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ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a manifestation of the metabolic syndrome in the
liver. It is marked by hepatocyte accumulation of triacylglycerol (TAG) rich lipid droplets. In
some patients, the disease progresses to non-alcoholic steatohepatitis (NASH), characterized
by cellular damage, inflammation and fibrosis. In some cases, cirrhosis and liver failure may
occur. However, the pathogenesis of NAFLD is still unclear. The present project is based on
the hypothesis that hepatocytes are equipped with mechanisms that allow them to manage
lipid accumulation to a certain extent. Continued or increased lipid accumulation beyond
this triggers molecular mechanisms such as oxidative stress, lipid peroxidation and cell death
that aggravate the condition and cause disease progression. The aim of this project is to
study the effects of lipid accumulation on the cells using proteomics approach to identify

proteins involved in the disease progression.

A cell culture model was used in the study. HepG2 cells, a human liver carcinoma cell line,
were treated with a mixture of fatty acids (FA) to induce lipid accumulation. The lipid
accumulation in HepG2 cells was measured with Oil red O assay and the effect of lipid
accumulation on the proliferation of the cells was measured using an MTT cell proliferation
assay. HepG2 cells treated with 1 mM FA mixture for 6 hours induced lipid accumulation 1.4

times of control with 90% of cell proliferation capacity of the control cells.

The final and the only committed step in TAG biosynthesis is catalysed by acyl-CoA
diacylglycerol acyltransferase (DGAT) enzymes. To investigate if limiting lipid accumulation in
HepG2 cells would prevent molecular mechanisms of pathogenesis, inhibition of DGAT by
small molecule inhibitors was performed. Among the three DGAT inhibitors (A922500,
PF06424439 and PF04620110) tested, PF04620110 reduced the lipid accumulation to 1.2
fold of the control cells when they were treated with 100 uM of the inhibitor in the presence

of 1 mM FA mixture for 6 h.

Proteomic analyses were carried out for the control, FA-treated and inhibitor-treated cell
groups to identify protein changes in the abundance. Functional analyses of the changed
proteins identified suggest that lipid accumulation tends to adversely affect the functioning
of the ER and the mitochondria. A complex interplay between the two organelles, possibly
mediated by Ca?* signalling may be vital in ensuring cell survival. PF04620110 was able to

counter the FA induced changes in the abundance of some proteins involved in the



metabolic processes but it had limited effect on the ER chaperones whose abundance in the
inhibitor-treated sample was comparable to that of the FA-treated sample. These data
provided important information for future discoveries of biomarkers and molecular

mechanisms involved in the progression of NAFLD.
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CHAPTER 1: INTRODUCTION

1.1. Conception of this project

Non-alcoholic fatty liver disease (NAFLD) is a disease state that starts with steatosis
characterised by lipid accumulation in hepatocytes and progresses sometimes irreversibly to
non-alcoholic steatohepatitis (NASH) to damage as a result of hepatic steatosis with
inflammation and subsequent fibrosis and cirrhosis [1]. While all patients with NAFLD show
simple steatosis, only some patients develop chronic hepatic inflammation which leads to
increased mortality [2, 3]. This project aims to characterize the proteomic changes that

accompany lipid accumulation in the cell.
1.2. Prevalence of non-alcoholic fatty liver disease

As of 2014, the World Health Organization has estimated the number of overweight persons
to be 1.4 billion adults and about 600 million of these were categorized as obese [4]. Modern
lifestyle is marked by increased caloric intake, decreased mobility, (and a paradoxical
demand for slimmer body silhouettes) and the consequence of this is a widening waistline
which, at the cellular level, is a result of lipid accumulation in adipose tissue [5]. The
accumulated lipids are largely triglycerides (TAGs) sequestered into membrane-bound
cytosolic lipid droplets (LDs)[6]. Morbidities more commonly referred to as the metabolic
syndrome are known to accompany ectopic lipid accumulation in the liver, skeletal muscle,
and pancreas [7]. In this context, NAFLD is widely considered as the manifestation of the
metabolic syndrome in the liver and is increasingly being recognized as a risk-factor for end-
stage liver diseases [8, 9]. Systematic review and meta-data reports on the epidemiology and
natural history of NAFLD pegs the prevalence of this problem to be between 10 - 45 %
depending on the population and the method used to establish the diagnosis [10, 11]. The
prevalence of NAFLD in New Zealand has not been examined yet but considering 31 % of the
adult and one in nine children between the ages of 2 and 14 years have been reported obese
in New Zealand Health Survey 2014/15 [12], the NAFLD burden could be an emerging health
care issue [13]. The close association between obesity and NAFLD [14, 15] is likely to

increase these numbers as the obesity pandemic reaches new global highs [4].
1.3. Progression from NAFLD to NASH

NAFLD has been defined as a complex, non-linear, metabolic liver disease with two distinct

phases — simple steatosis and NASH [16]. Simple steatosis is considered to be the onset of



NAFLD and is marked by excessive lipid accumulation in the liver in the absence of causes
such as drugs, toxins, excess alcohol intake (>30 g/day in men and >20 g/day in women) and
hepatitis due to viral infection or autoimmune problem [17]. NASH is characterised by
excessive fat accompanied by liver cell injury and inflammation [18]. Simple steatosis has
often been described as benign [19] with most patients not progressing to NASH [20]. Of
those who do develop NASH, not everyone incurs progressive liver damage to develop
fibrosis and necrosis [21]. About 25 - 40 % of patients with NASH show disease progression
with increased risk of hepatocellular carcinoma even without cirrhosis (Figure 1, [22-24]).
There has also been a suggestion to consider NASH and simple steatosis as independent but
coinciding events since patients with NASH have been known to have inflammation without

any or much steatosis [16, 25].

Improved diagnosis for distinguishing NASH from simple steatosis would be the key to
distinguishing between the two. Non-invasive techniques like imaging and detection of
biomarkers have been studied as tools to predict steatosis, NASH and fibrosis but each has
its limitations in being able to diagnose the problem [26]. Liver biopsy is the gold standard of
diagnosis and criteria used for histological scoring of the biopsy tissue are still being fine-
tuned [27-29]. The intrusiveness of the biopsy-led diagnosis procedure and the
asymptomatic nature of simple steatosis frequently make detection of NAFLD incidental
[30]. Even when the diagnosis is made, the biopsy-led approach relies heavily on histology

which provides very limited information about disease progression [31]. Although risk

Non-alcoholic fatty liver disease
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Figure 1: Schematic representation of disease progression in non-alcoholic fatty liver disease. Most patients with simple
steatosis do not progress to steatohepatitis (NASH) and of the patients with NASH, less than half progress to irreversible liver
damage in the form of fibrosis and cirrhosis [22-25]. However, cirrhosis significantly increases the risk of hepatocellular
carcinoma (HCC).



factors like lifestyle and genetic predisposition are well-defined disease determinants [32,
33], the role and interplay of complex factors in disease progression at the cellular level is

still being explored [34, 35].
1.4. Factors affecting disease progression

Drawing on the commonalities between the NAFLD and its alcohol-induced variant, C. P. Day
proposed the ‘two-hit’ theory in which the excess lipid accumulation in the liver is the first
hit which when left untreated, escalates to NASH and fibrosis as a result of the second hit
[36]. The second hit is described as a combination of oxidative stress, endotoxin-mediated
cytokine release and immunologically mediated mechanisms [36]. Further investigations into
the molecular mechanisms of NAFLD have led to the notion of ‘multiple, parallel hits’ [37].
These hits, whether sequential or parallel, are brought about by complex interactions
between intra-cellular factors affecting the hepatocytes and the environmental factors, host

genetics and signals from other organs the affect the liver.

The characteristic feature of NAFLD is the increased accumulation of lipids in the
hepatocytes and non-esterified fatty acids (FA) are the biggest contributors to this
accumulation [38]. Almost two-thirds of the FA incorporated in the accumulating TAG are
considered to be delivered to the liver on account of excessive lipolysis in the adipose tissue
[39]. The environmental factor that contributes the most to this process is the dietary intake
and the composition of the diet. This is evident in the high correlation between obesity and
NAFLD [40]. While excessive consumption of high calorie diet is the most common
underlying risk factor, inclusion of high amount of certain types of FA and fructose in the diet
also increase the risk of developing NAFLD. The lipotoxicity of FA depends on whether it is
saturated and unsaturated [41] and diets rich in saturated FA tend to be more harmful than
those with monounsaturated or polyunsaturated FA [42]. Most of the naturally occurring
unsaturated FA are cis isomers, but in partially hydrogenated vegetable oils, they may
undergo cis-trans isomerization to form trans-FA that tend to have physical properties
similar to saturated FA and therefore have similar deleterious effects when consumed [43].
The position of the double bond on the FA chain also seems to play a role in the toxicity they
exhibit — the patients with NAFLD tend to have more n-6 FA (the sixth carbon-carbon bond
from the methyl end is a double bond) than n-3 FA in the liver [44, 45]. Besides FA, diets with
high fructose have also been shown to increase lipid accumulation in non-adipose tissues

and increased the intrahepatic lipid content [46, 47].



The extent to which the high-calorie diet affects the individual is also likely to be affected by
genetics. While no individual genetic locus has been identified as the cause of the problem, a
genome-wide association study has shown some polymorphisms in the patatin-like
phospholipase domain containing 3 gene increases the susceptibility of obese children and
adolescents to diet-induced hepatic steatosis [48]. Another study has shown that ethnicity
may as well be a part of the contributing factors — African-American children with obesity
were reported to have the same extent of lipid accumulation in the liver as children of
Caucasian or Hispanic roots but the extent of hepatocyte cell death was lower in the first
cohort than the other two [49]. Given that disease progression varies in speed and severity
among the NAFLD patients, it has been suggested that progression from simple steatosis to
NASH may depend on how long and how strongly the adaptive mechanisms induced by the
lipid accumulation can last [50]. Hepatocyte cell death and activation of the innate immune
system have been shown to play an important roles in the progression of simple steatosis to

NASH in both animal models and humans (reviewed in [51]).
1.5. Molecular mechanism of disease progression

Accumulation of TAG-rich LDs in the cytoplasm is a characteristic feature of NAFLD at the
cellular level. The metabolic processes that contribute to this accumulation include de novo
synthesis of FA in the cytoplasm, carbohydrate metabolism and FA breakdown in the
mitochondria. The enzymes of the Kennedy pathway mainly localized on the endoplasmic
reticulum (ER) membrane carry out the sequential esterification of acyl-CoA to the glycerol-
3-phosphate backbone to produce TAG. The mitochondria and the ER are therefore also the
organelles most affected by the lipid accumulation. While the lipid accumulation is
considered as the ‘first hit’, the ‘second hit’ often manifest as ER stress and/or oxidative

stress originating in the mitochondria.
1.5.1. First hit: Accumulation of triglycerides in lipid droplets

Although excessive lipid accumulation marks the onset of the disease, the sequestering of
the FA into neutral TAG compartmentalized in LD has been mooted as an adaptive response
to manage the lipotoxicity of non-esterified FA [41, 52, 53]. Although the exact mechanism
of how the TAG would be packaged into the LDs is not known, according to one model, the
formation of LDs starts with the deposition of neutral lipids between the leaflets of the ER
membrane and as the droplet grows, it buds towards the cytoplasm, pinching away with it a

leaflet of the ER bilayer that now becomes the phospholipid monolayer of the LD (Figure 2,



[54]). These nascent LDs may grow into larger LDs either through coalescence of the nascent
droplets or through synthesis of neutral lipid [55, 56]. The size of LD is managed by the
concerted efforts of lipases, autophagy and mitochondrial fusion [57, 58]. Proteins like those
of the Kennedy pathway are known to translocate from the ER membrane to the LD — these
translocation are thought to be facilitated by ER ‘bridges’ that provide a link between the
two organelles [59]. A protein complex formed by ADP-ribosylation factor 1 and Coat Protein
Complex | (Arf1/COPI) has been proposed as the facilitator of such connections [60, 61]. The
presence of such proteins also allows for localised TAG synthesis in LD and so a cell may have
two distinct LD subpopulations depending on the localization of these protein [59]. Given the
dynamic role of LDs in fat homeostasis (reviewed in [62]) and the proximity of LDs to the ER,
it is becoming increasingly evident lipid accumulation would have major effects on cell

function and increase risk of developing metabolic diseases [63].

The close connections between the LDs and ER have also been investigated for the better
understanding of ER stress — numerous reports suggest ER stress leads to lipid accumulation
and that the LDs may also act as buffers for FA and phospholipids that help maintain ER

homeostasis [64-67].
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Figure 2: Schematic representation of LD formation. 1. Synthesis of TAG is catalysed by enzymes on the ER
membrane. 2. Accumulation of TAG between the two leaflets of the ER bilayer leads to the distended of the
cytoplasmic leaflet. 3. The cytoplasmic leaflet continues to bulge as more neutral lipids are deposited in the
nascent LD before budding takes place. 4. The cytoplasmic leaflet of the ER membrane encloses the neutral
lipids and forms a LD [55].

1.5.2. ER stress

In addition to being the site of TAG synthesis, the ER is also the protein processing hub of the
cell. The protein processing includes post-translational modifications such as N-linked
glycosylation, disulphide linkages and quality control to ensure the correct folding of the
protein. Lipid accumulation observed in NAFLD has been reported to disrupt this critical ER

function. This disruption originates in the capacity of saturated FA to induce various



components of unfolded protein response (UPR), an adaptive mechanism that allows the ER
to cope with stress [68]. UPR is activated through three key proteins — inositol-requiring
kinase 1 (IRE1), protein kinase-like ER kinase (PERK) and activating transcription factor 6
(ATF6). They are transmembrane proteins localized in the ER membrane and they serve as
sensors of ER stress. In an unstressed cell, the three sensors are bound by 78kDa glucose
regulatory protein (Grp78), an ER resident chaperone that also serves as a regulator of UPR.
The binding of Grp78 to IRE1 and PERK prevents the oligomerization and auto-
phosphorylation of these proteins and thereby prevents the activation of UPR [69]. Binding
of Grp78 to ATF6 retains the latter in the ER lumen; dissociation of the two leads to the
translocation of ATF6 to the Golgi. In the Golgi, ATF6 is modified into an active transcription
factor that can activate genes associated with UPR [70]. Through the various downstream
proteins and genes affected by the activation of IRE1, PERK and ATF6, the UPR functions to

restore ER homeostasis.

Maintenance of high Ca?* concentration in the ER lumen is also an important part of ER
homeostasis. The ER is a major site for Ca%* storage in the cell - while the concentration of
Ca?* in the cytosol has been estimated to be about 0.1 pM, the Ca?* concentration in the ER
lumen is in the millimolar range [71]. This pool of Ca?* facilitates electrostatic interaction
between proteins as is evident by the calcium-dependency of ER chaperones like calnexin
and calreticulin [72]. Mobilization of this Ca®* reservoir also plays a role in intracellular
signalling like the pro-apoptotic trigger of Bak/Bax regulated release of Ca%* from the ER [73].
In fact, the regulation of Ca?* concentrations and signalling between the ER, mitochondria
and cytoplasm has been proposed as an additional trigger of apoptosis [74]. In addition to
the Ca%* mediated signals, failure of UPR to cope with the stress also leads to pro-
inflammation and pro-apoptotic signals like activation of c-Jun terminal kinase — the
activation of which differentiates NASH patients from those of NAFLD with simple steatosis

[75, 76].
1.5.3. Mitochondrial dysfunction

Metabolic adaptations including increased oxidation of FA in the mitochondria have been
proposed as coping mechanism setup to limit lipid accumulation seen in NAFLD [77].
Patients with NAFLD tend to have mega mitochondria with inclusion bodies and loss of
cristae [78]. This has been proposed as an adaptive response to accommodate the increased

transport of FA to the liver also reported in patients with NAFLD [79]. Such mitochondrial



dysfunction can be a major source of reactive oxygen species (ROS) which can propagate the
deleterious cascade of harm through lipid peroxidation [80]. ROS are highly reactive and
have short half-lives [81]. They are capable of initiating lipid peroxidation that leads to the
formation of aldehyde by-products like trans-4-hydroxy-2-nonenal and malondialdehyde

that have much longer half-lives and can amplify the effects of oxidative stress [82, 83].

The aggravating factors described in this section — triggering UPR, imbalance of pro- and
anti-apoptotic signals, signal transduction by Ca%* and mitochondrial dysfunction are all in
themselves complex biological events with a number of participating and affected proteins
reviewed in [84] and [51]. Given the global impact of these disruptions and the number of
proteins that could potentially contribute to disease progression, the current study has used

a proteomics approach to study the changes that accompany lipid accumulation.
1.6. Role of DGATSs in triglyceride synthesis

Although accumulation of lipid is a feature of NAFLD and as such poses risks to well-being,
the intended evolutionary purpose of neutral lipids like TAG is to function as energy-dense
storage molecules that allow a cell to survive during periods of reduced nutrient availability
by providing membrane building blocks like FA or sterols [85]. Precursors like non-esterified
FA, if not sequestered, have adverse effects on membrane integrity [86] and fatty alcohols
such as sterols, retinols, and diacylglycerols may set off a plethora of reactions in their
capacity as secondary messengers of transcriptional activators [87]. This makes the turnover
of TAG a critical factor in maintaining health [88]. The sequestering of these molecules into
neutral TAG compartmentalized in LD has been mooted as an adaptive response to manage
the lipotoxicity [41, 52, 53, 89]. Given the role of TAG-rich LD in NAFLD, diacylglycerol
acyltransferase 1 and 2 (DGAT1, DGAT 2) — enzymes that add an acyl moiety to diacylglycerol
to form TAG — have been considered possible targets of intervention. TAGs are synthesized
through step-wise esterification of acyl moieties to a glycerol-3-phosphate backbone via the
Kennedy pathway [90], supplemented by the monoacylglycerol pathway that re-esterifies

hydrolysed TAG (Figure 3, [91]). Both pathways are used by hepatocytes [92].
1.6.1. DGAT genes

DGAT1 and DGAT2 are genes expressed ubiquitously in tissues such as intestine, adipose
tissue and liver. Despite the proteins catalysing the same biochemical reaction, the DGAT
genes share no significant sequence homology and belong to different gene families [93].

The two genes have evolved separately and lend their names to their respective gene



families [94]. Figure 4 generated using ClustalW and PHYLIP shows the phylogenetic tree for
these genes [95, 96]. Human DGAT1 has been mapped to human chromosome 8 by
fluorescence in situ hybridization [97] and is now known to be located at position 8q24.3
[98]. The DGATI1 family includes the gene for DGAT1 and the two genes ACAT1 and ACAT2
that encode their respective enzymes with acyl-CoA: cholesterol acyltransferase activity [99].
In fact, the similarity between the DGAT1 and ACAT genes was used to identified DGAT1
through screening of expressed sequence tag clones homologous to the conserved C-
terminus of ACAT [97]. Synthesis of TAG in Dgat -/- mice suggested the presence of another
gene product with DGAT activity and this led to the identification of gene encoding a protein
then named DGAT2. This gene had no sequence homology with any known genes of the
DGAT1 family and the newly identified gene was designated as DGAT2 [100]. The human
DGAT2 gene located on chromosome 11g13.5 [98] and it is part of the DGAT2 gene family
that includes three monoacylglycerol O-acyltransferases encoded by MOGAT1, MOGAT2 and
MOGAT3 [101, 102], and two acyl-CoA: wax alcohol acyltransferases encoded by AWAT1 and
AWAT2 [103]. The DGAT2 family is suggested to have arisen by duplications of ancient gene
tandem repeats via inter-chromosomal or genome duplications as well as further local
(single) gene duplication and loss events [104]. The homology in nucleotide sequences is also
seen in the amino acid sequences - human MGAT3 possesses significant DGAT activity and
has an amino acid sequence which is 49, 44, and 46 % identical to that of DGAT2, MGAT1
and MGAT2 respectively [105-107]. Given the role of the DGAT enzymes in lipid metabolism,
the mutations and polymorphisms in the DGAT genes have been studied for their role in

predisposition to obesity and metabolic syndrome.

A German study assessing the benefits of a lifestyle intervention programme aimed at
reducing adiposity and preventing Type 2 diabetes has reported that single nucleotide
polymorphism (SNP) in DGAT2 dampened the effects of the intervention. Although all
participants showed a similar increase in insulin sensitivity, individuals with SNP rs1944438
in DGAT2 showed a smaller decrease in liver fat than those without the SNP [108].
Polymorphisms identified in human DGAT1 have not been conclusively linked to beneficial
effects like lower body mass index [109, 110] but a splice site mutation in the gene has been
shown to be a rare cause of a congenital diarrheal disorder, an extremely rare but severe

recessive disorder characterised by hyperlipidaemia and protein-losing enteropathy and very
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Figure 3: Schematic representation of TAG synthesis. Enzymes of the Kennedy pathway the
monoacylglycerol pathway facilitate sequential esterification of the glycerol-3-phosphate derived from
the glycolysis precursors. The acyl-CoA esterified into TAG may be originate in exogenous FA or be
synthesized de novo in the cell from acetyl CoA. Key- GPAT: Glycerol-3-phosphate acyltransferase;
AGPAT: Acyl-glycerol phosphate acyltransferase; DGAT: Diacylglycerol O-acyltransferase; MGAT:
Monoacylglycerol O-acyltransferase.
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Figure 4: Phylogenetic tree of the DGAT families. The protein sequences of each protein was submitted to
Biology Workbench (http://workbench.sdsc.edu) in fasta format for multiple sequence alignment using the
ClustalW algorithm [82]. The aligned sequences were converted into the phylogenetic tree using
Drawgram algorithm which is part of PHYLIP (Phylogeny Inference Package, version 3.5c¢, distributed by the
author J. Felsenstein of University of Washington, Seattle, USA) [83]. Protein sequences were retrieved
from UniProt KB using accession numbers P35610, 075908, Q58HT5, Q6E213, 075907, Q96PD7, Q96PDS6,
Q3SYC2 and Q86VF5. Key- MGAT: Monoacylglycerol O-acyltransferase, AWAT: Acyl-CoA wax alcohol
acyltransferase, DGAT: Diacylglycerol O-acyltransferase, ACAT: Acyl-coenzyme A: cholesterol
acyltransferase.
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poor chances of survival [111]. Polymorphisms identified in human DGAT1 have not been
conclusively linked to beneficial effects like lower body mass index [109, 110] but a splice
site mutation in the gene has been shown to be a rare cause of a congenital diarrheal
disorder, an extremely rare but severe recessive disorder characterised by hyperlipidaemia
and protein-losing enteropathy and very poor chances of survival [111]. Cholestyramine and
intravenous albumin were found helpful in correcting the symptoms [111]. Stunted growth
was also reported in calves homozygous for a naturally-occurring mutation that lead to a
truncated protein without the region encoded by exon 16 of bovine DGATI1. This truncated
enzyme is incapable of esterifying FA to the diacylglycerol and calves homozygous for this
mutation require intravenous supplementation of essential and unsaturated lipids to restore

the growth [112].
1.6.2. Membrane topology

DGAT1 and DGAT2 are integral membrane proteins and about 40 % of the total amino acid
residues in these proteins are hydrophobic in nature [113]. The amino acid sequences for
human DGAT1 and DGAT2 were retrieved from UniProt Knowledgebase (UniProtKB) and,
using the hidden Markov model, the possible number and orientation of the transmembrane
domains were predicted for these proteins (Figure 5) [114]. Human DGAT1 (075907) has
been described as a multi-pass membrane protein [115]; the hidden Markov model for
membrane topology predicted nine transmembrane domains for this protein. Similar
predictions have been made for murine DGAT1 but experimental verification of the
topological model suggests that the protein may have three transmembrane domains
instead of the eight predicted by the topology models generated in the McFie lab [116]. The
McFie model suggests that the three transmembrane domains are oriented such that the N
terminus is in the cytosol while the C terminal region and almost half of the amino acid
residues of the proteins, including the conserved histidine residue, are in the ER lumen
[116]. The experimentally verified membrane topology of DGAT2 on the other hand,
comprises of two transmembrane domains connected by a short loop in the lumen or
alternatively, a single hydrophobic domain that embeds itself in the membrane [117]. Such a
topology would orient both termini of DGAT2 towards the cytosol and the C-terminal

domain distal to the transmembrane domains would form the bulk of the protein [117].
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Figure 5: Predicted membrane topology of the DGAT enzymes. The protein sequence for human DGAT1
(075907) and DGAT2 (Q96PD7) were retrieved from the SwissProt database in the fasta format and
analysed using the  transmembrane hidden Markov ~ model tool available  on
www.cbs.dtu.dk/services/TMHMM [96]. The model plots probabilities for each residue residing in a trans-
membrane domain and is not a prediction of the most probable overall protein structure. The model
predicts nine domains for DGAT1 (A) and one major trans-membrane domain for the DGAT2 (B). C)
Diagrammatic representation of the DGAT enzymes based on the orientation and trans-membrane
domains predicted by the model.

1.6.3. Source of substrate

DGAT1 and DGAT2 are integral membrane proteins localized in the ER; however, DGAT?2 is

also known to translocate to the LD membrane [118]. Also unique to DGAT2 are the

interactions of this protein with acyl-CoA synthetase FATP1 [56] and MGAT2 [119] to

promote TAG synthesis and enlargement of the LD. Within the ER, DGAT2 is found in the
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vicinity of stearoyl-coenzyme A desaturase 1 (SCD1). SCD1 facilitates the formation of a
double bond by removing hydrogen from the saturated fatty acyl-CoA formed through de
novo FA synthesis. The proximity of SCD1 and FATP1 to DGAT2 may facilitate channelling of
de novo FA between the enzymes [120]. Also, disruption of the Scd1 gene leads to reduced
levels of hepatic TAG, a deficiency that cannot be corrected by dietary supplementation of
mono-saturated FA [121]. This points to the possibility of different substrate pools of
endogenous FA and exogenous FA that may be located in different microenvironments of
the ER where they are utilized for different purposes [122]. Owing to its specific localization
in the ER, DGAT2 may associate with the pool of de novo FA that is not available to DGAT]1,
which is localised in a different place in the ER [120, 121].

