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Abstract
Image classification is a core task in many applications of computer vision, including
object detection and recognition. It aims at analysing the visual content and
automatically categorising a set of images into different groups. Performing image
classification can largely be affected by the features used to perform this task.
Extracting features from images is a challenging task due to the large search space
size and practical requirements such as domain knowledge and human intervention.
Human intervention is usually needed to identify a good set of keypoints (regions of
interest), design a set of features to be extracted from those keypoints such as lines
and corners, and develop a way to extract those features. Automating these tasks
has great potential to dramatically decrease the time and cost, and may potentially
improve the performance of the classification task.

There are two well-recognised approaches in the literature to automate the
processes of identifying keypoints and extracting image features. Designing a set of
domain-independent features is the first approach, where the focus is on dividing
the image into a number of predefined regions and extracting features from those
regions. The second approach is synthesising a function or a set of functions to form
an image descriptor that aims at automatically detecting a set of keypoints such as
lines and corners, and performing feature extraction. Although employing image
descriptors is more effective and very popular in the literature, designing those
descriptors is a difficult task that in most cases requires domain-expert intervention.

The overall goal of this thesis is to develop a new domain independent Genetic
Programming (GP) approach to image classification by utilising GP to evolve
programs that are capable of automatically detecting diverse and informative
keypoints, designing a set of features, and performing feature extraction using
only a small number of training instances to facilitate image classification, and are
robust to different image changes such as illumination and rotation. This thesis
focuses on incorporating a variety of simple arithmetic operators and first-order



statistics (mid-level features) into the evolutionary process and on representation
of GP to evolve programs that are robust to image changes for image classification.

This thesis proposes methods for domain-independent binary classification in
images using GP to automatically identify regions within an image that have the
potential to improve classification while considering the limitation of having a
small training set. Experimental results show that in over 67% of cases the new
methods significantly outperform the use of existing hand-crafted features and
features automatically detected by other methods.

This thesis proposes the first GP approach for automatically evolving an
illumination-invariant dense image descriptor that detects automatically designed
keypoints, and performs feature extraction using only a few instances of each class.
The experimental results show improvement of 86% on average compared to two
GP-based methods, and can significantly outperform domain-expert hand-crafted
descriptors in more than 89% of the cases.

This thesis also considers rotation variation of images and proposes a method
for automatically evolving rotation-invariant image descriptors through integrating
a set of first-order statistics as terminals. Compared to hand-crafted descriptors,
the experimental results reveal that the proposed method has significantly better
performance in more than 83% of the cases.

This thesis proposes a new GP representation that allows the system to au-
tomatically choose the length of the feature vector side-by-side with evolving an
image descriptor. Automatically determining the length of the feature vector helps
to reduce the number of the parameters to be set. The results show that this
method has evolved descriptors with a very small feature vector which yet still
significantly outperform the competitive methods in more than 91% of the cases.

This thesis proposes a method for transfer learning by model in GP, where an
image descriptor evolved on instances of a related problem (source domain) is applied
directly to solve a problem being tackled (target domain). The results show that the
new method evolves image descriptors that have better generalisability compared
to hand-crafted image descriptors. Those automatically evolved descriptors show
positive influence on classifying the target domain datasets in more than 56% of
the cases.
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1
Introduction

This chapter provides an introduction to this thesis and its motivations, goals,
contributions, and organisation. The problem statement is provided first, followed
by a discussion on the motivations, challenges, and the main limitations of existing
approaches. The research goals and major contributions of this thesis are then
discussed. This chapter concludes with a brief discussion on the thesis organisation.

1.1 Problem Statement
Image classification aims at categorising a set of images into different groups based
on visual content, and is an essential task in a wide variety of applications in
computer vision and pattern recognition, e.g., in medicine (cancer and fracture clas-
sification), military (battle field analyses), environment (vegetation classification),
and robotics (robot navigation) [33]. Image classification is a challenging task that
has attracted increasing interest over the past 50 years [3, 304, 117, 275, 84, 268, 248].
Traditionally, image classification includes different stages, including keypoints
(regions of interest) identification and feature extraction operations. These stages
aim at transforming the high dimensional low-level feature representation (raw
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pixel values) into a reduced dimensional mid- or high-level feature representation
[335, 337]. Identifying keypoints and extracting a good set of features are crucial
steps that typically require domain-expert intervention. In fact, often a domain-
expert in the application being tackled is required to identify the regions of interest
and yet another expert in image processing is needed to outline the required steps
to perform feature extraction. Those experts are very expensive to employ and,
in many cases, are difficult to find. Therefore, two approaches have emerged to
address this problem: (1) proposing a set of domain-independent feature extraction
methods [337]; and (2) using image descriptors [117, 218, 185]. An image descriptor
is a carefully designed function, or set of functions, that aims at automatically
performing keypoints detection and/or feature extraction [219, 303]. Although both
of these approaches have the potential to achieve a satisfactory level of performance,
each approach has its own limitations. The former suffers from being too abstract,
which makes it appropriate for some applications but inappropriate for others. For
example, a set of features that are designed to tackle face detection tasks may
not help perform texture classification tasks. The latter (image descriptors) still
requires human intervention to design an image descriptor or to extend an image
descriptor to handle different image deformations, e.g., variation in illumination,
rotation, or scale.

The process of designing image descriptors is a very challenging task that
requires expertise in both image processing and mathematics. The former is
needed in order to identify some important keypoints, whilst the latter is needed
to designing a mathematical formula to detect those keypoints. Local Binary
Patterns (LBP) [219] and its variants, and Scale-invariant Transform Features
(SIFT) [185] and its variants, are some typical examples of widely used image
descriptors. Recently, with improvement of computing power, some machine
learning techniques have received much attention and have been used to improve
existing image descriptors [199, 301, 233, 299, 222, 2, 302, 179, 17, 271, 182, 124].
Genetic Programming (GP) [153] has been successfully used as an approach to
tackle a variety of image descriptor-related issues [300, 231, 232, 221, 234]. However,
these GP-based methods are either designed to improve the performance of an
existing image descriptor or to perform keypoints detection of a predefined type,
e.g., corners and lines.
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The human visual system is capable of learning to recognise complex object
categories relying on a single view/snapshot, whereas using only a few training
instances to build or train a machine learning model is still a challenging task
[256]. The vast majority of machine learning algorithms are designed based on the
assumption that an abundant set of training examples is available [134, 252, 77].
However, acquiring a large number of instances is often difficult, expensive, or
infeasible. Fingerprint recognition/identification [12, 19], ID-card identification
[269], and Biometric passport (e-passport) for identity authentication [325] are
some typical examples. Furthermore, most learning algorithms demand human
intervention to align each training instance, e.g., each instance contains a single
face for face recognition where the eyes, nose and mouth regions appear roughly at
the same coordinates, as those algorithms were not designed to handle, or to be
robust to, image deformations [86]. As a consequence, this increases the difficulty
of the problem (e.g. classification which is concerned with assigning a class label to
an image, or recognition which is concerned with localising and assigning a class
label for an object in an image) and makes it impractical to achieve satisfactory
results/performance.

The overall goal of this thesis is to develop a new domain independent GP
approach to image classification by utilising GP to evolve programs that are capable
of automatically detecting diverse and informative keypoints, designing a set of
features, and performing feature extraction using only a small number of training
instances to facilitate image classification, and is robust to different image changes
such as illumination and rotation.

1.2 Motivation

Image classification is a cornerstone of computer vision and pattern recognition
[38, 9]. An image is made up of a number of pixels, where each pixel has an
intensity value. Due to the large number of pixels, even for small images such
as 200× 200 pixels, machine learning algorithms seldom operate directly on raw
pixels. Therefore, numerous methods for keypoints detection and feature extraction
are proposed in the literature that aim at transforming the low-level raw pixel
representation to a reduced high-level representation. However, there are three
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main limitations of this approach [132, 133, 171, 189]. First, it requires human
intervention to design those keypoints, how they can be detected, and what features
are to be extracted from each keypoint. Second, manual alignment of the images
is needed as a large number of domain-independent feature extraction methods
assume that each object appears approximately at the same coordinates within
an image; those methods are not designed to handle the shift, rotation, and scale
variances of objects. Third, the performance of the final results of classification is
largely dependent on the goodness (or descriptiveness) of the extracted features.
Regardless of how powerful a classification algorithm is, if the extracted features in
prior stages are “weak”, then the built classifier is more likely to be “weak” as well.
Those methods that are designed to operate directly on raw pixel values generally
require a large number of training instances in order to build a good model that is
capable of performing image classification effectively. However, a sufficiently large
number of training instances are not always available or cannot always be acquired.
Moreover, the overall complexity (both memory and CPU time) of the learning
algorithms will increase substantially when dealing with large images.

The remarkable ability of the human visual system has motivated the proposal
of a large number of methods in the literature that aim at replicating the human
visual system functionality in machines [264, 265, 44]. However, despite the great
progress and achievements in this field, the dream of developing a computer that
has the capability of a two-year child to interpret an image remains elusive [293].
One way to mitigate the inability to deal with acquiring a large number of training
instances is to adopt a transfer learning approach. What, when, and how to
transfer are the main questions that need to be addressed in the transfer learning
approach [227]. Moreover, the problem of dealing with a large number of instances
still persists.

Genetic Programming (GP) is an evolutionary computation (EC) algorithm
that simulates biological evolution and natural selection to automatically evolve a
computer program (solution) for a user-defined problem [153, 243]. GP has been
used to tackle image-related problems such as object detection [336], classification
[275], edge detection [99], segmentation [170], and image descriptors [234].

Similar to non-GP methods, GP methods proposed in the literature to tackle
image classification either require human intervention to perform feature extraction
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[334, 274], or require a large number of training instances [283, 281]. Moreover,
GP has seldom been used to evolve image descriptors [234, 179].

1.2.1 Challenges of Image Classification

Some of the main challenges of image classification can be summarised as follows.

1. Raw pixels. Using the raw pixel intensity values to perform classification
suffers from two main difficulties: large search space, and pixel values by
themselves are meaningless if they are treated in isolation of each other as a
pixel value at specific coordinates is likely to be related to its neighbouring
pixels (spatial structure). Therefore, human intervention is typically required
to specify and design some prominent regions of interest that can be used
to identify the instances of the different categories. The challenge is how
to design a model that can operate directly on the raw pixel values, detect
relations between the pixels of the different regions of an image, and transfer
the high-dimension low-level feature space to a reduced-dimension higher-level
feature space.

2. Image variations. Images from the same object can appear differently when
they are captured in an uncontrolled environment. The main variations are
illumination, rotation, translation, and scale. Other sorts of image variations
are deformation, and clutter (also known as noise). Designing a model that is
capable of generating features that are robust to some or all these variations
is a very challenging task.

3. Human intervention. The intervention of a domain-expert represents
an essential key component in performing different operations in image
classification. Detecting a good set of keypoints and designing an algorithm
to extract features from those keypoints are typical examples where human
intervention is needed. Designing a model that can automatically perform
such operations (keypoints detection and feature extraction) is not an easy
task. Moreover, a model designed to operate on one domain may not
generalise well to other domains; which means, different models are needed
for different domains. For example, designing a model for texture image
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classification may not achieve desirable performance if it is used for face or
object image classification.

4. Flexibility. Some of the existing image descriptors such as Local Binary
Patterns (LBP) [219] and Scale-invariant Feature Transform (SIFT) [185]
comprise a number of parameters. Altering those parameters, e.g., the radius
(r) and the number of neighbouring pixels (p) in LBP, or extending those
existing methods to handle different image variations in many cases requires
substantial changes. Developing a parameter-free or self-tuning model has
the potential to increase the flexibility of such a model to be used in different
situations; however, the task of developing such a model is challenging as
the algorithm needs to handle multiple tasks simultaneously.

5. Number of Instances. In classification, the performance of a learnt classi-
fier can be significantly affected by the number of instances used during the
training phase [134, 252, 77, 315, 255, 256]. Most of the methods developed
for image classification will perform poorly when the number of training
instances is small [266, 313, 310, 85]. Using a large number of images during
the training phase imposes a heavy load on many learning algorithms as
typically images comprise a large number of pixels (even for a small image
with size 20× 20 pixels, there are 400 values). The number of images will
be more problematic when the training phase requires iterating over the
pixel values of each image over and over such as in the case of using a
genetic beam search method. Reducing the number of training instances
can significantly speed-up the learning task and reduce the memory required
to store those instances. In other words, it will improve the overall system
efficiency. However, developing a model using only a few instances during the
training phase that can generalise well to unseen data is a very difficult task
due to having only a limited source of data to capture informative features
and relations between these features.

1.2.2 Why GP?
GP is a widely used global search technique that has been applied to tackle
numerous problems in a wide range of applications [154, 243, 146]. Unlike other
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techniques under the EC umbrella, GP typically evolves programs using a tree-based
representation that gives it some characteristics that make this technique preferred
over other EC techniques for a variety of problems such as symbolic regression
and classification. The following directly motivate employing GP for image-related
tasks.

• Automatically evolving models. GP and a few other techniques such as
learning classifier systems [129, 322] and artificial immune systems [62, 47],
have the ability to automatically build or evolve a model to tackle the problem
at hand. For example, in a curve fitting or symbolic regression problem
if the data points are known to follow a linear model, then the task is to
find the slope and intercept of the line that minimises the error between
those data points and the line. However, it will be more difficult to tackle
the problem when the model is not known; and here GP has the potential
to automatically evolve a model that fits those data points without prior
knowledge or human intervention.

• Dynamic representation. Unlike many other techniques such as Genetic
Algorithms (GAs), Particle Swarm Optimisation (PSO) and Artificial Neural
Networks (ANNs), GP representation is not fixed and can be dynamically
evolved during the evolutionary process. A tree-based GP evolves solutions
that have a tree structure, and different solutions, i.e., individuals, can have
different sizes and internal structure (different node combinations); whilst
techniques such as GAs and ANNs typically have a fixed model representation
that has to be determined prior to the training phase. This is an important
attribute as predicting the size and structure of the solution in many problems
is not easy. Symbolic regression is a typical example where the aim is to
build a model that can best fit the data, which is unlike statistical regression
where the assumption is that the data follow a known model and the aim is
only to tune the parameters of that model [153, 243].

• Multiple tasks. In GP, it is possible to perform multiple tasks simultane-
ously, where other techniques require a multi-stage approach [331]. A typical
example is evolving a classifier and selecting only a subset of the available
features [173]. This attribute allows the system to select different terminals
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each of which performs a feature extraction operation, and an appropriate
set of non-terminal nodes to combine those terminals in a useful manner to
evolve a program that performs region detection, feature extraction, feature
selection/construction, and classification in images.

• Flexibility. GP does not require a specific type of input to operate on and
can be designed to operate on diverse types of data. For example, many
machine learning algorithms require only numerical data such as ANNs,
whilst GP can operate on numerical and categorical data simultaneously.
Moreover, GP can evolve linear and non-linear models, and uses domain-
independent and domain-specific functions. This property reduces the work
required to preprocess the data to fit the learning algorithm requirements.

• Interpretability. Unlike many learning algorithms, GP does not evolve
a black-box model that can be very difficult to interpret/understand. An
individual program evolved by GP can be converted into a mathematical
formula or a set of rules depending on the function and terminal sets used.
This property facilitates addressing how an evolved solution can solve the
problem, which can be accomplished through traversing the solution tree
and examining the changes that occur on the instance (or its feature values)
being evaluated at each node.

• Constraints. Using Strongly-typed GP (STGP) [207], it is possible to
introduce a variety of constraints on the different nodes of an evolved program;
and therefore, each node can be designed to take a different number and
types of inputs and generates different outputs. For example, it is possible to
have a combination of mathematical (+, −, and ×) and conditional (≥, ≤,
and if-then-else) operators in a single solution. This property allows
some nodes to operate on numerical values and perform typical mathematical
operators, whereas other nodes convert the inputs into a binary code.

1.3 Research Goals
The overall goal of this thesis is to develop a new domain independent GP approach
to image classification by utilising GP to evolve programs that are capable of
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automatically detecting diverse and informative keypoints, designing a set of
features, and performing feature extraction using only a small number of training
instances to facilitate image classification, and is robust to different image changes
such as illumination and rotation. Although only a small number of labelled data
is used during the training stage, it is expected that the evolved programs can
be effective on unseen data and have the potential to compete with hand-crafted
methods proposed in the literature.

1.3.1 Research Questions
The research in this thesis will help to answer the research questions below.

(i) How can GP be used to evolve models that operate on the raw pixel values
and are capable of handling domain independent image classification using
only a small number of training instances?
Image classification is an essential, yet challenging, task in a variety of
domains. The difficulty of this task is due to the large size of the search
space, diversity of instances of objects from the same class in terms of shape
and appearance, clutter or noisy instances, and the difficulty of acquiring
a large number of labelled instances in some cases such as in the medical
domain. The use of GP techniques for image classification is motivated by
the capability to automatically explore a large search space in order to evolve
a solution. GP will be used to evolve programs that perform multiple tasks
simultaneously such as feature extraction and classification in images.

(ii) How can GP be used to perform multi-class image classification using only a
small number of training instances?
Multi-class image classification is typically a difficult and more challenging
problem than binary classification; it aims at building a model that discrimi-
nates between instances of more than two classes. Some methods, such as
k-Nearest Neighbour (k-NN), naturally permit handling the multi-class clas-
sification task [63]. However, extending tree-based GP to perform multi-class
image classification needs to be handled carefully [184, 281, 274, 168]. This
becomes even more challenging in the presence of having only a small number
of instances. GP will be used to evolve an image descriptor for automatically
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designed keypoints, synthesise mathematical formulae to detect those key-
points, and perform feature extraction. Simultaneously, the GP system will
be designed to consider the separability of the extracted features to tackle
the multi-class classification problem.

(iii) How can GP be designed to evolve image descriptors that are robust to image
deformations?
Image deformations such as illumination and rotation can largely affect the
performance of a model if such deformations were not considered during the
feature extraction phase. In images, it is very likely that an object can have
different feature values if the image were instead captured in an uncontrolled
lighting or rotation environment. Applying image processing techniques to
adjust the pixel values can be used to tackle the problem of having different
feature values due to illumination; whilst rotation is a more challenging task
to handle as altering the rotation of an object within an image requires more
advanced techniques. Designing a method that can extract illumination-
invariant or rotation-invariant features is a very difficult task. GP will be
used to evolve illumination- and rotation-invariant image descriptors that
have the potential to generate nearly consistent feature vectors for instances
belonging to the same class regardless their illuminations and rotations.

(iv) How can GP be designed to automatically specify the length of the feature
vector simultaneously while evolving an image descriptor?
The length of a feature vector generated from an image is highly dependent
on the specific properties to be measured, and therefore enforced by the image
descriptor, e.g., Local Binary Patterns (LBP) [217]. One way to allow the
system to automatically specify the length of the feature vector is via adopting
the concept of “Bag-of-Words” (BoW) [120], which in computer vision is also
known as “Bag-of-Visual-Words” [272]. A new GP representation will be
used in this thesis that allows the system to use nodes of varying number of
children directly affects the length of the feature vector in order to evolve an
image descriptor and select an appropriate set of features.

(v) Can one model evolved by GP to tackle an image classification problem be
used to tackle another image classification problem in the same or a related
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domain?
Typically, it is assumed that the training and test instances of a problem have
the same underlying distributions and the same feature space [227]. However,
this assumption may not hold in many real-life applications. Therefore, a
built or trained model to tackle one problem is not expected to perform well
on a different problem if the underlying distributions of the two problems’
instances are different. For example, a model may perform well to classify
texture images, but it is not the case when the same images are provided
with the presence of noise. Moreover, a model built to tackle one type of
problem is not expected to perform well on problems from a different domain
(cross-domain). For example, a multilayer preceptron trained to perform
hand-written digit classification is not expected to perform hand-written
character classification or face recognition as they require different network
structures (number of inputs, outputs, and/or hidden nodes) as well as
different extracted features for each class of the two problems. Inductive
transfer [197], also known as transfer learning, is an approach that allows
the knowledge gained while tackling one problem to be (re)used to tackle a
related problem [329]. Investigating how an image descriptor evolved by GP
can be directly used to solve problems of related domains is very interesting.

1.3.2 Research Objectives

The following set of research objectives have been defined in order to fulfil the
overall goal and research questions.

1. Develop a new GP approach that combines both sparse and dense image
descriptors by detecting sparse regions of an image and uses a dense image
descriptor on those detected regions to extract the feature vector.
There are some existing works [295, 336, 283, 18, 7] using GP to evolve
programs for image classification. A large number of the existing GP and
non-GP methods in the literature either require human intervention to
perform keypoints detection and feature extraction as preprocessing steps
prior to the classifier evolving/training phase, or require a large number
of training instances to automatically perform those tasks simultaneously.
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This thesis aims to propose new GP representations to tackle the problem of
classification in images. Using only a few training instances, the proposed
methods are expected to automatically detect some informative regions of
the image, extract an appropriate set of features, and perform classification.
In order to point out the advantages and disadvantages of the programs
evolved by the proposed representations, different aspects such as training and
evaluation times, number of instances for training, size, and interpretability
of the evolved programs will be investigated. This thesis will also compare
the performance of the evolved programs with well-known GP and non-GP
methods proposed in the literature.

