURE REVIEW

as an example. Conventional m-commerce applications face various chal-
lenges such as low network bandwidth and and security. By leveraging
MCC techniques, these issues can be greatly addressed. For instance, the
research work [84] proposes a 3G E-commerce platform based on CC. This
paradigm combines the advantages of both third generation (3G) network
and CC to increase data processing speed and security level.

Among all these applications, mobile cloud gaming has drawn a great
amount of interests from various research. Mobile gaming enables mo-
bile devices to run rich media applications, which requires computational
power far beyond the capabilities of a smart device. In the following chap-
ter, we will focus on research questions stemming from mobile cloud gam-

ing and elaborate the related existing works.

2.1.2 Offloading Methods

The essential operation in any mobile cloud computing would be the of-
floading of jobs that perform on the resource constrained mobile devices
to the cloud. Due to issues such as the physical distance between the mo-
bile device and the cloud as well as the heterogeneity of the underlying
systems, various research works have attempted to address this in a vari-
ety of ways. Current research discusses offloading methods in two main
directions; Client Server Communication methods and Virtualization [44].

Client Server Communication. In this diagram, process offloading
is achieved via protocols such as Remote Procedure Calls (RPC), Remote
Method Invocation (RMI) and Sockets.

For instance, Spectra [45] leverage RPC to invoke functionality in re-
mote and local Spectra servers. When a mobile device needs to offload an
application, the Spectra client consults a database that stores information
about Spectra servers such as their current availability, CPU load. These
servers are pre-deployed with application code acting as services. De-
velopers need to manually partition the applications by specifying which

2.1. LITERATURE REVIEW ON MOBILE APPLICATION ACCELERATION13

methods might be candidates for offloading. Spectra decides whether a
method will be offloaded at runtime depending on the available resources.

The Cuckoo framework [57] proposes a system to offload mobile de-
vice applications onto a cloud via a Java stub/proxy model. Cuckoo can
be deployed on any resource that runs the Java Virtual machine. The objec-
tives of the system are to enhance performance and reduce battery usage.
To use Cuckoo, the applications need to be modified so that the applica-

tion supports remote execution as well as local execution.

Virtual machine (VM) migration. VM migration refers to transferring
the memory image of a VM from a source server to the destination server
without stopping its execution [38]. In this diagram, the memory pages of
the VM are copied without interrupting the OS or any of its applications,
thereby providing an illusion of seamless migration. This methods enable
offloading without requiring modification of legacy applications. How-
ever, VM migration is somewhat time consuming and the workload could

prove to be heavy for mobile devices.

MAUI [40] utilizes a combination of VM migration and code partition-
ing in order to reduce energy consumption. Mobile applications are of-
floaded from phones to surrounding devices (i.e. local and remote servers).
To use the system, developers must annotate which methods can be of-
floaded at the time of execution beforehand. MAUI automatically decides
whether or not to offload these methods based on the current connectivity
and workload.

Similarly, CloneCloud [37] also uses VM migration to offload part of
their application workload to a resourceful server. Because the system
relies on device clones, the mobile applications need not to be modified
and there is no need of even annotating methods such as done in MAUI
[40]. CloneCloud utilizes a cost model to analyze the migration cost and
compares the cost against local execution.

Despite the promising results obtained, the systems mentioned above
only consider migrating CPU-based computation rather than GPU-based

14 CHAPTER 2. LITERATURE REVIEW

tasks, which are the major components for most mobile games. Thus the
existing systems barely benefit the GPU-intensive applications. To en-
able offloading for the applications, a number of architectures featuring
offloading games have been proposed.

Remote Rendering Architecture. Considerable research works on cloud
gaming such as OnLive [13] adopt a remote rendering architecture. Specif-
ically, video games are executed in cloud servers and the video frames are
transmitted to users through the Internet. At the same time, the players’
inputs are delivered and relayed in the corresponding server. This ap-
proach enables the players to run sophisticated games regardless of their
restricted hardware. However, transmitting huge volume of video could
consume huge amounts of network bandwidth and lead to high delays
in gaming responses. Though a great number of works such as [79] and
[78] attempt to alleviate the latency issue by optimzing video encoding
and data compression, the intrinsic delay constraints imposed by the long-
range network connections are still non-negligible.

Component-based Architecture. Recently, a component-based cloud
gaming solution have been proposed and implemented in [35]. This ap-
proach first divides a game into several sub-components and dispatches
the selected components from cloud to players’ devices as determined by
devices’” current conditions and their network connectivity. Though the
Cognitive Resource Allocation architecture may alleviate the latency issue
by avoiding video transmission, it causes unbearable burden to game de-

velopers who are required to modify source codes for existing games.

2.1.3 Energy Efficiency

One of the essential challenges of mobile cloud gaming is energy efficiency.
In fact, limited battery life has been recognized as the greatest bottleneck
for smart devices. Two main factors contribute to the energy issue. One is

relatively limited capacity of batteries due to the minuscule size of mobile

2.1. LITERATURE REVIEW ON MOBILE APPLICATION ACCELERATION15

devices. The other is the increasing demand of resource-hungry gaming
applications. Obviously, offloading provides a promising solution. How-
ever, as the network transmission incurred by the offloading process may
consume extra energy, there are a number of existing works focusing on

energy efficiency.

Offloading or Local Execution With the help of the offloading tech-
niques, mobile gaming applications can be either performed in the mobile
device or in the cloud. Executing computation-intensive applications con-
sumes a great amount of power at the mobile device. It is a misconception
that offloading and executing the applications in the cloud preserves the
most energy. The fact is that bulky data transmissions, especially under
unfavorable wireless channel conditions, could also result in waste of a
large amount of battery power. The research work [80] describes the prob-
lem as follows. Given the size of data packet L, the wireless channel condi-
tion and the application completion deadline 7', there is an optimal policy
to determine where to execute the current application so that the energy
consumption of the mobile device is minimized. The work proposes a

solver which generates decisions in real-time.

MAUI [40] tackles this issues by requesting programmers to annotate
the methods of an application that can be offloaded for remote execution.
MAUI then constantly measures the network condition and estimates the
bandwidth and latency. When a remote server is available, MAUI uses its

solver to make a decision for offloading or local execution.

WiFi or 3G With the evolution of wireless communications and mobile
devices, mobile devices nowadays are equipped with multiple wireless
interfaces (e.g., Wi-Fi and 3G networks) simultaneously to transmit data.
It is natural to raise a question: which network interface to use in order to

minimize energy consumption?
Generally, the signal strength of a WiFi network is stronger than that
of 3G networks. Hence, the data rate and energy saving performance of

Wi-Fi usually outperform 3G networks. An experiment carried out in [40]

16 CHAPTER 2. LITERATURE REVIEW

showed that smartphones might consume three times more energy using
3G than using Wi-Fi with 50 ms RTT (Round Trip Time), or even five times
more energy using 3G than using Wi-Fi with 25 ms RTT. However, 3G net-
works provide ubiquitous access while the coverage of Wi-Fi is much more
limited. Therefore, the balance between Wi-Fi and 3G networks could shift
from side to side depending on time and location. Research work [80] pro-
poses a solver that adjusts packet transmission durations and control the
transmit power on each interface according to the current channel con-
ditions, so that the overall energy consumption of the mobile device is

minimized.

2.2 Literature Review on Mobile Interaction

In this section, we review past work on exploring new interaction tech-
nologies and position our contribution of providing a virtual touchpad

without any extra sensors.

2.2.1 Extending Smartphones’ Input Space

One problem with touchscreens is that the users’ fingers occupy valuable
input space. Moreover, this problem aggravates when devices are shrink-
ing in size. To tackle this issue, a great number of research work shift
the interaction away from the touchscreen to nearby areas by augment-
ing smartphones with extra hardware such as keyboards [54], touchpads
[32], cameras [52], and other specially-designed sensors [85, 67]. Despite
the remarkable achievement, these system inevitably degrades devices’
portability. Considering that smartphone platforms include increasingly
sophisticated sensors, researchers start investigating the potential input

approaches supported by the built-in smartphone sensing capabilities.

2.2. LITERATURE REVIEW ON MOBILE INTERACTION 17

2.2.2 Built-in Sensor Based Input Approaches

A great number of research works utilize the built-in smartphone sensors
such as inertial, compass, microphone, and camera sensors to provide al-
ternative input approaches. Research work [53] leverages inertial sensors
and touch input to provide motion-enhanced touch gestures. MagiTact
[58] utilizes built-in compass sensor to extend interaction space of small
mobile devices. Systems [69] detect users’ tap events by analyzing the
audio signals captured by microphones. LucidTouch [81] enables users
to control the applications by touching the back of the device using com-
puter vision techniques. More recently, wireless technologies have drawn
a great amount attention of researchers. Some of them managed to extend
smartphones input by utilizing wireless signals such as WiFi and RFID.
For instance, Wigest [27] enables users’ gesture input to smart devices by
sensing the WiFi signal strength.

2.2.3 Virtual Touch Surface

Among various interaction technologies, touching is still most straightfor-
ward and natural approach for smart devices. A number of researchers
managed to augment smart devices with virtual touch surfaces. For in-
stance, RF-IDraw [75] relies on a RFID ring to infer the finger movement,
allowing drawing in the air. TypingRing [66] leverages a ring equipped
with motion sensors to trail a finger, enabling handwriting text-input ex-
perience. Okuli [86] augments smartphones with a LED light array to cap-
ture the finger movement, serving as a virtual trackpad for the user. Be-
sides, Canesta [70] and OmniTouch [52] achieve the same goal by utilizing
external cameras and image process techniques.

Despite of the promising results achieved, these systems inherit some
limitations. Systems that rely on the extra devices may severely degrade
the portability of the smart devices. More importantly, they also incur

extra costs for the users. Recently, some researchers attempt to achieve

18 CHAPTER 2. LITERATURE REVIEW

finger tracking by purely leveraging the smartphone built-in sensors. For
instance, Finger-in-Air [64] leverages smartphone cameras to detect the
movement of a finger. UbiK [76] takes advantage of microphones on a
smartphone to detect keystroke locations, serving as a virtual keyboard.
However, the vision-based system [64] continuously turning on cameras
may drain the battery swiftly and the performance may be negatively af-
fected by low-light environment. As for the UbiK [76], it is solely built to
distinguish among different keys a user presses, which may not be able
to support applications such as handwriting text-input and drawing that
require continuous finger movement tracking.

To address these issues, we propose a novel system UbiTouch which
uncovers the potential of the built-in smartphone sensors to extend smart-
phones with virtual touchpads. Unlike existing works, it achieves continu-
ous finger movement tracking while does not rely on any external devices

Oor cameras.

Chapter 3

GBooster

In this chapter, we explore the possibility of utilizing neighboring multi-
media devices to accelerate mobile multimedia applications. This is chap-
ter is organized as follows: Section 3.1 demonstrates the motivation of this
work. We then illustrate the challenges in the design and implementation,
and present several techniques to cope with them in the consecutive sec-
tions. After that, we elaborate the experiments and results in Section 3.6.
Finally, Section 3.7 concludes this chapter.

3.1 Motivations

Though a multimedia mobile application generally involves CPU and GPU
computation, it is often the case that the GPU is the bottleneck of the appli-
cation due to its limited processing power and high energy consumption.

Limited GPU Capacities: Table. 3.1 demonstrates the recommended
CPU/GPU requirements of the most demanding games in recent years
including Modern Combat 5: Blackout [12] in 2014, GTA San Andreas [8] in
2015, and The Walking Dead: Michonne [23] in 2016. The table also shows
the CPU/GPU capabilities of the mainstream smartphones in those years
including Samsung Galaxy S5 (2014), LG G4 (2015), and LG G5 (2016) re-
spectively. Note that the CPU and GPU capabilities are demonstrated in

19

20 CHAPTER 3. GBOOSTER

2014 2015 2016
CPU/GPU |15 GHz 1 GHz 1.2 GHz 2-Core
requirement|3.6 GP/s 48GP/s 6.7 GP/S
CPU/GPU |2.5 GHz 4-Core|1.8 GHz 6-Core|2.15 GHz 4-Core
capability |3.6 GP/s 48 GP/s 6.7 GP/s

Table 3.1: Game Requirement versus Smartphone Capability. The recom-
mended requirements represent the capabilities needed for running those
games in the highest graphics settings and achieving a frame rate of at
least 30 frames per second.

terms of CPU clock rate and GPU fillrate (GPixel/s) respectively. It can be
seen that the devices” CPU capacities are commonly beyond the require-
ments of the most demanding games. On the other hand, the games are
pushing the limit of the devices” GPUs, which become the performance
bottleneck.

To make matters worse, the performance is usually downgraded due
to the overheating issue. Nowadays, GPUs tend to create abundant heat
energy when they are heavily utilized. To prevent overheating, mobile
device systems have to reduce the GPU’s operating frequency and sup-
press its performance when its temperature exceeds certain thresholds.
Fig. 3.1 demonstrates how the GPU frequency and temperature changes
with time when the device LG G4 is running the game GTA San Andreas.
The GPU frequency initial reaches 600Mhz and remains steady for the first
10 minutes. After that, the GPU temperature meets the threshold and the
operating frequency drops drastically to 100Mhz. As a consequence, the
application’s performance is significantly downgraded, resulting in an un-
acceptable user experience.

