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ABSTRACT 

Non-alcoholic fatty liver disease (NAFLD) is a manifestation of the metabolic syndrome in the 

liver. It is marked by hepatocyte accumulation of triacylglycerol (TAG) rich lipid droplets. In 

some patients, the disease progresses to non-alcoholic steatohepatitis (NASH), characterized 

by cellular damage, inflammation and fibrosis. In some cases, cirrhosis and liver failure may 

occur. However, the pathogenesis of NAFLD is still unclear. The present project is based on 

the hypothesis that hepatocytes are equipped with mechanisms that allow them to manage 

lipid accumulation to a certain extent. Continued or increased lipid accumulation beyond 

this triggers molecular mechanisms such as oxidative stress, lipid peroxidation and cell death 

that aggravate the condition and cause disease progression. The aim of this project is to 

study the effects of lipid accumulation on the cells using proteomics approach to identify 

proteins involved in the disease progression.  

A cell culture model was used in the study. HepG2 cells, a human liver carcinoma cell line, 

were treated with a mixture of fatty acids (FA) to induce lipid accumulation. The lipid 

accumulation in HepG2 cells was measured with Oil red O assay and the effect of lipid 

accumulation on the proliferation of the cells was measured using an MTT cell proliferation 

assay. HepG2 cells treated with 1 mM FA mixture for 6 hours induced lipid accumulation 1.4 

times of control with 90% of cell proliferation capacity of the control cells.  

The final and the only committed step in TAG biosynthesis is catalysed by acyl-CoA 

diacylglycerol acyltransferase (DGAT) enzymes. To investigate if limiting lipid accumulation in 

HepG2 cells would prevent molecular mechanisms of pathogenesis, inhibition of DGAT by 

small molecule inhibitors was performed. Among the three DGAT inhibitors (A922500, 

PF06424439 and PF04620110) tested, PF04620110 reduced the lipid accumulation to 1.2 

fold of the control cells when they were treated with 100 µM of the inhibitor in the presence 

of 1 mM FA mixture for 6 h. 

Proteomic analyses were carried out for the control, FA-treated and inhibitor-treated cell 

groups to identify protein changes in the abundance. Functional analyses of the changed 

proteins identified suggest that lipid accumulation tends to adversely affect the functioning 

of the ER and the mitochondria. A complex interplay between the two organelles, possibly 

mediated by Ca2+ signalling may be vital in ensuring cell survival. PF04620110 was able to 

counter the FA induced changes in the abundance of some proteins involved in the 
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metabolic processes but it had limited effect on the ER chaperones whose abundance in the 

inhibitor-treated sample was comparable to that of the FA-treated sample. These data 

provided important information for future discoveries of biomarkers and molecular 

mechanisms involved in the progression of NAFLD.  
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CHAPTER 1: INTRODUCTION 

1.1. Conception of this project 

Non-alcoholic fatty liver disease (NAFLD)  is a disease state that starts with steatosis 

characterised by lipid accumulation in hepatocytes and progresses sometimes irreversibly to 

non-alcoholic steatohepatitis (NASH) to damage as a result of hepatic steatosis with 

inflammation and subsequent fibrosis and cirrhosis [1]. While all patients with NAFLD show 

simple steatosis, only some patients develop chronic hepatic inflammation which leads to 

increased mortality [2, 3]. This project aims to characterize the proteomic changes that 

accompany lipid accumulation in the cell. 

1.2. Prevalence of non-alcoholic fatty liver disease 

As of 2014, the World Health Organization has estimated the number of overweight persons 

to be 1.4 billion adults and about 600 million of these were categorized as obese [4]. Modern 

lifestyle is marked by increased caloric intake, decreased mobility, (and a paradoxical 

demand for slimmer body silhouettes) and the consequence of this is a widening waistline 

which, at the cellular level, is a result of lipid accumulation in adipose tissue [5]. The 

accumulated lipids are largely triglycerides (TAGs) sequestered into membrane-bound 

cytosolic lipid droplets (LDs)[6]. Morbidities more commonly referred to as the metabolic 

syndrome are known to accompany ectopic lipid accumulation in the liver, skeletal muscle, 

and pancreas [7]. In this context, NAFLD is widely considered as the manifestation of the 

metabolic syndrome in the liver and is increasingly being recognized as a risk-factor for end-

stage liver diseases [8, 9]. Systematic review and meta-data reports on the epidemiology and 

natural history of NAFLD pegs the prevalence of this problem to be between 10 - 45 % 

depending on the  population and the method used to establish the diagnosis [10, 11]. The 

prevalence of NAFLD in New Zealand has not been examined yet but considering 31 % of the 

adult and one in nine children between the ages of 2 and 14 years have been reported obese 

in New Zealand Health Survey 2014/15 [12], the NAFLD burden could be an emerging health 

care issue [13]. The close association between obesity and NAFLD [14, 15] is likely to 

increase these numbers as the obesity pandemic reaches new global highs [4].  

1.3. Progression from NAFLD to NASH 

NAFLD has been defined as a complex, non-linear, metabolic liver disease with two distinct 

phases – simple steatosis and NASH [16]. Simple steatosis is considered to be the onset of 



 

2 

 

NAFLD and is marked by excessive lipid accumulation in the liver in the absence of causes 

such as drugs, toxins, excess alcohol intake (>30 g/day in men and >20 g/day in women) and 

hepatitis due to viral infection or autoimmune problem [17]. NASH is characterised by 

excessive fat accompanied by liver cell injury and inflammation [18]. Simple steatosis has 

often been described as benign [19] with most patients not progressing to NASH [20]. Of 

those who do develop NASH, not everyone incurs progressive liver damage to develop 

fibrosis and necrosis [21]. About 25 - 40 % of patients with NASH show disease progression 

with increased risk of hepatocellular carcinoma even without cirrhosis (Figure 1, [22-24]). 

There has also been a suggestion to consider NASH and simple steatosis as independent but 

coinciding events since patients with NASH have been known to have inflammation without 

any or much steatosis [16, 25].  

Improved diagnosis for distinguishing NASH from simple steatosis would be the key to 

distinguishing between the two. Non-invasive techniques like imaging and detection of 

biomarkers have been studied as tools to predict steatosis, NASH and fibrosis but each has 

its limitations in being able to diagnose the problem [26]. Liver biopsy is the gold standard of 

diagnosis and criteria used for histological scoring of the biopsy tissue are still being fine-

tuned [27-29]. The intrusiveness of the biopsy-led diagnosis procedure and the 

asymptomatic nature of simple steatosis frequently make detection of NAFLD incidental 

[30]. Even when the diagnosis is made, the biopsy-led approach relies heavily on histology 

which provides very limited information about disease progression [31]. Although risk 

Figure 1: Schematic representation of disease progression in non-alcoholic fatty liver disease. Most patients with simple 
steatosis do not progress to steatohepatitis (NASH) and of the patients with NASH, less than half progress to irreversible liver 
damage in the form of fibrosis and cirrhosis [22-25]. However, cirrhosis significantly increases the risk of hepatocellular 
carcinoma (HCC).   
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factors like lifestyle and genetic predisposition are well-defined disease determinants [32, 

33], the role and interplay of complex factors in disease progression at the cellular level is 

still being explored [34, 35].  

1.4. Factors affecting disease progression  

Drawing on the commonalities between the NAFLD and its alcohol-induced variant, C. P. Day 

proposed the ‘two-hit’ theory in which the excess lipid accumulation in the liver is the first 

hit which when left untreated, escalates to NASH and fibrosis as a result of the second hit 

[36]. The second hit is described as a combination of oxidative stress, endotoxin-mediated 

cytokine release and immunologically mediated mechanisms [36]. Further investigations into 

the molecular mechanisms of NAFLD have led to the notion of ‘multiple, parallel hits’ [37]. 

These hits, whether sequential or parallel, are brought about by complex interactions 

between intra-cellular factors affecting the hepatocytes and the environmental factors, host 

genetics and signals from other organs the affect the liver.  

The characteristic feature of NAFLD is the increased accumulation of lipids in the 

hepatocytes and non-esterified fatty acids (FA) are the biggest contributors to this 

accumulation [38]. Almost two-thirds of the FA incorporated in the accumulating TAG are 

considered to be delivered to the liver on account of excessive lipolysis in the adipose tissue 

[39]. The environmental factor that contributes the most to this process is the dietary intake 

and the composition of the diet. This is evident in the high correlation between obesity and 

NAFLD [40]. While excessive consumption of high calorie diet is the most common 

underlying risk factor, inclusion of high amount of certain types of FA and fructose in the diet 

also increase the risk of developing NAFLD. The lipotoxicity of FA depends on whether it is 

saturated and unsaturated [41] and diets rich in saturated FA tend to be more harmful than 

those with monounsaturated or polyunsaturated FA [42]. Most of the naturally occurring 

unsaturated FA are cis isomers, but in partially hydrogenated vegetable oils, they may 

undergo cis-trans isomerization to form trans-FA that tend to have physical properties 

similar to saturated FA and therefore have similar deleterious effects when consumed [43]. 

The position of the double bond on the FA chain also seems to play a role in the toxicity they 

exhibit – the patients with NAFLD tend to have more n-6 FA (the sixth carbon-carbon bond 

from the methyl end is a double bond) than n-3 FA in the liver [44, 45]. Besides FA, diets with 

high fructose have also been shown to increase lipid accumulation in non-adipose tissues 

and increased the intrahepatic lipid content [46, 47]. 
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The extent to which the high-calorie diet affects the individual is also likely to be affected by 

genetics. While no individual genetic locus has been identified as the cause of the problem, a 

genome-wide association study has shown some polymorphisms in the patatin-like 

phospholipase domain containing 3 gene increases the susceptibility of obese children and 

adolescents to diet-induced hepatic steatosis [48]. Another study has shown that ethnicity 

may as well be a part of the contributing factors – African-American children with obesity 

were reported to have the same extent of lipid accumulation in the liver as children of 

Caucasian or Hispanic roots but the extent of hepatocyte cell death was lower in the first 

cohort than the other two [49]. Given that disease progression varies in speed and severity 

among the NAFLD patients, it has been suggested that progression from simple steatosis to 

NASH may depend on how long and how strongly the adaptive mechanisms induced by the 

lipid accumulation can last [50]. Hepatocyte cell death and activation of the innate immune 

system have been shown to play an important roles in the progression of simple steatosis to 

NASH in both animal models and humans (reviewed in [51]). 

1.5. Molecular mechanism of disease progression 

Accumulation of TAG-rich LDs in the cytoplasm is a characteristic feature of NAFLD at the 

cellular level. The metabolic processes that contribute to this accumulation include de novo 

synthesis of FA in the cytoplasm, carbohydrate metabolism and FA breakdown in the 

mitochondria. The enzymes of the Kennedy pathway mainly localized on the endoplasmic 

reticulum (ER) membrane carry out the sequential esterification of acyl-CoA to the glycerol-

3-phosphate backbone to produce TAG. The mitochondria and the ER are therefore also the 

organelles most affected by the lipid accumulation. While the lipid accumulation is 

considered as the ‘first hit’, the ‘second hit’ often manifest as ER stress and/or oxidative 

stress originating in the mitochondria.  

1.5.1. First hit: Accumulation of triglycerides in lipid droplets 

Although excessive lipid accumulation marks the onset of the disease, the sequestering of 

the FA into neutral TAG compartmentalized in LD has been mooted as an adaptive response 

to manage the lipotoxicity of non-esterified FA [41, 52, 53]. Although the exact mechanism 

of how the TAG would be packaged into the LDs is not known, according to one model, the 

formation of LDs starts with the deposition of neutral lipids between the leaflets of the ER 

membrane and as the droplet grows, it buds towards the cytoplasm, pinching away with it a 

leaflet of the ER bilayer that now becomes the phospholipid monolayer of the LD (Figure 2, 
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[54]). These nascent LDs may grow into larger LDs either through coalescence of the nascent 

droplets or through synthesis of neutral lipid [55, 56]. The size of LD is managed by the 

concerted efforts of lipases, autophagy and mitochondrial fusion [57, 58]. Proteins like those 

of the Kennedy pathway are known to translocate from the ER membrane to the LD – these 

translocation are thought to be facilitated by ER ‘bridges’ that provide a link between the 

two organelles [59]. A protein complex formed by ADP-ribosylation factor 1 and Coat Protein 

Complex I (Arf1/COPI) has been proposed as the facilitator of such connections [60, 61]. The 

presence of such proteins also allows for localised TAG synthesis in LD and so a cell may have 

two distinct LD subpopulations depending on the localization of these protein [59]. Given the 

dynamic role of LDs in fat homeostasis (reviewed in [62]) and the proximity of LDs to the ER, 

it is becoming increasingly evident lipid accumulation would have major effects on cell 

function and increase risk of developing metabolic diseases [63].  

The close connections between the LDs and ER have also been investigated for the better 

understanding of ER stress – numerous reports suggest ER stress leads to lipid accumulation 

and that the LDs may also act as buffers for FA and phospholipids that help maintain ER 

homeostasis [64-67].  

 

1.5.2. ER stress 

In addition to being the site of TAG synthesis, the ER is also the protein processing hub of the 

cell. The protein processing includes post-translational modifications such as N-linked 

glycosylation, disulphide linkages and quality control to ensure the correct folding of the 

protein. Lipid accumulation observed in NAFLD has been reported to disrupt this critical ER 

function. This disruption originates in the capacity of saturated FA to induce various 

1. 
2. 

ER lumen 

Cytosol 
ER 

membrane 

3. 

4. 

Figure 2: Schematic representation of LD formation. 1. Synthesis of TAG is catalysed by enzymes on the ER 
membrane. 2. Accumulation of TAG between the two leaflets of the ER bilayer leads to the distended of the 
cytoplasmic leaflet. 3. The cytoplasmic leaflet continues to bulge as more neutral lipids are deposited in the 
nascent LD before budding takes place. 4. The cytoplasmic leaflet of the ER membrane encloses the neutral 
lipids and forms a LD [55].  

Accumulation 
of neutral 

lipids 
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components of unfolded protein response (UPR), an adaptive mechanism that allows the ER 

to cope with stress [68]. UPR is activated through three key proteins – inositol-requiring 

kinase 1 (IRE1), protein kinase-like ER kinase (PERK) and activating transcription factor 6 

(ATF6). They are transmembrane proteins localized in the ER membrane and they serve as 

sensors of ER stress. In an unstressed cell, the three sensors are bound by 78kDa glucose 

regulatory protein (Grp78), an ER resident chaperone that also serves as a regulator of UPR. 

The binding of Grp78 to IRE1 and PERK prevents the oligomerization and auto-

phosphorylation of these proteins and thereby prevents the activation of UPR [69]. Binding 

of Grp78 to ATF6 retains the latter in the ER lumen; dissociation of the two leads to the 

translocation of ATF6 to the Golgi. In the Golgi, ATF6 is modified into an active transcription 

factor that can activate genes associated with UPR [70]. Through the various downstream 

proteins and genes affected by the activation of IRE1, PERK and ATF6, the UPR functions to 

restore ER homeostasis.  

Maintenance of high Ca2+ concentration in the ER lumen is also an important part of ER 

homeostasis.   The ER is a major site for Ca2+ storage in the cell - while the concentration of 

Ca2+ in the cytosol has been estimated to be about 0.1 µM, the Ca2+ concentration in the ER 

lumen is in the millimolar range [71]. This pool of Ca2+ facilitates electrostatic interaction 

between proteins as is evident by the calcium-dependency of ER chaperones like calnexin 

and calreticulin [72]. Mobilization of this Ca2+ reservoir also plays a role in intracellular 

signalling like the pro-apoptotic trigger of Bak/Bax regulated release of Ca2+ from the ER [73]. 

In fact, the regulation of Ca2+ concentrations and signalling between the ER, mitochondria 

and cytoplasm has been proposed as an additional trigger of apoptosis [74]. In addition to 

the Ca2+ mediated signals, failure of UPR to cope with the stress also leads to pro-

inflammation and pro-apoptotic signals like activation of c-Jun terminal kinase – the 

activation of which differentiates NASH patients from those of NAFLD with simple steatosis 

[75, 76].  

1.5.3. Mitochondrial dysfunction 

Metabolic adaptations including increased oxidation of FA in the mitochondria have been 

proposed as coping mechanism setup to limit lipid accumulation seen in NAFLD [77]. 

Patients with NAFLD tend to have mega mitochondria with inclusion bodies and loss of 

cristae [78]. This has been proposed as an adaptive response to accommodate the increased 

transport of FA to the liver also reported in patients with NAFLD [79]. Such mitochondrial 
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dysfunction can be a major source of reactive oxygen species (ROS) which can propagate the 

deleterious cascade of harm through lipid peroxidation [80]. ROS are highly reactive and 

have short half-lives [81]. They are capable of initiating lipid peroxidation that leads to the 

formation of aldehyde by-products like trans-4-hydroxy-2-nonenal and malondialdehyde 

that have much longer half-lives and can amplify the effects of oxidative stress [82, 83].  

The aggravating factors described in this section – triggering UPR, imbalance of pro- and 

anti-apoptotic signals, signal transduction by Ca2+ and mitochondrial dysfunction are all in 

themselves complex biological events with a number of participating and affected proteins 

reviewed in [84] and [51]. Given the global impact of these disruptions and the number of 

proteins that could potentially contribute to disease progression, the current study has used 

a proteomics approach to study the changes that accompany lipid accumulation.   

1.6. Role of DGATs in triglyceride synthesis 

Although accumulation of lipid is a feature of NAFLD and as such poses risks to well-being, 

the intended evolutionary purpose of neutral lipids like TAG is to function as energy-dense 

storage molecules that allow a cell to survive during periods of reduced nutrient availability 

by providing membrane building blocks like FA or sterols [85]. Precursors like non-esterified 

FA, if not sequestered, have adverse effects on membrane integrity [86] and fatty alcohols 

such as sterols, retinols, and diacylglycerols may set off a plethora of reactions in their 

capacity as secondary messengers of transcriptional activators [87]. This makes the turnover 

of TAG a critical factor in maintaining health [88]. The sequestering of these molecules into 

neutral TAG compartmentalized in LD has been mooted as an adaptive response to manage 

the lipotoxicity [41, 52, 53, 89]. Given the role of TAG-rich LD in NAFLD, diacylglycerol 

acyltransferase 1 and 2 (DGAT1, DGAT 2) – enzymes that add an acyl moiety to diacylglycerol 

to form TAG – have been considered possible targets of intervention. TAGs are synthesized 

through step-wise esterification of acyl moieties to a glycerol-3-phosphate backbone via the 

Kennedy pathway [90], supplemented by the monoacylglycerol pathway that re-esterifies 

hydrolysed TAG (Figure 3, [91]). Both pathways are used by hepatocytes [92].  

1.6.1. DGAT genes  

DGAT1 and DGAT2 are genes expressed ubiquitously in tissues such as intestine, adipose 

tissue and liver. Despite the proteins catalysing the same biochemical reaction, the DGAT 

genes share no significant sequence homology and belong to different gene families [93]. 

The two genes have evolved separately and lend their names to their respective gene 
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families [94]. Figure 4 generated using ClustalW and PHYLIP shows the phylogenetic tree for 

these genes [95, 96]. Human DGAT1 has been mapped to human chromosome 8 by 

fluorescence in situ hybridization [97] and is now known to be located at position 8q24.3 

[98]. The DGAT1 family includes the gene for DGAT1 and the two genes ACAT1 and ACAT2 

that encode their respective enzymes with acyl-CoA: cholesterol acyltransferase activity [99].  

In fact, the similarity between the DGAT1 and ACAT genes was used to identified DGAT1 

through screening of expressed sequence tag clones homologous to the conserved C-

terminus of ACAT [97]. Synthesis of TAG in Dgat -/- mice suggested the presence of another 

gene product with DGAT activity and this led to the identification of gene encoding a protein 

then named DGAT2. This gene had no sequence homology with any known genes of the 

DGAT1 family and the newly identified gene was designated as DGAT2 [100]. The human 

DGAT2 gene located on chromosome 11q13.5 [98] and it is part of the DGAT2 gene family 

that includes three monoacylglycerol O-acyltransferases encoded by MOGAT1, MOGAT2 and 

MOGAT3 [101, 102], and two acyl-CoA: wax alcohol acyltransferases encoded by AWAT1 and 

AWAT2 [103]. The DGAT2 family is suggested to have arisen by duplications of ancient gene 

tandem repeats via inter-chromosomal or genome duplications as well as further local 

(single) gene duplication and loss events [104]. The homology in nucleotide sequences is also 

seen in the amino acid sequences - human MGAT3 possesses significant DGAT activity and 

has an amino acid sequence which is 49, 44, and 46 % identical to that of DGAT2, MGAT1 

and MGAT2 respectively [105-107]. Given the role of the DGAT enzymes in lipid metabolism, 

the mutations and polymorphisms in the DGAT genes have been studied for their role in 

predisposition to obesity and metabolic syndrome. 

A German study assessing the benefits of a lifestyle intervention programme aimed at 

reducing adiposity and preventing Type 2 diabetes has reported that single nucleotide 

polymorphism (SNP) in DGAT2 dampened the effects of the intervention. Although all 

participants showed a similar increase in insulin sensitivity, individuals with SNP rs1944438 

in DGAT2 showed a smaller decrease in liver fat than those without the SNP [108]. 

Polymorphisms identified in human DGAT1 have not been conclusively linked to beneficial 

effects like lower body mass index [109, 110] but a splice site mutation in the gene has been 

shown to be a rare cause of a congenital diarrheal disorder, an extremely rare but severe 

recessive disorder characterised by hyperlipidaemia and protein-losing enteropathy and very  
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Figure 4: Phylogenetic tree of the DGAT families. The protein sequences of each protein was submitted to 
Biology Workbench (http://workbench.sdsc.edu) in fasta format for multiple sequence alignment using the 
ClustalW algorithm [82]. The aligned sequences were converted into the phylogenetic tree using 
Drawgram algorithm which is part of PHYLIP (Phylogeny Inference Package, version 3.5c, distributed by the 
author J. Felsenstein of University of Washington, Seattle, USA) [83]. Protein sequences were retrieved 
from UniProt KB using accession numbers P35610, O75908, Q58HT5, Q6E213, O75907, Q96PD7, Q96PD6, 
Q3SYC2 and Q86VF5. Key- MGAT: Monoacylglycerol O-acyltransferase, AWAT: Acyl-CoA wax alcohol 
acyltransferase, DGAT: Diacylglycerol O-acyltransferase, ACAT: Acyl-coenzyme A: cholesterol 
acyltransferase.  

DGAT1 family 

DGAT2 family 

Figure 3: Schematic representation of TAG synthesis. Enzymes of the Kennedy pathway the 
monoacylglycerol pathway facilitate sequential esterification of the glycerol-3-phosphate derived from 
the glycolysis precursors. The acyl-CoA esterified into TAG may be originate in exogenous FA or be 
synthesized de novo in the cell from acetyl CoA. Key- GPAT: Glycerol-3-phosphate acyltransferase; 
AGPAT: Acyl-glycerol phosphate acyltransferase; DGAT: Diacylglycerol O-acyltransferase; MGAT: 
Monoacylglycerol O-acyltransferase. 

http://workbench.sdsc.edu/
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poor chances of survival [111]. Polymorphisms identified in human DGAT1 have not been 

conclusively linked to beneficial effects like lower body mass index [109, 110] but a splice 

site mutation in the gene has been shown to be a rare cause of a congenital diarrheal 

disorder, an extremely rare but severe recessive disorder characterised by hyperlipidaemia 

and protein-losing enteropathy and very poor chances of survival [111]. Cholestyramine and 

intravenous albumin were found helpful in correcting the symptoms [111]. Stunted growth 

was also reported in calves homozygous for a naturally-occurring mutation that lead to a 

truncated protein without the region encoded by exon 16 of bovine DGAT1. This truncated 

enzyme is incapable of esterifying FA to the diacylglycerol and calves homozygous for this 

mutation require intravenous supplementation of essential and unsaturated lipids to restore 

the growth [112].  

1.6.2. Membrane topology 

DGAT1 and DGAT2 are integral membrane proteins and about 40 % of the total amino acid 

residues in these proteins are hydrophobic in nature [113]. The amino acid sequences for 

human DGAT1 and DGAT2 were retrieved from UniProt Knowledgebase (UniProtKB) and, 

using the hidden Markov model, the possible number and orientation of the transmembrane 

domains were predicted for these proteins (Figure 5) [114]. Human DGAT1 (O75907) has 

been described as a multi-pass membrane protein [115]; the hidden Markov model for 

membrane topology predicted nine transmembrane domains for this protein. Similar 

predictions have been made for murine DGAT1 but experimental verification of the 

topological model suggests that the protein may have three transmembrane domains 

instead of the eight predicted by the topology models generated in the McFie lab [116]. The 

McFie model suggests that the three transmembrane domains are oriented such that the N 

terminus is in the cytosol while the C terminal region and almost half of the amino acid 

residues of the proteins, including the conserved histidine residue, are in the ER lumen 

[116]. The experimentally verified membrane topology of DGAT2 on the other hand, 

comprises of two transmembrane domains connected by a short loop in the lumen or 

alternatively, a single hydrophobic domain that embeds itself in the membrane [117]. Such a 

topology would orient both termini of DGAT2 towards the cytosol and the C-terminal 

domain distal to the transmembrane domains would form the bulk of the protein [117].  
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1.6.3. Source of substrate  

DGAT1 and DGAT2 are integral membrane proteins localized in the ER; however, DGAT2 is 

also known to translocate to the LD membrane [118]. Also unique to DGAT2 are the 

interactions of this protein with acyl-CoA synthetase FATP1 [56] and MGAT2 [119] to 

promote TAG synthesis and enlargement of the LD. Within the ER, DGAT2 is found in the 

A) 

B) 

Cytosol 

ER lumen 

ER 
membrane 

Cytosol 

ER lumen 

ER 
membrane 

C) 

Figure 5: Predicted membrane topology of the DGAT enzymes. The protein sequence for human DGAT1 
(O75907) and DGAT2 (Q96PD7) were retrieved from the SwissProt database in the fasta format and 
analysed using the transmembrane hidden Markov model tool available on 
www.cbs.dtu.dk/services/TMHMM [96]. The model plots probabilities for each residue residing in a trans-
membrane domain and is not a prediction of the most probable overall protein structure. The model 
predicts nine domains for DGAT1 (A) and one major trans-membrane domain for the DGAT2 (B). C) 
Diagrammatic representation of the DGAT enzymes based on the orientation and trans-membrane 
domains predicted by the model. 
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vicinity of stearoyl-coenzyme A desaturase 1 (SCD1). SCD1 facilitates the formation of a 

double bond by removing hydrogen from the saturated fatty acyl-CoA formed through de 

novo FA synthesis. The proximity of SCD1 and FATP1 to DGAT2 may facilitate channelling of 

de novo FA between the enzymes [120]. Also, disruption of the Scd1 gene leads to reduced 

levels of hepatic TAG, a deficiency that cannot be corrected by dietary supplementation of 

mono-saturated FA [121]. This points to the possibility of different substrate pools of 

endogenous FA and exogenous FA that may be located in different microenvironments of 

the ER where they are utilized for different purposes [122].  Owing to its specific localization 

in the ER, DGAT2 may associate with the pool of de novo FA that is not available to DGAT1, 

which is localised in a different place in the ER [120, 121].  

Complementing the localization studies, experiments with Dgat knockout mice and labelled 

substrates have provided further evidence of source-dependent preferential use of FA by the 

two DGAT enzymes. Liver-specific Dgat1-/- mice are resistant to hepatic steatosis induced by 

the exogenous FA available in high-fat diets or released from the adipose tissue after 

prolonged fasting [123]. However, DGAT1 inhibition does not prevent hepatic steatosis 

caused by lipodystrophy and liver X receptor activation which increase de novo lipogenesis in 

the liver [123]. Further investigations using radiolabelled substrates have confirmed that 

DGAT1 preferentially esterifies exogenous FA, whereas DGAT2 uses endogenous FA derived 

from de novo lipogenesis [124]. Also, it has been shown that DGAT1 is more active at higher 

(> 200 µM) oleoyl-CoA concentrations associated with an influx of exogenous FA in an in vivo 

system, whereas DGAT2 is more active at lower oleoyl-CoA concentrations (up to 50 µM) 

[100].  

1.6.4. DGAT Inhibitors 

Knowledge about DGAT activities and the role of individual enzymes has spurred interest in 

developing molecules capable of inhibiting the enzymes and ameliorating conditions like 

obesity, diabetes and NAFLD that are characterized by the build-up of TAG. Effects of 

knocking out Dgat1 in mice include resistance to obesity, increased insulin sensitivity and 

even resistance to diet-induced hepatic steatosis [125-127]. This has led interest in the 

development of small-molecule DGAT1 inhibitors of multiple chemical classes and many 

have been shown to ability to improve metabolic parameters in preclinical models [128]. 

Since most of these drugs are orally administered, the gastro-intestinal system is where the 

molecules affect the DGAT1 inhibition. Effects include delayed gastric emptying following an 
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oral lipid challenge and upset post-prandial balance of hormones plasma glucagon-like 

peptide-1 [129, 130]. Similar effects were reported in human clinical trials for Novartis 

molecule LCQ908 (pradigastat); Pfizer molecule PF04620110, AstraZeneca molecule 

AZD7687 (Figure 6, [131-134]).  

 

The interest in DGAT2 has been limited by the apparent indispensability of the gene. 

Knocking out Dgat2 in mice leads to lethal lipopenia and decreased skin permeability [135]. 

Decreased DGAT2 mRNA in the sebaceous glands of patients with psoriasis also highlights 

the vital role of this gene and its product [136]. This notwithstanding, efforts have been 

made to inhibit DGAT2 with anti-sense oligonucleotides and generate liver-specific TAG 

reduction in mice [137]. While these results have not attracted the same enthusiasm as the 

DGAT1 inhibitors, the distinct role played by the two isozymes in the cell merits the use of 

selective inhibitors that can help further differentiate between the two. Wurie et al. have 

successfully used isozyme specific small-molecule inhibitors to distinguish between the 

activities of the two enzymes and even suggest that “DGAT1 may act up-stream of DGAT2” 

[138]. Given that new molecules are being screened for DGAT2-specific inhibition [139, 140], 

it may be possible in the future to further differentiation of the two isozymes, especially in 

functions that could reduce adverse effects of DGAT1 inhibition. This project describes the 

use of DGAT inhibitors to limit lipid accumulation induced by excess FA and the proteomic 

changes that allow the cell to cope with these metabolic events. 

1.7. Models used to study NAFLD 

1.7.1. Clinical studies in humans 

Several clinical trials have used samples from liver biopsies to extract information about 

gene expression in individuals with and without NAFLD – these include testing for known 

A) B) 

Figure 6: Molecular structures of DGAT1 inhibitors. A) Pradigastat and B) AZD7687. The images used are 
part of the suppliers’ catalogue. 
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lipogenic targets, gene profiling to identify new ones and comparisons of methylomes and 

transcriptomes [141-144]. However, an invasive liver biopsy is poorly suited as a diagnostic 

test because of its expense and risks of complications [145, 146]. Additionally, imaging 

techniques or biopsies give limited information about mechanisms involved in disease 

progression. 

Early studies have used radiolabelled tracers to measure the flux of FA and metabolites like 

TAG and ketone bodies [147, 148]. More recent approaches like positron emission 

tomography [149] and stable-isotope-labelled FA have proved safer and have provided 

insight into the source of FA and the compartments they are assimilated into [39, 79]. While 

these studies have furthered the understanding in the field, all clinical studies in humans 

have an inherent limitation of variable compliance and poor availability of subjects. Diversity 

of genotypic and demographic factors may also limit the inferences in a cohort that can be 

made in these studies during the brief period the subjects are under observation.   

1.7.2. Animal models of NAFLD 

The use of the laboratory mouse, Mus musculus allows control over factors such as genetic 

heterogeneity, diet and environmental variation [150, 151]. Variables such as age and 

gender can also be controlled for. An ideal animal model of NAFLD would demonstrate 

hepatic histological and pathological features seen in the diseased state in humans. The 

mouse models however, have a limited capacity to reflect the metabolic changes of NAFLD 

in humans. In fact, no single animal model has been successful in reflecting all aspects of the 

disease. Models are usually chosen for a specific purpose – while some provide good models 

for liver steatosis in the context of the metabolic syndrome, others are better models of 

hepatic inflammation and fibrosis [152, 153].  Moreover, the aspects of the disease that are 

represented need to be put into the human context since hepatic TAG metabolism tends to 

vary between species [154] and the composition of dietary intakes may skew the 

interpretation of the final results [155].  

The aim of this project is to study the proteomic changes that happen within the cell as a 

consequence of lipid accumulation like that observed in steatosis. A cell culture-based model 

allows the study of lipid metabolism with stricter control of substrate influxes and possible 

molecules that could affect homeostasis.  
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1.7.3. Cell-culture based models 

Liver is central to lipid metabolism and is attributed with performing diverse functions like 

detoxification and processing drugs and non-drug xenobiotics [156-158], metabolizing 

macromolecules and vitamins [159-161]; and secreting of bile, cholesterol and lipoproteins 

[162]. At any given point in time, the liver tends to be under the influence of a variety of 

factors [163-165]. An effort to understand intracellular changes in the liver would be helped 

by a reduction in the complexity of such extra-hepatic influences. Although it has the 

limitation of not being a perfect representative of a hepatocyte in liver tissue, a cell-culture 

based model maintained in a medium of known composition allows for assessment of causal 

links of the effects seen in the cell. Hepatocytes are the functional units of the liver and 

constitute almost 80 % of the total liver volume [166]. Based on this, primary human 

hepatocytes isolated by the collagenase perfusion method described by Bhogal et al. have 

been proposed to be the ideal cell-based system [167]. Their use, however, is limited by the 

availability and variability of human liver tissue samples to start the cultures from. A limited 

lifespan of primary cells in culture, phenotypic instability over a period of time [167-169], 

and poor recovery after cryopreservation [170] further restrict their use.  

Some of these limitations of primary cultures can be overcome by use of HepG2 cells, a 

human hepatoma cell line derived from a well-differentiated hepatocellular carcinoma of a 

15-year-old Caucasian American male [171]. This adherent cell line has epithelial 

morphology and appears as flattened, grossly polygonal in shape. The cells are mainly 

arranged in monolayers [171]. The current study is based on this model in which HepG2 cells 

are treated with a mixture of FA to induce lipid accumulation with the least possible 

cytotoxic effects. This model is further described in section 3.1.1. 

1.8. Proteomics approach to lipid accumulation 

Although NAFLD has dyslipidaemia at its core, the molecular mechanisms that lead to the 

dysfunction are driven by proteins that bind, transform and carry the various metabolites to 

and from their compartments. Proteins, and the pathways they are a part of, represent 

these mechanism and so a comparison of the changes induced in them by lipid accumulation 

would represent the ways in which the cell copes with the influx of exogenous FA. The goal 

of this thesis was to describe the proteomic changes that occur in HepG2 following lipid 

accumulation. The term “proteomics” was coined from the merger of “protein” and 

“genomics” in the 1990s [172] and has evolved into an expanding field of biology that 
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includes identification and quantification of global changes in protein abundances and post-

translational modifications [173, 174]. Early proteomics work relied heavily on gel-based 

technologies with post staining or fluorescent pre-labelling but it has since moved toward 

mass spectrometry (MS) -based analysis [175-177]. The current work has used the ‘shotgun’ 

or bottom-up proteomics approach. A typical bottom-up proteomics experiment can be 

divided into three parts – first, sample preparation in which the protein sample is reduced, 

alkylated and digested into peptides; second, separation of peptides in the mixture and 

third, identification of the separated peptides by MS [178]. Sample preparation is a critical 

step in a proteomics experiment and the strategies used for protein extraction depend 

largely on the origin of the sample and information required from the experiment; various 

procedures for sample preparations are described by Canas et al. in [179]. The extracted 

proteins are usually digested by trypsin, a serine protease that cleaves proteins to generate 

peptides with either arginine or lysine at the C termini. Although proteases such as 

chymotrypsin, LysC, LysN, AspN, GluC and ArgC have been described and used for digestion 

of proteins for proteomics analysis, sample preparation using trypsin remains the more 

popular approach [180]. The peptide mixture is analysed using reverse-phase liquid 

chromatography coupled with tandem mass spectrometry (LC-MS/MS). 

1.8.1. Separation of peptides and mass spectrometry 

The peptides in the sample mixture are separated by LC usually performed with a reverse-

phase column [181]. Most columns are packed with silica and the stationary phase is usually 

made of hydrophobic alkyl chains commonly known as C4, C8 or C18 depending on the 

carbon chain length [182]. The mobile phase formed by the mixing of two reverse phase 

solvents. By convention, the aqueous solvent and the organic solvent are installed on the 

HPLC channels A and B respectively and thereby referred to as solvent A and solvent B. A 

weak organic acid like formic acid or trifluoroacetic acid is included in the mobile phase to 

improve the peak shape and provide a source of protons [183]. The separated peptides are 

channelled into the mass spectrometer for gathering the spectral information required for 

peptide and protein identification.  

The mass spectrometer consists of an ion source and optics to generate and focus the ions, a 

mass analyser like the LTQ™ and/or Orbitrap™ and the data processing electronics that 

record the information (Figure 7). Ionization of proteins and peptides requires soft ionization 

techniques that can transfer the polar, non-volatile, and thermally unstable fragments into 
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 the gas phase with minimal degradation [184, 185]. The LTQ-Orbitrap™ XL (Thermo Fisher 

Scientific Inc.) used for this project uses electrospray ionization [186, 187]. Although there 

are several models for ion formation through electrospray ionization, the general approach 

includes generating an electrically charged spray of the analyte such that the solvent from 

the charged droplets evaporates and the size of the droplet continues to reduce till it 

reaches the Rayleigh limit [188]. At this point, the droplet subdivides since the Coulomb 

repulsion forces exceed the surface tension [188]. The sub-division of the droplets continues 

till, in theory, each droplet has an average of one macromolecule whose spectra can now be 

analysed [188-190]. The LTQ-Orbitrap is a hybrid instrument that utilizes the LTQ (Thermo 

Scientific version of linear ion trap) for isolation and fragmentation of ions and the Orbitrap 

mass analyser measures the accurate mass of ions transferred to it [191]. The analytes 

undergo two fragmentations - the survey scan selects MS1 parent ions that are further 

fragmented by collision induced dissociation (CID) to form MS2 daughter ions used to obtain 

the peptide sequence by a database search [192]. 

As the name suggests, fragmentation based on CID involves the collision of kinetically 

excited peptide ions with an inert gas like helium or argon. The translational energy 

imparted to the peptide ion in each collision is converted into vibrational energy that is 

distributed in picoseconds through all covalent bonds; this surge in internal energy allows 

bond cleavage and formation of fragment ions [193]. Peptides ionized using electrospray 

ionization tend to fragment along the protonated amide bonds and form complementary b 

and y type product ions (Figure 8). The mass differences observed between homologous ions 

helps identify an amino acid and facilitates peptide sequence analysis [194].  

Figure 7: Schematic representation of LTQ-Orbitrap™ XL mass spectrometer. The information available in 
the user guide made available with the instrument and the schematic on its online version 
(http://planetorbitrap.com/ltq-orbitrap-xl#.V49tUdKUdrE) were used to make this figure. 
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1.8.2. Peptide sequencing and identification of proteins 

Identification of peptides on the basis of MS2 fragments generated by LC-MS/MS is done 

using search algorithms. The general principles that drive these algorithms include matching 

of the tandem mass spectra derived from peptide fragmentation with the spectra generated 

from in silico digestion of a protein sequence database [195, 196]. The quality of match is 

controlled by parameters such as mass tolerance, numbers of missed cleavages accepted 

and amino acid modifications. The peptide sequences are used for making inferences about 

the protein that would contain them [196]. SEQUEST, first described by Eng et al. in 1994 

[197] has been developed over the last 20 years to add new capabilities to the original 

algorithm that was capable of producing automated, high-throughput  matches for the 

tandem mass spectra against a protein sequence library [198]. Successor algorithms include 

SEQUEST-HT [198]. Cottrell et al. provided a probability-based protein identification through 

the use of the MASCOT search engine [199]. Since then, more search algorithms like the 

Open Mass Spectrometry Search Algorithm [200], Andromeda [201] and X! Tandem [202] 

have become available for use. 

Although various algorithms work by the same general principles, they tend to have their 

own metrics to evaluate the quality of the match and the likelihood of false identifications. 

As a result, different algorithms may report very different peptide matches for the same set 

1………. 

2……….. 

3….. 

Figure 8: Fragmentation of peptides using CID [194, 195]. The amide nitrogen in the kinetically excited 
peptides ion is protonated (1) and the collision of these ions with those of an inert gas increases the internal 
energy of the ion. When the internal energy exceeds the activation barrier required for a particular bond 
cleavage, the bond breaks (2). The low-energy CID (collision energies less than100 eV/charge) employed by 
the LTQ-Orbitrap collision energy used in CID produces the cleavage of  peptide bond to form two positively 
charged ions of b and y type (3). 
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of spectra [203]. Given the uncertainty in the arbitrary scores assigned by each algorithm 

and the inability to perform false discovery rate (FDR) calculations, the peptide matches 

generated by the search algorithms are evaluated by stand-alone algorithms like 

PeptideProphet [204, 205] and Percolator [206, 207] that estimate FDR using the target-

decoy approach. This approach includes the search of a database of random or reversed 

sequences and of comparable size to the target database with the aim of identifying 

incorrect identification. These databases are known as decoy databases and the sequences 

within them are the decoys. Since the decoy database does not have valid protein 

sequences, presence of a decoy in the data helps estimate the possible incorrect 

identifications in the target database [208, 209]. Since a combination of bioinformatics tools 

is required to perform all analytical steps necessary to obtain a result, software suites and 

pipelines like MaxQuant, Proteome Discoverer and Scaffold have been developed to perform 

the required steps for streamlined data analysis [210-212]. This project has used the 

Proteome Discoverer platform for protein identification and Scaffold for quantification of 

the proteomics data. 

1.8.3. Quantitative proteomics 

Having identified the proteins, an absolute or relative quantification of proteins provides a 

comparison between two or more samples analysed. These samples could be of different 

origins or could represent different physiological states of the same biological system. MS-

based quantification methods are broadly classified into labelled or label-free methods 

[213]. Labelled methods include the use of stable isotope or chemical mass tags for 

quantification. Metabolic labelling of proteins is a term used to describe labelling techniques 

that are based on the incorporation of a labelled metabolite into newly synthesized proteins 

[214]. Metabolic labelling using stable-isotope labelling by amino acids in cell culture (SILAC) 

as the name suggests, relies on the incorporation of amino acid labelled with heavy isotopes 

of hydrogen (2H), carbon (13C) or nitrogen (15N) into newly synthesized proteins in a cell 

culture system. The experimental design includes growing cells in a modified medium that 

includes the labelled amino acids. At the end of the treatment, the labelled cells are mixed 

with a population of cells grown in an identical medium but with unlabelled amino acids. The 

proteomes of the two populations are analysed and differentiated on the basis of the 

predictable shift in mass of the labelled peptides of a protein in comparison to the peptides 

generated from a protein synthesized using ‘light’, unlabelled amino acids [215]. In the mass 
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spectra, the peptides appear as a pair separated by the known mass difference on account 

of the incorporation. Ratio of peak intensities of the pair are then compared and used as a 

quantitative parameter [133]. Krijgsveld et al. have shown that metabolic labelling of the 

multicellular organisms like C. elegans and D. melanogaster can be achieved by feeding them 

on 15N-labeled E. coli and yeast, respectively [216]. 

Like the metabolic labelling methods, quantification using isotope-coded affinity tags (ICAT) 

also includes comparison of two proteomes based on the peak intensities for heavy and light 

peptides but the point of difference is that ICAT relies on the chemical modification of 

cysteine residues of a peptides by the ICAT reagent during the sample preparation stage. The 

ICAT reagent has three components – a biotin tag that allows enrichment of labelled 

peptides using avidin affinity chromatography; a linker that contains the stable isotope 

signatures that allow light and heavy peptides to be differentiated by MS and a thiol-specific 

reactive group to tag the cysteines [217]. The linker of the ‘heavy’ ICAT reagent includes nine 

13C to generate a mass difference of 9 Da between the light and heavy peptides [129]. The 

obvious limitation of ICAT labelling is the cysteine-specific tagging that can severely restrict 

the number of proteins identified [129]. Quantification using isobaric tag for relative and 

absolute quantitation (iTRAQ) could be used to overcome this limitation. It uses N-

hydroxysuccinimide ester to tag primary amino groups in lysine residues which are generally 

present in high abundance [218]. The iTRAQ reagent is designed to include a ‘mass balance 

group’ that links the N-hydroxysuccinimide to a reporter group – this mass balance group 

allows for multiple sample comparisons in contrast to the binary comparisons offered by 

isotope labelling methods. The commonly used ‘4-plex’ reagent generates reporter ions with 

m/z values of 114.111, 115.108, 116.112, and 117.115 after CID fragmentation [219]. The 

advantages and disadvantages of these methods are discussed further in Section 6.5. The 

quantitative proteomics experiments described in this thesis are based on a label-free 

technique.  