2. Develop a new GP approach to evolve an illumination-invariant image de-
scriptor to the multi-class image classification task.
Generally, increasing the number of classes can impose more difficulties on
many classification methods [296]. It is well-known that the larger the number
of classes to be handled, the larger the number of instances required in order
to estimate the model parameter values [324]. Typically, each GP evolved
program produces a single value for each instance; this suits the requirements
of binary classification tasks well. Some existing research [336, 283, 337, 338]
has investigated different strategies to utilise GP for multi-class classification
tasks. However, the majority of those methods do not perform well when
there are only a few training instances. Multi-class classification is handled
differently in this thesis; instead of focusing on evolving a sophisticated clas-
sifier, this thesis will concentrate on using GP to evolve image descriptors by
using only a small number of instances. An evolved descriptor simultaneously
performs keypoints detection and feature extraction as well as considering
the separability of the instances belonging to different classes. The evolved
image descriptor is expected to generalise well to the unseen data. This
thesis will compare the performance of image descriptors evolved by the
proposed method with the use of hand-crafted features proposed in the liter-
ature as well as existing well-known and widely used domain-expert designed
image descriptors. To carry out this research effectively, the program size,
convergence, and interpretability of those evolved image descriptors will be
investigated. The proposed method is also aimed to be illumination-invariant;
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therefore, the robustness of an evolved image descriptor to the global change
of the image pixel values will also be investigated in this thesis.

3. Extend the GP method for evolving illumination-invariant image descriptors
to handle rotation and evolve rotation-invariant image descriptors.
The term “rotation” will be used in this thesis to refer to the rotating of the
entire frame, i.e., image, in Euclidean space around the central pixel of the
image instead of an object within an image [23]. Handling rotation is a very
challenging task that, in most cases, requires domain-expert intervention,
and therefore is the main limitation of many existing methods. Furthermore,
the majority of existing methods in the literature to tackle the rotation
problem are computationally expensive as the procedure of each involves a
large number of expensive steps that mostly require frequent rescanning the
entire image. The methods proposed in this thesis are expected to evolve
illumination-invariant and rotation-invariant image descriptors by combining
GP search and a set of first-order statistics. The proposed method does not
require human intervention to specify the keypoints to be detected or the
features to be extracted from those keypoints. The robustness to rotation of
the evolved image descriptors will be investigated and the performance will
be compared with the existing rotation-invariant domain-expert designed
image descriptors. Different aspects such as convergence, the impact of the
sliding window size and the length of the feature vector on the performance,
and interpretability will be investigated in order to point out the advantages
and disadvantages of the proposed method.

4. Improve the illumination-invariant and rotation-invariant GP method to
automatically specify the length of the feature vector side-by-side with the
process of evolving an image descriptor.
The number of measured attributes, i.e., extracted features, specifies the
length of the feature vector. Some of the features are redundant or irrelevant,
which may demand employing feature selection techniques to eliminate/reduce
such features. However, applying feature selection techniques can potentially
impose a heavy overhead on computations as such techniques mostly require
extra calculations to measure the relevance or goodness of the individual
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features or subsets of features [307, 181, 327]. Empirically setting a param-
eter value in a model can be a very expensive task to perform. This task
(i.e. finding a good value setting) will become more problematic when the
method under consideration has some stochasticity/randomness as the same
experiment has to be repeated multiple times. The method proposed in
this thesis is expected to reduce the number of parameters needed to evolve
an image descriptor by making the length of the feature vector part of the
search. The new representations will allow GP to find an appropriate feature
vector length during the evolutionary process. This thesis will evaluate the
proposed method by conducting a set of experiments and extensively inves-
tigate different aspects, e.g., window size, code length, and interpretability,
of this method in order to point out its advantages and limitations. The
performance of the image descriptors evolved by the method proposed in this
thesis will also be compared to a number of domain-expert designed image
descriptors.

5. Utilise and investigate GP to perform transfer learning for image classification
tasks.
The majority of the currently existing image descriptors were not designed to
tackle a specific type of problem, e.g., texture classification, and have been
used for a wide variety of applications such as texture image classification
[180, 65, 312] and face recognition [5, 328]. This is a very important property
as it reduces the need for designing an image descriptor for each problem in
every domain. However, such methods detect a specific set of keypoints, such
as corners and lines, that domain-experts consider as very reliable attributes
to discriminate between different images or objects within an image. In
this thesis, an image descriptor evolved by GP on the source domain will
be directly used to perform image classification in the target domain. The
proposed method is expected to use only a few samples from the source
domain, e.g., textures, to evolve an image descriptor that can be reused
to detect a set of automatically designed keypoints and extract features to
facilitate classifying the instance of the target domains, e.g., textures and non-
textures. The performance of those image descriptors will be assessed using a
large number of benchmark image classification datasets and compared with
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the performance of well-known domain-expert designed image descriptors.
The impact of using different window sizes between the source and target
domains on the performance will also be investigated.

Completing the first objective will address research question (i), while complet-
ing the second, third and fourth objectives will address research questions (ii), (iii)
and (iv). Meanwhile, the fifth research objective is investigated to help tackling
the last research question.

1.4 Major Contributions
A summary of the major contributions of this thesis is presented in this section,
whereas each of the Chapters 3 to 7 is dedicated to discuss each of the contributions
presented below.

1. This thesis proposes a method for domain-independent binary classification
in images using GP to automatically identify regions within an image and
extract features from those regions that have the potential to improve the
classification performance while considering the limitation of having a small
training set. Experimental results show that the methods proposed in
this thesis have achieved significantly better performance than using both
hand-crafted features and features automatically detected by other methods.
Furthermore, the features generated by the new methods have positive
influence on the performance of classification algorithms of different types.

Parts of this contribution have been published in:

Harith Al-Sahaf, Mengjie Zhang, and Mark Johnston, “A one-shot learning
approach to image classification using genetic programming,” in Proceedings
of the 26th Australasian Joint Conference on Artificial Intelligence, vol. 8272
of Lecture Notes in Computer Science. Springer, 2013, pp 110–122.

Harith Al-Sahaf, Mengjie Zhang, and Mark Johnston, “Binary image clas-
sification using genetic programming based on local binary patterns,” in
Proceedings of the 28th International Conference on Image and Vision Com-
puting New Zealand (2013), IEEE, pp. 220–225.
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Harith Al-Sahaf, Mengjie Zhang, and Mark Johnston, “Binary image classifi-
cation: a genetic programming approach to the problem of limited training
instances,” Evolutionary Computation (Journal, MIT Press) 24, 1 (2016),
143–182.

2. This thesis proposes the first GP approach for automatically evolving an
illumination-invariant dense image descriptor using only a few instances of
each class and is capable of designing keypoints, detecting those keypoints,
and performing feature extraction. The method operates directly on the raw
pixel values and synthesises a set of mathematical formulae using simple
arithmetic operators to form a descriptor. As the proposed method does
not require any human intervention to design what keypoints are better to
identify the instances of each class, how to detect those keypoints, and what
and how features are extracted from those keypoints, this method clearly
shows potential promise in computer vision to address different problems.
The results of the experiments reveal the potential of this method to signifi-
cantly outperform domain-expert hand-crafted descriptors and improve the
performance of the different classification algorithms.

Parts of this contribution have been published in:

Harith Al-Sahaf, Mengjie Zhang, and Mark Johnston, “Genetic programming
for multiclass texture classification using a small number of instances,” in
Proceedings of the 10th International Conference on Simulated Evolution and
Learning, vol. 8886 of Lecture Notes in Computer Science. Springer, 2014,
pp. 335–346.

Harith Al-Sahaf, Mengjie Zhang, and Mark Johnston, “Genetic programming
evolved f from a small number of instances for multiclass texture classification,”
in Proceedings of the 29th International Conference on Image and Vision
Computing New Zealand (2014), ACM, pp. 84–89.

Harith Al-Sahaf, Mengjie Zhang Mark Johnston, and Brijesh Verma, “Image
descriptor: a genetic programming approach to multiclass texture classifica-
tion,” in Proceedings of the IEEE Congress on Evolutionary Computation
(2015), IEEE, pp. 2460–2467.

3. This thesis considers rotation variation of images and automatically evolves
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rotation-invariant image descriptors in addition to being invariant to illumina-
tion through integrating a set of first-order statistics as terminals. Handling
rotations represents a more challenging task than illumination and requires
major changes to be applied to some of the existing methods in order to
achieve a satisfactory level of performance, whereas the proposed method
handles everything automatically using only a small set of instances of each
class. Experimental results reveal the advantages of the proposed method
compared to hand-crafted image descriptors. Furthermore, the descriptors
evolved by the proposed method can, to some extent, be interpreted.

Part of this contribution has been published in:

Harith Al-Sahaf, Ausama Al-Sahaf, Bing Xue, Mark Johnston, and Mengjie
Zhang, “Automatically evolving rotation-invariant texture image descriptors
by genetic programming,” IEEE Transactions on Evolutionary Computation
21, 1 (2017), 83–101. doi:10.1109/TEVC.2016.2577548.

4. This thesis proposes a dynamic GP representation that allows the system
to automatically identify the length of the feature vector side-by-side with
evolving an image descriptor. The method reduces the number of parameters
that the user needs to set, which can be considered as an advantage over
hand-crafted methods. Using different images datasets, the results of the
experiments show that this method has achieved significantly better or
comparable performance compared to hand-crafted domain-expert designed
image descriptors. Moreover, some of the evolved descriptors have a very small
feature vector and yet still have significantly outperformed the competitive
methods. This is due to the ability of the method to automatically identify
a set of features that better suit each problem instead of using generic
hand-crafted features.

Parts of this contribution have been published in:

Harith Al-Sahaf, Mengjie Zhang, and Mark Johnston, “Evolutionary image
descriptor: a dynamic genetic programming representation for feature ex-
traction,” in Proceedings of the 2015 Genetic and Evolutionary Computation
Conference (2015), ACM, pp. 975–982.

Harith Al-Sahaf, Mengjie Zhang, Ausama Al-Sahaf, and Mark Johnston,

doi:10.1109/TEVC.2016.2577548


18 CHAPTER 1. INTRODUCTION

“Keypoints detection and feature extraction: a dynamic genetic programming
approach for evolving rotation-invariant texture image descriptors,” IEEE
Transactions on Evolutionary Computation. (Conditionally Accepted).

5. This thesis proposes a methodology for transfer learning in GP, where an
image descriptor evolved on instances of a related problem (source domain)
is applied directly to a problem being tackled (target domain). The proposed
method investigates the generalisability of an evolved image descriptor. This
has the potential to not only demonstrate the possibility of automatically
evolving image descriptors to directly tackle problems of different types, e.g.,
texture classification and object classification, but to also show the ability
of those descriptors to handle a number of classes and sizes of instances in
the target domains different from those used in the source domain. The
results show that an image descriptor automatically evolved by the proposed
method has significantly outperformed domain-independent hand-crafted
image descriptors.

1.5 Organisation of the Thesis

The remainder of this thesis is organised as follows. The literature of related work
is reviewed in Chapter 2. Each of the five subsequent chapters, i.e., Chapters 3
to 7, addresses one of the research goals. Chapter 8 concludes this thesis.

Chapter 2 presents a detailed description of the image classification problem
and provides an overview of the methodologies previously proposed to tackle this
problem. The main concepts of GP are also explained in this chapter. This chapter
then gives a review of transfer learning and the different methodologies that are
used to accomplish this type of learning.

Chapter 3 proposes new representations for binary classification in images where
GP is used to detect some informative regions. Different representations and fitness
measures are experimentally assessed and some evolved programs are analysed to
show how they solve the problem. This chapter also provides further analysis of
the proposed representations.

Chapter 4 presents a new representation to evolve illumination-invariant image
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descriptors, and a new fitness measure that considers the between-class and within-
class distances to measure the separability of the instances. A deeper analysis of
some evolved image descriptors is also provided to shed light on how they work.

Chapter 5 extends the illumination-invariant image descriptor presented in
Chapter 4 to tackle the rotation issue/challenge by employing simple first-order
statistics. The chapter then investigates an evolved descriptor and the generated
feature vectors to show how such a descriptor helps to tackle the problem.

Chapter 6 develops a new representation to allow GP to automatically evolve
an image descriptor and simultaneously specify the length of the feature vector.
The method extends the method presented in Chapter 5 by introducing a node
into the function set that allows having a different number of children. Using the
new representation reduces the number of parameters that need to be set by the
user. An extensive comparison between the proposed method and a range of widely
used image descriptors from the literature is performed.

Chapter 7 investigates a methodology to adopt transfer learning in GP. The
ability to use an evolved image descriptor to perform image classification in datasets
that were not used for training from the same and different domain is investigated.
The evolved descriptors are investigated to show how knowledge can be transferred
from one task to another.

Chapter 8 concludes this thesis and summarises the key findings. The research
contributions and key points of this thesis are highlighted and discussed. The
chapter also suggests and discusses different opportunities for future work.
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2
Literature Survey

This chapter serves as a foundation stone for this thesis. This chapter covers essential
background and provides definitions of the basic concepts and terminology in
computer vision such as image types and representations, image features, and image
descriptors. The chapter also provides a brief introduction to the different paradigms
of machine learning. Details about evolutionary computation (EC) techniques in
general, and particularly genetic programming (GP) are also provided in this chapter.
The discussion includes the key concepts of GP such as the program representation,
selection methods, and genetic operators. This chapter then reviews typical
works and summarises the research topics of using traditional machine learning
methods and evolutionary methods for image-related tasks such as keypoints
identification, feature extraction, and image classification. The benchmark datasets
used throughout this thesis to assess the performance of the different methods are
also discussed in this chapter.

21
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2.1 Basic Concepts
Computer imaging is concerned with acquiring and processing visual information
by computers [306]. It can also be defined as the field that is concerned with
acquiring, understanding, processing and analysing images by computers [288, 209].
Computer imaging can be categorised into two categories: image processing (IP),
and computer vision (CV). The former aims at generating a modified image that
will be interpreted by a human; whereas the latter aims at manipulating the
image content and the results will be interpreted by computers [104, 228]. Image
enhancement, image restoration and image noise cancellation are some typical
examples of IP; whilst image classification and object detection are typical examples
of CV. Clearly, images play an essential role and represent the key component
of both fields. A digital image can be defined as a two dimensional matrix of
values where each value reflects the intensity level of the corresponding pixel.
Image in this thesis refers to digital images unless otherwise mentioned. The
algorithms of computer vision aim at replicating the human vision system via
electronically perceiving and analysing the content of an image [285]. As presented
in Figure 2.1(a), the human visual system is made of three components: (1) eyes;
(2) optic nerve; and (3) primary visual cortex. Generally, human sight can be
divided into three operations [309]:

• Image capturing: the task of capturing the light emitted from, or reflected
on, an object. The adjusted amount of light that falls on the cornea by the
iris enters the eye through the pupil. The lens then focuses this light on a
specific part of the retina known as fovea. Figure 2.1(b) presents a human
eye labelling its main parts.

• Feature extraction: is concerned with transferring the captured
light/images into a different form that can be processed by the brain. The
cones and rods photoreceptor cells, that are located on the retina, convert the
light into electric impulses. The generated impulses are then sent through
the optic nerve to the brain.

• Recognition: the primary visual cortex processes the received impulses
from the optic nerve and communicate with different visual responsive areas
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(a) (b)

Figure 2.1: A demonstration of (a) the human visual system components (re-
produced from [105]); and (b) the main parts of a human eye (reproduced from
[319]).

via multiple pathways in order to interpret the signals (impulses). Relying
on previously seen and learnt objects, the brain can categorise the current
object or orders the body to take an action. The mystery of understanding
the human brain and how it performs the different tasks is still elusive.

In machines, the corresponding components of the human visual system are:
(1) cameras; (2) wires; and (3) processing units. Like human eyes, digital cameras
capture the light emitted from a light source or reflected on surface, which fall on
the lens that focuses it on the sensor. Similar to the retina in a human eye, the
sensor consists of a large number of photosites —also called Bayer filters— which
are sensitive to light. These photosites convert the captured light into electrical
impulses each of which represents red, green, or blue colour. The generated
impulses are then transmitted through bands of tiny wires to a processing unit.
The processing unit interprets the received impulses and projects the image on a
screen or passes it to a program to perform an action. Figure 2.2 demonstrates the
process of capturing an image in digital cameras.

The introduction of digital cameras and other sophisticated devices (e.g. cell-
phones and other smart devices) has greatly facilitated the task of gathering data
in different domains. In order to gain some useful information, the obtained data
require analysis and processing first. In image processing and computer vision, a
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Figure 2.2: Diagram shows the process of image capturing in cameras (reproduced
from [69]).

large number of algorithms and methods have been proposed that aim at performing
a variety of tasks such as image enhancement [250, 112], recognition [15], image
restoration [20, 43], motion analysis [83, 107], and scene reconstruction [278, 151].

Some basic tasks and their definitions are briefly discussed below as they are
closely related to computer vision.

2.1.0.1 Object Detection

Object detection is concerned with finding instances of semantic objects in an
image against the background [334, 305, 284]. For example, if we have an image
that consists of a uniform background with two types of objects, e.g., circles
and rectangles, then the task of detection can be locating the coordinates of the
central pixel of each object irrespective of the type, i.e., class label, as presented in
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Figure 2.3: Example demonstrating the role of an object detector.

Figure 2.3.

2.1.0.2 Object Classification

Unlike object detection, object classification is the task of assigning a class label
to each instance [305, 284]. In other words, each instance is assumed to represent
a single object and the model/classifier tries to group similar (based on shared
characteristics) instances into one group as demonstrated in Figure 2.4.

2.1.0.3 Object Recognition

In the literature, object recognition and object classification have often been used
interchangeably [98]. However, here the term object recognition will be used to
refer to the task of finding and identifying objects in an image. In other words, it
refers to performing both object detection and classification operations at the same
time [15]. Figure 2.5 shows an example of this task.

2.1.1 Keypoints and Image Features

There is still no uniform definition of the term feature and it can interpreted
differently for different problems, applications, or domains. A feature can be
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Figure 2.4: Example demonstrating the role of an object classifier.

Figure 2.5: Example demonstrating the role of an object recogniser.

defined as a value that describes a measurable attribute [35]. For example, 5.2
centimetres represents the feature of the length attribute of an object. In computer
vision, features can be calculated from different regions of an image that known as
region-of-interest (ROI) or keypoints. Lines, corners, homogeneous, and spots are
some typical keypoints examples. In machine learning, each instance is represented
by a set of features that are calculated manually or automatically, which can be
used as input “object” or “example” to perform a task such as classification or
recognition. The features in computer vision can be at least categorised into low-
level, mid-level, and high-level features. Although there is no standard definition
for each of these three levels, the following definitions will be used throughout this
thesis to refer to the different types of features. Low-level features are represented
by the intensity value of image pixels, where each pixel corresponds to a single
feature [215] (a colour pixel might need 3 features). Therefore, the dimensionality



2.1. BASIC CONCEPTS 27

of low-level features is very high. Clearly, low-level features are domain independent.
Mid-level features, also called pixel statistics, are generated by constructing a value
from a group of pixels such as calculating the average intensity of the eye region in
an image of a face [37, 340, 215]. Similar to low-level features, mid-level features
are domain independent; however, mid-level features have the potential to reduce
the dimensionality of the feature vector. High-level features in computer vision
refer to a more descriptive and domain specific features than simple pixel statistics
[340, 215]. The magnitude, direction, and scale of the feature, patches for template
matching, and shape matching to mention but a few examples. Following are some
of the most common operations that can be applied on features.

2.1.1.1 Keypoint Detection

Keypoint detection is the task of exploring the low-level feature space to identify
some regions of interest. In other words, a keypoint detector makes a decision
at each pixel of the image on whether this pixel is an image region of interest of
a predefined type, e.g, corner, or not [293, 95]. Typical image keypoints include
edges, corners, blobs or connected regions, and ridges. The problem of detecting
image keypoints has been a topic of research for many years and a large number
of methods have been proposed. Examples include: the Sobel operator [279],
Canny [46], and Harris [119] for edge detection; Laplacian of Gaussian (LoG) [294],
Difference of Gaussian (DoG), and features from accelerated segment test (FAST)
[258] for corner detection; and maximally stable extremal regions (MSER) [192],
Grey-level blobs [174], and principal curvature-based region detector (PCBR) [67]
for blob detection.

2.1.1.2 Feature Extraction

Feature extraction is the process of transferring the input data into a reduced
representation set. For example, aggregating a group of pixel values and calculating
a single value out of it. In images, feature extraction can be applied on the keypoints
of an image to construct an informative feature. An example of feature extraction
is calculating the mean, the variance, or the histogram of pixel values for a specific
region of the image. This task plays an important role in computer vision in which
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it can significantly reduce the search space. Feature extraction can also be used to
reduce the amount of irrelevant information in the data [89].

