
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wānanga o te Ūpoko o te Ika a Māui

VUW
School of Engineering and Computer Science

Te Kura Mātai Pūkaha, Pūrorohiko
PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: office@ecs.vuw.ac.nz

Applying Formal Modelling to the
Specification and Testing of SDN

Network Functionality

Matt Stevens
School of Engineering and Computer Science

Victoria University of Wellington
Email: matt@stevens.net.nz

Supervisors: Bryan Ng, David Streader, Ian Welch

Submitted in partial fulfilment of the requirements for
Master of Engineering.

Abstract

Software Defined Networks offers a new paradigm to manage networks, one
that favors centralised control over the distributed control used in legacy net-
works. This brings network operators potential efficiencies in capital investment,
operating costs and wider choice in network appliance providers. We explore in
this research whether these efficiencies apply to all network functionality by ap-
plying formal modelling to create a mathematically rigourous model of a service,
a firewall, and using that model to derive tests that are ultimately applied to two
SDN firewalls and a legacy stateful firewall. In the process we discover the only
publicly available examples of SDN firewalls are not equivalent to legacy stateful
firewalls and in fact create a security flaw that may be exploited by an attacker.

Acknowledgements

This work would not have been possible without the help and support of a large number of
people.

My long suffering partner Megan McEwan, who went along with this mad idea and
offered support for four years of study.

The lecturers and indeed the institution of Victoria University of Wellington, who pro-
vided guidance and support as well as cautionary advice on work loads; but ultimately
facilitated achieving a four year Software Engineering degree in three years, with first class
honours. To date I believe I am the only student of Victoria University to have achieved this
with an engineering qualification.

The ability to start this research was enabled by an anonymous donor and the manage-
ment team at the Faculty of Engineering. A special thank you to Suzan Hall for facilitating
and huge thank you to my anonymous donor. I sincerely hope you see value in this research.

My three supervisors have been fantastic. Dr. Bryan Ng’s background knowledge of net-
working and SDN is deep and was invaluable, as was his deft touch with offering construc-
tive criticism. Dr. Ian Welch’s security focus inspired examining stateful firewall behaviour
where SDN decouples the algorithm and state from the forwarding plane; an architecture
that offers some benefits but may create significant security problems. While Dr. David
Streader bought a level of analytical thinking that I had not observed before, both exceed-
ingly frustrating and yet ultimately highly satisfying. We spent many hours discussing the
finer points of network algorithms and railing against loose terminology.

I broke the Universities internet. For that I apologise and I thank Mark Davies for the
restraint he showed when he visited to fix it and the help supplied afterwards. His sharp
question “Have you been playing with the network?” and my hesitant response “Probably,
yes” is etched into my memory.

i

ii

Contents

1 Introduction 1
1.1 Research goals . 3
1.2 Contributions . 3

2 Background 5
2.1 Legacy Networks . 5

2.1.1 Networking overview . 6
2.1.2 Middleboxes . 7
2.1.3 Criticisms . 9

2.2 A new paradigm — viewing the network as a system 9
2.3 Software Defined Networks . 11

2.3.1 Control plane . 13
2.3.2 Forwarding plane . 14
2.3.3 OpenFlow compliant switches . 14
2.3.4 SDN Dogma . 14
2.3.5 Formal Properties of Networks . 15

2.4 Sourcing and managing in-line functionality 16
2.4.1 SDN control of in-line functionality . 17
2.4.2 Proprietary Hardware . 18
2.4.3 SDN controller applications . 19
2.4.4 Switch waypoints and cloud services 19
2.4.5 Language approaches . 20
2.4.6 Managing state . 20
2.4.7 NFV management . 21

2.5 Network Functions Virtualisation . 22
2.5.1 Properties of NFV . 22
2.5.2 Virtualisation options . 23
2.5.3 Speed of virtual in-line services . 23
2.5.4 Testing NFV equivalence . 23
2.5.5 Chains of network functionality . 23
2.5.6 Aggregating functionality on hardware 24

2.6 Problems with comparing implementations . 24
2.7 Problems with SDN applications . 25

2.7.1 Placing the controller on the attack path 26
2.7.2 Increasing control channel bandwidth 26
2.7.3 Increasing SDN controller workload . 26
2.7.4 Many flow rules slow the switch . 27
2.7.5 Pushing local state across multiple SDN controllers 27
2.7.6 Inconsistent SDN Controller state . 27

iii

2.7.7 Pushing local state versus pulling switch statistics 27
2.7.8 SDN Controller stress — may manifest slow network behaviour 28
2.7.9 Convergence of the forwarding plane with the control plane 28
2.7.10 Convergence of the network function with end hosts 28

2.8 Firewalls — an example network function in SDN 29
2.8.1 The Firewall Algorithm . 30

2.9 SDN research into network functionality . 32
2.10 Summary . 32

3 Formal Methods 33
3.1 Overview . 34
3.2 Three common network functions . 35

3.2.1 NAT . 36
3.2.2 Load Balancer . 37
3.2.3 Firewall . 39

3.3 Formally describing a generic network function 41
3.3.1 Packet flows . 42
3.3.2 A stateless network function . 43
3.3.3 A stateful network function . 45
3.3.4 A firewall example — stateless . 46
3.3.5 A firewall example — stateful . 48
3.3.6 Formally describing a chain of network functions 49

3.4 Modelling Tools . 50
3.4.1 Rodin . 50
3.4.2 Event-B . 50
3.4.3 An example model built in Rodin, using Event-B 50
3.4.4 Model refinement . 53

3.5 Model-Based Testing . 54
3.5.1 Existing research . 55
3.5.2 Other testing methods . 55
3.5.3 Modelling the software-under-test and its environment 56
3.5.4 The MBT test process . 56
3.5.5 MBT test strategies . 57
3.5.6 State explosion . 59
3.5.7 Test metrics . 59
3.5.8 Defensible testing in industry . 59

3.6 Applying MBT to networking . 61
3.6.1 Industry Experience . 61
3.6.2 Hurdles to adopting MBT for SDN . 64

4 Research Direction 69
4.1 SDN’s third layer of state divergence . 69
4.2 The hypothesis . 70
4.3 Implementing MBT to test the hypothesis . 71

5 Applying Model Based Testing 73
5.1 Generating a formal model of a stateful firewall 73

5.1.1 The network environment . 73
5.1.2 The firewall model . 76
5.1.3 Creating test cases . 78

iv

5.2 Creating the test harness . 79
5.2.1 Recording state . 79
5.2.2 Aggregating state . 80
5.2.3 Test-harness work flow . 81
5.2.4 Test and response servers . 82
5.2.5 TCP’s unexpected behaviours . 82
5.2.6 Analysis Server and Results Presentation 83
5.2.7 Discussion . 83

5.3 Networking the test harness . 84
5.3.1 Virtual machines . 84
5.3.2 Incorporating the Firewall . 86
5.3.3 Performing the tests . 87

5.4 Revisiting the firewall model . 87
5.4.1 State explosion . 88
5.4.2 Refactoring the test harness . 88

5.5 Revisiting the hypothesis . 90
5.6 Testing Multiple Firewalls . 90

5.6.1 Adjusting the test harness for SDN applications 91
5.6.2 The Ryu firewall . 91
5.6.3 The Floodlight firewall . 92
5.6.4 Testing other firewalls . 93

6 Results and Discussion 95
6.1 Key areas of interest . 95

6.1.1 Testing the SDN dogma — firewalls . 96
6.1.2 SDN’s third layer of state divergence 96
6.1.3 MBT in Networking . 97

6.2 Contributions . 97
6.3 Future Work . 98

Appendices 101

A 15 Surveys of SDN research 103

B Firewall in Event-B 105
B.1 Firewall Context . 105
B.2 Firewall Model . 106

C MBT generated tests 119
C.1 Initial tests . 119
C.2 Additional tests . 122

v

vi

Figures

2.1 Legacy networks have the control plane bound to the forwarding hardware. . 5
2.2 The OSI model. 6
2.3 Network functionality (middleboxes) are controller agnostic, isolated from

other functions and operate on traversing packets. 8
2.4 Automaton for a stateful network function . 8
2.5 The Network Operating System — using abstraction to treat complexity . . . 10
2.6 Splitting the control and forwarding planes. 12
2.7 The predominate OpenFlow view of SDN, clever/slow control plane, dumb-

/fast data plane. 15
2.8 SDN network functions are now incorporated into management applications. 17
2.9 Vendors of proprietary functions, advocate SDN with proprietary solutions. . 18
2.10 The NFV view of SDN, provide network functions that are agnostic to control

plane solutions. 22
2.11 A service chain of middlebox algorithms . 24
2.12 Implementations (i1, i2) are equivalent where they share the same set of

modelled behaviours. 25
2.13 Domains of interest to a firewall . 31

3.1 Finite State Machine for a stateful NAT (K = key, V = value) 36
3.2 Finite State Machine for a Load Balancer (K = key, V = value) 38
3.3 Finite State Machine for a switch as a stateless firewall 39
3.4 Finite State Machine for a stateful firewall — first model 40
3.5 Automaton for a stateless network function . 43
3.6 Automaton for a stateful network function . 45
3.7 Passing a flow through a chain of network functions and receiving the reply. . 49
3.8 Labelled transition system, packet events as transitions between states 51
3.9 Rodin and Event-B, model context . 51
3.10 Rodin and Event-B, model machine — invariants and initialisation 52
3.11 Rodin and Event-B, model machine — packet send 52
3.12 Rodin and Event-B, model machine — packet arrived, packet dropped 53
3.13 The Model Based Testing process . 56
3.14 Incorporating modelling into the software development cycle 57
3.15 The Ariane 5 explosion, caused by a software bug, 4th June 1996. 60

4.1 The first layer of SDN state divergence.
Distributed controllers holding different views of the forwarding plane 69

4.2 The second layer of SDN state divergence.
Forwarding plane switches not in the same state as the controller view . 70

4.3 The third layer of SDN state divergence.
Network functions not holding the same connection state as end hosts . 70

vii

5.1 An event machine for sending and receiving network packets. 74
5.2 An event machine for sending and receiving network packets. 75
5.3 An event machine for a stateful firewall (occupies a chokepoint). 77
5.4 An application racing the kernel to establish a TCP session, will fail. 80
5.5 Sketch of MBT test server algorithm . 81
5.6 The test harness framework . 84
5.7 The test harness, including response servers and the firewall 86
5.8 The external host should not be able to open a TCP session. 87
5.9 Test and response servers swap active and listening roles, mid test. 90

viii

Chapter 1

Introduction

“The use of explicit models is motivated by the observation that traditionally,
the process of deriving tests tends to be unstructured, not reproducible, not doc-
umented, lacking detailed rationales for the test design, and dependent on the
ingenuity of single engineers.” —Utting et al. (2012) [1]

It can be anticipated that investigations into software disasters will find that a catas-
trophic bug was preventable. For example, the Mars lander software bug was found to be
caused by a miscommunication between two coding teams [2]. The academic literature has
many fascinating examples of disasters, used to impress upon young computer scientists
the importance of testing and that risk can and should be managed. This helps reinforce the
need for testing to be done at the individual, team and system level by developers. How-
ever the examples of real life failures are also replete with developer assumptions, incidental
code complexity, miscommunicated requirements, workarounds and commercial pressures
leading to rigour being sacrificed for convenience or profits.

Software consumers, both technical and non-technical, find it difficult and time-consuming
to ascertain whether software does the job required and is error free. Even where code is
available to review, this is time consuming and requires technical expertise. Where unit
tests are available, these are likely incomplete and will incorporate undocumented devel-
oper assumptions.

This research sits at the intersection of multiple technologies and seeks new ways they
can leverage each other. The parts are the decoupling of the networking control plane
from the forwarding plane, the decoupling of network algorithms from network hardware,
new software virtualisation technologies — virtual machines and containerisation, two new
classes of generic hardware — hosts and switches, formal methods, model-driven develop-
ment which may lead to compiling code from mathematically proven models and model-
based testing which uses mathematically proven models to validate hand crafted software
artefacts.

Networking as a technology coalesced thirty years ago and has largely satisfied the net-
working community since. There have been evolutionary developments in networking, but
nothing architecturally revolutionary for decades. The current rapid growth in network-
ing, propelled by mobile devices, streaming media and the upcoming Internet of Things is
pushing current network technologies to their limits, so much so that networking today is
perceived as labour intensive and error prone, difficult to develop for and adopting new
technologies is high risk. This typically means products must be proven before use and
have big names behind them to accept liability when these products fail. We explore this
existing network infrastructure in more detail in Section 2.1.

Two new technologies have captured researchers and industries interest. Software De-

1

fined Networks (SDN) and Network Functions Virtualisation (NFV). Both technologies are
being used today by entrepreneurs, cloud service providers and telecommunication providers;
including big names such as Google and Microsoft. The first enabling technology is NFV,
which is the separation of network software from network hardware, this allows highly
portable network functions running on virtual machines (VMs). It de-couples the software
innovation cycle from the hardware innovation cycle, in the process opening up network
functions to greater innovation while avoiding vendor lock-in. The architectural revolution
is often labelled SDN, it is the separation of the network’s forwarding and control planes,
allowing the control plane to be centralised and automated, offering the potential for better
resource optimisation and the automation of many labour intensive networking tasks which
in turn will reduce costs and human error. We explore these topics further in Section 2.3 and
2.5.

The relationship between SDN and NFV has proved contentious. This was found in
a survey of 15 recent SDN survey papers (see Appendix A) which overwhelmingly stated
the SDN preference of consolidating algorithms and state in the control plane (as opposed
to using NFV in the forwarding plane). Partly in response, this author published a paper
Global and Local Knowledge in SDN [3] to promote a more nuanced approach, highlighting the
advantages of state being treated in each plane. The Open Network Foundation has since
published TR-518 Relationship of SDN and NFV to address similar issues and assist the two
fields to capitalise on each others strengths instead of “reinventing the wheel” [4].

As an example of this conflict skewing perceptions, the author was surprised to find
quite late in this research that the SDN dogma driving network functions out of the for-
warding plane, has not yet resulted in either a commercial or open source stateful SDN
firewall.

Network Engineers are risk averse. This is for very good reason, they control large com-
plicated and fragile communication systems and there are often economic penalties for mis-
takes. The training and focus for most Network Engineers is tools based rather than on fun-
damental underlying principles in topics such as architecture, testing and formal methods.
Typically Network Engineers do limited programming. They write scripts in, for example,
Bash and Python to facilitate common tasks such as network configuration, but do not write
programs or implement applications that provide network functionality. They rely instead
on innovation from big name vendors which is necessarily slow and thorough due to the
responsibility they adopt. New technologies from new vendors are consequently perceived
as high risk by Network Engineers and to be avoided, contributing to network ossification.
To make inroads into this space, new tools and techniques for testing networks and network
functionality need to be developed in order to allow validation of network functionality im-
plemented using novel mechanisms such as SDN. These tools and techniques need to be
tailored for use by existing Network Engineers; ideally push button solutions to lower the
barrier for entry.

Model-Based Testing (MBT) [5, 6] offers a potential solution. It is a risk management
methodology that is independent of the developers creating the software. It can occur in
parallel to developing the software artefact, does not delay the project and can be started
early in the software development life cycle, finding architectural problems when they are
trivial to fix [7]. The act of creating a formal model not only provides valuable insights into
the software and its operating environment, but also may act as a benchmark (providing
black-box tests) to developers. The model’s logic and insights can potentially also be ex-
plained to senior non-technical stakeholders and may be peer reviewed by other engineers,
a practice common in more mature engineering disciplines.

Formal methods and black-box model-based testing are a potential solution with a huge
adoption hurdle, it is not push button technology. In addition it is not sufficient in isolation.

2

However, in concert with other methods such as code inspection and performance tests it
can form part of a package that can ensure an algorithm behaves as expected, is reliable,
secure and fast. We explore formal methods and model-based testing in chapter 3.

This research pulls together these interesting developments and seeks to formally de-
fine an example network algorithm describing stateful network firewall functionality and
prototype a tool that may be used to facilitate the work of Network Engineers in validating
implementations of network functionality. In the process we expose and demonstrate SDN’s
third layer of state divergence.

1.1 Research goals

This research explores applying MBT to well understood network functionality. It seeks to
demonstrate that not all firewalls behave as expected and that SDN firewalls that rely on
state in the control plane, are likely to fail some tests as a consequence of the SDN architec-
ture.

1.2 Contributions

This thesis makes multiple contributions to SDN research, including using formal methods,
modelling and MBT as a framework to explore the implementation of network functionality
in both legacy networks and SDN. The case for SDN to purge network functions from the
forwarding plane is examined and found to be a widely held yet unproven dogma. Several
examples of common middleboxes are examined and contrasted with their SDN implemen-
tations to find the architecture used in SDN appears to limit the ability of SDN switches to
perform as network functions. This means there is a capability trade-off that is not expressed
in the SDN literature, a pre-requisite for discussing how novel SDN management functions
may overcome the resulting problems. To illustrate the difference a stateful firewall is for-
mally modelled and utilising model-based testing, an in-line implementation of a firewall is
compared with two SDN implementations in order to find if the SDN firewalls have traded
away features in order to be stateless and managed by the controller. Specifically the main
contributions of this thesis are:

1. An analysis of SDN literature to find ten problems that may be exacerbated by moving
network function algorithm and state from the forwarding plane to the controller.

2. The creation of several prototypes, including a formal model of a generic network
function, two formal models of a firewall network function and a MBT test harness.

3. The first application of MBT to network functions. The creation of tests from a for-
mal model of a network function and applying them to a test harness that tests an
implementation.

4. Possibly the first use of MBT as a tool for determining behavioural equivalence be-
tween black-box implementations, to the extent that behaviours have been modelled.
Useful in this domain because of the volume of vendors offering network functionality
that provide similar behavioural properties.

5. The creation of abstractions of middlebox functionality which may assist in proving
fundamental network properties such as no loops, no black holes and reachability
in the presence of dynamic network functionality. These are the subject of ongoing
research.

3

6. A third layer of state divergence in SDN. The first two layers are discussed (state di-
vergence in the logically centralised control plane and state divergence in the control
to forwarding plane) and the third (state divergence between network function and
end hosts) is described and demonstrated.

4

Chapter 2

Background

There has been a range of research applying formal methods and model checking to net-
works. For example, the NICE tool which has applied model checking to the new network
technologies of Software Defined Network (SDN) controllers and switches [8]. Other recent
research explores network architecture, including alternative ways to abstract middlebox
functionality [9–11].

Current networks have been described as difficult to manage because of the focus on
low-level constructs and the lack of high-level abstractions, for example installing and wiring
individual switches and middleboxes, writing rules for individual packet flows and assign-
ing IP addresses for users [12]. Utilising a logically centralised controller can abstract away
and automate this detail using management applications while utilising virtual machines
(VMs) means network functionality need no longer be tied to a physical device.

The field of computer networking has had little exposure to Model Based Testing (MBT)
— so far the only example found of MBT (as opposed to model checking) is testing Service
Oriented Architecture (SOA) integration from choreography models [13]. This work which
examines network functionality using formal methods and MBT, will add to this research.

From here we discuss legacy networks before discussing the idea of a network as a sys-
tem. SDN is described, followed by outlining what in-line functionality is. Network Func-
tions Virtualisation (NFV) is described before the chapter finishes with reviewing problems
in SDN and discussing the firewall algorithm as an example network function.

2.1 Legacy Networks

Figure 2.1: Legacy networks have the control plane bound to the forwarding hardware.

The Internet is a network of networks. It might be described as a federation of net-
works with agreed communication protocols that allow hosts within and between networks
to communicate with each other. In legacy networks these protocols utilise distributed algo-
rithms bound to switches and routers (see Figure 2.1) that discover each other and manage

5

routing decisions. Within switches and routers, these distributed algorithms form the con-
trol plane while rule tables and network interface cards (NICs) connected to physical cables
form the forwarding plane.

Legacy networks are primarily comprised of black-box hardware. This is hardware pro-
vided by big brand names like Cisco, Juniper and Huawei to provide important network
functionality such as routers and firewalls. Manufacturers invest heavily into research seek-
ing to optimise proprietary hardware which has brought many benefits including greatly
increased reliability and very high throughput.

Network hardware falls into two broad categories. Hardware concerned with routing
(the switches and routers) and hardware concerned with improving network properties —
the definition of properties is left deliberately wide ranging. For example, firewalls improve
security, intrusion detection systems (IDS) improve intruder detection, caching improves la-
tency (response time) to the user and reduces network load for the provider, load balancing
allows the use of parallelism to meet increased user demand. There are many examples of
network properties that can be improved with another network function and there is no
doubt more being researched.

2.1.1 Networking overview

Figure 2.2: The OSI model.

Many discussions describing existing networks rely on the Open Systems Interconnec-
tion (OSI) model to provide a framework for the concepts. In brief the OSI model (Figure
2.2) recognises 7 layers within networking, from the application layer down to the physical
layer comprised of cables and hardware. This discussion primarily refers to layers 2-5, the
data link, network, transport and session layers.

Switches provide layer 2 (data link) services, that is they are concerned with local area
networks (LANs) consisting of switches and hosts, that are typically physically wired to-
gether (layer 1). All network devices have a unique media access control (MAC) address
which are used within a LAN for packet addressing and each switch utilises a table match-
ing MAC addresses with the correct outgoing port and wire. The table is populated by
listening for broadcasts from new arrivals and noting which wire (or port) each new arrival
occupies. If a packet is received with an unknown MAC address, the switch will broad-
cast that fact in the hope another switch will provide a new table entry for future packets.
Switches have several other protocols to resolve collisions on the wire, detect liveness, etc.

Routers provide layer 3 (network) services using Internet Protocol (IP) addresses to fa-
cilitate message passing between networks, potentially via intervening networks. For ex-

6

ample, a gateway router will sit on the border of a LAN and will listen for broadcasts from
other routers about IP addresses they know. It utilises a table matching IP addresses with
an outgoing physical port. If the IP address is unknown, or is perhaps known by several
routers, the router uses best guess algorithms to pick the next hop destination. Within a
LAN, routers may match a host’s IP address with MAC addresses and resolve routing using
switch functionality.

End hosts communicate using layer 4 (transport) protocols like TCP or UDP. The TCP/UDP
packet includes a port number (not related to physical ports) that identifies the application
to the two end hosts and also includes a packet sequence number. While layers 2 and 3
represent best effort communications, layer 4 protocols may (TCP) or may not (UDP) make
the communication reliable, checking if packets are missing and reassembling them into the
correct order. All Internet browsers use port 80, common email clients use ports 25 and 110.

Hosts may have need to remember data during a session which is layer 5 (sessions).
For example an online shopping basket. Should a service be provided by several hosts in
parallel it becomes important to consistently use the same host.

An individual packet forms part of a packet flow which can be identified through com-
mon packet header fields; typically the five tuple of message protocol, source IP address
and port plus destination IP address and port. An application, (for example, Netflix) will
partition its service (a streaming movie) into many packets of typically 1400 bytes1

A packet’s 1400 bytes of data is encapsulated by the layer 4 transport header which
includes the application source and destination ports and the sequence number to allow re-
ordering at the destination. Next the layer 3 network layer encapsulates the packet adding
the source and destination IP addresses. The packet is then handed to the layer 2 data link
layer which encapsulates the packet with the MAC address of the host as the source and
the gateway router’s MAC addresses as the destination. Finally the gateway on receipt of
the packet will decapsulate it (removing the layer 2 wrapper) and forward it to the layer 3
network layer destination, using best guess if the destination is unknown.

Elephant flows are large data flows such as movie streaming or big data that can be iden-
tified from the volume of packets [14]. Identifying these flows and redirecting them to ded-
icated paths is an example of network functionality. The goal in this case is to segregate
large flows to prevent performance degradation within a network while potentially allow-
ing other functionality, like traffic accelerators, to process the large flows on dedicated paths.
Network functions like these, aim to improve properties of the Internet and are typically fa-
cilitated by middleboxes providing the network functionality.

2.1.2 Middleboxes

Middleboxes are defined by RFC3234 as intermediary boxes performing non-router func-
tions on the path between two hosts [15]. These are, for example, firewalls, load balancers
and NATs, performing operations largely at line speed on packets as they pass. Figure 2.3
shows a middlebox positioned between switches A and B. Typically these are proprietary
middleboxes which are autonomous algorithms (finite state machines) optimised to run on
fast, but expensive, Application Specific Integrated Circuits (ASICs).

Middleboxes typically sit between switches, hence ‘middle’ and they are typically stateful
meaning they use and manage dynamic state in order to provide functionality. To call a
middlebox or network functionality stateless is not claiming a lack of state, rather that its
state is not dynamic, any state changes are provided by a third party. According to surveys

1A byte is 8 bits and a bit is a 0 or 1, 1400 bytes is therefore 11200 0’s and 1’s. A movie of 8MB breaks down
into many packets. The small packet size allows networks to interlace data streams more efficiently.

7

Figure 2.3: Network functionality (middleboxes) are controller agnostic, isolated from
other functions and operate on traversing packets.

conducted by Sherry et al. (2012) and Sekar et al. (2012) [10,11] just under half the hardware
in current networks are middleboxes while the other half are switches and routers.

Figure 2.4: Automaton for a stateful network function

Middleboxes have a common feature that makes them ideal for abstraction. They op-
erate in isolation and act only on the network packets they see — redirecting, dropping,
modifying and/or retaining state information. Put another way, a middlebox blindly ap-
plies a set of rules to the packets passing through it and may keep state information should
it need to act on other related packets or a reply. As a function that takes packets as inputs,
uses state and generates packets as outputs, they can be treated as a finite state machine
(FSM). Figure 2.4 shows the automata for a stateful network function.

Middleboxes implemented as FSM in the forwarding plane offer several attractive fea-
tures. FSM functionality is encapsulated and highly cohesive, they are modular, may be
replicated for scaling up or down and may be replaced with upgraded versions. Typically
FSM supports pipelining and may be linked in service chains. FSM may also be proven us-
ing model checkers. The placement of FSM in the forwarding plane and decisions on when
to update or replace them, uses a centralised view of the network provided by the network
controller which may be human, SDN or proprietary.

Middleboxes will typically be placed between two hosts with the intention of processing
all traffic passing between them. If the middlebox provides a service for a domain, one host
will be in the domain with the other outside, the path the middlebox is on will transition
between the two. Alternative architectures exist, such as placing the same functionality on
every host instead which avoids traffic choke-points. Typically the choice of placement is
based on resource efficiency but other properties may also have an impact, for example, a
firewall placed at the border can stop domain mapping or denial of service (DoS) attacks
while a distributed firewall implicitly allows domain mapping and in the event of a DoS
attack, the entire domain will be affected, potentially hampering efforts to respond on the
network.

There are several highly desirable properties that middleboxes should possess; correct-
ness, flexibility, efficiency and fault tolerance. In addition middleboxes operate in a dy-

8

namic environment with potentially high rates of network, policy and potentially middle-
box churn [16] which are concerns for the management of middleboxes.

2.1.3 Criticisms

While the distributed algorithms used in network routing are very effective, they have come
under criticism by a variety of authors for their shortcomings, for example, the network
convergence time when recovering from a failure, the lack of a centralised view which
may allow network resources to be optimised or the need for distributed algorithms hosted
by different parties to maintain pre-existing protocols.

To create a network comprised of switches, routers and middleboxes is labour intensive
and error prone when hardware is physically wired into the network and individually con-
figured. In addition distributed algorithms can be challenging to debug. To assist, vendors
have developed proprietary hardware and certification courses for technicians. Vendors
also provide equipment to tertiary colleges at discount prices, meaning many graduates
qualify with a knowledge of and predisposition towards a vendors products. This creates
problems with vendor lock-in, facilitated by existing investment in proprietary hardware
and staff training on proprietary equipment.

The difficulty of getting agreement to change or risk conducting live experiments with
new protocols and network functions has contributed to what has been described as the os-
sification of the Internet [17]. This is a consequence of several factors; service agreements
specify reliability metrics, leading many Network Engineers to prefer others conduct ex-
periments while they adopt tried and true technologies; proprietary vendors dominate the
hardware space, they represent ‘tried and true’, leaving little scope for innovative start-
ups; and technician product certification which while necessary due to the complexity of
running a network also means the workforce is largely trained on one vendors line of
products, contributing to vendor lock in.

The hardware and service agreements for proprietary solutions are expensive. As is
using hardware duplication to provide fault redundancy or capacity for peak flows. The
power consumption of under-utilised hardware adds to running costs and the capital in-
vested in under-utilised hardware is no longer available for other purposes. Expensive
operations include; transitioning from one vendor to another, retraining the work force,
managing the current stock of hardware and being responsive to network needs by moving
hardware from one part of the country to another. These issues drive the research desire to
provide efficiency and reliability at much reduced costs.

There is a common theme underlying approaches to improving on legacy systems and
mitigating these criticisms. It is to adopt an integrated approach seeking to treat the network
as a system.

2.2 A new paradigm — viewing the network as a system

In the computing space outside of networking, abstractions provided by operating systems
and programming languages have enabled systems of greater complexity which has in turn
enabled further efforts to adopt greater abstractions. As an example, the machine language
code to enable read and write access to the hard drive occupies multiple pages. In compari-
son, the high level languages Python and Ruby may use the Active Record pattern described
by Martin Fowler (2002), which can be implemented using only a few lines of code [18].
There have been several calls to bring the benefits of high level abstractions to networking.

Casado et al. (2007) with Ethane, asks the question “How could we change the enterprise
network architecture to make it more manageable?” [19]. He proposed a central controller

9

Figure 2.5: The Network Operating System — using abstraction to treat complexity

managing simple network switches. This separates the control plane from the forwarding
hardware as illustrated in Figure 2.5. A network operator tells the controller about, for
example, network security policies which are translated to switch rules for the forwarding
plane. When a switch element asks the controller about an unknown flow, a suitable flow
table rule is sent back to the switch. This was successfully prototyped in a university with
300 registered hosts and several hundred users. The devices hosted ranged from wireless
devices to printers and workstations.

From this research came two influential papers, the first by McKeown et al. (March
2008) describes OpenFlow, an API for simple switches [17]. OpenFlow compliant switches
contain flow tables with three fields; a match field for a packet header that defines the flow,
an action to be taken with the flow and statistics counting packets and bytes for each flow
plus a time-stamp for the last time this rule was matched. The OpenFlow API between
the controller and basic switches allows reading switch statistics (which contribute to the
controllers centralised view) plus requesting and returning flow rules of the form {match,
action}.

The second influential paper was by Gude et al. (July 2008) and describes NOX, an imple-
mentation of a network controller that creates a centralised view of the network and offers
high level abstractions [12]. It uses OpenFlow compliant switches, slaved to a central deci-
sion maker that overseas the entire network. NOX is provided as an example of a Network
Operating System that can host network management applications.

While these researchers laid the foundation for what is now known as Software Defined
Networking (SDN), the movement towards virtualisation of applications was already get-
ting stronger. In brief a virtual machine (VM) runs in isolation on a host system with its
own operating system supporting private applications. In this way an operating system
and application can be packaged with a VM and will run on any host that supports that
VM. Similar to Java which revolutionised programming with its language portability, VMs
provide application portability.

Research into Xen by Barham et al. (2003) [20], prototyped a high performance VM with
strong isolation properties and low overheads on the host machine. This demonstrated the
potential for virtualisation on generic hardware, with a design goal of 100 VMs on a modern
server2. With Xen and VM technology, a range of benefits became possible such as server
consolidation and application mobility.

A few years later and Wang & Ng (2010) in their examination of virtualisation within
the Amazon cloud describe how Xen VMs are used by a major service provider [21]. The

2An x86 Dell 2650 dual processor 2.4GHz Xeon server with 2GB RAM — memory limitations proved to be
the constraint, the 100 VM goal was achieved with each VM hosting a minimal OS of 4.2MB.

10

technology has enabled services like Amazon to sell compute instances easily, on demand
and for short durations. Sherry et al. (2012) describes how these might be used to provide
middlebox functionality on demand and avoid the need to have overcapacity in proprietary
hardware to handle peak loads [11].

Open vSwitch is an example of a virtualised network function. Developed by Pfaff et
al. (2009) Open vSwitch allows OpenFlow switch functionality to be provided by generic
hosts [22, 23]. This led to the potential for virtualising the networking layer and also to co-
hosting an Open vSwitch with other virtualised network functions, potentially decoupling
networking functionality from its switching capabilities.

ClickOS by Martins et al. (2014) builds on the interest in NFV and capitalises on inexpen-
sive commodity hardware, for example x86 servers with 10GB NICs. ClickOS is a Xen based
software platform optimised for packet processing [24]. It is small at 5MB, boots quickly in
about 30 milliseconds and adds little to latency, about 45 microseconds. For simple process-
ing of 1500B packets it can achieve 9.68GB/s throughput.

Taken together these technologies are allowing networking to abstract away from first
the hardware, using virtualisation technologies, second from the networking details by us-
ing centralised controllers as a platform to build management tools on. This abstraction
brings a number of benefits. It makes programs easier to write, reason about and debug; an
abstract implementation can be copied and re-used, and if popular and open-source, many
eyes ensure it is debugged quickly and is robust. Together these are starting to address the
concerns outlined earlier and pave the way to creating higher level abstractions.

While a network operating system is the goal, the research is still falling short. There is
no consensus on an API for the applications that might use such an operating system and
no consensus on how network functionality should be managed in the forwarding plane,
aside from OpenFlow compliant switches. Despite these concerns, research and industry
are coalescing around SDN as the preferred technology.

2.3 Software Defined Networks

SDN as a network operating system is characterised by the separation of the network packet
forwarding plane from the control plane. This enables the move away from a hardware
plane characterised by switches, routers and middleboxes running proprietary systems,
nurtured by talented technicians and network administrators. Instead moving toward ho-
mogeneous hardware capable of supporting a forwarding plane and a control plane that is
managed solely by network administrators. The intended result is better use of resources,
both human and capital with the control plane providing a foundation for management
applications.

SDN’s scope is not global (as in planet wide), it is a solution for a single entity’s net-
work (referred to from here as a network administrator, however it could well be a group
of network administrators working for a large enterprise managing networks of networks).
While theoretically SDN may have a super controller to rule them all, just as it may contain
hierarchies of controllers [25], it is unlikely that the network administrators that control each
of the Internet’s federated networks will give up control or security of their networks to a
third party. This means there is still a requirement for protocols to communicate between
networks, for example BGP (Border Gateway Protocol).

The separation of control and forwarding planes is shown in Figure 2.6 where a hard-
ware bus is replaced by a network protocol, for example, OpenFlow. This allows the con-
troller to be located remotely and for switch and controller software and hardware to de-
velop independently of each other. It may be noticed that the split planes do not illustrate

11

Figure 2.6: Splitting the control and forwarding planes.

network functions such as middleboxes. Network functions do not yet have a commonly
accepted network protocol.

Research and industry are largely working with the OpenFlow API which offers useful
protocols to pull flow statistics from OpenFlow switches, push switch requests to the con-
troller and for the controller to push new rules back. This OpenFlow facilitated separation
brings several benefits including opening up both the simple switch hardware market and
the software controller market to competition.

However the OpenFlow API does not offer a complete solution to controlling the for-
warding plane. The intuition is that switches and routers have proved easy to categorise
and reason about and achieving a broad consensus on a switch API has proved possible.
However in response to middlebox functionality which is characterised by complexity and
diversity, adherents to OpenFlow have largely adopted a switch centric view of SDN and
an aversion to middleboxes, the resulting research push has been to remove all network
functions from the forwarding plane (see Appendix A).

SDN as an architecture, scales from controlling many switches to one. Ryu-faucet, is
an example of a layer 2 SDN controller3 that might control a single OpenFlow compliant
switch and host a management application. Deployed as a single unit onto a generic host,
the black-box behaviour may be indistinguishable from a middlebox.

At the other extreme in 2011 Google deployed SDN on its B4 inter-datacenter WAN,
the largest production network at Google45. The underlying goal was to manage the WAN
as a fabric rather than as a collection of hardware. It required custom building their own
OpenFlow switches and they achieved a single network operating system controlling three
forwarding planes; optical, MPLS and IP.

The benefits of SDN include the potential for resource optimisation (both hardware and
personal) by utilising the centralised view, better security and efficiency through flow anal-
ysis, greater fault tolerance through automating fail-overs and the creation of alternative
fail-over paths6, and increased research rate on live networks where new algorithms can
be incorporated incrementally into a production network and rolled back in a controlled
manner.

3See ryu-faucet repository; https://pypi.python.org/pypi/ryu-faucet
4See presentation slides; unknown author (2012),

http://opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf
5Also B Koley (2014),

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42948.pdf
6Fail-over refers to the act of detecting failed hardware or software and responding to restore connectivity

between end-hosts. This needs to be done swiftly, under 50ms, to prevent end hosts from assuming the service
has been lost.

12

2.3.1 Control plane

The SDN control plane with its awareness of topology, flows and state enables a powerful
centralised network view that can drive decisions on traffic routing. It can also direct the
network to respond to equipment failure, intruders, attacks, adapt to changing network
load, enhance network-wide security and allows more efficient resource management.

Network complexity can be managed through the control plane. For example, ’Intents’
allow the network operator to manage a network using abstractions [26]. Implementing the
abstraction is typically performed in the controller which defines specific instructions for
individual switches.

To resolve early concerns about the controller becoming a single point of failure (in the
event of, for example, hardware failures, planned outages or network partitioning) multiple
controllers are used to ensure high availability. The controller is therefore considered a logi-
cally centralised controller to reflect that the controller instances and controller state may be
geographically distributed.

Ros & Ruiz (2014) explores SDN controller reliability, demonstrating that to achieve fine
nines reliability (99.999% up time) in a network requires a significant number of controllers
and redundant failover paths. The networks studied ranged from 6 to 55 nodes (ignoring
one outlier at 197 nodes) and required a median 6 controllers. 75% of the networks studied
required 10 controllers or less [27]. This might be described as controller explosion which
may potentially complicate managing and replicating shared controller state.

The controller redundancy obtained comes at a cost, a consequence of the controllers
acting as a distributed database (holding shared controller state) [28]. CAP theorem (Con-
sistency, Availability, Partition tolerance) is a database concept that suggests the architect of a
distributed database may pick two of the three properties and must manage weakness in
the third, albeit Brewer (2012) suggests in “CAP twelve years later“ that the trade off today
may be less binary, more of a continuum [29, 30].