Label-free methods measure either the peptide ion intensity or count of the number of 

fragment-ion spectra acquired for peptides of a given protein [220, 221]. The first approach 

measures chromatographic peak areas of peptide precursor ions - the intensity of each peak 

is a visualized in an extracted ion chromatogram which allows the determination of the area 

under the curve used as the measure of protein expression [222]. The second approach is 

called spectral counting and it provides a relative quantification of proteins based on the 
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empirical observation that the tandem mass spectra of a particular peptide increase with an 

increasing amount of the corresponding protein [221]. The advantages and disadvantages of 

each method have been reviewed in [223, 224]. For the current work, spectral counting was 

used to quantify and compare the proteomes of HepG2 cells after treatment. 

1.9. Aims of the thesis 

This thesis is based on the hypothesis that an influx of exogenous FA induces accumulation 

of TAG in HepG2 cells and the proteomic changes that accompany this lipid accumulation 

would represent mechanisms that allow the cell to cope with the cellular stress induced by 

the TAG. Inhibition of DGAT enzymes could then be a feasible approach to reduce the extent 

of TAG accumulation. Based on this the aims of the current work were: 

 Characterize a treatment regime that would induce lipid accumulation in HepG2 cells 

with minimal lipotoxic effects. 

 Determine the proteomic changes induced on account of lipid accumulation in 

HepG2 cells. 

 Describe the effect of DGAT inhibitors on lipid accumulation in HepG2 cells and 

determine the proteomic changes effected by the DGAT inhibitors
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CHAPTER 2: MATERIALS & METHODS 

2.1 Materials  

All chemicals, including bovine serum albumin (BSA), dimethyl sulfoxide (DMSO), sodium 

dodecyl sulphate (SDS), 1, 4-dithiothreitol (DTT), 3-[(3-cholamidopropyl) dimethylammonio]-

1-propanesulfonate (CHAPS), glacial acetic acid and formic acid, were purchased from Sigma-

Aldrich (New Zealand) and were of analytical grade unless specified otherwise. DGAT2 

inhibitor PF06424439 [(3R)-1-[2-[1-(4-chloro-1H-pyrazol-1-yl)cyclopropyl]-3H-imidazo[4,5-

b]pyridin-5-yl]-3-piperidinyl]-1-pyrrolidinyl-methanone methanesulfonate] and  DGAT1 

inhibitors A922500 [(1R, 2R)-2-[[4'-[[phenylamino) carbonyl] amino] [1,1'-biphenyl]-4-

yl]carbonyl] cyclopentane carboxylic acid] and PF04620110 [(2-((1r,4r)-4-[4-(4-amino-5-oxo-

7,8-dihydropyrimido [5,4-f][1,4] oxazepin-6(5H)-yl) phenyl] cyclohexyl) acetic acid)] were 

also purchased from Sigma-Aldrich (New Zealand). 

The HepG2 cell line (ATCC® HB-8065™), a human hepatoma cell line, was obtained from the 

American Type Culture Collection (ATCC; Manassas, VA, USA). Foetal bovine serum (FBS), 

Dulbecco’s modified Eagle’s medium (DMEM) with high glucose (4.5 g/L), 4 mM glutamine 

and phenol red, Gibco® 2.5 % trypsin and Hank’s balanced salt solution (HBSS) were 

purchased from Life Technologies™ (New Zealand). Trypsin was diluted to 0.25 % in HBSS 

before use.  

Water and solvents used for chromatography including hexane, methanol and acetonitrile 

were from LiChrosolv®, Merck Millipore (Billerica, MA, USA). Diethyl ether was obtained 

from Ajax Finechem (now integrated into Thermo Fisher Scientific NZ Ltd). Thin layer 

chromatography (TLC) plates purchased from Merck Ltd (New Zealand) were 20 x 20 cm with 

a 200 μm thickness of Silica gel 60 on aluminium backing and a concentrating zone. 

NBD-palmitoyl coenzyme A [(N-((7-nitro-2-1,3-benzoxadiazol-4-yl)-methyl) amino) palmitoyl 

coenzyme A (ammonium salt)] and 1,2-dioleoyl-sn-glycerol used for a fluorescence-based 

DGAT activity assay were obtained from Avanti Polar Lipids Inc. (Alabaster, AL, USA). 

The secondary antibodies and most primary antibodies were from Abcam plc (Cambridge, 

UK); primary antibodies against actin, DGAT1 and DGAT2 were from EMB Millipore (Billerica, 

MA, USA), Santa Cruz Biotechnology, Inc (Dallas, TX, USA) and Atlas Antibodies (Stockholm, 

Sweden) respectively (Table 1). Goat anti-rabbit IgG Fc tagged with Alexa Fluor® 647 and 

goat anti-mouse IgG H&L tagged with Alexa Fluor® 555 were as secondary antibodies. 
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Target Antibody Host Type Description of antigen 

Perilipin-2 ab78920 

Rabbit 

Polyclonal 
Synthetic peptide (ab 90212) conjugated to 

Keyhole Limpet Haemocyanin (KLH) derived from 
within residues 1 - 100 of perilipin 2. 

75 kDa Heat 
shock protein, 
mitochondrial 

ab151239 Polyclonal 
Recombinant fragment, corresponding to a 
region within aa 392-704 of human TRAP1. 

Glutathione 
reductase, 

mitochondrial 
ab137513 Polyclonal 

Recombinant fragment, corresponding to a 
region within aa 164-403 of human glutathione 

reductase. 

Glutaredoxin-3 ab170794 Polyclonal 
Synthetic peptide within human TXNL2 

conjugated to KLH*. 

DGAT1 sc-32861 Polyclonal 
Antibody raised against aa 1-100 mapping at the 

N-terminus of human DGAT1. 

DGAT2 
 

HPA013351 Polyclonal 
Recombinant Protein Epitope Signature Tag 

(PrEST) antigen sequence. 

Fatty acid 
synthase 

ab22759 Polyclonal 
Synthetic peptide ab25719 conjugated to KLH 
derived from within residues 2450 to the C-

terminus of mouse FAS. 

ERLIN1 ab171372 Polyclonal 
Synthetic peptide within human ERLIN1 aa 245-

275 (internal sequence) conjugated to KLH*. 

BAG family 
molecular 
chaperone 
regulator 2 

ab79406 Monoclonal 
Synthetic peptide corresponding to human BAG2 

aa 1-100 (N terminal)*. 

Actin MAB1501 

Mouse 
 

Monoclonal 
Purified chicken gizzard actin epitope 

corresponding to aa 50-70 [225]. 

60 kDa heat 
shock protein, 
mitochondrial 

ab110312 Monoclonal Hela cell lysate 

Catalase ab125688 Monoclonal 
Recombinant full length human catalase 
produced in HEK293T cells (NP_111743). 

*The exact sequence is proprietary. 
 

2.2 Cell culture 

 HepG2 cells placed in liquid nitrogen for long-term preservation were thawed and grown in 

DMEM with 10 % FBS at 37 oC in an incubator with a humidified atmosphere of 5 % CO2 and 

95 % air until the cells were confluent [226]. The medium was changed every three days or 

more frequently depending on the confluency of the cells and the number of cells required 

for subsequent work. Excess cells were returned to long-term storage as cell suspensions of 

106 cells in DMEM with 10 % FBS and 10 % DMSO. The cell suspensions were frozen 

overnight in CoolCell® (BioCision, San Rafael, CA, USA) freezing containers at -80 oC and then 

placed in liquid nitrogen cryovials [227]. CoolCell® is a stryofoam container that facilitates a 

slow and controlled drop of temperature of about -1 oC per min [228]. Cells were passaged 

once they reached confluency. Confluent cells were washed with warm HBSS and incubated 

with 0.25 % trypsin to detach the cells from the flask surface.  

Table 1: Description of primary antibodies used for Western blots 
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The detached cells were suspended in DMEM with 10 % FBS and pelleted by centrifugation 

at 180 g for 3 min. The cell pellet was re-suspended in the medium and transferred to flasks 

or plates. Tissue culture flasks (75 cm2; Corning Falcon®, Corning, NY, USA) were inoculated 

with 2 x 106 cells for passage of the cell culture, and multi-well plates (Corning Falcon®, 

Corning, NY, USA) used for experiments were inoculated as required for the specific assays. 

Cells were allowed to attach and grow for at least 18 h before treatment. 

2.3 Lipid accumulation in HepG2 cells 

2.3.1. Preparation of fatty-acid stock solutions 

BSA-bound FA stock solutions were prepared by dissolving a measured amount of FA in a 

aqueous solution and adding this to the BSA solution as described by Spector[229]. To 

prepare 30 mM stock solutions of sodium oleate, 91.32 mg of the sodium salt was 

solubilized in 5 mL of 150 mM sodium chloride at 70 oC in a water bath. This was added in 

aliquots to a warm solution of 5 mM BSA in 150 mM sodium chloride at 37 oC with 

occasional vortexing until the solution was clear. Once the solution was clear, the volume 

was made up to 10 mL. The BSA-bound oleate was passed through 0.2 μm Minisart® syringe 

filters (Sartorius, Göttingen, Germany) before being stored at −20 oC. A 30 mM stock solution 

of palmitate was prepared in the same way by solubilizing 83.52 mg of sodium palmitate in 

10 mL of 5 mM BSA in 150 mM sodium chloride. The stock solution of FA mixture was 

prepared by mixing 2 volumes of the BSA-oleate stock with 1 volume of the BSA-palmitate 

stock. This 30 mM stock solution of FA mixture was diluted to give the FA concentrations 

used for the experiments [230].   

2.3.2. Optimization of treatment conditions to induce lipid accumulation 

HepG2 cells were inoculated in a 24-well plate (105 cells per well) and grown overnight in 

DMEM with 10 % FBS. The attached cells were washed with warm HBSS and incubated with 

serum-free DMEM containing 1 % BSA for 1 h at 37 oC [231]. At the end of the incubation, 

the media was replaced with FA-containing media which was prepared by diluting the stock 

solution of FA mixture serum-free DMEM containing 1 % BSA to give final concentrations 

ranging from 0.25 to 3 mM. Using the Oil red O (ORO) assay, lipid accumulation in HepG2 

cells was measured at 1, 3, 6, 12, 18 and 24 h exposure to FA mixture [230]. The metabolic 

activity of the cells was also measured at these time points (see Section 2.3.4). 
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2.3.3. Quantification of lipid accumulation using Oil Red O assay 

2.3.3.1. Preparation of Oil Red O staining solution 

ORO was dissolved in isopropanol at a concentration of 3.5 mg/mL. This stock solution was 

allowed to rest overnight and undissolved dye was removed by passing through a 0.2 μm 

syringe filter. The ORO staining solution was made by mixing 6 parts of 3.5 mg/mL ORO stock 

solution with 4 parts of distilled water. The working ORO solution was allowed to stand 

overnight and filtered before use to remove any precipitates [232].  

2.3.3.2. Staining of lipid droplets 

Treated HepG2 cells were washed with HBSS and fixed in 4 % paraformaldehyde at room 

temperature (RT) for 30 min. The fixed cells were washed with filtered phosphate-buffered 

saline (PBS) and, after a wash with 10 % isopropanol, cells were covered with the ORO 

staining solution for 15 min at RT. The excess dye was removed, and the cells were washed 

multiple times with distilled water till the cytosol appeared unstained under the microscope. 

The cells with red stained lipid droplets were examined under a light microscope [233]. 

Preparations intended for cell staining only were counter-stained with haematoxylin and 

eosin to visualize the nucleus and the cell body.  

2.3.3.3. Quantification of extracted dye 

Equal volumes of isopropanol were added to each well to extract the dye bound to the 

accumulated lipids. The ratio of absorbance of the dye extract from the treated cell to that 

of the extract from the untreated, control cell was expressed as ‘fold of control’. This was 

used as a relative measure of lipid accumulation in the cells on account of the treatment 

[230]. The wavelength at which this absorbance would be measured was determined using a 

spectrum scan and preliminary experiments described in section 3.2.1.1. The absorbance 

and the spectrum scan were performed on the plate reader (EnSpire™ 2300 Multilabel 

Reader, Perkin Elmer, Waltham, MA, USA). Two-way analysis of variance (ANOVA) with 

Bonferroni’s multiple testing correction was used to determine statistical significance of the 

extent of lipid accumulation seen at different combinations of treatment FA concentrations 

and time. Significance was accepted at p < 0.01 and the comparisons were performed using 

GraphPad Prism® (v.5) [GraphPad Software Inc., La Jolla, CA, USA]. 

2.3.4. MTT assay 

The metabolic activity and the proliferation capacity of the cells was measured using  
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the 3-(4, 5-dimethylthiazol-2-yl)-2‚5-diphenyltetrazolium bromide (MTT) assay. The assay is 

based on the protocol described first by Mosmann [234]. Briefly, at the end of the treatment 

time, the cells were incubated for 2 h with 0.8 mg/mL MTT in serum-free medium. After 2 h, 

the medium was discarded, cells were washed with 1 mL HBSS and 300 µL of DMSO was 

added to each well. The dissolution of the formazan crystals in DMSO was facilitated by 

repeated pipetting. The absorbance of the resulting solutions was recorded at 560 nm using 

a plate reader (EnSpire™ 2300 Multilabel Reader, Perkin Elmer, Waltham, MA, USA). Results 

were presented as a percentage of the control values [235]. Two-way ANOVA with post-hoc 

Bonferroni’s multiple comparison test was performed to compare the means between 

different treatments. 

2.4. Effect of DGAT inhibitors on lipid accumulation 

DGAT2 inhibitor PF06424439 (PF06) and DGAT1 inhibitors A922500 (A92) and PF04620110 

(PF04) were added to the culture medium, and their effect on the lipid accumulation in the 

cell was quantified using the ORO assay described above. Stock solutions of 10 mM PF06 

were prepared in sterile distilled water, and 50 mM A92 and 10 mM PF04 were dissolved in 

DMSO. The stock solutions were stored at -20 oC. 

For the assay, the inhibitors were diluted to various concentrations in DMEM with 1 % BSA. 

HepG2 cells grown overnight in a 24-well plate were washed with warm HBSS and incubated 

for 1 h at 37 oC with medium containing the inhibitors. At the end of the incubation, an 

aliquot of the FA mixture stock was added to the wells to give a final concentration of 1 mM 

and the cells were further incubated in the medium with the FA mixture for 6 h at 37 oC 

[124]. Two controls were included on each plate- a positive control of cells treated with 1 

mM FA mix in DMEM with 1 % BSA without the inhibitors and a negative control of 

untreated cells in DMEM with 1 % BSA. Since A92 and PF04 were dissolved in DMSO, an 

aliquot of DMSO equivalent to the volume of the highest concentration in the inhibitor-

treated samples (100 µM) was added to the control wells.  

A combination of PF04 and PF06 inhibitors was also performed. The treated cells were then 

stained with ORO as described above, and the ORO-based quantification was used to 

determine the extent of inhibition of TAG synthesis by these inhibitors. A potential rescue of 

cells from lipotoxicity by the inhibitor was assessed using the MTT assay at the end of the 

treatment. 
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2.5. Fluorescent DGAT assay 

2.5.1. Microsome preparation 

Pellets of untreated HepG2 cells stored at -80 oC were thawed and suspended in sucrose 

buffer [0.25 mM sucrose in 50 mM Tris-HCl (pH 7.6)]. The suspended cells were lysed by 

trituration through a 27-gauge needle multiple times. The lysate was centrifuged at 10,000 g 

for 30 min at 4 oC in an Optima™ L-100 XP ultracentrifuge (Beckman Coulter Inc., Fullerton, 

CA, USA). The pellet was discarded and the supernatant further centrifuged at 100,000 g for 

1 h at 4 oC to give the microsomal pellet. This pellet was suspended and dissolved in about 

200 µL of sucrose buffer. The protein content of this suspension was quantified using a Bio-

Rad Protein Assay reagent (Bio-Rad Laboratories Pty Ltd., NZ) based on Bradford’s method of 

protein quantification which is a Coomassie dye-binding assay that uses the differential 

change in dye colour as a measure of protein concentration. Aliquot equivalent to 30 µg 

protein sample was diluted with the sucrose buffer to give a final volume of 50 µL. This was 

used as the enzyme source for the assay. 

2.5.2. Reaction mixture for DGAT assay 

A reaction mixture containing 50 µL of enzyme preparation along with 20 µL of 1 M Tris-HCl 

(pH 7.6), 4 µL of 1 M MgCl2, 10 µL of 4 mM dioleoyl glycerol and 96 µL distilled water was 

warmed in a water bath at 37 oC for 5 min. Stock solutions of the inhibitor were diluted in 

the reaction mixture to give the desired final concentration in a total reaction volume of 200 

µL. The reaction (Figure 9) was started by adding 10 µL of 500 µM NBD-palmitoyl CoA to the 

pre-warmed reaction mixture and was allowed to proceed for 30 min at 37 oC with 

occasional shaking [236]. Each experiment included a set of blanks that would serve as the 

negative controls for the reaction. The substrate blank did not have 1,2-dioleoylglycerol but 

included the fluorescent substrate NBD-palmitoyl CoA in the reaction mixture. The enzyme 

Figure 9: Schematic representation of enzyme reaction catalysed by DGAT enzymes. The reactants in the 
fluorescent assay include dioleoyl glycerol and a palmitoyl CoA tagged with fluorescent NBD. Esterification of 
the tagged acyl to the dioleoylglycerol by the DGAT enzymes produces a fluorescent NBD-tagged triacylglycerol 
which is detected after separation of the reaction mixture by TLC. 
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blank included all substrates and heat-inactivated aliquot of the microsomal preparation. In 

addition to these, a solvent blank containing equivalent volume of DMSO was also prepared 

for the inhibitors A92 and PF04.  

2.5.3. Separation and quantification of products 

The reaction was terminated by adding 750 µL chloroform/methanol (2 volumes: 1 volume) 

and vortexing thoroughly. Water was added and, after another thorough vortexing, the 

phases were allowed to separate at RT for 1 h. The reaction solution was centrifuged for 5 

min at 16,000 g to improve phase separation [236]. A 400 µL aliquot of the lower organic 

phase was collected and dried in a CentriVap® Vacuum Concentration System (Labanco, 

Kansas City, MO, USA). The lipids were re-suspended in 20 µL chloroform/methanol (2:1, 

v/v), and 10 µL was spotted in the concentration zone of a TLC plate. The plate was placed in 

a solvent chamber saturated with the solvent vapour, and the mobile phase was allowed to 

run till the solvent front was about 3 cm from the top edge of the plate.   

Preliminary experiments were performed using a mobile phase that consisted of n-hexane: 

diethyl ether: acetic acid (80: 20: 1; v/v). Based on the results of these experiments, an 

improvement of band separation was sought and so, a solvent mixture of diethyl ether: n-

hexane: methanol: acetic acid (55: 45: 5: 1, v/v/v/v) was tested and used as the mobile 

phase to separate the lipids [119]. Once the lipids were separated on the plate, the plate was 

removed from the solvent chamber, and the solvents were allowed to evaporate in a fume 

hood. The newly synthesized labelled TAG was detected on a Fujifilm FLA-5100 (Fujifilm Life 

Science, Stamford, CT, USA) molecular imaging system. 

2.6. Proteomic analysis by LC-MS/MS  

2.6.1. Type of replicates 

The experimental design for this study included comparison of three treatment groups – 

untreated HepG2 cells; cells treated with FA mixture and cells treated with FA mixture and 

DGAT inhibitor. Each treatment group was represented by four biological replicates. Cell 

samples collected from different flasks on different days were considered biological 

replicates. In one scheme of sample preparation, the four biological replicates were pooled 

into one sample. To prepare the pooled sample, aliquots of the cell lysate equivalent to 7.5 

µg protein from each biological replicate were mixed just after lysis to give 30 µg total 

protein of the pooled sample. For the unpooled samples, 30 µg protein aliquot was prepared 

for each biological replicate. One peptide digest was prepared from each sample as 
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described in section 2.6.2, pooled or otherwise. Multiple LC-MS/MS runs were performed for 

peptide digest. Each LC-MS/MS run was considered a technical replicate. All statistical 

analysis were performed biological replicates unless stated otherwise. 

The experimental design had two variabilities in the data: the biological variability of the cell 

population and the technical variability between the LC-MS/MS runs. Different experimental 

designs were tested using individual biological replicates and pooled samples. They are 

described in detail in chapters 4 and 5.  

2.6.2. Sample preparation 

HepG2 cells representing the three groups were washed with cold HBSS and scraped off the 

flask surface. Protease inhibitor cocktail (Catalogue Number P8340, Sigma-Aldrich, St. Louis, 

MO, USA) was included in the final wash. The cells were pelleted by centrifugation at 180 g 

for 3 min and stored at -80 oC after discarding the supernatant. 

Once all the replicates were gathered, the cell pellet of approximate 4 x 106 cells was re-

suspended in 300 µL of lysis buffer and vortexed for 30 min at 4 oC. Given that lysis buffer 

can affect the quality and quantity of proteins extracted, preliminary samples of untreated 

HepG2 cells were prepared using four different lysis buffers, including glycerol-Triton-X 100  

buffer [237], RIPA buffer (Sigma-Aldrich) [237], SDS-DTT buffer [238] and urea- CHAPS buffer 

[239] (Table 2). Protease inhibitor P8340 was included in all the lysis buffers.  

Table 2 : Composition of lysis buffers used for sample preparation. 

Glycerol- Triton-X 100 RIPA SDS-DTT Urea- CHAPS 

50 mM HEPES 
(pH 7.4) 

25 mM Tris-HCl                  
(pH 7.5) 

100 mM Tris-HCl               
(pH 7.5) 

30 mM Tris-HCl                       
(pH 8.8) 

150 mM KCl 150 mM NaCl 4 % SDS 7 M Urea 

10 % Glycerol 1 % SDS 0.1 M DTT 2 M Thiourea 

0.5 % Triton-X 100 1 % Triton X-100 --- 4 % CHAPS 

 

Cell debris was pelleted by centrifugation at 10,000 g for 30 min at 4 oC. The proteins from 

the supernatant were precipitated using a ProteoExtract® protein precipitation kit (Merck 

Ltd., NZ) according to the manufacturer’s protocol and dissolved in digestion buffer (8 M 

urea in 100 mM Tris-HCl, pH 8). The protein concentration of the sample was determined 

using 2-D Quant Kit (GE Healthcare, NJ, USA) following the manufacturer’s protocol. An 

aliquot equivalent of 30 µg protein in 50 µL of the digestion buffer was reduced by 

treatment with 5 mM DTT at 56 oC in a water bath for 35 min and alkylated with 10 mM 

iodoacetic acid for 40 min at RT in the dark [240]. The reduced and alkylated sample was 



 

30 

 

digested with modified sequencing grade trypsin (Roche Custom Biotech, Indianapolis, IN, 

USA) in the presence of 1 mM CaCl2 after 3-fold dilution with 100 mM Tris-HCl, pH 8, to bring 

the total urea concentration to about 2 M. The digestion was stopped by the addition of 90 

% formic acid, and the resulting digest was de-salted and cleaned using OMIX C18 tips 

(Varian Inc., Palo Alto, CA, USA). 

The peptides bound to the OMIX C18 matrix were eluted in 20 µL of 0.1 % formic acid in 50 

% acetonitrile followed by elution with 20 µL of 0.1 % formic acid in 70 % acetonitrile. The 

two eluents were combined and concentrated to about 10 µL in a CentriVap® Vacuum 

Concentration System. The final volume of the peptide preparation was adjusted to 150 µL 

with 0.1 % formic acid. This solution was used for analysis by LC-MS/MS. 

2.6.3.   LC-MS/MS analysis of protein digests 

2.6.3.1. Instrumentation 

LC-MS/MS was carried out using a Dionex UltiMate™ 3000 RSLCnano liquid chromatography 

system (Thermo Scientific, USA) coupled to a Thermo Scientific™ LTQ Orbitrap XL™ Hybrid 

mass spectrometer via a nanospray ion source. The LTQ Orbitrap is a Fourier Transform 

Mass Spectrometer based on Thermo Scientific™ LTQ XL™ linear ion trap and Orbitrap mass 

spectrometry technologies. Thermo Scientific™ Xcalibur™ software (v 2.1.0) was used for 

data acquisition, instrument control and method setup.  

2.6.3.2. Separation of peptides using reverse-phase liquid chromatography 

Samples of tryptic peptides were separated on an Acclaim® PepMap100 C18 analytical 

column [particle size: 3 μm, pore size: 100 Å, dimension: 75 μm inner diameter × 15 cm 

length] at a constant flow rate of 0.3 µL/min. Samples were loaded using an auto-sampler 

maintained at 10 oC.  The peptides were separated on the principle of reverse-phase LC – the 

most hydrophilic and the least hydrophobic eluates are the first to exit the column, and 

transit time is also affected by peptide mass. The mobile phase consisted of a solvent 

mixture set up by mixing 0.1 % formic acid (solvent A) and 0.1 % formic acid in 80 % 

acetonitrile (solvent B) in a multi-step gradient. Initial experiments were performed over a 

300-min retention period. This gradient was extended to 352 min and modified further 

based on the analysis of LC-MS/MS runs using Gradient Optimization and Analysis Tool 

(GOAT©, The University of Texas Southwestern Medical Center, Dallas, TX, USA)[241]. The 

three gradients are compared with respect to their duration, composition and performance 

in chapter 4.  
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2.6.3.3. Mass spectrometry analysis 

The separated peptides were introduced into the tandem MS system by electrospray 

ionization using a PicoTipTM emitter (360 µm x 20 µm; New Objective, USA) at a voltage set 

to 1.8 kV through a transfer tubing of 25 µm inner diameter. The acquisition method used 

was an Nth order double play set to acquire data over two scan events. The N most intense 

ions (‘Top N’ ions) detected in scan event 1 were selected for data-dependent MS/MS scans 

performed in scan event 2. Scan event 2 was performed starting with the most intense ions 

of scan event 1 and proceeded in order of decreasing intensity of the top N ions selected. 

The method was tested in 3 settings : ‘Top 6’, ‘Top 8’ and ‘Top 10’ ions – these would be the 

6th, 8th and 10th most intense ions detected in their respective scan event 1.  

Scan event 1 was a full scan for all ions eluted at a particular retention time with m/z range 

of 200 – 1800 at a resolution of 30,000 at m/z 400 at a scan rate of 0.6 to 0.8 Hz. The scan 

was performed in the positive ion mode with the heated capillary temperature set at 200 oC. 

Scan event 2 was a data-dependent scan that used a preview scan and dynamic exclusion 

settings to pick the top N precursor ions for CID fragmentation and detection by the ion trap 

analyzer. CID was operated at an isolation width of 1.0 m/z, 35 % normalized collision 

energy, activation Q of 0.25 and activation time of 30 ms. Maximum injection time for the 

MS scan was 500 ms and 150 ms for the MS/MS scans. The dynamic exclusion settings 

included repetition duration of 30 s, exclusion list size of 500 and exclusion duration of 90 s.  

2.6.4. Protein identification 

Tandem mass spectra were searched against the human protein database obtained from 

UniProtKB using Thermo Scientific™ Proteome Discoverer™ (PD) software (version 1.4.1.14). 

UniProtKB database can be broadly divided into two categories – SwissProt entries that have 

been manually reviewed and annotated and TrEMBL entries that have been annotated from 

literature but await manual review [115]. Four subsets of the UniProt database were 

generated for evaluation in this project (Table 3). These include proteins identified in 

humans were retrieved from the UniProtKB using the keywords ‘organism: "Homo sapiens 

(Human) [9606]"’ and this list was further stream-lined using the keywords ‘Protein 

existence: evidence at protein level’ that selected entries supported by experimental 

evidence of existence. The proteins retrieved using keywords ‘organism: "Homo sapiens 

(Human) [9606]"’ included all human proteins in the database. Filtering this list further using 

the keywords ‘Protein existence: evidence at protein level’ formed a database of human 
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proteins the existence of has been experimentally verified. The databases were curated into 

a .fasta format and parsed by the search algorithms to identify the proteins from the LC-

MS/MS spectra.  

Different workflows as shown in Figure 10 were tested to identify the workflow that 

identified the maximum number of proteins. All workflows require ‘Spectrum selector’ node 

for input of MS/MS data in the form of a .raw file. All MS/MS data were analysed using 

Mascot (Matrix Science, UK; version 1.4.1.14) and/or SEQUEST HT (Thermo Fisher Scientific, 

USA; version 1.4.1.14). Both Mascot and SEQUEST HT were set up to search the databases 

described in Table 3, assuming the digestion enzyme used was trypsin with allowance for a 

maximum of 2 missed cleavage sites. Mascot and SEQUEST HT were searched with a 

fragment ion mass tolerance of 0.60 Da and a parent ion tolerance of 10.0 ppm. 

Table 3: Description of databases searched for protein identification. 

 

Carbamidomethylation of cysteine was specified as a fixed modification, and oxidation of 

methionine was specified as a variable modification for both search algorithms. All 

workflows included the ‘Percolator’ node. Percolator is an algorithm that uses semi-

supervised machine learning to improve the discrimination between correct and incorrect 

spectrum identifications [206]. The algorithm searches a decoy database with negative 

examples for the classifier and positive examples constituted by a subset of the high-scoring 

matches from the target database to generate q values and posterior error probabilities for 

each match [242]. The q values determine the FDR, and filters were set to accept 

identifications with q < 0.01.  This equates to a FDR of 1 % or less. The maximum Δ Cn in the 

scoring options of the ‘SEQUEST HT’ node was set to 1 to allow the maximum amount of 

data to be assessed by the ‘Percolator’ node [205].  In addition to the above, workflow 

‘Combined 2’ includes the ‘MS2 – Spectrum Processor’ node that performs charge state 

deconvolution and deisotoping of the data. 

Database Keyword 
Number of sequences 

Total Reviewed Unreviewed 

UniProt 

organism: "Homo sapiens (Human) [9606]" 148,986 20,196 128,790 

organism: "Homo sapiens (Human) [9606]" 
AND existence: "evidence at protein level" 

51,543 14,685 36,858 

SwissProt 

organism: "Homo sapiens (Human) [9606]" 20,196 20,196 0 

organism: "Homo sapiens (Human) [9606]" 
AND existence: "evidence at protein level" 

14,685 14,685 0 
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SEQUEST only Combined 1 

MASCOT only 
Combined 2 

Figure 10: Protein identification workflows setup in Proteome Discoverer (v. 1.4.1.14). 

 

2.6.5. Label-free quantification  

Label-free quantification based on spectral counts was performed using Scaffold (version 

4.4.6, Proteome Software Inc., USA). Proteins that contained similar peptides and could not 

be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of 

parsimony. The samples were organized into three categories – ‘Control’, ‘FA-treated’ and 

‘Inhibitor-treated’. Each category had four ‘biosamples’ which represented biological 

replicates and each biological replicate was represented by four LC-MS/MS runs. The LC-

MS/MS runs representing the pooled samples were generated using one digest. For 

experiments with pooled sample, each category has one biosample and each biosample was 

represented by five LC-MS/MS runs. The information from each technical replicate was 

condensed to give cumulative spectral data representative of the sample. 
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This cumulative spectral data was referred to as the ‘total spectral count’. It is the sum of all 

the spectra associated with a specific protein within a sample. For proteins that showed a 

significant change in expression, manual verification was carried out to exclude peptides that 

were shared with other proteins. The total spectral count was normalized to allow 

comparisons between samples. The normalisation scheme in Scaffold adjusts the sum of the 

selected quantitative values for all proteins in the list within each MS sample to an average 

of the sums of all MS samples present in the experiment. This was achieved by applying a 

scaling factor for each sample to each protein or protein group. This normalized total 

spectral count was referred to as the ‘quantitative value (QV)’. The ratio of the quantitative 

value of two groups was expressed as the ‘fold change’ and represented the differential 

expression of the protein for that sample.  

2.6.6. Statistical analysis 

Depending on the experimental design, one of the three tests was used to determine the 

statistical significance of the difference in the quantitative value reported for a protein in the 

three treatment groups tested. These tests were Fisher’s exact test, t-test and simple one-

way ANOVA. Fisher’s exact test and t-test were used to compare the relative abundance 

between two groups at a time while ANOVA was used to compare all three groups. The 

results of Fisher’s exact test and t-test were reported as the probability (p-value) that the 

difference between the means could occur by chance. The result of the one-way ANOVA test 

was also a probability (p-value) but this value represented the probability of variation among 

the different groups considered for the test – a low p-value indicated a high probability of 

the variation between categories. Multiple testing corrections were performed for all three 

tests using the Hochberg-Benjamini method with a FDR threshold of 5 %.  

Comparison of all three groups by one-way ANOVA requires three or more replicates per 

treatment group and so this analysis was possible only for experiments that used datasets 

with unpooled samples. The one-way ANOVA test performed in Scaffold tests the equality of 

mean QVs across three or more treatment groups and low p-values indicate a difference 

among the categories. The test however, does not indicate what categories are different 

from each other. And so, the categories were compared two at a time using either Fisher’s 

exact test or t-test. Fisher’s exact test can be applied to fewer than three replicates and so it 

was used for the statistical analysis of datasets with pooled samples in which one sample 

represented a treatment group. The t-test was used to determine the statistical significance 
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in analysis datasets with unpooled samples. These datasets included four biological 

replicates for each of three treatment groups. 

2.6.7. Functional analysis: Gene Ontology and KEGG pathways  

WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) was used to interpret the protein lists in 

a biological context [243]. WebGestalt is a suite of tools for functional enrichment analysis in 

biological contexts; it compares the uploaded list with entries in predefined functional 

categories to identify those categories with enriched numbers of user-uploaded gene. The 

tools hosted by WebGestalt were used to identify possible functional enrichment of proteins 

in the Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways. SwissProt identifiers (for example: P31946) of the proteins were provided as input 

“user IDs”. The human genome was used as a reference set for the enrichment analysis. A 

hypergeometric test was used for enrichment evaluation analysis with the significance level 

set at p < 0.01 using a Benjamini and Hochberg multiple test adjustment.  A requirement of 

at least two genes was set for a category or pathway to be considered.   

2.7 Validation of proteomics results 

2.7.1 Western Blots 

2.7.1.1. Separation of protein 

HepG2 cells were harvested, washed with PBS and pelleted by centrifugation at 180 g for 3 

min. The pellet was stored at -80 °C. The sample for Western blots was a cell lysate obtained 

after re-suspending the cell pellet in lysis buffer. Protease inhibitor cocktail P8340 was added 

to the sample, and the sample was stored at -80 °C. Since the lysis buffer did not contain 

urea, the protein content of the sample was assessed using the manufacturer’s protocol for 

the Bio-Rad Protein Assay [244]. 

The cell sample was separated using two-dimensional electrophoresis to validate the anti-

perilipin 2 antibody. This included precipitation of 100 µg proteins using Calbiochem 

precipitation kit and re-suspending the proteins in 125 µL rehydration buffer [2 M thiourea, 

7 M urea, 2 % pH 3-11 IPG buffer (GE healthcare, USA), 2 % DTT, 4 % CHAPS and trace 

bromophenol blue]. The sample was pipetted into the Immobiline DryStrip Reswelling tray 

(GE healthcare, USA) and the IPG strip was placed on the sample and covered with mineral 

oil to be left overnight for passive rehydration and loading of the sample onto the strip. The 

isoelectric focusing for the separation of protein in the first dimension was performed using 
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Ettan Multiphor II Electrophoresis system (GE Healthcare, USA) attached to EPS3501 XL 

power pack (GE Healthcare, USA) to setup the voltage gradient for separation and a 

temperature controlled water bath (Julabo, Seelbach, Germany)  to maintain the 

temperature at 20 oC.  

At the end of the focussing, the proteins on the strip was prepared for separation by SDS-

PAGE on 4–12 % gradient NuPAGE gels (Invitrogen, USA; now Thermo Fisher Scientific) by 

reducing them in 1 % DTT in equilibrating buffer (6 M urea, 30 % glycerol, 2 % SDS and traces 

bromophenol blues in 50 mM Tris-HCl, pH 8.8) and alkylating them in 1 % iodoacetamide in 

equilibrating buffer. For Western blots of proteins other than perilipin 2, the separation was 

performed only in one-dimension using SDS-PAGE on 4–12 % gradient NuPAGE gels. Samples 

for these gels were prepared by reducing and alkylating aliquots with 10 µg proteins using 

NuPAGE® LDS Sample Buffer (Life Technologies, New Zealand) and NuPAGE® Sample 

Reducing Agent (Life Technologies, New Zealand). 

A pre-stained fluorescent marker (Precision Plus Protein™ Dual Colour standards, Bio-Rad) 

was run along with the protein samples to indicate molecular weights. The separated 

proteins were stained with Coomassie blue G250 (Sigma-Aldrich)to confirm uniformity and 

accuracy of the protein quantification across different samples. Gels for Western blots were 

not stained.  The separated proteins were transferred onto Hybond-LFP membrane (GE 

Healthcare Life Sciences) for Western blotting by wet electro-transfer in NuPAGE® transfer 

buffer for 1 h at 30 V. The transfer system was cooled by ice-cold water. The extent of 

transfer was assessed by post-transfer Coomassie blue staining of the gel. 

2.7.1.2. Detection of bands 

Membranes were placed in blocking solution [8 % (w/v) skimmed milk in Tris-buffered saline 

with 0.1 % Tween-20 (TBS-T)] for 3 h to prevent non-specific protein interactions between 

the membrane and the antibodies. The blocked membrane was incubated overnight at 4 °C 

with primary antibodies against the target proteins. Anti-rabbit Alexa Fluor 647 (Invitrogen) 

and anti-mouse Alexa Fluor 555 (Invitrogen) secondary antibodies were used at 1 in 5000 

dilution. The protein concentration and optimum titre for each primary antibody was 

determined individually. Detected bands not corresponding to molecular weight of the 

target protein was considered a non-specific band. These were taken into consideration 

before selecting the target proteins that could be detected using multiplexed blots. Testing 

the antibody at different protein concentrations was done to confirm there was no 
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saturation of signal at the given antibody concentration [245]. Actin was used as a loading 

control [246]. The membrane was washed with four 7-min incubations in TBS-T before 

incubating with secondary antibody for 1 h at RT in the dark. Excess antibodies were 

removed by washing the membrane with four 7-min incubations in TBS-T, and the 

membrane was scanned on a Fujifilm FLA-5100 (Fuji Photo Film, Japan).  

2.7.1.3. Quantification of bands 

Bands were quantitated using ImageJ [247, 248]. Anti-rabbit Alexa Fluor 647 and anti-mouse 

Alexa Fluor 555 generated images in the red and green channel respectively. The channels 

were merged to give a RGB composite image which was then converted into 8-bit grey scale 

image to allow for quantification of the bands.  ImageJ converts pixel intensities into optical 

density using the function OD = log10 (255⁄pixel  value).  

2.7.2 Immunofluorescent labelling of protein 

HepG2 cells used for immunolabeling of perilipin 2 [also known as adipose differentiation-

related protein or adipophilin] were grown on 13 mm sterile coverslips placed in wells of a 

24-well plate and treated as described above.  At the end of the treatment, the cells were 

fixed with 4 % paraformaldehyde for 20 min at RT [249]. The fixed cells were incubated in 

blocking buffer (1 % BSA in PBS with 0.05 % Tween 20) for 1 h at RT to minimize non-specific 

binding of antibodies [250]. At the end of the incubation, the cells were rinsed once with PBS 

and incubated overnight at 4 oC with polyclonal anti-perilipin 2 antibody (1 in 500 dilution) 

raised in rabbit. The primary antibody was diluted in 1 % BSA in PBS. The excess and 

unbound primary antibody was washed away by six 5-min washes of PBS, and the bound 

antibodies were detected using a 1 in 500 dilution of goat anti-rabbit secondary antibody 

(Abcam®) conjugated with Alexa Fluor® 488 (Life Technologies Corporation, USA). The excess 

and unbound secondary antibodies were removed with 6 washes of 5 min each. The washed 

coverslips were then lifted off the plate and mounted in 5 µL of Vectashield® anti-fade 

mounting medium with 4', 6-diamidino-2-phenylindole (DAPI) as nuclear counterstain. 

Fluorescent staining was examined with an Olympus FluoView FV1000 confocal laser 

scanning microscope using a 60× oil-immersion objective. Images were acquired in 

sequential imaging mode with dichrome filters allowing a bandwidth of 425 to 460 nm for 

DAPI and 485 to 545 nm for Alexa Fluor 488.   
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CHAPTER 3: DETERMINING TREATMENT CONDITIONS 

3.1. Introduction 

3.1.1. HepG2 cells as cell culture model for lipid accumulation 

As described in section 1.4.1, lipid accumulation, largely on account of excessive inflow of FA 

from the adipose tissue into the liver, constitutes the first hit in disease progression. 

Treatment of hepatocyte cell lines and primary hepatocytes with mono-unsaturated and/or 

saturated FA has been shown to reproduce this key feature of NAFLD in humans [230, 251]. 

This project has used HepG2, a human hepatocarcinoma cell line, to study this feature and 

describe the proteomic changes that accompany it. Unlike primary hepatocytes, HepG2 cells 

are not limited in availability and can be maintained in cell culture media with more ease 

than hepatocytes. Moreover, these cells are capable of a performing a wide variety of liver-

specific functions related to cholesterol and TAG metabolism [252]. The use of HepG2 in 

assessing the effects of exogenous FA and ensuing lipid accumulation has also been well-

documented [231, 253]. This chapter describes the effects of FA on HepG2 cells and outlines 

a treatment regime that would provide a HepG2-based cell-culture model that represents 

the proteomic changes associated with lipid accumulation. DGAT inhibitors have also been 

studied for their effect on lipid accumulation induced by such a treatment. 

3.1.2. DGAT inhibitors 

Three DGAT inhibitors have been tested in this project. They are DGAT1 inhibitors A92 and 

PF04 and DGAT2 inhibitor PF06 (Figure 11). A92 was developed by Abbott Laboratories 

(Abbott Park, IL, USA) and is a urea analogue of biaryl keto acids class of compounds that has 

been reported to cause weight loss and significant reductions in hepatic and serum TAG in 

mouse models  [254, 255]. PF04 (Pfizer Global Research and Development, Groton, CT, USA) 

has a pyrimidooxazepinone structure and has been reported to have an IC50 (half maximal 

inhibitory concentration) of 19 nM for human DGAT1 in human intestinal epithelial cells (HT-

29) cells [131]. It is an orally-active compound capable of reducing serum TAG concentration 

in rat models [256] and reducing blood glucose levels in patients with Type II diabetes [257]. 

The DGAT2 inhibitor PF06, also developed by Pfizer Global Research and Development, has 

been reported to be a highly selective, imidazopyridine-based inhibitor capable of reducing 

TAG synthesis in cultured human hepatocytes by as much as 50 % in conjunction with PF04 

[258]. It was also capable of reducing serum TAG concentration in a rat model [258].  
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3.1.2. Measuring lipid accumulation 

Assays used to measure the TAG content and lipid accumulation are either enzyme-based 

commercial kits [259, 260] or use of lipophilic dyes like ORO or Nile red [261, 262]. While 

each commercial kit-based assay has its proprietary components, the steps involved include 

enzymatic hydrolysis of TAG by a lipase and measurement of the glycerol or FA produced 

[259, 260]. Nile red is a fluorescent lipophilic stain that exhibits solvatochromism [263]. The 

colour of solvatochromatic dyes changes with the change in solvent polarity, and so Nile red 

fluoresces yellow-gold (excitation, 450 - 500 nm; emission, > 528 nm) in the presence of 

neutral molecules like TAG but in the presence of polar molecules like phospholipids in 

cellular membranes it emits a red fluorescence (excitation, 515 - 560 nm; emission, > 590 

nm) [264, 265]. The yellow-gold fluorescence has been used to measure accumulation of 

neutral lipids in the cell. ORO on the other hand is a non-fluorescent, fat-soluble diazol dye 

which stains neutral lipids but, unlike Nile red, does not stain biological membranes [266]. 