Complementing the localization studies, experiments with Dgat knockout mice and labelled
substrates have provided further evidence of source-dependent preferential use of FA by the
two DGAT enzymes. Liver-specific Dgat1-/- mice are resistant to hepatic steatosis induced by
the exogenous FA available in high-fat diets or released from the adipose tissue after
prolonged fasting [123]. However, DGAT1 inhibition does not prevent hepatic steatosis
caused by lipodystrophy and liver X receptor activation which increase de novo lipogenesis in
the liver [123]. Further investigations using radiolabelled substrates have confirmed that
DGAT1 preferentially esterifies exogenous FA, whereas DGAT2 uses endogenous FA derived
from de novo lipogenesis [124]. Also, it has been shown that DGAT1 is more active at higher
(> 200 uM) oleoyl-CoA concentrations associated with an influx of exogenous FA in an in vivo
system, whereas DGAT2 is more active at lower oleoyl-CoA concentrations (up to 50 uM)

[100].
1.6.4. DGAT Inhibitors

Knowledge about DGAT activities and the role of individual enzymes has spurred interest in
developing molecules capable of inhibiting the enzymes and ameliorating conditions like
obesity, diabetes and NAFLD that are characterized by the build-up of TAG. Effects of
knocking out Dgatl in mice include resistance to obesity, increased insulin sensitivity and
even resistance to diet-induced hepatic steatosis [125-127]. This has led interest in the
development of small-molecule DGAT1 inhibitors of multiple chemical classes and many
have been shown to ability to improve metabolic parameters in preclinical models [128].
Since most of these drugs are orally administered, the gastro-intestinal system is where the

molecules affect the DGAT1 inhibition. Effects include delayed gastric emptying following an
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oral lipid challenge and upset post-prandial balance of hormones plasma glucagon-like
peptide-1 [129, 130]. Similar effects were reported in human clinical trials for Novartis
molecule LCQ908 (pradigastat); Pfizer molecule PF04620110, AstraZeneca molecule
AZD7687 (Figure 6, [131-134]).

A) 0 OH B)

Figure 6: Molecular structures of DGAT1 inhibitors. A) Pradigastat and B) AZD7687. The images used are
part of the suppliers’ catalogue.

The interest in DGAT2 has been limited by the apparent indispensability of the gene.
Knocking out Dgat2 in mice leads to lethal lipopenia and decreased skin permeability [135].
Decreased DGAT2 mRNA in the sebaceous glands of patients with psoriasis also highlights
the vital role of this gene and its product [136]. This notwithstanding, efforts have been
made to inhibit DGAT2 with anti-sense oligonucleotides and generate liver-specific TAG
reduction in mice [137]. While these results have not attracted the same enthusiasm as the
DGAT1 inhibitors, the distinct role played by the two isozymes in the cell merits the use of
selective inhibitors that can help further differentiate between the two. Wurie et al. have
successfully used isozyme specific small-molecule inhibitors to distinguish between the
activities of the two enzymes and even suggest that “DGAT1 may act up-stream of DGAT2”
[138]. Given that new molecules are being screened for DGAT2-specific inhibition [139, 140],
it may be possible in the future to further differentiation of the two isozymes, especially in
functions that could reduce adverse effects of DGAT1 inhibition. This project describes the
use of DGAT inhibitors to limit lipid accumulation induced by excess FA and the proteomic

changes that allow the cell to cope with these metabolic events.
1.7. Models used to study NAFLD
1.7.1. Clinical studies in humans

Several clinical trials have used samples from liver biopsies to extract information about

gene expression in individuals with and without NAFLD — these include testing for known
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lipogenic targets, gene profiling to identify new ones and comparisons of methylomes and
transcriptomes [141-144]. However, an invasive liver biopsy is poorly suited as a diagnostic
test because of its expense and risks of complications [145, 146]. Additionally, imaging
techniques or biopsies give limited information about mechanisms involved in disease

progression.

Early studies have used radiolabelled tracers to measure the flux of FA and metabolites like
TAG and ketone bodies [147, 148]. More recent approaches like positron emission
tomography [149] and stable-isotope-labelled FA have proved safer and have provided
insight into the source of FA and the compartments they are assimilated into [39, 79]. While
these studies have furthered the understanding in the field, all clinical studies in humans
have an inherent limitation of variable compliance and poor availability of subjects. Diversity
of genotypic and demographic factors may also limit the inferences in a cohort that can be

made in these studies during the brief period the subjects are under observation.
1.7.2. Animal models of NAFLD

The use of the laboratory mouse, Mus musculus allows control over factors such as genetic
heterogeneity, diet and environmental variation [150, 151]. Variables such as age and
gender can also be controlled for. An ideal animal model of NAFLD would demonstrate
hepatic histological and pathological features seen in the diseased state in humans. The
mouse models however, have a limited capacity to reflect the metabolic changes of NAFLD
in humans. In fact, no single animal model has been successful in reflecting all aspects of the
disease. Models are usually chosen for a specific purpose — while some provide good models
for liver steatosis in the context of the metabolic syndrome, others are better models of
hepatic inflammation and fibrosis [152, 153]. Moreover, the aspects of the disease that are
represented need to be put into the human context since hepatic TAG metabolism tends to
vary between species [154] and the composition of dietary intakes may skew the

interpretation of the final results [155].

The aim of this project is to study the proteomic changes that happen within the cell as a
consequence of lipid accumulation like that observed in steatosis. A cell culture-based model
allows the study of lipid metabolism with stricter control of substrate influxes and possible

molecules that could affect homeostasis.
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1.7.3. Cell-culture based models

Liver is central to lipid metabolism and is attributed with performing diverse functions like
detoxification and processing drugs and non-drug xenobiotics [156-158], metabolizing
macromolecules and vitamins [159-161]; and secreting of bile, cholesterol and lipoproteins
[162]. At any given point in time, the liver tends to be under the influence of a variety of
factors [163-165]. An effort to understand intracellular changes in the liver would be helped
by a reduction in the complexity of such extra-hepatic influences. Although it has the
limitation of not being a perfect representative of a hepatocyte in liver tissue, a cell-culture
based model maintained in a medium of known composition allows for assessment of causal
links of the effects seen in the cell. Hepatocytes are the functional units of the liver and
constitute almost 80 % of the total liver volume [166]. Based on this, primary human
hepatocytes isolated by the collagenase perfusion method described by Bhogal et al. have
been proposed to be the ideal cell-based system [167]. Their use, however, is limited by the
availability and variability of human liver tissue samples to start the cultures from. A limited
lifespan of primary cells in culture, phenotypic instability over a period of time [167-169],

and poor recovery after cryopreservation [170] further restrict their use.

Some of these limitations of primary cultures can be overcome by use of HepG2 cells, a
human hepatoma cell line derived from a well-differentiated hepatocellular carcinoma of a
15-year-old Caucasian American male [171]. This adherent cell line has epithelial
morphology and appears as flattened, grossly polygonal in shape. The cells are mainly
arranged in monolayers [171]. The current study is based on this model in which HepG2 cells
are treated with a mixture of FA to induce lipid accumulation with the least possible

cytotoxic effects. This model is further described in section 3.1.1.
1.8. Proteomics approach to lipid accumulation

Although NAFLD has dyslipidaemia at its core, the molecular mechanisms that lead to the
dysfunction are driven by proteins that bind, transform and carry the various metabolites to
and from their compartments. Proteins, and the pathways they are a part of, represent
these mechanism and so a comparison of the changes induced in them by lipid accumulation
would represent the ways in which the cell copes with the influx of exogenous FA. The goal
of this thesis was to describe the proteomic changes that occur in HepG2 following lipid
accumulation. The term “proteomics” was coined from the merger of “protein” and

“genomics” in the 1990s [172] and has evolved into an expanding field of biology that
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includes identification and quantification of global changes in protein abundances and post-
translational modifications [173, 174]. Early proteomics work relied heavily on gel-based
technologies with post staining or fluorescent pre-labelling but it has since moved toward
mass spectrometry (MS) -based analysis [175-177]. The current work has used the ‘shotgun’
or bottom-up proteomics approach. A typical bottom-up proteomics experiment can be
divided into three parts — first, sample preparation in which the protein sample is reduced,
alkylated and digested into peptides; second, separation of peptides in the mixture and
third, identification of the separated peptides by MS [178]. Sample preparation is a critical
step in a proteomics experiment and the strategies used for protein extraction depend
largely on the origin of the sample and information required from the experiment; various
procedures for sample preparations are described by Canas et al. in [179]. The extracted
proteins are usually digested by trypsin, a serine protease that cleaves proteins to generate
peptides with either arginine or lysine at the C termini. Although proteases such as
chymotrypsin, LysC, LysN, AspN, GluC and ArgC have been described and used for digestion
of proteins for proteomics analysis, sample preparation using trypsin remains the more
popular approach [180]. The peptide mixture is analysed using reverse-phase liquid

chromatography coupled with tandem mass spectrometry (LC-MS/MS).
1.8.1. Separation of peptides and mass spectrometry

The peptides in the sample mixture are separated by LC usually performed with a reverse-
phase column [181]. Most columns are packed with silica and the stationary phase is usually
made of hydrophobic alkyl chains commonly known as C4, C8 or C18 depending on the
carbon chain length [182]. The mobile phase formed by the mixing of two reverse phase
solvents. By convention, the agueous solvent and the organic solvent are installed on the
HPLC channels A and B respectively and thereby referred to as solvent A and solvent B. A
weak organic acid like formic acid or trifluoroacetic acid is included in the mobile phase to
improve the peak shape and provide a source of protons [183]. The separated peptides are
channelled into the mass spectrometer for gathering the spectral information required for

peptide and protein identification.

The mass spectrometer consists of an ion source and optics to generate and focus the ions, a
mass analyser like the LTQ™ and/or Orbitrap™ and the data processing electronics that
record the information (Figure 7). lonization of proteins and peptides requires soft ionization

techniques that can transfer the polar, non-volatile, and thermally unstable fragments into

16



3.1TQ
1. EIECtrosprElYI 2. lon optics I linear ion I 4, Quadrupole IS.C—traplE.HCDcoIIisionceII

B e s
I

f:.—q a
‘M‘ﬁ 7. Orbitrap
v mass analyzer

Figure 7: Schematic representation of LTQ-Orbitrap™ XL mass spectrometer. The information available in
the user guide made available with the instrument and the schematic on its online version
(http://planetorbitrap.com/Itg-orbitrap-xI#.V49tUdKUdrE) were used to make this figure.

the gas phase with minimal degradation [184, 185]. The LTQ-Orbitrap™ XL (Thermo Fisher
Scientific Inc.) used for this project uses electrospray ionization [186, 187]. Although there
are several models for ion formation through electrospray ionization, the general approach
includes generating an electrically charged spray of the analyte such that the solvent from
the charged droplets evaporates and the size of the droplet continues to reduce till it
reaches the Rayleigh limit [188]. At this point, the droplet subdivides since the Coulomb
repulsion forces exceed the surface tension [188]. The sub-division of the droplets continues
till, in theory, each droplet has an average of one macromolecule whose spectra can now be
analysed [188-190]. The LTQ-Orbitrap is a hybrid instrument that utilizes the LTQ (Thermo
Scientific version of linear ion trap) for isolation and fragmentation of ions and the Orbitrap
mass analyser measures the accurate mass of ions transferred to it [191]. The analytes
undergo two fragmentations - the survey scan selects MS1 parent ions that are further
fragmented by collision induced dissociation (CID) to form MS2 daughter ions used to obtain

the peptide sequence by a database search [192].

As the name suggests, fragmentation based on CID involves the collision of kinetically
excited peptide ions with an inert gas like helium or argon. The translational energy
imparted to the peptide ion in each collision is converted into vibrational energy that is
distributed in picoseconds through all covalent bonds; this surge in internal energy allows
bond cleavage and formation of fragment ions [193]. Peptides ionized using electrospray
ionization tend to fragment along the protonated amide bonds and form complementary b
and y type product ions (Figure 8). The mass differences observed between homologous ions

helps identify an amino acid and facilitates peptide sequence analysis [194].
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Figure 8: Fragmentation of peptides using CID [194, 195]. The amide nitrogen in the kinetically excited
peptides ion is protonated (1) and the collision of these ions with those of an inert gas increases the internal
energy of the ion. When the internal energy exceeds the activation barrier required for a particular bond
cleavage, the bond breaks (2). The low-energy CID (collision energies less than100 eV/charge) employed by
the LTQ-Orbitrap collision energy used in CID produces the cleavage of peptide bond to form two positively
charged ions of b and y type (3).

1.8.2. Peptide sequencing and identification of proteins

Identification of peptides on the basis of MS2 fragments generated by LC-MS/MS is done
using search algorithms. The general principles that drive these algorithms include matching
of the tandem mass spectra derived from peptide fragmentation with the spectra generated
from in silico digestion of a protein sequence database [195, 196]. The quality of match is
controlled by parameters such as mass tolerance, numbers of missed cleavages accepted
and amino acid modifications. The peptide sequences are used for making inferences about
the protein that would contain them [196]. SEQUEST, first described by Eng et al. in 1994
[197] has been developed over the last 20 years to add new capabilities to the original
algorithm that was capable of producing automated, high-throughput matches for the
tandem mass spectra against a protein sequence library [198]. Successor algorithms include
SEQUEST-HT [198]. Cottrell et al. provided a probability-based protein identification through
the use of the MASCOT search engine [199]. Since then, more search algorithms like the
Open Mass Spectrometry Search Algorithm [200], Andromeda [201] and X! Tandem [202]

have become available for use.

Although various algorithms work by the same general principles, they tend to have their
own metrics to evaluate the quality of the match and the likelihood of false identifications.

As a result, different algorithms may report very different peptide matches for the same set
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of spectra [203]. Given the uncertainty in the arbitrary scores assigned by each algorithm
and the inability to perform false discovery rate (FDR) calculations, the peptide matches
generated by the search algorithms are evaluated by stand-alone algorithms like
PeptideProphet [204, 205] and Percolator [206, 207] that estimate FDR using the target-
decoy approach. This approach includes the search of a database of random or reversed
sequences and of comparable size to the target database with the aim of identifying
incorrect identification. These databases are known as decoy databases and the sequences
within them are the decoys. Since the decoy database does not have valid protein
sequences, presence of a decoy in the data helps estimate the possible incorrect
identifications in the target database [208, 209]. Since a combination of bioinformatics tools
is required to perform all analytical steps necessary to obtain a result, software suites and
pipelines like MaxQuant, Proteome Discoverer and Scaffold have been developed to perform
the required steps for streamlined data analysis [210-212]. This project has used the
Proteome Discoverer platform for protein identification and Scaffold for quantification of

the proteomics data.
1.8.3. Quantitative proteomics

Having identified the proteins, an absolute or relative quantification of proteins provides a
comparison between two or more samples analysed. These samples could be of different
origins or could represent different physiological states of the same biological system. MS-
based quantification methods are broadly classified into labelled or label-free methods
[213]. Labelled methods include the use of stable isotope or chemical mass tags for
guantification. Metabolic labelling of proteins is a term used to describe labelling techniques
that are based on the incorporation of a labelled metabolite into newly synthesized proteins
[214]. Metabolic labelling using stable-isotope labelling by amino acids in cell culture (SILAC)
as the name suggests, relies on the incorporation of amino acid labelled with heavy isotopes
of hydrogen (?H), carbon (*3C) or nitrogen (**N) into newly synthesized proteins in a cell
culture system. The experimental design includes growing cells in a modified medium that
includes the labelled amino acids. At the end of the treatment, the labelled cells are mixed
with a population of cells grown in an identical medium but with unlabelled amino acids. The
proteomes of the two populations are analysed and differentiated on the basis of the
predictable shift in mass of the labelled peptides of a protein in comparison to the peptides

generated from a protein synthesized using ‘light’, unlabelled amino acids [215]. In the mass

19



spectra, the peptides appear as a pair separated by the known mass difference on account
of the incorporation. Ratio of peak intensities of the pair are then compared and used as a
guantitative parameter [133]. Krijgsveld et al. have shown that metabolic labelling of the
multicellular organisms like C. elegans and D. melanogaster can be achieved by feeding them

on P N-labeled E. coli and yeast, respectively [216].

Like the metabolic labelling methods, quantification using isotope-coded affinity tags (ICAT)
also includes comparison of two proteomes based on the peak intensities for heavy and light
peptides but the point of difference is that ICAT relies on the chemical modification of
cysteine residues of a peptides by the ICAT reagent during the sample preparation stage. The
ICAT reagent has three components — a biotin tag that allows enrichment of labelled
peptides using avidin affinity chromatography; a linker that contains the stable isotope
signatures that allow light and heavy peptides to be differentiated by MS and a thiol-specific
reactive group to tag the cysteines [217]. The linker of the ‘heavy’ ICAT reagent includes nine
13C to generate a mass difference of 9 Da between the light and heavy peptides [129]. The
obvious limitation of ICAT labelling is the cysteine-specific tagging that can severely restrict
the number of proteins identified [129]. Quantification using isobaric tag for relative and
absolute quantitation (iTRAQ) could be used to overcome this limitation. It uses N-
hydroxysuccinimide ester to tag primary amino groups in lysine residues which are generally
present in high abundance [218]. The iTRAQ reagent is designed to include a ‘mass balance
group’ that links the N-hydroxysuccinimide to a reporter group — this mass balance group
allows for multiple sample comparisons in contrast to the binary comparisons offered by
isotope labelling methods. The commonly used ‘4-plex’ reagent generates reporter ions with
m/z values of 114.111, 115.108, 116.112, and 117.115 after CID fragmentation [219]. The
advantages and disadvantages of these methods are discussed further in Section 6.5. The
guantitative proteomics experiments described in this thesis are based on a label-free

technique.

Label-free methods measure either the peptide ion intensity or count of the number of
fragment-ion spectra acquired for peptides of a given protein [220, 221]. The first approach
measures chromatographic peak areas of peptide precursor ions - the intensity of each peak
is a visualized in an extracted ion chromatogram which allows the determination of the area
under the curve used as the measure of protein expression [222]. The second approach is

called spectral counting and it provides a relative quantification of proteins based on the
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empirical observation that the tandem mass spectra of a particular peptide increase with an
increasing amount of the corresponding protein [221]. The advantages and disadvantages of
each method have been reviewed in [223, 224]. For the current work, spectral counting was

used to quantify and compare the proteomes of HepG2 cells after treatment.
1.9. Aims of the thesis

This thesis is based on the hypothesis that an influx of exogenous FA induces accumulation
of TAG in HepG2 cells and the proteomic changes that accompany this lipid accumulation
would represent mechanisms that allow the cell to cope with the cellular stress induced by
the TAG. Inhibition of DGAT enzymes could then be a feasible approach to reduce the extent

of TAG accumulation. Based on this the aims of the current work were:

e Characterize a treatment regime that would induce lipid accumulation in HepG2 cells
with minimal lipotoxic effects.

e Determine the proteomic changes induced on account of lipid accumulation in
HepG2 cells.

e Describe the effect of DGAT inhibitors on lipid accumulation in HepG2 cells and

determine the proteomic changes effected by the DGAT inhibitors
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CHAPTER 2: MATERIALS & METHODS

2.1 Materials

All chemicals, including bovine serum albumin (BSA), dimethyl sulfoxide (DMSO), sodium
dodecyl sulphate (SDS), 1, 4-dithiothreitol (DTT), 3-[(3-cholamidopropyl) dimethylammonio]-
1-propanesulfonate (CHAPS), glacial acetic acid and formic acid, were purchased from Sigma-
Aldrich (New Zealand) and were of analytical grade unless specified otherwise. DGAT2
inhibitor PF06424439 [(3R)-1-[2-[1-(4-chloro-1H-pyrazol-1-yl)cyclopropyl]-3H-imidazo[4,5-
b]pyridin-5-yl]-3-piperidinyl]-1-pyrrolidinyl-methanone methanesulfonate] and DGAT1
inhibitors A922500 [(1R, 2R)-2-[[4'-[[phenylamino) carbonyl] amino] [1,1'-biphenyl]-4-
yl]carbonyl] cyclopentane carboxylic acid] and PF04620110 [(2-((1r,4r)-4-[4-(4-amino-5-oxo0-
7,8-dihydropyrimido [5,4-f][1,4] oxazepin-6(5H)-yl) phenyl] cyclohexyl) acetic acid)] were

also purchased from Sigma-Aldrich (New Zealand).

The HepG2 cell line (ATCC® HB-8065™), a human hepatoma cell line, was obtained from the
American Type Culture Collection (ATCC; Manassas, VA, USA). Foetal bovine serum (FBS),
Dulbecco’s modified Eagle’s medium (DMEM) with high glucose (4.5 g/L), 4 mM glutamine
and phenol red, Gibco® 2.5 % trypsin and Hank’s balanced salt solution (HBSS) were
purchased from Life Technologies™ (New Zealand). Trypsin was diluted to 0.25 % in HBSS

before use.

Water and solvents used for chromatography including hexane, methanol and acetonitrile
were from LiChrosolv®, Merck Millipore (Billerica, MA, USA). Diethyl ether was obtained
from Ajax Finechem (now integrated into Thermo Fisher Scientific NZ Ltd). Thin layer
chromatography (TLC) plates purchased from Merck Ltd (New Zealand) were 20 x 20 cm with

a 200 um thickness of Silica gel 60 on aluminium backing and a concentrating zone.

NBD-palmitoyl coenzyme A [(N-((7-nitro-2-1,3-benzoxadiazol-4-yl)-methyl) amino) palmitoyl
coenzyme A (ammonium salt)] and 1,2-dioleoyl-sn-glycerol used for a fluorescence-based

DGAT activity assay were obtained from Avanti Polar Lipids Inc. (Alabaster, AL, USA).

The secondary antibodies and most primary antibodies were from Abcam plc (Cambridge,
UK); primary antibodies against actin, DGAT1 and DGAT2 were from EMB Millipore (Billerica,
MA, USA), Santa Cruz Biotechnology, Inc (Dallas, TX, USA) and Atlas Antibodies (Stockholm,
Sweden) respectively (Table 1). Goat anti-rabbit I1gG Fc tagged with Alexa Fluor® 647 and

goat anti-mouse IgG H&L tagged with Alexa Fluor® 555 were as secondary antibodies.
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Table 1: Description of primary antibodies used for Western blots

Target Antibody ‘ Host ‘ Type Description of antigen

Synthetic peptide (ab 90212) conjugated to
Perilipin-2 ab78920 Polyclonal Keyhole Limpet Haemocyanin (KLH) derived from
within residues 1 - 100 of perilipin 2.

75 kDa Heat
shock protein, ab151239 Polyclonal
mitochondrial

Glutathione Recombinant fragment, corresponding to a

reductase, ab137513 Polyclonal region within aa 164-403 of human glutathione
mitochondrial reductase.

Synthetic peptide within human TXNL2
conjugated to KLH*.
Antibody raised against aa 1-100 mapping at the
N-terminus of human DGAT1.
DGAT2 HPAO13351 e Recombinant Protei'n Epitope Signature Tag
(PrEST) antigen sequence.
Synthetic peptide ab25719 conjugated to KLH
ab22759 Polyclonal derived from within residues 2450 to the C-
terminus of mouse FAS.

Synthetic peptide within human ERLIN1 aa 245-

Recombinant fragment, corresponding to a
region within aa 392-704 of human TRAP1.

CECELOAL ] ab170794 Polyclonal

DGAT1 sc-32861 Rabbit Polyclonal

Fatty acid
synthase

EREINT oAb ebelend 275 (internal sequence) conjugated to KLH*.
BAG family
molecular Synthetic peptide corresponding to human BAG2
chaperone GRS flegesiend aa 1-100 (N terminal)*.
regulator 2
. Purified chicken gizzard actin epitope
Act MAB1501 M lonal
S onociona corresponding to aa 50-70 [225].
60 kDa heat
: Mouse
shock protein, ab110312 Monoclonal Hela cell lysate
mitochondrial
Catalase ab125688 Monoclonal Recombinant full length human catalase

produced in HEK293T cells (NP_111743).
*The exact sequence is proprietary.

2.2 Cell culture

HepG2 cells placed in liquid nitrogen for long-term preservation were thawed and grown in
DMEM with 10 % FBS at 37 °C in an incubator with a humidified atmosphere of 5 % CO;and
95 % air until the cells were confluent [226]. The medium was changed every three days or
more frequently depending on the confluency of the cells and the number of cells required
for subsequent work. Excess cells were returned to long-term storage as cell suspensions of
10° cells in DMEM with 10 % FBS and 10 % DMSO. The cell suspensions were frozen
overnight in CoolCell® (BioCision, San Rafael, CA, USA) freezing containers at -80 °C and then
placed in liquid nitrogen cryovials [227]. CoolCell® is a stryofoam container that facilitates a
slow and controlled drop of temperature of about -1 °C per min [228]. Cells were passaged
once they reached confluency. Confluent cells were washed with warm HBSS and incubated

with 0.25 % trypsin to detach the cells from the flask surface.
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The detached cells were suspended in DMEM with 10 % FBS and pelleted by centrifugation
at 180 g for 3 min. The cell pellet was re-suspended in the medium and transferred to flasks
or plates. Tissue culture flasks (75 cm?; Corning Falcon®, Corning, NY, USA) were inoculated
with 2 x 10° cells for passage of the cell culture, and multi-well plates (Corning Falcon®,
Corning, NY, USA) used for experiments were inoculated as required for the specific assays.