From the perspective of an SDN distributed controller; Availability is ensuring controller
availability at all times. This is often achieved through controller replication. Partition Toler-
ance is ensuring that link failures do not prevent controller services. This is often achieved
through controller distribution, which may also improve local controller latency. Consistency
is ensuring multiple requests return the same answer — that multiple controllers present the
same view of the network. This can be achieved with locking databases until they are con-
sistent, at the cost of slowing down controller reaction time which can dramatically impact
on availability. Canini et al. (2013) presents a novel example of this by using a locking mech-
anism in middleware between the controller and switches [31].

Choosing high availability and partition tolerance, means managing consistency which
is referred to as adopting the eventually consistent model where over time the controllers will
converge towards consistency. Should global state change stop, the controllers will achieve
consistency, but in normal operations the controllers are expected to be in a state of perpetual
convergence.

We refer to this trait later as the first layer of state divergence which may lead to poor
network properties such as loops, black holes and unexpected reachability problems.

One way to manage consistency is to reduce the amount of state in the controller in order
to reduce the effort required to manage that state across all instances. Another strategy is
to ensure management applications react gracefully when inconsistencies are found. How-
ever it might be observed this passes the problem to third party management application
providers whom may fall short.

Other convergence problems exist between the control plane and the forwarding plane,
and between network functions and end hosts (the second and third layers of SDN state

13

divergence). These are explored further in the following sections.

2.3.2 Forwarding plane

The SDN ideal is for the forwarding plane to be populated by simple switches capable of
high speed packet processing. These switches should comply with an API and should be
commodity products. In operation they have tables holding a packet header tuple as a key,
an action such as ‘drop’ or ‘forward’ and collect flow data using counters and a time-stamp
for the last time the flow was used.

The most popular API to date is OpenFlow. It defines protocols for accessing switch
data and for updating flow rules. OpenFlow v1.5 is the current specification, however most
available switches offer v1.3. It is expected this will change rapidly as more switches are
made v1.4 compliant.

2.3.3 OpenFlow compliant switches

OpenFlow’s acceptance has resulted in a range of commercially available OpenFlow compli-
ant commodity switches. These cover a range of capabilities from industrial use to research
and home hobbyist. In addition to generic hardware switches, Open vSwitch is a virtualised
software switch that is OpenFlow compliant for use in VMs.

OpenFlow is still developing as an API. For example, over time the specification has
expanded from the initial 12 (v1.0) header match fields to 42 (v1.4) and 45 (v1.5). In the pro-
cess switch complexity is increasing and there are concerns that hard coding a finite number
of commonly accepted header fields may potentially stifle future innovation looking to de-
velop new protocols. Researchers are looking to address this, for example, P4 suggests that
switches should be programmable [32]. Rather than a switch being capable of matching all
fields, a switch could have a smaller set of generic fields that can be programmed to hold
meaning for this part of the network.

Stressed switches are also of concern, Wood et al. (2015) found that Open vSwitch’s
10GB/s throughput drops to 4GB/s when 10% of the packets are sent to the controller [33].
Kuzniar et al. (2015) found a number of issues; that switches with more than two batches
of rule up-dates in-flight overload the switches capacity to process those updates; that a
switches flow table update rate decreases as the number of entries increase; that prioritising
updates decreases the update rate and that rule modifications are slower than additions and
deletions [34].

Switches hold finite rule space. Utilising this space efficiently in the presence of network
dynamism is challenging. For example, performing a consistent commit of rules that does
not lose flows is a multi-step process that includes tagging flows, installing rules into the
network, waiting for packets using the old rules to exit, then removing the old rules. This
requires twice the rules space on a finite resource. Katta et al. (2013) propose a method that
reduces the rule space needed but reduces network responsiveness (trading time for rule
space) [35].

2.3.4 SDN Dogma

After reviewing fifteen recent surveys of SDN research (see Appendix A), it is apparent there
is a switch centric view within the research community that has created the dogma that in-
line functionality should be purged from the forwarding plane and placed in the controller.
Figure 2.7 shows this view as a clever, programmable control plane and a dumb, fast for-
warding plane. The assumption is that in-line functionality slows and adds complexity to

14

Figure 2.7: The predominate OpenFlow view of SDN, clever/slow control plane, dumb/fast
data plane.

the forwarding plane. The preferred solution is to use only stateless (no dynamic state) net-
work functionality and place the network function algorithm in the controller. However the
new found ability to program the control plane does not imply this is the only or best place
for network functionality.

In effect this dogma takes a de-coupled application that can be developed and tested
in isolation, is highly portable and can be easily replicated across a network; and replaces
it with a remote application coupled to a controller implementation (no widely accepted
application API exists yet) resulting in replacing proprietary hardware vendor lock-in with
SDN Controller lock-in.

There are other consequences of adopting this preferred architecture including increas-
ing the controller work-load, increasing the volume of centralised state, increasing switch
rule updates, increasing the volume of rules held by switches and increased use of switch
buffers. We will revisit these topics shortly and discuss existing research.

This author’s paper Global and Local Knowledge in SDN [3], discusses the SDN view that
local knowledge should become part of the centralised state. It points out that state held
in the logically centralised controller is replicated several times for redundancy and re-
quires algorithms to manage the increased state convergence problems between distributed
databases and also between the control and forwarding planes.

For example caching is provided by a middlebox. Its function is to store and respond
with information commonly requested by end users in order to improve response times
and conserve upstream computational and bandwidth resources. This cannot be achieved
with an OpenFlow switch and while there are outspoken views that such activities represent
computation that must be purged from the forwarding plane, there is presently no research
backing up these claims, it is a philosophical stance (see Appendix A).

SDN researchers are largely ignoring research into NFV, which easily and efficiently pro-
vides stateful applications in the forwarding plane. NFV treats packets in-line and fast de-
cisions can be made without reference to a third party application. Recent NFV research
papers have demonstrated them as highly portable, fast to install and performing at line
speeds. We discuss NFV in greater depth in Section 2.5.

2.3.5 Formal Properties of Networks

Establishing network properties such as no loops, no black holes and reachability is difficult
in a legacy network given the dynamism of distributed algorithms. Any property proved is
transient and may be almost immediately invalidated by the network.

Proving properties in SDN is attractive given the availability of the centralised view,
typically represented as a connected graph. Ideally this capability combined with controller
directed rule updates allows the controller to not only spot problems but also pre-empt
them. However research into proving properties of SDN networks has so far proved diffi-
cult, with researchers adopting simplified models of dynamic network functionality to make
the problem more tractable [36].

However, complicating the SDN approach, are concerns expressed over whether the

15

forwarding and control plane views converge fast enough [27, 30, 34, 35, 37–40] (the second
layer of SDN state divergence). This can result in black holes, loops and reachability issues,
as a consequence of switches not reacting to controller instructions fast enough. For example
if a chain of switches are under stress due to recovering from failed hardware or a DoS
attack, the stressed switches may not be able to process controller instructions in a timely
manner.

Switch implementations have been found to be inconsistent. For example, they of-
ten allow temporary divergence, up to 400ms and may implement switch updates out-
of-order. The implementation of the barrier command across switch implementations is
specified in the OpenFlow specifications and intended to provide update guarantees. How-
ever the implementation in switches has been demonstrated as inconsistent, and “cannot be
trusted” [34].

“Ignoring the problem leads to an incorrect network state that may drop packets,
or even worse, send them to an undesired destination!”

Kuzniar, Peresini & Kostic (2015)

Forwarding and control plane convergence, is explored further in Section 2.7.

2.4 Sourcing and managing in-line functionality

In legacy networks middleboxes are physically inserted between switches and allow a net-
work to transparently perform operations on packets which are passed from one end host
to another. Middleboxes include, for example, NATs, firewalls, caches and load balancers.
The set of middleboxes and their possible configurations is large.

When adding a middlebox the network operator will customise the configuration and
test it. If set up correctly the middlebox is left alone for an extended period as the labour in-
tensive process does not facilitate easy changes. NFV are treated similarly but with the ben-
efit of automation reducing configuration time and errors, plus facilitating network changes
at fast time scales — minutes as opposed to months. SDN applications are another approach
where the functionality is added to the controller and utilises switches in the forwarding
plane.

To provide a sense of scale Sekar et al. (2011) found in one enterprise (with ten’s of sites
across several geographic regions and serving ~80k users) that it used over 1500 network
appliances comprised of ~900 switches and routers and 636 middleboxes [9]. Sherry et al.
(2012) surveyed 57 enterprise network managers to find that large networks averaged 2850
routers and 1946 middleboxes while small networks averaged 7.3 routers and 10.2 middle-
boxes [11].

The purpose of network functionality is to improve one or more properties of the net-
work such as latency, resource use or load handling. These services are often stateful in that
they manage state required to facilitate the operation of the function. Some implementations
manage this state off-line with a third party application.

Middleboxes fall into several categories (not an exhaustive list);

1. Security, such as firewalls and intruder detection systems

2. Network efficiency, such as caches and TCP acceleration

3. Network partitioning, such as network address translators

4. Privacy, such as creating private WANs using encryption.

16

~
~

This list is not intended to be comprehensive, in fact researchers are actively seeking
novel ways of providing services to Network Engineers. For example the start-up FastSoft
(2006-2012) commercialised Fast TCP technology [41] initially using proprietary middlebox
hardware. After acquisition by Akamai in 20127 technology improvements subsequently al-
lowed the FastSoft algorithm to be incorporated into the edge routers of Akamai’s network8.

Software algorithms lie at the heart of network functionality. For example, F5 is a propri-
etary, industrial grade firewall. Its specifications reveal functionality that includes a proxy
algorithm, a stateful firewall algorithm, a NAT, potentially a load balancer and deep packet
inspection (DPI) algorithms to name a few. We discuss combining network functionality
when describing chains of network functions in Section 3.3.6.

2.4.1 SDN control of in-line functionality

As opposed to the manual set-up and on-going servicing of middleboxes in legacy net-
works, SDN offers the potential for automating these tasks. In the process allowing the
network operator to be more efficient, make fewer errors, use resources more efficiently, up-
date software easier and conduct experiments with new network functions in a controlled
manner.

Figure 2.8: SDN network functions are now incorporated into management applications.

The preferred SDN architecture is for network function algorithms to be sitting on the
controller as applications as Figure 2.8 shows. The controller in this case does everything ex-
cept forward packets. Messages are passed to the controller from simple switches and rule
updates are returned. The logic being that the control plane is smart and the forwarding
plane is dumb and fast. The advantages are many; modularity, clean separation, use of ab-
straction, removes computation from the forwarding plane, increases control at the control
plane, data replication allows swift network recovery, the centralised view allows network
properties to be proven, switch rules can be checked for policy violations and more.

There are some challenges to this architecture. For example, while the OpenFlow API al-
lows controller to switch communication, there is no similar API facilitating communication
between the controller and network functionality — whether above or below the controller.
Other concerns include increased controller workload, controller explosion, controller state
convergence and that controller stress slows the networks responsiveness. These are dis-
cussed in section 2.7.

ONOS is an example of an industry ready SDN network controller that recognises that
controllers are worked hard and offers reliable controller scalability. [42]. The ONOS devel-
opers targeted four challenges; high throughput, up to 1M requests per second; low latency,

7https://www.akamai.com/us/en/about/news/press/2012-press/akamai-acquires-fastsoft.jsp
8https://www.akamai.com/us/en/about/news/press/2013-press/akamai-speeds-downloads-and-online-

video-quality.jsp

17

10-100ms event processing; centralised network state size, up to 1TB of data; and high avail-
ability, four 9’s of reliability (99.99% up-time).

ONOS borrows the concept of Policy Domains from Cohen et al. (2013) as a high level
abstraction that directs network flows and functionality [26]. Both the abstraction and the
implementation of the abstraction are kept in the controller.

Other work that examines the management of in-line functionality includes Jamjoom
et al. (2014) whom uses a middlepipes paradigm to discuss how this functionality can sit
anywhere on the forwarding plane including within the hosts at either end [43]. Gember
discusses OpenNF, Stratos and OpenMB [44–46]. OpenNF is a network functions controller
for the control plane that requires modifying middleboxes — which increases coupling.
Stratos seeks to allow users to use control plane abstractions to specify scaling and com-
position of middlebox policies which Stratos then uses to create individual middlebox in-
structions and OpenMB is a control framework for middleboxes that operates alongside the
SDN controller and generates individual middlebox instructions. Similar efforts include
Merlin which uses constraint solvers in the controller to create middlebox instructions [47].
Slick and Split/Merge are control plane frameworks to enable middlebox scalability [48,49].

In its treatment of in-line functionality, or middleboxes, there exist at least six alternative
SDN paradigms. The use of proprietary hardware where SDN is used to route flows to
the correct black-box services; SDN controller applications which direct simple switches to
enforce in-line functionality; switch waypoints and cloud services where SDN routes flows
to third party service providers; language approaches offering abstractions to programmers;
choice of state location either within packets, within the forwarding plane or in the control
plane; and NFV management. We discuss each of these in turn.

2.4.2 Proprietary Hardware

SDN is proving to be a disruptive technology for vendors of proprietary hardware. Conse-
quently they are trying a variety of strategies to maintain market share. These include some
embracing open source and open standards while others have separated their hardware
and software products to allow more agile technology improvements. The ideal perhaps is
to retain market control by promoting and supplying proprietary solutions and APIs for the
controller, switches and in-line services (Figure 2.9). This would allow retention of IP and
the ability to create a unique value proposition.

Figure 2.9: Vendors of proprietary functions, advocate SDN with proprietary solutions.

Proprietary hardware features high speeds, often is excess of 10GB/sec; high capacity
buffers in RAM that may be in the GB range; high performance ASICs; and high reliability
which is a consequence of high quality parts, excellent hardware design and extensive test-
ing. Vendors pursue tough reliability measures, for example, five 9’s reliability which gives
99.999% uptime and less than six minutes downtime per year [27].

The negatives include vendor lock-in, lack of ability to customise the product, requiring
technicians with vendor specific certification, the difficulty of relocating existing hardware
to where it is needed, the cost of provisioning to allow for peak loads and the lead-time
required to design a new proprietary system to support a new service [50].

18

Existing network operators that wish to transition to SDN will often have large existing
stocks of proprietary hardware — largely because proprietary hardware has in many ways
been a good investment. These stocks of proprietary hardware will need to be utilised to
minimise the transitions financial impact and operational risk. Levin et al. (2014) discusses
ways to transition networks to SDN, managing both cost and risk by initially utilising a
minimal number of switches and expanding SDN capability incrementally [51].

2.4.3 SDN controller applications

Placing network functions in the SDN control plane has great appeal. It is tidy and places
all the programming in a centralised location which can be easily maintained. However
it is also an architectural decision which hard bakes into the network properties that may
be better considered in advance than found in hindsight. For example, in Section 2.7.1 we
outline how an SDN firewall places the controller on the attack path. In Section 2.7.8 we
discuss controller stress and highlight research that shows overloading the controller slows
the entire network. We also show that network functionality in the controller requires con-
sistently high levels of controller traffic which contrasts with switches that over time trends
to minimal control traffic.

There is no support in existing literature (see Appendix A) that network functionality
in the control plane is faster than network functionality in the forwarding plane. In large
part this is because they both run on generic hardware. Latency between the switch and
controller may be an issue, particularly in wide area networks (WANs), however this is less
so when considering data centres where controllers as virtual machines may be located in or
near the same host that holds an in-line service. An NFV architecture utilising a single SDN
controller co-located with and controlling a single switch is also unlikely to suffer latency
issues.

An alternative to placing network functionality on the controller is to make all network
functionality in the forwarding plane, stateless. While undoubtedly this would have advan-
tages, many examples seen to date achieve stateless forwarding plane operations by moving
the state and algorithm to the control plane, again contributing to the workload of the con-
troller and the control channel.

When the implications of a logically centralised controller are considered, controller state
is replicated across multiple controllers (ONOS allows for up to 1TB of centralised state).
Now state which used to reside in one place on the forwarding plane is now stored and
maintained in multiple places in the control plane for the purpose of providing controller
redundancy and reliability in the event of controller failure. This also holds benefits for
recovery from switch failure as switch state is replicated in or can be recreated by the con-
troller, but the cost seems high and to date we have no research comparing this architec-
ture with alternatives, such as utilising a recovery service (for example, see Sherry et al.
(2015) [52]).

2.4.4 Switch waypoints and cloud services

By attaching middleboxes to switches, flows can be routed to the switch which proxies for
the middlebox’s functionality. Gibb et al. (2011) describes this as the waypoint model, a means
of allowing middlebox services to be hosted anywhere in the network [53]. This goes some
way towards abstracting the use of middleboxes and allows easier scalability, easy use of
the switch liveness protocol, fail-over policies if a middlebox fails and allows traffic to easily
bypass middlebox services that are not required.

The waypoint approach also has the flexibility to utilise existing stocks of proprietary

19

hardware and easily transitions to in-house generic hardware or cloud services when the
proprietary equipment is retired.

Sherry et al. (2012) adopts this approach suggesting chaining switches connected to
cloud based middleboxes [11]. Gibb et al. (2012) develops this further and demonstrates
outsourcing such services is viable [54]. Simple-fying adopts this waypoint approach, sug-
gesting middleboxes may be connected to a switch to form a policy, these switches may
then represent abstract policies that are implemented and used by the controller [55]. Kul
Cloud Inc.9, an SDN vendor based in South Korea, offers an example in production, using
this approach in their i-Chain product10.

2.4.5 Language approaches

There are several advantages for network operators in using domain languages, however,
uptake is slowed by the need to learn and gain proficiency. In addition the new language
must compete against the inherent investment in existing systems such as Juniper and Cisco.

Most language based approaches to middlebox functionality adopt the strategy of creat-
ing abstractions for the programmer. These are then implemented by the controller which
maintains state and directs individual switches. Benson et al. (2011) discusses CloudNaas,
a language framework for programming at the controller level that treats middleboxes and
templates of multiple middleboxes as primitives [56]. Other language based approaches in-
clude Frenetic, P4 and Pyretic which again seek to create high level abstractions which the
controller implements using simple switches [32,57,58]. Song (2013) provides an example of
an alternative API that would form a superset of the OpenFlow API and includes protocols
to dynamically control programmable network elements in the forwarding plane [40].

2.4.6 Managing state

There are at least three places state may be kept within the forwarding plane; within packet
headers by overloading header fields, within switches by extending the OpenFlow speci-
fication and switch capability, and within network elements acting as VMs on commodity
hardware. A forth option is to place network state in the control plane.

Retaining state within packets
Several researchers suggest overloading packet header fields, utilising the capability to

retain meta-data or state. Flowtags is an example seeking to enable identification of flows
after they have been modified by middleboxes, potentially useful for traffic management,
forensics and diagnostics [59]. Cascone et al. (2015) looks to use overloaded header fields to
pass state among switches, creating a network of switches forming a mealy machine [60].

Retaining state on switches
Several implementations of generic OpenFlow compliant switches use multiple tables.

These may act as a single table or by using goto instructions they may branch from the first
table into others. In these implementations table traversal is only permitted one way as
cycles may cause problems including acting as a source of hard to debug, loops and black
holes for the network.

Bianchi et al. (2014) argues that switches should be able to hold and manage internal
state. He suggests multiple flow tables may be used for this, by allowing cycles. This permits
earlier rules to be rewritten on-the-fly and for the packet to be re-processed based on the
rewritten rules [61]. However this adds to switch capability at the cost of greater complexity

9See the Kul Kloud website http://www.kulcloud.com/
10https://www.youtube.com/watch?v=dRX8ooUAFF8

20

and does not allay concerns that loops and black holes within switches may be difficult to
diagnose.

Retaining state on network functions

This is the approach taken by legacy networks utilising proprietary hardware and by
many NFV implementations. State required by a network function to perform its role is
stored and managed by the function.

Retaining state on the controller

This is the approach adopted by SDN. However most SDN researchers do not appear to
distinguish between local state that is useful to in-line functionality and aggregated switch
state used to inform a centralised view that may in turn inform management applications.

2.4.7 NFV management

For a discussion on NFV, see the next section (Section 2.5), however in the interests of con-
tinuing the theme of discussing how various network functions are sourced and managed,
this section discusses the management of NFV. Some readers may prefer to skip ahead.

NFV uses generic hardware which is slower than specialised proprietary hardware.
Generic hardware however is versatile. It can host both firewalls and load balancers at
the same time and when it is quiet it can be shut down to save power or have its compute
capacity contracted out to process big data for other industries. In contrast proprietary sys-
tems offer no flexibility or revenue generating opportunities. Moving algorithms from one
generic host to another is simple and fast, as is shutting down old versions of applications
and replacing them with new versions in a controlled manner. Hardware fail-over strategies
benefit from having cheap and quickly instantiated instances available on other resources.
Where peak load exceeds in house capacity, generic hardware or network services are avail-
able from cloud service providers at costs charged out over short time frames, this is referred
to as cloud bursting [62].

Fault tolerance in proprietary systems is based on careful engineering and deploying
backup hardware. NFV does not typically have control over its environment and it may
be expected that commodity hardware will fail more frequently than proprietary hardware.
Sherry et al. (2015) observes that resorting to backup devices or NFV instances in any case
provides only a weak form of recovery for stateful network functions [52]. Simple master-
slave data stores provide stronger recovery but may still exhibit problems when the states
diverge. Proposed is an interesting variant comprised of a backup network function with a
recent snapshot of the data and a log of transactions since the snapshot. Implementing this in
an NFV function may be considerably cheaper and more effective than existing proprietary
solutions.

To spawn a virtual network function, the controller requires only knowledge of its type,
any configuration required and its location as defined by the IP addresses of the two hosts
it is connected to. This is similar to utilising proprietary middleboxes which in addition to
a type inherent in its hardware, a location dictated by its wiring and a set of rules, may also
have a proprietary language.

The controller also manages hardware resources and determines which hosts the NFVs
are spawned on (or it may utilise existing proprietary hardware). The controller may also
use strategies, for example, to minimise latency by keeping NFVs within the same data-
centre.

21

2.5 Network Functions Virtualisation

NFV is an architecture that is characterised by the separation of software from hardware.
This allows middleboxes to become reusable software elements on generic hardware [10].

It should be apparent that NFV technologies are independent of SDN technologies. The
benefit of NFV to both legacy and SDN networks includes its inherent plug ‘n play nature
which allows code re-use, use of commodity hardware, greater peak load flexibility and the
potential for automated management of network functions, an example of which might be
provided by an SDN management application.

The separation of software from hardware allows both technologies to innovate at differ-
ent rates. Typically software will innovate faster than hardware with its longer production
cycles and slower pay-back period. Proprietary solutions, for example, typically package
hardware and software as an indivisible product, slowing innovation to the pace of hard-
ware innovation.

Commoditising services using NFV encourages vendors to compete on cost rather than
added value features couched in marketing speak directed at non-technical decision mak-
ers. The expectation is that over time this will drive down the cost of both hardware and
software, reducing capital investment.

2.5.1 Properties of NFV

NFV research is largely focused on replacing existing middlebox functionality. As such NFV
display interesting properties that exist in middleboxes. They are modular in that code is or-
ganised into a single self-sufficient element, they provide a layer of abstraction - knowledge
of the internal code is not needed to gain the service provided, they are encapsulated in that
other code cannot directly access internal data and the functionality is decoupled from other
network functions and the controller.

Figure 2.10: The NFV view of SDN, provide network functions that are agnostic to control
plane solutions.

NFV brings further advantages, unavailable to middlebox hardware. The code is reusable
and upgrades are easily incorporated into the network in a controlled manner. The service
provided may be rapidly scaled up or down by instantiating or decommissioning instances,
coping with peak demands and enabling power savings by aggregating flows in order to run
the minimum number of instances for the load. Hardware scaling capacity may be provided
at peak times by cloud providers offering IaaS. Software scaling capacity may be provided
by cloud providers offering SaaS. NFV are controller agnostic, meaning they also decoupled
from the controller whether human, SDN or proprietary (Figure 2.10).

Making decisions locally, provides fast responses as the algorithm has immediate access
to both the packets in a flow and local state created from observations of previous flows.
Being on the forwarding path also facilitates other processing related to protocols, such as
recognising the end of a TCP session.

22

2.5.2 Virtualisation options

Virtualisation technologies are gaining in popularity and usability. Products such as VMware
and VirtualBox are widely used to create virtual machines (VMs) and may be booted with
an operating system (OS) that is different to the one on the host computer [63].

Upcoming technologies include Docker which uses containerisation, similar to VMs but
using the host OS whilst still maintaining secure separation between applications in con-
tainers. Generic network hosts, with multiple cores and large RAM, can host tens of VMs
(for example, Xen and ClickOS discussed earlier). The same hardware can potentially be
host to hundreds of containers [64].

2.5.3 Speed of virtual in-line services

The ClickOS VM in testing nine implementations of middleboxes11, achieved line rate pro-
cessing near 10GB/s [24]. This was using a low end server with four cores at 3.1GHz and
16GB of DDR-3-ECC RAM.

Proprietary hardware solutions are optimised for speed, capacity and reliability. They
consequently, box for box, will perform significantly better than solutions running on generic
software. However greater speeds are possible in generic hardware using parallelism, a
technique used widely in networking research, for example, to allow speeds near 2TB/s on
fibre, utilising twenty one 100GB/s fibre cables [65]. Of course this is possible with both
proprietary hardware and NFV on generic hardware, the point being that NFV holds large
cost advantages — the financial cost of running parrallel algorithms on generic hardware is
less than the cost of purchasing the equivalent capacity in proprietary hardware. Over time
it is reasonable to expect that improved generic hardware and software will allow virtual
machines to achieve greater speeds with less parallelism.

2.5.4 Testing NFV equivalence

Adopting NFV from smaller companies involves risks such as; incorrect application be-
haviour, poor reliability, back-doors, security concerns and liability insurance when services
go wrong. It is surprising that for well understood concepts like common network functions
that there has been no research into a tool that might answer questions around behaviour
equivalence between implementations. Proving A is equivalent to B may lead to better pur-
chasing decisions. We explore this further in section 2.6.

2.5.5 Chains of network functionality

Typically a network operator will arrange a sequence of middleboxes to perform tasks at a
given point in the network. These are referred to as Service Chains. For example the entry
to a domain may have a NAT to ensure internal IP addresses are logically separated from
external IP addresses. This also creates a single entry-point occupied by the NAT that may
also be monitored by other network functions such as a firewall algorithm.

An example service chain is provided in Figure 2.11. For a user to set up a session with
Host B or C, it traverses three services. The firewall ensures the external user is not known
to be dangerous. The NAT ensures the user can only access the host via a service chain that
includes this NAT. The load balancer ensures the user is serviced by the same end host so
that any session state created by the connection is always available.

11These were; Wire (for baseline performance), Ether mirror, IP Router, firewall, NAT, BRAS, IDS, load bal-
ancer and flow monitor.

23

Figure 2.11: A service chain of middlebox algorithms

Monsanto et al. (2013) discusses several issues relating to composition of components in
a service chain [58]. These may be mitigated by formalising what is required of the service
and using a heuristic to determine the best place to locate the service within a network [66].
We discuss this shortly in Section 3.3.6

There are several implementation options, for example, chaining middleboxes to a sin-
gle switch which cycles packets through remote services [55, 67], a variation on waypoints
discussed earlier. Another uses meta-data like Network Service Headers to encapsulate the
original packet [68] or packet MAC addresses for in-chain addressing [69]. OpenSCaaS uses
both a controller and MAC addresses. [70].

2.5.6 Aggregating functionality on hardware

One advantage of cohabiting virtual network functions on the same hardware is the po-
tential to improve performance. For example, reducing packet input buffers from one per
middlebox to one per chain at the cost of compositional flexibility (the middleboxes are now
dependent on the input buffer) [10].

One disadvantage is the increased management complexity and another is that chains of
virtual network functions form an indivisible unit, a larger building block which contributes
to the bin-packing problem, resulting in under-utilised resources [71].

Lee et al. (2011) initially proposed stacking VMs in commodity hardware in his paper No
More Middlebox, describing removing dedicated hardware middleboxes and replacing them
with VMs [72]. Anderson et al. (2012) brings xOMB which ties middlebox VMs to servers, so
the servers become the primary abstraction [73]. Mekky et al. (2014) has a similar approach,
tying VMs to Open vSwitches set up by the controller [74].

2.6 Problems with comparing implementations

Concerns around intellectual property has led many vendors to ship their products as black-
box implementations. In most cases customers accept this, provided the implementation
behaves as expected 12. When faced with a choice of implementations comparing their be-
haviours through the thick veil of marketing material and non-technical sales advisers is
difficult and not a robust process.

12Behaviours captures the concept of observable behaviours as seen by the environment, however it is ac-
cepted that not all behaviours can be tested using formal methods, such as algorithm speed or processing ca-
pacity. We leave these parameters to other tools.

24

1 B the domain of all network function behaviours
2 m ∈ pow(B) a model is a set of behaviours
3 i ∈ pow(B) an implementation is a set of behaviours

Table 2.1: Algebra definitions

This leads to a potentially novel use of MBT as a tool for comparison between imple-
mentations. Many existing middleboxes have been well studied and behaviours detailed,
MBT allows modelling these behaviours and may then use this model to test and compare
black-box implementation behaviours. We can express this formally.

equivalent : (pow(B), pow(B), pow(B))→ {true, f alse}

equivalent(m, i1, i2) = (m ⊆ i1∧
m ⊆ i2)∨
m/i1 = m/i2)

The intuition (see Figure 2.12) is that two implementations are equivalent if they share
the same subset of behaviours captured in the model. This definition is limited to the extent
the model captures the behaviours of interest.

In practice we expect to partition network functions into known algorithms, for example,
firewalls, load balancers, NATs, that each have a finite set of behaviours. Capturing these
function behaviours, while not a trivial exercise, is achievable. More difficult is capturing
the wider set of behaviours in the environment, however once a new behaviour is identified
(for example, an attack attempt), it can also be modelled and used to test implementations
against each other and the new model.

2.7 Problems with SDN applications

Earlier the range of network applications was described as divided into stateless (no dy-
namic state) and stateful (manages own dynamic state).

SDN explores a third type of network function where the state is managed by a third
party. This is driven by the desire to utilise the OpenFlow architecture where a remote SDN
controller communicates with and instructs the dumb OpenFlow switch. This requires that
local knowledge which is present in the switch, be moved to the controller to recreate the
local knowledge in the centralised view. This allows a centralised middlebox algorithm to
form a decision. This is cumbersome and introduces problems and limitations not addressed
in current SDN research. For example, a legacy in-line firewall operating on passing packets

Figure 2.12: Implementations (i1, i2) are equivalent where they share the same set of
modelled behaviours.

25

may hold state to recognise returning packets. Such a firewall gains no benefit from a cen-
tralised view. Moving the firewall’s algorithm and state to a third party creates a range of
problems which we outline shortly. A counter example that may be considered is a security
application that identifies abnormal flows in the network — such a service may use existing
centralised knowledge and does not require further local knowledge from the forwarding
plane.

This section outlines a range of interesting problems caused or aggravated by SDN’s
remote controller architecture being applied to stateful network functions.

2.7.1 Placing the controller on the attack path

A basic tenet of network security is defence in depth — utilising perimeter security and de-
militarised zones (DMZ) between the Internet and the secure domain, facilitated by firewall
appliances that are designed to resist attacks. In comparison a commodity OpenFlow switch
is designed to cost effectively forward packets, including sending requests to the controller
for every new flow. OpenFlow switches may therefore quickly collapse under DDoS (dis-
tributed denial of service) attack, but not before flooding the controller (also not designed
to withstand attacks) and potentially causing it to crash as well. Regaining control of the
switch or the controller in the face of a DDoS attack may be difficult while the attack is in
progress. Should this switch be a gateway, the network will now be isolated. Should the
controller collapse, control of the network may be lost for the duration of the attack.

2.7.2 Increasing control channel bandwidth

A stateful network function in legacy systems, once set up, requires no further communica-
tion with the SDN Controller or network operator in order to perform its tasks. In contrast,
a network function as a controller application holds local knowledge as state in the control
plane. This means switch-to-controller messages for every flow to set and compare against
controller state. In normal operation this creates consistent, significant, two-way control
traffic, that scales up linearly with the number of flows. This contrasts with SDN switches
forming the other half of the network, which trend toward minimal control traffic.

Adding to the bandwidth of switch to controller traffic is the use of TCP protocol [75]
and potentially encryption to ensure controller communication security.

2.7.3 Increasing SDN controller workload

SDN controller workload and state is minimised where a network has stateful network func-
tions being managed in the forwarding plane by the controller as place and forget function-
ality. The SDN alternative is hosting the functionality on the controller with its finite CPU
and RAM capacity. Or as a remote third party control application, with control traffic routed
via the controller.

A variety of strategies may be adopted to preserve controller responsiveness, often adding
to controller complexity, such as partitioning a network each with its own controller or par-
allelism which allows multiple controllers to share the workload, however controller par-
allelism is a more complex strategy than network function parallelism in the forwarding
plane. Another alternative is to increase controller hardware specifications, but this may
add to infrastructure procurement complexity and reduce the portability of controller appli-
cations.

26

2.7.4 Many flow rules slow the switch

Network functions form nearly half the appliances in legacy networks and replacing them
with commodity switches will nearly double the number of switches managed by con-
trollers. The alternative is to increase (double?) the number of rules in existing switches,
however Kuzniar et al. (2015) found that switches are slowed by large rule sets [34]. This
may be mitigated by flow rule optimisation across switches, but again at the cost of increas-
ing controller workload and complexity.

2.7.5 Pushing local state across multiple SDN controllers

A centralised data store, in order to be reliable, must replicate data across instances. This
will typically require at least three SDN Controllers to have copies of the state. If one fails,
the remaining two may continue and will still offer resilience in the face of a second failure.
Local knowledge for an SDN controller-network-function therefore involves the computa-
tional and storage resources of at least three SDN Controllers.

A valid observation is the centralised state allows recovery from network function fail-
ure, however this might be better handled by a distinct service as described by Sherry et al.
(2015) in her paper Rollback Recovery for Middleboxes [52]. This provides network function
failure recovery without burdening the controller.

2.7.6 Inconsistent SDN Controller state

Typically SDN Controllers adopt always available, eventually consistent as a distributed data
store model [29, 38]. Eventually consistent means that the global view shared amongst SDN
Controllers is in a perpetual state of nearly consistent. Decisions based on an inconsistent
centralised view may lead to problems such as routing loops, partitioning the network or
poor security decisions. We have termed this the first layer of state divergence.

Of course this is not unique to SDN controllers and other data stores have found ways
of addressing the inconsistent view problem. Typically two strategies are involved; First,
reduce the convergence time of the views by minimising the size of the data stored and con-
trol the rate at which updates are applied. Second is to add more complexity to applications
that read and write to the data store, to create the appearance of a consistent view.

Current SDN already uses the first strategy, SDN minimises the state held by selecting a
subset of local knowledge from each switch — specifically the flow and packet byte counts
for each table entry and the time the last packet matched the entry [17,76]. SDN also controls
the rate at which this switch data is gathered to form the global view (switch data is pulled
by the controller). For the second strategy SDN relies on controller applications to be com-
plex enough to gracefully handle inconsistent views, however, how or if this is done may
not be easy for an operator to assess. When SDN middlebox dogma is considered where all
network functions must be controller applications, SDN introduces state bloat and uncon-
trolled state updates (local knowledge is pushed to the controller). Consequently SDN casts
aside middleboxes for controller applications that both increase the prevalence of inconsis-
tent views and it is hoped will gracefully handle those inconsistent controller views.

2.7.7 Pushing local state versus pulling switch statistics

Legacy networks have operations occurring in two time frames, human operator speeds
which apply to configuration changes and packet flow speeds in the forwarding plane which
are orders of magnitude faster.

27

SDN introduces a third time frame, centralised view updating which is completed by
the SDN controller periodically updating its centralised view by requesting (pulling) switch
statistics from commodity switches. This is completed at time frames convenient to the
controller and sits between human operator speed and packet flow speed.

OpenFlow switches interrupt controller activities at packet flow rates, requiring fast re-
sponse to new flows on-the-fly. This involves sending (pushing) local information to the
controller for processing and typically trends to minimal controller contact as many flows
are long lived and satisfied by a single controller request.

A switch performing stateful network functionality also pushes local knowledge in order
to create controller state of benefit to the switch (the switch will access this state regularly).
The resulting decisions are then returned at packet flow rates. This pushed centralised lo-
cal state is distinct from the centralised view created from switch statistics in that switch
statistics are pulled at the controllers discretion whereas switch requests must be treated im-
mediately. The risk is, that the controller may be obliged to prioritise network functionality
and saving local state at packet flow rates, over updating its centralised view.

2.7.8 SDN Controller stress — may manifest slow network behaviour

Stateful middlebox applications on the controller require sending the controller significantly
more traffic than is the case with stateful middleboxes in the forwarding plane, which after
configuration require no communication in normal operations. Increasing the workload
of controllers and the controller channel, would be counter to concerns expressed regard-
ing controller stress. For example; Phemius and Bouet (2013) examine the case when the
switch-controller link is stressed and conclude stressing the controller may have a signifi-
cant negative impact on network performance [39]; Devoflow identifies this problem and
offers an example solution which seeks to minimise communication, by only consulting the
controller when elephant flows are identified [77].

For example, the failure of a SDN Controller causes stress in a logically centralised con-
troller. This requires the remaining SDN Controllers to redistribute state to ensure copies are
maintained across at least three active SDN Controllers. State redistribution is not a trivial
exercise and it may impact on network performance obliging ordinary SDN Controller traf-
fic to be queued. Note that in addition to controller failure, scaling the number of controllers
up or down to handle changes in controller workload incurs the same activity.

2.7.9 Convergence of the forwarding plane with the control plane

A similar concern to inconsistent state across controllers is the inconsistent view between
controller(s) and the forwarding plane. We have termed this the second layer of state di-
vergence.

Ignoring latency between controller and switch which is mostly a concern for WANs,
there are additional delays between the controller determining its preferred network graph,
communicating flow table updates to switches and the switches implementing those in-
structions. Kuzniar et al. (2015) found that the forwarding plane may fall behind the control
plane by up to 400ms and rule updates may be applied in a different order to that assumed
by the control plane despite use of the barrier command intended to enforce ordering [34].

2.7.10 Convergence of the network function with end hosts

Network functions are intended to be transparent to end hosts. This typically requires that
the network function and end hosts both hold the same view of the communication state

28

between end hosts. Where this is important and fails to occur we have termed this the third
layer of SDN state divergence.