LDs stained with ORO appear red under a light microscope. The principle for staining is that 

ORO is more soluble in TAG-rich LDs than it is in the solvent (60 % isopropanol) used to 

prepare the staining solution [267]. This property has been used to stain TAG-rich LDs in the 

HepG2 cells used for the present study [171]. Since it exclusively stains the LDs in the cell, 

the amount of dye retained has been used as a measure of the extent of intracellular lipid 

accumulation. This chapter describes the use of ORO to characterise the extent of lipid 

accumulation induced by exogenous FA in HepG2 cells and identify the treatment conditions 

to be used for the proteomics experiment.   

3.2 Results 

3.2.1. Lipid accumulation in HepG2 cells 

The aim of this project was to identify the proteomic changes that accompany lipid  

A) B) 

C) 

Figure 11: DGAT inhibitors used in this project. A) A922500; B) PF04620110 and C) PF06424439. The images 
have been sourced from the suppliers’ catalogue. 
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accumulation in HepG2 cells. And, since the broader purpose of this objective was to identify 

molecular mechanisms involved in a diseased state like simple steatosis, a treatment 

condition that would induce lipid accumulation with minimal cytotoxicity was required. 

HepG2 cells were incubated with different concentrations of FA mixture for different 

treatment durations and two parameters – lipid accumulation and cell viability – were 

measured at each time point. The lipid accumulation was measured using the ORO assay 

described in section 2.3.3. and cell viability was measured using the MTT assay described in 

section 2.3.4. This section describes the results of these assays and based on these results, 

treating HepG2 cells with 1 mM FA mixture for a duration of 6 h was found suitable for the 

proteomics analysis. The exact duration of the treatment was confirmed after taking into 

consideration the effects of the DGAT inhibitors discussed in section 3.2.2. 

3.2.1.1. Linear range of absorbance for Oil Red O 

The ORO assay used to measure lipid accumulation in HepG2 cells was performed using the 

ORO staining solution prepared in our laboratory and so, a spectrum scan ranging from 300 

to 600 nm was performed to determine a wavelength at which the absorbance of the 

working ORO solution could be measured. Although many studies have used ORO to 

measure lipid accumulation in HepG2 cells, there is no consensus on the measurement units 

or wavelength at which ORO absorbance is measured [68, 231, 253]. The spectrum scan 

performed identified a two ranges – 340 to 350 nm and 500 to 540 nm – within which 

absorbance of the dye was at its peak (Figure 12A). This was consistent with the UV–visible 

spectra reported for ORO [268]. Two wavelengths, 510 and 405 nm, have been cited in 

literature for quantification of ORO [231, 233, 262]. Absorbance of a series of two-fold 

diluted ORO working solutions was measured at both these wavelengths and, consistent 

with the spectrum scan, the absorbance of the ORO working solution at 510 nm was higher 

than that observed at 405 nm at all concentrations tested. And so, although the absorbance 

had a linear correlation (R2 ≈ 0.98) with the dye concentration for up to 0.525 mg/mL for 

both wavelengths (Figure 12B), all subsequent measurements were made at 510 nm. The 

linear correlation betweeen the dye concentrations up to 0.525 mg/mL corresponded to an 

absorbance ranging from 0.1 to 0.93. Therefore, the volume of isopropanol used to extract 

the dye from the cells was adjusted to yield an extract that would have an absorbance 

between 0.15 to 0.93 and, since the dye from each cell sample was extracted using the same 

volume of isopropanol, it was assumed that any difference in the absorbance would be due 

to the difference in the amount of dye that had accumulated in the cell. The absorbance of 
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the ORO extracted from the treated cells was compared to that from the untreated ‘control’ 

cells and expressed as ‘fold of control’ to provide a relative measure of  lipid accumulaiton in 

the cell as described in section 2.3.3.3.  

3.2.1.2. Inducing lipid accumulation 

The concentrations of FA mixture tested ranged from 0.25 to 3 mM and each concentration 

was evaluated for lipid accumulation at treatment times ranging from 1 to 24 h. Exposure to 

the FA mixture led to a dose-dependent and time-dependent increase in lipid accumulation. 

The accumulated lipid droplets were seen using a phase-contrast microscope as refractile 

particles in the cytosol and were stained red by the lipophilic dye ORO (Figure 13)[171]. The 

bound dye was extracted and the absorbance of the extract was measured at 510 nm. To 

account for the loss of cells, absorbance was normalized using the MTT data described in 

section 3.2.1.3. The ratio of absorbance of the FA-treated sample to that of the control 

sample was expressed as the fold of control and provided a relative measure of lipid 

accumulation. The average value for each combination of treatment time and concentration 

Figure 12: Absorbance of ORO at different wavelengths. A) Spectrum scan of undiluted ORO working solution. 
B) Absorbance of ORO working solution were measured over a range of 0.008 to 1.05 mg/mL at two 
wavelengths – 510 nm and 405 nm. This concentration range corresponds to two-fold serial dilution of the ORO 
working solution. 
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of FA mixture was compared for statistically significant differences using two-way ANOVA. 

This test also indicated a statistically significant interaction between the two variable factors 

that had affected the outcome i.e. treatment time and the concentration of FA mixture were 

likely to have synergistic effect on the extent of lipid accumulation. 

 

Consistent with this, 3 mM FA mixture had the most pronounced effect on lipid 

accumulation - treatment with this concentration of FA mixture produced significant effects 

within an hour of exposure while it took up to 18 h to induce a significant level of lipid 

accumulation using 0.25 mM FA (Figure 14). At the end of the 24 h treatment time, the 

extent of lipid accumulation induced by 3 mM FA mixture was about 6 times of control and 

the highest for all concentrations tested. The highest extent of lipid accumulation observed 

after a 24 h treatment with 0.25 and 0.5 mM FA mixture was 1.5 and 1.9 times of control 

respectively. Through ORO staining, Figure 15 shows the lipid accumulation induced by 1 

Figure 13: Visualization of lipid droplets in HepG2 cells. The lipid droplets appear as birefringent particles 
under a phase-contrast microscope in the upper panels. The lower panels shows lipid droplets stained red with 
ORO and the nucleus stained violet with haematoxylin against an eosin-stained cytoplasm. The insets have a 
digital magnification of 1.5x. The cells shown in this figure were treated with 1 mM FA for 12 h. 
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mM FA mixture over a period of 24 h. This corresponds to lipid accumulations 2.5 times of 

control over a period of 24 h. The extent of lipid accumulation induced by 2 mM FA mixture 

for the same duration is about 4 times of control (Appendix Figures 66-70 show lipid 

accumulation in HepG2 cells treated with various concentrations of FA mixture and stained 

with ORO for observation and quantification.) 

3.2.1.3. Cytotoxic effects of lipid accumulation 

Cytotoxic effects of FA, especially saturated FAs, have been well documented in the 

literature [269-271]. This cytotoxicity and the consequent loss of cells was measured using 

the MTT assay. Living cells reduce MTT, a yellow tetrazole, to a purple formazan. The 

amount of formazan produced was estimated colourimetrically after solubilisation and a 

comparison of the optical densities of treated cells to that of the untreated, control cells 

provided a relative measure of how lipid accumulation may have affected the metabolic 

activity of the cell. Since non-viable HepG2 cells tend to detach from the plate surface, they 

were removed from the plate and thereby from the assay when the treatment media was 

replaced with 0.8 mg/mL MTT in DMEM at the end of the treatment time. As a result, this 

test also provided an indirect measure of cell viability defined here as the number of cells 

attached and metabolically active. 

Figure 14: Lipid accumulation measured using ORO assay. In HepG2 cells, lipid accumulation post exposure to 
FA was found to increase with increase in treatment time as well as FA concentration. The ORO assay provides a 
relative quantification of lipid accumulation in terms of ‘fold of control’. The values in the graph represent mean 
± SEM of four experiments with three technical replicates for each experiment. Values were significant at           
p < 0.01 unless otherwise specified (NS: No significant change with respect to the control at the same time 
point; * p < 0.05).   
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The cell viability thus estimated was used to normalize the ORO absorbance values and 

account for the loss of cells observed at the higher concentrations and/or after prolonged 

treatment times. The extent of cytotoxicity depended on the treatment time and the 

concentration of FA mixture tested with the effect being most pronounced at higher 

concentrations. Cells treated with 0.25 mM FA showed the least reduction in absorbance 

while those treated with 3 mM showed significant decrease within an hour of exposure. A 24 

h exposure to 2 mM FA reduced the metabolic activity to almost half that of the control 

while a 3 mM FA mixture led to an almost 70 % decrease (Figure 16).  

Lysed cells surrounded by a large number of ORO-stained LDs were observed at the end of 

24 h treatment with 2 and 3 mM FA (Figure 17). The significant cytotoxic effects ruled out 

the use of 2 and 3 mM FA in further experiments. The cells treated with 1 mM FA mix had a 

cell viability of up to 92 % of control for a 6 h treatment time; the cell viability reduced to 

more steadily thereafter. At 18 h treatment duration, the cell viability was found to be about 

80 % of control cells and this reduced to about 76 % of control cells after 24 h treatment 

duration. The increase in lipid accumulation observed within 6 to 18 h of treatment with 1 

mM FA mixture appeared to be sufficient to allow detection of a DGAT inhibitor-induced 

decrease in lipid accumulation. Since the study design requires a system with low 

cytotoxicity but with maximum possible lipid accumulation, 1 mM FA mixture was selected 

as a suitable treatment condition to study the changes brought about by lipid accumulation. 

Figure 16: Effect of FA on metabolic activity assessed using MTT assay.  Lipotoxic effects are most 
pronounced at FA concentrations of 1 mM and higher. The effects are exacerbated over period of time.  The 
values represent mean % control ± SD of four independent experiments with three biological replicates for 
each experiment. Values were considered significant at p < 0.01 unless otherwise specified (NS: No significant 
change with respect to the control at the same time point). 
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3.2.2. Effect of DGAT inhibitors on lipid accumulation  

3.2.2.1. DGAT1 inhibitor A922500  

The DGAT1 inhibitor A92 is reported to be a potent, orally-active inhibitor with an IC50 value 

of 7 nM for recombinant human DGAT1 protein [254]. A92 is also reported to be very 

specific for DGAT1 with IC50 values for DGAT2 and ACAT1/ACAT2 of 53 μM and 296 µM, 

respectively [254, 272]. In HepG2 cells, A92 has been reported to inhibit incorporation of 

radio-labelled oleic acid into TAG at concentrations as low as 0.1 µM [273]. In my work, 

concentrations ranging from 1 µM to 100 µM A92 were tested in the presence of 1 mM FA 

mixture. The extent of lipid accumulation was measured using the colorimetric ORO assay. 

Various combinations of suitable treatment time and inhibitor concentration were tried. 

Initial experiments of the treatment of HepG2 cells with 1 mM FA for 6 h in the presence of 

100 µM A92 showed reduction of lipid accumulation by 22.8 % with respect to the cells 

treated with the FA mixtures without the inhibitor. The treatment was tested in three 

independent experiments using cells from the same batch but different passage numbers, 

however, the effects of the inhibitor could not be reproduced.  Each batch of cells originated 

from a single vial of stock cells, stored under liquid nitrogen, originally purchased from ATCC. 

The effect of A92 was also tested on cells of different batches originating in different vials 

frozen down at different times but the results remained irreproducible (Figure 18 and 19). 

Each batch of cells was tested for mycoplasma and, having ruled out such contamination, 

different culture conditions such as longer incubation periods and lower concentrations of 

FA mix were also tested. The inhibitor did not have any effect on lipid accumulation in these 

Figure 17: HepG2 cells treated with high concentration of FA mixture. Prolonged treatment with high 
concentration (2 and 3 mM) of FA mixture leads to significant reduction in cell viability and the remnants of 
lysed cells stained with ORO are shown in this figure.  
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A) B

C D) 

Figure 19: Lipid accumulation in HepG2 cells treated with 100 µM A92. A) Control cells; B) Cells treated 1 
mM FA mixture for 6 h only; C) Cells were treated with 1 mM FA mixture with 0.2 % DMSO to represent 
solvent control for the effect of A92; D) Cells treated with 1 mM FA mixture in presence of 100 µM A92. 

altered conditions either. Additionally, the DGAT1 inhibitor was also tested for stability and 

effectiveness in a cell-free system. This section describes the results of these assays.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2.1.1. Effect of experimental conditions on the effect of A92 on cultured cells 

The initial experimental conditions tested included incubation of cells with 100 µM A92 in 

DMEM with 1 % BSA for 1 h prior to the addition of FA mixture to the medium. After the 

addition of FA mixture, the cells were incubated further for 6 h. Three changes to this 

protocol were tested: 1) omitting the pre-incubation, 2) increasing the incubation time after 

Figure 18: Effect of 100 µM A92 on HepG2 cells. A) Lipid accumulation measured using ORO assay after 6 h 
treatment with 1 mM FA mixture; B) Metabolic activity of cells as measured by MTT assay after 6 h 
treatment with 1 mM FA mixture.  
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the addition of FA mixture to 18 h and 3) using medium without BSA. The prior incubation 

with the DGAT inhibitor was omitted to minimize any possible break-down or metabolism of 

the inhibitor molecule before its effect could take place. Increased incubation time was 

tested to allow maximum possible time for the inhibitor to have an effect on the cell. The 

removal of BSA from the medium was considered to rule out any possible interference of the 

BSA with the uptake of inhibitor molecule. None of these changes in the treatment 

conditions led to inhibition of lipid accumulation as seen in the preliminary experiments. 

Incubation with lower concentrations of FA mixture (0.25 mM and 0.5 mM) for 6 h was also 

tested, but again, no inhibition was seen (Figure 20).  

The reasons for inconsistent inhibition were not clear although we assumed it might be 

related to the cell culture protocols especially trypsinisation and preparation of cell stocks 

for cryopreservation. It appeared at that time that the cells would attach but stop 

proliferating after 8 to 10 passages and any further passage would result in no cells adhering 

to the flask surface. Since the problem persisted in all cultures generated from stock vials 

available at our facility, we sourced a frozen vial of HepG2 cells from the Malaghan Institute 

of Medical Research (New Zealand) and used the cells from this vial for the rest of the study. 

3.2.2.1.2. Stability of A922500  

A 50 mM A92 stock solution was prepared in DMSO and stored at -20 oC for no more than 

three months before use. Although this conforms to the manufacturer-recommended 

storage conditions, the stability of A92 in the stock solution was confirmed by mass 

spectrometry using electrospray ionization in a Q-TOF LC/MS mass spectrometer (Agilent 

Figure 20: Lipid accumulation in presence of DGAT inhibitor A92. HepG2 cells were treated 100 µM A92 in 
presence of 0.25 mM or 0.5 mM FA with a control for DMSO. The lipid accumulation observed in HepG2 cells 
treated with 100 µM A92 was not significantly different from that observed in cells treated with FA alone.  
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Technologies 6530). The results showed that ions corresponding to [M+H]+ (calculated m/z: 

429.1809; measured m/z: 429.1827) and [2M+H]+ (calculated m/z: 857.3618; measured m/z: 

857.3583) for A92 (formula:  C26H24N2O4) were detected (Figure 21). The absence of any 

other detected ions ruled out the possibility of contamination or possible degradation of A92 

in the stock solution as the cause of its lack of inhibitory effect in the cell culture assay. 

 

 

 

 

 

3.2.2.1.3. Inhibition of in vitro DGAT activity 

Having confirmed the stability of the stock solution, an in vitro assay was used to test the 

activity of A92 in the absence of cells. The reaction mixture containing DGAT substrates 

dioleolyl glycerol and NBD-palmitoyl CoA was prepared as described in section 2.5.2, and, 

after incubating the mixture for 30 min at 37 oC, the components of the mixture were 

separated using TLC as described in section 2.5.3. Only molecules that would have 

incorporated the fluorophore would be detected by the fluorescence scanner. A preliminary 

experiment was performed using the mobile phase described by McFie et al. in the original 

article describing this assay [236]. This mobile phase consisted of n-hexane: diethyl ether: 

acetic acid (80: 20: 1; v/v). Separation of bands in these experiments was poor and the 

possibility of unresolved bands could not be ruled out. The band that had moved furthest 

from the loading spot had a retention factor (Rf) of 0.12 when the solvent was allowed to 

run to 18 cm from the base of a 20 cm plate (Figure 22A). A second band was seen very close 

to the loading spot (Rf = 0.05). The presence of a band superimposed on the loading spot 

indicated suggested a need for a mobile phase that gave better resolution. A mobile phase 

consisting of diethyl ether: n-hexane: methanol: acetic acid (55: 45: 5: 1, v/v) was tried on 

the recommendation of the authors of the original article [119, 236]. Although the band 

superimposed on the loading spot persisted, the sample did resolve into more bands and the 

Figure 21: Spectral analysis of A922500 stock solution. The stock solution was analysed using the Agilent 
Accurate-Mass™ Q-TOF system in the positive ion mode. The sample was considered uncontaminated since 
only peaks corresponding to A92 were observed. 
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separation of the bands was also improved separation as seen by the higher Rf values (Figure 

22B). The TAG product band was identified by its absence in the negative control, and had 

moved the farthest from the loading spot. Based on this result, the mobile phase of 

diethylether: n-hexane: methanol: acetic acid (55: 45: 5: 1, v/v) was used to separate the 

reaction products of the in vitro assay for DGAT activity. The ability of A92 to inhibit 

microsomal DGAT activity was tested using the modified mobile phase. In this assay, A92 

inhibited all microsomal DGAT activity at 50 µM and 100 µM (Figure 23). This indicated that, 

in spite of the lack of inhibition in the cell-culture based assay, A92 was capable of inhibiting 

DGAT activity without the need for in vivo processing or metabolism that might occur in cells 

or intact animal models. 
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Figure 22: Comparison of mobile phases used for the separation of DGAT assay reaction mixture by TLC. The 
lane marked ‘+’ represents a positive control which had all components of the reaction mixture. The ‘-‘ lane is a 
negative control which had heat-inactivated enzymes. The reaction mixtures were separated using different 
solvent systems as mobile phases and TAG reaction product band was inferred by its absence in the negative 
control. It corresponds to the bands A3 and B6 on their respective chromatograms. A) Products separated using 
a mobile phase of n-hexane: diethyl ether: acetic acid (80: 20: 1; v/v). B) Mobile phase of diethyl ether: n-
hexane: methanol: acetic acid (55: 45: 5: 1, v/v) was used to separate reaction products. 
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3.2.2.1.4. Expression of DGAT enzymes 

It was possible that up-regulation of DGAT2 may have compensated for inhibition of DGAT1 

to maintain enough DGAT activity to continue producing TAG in the presence of FA [274]. 

Expression of DGAT1 and DGAT2 were therefore verified using western blots. There was no 

significant change in the abundance of either protein (Figure 24).  
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Figure 24: Western blots of DGAT enzymes in HepG2 cells treated with 100 µM A92. A) Each set of four lanes 
in the blot represents a set of four biological replicates treated as indicated. B) Normalized optical density was 
calculated as the ratio of optical density of the DGAT band to the optical density of actin in the same lane. No 
changes in protein expression were observed for either DGAT enzyme. C) Optical density of actin used as the 
loading control. 

Figure 23: Inhibition of microsomal DGAT activity by A922500. The negative control ‘SB’ was a substrate blank 
which included NBD-palmitoyl CoA but not dioleoylglycerol and ‘EB’ was an enzyme blank that included both 
substrates but the enzyme was heat-inactivated. Positive control had all the reaction components. The DMSO 
control was included to check the effect of inhibitor solvent on the reaction. The reaction systems in both of 
these controls was able to form the TAG product band which is absent in the negative controls. DGAT1 inhibitor 
A92 was tested at 50 and 100 µM and was able to inhibit microsomal DGAT activity at both concentrations. 
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3.2.2.2. Pfizer DGAT inhibitors – PF04 and PF06. 

The use of inhibitors to block DGAT activity was limited by the commercial availability of 

molecules other than A92. However, during the current study, the DGAT inhibitors PF04 and 

PF06 became available for testing [258, 275]. PF04 is a DGAT1 inhibitor, and PF06 is a DGAT2 

inhibitor. The efficacy of these molecules was first tested in the in vitro assay for DGAT 

activity at different concentrations of Mg2+ (section 3.2.2.2.1). Section 3.2.2.2.2 describes the 

results of the ORO assay and the MTT assay performed to test the effects of DGAT1 inhibitor 

PF04 on lipid accumulation in HepG2 cells treated with 1 mM FA mixture for 6 h.   

3.2.2.2.1. Effect of PF04 and PF06 on in vitro microsomal DGAT activity 

DGAT inhibitors PF04 and PF06 were tested in the in vitro DGAT assay at final concentrations 

of 5, 25, 50, 75 and 100 µM. The reaction mixture used dioleoylglycerol and NBD-palmitoyl 

CoA as the substrates and included 20 mM MgCl2 in the reaction mixture. While PF04, the 

DGAT1 inhibitor, was able to inhibit all DGAT activity even at the lowest concentration 

tested, DGAT2 inhibitor PF06 was not able to produce the same effect (Figure 25). Although 

concentration of MgCl2 in the in vitro assay is much lower than the [Mg2+] reported to 

adversely affect DGAT2 activity [100], the assay was repeated at lower concentrations of 

MgCl2 to confirm the lack of effect described above for PF06. The reduction in the MgCl2 did 

not help; the product formed in the presence of 100 µM PF06 was comparable to that seen 

in the positive control while the presence of 100 µM PF04 was able to block TAG formation 

completely at all concentrations of MgCl2
 in the same assay (Figure 26). 

3.2.2.2.2. Effect of PF04 and PF06 in cell culture- based assays 

Different concentrations of PF06, PF04 and an equivalent volume of DMSO were added to 

the media to test their effect on lipid accumulation in the cell culture-based ORO assay. An 

MTT assay was performed parallel to the ORO assay. The lipid accumulation seen in cells 

treated with 5 and 25 µM DGAT1 inhibitor PF04 was up to 15.5 % less than that in cells 

treated with 1 mM FA mixture alone. However, the effects of the inhibitor were statistically 

significant only at concentrations of 50 µM and higher. DGAT2 inhibitor PF06 had no effect 

at 5 µM. At concentrations of 25 to 100 µM, PF06 caused an average decrease of 6.3 % in 

lipid accumulation but the decrease was not statistically significant. The two inhibitors were 

also tested in combination at 75 µM and 100 µM. No additive effect was seen, and the 

extent of inhibition observed was similar to that seen for PF04 alone (Figure 27).  The dose-

dependent effect of PF04 on lipid accumulation in cells using ORO is presented in Figure 28.  
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Figure 26: Effect of Mg2+ ions on DGAT activity. Activities of DGAT1 and DGAT2 can be distinguished based 
on presence of Mg2+ ions in the reaction buffer – the latter is inhibited at higher concentrations.PF04 was 
able to block microsomal DGAT activity irrespective of the [Mg2+] while PF06 had no effect despite the 
reduced [Mg2+]. 

Figure 25: Effect of PF04 and PF06 on in vitro microsomal DGAT activity. Different concentrations of DGAT 
inhibitors PF04 and PF06 were tested as indicated. The negative controls included were enzyme blank (EB) 
and substrate blank (SB). Inhibition of DGAT activity was inferred by comparing the tests to the positive 
control (+ve control). The corresponding product band was absent for all concentrations of PF04 tested. 
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Figure 27: ORO staining of HepG2 cells treated with different concentrations of PF04. A) Untreated 
control; B) Cells treated with 1 mM FA mixture; C) Cells treated with 1 mM FA mixture with 0.2 % DMSO; 
D – H) Cells treated with 1 mM FA mixture in the presence of 5, 25, 50, 75 and 100 µM PF04, respectively. 

Figure 28: Effect of PF04 and PF06 on lipid accumulation in HepG2 cells. HepG2 cells were treated with 
different concentrations of DGAT inhibitors in the presence of 1 mM FA mixture for 6 h. Reduction in lipid 
accumulation was considered significant for p < 0.05 and the values in the chart represent mean ± SD of four 
experiments with three measurements per experiment.  

* * * * * 
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The metabolic activity of cells treated with 1 mM FA mixture for 6 h was about 92 % of the 

untreated HepG2 cells. The presence of DGAT inhibitors did not rescue the cells from this 

decrease in MTT absorbance. There was no statistically significant difference between the 

MTT values observed for FA-treated cells and those treated with 1 mM FA mixture in the 

presence of the DGAT inhibitors (Figure 29). Having confirmed that PF04 does not affect the 

expression of the protein (Figure 30), treatment of HepG2 cells with 100 µM PF04 was 

selected for the proteomic analysis of the changes that accompany lipid accumulation in the 

presence of DGAT inhibitors. 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Effect of DGAT inhibitors on metabolic activity of HepG2 cells treated with 1 mM FA mixture 
for 6 h measured by MTT assay. The values represent mean % control ± SD of four independent 
experiments with three biological replicates for each experiment. The treated cells were compared to the 
untreated control cells and no significant changes were observed. The difference in the mean values would 
have been significant for values of p < 0.05. 

Figure 30: Western blot for DGAT1 in HepG2 cells treated with 100 µM PF04. Each set of four lanes 
represents a set of four biological replicates treated as indicated. Lane 1 (from left) showed poor transfer 
and was not included in the calculations. Actin was used as the loading control. Normalized optical density 
was calculated as the ratio of optical density of the DGAT enzyme band to the optical density of actin in the 
same lane. No statistically significant (p < 0.05) changes in protein expression were observed. 
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3.3. Summary 

Lipid accumulation in cells treated with 1 mM FA mixture for 6 h was found to be 1.4 (± 0.01) 

fold of control cells. This was reduced to about 1.2 fold in the presence of 100 µM of the 

DGAT1 inhibitor PF04. Although the DGAT1 inhibitor A92 was effective in initial experiments, 

it later had no effect under the same conditions.  The DGAT2 inhibitor PF06 also had no 

effect on lipid accumulation in HepG2 cells treated with 1 mM FA mixture for 6 h. While A92 

did show an effect in in vitro assays, the DGAT2 inhibitor PF06 was unable to inhibit the 

microsomal DGAT activity, or the activity in cultured cells. Further use of the DGAT2 inhibitor 

was discontinued.  

The treatment conditions described in this chapter were the basis of a proteomic analysis of 

the cell-culture model for lipid accumulation. Untreated cells represented the normal 

proteome of HepG2 cells and served as a negative control for the effects of lipid 

accumulation on protein expression. Cells treated with 1 mM FA mixture for 6 h represented 

a proteome that allowed cells to cope with excess lipid accumulation. Treating cells with 100 

µM PF04 in the presence of 1 mM FA mixture for 6 h was used to test whether the 

proteomic changes due to accumulation of FA could be reversed by inhibition of DGAT1 in 

the cell. Cells treated with 100 µM A92 were also included in one of the initial proteomics 

datasets, as described in the following chapter4.  
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CHAPTER 4: PROTEOMICS ANALYSIS – PART I 

4.1. Introduction 

The primary objective of this study was to identify proteomic changes induced as a result of 

excessive lipid accumulation. It also aimed at testing the effect of DGAT inhibition on the 

changes caused by lipid accumulation. Based on the effects described in chapter 3, HepG2 

cells treated with 1 mM FA mixture for 6 h were assumed to represent a state in which the 

lipid accumulation was significant but protective mechanisms at play were able to ensure 

cell survival. An analysis of these proteomic changes using “bottom-up” shotgun proteomics 

and label-free quantification was performed to investigate these protective mechanisms. 

This approach was considered useful since it aims to identify as many changes as possible 

and, instead of being driven by a hypothesis, the analysis aimed at generating hypotheses 

for testing through targeted studies in the future. As described in section 2.6., the approach 

involved digestion of proteins by trypsin followed by MS analysis of the complex mixtures of 

peptides used to identify the proteins present (Figure 31).  

Sample preparation, separation of analytes and their detection are the key determinants in 

the number of proteins and changes in abundance that can be identified. Sample 

preparation includes all the steps taken to ensure the extraction and solubilisation of 

proteins and these would include the use of various cell lysis techniques [276, 277]. The 
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Figure 31: Schematic representation of proteomics workflow. The schematic shows an overview of steps involved in a 
proteomics experiment: proteins are extracted from the cell, digested by trypsin and analysed using LC-MS/MS. Appendix 
Table 20 describes the file formats used by each software. 
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choice of technique depends on the experimental design and has to be mindful of chemical 

compatibility with the LC-MS process [179]. Reverse-phase LC is the predominant technique 

used for separation of the peptides since it  is capable of high-resolution separation capacity 

and the mobile phase solvents such as acetonitrile and methanol are compatible with 

electrospray ionization method used to generate the analyte ions [278, 279]. 

Chromatographic peak capacity is defined as “the maximum number of resolvable peaks” 

[280] and provides a measure of how well the analytes have separated [281]. Since each 

peak represents an MS input that can be translated into a peptide and the peptide in turn 

assigned to a protein for identification, the number of peptides and proteins identified in a 

LC-MS/MS run have been considered a measure of the quality of the LC-MS data in this 

work. Assuming adequate separation of peptides, the relevant MS settings and the 

parameters of the database protein search are key determinants of the quality and quantity 

of data acquired for a given sample. This chapter describes the results of the LC-MS/MS 

dataset LC1 that set up the need to improve the number of proteins identified. The 

improvement was brought about by modifying the parameters used for data collection. The 

increase in the number of proteins is reflected in the number of proteins identified in the 

subsequent analysis of dataset LC2 also described in this chapter. The samples for dataset 

LC1 were prepared from lysates of cells grown from the ATCC stock vial. Based on the effect 

shown by the DGAT inhibitor A92 in this culture system, the cells treated with 100 µM A92 

and 1 mM FA mix were included in the analysis of dataset LC1. Dataset LC2 was generated 

from samples prepared from lysates of cells that originate in stock vial sourced from the 

Malaghan Institute. As described in detail in Chapter 3, the effect of A92 seen in the ATCC 

cells could not be reproduced and hence dataset LC2 does not contain the inhibitor-treated 

cells as a treatment group. PF04 was not commercially available for testing at the time. 

4.2. Results 

4.2.1. Selection of a lysis buffer for sample preparation 

Efficient cell lysis and good solubilisation of a wide range of proteins are vital to generating 

data representative of the sample. Cell pellets of untreated HepG2 cells lysed using different 

lysis buffers – glycerol-Triton X-100 buffer, RIPA buffer, SDS-DTT buffer and urea-CHAPS 

buffer – were analysed using LC-MS/MS. The total number of proteins identified for each 

buffer was used as the primary criterion for selecting the lysis buffer. Integral membrane 

proteins are particularly difficult to solubilize and so, the number of membrane proteins 
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detected in the sample was considered a measure of how well the buffer could extract and 

solubilize proteins in general and membrane proteins in particular. The number of potential 

membrane proteins was estimated using the TMHMM algorithm which predicts 

transmembrane domains using a hidden Markov model [114]. The average number of 

proteins identified for glycerol-Triton X-100, RIPA, SDS-DTT and urea-CHAPS buffer was 485, 

492, 492 and 510 respectively (n = 2; LC-MS/MS runs for each sample preparation).  There 

was no statistically significant difference in the mean values of the different lysis buffers 

(Figure 32A). Of the 485 proteins identified in samples prepared using glycerol-Triton X-100 

buffer, 62 of the proteins were predicted to have transmembrane domains. This was 

considerably more than the 39, 45 and 42 predicted for RIPA, SDS-DTT and urea-CHAPS 

buffers, respectively (Figure 32B).  

Triton X-100 is a non-ionic detergent with a low critical micelle concentration (0.24 mM) 

[282]. Critical micelle concentration is a measure of surfactant efficiency – a lower 

concentration indicates less surfactant is needed to saturate interfaces and form lipid 

micelles. Triton X-100 inserts itself and rapidly equilibrates between the two leaflets of the 

bilayer [283]. Several holes open up as the detergent crosses the solubility threshold and the 

lipid bilayer then gradually vanishes. A detergent like SDS on the other hand, has a higher 

critical micelle concentration than Triton X-100 and tends to lyse cells by increasing the 

curvature of the liposomal membrane [284]. The increased curvature increases the stress on 

the liposomal vesicles and causes it to burst [284, 285]. Given their modes of action, Triton 

X-100 was considered more favourable to stability and extraction of membrane proteins. 

Figure 32: Comparison of lysis buffer used for sample preparation. Buffers tested include glycerol-Triton X-
100 buffer (GT), RIPA buffer (RIPA), SDS-DTT buffer (SDS) and urea-CHAPS buffer (Urea). A) Average number of 
proteins identified for each buffer over two LC-MS/MS runs. B) Proteins with potential trans-membrane 
domains predicted by TMHMM (v 2.0). The number of trans-membrane domains predicted are represented by 
the different colours of the stacked bars. 
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Figure 33: LC gradient used for separation of peptides analysed in dataset LC1.  The peptides analysed for LC1 
were separated over a period of 300 min using a multistep gradient of solvent A and B. Solvent A was 0.1 % 
formic acid and solvent B was 0.1 % formic acid in 80 % acetonitrile. The increase in the percentage of solvent B 
(% Solvent B) over time increased the hydrophobicity of the solvent mixture and so the least hydrophobic 
peptides eluted first and the most hydrophobic peptides eluted last.  

This was reflected in the number of potential membrane proteins identified using TMHMM. 

The average number of proteins identified using glycerol-Triton X-100 buffer was not 

significantly different (p > 0.05) from the number identified for other buffers. However, the 

presence of glycerol to stabilize the proteins and the mode of action of Triton X-100 as a 

detergent made it suitable for solubilizing a wide range of proteins, including membrane 

proteins. Because of this, glycerol-Triton X-100 buffer was used for all subsequent LC-MS/MS 

experiments. 

4.2.2. Dataset LC1 

4.2.2.1. LC-MS/MS parameters  

Cell pellets of four biological replicates representing untreated HepG2 cells (hereafter 

referred to as ‘control’ cells) and four additional cell pellets representing cells treated with 1 

mM FA for 6 h (hereafter referred to as ‘FA-treated cells’) were lysed using the glycerol-

Triton X-100 buffer. Four biological replicates of HepG2 cells treated with 100 µM A922500 

and 1 mM FA for 6 h (hereafter referred to as ‘A92-treated’ cells) were also included in this 

dataset. These cells were derived from the ATCC stock vial used in the initial experiments in 

which A92 was able to limit lipid accumulation. Consequently, exclusion of the A92 data 

from analysis could not have been foreseen at the time. The experimental design for dataset 

LC1 included three groups – control, FA-treated and A92-treated and each group was 

represented by one pooled sample. Data attributed to a pooled sample was gathered over 

five LC-MS/MS runs.  

The method used to generate the LC-MS/MS data included the separation of peptides using 

the multi-step LC gradient (Figure 33). The gradient started with 2 % Solvent B in the mobile 
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phase and in step 1, the percent of solvent B was increased to 30 % in 200 min. In 

subsequent steps, the percent of Solvent B was increased to 45 % over 30 min followed by 

an increase to 65 % in 40 min. In step 4, the percent of Solvent B was increased from 65 to 

98 % over 20 min and kept constant at 98 % for 5 min before reducing it to 6 % to start 

another run. The LTQ Orbitrap XL was set to perform an Nth order double play experimental 

protocol as described in section 2.6.3.3. The ‘N’ for scan event 2 was set to 6 for the 

identification and quantification of proteins, and the method using this setting is referred 

hereafter as the ‘Top 6’ method. The Top 6 method selected the six most intense ions of the 

master scan for data-dependent MS/MS fragmentation with no selection of monoisotopic 

precursors, no charge-state screening and a dynamic exclusion setting set at a repeat count 

of 2. This method accepted the most abundant isotopic peak for fragmentation without 

correcting its mass to the monoisotopic value. It did not determine the charge state of the 

ions analysed in the Orbitrap. A repeat count of 2 would have allowed the same MS 

precursor to be fragmented twice before being excluded from MS/MS fragmentation.  

4.2.2.2. Protein identification 

The LC-MS/MS data of each run were processed using the workflow of the PD wizard for 

SEQUEST-HT search to identify the peptides and the proteins (Figure 34). In this workflow, 

the input spectrum was generated by the ‘Spectrum Selector’ node which also determined 

the best precursor peak for a given MS/MS spectrum from the corresponding MS1 spectrum 

in the master scan. The ‘Sequest HT’ node matched the spectra to a peptide and used its 

scoring function to evaluate the quality of the match [205]. The peptide-spectra matches 

were further validated by the ‘Target Decoy PSM Validator’ node which calculated FDR for 

the matches. The average number of input spectra detected for the control sample was 

16,471 and the average peptide-spectra matches possible was 6,139. For the FA-treated 

sample, an average of 17,219 spectra were detected, and they were assigned to an average 

of 5,916 peptide matches. An average of 17,013 spectra were detected for the five LC-

Figure 34: The pipeline tree used for identification of proteins listed in LC1. SEQUEST HT search node in this 
workflow generated theoretical spectra of all the proteins in the SwissProt database assuming digestion using 
trypsin with a maximum of 2 missed cleavage sites, precursor mass tolerance of 10 ppm and fragment mass 
tolerance of 0.6 Da. Modifications assumed in the search included oxidation of methionine (+15.995 Da) and 
presence of a carbamidomethyl group on cysteine residues (+57.021 Da). The maximum ∆Cn accepted for a 
peptide-spectra match was 0.05, and the results were further validated by the ‘Target Decoy PSM Validator’ 
node that performed a decoy database search to limit the FDR to 0.01. 
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MS/MS runs of the A92-treated sample, and the average number of peptide spectra matches 

were 5,990. The total numbers of peptides identified for control, FA-treated and A92-treated 

samples were 2,615; 2,458 and 2,553, respectively (Figure 35A). The average number of 

proteins identified over five LC-MS/MS runs was 408, 387 and 410 proteins for the control, 

FA-treated sample and A92-treated samples respectively. Each protein was identified with 

high-confidence (FDR ≤ 0.01) and has at least 2 peptides per protein (Figure 35B). The 

proteins identified in the three groups were compared using a consensus list generated in 

PD for a given group. This consensus list was generated using all five LC-MS/MS runs as input 

and, after filtering the list for proteins identified with high confidence and at least 2 peptides 

attributed to it, it contained 656, 627 and 662 proteins for the control, FA-treated and A92-

treated groups respectively. The consensus list represented the total number of unique 

proteins identified in each group tested. Of these 548 proteins were common to all three 

groups (Figure 35C). The rather low number of proteins identified in this dataset merited 

further optimization of the LC-MS/MS to increase the number of proteins. Different LC-

MS/MS parameters tested to achieve this are described in section 4.2.3. 

 

4.2.2.3. Label-free quantification 

Despite the limited number of proteins identified in dataset LC1, the data from the three 

groups was compared in Scaffold for preliminary label-free quantification. The in silico 

experimental setup is described in section 2.6.5. Since the experimental design included 

pooled samples, the three groups were represented by one biosample each and each 

biosample was represented by five LC-MS/MS runs. Peptide identifications were accepted if 

they could be established at greater than 99.0 % probability by the Peptide Prophet 

Figure 35: Proteins identification for dataset LC1 in Proteome Discoverer. The mean values (± SD) of these 
five LC-MS/MS runs performed for each pooled sample are indicated A and B. A) Input spectra detected, 
peptide-spectra matches (PSM) and the number of distinct peptides identified B) The average number of 
proteins identified with high confidence (FDR < 0.01) and with at least 1 or 2 peptides per protein. C) Extent 
of overlap see among the list of proteins identified for each treatment group. 
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algorithm. Protein identifications were accepted if they could be established at greater than 

99.9 % probability and contained at least 2 identified peptides.  A total of 523 proteins with 

no decoys were identified for the three conditions (Appendix Table 3). Of the 523 proteins 

identified in Scaffold, 511 proteins were found in all three groups and 11 proteins were 

identified in at least two of the three groups (Figure 36A). The number of peptides common 

to all three groups was 1,832 and this corresponded to 2,243 unique spectra that were 

common to all three groups (Figure 36B and 36C). A comparison of the QV was performed 

using Fisher’s exact test with multiple testing correction by the Hochberg-Benjamini method. 

Two categories were compared at a time, and the significance level was set at 95 %. For 

comparing the control and FA-treated groups, the difference in the QV was considered 

significant for p ≤ 1.43 x 10-3 and 14 proteins showed statistically significant changes in 

abundance. The difference in QV was considered statistically significant for 21 proteins with 

p ≤ 2.1 x 10-3 in the comparison of the FA-treated group to the A92-treated group. The 

difference in QV was statistically significant for 48 proteins with p ≤ 4.68 x 10-3 in the 

comparison of A92-treated group to the control group. These proteins are listed in Table 4.  

 

 

 

A) B) C) 

Figure 36: Identifications of proteins, peptides and MS/MS spectra in different treatment groups in Scaffold. 
A) Proteins identified in each treatment group. B) Total unique peptide counts for all proteins in the dataset. 
C) The total number of unique spectra detected for all the peptides in the dataset. 