2.1.1.3 Feature Construction

Similar to feature extraction, feature construction aim at transferring the input
data into a reduced domain; however, the main difference between the two is the
input domain. While feature extraction operates on the raw input data, feature
construction operates on the feature space, i.e., a set of pre-extracted features, in
order to generate a higher or more powerful features to improve the performance
of a model [213].

2.1.1.4 Feature Selection

Feature selection methods aim at selecting a subset of features from the set of
available features. Mainly, feature selection is concerned with selecting relevant
features and neglecting redundant features or less important features [177]. Feature
selection must not be confused with feature extraction. The former is only selecting
a subset of the original features and does not perform any transformation on
the original values, whereas the latter transfers feature values into a reduced
representation by creating/generating new features through the use of a function.
Feature selection methods can be categorise into three groups [206, 115, 327]: (1)
filter; (2) wrapper; and (3) embedded.

• Filter Approach
In the filter approach, the feature selection task is performed as a prepro-
cessing step that aims at filtering nonuseful or redundant data prior to the
learning process [150]. The methods of this approach rely on the use of a
search algorithm and relevance measure to explore the feature space in order
to select a good subset of features. The relevance measure is calculated based
on the correlation between the selected features and the desired outputs (i.e.
the class label) [148, 206]. Filter-based feature selection methods are typically
fast to execute and less computationally intensive compared to methods of
other approaches. However, insufficient reliability for classification represents
the major drawback of the filter methods [230]. Moreover, many of the good
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features may get neglected in some methods due to the relevance measure that
ranks each feature based on the correlation with the class label in isolation
of other features where those features are not independent [211, 249].

• Wrapper Approach
Unlike the filter approach, the wrapper methods use a searching algorithm
in conjunction with a classifier that evaluates the goodness of the selected
features. This approach is computationally intensive due to the frequent
evaluation of each combination of selected feature [136]. The trained model
is often used to measure the goodness of the selected features via adopting
a cross-validation scheme in order to define the best combination of the
features [200].

• Embedded Approach
The learning method has its own feature selection algorithm that implicitly
or explicitly takes place through the process of building the model. In other
words, there is no distinction between the feature selection and learning
process phases, and they cooperate with each other in an interactive fashion.
Decision trees (DT) [246] and random forest (RF) [40] are two examples.
The idea of such methods is that at each node the method selects a feature
that has a higher split amongst the list of features. GP represents another
example of this approach that gradually tries to evolve a good solution and
implicitly selects only a subset of features simultaneously [211, 249, 230].

2.1.2 Image Descriptors
In order to construct a feature vector for an image, a set of keypoints, i.e., regions
of interest, need to be identified first. An example of keypoint identification is the
legs and wheels to discriminate between images where each is either a horse or a
vehicle. In texture images, some typical keypoints are lines, corners, circles, and
spots. Usually a domain-expert is required to define those informative keypoints.

The second step is to detect those keypoints in an image, i.e., find their
corresponding pixel coordinates. Conventionally, this task is performed manually
where a domain-expert has to label the coordinates of each keypoint in every image,
which is an expensive and time-consuming task. This has motivated researchers
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to automate this task and numerous algorithms have been proposed that aim at
detecting a specific keypoint, e.g., corners [208, 119, 321], edges [46], and ridges
[175], or a set of keypoints [217, 50].

The third step is to extract a feature or a set of features from a detected keypoint
such as calculating the average value of pixel intensities, contrast, homogeneity, or
correlation.

Automating the second and third steps, and combining them into a single
model is known as image descriptor in computer vision and pattern recognition
[106, 155]. Developing image descriptors has attracted many researchers and
received increasing attention over the past few decades [49]. Examples of commonly
used image descriptors are grey-level co-occurrence matrix (GLCM) [117], local
binary patterns (LBP) [217], scale-invariant feature transform (SIFT) [185, 186],
principal components analysis SIFT (PCA-SIFT) [143], speeded-up robust features
(SURF) [26], weber local descriptor (WLD) [50], KAZE features [11], and fast retina
keypoint (FREAK) [226]. Different descriptors have different properties in terms
of being invariant to one or more of the following: scale, rotation, illumination, and
affine transformation.

Based on how they operate, image descriptors can be at least categorised
into dense and sparse [51, 155]. Dense descriptors operate in a pixel-by-pixel
fashion such as LBP; whereas sparse descriptors consider only some pixels/parts
of an image such as SIFT. Although the process of detecting those keypoints and
extracting features have been automated, the intervention of a domain-expert is
still required to perform the first step, i.e., keypoint identification. Furthermore,
how to automatically detect those keypoints and what features can be extracted
from the detected keypoints are also typically determined by a domain-expert (e.g.
GLCM and SURF).

As has been mentioned earlier, another important issue is that some of these
descriptors are not robust to image variants such as illumination, rotation, and
scale. Conventional LBP is a typical example that has been extended in order
to handle illumination and rotation. Extending a descriptor to be invariant to
rotation, for example, may require major changes of the descriptors, and different
components or formulae, which increases the complexity, e.g., in terms of the
amount of computation required, of the overall system.
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(a) (b) (c) (d) (e)

Figure 2.6: Illustration of the LBP parameters (a) LBP4,1, (b) LBP8,1, (c) LBP4,2,
(d) LBP8,2, and (e) LBP16,2.

2.1.2.1 Local Binary Pattern (LBP)

In computer vision and pattern recognition, local binary pattern (LBP) [217] is one of
the most widely used dense descriptors for detecting and extracting image features.
LBP aims at detecting image keypoints, and generates a histogram (feature vector)
that corresponds to the distribution of those keypoints [212]. Conventional LBP
operates by scanning the pixels of the image using a sliding window and generates
a binary code based on the differences between the central pixel of the window
and its circular equidistant neighbours. The distance is specified by the radius
parameter (r), whereas the number of considered neighbours within the window
is controlled by the pixel parameter (p) as depicted in Figure 2.6. The formal
representation of the LBP operator is defined as follows:

LBPp,r =
p−1∑
i=0

s(gi − gc)2i, s (x) =

0, x < 0

1, otherwise
(2.1)

gi = I (xi,yi) (2.2)

xi = xc + r cos
(
2πi

/
p
)

(2.3)

yi = yc − r sin
(
2πi

/
p
)

(2.4)

where I (xi,yi) is the ith pixel at the (xi,yi) coordinate of image I, the coordinate
of the central pixel of the current window is denoted by I (xc,yc), and gc and gi
are, respectively, the value/intensity of the central and ith neighbouring pixels.

The process comprises four steps at each position of the sliding window as
presented in Figure 2.7. First, the value of each neighbouring pixel is subtracted
from that of the central pixel. Second, each negative value is substituted with a
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Figure 2.7: Illustration of the LBP main steps.

0, otherwise a 1 is substituted. The combination of these two steps represents a
thresholding operator where the value of the central pixel is used as the threshold.
Third, the values (0s and 1s) are used to form a binary code. Fourth, the binary
code is converted into a decimal value, and the count of the corresponding bin in
the histogram is incremented by 1.

Ojala et al. [219, 220] have classified LBP codes into uniform and non-uniform.
A code is designated as uniform (LBPu2

p,r) if circularly it has no more than two
bitwise transitions from 1 to 0 and vice versa as shown in Figure 2.8. The following
formula is used to calculate the number of bitwise transitions in a code:

U (LBPp,r) = |s (gp−1 − gc)− s (g0 − gc)|+
p−1∑
i=1
|s (gi − gc)− s (gi−1 − gc)| (2.5)

where a code is said to be uniform if U(·) ≤ 2. Considering only uniform codes
reduces the length of the feature vector from 2p to p(p− 1) + 3 bins. Formally, the
value of the bth bin in a histogram (feature vector) is calculated as:

H (b) =
M−1∑
i=0

N−1∑
j=0

δ
(
LBPu2

p,r (i, j) , b
)
, b ∈ [0, B] (2.6)

δ (α, β) =

1, α = β

0, otherwise
(2.7)

where M and N are, respectively, the width and height of the image, B is the
maximum number of bins in the histogram, and LBPu2

p,r (i, j) is the LBP code
generated from positioning the sliding window at pixel coordinates (i, j).

To tackle variation due to rotation, a rotation-invariant LBP (LBPrip,r) is also
introduced by Ojala et al. [220]. The idea is to circularly rotate the code until the
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Figure 2.8: Examples of (a) and (b) uniform codes, and (c) and (d) non-uniform
codes. The values of the uniformity measure are, correspondingly, U (00000011) = 2,
U (10001111) = 2, U (00001101) = 4, and U (11100110) = 4.

smallest value is found as presented in Equation (2.8).

LBPrip,r = min (ROR (LBPp,r , x)) , x = 0, . . . , p− 1 (2.8)

Here, the ROR (·, ·) function performs a bitwise right shift operation on the first
argument (binary code) equal to the number specified by the second argument.

Then LBPrip,r is combined with LBPu2
p,r to generate a potentially more powerful

feature vector than that generated by conventional LBPp,r, which is indicated as
LBPriu2

p,r and the formal definition is as presented in Equation (2.9).

LBPriu2
p,r =


∑p−1

i=0 s (gi − gc) , U (LBPp,r) ≤ 2

p+ 1, otherwise
(2.9)

As discussed above, the two parameters r (radius) and p (number of considered
neighbouring pixels) can significantly affect the design of LBP. Altering the number
of considered neighbouring pixels, or the formula to generate the code, requires
human intervention that in many cases can be a very difficult task. Moreover,
making the descriptor robust to rotation makes the task even more difficult. Hence,
the method proposed in this study is designed to address these difficulties by auto-
matically synthesising a set of suitable formulae, without any human intervention
or background knowledge, to form a rotation-invariant image descriptor.

2.1.2.2 Completed Local Binary Pattern (CLBP)

Typically, only the sign is considered to generate the histogram in LBP as discussed
above. Guo et al. [110] showed that additional discriminant power is achieved by
utilising the magnitude (CLBP_M) and the value of the central pixel (CLBP_C)
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along with the sign (CLBP_S), and hence, they proposed three operators:

CLBP_Sp,r =
p−1∑
i=0

s(gi − gc)2i, s (x) =

0, x < 0

1, otherwise
(2.10)

CLBP_Mp,r =
p−1∑
i=0

s(mi − gc)2i, mi = |gi − gc| (2.11)

CLBP_Cp,r = s(gc − cI) (2.12)

where mi is the magnitude of the ith pixel, which represents the absolute difference
between the intensity of that ith pixel (gi) and the central pixel intensity (gc), and
cI is the average intensity, i.e., grey level, of the entire image. Clearly, CLBP_Sp,r
is equivalent to conventional LBPp,r.

2.1.2.3 Local Binary Count (LBC)

Inspired by LBP, Zhao et al. [339] proposed the local binary count (LBC) descriptor.
The main difference between LBP and LBC is that the code generated at each
pixel (i.e. window position) is encoded into a decimal value in LBP, whereas merely
the number of 1’s are counted in LBC. Hence, formally LBC is defined as:

LBCp,r =
p−1∑
i=0

s (gi − gc) , s (x) =

0, x < 0

1, otherwise
(2.13)

where, p, r, gi, gc, and s (·) have their corresponding meanings to those symbols in
LBPp,r.

Another core difference between LBP and LBC is that the local structure
information of the pattern is maintained in LBP which is not the case in LBC due
to the fact that only the number of counted bits is considered while the position
information is discarded.

2.1.2.4 Completed Local Binary Count (CLBC)

A completed local binary count (CLBC) is proposed in [339] to mimic CLBP. Hence,
the magnitude (CLBC_Mp,r) and centre pixel (CLBC_Cp,r) are also considered in
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addition to the sign (CLBC_Sp,r). Formally, these three operators are defined as:

CLBC_Sp,r =
p−1∑
i=0

s (gi − gc) , s (x) =

0, x < 0

1, otherwise
(2.14)

CLBC_Mp,r =
p−1∑
i=0

s (mi − gc) , mi = |gi − gc| (2.15)

CLBC_Cp,r = s (gc − cI) (2.16)

2.1.2.5 Haralick Texture Features

Haralick et al. [117] proposed a set of operators based on the grey-level co-occurrence
matrix (GLCM) that have been widely adopted by researchers in pattern recognition
and computer vision. Each matrix in GLCM has size L×L, where L is the number
of grey levels, and is generated by considering the occurrences of the adjacent
pixels in predefined offset (τ) and angle (θ). Then a set of features are calculated
from those matrices that were designed to detect the structure characterised by
the keypoints. Following are some of those broadly used features.

Contrast =
L−1∑
i=0

L−1∑
j=0

(i− j)2 f (i, j) (2.17)

Homogeneity =
L−1∑
i=0

L−1∑
j=0

f (i, j)
1 + |i− j| (2.18)

Energy =
L−1∑
i=0

L−1∑
j=0

f (i, j)2 (2.19)

Dissimilarity =
L−1∑
i=0

L−1∑
j=0
|i− j| f (i, j) (2.20)

Entropy =
L−1∑
i=0

L−1∑
j=0

f (i, j) [− log2 f (i, j)] (2.21)

Correlation =
L−1∑
i=0

L−1∑
j=0

(i− µi) (j − µj) f (i, j)
σiσj

(2.22)

Here, the function f (·, ·) returns the value of the specified cell from the matrix,
and the mean and standard deviation of the ith row are, respectively, denoted as
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(a) (b) (c)

Figure 2.9: Three schemes to divide an image in DIF (a) rectilinear, (b) circular,
and (c) pixel features [337].

Table 2.1: Pixel statistics of the rectilinear method.

Regions of interest
Features

Regions of interest
Features

µ σ µ σ

Square A1B1C1D1 F1 F2 Square A2B2C2D2 F11 F12

Quadrant A1E1OH1 F3 F4 Horizontal line H1F1 F13 F14

Quadrant E1B1F1O F5 F6 Horizontal line H2F2 F15 F16

Quadrant H1OG1D1 F7 F8 Vertical line E1G1 F17 F18

Quadrant OF1C1G1 F9 F10 Vertical line E2G2 F19 F20

µi and σi. Similarly, µj and σj denote, correspondingly, the mean and standard
deviation of the jth column.

2.1.2.6 Domain-Independent Features

In 2003, Zhang et al. [337] proposed domain-independent features (DIF). The core
idea of DIF is to extract a set of first order statistics, e.g., mean and standard
deviation, from predefined image regions. Although only three schemes (rectilinear,
circular, and pixel) of dividing the image are presented in their work as depicted in
Figure 2.9, this method is not limited and numerous schemes can be used. The
features of the rectilinear method are shown in Table 2.1.

2.1.3 Machine Learning

Machine learning can be considered one of the most rapidly evolved fields in
computer science [14]. It aims at designing computer programs that are capable



2.1. BASIC CONCEPTS 37

of automatically extracting useful patterns or knowledge from data without being
explicitly programmed in order to solve a problem [13]. Machine learning can also
be defined as a subbranch or subfield of the wider artificial intelligence field (AI)
[267, 14], which is concerned with designing algorithms that allows computers to
learn using example data or past experience [260, 13].

Machine learning methods can be at least categorised into five main categories:
(1) supervised learning, (2) unsupervised learning, (3) semi-supervised learning, (4)
reinforcement learning, and (5) transfer learning or learning by knowledge transfer
[260, 227, 329, 316].

2.1.3.1 Supervised Learning

Methods that use example inputs and are guided/supervised by their corresponding
or desired outputs to learn is known as supervised learning. Therefore, a supervised
learning method aims at defining a generalised mapping from the inputs to the
desired outputs [35]. Classification and regression are typical examples of supervised
learning algorithms. Some of the well-recognised supervised learning methods are
artificial neural networks, decision trees, naïve bayes, and genetic programming.

2.1.3.2 Unsupervised Learning

Unsupervised learning, on the other hand, is concerned with example inputs where
their corresponding actual class labels or desired outputs are not available. Hence,
an unsupervised learning method aims at grouping the examples into different
groups based on predetermined criteria. Clustering algorithms are probably the
most widely recognised examples of unsupervised learning. The k-means clustering
[121], and hierarchical clustering [270] methods are typical examples of this category.

2.1.3.3 Semi-supervised Learning

In semi-supervised learning, the aim is to decompose the problem and solve its
different components using a mixture of supervised and unsupervised learning algo-
rithms due to having both labelled (the desired output is available) and unlabelled
data. Methods of semi-supervised learning can be seen as either transductive or
inductive learning. The objective of the former is to correctly infer the class label
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of unlabelled data (unsupervised learning), whilst the objective of the latter is to
define a mapping function from the inputs to the outputs (supervised learning). A
typical example of semi-supervised learning methods is transductive support vector
machine [135].

2.1.3.4 Reinforcement Learning

Methods of reinforcement learning are concerned with developing an agent (e.g.
computer program) that aims at exploring an environment and takes an appropriate
action in which some cumulative reward is to be maximised. Reinforcement learning
algorithms are designed based on the principle of reward and punishment, such
that an agent will gain more rewards by taking more correct actions, and penalised
whenever an incorrect action is taken. A well-known technique of reinforcement
learning that a large number of other techniques are based on is the Temporal
Difference (TD) learning method [291, 292, 35].

2.1.3.5 Learning by Knowledge Transfer

In psychology, it has been observed that humans have an outstanding ability in
categorising a variety of objects without much attention and at very high speed
[244, 297, 87]. Humans are relying on previously obtained knowledge to learn a
new category or categorise a new object and only simply store incremental new
informative knowledge of this object or category [85]. In machine learning, this
process is known as knowledge transfer [85]. In contrast to the human ability
of learning to classify objects, the majority of existing classification algorithms
demand abundant examples in order to learn every single category or group of
objects [85]. The number of training instances required to estimate the model’s
parameters can vary between hundreds and thousands depending on the search
space and the number of parameters to be adjusted [266, 313, 310]. Typically, the
search space in images is considered to be large even for small images. For example,
if we have a grey-scale (with 256 grey levels) image of size 20 × 20 pixels that
means we will have 400 low-level features that give 256400 possible combinations.
In traditional machine learning, the assumption is that both of the source and
target domains or tasks are the same (e.g. drawn from the same distribution).
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However in transfer learning, this assumption almost always does not hold as the
key point of this approach is to define common knowledge that may help improve
the performance of the model.

There are three main questions that need to be addressed [227]:

(i) What to transfer? This is concerned with identifying the part of knowledge
that can have an influence across domains. The knowledge can be either
specific for some domains, or common between a variety of domains, and can
be used to improve the performance of the model in the target domain.

(ii) When to transfer? In order to avoid the problem of negative transfer (i.e.
knowledge obtained from the source domain negatively affect the learning on
the target domain), it is important to understand the nature of the source
and the target domains. In other words, in situations where the source
and target domains are unrelated to or independent of each other, then
transferring knowledge may have opposite impact on the performance of the
model in the target domain.

(iii) How to transfer? This is concerned with what methods can be used to
transfer the knowledge from the source to the target domain under the
assumption that both of the domains are related to each other.

Pan et al. [227] have suggested to categorise transfer learning into three groups
based on the availability of the labelled data. In the first group, if labelled data are
available in the target domain then it is inductive transfer learning. Moreover, if
labelled data are not available in the source domain then it is known as self-taught
learning; otherwise, it is known as multi-task learning. In the second group, if
labelled data are available only in the source domain then it is called transductive
transfer learning. The third group is known as unsupervised transfer learning and
it handles the situation where labelled data is neither available in the source nor in
the target domain.

By limiting the scope of knowledge transfer to the computer vision field, and
based on “how to transfer”, the different forms of knowledge transfer can be
categorised into four approaches [85, 227]:
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Table 2.2: Groups of knowledge transfer learning [227]
Labelled data in source Labelled data in target

Inductive transfer learning
Available Available Multi-task learning

Unavailable Available Self-taught learning

Transductive transfer learning Available Unavailable Domain adaptation

Unsupervised transfer learning Unavailable Unavailable

• Knowledge transfer by model parameters.
A model trained on a set of instances of one domain can be reused to classify
the instances of another domain under the assumption that both of the
domains are related. In other words, a large number of instances of the
source domain are used to adjust the model’s parameters, which then are
used on the instances of the target domain to exploit the similarity between
instances of the two domains. An example is to train a model to recognise
instances of the letter “A” and then use this model to recognise instances of
digit “4” [201].

• Knowledge transfer by sharing features.
Another group of algorithms that perform learning by knowledge transfer is
through transferring shared parts between different domains or classes. For
example, instances of a cow are assumed to have shared features with those of
a horse. Therefore, capturing the shared features will help in identifying the
instances of the new class. Bart et al. [25] proposed an algorithm that aims
at extracting patches that maximise the mutual information from instances
of the source domain, and then use those extracted patches to learn a new
class of objects using a few instances of the target domain.