High Energy Consumption: Heavy GPU utilization also leads to swift
battery drain. To demonstrate this, we run a test program [15] that renders
a static triangle at a default frame rate of the Android system, which is 60

frames per second (FPS) on the three mobile devices mentioned above. We

3.1. MOTIVATIONS 21

then measure the energy consumption incurred by CPU and GPU using
approaches introduced in [71] and [33]. The results show that the power
usage for each GPU is approximately 3 W, almost 5 times higher than
the energy used by the CPU. As the program only performs elementary
GPU computation, the power consumption of complex multimedia appli-
cations can be far more than this result, which can significantly shorten the

battery lifetime.

>
g 200} GPU Frequency Trace

100} Average of 5 Measurements

0 100 200 300 400 500 600 700 800
Time (s)

Figure 3.1: GPU frequency trace.

To alleviate these issues, conventional solutions typically offload GPU
tasks to remote cloud servers. However, these cloud-based solutions usu-
ally require an Internet connection with huge bandwidth, which is not
always available for users. Moreover, the long physical proximity of the
cloud centers usually leads to high network latency, which is undesirable
for highly-interactive multimedia applications.

In light of the above issues, we introduce GBooster, a novel GPU-task
offloading system that aims to meet the following objectives.

High FPS, Low Latency, and No Requirement of the Internet. GBooster
enables smart devices to run a GPU-intensive multimedia application at a
high frame rate and low latency without an Internet connection.

Extend Battery Life. GBooster reduces energy consumption of multi-
media applications and extends the battery lifetime.

GBooster achieves these goals by exploiting the processing power of
neighboring multimedia devices including game consoles, smart TVs, and

22 CHAPTER 3. GBOOSTER

PCs. These devices possess two essential advantages compared with cloud
servers. First, they are prevalent and equipped with abundant processing
power. According to [7] and [17], 80% of U.S households own a game
console and half of them own a smart TV. All these devices are usually
equipped with powerful GPU chipsets. For instance, the game console
Nuvidia Shield [18], is equipped with a GPU with a fillrate up to 16 GP/s,
making it an ideal offloading destination. Besides, traditional PCs could
be another sound option as modern computers generally possess GPUs
that are 10 times more powerful than mobile devices’ [10]. Second, these
devices are typically connected with a local area network (e.g., in-home
WiFi), which provides significantly larger bandwidth and smaller latency
compared with an Internet connection.

GBooster works on every commercial Android device and supports
all multimedia applications without changing or recompiling any source
codes of the applications and the Android operating system. Note that
GPU is not only heavily used by high-end 3D applications like games, but
also widely used for rendering 2D user interfaces for various non-gaming
applications. In this paper, we mainly focus on gaming applications, but
we will show that non-gaming applications can also benefit from our sys-

tem.

3.2 System Overview

Figure. 3.2 depicts the system architecture, which contains the essential
procedures to migrate graphics computation from a user mobile device to
an offloading destination. In the following sections, we refer to a user’s
mobile device as a User Device. Besides, we refer to an offloading desti-
nation as a Service Device.

As shown in Fig. 3.2, GBooster first dynamically inserts one wrapper
layer to the user device while a multimedia application starts running. The

wrapper enables the system to intercept all graphics commands from the

3.2. SYSTEM OVERVIEW 23

E‘- User Device
> .
OpenGL ES Library

OpenGL ES commands

o—
t ! l Service Device

Intercept &

Redirect
OpenGL ES Wrapper Library

Rendered Images

JaheT sjaddeipn

Image Decoder

Displayable Images

Result Delivery

Android Media Framework

Figure 3.2: System Architecture

application and redirect them to a remote service device. Based on the re-
ceived commands, the service device conducts the graphics computation
using its own GPU. Once the computation is done, the rendered results
will be encoded and delivered to the user device. Finally, the user device
decodes and displays the images on the device’s screen. We will describe
the whole process in details in Section 3.3.

In this architecture, the network communication between the user de-
vice and service device plays an essential role. In order to improve net-
work performance and reduce energy consumption, we propose an ap-
proach that eliminates redundant data and intelligently switches among
multiple wireless interfaces based on the traffic volume. The details will

be elaborated in Section 3.4.

Note that Fig 3.2 only depicts the scenario with one user device and
one service device for better demonstration purposes. In Section 3.5, we
extend the system such that it can aggregate distributed processing capa-
bilities from multiple service devices to obtain further performance im-

provement.

24 CHAPTER 3. GBOOSTER

3.3 [Enable GPU Task Offloading

The Android system provides high performance graphics processing sup-
port for multimedia applications with the help of Open Graphics Library
named OpenGL ES [65]. OpenGL ES is a cross-platform graphics API that
specifies a standard interface for GPU and the Android applications could
invoke the APIs to directly interact with the GPU. OpenGL ES features
a client-server model as shown in Fig. 3.3. The application that invokes
OpenGL ES APIs behaves as a client. It keeps generating a series of graph-
ics commands to the server component. The server, which is typically
executed in the GPU, interprets the commands and performs the actual
graphic computation.

Based on this model, we propose an offloading approach that we inter-
cept the command streams from a OpenGL client and redirect them to a
OpenGL ES server residing in a remote machine. This approach contains
two key advantages. First, it works universally for every multimedia ap-
plication regardless of its implementation details (e.g., programming lan-
guages or graphics engines), since all of them internally invoke OpenGL
ES calls. Besides, it requires no source code modification of the legacy

applications.
OpenGL ES
Commands Graphics
OpenGL ES

OpenGL Client

Figure 3.3: The Client/Server Model of OpenGL ES.

3.3.1 Intercepting and Rewriting OpenGL ES Functions

Although this approach seems straightforward, implementing it entails a

challenging issue; the OpenGL implementation in Android OS is closed-

3.3. ENABLE GPU TASK OFFLOADING 25

source and thus we cannot revise it to add functionalities for interception
and redirection. To address this issue, we adopt a technique named Dy-
namic Linker Hooking [3].

Specifically, hooking is the process of intercepting a program’s execu-
tion at a specific point, typically entries of functions, in order to alter or
augment the program’s behavior. The dynamic linker hooking technique
enables hooking in the runtime by forcing a program to load shared li-
braries specified by the user instead of the original ones provided by op-
erating systems. In our case, rather than the genuine OpenGL ES library
provided by the Android multimedia framework, we instruct the applica-
tions to load a wrapper library, which intercepts all the graphics command
calls.

In detail, we notice that an application could invoke the OpenGL ES
graphics APIs in three different ways:

1. An application may link to an OpenGL ES library so that it can di-
rectly call the OpenGL ES APIs.

2. Anapplication may utilize the eg/GetProcAddress function to get point-
ers to the OpenGL ES APIs.

3. Less likely, an application uses system calls dlopen and dlsym to dy-
namically load the OpenGL ES APIs.

Therefore, we have to intercept the OpenGL ES APIs in all these situa-
tions. For the first case, we simply implement wrapper functions for all
the OpenGL ES APIs in our wrapper library. We then force the application
to use the wrapper library by applying the Dynamic Linker Hooking tech-
nique. It is worth to note that the hooking can be easily done by setting the
application’s LD_PRELOAD environment variable in the Android system.
Regarding the second case, we intercept and rewrite the eglGetProcAddress
function such that it directly returns the pointers pointing to our wrapper

functions. Similarly, we handle the third case by rewriting the dlopen and

26 CHAPTER 3. GBOOSTER

dlsym functions so that they load our wrapper library in preference of the
original OpenGL ES library.

3.3.2 Forwarding Graphics Commands

We are now able to capture the OpenGL commands and ready to forward
them to a remote service device. To facilitate network transmissions, we

tirst need to serialize the commands’ parameters.

OpenGL ES commands contain two types of parameters; one is the ba-
sic data types (e.g., integer and string) and the other one is the pointer
type. It is straightforward to handle basic data types as we can easily cal-
culate the length of the data. On the other hand, the situation becomes
complicated when dealing with pointers. A pointer parameter typically
refers to a sequence of data stored in RAM. Generally, the length of the se-
quence is either provided as a parameter or could be calculated with prior
knowledge of its data structure layout. However, a heavily-invoked func-
tion glVertexAttribPointer contains a pointer parameter whose size could
not be determined at the moment we intercept the function. Instead, the
actual length is only revealed in consecutive drawing commands (e.g., gl-
DrawElements) which render geometries using the pointer. To enable cor-
rect serialization, our system defers the transmission of the glVertexAttrib-
Pointer command until the pointer size is obtained in the later calls. We
found that the reorder does not influence the final results so long as g/Ver-
texAttribPointer appears before the drawing calls.

Once the serialization is done, we could start transmitting the data over
a network connection. Since the graphics commands must be delivered to
a remote service device in a reliable and in-order manner, we may select
TCP as the transmission protocol. However, due to its complex retrans-
mission mechanism, TCP possesses an inherent delay, which is approx-
imately 40 ms in general settings [20] and could be significantly higher

under a poor network condition. To alleviate the delay, instead of TCP,

3.4. ENERGY-SAVING NETWORK TRANSMISSION 27

we select the UDP transportation protocol to provide fast delivery of the
graphics commands. To prevent packet loss and out-of-order delivery, we
implement a light-weight and reliable transmission mechanism in the ap-

plication layer [49].

3.3.3 Executing Commands and Retrieving Results

Upon receiving the graphics commands, the service device delivers them
to its local GPU for execution. Since GPUs in the majority of multimedia
devices provide native support for OpenGL ES, the service device simply
acts as a relay and feeds the commands into the GPUs directly. Regarding
a small number of devices such as Mac OS X that lack support for OpenGL
ES, we could still bypass the restriction by utilizing OpenGL ES emulators
[14] that translate OpenGL ES API calls to other natively graphics API
calls.

When the computation is completed, the rendered images are trans-
mitted back to the user device for display purposes. The display system
of Android adopts a double-buffering mechanism to reduce image flicker
and tearing [16]. As a sequence, when an application decides to redraw
the screen, it has to invoke a graphic API named SwapBuffer. The API will
notify the Android system to retrieve rendered images from the GPU and
draw them on the screen. However, in our case, the rendered images are
obtained from the network rather than the local GPU. To tackle this issue,
our system intercepts and changes the behavior of the SwapBuffer com-
mand; upon intercepting the command, our system directly forwards an

image received from network to the Android system for display.

3.4 Energy-saving Network Transmission

By offloading GPU tasks, GBooster reduces the power consumption of

high-power GPUs. However, it comes at the energy expense of network

28 CHAPTER 3. GBOOSTER

transmissions, which may negatively impact the battery life. Consider-
ing that the energy cost of a WiFi interface is nearly proportional to the
traffic load [50], we propose several approaches to reduce traffic volume.
Besides, we reveal the potential of the low-power low-throughput Blue-
Tooth interfaces to further suppress energy consumption.

3.4.1 Eliminating Redundancy of Network Traffic

GBooster transmitting unoptimized traffic data consumes enormous band-
width (approximately 200 Mbps) even with a low-quality graphics setting
(i.e., a resolution of 600x480 with 25 FPS). We investigate this issue and
notice that the traffic data including graphics commands and rendered

images contains vast redundancy.

First, the sequences of graphics commands to generate consecutive
frames tend to contain huge similarities. For example, an application
might draw a same object with two different rotation angles, in which,
the corresponding sequences may only differ slightly in the rotation com-
mand. We eliminate the redundancy by applying the LRU caching algo-
rithm; the system caches the latest and frequent commands on the user
device and the service device. Thereby, the user device can skip transmit-
ting the commands which are cached. Besides, we further reduce the re-
dundancy by using a light-weight general stream compression algorithm
named LZ4 [39], which achieves a compression ratio of 70% while barely
incurs extra CPU workload.

Besides, the raw rendered images contain enormous redundancy, since
the consecutive frames are typically similar to each other, especially when
the images are static or barely vary. One straightforward solution is to
encode the images into a video stream using the video encoder x264 [28],
which is considered the most efficient one. However, because the major-
ity of multimedia devices other than PCs are equipped with ARM-based

CPUs that the encoder is not optimized for, the encoding process is unac-

3.4. ENERGY-SAVING NETWORK TRANSMISSION 29

ceptably slow. The normal speed is only around 1 MegaPixels/sec, far less
than the speed of 7 MegaPixel/sec in which the application generates raw
frames. Clearly, this approach fails to meet the requirement of real-time
encoding. Rather than using a video encoder, we adopt a lightweight im-
age encoding algorithm named Turbo [6]. The image encoder eliminates
the redundant data by only transmitting incremental updates between
consecutive frames and utilizing the JPEG image compression algorithm.
It can provide a much more rapid encoding speed (up to 90MegaPixel /sec)
and a high compression ratio (up to 25:1) without incurring heavy CPU
load.