Cells were allowed to attach and grow for at least 18 h before treatment.
2.3 Lipid accumulation in HepG2 cells
2.3.1. Preparation of fatty-acid stock solutions

BSA-bound FA stock solutions were prepared by dissolving a measured amount of FA in a
aqueous solution and adding this to the BSA solution as described by Spector[229]. To
prepare 30 mM stock solutions of sodium oleate, 91.32 mg of the sodium salt was
solubilized in 5 mL of 150 mM sodium chloride at 70 °C in a water bath. This was added in
aliqguots to a warm solution of 5 mM BSA in 150 mM sodium chloride at 37 °C with
occasional vortexing until the solution was clear. Once the solution was clear, the volume
was made up to 10 mL. The BSA-bound oleate was passed through 0.2 um Minisart® syringe
filters (Sartorius, Gottingen, Germany) before being stored at —20 °C. A 30 mM stock solution
of palmitate was prepared in the same way by solubilizing 83.52 mg of sodium palmitate in
10 mL of 5 mM BSA in 150 mM sodium chloride. The stock solution of FA mixture was
prepared by mixing 2 volumes of the BSA-oleate stock with 1 volume of the BSA-palmitate
stock. This 30 mM stock solution of FA mixture was diluted to give the FA concentrations

used for the experiments [230].
2.3.2. Optimization of treatment conditions to induce lipid accumulation

HepG2 cells were inoculated in a 24-well plate (10° cells per well) and grown overnight in
DMEM with 10 % FBS. The attached cells were washed with warm HBSS and incubated with
serum-free DMEM containing 1 % BSA for 1 h at 37 °C [231]. At the end of the incubation,
the media was replaced with FA-containing media which was prepared by diluting the stock
solution of FA mixture serum-free DMEM containing 1 % BSA to give final concentrations
ranging from 0.25 to 3 mM. Using the QOil red O (ORO) assay, lipid accumulation in HepG2
cells was measured at 1, 3, 6, 12, 18 and 24 h exposure to FA mixture [230]. The metabolic

activity of the cells was also measured at these time points (see Section 2.3.4).
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2.3.3. Quantification of lipid accumulation using Oil Red O assay
2.3.3.1. Preparation of Oil Red O staining solution

ORO was dissolved in isopropanol at a concentration of 3.5 mg/mL. This stock solution was
allowed to rest overnight and undissolved dye was removed by passing through a 0.2 um
syringe filter. The ORO staining solution was made by mixing 6 parts of 3.5 mg/mL ORO stock
solution with 4 parts of distilled water. The working ORO solution was allowed to stand

overnight and filtered before use to remove any precipitates [232].
2.3.3.2. Staining of lipid droplets

Treated HepG2 cells were washed with HBSS and fixed in 4 % paraformaldehyde at room
temperature (RT) for 30 min. The fixed cells were washed with filtered phosphate-buffered
saline (PBS) and, after a wash with 10 % isopropanol, cells were covered with the ORO
staining solution for 15 min at RT. The excess dye was removed, and the cells were washed
multiple times with distilled water till the cytosol appeared unstained under the microscope.
The cells with red stained lipid droplets were examined under a light microscope [233].
Preparations intended for cell staining only were counter-stained with haematoxylin and

eosin to visualize the nucleus and the cell body.
2.3.3.3. Quantification of extracted dye

Equal volumes of isopropanol were added to each well to extract the dye bound to the
accumulated lipids. The ratio of absorbance of the dye extract from the treated cell to that
of the extract from the untreated, control cell was expressed as ‘fold of control’. This was
used as a relative measure of lipid accumulation in the cells on account of the treatment
[230]. The wavelength at which this absorbance would be measured was determined using a
spectrum scan and preliminary experiments described in section 3.2.1.1. The absorbance
and the spectrum scan were performed on the plate reader (EnSpire™ 2300 Multilabel
Reader, Perkin Elmer, Waltham, MA, USA). Two-way analysis of variance (ANOVA) with
Bonferroni’s multiple testing correction was used to determine statistical significance of the
extent of lipid accumulation seen at different combinations of treatment FA concentrations
and time. Significance was accepted at p < 0.01 and the comparisons were performed using

GraphPad Prism® (v.5) [GraphPad Software Inc., La Jolla, CA, USA].
2.3.4. MTT assay

The metabolic activity and the proliferation capacity of the cells was measured using
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the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The assay is
based on the protocol described first by Mosmann [234]. Briefly, at the end of the treatment
time, the cells were incubated for 2 h with 0.8 mg/mL MTT in serum-free medium. After 2 h,
the medium was discarded, cells were washed with 1 mL HBSS and 300 uL of DMSO was
added to each well. The dissolution of the formazan crystals in DMSO was facilitated by
repeated pipetting. The absorbance of the resulting solutions was recorded at 560 nm using
a plate reader (EnSpire™ 2300 Multilabel Reader, Perkin ElImer, Waltham, MA, USA). Results
were presented as a percentage of the control values [235]. Two-way ANOVA with post-hoc
Bonferroni’s multiple comparison test was performed to compare the means between

different treatments.
2.4. Effect of DGAT inhibitors on lipid accumulation

DGAT2 inhibitor PF06424439 (PF06) and DGAT1 inhibitors A922500 (A92) and PF04620110
(PFO4) were added to the culture medium, and their effect on the lipid accumulation in the
cell was quantified using the ORO assay described above. Stock solutions of 10 mM PF06
were prepared in sterile distilled water, and 50 mM A92 and 10 mM PF04 were dissolved in

DMSO. The stock solutions were stored at -20 °C.

For the assay, the inhibitors were diluted to various concentrations in DMEM with 1 % BSA.
HepG2 cells grown overnight in a 24-well plate were washed with warm HBSS and incubated
for 1 h at 37 °C with medium containing the inhibitors. At the end of the incubation, an
aliquot of the FA mixture stock was added to the wells to give a final concentration of 1 mM
and the cells were further incubated in the medium with the FA mixture for 6 h at 37 °C
[124]. Two controls were included on each plate- a positive control of cells treated with 1
mM FA mix in DMEM with 1 % BSA without the inhibitors and a negative control of
untreated cells in DMEM with 1 % BSA. Since A92 and PF04 were dissolved in DMSO, an
aliquot of DMSO equivalent to the volume of the highest concentration in the inhibitor-

treated samples (100 uM) was added to the control wells.

A combination of PFO4 and PF06 inhibitors was also performed. The treated cells were then
stained with ORO as described above, and the ORO-based quantification was used to
determine the extent of inhibition of TAG synthesis by these inhibitors. A potential rescue of
cells from lipotoxicity by the inhibitor was assessed using the MTT assay at the end of the

treatment.
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2.5. Fluorescent DGAT assay
2.5.1. Microsome preparation

Pellets of untreated HepG2 cells stored at -80 °C were thawed and suspended in sucrose
buffer [0.25 mM sucrose in 50 mM Tris-HCI (pH 7.6)]. The suspended cells were lysed by
trituration through a 27-gauge needle multiple times. The lysate was centrifuged at 10,000 g
for 30 min at 4 °C in an Optima™ L-100 XP ultracentrifuge (Beckman Coulter Inc., Fullerton,
CA, USA). The pellet was discarded and the supernatant further centrifuged at 100,000 g for
1 h at 4 °C to give the microsomal pellet. This pellet was suspended and dissolved in about
200 pL of sucrose buffer. The protein content of this suspension was quantified using a Bio-
Rad Protein Assay reagent (Bio-Rad Laboratories Pty Ltd., NZ) based on Bradford’s method of
protein quantification which is a Coomassie dye-binding assay that uses the differential
change in dye colour as a measure of protein concentration. Aliquot equivalent to 30 pg
protein sample was diluted with the sucrose buffer to give a final volume of 50 uL. This was

used as the enzyme source for the assay.
2.5.2. Reaction mixture for DGAT assay

A reaction mixture containing 50 pL of enzyme preparation along with 20 uL of 1 M Tris-HCl
(pH 7.6), 4 puL of 1 M MgCl,, 10 pL of 4 mM dioleoyl glycerol and 96 uL distilled water was
warmed in a water bath at 37 °C for 5 min. Stock solutions of the inhibitor were diluted in
the reaction mixture to give the desired final concentration in a total reaction volume of 200
pL. The reaction (Figure 9) was started by adding 10 pyL of 500 uM NBD-palmitoyl CoA to the
pre-warmed reaction mixture and was allowed to proceed for 30 min at 37 °C with
occasional shaking [236]. Each experiment included a set of blanks that would serve as the
negative controls for the reaction. The substrate blank did not have 1,2-dioleoylglycerol but

included the fluorescent substrate NBD-palmitoyl CoA in the reaction mixture. The enzyme

NBD - Palmitoyl CoA {  Triacylglycerol with

1,2 Dioleoyl glycerol
i DGAT enzymes 7  NBD fluorescent tag

Q ?

HC-0-C\ N\ "N\ H.C-O-C\ANAN T\
Q ?

HC-0-E\NANNAV/ANANAS HC-O-C\N\\N "\
5 |

H,C-0-C-OH H,C-Palmitoyl - NBD

Figure 9: Schematic representation of enzyme reaction catalysed by DGAT enzymes. The reactants in the
fluorescent assay include dioleoyl glycerol and a palmitoyl CoA tagged with fluorescent NBD. Esterification of
the tagged acyl to the dioleoylglycerol by the DGAT enzymes produces a fluorescent NBD-tagged triacylglycerol
which is detected after separation of the reaction mixture by TLC.
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blank included all substrates and heat-inactivated aliquot of the microsomal preparation. In
addition to these, a solvent blank containing equivalent volume of DMSO was also prepared

for the inhibitors A92 and PF04.
2.5.3. Separation and quantification of products

The reaction was terminated by adding 750 pL chloroform/methanol (2 volumes: 1 volume)
and vortexing thoroughly. Water was added and, after another thorough vortexing, the
phases were allowed to separate at RT for 1 h. The reaction solution was centrifuged for 5
min at 16,000 g to improve phase separation [236]. A 400 uL aliquot of the lower organic
phase was collected and dried in a CentriVap® Vacuum Concentration System (Labanco,
Kansas City, MO, USA). The lipids were re-suspended in 20 uL chloroform/methanol (2:1,
v/v), and 10 pL was spotted in the concentration zone of a TLC plate. The plate was placed in
a solvent chamber saturated with the solvent vapour, and the mobile phase was allowed to

run till the solvent front was about 3 cm from the top edge of the plate.

Preliminary experiments were performed using a mobile phase that consisted of n-hexane:
diethyl ether: acetic acid (80: 20: 1; v/v). Based on the results of these experiments, an
improvement of band separation was sought and so, a solvent mixture of diethyl ether: n-
hexane: methanol: acetic acid (55: 45: 5: 1, v/v/v/v) was tested and used as the mobile
phase to separate the lipids [119]. Once the lipids were separated on the plate, the plate was
removed from the solvent chamber, and the solvents were allowed to evaporate in a fume
hood. The newly synthesized labelled TAG was detected on a Fujifilm FLA-5100 (Fujifilm Life

Science, Stamford, CT, USA) molecular imaging system.
2.6. Proteomic analysis by LC-MS/MS
2.6.1. Type of replicates

The experimental design for this study included comparison of three treatment groups —
untreated HepG2 cells; cells treated with FA mixture and cells treated with FA mixture and
DGAT inhibitor. Each treatment group was represented by four biological replicates. Cell
samples collected from different flasks on different days were considered biological
replicates. In one scheme of sample preparation, the four biological replicates were pooled
into one sample. To prepare the pooled sample, aliquots of the cell lysate equivalent to 7.5
ug protein from each biological replicate were mixed just after lysis to give 30 pg total
protein of the pooled sample. For the unpooled samples, 30 pg protein aliquot was prepared
for each biological replicate. One peptide digest was prepared from each sample as
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described in section 2.6.2, pooled or otherwise. Multiple LC-MS/MS runs were performed for
peptide digest. Each LC-MS/MS run was considered a technical replicate. All statistical

analysis were performed biological replicates unless stated otherwise.

The experimental design had two variabilities in the data: the biological variability of the cell
population and the technical variability between the LC-MS/MS runs. Different experimental
designs were tested using individual biological replicates and pooled samples. They are

described in detail in chapters 4 and 5.
2.6.2. Sample preparation

HepG2 cells representing the three groups were washed with cold HBSS and scraped off the
flask surface. Protease inhibitor cocktail (Catalogue Number P8340, Sigma-Aldrich, St. Louis,
MO, USA) was included in the final wash. The cells were pelleted by centrifugation at 180 g

for 3 min and stored at -80 °C after discarding the supernatant.

Once all the replicates were gathered, the cell pellet of approximate 4 x 10° cells was re-
suspended in 300 pL of lysis buffer and vortexed for 30 min at 4 °C. Given that lysis buffer
can affect the quality and quantity of proteins extracted, preliminary samples of untreated
HepG2 cells were prepared using four different lysis buffers, including glycerol-Triton-X 100
buffer [237], RIPA buffer (Sigma-Aldrich) [237], SDS-DTT buffer [238] and urea- CHAPS buffer
[239] (Table 2). Protease inhibitor P8340 was included in all the lysis buffers.

Table 2 : Composition of lysis buffers used for sample preparation.

50 mM HEPES 25 mM Tris-HCI 100 mM Tris-HCl 30 mM Tris-HCI
(pH 7.4) (pH 7.5) (pH 7.5) (pH 8.8)
150 mM KClI 150 mM NacCl 4 % SDS 7 M Urea
10 % Glycerol 1 % SDS 0.1 M DTT 2 M Thiourea
0.5 % Triton-X 100 1 % Triton X-100 4 % CHAPS

Cell debris was pelleted by centrifugation at 10,000 g for 30 min at 4 °C. The proteins from
the supernatant were precipitated using a ProteoExtract® protein precipitation kit (Merck
Ltd., NZ) according to the manufacturer’s protocol and dissolved in digestion buffer (8 M
urea in 100 mM Tris-HCI, pH 8). The protein concentration of the sample was determined
using 2-D Quant Kit (GE Healthcare, NJ, USA) following the manufacturer’s protocol. An
aliqguot equivalent of 30 pg protein in 50 pL of the digestion buffer was reduced by
treatment with 5 mM DTT at 56 °C in a water bath for 35 min and alkylated with 10 mM
iodoacetic acid for 40 min at RT in the dark [240]. The reduced and alkylated sample was
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digested with modified sequencing grade trypsin (Roche Custom Biotech, Indianapolis, IN,
USA) in the presence of 1 mM CaCl; after 3-fold dilution with 100 mM Tris-HCl, pH 8, to bring
the total urea concentration to about 2 M. The digestion was stopped by the addition of 90
% formic acid, and the resulting digest was de-salted and cleaned using OMIX C18 tips
(Varian Inc., Palo Alto, CA, USA).

The peptides bound to the OMIX C18 matrix were eluted in 20 uL of 0.1 % formic acid in 50
% acetonitrile followed by elution with 20 pL of 0.1 % formic acid in 70 % acetonitrile. The
two eluents were combined and concentrated to about 10 pL in a CentriVap® Vacuum
Concentration System. The final volume of the peptide preparation was adjusted to 150 uL

with 0.1 % formic acid. This solution was used for analysis by LC-MS/MS.
2.6.3. LC-MS/MS analysis of protein digests
2.6.3.1. Instrumentation

LC-MS/MS was carried out using a Dionex UltiMate™ 3000 RSLCnano liquid chromatography
system (Thermo Scientific, USA) coupled to a Thermo Scientific™ LTQ Orbitrap XL™ Hybrid
mass spectrometer via a nanospray ion source. The LTQ Orbitrap is a Fourier Transform
Mass Spectrometer based on Thermo Scientific™ LTQ XL™ linear ion trap and Orbitrap mass
spectrometry technologies. Thermo Scientific™ Xcalibur™ software (v 2.1.0) was used for

data acquisition, instrument control and method setup.
2.6.3.2. Separation of peptides using reverse-phase liquid chromatography

Samples of tryptic peptides were separated on an Acclaim® PepMap100 C18 analytical
column [particle size: 3 um, pore size: 100 A, dimension: 75 um inner diameter x 15 cm
length] at a constant flow rate of 0.3 puL/min. Samples were loaded using an auto-sampler
maintained at 10 °C. The peptides were separated on the principle of reverse-phase LC — the
most hydrophilic and the least hydrophobic eluates are the first to exit the column, and
transit time is also affected by peptide mass. The mobile phase consisted of a solvent
mixture set up by mixing 0.1 % formic acid (solvent A) and 0.1 % formic acid in 80 %
acetonitrile (solvent B) in a multi-step gradient. Initial experiments were performed over a
300-min retention period. This gradient was extended to 352 min and modified further
based on the analysis of LC-MS/MS runs using Gradient Optimization and Analysis Tool
(GOAT®, The University of Texas Southwestern Medical Center, Dallas, TX, USA)[241]. The
three gradients are compared with respect to their duration, composition and performance
in chapter 4.
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2.6.3.3. Mass spectrometry analysis

The separated peptides were introduced into the tandem MS system by electrospray
ionization using a PicoTip™ emitter (360 um x 20 um; New Objective, USA) at a voltage set
to 1.8 kV through a transfer tubing of 25 um inner diameter. The acquisition method used
was an N order double play set to acquire data over two scan events. The N most intense
ions (‘Top N’ ions) detected in scan event 1 were selected for data-dependent MS/MS scans
performed in scan event 2. Scan event 2 was performed starting with the most intense ions
of scan event 1 and proceeded in order of decreasing intensity of the top N ions selected.
The method was tested in 3 settings : “Top 6, “Top 8’ and ‘Top 10’ ions — these would be the

6th, 8th and 10th most intense ions detected in their respective scan event 1.

Scan event 1 was a full scan for all ions eluted at a particular retention time with m/z range
of 200 — 1800 at a resolution of 30,000 at m/z 400 at a scan rate of 0.6 to 0.8 Hz. The scan
was performed in the positive ion mode with the heated capillary temperature set at 200 °C.
Scan event 2 was a data-dependent scan that used a preview scan and dynamic exclusion
settings to pick the top N precursor ions for CID fragmentation and detection by the ion trap
analyzer. CID was operated at an isolation width of 1.0 m/z, 35 % normalized collision
energy, activation Q of 0.25 and activation time of 30 ms. Maximum injection time for the
MS scan was 500 ms and 150 ms for the MS/MS scans. The dynamic exclusion settings

included repetition duration of 30 s, exclusion list size of 500 and exclusion duration of 90 s.
2.6.4. Protein identification

Tandem mass spectra were searched against the human protein database obtained from
UniProtKB using Thermo Scientific™ Proteome Discoverer™ (PD) software (version 1.4.1.14).
UniProtKB database can be broadly divided into two categories — SwissProt entries that have
been manually reviewed and annotated and TrEMBL entries that have been annotated from
literature but await manual review [115]. Four subsets of the UniProt database were
generated for evaluation in this project (Table 3). These include proteins identified in
humans were retrieved from the UniProtkB using the keywords ‘organism: "Homo sapiens
(Human) [9606]" and this list was further stream-lined using the keywords ‘Protein
existence: evidence at protein level’ that selected entries supported by experimental
evidence of existence. The proteins retrieved using keywords ‘organism: "Homo sapiens
(Human) [9606]" included all human proteins in the database. Filtering this list further using

the keywords ‘Protein existence: evidence at protein level’ formed a database of human
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proteins the existence of has been experimentally verified. The databases were curated into
a .fasta format and parsed by the search algorithms to identify the proteins from the LC-

MS/MS spectra.

Different workflows as shown in Figure 10 were tested to identify the workflow that
identified the maximum number of proteins. All workflows require ‘Spectrum selector’ node
for input of MS/MS data in the form of a .raw file. All MS/MS data were analysed using
Mascot (Matrix Science, UK; version 1.4.1.14) and/or SEQUEST HT (Thermo Fisher Scientific,
USA; version 1.4.1.14). Both Mascot and SEQUEST HT were set up to search the databases
described in Table 3, assuming the digestion enzyme used was trypsin with allowance for a
maximum of 2 missed cleavage sites. Mascot and SEQUEST HT were searched with a

fragment ion mass tolerance of 0.60 Da and a parent ion tolerance of 10.0 ppm.

Table 3: Description of databases searched for protein identification.

Number of sequences

Reviewed | Unreviewed

Database

organism: "Homo sapiens (Human) [9606]" 148,986 20,196 128,790
UniProt PE—— g "
organlsm. Homl<|) se.lplens (Human)' [9606]“ 51543 14,685 36,858
AND existence: "evidence at protein level
organism: "Homo sapiens (Human) [9606]" 20,196 20,196 0
SwissProt ism: " i "
organism: "Homo sapiens (Human) [9606] 14,685 14,685 0

AND existence: "evidence at protein level"

Carbamidomethylation of cysteine was specified as a fixed modification, and oxidation of
methionine was specified as a variable modification for both search algorithms. All
workflows included the ‘Percolator’ node. Percolator is an algorithm that uses semi-
supervised machine learning to improve the discrimination between correct and incorrect
spectrum identifications [206]. The algorithm searches a decoy database with negative
examples for the classifier and positive examples constituted by a subset of the high-scoring
matches from the target database to generate g values and posterior error probabilities for
each match [242]. The g values determine the FDR, and filters were set to accept
identifications with q < 0.01. This equates to a FDR of 1 % or less. The maximum A Cn in the
scoring options of the ‘SEQUEST HT’ node was set to 1 to allow the maximum amount of
data to be assessed by the ‘Percolator’ node [205]. In addition to the above, workflow
‘Combined 2’ includes the ‘MS2 — Spectrum Processor’ node that performs charge state

deconvolution and deisotoping of the data.
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Figure 10: Protein identification workflows setup in Proteome Discoverer (v. 1.4.1.14).

2.6.5. Label-free quantification

Label-free quantification based on spectral counts was performed using Scaffold (version
4.4.6, Proteome Software Inc., USA). Proteins that contained similar peptides and could not
be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of
parsimony. The samples were organized into three categories — ‘Control’, ‘FA-treated’ and
‘Inhibitor-treated’. Each category had four ‘biosamples’ which represented biological
replicates and each biological replicate was represented by four LC-MS/MS runs. The LC-
MS/MS runs representing the pooled samples were generated using one digest. For
experiments with pooled sample, each category has one biosample and each biosample was

represented by five LC-MS/MS runs. The information from each technical replicate was

condensed to give cumulative spectral data representative of the sample.
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This cumulative spectral data was referred to as the ‘total spectral count’. It is the sum of all
the spectra associated with a specific protein within a sample. For proteins that showed a
significant change in expression, manual verification was carried out to exclude peptides that
were shared with other proteins. The total spectral count was normalized to allow
comparisons between samples. The normalisation scheme in Scaffold adjusts the sum of the
selected quantitative values for all proteins in the list within each MS sample to an average
of the sums of all MS samples present in the experiment. This was achieved by applying a
scaling factor for each sample to each protein or protein group. This normalized total
spectral count was referred to as the ‘quantitative value (QV)’. The ratio of the quantitative
value of two groups was expressed as the ‘fold change’ and represented the differential

expression of the protein for that sample.
2.6.6. Statistical analysis

Depending on the experimental design, one of the three tests was used to determine the
statistical significance of the difference in the quantitative value reported for a protein in the
three treatment groups tested. These tests were Fisher’s exact test, t-test and simple one-
way ANOVA. Fisher’s exact test and t-test were used to compare the relative abundance
between two groups at a time while ANOVA was used to compare all three groups. The
results of Fisher’s exact test and t-test were reported as the probability (p-value) that the
difference between the means could occur by chance. The result of the one-way ANOVA test
was also a probability (p-value) but this value represented the probability of variation among
the different groups considered for the test — a low p-value indicated a high probability of
the variation between categories. Multiple testing corrections were performed for all three

tests using the Hochberg-Benjamini method with a FDR threshold of 5 %.

Comparison of all three groups by one-way ANOVA requires three or more replicates per
treatment group and so this analysis was possible only for experiments that used datasets
with unpooled samples. The one-way ANOVA test performed in Scaffold tests the equality of
mean QVs across three or more treatment groups and low p-values indicate a difference
among the categories. The test however, does not indicate what categories are different
from each other. And so, the categories were compared two at a time using either Fisher’s
exact test or t-test. Fisher’s exact test can be applied to fewer than three replicates and so it
was used for the statistical analysis of datasets with pooled samples in which one sample

represented a treatment group. The t-test was used to determine the statistical significance
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in analysis datasets with unpooled samples. These datasets included four biological

replicates for each of three treatment groups.
2.6.7. Functional analysis: Gene Ontology and KEGG pathways

WEB-based GEne SeT Analysis Toolkit (WebGestalt) was used to interpret the protein lists in
a biological context [243]. WebGestalt is a suite of tools for functional enrichment analysis in
biological contexts; it compares the uploaded list with entries in predefined functional
categories to identify those categories with enriched numbers of user-uploaded gene. The
tools hosted by WebGestalt were used to identify possible functional enrichment of proteins
in the Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways. SwissProt identifiers (for example: P31946) of the proteins were provided as input
“user IDs”. The human genome was used as a reference set for the enrichment analysis. A
hypergeometric test was used for enrichment evaluation analysis with the significance level
set at p < 0.01 using a Benjamini and Hochberg multiple test adjustment. A requirement of

at least two genes was set for a category or pathway to be considered.
2.7 Validation of proteomics results

2.7.1 Western Blots

2.7.1.1. Separation of protein

HepG2 cells were harvested, washed with PBS and pelleted by centrifugation at 180 g for 3
min. The pellet was stored at -80 °C. The sample for Western blots was a cell lysate obtained
after re-suspending the cell pellet in lysis buffer. Protease inhibitor cocktail P8340 was added
to the sample, and the sample was stored at -80 °C. Since the lysis buffer did not contain
urea, the protein content of the sample was assessed using the manufacturer’s protocol for

the Bio-Rad Protein Assay [244].

The cell sample was separated using two-dimensional electrophoresis to validate the anti-
perilipin 2 antibody. This included precipitation of 100 pg proteins using Calbiochem
precipitation kit and re-suspending the proteins in 125 ulL rehydration buffer [2 M thiourea,
7 M urea, 2 % pH 3-11 IPG buffer (GE healthcare, USA), 2 % DTT, 4 % CHAPS and trace
bromophenol blue]. The sample was pipetted into the Immobiline DryStrip Reswelling tray
(GE healthcare, USA) and the IPG strip was placed on the sample and covered with mineral
oil to be left overnight for passive rehydration and loading of the sample onto the strip. The

isoelectric focusing for the separation of protein in the first dimension was performed using
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Ettan Multiphor Il Electrophoresis system (GE Healthcare, USA) attached to EPS3501 XL
power pack (GE Healthcare, USA) to setup the voltage gradient for separation and a
temperature controlled water bath (Julabo, Seelbach, Germany) to maintain the

temperature at 20 °C.

At the end of the focussing, the proteins on the strip was prepared for separation by SDS-
PAGE on 4-12 % gradient NuPAGE gels (Invitrogen, USA; now Thermo Fisher Scientific) by
reducing them in 1 % DTT in equilibrating buffer (6 M urea, 30 % glycerol, 2 % SDS and traces
bromophenol blues in 50 mM Tris-HCI, pH 8.8) and alkylating them in 1 % iodoacetamide in
equilibrating buffer. For Western blots of proteins other than perilipin 2, the separation was
performed only in one-dimension using SDS-PAGE on 4-12 % gradient NUPAGE gels. Samples
for these gels were prepared by reducing and alkylating aliquots with 10 pg proteins using
NuPAGE® LDS Sample Buffer (Life Technologies, New Zealand) and NuPAGE® Sample

Reducing Agent (Life Technologies, New Zealand).