• Knowledge transfer by contextual information.
Methods of this approach work via obtaining or capturing relations amongst
the data of the source domain, and transfer these relations to the target
domain. In other words, instead of transferring the parameters (transfer by
model parameters) or the features (transfer by sharing features), the learning
is achieved though transferring the relationship among the instances or the
different regions of those instances. For example, identifying the relations
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between strokes to represent a character in order to predict the characters
of a different language [160]. Two statistical based learning methods that
are dominating this context have been proposed recently: Short-Range to
Long-Range (SR2LR) [198] and Deep Transfer via Markov Logic (DTM) [64].

• Knowledge transfer by instances.
Methods of this context use complete instances of the source domain to
classify or recognise instances in the target domain [59, 332, 58, 247]. For
example, the source domain consists of a set of clear cuts of football pictures,
and the task is to locate balls of different types in an image that contains a
variety of objects.

2.1.4 Evolutionary Computation

Evolutionary computation (EC) is another fast growing subfield of AI, soft comput-
ing more specifically, which is concerned with biologically inspired algorithms [21].
There are two well-recognised main streams in this research area [21]: Evolutionary
Algorithms (EAs) [139]; and Swarm Intelligence (SI) [79, 145]. While algorithms
of the former group mimic Darwinian principles of natural selection and survival
of the fittest, the algorithms of the latter group are inspired by the collective
intelligence of a group of agents and mimic the social behaviour of animals such as
birds flocking [28, 36]. EC algorithms use a population of candidate solutions to
perform a global search rather than considering a single point in the search space.
The history of EC techniques is believed to be as recent as the late 1950s [22]. In
the following subsection, some of the main algorithms of EC methods are briefly
discussed; whereas genetic programming (as it is the main focus of this thesis) will
be discussed in detail in the next section.

2.1.4.1 Evolutionary Algorithms

The algorithms under this part of the EC field simulate the biological evolution
(Darwinian principles) via performing selection, crossover, mutation and reproduc-
tion in order to evolve a population of individuals. The individuals are competing
for survival, where good individuals have better chances to survive [61]. The
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goodness or fitness of an individual is reflected by its ability to tackle a specific
problem. Following are some of the prominent evolutionary algorithms.

• Genetic Algorithms (GAs) [129]
GAs were introduced by John Holland [22, 128] and became popular after
his work in the early 1970’s [127, 130], and hence, GAs represent one of
the earliest techniques that have adopted biological evolution in its process
[103]. GAs use a fixed-length bit string representation, called a chromosome,
to encode each individual. The chromosome can have other type of values
such as real numbers, and integers. The individuals are decoded in order to
get the solution for the problem being tackled. Crossover, mutation, and
reproduction are the genetic operators in GAs that are used to improve/evolve
the individuals. GAs have been widely to tackle optimisation problem [314].

• Evolutionary Strategies (ES) [253, 30]
ES is an evolutionary algorithm that rely on mutation and discrete or
intermediate recombination to evolve an individual. The main aim of ES
algorithms is to tackle problems in the real-value domain. Unlike GAs, ES
uses a deterministic selection mechanism.

• Evolutionary Programming (EP) [92, 94]
EP was introduced by Fogel in 1962 [93, 22] and is aimed at evolving finite-
state machines for predicting events based on previous observations. Similar
to GAs, the individual representation in EP is fixed and only the parameters
are allowed to be adjusted via using self-adaptation. The main operation
in EP is mutation. To populate the next generation, the newly generated
offspring via mutation are mixed with the individuals of the current generation
(parents) and then some of them will be selected to be put into the next
generation.

• Genetic Programming (GP) [153]
GP is an evolutionary algorithm that uses a dynamic individual represen-
tation to evolve computer programs for a user-defined problem. Similar to
GAs, GP also populates the next generation from the individuals of the
current generation by exchanging the genetic materials through mutation
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and crossover operations. The flexibility of GP individual representation has
attracted researchers and facilitated tackling a variety of problems in a wide
range of domains.

2.1.4.2 Swarm Intelligence

The algorithms in SI are mainly inspired by the social behaviour of simple agents
such as bird flocks, fish schools, ant or bee colonies, and bacterial growth [145, 36, 28].
The main idea is that each agent performs a simple local search in order to find a
better solution, and by interacting with other agents the whole group can reach
global behaviour. Particle Swarm Optimisation and Ant Colony Optimisation
are two typical examples of SI that have been widely employed to solve different
optimisation problems.

• Particle Swarm Optimisation (PSO) [79]
In 1995, Eberhart and Kennedy [79] introduced PSO to simulate social
behaviours. Like other EC techniques, PSO uses a population (swarm) of
candidate solutions (particles) that explore the search space. The algorithm
allows each particle to locally explore the nearby areas as well as globally via
interacting with other particles. The process starts by randomly generating a
set of particles. Each particle is then evaluated based on a predefined criterion,
and therefore, assigned a fitness value which reflects its performance. Those
particles then adjust their position by considering its own fitness value as well
as the global best fitness. In [242, 240], Poli et al. provided a comprehensive
survey on the theoretical and practical work of using PSO to solve problems.

• Ant Colony Optimisation (ACO) [71, 73]
Inspired by the foraging behaviour of ant colonies, a number of algorithms
have been proposed in the early 1990s such as the ant system (AS) algorithm
[72, 70]. Dorigo and Caro [71] put those algorithms into a single framework
and called it ACO [73]. The main procedure consists of three components:
ants activity, pheromone evaporation, and daemon actions. Ant activity con-
cerns with the movement of the ant colony concurrently and asynchronously
in the search space of the problem. Each ant in the colony makes a stochas-
tic decision in order to explore the neighbouring states (positions). The
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pheromone evaporation operation is concerned with automatically reducing
the pheromone trail intensity on the paths, which is used as a mechanism to
prevent the algorithm form rapidly converge towards sub-optimal regions.
The daemon actions are an optional component that can be used to integrate
centralised actions that single ants cannot perform by themselves.

Besides PSO and ACO, there are a number of other algorithms that can be
categorised under the SI umbrella, such as artificial bee colony (ABC) [142], grey
wolf optimiser (GWO) [204], and bat algorithm and cuckoo search or bat swarm
optimisation (BSO) [330].

Apart from the aforementioned EC methods, there are other well-known and
widely used method such as differential evolution (DE) [289, 245], learning classifier
systems (LCS) [129, 322], evolutionary multi-objective optimization algorithms
(EMO) [55], and artificial immune systems (AIS) [47, 62].

2.2 Genetic Programming
Genetic Programming (GP) is an Evolutionary Computation (EC) algorithm that
simulates biological evolution and natural selection to automatically explore the
search space and evolve a computer program (solution) for a user-defined problem
[153]. GP has been utilised to solve complex problems in numerous domains where
the search space is extremely large [153, 154, 163]. The ability of GP to effectively
explore the search space has attracted researchers to perform different tasks, such
as classification [82], regression [113], scheduling [214], optimisation [287], and
modelling [78, 114].

2.2.1 GP Overview and Basic Algorithm
Probably the birth of what is known as “genetic programming” goes back to 1964
and Lawrence Fogel [92] who is considered as one of the earliest practitioners of this
methodology [21]. Classifying heart disease via evolving tree rules was carried out
by Forsyth in 1981 [96]. Then in 1985, Cramer [57] introduced the first statement
of modern tree-based GP. This work was largely developed and expanded later
by Koza [153] who has pioneered GP to tackle diverse optimisation and search
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problems. Since then, GP has been widely used to tackle diverse problems in a
wide range of real-world applications [21, 163, 243]. GP has received increasing
attention due to its properties (more details are discussed in this section) and the
promising results of the evolved solutions. The key concepts and the algorithm
main steps of GP are explained in the rest of this section. The discussion includes
the representation, initialisation, evaluation, selection, and genetic operators.

The concept of ”Survival of the Fittest“ represents the main scheme of the GP
evolutionary process in which a number of individuals (computer programs) are
gradually evolved to gain better performance. As presented in Algorithm 1, the
process starts by randomly creating a predefined number (δ) of candidate solutions
via using different combinations of the elements in the function (F) and terminal
(T ) sets. Relying on the use of a carefully designed fitness measurement, the fitness
(∆ξ) of each individual (ξ) is calculated. The fitness value reflects the ability of the
individual to tackle the problem. GP uses reproduction, crossover, and mutation
operators to produce the individuals of the next generation (Ξi+1) from those of
the current generation (Ξi). Individuals with better fitness values are more likely
to be selected to participate in populating the next generation. Unlike other EC
techniques, e.g., GAs and PSO, GP typically uses a tree representation [153] to
evolve programs instead of fixed-length string chromosomes (integers, real numbers,
bits, symbols). This allows GP to evolve programs (e.g. trees) of varying sizes and
shapes, which means the user does not need to specify the size of the final solution
that generally is unknown or hard to approximate.

2.2.2 Program Representation

The tree-based representation is one of the most commonly used individual repre-
sentations in GP [243]. An individual tree is made up of a root node, a number
of internal nodes, and leaf nodes. An example of a GP individual is depicted
in Figure 2.10 and shows the tree representation of the mathematical formula
(y − x) + (max(z, 0.8)). The arithmetic operators {−,+,max}, which represent
the root and nonterminal parts of the tree, are called functions. Functions can be
as simple as arithmetic operators such as addition, subtraction, and multiplication,
or more complex such as loop structures, and domain specific. Meanwhile, the
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Algorithm 1 The GP Evolutionary Process
Input: T ,F , δ, β, γ . Terminal (T ) and function (F) sets, population size (δ),

number of generations (β), and ideal fitness value (γ)
Output: ϑ . Best evolved program
1: i← 0 . The generations counter
2: λ← +∞ . Best fitness so far
3: ϑ← null . Best solution so far
4: Ξ0 ← Generate(T ,F , δ) . Randomly generate the initial population
5: repeat
6: for all ξ ∈ Ξi do
7: ∆ξ ← Fitness(ξ) . Fitness of the current individual
8: if ∆ξ < λ then . If the fitness is better than the best so far
9: λ← ∆ξ . Report the fitness as the best so far
10: ϑ← ξ . Make the individual as the best so far
11: end if
12: end for
13: Ξi+1 ← Populate(Ξi) . Populating subsequent generation
14: i← i+ 1 . Increment the generations counter
15: until (i = β or λ = γ) . Check if a termination criterion is met
16: return ϑ

variables {x, y, z} and constant {0.8} are the inputs of the individual and called
terminals, which represent the leaves part of the individual tree. The root and all
nonterminal nodes are drawn from the function set, whilst the leaf nodes are taken
from the terminal set. Each function node represents an operation that needs to
be performed on a list of inputs that can be the values of terminals or the outputs
of other functions. In order to ease observing the relations between the different
parts of a program tree, the Lisp expression or prefix notation is widely used in
the GP literature. For example, the formula (y− x) + (max(z, 0.8)) can be written
as (+ (− y x) (max (z 0.8))).

Typically, an evolved GP program produces/returns a single numerical value as
it represents the type of all terminals and the returned value of each nonterminal
node. The program presented in Figure 2.10 is an example. However, different
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Figure 2.10: The GP tree-based representation for (y − x) + (max(z, 0.8)).

applications require the use of other types such as boolean and string, or more than
a single value such as a vector of elements. For example, to allow an individual
to make different decisions based on the inputs, conditional functions such as
if-then-else can be used. Another example is the use of logical operators
such as greater than and less than, to compare two numerical values and return
a boolean value (either true or false). Therefore, a variety of approaches
have been proposed in the literature that aim at extending conventional GP to
consider different types in a single program tree and ensure the closure property of
those programs. The grammar-based GP and strongly-typed GP are some typical
examples [317, 207, 243]. The use of strongly-typed GP (STGP) [207] allowed the
incorporation of data types and their constraints, in which terminal nodes can
be of different types and each function outputs a specific type and operates on
arguments of predetermined types. Another GP approach based on the concepts of
grammars (GBGP) and context-free grammar (CFG-GP) has been proposed in the
mid 1990s [317, 108, 126, 224] to tackle this problem (allowing the nodes to have
different input and output types). McKay et al. [194] provide a comprehensive
survey on grammar-based methods.

Although the tree-based representation of GP programs is widely used, it is not
the only one. A number of researchers have investigated different types, such as
linear GP (LGP) [223, 243], parallel distributed GP (PDGP) [238, 8], and cartesian
GP (CGP) [203, 202].

2.2.3 Initialisation Methods
Like other EC techniques, GP starts the process by randomly generating a number
of initial/candidate solutions. Although there is a rich literature of the approaches
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that can be adopted to perform this task, the full and grow methods are two of
the simplest and oldest methods that have been extensively used in the literature
[153]. The full method generates an individual by randomly selecting elements of
the function set until the maximum allowed depth of the tree is reached; then only
elements of the terminal set are drawn at random to populate the leaf nodes. The
maximum depth of a tree is defined as the longest path that starts at the root node
and the farthest leaf node. The grow method, on the other hand, is similar to the
full method and the only difference is that selecting from both sets (function and
terminal) is permitted as long as the maximum depth has not been reached; and
therefore, the growth of a branch will be stopped in the case that a terminal node
is selected. Similar to the full method, the grow method forces to select from the
terminal nodes once the maximum depth is reached.

To ensure having individuals vary in shape and size, the ramped half-and-half
method has been devised based on the combination of the full and grow methods
[152]. In this method, half of the individuals to populate the initial population are
generated using the full method; whilst the other half is generated using the grow
method. The ramped half-and-half method is the most widespread method [243].

2.2.4 Evaluation

A key component of the GP evolutionary process is the evaluation measure, which
measures the goodness of, or how fit (fitness function) is, an evolved program to
tackle the problem at hand [153, 162, 243]. The importance of this component comes
from its role to guide the evolutionary process towards finding better solutions.
The process of evaluating an individual starts by iterating over the content of the
training set, and for each instance the system recursively traverses the program
tree to calculate the results of the different nodes. Starting from the root node, the
system postpones applying the function until the values of the input arguments
(children) became available. Therefore, the terminal nodes are the first to get
their values from the feature vector of the instances being evaluated, and pass
their values to the parent nodes. The parent nodes then apply the corresponding
operations and each passes the result to its parent node. This process continues
until the root node is evaluated and returns a value. The design of this component,
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i.e., fitness function, is heavily dependent on the problem. For example, if the task
is to perform classification, then the fitness function can be the accuracy (the ratio
of correctly classified instances to the total number of instances); or if the task is
to solve a regression problem, then a good fitness measure can be based on how far
is the value returned by the root node from the desired or the expected value.

2.2.5 Selection Methods

Selection methods are concerned with the task of which individuals will participate
in creating individuals of the subsequent generation. The fitness value is used
to assess the chances of an individual to be selected. In other words, better
individuals, i.e., individuals having good fitness value, are more likely to be selected
than inferior ones to produce offspring. The fitness proportionate selection (also
known as Roulette wheel selection) represents one of the earliest selection methods
that was originally used in GAs [103]. This method works by randomly selecting an
individual based on the distribution of all fitness values of the current generation.
A drawback of the Roulette wheel method is that individuals with bad fitness
values may have good building blocks (sub trees) but will have very low probability
to be selected. To tackle this problem, tournament selection has been proposed.
In this method, a predefined number of individuals are randomly drawn from the
population. Then, the winner amongst them, which has the best fitness value, is
selected. Regardless of the fitness value, this method gives all individuals an equal
chance to be drawn in the first step [190]. However, this method introduces an
extra parameter that needs to be set which is the size of the tournament. The use
of a large tournament will reduce the chances of inferior individuals to be selected;
however, the use of a small tournament will increase the probability of inferior
individuals to be selected and reduces the probability of good individuals to take
place in the mating pool. Setting the tournament size to be one (only a single
individual) will result in making the selection task completely random.

2.2.6 Genetic Operators

In GP, the individuals of the current generation are used to populate the subsequent
generation through applying a number of genetic operators. Those operators aim
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at generating new individuals (children) by utilising the genetic materials of the
current population individuals (parents). Basically, there are three operators in
GP: (1) reproduction; (2) crossover; and (3) mutation. Each of these operators is
applied based on a user-defined probability in which the summation of the three is
1. In GP, these three operators are mutually exclusive, which is unlike other EC
methods where these operators can be applied sequentially [243].

2.2.6.1 Reproduction

Reproduction is simply performing a direct copy operation of the selected individual
to the next generation. Another similar operator to reproduction is elitism. Instead
of applying the copy operation based on a predefined probability, a predefined
number

¯
of the top or elite individuals are copied unchanged from the current

generation to the next one. Hence, this operator aims at maintaining the achieved
level of performance and prevent it from degrading. In other words, this operation
ensures that the next generation is at least as good as the current generation
and the system does not spent time rediscovering some good materials that have
been previously found. In both reproduction and elitism, the selected individuals
remain in the current generation and are allowed to take place in breeding the
next generation. The content of the final generation will be identical to the initial
population when the elitism is set to be equivalent to the population size. Hence,
the probability of this operator is set to a very low value to give the system the
flexibility to explore the solution space.

2.2.6.2 Crossover

The crossover operator allows the system to generate new individuals (children)
by exchanging the genetic materials from two existing individuals (parents). The
parent individuals are first selected using one of the selection methods discussed
earlier, then a crossover-point from the tree of each of them is randomly chosen, and
the sub trees are swapped at the crossover points. An example of this operation is
demonstrated in Figure 2.11. The crossover operator has been extensively studied
and various methods to improve or modify this operator have been proposed [326].
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Figure 2.11: Example demonstrating the crossover operator.

2.2.6.3 Mutation

Similar to the crossover operator, the mutation operator uses existing individuals to
generate new ones. However, in mutation, only one individual (parent) is selected
from the existing population and the other parent is randomly generated using
one of the initialisation methods explained earlier. Moreover, a mutation-point
on the parent is randomly selected, and the randomly generated parent is simply
replacing the sub-tree at that point in order to generate the new individual (child).
An example of this operation is presented in Figure 2.12. There is a clear, yet
important, difference between crossover and mutation in which the latter allows the
system to introduce new building blocks (sub trees); while the former only allows
the system to try different combinations of the existing building blocks. Moreover,
the number of individuals generated after applying each of these two operators
is different where only one individual is generated from mutation and crossover
produces two individuals. The mutation operator has been extensively studied and
various methods are proposed [236]

2.2.7 Open Issues in GP

Although GP has many good properties compared to other EC and non-EC methods
(see Section 1.2.2 on page 6), it suffers from some issues that have been indicated by
a number of studies in the literature [225]. Providing a comprehensive investigation
and review of the open issues in GP is beyond the scope of this dissertation, and
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Figure 2.12: Example demonstrating the mutation operator.

only some of those well-known issues are briefly discussed below.

2.2.7.1 Code Bloating

Generally, GP tends to gradually increase the size of the evolved programs during
the evolutionary process, which is a well-known phenomenon in GP denoted as
“bloat” [243, 318]. Bloat can hamper the efficiency and largely affect the ability of
the system to find good solutions [16]. This phenomenon has been widely studied
and numerous methods have been proposed to control the size of the evolved
programs [239, 290, 273, 147, 280].

2.2.7.2 Program Representation

The ability to have a flexible program representation is a very important and
powerful property of GP; however, identifying appropriate representations is highly
influenced by the problem being tackled and as it can be very difficult to find an
optimal representation [225].

2.2.7.3 Terminal and Function Sets

The programs in GP are generated using the content of the function set (nonterminal
nodes) and the terminal set. Typically, the content of the terminal set is the inputs
of the problem at hand. However, the content of the function set is not bounded
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or limited to a specific set. The function set is a critical component and its content
must be related to the problem at hand; otherwise, GP will not be able to find a
good solution [308].

2.3 Related Work
This section presents and discusses the closely related work in the literature to the
different methods proposed in this thesis. Providing a full survey on the literature
regarding image-related methods is beyond the scope of this thesis. The use of
GP for binary, i.e., two classes, image classification is discussed first. The use of
GP for multi-class image classification is then surveyed, followed by a very brief
discussion on non-GP methods for image classification. Automatically evolving
image descriptors represents a core part of this thesis, and therefore, evolutionary-
based image descriptors are also discussed in this section. Another key part of
this thesis is to use a limited number of training examples, and adopting transfer
learning; hence, the related work on these two schemes is reviewed.

2.3.1 Genetic Programming for Image Classification

Adopting GP techniques in different domains to solve a variety of problems has
increased in the last few decades, such as feature extraction [10, 6], classification
[261, 275, 283], object detection [29, 31, 32], image segmentation [311, 169, 170],
image regeneration [52, 161], and image processing [118]. The GP methods proposed
in the field of computer vision can be categorised differently based on different
criteria, e.g., in terms of the task, the domain, and the program structure. In the
subsequent sections, some of the recently proposed methods for the problem of
image classification are discussed. Based on the number of classes, the methods are
categorised into GP for binary image classification, and GP for multi-class image
classification.

2.3.1.1 Genetic programming for binary image classification

Typically, a tree-based GP individual program produces a single value from the
root node for each instance. In the case of binary classification tasks, a predefined
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threshold value can be used to split the result space into two intervals such that
each is used to represent the set of mapping values (i.e. the program’s output) of
one class [275, 276]. For example, selecting zero as a threshold value such that
all negative values are assigned to one class, and all positive and zero values are
assigned to the other class.