Control  FA-treated Control  FA-treated Control  FA-treated 

A92-treated A92-treated A92-treated 



 

64 

 

Table 4: Proteins with significant changes in abundance from dataset LC1. ‘C’, ‘F’ and ‘I’ represent the control, FA-treated and A92-treated samples respectively. ‘C vs F’ 
indicates the comparison of proteins in the control and the FA-treated groups. Similarly, ‘FA vs I’ represents comparison of the FA-treated sample to the A92-treated sample 
and ‘C vs I’ represents comparison of the control to the A92-treated sample. The QV were compared using Fisher’s exact test. The ‘fold change’ represents the ratio of the 
QV for the groups as indicated. ‘Unique peptides’ indicates the number of peptides that are unique and exclusive to the indicated protein 

Protein name 
Gene 
name 

Fold change 
P values determined by 

Fisher exact test 
Quantitative value 

Unique 
peptides 

C vs F I vs F I vs C C vs F I vs F I vs C C F I C F I 

Actin, cytoplasmic 2 ACTG1 1.20 0.8 1.0 0.0067 0.0014 0.32 481.5 567.6 470.9 20 20 20 

Isoform 2 of Actin-related protein 2 ACTR2 INF 5.4 INF 0.25 0.021 0.0011 0.0 1.9 10.2 0 1 2 

Apoptosis-inducing factor 1, mitochondrial AIFM1 INF INF INF 1 0.0042 0.0042 0.0 0.0 8.0 0 0 2 

Aldehyde dehydrogenase, mitochondrial ALDH2 0.70 2.2 1.5 0.071 0.00022 0.025 46.5 31.9 69.3 8 9 11 

Fructose-bisphosphate aldolase C ALDOC 0.20 2.6 0.5 < 0.0001 0.024 0.0059 38.1 7.0 18.2 2 2 1 

Aminopeptidase N ANPEP 0.90 4.4 4.0 0.5 < 0.0001 < 0.0001 11.0 9.8 43.5 3 5 7 

Apolipoprotein B-100 APOB 3.80 6.4 25 0.19 < 0.0001 < 0.0001 1.1 4.2 27.0 1 3 8 

Apolipoprotein E APOE 0.90 0.5 0.5 0.33 0.013 0.0028 41.9 36.4 19.3 6 7 6 

Isoform 2 of Transcription factor BTF3 BTF3 0.60 0.7 0.4 0.06 0.17 0.0039 30.9 19.4 13.6 4 3 2 

Complement component 1 Q subcomponent-binding 
protein, mitochondrial 

C1QBP 1.40 1.1 1.6 0.015 0.31 0.0029 64.7 93.0 101.8 5 5 7 

Isoform 3 of Calumenin CALU 0.70 0.2 0.1 0.24 0.0095 0.00064 18.1 12.7 2.6 3 2 1 

Cytoplasmic dynein 1 heavy chain 1 DYNC1H1 1.60 2.4 3.9 0.29 0.02 0.0024 5.0 8.1 19.4 3 2 7 

Eukaryotic initiation factor 4A-I EIF4A1 0.80 0.8 0.6 0.067 0.069 0.0011 100.3 79.7 61.0 14 14 11 

Eukaryotic translation initiation factor 4B EIF4B 0.50 0.1 0.07 0.084 0.059 0.00081 13.0 5.9 0.9 3 1 1 

Eukaryotic translation initiation factor 4 gamma 1 EIF4G1 0.10 22 2.6 0.035 < 0.0001 0.016 7.4 0.9 18.9 3 1 3 

Squalene synthase FDFT1 3.90 0.4 1.5 < 0.0001 < 0.0001 0.13 14.2 56.0 21.2 5 8 6 

Isoform 2 of Filamin-A FLNA 0.50 0.6 0.3 0.0023 0.062 < 0.0001 56.7 29.8 18.5 16 11 4 

Glutaminase kidney isoform, mitochondrial GLS 1.00 8.3 8.0 0.69 0.00043 0.00042 2.2 2.1 17.3 2 1 3 

Glutamate dehydrogenase 1, mitochondrial GLUD1 1.00 0.7 0.7 0.52 0.0042 0.0043 105.9 105.8 69.8 12 14 9 

Histone H2AX H2AFX 1.70 0.4 0.60 0.016 < 0.0001 0.067 30.6 50.5 18.8 3 3 2 

Isoform 2 of Heat shock protein HSP 90-alpha HSP90AA1 1.50 0.8 1.20 < 0.0001 0.00062 0.011 305.2 463.2 369.0 18 17 13 

60 kDa heat shock protein, mitochondrial HSPD1 1.10 1.2 1.30 0.051 < 0.0001 < 0.0001 749.0 816.2 1007.7 36 36 33 

Importin subunit alpha-1 KPNA2 0.40 0.4 0.10 0.0081 0.11 < 0.0001 22.3 8.0 3.2 6 4 2 

Keratin, type II cytoskeletal 1 KRT1 1.40 7.2 10.0 0.39 < 0.0001 < 0.0001 5.1 7.0 50.7 2 2 8 

Keratin, type I cytoskeletal 10 KRT10 0.90 18 16.0 0.5 < 0.0001 < 0.0001 6.1 5.2 94.5 2 3 11 

Keratin, type II cytoskeletal 2 epidermal KRT2 INF INF INF 1 0.00014 0.00014 0.0 0.0 13.3 0 0 2 
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Table 4 continued… 

Protein name 
Gene 
name 

Fold change 
P values determined by 

Fisher exact test 
Quantitative value 

Unique 
peptides 

C vs F I vs F I vs C C vs F I vs F I vs C C F I C F I 

Leucine-rich PPR motif-containing protein, 
mitochondrial 

LRPPRC 1.10 1.4 1.50 0.16 0.0019 < 0.0001 136.6 155.7 210.8 18 19 26 

Matrin-3 MATR3 0.60 0.6 0.40 0.014 0.063 < 0.0001 57.7 35.6 22.2 7 4 3 

Isoform 2 of Mannosyl-oligosaccharide glucosidase MOGS 3.70 1.2 4.40 0.0095 0.33 0.0015 4.1 15.2 18.4 2 3 4 

Nuclear transport factor 2 NUTF2 0.20 0.4 0.08 0.011 0.3 0.00081 13.1 2.9 1.0 3 2 1 

Proliferation-associated protein 2G4 PA2G4 0.90 0.5 0.40 0.36 0.017 0.0045 35.0 31.2 15.6 7 5 4 

Poly(rC)-binding protein 1 PCBP1 0.80 0.7 0.50 0.13 0.052 0.0023 55.1 43.4 28.2 9 7 5 

Protein disulfide-isomerase A3 PDIA3 1.20 0.6 0.80 0.064 < 0.0001 0.015 136.2 164.2 102.3 19 20 17 

Perilipin-2 PLIN2 INF 0.05 INF < 0.0001 < 0.0000 0.5 0.0 21.3 1.1 0 4 1 

DNA-dependent protein kinase catalytic subunit PRKDC 2.00 1.7 3.30 0.075 0.072 0.0011 8.2 16.1 26.8 2 4 7 

26S proteasome non-ATPase regulatory subunit 2 PSMD2 0.40 13 5.50 0.34 < 0.0000 0.00032 4.0 1.7 21.8 2 2 4 

Ras-related protein Rab-11A RAB11A INF 0.5 INF 0.00097 0.14 0.033 0.0 10.3 5.1 0 1 2 

Ribonuclease inhibitor RNH1 0.30 4.2 1.30 0.013 0.0015 0.28 16.4 4.9 20.7 3 3 5 

60S acidic ribosomal protein P2 RPLP2 0.60 0.7 0.40 0.0012 0.13 < 0.0001 77.2 43.6 32.5 6 6 6 

Large neutral amino acids transporter small subunit 1 SLC7A5 0.00 INF 3.40 0.031 < 0.0001 0.0096 5.0 0.0 17.1 2 0 2 

Superoxide dismutase [Cu-Zn] SOD1 0.80 0.7 0.50 0.16 0.052 0.003 54.8 43.4 29.1 4 4 3 

Spectrin alpha chain, non-erythrocytic 1 SPTAN1 INF 1.5 INF 0.00048 0.19 < 0.0001 0.0 10.7 16.2 0 5 5 

Activated RNA polymerase II transcriptional 
coactivator p15 

SUB1 0.30 0.2 0.07 0.025 0.18 0.00081 13.2 3.8 0.9 2 2 1 

Tubulin-specific chaperone A TBCA 0.06 0.0 0.00 0.00026 0.49 < 0.0001 15.0 0.9 0.0 2 1 0 

Isoform 2 of Tropomyosin alpha-3 chain TPM3 0.50 0.6 0.30 0.00025 0.036 < 0.0001 66.2 31.4 17.4 8 5 5 

Tropomyosin alpha-4 chain TPM4 0.09 2.0 0.20 < 0.0001 0.2 < 0.0001 43.4 4.0 8.1 2 0 2 

Heat shock protein 75 kDa, mitochondrial TRAP1 8.30 0.9 7.30 < 0.0001 0.29 < 0.0001 5.1 42.6 37.4 1 3 3 

Tubulin beta chain TUBB 0.90 0.9 0.80 0.14 0.022 0.00081 416.7 384.8 329.5 24 20 19 

Tubulin beta-4B chain TUBB4B 0.90 0.8 0.80 0.12 0.025 0.00071 333.2 302.8 255.1 4 3 2 

Voltage-dependent anion-selective channel protein 2 VDAC2 1.20 4.8 5.80 0.5 0.00055 0.00019 4.0 4.9 23.2 1 1 5 

Nuclease-sensitive element-binding protein 1 YBX1 0.30 1.9 0.60 < 0.0001 0.032 0.0059 53.2 16.4 30.8 8 6 4 
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4.2.2.4. Validation of proteins detected 

Six proteins were selected for validation using Western blot (Table 5). These targets were 

selected on the basis of their biological functions and to corroborate the statistical analysis 

of the dataset. Perilipin 2 and mitochondrial 75 kDa heat shock protein (TRAP1) showed 

statistically significant changes in abundance. Perilipin 2 was not detected in the control 

sample but 4 peptides were assigned to the protein in the FA-treated sample and 1 peptide 

was assigned to it in the A92-treated sample. Perilipin 2 is a marker for LD and given its 

absence in the control sample was considered a good target for validation. TRAP1 was 

identified in all samples and its abundance in the FA-treated and A92-treated samples was 

8.3 and 7.3 times that in control. This increase was statistically significant. TRAP1 is a 

mitochondrial chaperone. 

Glutathione reductase plays a vital role in maintaining the redox state of the cells and given 

the role of ROS in disease progression as described in literature, it was considered for 

validation [286]. Its abundance in the FA-treated sample was 5 times lower than that of 

control and its abundance in A92-treated sample was 4.4 times that of the FA-treated. Both 

changes in abundances were assigned p < 0.05 but were not statistically significant after 

multiple testing corrections. Glutaredoxin 3 is a cytoplasmic protein that also plays an 

important role in maintenance the redox state of the cell [287]. Fatty acid synthase (FAS) 

catalyses the de novo synthesis of FA in the cell and inorganic pyrophosphatase 1 (PPA1) 

hydrolyses pyrophosphate to inorganic phosphate that is used in biosynthesis of nucleic 

acids and proteins [288]. FAS showed almost no change in abundance across the three 

samples while the changes in PPA1 were assigned p > 0.05. The abundance of DGAT1 was 

also tested since A92, a DGAT1 inhibitor was part of the analysis. 

 

Table 5: Target proteins from dataset LC1 for Western blot validation. Fold change is the ratio of QV of groups 
as indicated. So, for example, ‘F: C’ is the ratio of QV of the protein in the FA-treated sample (F) to that in 
control sample (C). ‘I’ indicates A92-treated sample.  
 

Protein name 
Gene 
name 

M.W 
(kDa) 

Fold Change P value 

F:C I:F I:C F:C I:F I:C 

Inorganic pyrophosphatase PPA1 33 0.71 1.6 1.1 0.23 0.15 0.45 

Fatty acid synthase FASN 273 1 0.9 0.9 0.47 0.098 0.08 

Perilipin-2 PLIN2 48 INF* -20 INF* < 0.0001 < 0.0001 0.5 

75 kDa Heat shock protein TRAP1 74 8.3 0.9 7.3 < 0.0001 0.29 < 0.0001 

Glutathione reductase GSR 53 0.2 4.4 0.9 0.019 0.035 0.48 

Glutaredoxin-3 GLRX3 37 5.2 0.9 4.9 0.011 0.48 0.021 

* Perilipin 2 was not detected in control samples; the QV for this protein in the FA-treated and A92-treated sample was 

21.1 and 1.1 respectively. Its fold change is shown as ‘INF’ since the QV for the protein in the control sample is zero. 
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None of target proteins showed a statistically significant changes in abundance in the 

Western blots (Figure 37). Since the difference in the QV for FAS, PPA1, glutathione 

reductase and glutaredoxin 3 were not statistically significant, the lack of change observed in 

the Western blots supported the statistical test. However, the Western blots for proteins 

with statistically significant changes – perilipin 2 and TRAP1 – did not show any significant 

changes in abundance either. In fact, perilipin 2 was detected in the control samples used for 

Western blots in spite of no peptides being assigned to it in the LC-MS/MS data. Actin was 

detected in the LC-MS/MS data with the same number of peptides assigned to all three 

samples; the difference in the QV of the three samples however, was considered statistically 

significant. 

These Western blot results validate the presence of proteins identified in the samples by LC-

MS/MS but fail to corroborate the changes in abundances suggested by the LC-MS/MS data. 

Validation of LC-MS/MS targets is discussed further detail in section 5.2.4. The outcome of 

this analysis also suggested that greater robustness of the experimental design and an 

increase the number of proteins identified was needed. The next dataset generated included 

individual biological replicates instead of the pooled sample used in this dataset. 

Protein Control cells FA-treated cells A92-treated 

Protein targets from LC1 
 

GSR 
 

Actin 

   

   
 

 

FAS 
 

TRAP1 
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Actin 
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Figure 37: Western blots for the validation of dataset LC1. The proteins validated through Western blots for 
dataset LC1 included glutathione reductase (GSR), actin, fatty acid synthase (FAS), TRAP1, perilipin 2 (PLIN2), 
glutaredoxin 3 (GLRX3) and DGAT1. Four biological replicates of each condition were tested- first four lanes 
represent the control replicates, middle four represent FA-treated replicates and last four represent A92-
treated replicates. Some images have been cropped for want of space and indicated by a line separating the 
target proteins. (Appendix figure 71 shows uncropped images.) * The blot for FAS, TRAP1 and PLIN2 did not 
include the A92-treated sample due to unavailability of sample. 
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4.2.3. Improving protein identification 

4.2.3.1. Comparison of LC-MS/MS parameters 

Two LC gradients and various data-dependent MS/MS settings were tested to improve the 

number of proteins identified. The effectiveness of changing the LC-MS/MS parameters was 

determined on the basis of the number of input spectra accepted by the ‘Spectrum Selector’ 

node of the PD workflow was used as a measure of the number of the spectra generated 

using the parameter tested. The quality of the spectra was gauged by the number of 

peptides these spectra could be matched to. Since multiple spectra can be assigned to the 

same peptide, the number of distinct peptides identified on the basis of the data was used a 

second measure of quality. Biological relevance of the peptides requires inferences to be 

made at the protein level and so, the peptides identified were assigned to their respective 

proteins and the total number of protein identified was the third measure used to gauge the 

quality of the spectral information collected. 

4.2.3.1.1. Optimization of LC gradient 

The LC gradient used for dataset LC1 was generated using a step-wise increase in solvent B 

from 2 to 98 over 300 min. For all samples tested, the maximum number of peaks were 

detected within 200 min of this gradient run (Figure 38 shows a representative 

chromatogram). This corresponded to an increase of solvent B from 2 % to 30 % of mobile 

phase. Given the limited number of proteins identified in dataset LC1, the total run-time of 

the LC was increased to 352 min; this gradient is hereafter referred to as ‘Gradient 1’ (Table 

6). Four LC-MS/MS runs were performed for a sample of untreated HepG2 cells using 

Gradient 1 and a modified Top 6 method described in section 4.2.3.2.  

The chromatograms of this sample showed a similar pattern to that observed in dataset LC1 

chromatograms – maximum number of peaks (approximately 81%) were detected in a step 

that corresponded to an increase of solvent B from 2 % to 30 % (Figure 39 shows a 

representative chromatogram). Given this elution pattern, an attempt was made to spread 

the peaks more evenly over the run. To this end, the data generated from the four LC-

MS/MS runs using Gradient 1 was analysed using GOAT©. GOAT© is a gradient optimization 

tool that suggested a multi-step gradient such that all steps would contain an equal fraction 

of the MS/MS spectra acquired in the LC-MS/MS runs performed using Gradient 1 [241]. The 

gradient suggested by GOAT© is hereafter referred to as Gradient 2. 
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Table 6: Comparison of LC-MS/MS gradients. The gradient used to separate peptides analysed in dataset 
LC1 were separated using gradient labelled ‘LC1 gradient’. Gradient 1 used a mobile phase with the same 
percent of Solvent B at the end of each step as the LC1 gradient; the difference between the two gradients 
was that some steps in Gradient 1 were longer than that the corresponding one in LC1 gradient. 

Figure 39: Representative chromatogram for the modified Top 6 method using gradient 1. The 
chromatogram shows the elution pattern of analytes over a period of 352 min. The % solvent B at the 
end-points of each step in the multi-step gradient are indicated along the red lines. 

Figure 38: Representative chromatogram for Top 6 method using standard LC gradient. The figure shows 
the peaks detected over the 300 min LC-MS/MS run. The multi-step gradient set-up is indicated on the 
timeline with the corresponding percent of Solvent B in the mobile phase. 
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The mean value of % Solvent B suggested by GOAT© for the four replicates at each time 

point was considered as the final value used to define Gradient 2 (Figure 40A). Gradient 2 

was run for the same duration as Gradient 1 (352 min) and the MS/MS was performed using 

the same modified Top 6 method that was used to test Gradient 1. Unlike the LC1 gradient 

and Gradient 1, Gradient 2 computed by GOAT had a maximum 43 % Solvent B in its mobile 

phase at 347 min of the run (Figure 40B). The performance of the two gradients was 

compared on the basis of total number of proteins identified. Protein identification workflow 

Combined 1 described in section 2.6.4 was used to generate a list of proteins based on the 

LC-MS/MS data.  

Changing the gradient did produce a statistically significant increase (p ≤ 0.05) in the average 

input spectra – an average of 17,267 input spectra were detected for Gradient 1 and the 

average for Gradient 2 was 19,432. The number of spectra matched to peptides also 

increased significantly from 14,484 for Gradient 1 to 16,992 for Gradient 2 (Figure 41A). This 

increase could be attributed to the better distribution of analytes over the run time as 

GOAT© was intended to do and would, as such, fulfil the objective of using GOAT©. However, 

because this distribution was done on the basis of the number of MS/MS inputs alone, the 

increased number of input spectra did not translate into an increase in the number of 

proteins identified. In fact, the total number of peptides and proteins identified using 

Gradient 2 was less than that for Gradient 1 (Figure 41B). This reduction could be in part 

because the highest % Solvent B in Gradient 2 was 43 %. This could have excluded the 

analytes that would have eluted at higher percentages used in Gradient 1. Retaining the 

elution pattern of Gradient 2 and increasing the run time to include higher % Solvent B in the 

mobile phase like in Gradient 1 would have been the ideal choice to hold onto the 

Figure 40: Optimization of LC gradient using GOAT. A) Four LC-MS/MS runs representing control samples 
were analysed using GOAT©. B) The average value of % solvent B at a given time point was used to 
construct Gradient 2. 
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advantages of both gradients tested but given the number of replicates, an increase in run 

time would increase the total machine time required significantly. And so, all subsequent 

experiments were carried out using Gradient 1 for separation of analytes since it was able to 

produce more protein identifications in the same run time as Gradient 2. 

4.2.3.1.2. Parameters for data-dependent MS/MS fragmentation 

The data-dependent MS/MS settings of Top 6 method used for the LC-MS/MS analysis of the 

Gradient 1 runs differed from those of the Top 6 method used for generation of dataset LC1. 

Unlike the Top 6 method described in section 4.2.2, the modified Top 6 method used to test 

Gradient 1 and Gradient 2 allowed for charge-mass screening and selection of monoisotopic 

precursors. The repeat count in the dynamic exclusion settings was set to 1; this meant that 

a MS precursor would be fragmented only once before being excluded from fragmentation. 

The number of input spectra detected for dynamic exclusion after a repeat count of 2 was 

not affected by the selection of the monoisotopic precursor; however, the number of 

peptides that could be matched to the spectra and the number of peptides and protein 

identified dropped significantly when monoisotopic peak selection was disabled (Figure 42). 

Therefore, selection of monoisotopic peaks was enabled for all methods tested. Lowering 

the repeat count to 1 did increase the number of input spectra detected but the number of 

peptides and proteins identified was comparable to the repeat count of 2. Since there was 

no advantage in performing two MS/MS fragmentation scans per precursor before excluding 

it, dynamic exclusion after a repeat count of 1 was used for the subsequent methods.  

Increasing the number of MS precursors selected for MS/MS fragmentations was considered 

another way of improving the quality of the data and the number of proteins identified. This 

Figure 41: Comparison of gradients used for Top 6 methods. The gradients were compared on the basis of A) 
Average input spectra; the average number peptide-spectra matches (PSM), the average number of distinct 
peptides and B) number of proteins identified with high confidence (FDR < 0.01). The difference in the mean 
values of each selection criteria was tested using one-way ANOVA and was considered significantly different for 
p < 0.05 (*). 
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led to modifying the method to select 8 or 10 scan 1 precursors instead of the 6 used for the 

Top 6 method. These methods are referred to as ‘Top 8’ and ‘Top 10’ methods respectively. 

Settings tested for the modified Top 6 method were retained and the only difference 

between the methods was the number of precursor ions selected for MS/MS fragmentation. 

All references to the Top 6 method hereafter refer to the modified Top 6 method. Four LC-

MS/MS runs were performed for each method and the average input spectra for Top 6, Top 

8 and Top 10 methods was 17,267; 17,665 and 17,358 respectively. The number of peptide-

spectra matches was 14,484; 11,193 and 9,835 for Top 6, Top 8 and Top 10 methods 

respectively and these corresponded to 5,703; 5,140 and 3,931 distinct peptides for their 

respective methods. So, in spite of Top 8 and Top 10 methods being able to generate more 

input spectra than Top 6, the number of peptide-spectra matches and the number of distinct 

peptides identified for Top 6 method were significantly more than that of the other two 

methods (Figure 43A).  

And, although the number of proteins identified using Top 8 method was found to be 

significantly more than that found in the Top 6 method using the criteria of at least 1 peptide 

per protein, the difference between the two methods was not significant if the selection 

criteria is made more stringent to include only those proteins identified with at least 2 

peptides per protein (Figure 43B). The average number of proteins identified with high 

confidence (FDR < 0.01) and at least 2 peptides per protein was 731 (± 8), 755 (± 21) and 609 

(± 4) for Top 6, Top 8 and Top 10 respectively. Assuming all peptides identified were 
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Figure 42: Comparison of data-dependent MS/MS settings. Data was collected over four LC-MS/MS runs and 
the figure represents the mean values (± SD) of the four runs. A) Input spectra, peptide-spectra matches 
(PSM) and number of distinct peptides detected for the three methods. B)  Number of proteins identified for 
each with method with high confidence (FDR < 0.01) and at least 1 or 2 peptides per proteins in PD. The mean 
values were compared using one-way ANOVA and the difference was considered significantly for p < 0.05 (*). 
Legend: RC2_MI disabled: Repeat count 2, monoisotopic precursor selection disabled; RC2_MI enabled: Repeat 
count 2, monoisotopic precursor selection enabled; RC1_MI enabled: Repeat count 1, monoisotopic precursor 
selection enabled. 
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assigned to a protein or protein group, the 731 protein identified by Top 6 method would be 

assigned 5,703 peptides among them while the 755 proteins identified by Top 8 method 

would be assigned 5,140 peptides. These peptides in turn reflect the number of spectra that 

could be assigned to a protein. The Top 6 method had more peptide-spectra matches than 

the other two methods. Based on this information, it was inferred that the protein identified 

by the Top 6 method are likely to be represented by more spectral counts than the same 

protein detected by the other two methods. Given that label-free spectral counting was the 

quantification method to be used for this project, the Top 6 method used for subsequent 

experiments. 

 

4.2.3.2. Parameters for protein identification 

Having defined the parameters of the LC-MS/MS method, the data collected was put 

through various PD workflows to ensure the search parameters used to identify the proteins 

would allow the identification of maximum number of proteins with high confidence. The 

MS/MS data generated was cumulated in a file of ‘.raw’ format and each file represented a 

technical replicate. Every workflow in PD requires the ‘Spectrum files’ node to accept the LC-

MS/MS data. This node is followed by the ‘Spectrum Selector’. The ‘Sequest HT’ and 

‘Mascot’ nodes were used to match the spectra to possible peptides and the output of these 

search nodes was validated using the ‘Percolator’ node. The node settings and the different 

workflows they were arranged in for this project has been described in section 2.6.4. An 

Figure 43: Comparison of Top N methods. The methods ‘Top 6’, ‘Top 8’ and ‘Top 10’ were named according to 
the number of MS precursors selected for MS/MS fragmentation. Data was collected over four LC-MS/MS runs 
and the figure represents the mean values (± SD) of the four runs. A) Input spectra, peptide-spectra matches 
(PSM) and number of distinct peptides detected for the three methods. B)  Number of proteins identified for 
each with method with high confidence (FDR < 0.01) and at least 1 or 2 peptides per proteins. The mean values 
of Top 8 and Top 10 were compared to that of the Top 6 methods using one-way ANOVA and the difference 
was considered significantly for p < 0.05 (*).  
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average of 18,959 (± 62.8) input spectra were detected for the four LC-MS/MS runs 

analysed. Since the input spectra used for each workflow was the same, any difference in 

the number and identity of proteins was attributed to the workflow and the manner in 

which the data was processed by it. This section describes the comparison of different 

workflows and databases used to select a combination that would identify the highest 

number of protein.   

4.2.3.2.1. Comparison of Proteome Discoverer workflows  

The combination of SEQUEST HT and MASCOT was able to generate a significantly higher 

number of peptides-spectra matches than either of the two search engines alone. The 

‘SEQUEST only’ workflow was able to produce 6,848 peptide spectra matches while; 

‘MASCOT only’ workflow produced 6,418 matches. ‘Combined 1’ and ‘Combined 2’ on the 

other hand were able to generate 13,266 and 13,291 peptide-spectra matches, respectively 

(Figure 44A). In spite of this, the average numbers of peptides and proteins identified by 

each workflow were comparable – 5,120; 4,861; 5,309 and 5,320 peptides and 724, 698, 737 

and 737 protein with high confidence (FDR < 0.01) and at least 2 peptides were identified 

using ‘SEQUEST only’, ‘MASCOT only’, ‘Combined 1’ and ‘Combined 2’ respectively (Figure 

44B).  

 

A consensus list of proteins was generated to represent all proteins identified by a workflow 

across all four technical replicates. A comparison of this consensus list using Venny 2.1 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html) showed that most of proteins 

identified were common to all the workflows tested [277] (Figure 45). A distinction was 
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Figure 44: Comparison of number of proteins identified by different PD workflows. Data was collected over 
four LC-MS/MS runs and the figure represents the mean values (± SD) of the four runs with an average input 
spectra of 18,959 (± 62.8). A) Peptide-spectra matches (PSM) and number of distinct peptides detected for 
the four workflows. B) Number of proteins identified for each with method with high confidence (FDR < 
0.01) and at least 1 or 2 peptides per proteins 
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made between the ‘Combined’ workflows and the workflows with either SEQUEST HT or 

MASCOT node on the basis of the number of peptide-spectra matches generated by the 

workflow. The ‘MS2 – Spectrum Processor’ node used in workflow ‘Combined 2’ was 

included in the workflow to perform charge state deconvolution and deisotoping of the data 

with the aim of improving the number of proteins identified. Since the peptide-spectra 

matches and the number of proteins identified for the Combined workflows were not 

significantly different, the inclusion of this node was not deemed necessary and workflow 

Combined 1, which had the same nodes as Combined 2, barring the ‘MS2 –Spectrum 

Processor’, was used for all subsequent experiments. 

 

4.2.3.2.2. Comparison of protein databases 

UniProt is a comprehensive resource for protein sequence and annotation [115]. At the time 

of analysis, the UniProtKB database had 148,986 entries for human proteins and of these, 

20,196 were manually annotated and reviewed as SwissProt entries. Evidence of existence 

was available for 51,543 human proteins in UniProtKB, and of these, 14,685 were manually 

annotated and reviewed as SwissProt entries. The ‘SEQUEST HT’ and ‘Mascot’ search nodes 

in ‘Combined 1’ workflow were set-up to search these databases. The average number of 

proteins identified and the individual proteins identified in each database were about the 

same for all databases tested. An average of 737, 735, 734 and 733 proteins were identified 

with high confidence (FDR < 0.01) from SwissProt (with evidence), all SwissProt, UniProt 

(with evidence) and all UniProt with at least 2 peptides attributed to each protein (Figure 

46A). A comparison of proteins identified in the consensus lists (derived from the PD multi-

Figure 45: Comparison of proteins identified by the different PD workflows. A multi-file report was generated 
in PD to list all the proteins identified in all the four LC-MS/MS runs tested using a given PD workflow. The 
proteins identified using a given workflow were compared to the proteins identified by other workflows using 
the Venn diagram tool Venny 2.1. 
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file report that cumulates data from all four LC-MS/MS runs into one report for each 

database tested) showed that 823 proteins were common to all four database searches 

(Figure 46B). Given these results, the SwissProt database with evidence of protein existence 

was selected for the quantification experiments because of its entries being reviewed and 

verified by experimental evidence. 

4.2.4. Dataset LC2 

4.2.4.1. Protein identification and quantification 

Having tested the different parameters that could increase the number of proteins 

identified, a new batch of HepG2 cells was treated with 1 mM FA for 6 h for preparation of 

LC-MS/MS samples. These cells originated in the stock vial obtained from the Malaghan 

Institute. The DGAT inhibitor A92 was also tested in cell culture as described in section 

3.2.2.1. but its effect on lipid accumulation was not reproducible. As a result, it was not 

included in the proteomics analysis performed to generate dataset LC2. The commercial 

unavailability of other DGAT inhibitors at the time restricted the number of treatment 

groups to that of control cells and FA-treated cells. The LC-MS/MS runs for these samples 

were performed using Gradient 1 for separation of peptides (described in section 4.2.3.1.) 

and the modified Top 6 method (described in section 4.2.3.2.). Dataset LC2 was generated 

using four biological replicates of untreated control cells and another four biological 

replicates of FA-treated cells.  Unlike dataset LC1, the samples were not pooled, and four LC- 
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Figure 46: Comparison of protein databases used for protein identification. A) The number of proteins 
identified using the different databases. B) Extent of overlap between the protein lists generated by the 
different databases. Protein identification data from four technical replicates was accumulated into one 
multi-consensus report to give a proteins list representative of the sample. The consensus lists of proteins 
were compared using Venny 2.1. 
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MS/MS runs were performed for each replicate. The average number of proteins identified 

for each biological replicate and for each condition in general is described in Figure 47.   

The in silico experimental setup for dataset LC2 in Scaffold also differed from dataset LC1.  

Each category had four biosamples, and each biosample was analysed by four LC-MS/MS 

runs. The data from the four runs were condensed to a single value for each protein in the 

biosample. Peptide identifications were accepted if they could be established at greater than 

99.0 % probability by the Peptide Prophet algorithm. Protein identifications were accepted if 

they could be established at greater than 99.9 % probability and contained at least 2 

identified peptides. With these identification criteria, a total of 998 proteins and no decoys 

were identified for dataset LC2 (Table 21 in Appendix). An average of 846 proteins could be 

identified for the four control group biosamples, and an average of 833 proteins were 

identified for the four FA-treated group biosamples. The statistical difference between the 

mean QV for the control group was compared to that of the FA-treated group for each 

protein using a t-test with a Hochberg-Benjamini correction carried out.  The significance 

level was set at 95 %. Although there were 94 proteins that showed a fold change of ≥ 1.3 

with a p ≤ 0.05 (Table 7), none of these were statistically significant after the multiple testing 

correction that required p ≤ 5x10-4 to achieve the significance level of 95 %. 

 4.2.4.2. Comparison of datasets 

The proteins identified in Scaffold for dataset LC2 were compared to the proteins identified 

in Scaffold for dataset LC1, and almost all the proteins identified in LC1 were also detected in 

Figure 47: Number of proteins identified for each biological replicate of dataset LC2 in PD. The figure 
represents the average number of proteins identified. A) Mean values (± SD) for four LC-MS/MS runs of 
each biological replicate. B)  Mean value for all the 16 LC-MS/MS runs that represent the treatment 
condition. Legend: 1 peptide and 2 peptides represent the protein identified with high confidence (FDR < 
0.01) and least 1 or 2 peptides per proteins attributed to it in PD; #Scaffold is the number of proteins 
identified in Scaffold with p < 0.001 and contained at least two peptides identified with p < 0.01. Key: C: 
Control samples; FA: Sample treated with 1 mM FA for 6 h.  
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A) B) 

Figure 48: Comparison of datasets LC1 and LC2. A) The list of proteins identified in dataset LC1 was compared 
to the proteins identified in LC2 using Venny 2.1. B) The proteins that showed changes in abundance with p < 
0.05 did not show the same extent of overlap as the list of total proteins. 

LC2 (Figure 48A). However, the same overlap was not seen in the proteins that showed 

changes in abundance with p ≤ 0.05 (Figure 48 B). The lists of proteins identified for LC1 and 

LC2 were filtered to retain proteins that showed a change in abundance with p ≤ 0.05 for the 

comparison between control and FA-treated samples. Only 7 proteins were common to both 

lists. These proteins were L-lactate dehydrogenase A chain (LDH-A), thioredoxin reductase 1 

(TR), 14-3-3 protein, perilipin-2, proteasome activator complex subunit 3 (PSME3), activated 

RNA polymerase II transcriptional coactivator p15 (PC4), and eukaryotic translation initiation 

factor 4 gamma 1. The functions of these proteins varies greatly – LDH-A carries out the 

reversible conversion of lactate to pyruvate using NADH+H+ as the proton donor [289] while 

the glutaredoxin activity as well as thioredoxin reductase activity of TR contribute towards 

the maintenance of the redox environment of the cell [290]. Perilipin 2 is a lipid-droplet 

marker [291]. PC4 is capable of binding single-stranded DNA and mediating activator-

dependent transcription [292] while PSME3 is part of the proteosomal regulator complex 

that activates the catalytic subunits of the proteasome [293]. Eukaryotic translation initiation 

factor 4 gamma 1 as the name suggests is part of the translation initiation complex while the 

14-3-3 protein has been identified as regulatory element in intracellular signalling pathways 

[294]. The change in the abundance of these proteins was not consistent between the two 

datasets. For example, the abundance of LDH-A in FA-treated sample of dataset LC1 was 1.4 

times of control while in dataset LC2, its abundance was down to 0.7 times that of control. 

Moreover, perilipin 2 was exclusive to the FA-treated sample in dataset LC1 while it was 

detected in both control and FA-treated samples of datasets LC2. 

The limited number of overlapping proteins (with change in abundance with p < 0.05) and 

the disparity in the extent of change seen in these proteins may be attributed to the 

experimental design and perhaps the change of cell culture stock. The biological variance in 
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dataset LC1 may be considered as being masked by the pooling of cell lysates into one 

sample. The experimental design of dataset LC2 included the used of unpooled samples 

which would reflect the biological variance among the four biological replicates. The 

biological variance and the inherent technical variations introduced during LC-MS/MS data 

generation are likely to have had an adverse effect on the statistical significance assigned to 

proteins in dataset LC2. The co-efficient of variance (CV) associated with a protein for each 

category is presented in Table 7. A direct comparison of datasets LC1 and LC2 is made 

difficult by the fact that they were generated cell culture samples that originate in stock vials 

sourced from different institutes. This is evident by the lack of effect of DGAT inhibitor A92 

did not on cells used for dataset LC2. A critical evaluation of the experimental design would 

require a comparison of individual replicates and a pooled sample originating from the same 

biological source. 

4.3. Summary  

HepG2 cells were treated with 1 mM FA mixture for 6 h and changes in protein abundance 

as a result of the treatment were recorded. Cells treated with the 100 µM A92 and 1 mM FA 

mixture for 6 h were also included in the analysis. Of the four lysis buffers tested, the 

glycerol-Triton X-100 buffer was selected for preparing samples for proteomics because of 

the mild non-ionic nature of Triton X-100 and its ability to extract more membrane proteins 

than the other buffers tested. Various parameters of LC-MS/MS and protein identification 

were compared and modified to determine a method that would give the highest number of 

proteins identified in the dataset. Dataset LC1 was generated from pooled sample and 

although proteins relevant to fat metabolism were identified, none of the proteins could be 

validated by Western blot. Dataset LC2 was then generated from unpooled, individual 

replicates to improve the robustness of the experimental design. A92-treated cells were not 

included in this dataset since the previous effects of the molecule on lipid accumulation 

could not be reproduced. No statistically significant protein changes could be identified in 

dataset LC2, possibly because of the additional variance introduced in the analysis by using 

individual biological samples rather than pooled sample. To ascertain the impact of pooling 

samples, a new batch of HepG2 cells was prepared and treated with 1 mM FA. The biological 

replicates produced in this preparation were analysed in datasets LC3 and LC4 and are 

described in the next chapter.  
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Table 7: List of proteins identified in dataset LC2 with p < 0.05. The ‘fold change’ represents the ratio of the quantitative value for FA-treated group to that of the control 
group. ‘Quantitative value’ is the normalized spectral count for the protein indicated. ‘CV (%)’ is the coefficient of variance expressed as a percentage for the four biological 
replicates in each category. 

Protein name 
Gene 
name 

FC P value 
Quantitative value Exclusive peptides CV (%) 

C1 C2 C3 C4 F1 F2 F3 F4 C1 C2 C3 C4 F1 F2 F3 F4 C F 

Oxygen-dependent 
coproporphyrinogen-III oxidase 

CPOX 1.5 0.00033 11.48 9.57 9.34 10.32 15.53 14.47 15.36 17.19 4 4 3 4 6 5 4 5 9 7 

Ubiquitin carboxyl-terminal hydrolase 5 USP5 2.6 0.0005 3.03 2.18 0.99 2.83 5.48 6.81 5.98 5.63 2 1 1 2 2 3 3 1 41 10 

Pyrroline-5-carboxylate reductase 1 PYCR1 0.7 0.0014 23.84 24.54 28.28 23.43 19.08 15.42 17.95 15.36 7 7 10 6 8 5 6 5 9 11 

DNA replication licensing factor MCM4 COX5A 3.8 0.0026 3.08 3.22 0.00 1.83 9.98 6.00 7.80 6.85 2 1 0 2 5 4 6 3 73 22 

Cytochrome c oxidase subunit 5A MCM4 INF 0.0026 0.00 0.00 0.00 0.00 2.71 4.28 3.42 1.43 0 0 0 0 2 2 2 1 - 41 

Histidine triad nucleotide-binding 
protein 2, mitochondrial 

HINT2 4.1 0.0029 0.00 2.14 2.05 0.00 3.58 4.27 4.29 5.01 0 1 1 0 2 2 2 2 120 14 

NAD kinase 2, mitochondrial NADK2 3.2 0.0032 2.02 4.23 3.30 3.75 6.34 11.94 12.88 11.05 1 2 3 1 3 5 6 4 29 28 

Dehydrogenase/reductase SDR family 
member 4 

DHRS4 5.6 0.004 1.08 0.00 0.00 0.96 2.76 3.42 1.67 3.47 1 0 0 1 2 1 1 2 120 30 

Endoplasmic reticulum resident protein 44 ERP44 5.8 0.004 0.00 6.36 0.99 0.00 13.62 10.30 7.80 10.74 0 2 1 0 5 3 4 4 170 22 
Vesicular integral-membrane protein VIP36 LMAN2 0.6 0.0049 10.21 9.58 13.67 12.20 5.51 6.80 6.02 8.18 4 3 4 3 2 3 2 2 16 18 

Peroxiredoxin-1 PRDX1 0.8 0.0054 91.39 92.41 99.26 75.88 70.67 64.99 63.35 70.28 19 21 17 16 17 19 16 17 11 6 

28S ribosomal protein S23 MRPS23 16 0.0057 0.00 1.08 0.00 0.00 6.29 2.56 5.15 2.86 0 1 0 0 2 1 3 2 200 43 

Valine--tRNA ligase VARS 0.2 0.0058 20.75 14.95 9.44 23.34 0.00 2.56 5.98 3.99 8 6 5 10 0 2 3 2 36 80 

60S ribosomal protein L29 RPL29 0.9 0.0062 4.16 4.26 4.18 3.75 3.63 3.42 3.43 3.68 1 1 1 1 1 1 1 2 6 4 

Isoform 2 of Nucleobindin-2 NUCB2 2.2 0.0067 5.24 1.10 3.08 3.75 7.26 7.67 6.00 8.49 1 1 1 1 3 3 2 2 52 14 

Thioredoxin reductase 1 TXNRD1 0.5 0.0074 15.51 20.19 21.00 12.22 9.10 9.38 9.44 7.06 4 7 8 3 3 3 3 2 24 13 
Transitional endoplasmic reticulum ATPase VCP 1.2 0.0079 109.19 113.38 106.34 102.11 130.47 123.25 114.81 128.1 24 31 28 27 29 33 28 27 4 6 

L-lactate dehydrogenase A chain LDHA 0.7 0.0082 54.22 57.43 46.95 68.50 38.95 37.56 42.17 35.81 16 16 14 18 13 13 15 9 16 7 

3-mercaptopyruvate sulfurtransferase MPST 1.4 0.0082 11.41 13.80 14.77 13.10 17.24 21.35 18.00 16.47 4 3 6 5 5 8 8 6 11 12 

Protein disulfide-isomerase A4 PDIA4 1.2 0.0085 117.61 126.88 138.13 135.89 163.27 154.67 148.15 179.7 31 26 32 32 40 37 35 33 7 8 

Proteasome subunit beta type-5 PSMB5 0.5 0.0086 18.59 17.03 12.52 19.64 8.17 6.02 12.01 10.32 7 5 5 6 3 3 7 3 19 28 

Bifunctional purine biosynthesis protein 
PURH 

ATIC 0.8 0.0092 62.35 60.73 65.75 65.60 42.55 53.81 57.29 48.98 16 19 22 18 14 21 19 16 4 13 

Enoyl-CoA hydratase, mitochondrial ECHS1 1.4 0.0095 23.88 33.02 26.15 28.99 37.15 45.28 38.63 35.18 8 7 9 9 10 11 9 8 14 11 

26S protease regulatory subunit 6B PSMC4 1.6 0.0095 8.32 10.68 13.60 7.49 19.07 14.55 15.46 16.26 3 5 6 3 6 6 6 5 27 12 

60S ribosomal protein L27a RPL27A 2.1 0.01 8.26 6.41 4.20 3.75 14.52 9.36 12.82 9.83 4 2 2 2 4 4 5 3 37 21 
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Table 7 continued… 

Protein name 
Gene 
name 

FC 
P 

value 
Quantitative value Exclusive peptides CV (%) 

C1 C2 C3 C4 F1 F2 F3 F4 C1 C2 C3 C4 F1 F2 F3 F4 C F 

Cytoplasmic dynein 1 heavy chain 1 DYNC1H1 0.04 0.011 12.42 16.96 8.26 28.14 0.00 0.00 0.00 2.56 6 7 5 14 0 0 0 2 52 200 

ADP-ribosylation factor 3 ARF3 0.2 0.011 13.49 5.29 12.61 16.91 2.76 5.09 1.73 1.43 3 1 4 3 2 3 1 1 40 60 

Activated RNA polymerase II 
transcriptional coactivator p15 

SUB1 1.8 0.011 11.47 4.30 12.55 11.24 16.35 16.20 17.17 20.48 4 1 3 4 4 4 4 3 38 11 

Eukaryotic translation initiation factor 
3 subunit A 

EIF3A 0.6 0.013 9.33 7.48 7.27 9.35 6.34 2.52 5.91 3.68 3 3 2 4 2 3 3 3 14 39 

Transaldolase TALDO1 0.7 0.013 24.96 24.47 30.25 21.52 15.42 14.52 18.82 20.46 9 8 10 8 6 4 6 6 14 16 

Alanine aminotransferase 2 GPT2 1.2 0.013 29.00 31.96 27.10 33.76 36.23 35.02 37.55 35.38 9 7 8 11 13 12 11 8 10 3 

Ezrin EZR 0.8 0.014 35.45 30.82 32.18 29.05 19.99 25.64 28.26 23.23 10 9 12 9 8 11 10 7 8 15 

Isoform 2 of Filamin-B FLNB 0.8 0.016 202.26 181.10 159.48 212.65 138.10 148.85 131.11 159.75 62 58 54 65 49 61 47 47 12 9 

Coatomer subunit delta ARCN1 1.4 0.016 12.41 11.83 11.34 9.31 14.47 16.25 18.93 13.51 5 6 5 5 6 6 9 3 12 15 

Annexin A6 ANXA6 2.5 0.016 15.43 14.92 7.33 11.18 44.39 32.44 26.52 19.65 7 8 2 6 16 13 11 8 31 34 

Multifunctional protein ADE2 PAICS 0.7 0.017 27.05 35.17 28.33 35.58 19.99 21.35 27.42 20.24 10 11 10 11 9 8 11 6 14 16 
Proteasome activator complex subunit 3 PSME3 1.5 0.018 12.48 9.56 14.70 11.25 17.32 21.40 18.74 14.21 3 3 5 3 5 6 6 3 18 17 

Phosphoglycerate mutase 1 PGAM1 0.7 0.019 36.33 45.79 38.40 30.99 27.96 24.86 30.83 24.74 10 8 11 9 10 9 10 7 16 11 

Keratin, type I cytoskeletal 18 KRT18 1.2 0.019 125.98 110.79 119.95 109.64 139.50 149.51 122.52 143.47 20 20 23 19 25 24 24 24 7 8 

Isoform D of Eukaryotic translation 
initiation factor 4 gamma 1 

EIF4G1 0.1 0.02 6.24 6.45 1.10 7.48 0.00 1.69 0.86 0.00 2 4 1 3 0 2 1 0 54 130 

Transmembrane emp24 domain-
containing protein 9 

TMED9 0.6 0.02 17.71 16.93 13.54 15.00 6.39 13.65 8.59 11.35 4 5 4 4 3 4 3 5 12 32 

Sialidase-1 NEU1 1.4 0.02 15.57 22.39 15.63 15.00 25.27 29.08 22.29 22.00 5 6 7 6 7 11 7 6 20 13 

Perilipin-2 PLIN2 2 0.02 14.43 35.12 41.71 10.32 50.74 52.16 47.16 48.89 6 10 13 4 18 16 15 12 61 4 

Acylpyruvase FAHD1, mitochondrial FAHD1 2.3 0.02 5.17 6.44 1.03 3.74 10.02 8.52 6.85 13.00 2 3 1 1 3 3 3 2 57 27 

Isoform 3 of Alpha-actinin-1 ACTN1 0.8 0.021 86.33 84.95 67.73 88.06 61.69 66.72 69.41 49.91 11 11 9 11 9 10 9 6 12 14 

Isoform 2 of Nodal modulator 2 NOMO2 0.4 0.022 22.82 9.62 13.60 18.77 8.17 2.54 7.77 7.15 8 4 5 7 2 2 4 3 36 41 