For example a firewall should converge rapidly with communicating end hosts. In par-
ticular if both hosts believe a communication has ended, the firewall should reflect this.
Where a firewall uses flow rule timeouts to achieve convergence, by design this means net-
work function state will lag behind end host state, leaving vulnerabilities. Where a firewall
fails to act on a TCP sessions FIN handshake between end hosts signalling the session is
closed, again it leaves vulnerabilities.

2.8 Firewalls — an example network function in SDN

The firewall was chosen for this research for a variety of reasons. Time constraints would
preclude a thorough analysis of multiple network functions; there appears to be a lack of
in depth knowledge of firewall types within SDN commentators; and it was felt interest-
ing properties may be uncovered by comparing inline stateful firewalls with SDN controller
based stateful or stateless firewalls. Potentially by analysing this one network function we
could prove the method used to find an example of the third layer of state divergence, suf-
ficient to warrent further research on other network functions at a later date.

The phrase Firewall has many meanings in networking leading to confusion amongst
commentators. A stateless firewall (a switch packet filter) is not equivalent to a stateful fire-
wall (with dynamic state) and neither is equivalent to an IDS (Intrusion Detection System)
using switches to isolate intruders. These three examples exhibit different behaviours and
solve different security problems. All three are confusingly referred to as Firewalls.

Firewalls may also be one or more service chains of network functionality designed to
offer Unified Threat Management. One of the functions will be the firewall algorithm. Others
will include; NATS, proxies, load balancer, caches, DPI, encryption and more.

As service chains and indeed network paths are pipelines, the firewall algorithm can be
considered in isolation, reacting solely to the packets it observes, according the algorithm
and any configuration rules it has. The firewall algorithm is the network function of interest
in this research. In addition it has been rigorously studied and detailed in RFCs, by NIST
and in numerous textbooks [15, 78–83]. The remaining network functions in a Firewall are
left for future work.

The firewall algorithm operates at line speed, this is typically defined as 10GB/s13, how-
ever there also exist a range of commercially available firewall appliances providing speeds
from 100MB/s. Determining a packet’s status {allow, drop} is achieved by analysing the
packet’s header fields and comparing them to an ACL (access control list) and any dynamic
firewall state. Outside the scope of a firewall algorithm is inspection of the data. This is
deep packet inspection (DPI) which is another algorithm that incurs latency delays from de-
cryption and message assembly, which may be considered an acceptable trade-off in certain
use-cases.

Placing firewall functionality in the control plane and using switches in the forwarding
plane as the first line of defence, intuitively does not seem wise given that switches are not
designed to withstand attack. They instead efficiently pass attack traffic to the controller
for processing. None-the-less there are increasing numbers of research papers proposing or
using such an architecture [84–91]. The Floodlight controller firewall module is an imple-
mented example of a stateless firewall that passes rules to switches based on an ACL list.

13This definition appears to be a convention repeated in academic and industry articles. To place it in context,
Victoria University of Wellington with a student population of ~17,000, has a 10GB/s pipe to the Internet.

29

~

The Ryu controller firewall is also an example of a stateless firewall14. Neither controller
appears to have a stateful firewall application openly available.

There are other concerns, for example, keeping dynamic state with a remote third party
requires referring to that third party to make flow decisions based on that state. Yoon et al.
(2015) experimented with an SDN stateful firewall built on the Floodlight controller, finding
it added 31.595ms latency to a legitimate FTP connection [92]. They also expressed concern
over the volume of control messaging required. Shah (2015) experiments with a stateful
firewall application for Ryu and found it gave only 10-100MB/s speeds. This was attributed
in part to the use of TCP protocols between the switch and the controller [75].

Complex protocols are another limitation of remote algorithms. For example, the end of
a TCP session cannot be pre-determined in advance nor accurately identified by the switch.
OpenFlow 1.515 allows matching against TCP flags such as FIN, SYN and ACK, however
the final handshake does not end on a FIN packet, it ends on the responding ACK packet.
Sending every ACK packet to the controller is not viable as there is a near one to one match
between data packets and ACKs. Reacting to a FIN via the controller may also be difficult,
there are two in the handshake and the responding ACKs may have passed before the con-
troller response can be implemented. For example, Kuzniar et al. (2015) reports measuring
controller to switch delays of up to 400ms [34]. Delaying the FIN until the switch is ready
for the ACK may be viable but increases use of buffer resources, contributing to the switches
vulnerability to attack and adds to latency — however adding to latency may be mute given
this is the end of the flow. Rule time outs are another alternative but may lead to a situation
where both hosts believe the connection is finished but the firewall remains open.

The SDN Floodlight Controller project has a Firewall module as a controller applica-
tion16. It is a stateless firewall with the ACL rules held by the control module. On a switch
request the ACL is referenced and an appropriate rule is pushed to the switch. The project
discusses as a limitation that the module does not delete flow rules on a switch and that
flow rules are expected to time out. Other limitations include a lack of information from
the switch to facilitate a delete decision, lack of dynamic firewall behaviour, threat to the
controller from a distributed DoS attack (one that uses many IP addresses) and state diver-
gence between the controller and forwarding plane where the controller firewall algorithm
believes the connection is closed while the firewall switch is doing otherwise.

At present there are few companies overtly offering virtualised firewalls. When cloud
service offerings are examined for references to security, they tend to be vague.

Cisco is one exception, they reference their Virtual Security Gateway for VMs that ap-
pears to be modelled from FlowGuard [85], although without more information the compar-
ison is tentative. They also offered the ASA 1000v Cloud Firewall17 which is a NFV utilising
VMware with a 1.2GB/s throughput. Unfortunately support for it has been discontinued
and it appears to have not been replaced with all links to virtual security appliances point-
ing to the discontinued offering.

2.8.1 The Firewall Algorithm

A firewall algorithm offers edge security between two domains, occupying a choke-point
controlling traffic between the two and treating one side in a different manner to the other

14Floodlight firewall url: http://www.projectfloodlight.org/
Ryu firewall url: https://osrg.github.io/ryu/

15Note that OpenFlow 1.3 and 1.4 is currently being implemented by switch providers. Switches implement-
ing OpenFlow 1.5 are not yet available.

16https://floodlight.atlassian.net/wiki/display/floodlightcontroller/Firewall
17http://www.cisco.com/c/en/us/products/collateral/security/asa-1000v-cloud-firewall/data sheet c78-

687960.html

30

by dynamically collecting state from outgoing flows, for use on incoming flows. This state
is used to allow two-way communication across the border only if it is initiated by the in-
ternal host. This describes a stateful layer 4 firewall holding dynamic state, as opposed to
a stateless firewall which is trivially implemented using a switch as a packet filter applying
drop actions to specific (or ranges of) flows.

Figure 2.13: Domains of interest to a firewall

Firewalls use an ACL (access control list) to categorise hosts into a proscribed list of dan-
gerous hosts and a permitted list of trusted hosts. ACLs are portrayed in Figure 2.13, ACLs
cannot detail every host in the Internet due to both hardware constraints and the underlying
mutability of the Internet. In a stateless firewall packets that are neither trusted or danger-
ous are typically treated as dangerous and dropped. In contrast a stateful firewall may treat
unspecified hosts as a third category labelled untrusted and allow two-way communication
with them if an internal host initiates the exchange.

Interaction State and Action
A ‖ ← B no relevant state held, packets are dropped by default
A→ B is allowed, the first packet adds FW state
A← B is allowed, the flow finishing removes FW state
A ‖ ← B no relevant state held, packets are dropped by default

Table 2.2: Firewall in the forwarding plane

To describe the behaviour of a stateful firewall we refer to table 2.2 in conjunction with
(the earlier) Figure 2.3. The external host www.catlovers.com which is neither proscribed nor
permitted by network policies finds the firewall will only recognise its incoming flow if
communication has been instigated by an internal host. Figure 2.3 shows an internal switch
labelled A and an external switch leading to www.catlovers.com labelled B. In-between is a
middlebox firewall that was placed and has ACL rules set by either a human or automata.
Table 2.2 first shows the results of an attempt by www.catlovers.com to contact an internal host
(A ‖ ← B), ‖ indicates the packet is dropped. If the internal host initiates a communication,
the firewall on seeing the outgoing packets (A → B) retains state in order to recognise a
reply. The reply (A ← B) is then allowed to pass and state is removed once the flow has
completed — indicated by observing the hosts exchanging and acknowledging FIN packets.
Any future attempt by www.catlovers.com to contact an internal host (A ‖ ← B) is once again
dropped.

A fundamental assumption of the stateful firewall is that it maintains the same connec-
tion state as the end hosts [15, 78–83]. In particular, if the end hosts believe the session is

31

finished, so should the firewall. The use of timeout values are common in firewalls, but are
insufficient and may result in creating a security vulnerability seen in cellular networks [93].
Not closing the firewall after seeing the finishing TCP handshake leaves an open door in the
firewall after the flow is finished that an attacker can maintain in a perpetually open state
— a prerequisite, for example, to explore and steal data or conduct a battery draining at-
tack [93].

2.9 SDN research into network functionality

SDN research papers typically endeavour to rely on commodity switches in the forwarding
plane. For example, FlowGuard uses ACLs which can be trivially implemented in flow
rules on switches [85]. The benefit is that local knowledge is completely ignored which
greatly simplifies the controller application and communication needs with the forwarding
plane. However such an approach limits its usability. In contrast, FlowGuard’s use of global
knowledge to ensure new switch rules do not circumvent global security policies is a good
example of creating value from the centralised view.

OpenState suggests local state be stored in packet headers and switches be used as nodes
in a mealy machine [60]. Another suggestion is that commodity switches be extended to
allow flow tables to act as state machines [61]. Hassas & Ganjali (2012) also recognises local
state and proposes partitioning the network to move controllers closer to the forwarding
plane [94]. Mekky et al. (2014) uses flow tables to store local state which require vendor
extensions to allow over-writing existing flow rules, but allows the potential for flow tables
to become finite state machines [74].

These sample papers attempt to work around the SDN ideal that all logic must be purged
from the forwarding plane, by either ignoring local knowledge, moving the remote decision
maker closer or making the SDN switch more than a simple forwarding element. This is in
contrast to other views (such as NFV) that support a forwarding plane of simple and fast
forwarding elements and network functionality on high throughput, highly portable and
scalable virtual machines running on commodity hardware [33].

2.10 Summary

This chapter has covered a lot of ground. It has described existing legacy networks and
perceived problems, Software Defined Networks as a potential solution, middleboxes and
their virtualised network function replacements and the preferred SDN approach to net-
work functions that causes a number of unresolved issues for SDN networks. Finally SDN
firewalls have been discussed, including a brief discussion on existing research.

The next chapter describes formal methods and their application to network functions.

32

Chapter 3

Formal Methods

Software Defined Networking (SDN) looks to move in-line network functionality from the
forwarding plane to remote applications that utilise a controller to communicate instructions
to switches. By applying formal methods and model-based testing (MBT) it is intended that
interesting problems seen in this architecture (for examples see section 2.7) can be explored.

This exploration involves a novel use of MBT to enable the comparison of black-box
implementations (in-line network functions and SDN network functions), limited only by
the detail included in the formal model (see Section 2.6).

“[Coupling is] the measure of the strength of association established by a con-
nection of one module to another. Strong coupling complicates a system, since a
module is harder to understand, change or correct by itself if it is highly interre-
lated by other modules. Complexity can be reduced by designing systems with
the weakest possible coupling between modules.”

Stevens, Wayne, Myers, Glenford & Constantine (1974) Structured Design [95]

“Modules with strong cohesion, in particular with functional cohesion, are eas-
ier to maintain, and furthermore, they greatly improve the possibility for reuse.
A module has strong cohesion if it represents exactly one task of the problem
domain, and all its elements contribute to this single task.”

Eder, Kappel & Schrefl (1994) Coupling and Cohesion in Object-Oriented Sys-
tems [96]

Modular code may lend itself to formal methods as it can typically be analysed as a
discrete system with well defined behaviours and interfaces. Of interest to networking is
that network functions in legacy networks are modular (albeit often proprietary systems
utilising software and hardware) with low coupling and high cohesion. This might be com-
pared with the stronger coupling required when network functions are incorporated with
and work through a controller remote from the forwarding plane. In practical terms an in-
line firewall may be tested against a model in isolation, it is functionally complete. An SDN
firewall requires testing three components; the firewall application, the SDN controller that
directs and responds to the switch and the in-line SDN switch.

From here three network functions are discussed to highlight common properties lead-
ing to creating a formal description of a generic network function. The modelling tool
Rodin and the Event-B modelling language are both briefly introduced and are followed
by a discussion on model-based testing. This chapter finishes with a review examining ex-
periences in industry with model-based testing and the unresolved problems holding back
its widespread adoption.

33

3.1 Overview

To borrow from Baier & Katoen (2008) formal methods can be considered as “the applied
mathematics for modelling and analysing ICT systems” [97]. The aim is to establish system
correctness with mathematical rigour while a further benefit is that it allows automated
model checking which is the exploration of state space to check if properties are violated.

Hand-crafted code is also a mathematical model, albeit one created with less mathemat-
ical rigour. It is typically built from the bottom up and tested using methods such as unit-
tests, code reviews and integration tests. These are human driven test strategies that suffer
from human and commercial frailties, for example, maintaining a library of tests in the face
of code change can be expensive in developer time with limited benefit to profits. It may
also be commercially prudent to release code then triage the inevitable bugs reported by
users according to available developer time and the bugs impact to business values (profit,
customer responsiveness, etc.)1.

Model-Driven Development (MDD) goes further, it refines a model and its proofs until
it is capable of being compiled into code [98–100]. Because of the mathematical rigour in-
volved in creating the model, the resulting code will be faultless, with the caveat that the
model is correct.

An example of modelling and MDD is the control software for the driverless trains on
the Paris Metro line 14. The first driver-less trains to run on a major metropolitan line [101].
Passenger safety was considered a key concern and properties such as no train collisions
and passenger doors closing safely before the train moves off formed part of the invariants.
The B-method, a formal modelling language, was used to create the model representing the
train control system and the environment it was to operate in, the Paris Metro line 14. A
top down, iterative process was used which identified high level abstractions and proved
properties about the interaction of those abstractions. Once these properties were satisfied,
the abstractions were progressively refined, a process called stepwise refinement [102], and
new properties proven in a process that ultimately results in a mathematical model that was
then compiled into production code. The Paris Metro Line 14 went live in 1998 and carried
3.5 million passengers in that year.

That modelling has not become the de-facto standard for creating software speaks to
both the difficulty of training engineers to create rigorous mathematical models and the
relative ease of training developers in traditional coding. Consequently human developers
are cheaper and easier to source for projects. The fact that they produce flawed code is then
managed.

Using formal methods has pitfalls. It brings up-front costs to projects in order to mitigate
the expense of fixing flawed architecture and code later. In addition creating a formal model
involves modelling the environment the software will interact with, raising at least two
concerns; first that the environment is understood well enough to create a reliable model,
second that any environmental event outside those modelled will result in non-deterministic
behaviour. For example, an interesting modelling exercise is the cars on the bridge exercise
which produces a model for controlling traffic lights on a bridge safely [103]. However
should a driver choose to ignore the traffic lights, the model can no longer guarantee safety.

A criticism of formal modelling is that the modelling approach explores a relatively static
domain. It contrasts with the Agile methodology used in the programming industry that

1The Novopay payroll system for the New Zealand Government’s Ministry of Education (2002-ongoing)
is a recent example of commercial and political pressures influencing a NZ$182 million contract to supply
teacher payroll software. Rectifying software failures has cost an additional NZ$45 million to date. Many
articles to choose from, this one discusses the political decision to go live, ignoring the poor results of a trial.
http://www.nzherald.co.nz/nz/news/article.cfm?c id=1&objectid=10855399

34

regularly presents interim products to the client who is learning and developing their under-
standing of what is possible. In the process potentially changing the projects requirements.
The process of modelling to derive production code may require a domain and product that
are already well understood as the client will receive the end result in a single release and
client learning opportunities during the modelling process may be difficult to capture. In
contrast, using modelling to explore architecture and black-box behaviour is significantly
less time consuming than creating models that compile to code and the process may be fast
and flexible enough to be used alongside an Agile environment.

Model-based testing (MBT) is a lesser known field which utilises the idea that modelling
black-box behaviour may be sufficient for some purposes, for example, to test proprietary
black-box implementations. In essence a formal model is created that captures the observ-
able behaviours of a black-box implementation. This formal model can then be utilised
to generate a brute force state space exploration — that is, it can generate paths that test
for example, every node, vertex, variable or branching decision involved in creating the
observable behaviours given an input. Thousands of paths may be generated to cover all
possibilities, with each path specifying both the input and expected output which can be
compared with the output from a black-box implementation given the exact same input.
Discrepancies between the two may then be investigated further. Given the range of poten-
tial inputs, for example the range between 0.0 and 1.0 is infinite, strategies such as checking
input boundaries may be adopted in order to limit the state space explored to a manageable
size.

Industry and researchers report a range of benefits from using formal methods and MBT.
In 2001 a tool called the Test Model Toolkit was being used by over twenty teams at Mi-
crosoft. It took a week to generate a set of test cases that would take eight weeks by hand
and code coverage increased by 50% [104]. Pretschner et al. (2005) found that both hand
crafted and MBT tests found similar numbers of programming bugs while MBT found more
requirements errors [105]. Programming bugs equate to building the thing right while require-
ments errors question whether you are building the right thing. Despite the benefits however
it is concerning that MBT is not ‘sticking’ to industry. It is an open question whether this
technology can be generally applied in industry to validate implementations — a problem
for which it appears neither industry nor researchers yet have an answer.

3.2 Three common network functions

The phrase ‘network functions’ describes any implementation of network functionality, in-
cluding middleboxes, switches and routers. However the focus of this research is on net-
work functionality other than routing functionality, meaning the use of the phrase ‘network
function’ should be assumed to exclude switches and routers.

Network functions cover a wide range of tasks each aiming to improve one or more
properties of the network, such as traffic throughput, latency, service capacity, security and
more. For example, a Network Address Translator (NAT) is typically used to partition and
isolate a domain within a network and creates a single ingress path to that domain, in the
process increasing a networks available address space. A load balancer allows increasing
service capacity through parallelism. A firewall increases security by preventing domain
mapping and resisting DDoS attacks — whilst still allowing internal hosts to have access to
Internet services. Network functions provide network functionality beyond that required
for routing decisions.

Two important terms arise when discussing network functions, stateful and stateless which
confusingly do not refer to the presence of state. All network functions have state important

35

to their functionality, these phrases refer to who manages it;

• A stateless network function relies on a third party to manage its state. Examples of a
third party include a network administrator or controllers.

• A stateful network function dynamically self-manages state at or near line speed.

We next explore three common examples of stateless and stateful network functionality
to find common properties with the goal of developing a formal model of a generic network
function in Section 3.3.

3.2.1 NAT

Network Address Translators (NAT) were developed in part to allow reuse of limited num-
bers of public IP addresses2. Today they are valued also for their ability to partition a net-
work into isolated domains, each with only one ingress path. An important property of a
NAT is that it provides its service in a manner transparent to Internet traffic, in that end
hosts on either side of the NAT are oblivious to its presence.

Network partitioning is achieved by assigning a set of hosts IP addresses from the pri-
vate address spaces specified by RFC19183 [106]. These private addresses provide domain
isolation by virtue of their reuse within the network — network routing protocols require
addresses to be unique, otherwise routing to the correct destination cannot be guaranteed.

To function correctly the NAT must be placed on the boundary of the internal and ex-
ternal networks where its translating algorithm will ensure the NAT is the sole authority
capable of correctly mutating packets when traversing the network boundary. This ensures
the path the NAT is on, becomes the sole path traversing the two domains. This single
ingress path may also be useful for other network functions such as firewalls and traffic
logging which both require that they see all traffic entering or leaving a domain of interest.

Figure 3.1: Finite State Machine for a stateful NAT (K = key, V = value)

In operation a stateful NAT receives a packet or flow from an internal host (see Figure
3.1), if it recognises the internal host it then mutates the packet by over-writing the source
address and port number with its own address and a port number representing this internal
host before sending it on. In effect the NAT proxies for the inside domain. If it does not
recognise the internal host it allocates a port number4. The NAT will subsequently use
this port number as a lookup key for a data tuple consisting of the packets original source

2At the time the limitations of the IPv4 address space were of concern and the IPv6 address space was still
only a concept.

3Three IP address ranges are reserved for private address spaces. 10.0.0.0 to 10.255.255.255, 192.16.0.0 to
192.32.255.255 and 192.168.0.0 to 192.168.255.255. Note that other addresses may be used, however the isolation
property is strongest when many use the same IP addresses.

4A port number is a 16 bit unsigned integer ranging from 0 to 65,535 which allows for sufficient internal hosts
for most private domains.

36

address and port number. The packet is then mutated, over-writing the source IP and port
numbers as above. The destination host will then return the reply to the NAT and the NAT
uses its port number to retrieve the correct internal address.

A NAT prevents initiation of connections from the external network to the internal net-
work. However it is sometimes useful to expose services to the outside network, this can be
achieved using port-forwarding. This directs the NAT to use the port number permanently as
a key for referencing the internal host. A NAT that is solely concerned with port-forwarding
uses static mapping and does not use dynamic state.

Early NAT implementations had static mapping, however later implementations utilised
dynamic state to overcome the limitations imposed by the limited number of ports available.
To better utilise the ports or flow rule capacity5 available to a NAT (or to improve perfor-
mance by minimising the rule space, see Section 2.7.4), it is recognised that only a portion
of the hosts in a network require Internet access at any one time. A NAT may use this prop-
erty by placing unused ports into a pool, allocating port numbers to hosts as needed and
de-allocating port numbers when hosts have finished or are idle for a period. This requires
the NAT to hold dynamic state recording port number allocation, but allows a single NAT
to either; service domains significantly greater than the port number or the NAT’s flow rule
limit would suggest; or maintain a much smaller rule space compared to static mapping.

Table 3.1 summarises properties of stateless and stateful NATs.

Stateless NAT — without dynamic state
1 Low coupling and high cohesion
2 Proxies for the domain
3 Represents a domain with a single globally unique addresses
4 Expands the address space available to a network
5 Transparent to hosts on either side
6 Domain isolation due to re-use of public addresses
7 Partitions a network and facilitates nesting isolated domains
8 Single ingress path (without relying on hardware)
9 Maximum rules are limited to the lesser of 65,535 or the functions flow rule limit

10 Drops packets if a rule does not exist

Stateful NAT — with dynamic state
11 Autonomous, requires no controller input unless the centralised view changes
12 May service internal hosts in excess of port or flow rule limits
13 Only drops incoming packets if a rule does not exist
14 Minimises the rule space held
15 Improves performance by minimising the rule space

Table 3.1: Properties of an in-line NAT

3.2.2 Load Balancer

Traffic loads can potentially overwhelm the compute resources of a single service host which
is a problem that can be resolved through parallelism — running multiple instances of a host
provider in a manner that is transparent to end hosts.

5The ZNYX OpenArchitect LineRateOF switch management software package for their B1 top-of-rack
switch, provides capacity for 16,000 L3 flow entries, significantly less than 65,535 port numbers available. See
http://www.znyx.com/products/software/lrof-overview/

37

There are a variety of options for dynamic load balancing and we refer to Cardellinni,
Colajanni & Yu (1999) whom describe four categories and their pros and cons [107]: Client-
based, DNS-based, Dispatcher-based and Server-based. Our focus here is in-line function-
ality or Dispatcher-based dynamic load balancing as this provides both fine grained load
balancing and better performance compared to other options.

The dynamic load balancer splits the network load amongst the multiple host providers
in a way that is considered fair, typically by creating state and over-writing packet headers
with its own address to ensure the load balancer proxies for the service (see Figure 3.2). The
definition of fair is subjective, implemented by an algorithm and will result in a selected
service host for this packet or flow. The selected host may then collect state over the course
of a session, which in turn means the load balancer must ensure each flow in the session
reliably reaches the correct service host.

Figure 3.2: Finite State Machine for a Load Balancer (K = key, V = value)

A stateful load balancer dynamically allocate flows to host service providers, relying on
locally held state and using its position as a proxy to utilise local knowledge of how busy
each host provider is.

A stateless load balancer relies on a third party, typically utilising coarse load allocation
(fine grained may be impractical due to the increased switch to third party workload). This
is the allocation of blocks of flows, perhaps using hashes or IP address ranges to determine
how to allocate flows. For example, a hash from the five tuple of addresses and protocol
may form a hash ring6 that can be split as the third party desires amongst the available
hosts. Alternatively the IP address space may be partitioned with suitable rules pushed to
an OpenFlow switch, ensuring flows within each partition are forwarded to a dedicated host
[108]. These solutions result in coarse grained load distribution which brings management
problems when the coarse load distribution needs to change as network loads change.

Changes in network loads may be caused by, for example, the daily cycles of major
markets starting and finishing their working days. Being able to consolidate work load onto
fewer hosts and ramp up capacity quickly can result in improved resource use. For example,
in-line load balancers use fine grained load allocation, meaning new flows are able to utilise
new host providers immediately. Existing hosts will not be sent new tasks until the new
hosts workload matches theirs.

While the long term load distribution using coarse partitioning is fair, in the short term
there are at least two problems that must be managed. First is how to treat the existing
flows. The naive approach of changing the partitioning will result in many existing sessions
being redirected to new hosts — which will reject them as unrecognised. If this is resolved
the second problem is that the load distribution remains unbalanced for longer than a fine

6A hash ring utilises a property of hashes in that they are evenly spread across the range of numbers the
hash utilises. A fair distribution may be achieved by dividing the number space evenly across hosts. If the hash
is created from a packets 5 tuple, which stays constant throughout a session, this number is also guaranteed to
result in the same service provider through the session.

38

grained approach — the existing hosts continue to receive work while the new host remains
under-utilised. For example, if four existing hosts have a fifth host added, the fifth host from
that point will receive 20% of the traffic. There are strategies to mitigate these problems, for
example, an approach may use partitioning to send all traffic to the new host for a period
before re-partitioning for long term fair distribution. However it seems the solutions to these
problems, an artefact of using an architecture that requires a remote third party, add layers
of complexity compared to an in-line stateful function offering fine grained, flow-by-flow,
load balancing.

Stateless Load Balancer — without dynamic state
1 Low coupling and high cohesion
2 Proxies for the service
3 Transparent to hosts either side
4 Consistent, always directs session flows to the same service host
5 Session state may be kept by the service host
6 Fair distribution is chosen by a third party
7 Capacity can be expanded or contracted
8 The distribution of flows is coarse, which complicates increasing capacity

Stateful Load Balancer — with dynamic state
9 Autonomous, requires no controller input unless the centralised view changes
10 Fine-grained distribution of flows, can utilise new resources immediately
11 Local knowledge of existing flows informs fair load distribution

Table 3.2: Properties of an in-line Load Balancer

3.2.3 Firewall

Figure 3.3: Finite State Machine for a switch as a stateless firewall

The phrase ‘firewall’ has many different meanings, for example, firewalls might be dis-
tinguished based on what level of the OSI model they service, such as application gateways
(level 7), circuit gateways (layer 4) and MAC layer firewalls (layer 2). Here we abstract away
from that detail and discuss common functionality and the management of its state. We start
with defining four types of firewall.

A stateless firewall is an algorithm that filters traffic based on an access control list (ACL)
describing addresses (IP or MAC), applications (ports) and protocols as either trusted or
dangerous7. Such a firewall is shown as a simple finite state machine in Figure 3.3). It cannot
list every host on the Internet and for safety will often default to treating all unrecognised
packets as dangerous. It might be observed that it is trivial to direct a switch with flow rules

7Also referred to as white and black lists.

39

to manifest this behaviour and the standard SDN firewall modules provided with Floodlight
and Ryu are of this type.

Figure 3.4: Finite State Machine for a stateful firewall — first model

A stateful firewall is a firewall algorithm with dynamic state — it manages its own rule
space as shown in Figure 3.4. This finite state machine is able to treat unknown packets use-
fully, preventing incoming packets from untrusted sources from passing unless an internal
host has initiated the exchange. This requires the firewall to provide different treatment for
packets arriving on the ports representing each domain and helps to prevent, for example,
attempts by external attackers to map the domain and directly attack key internal hosts.

An industrial firewall is a hardware appliance designed for unified threat management.
It is made up of a variety of algorithms, including a stateful firewall, working in concert to
defeat many threats. These may include, for example, a load balancer to provide capacity in
the face of an attack and a NAT to isolate the internal network being protected.

A distributed firewall describes the firewall algorithm as distributed to hosts and switches
within the domain, rather than at the domain’s perimeter. Typically the goal is to mitigate
the possibility of attacks originating within the domains perimeter. It might be observed that
this may be resource intensive, for example, a military camp may post guards inside every
building, requiring many guards and those passing between buildings to undergo many
checks. It also allows outsiders unimpeded access to the camp to observe the buildings
and traffic. Buildings may then be attacked in isolation having researched the construction
plans, the buildings occupants and any existing, documented vulnerabilities. If the firewall
(guard) is hosted on the system being attacked, the attackers start with a foot already inside
the door.

In operation a firewall algorithm will make two key assumptions; the first is assuming
that protected hosts can be treated as trustworthy — an unsafe assumption if a network
administrator does not utilise other tools and processes, including the human resources de-
partment. The second is assuming the domain’s perimeter is closed and all transiting traffic
is via the path the firewall occupies, again this assumption is unsafe if the network operator
has not prevented other exit points.

A stateful firewall algorithm is often paired with a NAT because of the useful properties
the NAT provides; it defines a point where connections move from the internal domain
to the external. A firewall placed at this point is guaranteed to see all transiting traffic. In
addition, because the internal domain is relatively static, the ACL may specify every internal
host in the internal domain as trusted or dangerous (quarantined), typically there will be no
unknown hosts internally.

Firewall behaviour is described in RFC2979 [78], RFC3234 [15], by NIST [79] and in ar-
ticles and text books that repeat the following three widely accepted properties of a fire-
wall [80–83];

40

1. All communication must pass through the firewall

2. The firewall permits only traffic that is authorised

3. The firewall can withstand attacks on itself

Stateless Firewall — without dynamic state
1 Low coupling and high cohesion
2 Transparent to hosts either side (unless flows are dropped)
3 All entry points to the domain must be identified and controlled
4 Partitions universe of hosts into good versus bad
5 Must see all communication
6 Must only permit authorised traffic, typically specified on an ACL
7 Must be resistant to attacks

Stateful Firewall — with dynamic state
8 Autonomous, requires no controller input unless the centralised view changes
9 Utilises local knowledge of outgoing flows to allow incoming flows
10 Responds to end of session packets to recover resources

Table 3.3: Properties of an in-line Firewall

3.3 Formally describing a generic network function

This formalism is a starting point based on a study of three common network functions.
As more network functions are analysed the expectation is this will inform future iterations
of this generic model. The goal is to create a generic network function that describes a
wide range of behaviours such as packet forwarding, dropping packets, mutating packets,
creating multiple outputs, operating in isolation, dynamic behaviours and more.

For convenience we ignore the influence of the network administrator who, possibly
via a controller, will deploy network functions to fulfil higher goals, provide configuration
and may periodically update the initial configuration. This is in order to focus on packet
processing which occurs orders of magnitude faster than network administrator activities.

For convenience the packet data is largely ignored as most network functionality is based
on packet header information. Interesting things can be done with data such as deep packet
inspection (DPI), however this is considered a special case (not considered further here) as
it may involve a mix of encryption services, proxy services and message reassembly before
the DPI can perform its task.

All network functions observed so far operate in isolation. This isolation property means
the function is decoupled from other functions, responding only to the packets it observes.
This also holds when considering network functions that are deployed in pairs, such as
encryption and decryption services — each device still operates in isolation. This isolation
property allows network functions to be analysed as discrete finite state machines.

This work acknowledges and builds on the work of Joseph & Stoica (2008) whom de-
scribe an algebra for specifying middleboxes [109]. The approach used here is Typed Lambda
Calculus which forms a basis for typed functional programming languages.

41

1 T the set of all possible network function types
2 FW ∈ T a firewall (FW) is a network function
3 {SW, LB, NAT} ⊂ T as are, for example, switch (SW), load balancer (LB) and (NAT)

4 P the domain of all packets that may be on a network
5 P∗ all packet sequences that may be on a network
6 P∗∗ all sequences of packet sequences that may be on a network
7 P+ P∗ but not the empty packet sequence
8 p ∈ P one packet
9 p+ ∈ P∗ one or more packets forming a packet sequence, note that

the order of the packets is relative to the observing function

10 H the domain of all possible packet headers
10 h ∈ H one header
12 address ∈ h a header contains a set of fields used for determining routing.

For example, source IP:port, destination IP:port and protocol
type which form a 5 tuple. address is deliberately abstract to
capture a variety of protocols including MAC addressing.

13 header(p) 7→ h a packet has a header
14 addr(p) 7→ address a packet has address fields

15 FLOW The domain of all possible flows that may be on a network
such that {p1...pn | p ∈ P, (∀ i · 1 ≤ i ≤ n, addr(pi) = addr(p1))}

16 f low ∈ FLOW a sequence of packets sharing common address fields
17 head(f low) 7→ p the first packet in a flow
18 tail(f low) 7→ p∗ the flow after the first packet
19 f low addr(f low) 7→ address

equivalent to addr(head(f low)) 7→ address

20 action an instruction for the network function, for example ′drop′ or ′ f orward′

21 R = address x action domain of all possible rules
22 r ∈ R a rule is an address and an action
23 RT ⊂ R the set of all possible rules for this network function type
24 domain(RT) = address the set of all addresses in RT
25 RT(current) ∈ pow(RT) the current set of rules held by this network function
26 rule(address, RT(current)) 7→ {action, θ}

finds r ∈ RT(current) and returns its action or null if no rule is found
27 f rule(f low, RT(current)) 7→ {action, θ}

equivalent to rule(f low addr(f low), RT(current)) 7→ {action, θ}

28 θ null
29 ε the empty packet sequence
30 x′ x prime is a (possibly) changed x after a calculation

Table 3.4: Algebra definitions

3.3.1 Packet flows

A flow is the transmission of a sequence of packets across the network from one host to
another. Because the ordering of the packets will mutate across the network and only be

42

rectified at the end host, the packet sequence observed by a network function, is the order
in which packets arrive.

The flow’s packets are identified by a common packet address, often the five tuple con-
sisting of the message protocol and the source and destination addresses (IP address and
port number). Table 3.4 introduces the definitions.

3.3.2 A stateless network function

Figure 3.5: Automaton for a stateless network function

NF = Network Function

NF : (T, FLOW, pow(RT))→ P∗ (3.1)

We first define the Network Function (NF) (3.1), which takes as a tuple a function type
t ∈ T which describes the algorithm to be applied to a packet flow f low ∈ FLOW and the
functions current set of rules RT(current) ∈ pow(RT). With these inputs NF will output a
sequence of packets p∗ ∈ P∗. This sequence may be the empty sequence or it may consist
of one or more flows. For example, a firewall dropping a flow will output the empty packet
sequence ε while a logger may output the packet sequence observed plus a packet sequence
destined for remote storage. Figure 3.5 shows a simple automata for a stateless (no dynamic
state) network function (NF).

A network function will treat each packet in a flow, in turn. To facilitate this we define
sNF.

sNF = stateless Network Function

sNF : (T, P, pow(RT))→ P∗ (3.2)

The stateless network function sNF (3.2) takes a type t ∈ T, the first packet head(f low) ∈
P in the packet sequence and the network functions current set of rules RT(current) ∈ pow(RT).
The function sNF outputs a packet sequence P∗, possibly containing multiple flows.

sNF(t, head(f low), RT(current))→ P∗

The function NF can now be defined recursively using sNF. Note that the definition of
NF accepting an empty packet sequence, terminates the recursion.

NF(t, f low, RT(current)) = sNF(t, head(f low), RT(current)) :: NF(t, tail(f low), RT(current))

NF(t, ε, RT(current)) = ε

43

Operate in isolation with low coupling, high cohesion

The ability to define a network function as NF (3.1) is possible because network functions
operate in isolation on packet flows, they feature low coupling and high cohesion, acting
only on the network packets they see — redirecting, dropping, modifying and/or retaining
state information. Put another way, a network function blindly applies an algorithm and a
set of rules to the packets passing through it and may keep state information should it need
to act on other related packets. It performs at packet flow rates, which may be orders of
magnitude faster than configuration updates provided by human or SDN controllers.

Packet forwarding and packet mutation

Packet forwarding is a feature of all network functions and packet mutation is a feature of
many.

Packet forwarding is captured in the output of NF (3.1) as a packet sequence that may
be empty, may not be the same as the packets received and may contain multiple flows.

Packet mutation is the rewriting of header information in order to achieve a goal, typi-
cally involving addressing. For example, NATs and load balancers have both been described
as mutating packet headers in order to achieve their functionality. The NAT to act as a proxy
to a domain and the load balancer to act as a proxy to a set of service hosts. Mutation of
packet data is a special case and not explored here. However mutating a packet by treating
it as data (encapsulating it inside more IP headers) is briefly explored next in services that
transparently encrypt packets (including header information) and send them to a remote
service separated by time and/or distance for decryption.

Transparent operation

The presence of a network function should not be noticed by the end hosts in a successful
communication. This is trivial when there is no packet mutation, but when packet mutation
forms part of the functionality There will typically also be a need to undo the mutation.

This property is formally described next. Three examples are shown of mutating yet
transparent functionality, a single network function that acts as a proxy for others, paired
network functions that are characterised by separation over time and/or distance and a
cache which intercepts traffic and returns replies on behalf of a remote host.

This example of a single packet mutating network function acts as the translator between
domains. Hosts on either side access the proxy which in turn allows access to what may
otherwise be an inaccessible service. This describes, for example, a NAT and Load Balancer.

NFinstance 1(t, f low, RT(current))→ f low′

=⇒ NFinstance 1(t, f low′, RT(current))→ f low

Note that the function takes a f low, mutates it to f low′ and on the flows return, will
mutate f low′ back to f low.

Paired functions offer complementary services, for example, an encryption function may
encrypt a message, requiring a remote function to decrypt the message. This might be net-
work tunnels where the entire packet, including the header information, is encrypted and
sent as data to the remote proxy for decryption.