Bhowan et al. [34] proposed two GP-based methods to address the problem of
class unbalance for binary image classification. The traditional single objective GP
system is used in the first method, which aims at adapting the fitness function to
evolve an individual that is capable of handling the class unbalance problem. In
the second method, a multi-objective GP approach was adopted to perform two
tasks simultaneously: (1) evolving a set of classifiers; and (2) tackle the problem of
minority and majority class trade-off. The performance of these two methods was
evaluated using two datasets with a highly unbalanced number of instances in the
two classes. The methods have successfully addressed the problem of unbalanced
data; however, human intervention to detect and extract features is required prior
to the use of the GP system. Moreover, a large number of instances is required to
evolve an individual as those methods were not designed to tackle the problem of
having a limited number of instances.

In [167], Li et al. proposed a GP method for binary image classification through
the use of a loop structure. The method was applied on a dataset that consists
of instances fall into two groups: circle, and square. Compared to programs
without loops, their experiment results show that a much better performance has
been achieved by the evolved programs with loops. However, performing feature
extraction prior to the task of evolving a classifier is required. Furthermore, domain
knowledge is needed to provide some restrictions on the used loop statements.

Abdulhamid et al. [1] investigated the use of four different loop structures in a
GP system for image classification. Three different datasets were used to evaluate
the evolved program and compare it to conventional GP. The results suggested
that the use of loop structures can significantly improve the performance of the
evolved classifier.

A multi-tier domain-independent GP method for binary image classification
was proposed by Atkins et al. [18]. The main objective was to automatically
evolve a classifier that is capable of performing image filtering, feature extraction,
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and classification. Their experiments on two datasets revealed that a comparable
performance to the use of domain-specific features has been achieved.

Motivated by the work of Atkins et al. [18], Al-Sahaf et al. [7] have proposed and
investigated a variety of GP methods for binary image classification. Evaluating
their methods on four datasets of increasing difficulty showed that a significantly
better performance has been achieved compared to different GP-based and non-GP
methods.

2.3.1.2 Genetic programming for multi-class image classification

Different approaches have been adopted to utilise GP for multi-class classification
problems such as binary decomposition, static range selection, dynamic range
selection, class enumeration, and evidence accumulation [336, 184].

A multi-class image classification method has been proposed by Li et al. [168]
via introducing two improvements in the GP system. The first was the use of
different sets of power values during the evolving (training) process in order to
find a better range of threshold values. Introducing the program size in the fitness
function represents the second improvement which aims at controlling the size of
the evolved classifier. The Chinese character dataset and grass leaves dataset were
used to evaluate their method. The results show that a superior performance has
been achieved over the use of static and dynamic range selection methods.

In [275], Smart et al. developed two dynamic-based range selection methods for
the problem of multi-class image classification in GP. The first method is centred
dynamic range selection, and the second is slotted dynamic range selection. The
results of evaluating those two methods using five datasets of varying difficulty
show that both of those methods have outperformed the use of the static range
selection method.

A GP-based method for the tasks of texture classification and texture segmen-
tation was proposed by Song et al. [281]. In their work, a bitmap textures dataset
that consists of 48 different textures were used to evaluate the proposed method,
and the results show that GP is able to evolve accurate classifiers. Moreover, their
method does not require feature extraction as a preprocessing step.

A domain-independent approach for the problem of multi-class object detection
using GP is proposed by Zhang et al. [337]. The aim of their method is to locate
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a number of objects of different classes that are contained in a large image, and
predict the class label of each of the detected objects. In other words, the evolved
program is capable of performing object detection and multi-class classification
tasks. The method is tested using three datasets of increasing difficulty.

Downey et al. [74] proposed a linear GP (LGP) approach for the problem of
multi-class image classification. Moreover, an extended implementation of the
proposed LGP modified the mutation operation to selective mutation. Both of
those methods have outperformed the tree-based GP on the three experimented
datasets.

2.3.1.3 Genetic programming for other image-related tasks

Ryan et al. [261] used GP techniques for detecting stage-1 cancer in digital mammo-
grams. Their method performs a series of preprocessing operations, e.g., background
suppression, image segmentation, feature detection, and feature selection, in order
to reduce the volume of data to process, and then the preprocessed data are fed
into GP to evolve a classifier. The results of their experiments show that this
work-flow (preprocessing steps and GP classifier) can successfully detect a stage-1
cancer in digital mammograms. The work-flow requires task-specific features which
requires domain-expert intervention; and as a multi-stage system, the success of
any subsequent stage is subject to the goodness of performing previous stages.

Detecting edges in images is an important task in a wide variety applications
in computer vision such as image segmentation. Fu et al. [99, 100] studied edge
detection and used GP to evolve edge detectors that outperformed some well-known
detectors that are designed by domain-experts such as Sobel [279, 76] and Canny
[46]. However, their methods are designed to detect only one type of keypoint, i.e.,
edges, while neglecting other types of keypoints, and requires a large number of
training examples.

By adopting a multi-objective approach, Albukhanajer et al. [10] utilised GP
for extraction of image features that are robust to noise and invariant to geometric
deformations, e.g., illumination, rotation, and scale. Their system automatically
combines different functionals and aims to maximise the between-class variance and
minimise the within-class variance. The results of their experiments on two datasets
showed good robustness of the method to noise and geometric deformations.
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2.3.2 Other Paradigms for Image Classification

In [45], Camps-Valls et al. presented a kernel-based method framework for hyper-
spectral image classification. The aim of their study was to examine and analyse the
properties of different kernel-based methods in the domain of hyperspectral images.
Moreover, the authors have developed two new methods that are regularised radial
basis function neural networks, and regularised AdaBoost. The study also compares
the performance of the two newly developed methods to that of SVM and kernel
Fisher discriminant methods.

An in-depth experimental investigation of the problem of pedestrian classifica-
tion is presented in [210] by Munder et al. via examining a variety of combinations
of multi-feature classifiers. Moreover, the local versus global and nonadaptive
versus adaptive features were investigated in their study. Another objective of the
paper was to study the impact of using different numbers of training instances
on the performance. In other words, they investigate the correlation between the
size of the training set and the performance of the trained model on the test set.
The results of their experiments revealed that combining SVM with local receptive
fields (LRFs) achieved the best performance amongst all other combinations.

Larochelle and Bengio have developed a restricted Boltzmann machine (RBM)
[277] based classifier in [164]. Usually, RBMs are used as a preprocessing step
to perform feature extraction for another learning algorithm. However, the main
argument of Larochelle and Bengio is that RBMs can be used to develop a stand-
alone classifier as well. Furthermore, in their paper the authors emphasised the
possibility of employing RBMs in a semi-supervised setting.

A recent work by Loukas et al. [183] proposed a pattern classification model
for the problem of breast cancer image classification. Using texture analysis, 30
patches are extracted from each instance (image) to form a set of textural features.
The extracted features are then fed into one of three commonly used methods
k-Nearest Neighbours (k-NN), support vector machines (SVM), and probabilistic
neural networks (PNN). The results of their experiments show that the method
has achieved a high level of performance on the researched problem.

Motivated by the success of using backpropagation [257, 259] to train multi-
layer perceptrons, and inspired by the organisation of the animal visual cortex
[193], convolutional neural networks (CNNs) have emerged and have been widely
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investigated in computer vision and pattern recognition [166, 165]. Over the past
30 years, CNNs have received a lot of attention and have been used in a wide
range of real-world applications [81, 286, 75]. Although CNNs have been shown
to achieve the-state-of-the-art performance compared to other methods [75], they
suffers from a number of issues. Two of the most well-known issues are the number
of training examples, and network structure [88]. It is well-known that a large
number of examples are needed in order to train a CNN, which is also affected by
the size of the network, i.e., number of free parameters to be adjusted [122]. The
structure of the network, on the other hand, needs to be predetermined beforehand
including the number of layers, weights, nodes, and how the nodes in a layer are
connected to those in the adjacent layers [88].

2.3.3 Evolutionary-based Image Descriptors

Since the late 1990s, GP has been used to automatically evolve/construct image
keypoints and features [241, 74, 1, 6, 10, 337, 282, 169, 170, 52], showing good
potential in this direction. The method proposed by Ebner and Zell [80] is one of
the earliest works employing GP to automatically evolve an interest point detector.
Similarly, Trujillo and Olague [300] have used GP to synthesise an interest point
detector. They extended this work in [301] to improve the performance of the
evolved points detector by taking into consideration the global separability and
geometric stability of the detected points. Olague and Trujillo [221] used GP
to evolve image operators for detecting interest points in an image. Motivated
by the success of [300, 221], Perez et al. [233] proposed several methods, where
GP is used as a strategy to evolve image descriptors for object detection tasks.
The main focus of Liu et al. [178] is on evolving a spatio-temporal descriptor
for human action recognition by employing GP techniques. Shao et al. [268]
proposed a multi-objective GP methodology for the task of feature learning in
image classification.

Combining GP and SIFT features to improve the performance for object
recognition was proposed by Hindmarsh et al. [125]. The idea is to use GP
as a post-processing step to construct better features from the detected SIFT
features. The results in [125] are comparable to the use of SIFT features alone. The
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system operates in two stages where keypoints detection and feature extraction are
performed by SIFT in the first stage, and feature construction and classification are
performed in the second stage by GP. However, abundant labelled data is needed.

Trujillo et al. [300] proposed a GP-based low-level feature detector and extractor
via formulating the task of interest point detection in terms of an optimisation
problem. The main focus of the authors was balancing between the domain
knowledge expertise and genetic programming in order to achieve comparable or
better results than human crafted features. In their paper the Harris detector [119]
has been used as a competitor descriptor on two datasets. Their results suggest that
superior performance has been achieved by their method over the Harris detector.
The authors have extended their work in [301] and [221] via presenting 15 new GP
evolved descriptors.

2.3.4 Transfer Learning for Image Classification with
Small Number of Instances

In [86, 85], Li et al. proposed a Bayesian-based model for the problem of object
recognition. In their system, general knowledge is extracted from previously learnt
groups of objects using abundant instances, which is then used to form a prior
probability density function. A posterior density is then produced via updating this
knowledge given a small set of training instances in the target domain. The system
was tested using a dataset consisting of instances that fall in 101 different categories,
and compared against two commonly used methods: maximum likelihood (ML),
and maximum a posteriori (MAP). The results of their experiments show that their
system has significantly outperformed the competitive methods when the number of
training instances is relatively small. Moreover, they investigated the effectiveness
of using the knowledge extracted by their method on the two competitor methods.
The results of the investigation suggested that a better performance has been
achieved when both of the ML and MAP methods used the extracted knowledge.

Miller et al. [201] used deformation matrices for the problem of object classifi-
cation. The system is trained using a large number of instances of a character (e.g.
letter “A”) and then try to make the system learn a different object (e.g. digit “4”)
using a single (or few) instance. To achieve this goal, two learning scenarios are
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combined under a single framework: adopting the transfer learning using a model
parameters approach in order to use a reduced number of instances in the target
domain; and frequently updating the system as more training images trickle in.
The authors have identified situations where their method for a set of characters
will fail to converge to the global optimum. The method is tested on binary image
classification using two different training set sizes: 1000 instances; and only one
instance. The results of their experiment show that, unlike other comparative
methods, the performance did not drop significantly after reducing the training
instances of the target domain from 1000 to 1.

An online algorithm for the problem of object identification was proposed by
Ferencz et al. [90]. Unlike object categorisation where the task is to predict the class
label of an instance (e.g. is the image a face or non face), object identification aims at
identifying the content of an instance (e.g. Bob’s face or Jen’s car). The algorithm
takes a single labelled instance and builds an effective “same” vs. “different”
classification cascade via detecting the most informative (i.e. discriminative) features
and patches for the object of that instance. Moreover, in their paper they have tried
to address two challenges: (1) the problem of small inter-class variation; and (2)
the limitation of positive instance availability. In order to address these challenges,
the proposed algorithm is split into three stages: (i) learning hyper-features; (ii)
modelling pairwise relationships between patches; and (iii) building the classifier
cascade. Each stage involves a number of complicated sub-stages in which each
has its own assumptions. The method was tested on two datasets and the results
show a good level of performance has been achieved over other competing methods.
Furthermore, the authors compared their method to one of the leading methods
(SIFT [186]) on one dataset and also the proposed method has outperformed that
method.

Motivated by the ability of a human brain for learning by knowledge transfer,
Rodner et al. [256] have modified the Randomised Decision Forest (RDF) [102]
learning algorithm in order to build a classifier using very few instances. Similar
object categories are used to learn a prior distribution, which is then reused (trans-
ferred) to maximise a posteriori estimation of the model parameters. Evaluating
the method on three datasets shows that a significant performance improvement
have been achieved over Geurts et al. ’s RDF classifier [102].
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A one-shot learning approach (a sub-approach of transfer learning in which
there are only a few instances of the target domain are available for training) has
been adopted in [159] for the problem of handwritten character recognition via
knowledge transfer by contextual information. The system infers the latent strokes
from previously learnt different characters compositions. The relationships between
different strokes that are used to form different characters are transferred to a
different domain to help in recognising previously unseen data. Using two datasets
and compared to human perceptual judgements, the authors tested their method.
However, the results of their experiments revealed that no significant improvement
has been achieved by the proposed method over the competing methods.

A hierarchical non-parametric Bayesian model was developed in [263] for object
categorisation via adopting the one-shot learning approach. The model relies on
previously learnt categories to transfer acquired knowledge to a novel category.
The model groups different categories into informative super-categories. Given a
single example, the model infers under which super-category this instance can be
categorised. Moreover, the model is capable of identifying new categories in an
unsupervised learning fashion from a single or a few instances. The model has been
tested on two different datasets of varying number of groups and instances per
group. The results of their experiment show that a significantly better performance
has been achieved by their method over the use of simple hierarchical Bayesian
approaches. Moreover, their method is capable of discovering new categories given
a few instances in an unsupervised fashion.

A recent work by Lu et al. [188] proposed a method based on the discriminative
multimanifold analysis for the problem of face recognition. The main aim of the
paper is addressing the problem of building a classifier using a single sample per
person (SSPP). To achieve this task, (1) the system partitions each instance into a
number of non overlapping patches; (2) the single sample per person recognition
is then formulated as manifold-manifold matching problem; and (3) in order to
identify an unlabelled subject, a reconstruction-based manifold-manifold distance
is used. The authors show that their method has achieved good performance
compared to the performance of the stat-of-the-art method on three broadly used
faces datasets.
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Table 2.3: A summary of the benchmark image classification datasets.
Changes Dimensions

Dataset Classes Instances Light Rotation Scale width height Chapters

Coins 2 384 3 1 1 55 55 {5, 7}
Faces 2 31022 7 1 1 19 19 {3, 5, 7}
KTH-TIPS 10 810 7 1 9 200 200 {3}
BrNoRo 20 1680 7 1 1 64 64 {4, 5, 6, 7}
BrWiRo 20 20160 7 12 1 64 64 {5, 6, 7}
OutexTC00 24 480 7 1 1 128 128 {4, 5, 6, 7}
OutexTC10 24 4320 7 9 1 128 128 {5, 6, 7}
KySinHw 25 22500 3 9 1 122 122 {6, 7}
KyNoRo 28 4480 7 1 1 115 15 {3, 4, 5, 6, 7}
KyWiRo 28 53760 7 12 1 115 115 {3, 5, 6, 7}
Dslr 31 498 7 7 7 1000 1000 {7}
Webcam 31 795 7 7 7 152-752 152-752 {7}
Amazon 31 2817 7 7 7 300 300 {7}
CUReT 61 5612 7 1 1 200 200 {7}

3 The change is controlled.
7 The change is uncontrolled.

2.4 Benchmark Datasets

The methods developed in this thesis are evaluated using a set of carefully chosen
benchmarks for image classification of varying difficulty. However, those methods
can also be used to perform other tasks such as content-based image retrieval
and image segmentation. As summarised in Table 2.3, these datasets varying in
domain (texture and object classification), rotation, illumination, scale, size of
instances, number of classes, and number of instances per class. However, the
instances of all those image datasets are grey-scale images, i.e., each pixel carries
only brightness/intensity information that can be white at the strongest intensity or
black at the weakest intensity [138]. Therefore, the pixel values are ranging between
0 (black) and 255 (white). The datasets presented in Table 2.3 are primarily sorted
in ascending order based on the total number of classes, and secondly sorted based
on the total number of instances.

The New Zealand Coins dataset [274] comprises a set of 5 cent New Zealand
coins that fall into two classes: head and tail. This dataset consists of 384 grey-
scale instances in total, each of which is of size 55× 55 pixels, where 192 of them
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(a) (b)

Figure 2.13: Samples of the Coins dataset (a) head, and (b) tail instances.

(a) (b)

Figure 2.14: Samples of the Faces dataset (a) face, and (b) non face instances.

showing the head side of the coin and 192 showing the tail side. Those instances
appear in different (uncontrolled) rotation angles around the centre as presented in
Figure 2.13.

The CBCL Face1 dataset [123] consists of two classes: face, and non face. The
task is to classify/discriminate between face and non face images as shown in
Figure 2.14. Each instance of the CBCL Face dataset is of size 19×19 pixels, where
the face instances were hand-aligned to be relatively in the centre of the example.
Originally, there are 2429 face and 4548 non face instances in the training set,
and 472 face and 23573 non face instances in the test set. Clearly, the number of
instances of the two classes is highly unbalanced; hence, we did not use the original
division of the data and instead all instances of the face class are used and a nearly
equal number of instances from the non face class has been randomly selected. In
other words, 6000 instances in total have been selected from the two classes that
are 2901 faces and 3099 non faces to form the Faces dataset in this thesis.

The Kylberg Texture2 dataset [157] is widely used in computer vision for texture
classification. It contains images of different materials, e.g., cushion, rug, rice, grass,
and stone (Figure 2.15). In total, this dataset comprises 28 classes each of which
comes in two flavours: without- and with-rotation. Originally, the instances of this

1Available at: http://poggio-lab.mit.edu/codedatasets
2Available at: http://www.cb.uu.se/~gustaf/texture/

http://poggio-lab.mit.edu/codedatasets
http://www.cb.uu.se/~gustaf/texture/
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Figure 2.15: Samples of the Kylberg dataset.

dataset are of size 576× 576 pixels. Each of the without-rotation classes consists
of 160 instances whilst there are 1920 instances in each class of the with-rotation
classes that fall into 12 rotation angles {0◦, 30◦, . . . , 330◦}. Dealing with large
images is computationally intensive and a time-consuming task [53], where different
methods can be used to reduce the computation time and required memory [24]. In
this thesis, the size of the original instances have been reduced to 115× 115 pixels
via subsampling, i.e., average pooling, in order to reduce the computation time.

A recently proposed dataset for texture classification that represents a variant
of the Kylberg dataset is Kylberg Sintorn Rotation3 dataset [158]. This dataset
consists of 25 texture classes, each made up of grey-scale instances of size 122× 122
pixels as presented in Figure 2.16. Each class comprises of 900 instances that
fall into 9 different angles: 0◦, 40◦, 80◦, 120◦, 160◦, 200◦, 240◦, 280◦, and 320◦.
Moreover, the instances of this dataset are normalised with a mean value of 127 and
a standard deviation of 40, and rotated using 6 different methods: hardware, nearest
neighbour, linear interpolation, 3rd order cubic interpolation, B-spline interpolation,
and Lanczos 3 interpolation. In this thesis, only the instances that were rotated
by the hardware method (KySinHw) are considered as it better represents the
real-world situations compared to the other methods, where an sample is placed on
a rotatable desk and the camera is positioned vertically on the top as depicted in
Figure 2.17.

3Available at: http://www.cb.uu.se/~gustaf/KylbergSintornRotation/

http://www.cb.uu.se/~gustaf/KylbergSintornRotation/


2.4. BENCHMARK DATASETS 65

Figure 2.16: Samples of the KySinHw dataset.

Another popular and widely used dataset for texture classification in computer
vision is the Brodatz Texture4 dataset [42]. The Brodatz dataset contains images
for different materials, e.g., grass, bark, wood grain, and brick wall (Figure 2.18).
In total, there are 112 classes in the Brodatz dataset, each of which consists of
a single grey-scale instance of size 640 × 640 pixels. Only 20 classes have been
randomly selected out of the 112 classes, mainly due to the associated preprocessing
effort needed to prepare the instances of each class, and kept consistent in this
thesis. In order to generate the Brodatz without rotation (BrNoRo) dataset
in this thesis, the single instances of those randomly selected 20 classes is re-
sampled into non-overlapping sub images each of size 84× 84 pixels. Meanwhile,
the same examples of those 20 classes are then rotated around the centre by 12

4Available at: http://multibandtexture.recherche.usherbrooke.ca/

original_brodatz.html

http://multibandtexture.recherche.usherbrooke.ca/original_brodatz.html
http://multibandtexture.recherche.usherbrooke.ca/original_brodatz.html
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Figure 2.17: The setup during acquisition of the hardware rotation method (repro-
duced from [156]).

angles with a step of size 30◦ to generate the Brodatz with rotation (BrWiRo)
dataset in this thesis. Therefore, the total number of instances in BrNoRo and
BrWiRo is, respectively, 1680 (20 (classes)×84(instances)) and 20160 (20 (classes)×
12 (rotations) × 84 (instances)) instances. The single original image (640 × 640
pixels) can be divided into a grid of 10× 10 non-overlapping tiles as presented in
Figure 2.19(a). However, if it is rotated to any angle around the centre as presented
in Figure 2.19(b), some of those tiles will be outside the boundaries of the image,
i.e., will have part of the image and the rest has to be filled with some default
values such as white colour. Rotating the image 45◦ gives only 85 complete tiles as
shown in Figure 2.19(c). When the original image is rotated 30◦, only 84 complete
tiles enclosed within the boundaries of the image can be extracted as depicted in
Figure 2.19(d).