Medium-chain specific acyl-CoA 
dehydrogenase, mitochondrial 

ACADM 1.4 0.022 9.26 10.59 7.37 10.29 13.66 14.55 15.45 10.32 4 3 3 4 4 4 5 3 16 17 

Transcription intermediary factor 1-beta TRIM28 1.5 0.022 23.84 39.41 24.94 31.86 45.17 43.60 36.80 50.65 8 14 13 8 15 17 13 12 24 13 

Alpha-actinin-4 ACTN4 0.8 0.023 129.02 159.39 142.86 134.86 117.07 123.18 124.97 107.90 32 39 38 36 31 34 36 33 9 7 

Trifunctional enzyme subunit alpha HADHA 1.3 0.023 59.34 58.83 59.43 49.74 78.86 69.17 60.72 78.98 15 19 19 18 25 21 20 21 8 12 
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Table 7 continued… 

Protein name 
Gene 
name 

FC P value 
Quantitative value Exclusive peptides CV (%) 

C1 C2 C3 C4 F1 F2 F3 F4 C1 C2 C3 C4 F1 F2 F3 F4 C F 
3-hydroxyacyl-CoA dehydrogenase type-2 HSD17B10 1.3 0.023 24.98 26.58 27.14 36.59 39.91 36.60 37.85 35.20 8 8 9 9 11 9 11 9 18 5 

45 kDa calcium-binding protein SDF4 2.1 0.023 8.26 3.12 4.14 10.27 10.85 12.86 12.03 17.80 2 1 3 4 5 6 5 4 52 23 

Keratin, type II cytoskeletal 1 KRT1 3.8 0.023 18.65 3.31 11.64 0.00 34.44 28.91 47.89 16.56 3 1 3 0 6 7 12 4 100 41 

Acyl-CoA synthetase short-chain family 
member 3, mitochondrial 

ACSS3 0.2 0.024 5.17 5.24 4.10 11.25 0.92 1.67 1.73 1.74 3 1 4 5 1 2 1 1 50 26 

DNA-(apurinic or apyrimidinic site) lyase APEX1 0.4 0.025 11.40 10.72 5.24 6.60 3.63 4.29 0.89 4.50 3 2 2 2 2 1 1 1 36 50 

Saccharopine dehydrogenase-like 
oxidoreductase 

SCCPDH 0.4 0.025 5.17 3.21 3.15 5.60 0.92 0.84 3.43 1.43 2 2 1 2 1 1 2 1 30 73 

Ubiquitin-like modifier-activating 
enzyme 1 

UBA1 0.8 0.025 78.12 71.28 68.92 63.68 47.12 59.77 64.35 53.51 19 18 20 20 14 20 20 12 9 13 

Perilipin-3 PLIN3 1.4 0.025 23.90 37.31 41.65 25.25 42.65 49.49 50.42 43.15 7 11 14 9 11 15 16 14 27 9 

Calpain-1 catalytic subunit CAPN1 0.4 0.026 5.30 8.50 6.34 11.22 1.85 2.53 6.00 1.12 2 2 3 3 2 3 2 1 33 75 

2',3'-cyclic-nucleotide 3'-
phosphodiesterase 

CNP 0.6 0.026 11.41 9.62 8.30 13.14 4.50 5.11 9.39 5.42 3 4 3 3 2 2 3 3 20 36 

Adapter molecule crk CRK 0.1 0.027 1.01 1.08 3.11 1.86 0.00 0.85 0.00 0.00 1 1 2 1 0 1 0 0 55 200 

Dihydrolipoyl dehydrogenase, 
mitochondrial 

DLD 1.6 0.027 10.40 18.12 14.38 17.88 24.52 23.17 18.04 29.46 4 6 7 6 10 12 6 8 24 20 

DNA replication licensing factor MCM7 MCM7 2.9 0.027 4.09 8.51 1.10 1.88 8.18 14.47 15.37 7.87 3 2 1 2 4 6 7 4 85 35 

39S ribosomal protein L45 MRPL45 3.2 0.027 0.00 1.05 1.10 0.94 1.79 2.54 1.68 3.99 0 1 1 1 2 1 2 2 67 43 

Leukocyte elastase inhibitor SERPINB1 0.3 0.028 5.23 3.15 7.33 4.66 0.00 0.88 4.23 0.00 2 2 3 2 0 1 2 0 34 160 

14-3-3 protein zeta/delta YWHAZ 0.9 0.029 55.13 46.80 52.29 49.64 42.63 45.25 48.02 43.68 9 9 9 8 8 8 10 7 7 5 

Ras-related C3 botulinum toxin 
substrate 1 

RAC1 0.2 0.03 4.16 5.33 0.99 6.54 0.87 0.00 0.83 1.43 1 2 1 2 1 0 1 1 56 75 

Cathepsin D CTSD 1.2 0.03 73.22 62.46 64.24 63.61 85.38 67.40 83.03 89.73 14 14 11 14 17 15 17 15 8 12 

LDLR chaperone MESD MESDC2 1.5 0.03 4.16 6.41 8.34 9.33 12.67 11.13 10.33 9.31 2 3 3 5 4 4 5 3 32 13 

Isoform 2 of Tripeptidyl-peptidase 1 TPP1 1.7 0.03 8.25 7.48 9.36 6.58 19.02 10.29 11.96 12.99 2 3 3 2 6 5 4 3 15 28 

60S ribosomal protein L24 RPL24 3.4 0.031 3.09 1.10 2.20 0.92 2.76 7.71 9.39 4.90 3 1 2 1 1 3 2 3 56 48 

Toll-interacting protein TOLLIP 1.7 0.032 2.08 3.22 4.07 3.75 4.50 5.98 4.29 7.06 1 1 3 2 2 2 2 1 27 24 

Laminin subunit gamma-1 LAMC1 0.6 0.035 2.08 3.12 2.09 1.90 0.92 1.69 1.73 1.12 2 2 2 2 1 2 2 1 24 30 
Tubulin--tyrosine ligase-like protein 12 TTLL12 0.5 0.037 11.47 10.69 8.39 14.06 7.25 5.12 8.56 0.00 4 4 3 4 2 3 4 0 21 72 
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Table 7 continued… 

Protein name 
Gene 
name 

FC 
P 

value 
Quantitative value Exclusive peptides CV (%) 

C1 C2 C3 C4 F1 F2 F3 F4 C1 C2 C3 C4 F1 F2 F3 F4 C F 

Aldose 1-epimerase GALM 1.6 0.037 5.16 3.21 4.23 7.51 9.09 8.59 9.39 5.94 3 1 2 4 4 5 4 1 37 19 

RNA-binding protein Raly RALY 3.2 0.037 1.01 4.26 2.05 0.00 9.05 5.98 3.43 4.90 1 1 1 0 2 2 1 2 100 41 

DnaJ homolog subfamily B member 1 DNAJB1 0.7 0.038 5.24 3.11 5.24 4.69 3.58 2.56 3.43 2.77 1 2 2 2 2 1 1 1 22 16 

Villin-1 VIL1 0.9 0.038 85.06 92.57 79.65 86.13 77.90 77.71 81.40 74.04 27 26 25 29 24 25 27 25 6 4 

39S ribosomal protein L46, 
mitochondrial 

MRPL46 1.5 0.038 4.16 4.26 6.29 6.56 6.33 8.54 9.48 7.06 2 1 3 4 3 3 4 2 24 18 

Elongation factor 1-gamma EEF1G 0.7 0.039 24.83 39.40 33.37 30.91 23.52 17.96 21.36 27.51 9 10 10 10 9 7 9 7 19 18 

Profilin-1 PFN1 0.8 0.039 63.50 55.37 70.94 51.54 44.41 46.06 45.42 54.12 7 9 11 8 10 8 8 8 14 9 

AT-rich interactive domain-
containing protein 3A 

ARID3A 9.8 0.039 0.00 0.00 0.00 0.92 3.63 0.85 3.40 1.12 0 0 0 1 1 1 2 1 200 65 

Peptidyl-prolyl cis-trans isomerase 
FKBP4 

FKBP4 1.6 0.04 5.17 11.73 7.31 6.59 10.84 11.96 16.28 11.35 2 4 4 3 4 5 7 4 37 20 

Elongation factor 2 EEF2 0.9 0.042 168.61 180.76 141.05 169.62 129.74 146.87 146.33 140.65 36 39 35 37 35 35 35 28 10 6 

High mobility group protein B1 HMGB1 0.7 0.043 13.42 25.40 24.02 20.56 15.48 11.96 13.71 13.91 4 7 6 6 6 4 4 4 26 10 

Succinyl-CoA ligase [GDP-forming] 
subunit beta, mitochondrial 

SUCLG2 1.4 0.046 13.42 17.02 13.60 19.64 23.60 27.31 23.16 16.56 4 4 4 7 7 9 8 6 19 20 

V-type proton ATPase subunit B, 
brain isoform 

ATP6V1B2 1.5 0.046 12.42 9.59 10.69 19.72 17.26 22.19 19.79 18.41 6 4 5 8 7 10 8 3 35 11 

Lupus La protein SSB 1.2 0.047 34.36 42.67 41.60 37.48 44.57 43.52 47.31 57.08 9 12 16 13 16 15 16 12 10 13 

Acyl-CoA synthetase family member2  ACSF2 1.6 0.047 6.17 7.47 8.43 6.56 10.83 8.56 10.26 16.17 2 3 4 2 5 5 5 6 14 29 

Arylsulfatase B ARSB 8.5 0.047 0.00 0.00 0.00 0.92 2.70 2.52 2.54 0.00 0 0 0 1 1 2 2 0 200 67 

Elongation factor 1-alpha 1 EEF1A1 0.7 0.048 126.1 97.75 161.57 119.96 104.93 79.51 96.59 78.18 18 18 18 19 19 17 17 16 21 15 

40S ribosomal protein S19 RPS19 1.5 0.048 16.78 11.74 15.67 14.06 21.77 17.10 17.99 27.82 7 5 5 6 9 7 5 7 15 23 

Obg-like ATPase 1 OLA1 0.9 0.05 12.48 11.68 14.64 14.06 10.89 11.09 11.98 11.75 4 5 6 5 3 4 4 3 10 5 

Ethylmalonyl-CoA decarboxylase ECHDC1 11 0.05 0.00 0.00 0.00 0.96 3.63 2.58 4.32 0.00 0 0 0 1 2 1 3 0 200 72 
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CHAPTER 5: PROTEOMICS ANALYSIS – PART II  

 

5.1. Introduction 

The analysis of datasets LC1 and LC2 have highlighted the importance of experimental design 

and LC-MS/MS parameters. The optimization of LC-MS/MS parameters described in chapter 

4 increased the total number of proteins identified in LC2, but this improvement did not help 

identify more proteins with statistically significant changes in protein abundance. The 

underlying reasons for this could be the experimental design – while dataset LC1 was 

generated from pooled samples, dataset LC2 was generated from individual biological 

replicates. A direct comparison of datasets LC1 and LC2 is made difficult by the fact that they 

were generated from different biological replicates that originate in different stock vials. 

Moreover, the LC-MS/MS method used to generate LC2 was optimized and therefore 

different from that used to generate dataset LC1. To overcome these problems and to 

examine the impact of pooling samples on the proteomics analysis of HepG2 cells with 

accumulated lipids, two more datasets – LC3 and LC4 were obtained. These two datasets 

were generated from the same cell lysates – the lysate of each biological replicate was 

divided into two aliquots and one aliquot was used for each dataset. The lysates prepared 

for datasets LC3 and LC4 originated in cell cultures grown from a stock vial received from the 

Malaghan Institute and were different from those used for LC1 and LC2. Dataset LC3 

represents data from individual biological replicates while dataset LC4 represents data of a 

pooled sample of biological replicates. The commercial availability of DGAT1 inhibitor PF04 

allowed the inclusion of DGAT inhibition as a treatment variable and was included in the 

proteomics analysis for dataset LC3 and LC4. This chapter describes the proteomics analysis 

of these two datasets. 

Functional analysis of proteins 

The biological relevance of the identified proteins using 'shotgun proteomics' can be 

assessed through functional analysis of the proteins. Functional analysis or enrichment 

analysis is based on the rationale that a treatment affecting one protein in a biological 

pathway is likely to affect other co-functioning proteins in that pathway and so, the 

increased detection of these co-functioning proteins by a screening method reflects an 

increased probability of the represented pathway being affected by the treatment [295]. 

Enrichment analysis tools like GoMiner, DAVID and WebGeStalt are used to assign proteins 
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detected in proteomic data to defined categories called ‘annotation terms’ in databases like 

Gene Ontology (GO) and KEGG pathways [296]. Depending on the database, these 

annotation terms represent biological processes, localization or molecular function of the 

protein. A comparison of the observed frequency of annotation term to the frequency 

expected by chance allows for the calculation of enrichment p-values; these p-values denote 

the probability that the annotation term plays an important role in the biological events 

resulting from the treatment [297]. Enrichment of annotation terms suggests a high 

probability of the function described playing an important role in the cellular response to the 

treatment. The presence of the proteins identified in the enriched pathways can then be 

verified through orthogonal methods such as Western blotting. This chapter describes the 

functional analysis of proteins identified as changing in abundance after FA treatment in 

dataset LC4 and the efforts made to validate the changes in protein abundance reported in 

datasets LC3 and LC4.  

5.2. Results 

HepG2 cells treated with 100 µM PF04 and 1 mM FA mixture for 6 h are referred to as 

‘inhibitor-treated’ cells in this chapter. FA-treated cells and control cells refer to HepG2 cells 

treated with 1 mM FA mixture and untreated cells respectively. Since the objective was to 

assess the impact of pooling samples as well as to identify the maximum number of protein 

possible, the optimized LC-MS/MS and protein identification parameters used to generate 

dataset LC2 were used to generate datasets LC3 and LC4. This included the use of Gradient 1 

and Top 6 method with dynamic repeat count set at 1 and monoisotopic peak selection 

enabled. Combined 1 workflow with SwissProt database filtered to retain proteins with 

evidence of existence was used for protein identification in PD. The setup for Scaffold 

depended on the experimental design and is described for each dataset in the sections 

describing label-free quantification for the respective datasets. 

5.2.1. Dataset LC3 

5.2.1.1. Protein identification  

The three treatment groups – control, FA-treated and inhibitor-treated – were represented 

by four biological replicates per group and each biological replicate was represented by data 

collected over four LC-MS/MS runs. These data constituted dataset LC3. All proteins 

identified in PD were filtered to retain only those identified with high-confidence (FDR < 

0.01) and at least 2 peptides per protein. Using the spectral information available from all 16 
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LC-MS/MS runs for a given treatment group, the total number of proteins identified for the 

control group was 1,205. The number of proteins identified for the FA-treated and inhibitor-

treated groups was 1,319 and 1,301 respectively. About 70 % of proteins identified in the 

dataset were present in all 3 treatment groups (Figure 49A). Based on the number of protein 

identified in each LC-MS/MS run for a given biological replicate, an average of 805, 838 and 

821 proteins could be identified in biological replicates of control, FA-treated and inhibitor-

treated, respectively. (Figure 49B). On average, 6,321; 6,628 and 6,462 distinct peptides 

were identified for the biological replicates of the control, FA-treated and inhibitor-treated 

groups, respectively. These identifications were based on an average of 18,461, 18,888 and 

18,440 peptide-spectra matches made in PD for the 21,763, 22,340 and 22,181 spectra 

detected for the control, FA-treated and inhibitor-treated groups, respectively (Figure 49C). 

5.2.1.2. Label-free quantification using spectral counts 

The protein lists generated for each biological replicate in PD were loaded onto Scaffold as 

described in section 4.2.5 for quantification. All three groups – control, FA-treated and 

inhibitor-treated – were included in the analysis. A total of 1,102 proteins with no decoys 

were identified for the three groups analysed in Scaffold (Table 21 in Appendix). Peptide 

identifications were accepted if they could be established at greater than 99.0 % probability 
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Figure 49: Number of proteins identified for dataset LC3 in Proteome Discoverer. A) Comparison of proteins 
identified in the three treatment groups – control, FA-treated and inhibitor-treated using Venny 2.1. B) The 
average number of proteins identified for a biological replicate of the treatment groups indicated. C) Average 
number of spectra, peptide-spectra matches (PSMs) and peptides for a biological sample of a treatment group 
as identified in PD. 
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by the Peptide Prophet algorithm, and protein identifications were accepted if they could be 

established at greater than 99.9 % probability and contained at least 2 identified peptides. 

One-way ANOVA was used to compare the mean QV for each protein across the three 

groups. At a significance level of 95 %, the change in abundance of the protein was 

considered significant for values of p ≤ 5 x 10-5 after multiple testing correction using the 

Hochberg-Benjamini method. However, none of the identified proteins reached this level of 

significance. The analysis was continued with a comparison of two groups at a time using 

Student's t-tests. Two primary comparisons were made – control vs. FA-treated and FA-

treated vs. inhibitor-treated. Of minor importance was a comparison between the control vs 

the inhibitor-treated. As with one-way ANOVA, at a significance level of 95 %, the difference 

was considered significant for p ≤ 5 x 10-5 after multiple testing correction using the 

Hochberg-Benjamini method. Again, none of the identified proteins satisfied this test of 

significance. The data were analysed further as described in the next section to better 

understand the underlying reasons for this lack of significant changes. 

5.2.1.3. Variance associated with data generated from unpooled replicates 

Of the 1,102 proteins identified in Scaffold, 1,091 proteins were found in all three groups. 

Eleven proteins were identified in two of the three groups (Figure 50A). The number of 

peptides common to all three groups was 6,949, and this corresponded to 8,348 unique 

spectra that were common to all three groups (Figure 50B and 50C). The total number of 

unique spectra identified in the control, FA-treated and inhibitor-treated groups was 10,681; 

10,514 and 10,621, respectively. The average number of spectra identified for a replicate in 

the control group was 6,821 and the number was 6,914 and 6,717 for the FA-treated and 

inhibitor-treated groups, respectively. The difference between the average number of total 

Control                

Control                
Control                FA-treated                

FA-treated                FA-treated                

Inhibitor-treated                Inhibitor-treated                Inhibitor-treated                

A) B) C) 

Figure 50: Identifications of proteins, peptides and MS/MS spectra in different treatment groups in Scaffold. 
A) Proteins identified in each treatment group. B) Total unique peptide counts for all proteins in the dataset. 
C) The total number of unique spectra detected for all the peptides in the dataset. 
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spectra identified for individual replicates and that identified for the group as a whole 

suggested that each individual replicate contained several spectra that were unique to it and 

may not have been present in the other biological replicates of the same treatment group. It 

was inferred, therefore, that spectral counts assigned to a protein did not just vary among 

the three treatment groups but also varied among the four biological replicates within a 

group. Further, the identification of a protein may be based on the peptides exclusive to a 

given replicate or a group and not found in other groups or even other replicates within the 

same group. While the difference in the spectral counts of a protein among the groups is the 

basis of label-free quantification using spectral counts, the variance among the biological 

replicates was the likely cause of the lack of significance of the data.  

The variance observed in the data was attributed to biological variance between the 

biological replicates and technical variance between the four LC-MS/MS runs in each 

biological replicate. The difference among the biological replicates was assessed by 

comparing the list of proteins identified in each biological replicate to the protein lists of the 

other three replicates within the same group. To this end, a consensus protein list was 

created for each biological replicate. The proteins identified in this list were identified based 

on the collated information from all four LC-MS/MS runs performed for a given biological 

replicate and thus represents a consensus list of proteins for the biological replicate 

irrespective of the technical variance among the different  LC-MS/MS runs. (Table 21 of 

Appendix). 

A comparison of the collated protein lists showed that at least 80 % of the proteins identified 

in a replicate were present in the other three biological replicates of the same treated group 

(Figure 51). Of the remaining proteins, about 10 % were present in three of the four 

replicates of the control group and about 8.4 % and 8.3 %  were present in three of the four 

replicates of the FA-treated and inhibitor-treated groups, respectively. The CV for the QV 

assigned to a protein within a group was then calculated in order to better understand the 

cumulative effect of technical and biological variance. CV is defined as the ratio of the 

standard deviation within a group to the mean value of the group and provides a measure of 

how dispersed the data are. The control group had 174 proteins with CV ≤ 10 %; the FA-

treated group and the inhibitor-treated group had 116 and 167 such proteins, respectively 

(Figure 52). This represents about 10 % of the proteins identified within a group. Of the 

proteins with CV ≤ 10 %, only 12 proteins fulfilled the criterion of CV ≤ 10 % in all three 

groups (Table 8 and 9).   
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Figure 52: Distribution of proteins with respect to the co-efficient of variance for LC3. The CV of a protein for 
the four biological replicates of a group was calculated.  The number of proteins that lie within a range of CV are 
indicated. 

Figure 51: Comparison of proteins identified in the biological replicates of dataset LC3. A) Replicates of 
control (C); B) Replicates of FA-treated (FA) and C) Replicates of inhibitor -treated (IN). 
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Table 8: Proteins with co-efficient of variance ≤ 10 % in dataset LC3. The proteins listed in this table are those that met the criteria of having a CV ≤ 10 %. The fold change is 
the ratio of the mean QVs of the three groups taken two at a time. For example, ‘F: C’ is the ratio of mean QV in FA-treated (F) group to mean QV in control (C) group. The 
inhibitor-treated group is represented by ‘I’. P values were calculated using a Student's t-test. Please refer to Appendix file LC3_Unpooled data.xlsx for QV and exclusive 
unique peptides of the proteins in this table. 

 

 

 

 

 

 

 

 

Protein Name Gene name 
Fold change p value (t-test) 

Co-efficient of 
variance (%) 

F:C I:F I:C F:C I:F I:C C F I 

14-3-3 protein gamma YWHAG 1 1 1 0.62 0.62 0.87 8 10 4 

Alpha-actinin-4 ACTN4 1 1 1.1 0.87 0.49 0.14 4 8 5 

Heat shock 70 kDa protein 1A/1B HSPA1A 0.9 1.1 1 0.063 0.046 0.9 7 10 2 

Heat shock protein HSP 90-beta HSP90AB1 0.9 1.1 1 0.28 0.17 0.55 8 10 4 

HLA class I histocompatibility antigen, A-2 alpha chain HLA-A 1 1.1 1.1 0.88 0.07 0.002 6 9 8 

Isoform 2 of Eukaryotic translation initiation factor 3 subunit B EIF3B 0.9 1.1 1.1 0.34 0.12 0.45 9 5 9 

Isoform 4 of Protein disulfide-isomerase A6 PDIA6 0.9 1.1 1 0.15 0.13 0.7 9 10 9 

Multifunctional protein ADE2 PAICS 1.3 1 1.4 0.0011 0.65 0.0008 10 5 10 

Nicotinate-nucleotide pyrophosphorylase [carboxylating] QPRT 0.77 1.1 0.9 0.007 0.022 0.05 10 9 2 

Protein disulfide-isomerase A4 PDIA4 0.77 1.1 1 0.021 0.024 0.48 10 5 6 

Ras-related protein Rab-10 RAB10 0.9 1.1 1 0.27 0.29 0.61 6 8 10 

Transitional endoplasmic reticulum ATPase VCP 0.77 1.2 1 0.013 0.023 0.84 3 10 3 
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Table 9: QV and exclusive peptide counts for proteins with co-efficient of variance ≤ 10 % in dataset LC3. The proteins listed in this table are those that met the criteria of having a CV ≤ 10 % 
in all three groups. The values listed are QV and exclusive peptide counts for each replicate of the control (C), FA-treated (F) and inhibitor-treated (I) groups.  

Protein Name 
Quantitative value Exclusive peptide count 

C1 C2 C4 C3 F1 F2 F3 F4 I1 I2 I3 I4 C1 C2 C4 C3 F1 F2 F3 F4 I1 I2 I3 I4 
14-3-3 protein gamma 48.3 41.4 49.3 45.5 35.7 47.1 45.6 47.5 47.1 50.0 45.6 43.2 6 5 7 6 5 5 4 5 8 6 6 5 

Alpha-actinin-4 124.2 141.6 138.8 133.9 117.1 145.8 130.5 140.3 142.4 138.0 147.7 140.1 33 34 38 37 38 37 32 38 35 35 38 37 

Eukaryotic translation 
initiation factor 3 subunit 

B 
23.2 28.3 30.5 27.8 23.0 27.7 25.8 25.3 25.9 29.5 30.3 30.0 8 8 8 7 8 6 6 6 8 7 6 7 

Heat shock 70 kDa protein 
1A/1B 

123.5 131.7 120.6 135.9 93.9 113.3 107.5 126.4 131.3 132.5 125.6 120.0 23 23 22 23 21 21 21 26 24 23 23 23 

Heat shock protein HSP 
90-beta 

314.4 289.3 284.9 314.5 241.2 287.4 265.1 311.7 311.6 297.0 320.4 298.6 45 48 45 47 47 47 43 46 50 49 49 47 

HLA class I 
histocompatibility antigen, 

A-2 alpha chain 
29.2 28.4 26.9 28.1 22.1 27.8 30.9 29.4 30.6 32.5 32.5 33.8 8 7 7 8 7 7 7 7 7 8 7 9 

Multifunctional protein 
ADE2 

45.5 39.2 39.5 39.8 48.7 58.3 56.9 53.3 51.5 56.9 61.1 60.3 9 11 10 10 12 12 10 12 12 12 12 11 

Nicotinate-nucleotide 
pyrophosphorylase 

36.8 32.8 32.0 30.1 21.0 27.6 24.9 25.5 30.1 30.1 29.1 26.8 8 7 5 8 7 7 6 7 6 8 6 8 

Protein disulfide-
isomerase A4 

358.3 334.4 351.1 335.6 210.1 309.9 289.6 253.2 342.3 304.5 303.0 284.2 37 28 32 37 29 33 27 30 33 31 30 34 

Protein disulfide-
isomerase A6 

117.1 112.6 114.2 132.9 88.1 102.9 126.3 104.1 116.2 117.2 135.8 118.3 18 18 18 18 19 18 17 19 18 18 18 19 

Ras-related protein Rab-10 15.6 16.3 16.4 17.8 12.9 14.9 16.5 16.9 16.0 19.5 17.3 15.5 1 1 1 1 1 1 1 1 1 2 1 1 

Transitional endoplasmic 
reticulum ATPase 

152.8 165.9 173.3 157.0 109.7 140.5 141.8 150.6 170.7 159.2 164.2 149.4 32 30 37 33 29 34 29 33 33 31 31 32 
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The aim of this project was to identify proteomic changes associated with lipid accumulation 

in HepG2 cells and the possible ameliorative effects of the DGAT inhibitor PF04 on the 

process. The magnitude of the fold changes observed in this dataset were not statistically 

significant. Given the experimental design, the variance observed within each group is likely 

to have a considerable impact on the statistical significance assigned to any change in 

protein abundance. The four biological replicates representing a treatment group were 

therefore pooled into one sample in an effort to normalize the variance within a group. 

Dataset LC4 was generated from the pooled samples of biological replicates as described in 

the next section.  

5.2.2. Dataset LC4  

5.2.2.1. Protein identification 

Dataset LC4 was generated from the same biological replicates as dataset LC3, with the 

difference between the two datasets being that the four biological replicates representing a 

group were pooled after cell lysis. Each pooled sample was analysed using five LC-MS/MS 

runs. The total number of proteins identified for the three treatment groups using input 

from all five runs was 970, 1,008 and 1,034 for control, FA-treated and inhibitor-treated 

samples, respectively (Table 21 in appendix). About 74 % of the proteins identified in this 

dataset were present in all three samples (Figure 53A). Analysis of individual technical 

replicates showed that the average number of proteins identified in the technical replicates 

was 763, 827 and 836 for control, FA-treated and inhibitor-treated samples, respectively 

(Figure 53B). These proteins were identified in PD with high confidence (FDR < 0.01) and 

with at least 2 peptides per protein. The average number of peptides identified in a technical 

replicate for control, FA-treated and inhibitor-treated groups was 5,805, 6,271 and 6,461, 

respectively. These identifications were based on an average of 16,462, 17,389 and 18,184 

Figure 53: Protein identification for dataset LC4 in Proteome Discoverer. A) Comparison of proteins identified in 
dataset LC4. B) Average number of proteins identified for the technical replicates for the groups indicated. C) 
Average number of spectra, peptide-spectra matches (PSMs) and peptides detected for each group in PD.  
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peptide-spectra matches determined for the 21,976, 22,436 and 22,684 input spectra 

detected for control, FA-treated and inhibitor-treated groups, respectively (Figure 53C).  

5.2.2.2. Label-free quantification using spectral counts 

The files generated in PD for this dataset were organized in Scaffold as they were for dataset 

LC1 - five LC-MS/MS runs represented one pooled sample and each group was represented 

by one pooled sample. The number of proteins identified in Scaffold for this dataset was 928 

(Table 21 in Appendix). No decoys were identified in the list. Peptide identifications were 

accepted if they could be established at greater than 99.0 % probability by the Peptide 

Prophet algorithm, and protein identifications were accepted if they could be established at 

greater than 99.9 % probability and contained at least 2 identified peptides. About 17 % of 

the detected spectra in each group could be assigned exclusively to a single peptide. Of the 

928 proteins identified in Scaffold, 904 proteins were found in all three groups and 20 

proteins were identified in at least two of the three groups (Figure 54A). The number of 

peptides common to all three groups was 4,839 and this corresponded to 5,399 unique 

spectra that were common to all three groups (Figure 54B and 54C). Since the dataset 

contains one pooled sample per treatment group, the QVs of the groups were compared 

using Fisher’s exact test with multiple testing correction by Hochberg-Benjamini method. 

This test required a comparison of two groups at a time and so three comparisons were 

made – FA-treated vs. control; inhibitor-treated vs. FA-treated and inhibitor-treated vs. 

control. At a significance level of 95 %, 28 proteins showed statistically significant changes 

with p ≤ 1.56 x 10-3 for the comparison between control and FA-treated groups, only 1 

protein with p ≤ 1.1 x 10-4 was considered significant for the comparison between the FA-

treated and the inhibitor-treated sample. For a comparison of control and inhibitor-treated 

groups, five proteins with p ≤ 3.2 x 10-4 were considered statistically significant (Table 10)

Figure 54: Identifications of proteins, peptides and MS/MS spectra in different treatment groups in Scaffold. 
A) Proteins identified in each treatment group. B) Total unique peptide counts for all proteins in the dataset. C) 
The total number of unique spectra detected for all the peptides in the dataset. 
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Table 10: Proteins with significant changes in abundance in dataset LC4. The table lists proteins with statistically significant changes in abundance as determined by 
Fisher’s exact test. Two groups were compared at a time. The ‘fold change’ represents the ratio of the QV as stated in the column head; for example, ‘F: C’ is the ratio of QV 
in FA-treated group (F) to that in Control group (C). The inhibitor-treated group is represented by ‘I’. ‘Exclusive unique peptides’ indicates the number of peptides that are 
unique and exclusive to the indicated protein. CV attributed to a protein reflects the technical variance among the LC-MS/MS runs representing each group. 

Protein name 
Gene 
name 

Fold change P value CV (%) QV 
Peptide 
count 

F:C I:F I:C F:C I:F I:C C F I C F I C F I 

Proteins significantly changed in FA-treated/Control 

U5 small nuclear ribonucleoprotein 
200 kDa helicase 

SNRNP200 4.2 0.50 2.2 0.00012 0.02 0.056 22 50 25 7.34 30.90 16.15 3 9 5 

Splicing factor 3B subunit 3 SF3B3 9.2 0.40 3.6 0.00018 0.02 0.076 11 25 32 2.09 19.24 7.55 1 4 3 

Clathrin heavy chain 1 CLTC 1.6 0.91 1.5 0.00026 0.23 0.0033 28 14 16 80.80 132.44 120.03 20 26 29 

Isoform 2 of Reticulocalbin-2 RCN2 0.10 3 0.40 0.00026 0.085 0.023 26 64 26 19.71 2.85 8.59 5 1 2 

60 kDa heat shock protein, 
mitochondrial 

HSPD1 0.77 1.1 1 0.00033 0.0048 0.19 10 8 7 837.77 702.31 799.34 49 49 46 

ATP-dependent RNA helicase A DHX9 2.4 0.40 0.91 0.00038 0.00013 0.49 23 60 38 21.21 50.96 19.94 6 14 7 

Cell division control protein 42 
homolog 

CDC42 4.5 0.30 1.4 0.00048 0.0024 0.36 5 6 59 5.32 23.88 7.70 1 2 2 

Valine--tRNA ligase VARS 4.5 0.71 3.2 0.00048 0.18 0.011 ND 18 31 5.33 24.16 17.09 2 7 5 

Fatty acid synthase FASN 1.3 0.91 1.1 0.0005 0.019 0.11 35 13 6 333.19 423.77 366.34 67 82 73 

Nuclease-sensitive element-binding 
protein 1 

YBX1 0.30 2.1 0.71 0.00062 0.024 0.12 140 54 17 34.62 11.98 24.90 9 4 5 

Leucine-rich PPR motif-containing 
protein, mitochondrial 

LRPPRC 1.4 0.77 1.2 0.00065 0.04 0.069 25 13 7 159.23 222.69 187.18 37 49 45 

ATP-dependent 6-
phosphofructokinase, liver type 

PFKL 11 0.59 6.3 0.00072 0.12 0.028 42 
15
0 

70 1.22 13.83 7.66 1 6 3 

Multifunctional protein ADE2 PAICS 2 0.71 1.4 0.0008 0.042 0.08 8 8 12 34.02 66.98 47.69 6 10 8 

Bifunctional ATP-dependent 
dihydroxyacetone kinase/FAD-AMP 

lyase (cyclizing) 
DAK 2 0.71 1.3 0.00095 0.018 0.16 17 8 15 30.62 61.46 40.05 6 15 11 

ATP synthase subunit beta ATP5B 0.77 1.1 0.77 0.0011 0.24 0.0091 9 31 5 278.73 210.57 225.23 25 25 24 

DnaJ homolog subfamily B member 
11 

DNAJB11 0.08 11 0.77 0.0012 0.004 0.4 68 31 36 12.51 0.94 10.38 4 1 3 

Glycine--tRNA ligase GARS 2.3 0.59 1.4 0.0012 0.027 0.14 8 7 33 20.21 45.69 28.44 5 10 7 
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Table 10 continued… 

Protein name 
Gene 
name 

Fold change  P value  CV (%) QV 
Peptide 
count 

F:C I:F I:C F:C I:F I:C C F I C F I C F I 

Cullin-associated NEDD8-dissociated 
protein 1 

CAND1 
13 0.50 6.5 

0.0013 0.11 0.048 21 6 80 1.01 13.01 6.57 1 3 2 

Glutamine--fructose-6-phosphate 
aminotransferase [isomerizing] 1 

GFPT1 
2.9 0.59 1.6 

0.0014 0.03 0.15 220 26 18 10.86 30.99 17.19 5 7 4 

Citrate synthase, mitochondrial CS 2.5 0.71 1.8 < 0.0001 0.053 0.015 24 24 28 23.22 58.64 41.92 6 11 10 

Isoform 3 of Calumenin CALU 0.20 2.2 0.50 < 0.0001 0.014 0.0088 220 53 22 45.66 10.97 24.61 8 4 6 

Bifunctional glutamate/proline--tRNA 
ligase 

EPRS 
4.1 0.59 2.6 

< 0.0001 0.05 0.017 12 7 26 8.19 33.32 20.98 3 12 7 

Protein disulfide-isomerase A3 PDIA3 0.71 1.3 0.91 < 0.0001 0.0018 0.043 23 23 5 322.57 215.24 279.53 34 32 36 

Proteins significantly changed  in both FA-treated/control and Inhibitor-treated/Control 

Polyadenylate-binding protein 4 PABPC4 8.1 1.1 8.7 < 0.0001 0.41 < 0.0001 220 52 23 4.89 39.44 42.73 1 2 2 

78 kDa glucose-regulated protein HSPA5 0.71 1.1 0.77 < 0.0001 0.28 0.00022 34 
22
0 

10 393.96 287.60 303.06 41 39 40 

ADP-ribosylation factor 1 ARF1 13.0 1.5 20.0 0.0013 0.14 < 0.0001 43 24 NA 1.00 13.07 20.04 1 5 6 

Coatomer subunit alpha COPA 4.7 0.77 4.0 < 0.0001 0.25 < 0.0001 24 17 11 8.62 40.50 34.23 2 8 6 

Proteins significantly changed proteins  in Inhibitor-treated/Control 

Perilipin-2 PLIN2 INF 2.7 INF 0.036 0.04 0.00013 ND 68 27 0 4.93 13.23 0 2 4 

Protein significantly changed  in Inhibitor-treated/FA-treated group 

Ras-related protein Rab-6A RAB6A INF 0.0 INF < 0.0001 < 0.0001 1 55 28 ND 0.00 18.82 0.00 0 2 0 
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5.2.2.3. Variance associated with data generated from the pooled group of LC4 

The protein list generated in PD for each LC-MS/MS run was compared to the other lists for 

the same pooled sample (Figure 55). The five LC-MS/MS runs of the control sample had 613 

identified proteins common among them. This number represents an average of 80 % of the 

proteins identified in five technical replicates of the control sample. Similarly, the technical 

replicates of the 673 and 697 proteins were identified in all technical replicates of the FA-

treated and inhibitor-treated samples respectively (Table 21 in Appendix). This represented 

82 % and 83 % of proteins in the individual protein lists. Variance in the spectral counts 

assigned to a protein were assessed in Scaffold by loading the technical replicates as 

biosamples to calculate the CV.  

Of the 782 proteins identified for the control group in Scaffold, only 71 proteins showed a CV 

≤ 10 %. The number of proteins identified in Scaffold for FA-treated and inhibitor-treated 

groups was 828 and 847, respectively and of these, 97 and 110 proteins showed a CV ≤ 10 % 

A) Control 

C) Inhibitor-treated 

Control 

B) FA-treated 

Figure 55: Comparison of proteins identified in each LC-MS/MS run within a group analysed for dataset LC4. The list of 
proteins identified in PD for each LC-MS/MS run was compared using the Venn diagram tool provided by Bioinformatics & 
Evolutionary Genomics (http://bioinformatics.psb.ugent.be/webtools/Venn) 
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for the two groups. Most proteins had a CV of more than 10 % (Figure 56). Since the QV 

assigned to a protein depends on the cumulative data of all five technical replicates, the 

variance among the technical replicates could have skewed the total spectral count assigned 

to the protein. This in turn would affect the statistical value assigned to the fold changes of a 

given protein. Therefore, in addition to the proteins that showed statistically significant 

changes in QV, all proteins that showed a change in QV with p ≤ 0.05 before multiple test 

corrections were put through a functional analysis. References made hereafter to ‘identified 

proteins’ refers to this sub-set of proteins in dataset LC4.  

  

5.2.3. Functional analysis of proteins identified in dataset LC4. 

The biological relevance of the identified proteins was evaluated through enrichment 

analysis of protein in GO groups and KEGG pathway databases using the tools hosted by 

WebGestalt [243]. Of the 928 proteins analysed in dataset LC4, 216 proteins showed a 

change in abundance with a p ≤ 0.05 and fold change ≥ 1.3 in at least one comparison (Table 

11). These proteins were mapped to their corresponding SwissProt identifiers and uploaded 

onto WebGestalt to generate the results of the functional analysis described in this section 

(Table 21 in Appendix). 
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Figure 56: Distribution of proteins with respect to the co-efficient of variance for LC4. The CV of a protein 
for the five technical replicates of a pooled group was calculated, and the numbers of proteins that lie 
within a range of CVs is indicated. 
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Table 11: Proteins of dataset LC4 used for functional analysis. Proteins that showed a fold change more than or equal to 1.3 in at least one comparison with p ≤ 0.05 were 

selected for functional analysis. The treatment groups are indicated as ‘C’ for control, ‘F’ for FA-treated and ‘I’ for inhibitor-treated. The fold change indicated is the ratio of 
the QV for the protein in the comparison as indicated. For example, ‘F:C’ is a ratio of QV of the FA-treated to the control. ‘INF’ indicates absence of protein in the control 
sample resulting in the denominator of FC being zero and the ratio being infinite. 