NFencrypt(t, f low, RT(current))→ f low′

=⇒ NFdecrypt(t, f low′, RT(current))→ f low

44

Caches provide transparent operation while seeking to increase response speed and re-
duce the network load between the cache and the source host. Here NFhost is the source,
NFcache is the cache. What is portrayed next is that both return the same reply f low′. That
the cache is reached first and replies on behalf of the host is transparent to the requester.

NFcache(t, f low, RT(current)) 7→ f low′ ∨
(

NFcache(t, f low, RT(current)) 7→ ε ∧
NFhost(t, f low, RT(current)) 7→ f low′

)

Packet mutation and function transparency both have implications for function chaining
(see Section 3.3.6).

3.3.3 A stateful network function

Figure 3.6: Automaton for a stateful network function

Adding state to a network function automata allows it to retain information on observed
packet sequences and apply it to future packet sequences. This can be seen in Figure 3.6
showing a finite state automata where the network function accepts a packet sequence and
the current state, then outputs zero or more packet sequences and the new state. We use this
model from here as it captures both stateful and stateless behaviour — stateless behaviour
merely accepts and outputs an unchanged set of states.

Next we describe the stateful function s f NF used by NF (3.1). It takes the type of func-
tion t ∈ T, the head packet from a sequence of packets between two hosts head(f low) ∈ P
and the network functions current set of rules RT(current) ∈ pow(RT). The function s f NF
outputs a packet sequence P∗, possibly containing multiple flows and a (possibly modified)
set of rules R′T(current) ∈ pow(RT).

s f NF = stateful Network Function

s f NF : (T, P, pow(RT))→ (P∗, pow(RT)) (3.3)

The s f NF (3.3) is customised as needed for the network function. For example, a load
balancer, NAT and firewall each have unique definitions. A firewall example is provided
shortly.

45

Two helper functions follow. These accept the tuple output of s f NF, that is (P∗, pow(RT))
and returns the packet sequence P∗ (which may contain many flows) or the current set of
rules pow(RT).

f lows(p∗, RT(current)) 7→ p∗

rules(p∗, RT(current)) 7→ RT(current)

These helper functions are utilised in the NF to create a recursive function. The intuition
is that the first packet in a flow checks existing state and may cause the state to be modified,
the following packets check against the state left by earlier packets, possibly modifying it in
turn.

For convenience, we repeat equation (3.1) here.

NF : (T, FLOW, pow(RT))→ P∗

Let π = s f NF(t, head(f low), RT(current))

NF(t, f low, RT(current)) = f lows(π) :: NF(t, tail(f low), rules(π))

NF(t, ε, RT(current)) = ε
(3.4)

3.3.4 A firewall example — stateless

Applying this to a practical example may illustrate the math.
A firewall is both an algorithm and a type of network function FW ∈ T. It has a set of

rules RFW(current) ∈ pow(RFW) designed to facilitate its functionality.
Firewall rules r ∈ RFW(current) adopt the form {address, action} where the address is the

common address shared by packets in a f low while the action is from the set {θ, ‘drop′, ‘ f orward′}.
Such that;

f rule(f low, RFW(current)) 7→ θ ∨

f rule(f low, RFW(current)) 7→ ‘drop′ ∨

f rule(f low, RFW(current)) 7→ ‘ f orward′

.

A stateless firewall implementation of s f NF (no dynamic state change so R′FW(current) =

RFW(current)) is described next, dynamic state is introduced shortly. The default position for
this firewall is to ‘drop′ unknown packets, other implementations of a stateless firewall may
default to ‘ f orward′.

For convenience, we repeat equation (3.3) here.

s f NF : (T, P, pow(RT))→ (P∗, pow(RT)))

s f NF(t, p, RFW(current)) = { ∃ p′, R′FW(current) |
t = FW ∧
p′ ∈ (P ∪ {ε}) ∧

R′FW(current) = RFW(current) ∧

46

(
(f rule(f low, RFW(current)) = θ ∧ p′ = ε) ∨
(f rule(f low, RFW(current)) = ‘drop′ ∧ p′ = ε) ∨
(f rule(f low, RFW(current)) = ‘ f orward′ ∧ p′ = p)

)}

A walk through the stateless firewall

In this stateless firewall example, the recursive function NF (3.1) treats each packet in the
flow by calling s f NF (3.3) followed by calling NF again. When the flow is empty it will
call the NF stop condition which accepts and outputs the empty sequence. Each packet is
treated identically and the results are concatenated. Consequently depending on the rule
for the f low the output of NFFW will be either the input flow or an empty sequenceε.

We start with defining a sequence of three packets.

Let f low = [p1, p2, p3]

And the algorithm defined earlier (3.4).

Let π = s f NF(t, head(f low), RFW(current))

NF(t, f low, RFW(current)) = f lows(π) :: NF(t, tail(f low), rules(π)))
NF(t, ε, RT(current)) = ε

Next NF is substituted for s f NF functions and the three packet sequence f low is applied.
Note the last instance of the function NF is the stop condition and results in ε.

presult = f lows(s f NF(t, head([p1, p2, p3]), RFW(current))) ::
f lows(s f NF(t, head([p2, p3]), rules(s f NF(t, head([p1, p2, p3]), RFW(current)))) ::
f lows(s f NF(t, head([p3]), rules(s f NF(t, head([p2, p3]), RFW(current)))) :: ε

Note that rules(s f NF(t, head([p2, p3]), RFW(current))) in this stateless firewall example,
will always return RFW(current). This simplifies the equation.

presult = f lows(s f NF(t, head([p1, p2, p3]), RFW(current))) ::
f lows(s f NF(t, head([p2, p3]), RFW(current)) ::
f lows(s f NF(t, head([p3]), RFW(current)) :: ε

This will result in one of the following outcomes;

• Where f rule(f low, RFW(current)) is null θ. There is no rule allowing this flow. This
results in s f NF assigning the default value, the empty sequence ε to p′. Consequently
all the members of packet sequence f low are dropped. presult = ε.

• Where f rule(f low, RFW(current)) is ‘drop′ the flow is dangerous and all the members
of packet sequence f low are dropped. presult = ε.

• Where f rule(f low, RFW(current)) is ‘ f orward′. The flow is permitted and s f NF returns
the packet value of p′ = p which is concatenated with previous packets to form the
packet sequence p∗. All the members of packet sequence f low are therefore forwarded.
presult = f low = [p1, p2, p3].

47

3.3.5 A firewall example — stateful

Next we describe a helper function dynamic that modifies the rules in a NF. It takes a rule
r ∈ RT and the current set of rules RT(current) ∈ pow(RT) and if r is null it returns the
unmodified set of rules R′T(current) = RT(current) otherwise r is either added if it does not
already exist in RT(current) or it is removed.

dynamic : (RT ∪ {θ}, pow(RT))→ pow(RT) (3.5)

dynamic(r, RT(current)) = {∃ R′T(current) |
R′T(current) ∈ pow(RT) ∧
(

(r = θ ∧ R′T(current) = RT(current)) ∨
(r ∈ RT(current) ∧ R′T(current) = RT(current) \ {r}) ∨
(r /∈ RT(current) ∧ R′T(current) = RT(current) ∪ {r})

) }

A dynamic firewall needs a function to identify the replies generated by outgoing flows.
We define this as a helper that takes a f low and returns the address for its expected reply.

reply : (FLOW)→ address

Looking again at s f NF we can now modify the function to allow trusted hosts to create
connections with untrusted hosts.

s f NF(t, p, RFW(current)) = { ∃ p′, R′FW(current) |
t = FW ∧
p′ ∈ (P ∪ {ε}) ∧
(

(
(f rule(f low, RFW(current)) = ‘ f orward′ ∧

reply(f low) /∈ domain(RFW(current)))
=⇒ R′FW(current) = dynamic(reply(f low) 7→ ‘ f orward′, RFW(current))

) ∧ (
¬(f rule(f low, RFW(current)) = ‘ f orward′ ∧

reply(f low) /∈ domain(RFW(current)))
=⇒ R′FW(current) = RFW(current)

)
) ∧ (

(f rule(f low, RFW(current)) = θ ∧ p′ = ε) ∨
(f rule(f low, RFW(current)) = ‘drop′ ∧ p′ = ε) ∨
(f rule(f low, RFW(current)) = ‘ f orward′ ∧ p′ = p)

)}

Removing rules at the end of a flow takes considerably more math and is protocol de-
pendent. We provide this in chapter 5 where a firewall model is formalised within a tool
suitable for creating and proving the correctness of formal models.

At this point a generic network function has been formally modelled and illustrated first
with a stateless firewall, then a stateful firewall. Next is a discussion on formalising chains
of network functions.

48

3.3.6 Formally describing a chain of network functions

A service chain describes one or more network functions connected in sequence. Like in-
dividual network functions, such a chain operates in isolation acting only on the network
packets it sees and it is transparent to the user.

Packet mutation and dynamic rules mean the order of the network functions within the
chain must remain consistent. There may also be an optimal ordering, for example, a fire-
wall which is designed to be attack resistant, should be exposed to the external internet
to filter packets before they are treated by the rest of the chain. Consistent order means a
packet traversing a chain of middleboxes one way, traverses it in reverse order on return
(see Figure 3.7). This property precludes the possibility of cycles within the chain. Propri-
etary hardware connected ‘on the wire‘ implicitly has this consistency trait (but may not be
optimally ordered), but with software based network functions this is not a given and must
form a rule when chaining functions.

Figure 3.7: Passing a flow through a chain of network functions and receiving the reply.

Chaining and packet mutation

Formally, a chain is a list of functions passing packets. The next function takes the result of
the previous function as input. For example, the following equation shows two functions
performing NAT and firewall roles as packets leave a network. The NAT mutates the packets
and the firewall on recognising the mutated packets will allow them if allowed by its rules.

In summary, the flow arrives as f low and leaves the chain and domain mutated to f low′.

NF(NAT, f low, RNAT(current)) 7→ f low′

NF(FW, f low′, RFW(current)) 7→ f low′

Chaining and transparency

Transparency means the end hosts in a valid communication are unaware of the presence of
network functions. Continuing the example where the first host sent a message f low, here
we treat the reply f low′.

On returning to the network the packet sequence f low′ is recognised by the stateful
firewall and is forwarded. NAT using retained state, recognises f low′ and mutates it back
to f low.

NF(FW, f low′, RFW(current)) 7→ f low′

NF(NAT, f low′, RNAT(current)) 7→ f low

49

Chaining consistency

Should ordering not be observed and the NAT is visited first, the NAT will recognise the
returning f low′ and transform it back to f low.

The firewall now takes f low as input, however the stateful firewall will not recognise
f low as it has never seen it, only the post mutated version f low′. Therefore the firewall will
treat it as an unsolicited flow from an untrusted external host and output the empty packet
sequence ε.

In summary, not following a consistent order in this example results in the returning
f low′ becoming the empty sequence ε. (Less formally, the packet is dropped.)

NF(NAT, f low′, RNAT(current)) 7→ f low
NF(FW, f low, RFW(current)) 7→ ε

The next step is to develop these models further using tools.

3.4 Modelling Tools

3.4.1 Rodin

Rodin8 [110] has been developed as an Eclipse based research tool that supports the creation
of mathematical proofs and the process of stepwise model refinement. It enables reasoning
over and analysing a model, proving in a mathematically rigorous way that the required
properties, expressed as invariants, are satisfied. The tool is open source, licensed under
the Eclipse Public License - v 1.0 (a copyleft license) and has been supported by various
European Union research initiatives since 2004. Being a tool developed by researchers it is
neither fully featured nor intuitive to use and the documentation is light. The learning curve
is steep.

Underlying principles of Rodin include fast feedback to the modeller, proof obligation
generation and automatically discharging trivial proof obligations. Proof obligations that
are not discharged are flagged as errors and hints provided to allow either the model to be
rectified or the designer to provide a manually assisted proof.

3.4.2 Event-B

Event-B [103] is a calculus for modelling derived from the B-method [101] and inspired
by ideas from Action systems [111]. Both the B-method and Event-B were created by Jean-
Raymond Abrial with Event-B representing an evolution of the B-method towards becoming
easier to learn and utilise.

When using Event-B, the developer creates a state machine representing a high-level
abstract model of the problem. Each state in the machine, called an event in Event-B, has
predicates based on global variables and actions that change global variables. When an
event’s predicates are satisfied, it becomes a state the machine may transition to. Transition-
ing to an event makes changes to the model which may in turn influence predicates which
will change what transitions are available next.

3.4.3 An example model built in Rodin, using Event-B

We examine a simple model representing the passing of packets between two domains. Fig-
ure 3.8 shows the labelled transition system. Each transition is a directed arc.

8Available for download at http://www.event-b.org/

50

Figure 3.8: Labelled transition system, packet events as transitions between states

An Event-B model as crafted in the Rodin tool is shown over Figures 3.9 to 3.12. The
model starts with defining the environment or context the network function will operate in,
the global value constants; followed by the state machine with its four events. It is the first
model in what will be a series of stepwise refinements and it defines abstract properties of
the network — an internal network, an external network, events that allow message passing
between the two, which utilise packets comprised of a source and destination address. In
this first model, many details are abstracted away, for example, network addresses, packet
data, protocols, connection paths, trust relationships and more.

Figure 3.9: Rodin and Event-B, model context

Each model has a context that defines the constants used in the model (see Figure 3.9).
In this case we create the constants int, ext, NODES (line 3) to represent the abstract idea
of hosts and addressing. NODES are defined in line 6 as a set of 1,000 abstract hosts. In
lines 7 and 8 int is defined as NODES 1 to 5 while ext is all other NODES except 0. The 0
node is treated as a special case, reserving it for use as the null address. Line 9 states that a
node may be either int or ext but not both and line 10 confirms that NODES is comprised of
int, ext and null nodes.

As an examples of using NODES to represent abstract addresses, a firewall is interested
in three classes of address; trusted untrusted and dangerous. In later refinements we define
trusted as a set of nodes including int nodes and we define dangerous as node 666. The
remaining nodes are considered untrusted. A benefit of treating a single node as an un-
bounded finite set of addresses, is that it allows the set of abstract NODES to be finite, with
subsequent benefits for modelling, such as limiting state explosion.

Variables are defined in two places in the state machine. Global variables such as src, dst
are named as shown in Figure 3.10 (line 3) and formally defined in lines 6 to 11. Local vari-
ables are defined in events. Events are triggered by global variables satisfying predicates,
called guards in Event-B. For this model we require a source src and destination dst, which
are defined in lines 6 and 7 as elements of NODES. As a pair, the {src, dst} will represent a
packet. Obviously we are abstracting away many details such as protocols and data carried,

51

Figure 3.10: Rodin and Event-B, model machine — invariants and initialisation

and retaining only the details required for communication between hosts. Our interest is in
the transitions from one domain to another {int, ext}, so lines 8 and 9 state that the source
and destination must be in different domains. We have use for a null packet and repre-
sent it with null source and destination addresses. The packet with only one null address is
malformed so lines 10 and 11 state that if one address is null, so is the other.

Initialisation is the first event (lines 16 and 17), it results in both src and dst being as-
signed the null node value of 0, creating the null packet.

The Rodin tool allows checking proofs regularly for correctness. For example, should
dst be initialised as 1 instead of 0, then the model fails, specifically it fails invariants 4 and 5.
Invariant 4 (line 9) fails because it states that if dst is an element of int then src must be an
element of ext which it is not. Invariant 5 (line 10) fails because if src is null, so must dst be
null which it is not.

Figure 3.11: Rodin and Event-B, model machine — packet send

The event packet send is shown in Figure 3.11. On line 21 two local variables x and y are
created. The predicate (labelled where) is satisfied where both src and dst are null (line 23).
Predicates for local variables like x and y (lines 24 to 27) define their value and are always
satisfied (or if poorly written are never satisfied).

The initialisation event assigned both src and dst the null value meaning the first predi-
cate (line 23) passes. The predicates on x and y (lines 24 to 27) will result in assigning x and
y nodes that are designed to satisfy the invariants imposed on src and dst. As the predicates
pass, the event is usable and if selected the action (labelled then) will assign the values of x

52

and y to src and dst (line 29).

The third predicate (line 25) stating x 6= 0 ∧ y 6= 0 should perhaps be obvious given
the set {int ∪ ext} does not include 0 but was made explicit because it was found to assist
Rodin’s automated provers which otherwise required creating manual proofs whenever the
model is updated.

Figure 3.12: Rodin and Event-B, model machine — packet arrived, packet dropped

Next are the packet arrive and the packet dropped events, shown in Figure 3.12. Initially
we are not concerned with the path taken by the packet, only that it travels from one domain
to another, so paths are abstracted and introduced in a later refinement.

In both cases the event predicates (line 36 and 43) are that src and dst are not null. This
means that after packet send both events are valid choices (recall that predicates for local
variables are always satisfied). If packet dropped is selected, src and dst are set to the null
address. packet arrive has the same effect but uses variables, setting the foundation for
allowing a reply in a later refinement, for example, by setting x and y to src and dst we can
swap the src and dst values in the action.

This model reflects message sending across two domains using a source and destination
address and represents a mathematically rigorous first abstraction that can be built on.

3.4.4 Model refinement

To refine a model is to make the abstraction more concrete. This is the process of stepwise
refinement where further detail is added to the abstract model, possibly adding new values,
adding a new event or by expanding an event into several new events. These changes are
incremental to allow for the creation of new proof obligations. Once all proof obligations
are satisfied, the iterative process of stepwise refinement repeats.

Based on the example above there are many refinements to make, for example we need
an event that defines a path that every packet traverses, we also need to represent protocols,
handshakes, more packet detail and ultimately create a model of the system under test.

A valid question is when do you stop refining? With MDD the answer is when the model
can be compiled into code. With MBT the task is to recreate the observable behaviours of
the system under test which typically requires far less detail.

53

3.5 Model-Based Testing

“Model-based testing is the automation of the design of black-box tests.” Utting
et al. (2010) [6] p8.

Manual black-box testing involves designing a subset of tests which it is hoped will ex-
pose the most crucial bugs in the available time-frame. This is limited by being a process
that is subject to human implementations, commercial realities and time constraints. Model-
based testing in contrast aims to formally model the system early in the software develop-
ment life-cycle with subsequent benefits for validating system architecture and enabling the
mechanical generation of tests.

Model-Based Testing (MBT) shares several benefits of model-driven development (MDD);
abstraction, understandability, accuracy, predictiveness and inexpensive [98–100,103]. How-
ever rather than generating models for the purpose of code generation, MBT is interested
in higher level abstractions of software’s observable behaviours. The goal is to validate the
correctness of a hand-crafted implementation, rather than replace it.

A key advantage of MBT is that it exposes underlying assumptions and failures in com-
munication, early. These cause bugs that may only become apparent much later. Boehm
(1981) showed the cost of fixing a bug is 20-100 times more expensive in operation than in
the requirements phase [112]. It also prompts a better understanding of the system which
tends to lead to better architecture. Using modelling early may result in saving cost and
time compared to practices that adopt the code and fix strategy.

Modelling may be perceived as costly and time consuming due to the rigour and edu-
cation levels required (typically PhD level). In comparison manual code writing skills are
cheaply available and easily trained. MBT capitalises on the skills disparity by allowing the
cheap labour to detail the code model, while the engineer refines formal models to validate
first the architecture then the implementation.

The intuition behind MBT is to build an abstract model of the environment (the parts that
interact with the system) and the system under test (SUT), generate traces of paths over the
model that will form tests, then utilise a test harness to apply the tests to the hand-crafted
SUT and compare the results. This is a repeatable black-box testing process that is aimed at
validating a systems behaviour and finding bugs.

There is no guarantee that MBT will prove that hand crafted code is error free, however
it provides an extra layer of rigour and benefits similar to the practice of creating early
prototypes of code in order to learn about the problem and potential solutions, but faster,
without the expense and without the risk the prototype will be put into production.

MBT may be undertaken in an Agile, document light environment using user stories,
as well as in Waterfall, a document heavy environment with formal requirements. In both
cases communication and common understanding of the domain is tested with the act of
modelling exposing any weaknesses. MBT modelling will be faster than the development
team which must implement a great deal more detail, without dictating the implementation
to developers.

The MBT engineer can become involved late in the software development life cycle, how-
ever there is still a need to understand both the domain and the requirements in whatever
form they take. This is essential in order to model the SUT. Consequently, bringing an MBT
engineer into the project late may be a false economy when the architecture and code base
are not as flexible, early decisions made may not be documented and many of the found
bugs will be reported at a late stage will be expensive to fix. However, there is no doubt that
more bugs will be found.

54

3.5.1 Existing research

The book Practical Model-Based Testing, appears to offer the most comprehensive overview
for this field [6]. While Neto et al. (2008) provide a broad overview of literature up to
2006/7 [5]. Commercial industrial tools exist for MBT, such as; Microsoft’s Spec Explorer,
which is packaged in Microsoft’s Visual Studio; and Conformiq’s Designer.

Model checking has been applied to various aspects of networking, for example, Canini
et al. (2011, 2012) use model checking combined with symbolic execution in their NICE
methodology for testing OpenFlow controller applications (learning switch, load balancer
and energy-efficient traffic engineering). They found 11 previously unknown bugs in estab-
lished software [8, 113]. However the NICE methodology does not extend to allow testing
and comparing implementations of the models, such as an in-line load balancer with the
SDN equivalent. Hoang et al. (2009) used Event-B and Rodin to model a network dis-
covery algorithm [114]and Kang et al. (2013) modelled the OpenFlow Switch specification
(v1.0) [115].

MBT in contrast has had little exposure to networking. Wieczorek et al. (2009) used MBT
to test service-oriented architecture (SOA) integration from choreography models [13], but
no other research has been found.

The closest paper to this research was published by Sethi, Narayana & Malik (2013) and
describes model checking (again not MBT) an SDN controller based stateful firewall where
the algorithm uses two switches to provide firewall properties [116]. The source for the
two-switch firewall architecture was not provided.

3.5.2 Other testing methods

Black-box testing, is not concerned with how the system is implemented, merely that it
generates correct results. This compares with developer efforts to validate their own code,
which will include both white-box and black-box testing. Developer testing is important and
must be undertaken, it is the first line of defence and the means a professional developer will
use to ensure their code is of the highest standard.

The second line of defence is the test professional who performs manual black-box test-
ing, perhaps with the help of scripted tests. By using domain knowledge and experience
the tester working under time constraints is responsible for preventing critical bugs from
escaping in order to keep problems in house.

Both developers and testers rely on intuition to determine when testing is sufficient. Test
cases stop being generated when the writer feels there are no more benefits, runs out of time
or runs out of ideas.

The last line of defence is reactive and involves triaging customer reported bugs. Many
applications are in permanent beta testing with teams of developers rotating the role of
maintenance and responding to customer bug reports. Failures in code quality at this level
are managed not prevented.

The danger in relying only on developers and testers is that they both have an inherent
level of experience and tend to adopt narrow views of the system, resulting in testing for
problems they have experience of, have catered for and that fit with their interpretation. To
be fair industry training for testers endeavours to break this pattern.

Developer testing is typically based on unit tests being run against the SUT, for example,
Java JUnit tests. This is done as the system is developed, sometimes as part of test driven
development. This rich source of tests however are often lost during maintenance, replaced
by a smaller set that assumes the tests for surrounding code will capture any defects and
anything serious or obvious will be caught by the manual testers. Time constraints play a
key part, particularly in maintenance activities which are not perceived as adding value for

55

product owners. In comparison updating MBT tests only involves changing the abstract
model and results in generating an entirely new test suite.

3.5.3 Modelling the software-under-test and its environment

First a model of the environment the software operates in is developed, in order to prompt
and capture important aspects of its observable behaviour, then the software is modelled.
This combined model can be reasoned over, mathematically proven and developed further
as new insights or use cases are exposed or introduced. The resulting model is a series of
states and transitions that are much smaller than the system is or will be.

It is not sufficient to model purely the software as this does not fully capture its pur-
pose, its environment or its observable behaviours. Modelling the environment forces the
software’s purpose and the assumptions made about its properties to be made explicit. The
environment is then able to prompt the black-box and observe the black-boxes subsequent
behaviour.

The environment is often made up of a wide variety of equipment, people, other soft-
ware, weather, etc. Understanding this environment well enough to create a formal model
can be a challenge, it can be difficult to capture all these aspects formally. As a consequence
the resulting model may therefore be only an approximation, leaving scope for unforeseen
events that may lead to non-deterministic behaviour.

If modelling to a set of documented requirements, the model may be annotated with
requirements identifiers which can aid in using a requirements driven test strategy when
generating tests.

Modelling a sub-system (for example, a network function) may be preferred to creating
a large model (for example, a network), the smaller size makes the generated test cases
faster to run, it may provide a good abstraction for the larger system and it allows time
for more rigorous test strategies. If the abstractions are carried through to the software
artefact, it reduces software complexity, it can be worked on in isolation by developers, may
have fewer bugs, be easier to replace and maintain and may consequently have a longer
software lifespan. This approach demands actively looking for low level functionality that
can be represented as black-box abstractions and led the author to question the dominant
architecture used in SDN implementations of in-line network functionality [3].

3.5.4 The MBT test process

MBT extends testing by taking the engineer’s interpretation of the system and contrasting
it with the developer’s interpretation. That is, the formal model is contrasted with the code
model. The engineer also follows a process to enable the direct comparison of the two mod-
els or any other implementation, in order to determine behavioural equivalence.

Figure 3.13: The Model Based Testing process

The stages of the MBT testing process is shown in Figure 3.13. The process is largely

56

linear, starting with domain knowledge and an understanding of the requirements or user
stories. Model creation is the most challenging aspect while automatically generating a test
suite is the simplest. These are followed by the technical challenge of creating a test harness
that interprets the tests for the SUT and records the results. The process will typically result
in the MBT engineer being ready to test the SUT before the developers have finished creating
the more detailed software artefact to be tested.

Figure 3.14: Incorporating modelling into the software development cycle

The software development process is shown in Figure 3.14 and encompasses both Agile
and Waterfall style methodologies, the main difference being the speed and number of cycles
seen by the client.

Creating the test harness requires some technical capability. The result of test case gen-
eration is a suite of tests which will not be directly executable on the SUT. The test harness
must therefore transform this into executable tests. An additional complication when testing
network functionality is that the test harness must replicate a network and generate network
packets of various types.

In contrast to creating the model or test harness, test cases are easily generated. The
practical limit becomes a temporal one in that the potentially thousands of tests generated
for a system, combined with set-up and tear-down, may take an impractical time to run. One
cause may be ‘state explosion’ which is explored further in Section 5.4.1. The underlying
goal however is to not rely on developers limiting tests based on intuition. Tests are instead
limited through the intelligent application of test strategies (see Section 3.5.5) designed to
achieve specific testing goals.

The tests take the form of valid paths across the model, starting and finishing in the en-
vironment which prompts and observes the behaviour of the SUT as a black-box. Any paths
that hold for the model can be expected to hold for the SUT and this idea is the foundation
of testing.

Testing against the SUT will reveal errors in one of two places. The software under test
or the MBT model. Finding errors in either place is considered normal — just as develop-
ers make mistakes, so do engineers — the key is that both parties are using very different
methodologies and are likely to make different mistakes. In effect the project gets the benefit
of developing two interpretations of the software, without the expense.

3.5.5 MBT test strategies

When the volume of tests generated become impractical to run in a reasonable time frame,
test strategies facilitate creating test subsets that achieve specific and measurable outcomes.

57

For example, exercising every method, changing every state variable, exercising every con-
ditional, traversing every common path, testing parameter boundaries, plus others. By con-
sidering the software being tested and the likely problems that may be surfaced, it is possible
to use test strategies to generate a subset of tests that will create a high level of confidence
in the software.

There are a large variety of test strategies described by Utting et al. (2010) which broadly
fall into one of six criteria;

Structural model coverage-criteria This seeks to maximise coverage of the model in one
dimension, for example;

• control-flow testing which tests statement, decision or path coverage such as
if/else branching.

• data-flow testing which tests all definitions, all uses and all definition-use paths.

• transition-based testing which tests all states, all configurations where there are
parallel states, all transitions, all transition pairs in and out of a state, all loop free
paths coverage, all one-loop paths coverage, all round-trips coverage, all paths
coverage.

• UML class diagram coverage which tests association-end multiplicity, generali-
sation coverage testing every subclass, class attribute coverage.

• UML sequence diagram coverage which tests start to end message paths.

Data coverage criteria This selects data to be representative of what is being tested, for ex-
ample;

• testing all values may be impractical, while testing one value may have merits if
it helps minimise the number of tests.

• boundary values, testing all boundaries, multidimensional-boundary coverage
using the minimum and maximum of each value, all edges coverage testing the
predicates applied to values, one-boundary coverage testing each predicate once.

• Statistical Data coverage, random-value testing.

• Pairwise testing, reducing the set of tests needed by pairing up values.

Fault model criteria Tests to demonstrate the absence of specific bug classes.

Requirements-based criteria Tagging the model with requirements tags, enables tests to be
done that test the implementation of those requirements.

Explicit test case specifications Similar to manual testing, but scripted to match the auto-
generated test scripts, fine grained control of the tests generated is enabled at a higher
labour cost. It is possible to specify or restrict paths as desired.

Statistical test generation methods By adding probabilities to a FSM, a Markov chain is
generated and can be used for testing the most likely paths.

Mixed tests The previous six classes of test families, cover a large number of tests. The
optimal solution may be to mix and match testing strategies to suit the software under
test in its domain.

58

3.5.6 State explosion

One often stated concern of generating tests from models is the state explosion problem,
the capacity to generate tests in numbers large enough to render them impractical to run.
This may be due, for example, to an infinite number of input variables between 0 and 1.
Solutions may include using representative data or partitioning the system and testing sub-
systems first or choosing abstractions that minimise the state space. For example, testing a
network function by testing every conceivable layer 3 Internet address will suffer from state
explosion. The IPv4 address state space is 4.3 billion or 4.3x109, making this a poor use of
MBT. Finding security concerns such as back doors using port-knocking9, potentially makes
a good case for open source code and code inspection.

Firewalls can provide a good example of reducing state space using abstraction. Stateful
firewalls may recognise three types of address space and two domains. Trusted, untrusted
and dangerous addresses while the two domains are internal and external. Together these
reduce the address state space from 4.3x109 to 5 (not 6 as internal domains typically treat
unknown hosts as dangerous/quarantined, see Figure 2.13).

3.5.7 Test metrics

The metrics a business uses to measure testing success, changes when MBT is adopted.
The number of tests, passing or not, are no longer relevant as any number of tests may be
automatically generated and reporting high numbers of irrelevant failures may be counter-
productive. Model, requirement and SUT test coverage per test strategy, become the new
preferred measures.

Being able to defend the test strategies used also becomes important. These strategies
are repeatable, can be articulated and can be debated by a wide range of interested parties.

3.5.8 Defensible testing in industry

Advances in processor power and supporting technologies are enabling programs of greater
complexity, including safety critical systems such as cars, aeroplanes and medical equip-
ment [117]. As systems get more complex, the tendency is for them to also contain more
errors, leading to disasters such as the Toyota Motor Corporation’s unintended acceleration
problems (89 killed), the Ariane 5 rocket disaster (see Figure 3.15) and the Therac-25 medical
radiation disaster (6 killed) [118–120].

To senior stakeholders all software is a black-box and testing is ultimately done by the
consumer, whether that be Alice applying the brakes in her Toyota or Bob the product owner
launching the latest Ariane rocket. Confidence in quality is often gained through personal
relationships and trust in the senior developers professionalism (not always the case — Toy-
ota appears to have contracted out their brake and throttle software and applied minimal
oversight), plus the software’s time in the wild. This may be reassuring, but it may not be
sufficient in the event of a disaster.

Software complexity is also making it more difficult than ever to prove, either before or
after an accident, that all reasonable quality steps have been taken. The current industry
practice is to rely solely on good developer practices. This can be problematic when devel-
opers lack skill, are under commercial pressure or know the code will never be examined.
For example, Toyota’s brake and throttle software was described in a NASA report as using

9Port-knocking is an access protocol that accepts a connection from a specific IP address after it receives
packets sent to ports in a specific order. The state space for say knocking on 3 ports becomes 4.3x10(9x3)

59

Figure 3.15: The Ariane 5 explosion, caused by a software bug, 4th June 1996.
Source: BBC http://news.bbc.co.uk/2/hi/science/nature/2634945.stm

a proprietary developed coding standard meaning it did not conform to industry accepted cod-
ing standards as reflected in the code inspection tools NASA used [118]. In later lawsuits it
was described as spaghetti code by expert witnesses Michael Barr using metrics to back up
the definition 10.

Corporate risk is typically managed through licensing. The following is an except from
Microsoft’s end-user license agreement for Windows 10 software11 and is representative of
the IT industry. For example, Xero12 and most other software companies have a similar
clause limiting liability to the purchase price or last fee paid. Bold added for emphasis.

Limitation of Liability, paragraph four - Except for any repair, replacement, or re-
fund the manufacturer or installer, or Microsoft, may provide, you may not under
this limited warranty, under any other part of this agreement, or under any theory
recover any damages or other remedy, including lost profits or direct, consequen-
tial, special, indirect, or incidental damages. The damage exclusions and remedy
limitations in this agreement apply even if repair, replacement or a refund does not
fully compensate you for any losses, if the manufacturer or installer, or Microsoft,
knew or should have known about the possibility of the damages, or if the remedy
fails of its essential purpose. Some states and countries do not allow the exclusion
or limitation of incidental, consequential, or other damages, so those limitations or
exclusions may not apply to you. If your local law allows you to recover damages
from the manufacturer or installer, or Microsoft, even though this agreement does
not, you cannot recover more than you paid for the software (or up to $50 USD if
you acquired the software for no charge).

It is clearly cost effective in the face of a disaster, to limit liability where you can to the

10See presentation slides authored by expert witness Michael Bar (2013) for the lawsuit Bookout v. Toyota,
slide 24. http://www.safetyresearch.net/Library/BarrSlides FINAL SCRUBBED.pdf

11https://www.microsoft.com/en-us/Useterms/OEM/Windows/10/UseTerms OEM Windows 10 English.htm
12https://www.xero.com/nz/about/terms/

60

purchase price of the software. But it has limits as a first line of corporate defence, consumer
confidence can be dented by the minimalist corporate ambulance at the bottom of the cliff.

Given such protection it appears that corporate will to ensure safe code may only come
about after many more deaths, lawsuits and fines. For example, Toyota’s unintended accel-
eration has contributed to 89 deaths plus generated fines and remedies that as at 2014 has
exceeded US$3 billion with ~400 injury cases still in talks 13.

When justifying the safety and security of software, defensible test processes will help, as
will the adoption of defensible risk management strategies in determining when or if a bug
should be fixed. MBT may have a niche in being conducted by an engineer who can generate
reports on the the products fitness for purpose and an analysis of failing tests. This may
also be subject to peer review in a manner similar to more mature engineering disciplines.
This independence from the development team who provide the implementation may help
senior stakeholders gain confidence in the product, in a defensible manner.

3.6 Applying MBT to networking

Networking might be characterised as dominated by practitioners that are tools trained
(rather than trained on fundamentals), that follow best practice (the ideas of a few are pop-
ularised and adopted by the many) and are risk averse (prefer others to undertake develop-
ment and implementation risk).

MBT offers a means to reduce risk, however MBT and networking are not natural part-
ners. Network practitioners typically do not develop products and they are unlikely to be
interested in developing models of products.

However many interesting functions in networking are highly developed and thoroughly
tested in production environments. With the correct models and test harness there is poten-
tial for networking to utilise MBT as a push button technology generating useful results, for
example, comparing implementation A with implementation B across a range of modelled
behaviours.

This is new territory, MBT has not been applied to networking in industry. To better
understand the problems MBT may face in networking, the next two sections outline the
experience of multiple MBT practitioners in the software industry.

3.6.1 Industry Experience

There have been several studies and conference presentations describing the experiences of
MBT practitioners in industry. They all report that MBT works, saves money and results in
better code. However MBT is not ‘sticking’, in that the long term adoption and development
of this strength is not happening in industry. This raises concerns that while MBT technical
challenges may have been resolved, research that builds on these accomplishments may
suffer the same fate. Five authors and presenters are now summarised to illustrate common
experiences they share around industry engagement, which are then explored further in
Section 3.6.2.

Robinson (2003) draws on his several years of MBT experience at Microsoft, to describe
five obstacles around the mismatch between testers in industry and MBT [121]. These are;
existing testers are not technical and “failed to meet the bar” for developers; testing is
viewed as a back-end, ad-hoc activity; testers operate in a severe time crunch; formal re-
quirements are rare; and current test metrics do not map to MBT.

13See presentation slides authored by expert witness Michael Bar (2014), KILLER APPS Embedded Software’s
Greatest Hit Jobs, slide 40. http://www.barrgroup.com/files/killer apps barr keynote eelive 2014.pdf

61

~

Stobie (2005) discusses that both testers and developers resist MBT [122]. Developers get
frustrated with false positives — these are bugs that developers view as not “real bugs”. This
is made worse, in the eyes of developers, when false positives cannot easily be turned off.
With testers, Stobie found they are resistant to change, do not have the underlying training
to think or model abstractly, may prefer an ad-hoc approach and may claim failure when
MBT fails to meet unrealistic expectations.

Hartman & Nagin (2006) and Greiskamp (2012) each have well over ten years experience
using the technology with respectively IBM and Microsoft. Both claim the research into MBT
is largely done [123,124] and they independently conclude the issues facing MBT now relate
to usability — in that industry consistently passes the technology to testers who do not
have abstract modelling skills. Testers who then acquire modelling skills, which are in short
supply in industry, appear to then move on to more important roles.

Hartman & Nagin in their keynote speech at MBT 2006 in Vienna, describes [123]:

A 1999 study with a very experienced tester;

• tools are used by PhD graduates

• violent resistance by the tester

• I can do better by hand

• poor user interface

• achieved efficiencies for the testers, replaced much of the manual test case writing

• never used again

A 2001 study with three industrial teams;

• mountains of bugs uncovered

• 60% of the bugs were documentation bugs

• never used again

A 2003 study in industry;

• the Champion got a promotion

• never used again

Hartman concludes the barriers to be; tools are still bleeding edge; personell require
higher education and sophistication; and there is a process shift to investing in testing up
front. He expresses continuing confidence in MBT, but “keep the models away from (aver-
age) testers.”