The Outex Texture Classification5 dataset [216] consists of 17 texture classifica-
tion test suites {Outex_TC_00000, Outex_TC_00001,. . . , Outex_TC_00016}.
Those 17 datasets comprise different numbers of classes, materials, rotations, and in-
stances. The Outex_TC_00000 dataset comprises 24 classes each of which consists
of 20 instances (Figure 2.20). The instances of this dataset are rotation-free and
it has been used in this thesis as OutexTC00. Meanwhile, the Outex_TC_00010
dataset is also comprises of 24 classes each of which has 180 instances. The in-
stances of this dataset fall into 9 different angles: 0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦,
75◦, and 90◦. In this thesis, the OutexTC10 is formed using the instances of the

5Available at: http://www.outex.oulu.fi/index.php?page=

classification

http://www.outex.oulu.fi/index.php?page=classification
http://www.outex.oulu.fi/index.php?page=classification
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Figure 2.18: Samples from the 20 randomly selected classes of the Brodatz dataset.

Outex_TC_00010. The instances of both OutexTC00 and OutexTC10 datasets
are of size 128× 128 pixels.

The Columbia-Utrecht Reflectance and Texture6 (CUReT) dataset [60] consists
of 61 real-world surfaces textures as shown in Figure 2.21. The classes were carefully
chosen to span a variety of geometric and photometric properties such as specular,
diffuse, isotropic, anisotropic, coloured, natural, and man-made surfaces. The
size of each instance is 200× 200 pixels and there are 92 instances in each class.
Originally, this dataset comprised coloured images that have been been converted
in this thesis into grey-scale using the Decolorize method [109] as suggested in
[140].

The KTH-Textures under varying Illumination, Pose, and Scale7 (KTH-TIPS)
dataset [39] consists of ten classes as depicted in Figure 2.22. This dataset extends
the CUReT dataset in two ways: it provides instances under different scales, and

6Available at: http://www1.cs.columbia.edu/CAVE//exclude/curet/

.index.html
7Available at: http://www.nada.kth.se/cvap/databases/kth-tips/

http://www1.cs.columbia.edu/CAVE//exclude/curet/.index.html
http://www1.cs.columbia.edu/CAVE//exclude/curet/.index.html
http://www.nada.kth.se/cvap/databases/kth-tips/
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(a) (b) (c) (d)

Figure 2.19: Illustration of different sampling of an image rotated (a) 0◦; (b) 10◦;
(c) 45◦; and (d) 30◦ around the centre.

Figure 2.20: Samples of the Outex TC dataset.

it introduces samples of more real-world materials. Each class of the KTH-TIPS
dataset comprises 81 instances of size 200 × 200 pixels. In this thesis, only two
visually-close classes are chosen: sponge, and brown bread.

The Office8 dataset [262] was originally designed to investigate the ability of a
method for domain adaptation learning [41, 27] (an approach of the transfer learning
or learning by knowledge transfer). This dataset comprises 3 domains: amazon, dslr,
and webcam, each of which consists of 31 classes. The 31 classes are identical in the
three domains, however, the instances of those classes in each domains are different
(the object, number of instances, and size of instances). Samples of these domains
are depicted in Figures 2.23 to 2.25. The dslr domain (Dslr) comprises 498 high-
resolution images of size 1000×1000 pixels that are captured using digital single-lens

8Available at: https://people.eecs.berkeley.edu/~jhoffman/

domainadapt/#datasets_code

https://people.eecs.berkeley.edu/~jhoffman/domainadapt/#datasets_code
https://people.eecs.berkeley.edu/~jhoffman/domainadapt/#datasets_code
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Figure 2.21: Samples of the CUReT dataset.

reflex (DSLR) cameras in uncontrolled (realistic) environment. The amazon domain
(Amazon) comprises 2817 mid-resolution images of size 300 × 300 pixels, which
are images of products listed on the www.amazon.com online shopping web page.
The webcam domain (Webcam) comprises 795 low-resolution images that have
been captured using webcam cameras. Unlike the other two domains, the instances
of the webcam domain are varying in size that ranges from 152 × 152 pixels to
752× 752 pixels.

2.5 Chapter Summary

The basic concepts and terminology of computer vision have been reviewed in this
chapter. This chapter also presented a brief overview of the concepts of keypoints
and image features, feature extraction and selection, image descriptors, machine
learning, transfer learning, evolutionary computation, and genetic programming.
The related work of using GP and other techniques for image classification, and
evolving image descriptors were also reviewed in this chapter. The benchmark
datasets used to assess the performance of the different methods proposed in this

www.amazon.com
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Figure 2.22: Samples of the KTH-TIPS dataset.

Figure 2.23: Samples from the Dslr domain of the office dataset.

thesis were presented and discussed in this chapter.

This chapter highlighted the limitations of the existing work in order to form
the motivations of this research. Performing image classification is not an easy
task and requires human intervention to design the regions of interest, and extract
features in order to build a classifier. The main aim of this research is to use GP to
automatically evolve a program using only a few instances of the problem, which
operates on the raw pixel values and extracts features to facilitate performing image
classification. The work in the literature shows that the problems of automatically
detecting image keypoints and performing feature extraction have been dealt with
extensively. However, the vast majority of those methods are manually designed by
domain-experts which is a very time consuming and expensive task to perform. GP
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Figure 2.24: Samples from the Amazon domain of the office dataset.

Figure 2.25: Samples from the Webcam domain of the office dataset.

has been successfully used to handle and tackle different problems, and can cope
with problems of different nature due to GP’s flexibility. However, automatically
evolving image descriptors has not yet been investigated in depth and there are
still a number of unanswered questions and open issues that require more thorough
investigation.

• GP-based descriptors
Using GP to evolve image descriptors or improve existing ones has been
studied recently. However, this research direction is relatively new and it is
mainly focused on sparse image descriptors. Automatically evolving dense
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image descriptors using GP or other EC techniques has not been investigated
yet. Using a sample of the problem instances to evolve a descriptor allows the
system to discover more domain specific features. Moreover, a domain-expert
may miss to consider some important features during the design phase which
will become impossible to be detected in the subsequent phases.

• GP with limited number of examples
The vast majority of existing machine learning algorithms were designed
base on the assumption that a sufficient number of examples are available.
Such algorithms may not cope with a small number of training instances.
This problem can be tackled if the features extracted from the training set
are informative and rich, i.e., avoid the use only a few features that can
be good to discriminant between the training instances but not reliable to
generalise to the unseen data. The evolutionary nature of GP, and with the
use of a carefully designed fitness function, the system can be guided toward
discovering more informative features. Using a small number of examples
can increase the system efficiency and speed-up the training procedure.

• Robust image descriptors
Designing an image descriptor is a challenging task, and this task will be
even more challenging to make the descriptor invariant to image changes such
as illumination, rotation, and scale. Existing descriptors are hand-crafted
which means extending such descriptors to handle some of these changes
requires manual adjustments and in many situations significant changes to
the underlying formulae are needed. Using GP, or other EC techniques, to
automatically evolve rotation-invariant image descriptors has not been widely
investigated.

• Self-tuning GP
With more parameters to set, it becomes impractical to reliably and efficiently
use a system as more experiments are required to find a good set of values for
these parameters. The majority of existing methods have different numbers
of parameters such as LBP and SIFT. Designing a system to automatically
define some of the parameters required during training can potentially affect
the efficiency of the system. The flexibility of GP program representation
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makes this task possible, where some parameters can be incorporated into
the program representation that will be optimised during the evolutionary
process.

• Transfer learning GP
Although existing hand-crafted image descriptors were designed to detect
a specific set of keypoints that are believed to be reliable, such as corner
and edges, they have been used in different domains and applications. The
different domains and applications may require different sets of keypoints and
features, but some of these features may also be shared amongst a variety
of domains. The impact of using a program evolved to tackle a problem
directly to tackle another related or not related problem has not yet been
investigated deeply in GP. Adopting transfer learning in GP to transfer
knowledge from one domain to another is a promising approach that requires
more investigation.

Using GP to address these issues is discussed in the following five chapters of
this thesis where different new algorithms are proposed.



74 CHAPTER 2. LITERATURE SURVEY



3
GP and One-shot Learning for

Binary Classification

3.1 Introduction

Image classification represents a cornerstone in a broad range of domains such as
Computer Vision and Pattern Recognition. Mainly, image classification aims at
categorising images into different groups based on their contents. This task has
received a lot of attention over the last few decades due to its importance and
difficulty. Hence, a large number of methods have been proposed in the literature
that aim at tackling different aspects of the image classification task. Some of
those methods aim at addressing the accuracy problem [187], whilst others try to
speed-up the training process [84]. Moreover, some methods have been proposed
to tackle different variations that can occur on instances of the same group such as
illumination, rotation, and noise [219, 111].

The majority of those methods were not designed to build a model using a
limited or small number of labelled instances. In other words, those methods

75
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were designed based on the assumption of having an abundant (to some extent)
number of instances in order to build a model that can sufficiently generalise to
unseen data. However, it is not always easy, feasible, or even possible to acquire
a large number of labelled instances [342]. Therefore, the limitation of having a
few labelled instances to build or estimate the set of parameters of a given model
needs to be addressed.

3.1.1 Chapter Goals

Motivated by the remarkable ability of the human’s brain to learn a new object
from only one or a few examples, two GP-based methods, namely One-shot GP
and Compound-GP, are developed for the task of binary classification in images.
Precisely, this chapter aims at addressing the following objectives.

• Comparing the performances of those two methods against both GP and
non-GP methods using domain-specific hand-crafted features;

• Investigating the capability of the evolved programs by those two methods
to handle the rotation variation;

• Studying the goodness of the detected and extracted features by the evolved
programs from those two methods via testing the impact of these features
on the performance of different types of classifiers;

• Investigating the efficiency of the two methods by analysing the average time
required to evolve a program, average time to evaluate an instance, and the
program size; and

• Investigating the interpretability of the evolved programs by those two
methods.

3.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Section 3.2 describes the
One-shot GP and Compound-GP methods. The experiment settings, datasets, and
baseline methods are discussed in Section 3.3. The results of the experiments are
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Figure 3.1: The general structure of a program evolved by the One-shot GP method.

presented in Section 3.4. Section 3.5 provides an interpretation of some typical
programs evolved by the One-shot GP and Compound-GP methods. Section 3.6
concludes this chapter.

3.2 One-shot Learning GP Methods
The structures of the One-shot GP and Compound-GP methods, including the
function and terminal sets, and the main components are explained in this section.
This section also highlights the major similarities and differences between those two
methods. In each method, the function and terminal sets are explained, followed
by the fitness measure, and training and testing/evaluation procedures.

3.2.1 One-shot GP

The program evolved by this method has a static structure (e.g. type and number
of nodes); however, it is dynamic in terms of the position and size of the detected
regions. Figure 3.1 shows a general structure of a program evolved by the One-shot
GP method.

3.2.1.1 Terminal Set

The terminal set consists of three nodes: x, y, and s as shown in Figure 3.1. The
values of these nodes are randomly generated and represent a square-shaped window
of size equals to s and centred at a pixel with the coordinates (x, y). Therefore,
this part of the evolved program tree is dynamic as the values of those nodes are
randomly generated. The value of the x and y coordinates cannot be negative or
greater than the image width and height respectively, i.e., 0 ≤ x < W − 1 and
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0 ≤ y < H − 1, where W and H are, respectively, the width and height of the
image. Moreover, the s node has been limited to be between 3 (i.e. 3× 3 window)
and min (W,H) /2, where min (·, ·) returns the minimum value of the arguments.
The sampling windows are truncated if they exceed the boundaries of the image.

3.2.1.2 Function Set

The function set is made up of three node types each of which has its own restrictions
and performs a distinct task. The first node is controller , which only occurs at the
root of an evolved program. Thus, each program has only one node of this type.
The controller node is responsible for predicting the class label of the instance
being evaluated based on the results of its children. The second node is histogram,
which represents the type of children for the controller node. The histogram nodes
are responsible for accumulating the results of its children to form a single LBPP,R
histogram. Each histogram node corresponds to a single class, i.e., the number of
this type of node depends on the total number of classes. The third node is region.
As the name suggests, each region node corresponds to a region of the instance
being evaluated (the image), that is specified by the values of its children. The
region nodes represent the children of the histogram nodes, and are responsible
for performing the feature extraction task. Similar to the histogram nodes, the
number of the region nodes is predefined; however, this number is not restricted by
the number of the classes. In other words, this number is set empirically and in
our experiments, this number has been set to four.

3.2.1.3 Fitness Function

The fitness function of the One-shot GP method aims at maximising the between-
class distance, minimising the within-class distance, maximising the accuracy, and
minimising the overlapping ratio of the detected regions to ensure the distinction
of those regions. The fitness function for One-shot GP (Fitness1) is defined as

Fitness1 = DW + OVR
DB + ACC 1

(3.1)



3.2. ONE-SHOT LEARNING GP METHODS 79

where DW and DB are the within-class and between-class distances that are,
respectively, defined as

DW =
∑
α∈N

∑
β∈R

Dist (α, β) , {α, β | class (α) = class (β)} (3.2)

DB =
∑
α∈N

∑
β∈R

Dist (α, β) , {α, β | class (α) 6= class (β)} (3.3)

where R and N are the sets of representative and non-representative instances
respectively (discussed below). The function Dist (·, ·) measures the distance, also
known as the overlapping coefficient [205], between two feature vectors of the same
length as

Dist (~u,~v) = (mean (~u)−mean (~v))2

stdev (~u) + stdev (~v) (3.4)

where mean (·) and stdev (·), respectively, calculate the mean (Equation (3.5)) and
standard deviation (Equation (3.6)) of a vector of values.

mean (~x) = 1
|~x|

∑
e∈~x

e (3.5)

stdev (~x) =
√√√√ 1
|~x| − 1

∑
e∈~x

(v −mean (~x))2 (3.6)

The accuracy component (ACC 1) of the fitness function measures the perfor-
mance of a k-NN classifier, which is defined as:

ACC 1 = correct
|N| (3.7)

where correct is the number of correctly classified instances, and |N| is the number
of non-representative instances.

The overlapping ratio of the detected regions is measured by the OVR compo-
nent of the fitness function, which is calculated as:

OVR = 1∑
g∈G

area (g)

|G|−1∑
i=1

|G|∑
j=i+1

Intersect (gi, gj) , {gi, gj ∈ G} (3.8)

where G is a set of image regions each of which is a 2D array of pixel values, area (·)
returns the area (number of pixels) of its argument, and the function Intersect (·, ·)
returns the intersection (the number of shared pixels) between the arguments.
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In order to prevent division by zero, the denominator of the fitness function is
set to a very small value (0.0001) when both of the between-class distance and the
accuracy of the k-NN classifier are zero.

It is worth noting that the fitness function presented in Equation (3.1) can be
designed differently to achieve the same goal, i.e., maximising between-class distance
and minimising within-class distance, such as using the subtraction operator instead
of division.

The One-shot GP method uses some of the training set instances to be the basis
for comparison and decision making, denoted as representative instances (R). Each
representative instance is randomly selected from the training set; however, only
one instance of each class is selected. The number of the representative instances is
equal to the total number of classes. Each of the representative instances is assigned
to one of the controller node children (i.e. the histogram nodes). The aim behind
assigning an instance to a histogram node is to make this node responsible for
identifying instances of only one class (i.e. identifying instances having a class label
similar to that of the representative instance), which can be seen as a one-versus-all
approach [254]. The rest of the training set instances form the non-representative
instances (N) that is used to measure the performance of the evolved program
during the training phase.

The training process consists of four steps. In the first step, the system iterates
over the list of the content of R to generate the representative histograms, i.e., each
histogram node generates a single LBP histogram relying on the detected regions
by the region nodes and the assigned representative instance. The distance between
the representative instances (DB) is calculated using the generated representative
histograms. In the second step, the overlapping ratio (OVR) of the detected regions
is calculated using Equation (3.8). Third, the system uses the content of N to
measure the performance of the k-NN classifier (ACC 1), and calculates the within-
class distance (DW). To accomplish this third step, the system generates a set of
histograms for each instance (one from each of the histogram nodes), calculates
the distance between each of the generated histograms and the corresponding
representative histograms, and predicts a class label similar to that of the closest
representative instance, i.e, the-Nearest Neighbour (1-NN) algorithm [91]. The
fourth step, is to measure the goodness of the evolved program, which is achieved
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via passing the calculated distances (DB and DW), overlapping ratio (OVR), and
accuracy (ACC 1) to the fitness function. It is important to notice that at least
two instances of each class are required to evolve the model, where one of them
is used as a representative instance and one (or more) is used to populate the
non-representative set.

3.2.1.4 The Test/Evaluation Procedure

The testing phase is handled differently from the training phase. The main concern
of the evaluation phase is to test the generalisation ability of the best evolved
program on unseen (i.e. test set) data. Therefore, the proportion of the correctly
classified instances to the total number of instances represents the final result of
this phase.

In order to classify an instance, the system generates one histogram from
each of the histogram nodes based on the specified region by this node’s region
nodes. Then the distances between the generated histograms and the corresponding
representative histograms are calculated (Equation (3.4)). The class label is
predicted based on 1-NN. In other words, the class label of the closest representative
histogram is assigned to the instance being evaluated.

3.2.2 Compound-GP
Clearly, the structure of the One-shot GP method is static and the number of regions
is predetermined. This represents the main limitation of One-shot GP. Therefore,
the Compound-GP method is introduced in order to overcome this limitation.
Figure 3.2 shows a general structure of an evolved program by Compound-GP.

3.2.2.1 Terminal Set

The terminal set consists of four nodes: x, y, w, and h. Those four nodes represent
a rectangular window of size w × h and centred at a pixel with coordinates (x, y).
The values of those four nodes are positive (including zero) and randomly selected
from an associated predefined interval for each of them. The intervals of the x and
y coordinates are {0, 1, . . . ,W − 1} and {0, 1, . . . ,H − 1} respectively; where W
and H are the image width and height respectively. On the other hand, the values
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Figure 3.2: The general structure of a program evolved by the Compound-GP
method.

of w and h are selected from {3, 4, . . . ,W} and {3, 4, . . . ,H} respectively. Like
One-shot GP, the sampling windows are truncated if they exceed the boundaries of
the image.

3.2.2.2 Function Set

Similar to One-shot GP, the tree evolved by the Compound-GP method consists
of three types of non-terminal nodes as presented in Figure 3.2. The first node
is special, which represents the root node similar to the controller node of the
One-shot GP method. The main roles of this node are to generate and save a
number of patch objects based on the results of its children, and use the generated
patch objects to train a number of wrapped classifiers. The patch object is made
up of the mean and standard deviation values of a histogram generated from the
instances being evaluated, along with the actual class label of the instance being
evaluated. Unlike the controller node of the One-shot GP method, the number
of children of the special node has no relation with the number of the classes.
Moreover, the children can be of different types such as expander and region. The
evolved program by the One-shot GP method consists of only one wrapped classifier,
whilst the evolved program by Compound-GP consists of four classifiers of two
types for each child node (branch).

The second node is expander , which is responsible for allowing the system to
evolve programs of different sizes by having chains of this node. An example is
presented in Figure 3.2, where the special node has three children that each has
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different tree size. The expander node does not alter the results of its children, and
only passes these results to its parent node. Hence, the appearance of this node in
the program tree is optional.

The third node is region, which resides near the leaves of the program tree.
Each region node represents a detected region of the image. However, the number of
children of this node is different in One-shot GP and Compound-GP. In the former,
this node has three children (x, y, and s); while it has four children (rectangle) in
the latter.

3.2.2.3 Fitness Measure

The fitness function of Compound-GP is composed of three main components as
presented in Equation (3.9).