3.4.2 Enabling Transmission via Low-Power Interfaces

Nowadays, mobile devices are typically equipped with Bluetooth and WiFi.
Wi-Fi interfaces offer a high-bandwidth data-link (up to 450 Mbps) while
at the cost of high energy consumption (around 2 W when transmitting at
the highest rate) [50]. On the other hand, Bluetooth is an order of magni-
tude more power efficient (less then 0.1 W) than WiFi, but with an order of
magnitude lower bandwidth (approximately 21 Mbps) [55]. This presents
us a chance to reduce power consumption by leveraging Bluetooth for net-
work transmission on the premise of meeting demand of network traffic.
In our system, we implement a mechanism that dynamically switches be-
tween the Bluetooth and the WiFi to meet the traffic demand while to pre-
serve energy as much as possible.

However, implementing it entails a challenging issue resulted from the
latency of switching the state of the WiFi interfaces [73]. Our preliminary
experiments show that it takes at least 100 ms to wake up a disabled WiFi
interface. More frequently, the interface has to re-associate with its access
point after being in sleep mode awhile, making the wakeup time much
longer (more than 500 ms). Consider a scenario that a system is transmit-

ting data via its Bluetooth interface. If the increasing traffic load exceeds

30 CHAPTER 3. GBOOSTER

the throughput of the Bluetooth interface, the system has to enable the
WiFi interface immediately in order to meet the demand. As the WiFi in-
terface can not be fully functional instantly, the exceeding packets may be
lost and retransmitting them will result in high network latency and frame
jitter.

We address this issue by applying time-series analysis techniques, which
enable us to foresee the escalating traffic trend and to turn on the WiFi in-
terface beforehand. In other word, our objective is to predict traffic volume
yr+n given the information available at time 7" for h > 0. Mathematically

speaking, we would like to obtain a forecast:

YT4+hT = E(yT+h|yla ooy yT)> (3.1)

such that yr 7 has minimum mean square forecast error (MSFE). To achieve
this purpose, we first attempt to model the traffic volume with the widely-
used Auto Regressive Moving Average (ARMA) model [51]. Specifically,
ARM A(p, q) with p autoregressive terms and ¢ moving average terms can

be described as follows:
p q
Y = € + Z PilYi—i + Z i€, (3.2)
i=1 i=1

where ¢, are white noise terms and ¢, Y ormal(0,02), ; and 6; are pa-
rameters for this model.

We conduct preliminary experiments to measure the prediction perfor-
mance including False Negative (FN) rate and False Positive (FP) rate. The
FNs refer to the scenarios that the model fails to predict a soaring traffic
demand that exceeds BlueTooth throughput. Conversely, FPs describe the
cases that the model wrongly forecasts a traffic demand overpassing the
Bluetooth throughput. Clearly, a small FN rate is more important to the
system compared with a small FP rate, because a FN case results in ele-
vated network latency while a FP scenario just causes slight increase in
energy consumption. Our experiments show that the ARMA model pro-
vides a FP rate of 23.7% and a FN rate of 35.1%.

3.4. ENERGY-SAVING NETWORK TRANSMISSION 31

We notice that the FN rate is rather high and negatively impacts the
system performance. We investigate the cause and realize that ARMA at-
tempts to recognize and fit the time series pattern solely based on historic
traffic data. However, the pattern beneath the traffic demand of our sys-
tem is also affected by other exogenous factors. For instance, burst touch-
ing events from users may lead to drastic changes in game scenes and
transmitting the varying scenes may escalate the network traffic. How-
ever, this abrupt change caused by external factors may not be modeled
by the ARMA instantly, resulting in a FN scenario.

To tackle this issue, we adopt the Auto Regressive Moving Average
with Exogenous Inputs model (ARMAX). Specifically, the ARMAX (p, q,b)

with extra b exogenous input terms can be formulated as:

P q b
Xi=e+ Z Xy + Z Oier—i + Z Nidi—i; (3.3)
i=1 i=1 i=1
where 7y, ..., 7, are the parameters of the exogenous input d;. The model

enables us to model deterministic and stochastic parts of the system inde-
pendently. Thereby, we now can take some external inputs of the system
into consideration and achieve better prediction performance.

To fit the traffic data in the ARMAX model, we first need to identify the
effective exogenous input attributes for our system. We have examined the
following potential attributes:

1. Touchstroke frequency: As we mention above, the touchstroke infor-
mation may be informative. We could obtain the touchstroke infor-

mation from a system file which is located in /proc/interrupts.

2. Length of graphics command sequences for each frame. A frame
composed by a large number of commands likely has a complicated
scene. It generates more traffic when delivering the frame.

3. Number of textures used in each frame. A frame filled out with a
great number of textures tends to have a complicated scene. Trans-

mitting it may consume more bandwidth.

32 CHAPTER 3. GBOOSTER

4. Number of different graphics commands between two consecutive
frames. If the command sequences composing two consecutive frames
have immense difference, the scenes of the frames tend to vary sig-

nificantly. Transmitting them may request more bandwidth.

We evaluate the qualities of the models consisted of different combina-
tions of attributes by accessing the Raw Akaike Information Criteria (AIC)
[29]. The results show that the best approximating model for the traffic is
the one with the attribute 1 and 3.

In our implementation, we apply a recursive algorithm [63] for online
estimating and updating the order (i.e., p, ¢, and b) and the correspond-
ing parameters (i.e., y;, 0;, and ;) of the model. We forecast traffic de-
mand for 500 ms and the experiment results show that the model could
achieve a FP rate of 23% and a FN rate of 17%, outweighing the conven-
tional ARMA model. When a soaring traffic trend that will exceed the
Bluetooth throughput is predicted, our system turns on the WiFi interface
and then configures the default route to direct the traffic through the in-
terface. This process is performed smoothly and barely incurs packet loss.

3.5 Harnessing Capacities from Multiple Service

Devices

As it is fairly common that there exist multiple service devices within a
network, we may naturally raise a question: whether it is feasible to har-
ness capacities from a cluster of service devices? Specifically, whether it
is possible to parallelize and distribute GPU tasks to multiple service de-
vices such that we can obtain a further speedup (i.e., a higher FPS)? The

answer turns out to be positive.

3.5. HARNESSING CAPACITIES FROM MULTIPLE SERVICE DEVICES33

OpenGL ES Request Buffer

L] LU

A Cluster of Service Devices

Figure 3.4: Distributed Computation of GPU Tasks.

3.5.1 Parallelizing GPU Computation

The key of parallelization lies in the OpenGL ES internal mechanism for
handling rendering requests. A rendering request is defined as a sequence
of graphics commands for rendering a frame and will be executed in a
non-preemptive way according to the modern GPU architecture [56]. Gen-
erally, OpenGL ES handles rendering requests in an asynchronous man-
ner. In other words, when an application issues a request to initiate ren-
dering, it is not guaranteed that the rendering request is delivered to GPU
and executed right away. Instead, the request may be buffered by the
OpenGL ES client to optimize system performance, since it avoids fre-
quent time-consuming input/output operations between CPU and GPU.
We take advantage of this mechanism and achieve distributed computa-
tion as shown in Fig. 3.4; whenever there are multiple pending requests
in the internal buffer, we distribute and simultaneously execute them in
different machines so that we could obtain a higher FPS.

However, in reality an application, after submitting a rendering re-
quest, tends to issue a SwapBuffer command. The command halts the
application and waits for the results from the GPU. In this way, the ap-

plication forces the GPU to execute its requests immediately and a new

34 CHAPTER 3. GBOOSTER

rendering request will be issued only if the preceding one is finished. As a
consequence, there is at most one request in the internal buffer, rendering
the parallelization infeasible.

We overcome this problem by altering the behavior of the SwapBuffer
command. Invoking the modified command returns immediately and
does not halt the application. In this manner, the application will gen-

erate rendering requests at its quickest rate and multiple requests could
be buffered.

3.5.2 Maintaining State Consistency among Devices

To enable distributed computation, we have to overcome another tech-
nique hitch due to the stateful nature of OpenGL ES APIs. All OpenGL ES
calls are implicitly associated with an OpenGL context parameter, which
is essentially a state machine that stores all data related to the rendering
process such as the cached textures and vertex programs. Invoking an
OpenGL API call on different contexts likely generates different results or
even leads to unexpected errors. Since each service device possesses its
own OpenGL context, simply distributing requests to them does not guar-
antee the correctness of the distributed computation.

To ensure the correctness, we have to maintain the consistency of the
states among different service devices. We achieve this by first identify-
ing the graphics commands which may alter the OpenGL states. Upon
intercepting such commands, we replicate and deliver them to all service
devices such that the states are consistent among all the devices. As we
need to transmit duplicated data to multiple devices, a unicast connection
is not an optimal option since it could result in waste of network band-
width and limited system scalability. Instead, we take advantage of the
multi-cast capability of UDP, which allows a stream of data to be sent to
multiple destinations with a single transmission operation to reduce net-

work traffic.

3.6. SYSTEM EVALUATION 35

3.5.3 Assigning Requests to Devices

The last question left is which service device a request should be assigned
to. Clearly, our objective is to assign each request to a service device that
can deliver the result in the least time. Mathematically speaking, consid-
ering there exist N service devices, we dispatch each request to a node n
that satisties the following criterion:

n = argmin(w’ +r)/c + 1, forj € [1,...,N], (3.4)
j

where the workload of the request is denoted as r and the computation
capability of the service device n is denoted as ¢". Besides, we let [" de-
note the round-trip delay time between the user device and the service de-
vice n and let w" be the workload of preceding tasks in its service queue.
Note that the workload of each graphics command is profiled using the
approach in [56] beforehand.

As this mechanism does not guarantee that a preceding request is fin-
ished earlier than a subsequent request, our system keeps track of the se-
quence numbers of the requests, such that we can display their results in
a proper order.

3.6 System Evaluation

In this section, we provide the detailed performance evaluation on GBooster.

3.6.1 Sample Games and Devices

Applications: We select six popular mobile games spanning three major
game genres as shown in Table. 3.2. The majority of them have a large in-
stallation package size (above 500 MB) and a high requirement for graph-
ics processing power.

User Devices: We run these applications on a set of smartphones in-
cluding LG Nexus 5 (2013) and LG G5 (2016), which correspond to old-

36 CHAPTER 3. GBOOSTER

Genre Package Size
G1: GTA San Andreas [8] | Action 2.41 GB
G2: Modern Combat [12] | Action 0.89 GB
G3: Star Wars [19] Role playing | 2.4 GB
G4: Final Fantasy [5] Role playing | 3.05 GB
G5: Candy Crush [1] Puzzle 0.17 GB
G6: Cut the Rope [2] Puzzle 0.12GB

Table 3.2: Games for experiments and their package size.

generation and latest device models respectively. These smartphones are
installed with different versions of Android, demonstrating that our sys-
tem has good system compatibility.

Service Devices: We deploy and test our prototype on different types
of multimedia appliances including a game console (Nvidia Shield), a
smart TV box (Minix Neo Ui), a ladtop (Dell M4600), and desktop comput-
ers (Dell Optiplex 9010 with Nvidia GTX 750 Ti GPUs). All these service
devices and smartphones are fully connected via a TP-Link WR802 router
providing a 150 Mbps 802.11n WiFi network. To simplify the evaluation
process, only one service device (the game console) is utilized in the fol-
lowing experiments for application acceleration and power saving. The
PCs are only used in the evaluation for the scenarios with multiple service
devices.

3.6.2 Application Acceleration

We first evaluate the effectiveness of application acceleration. In our ex-
periment, we choose two FPS metrics that are widely used for measuring
user experience of gameplay [77]. The first one is median FPS that rep-
resents the commonest frame rate experienced in the game and broadly
correlates to what the player observes as graphical smoothness. A key ad-

vantage of using the median FPS that it naturally omits fringe results, for

3.6. SYSTEM EVALUATION 37

(a) Median FPS (Nexus 5)

(b) FPS stability (Nexus 5) (c) Response Time (Nexus 5)

-
G6 G3 G G6

G2 G3 G4 G5 G6
(d) Median FPS (LG G5)

G4 G5 G6

Figure 3.5: Median FPS and FPS stability.

instance, 0 FPS or 60 FPS which commonly occur during a game’s loading
screens and menus. Besides, we are also interested in the FPS stability
which is defined as how much of a game session is played within a 20 per-
cent range of median FPS. If the stability is low, it can serve as an indicator
that gameplay is prone to frequent occurrence of FPS jitters, which typi-
cally lead to poor gaming experience. Apart from the FPS metrics, another
essential factor that affects the gaming experience is the average response
time. This metric ¢, represents the average timespan between the mo-
ment a rendering request is issued and the time its result is displayed on
its screen. Clearly, when the application is executed locally, this metric is
equal to the reciprocal of the FPS (i.e., t, = 1000/ F PS). If the computation
is offloaded, the metric also includes the time ¢, spent on the offloading
intermediate steps such as network transmissions and image encoding. In

other words, this metric can be represented as:
t, = 1000/ FPS + t,. (3.5)

We conduct the experiments in controlled conditions that we play a
game for 15 minutes with the same graphical settings (where configurable)
and on the same levels (where there is a choice), meanwhile shutting down

other applications on the phone. For comparison purposes, the experi-

38 CHAPTER 3. GBOOSTER

ments are conducted twice; one is with our system enabled while the other
is not. The results are demonstrated in Fig. 3.5.