Protein name 
Gene 
name 

Fold change P value QV Peptide 

F:C I:F I:C F:C I:F I:C C F I C F I 

Isoform 2 of Alanine--tRNA ligase, cytoplasmic AARS 2.9 0.77 2.4 0.0023 0.28 0.015 9.6 27.8 22.8 4 9 7 

Isoform 2 of ATP-binding cassette sub-family F member 1 ABCF1 7.7 1 7.5 0.024 0.56 0.028 1.0 7.8 7.6 1 4 3 

3-ketoacyl-CoA thiolase, peroxisomal ACAA1 7.9 0.91 7.5 0.024 0.56 0.028 1.0 8.0 7.6 1 4 2 

Isoform 2 of Very long-chain specific acyl-CoA 
dehydrogenase, mitochondrial 

ACADVL 2.1 0.77 1.7 0.037 0.27 0.15 10.3 21.8 17.1 3 6 4 

ATP-citrate synthase ACLY 1.7 0.77 1.3 0.0037 0.12 0.073 46.9 77.4 63.0 10 18 15 

Isoform Short of Long-chain-fatty-acid--CoA ligase 4 ACSL4 1.9 0.71 1.2 0.017 0.072 0.29 19.2 35.9 23.7 4 6 6 

Isoform 2 of Long-chain-fatty-acid--CoA ligase 5 ACSL5 1.7 0.50 0.77 0.093 0.021 0.32 13.7 22.9 10.5 5 7 5 

Acyl-CoA synthetase short-chain family member 3, 
mitochondrial 

ACSS3 3.7 0.50 1.8 0.0032 0.038 0.2 5.3 19.9 9.4 3 6 5 

Actin-related protein 2 ACTR2 2.9 0.71 1.9 0.011 0.16 0.13 6.5 19.0 12.4 2 4 3 

Angiotensinogen AGT 0.50 3 1.5 0.044 0.0013 0.14 18.9 9.0 27.5 6 4 7 

Alpha-2-HS-glycoprotein AHSG 0.40 2.7 1.1 0.017 0.0039 0.37 23.8 9.8 26.7 6 5 7 

Serum albumin ALB 0.77 1 0.77 0.0095 0.41 0.018 281.3 227.2 232.8 38 38 40 

Aldehyde dehydrogenase, mitochondrial ALDH2 1.1 0.77 0.77 0.27 0.043 0.16 80.3 89.9 67.6 15 15 15 

Isoform 2 of Fatty aldehyde dehydrogenase ALDH3A2 5.4 0.50 2.5 0.0088 0.1 0.18 2.2 12.1 5.6 2 3 2 

Protein AMBP AMBP 0.50 1.9 0.91 0.017 0.037 0.4 27.2 12.8 24.7 6 3 5 

Isoform B of AP-2 complex subunit alpha-1 AP2A1 INF 0.30 INF 0.005 0.099 0.15 0.0 8.1 2.8 0 2 1 

Isoform 2 of AP-2 complex subunit beta AP2B1 1.9 1.9 3.6 0.22 0.093 0.011 4.3 8.1 15.3 2 3 2 

Apolipoprotein B-100 APOB INF 6 INF 0.52 0.07 0.021 0.0 0.9 5.7 0 1 2 

Apolipoprotein E APOE 0.59 1.6 1 0.017 0.014 0.53 55.6 33.5 55.3 10 10 10 

Beta-2-glycoprotein 1 APOH 0.50 2 0.91 0.0034 0.0081 0.4 42.2 19.8 38.9 8 6 7 

ADP-ribosylation factor 1 ARF1 13 1.5 20 0.0013 0.14 < 0.0001 1.0 13.1 20.0 1 5 7 

ADP-ribosylation factor 4 ARF4 2.6 0.91 2.4 0.014 0.44 0.028 7.6 19.9 18.0 3 3 3 

ATP synthase subunit alpha, mitochondrial ATP5A1 0.91 0.91 0.77 0.1 0.19 0.014 172.0 147.7 132.2 28 25 25 

ATP synthase subunit beta, mitochondrial ATP5B 0.77 1.1 0.77 0.0011 0.24 0.0091 278.7 210.6 225.2 25 25 24 

Isoform 3 of Calcyclin-binding protein CACYBP INF INF INF 1 0.018 0.021 0.0 0.0 5.7 0 0 3 

Calreticulin CALR 0.77 1 0.77 0.01 0.36 0.003 249.3 199.1 191.1 19 21 21 

Isoform 3 of Calumenin CALU 0.20 2.2 0.50 < 0.0001 0.014 0.0088 45.7 11.0 24.6 8 4 6 

Cullin-associated NEDD8-dissociated protein 1 CAND1 13 0.50 6.5 0.0013 0.11 0.048 1.0 13.0 6.6 1 3 2 
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Table 11 continued… 

Protein name 
Gene 
name 

Fold change P value QV Peptide 

F:C I:F I:C F:C I:F I:C C F I C F I 

Isoform 2 of Calnexin CANX 1.5 0.77 1.2 0.0069 0.055 0.2 62.3 94.7 73.2 11 14 12 

Isoform 2 of Cell cycle and apoptosis regulator protein 2 CCAR2 2 0.50 1.1 0.013 0.018 0.49 16.8 34.0 18.1 4 9 6 

Cell division control protein 42 homolog CDC42 4.5 0.30 1.4 0.00048 0.0024 0.36 5.3 23.9 7.7 1 2 2 

Cocaine esterase CES2 6.7 0.91 6.3 0.003 0.53 0.0039 2.1 14.0 13.1 2 4 3 

Clathrin heavy chain 1 CLTC 1.6 0.91 1.5 0.00026 0.23 0.0033 80.8 132.4 120 20 26 29 

Clustered mitochondria protein homolog CLUH INF 0.20 INF 0.036 0.099 0.53 0.0 5.0 0.9 0 2 1 

Catechol O-methyltransferase COMT 0.91 1.60 1.4 0.42 0.049 0.1 24.4 22.0 35.1 7 6 8 

Coatomer subunit alpha COPA 4.7 0.77 4.00 < 0.0001 0.25 < 0.0001 8.6 40.5 34.2 2 8 6 

Coatomer subunit gamma-1 COPG1 2.4 0.91 2.2 0.0019 0.42 0.0045 16.8 39.9 37.0 8 11 10 

Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial CPOX 0.09 7.20 0.71 0.0023 0.023 0.24 11.7 1.1 7.6 5 1 4 

Serine/threonine-protein phosphatase CPPED1 CPPED1 0.40 1.2 0.50 0.05 0.44 0.1 15.9 6.9 8.5 3 2 3 

Citrate synthase, mitochondrial CS 2.50 0.71 1.8 < 0.0001 0.053 0.015 23.2 58.6 41.9 6 11 10 

Isoform 4 of Exportin-2 CSE1L 1.90 0.77 1.50 0.04 0.23 0.19 13.7 25.9 20.0 3 6 5 

Casein kinase II subunit alpha CSNK2A1 2.8 0.91 2.60 0.042 0.53 0.052 5.1 14.0 13.2 3 4 4 

Cystatin-B CSTB 0.20 5.30 1.3 0.045 0.014 0.41 8.4 2.0 10.5 2 1 2 

Catenin beta-1 CTNNB1 2.30 0.77 1.80 0.002 0.22 0.02 19.2 43.2 35.2 4 9 8 

Dipeptidyl peptidase 1 CTSC 0.40 2.70 1.1 0.085 0.04 0.45 11.7 5.0 13.4 3 1 3 

Cathepsin D CTSD 0.71 1.2 0.77 0.043 0.27 0.15 60.1 41.0 47.6 10 10 11 

Isoform A of Protein CutA CUTA 0.50 1.6 0.77 0.042 0.13 0.31 23.4 12.0 19.0 3 2 3 

Isoform 2 of NADH-cytochrome b5 reductase 3 CYB5R3 1.90 1 1.9 0.017 0.53 0.015 18.8 35.6 36.0 4 5 5 

Triokinase/FMN cyclase DAK 2.00 0.71 1.30 0.00095 0.018 0.16 30.6 61.5 40.0 6 15 11 

Isoform 5 of Acyl-CoA-binding protein DBI 0.20 3.4 0.77 0.045 0.1 0.42 8.3 1.9 6.6 3 2 4 

ATP-dependent RNA helicase DDX42 DDX42 INF 0.59 INF 0.019 0.35 0.077 0.0 6.0 3.9 0 1 2 

ATP-dependent RNA helicase A DHX9 2.40 0.40 0.91 0.00038 0.00013 0.49 21.2 51.0 19.9 6 14 7 

Dihydrolipoyl dehydrogenase, mitochondrial DLD 0.59 0.91 0.59 0.023 0.38 0.0071 55.0 34.8 31.5 12 7 8 

DnaJ homolog subfamily B member 11 DNAJB11 0.08 11 0.77 0.0012 0.004 0.4 12.5 0.9 10.4 4 1 3 

Isoform 2 of Dihydropyrimidinase-related protein 2 DPYSL2 1.10 1.6 1.70 0.45 0.014 0.0081 31.9 33.7 55.1 9 8 13 

Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial DUT 0.30 2.2 0.77 0.023 0.086 0.32 14.9 5.1 11.4 4 2 3 

116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 2.5 0.50 1.4 0.002 0.019 0.23 13.7 34.8 19.0 4 7 4 

Eukaryotic translation initiation factor 2 subunit 3 EIF2S3 INF 1.20 INF 0.036 0.53 0.021 0.0 4.9 5.7 0 2 2 

Eukaryotic translation initiation factor 3 subunit A EIF3A 2.5 0.77 2 0.011 0.27 0.056 9.6 24.0 19.0 5 9 7 
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Table 11 continued… 

Protein name 
Gene 
name 

Fold change P value QV Peptide 

F:C I:F I:C F:C I:F I:C C F I C F I 

Eukaryotic translation initiation factor 3 subunit I EIF3I 0.71 2.20 1.6 0.36 0.034 0.11 11.2 8.1 18.2 5 3 7 

Eukaryotic initiation factor 4A-III EIF4A3 3.8 0.91 3.4 0.023 0.46 0.044 3.0 11.6 10.3 0 2 1 

Eukaryotic translation initiation factor 4 gamma 1 EIF4G1 2 0.71 1.3 0.042 0.13 0.31 11.6 23.0 15.3 3 8 4 

Echinoderm microtubule-associated protein-like 4 EML4 2 0.50 0.91 0.013 0.0044 0.44 18.9 37.2 17.2 5 11 6 

Bifunctional glutamate/proline--tRNA ligase EPRS 4.1 0.59 2.6 < 0.0001 0.05 0.017 8.2 33.3 21.0 3 12 7 

Protein FAM3C FAM3C INF 0.20 INF 0.036 0.099 0.53 0.0 4.9 0.9 0 2 1 

Phenylalanine--tRNA ligase beta subunit FARSB 8.8 0.50 4.70 0.014 0.19 0.14 1.0 8.9 4.7 1 3 2 

Fatty acid synthase FASN 1.3 0.91 1.1 0.0005 0.019 0.11 333.2 423.8 366.3 67 82 73 

Squalene synthase FDFT1 2.30 0.59 1.40 0.011 0.089 0.2 11.9 27.0 17.1 4 7 6 

Peptidyl-prolyl cis-trans isomerase FKBP1A FKBP1A 0.40 3 1.10 0.056 0.017 0.39 13.2 5.0 15.2 5 1 4 

Filamin-A FLNA 1.20 1.00 1.3 0.036 0.5 0.03 119.6 149.4 150.3 29 36 33 

Isoform 15 of Fibronectin FN1 0.59 1.80 1.10 0.013 0.00084 0.23 69.5 43.8 79.0 15 12 18 

Formimidoyltransferase-cyclodeaminase FTCD INF 0.59 INF 0.0026 0.27 0.021 0.0 9.0 5.8 0 4 2 

Isoform 3 of Glucose-6-phosphate 1-dehydrogenase G6PD 9.00 0.50 4.7 0.0043 0.14 0.082 1.2 11.0 5.7 1 6 3 

Lysosomal alpha-glucosidase GAA 0.50 1.90 0.91 0.003 0.013 0.32 41.6 18.8 36.2 9 5 8 

Glycine--tRNA ligase GARS 2.30 0.59 1.4 0.0012 0.027 0.14 20.2 45.7 28.4 5 10 7 

Trifunctional purine biosynthetic protein adenosine-3 GART 2.30 0.59 1.30 0.044 0.1 0.4 7.4 16.7 9.5 4 6 4 

Translational activator GCN1 GCN1L1 11.00 0.30 3.70 0.0043 0.049 0.22 1.0 11.1 3.7 1 4 2 

Glutamine--fructose-6-phosphate aminotransferase 1 GFPT1 2.90 0.59 1.6 0.0014 0.03 0.15 10.9 31.0 17.2 5 7 4 

Isoform 2 of Golgi apparatus protein 1 GLG1 1.40 2.30 3.20 0.35 0.029 0.0066 6.4 8.9 20.2 3 3 6 

Glutaredoxin-related protein 5, mitochondrial GLRX5 0.10 1.8 0.20 0.016 0.52 0.038 8.7 1.1 1.9 2 1 1 

Isoform 3 of Glypican-3 GPC3 2.9 1.00 2.9 0.028 0.55 0.024 5.2 15.1 15.2 3 4 5 

GrpE protein homolog 1, mitochondrial GRPEL1 0.30 2.40 0.71 0.0057 0.059 0.2 17.6 5.1 12.5 6 3 5 

Isoform 2 of General transcription factor II-I GTF2I 4.80 1.90 9.20 0.12 0.17 0.0094 1.0 4.8 9.3 1 3 7 

Histone H1.0 H1F0 2.00 0.10 0.30 0.11 0.0028 0.11 6.4 13.0 1.9 2 3 1 

Isoform 4 of Histidine--tRNA ligase, cytoplasmic HARS INF 1.4 INF 0.07 0.41 0.021 0.0 4.0 5.7 0 2 1 

Beta-hexosaminidase subunit beta HEXB INF 2.3 INF 0.14 0.19 0.011 0.0 3.0 6.7 0 1 2 

Histidine triad nucleotide-binding protein 2, mitochondrial HINT2 0.10 1.80 0.20 0.016 0.52 0.038 8.3 1.0 1.9 2 1 2 

Histone H1.4 HIST1H1E 1 0.59 0.59 0.52 0.049 0.043 28.9 28.2 16.1 6 6 4 

Histone H2B type 1-N HIST1H2BN 0.50 0.77 0.40 0.013 0.31 0.0019 34.1 16.9 13.4 2 2 2 

Heterogeneous nuclear ribonucleoproteins C1/C2 HNRNPC 1.5 0.77 1.1 0.025 0.071 0.33 41.9 63.5 47.7 8 10 7 

Heterogeneous nuclear ribonucleoprotein H2 HNRNPH2 1.7 1.2 2 0.048 0.35 0.014 13.8 24.1 27.8 1 2 3 
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Table 11 continued… 

Protein name 
Gene 
name 

Fold change P value QV Peptide 

F:C I:F I:C F:C I:F I:C C F I C F I 

Endoplasmin HSP90B1 0.77 1.00 0.77 0.0055 0.44 0.0088 320.3 256.6 261.8 43 39 38 

Heat shock 70 kDa protein 1A/1B HSPA1A 0.77 1.10 0.77 0.017 0.24 0.082 164.8 127.9 139.9 25 22 26 

78 kDa glucose-regulated protein HSPA5 0.71 1.10 0.77 < 0.0001 0.28 0.00022 394.0 287.6 303.1 41 39 40 

Heat shock protein beta-1 HSPB1 0.30 4.90 1.50 0.0093 0.00016 0.15 16.9 5.0 24.5 4 3 4 

60 kDa heat shock protein, mitochondrial HSPD1 0.77 1.10 1 0.00033 0.0048 0.19 837.8 702.3 799.3 49 49 46 

10 kDa heat shock protein, mitochondrial HSPE1 0.71 1.00 0.71 0.02 0.51 0.022 93.6 67.0 67.5 10 10 9 

Isoform Beta of Heat shock protein 105 kDa HSPH1 1.4 0.59 0.77 0.096 0.022 0.3 25.8 37.1 20.9 6 9 5 

Isoform 3 of Importin-5 IPO5 INF 1.00 INF 0.0096 0.57 0.011 0.0 7.0 6.7 0 2 3 

Isoform Mitochondrial of Lysine--tRNA ligase KARS 2.20 1.20 2.60 0.037 0.38 0.012 8.4 18.8 21.9 3 4 4 

Importin subunit alpha-1 KPNA2 2.70 1 2.60 0.042 0.53 0.052 5.2 14.0 13.4 2 4 4 

Keratin, type I cytoskeletal 19 KRT19 1.20 0.77 0.91 0.11 0.05 0.39 71.1 87.6 66.7 12 11 14 

Cytosol aminopeptidase LAP3 0.59 1.50 0.91 0.031 0.086 0.33 34.6 20.0 30.5 8 7 11 

Isoform 3 of L-lactate dehydrogenase A chain LDHA 1.4 0.77 1.10 0.032 0.077 0.35 72.7 98.7 79.2 16 19 18 

Galectin-1 LGALS1 0.00 INF 0.59 0.027 0.13 0.31 5.1 0.0 2.8 2 0 2 

Lamin-B2 LMNB2 0.91 0.71 0.59 0.27 0.13 0.035 50.0 43.0 32.3 11 8 6 

Alpha-2-macroglobulin receptor-associated protein LRPAP1 0.20 6.40 1.1 0.053 0.04 0.58 6.4 1.1 6.8 4 1 5 

Leucine-rich PPR motif-containing protein, mitochondrial LRPPRC 1.40 0.77 1.20 0.00065 0.04 0.069 159.2 222.7 187.2 37 49 45 

Leucine-rich repeat-containing protein 47 LRRC47 7.30 0.59 4.60 0.014 0.27 0.082 1.2 9.0 5.7 1 4 2 

Mesencephalic astrocyte-derived neurotrophic factor MANF 0.59 1.70 1 0.048 0.059 0.49 30.0 17.8 29.5 6 4 7 

Methionine--tRNA ligase, cytoplasmic MARS 2.70 0.77 2.10 0.024 0.31 0.091 6.4 17.0 13.3 2 5 4 

Matrin-3 MATR3 0.91 0.77 0.71 0.27 0.11 0.028 82.2 72.8 57.9 18 15 15 

DNA replication licensing factor MCM6 MCM6 4 0.40 1.6 0.0085 0.037 0.34 4.0 16.0 6.6 2 6 2 

Mitochondrial genome maintenance exonuclease 1 MGME1 0.10 5.90 0.71 0.016 0.07 0.32 8.7 1.0 5.7 1 1 2 

Isoform 2 of Mannosyl-oligosaccharide glucosidase MOGS 1.80 0.91 1.60 0.023 0.33 0.071 19.0 34.9 30.4 5 8 7 

39S ribosomal protein L45, mitochondrial MRPL45 0.40 1.00 0.30 0.037 0.59 0.029 13.9 5.1 4.8 2 2 2 

39S ribosomal protein L49, mitochondrial MRPL49 0.10 4.8 0.50 0.0084 0.12 0.16 9.6 1.0 4.8 3 1 3 

28S ribosomal protein S35, mitochondrial MRPS35 2.00 0.30 0.71 0.13 0.049 0.43 5.4 10.9 3.8 2 2 2 

Mitochondrial carrier homolog 2 MTCH2 2.10 0.50 1.00 0.037 0.03 0.57 10.7 21.9 10.4 2 2 2 

C-1-tetrahydrofolate synthase, cytoplasmic MTHFD1 1.9 0.77 1.40 0.048 0.22 0.22 12.8 23.7 18.0 4 9 6 

Sialic acid synthase NANS 0.50 2.30 1.20 0.069 0.017 0.34 19.3 9.9 22.7 7 5 7 
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Table 11 continued… 

Protein name 
Gene 
name 

Fold change P value QV Peptide 

F:C I:F I:C F:C I:F I:C C F I C F I 

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5 NDUFA5 0.30 3.60 1.20 0.047 0.012 0.38 11.4 4.0 14.3 2 1 2 

NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, 
mitochondrial 

NDUFS3 0.30 1.70 0.59 0.047 0.3 0.18 11.7 3.9 6.6 5 3 3 

NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, 
mitochondrial 

NDUFS7 4.80 0.00 0.00 0.12 0.028 0.47 1.1 5.1 0.0 1 2 0 

Isoform 2 of NADH dehydrogenase [ubiquinone] flavoprotein 1, 
mitochondrial 

NDUFV1 0.59 2.20 1.20 0.11 0.048 0.41 14.2 7.9 17.0 3 4 3 

Sialidase-1 NEU1 0.30 3.50 1.2 0.047 0.012 0.38 11.9 4.1 14.3 5 2 5 

Nodal modulator 1 NOMO1 2.40 0.50 1.10 0.0069 0.012 0.46 12.6 29.8 14.3 7 8 6 

Nucleophosmin NPM1 0.77 1.00 0.71 0.037 0.45 0.022 96.5 73.0 70.2 10 10 9 

Vesicle-fusing ATPase NSF INF 0.59 INF 0.019 0.35 0.077 0.0 6.0 3.8 0 2 2 

NSFL1 cofactor p47 NSFL1C 0.20 5.00 1.00 0.0026 0.003 0.52 15.8 3.0 15.1 5 2 6 

Nucleobindin-1 NUCB1 0.50 1.3 0.59 0.011 0.3 0.049 31.8 14.9 19.2 7 4 5 

Cleavage and polyadenylation specificity factor subunit 5 NUDT21 3.00 0.71 2.20 0.033 0.3 0.13 4.3 12.9 9.6 2 2 2 

Nuclear pore glycoprotein p62 NUP62 0.20 0.00 0.00 0.17 0.49 0.05 4.3 1.1 0.0 2 1 0 

Ornithine aminotransferase, mitochondrial OAT 0.50 1.70 0.91 0.017 0.05 0.34 31.7 15.9 27.6 6 6 6 

Protein disulfide-isomerase P4HB 0.77 1.10 0.91 0.012 0.25 0.057 380.2 319.7 336.7 44 39 43 

Isoform 2 of Polyadenylate-binding protein 4 PABPC4 8.10 1.10 8.70 < 0.0001 0.41 < 0.0001 4.9 39.4 42.7 1 2 2 

Multifunctional protein ADE2 PAICS 2.00 0.71 1.4 0.0008 0.042 0.08 34.0 67.0 47.7 6 10 8 

Protein deglycase DJ-1 PARK7 0.59 1.60 1.00 0.035 0.03 0.53 44.4 27.6 44.8 8 7 8 

Pyruvate carboxylase, mitochondrial PC 1.90 1.10 2.00 0.069 0.5 0.049 10.4 19.6 20.9 4 5 5 

Poly(rC)-binding protein 1 PCBP1 1.10 1.20 1.3 0.37 0.091 0.041 66.5 71.7 89.5 12 10 12 

Prenylcysteine oxidase 1 PCYOX1 3.40 0.30 0.91 0.037 0.023 0.61 3.2 11.2 2.9 2 4 1 

Protein disulfide-isomerase A3 PDIA3 0.71 1.30 0.91 < 0.0001 0.0018 0.043 322.6 215.2 279.5 34 32 36 

Protein disulfide-isomerase A4 PDIA4 0.71 1.10 0.77 0.0026 0.19 0.028 201.4 147.7 163.4 33 30 30 

PDZ and LIM domain protein 1 PDLIM1 0.59 1.70 1.00 0.0087 0.0068 0.53 53.7 30.9 54.0 12 9 11 

Pyridoxal-dependent decarboxylase domain-containing protein 1 PDXDC1 7.10 0.71 4.70 0.003 0.23 0.03 2.0 14.2 9.4 2 4 5 

ATP-dependent 6-phosphofructokinase, liver type PFKL 11.0 0.59 6.30 0.00072 0.12 0.028 1.2 13.8 7.7 1 6 3 

Profilin-1 PFN1 0.77 0.91 0.71 0.091 0.41 0.046 69.6 53.9 50.3 8 9 7 

Membrane-associated progesterone receptor component 2 PGRMC2 2.30 0.10 0.30 0.13 0.016 0.27 3.5 8.0 1.0 1 3 1 

Perilipin-2 PLIN2 INF 2.70 INF 0.036 0.04 0.00013 0.0 4.9 13.2 0 2 4 
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Table 11 continued… 

Protein name 
Gene 
name 

Fold change P value QV Peptide 

F:C I:F I:C F:C I:F I:C C F I C F I 

Serum paraoxonase/arylesterase 2 PON2 1.00 1.60 1.60 0.51 0.054 0.044 19.7 19.7 32.4 6 6 7 

Peptidyl-prolyl cis-trans isomerase A PPIA 0.71 1.20 0.77 0.022 0.23 0.11 89.3 63.7 73.3 10 10 10 

Protein phosphatase 1G PPM1G 1.70 2.20 3.80 0.31 0.058 0.011 4.0 6.9 15.2 2 2 4 

DNA-dependent protein kinase catalytic subunit PRKDC 2.00 0.59 1.20 0.0052 0.031 0.26 21.4 42.5 26.6 7 14 7 

Protein arginine N-methyltransferase 5 PRMT5 4.90 1.30 6.1 0.025 0.38 0.0066 2.0 9.9 12.4 2 3 4 

Pre-mRNA-processing-splicing factor 8 PRPF8 2.30 0.30 0.59 0.052 0.0073 0.31 6.3 14.8 3.8 1 6 1 

Prosaposin PSAP 0.71 1.80 1.30 0.24 0.046 0.21 20.2 14.8 26.5 4 3 6 

Phosphoserine aminotransferase PSAT1 2 0.77 1.6 0.006 0.16 0.072 21.8 44.1 34.3 8 9 7 

Proteasome subunit alpha type-5 PSMA5 0.40 2.30 1.00 0.031 0.029 0.55 20.1 8.8 20.1 5 5 6 

Proteasome subunit beta type-6 PSMB6 0.59 1.7 1.10 0.068 0.042 0.47 31.4 19.9 33.3 5 4 6 

Proteasome subunit beta type-7 PSMB7 0.50 2.30 1.20 0.054 0.01 0.31 21.4 11.0 25.7 6 2 5 

26S protease regulatory subunit 4 PSMC1 0.59 2.00 1.20 0.089 0.023 0.32 22.9 13.8 27.6 5 4 5 

26S proteasome non-ATPase regulatory subunit 11 PSMD11 2.30 0.77 1.90 0.037 0.38 0.09 8.4 19.0 16.1 2 4 3 

Glycogen phosphorylase, brain form PYGB 7.90 0.59 4.70 0.024 0.26 0.14 1.0 8.0 4.8 1 4 2 

Isoform 2 of Glutamine--tRNA ligase QARS 2.10 0.77 1.80 0.019 0.33 0.064 12.9 26.7 22.7 5 12 9 

Isoform 2 of Ras-related protein Rab-6A RAB6A INF 0.00 INF < 0.0001 < 0.0001 1 0.0 18.8 0.0 0 2 0 

Ran GTPase-activating protein 1 RANGAP1 1.50 0.50 0.71 0.15 0.026 0.25 17.2 25.0 12.4 4 9 3 

Isoform 3 of Histone-binding protein RBBP4 RBBP4 2.20 1.20 2.70 0.062 0.36 0.019 7.1 15.9 19.2 4 5 6 

RNA-binding protein 14 RBM14 0.71 0.59 0.40 0.17 0.12 0.012 27.9 19.9 12.4 5 5 3 

Isoform 2 of Reticulocalbin-2 RCN2 0.10 3.00 0.40 0.00026 0.085 0.023 19.7 2.8 8.6 5 1 2 

Transforming protein RhoA RHOA 1.80 2.30 4.00 0.28 0.071 0.011 3.3 5.8 13.4 2 2 4 

60S ribosomal protein L18 RPL18 0.50 1.10 0.59 0.033 0.47 0.053 25.2 13.0 14.2 5 5 5 

60S ribosomal protein L28 RPL28 1.50 0.40 0.59 0.17 0.029 0.24 11.7 17.8 7.5 5 5 4 

60S ribosomal protein L3 RPL3 1.30 0.71 0.91 0.095 0.048 0.42 49.3 64.2 45.7 8 14 15 

60S ribosomal protein L34 RPL34 2.30 0.30 0.77 0.075 0.025 0.43 6.1 14.1 4.8 2 4 3 

60S acidic ribosomal protein P2 RPLP2 0.77 0.77 0.71 0.18 0.26 0.048 53.6 44.1 37.2 7 7 8 

40S ribosomal protein S18 RPS18 0.71 1.40 0.91 0.039 0.12 0.31 47.5 30.9 42.0 8 7 8 

Ubiquitin-40S ribosomal protein S27a RPS27A 0.50 3.60 1.70 0.23 0.035 0.23 6.1 2.9 10.5 3 2 3 

40S ribosomal protein S3 RPS3 1.4 0.77 1.10 0.047 0.11 0.35 39.3 56.7 44.0 10 12 10 

40S ribosomal protein S5 RPS5 2.00 0.71 1.40 0.011 0.092 0.19 18.0 35.8 24.8 2 8 3 

Ribosomal protein S6 kinase alpha-3 RPS6KA3 12 0.20 1.8 0.0024 0.0051 0.54 1.0 11.9 1.9 1 3 1 

40S ribosomal protein S7 RPS7 0.71 1.2 0.77 0.037 0.25 0.15 62.4 43.7 51.3 8 6 7 
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Table 11 continued… 

Protein name 
Gene 
name 

Fold change P value QV Peptide 

F:C I:F I:C F:C I:F I:C C F I C F I 

Ribosomal L1 domain-containing protein 1 RSL1D1 3.20 0.10 0.40 0.11 0.03 0.46 2.1 6.9 0.9 1 2 1 

Isoform SCP2 of Non-specific lipid-transfer protein SCP2 0.59 2.10 1.30 0.18 0.028 0.22 16.9 10.9 22.7 6 4 8 

45 kDa calcium-binding protein SDF4 0.40 1.70 0.71 0.0061 0.12 0.11 27.6 10.9 18.0 4 1 2 

Succinate dehydrogenase [ubiquinone] flavoprotein 
subunit, mitochondrial 

SDHA 1.40 1.30 1.80 0.22 0.18 0.035 17.0 23.0 30.3 4 4 8 

Protein transport protein Sec23A SEC23A 2.00 1.00 2 0.019 0.53 0.02 14.7 30.1 29.6 5 8 8 

Isoform 10 of Protein transport protein Sec31A SEC31A 2.10 0.71 1.40 0.012 0.099 0.19 14.2 29.9 20.0 6 8 6 

Splicing factor 3B subunit 3 SF3B3 9.20 0.40 3.60 0.00018 0.02 0.076 2.1 19.2 7.5 1 4 3 

Calcium-binding mitochondrial carrier protein Aralar2 SLC25A13 2.1 0.50 1 0.0053 0.0025 0.5 18.6 39.7 18.0 5 11 5 

U5 small nuclear ribonucleoprotein 200 kDa helicase SNRNP200 4.20 0.50 2.20 0.00012 0.02 0.056 7.3 30.9 16.1 3 9 5 

Small nuclear ribonucleoprotein E SNRPE 0.00 INF 1.10 0.027 0.018 0.57 5.2 0.0 5.7 1 0 3 

Sepiapterin reductase SPR 6.90 0.40 2.80 0.003 0.047 0.18 2.0 13.9 5.6 2 2 2 

Spectrin beta chain, non-erythrocytic 1 SPTBN1 1.50 0.91 1.30 0.0019 0.12 0.045 88.7 133.4 114.0 22 40 32 

Sequestosome-1 SQSTM1 INF INF INF 1 0.0092 0.011 0.0 0.0 6.7 0 0 2 

Isoform 2 of Threonine--tRNA ligase, cytoplasmic TARS 1.90 0.40 0.77 0.082 0.029 0.41 9.6 18.0 7.6 4 4 3 

Transcription elongation factor B polypeptide 2 TCEB2 0.00 INF 3.90 0.48 0.035 0.14 1.2 0.0 4.8 1 0 2 

Serotransferrin TF 0.71 1.30 0.91 0.0032 0.045 0.15 130.1 87.4 112.0 26 24 23 

Transferrin receptor protein 1 TFRC 1.60 1.10 1.80 0.072 0.42 0.035 17.1 27.8 30.5 6 8 8 

Transketolase TKT 1.20 1.10 1.30 0.13 0.31 0.047 62.7 76.8 83.5 16 20 16 

Talin-1 TLN1 1.80 1.00 1.70 0.03 0.47 0.044 18.6 33.6 32.3 8 11 10 

Isoform 2 of Tropomyosin alpha-3 chain TPM3 0.59 1.40 0.77 0.012 0.07 0.23 54.4 31.8 45.7 13 9 13 

Tropomyosin alpha-4 chain TPM4 0.59 1.10 0.71 0.031 0.34 0.086 49.2 30.8 35.1 6 4 5 

Translationally-controlled tumor protein TPT1 0.59 1.90 1.10 0.078 0.024 0.36 27.8 16.9 31.3 3 4 6 

Transcription intermediary factor 1-beta TRIM28 0.77 1.50 1.20 0.16 0.015 0.15 55.9 44.7 68.5 14 13 17 

Tubulin alpha-1C chain TUBA1C 1.20 0.77 1.00 0.042 0.023 0.44 189.0 226.1 185.3 3 3 3 

Tubulin beta chain TUBB 0.77 1.10 0.91 0.016 0.19 0.1 333.4 278.3 300.4 29 29 29 

Tubulin beta-4B chain TUBB4B 0.77 1.10 0.91 0.018 0.082 0.24 300.0 248.4 281.1 5 4 5 

Thioredoxin domain-containing protein 12 TXNDC12 0.10 7.10 0.71 0.0084 0.04 0.32 9.6 0.9 6.7 3 1 3 
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5.2.3.1. Enrichment of identified proteins in GO categories 

Enrichment analysis for GO terms was performed on comparisons of two groups at a time 

and so three comparisons were made – FA-treated vs. control and inhibitor-treated vs. FA-

treated and inhibitor-treated vs. control. 

5.2.3.1.1. Comparison of FA-treated group to control group 

Given that the challenge faced by cells is the influx of exogenous FA, biological processes 

involved in assimilating the FA into TAG and other lipids or channelling them for breakdown 

were expected to be represented in the identified proteins. Most proteins identified were 

classified as participants in ‘metabolic processes’ (GO: 0008152). Of the 216 proteins, the 

change in abundance of 157 proteins in the FA-treated sample was more than 30 % of the 

control (FC ranging from 0.7 to 1.3) with values of p ≤ 0.05. Of these 157 proteins, 120 

showed enrichment in ‘cellular metabolic processes’ and of these, 30 proteins were enriched 

in ‘carboxylic acid metabolic processes'. Within the GO category of ‘biological regulation’ 

(GO: 0065007), 10 identified proteins showed enrichment in ‘regulation of nuclease activity’. 

‘Response to stimuli’ (GO: 0048265)  is defined as “a change in state or activity of a cell or an 

organism in terms of movement, secretion, enzyme production, gene expression as a result 

of stimulus” [298]. Within this group, the identified proteins were found enriched in 

processes involved in responses to misfolded and unfolded proteins (Table 12A).  

The molecular functions attributed to the proteins complemented the biological processes 

they were classified under (Table 12B). Binding and catalytic activity are the two sub-

categories GO is broadly divided into for annotation of molecular function. Binding to 

unfolded proteins and anion binding were the most common molecular functions attributed 

to the proteins. These functions are vital for chaperones that facilitate protein folding [299]. 

Biocatalysis in the cell is dependent on the availability of co-factors such as NAD and FAD, 

and nucleoside triphosphates like ATP and GTP are important in transfer of functional groups 

[300]. Enzymes like lactate dehydrogenase A and glucose-6-phosphate dehydrogenase use 

NAD as hydrogen donor and a proton carrier [289, 301], while chaperones like heat shock 

proteins are dependent on ATP to carry out their protein folding functions [302]. These were 

among the proteins enriched in the GO categories of nucleotide and purine binding.  

Cellular compartments in GO are broadly grouped into cytoplasm, membrane-enclosed 

lumen and organelles (Table 12C). Cytoskeletal proteins such as tubulin (beta 4B class IVb 

and beta class I), tropomyosins and filamin were among the 64 proteins enriched in the GO 
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sub-group 0005829 representing the cytosol. Membrane-enclosed lumen in GO are defined 

as the “enclosed volume within a sealed membrane or between two sealed membranes”, 

and this group “encompasses the volume enclosed by the membranes of a particular 

organelle, e.g. endoplasmic reticulum lumen, or the space between the two lipid bilayers of 

a double membrane surrounding an organelle”. Among the 68 proteins enriched in this GO 

category were proteins localized in the ER lumen such as DnaJ (Hsp40) homolog, calnexin, 

prolyl 4-hydroxylase (beta polypeptide), 78 kDa glucose-regulated protein and endoplasmin. 

These are chaperones that play an important role in protein processing in the ER and are 

actively involved in ensuring correct protein folding (full list of proteins in LC4_pooled.xlsx; 

refer Table 21 in Appendix).  

Table 12: Enrichment of protein identified in LC4 in GO categories for the comparison of FA-treated group to 
the control group. The table shows the number of reference proteins in the group (C), the number of proteins 
from LC4 identified in the group (O), the expected number in the category (E) and ratio of enrichment (R) 
defined as the ratio of the number of proteins identified (O) to the number of protein expected in the category 
(E). The p value was adjusted by multiple testing correction using Hochberg-Benjamini method. The statistics in 
this table are for the enrichment analysis performed; the p-value indicates the probability of the enrichment 
being by chance and not a result of the treatment.                                                                   

GO Category GO ID 
Statistics 

C O E R P value 

Biological processes 

Translation 0006412 838 34 8.48 4.01 1.34e-9 

Small molecule metabolic 0044281 2515 62 25.44 2.44 1.34e-9 

Response to topologically incorrect protein 0035966 139 14 1.41 9.96 4.19e-8 

Response to unfolded protein 0006986 132 14 1.34 10.34 2.78e-8 

Cellular metabolic process 0044237 8612 121 87.12 1.38 8.13e-7 

Regulation of nuclease activity 0032069 72 10 0.73 13.73 3.86e-7 

Organic acid metabolic process 0006082 974 32 9.85 9.85 3.67e-7 

Carboxylic acid metabolic process 0019752 849 30 8.59 3.49 2.7e-7 

Molecular function 

Anion binding 0043168 2402 58 23.73 2.42 8.49e-09 

RNA binding 0036094 854 31 8.44 3.63 3.99e-08 

Aminoacyl-tRNA ligase activity 0004812 44 9 0.43 20.43 1.83e-08 

Small molecule binding 0036094 2630 30 25.98 2.28 1.61e-08 

Nucleoside phosphate binding 1901265 2437 24 24.08 2.17 4.65e-07 

Unfolded protein binding 0051082 127 12 1.25 9.44 1.59e-07 

Purine nucleotide binding 0017076 1871 42 18.48 2.27 4.25e-06 

Cellular compartment 

Cytosol 0005829 2372 64 21.14 3.03 9.78e-16 

Organelles 0043226 10,651 134 94.94 1.40 9.73e-11 

Membrane-enclosed lumen 0031974 3385 68 30.17 2.25 7.57e-11 
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5.2.3.1.2. Comparison of inhibitor-treated group to FA-treated and control group 

The abundance of 90 proteins identified in the inhibitor-treated sample showed changes ≥ 

1.3 times that in the FA-treated sample with values of p ≤ 0.05. Similar to the proteins in the 

FA-treated group, 79 of the 90 proteins were enriched in the GO category of ‘metabolic 

processes’ (Table 13A). Molecular functions of these proteins were annotated with anion-

binding and very-low density lipoprotein receptor binding (Table 13B). NADH dehydrogenase 

(ubiquinone) 1 alpha subcomplex 5, NADH dehydrogenase (ubiquinone) flavoprotein 1 and 

NADH-coenzyme Q reductase were enriched in the sub-category of NADH dehydrogenase 

(quinone) activity. Another catalytic molecular function attributed to the proteins in this list 

was ligase activity exhibited by t-RNA synthetases. The proteasomal subunits alpha type 5, 

beta type 6 and 7 were found enriched in the category of threonine-type endopeptidase 

activity (GO ID: 0004298). The enrichment analysis suggested that the proteins identified in 

this comparison were capable of forming macromolecular complexes, and many of them 

were localised in the cytosol (Table 13C).  

Of the 75 proteins identified in the comparison of the inhibitor-treated group to the control 

group, 54 proteins were identified in the comparisons described above. The biological 

processes in which these proteins were found enriched included metabolic processes, 

vesicle mediated transport and protein transport (Table 14A). Protein binding was the 

molecular function category with the greatest number of proteins (Table 14B). Proteins were 

also found enriched in the anion binding and RNA binding categories. Cellular compartment 

categories the proteins were found enriched in included cytoplasm and membrane-bounded 

organelle (Table 14C). 
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Table 13: Enrichment of protein identified in LC4 in GO categories for the comparison of inhibitor-treated 
group to FA-treated group. The table shows the number of reference proteins in the group (C), the number of 
proteins from LC4 identified in the group (O), the expected number in the category (E), ratio of enrichment (R) 
defined as the ratio of the number of proteins identified (O) to the number of protein expected in the category 
(E). The p value was adjusted by multiple testing correction using Hochberg-Benjamini method. The statistics in 
this table are for the enrichment analysis performed; the p-value indicates the probability of the enrichment 
being by chance and not a result of the treatment.                

 

Table 14: Enrichment of protein identified in LC4 in GO categories for the comparison of inhibitor-treated 
group to control group. The table shows the number of reference proteins in the group (C), the number of 
proteins from LC4 identified in the group (O), the expected number in the category (E), ratio of enrichment (R) 
defined as the ratio of the number of proteins identified (O) to the number of protein expected in the category 
(E). The p value was adjusted by multiple testing correction using Hochberg-Benjamini method. The statistics in 
this table are for the enrichment analysis performed; the p-value indicates the probability of the enrichment 
being by chance and not a result of the treatment.                                                                                

GO Category Go ID 
Statistics 

C O E R P value 

Biological processes 

Small molecule metabolic process 0044281 2515 37 14.96 2.4 5.47e-06 

Cellular metabolic process 0044237 8612 76 51.21 1.48 5.47e-06 

mRNA metabolic process 0016071 613 18 3.65 4.49 5.47e-06 

Primary metabolic process 0044238 8719 71 51.85 1.37 0.0009 

Molecular function 

Anion binding 0043168 2402 29 13.52 2.15 0.0046 

Very-low-density lipoprotein particle 
receptor binding 

0070326 4 2 0.02 88.86 0.0081 

Threonine-type peptidase activity 0070003 21 3 0.12 25.39 0.0081 

Catalytic activity 0003824 5371 46 30.22 1.52 0.0108 

Cellular compartment 

Organelle part 0044422 6812 67 35.55 1.88 4.60e-10 

Cytoplasm 0005737 9130 78 47.65 1.64 3.09e-10 

Macromolecular complex 0032991 3864 46 20.17 2.28 5.35e-08 

Membrane-enclosed lumen 0031974 3385 44 17.67 2.49 1.10e-08 

Go category GO ID 
Statistics 

C O E R P value 

Biological processes 

Metabolic process 0008152 9488 65 46.69 1.39 6.80e-05 

Cellular localization 0051641 1977 28 9.73 2.88 1.65e-05 

Macromolecule localization 0033036 1828 27 9.0 3.0 1.65e-05 

Protein transport 0015031 1234 21 6.07 3.46 3.80e-05 

Molecular function 

Anion binding 0043168 2402 28 11.63 2.41 0.0001 

Protein binding 0005515 7337 54 35.52 1.52 0.0003 

Small molecule binding 0036094 2630 29 12.73 2.28 0.0002 

Structural molecule activity 0005198 621 12 3.01 3.99 0.0008 

Aminoacyl-tRNA ligase activity 0004812 44 5 0.21 23.47 0.0001 

Cellular compartment 

Organelles 0043226 10651 69 46.22 1.49 1.74e-08 

Cytoplasm 0005737 9130 67 39.62 1.69 5.02e-10 
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5.2.3.2. Enrichment of identified proteins in KEGG pathways 

With the overview of biological processes and molecular functions provided by the GO 

analysis, the identified proteins were analysed for enrichment in the KEGG pathways to 

further understand the pathways affected by these proteins. The KEGG pathway enrichment 

analysis was performed using all 216 proteins without any pair-wise comparison of 

treatment groups. This section describes the KEGG pathways the proteins were found 

enriched in. The top eight pathways are listed in Table 15. 

Table 15: Enrichment in KEGG pathways. Pathways in which the identified proteins were found to be enriched. 
The table shows the number of reference proteins in the group (C), the number of proteins from LC4 identified 
in the group (O), the expected number in the category (E), ratio of enrichment (R) defined as the ratio of the 
number of proteins identified (O) to the number of protein expected in the category (E). The p value was 
adjusted by multiple testing correction using Hochberg-Benjamini method. The statistics in this table are for 
the enrichment analysis performed; the p-value indicates the probability of the enrichment being by chance 
and not a result of the treatment.                                                                                                           

Pathway KEGG 
ID 

Statistics 

C O E R P value 

Metabolic pathways 01100 1130 47 5.58 8.42 8.86e-28 

Protein processing in endoplasmic reticulum 04141 165 14 0.81 17.18 4.50e-12 

Aminoacyl-tRNA biosynthesis 00970 63 10 0.31 32.14 1.70e-11 

Ribosome 03040 127 10 0.45 22.01 6.37e-10 

Spliceosome 03010 92 9 0.63 14.35 1.90e-07 

RNA transport 00670 18 9 0.75 12.07 5.68e-07 

Fatty acid metabolism 03013 151 6 0.21 28.25 5.68e-07 

 

5.2.3.2.1. Metabolic processes 

The KEGG pathway hsa01100 is a comprehensive map of various metabolic pathways 

involved in the synthesis and breakdown of macromolecules. The proteins identified in 

dataset LC4 play a role in the various pathways of carbohydrate, FA and nucleotide 

metabolism that constitute this KEGG category (Table 16). 