A pre-stained fluorescent marker (Precision Plus Protein™ Dual Colour standards, Bio-Rad)
was run along with the protein samples to indicate molecular weights. The separated
proteins were stained with Coomassie blue G250 (Sigma-Aldrich)to confirm uniformity and
accuracy of the protein quantification across different samples. Gels for Western blots were
not stained. The separated proteins were transferred onto Hybond-LFP membrane (GE
Healthcare Life Sciences) for Western blotting by wet electro-transfer in NUPAGE® transfer
buffer for 1 h at 30 V. The transfer system was cooled by ice-cold water. The extent of

transfer was assessed by post-transfer Coomassie blue staining of the gel.
2.7.1.2. Detection of bands

Membranes were placed in blocking solution [8 % (w/v) skimmed milk in Tris-buffered saline
with 0.1 % Tween-20 (TBS-T)] for 3 h to prevent non-specific protein interactions between
the membrane and the antibodies. The blocked membrane was incubated overnight at 4 °C
with primary antibodies against the target proteins. Anti-rabbit Alexa Fluor 647 (Invitrogen)
and anti-mouse Alexa Fluor 555 (Invitrogen) secondary antibodies were used at 1 in 5000
dilution. The protein concentration and optimum titre for each primary antibody was
determined individually. Detected bands not corresponding to molecular weight of the
target protein was considered a non-specific band. These were taken into consideration
before selecting the target proteins that could be detected using multiplexed blots. Testing

the antibody at different protein concentrations was done to confirm there was no
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saturation of signal at the given antibody concentration [245]. Actin was used as a loading
control [246]. The membrane was washed with four 7-min incubations in TBS-T before
incubating with secondary antibody for 1 h at RT in the dark. Excess antibodies were
removed by washing the membrane with four 7-min incubations in TBS-T, and the

membrane was scanned on a Fujifilm FLA-5100 (Fuji Photo Film, Japan).
2.7.1.3. Quantification of bands

Bands were quantitated using ImageJ [247, 248]. Anti-rabbit Alexa Fluor 647 and anti-mouse
Alexa Fluor 555 generated images in the red and green channel respectively. The channels
were merged to give a RGB composite image which was then converted into 8-bit grey scale
image to allow for quantification of the bands. Imagel) converts pixel intensities into optical

density using the function OD = logio (2**/pixel value)-
2.7.2 Immunofluorescent labelling of protein

HepG2 cells used for immunolabeling of perilipin 2 [also known as adipose differentiation-
related protein or adipophilin] were grown on 13 mm sterile coverslips placed in wells of a
24-well plate and treated as described above. At the end of the treatment, the cells were
fixed with 4 % paraformaldehyde for 20 min at RT [249]. The fixed cells were incubated in
blocking buffer (1 % BSA in PBS with 0.05 % Tween 20) for 1 h at RT to minimize non-specific
binding of antibodies [250]. At the end of the incubation, the cells were rinsed once with PBS
and incubated overnight at 4 °C with polyclonal anti-perilipin 2 antibody (1 in 500 dilution)
raised in rabbit. The primary antibody was diluted in 1 % BSA in PBS. The excess and
unbound primary antibody was washed away by six 5-min washes of PBS, and the bound
antibodies were detected using a 1 in 500 dilution of goat anti-rabbit secondary antibody
(Abcam®) conjugated with Alexa Fluor® 488 (Life Technologies Corporation, USA). The excess
and unbound secondary antibodies were removed with 6 washes of 5 min each. The washed
coverslips were then lifted off the plate and mounted in 5 pL of Vectashield® anti-fade
mounting medium with 4', 6-diamidino-2-phenylindole (DAPI) as nuclear counterstain.
Fluorescent staining was examined with an Olympus FluoView FV1000 confocal laser
scanning microscope using a 60x oil-immersion objective. Images were acquired in
sequential imaging mode with dichrome filters allowing a bandwidth of 425 to 460 nm for

DAPI and 485 to 545 nm for Alexa Fluor 488.
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CHAPTER 3: DETERMINING TREATMENT CONDITIONS

3.1. Introduction
3.1.1. HepG2 cells as cell culture model for lipid accumulation

As described in section 1.4.1, lipid accumulation, largely on account of excessive inflow of FA
from the adipose tissue into the liver, constitutes the first hit in disease progression.
Treatment of hepatocyte cell lines and primary hepatocytes with mono-unsaturated and/or
saturated FA has been shown to reproduce this key feature of NAFLD in humans [230, 251].
This project has used HepG2, a human hepatocarcinoma cell line, to study this feature and
describe the proteomic changes that accompany it. Unlike primary hepatocytes, HepG2 cells
are not limited in availability and can be maintained in cell culture media with more ease
than hepatocytes. Moreover, these cells are capable of a performing a wide variety of liver-
specific functions related to cholesterol and TAG metabolism [252]. The use of HepG2 in
assessing the effects of exogenous FA and ensuing lipid accumulation has also been well-
documented [231, 253]. This chapter describes the effects of FA on HepG2 cells and outlines
a treatment regime that would provide a HepG2-based cell-culture model that represents
the proteomic changes associated with lipid accumulation. DGAT inhibitors have also been

studied for their effect on lipid accumulation induced by such a treatment.
3.1.2. DGAT inhibitors

Three DGAT inhibitors have been tested in this project. They are DGAT1 inhibitors A92 and
PFO4 and DGAT2 inhibitor PFO6 (Figure 11). A92 was developed by Abbott Laboratories
(Abbott Park, IL, USA) and is a urea analogue of biaryl keto acids class of compounds that has
been reported to cause weight loss and significant reductions in hepatic and serum TAG in
mouse models [254, 255]. PFO4 (Pfizer Global Research and Development, Groton, CT, USA)
has a pyrimidooxazepinone structure and has been reported to have an ICso (half maximal
inhibitory concentration) of 19 nM for human DGAT1 in human intestinal epithelial cells (HT-
29) cells [131]. It is an orally-active compound capable of reducing serum TAG concentration
in rat models [256] and reducing blood glucose levels in patients with Type Il diabetes [257].
The DGAT2 inhibitor PFO6, also developed by Pfizer Global Research and Development, has
been reported to be a highly selective, imidazopyridine-based inhibitor capable of reducing
TAG synthesis in cultured human hepatocytes by as much as 50 % in conjunction with PF04

[258]. It was also capable of reducing serum TAG concentration in a rat model [258].
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Figure 11: DGAT inhibitors used in this project. A) A922500; B) PF04620110 and C) PF06424439. The images
have been sourced from the suppliers’ catalogue.

3.1.2. Measuring lipid accumulation

Assays used to measure the TAG content and lipid accumulation are either enzyme-based
commercial kits [259, 260] or use of lipophilic dyes like ORO or Nile red [261, 262]. While
each commercial kit-based assay has its proprietary components, the steps involved include
enzymatic hydrolysis of TAG by a lipase and measurement of the glycerol or FA produced
[259, 260]. Nile red is a fluorescent lipophilic stain that exhibits solvatochromism [263]. The
colour of solvatochromatic dyes changes with the change in solvent polarity, and so Nile red
fluoresces yellow-gold (excitation, 450 - 500 nm; emission, > 528 nm) in the presence of
neutral molecules like TAG but in the presence of polar molecules like phospholipids in
cellular membranes it emits a red fluorescence (excitation, 515 - 560 nm; emission, > 590
nm) [264, 265]. The yellow-gold fluorescence has been used to measure accumulation of
neutral lipids in the cell. ORO on the other hand is a non-fluorescent, fat-soluble diazol dye
which stains neutral lipids but, unlike Nile red, does not stain biological membranes [266].
LDs stained with ORO appear red under a light microscope. The principle for staining is that
ORO is more soluble in TAG-rich LDs than it is in the solvent (60 % isopropanol) used to
prepare the staining solution [267]. This property has been used to stain TAG-rich LDs in the
HepG2 cells used for the present study [171]. Since it exclusively stains the LDs in the cell,
the amount of dye retained has been used as a measure of the extent of intracellular lipid
accumulation. This chapter describes the use of ORO to characterise the extent of lipid
accumulation induced by exogenous FA in HepG2 cells and identify the treatment conditions

to be used for the proteomics experiment.
3.2 Results
3.2.1. Lipid accumulation in HepG2 cells

The aim of this project was to identify the proteomic changes that accompany lipid
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accumulation in HepG2 cells. And, since the broader purpose of this objective was to identify
molecular mechanisms involved in a diseased state like simple steatosis, a treatment
condition that would induce lipid accumulation with minimal cytotoxicity was required.
HepG2 cells were incubated with different concentrations of FA mixture for different
treatment durations and two parameters — lipid accumulation and cell viability — were
measured at each time point. The lipid accumulation was measured using the ORO assay
described in section 2.3.3. and cell viability was measured using the MTT assay described in
section 2.3.4. This section describes the results of these assays and based on these results,
treating HepG2 cells with 1 mM FA mixture for a duration of 6 h was found suitable for the
proteomics analysis. The exact duration of the treatment was confirmed after taking into

consideration the effects of the DGAT inhibitors discussed in section 3.2.2.
3.2.1.1. Linear range of absorbance for Oil Red O

The ORO assay used to measure lipid accumulation in HepG2 cells was performed using the
ORO staining solution prepared in our laboratory and so, a spectrum scan ranging from 300
to 600 nm was performed to determine a wavelength at which the absorbance of the
working ORO solution could be measured. Although many studies have used ORO to
measure lipid accumulation in HepG2 cells, there is no consensus on the measurement units
or wavelength at which ORO absorbance is measured [68, 231, 253]. The spectrum scan
performed identified a two ranges — 340 to 350 nm and 500 to 540 nm — within which
absorbance of the dye was at its peak (Figure 12A). This was consistent with the UV—visible
spectra reported for ORO [268]. Two wavelengths, 510 and 405 nm, have been cited in
literature for quantification of ORO [231, 233, 262]. Absorbance of a series of two-fold
diluted ORO working solutions was measured at both these wavelengths and, consistent
with the spectrum scan, the absorbance of the ORO working solution at 510 nm was higher
than that observed at 405 nm at all concentrations tested. And so, although the absorbance
had a linear correlation (R? = 0.98) with the dye concentration for up to 0.525 mg/mL for
both wavelengths (Figure 12B), all subsequent measurements were made at 510 nm. The
linear correlation betweeen the dye concentrations up to 0.525 mg/mL corresponded to an
absorbance ranging from 0.1 to 0.93. Therefore, the volume of isopropanol used to extract
the dye from the cells was adjusted to yield an extract that would have an absorbance
between 0.15 to 0.93 and, since the dye from each cell sample was extracted using the same
volume of isopropanol, it was assumed that any difference in the absorbance would be due

to the difference in the amount of dye that had accumulated in the cell. The absorbance of
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the ORO extracted from the treated cells was compared to that from the untreated ‘control’
cells and expressed as ‘fold of control’ to provide a relative measure of lipid accumulaiton in

the cell as described in section 2.3.3.3.
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Figure 12: Absorbance of ORO at different wavelengths. A) Spectrum scan of undiluted ORO working solution.
B) Absorbance of ORO working solution were measured over a range of 0.008 to 1.05 mg/mL at two
wavelengths — 510 nm and 405 nm. This concentration range corresponds to two-fold serial dilution of the ORO
working solution.

3.2.1.2. Inducing lipid accumulation

The concentrations of FA mixture tested ranged from 0.25 to 3 mM and each concentration
was evaluated for lipid accumulation at treatment times ranging from 1 to 24 h. Exposure to
the FA mixture led to a dose-dependent and time-dependent increase in lipid accumulation.
The accumulated lipid droplets were seen using a phase-contrast microscope as refractile
particles in the cytosol and were stained red by the lipophilic dye ORO (Figure 13)[171]. The
bound dye was extracted and the absorbance of the extract was measured at 510 nm. To
account for the loss of cells, absorbance was normalized using the MTT data described in
section 3.2.1.3. The ratio of absorbance of the FA-treated sample to that of the control
sample was expressed as the fold of control and provided a relative measure of lipid

accumulation. The average value for each combination of treatment time and concentration

41



of FA mixture was compared for statistically significant differences using two-way ANOVA.
This test also indicated a statistically significant interaction between the two variable factors
that had affected the outcome i.e. treatment time and the concentration of FA mixture were

likely to have synergistic effect on the extent of lipid accumulation.

Untreated cells FA-treated cells

Figure 13: Visualization of lipid droplets in HepG2 cells. The lipid droplets appear as birefringent particles
under a phase-contrast microscope in the upper panels. The lower panels shows lipid droplets stained red with
ORO and the nucleus stained violet with haematoxylin against an eosin-stained cytoplasm. The insets have a
digital magnification of 1.5x. The cells shown in this figure were treated with 1 mM FA for 12 h.

Consistent with this, 3 mM FA mixture had the most pronounced effect on lipid
accumulation - treatment with this concentration of FA mixture produced significant effects
within an hour of exposure while it took up to 18 h to induce a significant level of lipid
accumulation using 0.25 mM FA (Figure 14). At the end of the 24 h treatment time, the
extent of lipid accumulation induced by 3 mM FA mixture was about 6 times of control and
the highest for all concentrations tested. The highest extent of lipid accumulation observed
after a 24 h treatment with 0.25 and 0.5 mM FA mixture was 1.5 and 1.9 times of control

respectively. Through ORO staining, Figure 15 shows the lipid accumulation induced by 1
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mM FA mixture over a period of 24 h. This corresponds to lipid accumulations 2.5 times of
control over a period of 24 h. The extent of lipid accumulation induced by 2 mM FA mixture
for the same duration is about 4 times of control (Appendix Figures 66-70 show lipid
accumulation in HepG2 cells treated with various concentrations of FA mixture and stained

with ORO for observation and quantification.)

Lipid accumulation (fold of control)

Control 0.25 0.5 1 2 3

FFA conc. (mi)

Figure 14: Lipid accumulation measured using ORO assay. In HepG2 cells, lipid accumulation post exposure to
FA was found to increase with increase in treatment time as well as FA concentration. The ORO assay provides a
relative quantification of lipid accumulation in terms of ‘fold of control’. The values in the graph represent mean
+ SEM of four experiments with three technical replicates for each experiment. Values were significant at
p < 0.01 unless otherwise specified (NS: No significant change with respect to the control at the same time
point; * p < 0.05).

3.2.1.3. Cytotoxic effects of lipid accumulation

Cytotoxic effects of FA, especially saturated FAs, have been well documented in the
literature [269-271]. This cytotoxicity and the consequent loss of cells was measured using
the MTT assay. Living cells reduce MTT, a yellow tetrazole, to a purple formazan. The
amount of formazan produced was estimated colourimetrically after solubilisation and a
comparison of the optical densities of treated cells to that of the untreated, control cells
provided a relative measure of how lipid accumulation may have affected the metabolic
activity of the cell. Since non-viable HepG2 cells tend to detach from the plate surface, they
were removed from the plate and thereby from the assay when the treatment media was
replaced with 0.8 mg/mL MTT in DMEM at the end of the treatment time. As a result, this
test also provided an indirect measure of cell viability defined here as the number of cells

attached and metabolically active.
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The cell viability thus estimated was used to normalize the ORO absorbance values and
account for the loss of cells observed at the higher concentrations and/or after prolonged
treatment times. The extent of cytotoxicity depended on the treatment time and the
concentration of FA mixture tested with the effect being most pronounced at higher
concentrations. Cells treated with 0.25 mM FA showed the least reduction in absorbance
while those treated with 3 mM showed significant decrease within an hour of exposure. A 24
h exposure to 2 mM FA reduced the metabolic activity to almost half that of the control

while a 3 mM FA mixture led to an almost 70 % decrease (Figure 16).
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Figure 16: Effect of FA on metabolic activity assessed using MTT assay. Lipotoxic effects are most
pronounced at FA concentrations of 1 mM and higher. The effects are exacerbated over period of time. The
values represent mean % control £ SD of four independent experiments with three biological replicates for
each experiment. Values were considered significant at p < 0.01 unless otherwise specified (NS: No significant
change with respect to the control at the same time point).

Lysed cells surrounded by a large number of ORO-stained LDs were observed at the end of
24 h treatment with 2 and 3 mM FA (Figure 17). The significant cytotoxic effects ruled out
the use of 2 and 3 mM FA in further experiments. The cells treated with 1 mM FA mix had a
cell viability of up to 92 % of control for a 6 h treatment time; the cell viability reduced to
more steadily thereafter. At 18 h treatment duration, the cell viability was found to be about
80 % of control cells and this reduced to about 76 % of control cells after 24 h treatment
duration. The increase in lipid accumulation observed within 6 to 18 h of treatment with 1
mM FA mixture appeared to be sufficient to allow detection of a DGAT inhibitor-induced
decrease in lipid accumulation. Since the study design requires a system with low
cytotoxicity but with maximum possible lipid accumulation, 1 mM FA mixture was selected

as a suitable treatment condition to study the changes brought about by lipid accumulation.

45



Figure 17: HepG2 cells treated with high concentration of FA mixture. Prolonged treatment with high
concentration (2 and 3 mM) of FA mixture leads to significant reduction in cell viability and the remnants of
lysed cells stained with ORO are shown in this figure.

3.2.2. Effect of DGAT inhibitors on lipid accumulation
3.2.2.1. DGAT1 inhibitor A922500

The DGAT1 inhibitor A92 is reported to be a potent, orally-active inhibitor with an ICsp value
of 7 nM for recombinant human DGAT1 protein [254]. A92 is also reported to be very
specific for DGAT1 with 1Cso values for DGAT2 and ACAT1/ACAT2 of 53 uM and 296 uM,
respectively [254, 272]. In HepG2 cells, A92 has been reported to inhibit incorporation of
radio-labelled oleic acid into TAG at concentrations as low as 0.1 uM [273]. In my work,
concentrations ranging from 1 uM to 100 pM A92 were tested in the presence of 1 mM FA
mixture. The extent of lipid accumulation was measured using the colorimetric ORO assay.
Various combinations of suitable treatment time and inhibitor concentration were tried.
Initial experiments of the treatment of HepG2 cells with 1 mM FA for 6 h in the presence of
100 uM A92 showed reduction of lipid accumulation by 22.8 % with respect to the cells
treated with the FA mixtures without the inhibitor. The treatment was tested in three
independent experiments using cells from the same batch but different passage numbers,
however, the effects of the inhibitor could not be reproduced. Each batch of cells originated
from a single vial of stock cells, stored under liquid nitrogen, originally purchased from ATCC.
The effect of A92 was also tested on cells of different batches originating in different vials
frozen down at different times but the results remained irreproducible (Figure 18 and 19).
Each batch of cells was tested for mycoplasma and, having ruled out such contamination,
different culture conditions such as longer incubation periods and lower concentrations of

FA mix were also tested. The inhibitor did not have any effect on lipid accumulation in these
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altered conditions either. Additionally, the DGAT1 inhibitor was also tested for stability and

effectiveness in a cell-free system. This section describes the results of these assays.
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Figure 18: Effect of 100 pM A92 on HepG2 cells. A) Lipid accumulation measured using ORO assay after 6 h
treatment with 1 mM FA mixture; B) Metabolic activity of cells as measured by MTT assay after 6 h

treatment with 1 mM FA mixture.

Figure 19: Lipid accumulation in HepG2 cells treated with 100 uM A92. A) Control cells; B) Cells treated 1
mM FA mixture for 6 h only; C) Cells were treated with 1 mM FA mixture with 0.2 % DMSO to represent
solvent control for the effect of A92; D) Cells treated with 1 mM FA mixture in presence of 100 uM A92.

3.2.2.1.1. Effect of experimental conditions on the effect of A92 on cultured cells

The initial experimental conditions tested included incubation of cells with 100 uM A92 in

DMEM with 1 % BSA for 1 h prior to the addition of FA mixture to the medium. After the

addition of FA mixture, the cells were incubated further for 6 h. Three changes to this

protocol were tested: 1) omitting the pre-incubation, 2) increasing the incubation time after
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the addition of FA mixture to 18 h and 3) using medium without BSA. The prior incubation
with the DGAT inhibitor was omitted to minimize any possible break-down or metabolism of
the inhibitor molecule before its effect could take place. Increased incubation time was
tested to allow maximum possible time for the inhibitor to have an effect on the cell. The
removal of BSA from the medium was considered to rule out any possible interference of the
BSA with the uptake of inhibitor molecule. None of these changes in the treatment
conditions led to inhibition of lipid accumulation as seen in the preliminary experiments.
Incubation with lower concentrations of FA mixture (0.25 mM and 0.5 mM) for 6 h was also

tested, but again, no inhibition was seen (Figure 20).
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Figure 20: Lipid accumulation in presence of DGAT inhibitor A92. HepG2 cells were treated 100 uM A92 in
presence of 0.25 mM or 0.5 mM FA with a control for DMSO. The lipid accumulation observed in HepG2 cells
treated with 100 uM A92 was not significantly different from that observed in cells treated with FA alone.

The reasons for inconsistent inhibition were not clear although we assumed it might be
related to the cell culture protocols especially trypsinisation and preparation of cell stocks
for cryopreservation. It appeared at that time that the cells would attach but stop
proliferating after 8 to 10 passages and any further passage would result in no cells adhering
to the flask surface. Since the problem persisted in all cultures generated from stock vials
available at our facility, we sourced a frozen vial of HepG2 cells from the Malaghan Institute

of Medical Research (New Zealand) and used the cells from this vial for the rest of the study.
3.2.2.1.2. Stability of A922500

A 50 mM A92 stock solution was prepared in DMSO and stored at -20 °C for no more than
three months before use. Although this conforms to the manufacturer-recommended
storage conditions, the stability of A92 in the stock solution was confirmed by mass

spectrometry using electrospray ionization in a Q-TOF LC/MS mass spectrometer (Agilent
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Technologies 6530). The results showed that ions corresponding to [M+H]* (calculated m/z:
429.1809; measured m/z: 429.1827) and [2M+H]* (calculated m/z: 857.3618; measured m/z:
857.3583) for A92 (formula: Cz6H24N204) were detected (Figure 21). The absence of any
other detected ions ruled out the possibility of contamination or possible degradation of A92

in the stock solution as the cause of its lack of inhibitory effect in the cell culture assay.
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Figure 21: Spectral analysis of A922500 stock solution. The stock solution was analysed using the Agilent
Accurate-Mass™ Q-TOF system in the positive ion mode. The sample was considered uncontaminated since
only peaks corresponding to A92 were observed.

3.2.2.1.3. Inhibition of in vitro DGAT activity

Having confirmed the stability of the stock solution, an in vitro assay was used to test the
activity of A92 in the absence of cells. The reaction mixture containing DGAT substrates
dioleolyl glycerol and NBD-palmitoyl CoA was prepared as described in section 2.5.2, and,
after incubating the mixture for 30 min at 37 °C, the components of the mixture were
separated using TLC as described in section 2.5.3. Only molecules that would have
incorporated the fluorophore would be detected by the fluorescence scanner. A preliminary
experiment was performed using the mobile phase described by McFie et al. in the original
article describing this assay [236]. This mobile phase consisted of n-hexane: diethyl ether:
acetic acid (80: 20: 1; v/v). Separation of bands in these experiments was poor and the
possibility of unresolved bands could not be ruled out. The band that had moved furthest
from the loading spot had a retention factor (Rf) of 0.12 when the solvent was allowed to
run to 18 cm from the base of a 20 cm plate (Figure 22A). A second band was seen very close
to the loading spot (Rf = 0.05). The presence of a band superimposed on the loading spot
indicated suggested a need for a mobile phase that gave better resolution. A mobile phase
consisting of diethyl ether: n-hexane: methanol: acetic acid (55: 45: 5: 1, v/v) was tried on
the recommendation of the authors of the original article [119, 236]. Although the band

superimposed on the loading spot persisted, the sample did resolve into more bands and the
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separation of the bands was also improved separation as seen by the higher Rf values (Figure
22B). The TAG product band was identified by its absence in the negative control, and had
moved the farthest from the loading spot. Based on this result, the mobile phase of
diethylether: n-hexane: methanol: acetic acid (55: 45: 5: 1, v/v) was used to separate the
reaction products of the in vitro assay for DGAT activity. The ability of A92 to inhibit
microsomal DGAT activity was tested using the modified mobile phase. In this assay, A92
inhibited all microsomal DGAT activity at 50 uM and 100 uM (Figure 23). This indicated that,
in spite of the lack of inhibition in the cell-culture based assay, A92 was capable of inhibiting
DGAT activity without the need for in vivo processing or metabolism that might occur in cells

or intact animal models.
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Figure 22: Comparison of mobile phases used for the separation of DGAT assay reaction mixture by TLC. The
lane marked ‘+’ represents a positive control which had all components of the reaction mixture. The ‘-‘ lane is a
negative control which had heat-inactivated enzymes. The reaction mixtures were separated using different
solvent systems as mobile phases and TAG reaction product band was inferred by its absence in the negative
control. It corresponds to the bands A3 and B6 on their respective chromatograms. A) Products separated using
a mobile phase of n-hexane: diethyl ether: acetic acid (80: 20: 1; v/v). B) Mobile phase of diethyl ether: n-
hexane: methanol: acetic acid (55: 45: 5: 1, v/v) was used to separate reaction products.
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Figure 23: Inhibition of microsomal DGAT activity by A922500. The negative control ‘SB’ was a substrate blank
which included NBD-palmitoyl CoA but not dioleoylglycerol and ‘EB’ was an enzyme blank that included both
substrates but the enzyme was heat-inactivated. Positive control had all the reaction components. The DMSO
control was included to check the effect of inhibitor solvent on the reaction. The reaction systems in both of
these controls was able to form the TAG product band which is absent in the negative controls. DGAT1 inhibitor
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A92 was tested at 50 and 100 pM and was able to inhibit microsomal DGAT activity at both concentrations.

3.2.2.1.4. Expression of DGAT enzymes

It was possible that up-regulation of DGAT2 may have compensated for inhibition of DGAT1
to maintain enough DGAT activity to continue producing TAG in the presence of FA [274].
Expression of DGAT1 and DGAT2 were therefore verified using western blots. There was no

significant change in the abundance of either protein (Figure 24).
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Figure 24: Western blots of DGAT enzymes in HepG2 cells treated with 100 uM A92. A) Each set of four lanes
in the blot represents a set of four biological replicates treated as indicated. B) Normalized optical density was
calculated as the ratio of optical density of the DGAT band to the optical density of actin in the same lane. No
changes in protein expression were observed for either DGAT enzyme. C) Optical density of actin used as the

loading control.
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3.2.2.2. Pfizer DGAT inhibitors — PF04 and PF06.