Effectiveness on Old-Generation Devices: One first observation from
Fig. 3.5 (a) and Fig. 3.5 (b) is that the system boosts the median FPS and in-
creases the FPS stability for each game on the old-generation device Nexus
5. In particular, the performance improvement for the action game G1 and
G2 is rather significant. The median FPS drastically rises from 23 and 22 to
37 and 40 respectively. Generally speaking, a minimum standard for good
playability is a median frame rate of 24 FPS, as this means that most of
the game is played at a frame rate similar to a standard animation or film.
However, action games such as shooting games tend to have a slightly
higher FPS requirement (usually above 30 FPS) in order to display smooth
motion of onscreen objects and maintain the illusion of being real for play-
ers [22]. Our results indicate that with the help of our system, the players
now can enjoy decent playability of the two action games. We also notice
that although the remaining games receive performance improvement as
well, it is somewhat less significant than the action games. Specifically, the
median FPS of the puzzle game G5 merely improves from 50 FPS to 52
FPS. It may be due to that the puzzle games, which contain only a small
amount of animation, are less GPU-intensive than the action games. Thus,
the local GPU can handle the computation efficiently and the benefits of

remote execution are less obvious.

Regarding the FPS stability, we can spot similar patterns as the median
FPS. The system improves the FPS stability for all the games. In partic-
ular, the FPS stability for the two action games soars form 60% and 55%
to 75% and 74% respectively. This phenomenon can be explained by the
better overheating-proof design of the service device. As described in the
Section. 3.1, one major reason that results in unstable FPS is the GPU over-
heating. Since the GPU in the service device is usually equipped with
cooling fans, it is less prone to overheating issue and can deliver stable

processing power for the applications.

3.6. SYSTEM EVALUATION 39

We now turn our attention to the average response time. It can be seen
in Fig. 3.5 (c) that the response time for all the games is below 36 ms. As
the average response time for human being is generally above 100 ms [9],
the result indicates that the players can barely perceive any response lag
when running an application with our system enabled. Another interest-
ing observation is that the impact on response time varies according to
the genres of the games. The response time for the action games drops
approximately 10 ms, while the time only decreases around 2 ms for the
role-playing games. Conversely, the response time for the puzzle games
increases 4 ms. The phenomenon can be explained by the trade-off be-
tween the gain of FPS and the extra time ¢, for the offloading intermedi-
ate steps as described in Equation. 3.5. For the action games, the gain of
FPS is significant, thus the drop of response time largely outweighs the
tp,. Regarding the role-playing games, the FPS gain seems to neutralize
the time ¢,, barely causing any change in the response time. In contrast,
there is bare FPS gain for the puzzle games, in which case, the t, is largely
attributed to the increase of the response time.

Effectiveness on New-Generation Devices: It can be seen in Fig. 3.5
(d) and Fig. 3.5 (e) that our prototype barely benefits the two metrics when
running in the new-generation device LG G5. It is mainly due to that the
device now possesses an powerful GPU and can efficiently handle all the
computation tasks locally. Even for the GPU-intensive action games, the
device can achieve a considerable frame rate of 40 FPS, which is approx-
imately 2 times higher than that on the Nexus 5. Therefore, there is little
room for performance improvement via remote execution. The tiny gain

of FPS then results in the increase of the response time for all the games.

3.6.3 Power Saving

We evaluate how much power can be saved with the help of our prototype.

Specifically, we run the sample games on the two smartphones mentioned

40 CHAPTER 3. GBOOSTER

above and measure the system power using a tool introduced in [71]. To
obtain accurate results, we first turn the phone into airplane mode, reduce
the backlight brightness to 50%, and shutdown other background activ-
ities. We also cool down the phones before each test to make sure that
the GPU can keep working at a stable frequency during the experiment.
We select a specific repeatable scene as the test case and each is repeated
for five times. In order to conveniently demonstrate the effectiveness of
energy saving for different games, we normalize the results to the case of
local execution.

Figure. 3.6 (a) shows the experiment results. One major observation
is that the prototype reduces the power consumption for all the games
and smartphones. It is expected since offloading avoids the heavy utiliza-
tion of high-power GPUs. Clearly, the more intensive the GPU tasks are,
the more benefits we can obtain from the offloading. It explains the phe-
nomenon that the GPU-intensive action game G2 could achieve a normal-
ized energy saving of around 70%, while the energy-saving for the puzzle
game G6 is less effective, which is approximately 30%.

In addition, to demonstrate the effectiveness of the energy-saving inter-
face switching mechanism, we also measure the power consumption with
the optimization disabled. As shown in Fig. 3.6 (b), the overall system
power significantly increases. In particular, the power consumption of the
G1 soars from around 40% to 65%. It indicates that the system could pre-
serve considerable amounts of energy by leveraging the low-power Blue-

tooth interface for network transmissions.

3.6.4 Multiple Devices

We now evaluate the system performance when multiple service devices
are available. Specifically, we measure the FPS performance metrics of
the action game G1 on the Nexus 5 Meanwhile, we gradually increase the

number of service devices.

3.6. SYSTEM EVALUATION 41

(a) With Optimization (b) Without Optimization

=
o
o

100

(0]
o
T
I

80

)]
o

60

40 40

20 20

Normalized Energy Consumption (%)

[] [] 0 [] []
Gl G2 G3 G4 G5 G6 Gl G2 G3 G4 G5 G6

Figure 3.6: Normalized Energy Consumption for Different Games.

Figure. 3.7 demonstrates the experiment results. When the device num-
ber is zero, the game is executed locally. As the device number changes to
one, the game obtains the most FPS improvement owning to the offload-
ing. When two more devices are available, the FPS gains a significant in-
crement from 40 to 51 by taking advantage of the distributed computation.
However, the FPS barely increases and remains stable when more than 3
devices are available.

We examine the cause and notice that the internal buffer possesses at
most 3 requests most of the time. Therefore, having more than 3 devices
barely benefits the performance. The limited number of requests is pos-
sibly due to two reasons. First of all, most of graphics engines have a
mechanism to ensure that the FPS does not exceed the device’s maximum
frame rate (60FPS). Thus, the speed of generating rendering requests may
be limited. Besides, generating the requests consumes CPU resources and
the number may also be constrained by the CPU.

In terms of FPS stability, it shows a similar pattern as the FPS metrics;
the stability increases steadily as the device number is less than 3, and
remains stable after that.

42 CHAPTER 3. GBOOSTER

O
o

(0]
u
T

(o]
o
T

FPS
~
S,

(o)}
6]

FPS stability (%)
~
o

[e)]
o

U
Ul

0 1 2 3 4 5 6 1 2 3 4 5 6
Number of service devices Number of service devices

o

Figure 3.7: FPS Metrics with Multiple Service Devices.

Application Name | FPS Boost | Energy Consumption
Ebook Reader 0 92.1%
Yahoo Weather 0 93.6%
Tumblr 0 93.3%

Table 3.3: FPS Boost and Normalized Energy Consumption for Non-
gaming Applications.

3.6.5 Performance on non-gaming apps

Although we mainly focus on GPU-intensive mobile games in this work,
we also evaluate what non-gaming applications can benefit from our pro-
totype. We measure the effectiveness of application acceleration and power
saving of three popular non-gaming applications including Ebook Reader
[4], Yahoo Weather [24], and Tumblr [21]. We utilize MonkeyRunner [42] to
generate same sets of touch events for repeatable tests including reading
an article, viewing weather information, and browsing a post for ten times.

Table. 3.3 demonstrates the experiment results. It can be seen that our
prototype provides tiny energy saving (7% on average) and no FPS boost
for the applications. It is expected since these applications generate much

less GPU workload, compared to the games. However, The power sav-

3.6. SYSTEM EVALUATION 43

ing is still valuable, considering that battery resource is rather scarce on

smartphones.

3.6.6 Comparison with Cloud-based Solutions

For comparison purposes, we also evaluate the performance of the most
popular cloud-based solution OnLive [13]. Specifically, we measure the
median FPS and response time by adopting the measurement method in
[36]. It is worth to note that unlike our system that universally supports
all mobile multimedia applications, the platform offers a limited number
of application choices. We conduct our tests on ten games and report the
average results: with an Internet connection of 10 Mbps bandwidth, the
platform can stream games at a resolution of 1280 x 720 with a frame rate
of 30 FPS and average response time of approximately 150 ms. We notice
that the FPS is capped at 30 FPS because of the setting of the video encoder
used by the platform. Moreover, the average response time is almost 5
times longer than our prototype’s due to the long proximity to the cloud

server.

3.6.7 System Overhead

Memory Overhead. Our system allocates extra memory in user devices.
To quantify the memory overhead, we measure the extra memory con-
sumption in the games shown in Table. 3.2. The experiment results show
that the average memory footprint is fairly small, which is 47.8 MB. Con-
sidering typical smart devices are equipped with gigabytes of memory
space, the memory overhead is almost negligible.

CPU Overhead. Our system consumes extra CPU resources for inter-
mediate procedures of offloading such as data compression and image de-
coding. We measure the extra CPU usages on the Nexus 5 phone. The
results show that when running locally, the most compute-intensive appli-
cation G1 accounts for an average CPU usage of 68%. When the offloading

44 CHAPTER 3. GBOOSTER

is enabled, the CPU load increases to 79%. Clearly, the device’s CPU is still
underutilized and the tiny increment of CPU usage barely impacts the sys-
tem performance.

3.7 Conclusion

In this paper, we propose GBooster, a system that accelerates GPU-intensive
mobile applications by transparently offloading GPU computation onto
ambient multimedia devices such as SmartTV and Gaming Consoles. We
implement GBooster on the Android platform and demonstrate that the
prototype can significantly increase applications’ frame rates and reduce

their energy consumption.

Chapter 4

UbiTouch

In this chapter, we explore a novel interaction technology that extends
smartphones with virtual touchpads on ordinary desktops by purely uti-
lizing smartphone built-in sensors. This chapter is organized as follows:
Section 4.1 is the overview of this work. We then elaborate the imple-
mentation of the system and present our preliminary findings in the sub-
sequent sections. We demonstrate the experiment results in Section 4.7.
Finally, we conclude this chapter in Section 4.8.

4.1 System Overview

UbiTouch extends touch-screen based devices with an external virtual touch-
pad on a common surface (e.g., wooden desktop). Similar to a conven-
tional touchpad, it accepts general touch actions including tapping and
dragging.

Fig. 4.1 demonstrates the typical use case of UbiTouch. For the pur-
pose of illustration, a 7 cm x 13 cm rectangle zone is marked on a desk-
top, serving as a virtual touch area. An off-the-shelf Android smartphone
(LG Nexus 5) is then placed vertically on the top border of the zone, en-
abling the ALS and PS to sense the movement inside the virtual touch

area. Before running UbiTouch, an initial training is needed, whereby the

45

46 CHAPTER 4. UBITOUCH

The ALS and PS

Figure 4.1: Typical system deployment.

user moves his finger along some trajectories instructed by the system to
generate some training data. UbiTouch then learns a mapping function
from the training data through a neural network. It then uses the function
to convert the subsequent sensor readings into two-dimensional coordi-

nates, enabling continuous tracking.

In this research, our design goal is for UbiTouch to work in a portable,
accurate, and robust manner. UbiTouch should only rely on smartphone
built-in sensors to achieve centimetre-scale finger tracking and touch ac-
tion detection. Meanwhile, UbiTouch should be resilient against minor
changes of the ambient light. To achieve these goals, UbiTouch adopts
a work-flow shown in Fig. 4.2. It can be seen that the architecture of
UbiTouch comprises the following three major components: (i) finger track-
ing, (ii) touch action detection, and (iii) run-time calibration and adapta-

tion.

4.2. A PEEK AT TRAILING A FINGER USING ALS AND PS 47

Touch Action Detection Runtime

* Audio " . . Duration Touch | Adaption
- Gyro »-| | Tapping Detechonl—»{ Estimation | Event .
- z : Calibration
. PS Finger Tracking
- ALS > Data »| Data Particle l
Preprocessin Mapping Filters

Initial Training Parameter

Training Data Parameter | | Mapping \ _ Update
Learning Function /

Figure 4.2: System Logic Flow for UbiTouch

4.2 A Peek at Trailing a Finger Using ALS and
PS

In this section, we first provide some rationales about how raw readings
from ALS and PS sensors could be utilized to track a user’s finger. Then
we conduct some preliminary experiments to determine the utility of the
ALS and PS information.