5.2.3.2.1.1 Glucose metabolism 

Glucose metabolism is central to almost all metabolic processes in the cell. It is the major 

substrate for cellular metabolism through glycolysis in which the 6-carbon glucose yields two 

molecules of 3-carbon pyruvate, ATP and NADH+H+ through various intermediates.  Liver 

isoform of phosphofructokinase and triokinase/FMN cyclase in the list of identified proteins 

play roles in the glycolytic pathway [303]. Both enzymes showed increased abundance in the 

FA-treated sample compared to the control. The abundances of these two proteins in the  
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Table 16: List of proteins enriched in KEGG pathway hsa01100 for metabolic processes. The ‘fold change’ 
represents the ratio of the QV as stated in the column head; for example, ‘F: C’ is the ratio of QV in FA-treated 
group (F) to that in control group (C). ‘I’ represents the inhibitor-treated group. *INF indicates the FC is infinite 
since the denominator is zero for proteins not were detected in the control group.                                                                   

Protein name 
SwissProt 

ID 
Gene 

Symbol 

Fold change 

F:C I:F I:C 

Acetyl-coa acyltransferase 1 P09110 ACAA1 7.9 0.91 7.5 

Acyl-coa dehydrogenase, very long chain P49748 ACADVL 2.1 0.77 1.7 

ATP citrate lyase P53396 ACLY 1.7 0.77 1.3 

Acyl-coa synthetase long-chain family member 4 O60488 ACSL4 1.9 0.71 1.2 

Acyl-coa synthetase long-chain family member 5 Q9ULC5 ACSL5 1.7 0.50 0.77 

Acyl-coa synthetase short-chain family member 3 Q9H6R3 ACSS3 3.7 0.50 1.8 

Aldehyde dehydrogenase 2 family (mitochondrial) P05091 ALDH2 1.1 0.77 0.77 

Aldehyde dehydrogenase 3 family, member A2 P51648 ALDH3A2 5.4 0.50 2.5 

ATP synthase subunit alpha P25705 ATP5A1 0.91 0.91 0.77 

ATP synthase subunit beta, mitochondrial P06576 ATP5B 0.77 1.1 0.77 

Catechol-O-methyltransferase P21964 COMT 0.91 1.6 1.4 

Coproporphyrinogen oxidase P36551 CPOX 0.09 7.2 0.71 

Citrate synthase O75390 CS 2.5 0.71 1.8 

Dihydroxyacetone kinase 2 homolog Q3LXA3 DAK 2 0.71 1.3 

Dihydrolipoamide dehydrogenase P09622 DLD 0.59 0.91 0.59 

Deoxyuridine triphosphatase P33316 DUT 0.30 2.2 0.77 

Glutamyl-prolyl-trna synthetase P07814 EPRS 4.1 0.59 2.6 

Fatty acid synthase P49327 FASN 1.3 0.91 1.1 

Farnesyl-diphosphate farnesyltransferase 1 P37268 FDFT1 2.3 0.59 1.4 

Formiminotransferase cyclodeaminase O95954 FTCD INF* 0.59 INF* 

Glucose-6-phosphate dehydrogenase P11413 G6PD 9 0.50 4.7 

Glucosidase, alpha; acid P10253 GAA 0.50 1.9 0.91 

Trifunctional purine biosynthetic protein 
adenosine-3 

P22102 GART 2.3 0.59 1.3 

Glutamine--fructose-6-phosphate transaminase 1 Q06210 GFPT1 2.9 0.59 1.6 

Hexosaminidase B (beta polypeptide) P07686 HEXB INF* 2.3 INF* 

Leucine aminopeptidase 3 P28838 LAP3 0.59 1.5 0.91 

Lactate dehydrogenase A P00338 LDHA 1.4 0.77 1.1 

Mannosyl-oligosaccharide glucosidase Q13724 MOGS 1.8 0.91 1.6 

C-1-tetrahydrofolate synthase, cytoplasmic P11586 MTHFD1 1.9 0.77 1.4 

N-acetylneuraminic acid synthase Q9NR45 NANS 0.5 2.3 1.2 

NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 5, 13kda 

Q16718 NDUFA5 0.3 3.6 1.2 

NADH dehydrogenase [ubiquinone] iron-sulfur 
protein 3, mitochondrial 

O75489 NDUFS3 0.3 1.7 0.59 

NADH dehydrogenase [ubiquinone] iron-sulfur 
protein 7, mitochondrial 

O75251 NDUFS7 4.8 0 0 

NADH dehydrogenase (ubiquinone) flavoprotein 1 P49821 NDUFV1 0.59 2.2 1.2 

Ornithine aminotransferase P04181 OAT 0.5 1.7 0.9 

Multifunctional protein ADE2 P22234 PAICS 2 0.71 1.4 

Pyruvate carboxylase P11498 PC 1.9 1.1 2 

Phosphofructokinase, liver P17858 PFKL 11 0.59 6.3 

Paraoxonase 2 Q15165 PON2 1 1.6 1.6 

Phosphoserine aminotransferase 1 Q9Y617 PSAT1 2 0.77 1.6 

Glutaminyl-trna synthetase P47897 QARS 2.1 0.77 1.8 

Sterol carrier protein 2 P22307 SCP2 0.59 2.1 1.3 
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Table 16 continued… 

 

inhibitor- treated sample was lower than that in the FA-treated sample but greater than that 

of the control sample. Lactate dehydrogenase A (LDH-A) catalyses the inter-conversion of 

pyruvate and lactate in the cell; its abundance in FA-treated sample was 1.4 times that of the 

control sample. Treatment with the inhibitor was able to counter this, and the abundance of 

LDH-A in the inhibitor-treated sample was comparable to that in the control sample. The 

pyruvate formed through glycolysis or from lactate is converted into acetyl CoA by the 

pyruvate dehydrogenase complex. This complex is formed by three enzymes - pyruvate 

dehydrogenase, dihydrolipoyl transacetylase and dihydrolipoyl dehydrogenase. While 

peptides for all three enzymes were detected in the samples analysed in dataset LC4, only 

dihydrolipoyl dehydrogenase was detected with fold changes of p < 0.05. The abundance of 

dihydrolipoyl dehydrogenase in the FA-treated sample was about the same as that in the 

inhibitor-treated sample, and both these treatments produced a decrease in the abundance 

of dihydrolipoyl dehydrogenase with respect to its abundance in the control cells.  

Acetyl CoA enters the Krebs cycle to produce various 6-carbon and 4-carbon intermediates 

that undergo decarboxylation to produce reducing equivalents (NADH+H+ and FADH2) and 

ATP. The mitochondrial citrate synthase and cytosolic ATP-citrate lyase (ACL) both carry out 

the reversible formation of citrate from oxaloacetate and acetyl CoA. The latter however 

requires ATP and a divalent ion to carry out the reaction and the reversible reaction i.e. 

formation of acetyl CoA in the cytosol is favoured over the forward reaction of citrate 

formation [304]. The abundance of mitochondrial citrate synthase and ACL in the FA-treated 

sample was 2.5 and 1.7 times that of the control. The abundance of both these proteins in 

the inhibitor-treated sample was lower than that of the FA-treated sample but higher than 

that of the control sample.  

Glucose-6-phosphate dehydrogenase (G6PD) and glutamine-fructose-6-phosphate 

aminotransferase 1 (GFAT1) are two proteins that divert the 2-carbon sugars into ancillary 

Protein name 
SwissProt 

ID 
Gene 

Symbol 

Fold change 

F:C I:F I:C 

Succinate dehydrogenase complex, subunit A, 
flavoprotein (Fp) 

P31040 SDHA 1.4 1.3 1.8 

Sepiapterin reductase P35270 SPR 6.9 0.4 2.8 

Transketolase P29401 TKT 1.2 1.1 1.3 

UDP-glucose 6-dehydrogenase O60701 UGDH 0.9 1.3 1.1 

Cytochrome b-c1 complex subunit Rieske, mitochondrial P47985 UQCRFS1 0.3 2.2 0.71 
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pathways – G6PD catalyses the reversible oxidation of glucose 6-phosphate and diverts it to 

the pentose phosphate pathway while GFAT1 catalyses the rate-limiting irreversible reaction 

in which fructose 6-phosphate is isomerized to glucosamine 6-phosphate with the amino 

group donor – glutamine itself being converted to glutamate [305]. The number of exclusive 

unique peptides assigned to G6PD for the three groups was 1, 6 and 3 for the control, FA-

treated and inhibitor-treated samples, respectively. The corresponding QV for the protein 

was 1.22, 10.99 and 5.69. The increase in the abundance in FA-treated sample had the 

lowest p value associated with it (p = 0.0043), while the change in abundance in the 

inhibitor-treated sample with respect to the other two groups had p values of more than 

0.05. The glucosamine 6-phosphate formed by GFAT1 is the first metabolite in the 

hexosamine biosynthesis pathway whose final product is UDP-N-acetylglucosamine which is 

used to bring about glycosylation of proteins [306]. Overexpression of GFPT1, the gene that 

encodes GFAT1 protein, in liver cells has been associated with hyperlipidemia, impaired 

glucose tolerance [307] and an increased production of hexosamines, a consequence of this 

over-expression has been linked to insulin resistance in the β-cells [308]. In fact, over-

expression of GFPT1 in HepG2 cells has been shown to induce ER stress and thereby 

contribute to hepatic steatosis under conditions of hyperglycemia [309]. The abundance of 

GFAT1 in the FA-treated group was almost 3 times that of control and 1.8 times that of the 

inhibitor-treated group. 

5.2.3.2.1.2. Fatty acid metabolism 

Excess acetyl CoA is polymerized into FA by the action of fatty acid synthase (FAS), a multi-

functional enzyme that catalyses the addition of the 2-carbon acetyl moiety to a growing 

chain of FA to form the 16-carbon palmitic acid [310]. The endogenous FA may then be 

elongated to an 18-carbon FA and undergo desaturation through the action of desaturases 

located in the ER [311]. NADPH provides the reducing equivalents for the desaturation of 

these FA, and NADH-cytochrome b5 reductase (B5R), facilitates the regeneration of NAD 

through the electron transfer chain to allow the further uptake of H+ as required [312]. The 

abundances of FAS and B5R were elevated in both FA-treated and inhibitor-treated groups. 

While there was no difference in the QV values assigned to the two groups, the QV value 

assigned to these proteins in the control group was lower than that for the treated groups. 

This is consistent with the observation that NAFLD patients tend to show elevated levels of 

de novo lipogenesis [39]. Irrespective of whether the FA are exogenous or synthesized de 
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novo in the cell, they are ‘activated’ by the addition of a CoA moiety for retention in the cell 

[313].  

This activation is carried out by acyl-CoA synthetases like acyl-CoA synthetases 4, acyl-CoA 

synthetases 5 and acyl-CoA synthetase short-chain family member 3 which are thiokinases 

that catalyse the ATP-dependent esterification of CoA to the acyl chain. The abundance of all 

three acyl-CoA synthetases was greater in the FA-treated group than the other two. The QV 

assigned for the proteins in the inhibitor-treated group was greater than the control group 

but less than that of the FA-treated group.  

The activated FA could have two fates in the cell: they could be assimilated into TAG 

molecules for storage or be broken down by β-oxidation to acetyl CoA and reducing 

equivalents (NADH+H+ and FADH2). Long-chain specific acyl-CoA dehydrogenase (VLCAD) and 

fatty aldehyde dehydrogenase are vital dehydrogenases of β-oxidation, and their abundance 

in the FA-treated sample was greater than that in the inhibitor-treated or control sample 

[314, 315]. VLCAD was identified in the three samples on the basis of 3, 6 and 4 exclusive 

unique peptides for the control, FA-treated and inhibitor-treated samples, respectively, 

while 2, 3 and 2 exclusive peptides were identified for the three corresponding groups for 

fatty aldehyde dehydrogenase. The abundance of peroxisomal 3-ketoacyl-CoA thiolase 

which brings about the thiolytic cleavage of the 3-ketoacyl CoA to produce acetyl CoA was 

also found to be greater in the FA-treated and inhibitor-treated samples than in the control 

sample.  

While no proteins of the Kennedy pathway could be detected in the three samples, the 

increase in the number of LDs observed through ORO staining demonstrated sustained if not 

increased TAG synthesis. Proteins of the Arf1/COPI machinery are necessary for initiating LD 

formation [316] and some of these proteins were found up-regulated in the FA-treated 

sample. ADP-ribosylation factor 1 and ADP-ribosylation factor 4 are essential in recruitment 

of COPI proteins [317], and their abundances in the FA-treated samples were 13 and 2.6 

times that of the control, respectively. The abundance of ADP-ribosylation factor 1 and 4 in 

the inhibitor-treated sample was 20 and 2.4 times that of the control, respectively. The 

abundance of coatomer subunits [alpha (COPA) and gamma-1 (COPG1)] were 4.7 and 2.4 

times that of the control, while its abundance in the inhibitor-treated sample was about the 

same as that in FA-treated sample. Perilipin 2 (also known as adipophilin) is a LD biomarker 

localised in the LD membrane with the help of the COPI mechanism [318]. In dataset LC4, no 

peptide attributed to perilipin 2 was detected in the control by the LC-MS/MS method but 
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the protein was assigned 2 and 4 peptides for the FA-treated and inhibitor-treated samples, 

respectively. The absence of the perilipin 2 in the control sample despite the conspicuous 

LDs seen in ORO stained cells has been discussed further in Section 6.4.1. 

5.2.3.2.1.3. Purine synthesis and folate metabolism 

The synthesis of purines – adenine and guanine – begins with the phosphorylation of ribose-

5-phosphate and culminates in inosine monophosphate through a series of reactions that 

constitute the de novo synthesis pathway which utilizes precursors and co-factors like 

glycine, tetrahydrofolate derivatives, glutamine, aspartate and ATP. Trifunctional purine 

biosynthetic protein adenosine-3 and multifunctional protein ADE2 catalyse vital irreversible 

reactions in this pathway, and the abundance of both proteins was greater in the FA-treated 

sample than the other two samples. Glycine incorporated by 5'-phosphoribosylglycinamide 

transformylase (GART) domain of the trifunctional purine biosynthetic protein adenosine-3 

contributes C4, C5 and N7 carbons of the purine molecule. GART also catalyses the closure of 

the imidazole ring after it adds the C2 carbon of the purine ring. N- formyl tetrahydrofolate 

donates the C2 and C8 carbon of the purine ring. This vital one-carbon donor is formed 

through the action of cytosolic C1-tetrahydrofolate synthase (C1-THF synthase), a 

trifunctional enzyme that has CH2- tetrahydrofolate dehydrogenase, 10-

formyltetrahydrofolate synthetase and cyclohydrolase activities (Figure 57). The abundance 

of C1-THF synthase in the FA-treated sample was almost twice that of the control sample 

and 1.5 times that of the inhibitor-treated sample. Formimidoyltransferase-cyclodeaminase 

(FTCD) is a bifunctional enzyme that carries out the final two reactions in the L-histidine 

degradation pathway. It transfers the N-formimino group of the N-formiminoglutamic acid 

formed during histidine degradation to tetrahydrofolate (THF) to form 5-formimino-THF and 

glutamate. The cyclodeaminase domain of FTCD then converts 5-formimino-THF to 5,10-

methenyltetrahydrofolate which can be converted to 10 -formyl THF or 5,10- methylene THF 

Figure 57: Schematic representation of the role of C1-THF synthase (MTHD1), Formimidoyltransferase-
cyclodeaminase (FTCD) and 5'-phosphoribosylglycinamide transformylase (GART) domain of the trifunctional 
purine biosynthetic protein adenosine-3 in folate metabolism. 
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by C1-THF synthase. Although peptides corresponding to this protein were not detected in 

the control sample, 4 and 2 unique peptides could be attributed to the protein in FA-treated 

and inhibitor-treated samples, respectively. 

5.2.3.2.2. Protein processing and trafficking in the ER 

Nearly one-third of the eukaryotic proteins traffic through the ER as part of the secretory 

pathway [319]. The proteins processed in the ER require removal of signal peptide [320], N-

linked glycosylation [321] and disulphide bond formation [322] to attain the right 

configuration for activity. These covalent modifications are brought about by ER folding 

factors like the classical chaperones and their co-chaperones and the carbohydrate-binding 

chaperones. These chaperones are assisted by folding catalysts of the protein disulfide-

isomerase (PDI) and proline cis–trans isomerase families [323] such as peptidyl-prolyl cis-

trans isomerase A and peptidyl-prolyl cis-trans isomerase FKBP1A. Various components of 

the chaperone machinery of the ER and proteins like protein transport protein Sec23A and 

protein transport protein Sec31A that are a part of COPII [324] were found enriched in the 

KEGG pathway hsa04141 (Table 17). Both transport proteins showed increased abundance in 

the FA-treated group with respect to the control group. The abundance of protein transport 

protein Sec23A in the inhibitor-treated group was about the same as that in the FA-treated 

group. Protein transport protein Sec31A was assigned 6, 8 and 6 exclusive peptides for the 

control, FA-treated and inhibitor-treated groups, respectively; however, the QV assigned to 

the protein in the inhibitor-treated group was greater than that of the control group.  

The abundance of classical ER chaperones like endoplasmin, 78 kDa glucose-regulated 

protein (Grp78; also known as BiP) and its co-chaperone DnaJ homolog subfamily B member 

11 in the FA-treated sample were reduced in comparison to those in the control sample. The 

abundances of endoplasmin and Grp78 in the inhibitor-treated sample were about the same 

as those in the FA-treated sample. The co-chaperone DNAJB11 assigned 4, 1 and 3 peptides 

for control, FA-treated and inhibitor-treated samples, respectively. Its corresponding QV 

values were 12.5, 0.94 and 10.4 for the three groups, respectively. The PDI family consists of 

multifunctional oxidoreductases that catalyse the formation and isomerization of disulphide 

bonds in nascent proteins [325-327]. The protein disulphide isomerase and its name-bearing 

family members, protein disulphide-isomerase A3 [also known as ER-resident protein 57 

(ERp57)] and protein disulphide-isomerase A4 were also reduced in abundance in FA-treated 

and inhibitor-treated samples with respect to the control sample.  
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Table 17: Proteins enriched in KEGG pathway hsa04141 for protein processing in the endoplasmic reticulum. 
The proteins with changes in abundance of p ≤ 0.05 in dataset LC4 were analysed using the KEGG enrichment 
tool on WebGeStalt. The table lists the proteins identified as enriched in protein processing pathways in the ER. 
The ‘fold change’ represents the ratio of the QV as stated in the column head; for example, ‘F: C’ is the ratio of 
QV in FA-treated group (F) to that in control group (C). ‘I’ represents the inhibitor-treated group.  

 

PDI proteins belong to the thioredoxin superfamily, and new members like thioredoxin 

domain-containing protein 12 (also known as ERp18) are assigned to the PDI family based on 

their capacity to form disulphide bonds rather than break them [328, 329]. The abundance 

of ERp18 in the control sample was 10 times that of the FA-treated sample, and the 

abundance of the protein in the inhibitor-treated sample was about 7 times that of the FA-

treated group. PDI and ERp57 are known to interact with calnexin and calreticulin to bring 

about the correct folding of nascent glycoproteins [330-332]. The abundance of calreticulin 

in the FA-treated sample was lower than that in the control sample, while the abundance of 

calnexin in the FA-treated group was 1.6 times that of the control. For the inhibitor-treated 

sample, the abundance of calreticulin was comparable to that in the FA-treated sample, 

while the abundance of calnexin was greater than that in the control sample but less than 

that in the FA-treated sample.  Other proteins detected in dataset LC4 and known to be 

involved in the calnexin binding cycle included glucosidase II, mannosyl-oligosaccharide 

glucosidase and UDP-glucose: glycoprotein glucosyltransferase 1 (UGT1, Figure 58). There 

was no appreciable change in the abundances of the glucosidase II subunits, but the 

abundance of mannosyl-oligosaccharide glucosidase in the FA-treated and inhibitor-treated 

samples was 1.8 and 1.6 times that of control respectively. The abundance of UGT1 in the 

FA-treated and inhibitor-treated samples was also greater than that in the control sample. 

The lipotoxicity of FA, especially saturated FA like palmitic acid, is at least in part effected 

through the ER where the FA can induce ER stress through increased saturation of the ER 

Protein name 
Swissprot 

ID 
Gene 
name 

Fold change 

F:C I:F I:C 

Calreticulin P27797 CALR 0.77 1 0.77 

Calnexin P27824 CANX 1.5 0.77 1.2 

DnaJ (hsp40) homolog, subfamily b, member 11 Q9UBS4 DNAJB11 0.08 11 0.77 

Endoplasmin P14625 HSP90B1 0.77 1 0.77 

78 kDa glucose-regulated protein P11021 HSPA5 0.71 1.1 0.77 

Mannosyl-oligosaccharide glucosidase Q13724 MOGS 1.8 0.9 1.6 

Nsfl1 (p97) cofactor (p47) Q9UNZ2 NSFL1C 0.2 5 1 

Prolyl 4-hydroxylase, beta polypeptide P07237 P4HB 0.77 1.1 0.9 

Protein disulphide isomerase family a, member 3 P30101 PDIA3 0.71 1.3 0.9 

Protein disulphide isomerase family a, member 4 P13667 PDIA4 0.71 1.1 0.77 

Sec23 homolog A Q15436 SEC23A 2 1 2 

Sec31 homolog a O94979 SEC31A 2.1 0.71 1.4 

UDP-glucose glycoprotein glucosyltransferase 1 Q9NYU2 UGGT1 1.4 0.9 1.2 
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membrane. The increased saturation is known to cause depletion of ER chaperones, and 

their dislodgment from the ER membrane [333]. This can lead to an imbalance in the [Ca2+] 

balance across the membrane [334]. The reduced abundance of the classical chaperones 

along with the reduction in the abundance of three calcium-binding and calcium storage 

proteins of the ER – reticulocalbin 2 [335], calumenin [336] and 45 kDa calcium-binding 

protein [115] – in the FA-treated sample with respect to the control sample may be 

considered a sign of stress in the cells. The abundance of these Ca2+ binding proteins in the 

inhibitor-treated sample was greater than that in the FA-treated sample, these proteins 

were lower than in the control-treated sample.  Overexpression of VAPB gene that encodes 

vesicle-associated membrane protein-associated protein B/C (VAMP-associated protein B/C) 

has been shown to promote UPR by activation of the IRE1/XBP1 pathway [337] which in turn 

is capable of inducing an inflammatory response through JNK activation [338]. VAPB also 

interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis [339]. Cell 

division control protein 42 homolog is a GTPase that has been implicated in FA-induced 

activation of the JNK pathway [340]. Increased abundance of VAMP-associated protein B/C 

and cell division control protein 42 homolog supports the notion of cells being under stress. 

VAMP-associated protein B/C abundance in the FA-treated sample was 10 times that of 

control with the inhibitor not causing any change in the abundance with respect to the FA-

treated samples. The abundance of cell division control protein 42 homolog in the FA-

treated sample was 4.5 times that of control and 3.3 times that of the inhibitor-treated 

sample. 
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Figure 58: Protein enriched in KEGG pathway for protein processing in endoplasmic reticulum.  The schematic map shows proteins identified in dataset LC4 in red. The figure was 

generated using the enrichment analysis tool on WebGestalt which also maps the proteins on templates available in the KEGG pathway database. 
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5.2.3.3. Mitochondrial proteins 

FA oxidation and the Krebs cycle are important processes in the cell since they produce 

reducing equivalents (NADH and FADH2) and a plethora of precursors. The retention of many 

of these precursors is regulated by transporters located in the mitochondrial membrane 

[341].  Calcium-binding mitochondrial carrier protein Aralar2 (also known as citrin) is a 

proton-dependent glutamate-aspartate antiporter belonging to the solute carrier family 25 

(aspartate/glutamate carrier) that facilitates the exchange of mitochondrial aspartate for 

cytosolic glutamate and NADH [342]. Given that citrin deficiency has been associated with 

NAFLD and NASH [343], the increased abundance of citrin in the FA-treated sample (see 

Table 11) may be a part of a protective mechanism trying to maintain the cytosolic NADH: 

NAD ratio [344]. The abundance of this protein in the inhibitor-treated sample was about 

the same as that of the control.  

The potential increase in the supply of electrons to the mitochondria has the capacity to 

uncouple the electron transport chain [345], and therefore the changes in the abundances of 

proteins associated with the mitochondrial respiratory complex were considered important. 

These changes include reduced abundance of cytochrome b-c1 complex subunit Rieske, 

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5, NADH dehydrogenase 

[ubiquinone] iron-sulphur protein 3, NADH dehydrogenase [ubiquinone] iron-sulphur protein 

7, NADH dehydrogenase [ubiquinone] flavoprotein 1 and ATP synthase subunits ATP5A1 and 

ATP5B in the FA-treated sample.  

The abundances of two mitochondrial chaperones – 60 kDa heat shock protein and 10 kDa 

heat shock protein – were also lower in the FA-treated sample than in the inhibitor-treated 

and control samples. Another protein whose abundance was reduced several fold in the FA-

treated sample with respect to the other two samples was mitochondrial genome 

maintenance exonuclease 1. This protein is a RecB-type exonuclease localized in the 

mitochondria and has an important role in the maintenance of the mitochondrial genome 

[346].  Leucine-rich PPR motif-containing protein (LRP130) is a mitochondrial protein that 

has been reported to influence the expression of mitochondrial genes [347, 348] and 

promote oxidation of FA [349]. Over-expression of LRP130 has also been associated with 

increased oxidative phosphorylation which in turn increases the uptake of FA in primary 

hepatocytes derived from transgenic mice [350]. This protein was assigned 37, 49 and 47 

exclusive peptides for control, FA-treated and inhibitor-treated samples, respectively, and 

the corresponding QV values suggested that its abundance in the FA-treated sample was 1.4 



 

-120- 

times that of the control and 1.2 times the abundance of the protein in the inhibitor-treated 

sample.  

5.2.4. Validation of identified proteins 

LC-MS/MS-based shotgun proteomics methods are high-throughput screens that rely on the 

principle of the number of peptides generated being proportional to the amount of protein 

present in the sample. Limitations to this principle include digestion efficiency during sample 

preparation and technical limitations in detecting all possible peptides for a given protein. 

This sets up the need for validation of the results through orthogonal methods such as 

Western blotting confirm the changes in protein abundance seen in the LC-MS/MS analysis. 

Targets for validation were selected from datasets LC3 and LC4 since they were generated 

from the same biological samples (Table 18).  

 

Table 18: Proteins from dataset LC3 and LC4 selected for validation. The ‘fold change’ shown in this column is 
the ratio of QV for two groups. ‘F’ indicates the FA-treated sample, ‘C’ indicates the control sample and ‘I’ 
indicates the inhibitor-treated sample.  

Protein name 
Gene 
name 

M.
W 

Fold change Peptides P Value 

F:C I:F I:C C F I F:C I:F I:C 

Dataset LC3 

Perilipin-2 PLIN2 48 INF* 1.9 INF* 
0 0 2 0 3 2 

0.18 0.31 0.011 
0 0 0 3 2 5 

60 kDa Heat 
shock protein 

HSPD1 61 0.71 1.2 0.77 
48 47 48 48 50 48 

0.041 0.078 0.15 
48 47 48 51 51 48 

Catalase CAT 60 0.59 1.3 0.77 
13 13 13 13 13 12 

0.0042 0.034 0.018 
13 13 13 13 10 11 

Glutathione 
reductase 

GSR 54 0.71 1 0.71 
12 8 5 5 4 8 

0.063 1 0.099 
12 8 5 5 5 5 

Erlin-1 ERLIN1 39 6 0.9 5.5 
1 0 1 2 1 1 

0.0034 0.87 0.036 
1 0 1 2 2 2 

BAG family 
molecular 

chaperone 2 
BAG2 24 0.4 2 0.77 

1 2 0 1 3 1 
0.064 0.44 0.72 

1 2 0 1 1 0 

Dataset LC4 

Fatty acid 
synthase 

FASN 273 1.3 0.9 1.1 67 82 73 5.0e-4 0.019 0.11 

60 kDa Heat 
shock protein 

HSPD1 61 0.77 1.1 1 49 49 46 3.3e-4 4.8e-3 0.19 

Catalase CAT 60 0.77 1.4 1.1 15 11 13 0.18 0.056 0.29 

Glutathione 
reductase 

GSR 54 1 0.59 0.7 7 5 5 0.47 0.089 0.13 

Perilipin-2 PLIN2 48 INF* 2.7 INF* 0 2 4 0.036 0.04 1.3e-4 

*Perilipn2 was detected in the FA-treated and inhibitor treated samples of datasets LC3 and LC4; it was not detected in the 
control group of either datasets. Its fold change is shown as ‘INF’ since the QV for the protein in the control sample is zero. 
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5.2.4.1. Optimization of Western blot protocol 

Reliable quantification using Western blotting requires accurate quantification of total 

protein concentration, equal loading and adequate separation of groups using SDS–PAGE 

[351]. The uniform, if not complete transfer of separated proteins from the gel to the PVDF 

membrane is critical for quantification-based inferences [352, 353]. And last but not least, 

validation of the antibodies used and determining the linear range within which the signal 

detected would be proportional to the amount of protein present needs to be determined 

[245, 354]. Each step in the method was optimized for validation.  

The protein quantification done using a BioRad protein quantification assay was based on 

Bradford’s method. The quantification was confirmed by running a 1D gel with 10 µg of 

protein to be analysed by Western blotting. The gel was assessed for uniform banding after 

staining with Coomassie blue. The protein quantification was considered accurate as long as 

the standard protein curve (0.1 to 0.5 mg/ml BSA) showed a linear correlation with R2 > 0.98 

(Figure 59A) and the confirmation gel showed uniform banding (Figure 59B). The uniform 

transfer of separated proteins was confirmed by staining the post-transfer gel with 

Coomassie blue G 250.  

 

 

 

 

Figure 59: Protein quantification for dataset LC1. A) Standard curve for protein quantification using a 
BioRad protein assay and BSA concentrations ranging from 0.1 to 0.5 mg/ml. B) The biological replicates 
used to generate dataset LC1 were separated using 1D electrophoresis. The lane marked ‘M’ shows standard 
molecular weight markers labeled in kDa. Lanes C1 to C4 represent control samples, lanes F1 to F4 represent 
FA-treated samples and lanes I1 to I4 represent inhibitor-treated samples.  
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The primary antibodies tested were optimized individually to determine suitable dilutions 

and presence of non-specific bands. Based on the banding pattern and the molecular weight 

of the target protein, the Western blots were multiplexed to maximize efficient use of 

resources and time (Figure 60A).  The amount of protein to be loaded onto the gel was 

determined by testing a linear range of protein amounts with different antibodies (Figure 

60B). This also served as a check for saturation of signal intensity to ensure accurate 

quantification (Figure 60C). The intensity of the antibody signal was proportional to the 

increase in protein amounts, and therefore 10 µg of total protein was loaded for detection 

of most proteins. TRAP1 was detected using 20 µg of total protein.   

Figure 60: Calibration curves for Western blots. A) Multiplexed Western blot showing FAS, TRAP1, DGAT1, 
Actin and PPA1. Although DGAT1 was not detected in the datasets, the antibody was validated for assessing 
the possible effects of DGAT inhibitors. B) Quantification of optical density of the bands using ImageJ. C) 
Linear range of quantification for the proteins detected. 
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5.2.4.2. Target proteins 

The primary criterion for selection of a protein for validation was the role it might play in 

lipid metabolism and lipotoxicity.  The second criterion was to select proteins whose fold 

change could be validated. Another aspect of this validation was to highlight the impact of 

technical and biological variance on the LC-MS/MS experimental design. Since dataset LC3 

and LC4 were generated from the same biological sample, the proteins identified and the 

changes in abundances associated with these proteins was expected to be similar. 

Comparison of the proteins identified showed that most proteins identified in dataset LC4 

(generated from the pooled sample) were also identified in dataset LC3 generated from 

individual replicates (Figure 61A). The overlap between the two datasets reduced to a little 

more than a third when the list was filtered to retain proteins with p ≤ 0.05 and fold change 

of more than or equal to 30 % (FC =0.71 to 1.3) (Figure 61B). The targets chosen for 

Western blot validation included proteins identified in both datasets. 

Erlin1 is a cholesterol-binding protein that also serves as a regulator for sterol regulatory 

element binding proteins (SREBPs), a key transcription factors of genes involved in 

cholesterol and fatty acid synthesis [355]. Along with Erlin2, it also plays a role in recognizing 

and targeting of inositol 1,4,5-trisphosphate receptors for ER-associated degradation [356]. 

The gene encoding this protein is also part of the CPN1-ERLIN1-CHUK locus on chromosome 

10 that has been reported to influence liver fat deposition and hepatic inflammation [357]. 

The abundance of Erlin1 in the FA-treated group was found to be 6 times that of control 

group with values of p < 0.05 assigned to the fold change in dataset LC3. BAG2 is a co-

chaperone and nucleotide exchange factor required for Hsp70-mediated folding of proteins 

[358]. The abundance of this protein in the FA-treated group of dataset LC3 was 0.4 times 

that of control in dataset LC3. Both Erlin1 and BAG2 were detected in the Western blots as 

LC3 (1102)                     LC4 (928) LC3 (258)                     LC4 (216) 

Figure 61: Comparison of proteins identified in datasets LC3 and LC4. A) All proteins identified in the 
dataset; B) Proteins with p ≤ 0.05 and fold change ≥ 1.3. 

 
A) 

 
B) 
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discrete bands, but changes in abundance predicted by the LC-MS/MS data could not be 

validated (Figure 62A and 62B). This suggested that multiple testing correction applied to the 

dataset was able to rule out false positives in spite of magnitude of change and the p values 

assigned to it without the FDR correction. 

Similar negative results were obtained for mitochondrial 60 kDa heat shock protein (Hsp60) 

catalase and glutathione reductase (Figure 62C, 62D and 62E). These proteins were selected 

as targets for validation because all three contribute towards maintaining a stable redox 

state in the cell [359]. Catalase was identified in both datasets with its abundance in FA-

treated sample reduced to 0.63 and 0.77 times that of control for datasets LC3 and LC4 

respectively. The fold change in LC3 was assigned p < 0.05 and the CV associated within each 

group was less than 10 % for the control and inhibitor group. For dataset LC4, the fold 

change was assigned p > 0.05 and the CV for the normalized spectral counts assigned to 

catalase were 17 % for the technical replicates of the control and FA-treated group and 6 % 

for the inhibitor-treated group. In both datasets, it had more than 10 peptides assigned to it 

for all groups tested. The Western blot results support lack of statistical significance assigned 

to catalase. Hsp60 was also identified in both datasets with p < 0.05 and was chosen as a 

target because it plays an essential role in the folding of newly imported protein [360]. The 

changes in its abundance seen in the LC-MS/MS analysis could not be validated by the 

Western blots. The inclusion of glutathione reductase was also meant to serve as a 

corroboration of the results seen in the analysis of dataset LC1. 

Perilipin 2, FAS and DGAT1 were selected as target proteins involved in lipid metabolism. 

Perilipin 2 serves as a marker for LDs [291]; FAS is central to de novo synthesis of FA and 

DGAT1 synthesizes TAG which accumulate in the LDs. FAS was detected in all three samples. 

The LC-MS/MS data of dataset LC3 suggest there was almost no change in abundance, but 

dataset LC4 indicated that the abundance of FAS in the FA-treated sample was 1.3 times that 

of the control sample. The p value assigned to FAS in dataset LC3 was p > 0.05 for all three 

comparisons, while it was assigned p < 0.05 in dataset LC4. The Western blots supported the 

lack of change suggested in the data from LC3. The protein could be identified in Western 

blots as a distinct band with no change in abundance for any of the three categories tested 

(Figure 62F).  

DGAT1 was not detected in the LC-MS/MS data but this protein was included in the Western 

blots since the analysis included inhibitor-treated samples (Figure 62F). The challenge posed 

by the treatment was that of an excessive influx of exogenous FA. Given the preferential use 
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of exogenous FA by DGAT1, it would be vital in the assimilation of these FA into TAG [124]. 

The abundance of DGAT1, as reported in this thesis, was not affected by the influx of 

exogenous FA. The effect of the exogenous FA on the intracellular activity however remains 

to be determined. In vitro assays using microsomes as the enzyme source describe ‘overt’ 

and ‘latent’ DGAT activity contributing to the total DGAT activity [361] - the DGAT activity 

attributed to the intact microsome is termed ‘overt’ (cytosol-facing) activity [362] and the 

increase in DGAT activity after lysis is termed as the ‘latent’ (ER lumen–facing) activity. The 

latent activity is thought to be corollary to DGAT activity in the ER lumen [362]. The multi-

domain membrane topology  of DGAT1 is the rationale behind attributing it with ‘latent’ 

DGAT activity [362]. This would allow DGAT1 to initiate LD formation through localization of 

TAG synthesis on the ER membrane [274] and make it vital to the extent of lipid 

accumulation seen in HepG2 cells after the FA treatment. Data published by Wurie et al. also 

suggests that the majority of the overt DGAT activity in HepG2 cells can be attributed DGAT1 

[363]. While there is evidence to suggest that the overt and latent activity can be affected 

differently by ontogeny and hypolipidemic drugs [361, 364], the effect of exogenous FA on 

these activities has not been (to the best of my knowledge) described in literature and future 

experiments could shed light on this aspect.  

The Western blot results showed that irrespective of the magnitude of change and the p-

value assigned to it, the changes predicted by the LC-MS/MS data were not supported by 

Western blot quantification. This was further highlighted by the blots for perilipin 2. No 

peptides for perilipin 2 were detected in the control groups of either two datasets. It is one 

of the few proteins that has been identified in the FA-treated samples of all four datasets 

and has not been detected in the control samples of three of the four datasets described in 

this thesis. Verifying its absence in the control sample would have served as a satisfactory 

validation but the protein was identified in all samples of all the three groups by Western 

blot and the LC-MS/MS data for this protein could not be validated and (Figure 62C). Given 

its function as a marker for LDs, the abundance of perilipin 2 was further investigated by 2D 

electrophoresis and immunolabeling. 
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Figure 62: Western blots for validation of target proteins. Four biological replicates of each condition were tested. 
Actin was used as a loading control. Some images have been cropped for conserving space. The cropping is indicated 
by a line separating the target proteins. (Uncropped images in Appendix figure 72). * The bands for ERLIN1 and actin 
tend to overlap in 1D gels due to the small difference between their molecular weights. The two proteins were 
identified and quantified using secondary antibodies tagged with different fluorophores – Erlin1 was detected in the 
red channel using anti-rabbit tagged with AlexaFluor 647 while actin was detected in the green channel using anti-
mouse tagged with AlexaFluor555. 
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Figure 63: Quantification of Western blot bands. The bands detected in the blots shown in Figure 62 were 
quantified using ImageJ. The difference between the mean optical densities for protein bands detected in 
control groups were compared to that of the FA-treated group using a Student's t-test. None of the changes 
were statistically significant. 
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5.2.5. Further validation of perilipin 2 by 2D-electrophoresis  

Given the disparity in the LC-MS/MS data and the Western blot results, a third method was 

sought to support the observations made using either of the two methods. Perilipin 2 was 

selected as a target for this validation because it was exclusively detected in all but control 

samples by LC-MS/MS data in all datasets but the protein was detected in the control 

samples tested using Western blots. To rule out the Western blot results as a false positive, 

the presence of perilipin 2 in control cells was examined using immunohistochemistry. This 

section describes the results of this validation.  

5.2.5.1. Confirmation of antibody specificity for perilipin 2 

The antibody used to detect perilipin 2 was raised in rabbit against a synthetic peptide 

(Abcam product ab90212); this synthetic peptide is described by the manufacturer as having 

‘sequence similarity to the perilipin family’. The perilipin family consists of 5 proteins, and of 

these, the amino acid sequences of perilipin 2 (48 kDa) and perilipin 3 (PLIN3; 47 kDa) have a 

sequence homology of up to 43 % [365]. Given the sequence homology and negligible 

difference in molecular weight, differentiating between the two using one-dimensional 

electrophoresis and Western blots would be difficult if the antigen could not discriminate 

between the two proteins. A protein sample from FA-treated cells was therefore probed 

with the anti-perilipin antibody (ab78920) after separation by 2D gel electrophoresis to 

check the specificity of the antibody. 

The protein sample from FA-treated cells was separated in the first dimension using 

isoelectric focusing along a non-linear gradient of pH 3 to 11. The second dimension was 

separated on the basis of molecular weight. Perilipin 2 tends to have an isoelectric point 

near neutral pH of 6.72 [366], while PLIN3 has an isoelectric point around pH 5.3 [367, 368] 

with experimental evidence to suggest it could be as low as pH 4.71 [369, 370]. The reported 

isoelectric point for actin isolated from HepG2 cells ranges from 5.09 to 5.28 [371, 372]. 

Since only one spot (spot 2, Figure 64) was detected by the anti-perilipin antibody and its 

isoelectric point was more basic than that of actin, antibody ab78920 was shown to be 

capable of discriminating between perilipin 2 and perilipin 3, and spot 2 was inferred to be 

perilipin 2. This confirmed that the bands detected in the Western blots by antibody 

ab78920 were that of perilipin 2. 
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5.2.5.2. Immunolabeling of perilipin 2 in the cell 

Having confirmed the specificity of ab78920 for perilipin 2, the presence of perilipin 2 in 

untreated HepG2 cells was conclusively shown by using the same antibody for 

immunolabeling the protein in fixed cells. The presence of perilipin 2 in both FA-treated and 

untreated cells agreed with the Western blot results. 

  

 

 

 

 

 

 

 

 

Figure 65: Detection of perilipin 2 in HepG2 cells. The images show collapsed Z stacks of A) untreated HepG2 
cells and B) FA-treated HepG2 cells. The nucleus of the cells was stained with DAPI and appears as blue in the 
figure; the green spots represent perilipin 2 in the figure. 
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Figure 64: Detection of perilipin 2 after 2D separation. Spot 1 represents actin and spot 2 represents perilipin 2.  
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5.6. Summary 

LC-MS/MS data representing individual biological samples were analysed to identify 

significant proteins. Since no statistically significant changes were observed in dataset LC3, 

the biological replicates were pooled to generate dataset LC4. Functional analysis of the 

identified proteins suggested that the proteins were enriched in metabolic pathways and 

protein processing pathways of the ER. Using Western blots, the presence of many of these 

proteins in the various groups was confirmed but the changes in abundance suggested by 

the LC-MS/MS data could not be supported. The presence of perilipin 2 in control cells was 

detected by both Western blots and immunohistochemistry and so using perilipin 2 as a 

representative target protein, it was shown that the Western blot results were not false 

positive results.  
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CHAPTER 6: DISCUSSION  

6.1. Background overview 

NAFLD starts with simple steatosis and may progress to NASH and cirrhosis. While there is a 

view that simple steatosis and steatohepatitis may be two discrete conditions rather than 

stages of NAFLD [16], the inflammation accompanying steatosis in NASH is generally 

considered as the cellular response to the lipotoxicity associated with steatosis. Since not 

every patient with simple steatosis progresses to develop NASH, it was hypothesized that 

lipid accumulation in steatotic cells would trigger protective cellular mechanisms that would 

allow the steatotic cells to cope with the problem without aggravating the disease. To test 

this hypothesis, HepG2 cells were treated with 1 mM FA mixture and the proteomic changes 

induced by lipid accumulation investigated. The shotgun proteomics approach used in this 

project was aimed at providing an overview of the proteome and quantifying changes in 

protein abundance by label-free spectral counting using LC-MS/MS.   

6.2. HepG2 cells as a cell-culture model for lipid accumulation 

FAs are classified as saturated and unsaturated (monounsaturated and polyunsaturated) 

based on the nature of the acyl chain as their structure affects their biological functions. A 

mixture of two FA – oleic acid (C18:1) and palmitic acid (C16:0) - commonly found in the diet 

[373] and synthesized de novo in the cell [374] was tested for effects on HepG2 cells. A 

combination of treatment time and FA concentration was used to induce lipid accumulation. 

Stock solutions of 30 mM FA were used to make a 2:1 mixture of oleic acid and palmitic acid 

as described by Gomez-Lechon et al. [230]. In their study, Gomez-Lechon et al. used 

mixtures of FA with different ratios of oleic acid and palmitic acid and observed that 

palmitate alone led to acute toxicity while a mixture of oleate and palmitate was able to 

stimulate lipid accumulation seen in steatotic cells with minor toxic and apoptotic effects 

[230]. Using Nile red-based fluorimetric method, they reported lipid accumulation as high as 

6 times of control in HepG2 cells treated with the 1 mM FA mixture of oleate and palmitate 

(2: 1) for 24 h. In the current study, the extent of lipid accumulation induced by the 1 mM FA 

mixture of same composition after a 24 h treatment time was about 2.5 fold of control. 

Although this is less than reported by Gomez-Lechon et al., it is similar to that reported by 

Yao et al.[231]. The lack of standard model has led to FA-induced lipid accumulation being 

detected and described in different ways. Even when studies use the same method, the units 

used to express the values may differ (Table 19).  
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Table 19: Comparison of studies describing lipid accumulation reported in HepG2 cells after 24 h treatment 
time. The FA used as indicated as PA for palmitic acid and OA for oleic acid. 

 

The susceptibility of HepG2 cells to the toxic effects of FA also seems to vary between 

reports. In the current study, HepG2 cells treated with 1 mM FA mixture were able to retain 

about 76 % (± 2.6) of the metabolic activity of the untreated cells as measured by the MTT 

assay. Gomez-Lechon et al. have reported no toxic effect on HepG2 cells at concentrations 

less than 2 mM FA mixture but they do comment on the HepG2 cells being ‘more sensitive to 

FA than primary hepatocytes’. The cell viability reported by Yao et al. is not affected even 

after a 36 h treatment with 1 mM FA mixture. Based on my results, treatment of HepG2 cells 

with 1 mM FA mixture for 6 h was considered to represent a cell that accumulated lipid but 

was able to retain, in spite of the reported lipotoxicity of FA treatments, more than 90 % of 

the metabolic activity of the untreated control cells. This treatment was used to test the 

effect of DGAT inhibitors on lipid accumulation and to analyse of potential proteomic 

changes. 

6.3. Effect of DGAT inhibitors on lipid accumulation 

The DGAT enzymes carry out the final step in the formation of TAG through the glycerol-3-

phophate pathway – the two isozymes catalyse the esterification of FA to diacylglycerol to 

form TAG [376]. Based on this, assays that measure DGAT activity aim to quantify the TAG 

formed at the end of the reaction period [236]. The effect of DGAT inhibitors is consequently 

measured on terms of the TAG formed. The current project has made use of the ORO assay 

that stains and quantifies LDs. This provided an indirect measure of DGAT activity since the 

extent of lipid accumulation in the form of LDs has been shown to depend on the amount of 

TAG produced through the action of DGAT enzymes [377, 378]. Since the extended purpose 

Authors FA used Method Lipid accumulation reported as 

Gomez-Lechon 
et al. [230] 

1 mM OA: PA 
mixture (2: 1; v/v) 

Fluorimetric 
determination using Nile 

red 

Relative fluorescence intensity  of 5-6 
fold of control 

Yao et al. [231] 
1 mM OA: PA 

mixture (2 volumes: 
1 volume) 

Colorimetric estimation 
using ORO at 510 nm 

Absorbance of about 0.175 for FA-
treated cells and about 0.05 for 

control cells. 