The use of inhibitors to block DGAT activity was limited by the commercial availability of
molecules other than A92. However, during the current study, the DGAT inhibitors PFO4 and
PFO6 became available for testing [258, 275]. PFO4 is a DGAT1 inhibitor, and PF06 is a DGAT2
inhibitor. The efficacy of these molecules was first tested in the in vitro assay for DGAT
activity at different concentrations of Mg?* (section 3.2.2.2.1). Section 3.2.2.2.2 describes the
results of the ORO assay and the MTT assay performed to test the effects of DGAT1 inhibitor

PFO4 on lipid accumulation in HepG2 cells treated with 1 mM FA mixture for 6 h.
3.2.2.2.1. Effect of PFO4 and PF06 on in vitro microsomal DGAT activity

DGAT inhibitors PFO4 and PFO6 were tested in the in vitro DGAT assay at final concentrations
of 5, 25, 50, 75 and 100 uM. The reaction mixture used dioleoylglycerol and NBD-palmitoyl
CoA as the substrates and included 20 mM MgCl;in the reaction mixture. While PF04, the
DGAT1 inhibitor, was able to inhibit all DGAT activity even at the lowest concentration
tested, DGAT2 inhibitor PFO6 was not able to produce the same effect (Figure 25). Although
concentration of MgCl, in the in vitro assay is much lower than the [Mg?*] reported to
adversely affect DGAT2 activity [100], the assay was repeated at lower concentrations of
MgCl, to confirm the lack of effect described above for PFO6. The reduction in the MgCl, did
not help; the product formed in the presence of 100 uM PFO6 was comparable to that seen
in the positive control while the presence of 100 uM PF04 was able to block TAG formation

completely at all concentrations of MgCl, in the same assay (Figure 26).
3.2.2.2.2. Effect of PFO4 and PFO06 in cell culture- based assays

Different concentrations of PF06, PFO4 and an equivalent volume of DMSO were added to
the media to test their effect on lipid accumulation in the cell culture-based ORO assay. An
MTT assay was performed parallel to the ORO assay. The lipid accumulation seen in cells
treated with 5 and 25 uM DGAT1 inhibitor PFO4 was up to 15.5 % less than that in cells
treated with 1 mM FA mixture alone. However, the effects of the inhibitor were statistically
significant only at concentrations of 50 uM and higher. DGAT2 inhibitor PFO6 had no effect
at 5 uM. At concentrations of 25 to 100 uM, PFO6 caused an average decrease of 6.3 % in
lipid accumulation but the decrease was not statistically significant. The two inhibitors were
also tested in combination at 75 uM and 100 uM. No additive effect was seen, and the
extent of inhibition observed was similar to that seen for PF04 alone (Figure 27). The dose-

dependent effect of PFO4 on lipid accumulation in cells using ORO is presented in Figure 28.
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Figure 25: Effect of PFO4 and PF06 on in vitro microsomal DGAT activity. Different concentrations of DGAT
inhibitors PFO4 and PFO6 were tested as indicated. The negative controls included were enzyme blank (EB)
and substrate blank (SB). Inhibition of DGAT activity was inferred by comparing the tests to the positive
control (+ve control). The corresponding product band was absent for all concentrations of PFO4 tested.
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Figure 26: Effect of Mg?* ions on DGAT activity. Activities of DGAT1 and DGAT2 can be distinguished based
on presence of Mg?* ions in the reaction buffer — the latter is inhibited at higher concentrations.PFO4 was
able to block microsomal DGAT activity irrespective of the [Mg?*] while PFO6 had no effect despite the

reduced [Mg?*].
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Figure 28: Effect of PFO4 and PF06 on lipid accumulation in HepG2 cells. HepG2 cells were treated with
different concentrations of DGAT inhibitors in the presence of 1 mM FA mixture for 6 h. Reduction in lipid
accumulation was considered significant for p < 0.05 and the values in the chart represent mean + SD of four
experiments with three measurements per experiment.

Figure 27: ORO staining of HepG2 cells treated with different concentrations of PFO4. A) Untreated
control; B) Cells treated with 1 mM FA mixture; C) Cells treated with 1 mM FA mixture with 0.2 % DMSO;
D - H) Cells treated with 1 mM FA mixture in the presence of 5, 25, 50, 75 and 100 uM PFO04, respectively.
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The metabolic activity of cells treated with 1 mM FA mixture for 6 h was about 92 % of the
untreated HepG2 cells. The presence of DGAT inhibitors did not rescue the cells from this
decrease in MTT absorbance. There was no statistically significant difference between the
MTT values observed for FA-treated cells and those treated with 1 mM FA mixture in the
presence of the DGAT inhibitors (Figure 29). Having confirmed that PFO4 does not affect the
expression of the protein (Figure 30), treatment of HepG2 cells with 100 uM PF04 was
selected for the proteomic analysis of the changes that accompany lipid accumulation in the

presence of DGAT inhibitors.
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Figure 29: Effect of DGAT inhibitors on metabolic activity of HepG2 cells treated with 1 mM FA mixture
for 6 h measured by MTT assay. The values represent mean % control + SD of four independent
experiments with three biological replicates for each experiment. The treated cells were compared to the
untreated control cells and no significant changes were observed. The difference in the mean values would
have been significant for values of p < 0.05.
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Figure 30: Western blot for DGAT1 in HepG2 cells treated with 100 uM PF04. Each set of four lanes
represents a set of four biological replicates treated as indicated. Lane 1 (from left) showed poor transfer
and was not included in the calculations. Actin was used as the loading control. Normalized optical density
was calculated as the ratio of optical density of the DGAT enzyme band to the optical density of actin in the
same lane. No statistically significant (p < 0.05) changes in protein expression were observed.
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3.3. Summary

Lipid accumulation in cells treated with 1 mM FA mixture for 6 h was found to be 1.4 (+ 0.01)
fold of control cells. This was reduced to about 1.2 fold in the presence of 100 uM of the
DGAT1 inhibitor PFO4. Although the DGAT1 inhibitor A92 was effective in initial experiments,
it later had no effect under the same conditions. The DGAT2 inhibitor PFO6 also had no
effect on lipid accumulation in HepG2 cells treated with 1 mM FA mixture for 6 h. While A92
did show an effect in in vitro assays, the DGAT2 inhibitor PFO6 was unable to inhibit the
microsomal DGAT activity, or the activity in cultured cells. Further use of the DGAT2 inhibitor

was discontinued.

The treatment conditions described in this chapter were the basis of a proteomic analysis of
the cell-culture model for lipid accumulation. Untreated cells represented the normal
proteome of HepG2 cells and served as a negative control for the effects of lipid
accumulation on protein expression. Cells treated with 1 mM FA mixture for 6 h represented
a proteome that allowed cells to cope with excess lipid accumulation. Treating cells with 100
UM PFO4 in the presence of 1 mM FA mixture for 6 h was used to test whether the
proteomic changes due to accumulation of FA could be reversed by inhibition of DGAT1 in
the cell. Cells treated with 100 uM A92 were also included in one of the initial proteomics

datasets, as described in the following chapter4.
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CHAPTER 4: PROTEOMICS ANALYSIS — PART |

4.1. Introduction

The primary objective of this study was to identify proteomic changes induced as a result of
excessive lipid accumulation. It also aimed at testing the effect of DGAT inhibition on the
changes caused by lipid accumulation. Based on the effects described in chapter 3, HepG2
cells treated with 1 mM FA mixture for 6 h were assumed to represent a state in which the
lipid accumulation was significant but protective mechanisms at play were able to ensure
cell survival. An analysis of these proteomic changes using “bottom-up” shotgun proteomics
and label-free quantification was performed to investigate these protective mechanisms.
This approach was considered useful since it aims to identify as many changes as possible
and, instead of being driven by a hypothesis, the analysis aimed at generating hypotheses
for testing through targeted studies in the future. As described in section 2.6., the approach
involved digestion of proteins by trypsin followed by MS analysis of the complex mixtures of

peptides used to identify the proteins present (Figure 31).

Sample preparation, separation of analytes and their detection are the key determinants in
the number of proteins and changes in abundance that can be identified. Sample
preparation includes all the steps taken to ensure the extraction and solubilisation of

proteins and these would include the use of various cell lysis techniques [276, 277]. The
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Figure 31: Schematic representation of proteomics workflow. The schematic shows an overview of steps involved in a
proteomics experiment: proteins are extracted from the cell, digested by trypsin and analysed using LC-MS/MS. Appendix
Table 20 describes the file formats used by each software.
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choice of technique depends on the experimental design and has to be mindful of chemical
compatibility with the LC-MS process [179]. Reverse-phase LC is the predominant technique
used for separation of the peptides since it is capable of high-resolution separation capacity
and the mobile phase solvents such as acetonitrile and methanol are compatible with
electrospray ionization method used to generate the analyte ions [278, 279].
Chromatographic peak capacity is defined as “the maximum number of resolvable peaks”
[280] and provides a measure of how well the analytes have separated [281]. Since each
peak represents an MS input that can be translated into a peptide and the peptide in turn
assigned to a protein for identification, the number of peptides and proteins identified in a
LC-MS/MS run have been considered a measure of the quality of the LC-MS data in this
work. Assuming adequate separation of peptides, the relevant MS settings and the
parameters of the database protein search are key determinants of the quality and quantity
of data acquired for a given sample. This chapter describes the results of the LC-MS/MS
dataset LC1 that set up the need to improve the number of proteins identified. The
improvement was brought about by modifying the parameters used for data collection. The
increase in the number of proteins is reflected in the number of proteins identified in the
subsequent analysis of dataset LC2 also described in this chapter. The samples for dataset
LC1 were prepared from lysates of cells grown from the ATCC stock vial. Based on the effect
shown by the DGAT inhibitor A92 in this culture system, the cells treated with 100 uM A92
and 1 mM FA mix were included in the analysis of dataset LC1. Dataset LC2 was generated
from samples prepared from lysates of cells that originate in stock vial sourced from the
Malaghan Institute. As described in detail in Chapter 3, the effect of A92 seen in the ATCC
cells could not be reproduced and hence dataset LC2 does not contain the inhibitor-treated

cells as a treatment group. PFO4 was not commercially available for testing at the time.
4.2. Results
4.2.1. Selection of a lysis buffer for sample preparation

Efficient cell lysis and good solubilisation of a wide range of proteins are vital to generating
data representative of the sample. Cell pellets of untreated HepG2 cells lysed using different
lysis buffers — glycerol-Triton X-100 buffer, RIPA buffer, SDS-DTT buffer and urea-CHAPS
buffer — were analysed using LC-MS/MS. The total number of proteins identified for each
buffer was used as the primary criterion for selecting the lysis buffer. Integral membrane

proteins are particularly difficult to solubilize and so, the number of membrane proteins
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detected in the sample was considered a measure of how well the buffer could extract and
solubilize proteins in general and membrane proteins in particular. The number of potential
membrane proteins was estimated using the TMHMM algorithm which predicts
transmembrane domains using a hidden Markov model [114]. The average number of
proteins identified for glycerol-Triton X-100, RIPA, SDS-DTT and urea-CHAPS buffer was 485,
492, 492 and 510 respectively (n = 2; LC-MS/MS runs for each sample preparation). There
was no statistically significant difference in the mean values of the different lysis buffers
(Figure 32A). Of the 485 proteins identified in samples prepared using glycerol-Triton X-100
buffer, 62 of the proteins were predicted to have transmembrane domains. This was
considerably more than the 39, 45 and 42 predicted for RIPA, SDS-DTT and urea-CHAPS
buffers, respectively (Figure 32B).
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Figure 32: Comparison of lysis buffer used for sample preparation. Buffers tested include glycerol-Triton X-
100 buffer (GT), RIPA buffer (RIPA), SDS-DTT buffer (SDS) and urea-CHAPS buffer (Urea). A) Average number of
proteins identified for each buffer over two LC-MS/MS runs. B) Proteins with potential trans-membrane
domains predicted by TMHMM (v 2.0). The number of trans-membrane domains predicted are represented by
the different colours of the stacked bars.

Triton X-100 is a non-ionic detergent with a low critical micelle concentration (0.24 mM)
[282]. Critical micelle concentration is a measure of surfactant efficiency — a lower
concentration indicates less surfactant is needed to saturate interfaces and form lipid
micelles. Triton X-100 inserts itself and rapidly equilibrates between the two leaflets of the
bilayer [283]. Several holes open up as the detergent crosses the solubility threshold and the
lipid bilayer then gradually vanishes. A detergent like SDS on the other hand, has a higher
critical micelle concentration than Triton X-100 and tends to lyse cells by increasing the
curvature of the liposomal membrane [284]. The increased curvature increases the stress on
the liposomal vesicles and causes it to burst [284, 285]. Given their modes of action, Triton
X-100 was considered more favourable to stability and extraction of membrane proteins.
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This was reflected in the number of potential membrane proteins identified using TMHMM.
The average number of proteins identified using glycerol-Triton X-100 buffer was not
significantly different (p > 0.05) from the number identified for other buffers. However, the
presence of glycerol to stabilize the proteins and the mode of action of Triton X-100 as a
detergent made it suitable for solubilizing a wide range of proteins, including membrane
proteins. Because of this, glycerol-Triton X-100 buffer was used for all subsequent LC-MS/MS

experiments.
4.2.2. Dataset LC1
4.2.2.1. LC-MS/MS parameters

Cell pellets of four biological replicates representing untreated HepG2 cells (hereafter
referred to as ‘control’ cells) and four additional cell pellets representing cells treated with 1
mM FA for 6 h (hereafter referred to as ‘FA-treated cells’) were lysed using the glycerol-
Triton X-100 buffer. Four biological replicates of HepG2 cells treated with 100 uM A922500
and 1 mM FA for 6 h (hereafter referred to as ‘A92-treated’ cells) were also included in this
dataset. These cells were derived from the ATCC stock vial used in the initial experiments in
which A92 was able to limit lipid accumulation. Consequently, exclusion of the A92 data
from analysis could not have been foreseen at the time. The experimental design for dataset
LC1 included three groups — control, FA-treated and A92-treated and each group was
represented by one pooled sample. Data attributed to a pooled sample was gathered over

five LC-MS/MS runs.

The method used to generate the LC-MS/MS data included the separation of peptides using

the multi-step LC gradient (Figure 33). The gradient started with 2 % Solvent B in the mobile
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Figure 33: LC gradient used for separation of peptides analysed in dataset LC1. The peptides analysed for LC1
were separated over a period of 300 min using a multistep gradient of solvent A and B. Solvent A was 0.1 %
formic acid and solvent B was 0.1 % formic acid in 80 % acetonitrile. The increase in the percentage of solvent B
(% Solvent B) over time increased the hydrophobicity of the solvent mixture and so the least hydrophobic
peptides eluted first and the most hydrophobic peptides eluted last.
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phase and in step 1, the percent of solvent B was increased to 30 % in 200 min. In
subsequent steps, the percent of Solvent B was increased to 45 % over 30 min followed by
an increase to 65 % in 40 min. In step 4, the percent of Solvent B was increased from 65 to
98 % over 20 min and kept constant at 98 % for 5 min before reducing it to 6 % to start
another run. The LTQ Orbitrap XL was set to perform an N* order double play experimental
protocol as described in section 2.6.3.3. The ‘N’ for scan event 2 was set to 6 for the
identification and quantification of proteins, and the method using this setting is referred
hereafter as the ‘Top 6" method. The Top 6 method selected the six most intense ions of the
master scan for data-dependent MS/MS fragmentation with no selection of monoisotopic
precursors, no charge-state screening and a dynamic exclusion setting set at a repeat count
of 2. This method accepted the most abundant isotopic peak for fragmentation without
correcting its mass to the monoisotopic value. It did not determine the charge state of the
ions analysed in the Orbitrap. A repeat count of 2 would have allowed the same MS

precursor to be fragmented twice before being excluded from MS/MS fragmentation.
4.2.2.2. Protein identification

The LC-MS/MS data of each run were processed using the workflow of the PD wizard for
SEQUEST-HT search to identify the peptides and the proteins (Figure 34). In this workflow,
the input spectrum was generated by the ‘Spectrum Selector’ node which also determined
the best precursor peak for a given MS/MS spectrum from the corresponding MS1 spectrum
in the master scan. The ‘Sequest HT’ node matched the spectra to a peptide and used its
scoring function to evaluate the quality of the match [205]. The peptide-spectra matches
were further validated by the ‘Target Decoy PSM Validator’ node which calculated FDR for
the matches. The average number of input spectra detected for the control sample was
16,471 and the average peptide-spectra matches possible was 6,139. For the FA-treated
sample, an average of 17,219 spectra were detected, and they were assigned to an average

of 5,916 peptide matches. An average of 17,013 spectra were detected for the five LC-

B g |l Spectrum — “ﬁ Target Decoy
[ SpectrumFiles 0 ‘ ! Selector 1 Sequest HT 2 |—»> PSM validator 3

Figure 34: The pipeline tree used for identification of proteins listed in LC1. SEQUEST HT search node in this
workflow generated theoretical spectra of all the proteins in the SwissProt database assuming digestion using
trypsin with a maximum of 2 missed cleavage sites, precursor mass tolerance of 10 ppm and fragment mass
tolerance of 0.6 Da. Modifications assumed in the search included oxidation of methionine (+15.995 Da) and
presence of a carbamidomethyl group on cysteine residues (+57.021 Da). The maximum ACn accepted for a
peptide-spectra match was 0.05, and the results were further validated by the ‘Target Decoy PSM Validator’
node that performed a decoy database search to limit the FDR to 0.01.
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MS/MS runs of the A92-treated sample, and the average number of peptide spectra matches
were 5,990. The total numbers of peptides identified for control, FA-treated and A92-treated
samples were 2,615; 2,458 and 2,553, respectively (Figure 35A). The average number of
proteins identified over five LC-MS/MS runs was 408, 387 and 410 proteins for the control,
FA-treated sample and A92-treated samples respectively. Each protein was identified with
high-confidence (FDR < 0.01) and has at least 2 peptides per protein (Figure 35B). The
proteins identified in the three groups were compared using a consensus list generated in
PD for a given group. This consensus list was generated using all five LC-MS/MS runs as input
and, after filtering the list for proteins identified with high confidence and at least 2 peptides
attributed to it, it contained 656, 627 and 662 proteins for the control, FA-treated and A92-
treated groups respectively. The consensus list represented the total number of unique
proteins identified in each group tested. Of these 548 proteins were common to all three
groups (Figure 35C). The rather low number of proteins identified in this dataset merited
further optimization of the LC-MS/MS to increase the number of proteins. Different LC-

MS/MS parameters tested to achieve this are described in section 4.2.3.
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Figure 35: Proteins identification for dataset LC1 in Proteome Discoverer. The mean values (+ SD) of these
five LC-MS/MS runs performed for each pooled sample are indicated A and B. A) Input spectra detected,
peptide-spectra matches (PSM) and the number of distinct peptides identified B) The average number of
proteins identified with high confidence (FDR < 0.01) and with at least 1 or 2 peptides per protein. C) Extent
of overlap see among the list of proteins identified for each treatment group.

4.2.2.3. Label-free quantification

Despite the limited number of proteins identified in dataset LC1, the data from the three

groups was compared in Scaffold for preliminary label-free quantification. The in silico

experimental setup is described in section 2.6.5. Since the experimental design included

pooled samples, the three groups were represented by one biosample each and each

biosample was represented by five LC-MS/MS runs. Peptide identifications were accepted if

they could be established at greater than 99.0 % probability by the Peptide Prophet
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algorithm. Protein identifications were accepted if they could be established at greater than
99.9 % probability and contained at least 2 identified peptides. A total of 523 proteins with
no decoys were identified for the three conditions (Appendix Table 3). Of the 523 proteins
identified in Scaffold, 511 proteins were found in all three groups and 11 proteins were
identified in at least two of the three groups (Figure 36A). The number of peptides common
to all three groups was 1,832 and this corresponded to 2,243 unique spectra that were
common to all three groups (Figure 36B and 36C). A comparison of the QV was performed
using Fisher’s exact test with multiple testing correction by the Hochberg-Benjamini method.
Two categories were compared at a time, and the significance level was set at 95 %. For
comparing the control and FA-treated groups, the difference in the QV was considered
significant for p < 1.43 x 103 and 14 proteins showed statistically significant changes in
abundance. The difference in QV was considered statistically significant for 21 proteins with
p < 2.1 x 103 in the comparison of the FA-treated group to the A92-treated group. The
difference in QV was statistically significant for 48 proteins with p < 4.68 x 103 in the

comparison of A92-treated group to the control group. These proteins are listed in Table 4.

A) B) C)
Control FA-treated Control FA-treated Control FA-treated

A2 A A
Y @€

A92-treated A92-treated A92-treated

Figure 36: Identifications of proteins, peptides and MS/MS spectra in different treatment groups in Scaffold.
A) Proteins identified in each treatment group. B) Total unique peptide counts for all proteins in the dataset.
C) The total number of unique spectra detected for all the peptides in the dataset.
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Table 4: Proteins with significant changes in abundance from dataset LC1. ‘C’, ‘F’ and ‘I’ represent the control, FA-treated and A92-treated samples respectively. ‘C vs F’
indicates the comparison of proteins in the control and the FA-treated groups. Similarly, ‘FA vs I’ represents comparison of the FA-treated sample to the A92-treated sample
and ‘C vs I represents comparison of the control to the A92-treated sample. The QV were compared using Fisher’s exact test. The ‘fold change’ represents the ratio of the
QV for the groups as indicated. ‘Unique peptides’ indicates the number of peptides that are unique and exclusive to the indicated protein

. Gene Fold change - valfxes determined by Quantitative value Unique
Protein name ame Fisher exact test peptides
CusF | IvsF | lvsC CvsF | lvsF [ lvsC _C | F | I C|F[I|

Actin, cytoplasmic 2 ACTG1 1.20 0.8 1.0 0.0067 0.0014 0.32 4815 567.6 4709 |20 20 20

Isoform 2 of Actin-related protein 2 ACTR2 INF 5.4 INF 0.25 0.021 0.0011 0.0 1.9 10.2 o 1 2

Apoptosis-inducing factor 1, mitochondrial AIFM1 INF INF INF 1 0.0042 0.0042 0.0 0.0 8.0 o 0 2

Aldehyde dehydrogenase, mitochondrial ALDH2 0.70 2.2 1.5 0.071 0.00022 0.025 46.5 31.9 69.3 8 9 11

Fructose-bisphosphate aldolase C ALDOC 0.20 2.6 0.5 | <0.0001 0.024 0.0059 | 38.1 7.0 18.2 2 2 1

Aminopeptidase N ANPEP 0.90 4.4 4.0 0.5 <0.0001 <0.0001 | 11.0 9.8 43.5 3 5 7

Apolipoprotein B-100 APOB 3.80 6.4 25 0.19 <0.0001 <0.0001 1.1 4.2 27.0 1 3 8

Apolipoprotein E APOE 0.90 0.5 0.5 0.33 0.013 0.0028 41.9 36.4 19.3 6 7 6

Isoform 2 of Transcription factor BTF3 BTF3 0.60 0.7 0.4 0.06 0.17 0.0039 | 30.9 19.4 13.6 4 3 2

S I 0gp [ 140 11 1.6 | 0015 031 00029 | 647 930 1018 |5 5 7
protein, mitochondrial

Isoform 3 of Calumenin CALU 0.70 0.2 0.1 0.24 0.0095 0.00064 | 18.1 12.7 2.6 3

Cytoplasmic dynein 1 heavy chain 1 DYNC1H1 1.60 2.4 3.9 0.29 0.02 0.0024 | 5.0 8.1 19.4 3 2 7

Eukaryotic initiation factor 4A-I EIF4A1 0.80 0.8 0.6 0.067 0.069 0.0011 | 100.3 79.7 61.0 14 14 11

Eukaryotic translation initiation factor 4B EIF4B 0.50 0.1 0.07 0.084 0.059 0.00081 | 13.0 5.9 0.9 3 1

Eukaryotic translation initiation factor 4 gamma 1 EIF4G1 0.10 22 2.6 0.035 <0.0001 0.016 7.4 0.9 18.9 3 1 3

Squalene synthase FDFT1 3.90 04 1.5 | <0.0001 <0.0001 0.13 14.2 56.0 21.2 5 6

Isoform 2 of Filamin-A FLNA 0.50 0.6 0.3 0.0023 0.062 <0.0001 | 56.7 29.8 18.5 16 11 4

Glutaminase kidney isoform, mitochondrial GLS 1.00 8.3 8.0 0.69 0.00043  0.00042 2.2 2.1 17.3 2 1 3

Glutamate dehydrogenase 1, mitochondrial GLUD1 1.00 0.7 0.7 0.52 0.0042 0.0043 | 105.9 105.8 69.8 12 14 9

Histone H2AX H2AFX 1.70 0.4 0.60 | 0.016 <0.0001 0.067 30.6 50.5 18.8 3 3 2

Isoform 2 of Heat shock protein HSP 90-alpha HSP90AA1 | 1.50 0.8 1.20 | <0.0001 0.00062 0.011 | 305.2 463.2 369.0 |18 17 13

60 kDa heat shock protein, mitochondrial HSPD1 1.10 1.2 1.30 0.051 <0.0001 <0.0001 | 749.0 816.2 1007.7 |36 36 33

Importin subunit alpha-1 KPNA2 0.40 0.4 0.10 | 0.0081 0.11 <0.0001 | 22.3 8.0 3.2 6 4 2

Keratin, type Il cytoskeletal 1 KRT1 1.40 7.2 10.0 0.39 <0.0001 <0.0001 | 5.1 7.0 50.7 2 2 8

Keratin, type | cytoskeletal 10 KRT10 0.90 18 16.0 0.5 <0.0001 <0.0001 | 6.1 5.2 94.5 2 3 1

Keratin, type Il cytoskeletal 2 epidermal KRT2 INF INF INF 1 0.00014  0.00014 0.0 0.0 13.3 0O 0 2
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Table 4 continued...

Protein name

Leucine-rich PPR motif-containing protein,
mitochondrial
Matrin-3
Isoform 2 of Mannosyl-oligosaccharide glucosidase
Nuclear transport factor 2
Proliferation-associated protein 2G4
Poly(rC)-binding protein 1
Protein disulfide-isomerase A3
Perilipin-2
DNA-dependent protein kinase catalytic subunit
26S proteasome non-ATPase regulatory subunit 2
Ras-related protein Rab-11A
Ribonuclease inhibitor
60S acidic ribosomal protein P2
Large neutral amino acids transporter small subunit 1

Superoxide dismutase [Cu-Zn]

Spectrin alpha chain, non-erythrocytic 1
Activated RNA polymerase Il transcriptional
coactivator p15
Tubulin-specific chaperone A
Isoform 2 of Tropomyosin alpha-3 chain
Tropomyosin alpha-4 chain
Heat shock protein 75 kDa, mitochondrial
Tubulin beta chain
Tubulin beta-4B chain
Voltage-dependent anion-selective channel protein 2

Nuclease-sensitive element-binding protein 1

Gene
name

LRPPRC

MATR3
MOGS
NUTF2
PA2G4
PCBP1
PDIA3
PLIN2
PRKDC
PSMD2

RAB11A
RNH1
RPLP2

SLC7A5
SOD1

SPTAN1

SUB1

TBCA

TPM3

TPM4
TRAP1
TUBB

TUBB4B

VDAC2

YBX1

Fold change
CvsF lvs F
1.10 1.4
0.60 0.6
3.70 1.2
0.20 0.4
0.90 0.5
0.80 0.7
1.20 0.6

INF 0.05
2.00 1.7
0.40 13

INF 0.5
0.30 4.2
0.60 0.7
0.00 INF
0.80 0.7

INF 1.5
0.30 0.2
0.06 0.0
0.50 0.6
0.09 2.0
8.30 0.9
0.90 0.9
0.90 0.8
1.20 4.8
0.30 1.9

lvs C
1.50

0.40
4.40
0.08
0.40
0.50
0.80

INF
3.30
5.50

INF
1.30
0.40
3.40
0.50

INF

0.07

0.00
0.30
0.20
7.30
0.80
0.80
5.80
0.60

P values determined by
Fisher exact test

CvsF
0.16

0.014
0.0095
0.011
0.36
0.13
0.064
<0.0001
0.075
0.34
0.00097
0.013
0.0012
0.031
0.16
0.00048

0.025

0.00026
0.00025
<0.0001
<0.0001
0.14
0.12
0.5
<0.0001

lvsF
0.0019

0.063
0.33
0.3
0.017
0.052
<0.0001
< 0.0000
0.072
< 0.0000
0.14
0.0015
0.13
<0.0001
0.052
0.19

0.18

0.49
0.036
0.2
0.29
0.022
0.025
0.00055
0.032

lvsC
<0.0001

< 0.0001
0.0015
0.00081
0.0045
0.0023
0.015
0.5
0.0011
0.00032
0.033
0.28
<0.0001
0.0096
0.003
<0.0001

0.00081

<0.0001
<0.0001
<0.0001
<0.0001
0.00081
0.00071
0.00019
0.0059

Quantitative value

C
136.6

57.7
4.1
13.1
35.0
55.1
136.2
0.0
8.2
4.0
0.0
16.4
77.2
5.0
54.8
0.0

13.2

15.0
66.2
43.4
5.1
416.7
333.2
4.0
53.2

155.7

35.6
15.2
2.9
31.2
43.4
164.2
213
16.1
1.7
10.3
4.9
43.6
0.0
43.4
10.7

3.8

0.9
314
4.0
42.6
384.8
302.8
4.9
16.4

210.8

22.2
18.4
1.0
15.6
28.2
102.3
1.1
26.8
21.8
5.1
20.7
32.5
17.1
29.1
16.2

0.9

0.0
17.4
8.1
37.4
329.5
255.1
23.2
30.8

Unique
peptides

C F |
18 19 26
7 4 3
2 3 4
3 2 1
7 5 4
9 7 5
19 20 17
0o 4 1
2 4 7
2 2 4
0o 1 2
3 3 5
6 6 6
2 0 2
4 4 3
0 5 5
2 2 1
2 1 o0
8 5 5
2 0 2
1 3 3
24 20 19
4 3 2
1 1 5
8 6 4
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4.2.2.4. Validation of proteins detected

Six proteins were selected for validation using Western blot (Table 5). These targets were
selected on the basis of their biological functions and to corroborate the statistical analysis
of the dataset. Perilipin 2 and mitochondrial 75 kDa heat shock protein (TRAP1) showed
statistically significant changes in abundance. Perilipin 2 was not detected in the control
sample but 4 peptides were assigned to the protein in the FA-treated sample and 1 peptide
was assigned to it in the A92-treated sample. Perilipin 2 is a marker for LD and given its
absence in the control sample was considered a good target for validation. TRAP1 was
identified in all samples and its abundance in the FA-treated and A92-treated samples was
8.3 and 7.3 times that in control. This increase was statistically significant. TRAP1 is a

mitochondrial chaperone.