Figure. 4.3(b) demonstrates the underlying mechanisms of the ALS. It
can be seen that the ambient light sensor consists of two photodiodes (CHO
and CH1) in two separate locations. The first photodiode is sensitive to
both visible and infrared light while the second photodiode is primarily
sensitive to infrared light. The fusion of the two readings is used to esti-
mated luminance of the visible light. Assuming the settings of background
light sources (i.e., positions and brightness) remain unchanged, movement
of an object or finger may alter the path in which the light propagates.
It then affects the intensity of the light received by the two photodiodes.
Therefore, abundant information can be derived on how an object moves
from the light intensity readings.

Meanwhile, the proximity sensor depicted in Fig. 4.3(c) also provides
extra movement information. A LED emitter broadcasts a certain number

of infrared pulses. The pulses strike a nearby object (which is a user’s fin-

48 CHAPTER 4. UBITOUCH

ALS and PS
A —

Ambient Light +

Sources . - @
N o
VAN .

e

. Photodiode CHO Photodiode CH1 ! & Infra-red Infra-red

! (Visible and Infra-red light) (infra-red light) o emitter receiver
Ambient Light Sensor R Proximity Sensor
(@ (®) ()

Figure 4.3: (a) shows the positions of the PS and ALS on a smart phone. (b)
and (c) show the underlying mechanisms of the ALS and PS respectively.

ger in our scenario) and get reflected to a receiver. The receiver counts the
number of pulses and estimates the distance based on a simple principle:
the farther the object is, the fewer the number pulses received, since the
infrared light has to travel in a longer path and loses more energy. It is
easy to see that variation of the pulse number has a strong link with the
object movement, which may assist in our goal.

We start with some simple tests to determine the utility of the ALS and
PS information. We first setup the experiment environment which com-
plies with the UbiTouch’s typical use case shown in Fig 4.1. All experi-
ments are conducted in an ordinary office environment where the settings
of background light sources (i.e., positions and luminance) do not vary.

For the purpose of illustration, we specify a coordinate system for the
area where the origin is located at the lower-left corner and two axes are
marked by the dash lines in the figure. To understand how the movement
of a finger affects the readings of the ALS and PS, we instruct a user to
move his finger along the trajectories in red. The trajectories are designed
to be either parallel to the axis "X’ or axis “Y’ such that we can better ob-
serve the variation trend by altering one variable each time.

4.2. A PEEK AT TRAILING A FINGER USING ALS AND PS 49

During the movement, we record five types of readings: (1) luminance
(LUX); (2) distance measurement (a binary value representing ‘far’ or ‘near’
); (3) raw sensor reading from the photodiode CHO; (4) raw sensor read-
ing from the photodiode CH1; (5) count of pulses received by the PS. The
first two kinds of data can be easily retrieved via the sensor API provided
by the Android platform. However, the system blocks the access to the re-
maining three types of data. To overcome this constraint, a patch is applied
on the OS kernel, which enables us to bypass the Android framework and
access the raw readings from the hardware directly. Specifically, the patch
first replaces the original proprietary PS and ALS driver with an open-
source one [31]. The new driver is designed to stream the data of registers
in the hardware to user-space applications through SYSFS interfaces [61].
The UbiTouch application continuously polls the samples from the driver
and process them. In our implementation, we set the polling frequency for
the PS and ALS to 100Hz, which is the maximum frequency the hardware
can support [30].

We display these readings for the two trajectories in Fig. 4.4(a) and
Fig. 4.4(b) respectively. From top to bottom, the sub-figures demonstrate
how the luminance, binary distance measurements, CHO readings, CH1
readings, and pulse counts change over the finger’s positions. It can be
seen that, regardless of the moving directions, there is no obvious link be-
tween the movement and the luminance. We analyze the possible causes
and find that the resolution for the noisy luminance readings is somewhat
low because the values are integers and only vary between 20 to 26 in our

experiments. It renders the luminance an unsuitable feature for our goal.

As for the distance measurements, the binary values will turn to one
when the finger moves within a certain radius (around 5cm) of the PS.
Nevertheless the binary information is still coarse-grained to realize accu-

rate localization and tracking.

We now turn our attention to the three remaining types of data. The

first observation we can easily identify is that the readings for CH1 and

50 CHAPTER 4. UBITOUCH

(@) (b)
25 : : : : 1 o~ : : .
5 23t
- 21}
9] ‘ ‘ ;
2 1 ,
2 I ,
A ‘ ‘ ‘ ‘ ‘ ‘
12000 T T T T T T 9 6800F
=) 11000} 1 6500}
o 10000} 1 6200}
000 . T . 5900t
I 1300
T 2000 1 1200}
O 1800t 1 1150}
600L . TS] 1700
5 1000 : : : : : : 1200
€9 800} | 1000}
3 E 800}
S é, 600+ 1 600}
400 L L L L L 400 L L L L L
0O 2 4 6 8 10 12 14 0 1 2 3 4 5 6 7 8
X-Coordinate (cm) Y-Coordinate (cm)

Figure 4.4: Recorded sensor readings during the movement along the
aforementioned trajectories. The readings have been interpolated and out-
liers have been filtered out.

CHO have a strong correlation with the finger’s movement. Specifically,
as the finger moves closer to the ALS, the readings decrease. Another
important observation is that the pulse counts also have a strong link with
the movement. When a finger is getting further away from the PS, the
pulse number received significantly decreases.

It can be seen that these data are location-dependent and have the po-
tential to enable localization and tracking. We explore the practical solu-
tions to obtain finger locations in the next section.

4.3 Obtaining Finger Locations from Raw Sen-

sor Data

Let tuple s, : (r{, 7}, ¢;) denote the readings for the photodiode CHO, pho-
todiode CH1, and pulse count at time ¢. Let l; : (x;,y:) denote the finger

4.3. OBTAINING FINGER LOCATIONS FROM RAW SENSOR DATA 51

position, which is the coordinate on the aforementioned virtual touch area.
To locate the finger from the raw sensor data, we use a mapping function
f that maps the s, into [;.

Ideally, a well-chosen deterministic mapping model that takes the set-
tings of the background light sources and placement of the smartphone
into consideration will achieve best performance. However, as the back-
ground environment and smartphone deployment vary from time to time,
it would be fairly difficult and laborious for users to decide the numerous
parameters of the model when they are using the system. Thus, we seek
a model that automatically tunes its parameters and adapts to different
environments.

In this paper, we adopt a nonlinear mapping model called Curvilin-
ear Component Analysis (CCA) [41]. The CCA is a self-organizing neu-
ral network which has the ability to learn the mapping between a high-
dimensional space to a low-dimensional one. Mathematically speaking,
CCA attempts to train a network (i.e. a mapping function) to optimize the
following criterion that explicitly measures the preservation of the pair-
wise distances (denoted by E):

N N
E=Y " (8(si,s;) — d(li, ;)" F(dig, A) (4.1)

=1 i=1
where N denotes the total number of the training data. The §(s;, s;) is
the curvilinear distance in the input space and d(l;,l;) is the Euclidean
distance in the output space between the i-th and j-th data points. The
factor F' weighs the contribution of each pair in the criterion, which is

usually implemented as the Heaviside step function:

1, if (L) —A>0

F(d(l;,1;),\) = { (4.2)

where)\ is a neighboring radius and set slightly larger than the maximum

curvilinear distance measured in the input data set (i.e., max(d(s;, s;)|i < j < n)).

52 CHAPTER 4. UBITOUCH

The rationale behind this method is that if two readings are quite simi-
lar to each other, the points they are mapped into should also have a small
distance. Conversely, a huge difference between sensor readings indicates
a large distance between the points. Thus, this method attempts to obtain
a mapping function f by minimizing the difference between the pairwise
distances in the input space and output space.

& Training

Restart
Training

@

Figure 4.5: The application for gathering training data.

To apply this approach, we collect some training data as a series of s,
and the corresponding ;. Thus, a data gathering application shown in Fig.
4.5 is built to facilitate this process. The application first requests the user
to input the size of the touch area and displays a trajectory along which
a cursor gradually moves in a certain speed. The user is then requested
to move his finger inside the touching area on the desktop, imitating the
movement indicated by the cursor.

The user may repeat the process for several times in order to achieve a
good synchronization between the finger movement and the cursor mo-
tion. In this manner, the coordinates of the cursor on the smartphone
screen could be transformed to the coordinates of the finger on the touch

area by a simple scaling transformation. Compared with single point cal-

4.3. OBTAINING FINGER LOCATIONS FROM RAW SENSOR DATA 53

ibration, our calibration process can obtain far more training data. The
training process typically lasts one minute.

Before feeding the training data to the neural network, we notice that
the training data contain many outliers and heavy noises. Three prepro-
cessing tasks are used to clean the training data.

Outlier Removal. We find that there are some abrupt changes of the
data that are obviously not caused by the finger movement. Fig. 4.6(a)
shows an example of the training data and it can be seen that there are
some significant abrupt change in the /;, and /; around the positions 2, 3

and 6.5. There are likely to be outliers and should be eliminated.

Outliers

10000
9500}
© 9000}
O 8500}
8000}
7500
1400 —
1300 P Outliers |

\‘7

1 2 3 4 5 6 7

— 1200
O 1100
1000}
900

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
X-Coordinate (CM) X-Coordinate (CM)

@) (b)

Figure 4.6: (a) The original CHO/CH1 data. (b) The CHO/CHI1 data after
the outliers are removed using the Hampel filter.

To achieve that purpose, we first attempt the widely-used Standard De-
viation (SD) method. However, this approach highly relies on the mean
and standard deviation which are extremely sensitive to the presence of
outliers, hence does not perform well. Therefore, we utilize a more sophis-
ticated outlier-removal algorithm called the Hampel Identifier [60]. The

54 CHAPTER 4. UBITOUCH

algorithm declares any data points not within the range [t —y* o, p+y* o]
as outliers, where u and ¢ denote the mean and the median absolute de-
viation of the sequence respectively, while 7 is a constant and the typical
value is 3 for general cases. Fig. 4.6(b) demonstrates the results for outlier
removal. It can be seen that the Hampel Identifier eliminates the outliers
and preserves the desire CHO and CHI1 responses.

Interpolation. We program the application to poll the sensor data from
the hardware every 10ms (i.e., 100Hz). However, we cannot guarantee that
a reading is retrieved at the desired frequency, because the Linux kernel
used by typical smartphones does not provide real-time task scheduling.
A detailed look at the data shows that sampling jitters appear frequently
and the sampling latency can be up to 150 ms when the smartphone is hav-
ing a high computation load. Therefore, the data must be interpolated be-
fore further processing. Here, we apply linear interpolation at the data to
retrieve a re-sampled series with the desired sampling frequency of 100Hz.

Noise Filtering. The final step of pre-processing is to suppress the
heavy noises in the data series. In our implementation, we utilize the
wavelet filter proposed in [74] to smooth away the high-frequency noises.
Specifically, we apply 4-level ‘db4” wavelet transform on sensor data and
only use the approximation coefficients to ‘re-construct’ the filtered signal.
Fig 4.7 demonstrates the data sequences before and after filtering. It can
be seen that the noisy signal is getting much cleaner.

— Original CHO|{ 1300 650L| — Original Count
— Filtered CHO |7 1250 s00l| — Filtered Count

— Original CH1
— Filtered CH1

Figure 4.7: The effect of noise filtering.

The filtered data is fed to the CCA neural network. In the training

4.4. IMPROVING TRACKING ACCURACY VIA A HIDDEN MARKOV MODEL55

phase, a tunable parameter called learning rate (denoted by a € [0, 1])
decides the convergence speed of the learning process. Here, we adopt a

linear learning rate function which linearly decreases the rate with time.

4.4 Improving Tracking Accuracy via a Hidden
Markov Model

In the previous section, we attempt to obtain the finger locations from the
sensor readings by utilizing a CCA network. It simply maps the sensor
reading s, into a location /;, without taking previous readings into consid-
eration.

This method does not take advantage of an important observation: a
user typically moves his finger smoothly, thus the finger position at a con-
secutive moment is likely not far away from the current location. The
observation indicates that the finger movement can be modeled by a Hid-
den Markov Model (HMM) shown in Fig. 4.8. The model contains a set of
hidden state variables (i.e., finger positions) and observable variables (i.e.,
sensor measurements). The current position [, depends on the previous
location /,_; according to the probabilistic transition model p(l;|l;—1). The
sensor measurement s, can be regarded as a stochastic projection of the
hidden state /; generated via the probabilistic observation model p(s;|l;).
We now want to sequentially estimate the values of the hidden location [,
given the values of the observation process sy, - - - , s, at any time step £,
which follows the posterior density:

p(lkISO,Sk,...,Sk). (43)

It can be seen that this model enables us to further improve the tracking
accuracy by incorporating the historic sensor measurements.

To estimate the hidden states, we adopt an approach called Particle
Filter [68] which can efficiently deal with a large number of possible states
in our scenarios. The algorithm is described in three steps:

56 CHAPTER 4. UBITOUCH

State Transition :

Probabilities: p(1, [1,.1)

Hidden States:
Locations

Observation :
i Probabilities: p(s, | 1,) :

Observable Variables:
SensorReadings \ ¢) (S) (S | e

Figure 4.8: HMM-based Movement Modeling.