Greiskamp (2012) in a keynote presentation to MBT in Practice, observed that of 10 teams
that adopted MBT over his time at Microsoft, despite excellent results, 7 later dropped it
[124]. He further observes that the adoption is often bound to individuals who inevitably
move on to other teams and roles. Greiskamp describes the Microsoft tool as “horribly
complex” and containing “rocket science”, while also stating that push button technology
will not suffice.

Binder (2011) produced an MBT user survey to establish a profile of users [7]. From it he
created a hypothetical composite MBT user, quoted in its entirety here:

62

I work for a large business organisation. We follow an agile process to develop
the software we test. The system under test is embedded in another product sold
to our customers. It is programmed in C++, runs on dedicated computers, is
networked, and uses a Windows OS.

We felt MBT could help reduce testing cost/work and bug escapes. We use a
commercial MBT tool that we’ve integrated with our design repository and test
harness.

We’ve added MBT to the mix of our existing manual testing and traditionally
programmed test drivers. Our effort for each testing mode is roughly equal.

At present, we’re using MBT in a pilot project to test version 1.0 of our product.
We taught ourselves to develop test models and use the tool by reading docu-
mentation and experimenting. It took us each about 100 hours of this self-study
to become minimally proficient with the tool.

We use MBT to test system-scope functionality. The tool generates code and
data for an adapter that abstracts the SUT APIs and then drives the APIs and
evaluates results from the APIs. We measure requirements coverage for our test
runs. The output of this tool is not integrated with our build.

We’ve had some difficulty developing test models. Sometimes our model “blows
up” (combinatorial runaway) and we’ve found that our MBT test suites are
not effective for certain kinds of bugs. However, this is manageable and not
any worse than what we expected. With respect to other first generation MBT
problems (updating, integration, and inadequate oracle), either we have not seen
these problems or they’re not obstacles.

In all, we think MBT has been moderately effective so far. For the most part,
our expectations for both challenges and improvement have been met. MBT has
reduced bug escapes about 60%, testing costs by 15%, and testing time by 30%.
Among our co-workers, developers and managers are neutral about MBT but
other testers view it as effective. Our users/customers are not aware of MBT.
Overall, we are very likely to continue using MBT.

Binder’s survey notes that Waterfall and Agile development processes are equally rep-
resented. Of the application domains 90% of respondents indicated domains where high re-
liability is expected, for example embedded controllers. Respondent answers to the biggest
limitations of MBT tend to fall in the areas of; modelling is complicated, lack of industry
and management support and commitment to quality, poor requirements and difficulty in
acquiring the modelling skills — claiming approximately 100 hours of self directed study is
required.

These five authors all discuss serious issues with applying MBT in industry. They can be
summarised as:

1. Inadequate skill levels

2. Lack of management interest

3. Cost structure up front

63

4. Mountains of bugs

5. Cultural perceptions of Testing in IT

6. Complicated tools

7. Poor technology diffusion

3.6.2 Hurdles to adopting MBT for SDN

We have described the experiences of practitioners in industry. The technology works, pro-
duces good results but is difficult to use and widely misunderstood. We now discuss the
seven issues that have been outlined.

1. Inadequate skill levels

The skills required for MBT, are not those of a programmer. The limited programming skills
that are needed, can typically be sourced within a company and relate only to creating a test
harness to enable the test suite to interface with the SUT.

Equally the skills required for MBT are not those of a Tester. A Tester takes their domain
knowledge and a programmers work to devise a range of manual and possibly scripted
tests to ensure the most obvious bugs are exposed before work is released. The goal of a
Tester is to pre-empt and minimise the scale and impact of released bugs within a tight time
schedule.

The skills required for MBT, are in modelling—the skill to decompose a target system
and formally model sub-systems of interest using mathematical abstractions. This is a skill
set that is not highly developed in either programmers or testers. Nor do firms typically seek
to develop these skills in developers and testers, which instead appear to be concentrated in
Engineers, System Architects and Business Analysts.

It can be argued that Programmers do in fact model. For example, in Agile practices
a team may choose to model a problem; to better understand it, to define interfaces, ex-
periment with solutions and define work breakdowns or sprint deliverables. This practice
helps Agile teams to generate good design (principle 9 of the 12 principles of Agile)14. But
Agile also values simplicity and working software over documentation (Principle 10 of the
12 Principles of Agile). Taken together, the ideal Agile modelling exercise can therefore be
described as quick, dirty and throw away. Sufficient for the immediate purpose, but falling
short of the rigour required for mathematical modelling.

In contrast to modelling, generating the tests in MBT is automated and trivial.
To summarise; Programmers and testers should not generally be expected to have the

prerequisite modelling experience or training to easily succeed in applying MBT.

2. Lack of management interest

Obtaining champions within industry only goes so far. Several of the experiences above,
discuss the fate of projects once the champion moves on. Relying on champions appears
to have two flaws. Management may view them with scepticism — after all they have an
agenda to push — and those capable of being champions for MBT perhaps tend to be better
educated and more sophisticated than their colleagues which may lead to faster promotion
or re-assignment to work that is more pressing in the eyes of management.

14Principles behind the Agile Manifesto. Accessed: Oct 2014. http://agilemanifesto.org/principles.html

64

This effect has its roots in two potential causes. The first is that testing is traditionally
downplayed in IT, its goal is to catch the most obvious bugs and in today’s market it is ex-
pected that most products are in continuous Beta testing. The imperative is to get the prod-
uct into the marketplace, quality comes later — if there is market interest. The second is that
highly educated employees are still rare, for example, the local Wellington employment en-
vironment appears to push students to value 2 or 3 year qualifications [125]. Consequently
those with 4 or more years of education are rare and possibly considered wasted on what
may be perceived as traditional testing.

Management buy-in to MBT might be evident when existing champions are replaced by
new champions. In effect when management starts building an MBT businesses capability.

3. Cost structure up front

There is resistance to applying MBT up front. This appears to be related to management
correlating MBT to the traditional testing model which is applied late. This is in contrast to
when the modelling of software is most beneficial, which is at the start.

Applying MBT late hits problems related to sunk costs. Sunk cost is an term used in
economics to refer to a cost that has already been incurred and cannot be recovered. Sunk
cost may refer to, for example, capital expenditure, consultants, developer wages or project
time. As sunk costs increase, a project becomes less capable of making changes. The archi-
tecture late in the project becomes difficult to change as does the code implementation. At
the extremes, at the start of a project all options are open, in the final week all options are
closed except polishing the product.

Applying MBT late in a project significantly reduces its ability to impact on project suc-
cess. It may also mean that the architectural experience is no longer freely available, nor
the domain knowledge. The documentation is often not rigorous enough, particularly in an
Agile environment, nor up-to-date.

Weighing against this are potential stakeholder concerns that improved architecture and
early bug fixes offer difficult to quantify savings versus the certainty of an engineer costs
up front. It is perhaps a concious decision to delay testing of the architecture until after the
code has been implemented, perhaps with the hope that any flaws will impact the projects
budget less if dealt with later and the missed deadlines caused by problems that may have
been picked up, will be inconsequential to the project’s success.

What is the cost of checking abstract models up front? With architectural modelling ex-
pertise already employed, domain knowledge already available and the flexibility to easily
adapt the model in the face of new information, the additional cost appears to be low.

4. Mountains of bugs

This is mentioned as a problem by Stobie (2005) and Hartman & Nagin (2006), but no ref-
erence was found exploring this in the academic literature. On the surface it appears to be
a triaging problem with a persistent memory. It could be this is already resolved or not as
big an issue as Stobie and Hartman expressed. For example, Utting et al. (2010) suggests a
test strategy that allows selecting paths to ignore (see Section 3.5.5). Hartman’s observation
of 60% of the identified bugs being documentation bugs, may also be indicative of applying
MBT late in the process when there is little perceived value in fixing the documentation.

5. Cultural perception of Testing in IT

A common denominator is that MBT is handed to testers in industry, who are sometimes
perceived as akin to failed programmers [121, 122]. While programmers typically do not

65

view a dedicated testing role as a promotion.
Testers are generally non-technical people and this has led to calls for MBT technology

to be reduced to push button technology, to suit their capabilities [121]. However on the face
of it, this seems out of reach given today’s technology.

Of more concern is that the overwhelming impression from these articles and presenta-
tions is that the perception of Testers and testing within IT is poor. Any association with
testing appears to run a high risk of the technology being assumed to be of little use unless
non-technical people can understand it, this may be a non-starter when the core skill is the
technical skill of creating abstract mathematical models rigorous enough to be suitable for
machine reasoning. The very name “Model-Based Testing” appears to re-enforce the per-
ception that the technology “should” be accessible by non-technical people. Even worse,
technical people associating with a discipline that contains “test” in the title, appear to run
the risk of being stereotyped as non-technical. Until this changes, industry may find it diffi-
cult to attract technical people to the role. It may be even more difficult to retain them and
the experience they have acquired.

6. Complicated Tools

The core of the complicated tools problem appears to lie with the issue of attempting to
give non-technical people the ability to use tools that require PhD levels of education. This
perhaps limits MBT testing by non-technical people to simple models, late in the software
development life cycle.

Of the tools surveyed many are academic tools and several are niche tools. Two stand out
as being both generic and in use in industry; Microsoft’s Spec Explorer, which is packaged
in Microsoft’s Visual Studio; and Conformiq’s Designer. Reviewing these two tools in depth
may be an area for future work.

When comparing tools, the academic literature has not yet converged to an agreed set of
criteria to measure MBT tools against, beyond merely listing the MBT tasks required of the
tools [1, 126, 127].

7. Technology Diffusion

There are several models of technology diffusion to explain how a product or process like
MBT gains traction and acceptance in the marketplace [128]. For example, the epidemic
model adopts the notion that slow adopters merely hear about the innovation later. Under-
pinning this view is the idea that the speed of information flow dictates the pace of adoption
and that this information diffusion is often driven through a word of mouth process. One
hypothesis is that this is aided;

“...where software knowledge is easily learned and transmitted, for populations
which are densely packed and where mixing is easy, where early users spread
the word with enthusiasm, and in situations where the new technology is clearly
superior to the old one and no major switching costs arise when moving from
one to the other.” Geroski (2000) p607

This model of diffusion may be related to existing successful process improvements, for
example Object Oriented methodologies or Agile processes. But where the similarity ends
with regards to MBT, is that MBT’s target market—Testers and perhaps Programmers;

• Do not typically have a background in abstract modelling,

• Are generally only interested in testing after code has been written and

66

• Need a 100 hour training investment to become minimally proficient with MBT.

3.7 Summary

Formal methods and modelling already play a role in some safety critical systems. MBT
takes this a step further and generates tests from the model that can be performed on the
SUT. Doing so can provide rigorous black-box testing of products. It is not the right process
for every technology but does suit domains which are well understood or are safety critical.

We have examined three in-line network functions, NAT, load balancer and a firewall in
order to draw out common features and have formally described an abstract network func-
tion. In the process we identify several interesting properties such as their being decoupled
from the network, they perform packet forwarding and packet mutation, may hold state
and are transparent to the network. Chaining network functions is common in practice, for
example an industrial firewall, so we establish properties for chains of functions, again they
are decoupled, forward and mutate packets, are transparent to users and in addition they
must maintain a consistent order.

MBT is the process we intend to apply to network functions. We have discussed existing
research where model checking and MBT has been applied to networking, some benefits of
MBT and examined where MBT fits in the software testing ecosystem. Modelling the SUT
is not a trivial task and the modelling tool used in this research, Rodin, and the modelling
language Event-B are both discussed. The test process has been outlined and the technical
challenge of creating the test harness. Test strategies aim to provide strategies for both test
coverage and test metrics which helps direct the available test time where the volume of
tests otherwise generated is large. State explosions are mitigated by test strategies, utilising
abstractions and picking representative variables. Defensible testing is the idea that MBT
testing is repeatable and can be replicated by an independent party. Test strategies can also
be articulated to senior corporate stakeholders who may also utilise independent engineers
to gain confidence in their product, in a way that generates a corporate paper trail.

Industry experience has generated excellent results from MBT, but several key prob-
lems discussed include; inadequate skill levels; lack of management interest; up-front cost
structure; mountains of bugs; cultural perceptions of testing; complicated tools; and poor
technology diffusion.

Next we discuss the research problem, what can be achieved by applying MBT to SDN
and legacy in-line network functions?

67

68

Chapter 4

Research Direction

After providing background on networking, SDN, network functions, formal methods and
MBT, these threads are pulled together and shape the research direction of this thesis.

The questions to be answered revolve around the SDN approach to network functions
and questioning whether this approach is desirable and if not, why not. A number of SDN
problems have been highlighted in the research conducted by others and are discussed in
Section 2.7. In this research I intend to explore the idea of state divergence in SDN, in par-
ticular the convergence of network function state with end host state and how this is (or is
not) managed.

4.1 SDN’s third layer of state divergence

One of the goals of formal methods is to prove properties of the network, in particular
the absence of black holes and loops and reachability between end hosts. To achieve this
consistently with a dynamic distributed system is difficult.

SDN offers the promise of being able to prove these properties in the controller. The
controller may hold a graph of the networks current state (or may provide switch statistics
to an application), therefore it may be possible to test properties over this graph — perhaps
even to test for flow rule violations before they are implemented [85].

However, background research has highlighted two layers of state divergence, poten-
tially both small, verging on trivial. And this research finds itself focused on a third layer of
state divergence, again potentially small and verging on trivial. None-the-less small com-
pounding problems are greater than their sum and in any non-trivial networking environ-
ment small problems may occur frequently. Add to this the security concerns that arise
when state divergence can be determined to be non-random.

Figure 4.1: The first layer of SDN state divergence.
Distributed controllers holding different views of the forwarding plane

69

The first layer of state divergence (Figure 4.1) is within the logically centralised dis-
tributed SDN controller. This controller is an example of a distributed database (holding
network state) where in order to provide redundancy in the event of controller failure, con-
troller state must be shared amongst multiple instances of the controller. This raises prob-
lems related to controller state convergence, a concept that is widely explored in distributed
databases. Controller state divergence is when two controllers hold different views of the
network. Several strategies may be adopted to ensure state across controllers is consistent,
however the most common strategy accepts what is hoped to be a small amount of diver-
gence and is referred to as eventually consistent.

Figure 4.2: The second layer of SDN state divergence.
Forwarding plane switches not in the same state as the controller view

The second layer of state divergence (Figure 4.2) arises between the control plane and
forwarding plane with research demonstrating update delays in the forwarding plane; be-
yond what might be expected for latency. In effect, the distributed (and eventually consistent)
controller may be making decisions based on a view of the network that reflects instructions
sent, not instructions implemented.

Figure 4.3: The third layer of SDN state divergence.
Network functions not holding the same connection state as end hosts

The third layer of state divergence (Figure 4.3) may arise between network functions and
end hosts. Network functions may deduce connection state from flows passing between
hosts. This may prove impractical where the network function is stateless or the algorithm
and state are moved to a remote third party such as a SDN controller, meaning that although
the network function is observing the flows it may not be able to respond in a timely fashion,
or at all.

The failure to manage these three layers of state divergence may lead to further diver-
gence and/or the failure of desirable network properties such as no loops, no black holes
and reachability.

An intriguing question is whether there is a fourth layer of state divergence between the
SDN controller and management applications, however this is not explored further in this
research.

4.2 The hypothesis

The hypothesis is that the lack of state convergence between network functions and end
hosts may cause security problems, providing reachability when the SDN controller and

70

end hosts do not expect it; a flaw that may be exploited by an attacker.
Formal methods provide a way to explore these issues, using formal models and MBT

to test for expected behaviour in an implementation. An MBT tool will also allow com-
parisons between implementations, for example an in-line implementation versus an SDN
implementation, to the extent the behaviours of interest are captured in the model. If in-line
firewalls pass tests that SDN firewalls fail, that may prove to be interesting and possibly
demonstrate support for the hypothesis.

4.3 Implementing MBT to test the hypothesis

The next chapter discusses creating a formal model for a firewall which may then be used
to automatically generate tests. Potentially thousands of tests may be generated, tracing all
paths and testing all variables, branches, loops and more. The mechanistic generation of
tests may ensure all cases can be covered and ensure code coverage is high, perhaps up to
100%. A practical limitation is the time required to run the tests and test strategies allow the
potential to create a sub-set of tests to meet specific and measurable test criteria within the
time frames available.

A test harness is created that takes those tests and applies them to an implementation.
The result of testing the implementation may then be compared to the generated test script
and any differences analysed.

The technical challenge in this research is the development of the prototype formal
model and the prototype test harness. Once completed, using such an automated tool to
conduct black-box tests on an implementation, is relatively straight-forward.

Ideally we will generate a range of tests from a formal model of a stateful firewall and be
able to test an implementation of an in-line stateful firewall. We expect the in-line stateful
firewall to pass all the tests. We will then test an SDN firewall which we expect will fail some
tests, in particular tests relating to state divergence between the firewall and end hosts.

Chapter 5 discusses the creation of the model, the tests, the test harness and finally the
results.

71

72

Chapter 5

Applying Model Based Testing

Automated black-box testing is a reliable and repeatable method of testing a code object’s
behaviour. However within the networking field it requires first that the formal model rep-
resents a commonly accepted ideal. Second that a test harness exists that can accept a test
script and generate tests for an implementation.

A stateful firewall was chosen as the example network function as it involves an algo-
rithm and dynamic state that SDN researchers suggest (see Appendix A) should be in the
control plane rather than the forwarding plane.

5.1 Generating a formal model of a stateful firewall

References that describe stateful firewall behaviour include RFC’s, standards from NIST and
textbooks [15, 78–83]. Given the complexity and variety of firewall behaviour described by
these resources, the model developed during this research is best viewed as a prototype
rather than the ideal. Within the scope of the behaviour modelled it is believed to be accu-
rate, however there are a range of behaviours that still need to be added. None the less it is
a starting point.

The model is created using stepwise refinement which is moving from abstract concepts
to concrete behaviours incrementally. It is also under constant revision as the engineer gains
a better understanding of the model’s environment, the SUT’s (Software Under Test) func-
tionality and how the environment prompts and observes that functionality.

The model is comprised of two parts; a model of the network environment and a model
of the firewall. The model of the network environment is considered first.

5.1.1 The network environment

The environment allows modelling a network’s interactions with the SUT without having
to consider immediately the effects of the SUT’s behaviours on the environment. The aim is
to simplify the modelling task and instil an element of modularity. The immediate goal is to
provide an environment suitable for a firewall, later it is intended that the environment be
extended to allow other models to be created, such as a NAT or load balancer.

Modelling is an iterative process where the engineer’s understanding of the domain
grows and leads to adopting better modelling abstractions which are conceptually simple,
cohesive and easily adapted.

Each refinement reflects a meta abstraction and is labelled according to a main feature;

1. Domains

73

2. Choke point

3. Protocols

4. TCP start and finish

5. Packets

6. Trust domains

7. TCP attacks

8. Target state

Domains describes the internal and external domains and contains events that pass
packets from one to the other. The choke point constrains all packets to passing through
a specific event, ultimately the firewall will occupy this point. Protocols introduces UDP
and TCP as the sample protocols while TCP start and finish describes the TCP handshakes.
Packets introduces unique packet IDs which allows the model to keep packet state, for ex-
ample TCP flags and source and destination nodes. Trust domains describe the firewalls
view of the network as trusted or dangerous. Any nodes not specified are considered un-
known (stateless firewall) or untrusted (stateful firewall). TCP attacks introduces two sim-
ple attacks utilising SYN and FIN flags plus tests firewall state convergence with the two
end host’s state. Finally Target state is utilised by a model checker to indicate an end point
to a valid path transitioning across the model.

Each machine is described in more detail next. Referring to the full Event-B model in
Appendix B may be useful.

1. Domains

The context for this initial machine describes two domains {internal, external}. All packets
in the model will travel from one domain to the other, for example, if a packet’s src (source)
is internal then dst (destination) is external or vice-versa. The null host 0 belongs in neither
domain and a packet with only one null address field is malformed. Packets must be a well
formed packet where (src 6= 0∧ dst 6= 0) or the null packet where (src = 0∧ dst = 0).

Any packets that do not cross between the domains are ignored by this model.

Figure 5.1: An event machine for sending and receiving network packets.

The machine establishes the events shown in Figure 5.1 which describes changes in
packet state within the network. There are two events for sending packets {packet send, packet reply}
and the events {packet arrive, packet drop}.

This first machine abstracts away a lot of detail to achieve simple network packet passing
behaviour. Each machine that follows will build on the previous, detailing the abstractions
sufficiently to accurately represent first the environments impacts on the SUT, then replicate
the black-box behaviour of the SUT.

74

2. Choke point

The first machine is not concerned with which path the packets take, the notion of paths is
abstracted away and there may be one or many paths the packet may take. This machine
refines the first (making it incrementally less abstract) by adding a path event that all packets
must pass through. This reflects that firewalls are typically placed on a chokepoint to ensure
it sees all traffic between two domains. Ultimately the firewall SUT will occupy this point.
Figure 5.2 shows the new FSM, where every packet traversing between the domains is seen
by the chokepoint.

Figure 5.2: An event machine for sending and receiving network packets.

3. Protocols

Here two representative network protocols are represented using events. The UDP event
is relatively simple, meaning protocol UDP is complete (see Appendix B). While the TCP
event protocol TCP names events and local variables that will be used in the next refinement
which describes the TCP protocol in greater detail.

4. TCP start and finish

This refinement defines the three TCP events that enable a TCP session to start, continue or
finish.

The sequence of packets forming TCP’s three-way handshake, is modelled in protocol TCP start
and protocol TCP f inish. The packet reply event is adapted to recognise and reply to the
various TCP packets.

The TCP fields of SYN, ACK and FIN are boolean flags {0, 1} as they are used by TCP
to open and close TCP sessions. A stateful firewall will also use these to determine when to
add and remove rules for TCP flows.

To associate flags with a given packet, a unique packet id is defined which allows defin-
ing sets of (packet id 7→ value) to define header fields such as the SYN field. For example,
if the first TCP packet generated has a SYN field with a value of 1, the model will append
(1 7→ 1) to the set of (packet id 7→ value) called pkt tcp SYN.

On reflection, packet id was placed here for convenience rather than a sound design
decision. A future iteration of the model may see packet id introduced immediately after (1)
Domains, along with the machine for (5) Packets.

5. Packets

Uses the unique packet id number to allow a packets source and destination address to be
recorded for a packet. Initially this was not required as no packet state was kept, however
this became important when the firewall was modelled as it keeps state, represented by
NODES and PROTOCOL TYPE. For example, there is a set of (packet id 7→ NODE) called
f w src ip.

75

6. Trust domains

Describes the trust domains used by a firewall as {trusted, untrusted, dangerous}. Both
the trusted and dangerous domains specify hosts. The untrusted domain is the set of all
remaining hosts. As seen in (the earlier) Figure 2.13 all internal domains are either trusted
or dangerous (alias quarantined). External domains may be in any one of the three domains.

7. TCP attacks

The initial environment modelled well behaved hosts and the packets they generate. This
machine was added later, after the firewall was modelled to handle good behaviour, in order
to represent badly behaved hosts which will generate traffic that also needs to be modelled.

Some important bad behaviours are not modelled, for example, the effects of a DoS at-
tack which achieves its goals through resource depletion — running the host out of memory
(RAM) or overloading its buffers. To model resource depletion requires modelling hardware
in addition to software which is achievable but considered out of scope for this research.

The events modelled in this machine include SYN packets used for flooding attacks and
FIN packets used for reconnaissance. It also models attempts to exploit poor state conver-
gence between the network function and end hosts. In particular it attempts to continue to
use a closed TCP connection, allowing an external host to potentially keep the connection
alive.

8. Target state

To ensure generated test paths do not terminate within the SUT, the environment model de-
fines path termination points in the environment where they may be observed by an outside
observer.

5.1.2 The firewall model

With the environment modelled, meaning it is possible to transition states representing
packet creation and forwarding through the network, the firewall can be created.

“If I had more time, I would have written a shorter letter.” Blaise Pascal (1657)

The firewall consists of two machines, the first names and sets up the events within a
firewall while the second contains the detailed math. The stateful firewall machine is very
complex and as observed earlier this is not ideal for future expansion and maintenance of
the model. The quote above attributed to Blaise Pascal, seems very appropriate. Future
iterations will seek to split the stateful firewall machine into several machines.

1. Firewall events

2. Stateful firewall

1. Firewall events

This first machine sets up the event framework for the firewall. Six events are specified to
reflect a FSM (see Figure 5.3) where packets are accepted, firewall state may change and
packets are ultimately either forwarded or dropped.

Time is represented in the firewall model using a ticker that increments each time the
firewall event is entered. This enables the model to simulate the passing of time (more
correctly of events) which is used to expire old firewall rules using a time-out field.

76

Figure 5.3: An event machine for a stateful firewall (occupies a chokepoint).

2. Stateful firewall

The example formal math that follows is from the f irewall event and in explaining it, may
assist with following other examples. The full model, including definitions, is provided in
Appendix B.

Here the global boolean f w f orward is set. It is used as a predicate in the event f irewall f orward
(see Figure 5.3) where if f w f orward = true the event may be transitioned to, if f w f orward =
f alse it cannot be activated and instead the transition is to f irewall drop.

1. f w f orward := bool((src ∈ trusted ∧ dst /∈ dangerous)∨
2. (
3. src ∈ ext ∧ src /∈ trusted∧
4. (∃ ident, protocol ·
5. ident ∈ f w rules ∧
6. protocol ∈ PROTOCOL TYPE ∧
7. ident 7→ src ∈ f w src ip ∧
8. ident 7→ dst ∈ f w dst ip ∧
9. ident 7→ protocol ∈ f w protocol ∧
10. packet id 7→ protocol ∈ pkt protocol
11.)
12.)
13.)

Table 5.1: Firewall forward predicate

The function returns true if the first line (1) is true, where the source is trusted and the
destination is not dangerous. Otherwise it returns true if the source is external, not trusted
(3) and there exists in firewall state an existing firewall rule (ident = rule id) (5) that has this
packets details (4-10), essentially the packet’s five tuple of {src, dst, protocol}where src and
dst are abstractions of IP:port.

The six firewall events are detailed in this machine and are briefly described next.

Firewall replaces the chokepoint event established in the environment model. This lo-
cates it on a path segment between the two domains where it will observe all packets ex-
changed. It identifies if a packet should be forwarded or dropped by referring to its ACL
(Trusted and Dangerous hosts) and dynamic rules, then sets the appropriate predicate to ei-
ther forward or drop the packet.

Forward examines the packets protocol and TCP flags if any. On seeing a UDP or TCP
SYN packet arriving from a trusted host for the first time, the predicate for f irewall add rule

77

is set. If the existing rule times out or on seeing the TCP closing handshake the predicate
for f irewall remove rule is set. If neither of the above apply, the predicate for f irewall exit
is set.

Add rule adds a rule to the firewall’s dynamic state. This takes the form of a five tuple,
for example, {packet id 7→ src ∈ f w src ip, packet id 7→ dst ∈ f w dst ip, packet id 7→
protocol ∈ f w protocol} where src and dst are abstractions of IP:port. By adding to the
firewalls dynamic state, this rule will allow packets from external untrusted hosts that are
replying to internal host requests. The predicate for f irewall exit is set.

Remove rule removes the rule (the five tuple) from the firewall’s dynamic state. The
predicate for f irewall exit is set.

Drop forwards to packet drop, a state in the environment that can observe and record
the behaviour, in this case the lack of an output packet. The predicate for the environment
event packet drop is set, this ensures the environment can “see” the result..

Exit sets the predicate for the environment event packet arrive.

5.1.3 Creating test cases

The first completed model of a firewall in Event-B was applied to the modelling software
ProB. The model performed stateful firewall functions including dynamically altering state
to allow external untrusted hosts to reply to internal trusted hosts. It did not include at-
tacks from the environment nor did the firewall remove rules on observing a TCP closing
handshake, but did it close sessions due to timeout.

It was expected that the MBT plugin for Rodin1 would allow the generation of MBT
test cases from the Event-B model. Unfortunately it was found the plugin (developed for
Rodin 2.0) would not work for Rodin 3.2. Reverting to earlier versions of Rodin introduced
problems with the model developed so far and in order to keep moving forward ProB was
adopted instead for test generation.

ProB is an open source model checker that integrates with Rodin and accepts Event-B
models. It is a stand-alone application that allows visualisation of the model and provides
model checking strategies independent of those in Rodin. ProB was not required for its
model-checking or visualisation — Rodin was sufficient in both cases — but for its ability
to explore the state space of Event-B models and generate traces (that will form a test script)
in the form of an XML file (see C.1). However, it was discovered that ProB only generates
a breadth first exploration of state, terminating when all transitions have been traversed at
least once. Consequently we had only 14 test cases (see Appendix C.1) which do not cover all
possible paths. A search for other model-checkers that can accept Event-B was conducted,
however, while research papers were found, no other Event-B compatible model checkers
were found.

Writing an extension for ProB or addressing the problems within Rodin’s MBT plugin
may be required to allow the use of the strategies covered in Section 3.5.5, but this will be
left for future work. While not ideal, the test cases generated are sufficient to continue with
developing the test harness and they may be supplemented with targeted tests.

1http://wiki.event-b.org/index.php/MBT plugin

78

5.2 Creating the test harness

The test harness is custom code created for this research. It is written in C with the test
analysis server written in Ruby. It is intended to replicate a network environment, reading
from the XML test script and create traffic to be passed through the SUT. It accumulates state
regarding the tests and generates a web page reporting the tests pass, fail results. The roles
performed by the test harness are broadly:

1. Incorporate the software under test

2. Read the XML test document

3. Generate and send network packets

4. Receive packets and reply

5. Accumulate XML state

6. Analyse and display results in a web page

To accomplish these roles the test harness needs to be able to record state as the tests
progress and aggregate that state into an XML document. These were the first two problems
considered, neither are trivial given this test harness is a distributed system over a network.

5.2.1 Recording state

This is the ability to record state as the test harness processes the test document, generating
and responding to generated packets. The SUT has its behaviour deduced by the environ-
ment — if a test prompts the expected behaviour, it is reasonable to assume the SUT followed
a process equivalent to that represented in the model. Cheating such a system is difficult as
the cheat is still required to demonstrate the behaviour the model expects.

Not all state is easy to capture, for example, the TCP protocol’s opening and closing
handshakes proved difficult. These protocols are automatically completed between the
hosts without any opportunity to record the states created by the protocol. However while
this allows the hosts to abstract this detail away, the firewall SUT will observe every packet
in the handshake.

The naive first approach was to use socket programming in C, specifically raw sockets
which allows the creation of custom packets that may be used to create the handshake se-
quence. By creating and responding to the packets individually, state may be recorded at
the same time. This failed as it was discovered the custom TCP protocol algorithm was
superseded by the faster responding OS kernel’s implementation.

The behaviour observed (see Figure 5.4) is complicated. It involves race conditions and
packet sequence numbers that must be matched for a packet to be accepted. The image
above shows a blue path that is started in application space and taken over by the kernels
on both hosts (normal behaviour). Each kernel will see the current packet before any ap-
plication and they also respond faster than the applications. The diagram indicates a TCP
session is successfully created. However, the responses from application space are rejected.
The first because the recipient will base sequence numbers on the first accepted SYN/ACK
packet, meaning the second will be incorrect. The second response is based on seeing Host
B’s SYN/ACK, the resulting ACK packet is therefore a copy of the ACK packet already sent
by the kernel and is rejected because the sequence numbers are the same (sequence numbers
need to advance).

79

Figure 5.4: An application racing the kernel to establish a TCP session, will fail.

That TCP protocols are are processed in kernel space was a surprise. Kernel space is
used for security and efficiency reasons, however this means that while successfully starting
a TCP session can be logged, the individual packets used to establish the session cannot.
This is a disconnect as a firewall operates on the individual packets and the formal model
developed recreates the entire handshake.

Forking the Linux kernel2 was considered. Hacking the kernel may provide the ability to
record state from message passing as it built up in the TCP handshake. Investigation how-
ever showed a potentially steep learning curve and long build cycles involving recompiling
and testing an operating system.

Also considered was SystemTap3, a system that places listeners on kernel events of inter-
est that will then generate a report based on requirements detailed in a scripting language.
The main benefit of SystemTap is that it can be run against an already operating kernel and
there is a library of scripts that work with network functionality. However, it requires root
privileges and creates security issues (for example, it may expose passwords). It is pos-
sible this may work within VMs, however the approach was abandoned as the prototype
applications were being developed on university systems.

As a compromise, it was decided that the successful instantiation of a TCP session could
be proven by the subsequent passing of TCP traffic. However this means the prototype
test harness loses detail during TCP handshakes, detail that may be useful when analysing
failures. This may be an area for future improvement.

5.2.2 Aggregating state

Within the test harness the distributed end hosts create test state. Three state aggregation
strategies were considered; collecting state from each end host as a separate process, perhaps
using follow-on packets; using a back channel to aggregate data; and aggregating the data
on the test packets.

Collecting state as a separate process would slow the processing of the test script. This
might be mitigated by collecting all the state after completion of the tests, but still leaves
the problem of establishing which state belongs to which test — test details may need to be
carried in packet data.

A back channel, or communications direct with the test generator offers speed advan-
tages in that processing the tests and gathering results could be performed in parallel —
perhaps also requiring test details to be carried in packet data to enable matching results

2https://github.com/torvalds/linux
3https://sourceware.org/systemtap/

80

Figure 5.5: Sketch of MBT test server algorithm

with tests. This may be explored in future, but it adds complexity compared to the third
option.

The third option of appending test state to packet data as the test is conducted was
chosen due to the ease of implementation. However, one consequence of this approach is
that a packet lost on returning to the test generator will include the test state appended by
the response server. This may make it difficult to determine the cause of some failures and
is an obvious weakness of this approach. At present the test analysis only determines pass
or fail. More sophisticated analysis may also require more sophisticated data collection.

A fourth option became apparent later, after option three was implemented. Ultimately
the test harness consists of multiple VMs hosted on one host. That host can provide a shared
file for all hosted VMs, with read/write access. This shared file can then be used for aggre-
gating test results. This may resolve the issues resulting from the approach taken and is an
area for future improvement.

5.2.3 Test-harness work flow

Before coding was started the work flow of the test generator was sketched out to guide and
better understand its functionality. This is illustrated in Figure 5.5 with transitions noted in
pseudo code and branching conditions highlighted.

The work flow starts with the test generator creating a results.xml file, then opening the
tests.xml file and iterating through the tests, actioning any starting from an internal server.
Once these are complete, the algorithm loops and the test generator actions all tests starting
from an external server.

Once both loops are completed the results are aggregated, sorted and compared before
presenting the results on an html page.

The test generator algorithm broadly followed this plan, the only part not implemented
was the time-out when awaiting replies — a timeout may be caused by either the packet or
the packet’s reply being dropped, in both cases the firewall behaviour would be recorded as
<dropped packet>. This was not implemented as the controlled environment meant time-
outs due to networking problems do not occur.

81

5.2.4 Test and response servers

Three languages were considered for the test generator and response servers, Python, Ruby
and C. The three are used extensively in the networking discipline and the author is familiar
and comfortable with all three. C was chosen because of its low level access to socket pro-
gramming and its capacity for creating and sending custom packets utilising raw sockets.
While attempts to use raw sockets to replicate the TCP handshakes were not successful this
allows, for example, the test generator to send multiple SYN or FIN packets outside the
normal TCP protocols to simulate network attacks.

The test generator and response servers are written to run as terminal applications and
include a custom utility library of scripts with over 100 unit tests. This also involved writing
a unit test framework to operate in a similar manner to JUnit or Ruby tests. Bash scripts are
utilised to compile the C source code and instantiate each server with supplied or default
parameters.

The test generator functionality was added incrementally, starting with basic messaging
between test and response servers using both TCP and UDP. Reading the file tests.xml was
then added and the capacity to generate packets from the test script. As the test generator
successfully generated packets and populated the data payload with test state, the response
server code was extended to recognise the incoming packets and respond with additional
test state appended to the data payload.

Both the test generator and response servers share code where possible, both compiling
from the same set of C files. This includes the utility library written for the project and
common definitions such as the state language used to describe state transitions both the
tests to be conducted and the outcome of those tests.

The response server is designed to play five roles; it responds as an internal server which
is trusted or dangerous (alias quarantined) and as all three of the external server types,
trusted, untrusted and dangerous (see Figure 2.13 in Chapter 2). It is intended to be repli-
cated five times in the test harness to perform these five separate roles, each with a unique
IP:port address. Each response server maintains an open port that listens for UDP and TCP
traffic from the test generator. On receiving a packet it copies the state recorded in the
packet’s data payload and appends new state summarising the actions it has taken before
attaching it as packet data to the reply.

5.2.5 TCP’s unexpected behaviours

Initially the test harness suffered from slow and inconsistent behaviour due to the volume
of tests using the same IP:port addresses. It became apparent the TCP protocol was not
keeping up with the tests being run.

TCP is a complex protocol designed to provide reliable communications over an unreli-
able network. In the face of packets and connections being lost, the protocol seeks to seam-
lessly recover using, for example, timeouts or wait periods. When attempting to utilise TCP
in non-standard ways (for example, writing tests that only pass if the packet or connection
is dropped), unexpected behaviours surfaced.

Utilising the network tool netstat on the response servers started to reveal the problems,
the first of which was the ~120 seconds wait incurred as TCP attempts to recover lost con-
nections, the TCP connection retry time-out. The second occurs if the connection has not
been closed correctly where the TCP ports enters the TIME-WAIT status for a period (an-
other ~120 seconds), waiting for the packets that will allow the connection to properly close.
Given many firewall tests are testing to ensure packets and connections are dropped, this
generates TCP problems that must be resolved before the next test can be run. Not doing so
led to the unexpected behaviours observed.

82

~
~

TCP connection retry time-out
Tests that should result in dropped packets, will reflect a loss of TCP connectivity (in

the open network, other network causes for dropped packets exist which are not examined
further). The OS will then attempt to re-establish connectivity.

The connection retry period is controlled by the kernel operating system, in this case
Ubuntu v14. It may be reduced by minimising the kernel variable net.ipv4.tcp syn retries
from from the default value of 6 (~120 seconds) to 1, reducing the retry period to ~3 seconds.
The test harness is a controlled environment and it is considered the faster time-out will not
adversely affect the accuracy of the results. However this still incurs a ~3 second delay for
each test that results in a dropped TCP connection which extends the time needed to run a
suite of MBT tests.