Glutathione reductase plays a vital role in maintaining the redox state of the cells and given
the role of ROS in disease progression as described in literature, it was considered for
validation [286]. Its abundance in the FA-treated sample was 5 times lower than that of
control and its abundance in A92-treated sample was 4.4 times that of the FA-treated. Both
changes in abundances were assigned p < 0.05 but were not statistically significant after
multiple testing corrections. Glutaredoxin 3 is a cytoplasmic protein that also plays an
important role in maintenance the redox state of the cell [287]. Fatty acid synthase (FAS)
catalyses the de novo synthesis of FA in the cell and inorganic pyrophosphatase 1 (PPA1)
hydrolyses pyrophosphate to inorganic phosphate that is used in biosynthesis of nucleic
acids and proteins [288]. FAS showed almost no change in abundance across the three
samples while the changes in PPA1 were assigned p > 0.05. The abundance of DGAT1 was

also tested since A92, a DGAT1 inhibitor was part of the analysis.

Table 5: Target proteins from dataset LC1 for Western blot validation. Fold change is the ratio of QV of groups
as indicated. So, for example, ‘F: C' is the ratio of QV of the protein in the FA-treated sample (F) to that in
control sample (C). ‘I’ indicates A92-treated sample.

M.W Fold Change P value

Protein name
(kDa) F:C I:F

Inorganic pyrophosphatase 1.6 1.1 0.23 0.15 0.45
Fatty acid synthase FASN 273 1 0.9 0.9 0.47 0.098 0.08
Perilipin-2 PLIN2 48 INF* -20 INF* | <0.0001 <0.0001 0.5

75 kDa Heat shock protein [IY:\E] 74 8.3 0.9 7.3 <0.0001 0.29 <0.0001

Glutathione reductase | GSR 53 0.2 4.4 0.9 0.019 0.035 0.48

Glutaredoxin-3 | GLRX3 37 5.2 0.9 49 0.011 0.48 0.021

* perilipin 2 was not detected in control samples; the QV for this protein in the FA-treated and A92-treated sample was

21.1 and 1.1 respectively. Its fold change is shown as ‘INF’ since the QV for the protein in the control sample is zero.
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None of target proteins showed a statistically significant changes in abundance in the
Western blots (Figure 37). Since the difference in the QV for FAS, PPA1l, glutathione
reductase and glutaredoxin 3 were not statistically significant, the lack of change observed in
the Western blots supported the statistical test. However, the Western blots for proteins
with statistically significant changes — perilipin 2 and TRAP1 — did not show any significant
changes in abundance either. In fact, perilipin 2 was detected in the control samples used for
Western blots in spite of no peptides being assigned to it in the LC-MS/MS data. Actin was
detected in the LC-MS/MS data with the same number of peptides assigned to all three
samples; the difference in the QV of the three samples however, was considered statistically

significant.

Protein Control cells ‘ FA-treated cells A92-treated

Protein targets from LC1
GSR

Actin

FAS

TRAP1

PLIN2
Actin

Actin
GLRX3

DGAT1 S —

Actin —.  — s 75 A or==

PPA1l

Figure 37: Western blots for the validation of dataset LC1. The proteins validated through Western blots for
dataset LC1 included glutathione reductase (GSR), actin, fatty acid synthase (FAS), TRAP1, perilipin 2 (PLIN2),
glutaredoxin 3 (GLRX3) and DGAT1. Four biological replicates of each condition were tested- first four lanes
represent the control replicates, middle four represent FA-treated replicates and last four represent A92-
treated replicates. Some images have been cropped for want of space and indicated by a line separating the
target proteins. (Appendix figure 71 shows uncropped images.) * The blot for FAS, TRAP1 and PLIN2 did not
include the A92-treated sample due to unavailability of sample.

These Western blot results validate the presence of proteins identified in the samples by LC-
MS/MS but fail to corroborate the changes in abundances suggested by the LC-MS/MS data.
Validation of LC-MS/MS targets is discussed further detail in section 5.2.4. The outcome of
this analysis also suggested that greater robustness of the experimental design and an
increase the number of proteins identified was needed. The next dataset generated included
individual biological replicates instead of the pooled sample used in this dataset.
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4.2.3. Improving protein identification
4.2.3.1. Comparison of LC-MS/MS parameters

Two LC gradients and various data-dependent MS/MS settings were tested to improve the
number of proteins identified. The effectiveness of changing the LC-MS/MS parameters was
determined on the basis of the number of input spectra accepted by the ‘Spectrum Selector’
node of the PD workflow was used as a measure of the number of the spectra generated
using the parameter tested. The quality of the spectra was gauged by the number of
peptides these spectra could be matched to. Since multiple spectra can be assigned to the
same peptide, the number of distinct peptides identified on the basis of the data was used a
second measure of quality. Biological relevance of the peptides requires inferences to be
made at the protein level and so, the peptides identified were assigned to their respective
proteins and the total number of protein identified was the third measure used to gauge the

quality of the spectral information collected.
4.2.3.1.1. Optimization of LC gradient

The LC gradient used for dataset LC1 was generated using a step-wise increase in solvent B
from 2 to 98 over 300 min. For all samples tested, the maximum number of peaks were
detected within 200 min of this gradient run (Figure 38 shows a representative
chromatogram). This corresponded to an increase of solvent B from 2 % to 30 % of mobile
phase. Given the limited number of proteins identified in dataset LC1, the total run-time of
the LC was increased to 352 min; this gradient is hereafter referred to as ‘Gradient 1’ (Table
6). Four LC-MS/MS runs were performed for a sample of untreated HepG2 cells using

Gradient 1 and a modified Top 6 method described in section 4.2.3.2.

The chromatograms of this sample showed a similar pattern to that observed in dataset LC1
chromatograms — maximum number of peaks (approximately 81%) were detected in a step
that corresponded to an increase of solvent B from 2 % to 30 % (Figure 39 shows a
representative chromatogram). Given this elution pattern, an attempt was made to spread
the peaks more evenly over the run. To this end, the data generated from the four LC-
MS/MS runs using Gradient 1 was analysed using GOAT®. GOAT® is a gradient optimization
tool that suggested a multi-step gradient such that all steps would contain an equal fraction
of the MS/MS spectra acquired in the LC-MS/MS runs performed using Gradient 1 [241]. The

gradient suggested by GOATO is hereafter referred to as Gradient 2.
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Figure 38: Representative chromatogram for Top 6 method using standard LC gradient. The figure shows
the peaks detected over the 300 min LC-MS/MS run. The multi-step gradient set-up is indicated on the
timeline with the corresponding percent of Solvent B in the mobile phase.
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Figure 39: Representative chromatogram for the modified Top 6 method using gradient 1. The
chromatogram shows the elution pattern of analytes over a period of 352 min. The % solvent B at the
end-points of each step in the multi-step gradient are indicated along the red lines.

Table 6: Comparison of LC-MS/MS gradients. The gradient used to separate peptides analysed in dataset
LC1 were separated using gradient labelled ‘LC1 gradient’. Gradient 1 used a mobile phase with the same
percent of Solvent B at the end of each step as the LC1 gradient; the difference between the two gradients
was that some steps in Gradient 1 were longer than that the corresponding one in LC1 gradient.

% Solvent B 2 ‘ 30 ‘ 45 ‘ 65 ‘ o8 ‘ 98 ‘ 6

Retention | LC1 Gradient
time Gradient 1
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The mean value of % Solvent B suggested by GOAT® for the four replicates at each time
point was considered as the final value used to define Gradient 2 (Figure 40A). Gradient 2
was run for the same duration as Gradient 1 (352 min) and the MS/MS was performed using
the same modified Top 6 method that was used to test Gradient 1. Unlike the LC1 gradient
and Gradient 1, Gradient 2 computed by GOAT had a maximum 43 % Solvent B in its mobile
phase at 347 min of the run (Figure 40B). The performance of the two gradients was
compared on the basis of total number of proteins identified. Protein identification workflow
Combined 1 described in section 2.6.4 was used to generate a list of proteins based on the

LC-MS/MS data.
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Figure 40: Optimization of LC gradient using GOAT. A) Four LC-MS/MS runs representing control samples
were analysed using GOAT®. B) The average value of % solvent B at a given time point was used to
construct Gradient 2.

Changing the gradient did produce a statistically significant increase (p < 0.05) in the average
input spectra — an average of 17,267 input spectra were detected for Gradient 1 and the
average for Gradient 2 was 19,432. The number of spectra matched to peptides also
increased significantly from 14,484 for Gradient 1 to 16,992 for Gradient 2 (Figure 41A). This
increase could be attributed to the better distribution of analytes over the run time as
GOAT® was intended to do and would, as such, fulfil the objective of using GOAT®. However,
because this distribution was done on the basis of the number of MS/MS inputs alone, the
increased number of input spectra did not translate into an increase in the number of
proteins identified. In fact, the total number of peptides and proteins identified using
Gradient 2 was less than that for Gradient 1 (Figure 41B). This reduction could be in part
because the highest % Solvent B in Gradient 2 was 43 %. This could have excluded the
analytes that would have eluted at higher percentages used in Gradient 1. Retaining the
elution pattern of Gradient 2 and increasing the run time to include higher % Solvent B in the

mobile phase like in Gradient 1 would have been the ideal choice to hold onto the
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advantages of both gradients tested but given the number of replicates, an increase in run
time would increase the total machine time required significantly. And so, all subsequent
experiments were carried out using Gradient 1 for separation of analytes since it was able to

produce more protein identifications in the same run time as Gradient 2.
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Figure 41: Comparison of gradients used for Top 6 methods. The gradients were compared on the basis of A)
Average input spectra; the average number peptide-spectra matches (PSM), the average number of distinct
peptides and B) number of proteins identified with high confidence (FDR < 0.01). The difference in the mean
values of each selection criteria was tested using one-way ANOVA and was considered significantly different for
p <0.05 (*).

4.2.3.1.2. Parameters for data-dependent MS/MS fragmentation

The data-dependent MS/MS settings of Top 6 method used for the LC-MS/MS analysis of the
Gradient 1 runs differed from those of the Top 6 method used for generation of dataset LC1.
Unlike the Top 6 method described in section 4.2.2, the modified Top 6 method used to test
Gradient 1 and Gradient 2 allowed for charge-mass screening and selection of monoisotopic
precursors. The repeat count in the dynamic exclusion settings was set to 1; this meant that
a MS precursor would be fragmented only once before being excluded from fragmentation.
The number of input spectra detected for dynamic exclusion after a repeat count of 2 was
not affected by the selection of the monoisotopic precursor; however, the number of
peptides that could be matched to the spectra and the number of peptides and protein
identified dropped significantly when monoisotopic peak selection was disabled (Figure 42).
Therefore, selection of monoisotopic peaks was enabled for all methods tested. Lowering
the repeat count to 1 did increase the number of input spectra detected but the number of
peptides and proteins identified was comparable to the repeat count of 2. Since there was
no advantage in performing two MS/MS fragmentation scans per precursor before excluding

it, dynamic exclusion after a repeat count of 1 was used for the subsequent methods.

Increasing the number of MS precursors selected for MS/MS fragmentations was considered
another way of improving the quality of the data and the number of proteins identified. This
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Figure 42: Comparison of data-dependent MS/MS settings. Data was collected over four LC-MS/MS runs and
the figure represents the mean values (+ SD) of the four runs. A) Input spectra, peptide-spectra matches
(PSM) and number of distinct peptides detected for the three methods. B) Number of proteins identified for
each with method with high confidence (FDR < 0.01) and at least 1 or 2 peptides per proteins in PD. The mean
values were compared using one-way ANOVA and the difference was considered significantly for p < 0.05 (*).
Legend: RC2_MI disabled: Repeat count 2, monoisotopic precursor selection disabled; RC2_MI enabled: Repeat
count 2, monoisotopic precursor selection enabled; RC1_MI enabled: Repeat count 1, monoisotopic precursor
selection enabled.

led to modifying the method to select 8 or 10 scan 1 precursors instead of the 6 used for the
Top 6 method. These methods are referred to as “Top 8 and ‘Top 10’ methods respectively.
Settings tested for the modified Top 6 method were retained and the only difference
between the methods was the number of precursor ions selected for MS/MS fragmentation.
All references to the Top 6 method hereafter refer to the modified Top 6 method. Four LC-
MS/MS runs were performed for each method and the average input spectra for Top 6, Top
8 and Top 10 methods was 17,267; 17,665 and 17,358 respectively. The number of peptide-
spectra matches was 14,484; 11,193 and 9,835 for Top 6, Top 8 and Top 10 methods
respectively and these corresponded to 5,703; 5,140 and 3,931 distinct peptides for their
respective methods. So, in spite of Top 8 and Top 10 methods being able to generate more
input spectra than Top 6, the number of peptide-spectra matches and the number of distinct
peptides identified for Top 6 method were significantly more than that of the other two

methods (Figure 43A).

And, although the number of proteins identified using Top 8 method was found to be
significantly more than that found in the Top 6 method using the criteria of at least 1 peptide
per protein, the difference between the two methods was not significant if the selection
criteria is made more stringent to include only those proteins identified with at least 2
peptides per protein (Figure 43B). The average number of proteins identified with high
confidence (FDR < 0.01) and at least 2 peptides per protein was 731 (+ 8), 755 (+ 21) and 609
(£ 4) for Top 6, Top 8 and Top 10 respectively. Assuming all peptides identified were
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assigned to a protein or protein group, the 731 protein identified by Top 6 method would be
assigned 5,703 peptides among them while the 755 proteins identified by Top 8 method
would be assigned 5,140 peptides. These peptides in turn reflect the number of spectra that
could be assigned to a protein. The Top 6 method had more peptide-spectra matches than
the other two methods. Based on this information, it was inferred that the protein identified
by the Top 6 method are likely to be represented by more spectral counts than the same
protein detected by the other two methods. Given that label-free spectral counting was the
quantification method to be used for this project, the Top 6 method used for subsequent

experiments.
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Figure 43: Comparison of Top N methods. The methods ‘Top 6’, ‘Top 8 and ‘Top 10’ were named according to
the number of MS precursors selected for MS/MS fragmentation. Data was collected over four LC-MS/MS runs
and the figure represents the mean values (+ SD) of the four runs. A) Input spectra, peptide-spectra matches
(PSM) and number of distinct peptides detected for the three methods. B) Number of proteins identified for
each with method with high confidence (FDR < 0.01) and at least 1 or 2 peptides per proteins. The mean values
of Top 8 and Top 10 were compared to that of the Top 6 methods using one-way ANOVA and the difference
was considered significantly for p < 0.05 (*).

4.2.3.2. Parameters for protein identification

Having defined the parameters of the LC-MS/MS method, the data collected was put
through various PD workflows to ensure the search parameters used to identify the proteins
would allow the identification of maximum number of proteins with high confidence. The
MS/MS data generated was cumulated in a file of “.raw’ format and each file represented a
technical replicate. Every workflow in PD requires the ‘Spectrum files’ node to accept the LC-
MS/MS data. This node is followed by the ‘Spectrum Selector’. The ‘Sequest HT' and
‘Mascot’ nodes were used to match the spectra to possible peptides and the output of these
search nodes was validated using the ‘Percolator’ node. The node settings and the different

workflows they were arranged in for this project has been described in section 2.6.4. An
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average of 18,959 (+ 62.8) input spectra were detected for the four LC-MS/MS runs
analysed. Since the input spectra used for each workflow was the same, any difference in
the number and identity of proteins was attributed to the workflow and the manner in
which the data was processed by it. This section describes the comparison of different
workflows and databases used to select a combination that would identify the highest

number of protein.
4.2.3.2.1. Comparison of Proteome Discoverer workflows

The combination of SEQUEST HT and MASCOT was able to generate a significantly higher
number of peptides-spectra matches than either of the two search engines alone. The
‘SEQUEST only’ workflow was able to produce 6,848 peptide spectra matches while;
‘MASCOT only” workflow produced 6,418 matches. ‘Combined 1’ and ‘Combined 2’ on the
other hand were able to generate 13,266 and 13,291 peptide-spectra matches, respectively
(Figure 44A). In spite of this, the average numbers of peptides and proteins identified by
each workflow were comparable — 5,120; 4,861; 5,309 and 5,320 peptides and 724, 698, 737
and 737 protein with high confidence (FDR < 0.01) and at least 2 peptides were identified
using ‘SEQUEST only’, ‘MASCOT only’, ‘Combined 1’ and ‘Combined 2’ respectively (Figure

44B).
A) SEQUEST HT only B) SEQUEST HT only
14000 = = MASCOT only g 100 WMASCOTonly
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Figure 44: Comparison of number of proteins identified by different PD workflows. Data was collected over
four LC-MS/MS runs and the figure represents the mean values (+ SD) of the four runs with an average input
spectra of 18,959 (+ 62.8). A) Peptide-spectra matches (PSM) and number of distinct peptides detected for
the four workflows. B) Number of proteins identified for each with method with high confidence (FDR <
0.01) and at least 1 or 2 peptides per proteins

A consensus list of proteins was generated to represent all proteins identified by a workflow
across all four technical replicates. A comparison of this consensus list using Venny 2.1
(http://bioinfogp.cnb.csic.es/tools/venny/index.html) showed that most of proteins

identified were common to all the workflows tested [277] (Figure 45). A distinction was
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made between the ‘Combined’ workflows and the workflows with either SEQUEST HT or
MASCOT node on the basis of the number of peptide-spectra matches generated by the
workflow. The ‘MS2 — Spectrum Processor’ node used in workflow ‘Combined 2’ was
included in the workflow to perform charge state deconvolution and deisotoping of the data
with the aim of improving the number of proteins identified. Since the peptide-spectra
matches and the number of proteins identified for the Combined workflows were not
significantly different, the inclusion of this node was not deemed necessary and workflow
Combined 1, which had the same nodes as Combined 2, barring the ‘MS2 —Spectrum

Processor’, was used for all subsequent experiments.

MASCOT only (854) Combined 1 (896)

SEQUEST only (881) Combined 2 (891)

Figure 45: Comparison of proteins identified by the different PD workflows. A multi-file report was generated
in PD to list all the proteins identified in all the four LC-MS/MS runs tested using a given PD workflow. The
proteins identified using a given workflow were compared to the proteins identified by other workflows using
the Venn diagram tool Venny 2.1.

4.2.3.2.2. Comparison of protein databases

UniProt is a comprehensive resource for protein sequence and annotation [115]. At the time
of analysis, the UniProtKB database had 148,986 entries for human proteins and of these,
20,196 were manually annotated and reviewed as SwissProt entries. Evidence of existence
was available for 51,543 human proteins in UniProtKB, and of these, 14,685 were manually
annotated and reviewed as SwissProt entries. The ‘SEQUEST HT” and ‘Mascot’ search nodes
in ‘Combined 1’ workflow were set-up to search these databases. The average number of
proteins identified and the individual proteins identified in each database were about the
same for all databases tested. An average of 737, 735, 734 and 733 proteins were identified
with high confidence (FDR < 0.01) from SwissProt (with evidence), all SwissProt, UniProt
(with evidence) and all UniProt with at least 2 peptides attributed to each protein (Figure

46A). A comparison of proteins identified in the consensus lists (derived from the PD multi-
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file report that cumulates data from all four LC-MS/MS runs into one report for each
database tested) showed that 823 proteins were common to all four database searches
(Figure 46B). Given these results, the SwissProt database with evidence of protein existence
was selected for the quantification experiments because of its entries being reviewed and

verified by experimental evidence.
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Figure 46: Comparison of protein databases used for protein identification. A) The number of proteins
identified using the different databases. B) Extent of overlap between the protein lists generated by the
different databases. Protein identification data from four technical replicates was accumulated into one
multi-consensus report to give a proteins list representative of the sample. The consensus lists of proteins
were compared using Venny 2.1.

4.2.4. Dataset LC2
4.2.4.1. Protein identification and quantification

Having tested the different parameters that could increase the number of proteins
identified, a new batch of HepG2 cells was treated with 1 mM FA for 6 h for preparation of
LC-MS/MS samples. These cells originated in the stock vial obtained from the Malaghan
Institute. The DGAT inhibitor A92 was also tested in cell culture as described in section
3.2.2.1. but its effect on lipid accumulation was not reproducible. As a result, it was not
included in the proteomics analysis performed to generate dataset LC2. The commercial
unavailability of other DGAT inhibitors at the time restricted the number of treatment
groups to that of control cells and FA-treated cells. The LC-MS/MS runs for these samples
were performed using Gradient 1 for separation of peptides (described in section 4.2.3.1.)
and the modified Top 6 method (described in section 4.2.3.2.). Dataset LC2 was generated
using four biological replicates of untreated control cells and another four biological

replicates of FA-treated cells. Unlike dataset LC1, the samples were not pooled, and four LC-
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MS/MS runs were performed for each replicate. The average number of proteins identified

for each biological replicate and for each condition in general is described in Figure 47.
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Figure 47: Number of proteins identified for each biological replicate of dataset LC2 in PD. The figure
represents the average number of proteins identified. A) Mean values (+ SD) for four LC-MS/MS runs of
each biological replicate. B) Mean value for all the 16 LC-MS/MS runs that represent the treatment
condition. Legend: 1 peptide and 2 peptides represent the protein identified with high confidence (FDR <
0.01) and least 1 or 2 peptides per proteins attributed to it in PD; #Scaffold is the number of proteins
identified in Scaffold with p < 0.001 and contained at least two peptides identified with p < 0.01. Key: C:
Control samples; FA: Sample treated with 1 mM FA for 6 h.

The in silico experimental setup for dataset LC2 in Scaffold also differed from dataset LC1.
Each category had four biosamples, and each biosample was analysed by four LC-MS/MS
runs. The data from the four runs were condensed to a single value for each protein in the
biosample. Peptide identifications were accepted if they could be established at greater than
99.0 % probability by the Peptide Prophet algorithm. Protein identifications were accepted if
they could be established at greater than 99.9 % probability and contained at least 2
identified peptides. With these identification criteria, a total of 998 proteins and no decoys
were identified for dataset LC2 (Table 21 in Appendix). An average of 846 proteins could be
identified for the four control group biosamples, and an average of 833 proteins were
identified for the four FA-treated group biosamples. The statistical difference between the
mean QV for the control group was compared to that of the FA-treated group for each
protein using a t-test with a Hochberg-Benjamini correction carried out. The significance
level was set at 95 %. Although there were 94 proteins that showed a fold change of > 1.3

with a p £0.05 (Table 7), none of these were statistically significant after the multiple testing

correction that required p < 5x10* to achieve the significance level of 95 %.
4.2.4.2. Comparison of datasets

The proteins identified in Scaffold for dataset LC2 were compared to the proteins identified

in Scaffold for dataset LC1, and almost all the proteins identified in LC1 were also detected in
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LC2 (Figure 48A). However, the same overlap was not seen in the proteins that showed
changes in abundance with p < 0.05 (Figure 48 B). The lists of proteins identified for LC1 and
LC2 were filtered to retain proteins that showed a change in abundance with p < 0.05 for the
comparison between control and FA-treated samples. Only 7 proteins were common to both
lists. These proteins were L-lactate dehydrogenase A chain (LDH-A), thioredoxin reductase 1
(TR), 14-3-3 protein, perilipin-2, proteasome activator complex subunit 3 (PSME3), activated
RNA polymerase Il transcriptional coactivator p15 (PC4), and eukaryotic translation initiation
factor 4 gamma 1. The functions of these proteins varies greatly — LDH-A carries out the
reversible conversion of lactate to pyruvate using NADH+H™* as the proton donor [289] while
the glutaredoxin activity as well as thioredoxin reductase activity of TR contribute towards
the maintenance of the redox environment of the cell [290]. Perilipin 2 is a lipid-droplet
marker [291]. PC4 is capable of binding single-stranded DNA and mediating activator-
dependent transcription [292] while PSME3 is part of the proteosomal regulator complex
that activates the catalytic subunits of the proteasome [293]. Eukaryotic translation initiation
factor 4 gamma 1 as the name suggests is part of the translation initiation complex while the
14-3-3 protein has been identified as regulatory element in intracellular signalling pathways
[294]. The change in the abundance of these proteins was not consistent between the two
datasets. For example, the abundance of LDH-A in FA-treated sample of dataset LC1 was 1.4
times of control while in dataset LC2, its abundance was down to 0.7 times that of control.
Moreover, perilipin 2 was exclusive to the FA-treated sample in dataset LC1 while it was

detected in both control and FA-treated samples of datasets LC2.

A) B)
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Figure 48: Comparison of datasets LC1 and LC2. A) The list of proteins identified in dataset LC1 was compared
to the proteins identified in LC2 using Venny 2.1. B) The proteins that showed changes in abundance with p <
0.05 did not show the same extent of overlap as the list of total proteins.