Fitness2 = p-value + OVR
ACC 2

(3.9)

ACC 2 =
B∑
i=1

(
SVM S

i + SVM L
i

)
(3.10)

Here p-value is the between groups difference that is calculated using the one-way
analysis of variance (ANOVA), OVR is the overlapping ratio between the detected
regions of the image using Equation (3.8), and ACC 2 is the total performance
(accuracy) of the wrapped support vector machines (SVM) classifiers [56] on the
training set (more details below). B is the total number of children of the special
node, which is a fixed predefined value that was empirically set to 3 in our experi-
ments. The SVM S

i and SVM L
i are the ith SVM classifier that is trained using the

list of single and multi-patch objects respectively.
The training process of the Compound-GP method is more complicated than

that of the One-shot GP method. The process consists of eight steps as depicted
in Figure 3.3. In the first step, the system iterates over the set of the detected
regions (region nodes) and calculates the ratio of overlapping (OVR) between those
regions. Iterating over the instances of the training set and generating a number
of LBP histograms for each instance (one from each region node), represents the
second step. Each of those histograms is generated from a region node based on
the specified region by the values of the four children (x, y, w and h) of that node.
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Figure 3.3: The process of calculating the fitness value of an evolved program by
the Compound-GP method during the training phase.

In the third step, the statistics, i.e., mean and standard deviation, of each of those
histograms are calculated, along with the actual class label of the instance being
evaluated to construct a patch object, and store this patch object in the list of
multiples that is denoted as L as demonstrated in Figure 3.4. In the fourth step,
those histograms (generated from different region nodes) are concatenated with
each other, the statistics of the resulted joined histogram are calculated, and a
patch object is extracted using these statistics along with the actual class label of
the instance being evaluated as shown in Figure 3.4. The patch object constructed
in this fourth step is stored in the list of singles that is denoted as S. Therefore, the
result of the third and fourth steps is |G|+ 1 patch objects for each instance, where
G is the set of detected regions. Thus, the total number of patch objects in L is
the total number of training instances × the number of region nodes. Meanwhile,
the L list consists of an equal number of patch objects to the number of instances
in the training set (one object per instance). The use of both local and global
features has been shown to have potential on improving the classifier performance
[176, 172]. Therefore, in this study features generated from each of the detected
regions (i.e. the L list) as well as those resulted from the combination of multiple
regions (i.e. the S list) are used.

It is important to notice that the patch objects that were generated from each
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Figure 3.4: How the detected regions of an image are used to extract three patch
objects and add each of them to the list of multiples, and to extract only one patch
object from the concatenated histograms and add it to the list of singles.

of the special node children are grouped together to form the L and S lists. In
other word, each of the special node children has one of each of those two lists
(B (children) × 2 (lists)). Moreover, each of the special node children has four
classifiers of two types: (1) two SVM classifiers; and (2) two k-NN (k=1) classifiers.
Only the SVM classifiers are used during the training process, because the system
is designed to evolve a program even when there is only one instance per class. The
first SVM classifier is trained using the patch objects of the S list and denoted as
SVM S. The second SVM classifier is trained using the objects of the L list and
denoted as SVM L. Training those SVM classifiers represents the fifth step of the
training procedure. In the sixth step, the performance of those SVM classifiers
(ACC 2) that were trained using the lists of patches of the corresponding branch is
measured using the patch objects resulted from other branches. In the seventh step,
the system measures the distinction of the detected regions (p-value) via using the
ANOVA test on the content (i.e. the mean and standard deviation values) of all L
lists. The last step of the training process is to calculate the fitness function value
using the results of the first, sixth, and seventh steps.

In summary, the results of the training phase are two trained SVM classifiers
and two lists of patches for each sub-tree (branch) of the special node. The lists
of patches will be used as the knowledge-base for the two k-NN classifiers of each
sub-tree. Figure 3.3 demonstrates the process of calculating the fitness function
components of an evolved program during the training phase.
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3.2.2.4 The Test/Evaluation Procedure

The test phase is quite different and less complicated than the training phase. In
order to test an instance, the system feeds this instance to each sub-tree of the
special node and performs the following steps. First, the system generates an LBP
histogram from each of the detect regions and uses it to construct a patch object.
Second, the constructed patch objects are then fed to SVM and k-NN classifiers
that were trained using the L list and the predicted class label of each of them is
reported. Third, the generated histograms in the first step are then concatenated
and used to produce a single patch object, which is then fed to SVM and k-NN
classifiers that were trained using the S list and the predicted class labels are also
reported.

After repeating the above three steps for each sub-tree of the special node,
the system will report B × 4 class labels, where B is the total number of children
of the special node, and 4 as there are four classifiers (two SVM and two k-NN)
associated with each child node. Via adopting the voting approach, the system will
predict the class label that has the majority of the votes. However, having an even
number of classifiers may result in a situation where the votes are equally divided
between the two classes. Hence, such a situation has been handled by relying on
the closest instances (e.g. the smallest distance measured by all k-NN classifiers).

3.3 Experiment Design

In order to test the performance of the One-shot GP and Compound-GP methods, a
series of experiments have been conducted that aim at investigating different aspects.
Generally, those experiments can be divided into four groups: (1) comparing the
performance of the One-shot GP and Compound-GP methods with the performance
of the baseline methods; (2) checking the impact of the features extracted by each
of the two methods (One-shot GP and Compound-GP) on the performance of a
number of classifiers compared to the use of hand-crafted and Two-tier GP [7] (see
Section 3.3.3) extracted features; (3) investigating the ability of the two methods to
handle the rotation variation; and (4) investigating the ability of the two methods
to handle the scale variation.
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This section provides more in-depth explanation of the above experiments.
Moreover, the properties of the datasets that were used, parameter settings, baseline
methods, and software characteristics are also discussed in this section.

3.3.1 Datasets
The performance of the One-shot GP and Compound-GP methods has been
evaluated using different types of datasets. The datasets can be categorised into
four groups where three of them are textures and the fourth is object classification.
Each dataset in each group consists of only two classes (binary classification) of
grey-scale images. The following subsections provide detailed discussion of each of
those four groups.

3.3.1.1 Group A

The instances of the first group were taken from the Kylberg Texture dataset [157].
As discussed in Section 2.4 (page 62), the Kylberg Texture dataset consists of 28
classes and comes in two flavours: (1) without rotation; and (2) with rotation.

Each class of the without rotation group consists of 160 unique instances. Only
eight visually-close classes of this group (textures without rotation) have been
selected in this chapter to form four datasets for binary classification. Textures-1 is
the first set, made up of the stoneslab1 and wall1 classes. Textures-2 is the second
set, made up of the rice2 and sesameseeds1 classes. The blanket1 and canvas1
classes are selected to form the third set Textures-3. The fourth set is Textures-4,
consists of the linseds1 and pearlsugar1 classes.

3.3.1.2 Group B

The dataset of this group was taken from KTH-Textures under varying Illumination,
Pose, and Scale (KTH-TIPS) [39] (see Section 2.4 on page 62).

In this chapter, only two classes (sponge, and brown bread) that are visually-
close of KTH-TIPS are selected to form the Textures-5 dataset in the experiments.
This dataset is more challenging than other texture datasets that were used in this
study due to the scale variation of its instances which impose more difficulties on
the model to handle.
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Figure 3.5: One sample from the rice2 class of the Kylberg Texture dataset rotated
about the center in 12 different angles taken from the textures with rotation group.

3.3.1.3 Group C

The instances of the third group were also taken from the Kylberg Texture dataset.
However, the aim of this group’s datasets is to test whether the One-shot GP
and Compound-GP methods are invariant to rotation or not. Therefore, the
classes of this group datasets were drawn from the textures with rotation classes
of Kylberg Texture. The instances are rotated between 0◦ and 330◦ increments
by 30◦. An example of an instance of the rice2 class rotated at different angles
is presented in Figure 3.5. For comparison purposes, the same images that were
selected from the without rotation group of the Kylberg Texture dataset to form
Textures-1, Textures-2, Textures-3, and Textures-4, have been selected from the
with rotation group to form Textures-6, Textures-7, Textures-8, and Textures-9
datasets, respectively.

3.3.1.4 Group D

Similar to Group B, this group consists of only one dataset which is the CBCL Faces
dataset [123]. Unlike the datasets of the previous groups, Faces is not texture-based
and the task is to discriminate between face and non-face instances (see Section 2.4
on page 62). Therefore, the use of this dataset will allow us to test the ability of
the One-shot GP and Compound-GP methods to handle a different task other than
texture classification.

3.3.2 Datasets Preparation

Applying different image processing techniques as a preprocessing step can signifi-
cantly affect the performance of the used model. Some of the well-known operations
are the histogram equalisation, quantisation, and convolution operators such as
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Gaussian blurring. However, different datasets require different processing schemes,
and can be even harder if the instances of the same dataset were captured in an
uncontrolled environment.

The total number of instances of each class has been divided equally between
the training and test sets. Moreover, the original instances were used without
applying any image preprocessing in order to investigate the ability of the One-shot
GP and Compound-GP methods to handle the shifting of pixel values. However,
each instance of the Kylberg Texture database was re-sampled (resized) to 57× 57
pixels in our experiments in order to reduce the computational costs.

Apart from the Conventional-GP (see Section 3.3.3) method, all other GP
methods operate on raw pixel values, and automatically detect and extract features.
However, Conventional-GP and all the non-GP methods require a prior step to
detect and extract feature vectors, which needs to be handled by a domain-expert
in order to design highly discriminative features. Thus, the features of all texture-
based datasets were extracted from ten regions [337] as depicted in Figure 3.6(a).
The mean and standard deviation statistics of each of the four quadrants (AEQH,
EBFQ, HQGD, and QFCG), the central quarter (IJKL), the horizontal lines (HF,
and PN), the vertical lines (EG, and MO), and the entire image (ABCD) have
been calculated to form a feature vector that consists of 20 values. Similarly, the
mean and standard deviation of the eyes (LMFD), nose (JKON), mouth (PQSR),
and the four quadrants (ABED, BCFE, DEHG, and EFIH) regions have been
calculated for each of the Faces dataset instances to construct a feature vector that
consists of 14 values. The regions of the faces dataset were designed based on the
work of [34] as presented in Figure 3.6(b).

3.3.3 Methods for Comparison

In order to check the effectiveness of the proposed methods, a number of GP and
non-GP methods have been evaluated on the used datasets.

3.3.3.1 GP-based methods

The One-shot GP and Compound-GP methods have been compared with two
GP-based methods. The Conventional-GP is the first method that has a function
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(a) (b)

Figure 3.6: The regions of extracted features of the (a) texture, and (b) faces
datasets.

set made up of the four arithmetic operators +,−,×, and /. Those operators have
their regular meaning apart from the / operator, which is protected so that returns
zero if the dominator is zero. The terminal set, on the other hand, consists of rand
which is a randomly generated double-precision float value between −1 and +1
(inclusive), and fi which indicates the value of the ith feature. As mentioned earlier,
this method relies on domain-specific hand-crafted features. The fitness measure of
Conventional-GP in both of the training and test phases is the accuracy that is
formally defined as

Accuracy = TP + TN
TP + FP + TN + FN (3.11)

where TP,TN ,FP, and FN are the number of true positives, true negatives, false
positives, and false negatives, respectively.

The Two-tier GP [7] method is made up of two tiers each of which has been
designed to perform a specific task. The upper part of the program’s tree (first
tier) represents the classification part that consists of the four arithmetic operators
(similar to Conventional-GP) and if-then-else. Unlike other operators, the
if-then-else operator has three children, which returns the value of the second
child if the value of the first child is negative, and the value of the third child
otherwise. The second tier, which occupies the lower part of the evolved program’s
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tree, represents the aggregation part that consists of special nodes to perform the
feature extraction task. Hence, the aggregation part comprises of AggMin, AggMax ,
AggMed, AggMean and AggStdev, which return the minimum, maximum, median,
mean and standard deviation value, respectively. Each of these five aggregation
functions takes five arguments that are the image being evaluated (image), x and y
coordinates ((xCord, yCord)) of the upper-left corner of a region, the shape of the
region (shape), and the size of the region (size). Similar to Conventional-GP, the
accuracy is used as a fitness function in Two-tier GP as presented in Equation (3.11).
Unlike the Conventional-GP method, the Two-tier GP method operates directly
on the image raw pixel values and no preprocessing is required.

In both of the Conventional-GP and Two-tier GP methods, the program output
space is divided into two parts each of which corresponds to a group of instances of
the same class label: negative; and positive including the zero value. An instance is
classified as belonging to a group (e.g. foreground) if the value of the root node is
negative; otherwise, it is classified as belonging to another group (e.g. background).

3.3.3.2 Non-GP methods

The developed methods are compared to six non-GP methods.

• Support Vector Machines (SVM) [56]: A non-probabilistic linear classifier
that is also known as support-vector networks. SVMs are very popular in
machine learning and have been adopted in diverse applications in computer
vision. Mostly, SVM uses an associated learning algorithm to analyse data and
extract or recognise patterns. Therefore, the Sequential Minimal Optimisation
(SOM) [237] algorithm is used in this study to train SVMs.

• Naïve Bayes (NB) [137]: A broadly used and easy to implement probabilistic
method which builds a model by adopting Bayes’ theorem. Since the 1950s,
NB has been studied and used extensively as a baseline method [260].

• Adaptive Boosting (AdaBoost) [97]: A meta-algorithm that was introduced
by Freund et al. in 1996 [97] designed to be used in conjunction with other
machine learning algorithms to enhance their performance. The overall idea
of AdaBoost is to adaptively build a model via tweaking those instances
misclassified by previous models to improve the subsequent ones.



92 CHAPTER 3. GP AND ONE-SHOT LEARNING FOR BINARY CLASSIFICATION

• KStar (K∗) [54]: An instance-based method that predicts a class label for
an instance by considering the class label of the similar instances in the
training set, i.e., similar to k-NN [91]. The key difference between K∗ and
k-NN is that the former measures the distance between instances using an
entropy-based distance measure.

• Non-Nested Generalized (NNge) [191]: Also an instance-based classifier that
considers the class label of the closest instances in the training set to the one
being evaluated, but using a non-nested exemplar [333].

• Naïve Bayes/Decision Tree (NBTree) [149]: A hybrid method that combines
both decision trees (DT) and Naïve Bayes to inherit the features of the two
methods. The leaf nodes of the DT are populated using NB classifiers.

For more details regarding these methods, see [323].

3.3.4 Experiments

To evaluate each of the four GP-based methods (Conventional-GP, Two-tier GP,
One-shot GP and Compound-GP), a specified number of instances of each class are
randomly selected from the total number of instances available in the training set.
The best evolved program using the selected instances at the end of the run is tested
against the unseen data (test set). Due to the stochastic nature of GP, the same
process has been independently executed 50 times using a different starting point
(seed value) each time, and only the average performance is reported. The non-GP
methods on the other hand, have been trained using the exact same instances, but
without repeating the execution multiple times (deterministic methods).

Moreover, due to the impact of the selected instances on the performance of the
evolved classifier, the 50 runs of each GP-based method and the single execution
of the non-GP methods, have been repeated 20 times using different instances
each time. Therefore, the total number of independent runs on a single dataset is(
(4 (GP methods)×50 (runs)×20 (repetitions))+(6 (non-GP methods)×1 (run)×

20 (repetitions))
)

= 4, 120. The standard deviation over the 20 repetitions (i.e. 20
average performances) is reported.
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The above procedure has further been repeated ten times using training sets of
different sizes that starts from the minimum number (only one instance per class)
and increases by one instance every time (the largest is ten instances per class). How-
ever, the smallest number of instances per class that can be used to evolve a program
by One-shot GP is two (one representative and one or more non-representative);
therefore, in the case of this method the above process has been repeated nine times
instead of ten. This ten repetitions makes the total number of executions on each
dataset is

(
(1, 000 (runs)×3 (methods)×10 (sets)) +

(
1, 000 (runs)×1 (method)×

9 (sets)
)
(GP methods) + (120 (run)× 10 (sets)) (non-GP methods)

)
= 40, 200.

3.3.5 Feature Extraction

The two new GP methods have their own mechanisms to perform feature extraction;
hence, these methods can also be used for automatic feature extraction. The impact
of the detected and extracted features by each of the One-shot GP and Compound-
GP methods on the performance of the six non-GP baseline classifiers is also
investigated. To measure the goodness of the extracted features by each of the
One-shot GP and Compound-GP methods, the hand-crafted features (as discussed
in Section 3.3.2) and those extracted by Two-tier GP (as discussed in [6]) are used.

In the case of the One-shot GP method, the mean and standard deviation values
are calculated for each LBP histogram resulted from each histogram node. As
discussed in Section 3.2.1, each evolved program has two histogram nodes; therefore,
the feature vector of each instance consists of four values.

Similarly, the features extracted by the Compound-GP method represents the
calculated statistics (mean and standard deviation) of the resulted LBP histograms.
However, the program evolved by Compound-GP generates a number of histograms
for each instance. Moreover, some histograms are generated from the region
nodes; whilst others result from the concatenation of histograms as described in
Section 3.2.2. In other words, the patch objects of the S (list of singles) and L (list
of multiples) are used as the extracted features. As it is hard to guess which of the
two lists is better than the other, the two lists are used individually, as well as the
combination of the two.
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Table 3.1: The GP Parameters of all experiments
Parameter Value Conventional-GP Two-tier GP One-shot GP Compound-GP

Crossover Rate 0.80 3 3 3 3

Mutation Rate 0.20 3 3 3 3

Elitism Keep the best 3 3 3 3

Population size 200 3 3 3 3

Generations 20 3 3 3 3

Tree depth 2-10 3 3 7 3

Selection Type Tournament 3 3 3 3

Tournament Size 7 3 3 3 3

Initial Population Ramped half-and-half 3 3 7 3

3.3.6 Parameter Settings

In this study, four GP methods have been used. For comparison purposes, the
settings of those methods’ parameters are kept identical in all of the experiments
as listed in Table 3.1. It is very important to notice that some of the parameters
are not applicable in the case of One-shot GP due to the restrictions of the evolved
program by this method. Moreover, the conventional GP crossover and mutation
operators are used and the closure property is maintained by strongly-typed GP.

3.3.7 Implementation

The GP-based methods have been implemented using the platform provided by the
Evolutionary Computation Java-based (ECJ) package version 23 [190]. The imple-
mentation of the non-GP methods have been taken from the Waikato Environment
for Knowledge Analysis (WEKA) package version 3.8 [116].

3.4 Results and Discussions

The results of the experiments are reported and discussed in this section. This
section is divided into four subsections that describe different aspects of the obtained
results. The performances of the One-shot GP, Compound-GP, and all the baseline
methods in terms of accuracy are presented in the first subsection. The goodness
of the features extracted by each of the One-shot GP and Compound-GP methods
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is compared to the hand-crafted areas and those extracted by the Two-tier GP
in the second subsection. The third subsection, provides discussions on both of
the training and test time of the four GP-based methods. Finally, the fourth
subsection shows the complexity of the evolved program in terms of the average
size per generation of the four GP-based methods.

3.4.1 Accuracy

In order to check if the average performances of One-shot GP and Compound-GP
are statistically significant compared to the performance of each of the baseline
methods, a Wilcoxon signed-rank test [320, 66] is used. The methods are compared
in pairs, and the significance level of the test was set to 5%. The ↓ and ↑ symbols
indicate that the performance of the One-shot GP method compared to that of
the other method is significantly worse and better, respectively. Meanwhile, the ⇓
and ⇑ symbols appear if the performance of the Compound-GP method compared
to that of the other method is significantly worse and better respectively. The
method with the highest performance amongst all other comparative methods has
its result made bold. However, in the case of having more than one method that
have achieved 100% accuracy, none of those methods are made bold.

The results of this experiment are presented in tables in this section. Each
table aggregates the results of datasets of one group. The first column of each table
shows the name of the dataset, and the total number of instances per class that
were used in the training set are listed in the second column. Horizontally, each
table is divided into two parts: the first lists the results of the non-GP methods;
whilst the results of the GP-based methods are listed under the second part. The
result of One-shot GP is missing from the first row of all tables (indicated by N/A),
as the minimum number of instances required by this method is two of each class.

3.4.1.1 Group A Datasets

The results of the datasets of this group are presented in Table 3.2, which consists
of the Textures-1, Textures-2, Textures-3, and Textures-4 datasets.

The first block of Table 3.2 shows the results of the methods on the Textures-1
dataset. Compound-GP has scored second best performance after the AdaBoost
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method. The One-shot GP method is also showing good performance and scores
third when the number of instances is less than six.

The results of Textures-2 dataset are presented in the second block of Table 3.2.
This dataset represents one of the easiest; that most of the methods, apart from
Conventional-GP and Two-tier GP, have scored above 99% when there were four
or more instances of each class in the training set. However, the use of only one
instance was enough to achieve 100% accuracy by the Compound-GP method, and
99.9% using two instances in the case of One-shot GP.

For Textures-3, all of the methods, apart from Two-tier GP, have achieved
reasonably good accuracy above 80% when there were three or more instances of
each class in the training set as shown in the third block of Table 3.2. Moreover,
the Compound-GP method shows either the highest or in the top three ranked
performance amongst other methods. Although One-shot GP shows the second
lowest performance amongst the comparative methods on this dataset, the result
shows that this method has achieved on average 79.3% accuracy using only two
instances per class.