Future work will address issues that may arise when using the test harness over the
Internet, such as the impact of lost connections and latency delays that because of the setting
adopted, if over ~3 seconds would cause a test to fail.

TCP TIME-WAIT
TIME-WAIT is a TCP state entered into by the host that initiates the close. In effect it

stays in this state and delays finishing the close by 2MSL (maximum segment lifetime — an
arbitrary value selected by the OS developer, Linux has adopted 60 seconds).

The waiting period for closing a TCP port is influenced by socket settings established
when the port is opened. Initially socket settings were used to reduce this period to 1 sec-
ond however it was found that while the socket was closed, the TCP ports still remained
open. This was observed using the Linux netstat tool which enabled open processes to be
identified by PID (Process ID). Despite killing the process, the socket continued to remain
open for ~120 seconds in the TIME-WAIT state. Normally this allows late packets to be pro-
cessed, however the test harness has no need for this behaviour and worse, the following
tests displayed inconsistent behaviour.

After a review of the failing cases it was found that the underlying problem was tests that
did not include steps to close the TCP session. Given earlier solutions were not working, a
housekeeping algorithm was added. This identifies those individual tests that start a TCP
session and deliberately fail to close it. Housekeeping then closes the session once the test
completes to avoid disrupting the following tests.

5.2.6 Analysis Server and Results Presentation

The analysis server is written in Ruby, chosen because it offers easier processing and analysis
of text strings than either C or Python. It takes as input the two XML documents represent-
ing the tests and results. It compares the two and establishes how many tests were passed.
These results are then written to a JSON file detailing the test name and the pass, fail result.

This allows the possibility of analysing the two documents further and providing pos-
sible reasons for why a test failed. Time constraints prevented deeper exploration in this
area.

Ruby is also used to present the results, using the Rails web framework. It presents an
html page with embedded Javascript that uses AJAX to retrieve the JSON analysis file and
create a pie chart showing the pass and fail test results.

5.2.7 Discussion

At this point we have implemented three servers that can be hosted on multiple terminals
on one host computer. The test generator parses the test.xml document and masquerades as
various hosts as needed by the tests. The response servers respond as trusted, untrusted or

83

~
~
~
~
~

dangerous hosts and are identified using port number; localhost:6000 for the trusted server,
localhost:6600 for the untrusted server and localhost:6660 for the dangerous server. The
distinction of internal versus external hosts is meaningless without a firewall however this
did not otherwise prevent testing of the algorithms.

When running the MBT tests roughly 50% failed. This was expected as the firewall com-
ponent that enforces reachability constraints was not present. To address this and incorpo-
rate the first firewall now required porting the servers and firewall to a network of virtual
machines.

5.3 Networking the test harness

Three options for creating the networked test harness were considered. Mininet which is
often used in SDN networking experiments; VirtualBox which would require some config-
uration to enable networking between VMs; and a hybrid of the two using Mininet to route
to VMs.

Mininet is commonly used to test SDN networks and advice was received that Mininet
utilises VMs for each host, therefore these should be able to host network functions. How-
ever an extensive online and literature search failed to find examples of Mininet being used
natively to create this type of test bed for network functions. One solution, describes a cus-
tom add-on to Mininet designed to facilitate hosting network functions [129].

In contrast VirtualBox has extensive documentation and tutorials explaining how to set
up networking between VirtualBox machines. The third option of creating a hybrid was
considered but rejected in favour of a single approach using VirtualBox. It was hoped this
would reduce test harness complexity.

5.3.1 Virtual machines

A virtual machine (VM) is a complete operating system installed on a host in order to create
a hosted computing environment. Multiple VMs may exist on a single host and each VM
may host applications. In this way a Windows computer may install a Linux VM as a guest,
enabling Linux based software to be run within the VM, on the parent computer. Another
use may be to allow multiple applications to run on a host whilst ensuring isolation between
applications.

Figure 5.6: The test harness framework

For the test harness several VMs are hosted on a single host to create a test network.
These VM’s are all booted from an Ubuntu image (Ubuntu v14) and are networked together
per Figure 5.6.

84

There are two networks shown, 192.168.60.0/24 for the internal network and 192.168.66.0/24
for the external network. The two hosts labelled internal and external may each represent
larger networks on either side of the gateway that connects these two hosts.

The test generator has a NIC in both networks. It is a multi-homed host, meaning the
host can use either NIC in order to masquerade as an internal or external host. Generated
packets will have as a source address either an internal address or an external address. There
is no direct link between the two NICs (unlike the gateway in Figure 5.6). In this way the
test generator may, for example, create traffic from the internal address 192.168.60.50 for the
external address 192.168.66.6 that can only be routed via the gateway VM.

The gateway VM passes packets from one gateway NIC directly to the other acting as
the sole path between the internal and external hosts. This VM will later host the firewall
SUT.

Networking Challenges
On reflection the assumption that networking the four VM’s would be easy was not

helpful. Initially three hosts were set up including one hosting the chosen test firewall,
IPCOP4 — setting up a firewall was perceived as the most unfamiliar task. After a day or
so attempting to resolve networking issues, the firewall was replaced with an Ubuntu OS
to route directly between the two domains, simplifying the task of debugging the network.
But at the same time the test generator VM (which needed to be multi-homed) was added —
unbeknown to the researcher this added significant network problems caused by the choice
of the Linux operating system.

Reading blogs, text books and experiments to resolve the networking issues, consumed
around five days. Early in this period experimenting broke the universities Internet through
misuse of the DHCP (dynamic host configuration protocol) feature on VirtualBox; one of the
variety of connection options available. The experiment failed and unaware of its effects (or
purpose), the DHCP server was left over-night without closing either the VM or the host
computer. The following morning one of the universities senior systems administrators
visited personally. This resulted in some valuable one-on-one help with setting up the VMs
which was leveraged later into help critiquing the routing being used between the VMs.

Eventually it was discovered that the Ubuntu operating system gets confused when
there are two IP addresses assigned to the one host (the test generator) and the host is not
intended to be a gateway.

The phrase ‘multi-homed’ turned out to be the final key and was discovered in a blog.
The issues are described in RFC1122 Section 3.3.4.2 “Multihoming Requirements” [130]
which details two models relevant to multihoming and the treatment of incoming pack-
ets; a strong host model and a weak host model. A strong host OS will associate IP addresses
with the NIC, discarding incoming packets where the destination address does not match.
A weak host OS will associate IP addresses with the host and will accept packets destined
for those IP addresses on any NIC. RFC6419 Section 3.2.2.2 “Outbound and Inbound Ad-
dresses” [131] advises that Linux implements the weak host model and can be configured to
support the strong host model.

Several issues had to be overcome to achieve the strong host model in order to achieve a
multi-homed host in Linux. These included; reverse path routing, resolving source address
selection, and ARP flux. ARP flux is detailed next as an example of a complex problem.

ARP flux

4IPCOP was chosen as it Linux based, appears to be well supported, is open source under the GNU Free
Documentation License, Version 1.2 and it is fully featured. http://www.ipcop.org/

85

Address resolution protocol (ARP) is a layer two protocol, enabling communication be-
tween neighbouring hosts by utilising the hardware address (MAC address) on their Eth-
ernet cards (NICs). Normal behaviour is to hold neighbour IP and MAC addresses and
associate them with a specific port to send messages out on (eth0, eth1). If a message comes
in with an unrecognised IP address, the ARP protocol broadcasts to its neighbours a “who
has” request in order to update its tables. The recipients of this request will only reply if
the listening NIC card is associated with that IP address. If no reply is received, the packet
cannot be forwarded.

When applied to a multi-homed host with an OS that has adopted the weak hosting model
(Linux), the ARP protocol searches all NICs for associated IP addresses and responds as
soon as it finds a match. This resulted in the external NIC replying “I know the internal IP
address”, leading an external untrusted host able to make direct contact via that NIC, in the
process circumventing the firewall.

The fix was to set two flags within the kernal (arp ignore, arp announce)5 which then
allows ARP replies only if the source IP of the incoming ARP packet is part of the the logical
network configured on this interface. For example an interface configured with the IP ad-
dress 192.168.66.50 and netmask 255.255.255.0 will respond to ARP requests with a source
within the range 192.168.66.0 to 192.168.66.254.

5.3.2 Incorporating the Firewall

Figure 5.7: The test harness, including response servers and the firewall

In Figure 5.7 the gateway VM’s Ubuntu OS is replaced by the firewall IPCOP which is
configured to identify the internal and external networks, and its ACL is populated with
details of trusted and dangerous hosts in both networks.

A firewall controls access using the five tuple defined as {src IP, src port, protocol,
dst IP, dst port}. Each IP and port uniquely identifies a source or destination host and
service (for example, 192.168.66.6:6660 uniquely identifies a host service). This feature is
utilised within the test framework as shown in Figure 5.7. Each virtual machine has its
own IP address, with the gateway and test generator VMs having two. The internal and
external hosts each run multiple instances of the response server (as a service on the host)
with each instance of the response server utilising a unique port. In this way a firewall can be
told through configuring its ACL that 192.168.66.6:6000 should receive different treatment
to 192.168.66.6:6660.

5https://wiki.openvz.org/Multiple network interfaces and ARP flux

86

5.3.3 Performing the tests

It should be remembered that with MBT, the complexity and challenges are in creating the
formal model and creating the test harness. With these in place creating and performing the
tests is relatively trivial. The model test strategy (see section 3.5.5) creates the tests.xml file
which is then passed to the test harness which takes care of the detail of running the tests
through the SUT (see Appendix C).

Without the firewall 50% of the tests were failed, representing tests that require a firewall
to, for example, stop flows to dangerous hosts and unsolicited flows from untrusted hosts.

When the firewall (IPCOP) is subsequently installed all the tests in Appendix C.1, pass.

5.4 Revisiting the firewall model

Upon completing the prototype test harness and demonstrating it performs as expected,
attention returned to the formal model. The intention was to test two example attacks and
the supposition that SDN firewall state is not always the same as end host state.

The two attacks modelled in the environment were repeated SYN and repeated FIN
packets. The third test where an external host attempts to re-open a closed session, is also
modelled in the environment.

Repeated SYN packets
Attackers may use repeated SYN packets for a variety of purposes, for example, scan

a network [132], conduct a SYN Flood (a DoS attack) [133] or exfiltrate data from within a
network by disguising it as a SYN packet. The event ext ATTACK SYN f lood explores a
SYN Flood attack by creating multiple SYN packets from the same address.

Repeated FIN packets
Attackers may use repeated FIN packets to attempt to covertly scan a firewall [132]. The

event ext ATTACK FIN scan explores FIN scanning by creating repeated FIN packets. The
attackers utilise normal behaviour for a closed port, which is to reply with a RST packet,
while an open port merely drops the packet. Open ports are therefore identified by their
lack of response.

Figure 5.8: The external host should not be able to open a TCP session.

Reopening closed TCP sessions
Attackers here may utilise a lack of or slow convergence between firewall and end hosts.

This is a problem that may be seen in SDN as an architectural problem where requiring net-
work functions to rely on state held by third parties may force the adoption of strategies
such as rule time-outs or requesting instructions from the third party holding the relevant
state. These leave, for example, a firewall continuing to accept packets and therefore con-
nection requests from untrusted external hosts, which may result in perpetually open TCP
sessions. This is recreated in event ext ATTACK reopen closed TCP session which opens (1)

87

and closes (2) a TCP session, followed by the external untrusted host attempting to estab-
lish a new TCP session (3) while the firewall is still converging with the end host state (see
Figure 5.8).

5.4.1 State explosion

With the initial Event-B modelling for the three new events completed (passed model check-
ing which proves the math is sound — built the thing right), the model was passed to ProB
to develop the test document (which will demonstrate the behaviours are as expected —
built the right thing). It was anticipated this may highlight further issues to be resolved in
the three new events.

However, ProB and the hardware used (Intel i7, 4GB RAM, Windows 7) failed to cope
with the exploration of the increased state space. This is referred to as state explosion.

An analysis of the new events shows that the event ext ATTACK reopen closed TCP session
adds considerably to the depth of the state exploration to be undertaken by ProB, while the
three events add to the breadth. It may be recalled that ProB performs a breadth first state
exploration. Every level of depth added, exponentially increases the state required to be
explored. In this case the model sets up and closes a TCP session, the longest path so far
successfully explored, then attempts to send a SYN packet to re-open the session. A firewall
should prevent this; with the model going through the states ext untrusted packet to int,
protocol TCP start, f irewall, f irewall drop, packet drop and terminate. In total the depth re-
quired to search the new state space is increased by 5 (ignoring terminate which is present
regardless).

This effectively halted model development with time becoming short. However there
are potential solutions.

Potential state explosion solutions
The are several potential mitigation strategies available to this state explosion problem.

1. Improved hardware, for example, add more RAM or explore utilising grid computing

2. Use abstraction, for example, reduce the TCP handshakes to two events {open, closed}

3. Create an explicit test case for the scenario (see Section 3.5.5)

The first two strategies would take time that was not available to the researcher, explor-
ing these is therefore left as potential future work. An explicit test strategy however could
be created to test a scenario and is valid in circumstances where a models computational
needs out-strips the equipment available. Appendix C.2 contains several additional tests
the author considered important while developing the test harness plus one for the scenario
illustrated in Figure 5.8.

5.4.2 Refactoring the test harness

The tests created by ProB utilising its breadth first strategy were known to be insufficient
and adding the explicit test case illustrated in Figure 5.8, exposed a deficiency in the test
harness.

Up to this point all tests are initiated by the test generator masquerading as an internal
or external host, as needed. The new test case starts with the test generator masquerading
as an internal host opening and closing a TCP session with an external untrusted host. This
is followed by the external untrusted host attempting to start a new session. This requires

88

the response server to not just respond to a flow initiated by the test generator, but to also
initiate a flow where indicated by the test.

Refactoring involved modifying the data payload to include the entire test, then enabling
both the test generator and responder to parse it to determine who initiates the next packet.
Where the next step of the test involves a host that is not the first host (the role taken by the
test generator), the response server initiates a packet while the test generator listens for it.

Subsequently running the new tests on the test harness (without IPCOP), bought new
unexpected problems related to the TCP TIME-WAIT state. The original problems described
in Section 5.2.5 were resolved using a housekeeping algorithm, after the test finished, to
close sessions deliberately not closed by test cases. In this case, because the test is still run-
ning, the housekeeping algorithm has not been called. Consequently the connection attempt
by the external host is rejected by internal host which is still in the TCP TIME-WAIT state.

Further research, starting with Stevens et al. (2004) on Unix Network Programming [134]
and online articles 6 7 8 9 reinforced the earlier understanding that attempting to adjust or
negate the TIME-WAIT period was not recommended. The authors describe two reasons for
the TIME-WAIT state; to allow reliable connection and to allow old packets to expire in the
network.

Adjusting or negating the TIME-WAIT mechanism may be avoided by using ranges of
ports rather than a single port, for example, dangerous hosts may occupy port numbers 6660
to 6670 with every new test using the next port. Extending the test harness for this preferred
option is left for future work, however, this would not satisfy a testcase which deliberately
reuses an IP:port which has just been closed.

A second approach utilises a socket option called SO LINGER which enables setting
the TIME-OUT value to 0 and terminates connections using RST packets. This was earlier
described as the equivalent of rudely hanging up the phone. However implementing it
overcame the problems observed with the TIME-WAIT status.

Refactoring the test generator and response servers resulted in the work flow shown in
Figure 5.9. Over the course of this test both servers alternate between active and listening
sockets, and back again in preparation for the next test. The end result is a test that fails
where there is no firewall installed (the last TCP open request succeeds) and passes when
a stateful firewall (for example, IPCOP) is installed (state convergence between the firewall
and end hosts is good and the last TCP open request is dropped).

It might be observed that to prove the firewall works correctly relies on the absence of
data arriving from the response server (ie: the listening test generator times-out). It would
be preferable to rely on the response server data, particularly if the tests become more com-
plex, however any data transfer at present is as data on test packets which is of course
dropped by the firewall. The issue of how to aggregate distributed data was discussed in
Section 5.2.2, this test perhaps reinforces the need for a different approach which we leave
for future work.

With the test harness performing as expected and the firewall IPCOP passing all tests it
is timely to revisit the hypothesis.

6TCP option SO LINGER (zero) - when it is required http://stackoverflow.com/questions/3757289/tcp-
option-so-linger-zero-when-its-required. Retrieved May 2016.

7TIME WAIT and its design implications for protocols and scalable client server systems.
http://www.serverframework.com/asynchronousevents/2011/01/time-wait-and-its-design-implications-
for-protocols-and-scalable-servers.html. Retrieved May 2016.

8The TIME-WAIT state in TCP and Its Effect on Busy Servers. http://www.isi.edu/touch/pubs/infocomm99/infocomm99-
web/. Retrieved May 2016.

9UNIX Socket FAQ - Please explain the TIME WAIT state. http://developerweb.net/viewtopic.php?id=2941.
Retrieved May 2016.

89

Figure 5.9: Test and response servers swap active and listening roles, mid test.

5.5 Revisiting the hypothesis

Recall that the hypothesis outlined in Chapter 4 expects to find state divergence between
the SDN firewall and end hosts. Having modified the end hosts to void the TIME-WAIT
behaviour may at first glance appear to void the test, particularly as TIME-WAIT will not
typically be voided in the wild; meaning even if a SYN packet gets through the firewall
because of its lack of state convergence, it may be interpreted by the receiving host as a lost
or wandering duplicate and rejected. The net effect would be the attacker fails to re-establish
the session.

One interpretation of this is that under certain conditions it proves that the combination
of the two disparate algorithms means there is no security hole. In fact this may be the case
where the internal host is guaranteed to initiate closing the TCP session. However it also
proves that the network function has not converged state with the end hosts, relying on the
end host to (perhaps) ensure a firewall failure does not compromise security.

On further reflection it may be recalled that the TIME-WAIT status applies only to the
end host that initiated closing the TCP session. An attacker that instigates the close is not
hindered by TIME-WAIT, as it is not a state the target host will enter (and its effects can be
voided on the attacking host).

Wang et al. (2011) describes a battery draining attack using the firewall flaw we search
for in this test [93]. The experiments were reported as being performed on two live carrier
networks. Given our new understanding of the impact of the TIME-WAIT mechanism it
would appear the experiment may have applied the strategy of always initiating TCP ses-
sion closure using the attacking host.

5.6 Testing Multiple Firewalls

The intention, based on the hype generated by existing research (see Appendix A), was to
test the SDN equivalent of a stateful firewall, compare its results with an in-line stateful
firewall and perhaps demonstrate that it has flaws that can be explained by the use of SDN
architecture.

During the course of this research it became apparent that despite the hype and in con-
trast to the dogma advocated by researchers, there are no SDN equivalents (yet?) to stateful
in-line firewalls. Only two SDN firewalls could be found to test and on close inspection they

90

are merely RESTful interfaces to a controller which will then direct switches to filter packets.
Both firewalls were tested in the test harness, in order to test the test harness prototype, and
compare both implementations against the firewall model, each other and the Open Source
Linux firewall IPCOP.

5.6.1 Adjusting the test harness for SDN applications

The existing test harness passes traffic through the firewall using the IP layer (layer 3). Ini-
tially attempts were made to utilise the capacity for Open vSwitch and SDN to also route
using IP addresses, however this proved more difficult than expected. Instead the harness
was adapted to utilise native switch functionality. The integrity of the tests is maintained
because it tests connectivity between end hosts regardless of the nature of the network func-
tion between them. The adjustments were as follows:

1. Open vSwitch was hosted on a VirtualBox instance with ports to the internal host,
external host and the controller. Only the controller was connected via layer 3.

2. The internal, external and test generator hosts had their network interfaces adapted
with the netmasks adjusted to 255.255.0.0 and gateways dropped.

3. Settings within VirtualBox continued to provide the virtual wiring between VirtualBox
instances, ensuring the only route between internal and external hosts is via the Open
vSwitch host.

4. To allay concerns that this network may enable the test generator to circumvent the
switch, the tests were run with each port on the test generator(internal, external) closed
in turn and packet flows monitored using the tool tcpdump.

It is acknowledged that this approach is not ideal and future work will endeavour to
adopt a more robust test harness solution.

5.6.2 The Ryu firewall

The Ryu firewall is provided with the Ryu controller and is detailed in the Ryu Book10.
It may be described as creating a firewall object within the controller that responds to

queries via the REST API (Representational State Transfer), a commonly accepted API for
passing and retrieving data over the Internet. Based on the instructions provided (for ex-
ample, an ACL comprised of flow rule parameters in JSON format) the firewall will convey
flow rules to switches. Should a switch request instructions from the firewall object, it will
reply with an appropriate rule. The default setting is to deny all traffic.

Timeouts are commonly used in firewall applications. Open vSwitch rule timeouts are
set to a default 10 seconds [23], with a hard timeout setting also possible (but not used by the
Ryu firewall). If a rule is not used for 10 seconds, the rule is dropped. Future flows are then
referred to the controller firewall application and a new rule may be installed. The controller
firewall application has no default rule timeout, meaning it will keep renewing the rule until
the firewall application is advised not to by a third party (the Network Operator or another
application). This is the same behaviour as in-line switches acting as packet filters (also
discussed in Section 3.2.3). There is no dynamic behaviour.

For the test, the Ryu firewall was configured using its REST API to accept packets where
both source and destination are Trusted hosts. This is the equivalent to actioning an ACL

10https://osrg.github.io/ryu-book/en/Ryubook.pdf Retrieved May 2015

91

white list. All other packets are dropped by default, which will include any packets from or
to hosts on the ACL black list(Dangerous hosts).

In total 6 out of 19 tests were passed (the tests are in Appendix C.1 and C.2). An analysis
of the tests that failed reveals the Ryu firewall performs as expected and drops all communi-
cation involving Untrusted and Dangerous hosts. This includes attempts by internal hosts to
visit Untrusted external hosts (this might include benign hosts such as; www.catlovers.com,
www.metro buses.com, www.my childs creche.com).

The next test changed the default to allow communication between all hosts. The Ryu
firewall was then configured to drop any packet where the source or destination host is on
the ACL’s black list (Dangerous hosts). This time the white list (Trusted hosts) are allowed by
default alongside all unknown hosts (Untrusted hosts).

In total 16 of 19 tests were passed. An analysis of the tests reveals that the more per-
missive policy allows a wider range of communication through. However, the three tests
that fail are informative; the first two are attempts by Untrusted external hosts to gain access
using first TCP then UDP protocols — both attempts succeed11. The third tests if firewall
access still exists for an Untrusted external host after the initial TCP connection is finished —
the Untrusted host still has access.

We conclude that the Ryu Firewall user may adopt one of two strategies; restrict access
only to white listed users which severely limits the utility of the network service for users;
or block only black listed users which allows untrusted hosts to have unfettered network ac-
cess. In addition the Ryu firewall’s use of time-out as a rule removal mechanism is demon-
strated to be susceptible to the attack described by Wang et al. (2011) where the attacker is
in a position to re-open a recently closed TCP connection and maintain it in an open state
for extended periods. This demonstrates an example of state divergence at the firewall.
When both hosts have agreed the connection is closed — by passing and acknowledging
FIN packets — the firewall should reflect this state and treat new connection attempts from
the outside attacker appropriately by dropping them.

5.6.3 The Floodlight firewall

The Floodlight firewall has many similarities with the Ryu firewall. It is pre-installed with
the Floodlight controller and is described on the Floodlight project page12.

The Floodlight firewall also offers a REST API that accepts flow rule parameters in JSON
format and installs rules into the controller firewall application. One of the acknowledged
limitations of the Floodlight firewall (this will also be a limitation of the Ryu firewall) is
that despite deleting a rule from the controller, the reliance on the switch timeout means an
existing flow will persist for as long as it has continuous traffic through the switches13 (see
Section 2.7.10).

The results of the tests are identical to the Ryu firewall. This means that to the extent
we have modelled and tested firewall behaviour we can claim these two firewalls are equiv-
alent. This does not preclude the possibility that a more detailed model and more thorough
automated test generation (ie: more than 19 tests) may find discrepancies, yet we can claim
they both share at least one fundamental flaw, they both introduce a third layer of state
divergence.

In contrast to both SDN firewalls, the in-line stateful firewall IPCOP passes all 19 tests.

11Criminals may easily register IP addresses for hacking purposes which because they do not appears on
black lists, are then considered Untrusted.

12https://floodlight.atlassian.net/wiki/display/floodlightcontroller/ACL+%28Access+Control+List%29+REST+API
13https://floodlight.atlassian.net/wiki/display/floodlightcontroller/Firewall

92

5.6.4 Testing other firewalls

Time prevented adapting the test harness to test proprietary firewall hardware, SDN fire-
walls using switch hardware (as opposed to VMs) or remote firewalls, however it is antici-
pated the test harness can be adapted to do so. This is left for future work.

93

94

Chapter 6

Results and Discussion

The author started and has finished this thesis with the belief that SDN offers significant
benefits to networking. This view has been influenced by existing research and surveys of
existing research.

However examining surveys of existing research also led to questioning the assertion
repeated by many researchers (see Appendix A) that all network functionality should be
moved out of the forwarding plane into the control plane. That this view is influential is
reflected in the increasing numbers of research papers proposing or using such an architec-
ture to provide SDN security [84–91]. Throughout the course of this research the author has
sought to clarify the blanket assertion that network functions should be purged from the
forwarding plane and has demonstrated that such a blanket approach is flawed.

6.1 Key areas of interest

Network functions are at the centre of this research and while the focus has been on firewalls,
chapter 3 also examined the NAT and load balancer. This was in order to find commonalities
between the three and derive a generic formal model of network functions that informed
the later work. Utilising this model may also prove useful when proving properties of a
network. We subsequently chose the firewall network function to illustrate in depth the
problems perceived with the current SDN dogma, this is discussed further in section 6.1.1.

The unifying theme of this research can be loosely described as the problems that arise
when using a remote decision maker to resolve local issues. There are parallels in other
domains where local decision making is arbitrarily centralised, for example, some business
models and the tensions between local and central governments. In contrast, business fran-
chising centralises the determination of new locations, franchise rules and activities that
benefit from a centralised view. For example, brand advertising. While the franchisee builds
and uses local knowledge.

In practical terms the problems manifest as network functions not being in the same state
as the end hosts expect (akin to local council not paying attention to local citizens) leading
to state divergence. This third level of SDN state divergence is discussed in Section 6.1.2

MBT was chosen as the tool to explore this domain and potentially find a range of issues.
It perhaps needs to be said that if only one issue was expected, there were faster ways of
exposing it. However the hope was to discover a range of interesting problems and this
was stymied only by the inability to take advantage of full path traversal through the model
when generating tests. To generate only fourteen tests was a disappointment. None-the-less
as a prototype the tool exceeded expectations and resolving remaining problems is a high
priority. The future potential for MBT is discussed further in Section 6.1.3.

95

6.1.1 Testing the SDN dogma — firewalls

The author’s paper Global and Local Knowledge in SDN [3], makes the observation that packet
information found natively in the forwarding plane can be used immediately by network
functionality in the forwarding plane. The SDN approach either uses stateless function-
ality, trading off capability to be stateless or stores the local knowledge in a remote third
party (typically the controller) contributing to a variety of state divergence problems be-
tween controllers, controller and forwarding plane, and network function and end hosts.
State divergence may cause loops, black holes and/or impact reachability.

Some network functions have stateless versions. Switches operating as packet filters
may stop flows according to an ACL (alias stateless firewalls as implemented by Ryu and
Floodlight). Load balancers may provide static mapping between requesting hosts and ser-
vice hosts. NATs may rely on static mapping of internal addresses to NAT ports. The author
has not yet seen a method allowing a stateless cache. In each case seen so far, the stateless
functionality has involved a capability trade-off (see Section 3.2).

It became apparent during the course of this research that while researchers were pro-
moting the SDN ideal, industry was being far more circumspect and research solutions ap-
pear to be falling short — it is possible the trade-offs may exceed the benefits. For example,
when searching for SDN firewalls to test only two SDN stateless firewalls were found; the
RYU and Floodlight firewalls. At present no SDN versions of a stateful firewall appear to
exist. Informal discussions with two Australian Telecommunication providers using and
selling SDN and NFV services, resulted in their separate, reluctant, admissions that for net-
work security they rely still on directing traffic to in-line proprietary firewalls.

The concept of a firewall appears to be muddied. Researchers (not just the developers
of the RYU and Floodlight firewalls) appear prone to pick the lowest possible specification
that may be called a firewall (a switch packet filter) and produce an application that can read
and interpret an ACL, generating appropriate flow rules (the RYU and Floodlight firewalls
do not do this, they rely on the network operator or another application to compile the ACL
into a JSON object containing the requisite OpenFlow parameters). Other researchers then
appear to conclude this means all firewalls and firewall use cases can now be accomplished
by using OpenFlow switches to offer packet filter functionality (see Appendix A).

The Faucet controller, which is based on RYU but is focused on layer 2 (data link), ap-
pears to also include the ability to direct switches to act as switch packet filters. This is
similar to the RYU and Floodlight firewalls, albeit using a YAML structure rather than JSON
to specify the requisite OpenFlow parameters. Time constraints prevented testing Faucet
(paired with an OpenFlow switch and actioning an ACL) for behavioural equivalence, but
this may form future work.

As this research demonstrates SDN firewall applications, using controllers to direct SDN
switches to act as switch packet filters, are not equivalent to a stateful in-line firewall. Re-
grettably we cannot test an SDN stateful firewall as none yet exist, however no doubt one
will appear soon.

6.1.2 SDN’s third layer of state divergence

The third layer of state divergence is network function state and end host state where net-
work functions may deduce end host state from passing packets. Of concern are scenarios
where the two end hosts believe, for example, that a communication has finished, while the
network function believes otherwise (see Sections 2.7.10, 4.1). Perhaps because it is not ca-
pable of observing and deducing state (for example, a stateless network function). This may
lead to security concerns and the tests conducted through MBT confirm the vulnerability
(see Sections 5.5 and 5.6).

96

The first two layers of state divergence have been discussed (state divergence in the
logically centralised control plane, Sections 2.3.1, 2.7.6 and state divergence in the control to
forwarding plane, Sections 2.3.2, 2.3.3, 2.7.9. The concern raised in this research is that these
three types of state convergence may compound problems in SDN leading to black holes,
loops and reachability problems (the tests conducted fall under reachability problems). How
severe these problems may be has not been established and is left to future work, however
flow volumes in networking at scale mean such issues cannot be trivialised.

Another question relates to whether this third layer of state divergence is applicable to
all network functions, a subset or perhaps only to firewalls. This is another area where more
research is required.

6.1.3 MBT in Networking

At the heart of this research is MBT, a technology that appears to be poorly understood and
utilised in the software industry. It is anticipated this research shows a potential new use for
the technology in enabling behavioural comparisons to be made between implementations
within the network industry.

Of interest to network engineers is the potential for formal models based on widely ac-
cepted standards, generating tests that can then be applied to network function implemen-
tations. If models and test harness exist, this may be close to push button technology.

Of interest to start-ups in the networking, NFV and SDN space is the potential for their
network function implementations to be directly compared with those from well established
names in the industry.

MBT is not a stand-alone solution for comparison of implementations. Formal mod-
elling cannot provide performance tests, nor hardware reliability tests, merely behavioural
tests (including potentially finding bugs). However it is black-box behavioural tests that are
missing from the network engineers toolbox.

6.2 Contributions

This thesis makes multiple contributions to SDN research, including using formal methods,
modelling several network functions (one in detail) and using MBT as a framework to ex-
plore the implementation of network functionality in both legacy networks and SDN. The
case for SDN to purge network functions from the forwarding plane is examined and found
to be a widely held yet unproven dogma.

Several examples of common middleboxes are examined and contrasted with their SDN
implementations to find the architecture used in SDN appears to limit the ability of Open-
Flow switches to perform as network functions. There is a capability trade-off that is not
explored in the SDN literature, a pre-requisite for discussing how novel SDN management
applications may overcome the resulting problems.

To illustrate the difference a stateful firewall is formally modelled and utilising model-
based testing, an in-line implementation of a firewall is compared with two SDN implemen-
tations. It is found that the SDN firewalls have traded away key firewall behaviours in order
to be controller applications, including that of state convergence with end hosts — meaning
these firewalls may be kept perpetually open by an attacker.

Specifically the main contributions of this thesis are:

1. An analysis of SDN literature to find ten problems that may be exacerbated by moving
network function algorithm and state from the forwarding plane to the controller (see
Section 2.7).

97

2. A formal model of a generic network function (see Section 3.3), based on the analysis
of load balancer, NAT and firewall functionality (see Section 3.2), a highly detailed
formal model of a firewall (see Section 5.1) and a MBT test harness (see Section 5.2).

3. The first application of MBT to network functions. The creation of tests from a formal
model of a network function and applying them to a test harness that tests in turn,
three implementations of that network function (see Section 5.6).

4. Possibly the first use of MBT as a tool for determining behavioural equivalence be-
tween black-box implementations, to the extent that behaviours have been modelled
(see Section 2.6). Useful in this domain because of the volume of vendors offering
network functionality with similar behavioural properties.

5. The creation of abstractions of middlebox functionality (see Section 3.3) which may
assist in proving fundamental network properties such as no loops, no black holes and
reachability in the presence of dynamic network functionality. These are the subject of
ongoing research.

6. A third layer of state divergence in SDN. The first two layers are discussed (state di-
vergence in the logically centralised control plane, Sections 2.3.1, 2.7.6 and state diver-
gence in the control to forwarding plane, Sections 2.3.2, 2.3.3, 2.7.9) and the third (state
divergence between network function and end hosts) is described (Sections 2.7.10, 4.1,
6.1.2) and demonstrated (Sections 5.4, 5.5).

6.3 Future Work

Research directions
There is a wealth of interesting directions to take this research:

• More research on the limitations SDN architecture imposes on how network functions
are implemented and exploring the forwarding plane verses control plane trade-offs.

• Are concerns expressed on the third layer of SDN state divergence widely applicable
to all network function types or a subset or perhaps only to firewalls.

• The three layers of SDN state divergence appear to compound to create problems that
increase black holes, loops and reachability problems in SDN networks. This supposi-
tion should be tested.

• Can novel SDN management applications mitigate the trade-offs in adopting stateless
network functions?

• Using SDN to manage in-line network functions may be an interesting avenue.

• Will the generic properties of network functions detailed in Chapter 3, prove to be
valid over a wider range of implementations?

• Repeat the surveys conducted by Sherry et al. (2012) and Sekar et al. (2012) into mid-
dlebox ubiquity in current networks, taking into account todays potentially greater
availability of NFV and cloud services.

• Using better network function abstractions to prove network properties, such as no
loops, no black holes and reachability.

98

• Find (or develop) and test a stateful SDN firewall.

Improving the prototypes
There were also several aspects of the modelling and prototyping that will benefit from

more work:

• The ProB tool did not provide the range of test strategies expected. Extending ProB or
updating the MBT add-on to Rodin to run with current versions may be useful. Alter-
natively there may be benefit in exploring other tools as alternatives to Rodin/ProB.

• Mitigate state explosion by examining new hardware and other methodologies for
exploring a model’s paths without suffering from resource constraints (see Section
5.4.1). For example, perhaps Grid computing or utilising a cloud service.

• Develop the model environment further, to better reflect the range of bad behaviours
observed in the Internet (for example, from attackers) and include more protocols.
Another area for improvement is reducing the states traversed by merging existing
states into one for the TCP opening and closing handshakes.

• Modelling the firewalls hardware may allow resource depletion attacks to be mod-
elled, for example RAM and CPU.

• Model network functions such as NAT, load balancer and cache and compare various
implementations.

• The test harness might be expanded to test proprietary network functions, hardware
implementations of OpenFlow switches and perhaps remote network functions over
the Internet.

99

100

Appendices

101

Appendix A

15 Surveys of SDN research

At least 15 survey papers on SDN research have been published over 2014/15; surveying
a mean of 167 papers. [135–149], with one surveying 581 papers [144]. Reviewing these
surveys is insightful, in many respects they provide an excellent summary of SDN research.
However it is perhaps unsurprising for a relatively new field that this review may lead to
critically examining underlying assumptions.

Middleboxes provide the non-routing functions within a network. Examples include in-
line firewalls, caches, network address translators (NATs) and load balancers. These use lo-
cal knowledge in decision making in order to improve properties of the network. For exam-
ple, caching may be provided by a middlebox. Its function is to store commonly requested
web content in order to decrease latency for the consumer plus conserve the computational
and bandwidth resources of the provider. This cannot be achieved with an OpenFlow switch
which does not have the computational ability to utilise a cache algorithm nor the RAM to
hold the dynamic state.

15 of the 16 surveys, state or allude within the first 3 pages that the SDN forward-
ing plane is intended to be composed only of switches and routers — no middleboxes.
The remaining survey incorrectly claims the SDN control plane has a well defined inter-
face over middleboxes [139]. It appears the community strongly correlates the capabili-
ties of the OpenFlow interface, with the capabilities of SDN. Five of the papers directly
imply that OpenFlow switches are sufficient to provide (unqualified) firewall functional-
ity [138, 139, 142, 144, 149].

For example, Nunes et al. (2014) (an otherwise excellent survey) largely ignores the liter-
ature on middleboxes and appears to consider that they must by default be removed from
networks, hinting the function can be performed by controllers [146]. Many surveys rely on
articles such as Limoncelli (2012), whom asserts that middlebox functionality can merely be
achieved by switches, without providing research evidence [150].

“OpenFlow ... because it can drop packets, it can act as a firewall.”
Limoncelli (2012)

These assumptions appear to arise from the enthusiastic support of and reliance on
OpenFlow which offers a switch centric view of SDN. There is no OpenFlow mechanism
for network functionality other than switches. Consequently OpenFlow researchers appear
to easily adopt the idea that all middleboxes should be purged from the forwarding plane
and implemented as control plane applications.

The arguments that middleboxes should be purged include:

1. they increase network complexity [144] p.17

103

2. choke points create performance issues [145] p.500

3. integrating into the controller is preferred [146] p.1626

4. OpenFlow switches can rewrite packets. [150] p.46

These arguments to purge middleboxes are at odds with their ubiquity in current net-
works. Only three survey papers reference Sherry et al. (2012) who shows that nearly half of
all network nodes are middleboxes [11]. The remainder appear to assume middlebox num-
bers in networks are low. Sherry’s finding is supported by a similar survey by Sekar et al.
(2012) [10].