The limited number of overlapping proteins (with change in abundance with p < 0.05) and
the disparity in the extent of change seen in these proteins may be attributed to the

experimental design and perhaps the change of cell culture stock. The biological variance in
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dataset LC1 may be considered as being masked by the pooling of cell lysates into one
sample. The experimental design of dataset LC2 included the used of unpooled samples
which would reflect the biological variance among the four biological replicates. The
biological variance and the inherent technical variations introduced during LC-MS/MS data
generation are likely to have had an adverse effect on the statistical significance assigned to
proteins in dataset LC2. The co-efficient of variance (CV) associated with a protein for each
category is presented in Table 7. A direct comparison of datasets LC1 and LC2 is made
difficult by the fact that they were generated cell culture samples that originate in stock vials
sourced from different institutes. This is evident by the lack of effect of DGAT inhibitor A92
did not on cells used for dataset LC2. A critical evaluation of the experimental design would
require a comparison of individual replicates and a pooled sample originating from the same

biological source.
4.3. Summary

HepG2 cells were treated with 1 mM FA mixture for 6 h and changes in protein abundance
as a result of the treatment were recorded. Cells treated with the 100 uM A92 and 1 mM FA
mixture for 6 h were also included in the analysis. Of the four lysis buffers tested, the
glycerol-Triton X-100 buffer was selected for preparing samples for proteomics because of
the mild non-ionic nature of Triton X-100 and its ability to extract more membrane proteins
than the other buffers tested. Various parameters of LC-MS/MS and protein identification
were compared and modified to determine a method that would give the highest number of
proteins identified in the dataset. Dataset LC1 was generated from pooled sample and
although proteins relevant to fat metabolism were identified, none of the proteins could be
validated by Western blot. Dataset LC2 was then generated from unpooled, individual
replicates to improve the robustness of the experimental design. A92-treated cells were not
included in this dataset since the previous effects of the molecule on lipid accumulation
could not be reproduced. No statistically significant protein changes could be identified in
dataset LC2, possibly because of the additional variance introduced in the analysis by using
individual biological samples rather than pooled sample. To ascertain the impact of pooling
samples, a new batch of HepG2 cells was prepared and treated with 1 mM FA. The biological
replicates produced in this preparation were analysed in datasets LC3 and LC4 and are

described in the next chapter.
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Table 7: List of proteins identified in dataset LC2 with p < 0.05. The ‘fold change represents the ratio of the quantitative value for FA-treated group to that of the control
group. ‘Quantitative value’ is the normalized spectral count for the protein indicated. ‘CV (%)’ is the coefficient of variance expressed as a percentage for the four biological
replicates in each category.

Protein name Gene FC P value Quantitative value Exclusive peptides CV (%)
name C1 C2 Cc3 (of:} F1 F2 F3 F4 Cl|[C2(C3|C4A|F1|F2(F3 | F4 C F
O AIRC s cPox | 1.5 | 0.00033 | 1148 957 934 1032 1553 1447 1536 1719 |4 4 3 4 6 5 4 5| 9 7

coproporphyrinogen-Ill oxidase

Ubiquitin carboxyl-terminal hydrolase 5 USP5 2.6 0.0005 3.03 2.18 0.99 2.83 5.48 6.81 5.98 5.63 2 1 1 2 2 3 3 1 41 10
Pyrroline-5-carboxylate reductase 1 PYCR1 0.7 | 0.0014 | 23.84 2454 2828 2343 19.08 1542 1795 1536 | 7 7 10 6 8 5 6 5 9 11
DNA replication licensing factor MCM4 COX5A 3.8 | 0.0026 | 3.08 3.22 0.00 1.83 9.98 6.00 7.80 68 |2 1 0 2 5 4 6 3 73 22
Cytochrome c oxidase subunit 5A MCM4 INF | 0.0026 | 0.00 0.00 0.00 0.00 2.71 4.28 3.42 143 |0 0 0 O 2 2 2 1 - 41
SIS AR Ul HINT2 | 41 | 0.0029 | 000 214 205 000 358 427 429 501 |0 1 1 0 2 2 2 2|120 14

protein 2, mitochondrial
NAD kinase 2, mitochondrial
Dehydrogenase/reductase SDR family
member 4
Endoplasmic reticulum resident protein 44

NADK2 3.2 | 0.0032 2.02 4.23 3.30 3.75 6.34 11.94 12.88 1105 | 1 2 3 1 3 5 6 4 29 28
DHRS4 5.6 0.004 1.08 0.00 0.00 0.96 2.76 3.42 1.67 3.47 1 0 O 1 2 1 1 2 120 30

ERP44 5.8 0.004 0.00 6.36 0.99 0.00 13.62 10.30 7.80 10.74 | O 2 1 0 5 3 4 4 170 22

LMAN2 0.6 0.0049 10.21 9.58 13.67 12.20 5.51 6.80 6.02 8.18 4 3 4 3 2 3 2 2 16 18

Peroxiredoxin-1 PRDX1 0.8 0.0054 | 91.39 92.41 99.26 75.88 70.67 64.99 63.35 7028 |19 21 17 16 17 19 16 17 11 6

28S ribosomal protein S23 MRPS23 | 16 | 0.0057 | 0.00 1.08 0.00 0.00 6.29 2.56 5.15 286 | O 1 0 0O 2 1 3 2| 200 43
Valine--tRNA ligase VARS 0.2 0.0058 20.75 14.95 9.44 23.34 0.00 2.56 5.98 3.99 8 6 5 10 0 2 3 2 36 80

60S ribosomal protein L29 RPL29 0.9 0.0062 4.16 4.26 4.18 3.75 3.63 3.42 3.43 3.68 1 1 1 1 1 1 2 6 4

Isoform 2 of Nucleobindin-2 NUCB2 2.2 0.0067 5.24 1.10 3.08 3.75 7.26 7.67 6.00 8.49 1 1 1 3 3 2 2 52 14
Thioredoxin reductase 1 TXNRD1 0.5 0.0074 15.51 20.19 21.00 12.22 9.10 9.38 9.44 7.06 4 7 8 3 3 3 2 24 13

VCP 1.2 0.0079 109.19 113.38 106.34  102.11  130.47 123.25 114.81 128.1 24 31 28 27 29 33 28 27 4 6
LDHA 0.7 | 0.0082 | 54.22 5743 4695 6850 3895 3756 42.17 3581 |16 16 14 18 13 13 15 16 7
MPST 1.4 | 0.0082 | 11.41 13.80 1477 13110 17.24 2135 18.00 1647 | 4 3 6 5 5 8 8 6 11 12
PDIA4 1.2 0.0085 117.61 126.88 138.13  135.89 163.27 154.67 148.15 179.7 |31 26 32 32 40 37 35 33 7 8

PSMB5 0.5 | 0.0086 | 18.59 17.03 12,52 19.64 8.17 6.02 12.01 1032 | 7 5 5 6 3 3 7 3 19 28

Transitional endoplasmic reticulum ATPase
L-lactate dehydrogenase A chain
3-mercaptopyruvate sulfurtransferase
Protein disulfide-isomerase A4
Proteasome subunit beta type-5
Bifunctional purine biosynthesis protein
PURH
Enoyl-CoA hydratase, mitochondrial |
26S protease regulatory subunit 6B |
60S ribosomal protein L27a |

©

|
|
|
|
|
|
Vesicular integral-membrane protein VIP36 |
|
|
|
|
|
|
|
|
|
|
|

ATIC 0.8 | 0.0092 | 6235 60.73 6575 65.60 4255 53.81 5729 4898 |16 19 22 18 14 21 19 16 4 13

ECHS1 1.4 | 0.0095 | 23.88  33.02 26.15 2899 37.15 45.28 3863 3518 | 8 7 9 9 10 11 9 8 14 11
PSMC4 1.6 | 0.0095 8.32 10.68 13.60 7.49 19.07 14.55 15.46  16.26 | 3 5 6 3 6 6 6 5 27 12
RPL27A 2.1 0.01 8.26 6.41 4.20 3.75 14.52 9.36 12.82 9.83 4 2 2 2 4 4 5 3 37 21
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Table 7 continued...

Protein name Gene FC P Quantitative value Exclusive peptides CV (%)
name value 1 ----ﬂmmm ;
Cytoplasmic dynein 1 heavy chain 1 DYNCIH1 | 0.04 | 0.011 | 1242 1696 8.26 28.14 0.00 0.00 0.00 2.56 200

ARF3 0.2 | 0.011 | 1349 529 1261 1691 276 5.09 1.73 143 |3 1 4 3 2 3 1 1 40 60
Activated RNA polymerase II
transcriptional coactivator p15
Eukaryotic translation initiation factor
3 subunit A
Transaldolase
Alanine aminotransferase 2
Ezrin
Isoform 2 of Filamin-B

ADP-ribosylation factor 3 |
‘SUBl 1.8 | 0011 | 1147 430 1255 11.24 1635 1620 1717 2048 | 4 1 3 4 4 4 4 3 | 38 11

EIF3A | 0.6 | 0.013 | 9.33 7.48 7.27 9.35 6.34 252 5091 368 |3 3 2 4 2 3 3 3 14 39

TALDO1 | 0.7 | 0.013 | 2496 24.47 30.25 2152 1542 1452 1882 2046 |9 8 10 8 6 4 6 6 14 16
GPT2 1.2 | 0.013 | 29.00 3196 27.10 33.76 36.23 35.02 3755 3538 |9 7 8 11 13 12 11 8 10 3
EZR 0.8 | 0.014 | 3545 30.82 3218 29.05 1999 2564 2826 2323 |10 9 12 9 8 11 10 7 8 15
FLNB 0.8 0.016 | 202.26  181.10 159.48 212.65 138.10 148.85 131.11 15975 | 62 58 54 65 49 61 47 47 12 9

Coatomer subunit delta ARCN1 | 1.4 | 0.016 | 12.41 1183 1134 931 1447 1625 1893 1351 |5 6 5 5 6 6 9 3 12 15
Annexin A6 ANXA6 | 2.5 | 0.016 | 1543 1492 7.33 11.18 4439 3244 2652 1965 |7 8 2 6 16 13 11 8 31 34
Multifunctional protein ADE2 PAICS | 0.7 | 0.017 | 27.05 35.17 28.33 35.58 19.99 2135 2742 2024 |10 11 10 11 9 8 11 6 14 16
Proteasome activator complex subunit 3 PSME3 | 1.5 | 0.018 | 12.48 9.56 14.70 11.25 17.32 2140 1874 1421 | 3 3 5 3 5 6 6 3 18 17
Phosphoglycerate mutase 1 PGAM1 | 0.7 | 0.019 | 36.33 45.79 38.40 3099 2796 2486 3083 2474 |10 8 11 9 10 9 10 7 16 11
Keratin, type | cytoskeletal 18 KRT18 | 1.2 | 0.019 | 12598 110.79 119.95 109.64 139.50 149.51 12252 14347 |20 20 23 19 25 24 24 24 7 8

Isoform D of Eukaryotic translation
initiation factor 4 gamma 1

|
|
|
|
|
|
|
|
|
|
‘EIF4GI 0.1 | 0.02 6.24 6.45 1.10 748 000 1.69 0.86 000 |2 4 1 3 0 2 1 © 54 130
Transmembrane emp24 domain- ‘
|
|
|
|
|
|
|
|

L . TMEDS | 0.6 0.02 | 17.71 16.93 13,54 1500 6.39 13.65 8.59 1135 | 4 5 4 4 3 4 3 5 12 32
containing protein 9

Sialidase-1
Perilipin-2
Acylpyruvase FAHD1, mitochondrial
Isoform 3 of Alpha-actinin-1
Isoform 2 of Nodal modulator 2
Medium-chain specific acyl-CoA
dehydrogenase, mitochondrial
Transcription intermediary factor 1-beta
Alpha-actinin-4
Trifunctional enzyme subunit alpha

NEU1 14 | 002 | 15,57 2239 15.63 15.00 25.27 29.08 2229 2200 |5 6 7 6 7 11 7 6 20 13
PLIN2 2 0.02 | 14.43 3512 4171 1032 50.74 52.16 47.16 4889 | 6 10 13 4 18 16 15 12| 61 4
FAHD1 | 2.3 | 0.02 5.17 6.44 1.03 3.74 10.02 8.2 68 13002 3 1 1 3 3 3 2 57 27
ACTN1 | 0.8 | 0.021 | 86.33 84.95 67.73 88.06 61.69 66.72 6941 4991 |11 11 9 11 9 10 9 6 12 14
NOMO2 | 0.4 | 0.022 | 22.82 9.62 13.60 18.77 8.17 2.54 7.77 7.15 8 4 5 7 2 2 4 3 36 41

ACADM | 1.4 | 0.022 | 9.26 1059 737 10.29 13.66 1455 1545 1032 | 4 3 3 4 4 4 5 3 16 17

TRIM28 | 1.5 | 0.022 | 23.84 3941 2494 3186 4517 4360 36.80 5065 | 8 14 13 8 15 17 13 12 24 13
ACTN4 0.8 | 0.023 | 129.02 159.39 142.86 134.86 117.07 123.18 12497 10790 |32 39 38 36 31 34 36 33 9 7
HADHA | 1.3 | 0.023 | 59.34 5883 5943 49.74 7886 69.17 60.72 7898 |15 19 19 18 25 21 20 21 8 12
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Table 7 continued...

Protein name Gene FC Pvalue Quantitative value Exclusive peptides m%
name c1 ---“ﬂ“ﬂmﬂl—
S0 el ob A e E e NG Ve [{o) - =Rafol=l | HSD17B10 | 1.3 | 0.023 | 24.98 26.58 27.14 36.59 3991 36.60 37.85 35.20 18 5
45 kDa calcium-binding protein SDF4 2.1 | 0023 | 826 3.12 414 1027 1085 1286 1203 1780 [ 2 1 3 4 5 6 5 4 | 52 23
Keratin, type Il cytoskeletal 1 KRT1 3.8 | 0.023 | 1865 331 1164 000 3444 2891 4789 1656 |3 1 3 0 6 7 12 4 | 100 41

Acyl-CoA synthetase short-chain family
member 3, mitochondrial

DNA-(apurinic or apyrimidinic site) lyase APEX1 0.4 0.025 | 11.40 10.72 5.24 6.60 3.63 4.29 0.89 4.50 3 2 2 2 2 1 1 1 36 50

Saccharopine dehydrogenase-like

oxidoreductase
Ubiquitin-like modifier-activating
enzyme 1

Perilipin-3 PLIN3 1.4 0.025 23.90 37.31 41.65 25.25 42,65 4949 50.42 43.15 7 11 14 9 11 15 16 14 27 9

Calpain-1 catalytic subunit CAPN1 0.4 0.026 5.30 8.50 6.34 11.22 1.85 2.53 6.00 1.12 2 2 3 3 2 3 2 1 33 75

2',3'-cyclic-nucleotide 3'-

phosphodiesterase
Adapter molecule crk CRK 0.1 | 0.027 | 101 1.08 3.11 1.86 0.00 0.85 0.00 0.00 1 1 2 1 0 1 0 O 55 200
Dihydrolipoyl dehydrogenase,

ACSS3 0.2 0.024 5.17 5.24 4.10 11.25 0.92 1.67 1.73 1.74 3 1 4 5 1 2 1 1 50 26

SCCPDH | 0.4 0.025 5.17 3.21 3.15 5.60 0.92 0.84 3.43 1.43 2 2 1 2 1 1 2 1 30 73

UBA1 0.8 0.025 | 78.12 7128 68.92 63.68 47.12 59.77 6435 5351 (19 18 20 20 14 20 20 12 9 13

CNP 0.6 0.026 | 11.41 9.62 8.30 13.14 4.50 5.11 9.39 5.42 3 4 3 3 2 2 3 3 20 36

. . DLD 1.6 0.027 1040 18.12 14.38 17.88 2452 23.17 18.04 29.46 4 6 7 6 10 12 6 8 24 20
mitochondrial

DNA replication licensing factor MCM7 MCM7 29 | 0.027 | 409 851 1.10 1.88 8.18  14.47 1537  7.87 3 2 1 2 4 6 7 4 85 35
39S ribosomal protein L45 MRPL45 | 3.2 | 0.027 | 0.00 1.05 1.10 0.94 1.79 2.54 1.68 3.99 o 1 1 1 2 1 2 2 67 43

Leukocyte elastase inhibitor SERPINB1 | 0.3 0.028 5.23 3.15 7.33 4.66 0.00 0.88 4.23 0.00 2 2 3 2 0 1 2 0 34 160
14-3-3 protein zeta/delta YWHAZ 0.9 0.029 55.13 46.80 52.29 49.64 42.63 4525 48.02 43.68 9 9 9 8 8 8 10 7 7 5
RASSTEIated CSBOUlintMm toxin RACL | 02 | 003 | 416 533 099 654 087 000 08 143 [1 2 1 2 1 0 1 1| 5 75

substrate 1

Cathepsin D CTSD 1.2 0.03 73.22 6246 6424 63.61 8538 67.40 83.03 89.73 (14 14 11 14 17 15 17 15 8 12

LDLR chaperone MESD MESDC2 1.5 0.03 4.16 6.41 8.34 9.33 12.67 11.13 10.33 9.31 2 3 3 5 4 4 5 3 32 13
Isoform 2 of Tripeptidyl-peptidase 1 TPP1 1.7 0.03 825 7.8 9.36 6.58 19.02 1029 119 1299 [ 2 3 3 2 6 5 4 3 15 28
60S ribosomal protein L24 RPL24 3.4 0.031 3.09 1.10 2.20 0.92 2.76 7.71 9.39 4.90 3 1 2 1 1 3 2 3 56 48
Toll-interacting protein TOLLIP 1.7 | 0.032 2.08 3.22 4.07 3.75 4.50 5.98 4.29 7.06 i 1 3 2 2 2 2 1 27 24
Laminin subunit gamma-1 LAMC1 0.6 | 0.035 208 312 2.09 1.90 0.92 1.69 1.73 1.12 2 2 2 2 1 2 2 1 24 30
Tubulin--tyrosine ligase-like protein 12 TTLL12 0.5 0.037 | 11.47 10.69 8.39 14.06 7.25 5.12 8.56 0.00 4 4 3 4 2 3 4 0 21 72
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Table 7 continued...

Protein name

Aldose 1-epimerase
RNA-binding protein Raly
Dnal homolog subfamily B member 1
Villin-1
39S ribosomal protein L46,
mitochondrial
Elongation factor 1-gamma
Profilin-1
AT-rich interactive domain-
containing protein 3A
Peptidyl-prolyl cis-trans isomerase
FKBP4
Elongation factor 2
High mobility group protein B1
Succinyl-CoA ligase [GDP-forming]
subunit beta, mitochondrial
V-type proton ATPase subunit B,
brain isoform
Lupus La protein
Acyl-CoA synthetase family member2
Arylsulfatase B
Elongation factor 1-alpha 1
40S ribosomal protein S19
Obg-like ATPase 1
Ethylmalonyl-CoA decarboxylase

Gene
name
GALM
RALY
DNAJB1
VIL1

MRPL46

EEF1G
PFN1

ARID3A

FKBP4

EEF2
HMGB1

SUCLG2

ATP6V1B2

SSB
ACSF2
ARSB
EEF1A1
RPS19
OLA1
ECHDC1

FC

1.6
3.2
0.7
0.9

1.5

0.7
0.8

9.8

1.6

0.9
0.7

14

1.5

1.2
1.6
8.5
0.7
1.5
0.9
11

value
0.037
0.037
0.038
0.038

0.038

0.039
0.039

0.039

0.04

0.042
0.043

0.046

0.046

0.047
0.047
0.047
0.048
0.048
0.05
0.05

Cl
5.16
1.01
5.24

85.06

4.16

24.83
63.50

0.00

5.17

168.61
13.42

13.42

12.42

34.36
6.17
0.00

126.1

16.78

12.48
0.00

3.21

4.26

3.11
92.57

4.26

39.40
55.37

0.00

11.73

180.76
25.40

17.02

9.59

42.67
7.47
0.00

97.75

11.74

11.68
0.00

4.23

2.05

5.24
79.65

6.29

33.37
70.94

0.00

731

141.05
24.02

13.60

10.69

41.60
8.43
0.00

161.57

15.67

14.64
0.00

Quantitative value

----ﬂﬂmm

7.51

0.00

4.69
86.13

6.56

30.91
51.54

0.92

6.59

169.62
20.56

19.64

19.72

37.48
6.56
0.92

119.96

14.06

14.06
0.96

83

9.09

9.05

3.58
77.90

6.33

23.52
44.41

3.63

10.84

129.74
15.48

23.60

17.26

44.57
10.83
2.70
104.93
21.77
10.89
3.63

8.59

5.98

2.56
77.71

8.54

17.96
46.06

0.85

11.96

146.87
11.96

27.31

22.19

43.52
8.56
2.52

79.51

17.10

11.09
2.58

9.39

3.43

3.43
81.40

9.48

21.36
45.42

3.40

16.28

146.33
13.71

23.16

19.79

47.31
10.26
2.54
96.59
17.99
11.98
4.32

5.94

4.90

2.77
74.04

7.06

27.51
54.12

1.12

11.35

140.65
13.91

16.56

18.41

57.08
16.17
0.00
78.18
27.82
11.75
0.00

1
1
27

1
2
26

10

Exclusive peptides

1
2
25

10
11

16

18

0
2
29

10

13

19

2
2
24

16

19

2
1
25

10

15

17

1
1

2
1

CV (%)

100
22
6

24

19
14

200

37

10
26

19

35

10
14
200
21
15
10
200

F
19
41
16
4

18

18
9

65

20

6
10

20

11

13
29
67
15
23
5
72




CHAPTER 5: PROTEOMICS ANALYSIS — PART 1l

5.1. Introduction

The analysis of datasets LC1 and LC2 have highlighted the importance of experimental design
and LC-MS/MS parameters. The optimization of LC-MS/MS parameters described in chapter
4 increased the total number of proteins identified in LC2, but this improvement did not help
identify more proteins with statistically significant changes in protein abundance. The
underlying reasons for this could be the experimental design — while dataset LC1 was
generated from pooled samples, dataset LC2 was generated from individual biological
replicates. A direct comparison of datasets LC1 and LC2 is made difficult by the fact that they
were generated from different biological replicates that originate in different stock vials.
Moreover, the LC-MS/MS method used to generate LC2 was optimized and therefore
different from that used to generate dataset LC1. To overcome these problems and to
examine the impact of pooling samples on the proteomics analysis of HepG2 cells with
accumulated lipids, two more datasets — LC3 and LC4 were obtained. These two datasets
were generated from the same cell lysates — the lysate of each biological replicate was
divided into two aliquots and one aliquot was used for each dataset. The lysates prepared
for datasets LC3 and LC4 originated in cell cultures grown from a stock vial received from the
Malaghan Institute and were different from those used for LC1 and LC2. Dataset LC3
represents data from individual biological replicates while dataset LC4 represents data of a
pooled sample of biological replicates. The commercial availability of DGAT1 inhibitor PFO4
allowed the inclusion of DGAT inhibition as a treatment variable and was included in the
proteomics analysis for dataset LC3 and LC4. This chapter describes the proteomics analysis

of these two datasets.
Functional analysis of proteins

The biological relevance of the identified proteins using 'shotgun proteomics' can be
assessed through functional analysis of the proteins. Functional analysis or enrichment
analysis is based on the rationale that a treatment affecting one protein in a biological
pathway is likely to affect other co-functioning proteins in that pathway and so, the
increased detection of these co-functioning proteins by a screening method reflects an
increased probability of the represented pathway being affected by the treatment [295].

Enrichment analysis tools like GoMiner, DAVID and WebGeStalt are used to assign proteins

-84-



detected in proteomic data to defined categories called ‘annotation terms’ in databases like
Gene Ontology (GO) and KEGG pathways [296]. Depending on the database, these
annotation terms represent biological processes, localization or molecular function of the
protein. A comparison of the observed frequency of annotation term to the frequency
expected by chance allows for the calculation of enrichment p-values; these p-values denote
the probability that the annotation term plays an important role in the biological events
resulting from the treatment [297]. Enrichment of annotation terms suggests a high
probability of the function described playing an important role in the cellular response to the
treatment. The presence of the proteins identified in the enriched pathways can then be
verified through orthogonal methods such as Western blotting. This chapter describes the
functional analysis of proteins identified as changing in abundance after FA treatment in
dataset LC4 and the efforts made to validate the changes in protein abundance reported in

datasets LC3 and LCA4.
5.2. Results

HepG2 cells treated with 100 uM PF04 and 1 mM FA mixture for 6 h are referred to as
‘inhibitor-treated’ cells in this chapter. FA-treated cells and control cells refer to HepG2 cells
treated with 1 mM FA mixture and untreated cells respectively. Since the objective was to
assess the impact of pooling samples as well as to identify the maximum number of protein
possible, the optimized LC-MS/MS and protein identification parameters used to generate
dataset LC2 were used to generate datasets LC3 and LC4. This included the use of Gradient 1
and Top 6 method with dynamic repeat count set at 1 and monoisotopic peak selection
enabled. Combined 1 workflow with SwissProt database filtered to retain proteins with
evidence of existence was used for protein identification in PD. The setup for Scaffold
depended on the experimental design and is described for each dataset in the sections

describing label-free quantification for the respective datasets.
5.2.1. Dataset LC3
5.2.1.1. Protein identification

The three treatment groups — control, FA-treated and inhibitor-treated — were represented
by four biological replicates per group and each biological replicate was represented by data
collected over four LC-MS/MS runs. These data constituted dataset LC3. All proteins
identified in PD were filtered to retain only those identified with high-confidence (FDR <

0.01) and at least 2 peptides per protein. Using the spectral information available from all 16
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Figure 49: Number of proteins identified for dataset LC3 in Proteome Discoverer. A) Comparison of proteins
identified in the three treatment groups — control, FA-treated and inhibitor-treated using Venny 2.1. B) The
average number of proteins identified for a biological replicate of the treatment groups indicated. C) Average
number of spectra, peptide-spectra matches (PSMs) and peptides for a biological sample of a treatment group
as identified in PD.