1. Initialization:
e Fori=1,..., M, randomly initialize [, and set t = 1.
2. Importance sampling step:

e Fori=1,..., M, sample l}: ~ p(L|li_y).
e Fori =1,..., M, evaluate the importance weights by 12)2 = p(st|l:§).

e Normalize the importance weights.
3. Selection step:

e Re-sample with replacement M particles (I{;i = 1,..., M) from
the (I{;¢ =1, ..., M) according to the importance weights.

e Sett < ¢+ 1 and return to the step 2.

This algorithm requires two probabilistic models: the transition model
p(l¢]l;—1) and the observation model = p(s;|;).

We first try to compute the transition model p(l;|/,_1). Based on the
aforementioned observation, we can safely assume the user moves his fin-
ger in a reasonable speed not exceeding a constant value V,,,,. We now
express the transition model as follow:

0, if d(lyl1) — Vs *T < 0
plillr) =9 | Al le) (44)
if d<lt7 lt—l) - Vmaa} * T Z 07

27V2 T2

4.5. TOUCH ACTION DETECTION 57

where T is the sampling period (10ms). V,,,,, here is set to 0.05m/s based
on the previous finger touch research [34]. The intuition behind the transi-
tion model is that a finger located at /;_; can uniformly move to any points
within the circle whose center and radius are /,_; and V},,, * 1" respectively.
Next we have to figure out the observation model p(s;|l;). Noting that
we have obtained a mapping function f that maps a sensor measurement
s, to a position [, in the previous section, we could obtain the following

equation:
so= 10+ W, (45)

where f~! is the reverse mapping function that projects /; to s; and can be
obtained from the CCA network. W denotes the measurement noise and
has a Gaussian distribution, that is W ~ A(0,%) and ¥ = diag(c?). The
o is a standard deviation and set to 10 which is measured from the real
sensory data.

Therefore, the measurement model can be expressed as:

p(si|l) = Cxexp ((sp — [(1)"S (s — [(1)), (4.6)

where (' is a constant and does not affect the final results due to normal-
ization in the importance sampling step.

It should be noted that, the algorithm’s time complexity is linear with
respect to the number of samples M. Obviously, the more samples, the
better the accuracy, so there is a trade-off between speed and accuracy. To
find an optimal value of M for the system, we adopt a strategy described
in [72] which dynamically adjusts the number of samples and is adaptive

to the available computational resources.

4.5 Touch Action Detection

The system is now able to accurately track the finger movement. How-
ever, to mimic a virtual touchpad, the system requires to detect two typical
touch actions including tapping and dragging.

58 CHAPTER 4. UBITOUCH

Our system realizes the detection by leveraging a smartphone built-
in microphone. Tapping on a desktop typically generates audible stroke
sounds. Similarly, dragging gestures request the user to rub on a desktop,
producing constant audio noises as well. These signals could be received
by the sensor and facilitate the touch action detection.

0-15 T T T T T T T T

© .
Tappin
3 01t peing =
- Dragging
2]
© 0.05F 1
c
[0}
o Mm

50 100 150 200 250 300 350 400 450
time(ms)

o

Figure 4.9: Energy level of the audio signals for tapping and dragging.
It is obtained via short-team average on the audio signal with a moving

window.

Fig 4.9 shows the energy level of the audio signals received when a
user is tapping and dragging on a desktop. The audio energy generated
by a tapping has a pattern similar to an impulse response. It starts with
a outstanding peak in the beginning and fades away in a short period.
Regarding the dragging action, it can be divided to two sub-actions: initial
tapping and subsequent rubbing. It incurs a peak at the very beginning
and causes a long lasting disturbance to the audio signals. It can be seen
that the first step for our detection algorithm is to identify the tapping
event.

In our implementation, we utilize a hypothesis testing approach called
the generalized likelihood ratio test (GLRT) [82] to determine whether
there is a tapping event. We store the incoming audio energy readings
for 100ms in a First-In-First-Out buffer and keep testing the following two
hypotheses on the data. The null hypothesis H is that there is no tapping

on the desktop and hence the average of the energy level should remain

4.5. TOUCH ACTION DETECTION 59

stable. Thus, we have
Hy :u(t) = po + w(t) (4.7)

The variable u(t) is the mean of the energy level before the time ¢. The
o denotes the average energy and the variable w(t) is the Gaussian noise
with zero mean value and unknown variance oy.

The alternative hypothesis H; is that there is a tapping such that the
mean of the energy level will significantly increase due to the tapping im-
pulse. Thus, we have

o u(t) = po +w(t) ift <t.
V) =+ w(t) ift > toand g # po,

where the ¢, represents the time when the tapping occurs, j; denotes the

(4.8)

new average energy after the tapping. Note that uy, 0o, i1, and ¢, are
unknown parameters.

where p(u | Hy,6,) is the probability density function of v under hy-
pothesis H; and 6,. The p(u | Hy, 6) is defined in a similar manner. The r
is the threshold and set to 100 which works well in general cases.

However, the energy based detection system is likely to be disturbed
by ambient noises. According to the field test, human voices or sudden
random burst of sound nearby can frequently mis-trigger the detection
system. To remove the false positives, we utilize a cross-checking ap-
proach that leverages a smartphone’s gyroscope.

The algorithm takes advantage of an observation that a tapping on a
desktop generates vibrations which could be easily captured by the gyro-
scope, while the ambient noises do not. Thus, whenever a tapping event
is detected by the audio signal, we further check the presence of the vi-
brations in the gyroscope signals. To detect the vibrations, we adopt the
GLRT algorithm in a similar manner to the audio signal. This approach
significantly suppresses the false alarms caused by the ambient noises.

After a tapping event is detected, we further estimate the duration of
the touch action in case there is a following dragging event. The duration

60 CHAPTER 4. UBITOUCH

is estimated between the point when the tapping occurs and the point
when the power drops to below the threshold 1y + (fimaz — to) * 10%.
The (4, is the maximum power level that the tapping impulse can reach.
Capping the duration at the power level slightly above the normal noise
energy helps the system combat the fluctuation of the noise energy floor.
It should be noted that the user is suggested to perform the touch ac-
tions gently, since a large movement of the finger may have negative im-
pact on the finger tracking accuracy. In practice, the detection algorithm
can achieve great performance when the user gently hits or rubs the desk

using his nail tip.

4.6 Runtime Calibration and Adaptation

We assume that the smartphone is placed at an environment where the
settings of ambient light including positions and luminance remain un-
changed. However, in practice, the lighting conditions may vary slightly
due to various reasons (e.g., a bulb may slightly decrease its brightness
due to insufficient voltage), rendering the mapping function retrieved from
the initial training outdated. In our system, rather than simply restarting
the whole training phrase, we adopt a run-time calibration mechanism
that enables the system to adapt to the minor change of the environment
with a tiny effort. In some rare situations when the lighting conditions
change drastically, the user can still manually restart the entire training
phrase.

The system executes runtime adaptation by allowing the user to pro-
vide extra feedback on the localization results. When the user notice minor
localization error, he could pause the tracking algorithm for a short period
and manually input the correct coordinate by clicking on the right posi-
tion on the touchscreen. Through this run-time calibration process, the
system can harness extra training samples to adapt to the slightly vary-

ing environment. Note that we should carefully adjust the learning rate

4.7. SYSTEM EVALUATIONS 61

« associated with the new sample. A tiny o may render the update use-
less, while a huge o may amplify the noise in the sample and make the
mapping function unstable.

In our implementation, we design the « based on the localization error.
Specifically, if the original mapping function f maps the s, into a coordi-
nate [,,, which has a relatively small distance to the coordinate /,, provided
by the user, it means the function performs well and the update rate o
should remain low. Conversely, a high update rate is selected when the

distance is large. Based on the principle, we set « as:

a; = L[l — f(s)|]?) (4.9)

L is a shifted logistic function that can be expressed as:

1

Nt exp(6 — 3x) (4.10)

L(x)

The logistic function converts the localization error into a value between
(0,1) and holds nice properties. First, when the localization error is pretty
small (less then 0.5cm), the value remain relatively low. Second, as the lo-
calization error continuously increases, the alpha rate will increase signif-
icantly. Finally, if the localization error goes beyond a certain value (3cm),

the function returns a « value close to 1.

4.7 System Evaluations

In this section, we provide detailed performance evaluation of UbiTouch
in terms of finger tracking accuracy, touch gesture detection accuracy, and
system energy efficiency. We conducted our experiments in three common
scenarios with dim, normal, and strong lighting condition by five users.
Then we showcase UbiTouch’s effectiveness when it works in conjunction

with a handwriting recognition system.

62 CHAPTER 4. UBITOUCH

4.7.1 Accuracy of Finger Tracking

There are several underlying factors that may affect the tracking perfor-
mance of UbiTouch. In this section, we first carried out a baseline test in
a typical usage scenario. Then we consider the effect of two crucial fac-
tors including (1) ambient lighting condition and (2) the tilted angle of the

smartphone.

Accuracy for baseline experiment

In the baseline experiment, instead of running UbiTouch on an ordinary
desktop, we deploy the system on top of a Macbook Pro’s physical touch-
pad whose size is 7.5 cm x 10.5 cm. It collects the finger locations and
trajectories which serve as the ground truth.

We then carried out a total of 100 static finger localization tests in two
different setup: (1) tracking merely with the CCA mapping function. (2)
tracking with both the mapping function and particle filter.

With only the mapping function, the average localization error is 1.69
cm with a standard deviation of 0.53 cm. The CDF shown in Fig 4.10 re-
veals that over 80% points have an error of less than 2.1 cm. When the
mapping function works in conjunction with the particle filter, the mean
error reduces to 1.53 cm with a 0.42 cm standard deviation. The corre-
sponding CDF demonstrates that 80% of the error values is now less than
1.8 cm. The performance improvement is attributed to the particle filter
which takes extra historic information into consideration.

Besides, the performance can also be observed through the spatial error
distributions shown in Fig 4.11. An obvious observation is that the remote
spots far away from the PS and ALS sensor tend to possess larger error
than the area around the sensors does. We investigate this phenomenon
and discover that when the finger is not within the optimal detection range
of the PS (10cm), the sensor readings are saturated with noises, which

might severely degrade the localization performance. Noticing that the

4.7. SYSTEM EVALUATIONS 63

1.0 ; ; . ; i
[a) ; : /
0.2 | — Without Particle Filter
A S | — With Particle Filter ||

%8005 10 15 20 25 30 35

Figure 4.10: CDF for the localization error (cm).

transmission power of the PS is adjustable, we may be able to increase the

detection range by consuming more energy.

= N NN
. } o] o N B
Localization error (cm)

g
o

=
IS

X (cm)

Figure 4.11: The spatial error distribution (interpolated). The position for
the ALS and PS is around (12, 7.5).

Impact of ambient lighting condition

To measure the impact of the ambient lighting condition, we deploy our
system in three typical scenarios including a storage room with a dim light
bulb, an office room at campus with moderate light level, and an outdoor
place with excessive sun light. Note that the settings (e.g., positions and
illumination) of background light sources for these scenarios remain un-

changed during our experiment. The experiments run on each scenarios,

64 CHAPTER 4. UBITOUCH

each repeated 100 times. Each time we conduct an experiment, we re-
calibrate the system to achieve accurate performance measurements. Fig.
4.12 plots the corresponding localization accuracy. The results show that
UbiTouch can maintain a localization error less than 1.54 cm across all the
scenarios. It indicates that the system can perform well regardless of the
illumination of the ambient lighting.

2.5
§ 20|]
: 1
g 1.5h |
: \
i)
w 1.0 1 1
-(_%‘ I Storage Room
S 0.5||mm Office a
— I Outdoor

0.0 ' .

Figure 4.12: Localization accuracy

under differnt scenearios.

Tilted Angle

In the previous experiments, the smartphone is deployed vertically on a
desk. However, in practice, some users prefer to place their phones in a
slightly tilted angle for a better user experience or perspective. Hence, we
carried out multiple tests under different inclined angles, which can be
directly measured by the built-in orientation sensors.

Fig. 4.13 demonstrates how the tracking accuracy changes with the ti-
tled angle. It can be seen that the localization error mildly increases when

the titled angle starts rising. It indicates that the system still performs well

4.7. SYSTEM EVALUATIONS 65

8
S 7
o 6|
S 5/
8 3
3 2

1 ! ! ! ! ! !

0 10 20 30 40 50 60 70

Angle (degree)

Figure 4.13: Localization error vs.

smartphone inclined angle.

when the smartphone is deployed at a slightly tilted angle (less than 10 de-
grees). However, the slope drastically grows starting from 25 degrees and
the localization error soars into xcm when the angle reaches 60 degrees. It
may be due to that when the smartphone is significantly inclined, the AS
and PLS turn into a direction far away from the finger, which has negative
impact on the localization accuracy.