Fluorimetric 
determination using Nile 

red 

Median geometric fluorescence 
intensity of about 300 for FA-treated 
cells and about 100 for control cells. 

Cao et al. [68] 108 μM PA 
Enzymatic assay kit  for 

TAG quantification 
Increase of 52.73 ± 7.1 µg TAG/ mg 

total protein 

Kuo et al. [375] 0.05 –   1 mM PA 
ORO-stained cells in 

micrographs 
Images of stained cells 

Cui et al. [233] 1 mM OA 
Colorimetric estimation 

using ORO at 405 nm 
Optical density of about 0.57 for FA-

treated cells. 
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of using DGAT inhibitors in this project was to mitigate steatosis in hepatocytes, the effect of 

inhibitor on the extent of lipid accumulation was deemed to be more suitable a parameter 

than the DGAT activity in the cell. DGAT activity was however measured using an in vitro 

assay that used microsomal preparations as source for DGAT activity.  

DGAT inhibitor A92 has been shown to be orally-active and selective for DGAT1 [124, 252]. 

Animal models have shown dose- dependent reduction in dyslipidaemia by A92 and, 

administered at 3 mg/kg, A92 can reduce the serum TAG by 53 % in hyperlipidemic hamsters 

[253]. In cell culture systems, A92 inhibits DGAT1 activity measured by the incorporation of 

FA into TAG. Velliquette et al. have reported an IC50 of 17 µM for A92 in HEK293H cells 

treated with [14C]-glycerol and 0.3 mM oleic acid for 5 h. The amount of [14C]- TAG was 

measured by liquid scintillation counting after separation using thin layer chromatography 

[366]. Tsuda et al. have treated HT-29 colon cancer cells and HepG2 cells with 0.2 µCi [ 14C]-

oleic acid for 30 min and measured the amount of radiolabelled TAG formed using thin layer 

chromatography [271]. A92 significantly reduced TAG formation at all concentrations tested 

in their assay. This is supported by the results described by Qi et al. in which A92 produced a 

dose-dependent reduction in the amount of labelled TAG produced after treating HepG2 

cells with 150 μM [13C]-oleic acid and 1 µM A92 for 2 h [124]. Labelled triolein was measured 

using a LC-MS method [367]. The A92 dependent decrease in TAG accumulation described in 

these studies could not be duplicated in my experiments. Although there was some initial 

success in cells sourced from ATCC, no detectable drop in lipid accumulation could be 

registered in cells sourced from the Malaghan Institute. No morphological differences could 

be ascertained between the cells from the two stocks and they showed the same extent of 

lipid accumulation when treated with the FA mix. However, genotyping the cells from the 

two stocks would be required to rule out any possible genomic changes that might 

contribute to the lack of effect of A92. 

Explaining this rather unexpected lack of effect has been made more difficult by the lack of 

available information on the mechanisms involved in the cellular uptake of A92. Since no 

receptor-dependent mechanism has been described in literature, it may be assumed that 

A92 may be able to enter the cell through passive diffusion on account of it being a small 

molecule soluble in DMSO [379]. Once inside the cell, the effect of the molecule depends on 

its intracellular stability. The stability of the molecule would depend on the extent to which 

the molecule is modified and/or metabolized before it can interact with the intended target 

– DGAT1. The stability of the molecule after uptake in HepG2 cells has not been described in 
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literature and needs further investigation. While the effect of the molecule has been 

demonstrated after oral administration [255], microsomal assays performed as part of this 

project demonstrated that the molecule could exert an effect in vitro without any 

modifications made by post-ingestion metabolism. The stability of A92 in stored stock 

solution was confirmed in this project; however, it may also be useful to test the stability of 

A92 in the culture medium to ensure its availability to the cells throughout the treatment 

period.  

The experimental design of the current project included the use of 100 µM A92 – a higher 

concentration of the inhibitor may be required to ensure intracellular concentration of A92 

is sufficient to bring about inhibition in the face of treatment with 1 mM FA. There is also an 

implicit assumption of the uptake of the molecule being greater than any possible expulsion 

by active or passive mechanisms. These two aspects were addressed by reducing the FA 

concentration to 0.25 mM and 0.5 mM to possibly improve the kinetics in favour of the 

inhibitor and cancelling the pre-incubation time before the treatment to ensure least 

possible time for efflux of the inhibitor from the cells. Neither change could produce a 

significant effect. The removal of BSA from the culture medium intensified the lipotoxic 

effects without improving the inhibitor performance.  

Besides the considerations described above, the perceived lack of effect may be because of 

the limited sensitivity offered by the ORO-based assay used to detect the lipid accumulation. 

To the best of my knowledge, there have no reported studies describing the effect of A92 

using the ORO assay. While the use of ORO assay offered the practical advantage of being 

able to provide physical quantification immediately after visual confirmation of lipid 

accumulation under the microscope, it is not likely to be as sensitive as measurements of 

radiolabelled TAG by thin layer chromatography or LC-MS measurements. Moreover, the 

results of experiments performed in the current project used unlabelled FA and no 

additional glycerol was added as substrate. Understanding the enzyme kinetics of A92 may 

help shed light on the case at hand.  Reducing the treatment time and concentrations 

further to those comparable to the radiolabelled assays would not have produced the extent 

of lipid accumulation required to mimic steatotic hepatocytes and hence were not tested.  

The second DGAT1 inhibitor tested – PF04 – was able to limit lipid accumulation in HepG2 

cells treated with 1 mM FA. Lipid accumulation in the presence of PF04 was about 20 % less 

than that observed in the absence of the DGAT1 inhibitor. PF04 has been reported to cause 

a 59 %  drop in plasma TAG in high fat-habituated Sprague Dawley rats when administered 
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at a concentration of 15 mg/kg [256]. Inhibition of TAG synthesis in HT-29 cells was 

measured using 0.01 % lauric acid (C12:0) and 50 µCi [3H]-glycerol. Similar to the methods 

that describe DGAT1 inhibition by A92, the amount of labelled TAG produced after a 6 h 

incubation was measured and the IC50 was reported to be 19 nM [131]. At 50 µM and higher 

concentrations, PF04 was able to reduce the lipid accumulation induced by the condition 

used for my experiment. Although direct comparison is once again made difficult by the 

difference in the experimental design and detection methods, the study by Dow et al. did 

express concern over the low passive permeability of PF04 suggesting that the distribution 

co-efficient might limit the cellular uptake of the PF04 in HT-29 cells. The passive 

permeability of PF04 in HepG2 cells has not been reported in literature to the best of my 

knowledge. However, since the effect produced by PF04 at 100 µM concentration was 

statistically significant, it was used to treat HepG2 cells and assess the proteomic changes 

induced on account of the lipid accumulation. 

6.4. Proteomic changes in HepG2 cells 

Steatosis observed in NAFLD patients, especially obese patients, has been attributed to 

alterations in adipose tissue and an imbalance between the intrahepatic production and 

removal of intrahepatic TAG [79]. Patients with NAFLD show increased de novo lipogenesis 

[380] and increased release of FA, especially palmitic acid from adipose tissue into the 

plasma [79]. This increased flux is on account of increased lipolysis in the adipose tissue and 

has also been associated with the insulin resistance observed in NAFLD patients [381]. 

Although the presence of unsaturated FA like oleic acid can attenuate some of the lipotoxic 

effects of saturated FA such as palmitic acid, both FA lead to lipid accumulation in the liver 

[230, 231, 382]. In the presence of both saturated and unsaturated FA, the incorporation of 

the unsaturated FA into TAG is promoted and serves as a protective mechanism against the 

lipotoxicity induced by saturated FA [53]. This has led to distinction between unsaturated FA 

being described as promoters of steatosis and saturated FA being described as lipotoxic 

[383]. Since non-esterified FA delivered to the liver contribute to almost half of the FA 

incorporated into hepatic TAG [384], a mixture of exogenous FA was used in this study to 

induce lipid accumulation that would simulate the effects of non-esterified FA on the liver of 

a NAFLD patient. Although the quantification of the proteins identified in the various 

datasets could be improved and requires further validation, the changes observed in the 

dataset are consistent with the NAFLD literature and are discussed in this section.  
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6.4.1. Lipid metabolism in FA-treated HepG2 cells 

About 60 % of the FA assimilated into TAG accumulated in the liver originates from the non-

esterified FA: de novo synthesis contributes about 26 % and diet contributes about 15 % of 

the FA [39]. Irrespective of their origin, FA need to be activated into acyl-CoA before they 

enter a metabolic pathway. This esterification is catalysed by a family of proteins called acyl-

CoA synthetases located on the ER and outer mitochondrial membrane; they require ATP, 

CoA and Mg2+ for their activity [385]. Over-expression of the acyl-CoA synthetase 4 (ACSL4) 

gene in the liver samples of obese patients with NASH and NAFLD has also has been 

reported [386, 387]. In the present proteomics study (dataset LC4), the abundance of ACSL4 

gene product - long-chain acyl-CoA synthetase 4 – along with acyl-CoA synthetase short-

chain family member 3 in FA-treated cells was more than that in control cells. Acyl-CoA-

binding protein is an intracellular acyl-CoA transporter that is capable sequestering cytosolic 

acyl-CoA [388]. The reduced abundance of this protein in FA-treated cell, if confirmed 

through further orthogonal validation, would suggest that regular functioning of proteins 

like carnitine-palmitoyl-CoA transferase and the ryanodine receptor [389] would also be 

affected by the acyl CoA esters that would have otherwise been sequestered by the acyl-CoA 

binding protein [390]. 

De novo synthesis of acyl-CoA in the cell is performed by fatty acid synthase (FAS) – a multi-

functional enzyme composed of two identical polypeptides that catalyse the synthesis of 

palmitate from acetyl-CoA in the presence of NADPH [391]. The proteomics data in dataset 

LC4 showed an increased abundance of this protein in FA-treated cells. However, the other 

datasets and the Western blot results did not show any change. The similar abundance of 

this protein in FA-treated cells and control cells indicates that de novo synthesis could be 

sustained in spite of exposure to excess amount of exogenous FA. The need to maintain de 

novo synthesis of FA could be explained in the context of a growing number and size of LDs. 

The final step of TAG synthesis is catalysed by the DGAT enzymes – DGAT1 and DGAT2. The 

two enzymes are characteristically different in terms of their topology, location and 

preference of FA [93]. DGAT1 preferentially uses exogenous FA while DGAT2, which has 

close association with SCD1, tends to preferentially use endogenous FA [124]. The de novo 

synthesis of FA is required for the continued synthesis of TAG by DGAT2. Since only DGAT2 

tends to translocate from the ER membrane to the single-layer membrane of the LDs [392], 

the TAG synthesized by DGAT2 may contribute directly to the growth and maturation of LD 

as seen in the results of the time-course experiments in chapter 3. The increased abundance 
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of coatomer proteins and ADP-ribosylation factor 1 in FA-treated cells of dataset LC4 

supports the observation of increased number of LD in FA-treated cells [60]. Sustained de 

novo synthesis of FA may be required to provide the substrate pool for DGAT2 and allow for 

the continued synthesis of TAG and enlargement of LDs. 

6.4.2. Increased mitochondrial metabolism 

Biological processes like the Krebs cycle and oxidation of FA are localized in the 

mitochondrion which then converts the reducing power generated in these processes into 

ATP through oxidative phosphorylation [393]. The HepG2 cells analysed in dataset LC4 

showed increased abundance of long-chain acyl-CoA dehydrogenase and 3-ketoacyl-CoA 

thiolase in the FA-treated cells. These enzymes catalyse the first and last step of a β-

oxidation and the reactions – facilitated by co-factors like FAD and Coenzyme A – are 

irreversible reactions [394]. The dehydrogenase catalyses the formation of a double bond 

between C2 and C3 of the FA to trans-Δ2-enoyl-CoA which in turn is converted to β-ketoacyl 

CoA through hydration and subsequent oxidation of the double bond [394]. The β-ketoacyl 

CoA is acted upon by 3-ketoacyl-CoA thiolase to form an acetyl-CoA molecule and an acyl-

CoA molecule that is two carbons shorter than the parent FA [394]. 

Although the proteomics data reported in this project needs further validation and 

additional experiments to corroborate the increase in β-oxidation, such an increase in β-

oxidation has been reported in NAFLD patients [395]. Given that impaired mitochondrial β-

oxidation has been shown to cause microvesicular steatosis [396], increased β-oxidation may 

be one of the coping mechanisms contributing to cell survival. The FA-treated sample in 

dataset LC4 also showed increased abundance of both citrate synthase and ATP-citrate 

lyase. These proteins play a role in the removal of acetyl-CoA from the mitochondria. The 

mitochondrial inner membrane is impermeable to acetyl-CoA  and so the acetyl moiety is 

transferred out of the mitochondria by an indirect shuttle system [397]. Citrate synthase, a 

mitochondrial enzyme, condenses acetyl-CoA and oxaloacetate to form the 6-carbon citrate 

which is transported out into the cytoplasm [398]. In the cytoplasm, ATP-citrate lyase 

cleaves the citrate to re-generate the acetyl-CoA [399]. NAFLD patients have elevated 

plasma citrate levels [400] and, given that citrate is also the first 6-carbon compound formed 

in the Krebs cycle, its elevation may explain the increased flux in Krebs cycle reported in 

another study of NAFLD patients [401]. It is of note that activation of citrate synthase also 

promotes TAG synthesis by increasing the availability of acetyl-CoA as the starting block of 

de novo lipogenesis [402].  
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The oxidation of FA also produces NADH and FADH2 that donate electrons to the respiratory 

chain and the electrochemical gradient formed is used to drive oxidative phosphorylation. 

Complex I subunit B13 and NADH-ubiquinone oxidoreductase 30 kDa subunit of Complex I 

were identified in the proteins of dataset LC4 and although their abundances need to be 

validated further, the FA-treated sample showed a 2.5 fold decrease in abundance. 

Confirmation of abundance changes and/or damage to the electron transport chain could be 

done by assessing the FA-treated HepG2 cells for damage due to oxidative stress and 

changes in mitochondrial morphology. Given that increased β-oxidation, oxidative stress and 

mitochondrial structural defects have all been reported in NASH patients showing 

mitochondrial structural defects [403], the contribution of the metabolite derived from β-

oxidation merits further study. 

6.4.3. Calcium signalling between mitochondria and the ER 

The changes in the mitochondria can have a cascading effect on the ER. The two organelles 

share a close association through a special ER domain called the mitochondria-associated 

membrane [404]. In fact, acyl-CoA synthetase isoforms of the rat liver including the rat 

homolog of long-chain acyl-CoA synthetase 4, have been reported to be localized in the 

mitochondria-associated membrane [405, 406]. Another key aspect of the relationship 

between the two organelles is the variety of physiological processes affected by the 

modulation of calcium signalling between the two organelles [407]. A surge in the cytosolic 

Ca2+ concentration can increase intra-mitochondrial concentration of Ca2+ and activate 

various mitochondrial enzymes involved in oxidative phosphorylation and enzymes of the 

Krebs cycle such as pyruvate dehydrogenase and α-ketoglutarate dehydrogenase [408]. 

Further, the mitochondrial aspartate-glutamate carriers Aralar1 and citrin are also 

stimulated and regulated by the cytosolic Ca2+ concentration [342, 409]. Of these two, the 

abundance of citrin in FA-treated cells of dataset LC4 was 2.2 times that in control cells. It is 

difficult to determine whether mitochondrial dysfunction is a cause or consequence of 

NAFLD [410] but evidence in literature suggests a calcium-mediated interplay between the 

ER and the mitochondria [411].  

The micro-environment in the ER lumen is characteristically different from the cytosol.  The 

redox state is more oxidized and it serves as the calcium reservoir for the cell [412]. The ER 

may have up to 3 mM protein-bound Ca2+ concentration with concentration of free Ca2+ 

varying from 1 to 400 µM [413]. Ca2+ ions released by the ER travel no farther than 500 nm 

before they are sequestered by a calcium binding protein on the ER membrane [414]. This 
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sequestering of Ca2+ creates a transient microdomain with a high concentration of Ca2+ 

around the ER calcium release channels [415]. Mitochondria sense the Ca2+ concentration 

and localize near these domains to facilitate the uptake of Ca2+ released by the ER [416-419].  

This proximity between the two organelles plays an important role in the transfer of Ca2+ 

between the ER and mitochondria. The concentration of Ca2+ in the mitochondria is in turn 

an important signal for the release of pro-apoptotic factors contained in the mitochondrial 

intermembrane space [420]. Reducing the Ca2+ concentration in the ER has been shown to 

reduce the transfer of Ca2+ to the mitochondria and attenuate the pro-apoptotic signals by 

reducing mitochondrial swelling and fragmentation [74, 421]. The reduced abundance of 

Ca2+-binding ER proteins like reticulocalbin-2, calumenin and 45 kDa calcium-binding protein 

in the FA-treated sample of dataset LC4 may be part of a protective mechanism that tries to 

reduce further stimulation of the mitochondria by the Ca2+ released from the ER lumen.  

6.4.4. Protein processing in the ER 

Calcium depletion also tends to induce transcription of a family of glucose-regulated protein 

genes that encode ER chaperones including Grp78 (glucose-related protein of 78 kDa) and 

endoplasmin [422]. These chaperones are highly-conserved ATPase enzymes of the HSP90 

chaperone family vital in the late stage folding of proteins [423]. Grp78 is a calcium-sensitive 

chaperone in the ER [424, 425] commonly referred to as BiP, the immunoglobulin heavy 

chain-binding protein [426]. The expression of Grp78 is affected by Ca2+ imbalances and it 

may be involved in ‘sensing’ the changes in Ca2+ concentration in the ER lumen [427]. Like 

Grp78, endoplasmin also serves as a sensor of Ca2+ concentration and binding of Ca2+ 

facilitates the association between the target peptides and the peptide-binding site in the N-

terminal domain of the protein [428]. The abundance of both chaperones was reduced in FA-

treated sample of dataset LC4. The reduced abundance of Grp78 is of particular importance 

given its role in the unfolded protein response. In addition to facilitating protein folding and 

regulating Ca2+ stores in the ER lumen, Grp78 also serves as a regulator of UPR [69]. In 

unstressed cells, Grp78 represses the UPR by forming a stable complex with ER 

transmembrane stress transducers PKR-like ER kinase (PERK) and inositol-requiring enzyme 1 

(IRE1). Misfolded proteins relieve this repression by causing a release of Grp78 from the 

complex and leads to the activation UPR signalling pathways [338]. 

The ER-resident, carbohydrate-binding chaperones calnexin and calreticulin along with their 

co-chaperones of the protein disulphide isomerase (PDI) family [330, 331] were also 
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identified in dataset LC4. While the abundance of calnexin in the FA-treated sample of 

dataset LC4 was 1.6 times of control, calreticulin and the PDI chaperones showed reduced 

abundance in the FA-treated cells. Calreticulin is localized in the ER lumen and, as a calcium 

binding protein, it serves as buffer and regulator of Ca2+ homoeostasis [429]. Its primary 

function is to act with calnexin and PDI co-chaperones to facilitate the proper folding of 

nascent glycoproteins [430, 431]. The calreticulin-PDI chaperone complex is only likely to be 

functional when the ER Ca2+ store is full [432, 433]. The PDI family members are 

multifunctional proteins that belong to the thioredoxin superfamily and catalyze the 

formation, isomerization, or reduction of disulphide bonds in nascent proteins [325, 326]. 

New members like thioredoxin domain-containing protein 12 (TXNDC12 also known as 

ERp18) are assigned to the PDI family based on their capacity to form disulphide bonds 

rather than break them [328, 329]. 

The proteomic changes discussed in this section describe the multifaceted nature of the 

changes induced by lipid accumulation in the cell. Targeted studies have been able to 

highlight the role of individual organelles, proteins and processes involved in the NAFLD and 

NASH. This study has taken a proteomics approach using FA-treated HepG2 cells and was 

aimed at being able to detect multiple parallel processes which, irrespective of the order in 

which they occur, contribute to the aggravation of stress and disease in the cell. The 

limitation imposed on all the changes described is the small number of protein identified and 

an even smaller number being quantified with statistical significance. Section 6.5 discusses 

the shotgun proteomics approach in light of the recent advances made in LC-MS/MS 

technology. 

6.5. Improving proteome coverage 

The success of proteomics has been driven by development of HPLC systems and mass 

spectrometers [434]. These advances have enabled almost complete identification and 

quantification of the yeast proteome [435]. The coverage reported for mammalian systems 

ranges from 4,000 – 6,000 protein groups (proteins distinguishable by identified peptides) 

[436, 437]. An indicator of the comprehensive coverage that has been achieved reported so 

far is the detection of 166,420 peptides with unique amino-acid sequence from HeLa cells by 

Nagaraj et al. [438]. Using pre-fractionation by gel-filtration and high-resolution LC-MS/MS, 

Nagaraj et al. were able to identify 10,255 different human proteins encoded by 9,207 

human genes in HeLa cells [438]. The role of sample preparation, analyte separation and the 

capabilities of the mass spectrometer are discussed in this section.  
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6.5.1. Sample preparation and separation of peptides 

Tissue samples are invariably heterogeneous and more complex than samples of cultured 

cell lines. The use of HepG2 cells for this project was intended to reduce the heterogeneity 

seen in liver tissue and thus simplify the analysis of the hepatocyte proteome. To ensure the 

comparison between samples was rational, the protein quantification for each dataset was 

verified by 1D gel electrophoresis and the spectral counts obtained for each protein were 

normalized with respect to the average total spectral count for the entire dataset. 

Normalization would ensure that the total spectral count in a dataset would be the same for 

all the samples compared and that the difference in the spectral counts of a protein could be 

attributed to the treatment and not a result of variation in detection of spectra.  

Different lysis buffers were also assessed to ensure the use of a buffer that would facilitate 

protein solubilisation. Since the number of proteins identified could not be increased by the 

use of different lysis buffers, under-sampling on account of simultaneous elution of analytes 

was considered a fundamental limitation in the LC-MS/MS strategy. Although extensive 

coverage of the yeast proteome using a 4 h high-resolution one-dimensional LC-MS run has 

been reported [439], identification 4,500 to 5,000 proteins of a human cell line has required 

8 h one-dimensional LC-MS runs with improved column packing [440, 441]. Many studies 

have also described multi-dimensional separation or pre-fractionation of samples as a 

strategy to increase proteome coverage [442]. Implementation of such a strategy could 

improve the number of proteins detected in a shotgun proteomics project such as this one 

by reducing overlap of analytes.  

6.5.2. Effect of instrument sensitivity and peptide-spectra matching 

The analysis of the separated peptides, assuming minimal overlap, can be controlled by the 

various LC-MS/MS settings used and the performance of the mass spectrometer in general. 

The instrument used for this project was an LTQ Orbitrap XL, an improved LTQ Orbitrap 

design introduced in 2007. The instrument includes a C-trap to provide better transmission 

of ions from the LTQ to the Orbitrap analyser and thereby improve sensitivity [443]. Various 

LC-MS/MS parameters described in chapter 4 were assessed and the final settings used 

improved the number of proteins identified. An important consideration to be made while 

comparing the proteome coverage in this project and those reporting several thousand 

proteins is the instrument used for generating the data. The LTQ Orbitrap technology is an 
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evolving technology and many studies with better coverage have used next-generation 

instruments [444, 445]. Instruments like the LTQ-Orbitrap Velos are capable of scan speeds 

of up to 5 Hz [444] as compared to 1 Hz at a resolution of 60,000 at 400 m/z. Using the 

‘design of experiments’, Andrews et al. have shown that optimization of instrument 

parameters allows for a significant improvement in the number of identifiable protein 

groups [446]. They were able to identify 570 protein groups in a S.cerevisiae sample using a 

LC run time of 85 min and the LTQ Orbitrap XL™ [446]. Using the LTQ-Orbitrap Velos™, 

Picotti et al. were able to generate a spectral library containing consensus spectra for 

100,815 peptides attributable to at least one of the 6,607 sequences in the S.cerevisiae 

proteome [447]. The improvement in the quality and quantity of data generated by the next-

generation mass spectrometers is therefore evident. Kalli et al. have also demonstrated how 

the Orbitrap Elite™ deliver higher identification rates than the older instruments by 

providing better scan speed, sensitivity, dynamic range and resolving power [448]. 

The number of proteins identified also depends on how many of the detected spectra can be 

assigned to a known protein by the search algorithms. In this project, an average of 36,500 

MS/MS spectra were detected for the three samples compared in dataset LC4 and of these, 

about 17 % [6,123 (± 424)] MS/MS spectra could be assigned to peptides using a tolerance of 

10 ppm for parent ion. The low percentage of assigned spectra does leave much to be 

desired – the unassigned spectra hold the potential to improve the number of proteins 

identified and contribute to the spectral counts of the peptides already assigned a protein. A 

case for this is made in the observations related to catalase. This protein was identified in 

both control and FA-treated samples of dataset LC3 and LC4. In dataset LC3, 13 peptides 

attributed to this protein were detected in each treatment sample but the cumulative 

spectral counts of the 13 peptides was deemed significantly different for the two treatment 

groups. Based on this, it was considered for validation using Western blot. The validation 

was of particular importance because the statistical significance observed for dataset LC3 

was not observed in dataset LC4 in spite of the two originating in the same biological 

material. The protein was detected in both control and FA-treated samples of Western blot 

and the validation supported the lack of significance observed in dataset LC4. The extent of 

unassigned spectra observed in the LC-MS/MS data may provide a possible explanation for 

the discord between the LC-MS/MS and Western blot data. A similar explanation may also 

be applied to the results observed for the mitochondrial 60 kDa heat shock protein 

attributed 49 peptides in control and FA-treated samples of dataset LC4. 
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One way of improving the number of assigned spectra would be to relax the identification 

parameters in the Proteome Discoverer workflow. Rabelo et al. were able to identify 14,138 

peptides which mapped to 4,756 proteins in transfected HepG2 using PatternLab for 

Proteomics software v 3.2 [449]. They performed peptide sequence matching using the 

Comet algorithm with a precursor mass tolerance of 40 ppm [449]. Of the 81 proteins 

reported as being differentially abundant, the abundance of one protein -Myristoylated 

Alanine Rich Protein Kinase C Substrate – was verified using RT-qPCR [450]. The use of 

relaxed identification parameters and validation using qPCR may be considered for future 

experiments since the data reported by Rabelo et al. was generated using a similar MS 

instrument (LTQ-Orbitrap XL™). It may also be worth noting that the data reported by Rabelo 

et al. was generated using the MS instrument at a resolution of 60,000 [449]; experiments 

reported in this thesis were performed at a resolution of 30,000.  

The process of peptide-spectra matching used in this project depended on a virtual database 

of peptides generated through in-silico tryptic digestion of proteins. The spectra generated 

in the LC-MS/MS experiments was then compared to this virtual database and assigned to a 

peptide based on the predicted in-silico digestion. The spectra may be left unassigned to a 

peptide if the peptide it originates from is absent in database of predicted peptides. This 

handicap and possible reason for the large number of unassigned spectra may be addressed 

by the comprehensive and exhaustive approach described by Picotti et al. in which they 

generated a spectral library for synthetic peptides generated for all known ORFs of the yeast 

genome [447]. This comprehensive peptide and spectral library was then used to match the 

spectra generated in discovery-led experiments to possible peptides. Such an approach 

could help identify the peptides to which the unassigned spectra belong. 

In addition to the unassigned spectra that could adversely affect the spectral counts 

assigned to peptide, the spectral counts are also affected by the proteins inference problem 

faced while assigning spectra to peptides of very closely related proteins. Protein inference is 

a computational and statistical process used to determine the sequence in which detected 

peptides ought to be aligned to identify a protein; closely related proteins tend to have 

homologous sequences which would give rise to peptides that could be assigned to either or 

both proteins by the search algorithms and this is commonly known as the protein inference 

problem [451]. The abundance of perilipin 2 in the four datasets highlights this problem. 

Perilipin 2 shares sequence homology with proteins of the perilipin family and peptides 

common to multiple proteins within the same family can skew the quantification of one or 



 

-143- 

more protein. Perilipin 2 was detected in FA-treated samples in all four datasets. It was 

absent in three of the four LC-MS/MS datasets but its presence in control sample detected 

only in dataset LC2. Western blots and immunohistochemistry showed that perilipin 2 was 

present in FA-treated as well as untreated HepG2 cells. The protein inference problem may 

be the underlying reason for a protein, physically present in the cell, being reported as 

absent in untreated cell samples.   

6.5.3. Statistical analysis 

The aim of this project was to identify proteins whose abundance had changed because of 

lipid accumulation and/or presence of DGAT inhibitors. In statistical terms, this meant the 

testing of a null hypothesis that the change in protein abundance was a random event not 

caused by lipid accumulation and/or the presence of DGAT inhibitors. Since each protein 

identified would have to be tested for this hypothesis, this meant simultaneous testing of a 

large number of hypotheses.  Depending on the experimental design, either Fisher’s exact 

test or t-test was used to determine the statistical significance of the difference in the 

quantitative value reported for a protein in the three treatment groups tested. Fisher’s exact 

test is based on the analysis of contingency tables where sample sizes are small. The test 

calculates the significance of the deviation from the null hypothesis with an exact method 

and does not rely on approximations that depend on the sample size. In Scaffold, this test is 

performed using a model discussed by Zhang et al.[452]. The same report also compared the 

false positive rate for the Fisher’s exact test and t-test and showed that false positive rates 

for all tests analyzed were low when the differences in spiked protein concentrations was 

large (5 to 10-fold). This included data from a single replicate for the Fisher’s exact test. The 

false positive rate for a 2-fold change was more than 10 % for the Fisher’s test; the false 

positive rate however, reduces with an increase in the number of replicates used to 

generate the pooled data. Using pooled data from three replicates, they were able to reduce 

the false positive rate to 3 %. The choice of statistical test, based on the analysis performed 

by Zhang et al., would depend on the number of replicates used and on whether they were 

pooled. For a study with three or more unpooled replicates, t-test generated the least 

number of false positives for 2-fold change detection and for a study of less than three 

replicates or a pooled sample, Fisher’s exact test was suggested to work well as long as the 

pooled data included sufficient number of replicates. 

Multiple testing corrections imposed a severe limitation on the interpretation of my results. 

It reduced the number of statistically significant protein changes identified in pooled 
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samples and ruled out any change as statistically significant for unpooled samples. These 

limitations may be discussed in the light of comments shared by Pascovici et al. who have 

described “multiple testing correction as a useful but blunt tools in the context of low 

power, medium-scale experiments” [453]. They suggest that factors such as the total 

number of proteins identified, the extent of fold change, cost-restrictions on the number of 

replicates used and undermining of true effects reduce the value of multiple testing 

corrections in a proteomics experiment [453]. The concept of multiple testing correction has 

been borrowed from other high-throughput areas like microarray data but the scale of 

information available through proteomics is not comparable. For example, Affymetrix 

human whole-genome microarrays can generate up to 47,000 transcripts [454] and variants 

while proteomics data generated using the current generation of mass spectrometers 

without pre-fractionation can have up to 5,000 proteins [441]. As suggested by Pascovici et 

al., only a small percent of proteins are likely to be differentially expressed and applying 

strict multiple testing corrections further could reduce the number such that further 

analyses may become difficult. They suggest that for experiments with 3 or 4 biological 

replicates, the effect size i.e. fold change needs to be at least four fold for the multiple 

testing corrections to eliminate false discoveries without discarding true effects [453]. Using 

a lysate of human cell mixed with lysate of differentially expressed yeast proteins with 

known fold changes, Wu et al. have shown that in experiments with a small number of 

replicates (n=3) and small fold changes, multiple testing corrections enforce low FDR but 

also discard true positives [455]. This problem is exacerbated when the number of true 

positives in the dataset is low to begin with.  

In spite of these drawbacks, the simulations run by Pascovici et al. confirm that in the 

absence of multiple testing corrections at a p ≤ 0.05, the FDR is considerably higher. The 

approach suggested by them in this scenario includes applying a fold-change cut-off that 

would reduce the FDR % on account of the effect size. In this project – proteins showing 

change in abundance with p ≤ 0.05 were further short-listed only those proteins that showed 

a fold change of 1.3. Western blot targets were chosen from this list for further validation. 

6.6. Summary of the proteomics changes observed 

Targeted study of changes associated with NAFLD have provided insights into the various 

molecular mechanisms that contribute to the disease and its progression. The aim of my 

project was to identify proteomic changes that represent these mechanisms in the FA-

treated HepG2 cell model and highlight the interplay among the mechanisms. The results 
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suggest that HepG2 cells exposed to excess FA manage to minimize the potential lipotoxicity 

of these molecules by incorporating them into TAG or breaking them down to acetyl-CoA. 

The evidence for TAG production is seen in the large number of LDs accumulating in the 

cytoplasm of the FA-treated cells. Increased abundance of enzymes contributing to β-

oxidation suggests the production of acetyl-CoA. The interplay between these two processes 

affects cellular homeostasis and the integrity of the organelles where these enzymes are 

located.  

Breakdown of FA through β-oxidation takes place in the mitochondrial matrix where the 

Krebs cycle takes place. The acetyl-CoA formed as the end product of β-oxidation can be 

incorporated into the Krebs cycle to form 6-carbon citrate and reducing equivalents. Citrate 

synthase, ATP-citrate lyase and citrin are part of the citrate-malate shuttle that facilitates the 

removal of acetyl-CoA from the mitochondrial matrix [456]. The increased abundance of 

these proteins seen in dataset LC4 suggests that acetyl-CoA may be transported out of the 

matrix and into the cytosol for production of FA through de novo synthesis. The unchanged 

abundance of fatty acid synthase in the proteomic study suggests that HepG2 cells may 

continue to synthesize endogenous FA despite the presence of excess FA in the medium. A 

targeted study of FAS activity in the presence of exogenous FA would be required to support 

this inference. These endogenous FA are the preferred substrate for DGAT2 – the 

acyltransferase that esterifies the FA to a diacylglycerol to form TAG that accumulates in LDs. 

The importance of DGAT2 in steatosis has been confirmed by Choi et al. who have shown 

that suppression of the DGAT2 gene in a rat model protected it against diet-induced 

steatosis [378]. Localization of DGAT2 on the membrane of LDs may help the maturation and 

growth of LDs and this may be in turn facilitate the preferential incorporation of endogenous 

FA into the LDs [59, 457]. DGAT1 – the isoform that is localized on the ER and uses 

exogenous FA as its substrate – may use these exogenous FA to initiate LD formation 

through the budding process in the ER. The FA in the ER may have a direct effect on the 

integrity of the ER membrane. Saturated FA not esterified into TAG may be incorporated into 

phospholipids which, if used as membrane precursors, could reduce the fluidity of the ER 

membrane [333, 458]. The possible consequences of this altered membrane composition 

include depletion of calcium and activation of the unfolded protein response independent of 

signals from the ER lumen [459, 460]. Reduced abundance in FA-treated cells of Grp78 and 

member of the Hsp70 family of chaperones, points to this trend [461]. In addition to Grp78, 
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other Ca2+-dependent chaperones like endoplasmin, calnexin and calreticulin were also 

identified in dataset LC4.  

The mitochondria contain a secondary store of Ca2+ in the event that the cytosol 

concentration of Ca2+ increases. A release of Ca2+ from the ER could lead to increased uptake 

of Ca2+ by the mitochondria and contribute to the mitochondrial deformity observed in 

NASH patients. Experiments with primary rat hepatocytes have shown that suppression of 

Ca2+ levels can protect the hepatocytes from the lipotoxicity induced by the redistribution of 

Ca2+ between the ER and mitochondria as a result of saturated FA [462]. The capacity of the 

mitochondria to manage this increased Ca2+ concentration may alter the balance between 

the pro- and anti-apoptotic signals contained within the mitochondria. Another factor 

contributing to mitochondrial stress may be the excess availability of electrons donated by 

NADH and FADH2 produced through β-oxidation and the Krebs cycle. Uncoupling of the 

electron transfer chain and thus oxidative phosphorylation has been proposed as a 

protective mechanism to increase proton leakage out of the mitochondria and limit the 

production of ROS that accompanies increased oxidative phosphorylation. Failure of such a 

protective mechanism could lead to increased ROS production and lipid peroxidation 

characteristic of the second hit in the progression of NAFLD.     

6.7. Conclusions 

Treatment of HepG2 cells with different concentrations of FA mixture produced a dose-

dependent increase in lipid accumulation and a concomitant modest decrease in cell 

proliferation. A 6 h treatment with 1 mM FA mixture induced a 40 % increase in lipid 

accumulation compared to control cells. The changes that accompany lipid accumulation 

include an increase in the number of LDs and altered abundance of proteins that affect the 

integrity and smooth functioning of the ER and the mitochondria. The growth of LDs may 

depend on sustained de novo synthesis of endogenous FA in spite of the availability of 

exogenous FA. Reduced abundance of Ca2+-binding proteins in the ER suggests that 

maintenance of Ca2+ concentration may determine the extent to which ER stress persists and 

propagates to the mitochondria.  

6.8. Future work 

Given the health burden associated with NAFLD, there has been a sustained interest in the 

molecular mechanisms involved in the disease. Blocking DGAT activity to prevent TAG 

formation is an approach that is of particular interest to this project. Key features of the 
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enzymes including their substrate preferences and the non-redundancy in their function 

have been described in literature, and the design of small-molecule inhibitors to block these 

enzymes has not only led to clinical trials of the drugs but also helped to show the 

importance of these enzymes in lipid metabolism. These small molecule inhibitors, however, 

were not very effective in the HepG2 cell culture system used in the current study. The 

current study differs from the reports describing beneficial effects of small-molecule 

inhibitors in experimental design as has been discussed and in this light, it may be beneficial 

to use an alternative to the inhibitors, such as the use of anti-sense oligonucleotides to 

suppress DGAT gene expression for future works that include treatment of cells with 

concentrations of FA in the millimolar range. An understanding of enzyme kinetics and the 

effect of DGAT inhibitors on the kinetics would serve academic purpose and help in 

characterizing the overt and latent DGAT activity observed in microsomal systems. 

The proteomics analysis of FA-treated cells suggested that the molecular mechanisms in the 

ER and mitochondria are critical for the protection or aggravation of the disease state. The 

disturbances in the ER described in this project included altered abundances of chaperones 

which would affect protein processing in the ER and possibly compromise the ER membrane. 

A compromised ER membrane in turn would affect Ca2+ signalling between the ER and the 

mitochondria. These associations could be verified by studies that include: 

 Identification and validation of proteins involved in the UPR. Kennedy et al. have 

described two approaches to measuring UPR signalling. The first approach uses qPCR to 

detect and quantify transcripts of UPR-induced genes, and the second approach uses 

Western blot-based analysis to study the UPR-induced proteins [463]. Given the limited 

success of Western blots in this project, selected reaction monitoring may also be 

considered for the qualitative and quantitative assessment of UPR-induced proteins. 

Among the different measures of ER stress discussed by Oslowski and Urano, UPR 

activation could be measured through Western blot-based analysis of IRE1α 

phosphorylation or qPCR-based detection of spliced XBP1 mRNA [464]. XBP1 is a 

transcription factor that acts down-stream of IRE1α in the UPR cascade. PDI and Grp78 

identified in this project have also been suggested as down-stream markers of UPR. 

 Ca2+ signalling between the ER and the mitochondrion has been well-studied. Deniaud et 

al. suggested that sustained accumulation of Ca2+ in the mitochondria on account of ER 

stress can lead to apoptosis [465]. A rapid increase in Ca2+ did not produce a similar 

response. Their study described the events in HeLa and colon carcinoma (HCT1160) cells 
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in which ER-stress was induced by thapsigargin and tunicamycin. Assuming that the 

changes in ER chaperones seen in the present study indicate possible ER-stress, a 

correlation between FA-induced ER stress and altered Ca2+ signalling as described by 

Deniaud et al. could further define the progression from NAFLD to NASH. 

 Oxidative stress and an altered redox environment have been cited as a component of 

the ‘second-hit’ that aggravates steatosis to NASH [466]. The uncoupling of oxidative 

phosphorylation and the electron transport chain has been suggested to serve as a 

protective mechanism to reduce ROS production and mitigate the oxidative stress. 

Further characterization of the redox environment in the cell would help in understanding 

the contribution of oxidative stress to the aggravation of disease. The characterization 

could include direct measurement of ROS and lipid peroxidation products. It could also 

include validation of the changes observed in dataset LC1 that indicated an increase in 

abundance of glutathione reductase and glutaredoxin 3. 

 Mega-mitochondria with crystalline inclusions are a common feature observed in liver 

biopsies of NASH patients [78]. Integrating the information available on Ca2+ signalling in 

the ER and ROS levels in the cell with an assessment of  mitochondrial morphology would 

help clarify how accumulation of LDs in the cytoplasm of a hepatocyte proceeds to 

inflammation, cell death or progressive liver damage [37]. This information would help 

identify potential new therapeutic approaches to control NAFLD and prevent its 

conversion to NASH, cirrhosis and end-stage liver failure. 

 Sequential window acquisition of all theoretical mass spectra (SWATH), a technique 

recently developed by Huang et al.[467], couples data-independent acquisition with 

peptide spectral library match in manner similar to selected or multiple reaction 

monitoring methods. The method relies on a preliminary discovery run to map spectra to 

fragment ions and thus generate a library which is used to identify and accurately 

quantify target proteins. Although this technique has only been implemented in the next-

generation ABSciex MS instruments, it holds the potential to conclusively validate the LC-

MS/MS data generated in my experiments. Proteomics information and spectral data 

generated through label-free shotgun experiments described in this thesis have the 

potential of being the reference ion spectral libraries.  
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APPENDIX 

 

Table 20: File format used by software for proteomics analysis 

Programme File format Purpose 

Xcalibur for LTQ-Orbitrap XL .raw Generate LC-MS/MS data 

Proteome Discoverer .msf Protein identification 

Scaffold .sf3 
Label-free quantification using spectral 

counting 

MS Excels .xlsx 
Presenting proteins lists and functional 

analysis in spreadsheets 

 

Table 21: Organization and description of supplementary content in the electronic form. Due to the large file 
size and the number of files, the LC-MS/MS data and the protein identification data has been made available 
through online repositories. List of identified proteins are best presented on spreadsheets for the want of 
multiple columns and rows. This table outlines the contents of the folders to help navigate to the required file. 
Information for each dataset is contained within the name-bearing folder and all folders are organized along 
the same lines unless indicated otherwise. 

Folder name Description of contents 

Scaffold Label-free quantification performed in Scaffold  

Consensus list An .msf file was generated using all LC-MS/MS files for a given 
biological replicate as input and the list of proteins identified is 

presented in the .xlsx files. 

LC1_Pooled.xlsx Proteins identified and quantified in Scaffold for dataset LC1. 

LC2_Unpooled.xlsx Proteins identified and quantified in Scaffold for dataset LC2. 

LC3_Unpooled.xlsx Proteins identified and quantified in Scaffold for dataset LC3. 

LC4_Pooled.xlsx Proteins identified and quantified in Scaffold for dataset LC4; 
List of protein enriched in GO and KEGG pathway. 

‘Analysis of technical variance in 
dataset LC4 

.sf3 and .xlsx files to compare the technical replicates of each 
pooled sample 
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Figure 66: Lipid accumulation over 24 h in control cells. 
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Figure 67: Lipid accumulation over 24 h in HepG2 cells treated with 0.25 mM FA mixture. 
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Figure 68: Lipid accumulation over 24 h in HepG2 cells treated with 0.5 mM FA mixture. 
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Figure 69: Lipid accumulation in HepG2 cells treated with 2 mM FA mixture. 
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Figure 70: Lipid accumulation in HepG2 cells treated with 3 mM FA mixture. A large number of lysed cells are observed at 24 h. 
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Figure 71: Uncropped images of Western blots for target proteins of dataset LC1. 

250 

150 

100 

75 

 

50 
 

37 

 

25 

20 

15 
10 

250 

150 

100 

75 

 
50 

 

37 

 

25 

20 

15 

10 



 

-184- 

 

 

 

 

Control         FA              PF04 
Control           FA              PF04 Control               FA              PF04 

 
Hsp60 

 
PLIN2 
 

Actin 

Erlin1 
 
Actin 

Actin 

 
BAG2 

Control         FA              PF04 
Control           FA              PF04 Control               FA              PF04 

FAS 
 
 
 
 
 
 

 
DGAT1 
 
Actin 

GSR 
 

 
Actin 

FAS 
 
 
 
 

 
Catalase 
 

 
Actin 
 

 
BAG2 

 
FAS 

Figure 72: Uncropped images for Western blots of target proteins from dataset LC3 and LC4. 
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