LC-MS/MS runs for a given treatment group, the total number of proteins identified for the
control group was 1,205. The number of proteins identified for the FA-treated and inhibitor-
treated groups was 1,319 and 1,301 respectively. About 70 % of proteins identified in the
dataset were present in all 3 treatment groups (Figure 49A). Based on the number of protein
identified in each LC-MS/MS run for a given biological replicate, an average of 805, 838 and
821 proteins could be identified in biological replicates of control, FA-treated and inhibitor-
treated, respectively. (Figure 49B). On average, 6,321; 6,628 and 6,462 distinct peptides
were identified for the biological replicates of the control, FA-treated and inhibitor-treated
groups, respectively. These identifications were based on an average of 18,461, 18,888 and
18,440 peptide-spectra matches made in PD for the 21,763, 22,340 and 22,181 spectra

detected for the control, FA-treated and inhibitor-treated groups, respectively (Figure 49C).
5.2.1.2. Label-free quantification using spectral counts

The protein lists generated for each biological replicate in PD were loaded onto Scaffold as
described in section 4.2.5 for quantification. All three groups — control, FA-treated and
inhibitor-treated — were included in the analysis. A total of 1,102 proteins with no decoys
were identified for the three groups analysed in Scaffold (Table 21 in Appendix). Peptide

identifications were accepted if they could be established at greater than 99.0 % probability
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by the Peptide Prophet algorithm, and protein identifications were accepted if they could be
established at greater than 99.9 % probability and contained at least 2 identified peptides.
One-way ANOVA was used to compare the mean QV for each protein across the three
groups. At a significance level of 95 %, the change in abundance of the protein was
considered significant for values of p < 5 x 107 after multiple testing correction using the
Hochberg-Benjamini method. However, none of the identified proteins reached this level of
significance. The analysis was continued with a comparison of two groups at a time using
Student's t-tests. Two primary comparisons were made — control vs. FA-treated and FA-
treated vs. inhibitor-treated. Of minor importance was a comparison between the control vs
the inhibitor-treated. As with one-way ANOVA, at a significance level of 95 %, the difference
was considered significant for p < 5 x 10® after multiple testing correction using the
Hochberg-Benjamini method. Again, none of the identified proteins satisfied this test of
significance. The data were analysed further as described in the next section to better

understand the underlying reasons for this lack of significant changes.
5.2.1.3. Variance associated with data generated from unpooled replicates

Of the 1,102 proteins identified in Scaffold, 1,091 proteins were found in all three groups.
Eleven proteins were identified in two of the three groups (Figure 50A). The number of
peptides common to all three groups was 6,949, and this corresponded to 8,348 unique
spectra that were common to all three groups (Figure 50B and 50C). The total number of
unique spectra identified in the control, FA-treated and inhibitor-treated groups was 10,681;
10,514 and 10,621, respectively. The average number of spectra identified for a replicate in
the control group was 6,821 and the number was 6,914 and 6,717 for the FA-treated and

inhibitor-treated groups, respectively. The difference between the average number of total

A)

FA-treated B) Control FA-treated €  control _ FA-treated

297

6949

620 1198

671

/
\ ol / \
Inhibitor-treated Inhibitor-treated Inhibitor-treated

Figure 50: Identifications of proteins, peptides and MS/MS spectra in different treatment groups in Scaffold.
A) Proteins identified in each treatment group. B) Total unique peptide counts for all proteins in the dataset.
C) The total number of unique spectra detected for all the peptides in the dataset.
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spectra identified for individual replicates and that identified for the group as a whole
suggested that each individual replicate contained several spectra that were unique to it and
may not have been present in the other biological replicates of the same treatment group. It
was inferred, therefore, that spectral counts assigned to a protein did not just vary among
the three treatment groups but also varied among the four biological replicates within a
group. Further, the identification of a protein may be based on the peptides exclusive to a
given replicate or a group and not found in other groups or even other replicates within the
same group. While the difference in the spectral counts of a protein among the groups is the
basis of label-free quantification using spectral counts, the variance among the biological

replicates was the likely cause of the lack of significance of the data.

The variance observed in the data was attributed to biological variance between the
biological replicates and technical variance between the four LC-MS/MS runs in each
biological replicate. The difference among the biological replicates was assessed by
comparing the list of proteins identified in each biological replicate to the protein lists of the
other three replicates within the same group. To this end, a consensus protein list was
created for each biological replicate. The proteins identified in this list were identified based
on the collated information from all four LC-MS/MS runs performed for a given biological
replicate and thus represents a consensus list of proteins for the biological replicate
irrespective of the technical variance among the different LC-MS/MS runs. (Table 21 of

Appendix).

A comparison of the collated protein lists showed that at least 80 % of the proteins identified
in a replicate were present in the other three biological replicates of the same treated group
(Figure 51). Of the remaining proteins, about 10 % were present in three of the four
replicates of the control group and about 8.4 % and 8.3 % were present in three of the four
replicates of the FA-treated and inhibitor-treated groups, respectively. The CV for the QV
assigned to a protein within a group was then calculated in order to better understand the
cumulative effect of technical and biological variance. CV is defined as the ratio of the
standard deviation within a group to the mean value of the group and provides a measure of
how dispersed the data are. The control group had 174 proteins with CV < 10 %; the FA-
treated group and the inhibitor-treated group had 116 and 167 such proteins, respectively
(Figure 52). This represents about 10 % of the proteins identified within a group. Of the
proteins with CV < 10 %, only 12 proteins fulfilled the criterion of CV < 10 % in all three
groups (Table 8 and 9).
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Figure 51: Comparison of proteins identified in the biological replicates of dataset LC3. A) Replicates of
control (C); B) Replicates of FA-treated (FA) and C) Replicates of inhibitor -treated (IN).
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Figure 52: Distribution of proteins with respect to the co-efficient of variance for LC3. The CV of a protein for
the four biological replicates of a group was calculated. The number of proteins that lie within a range of CV are
indicated.
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Table 8: Proteins with co-efficient of variance < 10 % in dataset LC3. The proteins listed in this table are those that met the criteria of having a CV < 10 %. The fold change is
the ratio of the mean QVs of the three groups taken two at a time. For example, ‘F: C' is the ratio of mean QV in FA-treated (F) group to mean QV in control (C) group. The
inhibitor-treated group is represented by ‘I'. P values were calculated using a Student's t-test. Please refer to Appendix file LC3_Unpooled data.xlsx for QV and exclusive

unique peptides of the proteins in this table.

Co-efficient of
variance (%)

Fold change p value (t-test)

Protein Name Gene nhame

I:F I:C
14-3-3 protein gamma YWHAG 0.62 0.87
Alpha-actinin-4 ACTN4 1 1 11 0.87 0.49 0.14
Heat shock 70 kDa protein 1A/1B HSPA1A 0.9 1.1 1 0.063 0.046 0.9
Heat shock protein HSP 90-beta HSP90AB1 0.9 1.1 1 0.28 0.17 0.55
HLA class | histocompatibility antigen, A-2 alpha chain HLA-A 1 1.1 1.1 0.88 0.07 0.002
Isoform 2 of Eukaryotic translation initiation factor 3 subunit B EIF3B 0.9 1.1 1.1 0.34 0.12 0.45
Isoform 4 of Protein disulfide-isomerase A6 PDIA6 0.9 1.1 1 0.15 0.13 0.7

©O© © O 0 N & 00|@
O © 00 & N U1 b

Multifunctional protein ADE2 PAICS 1.3 1 1.4 0.0011 0.65 0.0008 10 5 10
Nicotinate-nucleotide pyrophosphorylase [carboxylating] QPRT 0.77 1.1 0.9 0.007 0.022 0.05 10 9 2
Protein disulfide-isomerase A4 PDIA4 0.77 1.1 1 0.021 0.024 0.48 10 5 6

Ras-related protein Rab-10 RAB10 0.9 1.1 1 0.27 0.29 0.61 6 8 10

Transitional endoplasmic reticulum ATPase VCP 0.77 1.2 1 0.013 0.023 0.84 3 10 3
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Table 9: QV and exclusive peptide counts for proteins with co-efficient of variance < 10 % in dataset LC3. The proteins listed in this table are those that met the criteria of having a CV <10 %
in all three groups. The values listed are QV and exclusive peptide counts for each replicate of the control (C), FA-treated (F) and inhibitor-treated () groups.

. Quantitative value Exclusive peptide count
Protein Name
Cc1 Cc2 ca c3 F1 F2 F3 F4 11 12 13 14 CL|c2|ca|C3|FL|F2|F3|Fa|11]|12]|13]14
14-3-3 protein gamma 48.3 41.4 49.3 45.5 35.7 47.1 45.6 47.5 47.1 50.0 45.6 43.2 6 5 7 6 5 5 4 5 8 6 6 5
Alpha-actinin-4 124.2 141.6 138.8 133.9 117.1 145.8 130.5 140.3 142.4 138.0 147.7 140.1 | 33 34 38 37 38 37 32 38 35 3 38 37
Eukaryotic translation
initiation factor 3 subunit 23.2 28.3 30.5 27.8 23.0 27.7 25.8 253 25.9 29.5 30.3 30.0 8 8 8 7 8 6 6 6 8 7 6 7

B
Heat shock 70 kDa protein
1A/1B
Heat shock protein HSP
90-beta
HLA class |

123.5 131.7 120.6  135.9 93.9 113.3 107.5 126.4 131.3 132.5 125.6 1200 | 23 23 22 23 21 21 21 26 24 23 23 23

314.4 289.3 2849 3145 241.2 287.4  265.1 311.7 3116 2970 3204 2986 | 45 48 45 47 47 47 43 46 50 49 49 47

histocompatibility antigen, 29.2 28.4 26.9 28.1 22.1 27.8 30.9 29.4 30.6 32.5 32.5 33.8 8 7 7 8 7 7 7 7 7 8 7 9
A-2 alpha chain
Multifunctional protein
ADE2
Nicotinate-nucleotide
pyrophosphorylase
Protein disulfide-
isomerase A4
Protein disulfide-
isomerase A6
Ras-related protein Rab-10 15.6 16.3 16.4 17.8 12.9 14.9 16.5 16.9 16.0 19.5 17.3 15.5 1 1 1 1 1 1 1 1 1 2 1 1
Transitional endoplasmic
reticulum ATPase

45.5 39.2 39.5 39.8 48.7 58.3 56.9 53.3 51.5 56.9 61.1 60.3 9 11 10 10 12 12 10 12 12 12 12 11

36.8 32.8 32.0 30.1 21.0 27.6 24.9 255 30.1 30.1 29.1 26.8 8 7 5 8 7 7 6 7 6 8 6 8

358.3 3344 351.1  335.6 210.1 3099  289.6 253.2 3423 3045 303.0 2842 (37 28 32 37 29 33 27 30 33 31 30 34

117.1 112.6 114.2 132.9 88.1 102.9 126.3 104.1 116.2  117.2 135.8 1183 | 18 18 18 18 19 18 17 19 18 18 18 19

152.8 165.9 173.3 157.0 109.7 140.5 141.8 150.6 170.7  159.2 164.2 1494 | 32 30 37 33 29 34 29 33 33 31 31 32
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The aim of this project was to identify proteomic changes associated with lipid accumulation
in HepG2 cells and the possible ameliorative effects of the DGAT inhibitor PFO4 on the
process. The magnitude of the fold changes observed in this dataset were not statistically
significant. Given the experimental design, the variance observed within each group is likely
to have a considerable impact on the statistical significance assigned to any change in
protein abundance. The four biological replicates representing a treatment group were
therefore pooled into one sample in an effort to normalize the variance within a group.
Dataset LC4 was generated from the pooled samples of biological replicates as described in

the next section.
5.2.2. Dataset LC4
5.2.2.1. Protein identification

Dataset LC4 was generated from the same biological replicates as dataset LC3, with the
difference between the two datasets being that the four biological replicates representing a
group were pooled after cell lysis. Each pooled sample was analysed using five LC-MS/MS
runs. The total number of proteins identified for the three treatment groups using input
from all five runs was 970, 1,008 and 1,034 for control, FA-treated and inhibitor-treated
samples, respectively (Table 21 in appendix). About 74 % of the proteins identified in this
dataset were present in all three samples (Figure 53A). Analysis of individual technical
replicates showed that the average number of proteins identified in the technical replicates
was 763, 827 and 836 for control, FA-treated and inhibitor-treated samples, respectively
(Figure 53B). These proteins were identified in PD with high confidence (FDR < 0.01) and
with at least 2 peptides per protein. The average number of peptides identified in a technical
replicate for control, FA-treated and inhibitor-treated groups was 5,805, 6,271 and 6,461,

respectively. These identifications were based on an average of 16,462, 17,389 and 18,184

A) B) 500 C) ,5000 M SPectra Peptides
Control (970)  FA (1008) " 22500
2 800 -
‘S o 20000
T 700 2
_' 5 © 600 S 17500
s 2 % 15000
| | B E >00 T 12500
o 5 400 $ 10000
E 200 2 5000
Z 100 2500
0 0
Inhibitor (1034) Control  FA Inhibitor Control Inhibitor

Figure 53: Protein identification for dataset LC4 in Proteome Discoverer. A) Comparison of proteins identified in
dataset LC4. B) Average number of proteins identified for the technical replicates for the groups indicated. C)
Average number of spectra, peptide-spectra matches (PSMs) and peptides detected for each group in PD.
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peptide-spectra matches determined for the 21,976, 22,436 and 22,684 input spectra

detected for control, FA-treated and inhibitor-treated groups, respectively (Figure 53C).
5.2.2.2. Label-free quantification using spectral counts

The files generated in PD for this dataset were organized in Scaffold as they were for dataset
LC1 - five LC-MS/MS runs represented one pooled sample and each group was represented
by one pooled sample. The number of proteins identified in Scaffold for this dataset was 928
(Table 21 in Appendix). No decoys were identified in the list. Peptide identifications were
accepted if they could be established at greater than 99.0 % probability by the Peptide
Prophet algorithm, and protein identifications were accepted if they could be established at
greater than 99.9 % probability and contained at least 2 identified peptides. About 17 % of
the detected spectra in each group could be assigned exclusively to a single peptide. Of the
928 proteins identified in Scaffold, 904 proteins were found in all three groups and 20
proteins were identified in at least two of the three groups (Figure 54A). The number of
peptides common to all three groups was 4,839 and this corresponded to 5,399 unique
spectra that were common to all three groups (Figure 54B and 54C). Since the dataset
contains one pooled sample per treatment group, the QVs of the groups were compared
using Fisher’s exact test with multiple testing correction by Hochberg-Benjamini method.
This test required a comparison of two groups at a time and so three comparisons were
made — FA-treated vs. control; inhibitor-treated vs. FA-treated and inhibitor-treated vs.
control. At a significance level of 95 %, 28 proteins showed statistically significant changes
with p < 1.56 x 103 for the comparison between control and FA-treated groups, only 1
protein with p < 1.1 x 10 was considered significant for the comparison between the FA-
treated and the inhibitor-treated sample. For a comparison of control and inhibitor-treated

groups, five proteins with p < 3.2 x 10 were considered statistically significant (Table 10)

A) Control FA-treated B) Control FA-treated C) control FA-treated

A = A
D e e

Inhibitor-treated Inhibitor-treated Inhibitor-treated

Figure 54: Identifications of proteins, peptides and MS/MS spectra in different treatment groups in Scaffold.
A) Proteins identified in each treatment group. B) Total unique peptide counts for all proteins in the dataset. C)
The total number of unique spectra detected for all the peptides in the dataset.
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Table 10: Proteins with significant changes in abundance in dataset LC4. The table lists proteins with statistically significant changes in abundance as determined by
Fisher’s exact test. Two groups were compared at a time. The ‘fold change’ represents the ratio of the QV as stated in the column head; for example, ‘F: C" is the ratio of QV
in FA-treated group (F) to that in Control group (C). The inhibitor-treated group is represented by ‘I'. ‘Exclusive unique peptides’ indicates the number of peptides that are
unique and exclusive to the indicated protein. CV attributed to a protein reflects the technical variance among the LC-MS/MS runs representing each group.

Peptide
0,
Protein name :ae,:: Fold change P value CV (%) Qv -
F:C -———-..
Protems sngmflc ntly changed in FA-treated/Con ro
R R eveo00 | 4.2 050 2.2 | 000012 002 0056 | 22 50 25 | 734 3090 1615 |3 9 5
200 kDa helicase
splicing factor 3B subunit 3 SF3B3 | 9.2 040 3.6 | 000018 002 0076 | 11 25 32 | 209 1924 755 |1 a4 3
Clathrin heavy chain 1 cLTC 16 091 15 | 000026 023 00033 | 28 14 16 | 80.80 132.44 120.03 | 20 26 29
Isoform 2 of Reticulocalbin-2 RCN2 | 010 3 040 | 000026 0085 0023 | 26 64 26 | 1971 285 859 |5 1 2
60 kDa heat shock protein, HsPD1 | 0.77 1.1 1 | 000033 00048 019 | 10 8 7 | 83777 70231 79934 |49 49 46
mitochondrial
ATP-dependent RNA helicase A DHX9 | 2.4 040 0091 | 000038 000013 049 | 23 60 38 | 2121 5096 1994 | 6 14 7
el d'v's'°?‘;;':|r:; protein 42 cbca2 | 45 030 1.4 | 000048 00024 036 | 5 6 59 | 532 238 770 |1 2 2
Valine—tRNA ligase VARS 45 071 3.2 | 000048 018 0011 | ND 18 31 | 533 2416 1709 |2 7 5
Fatty acid synthase FASN 13 091 1.1 | 00005 0019 011 | 35 13 6 | 33319 42377 36634 |67 82 73
N”c'ease'se"?:;‘;‘:ii'elme"t'b'"d'"g YBX1 | 030 2.1 071 | 000062 0024 012 | 140 54 17 | 3462 1198 2490 | 9 4 5
S BB R poppe | 14 077 1.2 | 000065 004 0069 | 25 13 7 | 15923 22269 187.18 | 37 49 45
protein, mitochondrial
ATP-dependent 6- PFKL 11 059 63 | 000072 012 0028 | 42 70| 122 138 766 |1 6 3
phosphofructokinase, liver type 0
Multifunctional protein ADE2 PAICS 2 071 14 | 00008 0042 008 | 8 8 12 | 3402 6698 4769 | 6 10 8
Bifunctional ATP-dependent
dihydroxyacetone kinase/FAD-AMP DAK 2 0.71 1.3 0.00095 0.018 0.16 17 8 15 30.62 61.46 40.05 6 15 11
lyase (cyclizing)
ATP synthase subunit beta ATP5B 0.77 1.1 0.77 0.0011 0.24 0.0091 9 31 5 278.73 210.57 22523 |25 25 24
Dnal homolog s“flfam"y RS e | 008 11 077 | 00012 0004 04 | 68 31 36 | 1251 094 1038 | 4 1 3
Glycine—tRNA ligase GARS | 23 059 1.4 | 00012 0027 014 | 8 7 33 | 2021 4569 2844 |5 10 7
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Table 10 continued...

Protein name

Cullin-associated NEDD8-dissociated

protein 1

Glutamine--fructose-6-phosphate
aminotransferase [isomerizing] 1
Citrate synthase, mitochondrial

Isoform 3 of Calumenin

Bifunctional glutamate/proline--tRNA

ligase

Protein disulfide-isomerase A3

Polyadenylate-binding protein 4
78 kDa glucose-regulated protein

ADP-ribosylation factor 1
Coatomer subunit alpha

Perilipin-2

Ras-related protein Rab-6A

CAND1

GFPT1

CS
CALU

EPRS
PDIA3

Proteins

PABPC4
HSPAS

ARF1
COPA

PLIN2

RAB6A

13 0.50 6.5
2.9 0.59 1.6
2.5 0.71 1.8
0.20 2.2 0.50
4.1 0.59 2.6
0.71 13 0.91
significantly changed in b
8.1 1.1 8.7
0.71 1.1 0.77
13.0 1.5 20.0
4.7 0.77 4.0

| INF

Fold change

2.7 INF

CV (%)

F:C I:.C C
0.0013 0.11 0.048 21 6 80 1.01
0.0014 0.03 0.15 220 26 18 10.86
<0.0001 0.053 0.015 24 24 28 23.22
<0.0001 0.014 0.0088 | 220 53 22 45.66
<0.0001 0.05 0.017 12 7 26 8.19
<0.0001 0.0018 0.043 23 23 5 322.57
oth FA-treated/control and Inhibitor-treated/Control
<0.0001 0.41 <0.0001 | 220 52 23 4.89
<0.0001 0.28 0.00022 | 34 202 10 | 393.96
0.0013 0.14 <0.0001 | 43 24 NA 1.00
<0.0001 0.25 <0.0001 | 24 17 11 8.62
Proteins significantly changed proteins in Inhibitor-treated/Control
0036 004 000013 | ND 68 27 | 0
Protein significantly changed in Inhibitor-treated/FA-treated group
<0.0001 1 |55 28 ND | 000

| INF

0.0

INF | <0.0001

F
13.01

30.99

58.64
10.97

33.32

215.24

39.44
287.60

13.07
40.50

4.93

18.82

6.57

17.19

41.92
24.61

20.98

279.53

42.73
303.06

20.04
34.23

13.23

0.00

| o

Peptide
count

11

12
32

39

2
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5.2.2.3. Variance associated with data generated from the pooled group of LC4

The protein list generated in PD for each LC-MS/MS run was compared to the other lists for
the same pooled sample (Figure 55). The five LC-MS/MS runs of the control sample had 613
identified proteins common among them. This number represents an average of 80 % of the
proteins identified in five technical replicates of the control sample. Similarly, the technical
replicates of the 673 and 697 proteins were identified in all technical replicates of the FA-
treated and inhibitor-treated samples respectively (Table 21 in Appendix). This represented
82 % and 83 % of proteins in the individual protein lists. Variance in the spectral counts
assigned to a protein were assessed in Scaffold by loading the technical replicates as

biosamples to calculate the CV.

Of the 782 proteins identified for the control group in Scaffold, only 71 proteins showed a CV
< 10 %. The number of proteins identified in Scaffold for FA-treated and inhibitor-treated

groups was 828 and 847, respectively and of these, 97 and 110 proteins showed a CV <10 %

A) Control

QUI; 2 {749)

B) FA-treated C) Inhibitor-treated

Rlll; 2 (34‘;}

23
auet & @ ot \W\

Figure 55: Comparison of proteins identified in each LC-MS/MS run within a group analysed for dataset LC4. The list of

proteins identified in PD for each LC-MS/MS run was compared using the Venn diagram tool provided by Bioinformatics &
Evolutionary Genomics (http://bioinformatics.psb.ugent.be/webtools/Venn)
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for the two groups. Most proteins had a CV of more than 10 % (Figure 56). Since the QV
assigned to a protein depends on the cumulative data of all five technical replicates, the
variance among the technical replicates could have skewed the total spectral count assigned
to the protein. This in turn would affect the statistical value assigned to the fold changes of a
given protein. Therefore, in addition to the proteins that showed statistically significant
changes in QV, all proteins that showed a change in QV with p < 0.05 before multiple test
corrections were put through a functional analysis. References made hereafter to ‘identified

proteins’ refers to this sub-set of proteins in dataset LCA4.

225
200
175
150
125
100
75
50
25

Control
FA-treated

Inhibitor -treated

Number of proteins identified

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 >100

Co-efficient of variance (%)

Figure 56: Distribution of proteins with respect to the co-efficient of variance for LC4. The CV of a protein
for the five technical replicates of a pooled group was calculated, and the numbers of proteins that lie
within a range of CVs is indicated.

5.2.3. Functional analysis of proteins identified in dataset LC4.

The biological relevance of the identified proteins was evaluated through enrichment
analysis of protein in GO groups and KEGG pathway databases using the tools hosted by
WebGestalt [243]. Of the 928 proteins analysed in dataset LC4, 216 proteins showed a
change in abundance with a p < 0.05 and fold change > 1.3 in at least one comparison (Table
11). These proteins were mapped to their corresponding SwissProt identifiers and uploaded
onto WebGestalt to generate the results of the functional analysis described in this section

(Table 21 in Appendix).
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Table 11: Proteins of dataset LC4 used for functional analysis. Proteins that showed a fold change more than or equal to 1.3 in at least one comparison with p < 0.05 were
selected for functional analysis. The treatment groups are indicated as ‘C’ for control, ‘F’ for FA-treated and ‘I’ for inhibitor-treated. The fold change indicated is the ratio of
the QV for the protein in the comparison as indicated. For example, ‘F:C’ is a ratio of QV of the FA-treated to the control. ‘INF’ indicates absence of protein in the control
sample resulting in the denominator of FC being zero and the ratio being infinite.

- Gene Fold change P value Qv Peptide
Protein name
name F:C H3 I:C He H3 He C F I C| F I
Isoform 2 of Alanine--tRNA ligase, cytoplasmic AARS 2.9 0.77 24 0.0023 0.28 0.015 9.6 278 228 | 4 9 7
Isoform 2 of ATP-binding cassette sub-family F member 1 ABCF1 7.7 1 7.5 0.024 0.56 0.028 1.0 7.8 7.6 1 4 3
3-ketoacyl-CoA thiolase, peroxisomal ACAAl 7.9 0.91 7.5 0.024 0.56 0.028 1.0 8.0 7.6 1 4 2
Isoform 2 of Very long-chain specific acyl-CoA ACADVL | 2.1 077 17 | 0037 027 015 | 103 218 171 |3 6 4
dehydrogenase, mitochondrial
ATP-citrate synthase ACLY 1.7 0.77 13 0.0037 0.12 0.073 46.9 77.4 63.0 | 10 18 15
Isoform Short of Long-chain-fatty-acid--CoA ligase 4 ACSL4 1.9 0.71 1.2 0.017 0.072 0.29 19.2 359 237 | 4 6 6
Isoform 2 of Long-chain-fatty-acid--CoA ligase 5 ACSL5 1.7 0.50 0.77 0.093 0.021 0.32 13.7 22.9 105 | 5 7 5
Acyl-CoA synthetase short-chain family member 3, ACSS3 | 37 050 18 | 00032 0038 02 53 199 94 |3 6 5
mitochondrial
Actin-related protein 2 ACTR2 2.9 0.71 1.9 0.011 0.16 0.13 6.5 190 124 | 2 4 3
Angiotensinogen AGT 0.50 3 1.5 0.044  0.0013 0.14 18.9 9.0 275 | 6 4 7
Alpha-2-HS-glycoprotein AHSG 0.40 2.7 1.1 0.017  0.0039 0.37 23.8 9.8 267 | 6 5 7
Serum albumin ALB 0.77 1 0.77 | 0.0095 0.41 0.018 281.3 227.2 2328 |38 38 40
Aldehyde dehydrogenase, mitochondrial ALDH2 1.1 0.77 0.77 0.27 0.043 0.16 80.3 899 676 |15 15 15
Isoform 2 of Fatty aldehyde dehydrogenase ALDH3A2 5.4 0.50 2.5 0.0088 0.1 0.18 2.2 12.1 5.6 2 3 2
Protein AMBP AMBP 0.50 1.9 0.91 0.017 0.037 0.4 27.2 128 247 | 6 3 5
Isoform B of AP-2 complex subunit alpha-1 AP2A1 INF 0.30 INF 0.005 0.099 0.15 0.0 8.1 2.8 o 2 1
Isoform 2 of AP-2 complex subunit beta AP2B1 1.9 1.9 3.6 0.22 0.093 0.011 4.3 8.1 153 | 2 3 2
Apolipoprotein B-100 APOB INF 6 INF