4.7.2 Accuracy of Touch Action Detection

We now evaluate the effectiveness of the tapping and dragging detection
component. We carried out the test in three scenarios: a library, an office at
campus, and a pub. These situations represent environments with small,
normal, and extreme background noise respectively.

First, we measured the accuracy of the tapping detection. In every
experiment, we instructed a user to tap on a desk to make 300 clicks, each
on a randomly selected position. The tapping strength is maintained to be
a moderate level which is audible to the user.

Table 4.2 display the experiment results for false positive (false alarm)
and false negative (mis-detection) rate. We can notice that the error rates

remains relatively low (3.5% in the worst case). The results indicate the

66 CHAPTER 4. UBITOUCH

100 T T T 1 T

(@) o
(=) o
T T

|
|
I I

SN
o
!

I

Accuracy

N
(=)
T

B Physical |- .
[Virtual

I | 7 7

A B C D E

o

Figure 4.14: Recognition rates for

5 users.

tapping detection algorithm is accurate and reliable.

We conduct the experiments again without using the gyroscope. The
results show that in a quiet environment including the library and office,
the system performs equally well even with the gyroscope disabled. How-
ever, in a noisy pub environment, the false positive rate soars into 15%,
making the system unusable. It indicates that the gyroscope can greatly
suppress the false positive rate in some noisy situation and improve the

performance.

Next, we evaluate the effectiveness of the duration estimation algo-
rithm. We requested a user to perform a 10-second dragging action after
a tapping. The experiments were repeated for 50 times in the aforemen-
tioned three situations. Table 4.2 shows the dragging duration estimation
and demonstrates fair accuracy. Even in a noisy environment, the error is

still below a reasonable value (0.5 seconds).

4.7. SYSTEM EVALUATIONS 67

Library | Office | Pub
Error rate with 0.5% 0.8% 3.5%
gyro (FP/EN)| (0/0.5) | (0/0.8) | (0.3/3.2)
Error rate w/q 0.7% 1.3% 21%
gyro (FP/FN) | (0.3/0.4)| (0.5/0.8)| (15/6)

Table 4.1: Accuracy of tapping detection.

Library | Office | Pub
Est. Duration(sec) | 9.7 10.2 10.5

Table 4.2: Accuracy of touch-event duration estimation.

4.7.3 Power Consumption

UbiTouch merely leverages built-in sensors including the PS, ALS, micro-
phone, and gyroscope which are of low power consumption. Especially,
the average operating current for the PS and ALS is only 176 pA [30]. We
profile the power consumption of UbiTouch by utilizing a professional
power monitor application called Powertutor [87]. Specifically, we mea-
sure the power cost in two situations: (1) idle with screen on (2) running
UbiTouch with continuous touch input. Each situation lasts for 5 minutes.
The average power consumption for each state is 6021 mW and 6930 mW
respectively. Thus, UbiTouch incurs extra 15.1% power cost, that is slightly
less than the power consumption of UbiK which is 18.5% [76].

4.7.4 Application Tests

UbiTouch can support various types of applications such as drawing and
text-inputing. Here, we further evaluate the system performance by re-
playing the user input into the Google handwriting text-input application
[48] and assessing the recognition rate. We carried out the experiments by
requesting three users to input 100 random English alphabets. Fig. 4.15

68 CHAPTER 4. UBITOUCH

shows two handwriting examples retrieved from the physical and virtual
touchpads. Note that instead of feeding the finger trajectories to the appli-
cation, we conduct some pre-processing to increase the recognition rate.
Specifically, we apply a clustering algorithm called DBSCAN [83] to filter
out some outliers and extract the skeleton of the input character, which is
then fed into the recognition software.

Fig. 4.14 demonstrates the recognition rates for five users. The av-
erage recognition rate is 79%. In the worst case, the recognition rate for
UbiTouch is 72%, still comparable to the accuracy of the physical touch-
pad which is 92%.

8 : : ‘ ‘ ‘ 6
7L ¢0 e .o Physicall| 000.0a.
o;. e e Virtual ot .“,..“'.'...“ oo
. 6 O;. i 4 .-....-oooo-o.
st | . :
S j’ §4 K
> 4t i ° > 2 0‘..‘ ----- @
3| otfee ..a 0 e |
"3 av g eyl e Physical
2} i 1+ e0o ot) ,
0+ 000000000aCCEEIIIS D oo Virtual
1 ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ : : ‘ ‘
3 4 5 6 7 8 9 10 0 1 2 3 4 5 6
X (cm) X (cm)

Figure 4.15: Handwriting examples for English characters L and C.

4.8 Conclusion

In this chapter, we present UbiTouch, a prototype system that enhances
smartphones with virtual touchpads through the built-in smartphone sen-
sors. We demonstrate that UbiTouch achieves centimeter-level localization

accuracy and poses no significant impact on battery life of a smartphone.

Chapter 5

Conclusions and Suggestions for

Future Research

In this chapter, we conclude this thesis and outline some possible future

works.

5.1 Conclusions

The mobile gaming industry is involving constantly and rapidly. The
game developers are now producing mobile games with increasingly im-
mersive graphics. Nevertheless, the resource-hungry gaming tasks, which
are formerly reserved for the desktop PCs, inevitably push the limit of the
devices, causing the applications’ running in a low frame rate and leading
to a short battery lifetime. Besides, the minuscule touchscreens of smart
devices also prevent players from smoothly interacting with devices as
they can do with PCs. In this thesis, we propose a system framework for
mobile gaming to address the challenging issues. We implement two sys-
tems that enable gaming application acceleration and provide a novel mo-
bile interaction technology for game players. We analyzed the challenging
issues while implementing these systems and demonstrated our solutions

as well.

69

70CHAPTER 5. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

As for the gaming acceleration systems, we present GBooster, a system
that accelerates GPU-intensive mobile applications by transparently of-
floading GPU tasks onto neighboring multimedia devices such as SmartTV
and Gaming Consoles. We implemented a prototype system on the An-
droid system and evauluate its performance with 6 mobile games of 3 gen-
ers. The results demonstrate that GBooster can boost applications” frame
rates by up to 85%. In terms of power consumption, GBooster can achieve
70% energy saving compared with local execution.

To enable players” smooth interaction with mobile devices, we propose
UbiTouch, a prototype system that enhances smartphones with virtual
touchpads by merely utilizing the built-in energy-conservative sensors.
UbiTouch trails a finger by analyzing the raw sensory data from the AS
and PLS and detects typically touch actions such as tapping and dragging
by leveraging the microphone and gyroscope sensor. We have evaluate
our system in three scenarios with different lighting conditions by five
users. The results show that UbiTouch achieves centimetre-level localiza-
tion accuracy and poses no significant impact on the battery life. We en-
vision that UbiTouch could support applications such as text-writing and
drawing.

The two parts of the thesis heavily utilize techniques including signal
processing and statistical analysis. We modified and adopt them based
on the specific usage scenarios. By conducting extensive experiments, we
show that the methodologies successfully solved the problems we encoun-
tered. As the methodologies are designed for general scenarios, we believe
that the thesis could shed light on future related research.

5.2 Suggestions for Future Research

We close this thesis by providing some suggestions for the future research.
Specifically, we believe that the following aspects are worth further inves-

tigation.

5.2. SUGGESTIONS FOR FUTURE RESEARCH 71

5.2.1 GBooster

GBooster has made some advances towards acceleration of GPU-intensive
mobile applications. Still, it bears several limitations that needs further
improvement.

Scenarios without Available Devices Although GBooster outweighs
existing cloud-based solutions in terms of response time and frame rate, it
does not imply that GBooster can take place of the cloud-based solutions.
Under some rare circumstances where there is no available multimedia de-
vice nearby, the cloud-based platforms could still provide service to users.

Different Mobile Operating Systems. Our current prototype is only
implemented on the Android operating systems. We are investigating
how to enable GBooster in other mobile platforms such as iOS and Win-
dows Phone. Since the iOS utilizes OpenGL ES as the Android does, we
may be able to directly port GBooster to iOS. Although Windows Phone
uses a different graphics API named Direct X [62], we could still utilize the
same API hooking technique and implement the corresponding wrapper
library to support it.

Towards Multiple Users. The prototype is designed to serve multiple
users simultaneously. All the service devices maintain a queue buffering
the incoming requests and submit them to GPU for execution in a First-
Come-First-Served (FCFS) manner. However, it takes no consideration of
the tasks’ priorities, which could be problematic for time-critical applica-
tions. For instance, when an fast-paced shooting game and a chess game
that requests thoughtful consideration for each movement are running si-
multaneously, requests from the shooting game should receive higher pro-
cessing priorities in order to provide the player with a fast response time.
We plan to purpose sophisticated scheduling algorithms to meet require-
ment from multiple users.

Experiment Settings. Another limitation lies in the straightforward
experiment settings. We only conduct experiments in an ideal local area
network with stable connectivity. More tests should be carried out in dif-

72CHAPTER 5. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

ferent networks.

5.2.2 UbiTouch

As for the UbiTouch system, it still has several limitations that are pending
for further investigation.

System Generalizability: Currently, the system is only implemented
on a specific phone model. We found that smart phones from different
vendors tend to equip different types of sensors, which means our system
may only be able to run in a specific model till now. However, since almost
every sensor could provide raw distance and luminance readings. Thus,
we envision that the principles and methodologies explored in the paper
could be generalizable and applicable on a number of devices.

Applicable Scenarios: The prototype of UbiTouch is only applicable
under two basic conditions: (1) the smartphone is placed on a desk in a
vertical or slightly inclined position and remains still, and (2) through-
out the usage life-cycle, the ambient lighting conditions do not vary dras-
tically. Regarding the first condition, users have to deploy the smart-
phone almost vertically, which is a somewhat unnatural position. The
second condition not only requires that the positions and luminance of
light sources basically remain unchanged, but also demands that there is
no significant movement in the neighboring area of the user. We concede
the rigidness of these conditions and envision that more sophisticated sig-
nal processing techniques will be useful for eliminating these limitations.

Finger Gestures: While interacting with the system, the user is sug-
gested to stay consistent in terms of finger gestures. A drastically change
of the finger gesture (e.g., finger rotation/tilting) may negatively affect the
tracking accuracy. We expect some pre-processing jobs to remove the im-

pact of the gestures in the future.

Bibliography

[10]

[11]

Candy crush. http://candycrushsaga.com/en/.
Cut the rope. http://www.cuttherope.net.

Dynamic linker hooking. http://man7.org/linux/
man—-pages/man8/ld.so.8.html.

Ebook reader. https://goo.gl/5tVbvX.

Final fantasy. https://play.google.com/store/apps/
details?id=com.square.enix.android.googleplay.

FEVII.

From tight to turbo and back again: designing a better encoding
method for turbovnc. http://www.virtualgl.org/pmwiki/
uploads/About/tighttoturbo.pdf.

Gaming device statistics. https://goo.gl/7TCTKT.

Gta san andreas. https://play.google.com/store/apps/

details?id=com.rockstargames.gtasa.

Human being response time benchmark. http://www.

humanbenchmark.com/tests/reactiontime/statistics.
List of nvidia graphics processing units. http://goo.gl/gcdgqd.
Mcc forum. http://www.mobilecloudcomputingforum.com/.

73

74

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

BIBLIOGRAPHY

Modern combat 5: Blackout. https://play.google.com/
store/apps/details?id=com.gameloft.android.ANMP.
GloftMbHHM.

Onlive. http://www.onlive.com.

Opengl es emulator. http://malideveloper.arm.com/

resources/tools/opengl-es—emulator/.
Opengl es example program. https://goo.gl/Zrnez4.

Opengl framebuffer. https://www.opengl.org/wiki/
default-framebuffer.

Smart tv statistics. https://goo.gl/wh5aFm.
Specification of nvidia shield. https://goo.gl/vejzCK".

Star wars: Kotor. https://play.google.com/store/apps/

details?id=com.aspyr.swkotor
Tep delay. https://access.redhat.com/solutions/407743.
Tumblr. https://goo.gl/rLr5HJ".

Understanding and optimizing video game
frame rates. https://www.lifewire.com/

optimizing-video—-game-frame-rates—811784.

The walking dead: Michonne. https://play.google.
com/store/apps/details?id=com.telltalegames.
walkingdeadml0O0.

Yahoo weather. https://goo.gl/N9mLVY.

Global games market report, 2013. https://goo.gl/4aK0GN/.

BIBLIOGRAPHY 75

[26] In less than two years, a smartphone could be your only
computer, 2013. http://www.wired.com/2015/02/

smartphone-only-computer/.

[27] ABDELNASSER, H., YOUSSEF, M., AND HARRAS, K. A. Wigest:
A ubiquitous wifi-based gesture recognition system. In 2015 IEEE
Conference on Computer Communications (INFOCOM) (2015), IEEE,
pp- 1472-1480.

[28] AIMAR, L., MERRITT, L., PETIT, E., CHEN, M., CLAY, J., RULLGRD,
M., HEINE, C., AND IZVORSKI, A. x264-a free h264/avc encoder,
2005.