Key phrase Median occurrence of phrase in fifteen survey papers
middlebox 2
firewall 3
NFV 2
service chain 0

Table A.1: Review of fifteen papers surveying SDN research

This apparent ignorance of the volume of middleboxes in existing networks plus the en-
thusiastic adoption of OpenFlow’s switch centric view has perhaps created this next point —
that there is little interest in middlebox, NFV or service chaining research in SDN research.
Table A.1 shows a measure of SDN’s interest. It seems remarkable that in 15 survey papers
with over 2500 references, at least 581 of which are unique, the phrase middlebox (the phrase
covering near half the hardware in existing networks) is mentioned a median of 2 times.

SDN researchers occasionally tout examples of stateless middleboxes and promote them
as the SDN alternative, typically as ‘proof’ that middleboxes can and must be purged. How-
ever they rarely discuss that this stateless property may come at the cost of other proper-
ties. Chapter 3 discusses the difference between stateful and stateless firewalls, how stateful
NATs minimise flow table entries with benefits to switch speeds and how stateless load bal-
ancers use static, coarse distribution of flows which slows down the incorporation of new
new service hosts.

In summary, these 15 survey papers demonstrate there is a lack of SDN research to sup-
port the SDN dogma that all network functions should be purged from the forwarding plane
and placed in the control plane. These concerns appear to be shared by others, recently
the Open Network Foundation (2015) published a paper TR-518 “Relationship of SDN and
NFV” to address some of these issues and assist the two fields to capitalise on each others
strengths instead of, we quote, “reinventing the wheel” [4].

104

Appendix B

Firewall in Event-B

The Event-B model of a firewall and its networking environment.
Note that for reasons related to conserving space, the machine presented here is the final

machine (a snapshot) which includes all previous machines and thier various refinements.
Consequently this machine includes both the environment and the model of the SUT plus all
earlier refinements. Where events are extended by later events (for example, protocol TCP
is extended by protocol TCP start, protocol TCP continue and protocol TCP f inish) the su-
perceded events are not carried forward by Rodin into later machines.

B.1 Firewall Context

Defines fixed global values and sets.
CONTEXT c fw55 stateful firewall
SETS PROTOCOL TYPE T ACTION
CONSTANTS int ext NODES egress ingress chokepoint UDP TCP ID PACKET ID PRO-

TOCOL FW PROTOCOL PKT PROTOCOL HEADER PKT TCP SYN PKT TCP ACK PKT TCP FIN
NFB TCP SESSION REGISTER SRC IP DST IP trusted untrusted dangerous test UDP test TCP
FW TIME pass drop FW TIMEOUT interval FW RULE ID FW SRC IP FW DST IP FW PROTOCOL

AXIOMS
@axm0 1 NODES = 0 · ·1000 // nodes are a finite set
@axm0 2 int = 1 · ·5 // internal nodes are known/listed
@axm0 3 ext = (NODES \ (int ∪ {0}))
theorem @axm0 4 int ∩ ext = ∅
theorem @axm0 5 NODES = int ∪ ext ∪ {0}
@axm1 1 egress = {5} // all nodes forming the chokepoints between int, ext are

known/listed
@axm1 2 ingress = {999}
@axm1 3 egress ⊂ int ∧ ingress ⊂ ext
@axm1 4 chokepoint = egress 7→ ingress // the paths between the two domains,

total injective used (one to one)
@axm2 1 ID = N1
@axm2 2 PACKET ID = N // 0 is the null packet
@axm2 3 partition(PROTOCOL TYPE, {UDP}, {TCP})
@axm2 4 PROTOCOL = PACKET ID x PROTOCOL TYPE
@axm3 1 PKT TCP SYN = PACKET ID x {0, 1}
@axm3 2 PKT TCP ACK = PACKET ID x {0, 1}
@axm3 3 PKT TCP FIN = PACKET ID x {0, 1}

105

@axm4 1 NFB = T x {0, 1}
@axm5 1 TCP SESSION REGISTER = NODES x NODES
@axm5 2 SRC IP = PACKET ID x NODES
@axm5 3 DST IP = PACKET ID x NODES
@axm6 4 trusted = int ∪ ingress ∪ {500, 501, 502, 503} // Trusted external nodes

are listed, always allow packets to pass
@axm6 5 dangerous = {666, 700, 701, 800, 801} // Dangerous external nodes are

listed, always drop packets
@axm6 7 egress ⊂ trusted ∧ ingress ⊂ trusted
@axm6 8 untrusted = NODES \ (trusted ∪ dangerous)
theorem @axm6 9 NODES = trusted ∪ dangerous ∪ untrusted
@axm50 1 test UDP = TRUE
@axm50 2 test TCP = TRUE
@axm55 1 FW TIME = N

@axm55 2 ACTION = {drop, pass} // second drop to create an option for src =
untrusted, dst = trusted

@axm55 3 pass 6= drop
END

B.2 Firewall Model

MACHINE fw55 stateful firewall
REFINES fw50 firewall 6 evts
SEES c fw05 stateful firewall
VARIABLES src dst last transit is reply enter chokepoint exit chokepoint packet id pkt protocol

set pkt protocol pkt tcp SYN pkt tcp ACK pkt tcp FIN TCP sessions src ip dst ip spoof IP evt
target state terminate session closed fw machine fw tick fw finished fw action fw add rule
fw rules fw FIN fw src ip fw dst ip fw protocol fw timeout fw remove rule fw drop fw forward
fw exit

INVARIANTS
inv f w00 1 : f w action ∈ ACTION
inv f w00 6 : f w add rule ∈ BOOL
inv f w05 1 : f w rules ⊆ FW RULE ID
inv f w05 2 : f w src ip ∈ P(FW SRC IP)
inv f w05 3 : f w dst ip ∈ P(FW DST IP)
inv f w05 4 : f w protocol ⊆ FW PROTOCOL
inv f w05 5 : f w timeout ⊆ FW TIMEOUT
inv f w05 6 : f w FIN ∈ BOOL
inv f w00 7 : f w remove rule ∈ BOOL
inv f w00 10 : f w drop ∈ BOOL
inv f w00 11 : f w f orward ∈ BOOL
inv f w00 12 : f w exit ∈ BOOL

EVENTS
INITIALISATION
BEGIN

act00 1 : src := 0
act00 2 : dst := 0
act00 3 : last transit := FALSE
act00 4 : is reply := FALSE

106

act05 1 : enter chokepoint := FALSE
act05 2 : exit chokepoint := FALSE
act10 1 : pkt protocol := ∅
act10 2 : packet id := 0
act10 3 : set pkt protocol := FALSE
act10 4 : pkt tcp SYN := ∅
act10 5 : pkt tcp ACK := ∅
act10 6 : pkt tcp FIN := ∅
act15 1 : TCP sessions := ∅
act20 1 : src ip := ∅ // unique to host, uses node ID
act20 2 : dst ip := ∅
act30 1 : spoo f IP evt := FALSE
act50 1 : target state := FALSE
act50 2 : terminate := FALSE
act50 3 : session closed := FALSE
act f w00 1 : f w machine := FALSE
act f w00 3 : f w tick := 0
act f w00 4 : f w f inished := FALSE
act f w00 2 : f w action := pass
act f w00 5 : f w add rule := FALSE
act f w05 1 : f w rules := ∅
act f w05 4 : f w src ip := ∅
act f w05 5 : f w dst ip := ∅
act f w05 6 : f w protocol := ∅
act f w05 7 : f w timeout := ∅
act f w52 8 : f w FIN := FALSE
act f w00 6 : f w remove rule := FALSE
act f w00 10 : f w drop := FALSE
act f w00 11 : f w f orward := FALSE
act f w00 12 : f w exit := FALSE

END
packet send int to trusted
ANY x y
WHERE

grd00 1 : src = 0∧ dst = 0
grd00 2 : x ∈ (int ∪ ext) ∧ y ∈ (int ∪ ext) // int ∪ ext excludes 0
grd00 3 : x 6= 0∧ y = 6= 0 // making this explicit
grd00 4 : x ∈ int⇒ y ∈ ext // x & y are in different domains
grd00 5 : y ∈ int⇒ x ∈ ext
grd25 1 : x ∈ trusted ∩ int
grd25 2 : y ∈ trusted ∩ ext

THEN
act00 1 : src, dst := x, y
act00 2 : last transit := FALSE
act05 1 : enter chokepoint := TRUE
act10 1 : packet id :| packet id′ = packet id + 1
act10 2 : set pkt protocol := TRUE
act20 1 : src ip := {(packet id + 1) 7→ x}
act20 2 : dst ip := {(packet id + 1) 7→ y}
act50 1 : target state := FALSE

107

act50 2 : terminate := FALSE
END
packet send int to untrusted
ANY x y
WHERE

grd00 1 : src = 0∧ dst = 0
grd00 2 : x ∈ (int ∪ ext) ∧ y ∈ (int ∪ ext) // int ∪ ext excludes 0
grd00 3 : x 6= 0∧ y = 6= 0 // making this explicit
grd00 4 : x ∈ int⇒ y ∈ ext // x & y are in different domains
grd00 5 : y ∈ int⇒ x ∈ ext
grd25 1 : x ∈ trusted ∩ int
grd25 2 : y ∈ untrusted ∩ ext

THEN
act00 1 : src, dst := x, y
act00 2 : last transit := FALSE
act05 1 : enter chokepoint := TRUE
act10 1 : packet id :| packet id′ = packet id + 1
act10 2 : set pkt protocol := TRUE
act20 1 : src ip := {(packet id + 1) 7→ x}
act20 2 : dst ip := {(packet id + 1) 7→ y}
act50 1 : target state := FALSE
act50 2 : terminate := FALSE

END
packet send int to dangerous
ANY x y
WHERE

grd00 1 : src = 0∧ dst = 0
grd00 2 : x ∈ (int ∪ ext) ∧ y ∈ (int ∪ ext) // int ∪ ext excludes 0
grd00 3 : x 6= 0∧ y 6= 0 // making this explicit
grd00 4 : x ∈ int⇒ y ∈ ext // x & y are in different domains
grd00 5 : y ∈ int⇒ x ∈ ext
grd25 1 : x ∈ trusted ∩ int
grd25 2 : y ∈ dangerous ∩ ext

THEN
act00 1 : src, dst := x, y
act00 2 : last transit := FALSE
act05 1 : enter chokepoint := TRUE
act10 1 : packet id :| packet id′ = packet id + 1
act10 2 : set pkt protocol := TRUE
act20 1 : src ip := {(packet id + 1) 7→ x}
act20 2 : dst ip := {(packet id + 1) 7→ y}
act50 1 : target state := FALSE
act50 2 : terminate := FALSE

END
packet send ext trusted to int
ANY x y
WHERE

grd00 1 : src = 0∧ dst = 0
grd00 2 : x ∈ (int ∪ ext) ∧ y ∈ (int ∪ ext) // int ∪ ext excludes 0
grd00 3 : x 6= 0∧ y 6= 0 // making this explicit

108

grd00 4 : x ∈ int⇒ y ∈ ext // x & y are in different domains
grd00 5 : y ∈ int⇒ x ∈ ext
grd25 1 : x ∈ trusted ∩ ext
grd25 2 : y ∈ trusted ∩ int

THEN
act00 1 : src, dst := x, y
act00 2 : last transit := FALSE
act05 1 : enter chokepoint := TRUE
act10 1 : packet id :| packet id′ = packet id + 1
act10 2 : set pkt protocol := TRUE
act20 1 : src ip := {(packet id + 1) 7→ x}
act20 2 : dst ip := {(packet id + 1) 7→ y}
act50 1 : target state := FALSE
act50 2 : terminate := FALSE

END
packet send ext untrusted to int
ANY x y
WHERE

grd00 1 : src = 0∧ dst = 0
grd00 2 : x ∈ (int ∪ ext) ∧ y ∈ (int ∪ ext) // int U ext excludes 0
grd00 3 : x 6= 0∧ y 6= 0 // making this explicit
grd00 4 : x ∈ int⇒ y ∈ ext // x & y are in different domains
grd00 5 : y ∈ int⇒ x ∈ ext
grd25 1 : x ∈ untrusted ∩ ext
grd25 2 : y ∈ trusted ∩ int

THEN
act00 1 : src, dst := x, y
act00 2 : last transit := FALSE
act05 1 : enter chokepoint := TRUE
act10 1 : packet id :| packet id′ = packet id + 1
act10 2 : set pkt protocol := TRUE
act20 1 : src ip := {(packet id + 1) 7→ x}
act20 2 : dst ip := {(packet id + 1) 7→ y}
act50 1 : target state := FALSE
act50 2 : terminate := FALSE

END
packet send ext dangerous to int
ANY x y
WHERE

grd00 1 : src = 0∧ dst = 0
grd00 2 : x ∈ (int ∪ ext) ∧ y ∈ (int ∪ ext) // int ∪ ext excludes 0
grd00 3 : x 6= 0∧ y 6= 0 // making this explicit
grd00 4 : x ∈ int⇒ y ∈ ext // x & y are in different domains
grd00 5 : y ∈ int⇒ x ∈ ext
grd25 1 : x ∈ dangerous ∩ ext
grd25 2 : y ∈ trusted ∩ int

THEN
act00 1 : src, dst := x, y
act00 2 : last transit := FALSE
act05 1 : enter chokepoint := TRUE

109

act10 1 : packet id :| packet id′ = packet id + 1
act10 2 : set pkt protocol := TRUE
act20 1 : src ip := {(packet id + 1) 7→ x}
act20 2 : dst ip := {(packet id + 1) 7→ y}
act50 1 : target state := FALSE
act50 2 : terminate := FALSE

END
spoof ext untrusted IP
ANY x y
WHERE

grd00 1 : src = 0∧ dst = 0
grd00 2 : x ∈ (int ∪ ext) ∧ y ∈ (int ∪ ext) // int ∪ ext excludes 0
grd00 3 : x 6= 0∧ y 6= 0 // making this explicit
grd00 4 : x ∈ int⇒ y ∈ ext // x & y are in different domains
grd00 5 : y ∈ int⇒ x ∈ ext
grd25 1 : x ∈ untrusted ∩ ext
grd25 2 : y ∈ trusted ∩ int
grd30 1 : x = 900 // sets src address

THEN
act00 1 : src, dst := x, y
act00 2 : last transit := FALSE
act05 1 : enter chokepoint := TRUE
act10 1 : packet id :| packet id′ = packet id + 1
act10 2 : set pkt protocol := TRUE
act20 1 : src ip := {(packet id + 1) 7→ x}
act20 2 : dst ip := {(packet id + 1) 7→ y}
act30 1 : spoo f IP evt := TRUE

END
ext ATTACK SYN flood
ANY pkt tcp ACK pkt tcp SYN pkt tcp FIN
WHERE

grd10 1 : set pkt protocol = TRUE
grd10 2 : pkt tcp ACK ⊆ PKT TCP ACK
grd10 3 : pkt tcp SYN ⊆ PKT TCP SYN
grd10 4 : pkt tcp FIN ⊆ PKT TCP FIN
grd30 1 : spoo f IP evt = TRUE
grd30 3 : pkt tcp ACK = {(packet id) 7→ 0}
grd30 4 : pkt tcp SYN = {(packet id) 7→ 1}
grd30 5 : pkt tcp FIN = {(packet id) 7→ 0}

THEN
act10 1 : pkt protocol := {(packet id) 7→ TCP}
act10 2 : set pkt protocol := FALSE
act10 3 : pkt tcp ACK := pkt tcp ACK
act10 4 : pkt tcp SYN := pkt tcp SYN
act10 5 : pkt tcp FIN := pkt tcp FIN
act30 1 : spoo f IP evt := FALSE

END
ext ATTACK FIN scan
ANY pkt tcp ACK pkt tcp SYN pkt tcp FIN
WHERE

110

grd10 1 : set pkt protocol = TRUE
grd10 2 : pkt tcp ACK ⊆ PKT TCP ACK
grd10 3 : pkt tcp SYN ⊆ PKT TCP SYN
grd10 4 : pkt tcp FIN ⊆ PKT TCP FIN
grd30 1 : spoo f IP evt = TRUE
grd30 3 : pkt tcp ACK = {(packet id) 7→ 0}
grd30 4 : pkt tcp SYN = {(packet id) 7→ 0}
grd30 5 : pkt tcp FIN = {(packet id) 7→ 1}

THEN
act10 1 : pkt protocol := {(packet id) 7→ TCP}
act10 2 : set pkt protocol := FALSE
act10 3 : pkt tcp ACK := pkt tcp ACK
act10 4 : pkt tcp SYN := pkt tcp SYN
act10 5 : pkt tcp FIN := pkt tcp FIN
act30 1 : spoo f IP evt := FALSE

END
ext ATTACK reopen closed TCP session
ANY x y
WHERE

grd00 1 : src = 0∧ dst = 0
grd00 2 : x ∈ (int ∪ ext) ∧ y ∈ (int ∪ ext) // int ∪ ext excludes 0
grd00 3 : x 6= 0∧ y 6= 0 // making this explicit
grd00 4 : x ∈ int⇒ y ∈ ext // x & y are in different domains
grd00 5 : y ∈ int⇒ x ∈ ext
grd25 1 : x ∈ untrusted ∩ ext
grd25 2 : y ∈ trusted ∩ int
grd50 1 : session closed = TRUE

THEN
act00 1 : src, dst := x, y
act00 2 : last transit := FALSE
act05 1 : enter chokepoint := TRUE
act10 1 : packet id :| packet id′ = packet id + 1
act10 2 : set pkt protocol := TRUE
act20 1 : src ip := {(packet id + 1) 7→ x}
act20 2 : dst ip := {(packet id + 1) 7→ y}

END
protocol UDP
WHEN

grd10 1 : set pkt protocol = TRUE
grd30 1 : spoo f IP evt = FALSE
grd50 1 : test UDP = TRUE // switch to turn on/off UDP messaging

THEN
act00 1 : last transit := TRUE
act10 1 : pkt protocol := {(packet id) 7→ UDP}
act10 2 : set pkt protocol := FALSE
act50 1 : target state := FALSE
act50 2 : terminate := FALSE

END
protocol TCP start
ANY pkt tcp ACK pkt tcp SYN pkt tcp FIN

111

WHERE
grd10 1 : set pkt protocol = TRUE
grd10 2 : pkt tcp ACK ⊆ PKT TCP ACK
grd10 3 : pkt tcp SYN ⊆ PKT TCP SYN
grd10 4 : pkt tcp FIN ⊆ PKT TCP FIN
grd15 1 : src 7→ dst /∈ TCP sessions
grd15 2 : pkt tcp SYN = {packet id 7→ 1}
grd15 3 : pkt tcp ACK = {packet id 7→ 0}
grd15 4 : pkt tcp FIN = {packet id 7→ 0}
grd30 1 : spoo f IP evt = FALSE
grd50 1 : test TCP = TRUE // switch to turn on/off TCP messaging

THEN
act10 1 : pkt protocol := {(packet id) 7→ TCP}
act10 2 : set pkt protocol := FALSE
act10 3 : pkt tcp ACK := pkt tcp ACK
act10 4 : pkt tcp SYN := pkt tcp SYN
act10 5 : pkt tcp FIN := pkt tcp FIN
inv15 1 : TCP sessions := TCP sessions ∪ {src 7→ dst, dst 7→ src}
act50 1 : target state := FALSE
act50 2 : terminate := FALSE

END
protocol TCP continue
ANY pkt tcp ACK pkt tcp SYN pkt tcp FIN
WHERE

grd10 1 : set pkt protocol = TRUE
grd10 2 : pkt tcp ACK ⊆ PKT TCP ACK
grd10 3 : pkt tcp SYN ⊆ PKT TCP SYN
grd10 4 : pkt tcp FIN ⊆ PKT TCP FIN
grd15 1 : src 7→ dst ∈ TCP sessions
grd15 2 : pkt tcp SYN = {packet id 7→ 0}
grd15 3 : pkt tcp ACK = {packet id 7→ 0}
grd15 4 : pkt tcp FIN = {packet id 7→ 0}
grd50 1 : test TCP = TRUE // switch to turn on/off TCP messaging

THEN
act10 1 : pkt protocol := {(packet id) 7→ TCP}
act10 2 : set pkt protocol := FALSE
act10 3 : pkt tcp ACK := pkt tcp ACK
act10 4 : pkt tcp SYN := pkt tcp SYN
act10 5 : pkt tcp FIN := pkt tcp FIN
act50 1 : target state := FALSE
act50 2 : terminate := FALSE

END
protocol TCP finish
ANY pkt tcp ACK pkt tcp SYN pkt tcp FIN
WHERE

grd10 1 : set pkt protocol = TRUE
grd10 2 : pkt tcp ACK ⊆ PKT TCP ACK
grd10 3 : pkt tcp SYN ⊆ PKT TCP SYN
grd10 4 : pkt tcp FIN ⊆ PKT TCP FIN
grd15 1 : src 7→ dst ∈ TCP sessions

112

grd15 2 : pkt tcp SYN = {packet id 7→ 0}
grd15 3 : pkt tcp ACK = {packet id 7→ 0}
grd15 4 : pkt tcp FIN = {packet id 7→ 1}
grd50 1 : test TCP = TRUE // switch to turn on/off TCP messaging

THEN
act10 1 : pkt protocol := {(packet id) 7→ TCP}
act10 2 : set pkt protocol := FALSE
act10 3 : pkt tcp ACK := pkt tcp ACK
act10 4 : pkt tcp SYN := pkt tcp SYN
act10 5 : pkt tcp FIN := pkt tcp FIN
inv15 1 : TCP sessions := TCP sessions \ {src 7→ dst, dst 7→ src}
act50 1 : target state := FALSE
act50 2 : terminate := FALSE
act50 3 : session closed := TRUE

END
firewall
ANY a
WHERE

grd05 1 : enter chokepoint = TRUE
grd05 2 : src 6= 0∧ dst 6= 0
grd05 3 : a = src 7→ dst
grd10 1 : set pkt protocol = FALSE

THEN
act05 1 : enter chokepoint := FALSE
act05 2 : exit chokepoint := TRUE
act50 1 : target state := FALSE
act50 2 : terminate := FALSE
act f w20 1 : f w machine := TRUE
act f w00 3 : f w tick := f w tick + 1
act f w52 1 : f w add rule := FALSE
act f w52 2 : f w remove rule := FALSE
act f w52 3 : f w exit := FALSE
act f w52 4 : f w f orward := bool((src ∈ trusted ∧ ¬dst ∈ dangerous) ∨

(src ∈ ext∧ src /∈ trusted∧ (∃ident, protocol · ident ∈ f w rules∧ protocol ∈ PROTOCOL TYPE∧
ident 7→ src ∈ f w src ip ∧ ident 7→ dst ∈ f w dst ip ∧ ident 7→ protocol ∈ f w protocol ∧
packet id 7→ protocol ∈ pkt protocol)))

act f w52 5 : f w drop := bool(src ∈ dangerous ∨ dst ∈ dangerous ∨ (src ∈
ext∧ src /∈ trusted∧¬(∃ident, protocol · ident ∈ f w rules∧ protocol ∈ PROTOCOL TYPE∧
ident 7→ src ∈ f w src ip ∧ ident 7→ dst ∈ f w dst ip ∧ ident 7→ protocol ∈ f w protocol ∧
packet id 7→ protocol ∈ pkt protocol)))

END
firewall forward
ANY rule timed out first FIN pkt second FIN pkt fw add rule fw remove rule
WHERE

grd f w20 1 : f w machine = TRUE
grd f w50 4 : f w f orward = TRUE
grd f w52 0 : f w exit = FALSE
grd f w52 1 : rule timed out = {r | r ∈ f w rules ∧ (∃t · t ∈ f w timeout ∧ t =

r 7→ f w tick + 1)}

113

grd f w52 2 : f irst FIN pkt = bool(packet id 7→ TCP ∈ pkt protocol ∧
packet id 7→ 1 ∈ pkt tcp FIN)

grd f w52 3 : second FIN pkt = {r | r ∈ f w rules ∧ (f w FIN = TRUE ∧
r 7→ TCP ∈ f w protocol∧ packet id 7→ TCP ∈ pkt protocol∧ packet id 7→ 0 ∈ pkt tcp FIN∧
packet id 7→ 1 ∈ pkt tcp ACK ∧ ((r 7→ src ∈ f w src ip ∧ r 7→ dst ∈ f w dst ip) ∨ (r 7→ dst ∈
f w src ip ∧ r 7→ src ∈ f w dst ip)))} // removes on the final ACK...

grd f w52 4 : f w add rule = bool((∃n · n ∈ int ∧ src ip = {packet id 7→
n})∧ (∃n ·n ∈ untrusted∧ dst ip = {packet id 7→ n})∧¬(packet id 7→ TCP ∈ pkt protocol∧
packet id 7→ 1 ∈ pkt tcp ACK))

grd f w50 2 : f w add rule = FALSE
grd f w50 3 : f w remove rule = FALSE
grd f w52 5 : f w remove rule = bool((rule timed out 6= ∅)∨ (second FIN pkt 6=

∅))
THEN

act f w20 1 : f w action := pass
act f w52 2 : f w exit := bool((f w add rule = FALSE)∧ (f w remove rule =

FALSE))
act f w50 3 : f w add rule := f w add rule
act f w52 4 : f w FIN := f irst FIN pkt // only deals with sequential FINs,

not mixed traffic
act f w52 5 : f w remove rule := f w remove rule

END
firewall add rule
ANY add rule id
WHERE

grd f w20 1 : f w machine = TRUE
grd f w50 1 : f w add rule = TRUE
grd f w52 2 : f w exit = FALSE
grd f w05 3 : add rule id = {r | r ∈ FW RULE ID ∧ ((card(f w rules) = 0 ∧

r = 1)∨ (card(f w rules) > 0∧max(f w rules) < max(FW RULE ID)∧ r = max(f w rules)+
1) ∨ (card(f w rules) > 0∧max(f w rules) = max(FW RULE ID) ∧ r = max(f w rules)))}

THEN
act f w05 5 : f w protocol := f w protocol∪ (add rule id x {r | r ∈ PROTOCOL TYPE∧

(∃t · t ∈ pkt protocol ∧ t = packet id 7→ r)})
act f w52 2 : f w exit := TRUE
act f w05 1 : f w rules := f w rules ∪ add rule id
act f w05 2 : f w timeout := f w timeout ∪ (add rule id x { f w tick+ interval})
act f w05 3 : f w src ip := f w src ip ∪ (add rule id x {r | r ∈ NODES ∧ (∃t ·

t ∈ dst ip ∧ t = packet id 7→ r)})
act f w05 4 : f w dst ip := f w dst ip∪ (add rule id x {r | r ∈ NODES∧ (∃t ·

t ∈ src ip ∧ t = packet id 7→ r)})
END
firewall remove rule
ANY remove rule ids
WHERE

grd f w20 1 : f w machine = TRUE
grd f w50 1 : f w remove rule = TRUE
grd f w52 2 : f w exit = FALSE
grd f w52 3 : remove rule ids = {r | r ∈ f w rules ∧ ((r 7→ src ∈ f w src ip ∧

r 7→ dst ∈ f w dst ip) ∨ (r 7→ dst ∈ f w src ip ∧ r 7→ src ∈ f w dst ip))}

114

THEN
act f w05 5 : f w protocol := {x 7→ y | x 7→ y ∈ f w protocol ∧ x /∈

remove rule ids}
act f w52 2 : f w exit := TRUE
act f w05 1 : f w rules := (f w rules \ (remove rule ids))
act f w05 2 : f w timeout := {x 7→ y | x 7→ y ∈ f w timeout ∧ x /∈

remove rule ids}
act f w05 3 : f w src ip := {x 7→ y | x 7→ y ∈ f w src ip∧ x /∈ remove rule ids}
act f w05 4 : f w dst ip := {x 7→ y | x 7→ y ∈ f w dst ip∧ x /∈ remove rule ids}

END
firewall drop
ANY a
WHERE

grd00 1 : src 6= 0∧ dst 6= 0
grd00 2 : a = src 7→ dst
grd f w20 1 : f w machine = TRUE
grd f w50 2 : f w add rule = FALSE
grd f w50 3 : f w remove rule = FALSE
grd f w52 3 : f w drop = TRUE

THEN
act00 1 : src, dst := 0, 0 // null packet
act00 2 : is reply := FALSE
act00 3 : last transit := FALSE
act05 1 : enter chokepoint := FALSE
act05 2 : exit chokepoint := FALSE
act10 1 : pkt protocol := ({packet id}pkt protocol)
act10 2 : pkt tcp SYN := ({packet id}pkt tcp SYN)
act10 3 : pkt tcp ACK := ({packet id}pkt tcp ACK)
act10 4 : pkt tcp FIN := ({packet id}pkt tcp FIN)
act15 1 : TCP sessions := TCP sessions \ {src 7→ dst, dst 7→ src}
act20 1 : src ip := ({packet id}src ip)
act20 2 : dst ip := ({packet id}dst ip)
act50 1 : target state := FALSE
act50 2 : terminate := TRUE // NEXT EVENT TERMINATE
act f w20 2 : f w machine := FALSE
act f w20 1 : f w action := drop

END
firewall exit
WHEN

grd f w20 1 : f w machine = TRUE
grd f w52 2 : f w exit = TRUE

THEN
act f w20 2 : f w machine := FALSE
act f w52 2 : f w exit := FALSE

END
packet arrive
ANY a reply last transit x y terminate remove pkt
WHERE

grd00 1 : src 6= 0∧ dst 6= 0
grd00 2 : reply ∈ BOOL

115

grd00 3 : last transit ∈ BOOL
grd00 4 : x ∈ NODES ∧ y ∈ NODES
grd00 5 : is reply = FALSE
grd00 6 : last transit = FALSE⇒ (terminate = FALSE ∧ reply = TRUE ∧

last transit ∈ {FALSE, TRUE} ∧ x = src ∧ y = dst) // msg arrives
grd00 7 : last transit = TRUE ⇒ (terminate = TRUE ∧ reply = FALSE ∧

last transit = FALSE ∧ x = 0∧ y = 0) // reply to msg arrives
grd00 8 : a = src 7→ dst
grd05 1 : exit chokepoint = TRUE
grd10 1 : remove pkt = {p | p = packet id ∧ (∃t · t ∈ pkt protocol ∧ t =

p 7→ UDP)} ∪ {p | p = packet id ∧ (∃t · t ∈ pkt protocol ∧ t = p 7→ TCP) ∧ (∃s, a, f · s ∈
pkt tcp SYN ∧ a ∈ pkt tcp ACK ∧ f ∈ pkt tcp FIN ∧ ((s = p 7→ 0 ∧ a = p 7→ 1 ∧ f = p 7→
0) ∨ (s = p 7→ 0∧ a = p 7→ 0∧ f = p 7→ 0∧ is reply = TRUE)))}

grd f w20 1 : f w machine = FALSE
grd f w20 2 : f w action = pass

THEN
act00 1 : last transit := last transit
act00 2 : src, dst := x, y // null packet?
act00 3 : is reply := reply
act05 1 : exit chokepoint := FALSE
act10 1 : pkt protocol := remove pktpkt protocol
act10 2 : pkt tcp ACK := remove pktpkt tcp ACK
act10 3 : pkt tcp SYN := remove pktpkt tcp SYN
act10 4 : pkt tcp FIN := remove pktpkt tcp FIN
act20 1 : src ip := remove pktsrc ip // remove pkt if this is the reply (ar-

rived = TRUE)
act20 2 : dst ip := remove pktdst ip // or if UDP pkt
act50 1 : target state := FALSE
act50 2 : terminate := terminate

END
packet reply
ANY a x y last transit pkt tcp ACK pkt tcp SYN pkt tcp FIN
WHERE

grd00 1 : is reply = TRUE
grd00 2 : x = dst ∧ y = src
grd00 3 : a = dst 7→ src
grd00 4 : last transit ∈ {TRUE, FALSE}
grd10 1 : pkt protocol 6= ∅
grd10 2 : pkt tcp ACK ⊆ PKT TCP ACK
grd10 3 : pkt tcp SYN ⊆ PKT TCP SYN
grd10 4 : pkt tcp FIN ⊆ PKT TCP FIN
grd15 1 : pkt tcp SYN = {packet id + 1}x {r | r ∈ {1, 0} ∧ (∃p · p ∈

pkt protocol ∧ p = packet id 7→ TCP) ∧ (∃s, a · s ∈ pkt tcp SYN ∧ a ∈ pkt tcp ACK ∧ ((s =
packet id 7→ 1 ∧ a = packet id 7→ 0 ∧ r = 1) ∨ (s = packet id 7→ 1 ∧ a = packet id 7→ 1 ∧ r =
0) ∨ (s = packet id 7→ 0∧ r = 0)))}

grd15 2 : pkt tcp ACK = {packet id + 1}x {r | r ∈ {1, 0} ∧ (∃p · p ∈
pkt protocol ∧ p = packet id 7→ TCP) ∧ r = 1}

grd15 3 : pkt tcp FIN = {packet id + 1}x {r | r ∈ {1, 0} ∧ (∃p · p ∈
pkt protocol ∧ p = packet id 7→ TCP) ∧ (∃ f , a, s · f ∈ pkt tcp FIN ∧ a ∈ pkt tcp ACK ∧ s ∈

116

pkt tcp SYN ∧ ((f = packet id 7→ 1 ∧ a = packet id 7→ 0 ∧ r = 1) ∨ (f = packet id 7→
1∧ a = packet id 7→ 1∧ r = 0) ∨ (f = packet id 7→ 0∧ r = 0)))}

grd15 4 : last transit = bool((packet id) 7→ TCP ∈ pkt protocol∧ (((packet id+
1) 7→ 0 ∈ pkt tcp FIN ∧ (packet id + 1) 7→ 0 ∈ pkt tcp SYN ∧ (packet id + 1) 7→ 1 ∈
pkt tcp ACK)∨ ((packet id+ 1) 7→ 0 ∈ pkt tcp FIN∧ (packet id+ 1) 7→ 0 ∈ pkt tcp SYN∧
(packet id + 1) 7→ 0 ∈ pkt tcp ACK)))

THEN
act00 1 : src, dst := x, y
act00 2 : is reply := FALSE
act00 3 : last transit := last transit
act05 1 : enter chokepoint := TRUE
act10 1 : packet id :| packet id′ = packet id + 1
act10 2 : pkt protocol := (pkt protocol \ {r | r ∈ pkt protocol ∧ (∃n · n ∈

PROTOCOL TYPE∧ r = packet id 7→ n)})∪ ({packet id+ 1}x {n | n ∈ PROTOCOL TYPE∧
(∃r · r ∈ pkt protocol ∧ r = packet id 7→ n)})

act10 3 : pkt tcp ACK := pkt tcp ACK
act10 4 : pkt tcp SYN := pkt tcp SYN
act10 5 : pkt tcp FIN := pkt tcp FIN
act20 1 : src ip := (src ip \ {r | r ∈ src ip ∧ (∃n · n ∈ NODES ∧ r =

packet id 7→ n)}) ∪ ({packet id + 1}x {n | n ∈ NODES ∧ (∃r · r ∈ dst ip ∧ r = packet id 7→
n)})

act20 2 : dst ip := (dst ip \ {r | r ∈ dst ip ∧ (∃n · n ∈ NODES ∧ r =
packet id 7→ n)}) ∪ ({packet id + 1}x {n | n ∈ NODES ∧ (∃r · r ∈ src ip ∧ r = packet id 7→
n)})

act50 1 : target state := FALSE
act50 2 : terminate := FALSE

END
packet dropped
ANY a
WHERE

grd00 1 : src 6= 0∧ dst 6= 0
grd00 2 : a = src 7→ dst
grd f w20 2 : f w action = drop

THEN
act00 1 : src, dst := 0, 0 // null packet
act00 2 : is reply := FALSE
act00 3 : last transit := FALSE
act05 1 : enter chokepoint := FALSE
act05 2 : exit chokepoint := FALSE
act10 1 : pkt protocol := ({packet id}pkt protocol)
act10 2 : pkt tcp SYN := ({packet id}pkt tcp SYN)
act10 3 : pkt tcp ACK := ({packet id}pkt tcp ACK)
act10 4 : pkt tcp FIN := ({packet id}pkt tcp FIN)
act15 1 : TCP sessions := TCP sessions \ {src 7→ dst, dst 7→ src}
act20 1 : src ip := ({packet id}src ip)
act20 2 : dst ip := ({packet id}dst ip)
act50 1 : target state := FALSE
act50 2 : terminate := TRUE // NEXT EVENT TERMINATE

END
terminate

117

WHEN
grd50 2 : terminate = TRUE

THEN
act50 1 : target state := TRUE
act50 2 : terminate := FALSE
act50 3 : session closed := FALSE

END
END

118

Appendix C

MBT generated tests

C.1 Initial tests

Tests generated from a breadth first exploration of the initial models state space in ProB,
detailing a naive firewall and a well behaved environment.

<?xml version=”1.0” encoding=”UTF-8”?>
<extended test suite>

<test case id=”1”>
<global>

<step id=”1”>ext dangerous packet to int </step>
<step id=”2”>protocol TCP start </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet dropped </step>
<step id=”5”>terminate </step>

</global>
</test case>
<test case id=”2”>

<global>
<step id=”1”>ext trusted packet to int </step>
<step id=”2”>protocol TCP start </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet arrive </step>
<step id=”5”>packet reply </step>
<step id=”6”>firewall rule </step>
<step id=”7”>packet arrive </step>
<step id=”8”>packet reply </step>
<step id=”9”>firewall rule </step>
<step id=”10”>packet arrive </step>
<step id=”11”>terminate </step>

</global>
</test case>
<test case id=”3”>

<global>
<step id=”1”>ext untrusted packet to int </step>
<step id=”2”>protocol TCP start </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet dropped </step>
<step id=”5”>terminate </step>

119

</global>
</test case>
<test case id=”4”>

<global>
<step id=”1”>int packet to ext dangerous </step>
<step id=”2”>protocol TCP start </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet dropped </step>
<step id=”5”>terminate </step>

</global>
</test case>
<test case id=”5”>

<global>
<step id=”1”>int packet to ext trusted </step>
<step id=”2”>protocol TCP start </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet arrive </step>
<step id=”5”>packet reply </step>
<step id=”6”>firewall rule </step>
<step id=”7”>packet arrive </step>
<step id=”8”>packet reply </step>
<step id=”9”>firewall rule </step>
<step id=”10”>packet arrive </step>
<step id=”11”>terminate </step>

</global>
</test case>
<test case id=”6”>

<global>
<step id=”1”>int packet to ext untrusted </step>
<step id=”2”>protocol TCP start </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet arrive </step>
<step id=”5”>packet reply </step>
<step id=”6”>firewall rule </step>
<step id=”7”>packet arrive </step>
<step id=”8”>packet reply </step>
<step id=”9”>firewall rule </step>
<step id=”10”>packet arrive </step>
<step id=”11”>terminate </step>

</global>
</test case>
<test case id=”7”>

<global>
<step id=”1”>int packet to ext trusted </step>
<step id=”2”>protocol TCP start </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet arrive </step>
<step id=”5”>packet reply </step>
<step id=”6”>firewall rule </step>
<step id=”7”>packet arrive </step>

120

<step id=”8”>packet reply </step>
<step id=”9”>firewall rule </step>
<step id=”10”>packet arrive </step>
<step id=”11”>int packet to ext trusted </step>
<step id=”12”>protocol TCP continue </step>
<step id=”13”>firewall rule </step>
<step id=”14”>packet arrive </step>
<step id=”15”>packet reply </step>
<step id=”16”>firewall rule </step>
<step id=”17”>packet arrive </step>
<step id=”18”>terminate </step>

</global>
</test case>
<test case id=”8”>

<global>
<step id=”1”>int packet to ext trusted </step>
<step id=”2”>protocol TCP start </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet arrive </step>
<step id=”5”>packet reply </step>
<step id=”6”>firewall rule </step>
<step id=”7”>packet arrive </step>
<step id=”8”>packet reply </step>
<step id=”9”>firewall rule </step>
<step id=”10”>packet arrive </step>
<step id=”11”>int packet to ext trusted </step>
<step id=”12”>protocol TCP finish </step>
<step id=”13”>firewall rule </step>
<step id=”14”>packet arrive </step>
<step id=”15”>packet reply </step>
<step id=”16”>firewall rule </step>
<step id=”17”>packet arrive </step>
<step id=”18”>packet reply </step>
<step id=”19”>firewall rule </step>
<step id=”20”>packet arrive </step>
<step id=”21”>terminate </step>

</global>
</test case>
<test case id=”9”>

<global>
<step id=”1”>ext dangerous packet to int </step>
<step id=”2”>protocol UDP </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet dropped </step>
<step id=”5”>terminate </step>

</global>
</test case>
<test case id=”10”>

<global>
<step id=”1”>ext trusted packet to int </step>

121

<step id=”2”>protocol UDP </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet arrive </step>
<step id=”5”>terminate </step>

</global>
</test case>
<test case id=”11”>

<global>
<step id=”1”>ext untrusted packet to int </step>
<step id=”2”>protocol UDP </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet dropped </step>
<step id=”5”>terminate </step>

</global>
</test case>
<test case id=”12”>

<global>
<step id=”1”>int packet to ext dangerous </step>
<step id=”2”>protocol UDP </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet dropped </step>
<step id=”5”>terminate </step>

</global>
</test case>
<test case id=”13”>

<global>
<step id=”1”>int packet to ext trusted </step>
<step id=”2”>protocol UDP </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet arrive </step>
<step id=”5”>terminate </step>

</global>
</test case>
<test case id=”14”>

<global>
<step id=”1”>int packet to ext untrusted </step>
<step id=”2”>protocol UDP </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet arrive </step>
<step id=”5”>terminate </step>

</global>
</test case>

</extended test suite>

C.2 Additional tests

<test case id=”15”>
<global>

122

<step id=”1”>int packet to ext untrusted </step>
<step id=”2”>protocol TCP start </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet arrive </step>
<step id=”5”>packet reply </step>
<step id=”6”>firewall rule </step>
<step id=”7”>packet arrive </step>
<step id=”8”>packet reply </step>
<step id=”9”>firewall rule </step>
<step id=”10”>packet arrive </step>
<step id=”11”>int packet to ext untrusted </step>
<step id=”12”>protocol TCP continue </step>
<step id=”13”>firewall rule </step>
<step id=”14”>packet arrive </step>
<step id=”15”>packet reply </step>
<step id=”16”>firewall rule </step>
<step id=”17”>packet arrive </step>
<step id=”18”>terminate </step>

</ global>
</ test case>
<test case id=”16”>

<global>
<step id=”1”>int packet to ext untrusted </step>
<step id=”2”>protocol TCP start </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet arrive </step>
<step id=”5”>packet reply </step>
<step id=”6”>firewall rule </step>
<step id=”7”>packet arrive </step>
<step id=”8”>packet reply </step>
<step id=”9”>firewall rule </step>
<step id=”10”>packet arrive </step>
<step id=”11”>int packet to ext untrusted </step>
<step id=”12”>protocol TCP finish </step>
<step id=”13”>firewall rule </step>
<step id=”14”>packet arrive </step>
<step id=”15”>packet reply </step>
<step id=”16”>firewall rule </step>
<step id=”17”>packet arrive </step>
<step id=”18”>packet reply </step>
<step id=”19”>firewall rule </step>
<step id=”20”>packet arrive </step>
<step id=”21”>terminate </step>

</ global>
</ test case>
<test case id=”17”>

<global>
<step id=”1”>int packet to ext untrusted </step>
<step id=”2”>protocol TCP start </step>
<step id=”3”>firewall rule </step>

123

<step id=”4”>packet arrive </step>
<step id=”5”>packet reply </step>
<step id=”6”>firewall rule </step>
<step id=”7”>packet arrive </step>
<step id=”8”>packet reply </step>
<step id=”9”>firewall rule </step>
<step id=”10”>packet arrive </step>
<step id=”11”>int packet to ext untrusted </step>
<step id=”12”>protocol TCP continue </step>
<step id=”13”>firewall rule </step>
<step id=”14”>packet arrive </step>
<step id=”15”>packet reply </step>
<step id=”16”>firewall rule </step>
<step id=”17”>packet arrive </step>
<step id=”18”>int packet to ext untrusted </step>
<step id=”19”>protocol TCP finish </step>
<step id=”20”>firewall rule </step>
<step id=”21”>packet arrive </step>
<step id=”22”>packet reply </step>
<step id=”23”>firewall rule </step>
<step id=”24”>packet arrive </step>
<step id=”25”>packet reply </step>
<step id=”26”>firewall rule </step>
<step id=”27”>packet arrive </step>
<step id=”28”>terminate </step>

</ global>
</ test case>
<test case id=”18”>

<global>
<step id=”1”>int packet to ext untrusted </step>
<step id=”2”>protocol TCP start </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet arrive </step>
<step id=”5”>packet reply </step>
<step id=”6”>firewall rule </step>
<step id=”7”>packet arrive </step>
<step id=”8”>packet reply </step>
<step id=”9”>firewall rule </step>
<step id=”10”>packet arrive </step>
<step id=”11”>int packet to ext untrusted </step>
<step id=”12”>protocol TCP finish </step>
<step id=”13”>firewall rule </step>
<step id=”14”>packet arrive </step>
<step id=”15”>packet reply </step>
<step id=”16”>firewall rule </step>
<step id=”17”>packet arrive </step>
<step id=”18”>packet reply </step>
<step id=”19”>firewall rule </step>
<step id=”20”>packet arrive </step>
<step id=”21”>int packet to ext untrusted </step>

124

<step id=”22”>protocol TCP start </step>
<step id=”23”>firewall rule </step>
<step id=”24”>packet arrive </step>
<step id=”25”>packet reply </step>
<step id=”26”>firewall rule </step>
<step id=”27”>packet arrive </step>
<step id=”28”>packet reply </step>
<step id=”29”>firewall rule </step>
<step id=”30”>packet arrive </step>
<step id=”31”>terminate </step>

</ global>
</ test case>
<test case id=”19”>

<global>
<step id=”1”>int packet to ext untrusted </step>
<step id=”2”>protocol TCP start </step>
<step id=”3”>firewall rule </step>
<step id=”4”>packet arrive </step>
<step id=”5”>packet reply </step>
<step id=”6”>firewall rule </step>
<step id=”7”>packet arrive </step>
<step id=”8”>packet reply </step>
<step id=”9”>firewall rule </step>
<step id=”10”>packet arrive </step>
<step id=”11”>int packet to ext untrusted </step>
<step id=”12”>protocol TCP finish </step>
<step id=”13”>firewall rule </step>
<step id=”14”>packet arrive </step>
<step id=”15”>packet reply </step>
<step id=”16”>firewall rule </step>
<step id=”17”>packet arrive </step>
<step id=”18”>packet reply </step>
<step id=”19”>firewall rule </step>
<step id=”20”>packet arrive </step>
<step id=”21”>ext untrusted packet to int </step>
<step id=”22”>protocol TCP start </step>
<step id=”23”>firewall rule </step>
<step id=”24”>packet dropped </step>
<step id=”25”>terminate </step>

</ global>
</ test case>

125

126

References

[1] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing approaches,”
Software Testing, Verification and Reliability, vol. 22, no. 5, pp. 297–312, 2012.

[2] M. Blackburn, R. Busser, A. Nauman, R. Knickerbocker, and R. Kasuda, “Mars polar lander
fault identification using model-based testing,” in Software Engineering Workshop, 2001. Pro-
ceedings. 26th Annual NASA Goddard, pp. 128–135, IEEE, 2001.

[3] M. Stevens, B. Ng, D. Streader, and I. Welch, “Global and local knowledge in SDN,” in Telecom-
munication Networks and Applications Conference (ITNAC), 2015 International, pp. 237–243, IEEE,
2015.

[4] “Relationship of SDN and NFV,” Tech. Rep. ONF TR-518, Open Networking Foundation, Palo
Alto, CA, 2015.

[5] A. D. Neto, R. Subramanyan, M. Vieira, G. H. Travassos, and F. Shull, “Improving evidence
about software technologies: A look at model-based testing,” Software, IEEE, vol. 25, no. 3,
pp. 10–13, 2008.

[6] M. Utting and B. Legeard, Practical model-based testing: A tools approach. Morgan Kaufmann,
2010.

[7] R. V. Binder, “Model-based testing user survey: Results and analysis,” System Verification Asso-
ciates. System Verification Associates, 2011.

[8] M. Canini, D. Venzano, P. Peresini, D. Kostic, J. Rexford, et al., “A NICE way to test OpenFlow
applications.,” in NSDI, vol. 12, pp. 127–140, 2012.

[9] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The middlebox manifesto: Enabling
innovation in middlebox deployment,” in Proceedings of the 10th ACM Workshop on Hot Topics
in Networks, p. 21, ACM, 2011.

[10] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and implementation of a
consolidated middlebox architecture,” in Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation, pp. 24–24, USENIX Association, 2012.

[11] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar, “Making mid-
dleboxes someone else’s problem: Network processing as a cloud service,” ACM SIGCOMM
Computer Communication Review, vol. 42, no. 4, pp. 13–24, 2012.

[12] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: To-
wards an operating system for networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 3, pp. 105–110, 2008.

[13] S. Wieczorek, V. Kozyura, A. Roth, M. Leuschel, J. Bendisposto, D. Plagge, and I. Schiefer-
decker, “Applying model checking to generate model-based integration tests from choreogra-
phy models,” in Testing of Software and Communication Systems, pp. 179–194, Springer, 2009.

[14] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, “Identifying elephant flows through
periodically sampled packets,” in Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, pp. 115–120, ACM, 2004.

[15] B. Carpenter and S. Brim, “RFC 3234 - Middleboxes: Taxonomy and issues,” Network Working
Group. Ietf, 2002.

127

[16] D. A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware switching layer for data centers,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 4, pp. 51–62, 2008.

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “OpenFlow: Enabling innovation in campus networks,” ACM SIGCOMM Com-
puter Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[18] M. Fowler, Patterns of enterprise application architecture. Addison-Wesley Longman Publishing
Co., Inc., 2002.

[19] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane: Taking
control of the enterprise,” in ACM SIGCOMM Computer Communication Review, vol. 37, pp. 1–
12, ACM, 2007.

[20] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield, “Xen and the art of virtualization,” ACM SIGOPS Operating Systems Review,
vol. 37, no. 5, pp. 164–177, 2003.

[21] G. Wang and T. E. Ng, “The impact of virtualization on network performance of amazon ec2
data center,” in INFOCOM, 2010 Proceedings IEEE, pp. 1–9, IEEE, 2010.

[22] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker, “Extending networking
into the virtualization layer.,” in Hotnets, 2009.

[23] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang, J. Stringer,
P. Shelar, et al., “The design and implementation of open vswitch,” in 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), pp. 117–130, 2015.

[24] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and F. Huici, “ClickOS and
the art of Network Function Virtualization,” in Proc. USENIX NSDI, pp. 459–473, 2014.

[25] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and G. Parulkar,
“Flowvisor: A network virtualization layer,” OpenFlow Switch Consortium, Tech. Rep, 2009.

[26] R. Cohen, K. Barabash, B. Rochwerger, L. Schour, D. Crisan, R. Birke, C. Minkenberg, M. Gusat,
R. Recio, and V. Jain, “An intent-based approach for network virtualization,” in Integrated Net-
work Management (IM 2013), 2013 IFIP/IEEE International Symposium on, pp. 42–50, IEEE, 2013.

[27] F. J. Ros and P. M. Ruiz, “Five nines of southbound reliability in software-defined networks,”
in Proceedings of the third workshop on Hot topics in software defined networking, pp. 31–36, ACM,
2014.

[28] D. Meyer, “The software-defined-networking research group,” Internet Computing, IEEE,
vol. 17, no. 6, pp. 84–87, 2013.

[29] E. Brewer, “CAP twelve years later: How the ’rules’ have changed,” Computer, vol. 45, no. 2,
pp. 23–29, 2012.

[30] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker, “CAP for networks,” in Proceedings
of the second ACM SIGCOMM workshop on Hot topics in software defined networking, pp. 91–96,
ACM, 2013.

[31] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “Software transactional networking: Con-
current and consistent policy composition,” in Proceedings of the second ACM SIGCOMM work-
shop on Hot topics in software defined networking, pp. 1–6, ACM, 2013.

[32] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, et al., “P4: Programming protocol-independent packet processors,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[33] T. Wood, K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang, “Toward a software-based net-
work: Integrating software defined networking and network function virtualization,” Network,
IEEE, vol. 29, no. 3, pp. 36–41, 2015.

[34] M. Kuźniar, P. Perešı́ni, and D. Kostić, “What you need to know about SDN flow tables,” in
Passive and Active Measurement, pp. 347–359, Springer, 2015.

128

[35] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined networking, pp. 49–54, ACM,
2013.

[36] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker, “Verifying isolation properties in
the presence of middleboxes,” arXiv preprint arXiv:1409.7687, 2014.

[37] B. Heller, R. Sherwood, and N. McKeown, “The controller placement problem,” in Proceedings
of the first workshop on Hot topics in software defined networks, pp. 7–12, ACM, 2012.

[38] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Logically centralized?:
State distribution trade-offs in software defined networks,” in Proceedings of the first workshop
on Hot topics in software defined networks, pp. 1–6, ACM, 2012.

[39] K. Phemius and M. Bouet, “OpenFlow: Why latency does matter,” in Integrated Network Man-
agement (IM 2013), 2013 IFIP/IEEE International Symposium on, pp. 680–683, IEEE, 2013.

[40] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN through a future-proof
forwarding plane,” in Proceedings of the second ACM SIGCOMM workshop on Hot topics in soft-
ware defined networking, pp. 127–132, ACM, 2013.

[41] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “Fast TCP: Motivation, architecture, algorithms,
performance,” IEEE/ACM Transactions on Networking (ToN), vol. 14, no. 6, pp. 1246–1259, 2006.

[42] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Ra-
doslavov, W. Snow, et al., “ONOS: Towards an open, distributed SDN OS,” in Proceedings of the
third workshop on Hot topics in software defined networking, pp. 1–6, ACM, 2014.

[43] H. Jamjoom, D. Williams, and U. Sharma, “Don’t call them middleboxes, call them mid-
dlepipes,” in Proceedings of the third workshop on Hot topics in software defined networking, pp. 19–
24, ACM, 2014.

[44] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das, and A. Akella,
“OpenNF: Enabling innovation in network function control,” in Proceedings of the 2014 ACM
conference on SIGCOMM, pp. 163–174, ACM, 2014.

[45] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand, T. Benson, A. Akella,
and V. Sekar, “Stratos: A network-aware orchestration layer for middleboxes in the cloud,”
tech. rep., Technical Report, 2013.

[46] A. Gember, R. Grandl, J. Khalid, and A. Akella, “Design and implementation of a framework
for software-defined middlebox networking,” in ACM SIGCOMM Computer Communication
Review, vol. 43, pp. 467–468, ACM, 2013.

[47] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster, “Managing the network with merlin,”
in Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks, p. 24, ACM, 2013.

[48] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford, “A slick control plane for network
middleboxes,” in Proceedings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking, pp. 147–148, ACM, 2013.

[49] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, “Split/Merge: System support for
elastic execution in virtual middleboxes.,” in NSDI, pp. 227–240, 2013.

[50] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen, W. Khan, M. Fargano, C. Cui,
H. Denf, et al., “Network functions virtualisation: An introduction, benefits, enablers, chal-
lenges and call for action,” in SDN and OpenFlow World Congress, pp. 22–24, 2012.

[51] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann, “Panopticon: Reaping the bene-
fits of incremental SDN deployment in enterprise networks,” in 2014 USENIX Annual Technical
Conference (USENIX ATC 14), pp. 333–345, 2014.

[52] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco, M. Manesh, J. Martins,
S. Ratnasamy, L. Rizzo, et al., “Rollback-recovery for middleboxes,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, pp. 227–240, ACM, 2015.

129

[53] G. Gibb, H. Zeng, and N. McKeown, “Initial thoughts on custom network processing via way-
point services,” in WISH-3rd Workshop on Infrastructures for Software/Hardware co-design, CGO,
2011.

[54] G. Gibb, H. Zeng, and N. McKeown, “Outsourcing network functionality,” in Proceedings of the
first workshop on Hot topics in software defined networks, pp. 73–78, ACM, 2012.

[55] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “SIMPLE-fying middlebox policy
enforcement using SDN,” in ACM SIGCOMM Computer Communication Review, vol. 43, pp. 27–
38, ACM, 2013.

[56] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “CloudNaaS: A cloud networking platform for
enterprise applications,” in Proceedings of the 2nd ACM Symposium on Cloud Computing, p. 8,
ACM, 2011.

[57] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and D. Walker,
“Frenetic: A network programming language,” in ACM SIGPLAN Notices, vol. 46, pp. 279–291,
ACM, 2011.

[58] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker, et al., “Composing software defined
networks.,” in NSDI, pp. 1–13, 2013.

[59] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “Flowtags: Enforcing network-wide poli-
cies in the presence of dynamic middlebox actions,” in Proceedings of the second ACM SIG-
COMM workshop on Hot topics in software defined networking, pp. 19–24, ACM, 2013.

[60] C. Cascone, M. Bonolax, L. Pollini, D. Sanvito, B. G., and C. A., “OpenState: Platform-agnostic
behavioral (stateful) forwarding via minimal OpenFlow extensions,” in ACM Sigcom sympo-
sium on SDN research, ACM.

[61] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState: Programming platform-
independent stateful OpenFlow applications inside the switch,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 44–51, 2014.

[62] T. Guo, U. Sharma, P. Shenoy, T. Wood, and S. Sahu, “Cost-aware cloud bursting for enterprise
applications,” ACM Transactions on Internet Technology (TOIT), vol. 13, no. 3, p. 10, 2014.

[63] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley, and L. Mathy, “Flow pro-
cessing and the rise of commodity network hardware,” ACM SIGCOMM Computer Communi-
cation Review, vol. 39, no. 2, pp. 20–26, 2009.

[64] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization to support PaaS,” in
Cloud Engineering (IC2E), 2014 IEEE International Conference on, pp. 610–614, IEEE, 2014.

[65] J. Yu, Z. Dong, and N. Chi, “1.96 tb/s (21 100 gb/s) OFDM optical signal generation and trans-
mission over 3200-km fiber,” Photonics Technology Letters, IEEE, vol. 23, no. 15, pp. 1061–1063,
2011.

[66] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains of virtual network
functions,” in Cloud Networking (CloudNet), 2014 IEEE 3rd International Conference on, pp. 7–13,
IEEE, 2014.

[67] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani, R. Mishra, R. Patneyt,
M. Shirazipour, R. Subrahmaniam, C. Truchan, et al., “Steering: A software-defined network-
ing for inline service chaining,” in Network Protocols (ICNP), 2013 21st IEEE International Con-
ference on, pp. 1–10, IEEE, 2013.

[68] P. Quinn and J. Guichard, “Service function chaining: Creating a service plane via network
service headers,” Computer, no. 11, pp. 38–44, 2014.

[69] J. Blendin, J. Ruckert, N. Leymann, G. Schyguda, and D. Hausheer, “Position paper: Software-
defined network service chaining,” in Software Defined Networks (EWSDN), 2014 Third European
Workshop on, pp. 109–114, IEEE, 2014.

[70] W. Ding, W. Qi, J. Wang, and B. Chen, “OpenSCaaS: An open service chain as a service platform
toward the integration of SDN and NFV,” Network, IEEE, vol. 29, no. 3, pp. 30–35, 2015.

130

[71] D. S. Johnson, Near-optimal bin packing algorithms. PhD thesis, Massachusetts Institute of Tech-
nology, 1973.

[72] J. Lee, J. Tourrilhes, P. Sharma, and S. Banerjee, “No more middlebox: Integrate processing into
network,” ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 459–460, 2011.

[73] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat, “xOMB: Extensible open mid-
dleboxes with commodity servers,” in Proceedings of the eighth ACM/IEEE symposium on Archi-
tectures for networking and communications systems, pp. 49–60, ACM, 2012.

[74] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. Lakshman, “Application-aware data plane
processing in SDN,” in Proceedings of the third workshop on Hot topics in software defined network-
ing, pp. 13–18, ACM, 2014.

[75] J. Shah, “Implementation and performance analysis of firewall on Open vSwitch.,” tech. rep.,
Technische Universitt Mnchen, 2015.

[76] “OpenFlow switch specification,” Tech. Rep. ONF TS-025, Open Networking Foundation, Palo
Alto, CA, 2015.

[77] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee, “DevoFlow:
Scaling flow management for high-performance networks,” in ACM SIGCOMM Computer
Communication Review, vol. 41, pp. 254–265, ACM, 2011.

[78] N. Freed, “RFC-2979: Behaviour of and requirements for Internet firewalls,” Network Working
Group, Internet Engineering Task Force (IETF), 2000.

[79] S. Karen and H. Paul, “Guidelines on firewalls and firewall policy,” NIST Recommendations, SP,
pp. 800–41, 2008.

[80] E. D. Zwicky, S. Cooper, and D. B. Chapman, Building Internet firewalls. ” O’Reilly Media, Inc.”,
2000.

[81] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin, Firewalls and Internet security: Repelling the
wily hacker. Addison-Wesley Longman Publishing Co., Inc., 2003.

[82] S. M. Bellovin and W. R. Cheswick, “Network firewalls,” Communications Magazine, IEEE,
vol. 32, no. 9, pp. 50–57, 1994.

[83] R. Bragg, K. Rhodes-Ousley, and M. Strassberg, “The complete reference: Network security,”
2004.

[84] J. Wang, Y. Wang, H. Hu, Q. Sun, H. Shi, and L. Zeng, “Towards a security-enhanced firewall
application for OpenFlow networks,” in Cyberspace Safety and Security, pp. 92–103, Springer,
2013.

[85] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FlowGuard: Building robust firewalls for software-
defined networks,” in Proceedings of the third workshop on Hot topics in software defined networking,
pp. 97–102, ACM, 2014.

[86] M. Suh, S. H. Park, B. Lee, and S. Yang, “Building firewall over the software-defined network
controller,” in Advanced Communication Technology (ICACT), 2014 16th International Conference
on, pp. 744–748, IEEE, 2014.

[87] J. G. V. Pena and W. E. Yu, “Development of a distributed firewall using software defined net-
working technology,” in Information Science and Technology (ICIST), 2014 4th IEEE International
Conference on, pp. 449–452, IEEE, 2014.

[88] J. Collings and J. Liu, “An OpenFlow-based prototype of SDN-oriented stateful hardware fire-
walls,” in Network Protocols (ICNP), 2014 IEEE 22nd International Conference on, pp. 525–528,
IEEE, 2014.

[89] K. Kaur, K. Kumar, J. Singh, and N. S. Ghumman, “Programmable firewall using software
defined networking,” in Computing for Sustainable Global Development (INDIACom), 2015 2nd
International Conference on, pp. 2125–2129, IEEE, 2015.

131

[90] K. Kaur and J. Singh, “Building stateful firewall over software defined networking,” in Infor-
mation Systems Design and Intelligent Applications, pp. 159–168, Springer, 2016.

[91] A. Shukhman, P. Polezhaev, Y. Ushakov, L. Legashev, V. Tarasov, and N. Bakhareva, “Develop-
ment of network security tools for enterprise software-defined networks,” in Proceedings of the
8th International Conference on Security of Information and Networks, pp. 224–228, ACM, 2015.

[92] C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang, “Enabling security functions with
SDN: A feasibility study,” Computer Networks, vol. 85, pp. 19–35, 2015.

[93] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An untold story of middleboxes in cellular
networks,” in ACM SIGCOMM Computer Communication Review, vol. 41, pp. 374–385, ACM,
2011.

[94] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient and scalable offload-
ing of control applications,” in Proceedings of the first workshop on Hot topics in software defined
networks, pp. 19–24, ACM, 2012.

[95] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured design,” IBM Systems Journal,
vol. 13, no. 2, pp. 115–139, 1974.

[96] J. Eder, G. Kappel, and M. Schrefl, “Coupling and cohesion in object-oriented systems,” Tech-
nical Reprot, University of Klagenfurt, Austria, 1994.

[97] C. Baier, J.-P. Katoen, et al., Principles of model checking, vol. 26202649. MIT press Cambridge,
2008.

[98] C. Atkinson and T. Kühne, “Model-driven development: A metamodeling foundation,” Soft-
ware, IEEE, vol. 20, no. 5, pp. 36–41, 2003.

[99] B. Selic, “The pragmatics of model-driven development,” IEEE software, vol. 20, no. 5, pp. 19–
25, 2003.

[100] E. Murphy-Hill and D. Grossman, “How programming languages will co-evolve with software
engineering: A bright decade ahead,” in Proceedings of the on Future of Software Engineering,
pp. 145–154, ACM, 2014.

[101] J.-R. Abrial and J.-R. Abrial, The B-book: Assigning programs to meanings. Cambridge University
Press, 2005.

[102] J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, Stepwise Refinement of Distributed Systems:
Models, Formalisms, Correctness. REX Workshop, Mook, The Netherlands, May 29-June 2, 1989. Pro-
ceedings, vol. 430. Springer Science & Business Media, 1990.

[103] J.-R. Abrial, Modeling in Event-B: System and software engineering. Cambridge University Press,
2010.

[104] K. Stobie, “Model based testing in practice at microsoft,” Electronic Notes in Theoretical Computer
Science, vol. 111, pp. 5–12, 2005.

[105] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner, B. Sostawa, R. Zölch, and
T. Stauner, “One evaluation of model-based testing and its automation,” in Proceedings of the
27th international conference on Software engineering, pp. 392–401, ACM, 2005.

[106] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. De Groot, and E. Lear, “RFC1918: Address alloac-
tion for private internets,” tech. rep., IANA Network Working Group, 1996.

[107] V. Cardellini, M. Colajanni, and S. Y. Philip, “Dynamic load balancing on web-server systems,”
IEEE Internet computing, vol. 3, no. 3, p. 28, 1999.

[108] R. Wang, D. Butnariu, J. Rexford, et al., “OpenFlow-based server load balancing gone wild,”
Hot-ICE, 2011.

[109] D. Joseph and I. Stoica, “Modeling middleboxes,” Network, IEEE, vol. 22, no. 5, pp. 20–25, 2008.

[110] M. Butler and S. Hallerstede, “The Rodin formal modelling tool,” in BCS-FACS Christmas 2007
Meeting-Formal Methods In Industry, London., 2007.

132

[111] R.-J. Back and F. Kurki-Suonio, “Distributed cooperation with action systems,” ACM Transac-
tions on Programming Languages and Systems (TOPLAS), vol. 10, no. 4, pp. 513–554, 1988.

[112] B. W. Boehm, “Software engineering economics,” Prentice-Hall Advances in Computing Science
and Technology Series, Englewood Cliffs: Prentice-Hall, vol. 1, 1981.

[113] M. Canini, D. Kostic, J. Rexford, and D. Venzano, “Automating the testing of OpenFlow
applications,” in Proceedings of the 1st International Workshop on Rigorous Protocol Engineering
(WRiPE), no. EPFL-CONF-167777, 2011.

[114] T. S. Hoang, D. Basin, H. Kuruma, and J.-R. Abrial, “Development of a network topology
discovery algorithm,” 2009.

[115] M. Kang, E.-Y. Kang, D.-Y. Hwang, B.-J. Kim, K.-H. Nam, M.-K. Shin, and J.-Y. Choi, “Formal
modeling and verification of SDN-OpenFlow,” in Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on, pp. 481–482, IEEE, 2013.

[116] D. Sethi, S. Narayana, and S. Malik, “Abstractions for model checking SDN controllers.,” in
FMCAD, pp. 145–148, Citeseer, 2013.

[117] D. L. Dvorak et al., “Nasa study on flight software complexity,” NASA office of chief engineer,
2009.

[118] NASA Engineering and Safety Center, “Technical support to the NHTSA on the reported Toy-
ota Motor Corporation unintended acceleration investigation.,” tech. rep., NASA, 2011.

[119] N. G. Leveson and C. S. Turner, “An investigation of the Therac-25 accidents,” Computer,
vol. 26, no. 7, pp. 18–41, 1993.

[120] J.-L. Lions et al., “Ariane 5 Flight 501 Failure, report by the enquiry board,” tech. rep., CNES,
Paris, 1996.

[121] H. Robinson, “Obstacles and opportunities for model-based testing in an industrial software
environment,” in Proceedings of the 1st European Conference on Model-Driven Software Engineering,
Nuremberg, Germany, pp. 118–127, 2003.

[122] K. Stobie, “Too darned big to test,” Queue, vol. 3, no. 1, pp. 30–37, 2005.

[123] A. Hartman and K. Nagin, “The AGEDIS tools for model based testing,” Lecture Notes in Com-
puter Science, vol. 3297, pp. 277–280, 2005.

[124] W. Greiskamp, “Model-Based Testing: Theory and practice,” in Proceedings of the 4th Workshop
on Model-based Testing in Practice (MoTiP), Dallas, USA, 2012. http://www.slideshare.net/

wgrieskamp/keynote-motip-issre-2012.

[125] M. Stevens and R. Norman, “Industry expectations of soft skills in IT graduates,” in 18th Aus-
tralasian Computing Education Conference (ACE 2016), 2016.

[126] M. Shafique and Y. Labiche, “A systematic review of model based testing tool support,” Soft-
ware Quality Engineering Laboratory, Department of Systems and Computer Engineering, Carleton
University, Technical Report SCE-10-04, 2010.

[127] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, “A survey on model-based
testing approaches: A systematic review,” in Proceedings of the 1st ACM international workshop on
Empirical assessment of software engineering languages and technologies: held in conjunction with the
22nd IEEE/ACM International Conference on Automated Software Engineering (ASE) 2007, pp. 31–
36, ACM, 2007.

[128] P. A. Geroski, “Models of technology diffusion,” Research policy, vol. 29, no. 4, pp. 603–625,
2000.

[129] A. Csoma, B. Sonkoly, L. Csikor, F. Németh, A. Gulyás, W. Tavernier, and S. Sahhaf, “ESCAPE:
Extensible service chain prototyping environment using Mininet, Click, Netconf and POX,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 125–126, 2015.

[130] R. Braden, “Rfc 1122: Requirements for internet hosts – communication layers,” Internet Engi-
neering Task Force, SRI International, 1989.

133

http://www.slideshare.net/wgrieskamp/keynote-motip-issre-2012
http://www.slideshare.net/wgrieskamp/keynote-motip-issre-2012

[131] M. Wasserman and P. Seite, “Rfc 6419: Current practices for multiple-interface hosts,” Internet
Engineering Task Force, SRI International, 2011.

[132] M. De Vivo, E. Carrasco, G. Isern, and G. O. de Vivo, “A review of port scanning techniques,”
ACM SIGCOMM Computer Communication Review, vol. 29, no. 2, pp. 41–48, 1999.

[133] W. Eddy, “RFC4987 - TCP SYN flooding attacks and common mitigations,” http://tools. ietf.
org/html/rfc4987, 2007.

[134] W. R. Stevens, B. Fenner, and A. M. Rudoff, UNIX network programming, vol. 1. Addison-Wesley
Professional, 2004.

[135] S. Ali, V. Sivaraman, A. Radford, and S. Jha, “A survey of securing networks using software
defined networking,” Reliability, IEEE Transactions on, vol. PP, no. 99, pp. 1–12, 2015.

[136] I. Alsmadi and D. Xu, “Security of software defined networks: A survey,” Computers & Security,
2015.

[137] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for traffic engineering in
SDN-OpenFlow networks,” Computer Networks, vol. 71, pp. 1–30, 2014.

[138] H. Farhady, H. Lee, and A. Nakao, “Software-defined networking: A survey,” Computer Net-
works, vol. 81, pp. 79–95, 2015.

[139] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An intellectual history of pro-
grammable networks,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 2, pp. 87–
98, 2014.

[140] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, and T. Gayraud, “Software-defined network-
ing: Challenges and research opportunities for future Internet,” Computer Networks, vol. 75,
pp. 453–471, 2014.

[141] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and OpenFlow: From
concept to implementation,” Communications Surveys & Tutorials, IEEE, vol. 16, no. 4, pp. 2181–
2206, 2014.

[142] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined networking: State of the
art and research challenges,” Computer Networks, vol. 72, pp. 74–98, 2014.

[143] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and a layered taxonomy of software-defined
networking,” Communications Surveys & Tutorials, IEEE, vol. 16, no. 4, pp. 1955–1980, 2014.

[144] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,” proceedings of the IEEE,
vol. 103, no. 1, pp. 14–76, 2015.

[145] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using OpenFlow: A survey,”
Communications Surveys & Tutorials, IEEE, vol. 16, no. 1, pp. 493–512, 2014.

[146] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti, et al., “A survey of software-
defined networking: Past, present, and future of programmable networks,” Communications
Surveys & Tutorials, IEEE, vol. 16, no. 3, pp. 1617–1634, 2014.

[147] P. Ranjan, P. Pande, R. Oswal, Z. Qurani, and R. Bedi, “A survey of past, present and future of
software defined networking,” International Journal, vol. 2, no. 4, 2014.

[148] S. Rowshanrad, S. Namvarasl, V. Abdi, M. Hajizadeh, and M. Keshtgary, “A survey on SDN,
the future of networking,” Journal of Advanced Computer Science & Technology, vol. 3, no. 2,
pp. 232–248, 2014.

[149] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on software-defined networking,”
Communications Surveys & Tutorials, IEEE, vol. 17, no. 1, pp. 27–51, 2014.

[150] T. A. Limoncelli, “OpenFlow: A radical new idea in networking,” Queue, vol. 10, no. 6, p. 40,
2012.

134

	Introduction
	Research goals
	Contributions

	Background
	Legacy Networks
	Networking overview
	Middleboxes
	Criticisms

	A new paradigm — viewing the network as a system
	Software Defined Networks
	Control plane
	Forwarding plane
	OpenFlow compliant switches
	SDN Dogma
	Formal Properties of Networks

	Sourcing and managing in-line functionality
	SDN control of in-line functionality
	Proprietary Hardware
	SDN controller applications
	Switch waypoints and cloud services
	Language approaches
	Managing state
	NFV management

	Network Functions Virtualisation
	Properties of NFV
	Virtualisation options
	Speed of virtual in-line services
	Testing NFV equivalence
	Chains of network functionality
	Aggregating functionality on hardware

	Problems with comparing implementations
	Problems with SDN applications
	Placing the controller on the attack path
	Increasing control channel bandwidth
	Increasing SDN controller workload
	Many flow rules slow the switch
	Pushing local state across multiple SDN controllers
	Inconsistent SDN Controller state
	Pushing local state versus pulling switch statistics
	SDN Controller stress — may manifest slow network behaviour
	Convergence of the forwarding plane with the control plane
	Convergence of the network function with end hosts

	Firewalls — an example network function in SDN
	The Firewall Algorithm

	SDN research into network functionality
	Summary

	Formal Methods
	Overview
	Three common network functions
	NAT
	Load Balancer
	Firewall

	Formally describing a generic network function
	Packet flows
	A stateless network function
	A stateful network function
	A firewall example — stateless
	A firewall example — stateful
	Formally describing a chain of network functions

	Modelling Tools
	Rodin
	Event-B
	An example model built in Rodin, using Event-B
	Model refinement

	Model-Based Testing
	Existing research
	Other testing methods
	Modelling the software-under-test and its environment
	The MBT test process
	MBT test strategies
	State explosion
	Test metrics
	Defensible testing in industry

	Applying MBT to networking
	Industry Experience
	Hurdles to adopting MBT for SDN

	Summary

	Research Direction
	SDN's third layer of state divergence
	The hypothesis
	Implementing MBT to test the hypothesis

	Applying Model Based Testing
	Generating a formal model of a stateful firewall
	The network environment
	The firewall model
	Creating test cases

	Creating the test harness
	Recording state
	Aggregating state
	Test-harness work flow
	Test and response servers
	TCP's unexpected behaviours
	Analysis Server and Results Presentation
	Discussion

	Networking the test harness
	Virtual machines
	Incorporating the Firewall
	Performing the tests

	Revisiting the firewall model
	State explosion
	Refactoring the test harness

	Revisiting the hypothesis
	Testing Multiple Firewalls
	Adjusting the test harness for SDN applications
	The Ryu firewall
	The Floodlight firewall
	Testing other firewalls

	Results and Discussion
	Key areas of interest
	Testing the SDN dogma — firewalls
	SDN's third layer of state divergence
	MBT in Networking

	Contributions
	Future Work

	Appendices
	15 Surveys of SDN research
	Firewall in Event-B
	Firewall Context
	Firewall Model

	MBT generated tests
	Initial tests
	Additional tests