[29] AKAIKE, H. Akaikes information criterion. In International Encyclo-
pedia of Statistical Science. Springer, 2011, pp. 25-25.

[30] AVAGO. Avago 9930 integrated proximity and ambient light sensor.
http://www.avagotech.com/products/.

[31] AVAGO-DEVELOPER. Avago 9930 linux driver. https:
//github.com/CyanogenMod/android_kernel_lge_
hammerhead/blob/cm-13.0/drivers/misc/apds993x.c.

[32] BAUDISCH, P., AND CHU, G. Back-of-device interaction allows creat-
ing very small touch devices. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (2009), ACM, pp. 1923-1932.

[33] BEN-ZUR, L. Developer tool spotlight-using trepn profiler for power-
efficient apps, 2011.

[34] B1, X., LI, Y., AND ZHAI, S. Ffitts law: modeling finger touch with
fitts” law. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (2013), ACM, pp. 1363-1372.

[35] CAIl, W., ZHOU, C., LEUNG, V. C., AND CHEN, M. A cognitive plat-
form for mobile cloud gaming. In Cloud Computing Technology and

76

[36]

[37]

[38]

[39]

[40]

[41]

[42]

BIBLIOGRAPHY

Science (CloudCom), 2013 IEEE 5th International Conference on (2013),
vol. 1, IEEE, pp. 72-79.

CHEN, S.-W., CHANG, Y., TSENG, P., HANG, C., AND LEI, C. Cloud
gaming latency analysis: Onlive and streammygame delay measure-
ment. In Proceedings of the 19th ACM international conference on Multi-
media (2014), pp. 1269-1272.

CHUN, B.-G., IHM, S., MANIATIS, P., NAIK, M., AND PATTI, A.
Clonecloud: elastic execution between mobile device and cloud. In
Proceedings of the sixth conference on Computer systems (2011), ACM,
pp- 301-314.

CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JuL, E,,
LiMPACH, C., PRATT, I., AND WARFIELD, A. Live migration of vir-
tual machines. In Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation-Volume 2 (2005), USENIX
Association, pp. 273-286.

COLLET, Y. Lz4: Extremely fast compression algorithm. code. google.
com (2013).

CUERVO, E., BALASUBRAMANIAN, A., CHO, D.-K., WOLMAN, A,
SAROIU, S., CHANDRA, R., AND BAHL, P. Maui: making smart-
phones last longer with code offload. In Proceedings of the 8th inter-
national conference on Mobile systems, applications, and services (2010),
ACM, pp. 49-62.

DEMARTINES, P., AND HERAULT, J. Curvilinear component analysis:
A self-organizing neural network for nonlinear mapping of data sets.
Neural Networks, IEEE Transactions on 8,1 (1997), 148-154.

DEVELOPERS, A. Monkeyrunner, 2015.

BIBLIOGRAPHY 77

[43]

[45]

[46]

[48]

[49]

[50]

DINH, H. T., LEEg, C., NIYATO, D., AND WANG, P. A survey of
mobile cloud computing: architecture, applications, and approaches.
Wireless communications and mobile computing 13, 18 (2013), 1587-1611.

FERNANDO, N., LOKE, S. W., AND RAHAYU, W. Mobile cloud com-
puting: A survey. Future Generation Computer Systems 29, 1 (2013),
84-106.

FLINN, J., PARK, S., AND SATYANARAYANAN, M. Balancing perfor-
mance, energy, and quality in pervasive computing. In Distributed

Computing Systems, 2002. Proceedings. 22nd International Conference on
(2002), IEEE, pp. 217-226.

FRAUENFELDER, M. G-cluster makes games to go. The Feature: It’s
All About the Mobile Internet, http://www. thefeaturearchives. com/13267.
html 3 (2001).

GOOGLE. Environment sensor for android. http:
//developer.android.com/guide/topics/sensors/

sensors_environment.html.

GOOGLE-INPUT. Google handwriting input. https:
//play.google.com/store/apps/details?id=com.

google.android.apps.handwriting.ime.

GU, Y., AND GROSSMAN, R. L. Udt: Udp-based data transfer for
high-speed wide area networks. Computer Networks 51,7 (2007), 1777
1799.

HALPERIN, D., GREENSTEIN, B., SHETH, A., AND WETHERALL, D.
Demystifying 802.11 n power consumption. In Proceedings of the 2010
international conference on Power aware computing and systems (2010),

p- L

HAMILTON, J. D. Time series analysis, vol. 2. Princeton university
press Princeton, 1994.

78

[52]

[53]

[54]

[55]

[56]

[57]

[58]

BIBLIOGRAPHY

HARRISON, C., BENKO, H., AND WILSON, A. D. Omnitouch: wear-
able multitouch interaction everywhere. In Proceedings of the 24th an-
nual ACM symposium on User interface software and technology (2011),
ACM, pp. 441-450.

HINCKLEY, K., AND SONG, H. Sensor synaesthesia: touch in motion,
and motion in touch. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (2011), ACM, pp. 801-810.

HIRAOKA, S., MIYAMOTO, 1., AND TOMIMATSU, K. Behind touch, a
text input method for mobile phones by the back and tactile sense in-
terface. Information Processing Society of Japan, Interaction 2003 (2003),
131-138.

HOQUE, M. A., SIEKKINEN, M., KHAN, K. N., X1A0, Y., AND
TARKOMA, S. Modeling, profiling, and debugging the energy con-
sumption of mobile devices. ACM Computing Surveys (CSUR) 48, 3
(2016), 39.

KATO, S., LAKSHMANAN, K., RAJKUMAR, R., AND ISHIKAWA, Y.
Timegraph: Gpu scheduling for real-time multi-tasking environ-
ments.

KEMP, R., PALMER, N., KIELMANN, T., AND BAL, H. Cuckoo: a com-
putation offloading framework for smartphones. In International Con-
ference on Mobile Computing, Applications, and Services (2010), Springer,
pp. 59-79.

KETABDAR, H., YUKSEL, K. A., AND ROSHANDEL, M. Magitact: in-
teraction with mobile devices based on compass (magnetic) sensor.

In Proceedings of the 15th international conference on Intelligent user in-
terfaces (2010), ACM, pp. 413-414.

BIBLIOGRAPHY 79

[59] LANE, N. D., MiLuzzo, E., LU, H., PEEBLES, D., CHOUDHURY, T.,
AND CAMPBELL, A. T. A survey of mobile phone sensing. Communi-
cations Magazine, IEEE 48, 9 (2010), 140-150.

[60] Liu, H., SHAH, S., AND JIANG, W. On-line outlier detection and data
cleaning. Computers & chemical engineering 28,9 (2004), 1635-1647.

[61] LOVE, R. Linux kernel development. Pearson Education, 2010.

[62] LUNA, E. Introduction to 3D game programming with DirectX 10. Jones
& Bartlett Publishers, 2008.

[63] LUO, W., AND BILLINGS, S. Adaptive model selection and estimation
for nonlinear systems using a sliding data window. Signal Processing

46,2 (1995), 179-202.

[64] Lv, Z., HALAWANI, A., LAL KHAN, M. S., REHMAN, S. U., AND LI,
H. Finger in air: touch-less interaction on smartphone. In Proceedings
of the 12th International Conference on Mobile and Ubiquitous Multimedia
(2013), ACM, p. 16.

[65] MUNSHI, A., GINSBURG, D., AND SHREINER, D. OpenGL ES 2.0 pro-

gramming guide. Pearson Education, 2008.

[66] NIRJON, S., GUMMESON, J., GELB, D., AND K1V, K.-H. TypingRing:
A wearable ring platform for text input. In Proceedings of the 13th An-
nual International Conference on Mobile Systems, Applications, and Ser-
vices (2015), ACM, pp. 227-239.

[67] OAKLEY, I., AND LEE, D. Interaction on the edge: offset sensing
for small devices. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (2014), ACM, pp. 169-178.

[68] RISTIC, B., ARULAMPALAM, S., AND GORDON, N. Beyond the Kalman

filter: Particle filters for tracking applications, vol. 685. Artech house
Boston, 2004.

80 BIBLIOGRAPHY

[69] ROBINSON, S., RAJPUT, N., JONES, M., JAIN, A., SAHAY, S., AND
NANAVATI, A. Tapback: towards richer mobile interfaces in impov-
erished contexts. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (2011), ACM, pp. 2733-2736.

[70] ROEBER, H., BACUS, J., AND Tomasl, C. Typing in thin air: the
canesta projection keyboard-a new method of interaction with elec-
tronic devices. In CHI'03 extended abstracts on Human factors in com-
puting systems (2003), ACM, pp. 712-713.

[71] SOLUTIONS, M. Power monitor, 2016.
[72] SOTO, A. Self adaptive particle filter. In IJCAI (2005), pp. 1398-1406.

[73] TANG, S., YOMO, H., KONDO, Y., AND OBANA, S. Wake-up receiver
for radio-on-demand wireless lans. EURASIP Journal on Wireless Com-
munications and Networking 2012, 1 (2012), 1-13.

[74] VILLASENOR, J. D., BELZER, B., AND LI1IAO, J. Wavelet filter evalua-

tion for image compression. Image Processing, IEEE Transactions on 4,
8 (1995), 1053-1060.

[75] WANG, J., VASISHT, D., AND KATABI, D. RFE-IDraw: Virtual Touch
Screen in the Air using RF Signals. In ACM SIGCOMM Computer
Communication Review (2014), vol. 44, ACM, pp. 235-246.

[76] WANG,]., ZHAO, K., ZHANG, X., AND PENG, C. Ubiquitous key-
board for small mobile devices: harnessing multipath fading for fine-
grained keystroke localization. In Proceedings of the 12th annual inter-
national conference on Mobile systems, applications, and services (2014),
ACM, pp. 14-27.

[77] WANG, S., AND DEY, S. Modeling and characterizing user expe-

rience in a cloud server based mobile gaming approach. In Global

BIBLIOGRAPHY 81

[78]

[79]

[80]

[82]

[83]

[84]

[85]

Telecommunications Conference, 2009. GLOBECOM 2009. IEEE (2009),
IEEE, pp. 1-7.

WANG, S., AND DEY, S. Addressing response time and video quality
in remote server based internet mobile gaming. In 2010 IEEE Wireless
Communication and Networking Conference (2010), IEEE, pp. 1-6.

WANG, S., AND DEY, S. Rendering adaptation to address communi-
cation and computation constraints in cloud mobile gaming. In Global
Telecommunications Conference (GLOBECOM 2010), 2010 IEEE (2010),
IEEE, pp. 1-6.

WEN, Y., ZHANG, W., GUAN, K., KILPER, D., AND LUO, H. Energy-
optimal execution policy for a cloud-assisted mobile application plat-
form. Nanyang Technol. Univ., Singapore, Tech. Rep (2011).

WIGDOR, D., FORLINES, C., BAUDISCH, P., BARNWELL, J., AND
SHEN, C. Lucid touch: a see-through mobile device. In Proceedings of
the 20th annual ACM symposium on User interface software and technol-
ogy (2007), ACM, pp. 269-278.

WILLSKY, A. S., AND JONES, H. L. A generalized likelihood ratio
approach to the detection and estimation of jumps in linear systems.
Automatic Control, IEEE Transactions on 21,1 (1976), 108-112.

WITTEN, I. H., AND FRANK, E. Data Mining: Practical machine learn-
ing tools and techniques. Morgan Kaufmann, 2005.

YANG, X., PAN, T., AND SHEN, J. On 3g mobile e-commerce platform
based on cloud computing. In Ubi-media Computing (U-Media), 2010
3rd IEEE International Conference on (2010), IEEE, pp. 198-201.

YU, N.-H., Tsal, S.-S., Hs1ao, 1.-C., Tsal, D.-J., LEE, M.-H,,
CHEN, M. Y., HUNG, Y.-P.,, ET AL. Clip-on gadgets: expanding multi-

touch interaction area with unpowered tactile controls. In Proceedings

82

[86]

[87]

[88]

BIBLIOGRAPHY

of the 24th annual ACM symposium on User interface software and tech-
nology (2011), ACM, pp. 367-372.

ZHANG, C., TABOR, J., ZHANG, J., AND ZHANG, X. Extending mo-
bile interaction through near-field visible light sensing. In Proceedings
of the 21st Annual International Conference on Mobile Computing and Net-
working (2015), ACM, pp. 345-357.

ZHANG, L., TIWANA, B., QIAN, Z., WANG, Z., DICK, R. P., MAO,
Z. M., AND YANG, L. Accurate online power estimation and au-
tomatic battery behavior based power model generation for smart-
phones. In Proceedings of the eighth IEEE/ACMY/IFIP international con-
ference on Hardware/software codesign and system synthesis (2010), ACM,
pp. 105-114.

ZHANG, Q., CHENG, L., AND BOUTABA, R. Cloud computing: state-
of-the-art and research challenges. Journal of internet services and ap-
plications 1,1 (2010), 7-18.