The results on Textures-4 dataset are presented in the last block of Table 3.2.
Apart from K∗, Conventional-GP, and Two-tier GP, all other methods have achieved
on average over 80% accuracy. Moreover, Compound-GP has significantly out-
performed all other methods on this dataset with 95.1% accuracy using only one
instance per class, which is significantly better than the highest achieved results
by other methods even when there were 10 instances per class in the training set
(NNge with 90.8% accuracy).

3.4.1.2 Group B Dataset

The results of the Textures-5 dataset are presented in Table 3.3. This dataset
represents a more challenging task compared to all other texture-based datasets
due to the variation in illumination, scale, and pose of its instances. The results
show that One-shot GP and Compound-GP have significantly outperformed all
other methods on this dataset. Moreover, these two methods have achieved on
average over 90% accuracy even when there are two instances in the training set.
This shows that the programs evolved by the two new methods are invariant (to
some extent) to those variations.
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3.4.1.3 Group C Datasets

Table 3.4 presents the results on datasets of the third group, which consists of
Textures-6, Textures-7, Textures-8, and Textures-9 datasets.

The results of Textures-6 dataset (which represents the rotated version of
Textures-1) show that Compound-GP and One-shot GP have, respectively, scored
the first and third best performance as shown in the first block of Table 3.4. The
two new methods have significantly outperformed all other methods, apart from
AdaBoost compared to One-shot GP, on this dataset. Moreover, apart from K∗,
all comparative methods show a significant drop in their performances compared
to Textures-1; whilst the two new methods show nearly consistent performance on
the two datasets.

Apart from AdaBoost, most of the methods have achieved similar accuracy on
Textures-7 to Textures-2 as presented in the second block of Table 3.4. One-shot
GP and Compound-GP have achieved 100% accuracy even when the number of
available instances is relatively small (less than three instances per class).

Similarly, the comparative methods show nearly consistent or slightly dropped
performance on the rotated version Textures-8 of the Textures-3 dataset as presented
in the third block of Table 3.4.

The last block of Table 3.4 shows the results of Textures-9, which represents the
rotated version of the Textures-4 dataset. While Compound-GP has maintained
its performance, the performance of the One-shot GP method has greatly dropped
compared to Textures-4. Similar to Compound-GP, other methods have also shown
a nearly consistent performance on this dataset. Noticeably, AdaBoost shows a
considerably better performance on this dataset compared to the performance of
this method on Textures-4.

3.4.1.4 Group D Dataset

Table 3.5 shows the results of the experiment on the Faces dataset. Both of
One-shot GP and Compound-GP have achieved better accuracy than all other
methods on this dataset when the number of instances is smaller than four per
class. Meanwhile, the Two-tier GP and NB start to compete when the number
of training instances increases. Apart from NB, Compound-GP has significantly
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outperformed all other methods on this dataset. The One-shot GP method, on the
other hand, has significantly outperformed NBTree, SVM, and Conventional-GP in
all the nine different sizes, and some cases compared to AdaBoost, K∗, NNge, and
the Two-tier GP methods.

3.4.1.5 Summary

The results show that both One-shot GP and Compound-GP have successfully
evolved programs using only a few instances that can generalised well to the unseen
data. Compared to non-GP and GP-based methods, One-shot GP and Compound-
GP have achieved significantly better or comparable results in most cases. However,
in some situations the two new methods, especially One-shot GP, show significantly
worse performance, e.g., on Textures-1 compared to the performance of AdaBoost.

3.4.2 Feature Extraction
As highlighted in Section 3.3, the goodness of the detected and extracted features by
One-shot GP and Compound-GP has been investigated via feeding those features to
six different classifiers (the non-GP methods that were used in the first experiment).
The performance of those classifiers on the hand-crafted features and those extracted
by the Two-tier GP method have been compared to the use of One-shot GP and
Compound-GP extracted features.

The result of each of the six classifiers on each dataset using four different sets
of features is represented by a single line chart. Moreover, the results of the all six
classifiers are aligned on a single row for each dataset. The vertical and horizontal
axes of each chart represent the average accuracy and number of instances per class
in the training set, respectively.

3.4.2.1 Group A Datasets

The results on the test set of this experiment on the datasets of the first group
(Textures-1, Textures-2, Textures-3 and Textures-4) are presented in Figure 3.7.

Apart from AdaBoost, the use of One-shot GP and Compound-GP extracted
features show significant improvement in the performance of the classifiers when
there are fewer than six instances per class in the training set.
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Figure 3.7: The average performance of the experimented methods on the datasets
of Group A using four different sets of features.

On Textures-2, on the other hand, all of the six classifiers have achieved perfect
performance using the features extracted by the One-shot GP and Compound-GP
methods. Apart from K∗ and NBTree, it is clear that the new features have large
positive impact on the performance of the other four classifiers when there are less
than four instances per class in the training set.

The results of the experiment on Textures-3 show that the features of Compound-
GP has slightly dropped the performance of all the six methods, whilst the features
of One-shot GP show large drop in the performance of those classifiers. However, all
the six classifiers have achieved significantly better performance using the features
of the two new methods compared to those extracted by the Two-tier GP.

The features extracted by One-shot GP show improvement in the performance
of all the classifiers apart from AdaBoost with hand-crafted features. The features
extracted by the Compound-GP method, on the other hand, show positive impact
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Figure 3.8: The average performance of the experimented methods on the Texture-5
dataset using four different sets of features.

and have significantly improved the performance of all the six classifiers over the
use of both the hand-crafted (conventional GP) and Two-tier features.

3.4.2.2 Group B Dataset

On the Textures-5 dataset, the features extracted by One-shot GP and Compound-
GP have significantly improved the performance of all the six classifiers over both
hand-crafted and Two-tier GP features as presented in Figure 3.8. As highlighted
in Section 3.3, this dataset are more challenging than other texture-based datasets
due to illumination, scale, and pose variations of its instances.

3.4.2.3 Group C Datasets

As depicted in Figure 3.9, The results show that the six classifiers have maintained
their performances when the features of One-shot GP and Compound-GP are used
on Textures-6 compared to Textures-1. Meanwhile, apart from AdaBoost, the use
of hand-crafted features have significant negative impact on the performance of
those classifiers.

The features extracted by both One-shot GP and Compound-GP show insensi-
tivity to rotation on Textures-7. A nearly consistent performance has been achieved
by all those six classifiers when the hand-crafted and Two-tier features are used.

Comparing the performance achieved of the six classifiers on Textures-8 and
Textures-3, the classifiers show consistent or slightly improved performance when
the hand-crafted features are used; while the Compound-GP features have dropped
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Figure 3.9: The average performance of the experimented methods on the datasets
of Group C using four different sets of features.

the performance of almost all the six classifiers. The features extracted by One-shot
GP, on the other hand, show similar behaviour to the hand-crafted features; however,
the gap between the two is significant. The inconsistency in the performance that
the Compound-GP features show was expected due to having the same behaviour
in the results of the first experiment on this dataset.

On Textures-9, compared to Textures-4, the six classifiers have maintained their
performances when the One-shot GP and Compound-GP extracted features were
used. The hand-crafted features show positive improvement in the performance of
all the six classifiers compared to that achieved on Textures-4.

3.4.2.4 Group D Dataset

Apart from NB, the features from the One-shot GP and Compound-GP methods
have improved the performance of the other five classifiers on this dataset as shown
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Figure 3.10: The average performance of the experimented methods on the Faces
dataset using four different sets of features.

in Figure 3.10. Although the Two-tier GP extracted features show improvement
in the performance of those classifiers, this improvement is still not as good as
those introduced by the two new methods (One-shot GP and Compound-GP). The
hand-crafted features show, in most cases, the worst performance on this dataset.

3.4.2.5 Summary

The results of this experiment show that the features extracted by the two new
methods have improved the performance of the six classifiers in most cases. However,
those features are also showing an inconsistency in other cases especially Textures-3
and its rotated version Textures-8. Most importantly, the features detected by the
One-shot-GP and Compound-GP methods are not biased to a specific classifier,
and are invariant to rotation, illumination, and scale variations to some extent.

3.4.3 Training and Testing Time

The average training and testing times are also measured in order to highlight
the cost of evolving a program by each of the One-shot GP and Compound-GP
methods. The results are presented in blocks of line charts, each of which shows
the average time required to evolve or evaluate a program by each of the four GP
methods. Each row of blocks represents either the training or testing phase, while
each column presents the results of a single dataset as presented in Figure 3.11(a),
Figure 3.11(b), Figure 3.11(c), and Figure 3.11(d), for the datasets of Group A,
Group B, Group C, and Group D, respectively. Similar to the plots of the previous
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(a) (b)

(c) (d)

Figure 3.11: The average training and test time of the four GP-based methods on
the (a) Group A; (b) Group B; (c) Group C; and (d) Group D datasets.

section, the horizontal axes represents the number of instances per class in the
training set; and the vertical axes represents the time in seconds.

The results show that both of the One-shot GP and Compound-GP methods take
significantly longer time to evolve and evaluate/test a program than Conventional-
GP and Two-tier GP. Moreover, Conventional-GP is the fastest method amongst
the four GP methods, followed by the Two-tier GP with a slightly slower speed.
This large gap between the two new and baseline methods was expected due to the
following reasons:

• Feature detection and extraction: Apart from Conventional-GP, the
other three GP-based methods perform feature detection and extraction
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at the lower part (near the leaves) of the evolved program. Performing
those operations increases the complexity of the evolved program in terms
of memory and computation costs. Moreover, in the case of the Two-tier
GP, there are only four simple operations (minimum, maximum, mean, and
standard deviation) that can be used to perform feature extraction. However,
this operation is more complicated in the case of both One-shot GP and
Compound-GP methods. The complication results from the calculation of
the LBP code of each pixel in each of the detected regions, which require
applying a threshold operation, checking if the calculated code is uniform or
not, and accumulate it with other codes to form a histogram.

• Wrapped classifiers: In the case of both Conventional-GP and Two-tier
GP, the aim is to evolve a GP-based classifier. Thus, both of these methods
do not have any wrapped classifier that needs to be trained. Meanwhile, One-
shot GP and Compound-GP have different numbers and types of wrapped
classifiers. The One-shot GP method uses a simple k-NN classifier; whereas
Compound-GP consists of two SVM and two k-NN classifiers for each of the
special node (the root of the evolved program’s tree) children. Training and
evaluating those wrapped classifiers introduces extra complexities that need
to be handled.

• Fitness function: The fitness functions of both Conventional-GP and Two-
tier GP are simple and does not require extra calculations. However, the
fitness functions of both One-shot GP and Compound-GP are complex and
require calculating more parameters such as the overlapping ratio of the
detected regions (OVR).

• Termination criteria: In the case of the One-shot GP and Compound-GP,
the system is forced to proceed until the maximum number of generations is
reached. Meanwhile, the Conventional-GP and Two-tier GP can terminate
once an ideal program has been found.
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Figure 3.12: The average program size per generation of the four GP-based methods
on the datasets of Group A.

3.4.4 Program Size

Here, the complexity of the program evolved by each of the four GP-based methods
in terms of average program size is investigated. The results are presented in
line plots, where each row corresponds to one of the datasets, and each column
represents the number of instances per class in the training set as presented in
Figures 3.12 to 3.15. The vertical axes and horizontal axes represent the number
of nodes and generations, respectively. Each block contains four lines one for each
of the four GP methods.

The results of Conventional-GP and Two-tier GP show that when there are
fewer than four instances per class, these two methods terminate early and before
the maximum number of generations is reached. This was expected as both of
these methods rely on the accuracy alone as a goodness measure. However, this
does not occur in One-shot GP and Compound-GP due to the other components
of the fitness measures of these two methods that force the system to proceed.
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Figure 3.13: The average program size per generation of the four GP-based methods
on the dataset of Group B.

Figure 3.14: The average program size per generation of the four GP-based methods
on the datasets of Group C.

The results show that One-shot GP has a constant program size that is neither
affected by the size of the training set nor by the generation (progress of the run).
This was expected due to the restriction of the program size of the One-shot GP
method. The size is 35 nodes that are: one controller ; two histogram; eight region;
and twenty four terminal nodes.

The Compound-GP method, on the other hand, evolves programs of different
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Figure 3.15: The average program size per generation of the four GP-based methods
on the dataset of Group D.

sizes, only restricted by the maximum-depth of the tree parameter. The results
show that on average the method starts with a large program that gets reduced in
later stages (subsequent generations). The main reason of this behaviour is the
overlapping ratio (OVR) component of the fitness function, which forces the system
to detect distinctive regions with minimal overlapping.

3.5 Further Analysis
Two evolved programs from each of the One-shot GP and Compound-GP methods
(four in total), are investigated in this section. The first example is taken from
those programs that were evolved on one of the texture-based datasets, whereas
the second example is a program that was evolved to discriminate between face
and non-face instances.

3.5.1 One-shot GP Examples

The first example of an evolved program by One-shot GP on Textures-2 is presented
in Figure 3.16. The tree representation of this program is shown in Figure 3.16(a)
that is made up of one controller , two histogram, and eight region nodes. The
position of each of those eight regions is highlighted in Figure 3.16(b) on one
example of each class and the enlarged cut-outs are presented below each image.
This program was evolved using the minimum allowed number of instances (two
per class) by One-shot GP, and has achieved 100% accuracy on the unseen data of
this dataset. A closer look on the enlarged cut-outs reveals that the regions of the
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(a)

(b)

Figure 3.16: An evolved program by the One-shot GP method on the Textures-2
dataset (a) the tree representation, and (b) the detected regions.

rice instance has less texture than that of the corresponding sesameseeds instance.
The example presented in Figure 3.17 shows an evolved program by the One-

shot GP method on the Faces dataset. This program has achieved 78.3% accuracy
using only two instances of each class in the training set. The program detects the
regions around both eyes, eyebrows, and cheeks. Those regions (especially around
the eyes and cheeks) are similar to those designed by a domain-expert, which shows
the ability of the system to automatically detect such important regions.

3.5.2 Compound-GP Examples

The tree representation of an evolved program by Compound-GP on the Textures-2
dataset is presented in Figure 3.18(a). This program was evolved using only one
instance of each class, and has scored 100% accuracy on the unseen data of this
dataset. The detected regions by this program are depicted in Figure 3.18(b). The
evolved program shows that the regions of different sizes and shapes have been
detected, and the cut-outs of the two instances show clear differences in the texture
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(a)

(b)

Figure 3.17: An evolved program by the One-shot GP method on the Faces dataset
(a) the tree representation, and (b) the detected regions.

especially the small ones.
Figure 3.19 shows an evolved program by the Compound-GP method on the

Faces dataset, which has achieved 78.0% accuracy using only one instance per class.
The tree representation shows that nine regions have been detected by this program
as depicted in Figure 3.19(a). These regions are highlighted in Figure 3.19(b), which
shows that some interesting regions such as the mouth, three regions around the
left eye and forehead, two regions detecting the left cheek, and three detecting the
right cheek. This example shows that the detected regions have common features
with those that were designed by a domain-expert.

3.5.3 Comments on the Number of Examples

An important question that is applicable to both methods is why using a few
instances can be sufficient to evolve a model with reasonably good performance.
The answer to this question can be the similarity between instances belonging to
the same class. That is, instances belonging to one class must have distinctive
features to those of other classes; otherwise, they must not be grouped together. For
example, the instances of each texture-based class have a special repetitive pattern
or structure, where detecting this structure represents the main task of the Texture
synthesis field [235, 101]. Similarly, all instances of the Faces dataset have similar
features in relatively fixed positions (eyes, nose, cheeks and so on). Therefore,
allowing the system to detect distinctive regions from one or a few instances can be
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(a)

(b)

Figure 3.18: An evolved program by the Compound-GP method on the Textures-2
dataset (a) the tree representation, and (b) the detected regions.

(a)

(b)

Figure 3.19: An evolved program by the Compound-GP method on the Faces
dataset (a) the tree representation, and (b) the detected regions.
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sufficient to generalise to unseen data. Therefore, the assumption is that the same
pattern or structure is shared by all instances of one class. Moreover, the search
(evolutionary) process is not terminated in One-shot GP and Compound-GP once
the instances of the training set are correctly classified as in the other methods.
Instead, the system tries to find better regions that allow the evolved programs to
generalise well to the unseen data.

3.6 Chapter Summary

The overall aim of this chapter was to investigate the capability of GP to evolve a
model for binary classification tasks in images using only one or a few instances per
class. This goal was fulfilled by developing two GP methods namely One-shot GP
and Compound GP. Neither of the two methods relies on the concept of learning
by knowledge transfer approach where some instances from related domains can
be used to assist the process of evolving a model. Using ten datasets of different
flavours, and compared against two other GP and six non-GP methods, the results
revealed that both of these new methods (One-shot GP and Compound-GP) were
able to evolve good programs that have the potential to perform image classification.
Furthermore, the evolved programs have either outperformed all other competitor
methods, or achieved comparable performance to the best of these other methods
in most of the studied cases.

Some of the datasets that were used are aimed at testing the ability of the
evolved programs by One-shot GP and Compound-GP to handle illumination,
rotation, and scale variations. The results show that the evolved programs by those
two methods have maintained their performances or slightly dropped when one or
more of those variations occurred. Hence, both of these new methods are capable
to evolve (to some extent) illumination-, rotation-, and scale-invariant programs.

The impact of the detected and extracted features by One-shot GP and
Compound-GP on the performance of a variety of classifiers such as AdaBoost,
NB, NBTree, SVM, K∗, and NNeg has also been investigated in this chapter. The
results were compared against the use of hand-crafted features (in conventional
GP) and those were extracted by the Two-tier GP [6] method. The results show
that the features of One-shot GP and Compound-GP have positive influence on
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the performance of most of the experimented classifiers in most cases. However, in
other cases those two methods (One-shot GP and Compound-GP) features have
slightly degraded the performance of some of those classifiers.

In order to address the interpretability aspect, two examples of the evolved
programs by each of the One-shot GP and Compound-GP methods have been
analysed and discussed in detail. The discussions revealed that the evolved programs
are easy to interpret, unlike other methods that build a black-box like model.

Despite the good ability of the One-shot GP and Compound-GP methods to
evolve good programs using a small number of examples, a closer inspection on the
complexity of the evolved programs by these two methods reveals their drawbacks.
The methods take a considerably longer time (especially Compound-GP) to evolve
a good program than other GP-based methods specifically Conventional-GP and
Two-tier GP. Moreover, the size of the program evolved by Compound-GP is
larger than those evolved by Conventional-GP, Two-tier GP, and One-shot GP.
The size of the program evolved by One-shot GP, is fixed and introduces an extra
parameter that needs to be set. Although the features extracted by either of these
two methods, i.e., One-shot GP and Compound-GP, are not biased to a specific
classifier (as the results suggest), it may vary when the wrapped classifiers are
replaced by other classifiers.

Tackling the problem of multi-class classification problem is addressed in the
next chapter. Instead of evolving a classifier, the aim is to evolve a model that can
generate relatively similar features for instances of belonging to the same class and
different than those features of the instances in other classes.



4
GP for Illumination-invariant

Image Descriptors

4.1 Introduction

The performance of a model to perform image classification is highly dependent
on the extracted features. Identifying potential keypoints and specifying a set of
features to be extracted from those keypoints are typically performed by a domain-
expert who, in many cases, is expensive to employ and hard to find. Therefore, image
descriptors have emerged to automate the task of feature detection and/or feature
extraction. However, developing those descriptors is not a trivial task. It requires
domain-expert intervention to design the needed components and methodologies to
accomplish the intended tasks.

The limitations of the existing image descriptors can be summarised in three
main points. Firstly, they are developed to detect a specific type or a set of
keypoints that were previously designed by a domain-expert. Although the domain-
expert can identify crucial keypoints, e.g., corners and lines, some of the less
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noticeable or irregular keypoints may have a significant effect on the final results.
Furthermore, the difficulty of identifying informative keypoints increases when the
number of classes increases. Secondly, these descriptors are abstract and assumed
to be domain-independent. It is very difficult to find a set of keypoints that are
useful over several different problems. For example, detecting lines is perfectly
good when performing texture classification, e.g., to differentiate instances that
have more vertical lines than those with more horizontal lines, but it is less likely
to be effective for face detection. Thirdly, the vast majority of these descriptors
are not flexible and substantial changes may required to alter a parameter or make
it robust to image variants such as LBP (see Section 2.1.2 on page 29).

4.1.1 Chapter Goals

Motivated by the success employing image descriptors to tackle a variety of problems
in computer vision, we wish to use GP to automatically evolve an illumination-
invariant image descriptor by combining a set of arithmetic operators and raw pixel
values. This chapter aims at addressing the following objectives:

• Designing an appropriate GP representation that can be used as an image
descriptor;

• Developing a fitness function that is capable of providing adequate feedback
regarding the separability level of the detected keypoints and extracted
features when there are only two instances per class in the training set;

• Assessing the performance of the evolved descriptors over a series of exper-
iments in order to investigate whether they can outperform hand-crafted
features and domain-expert designed descriptors;

• Examining the robustness of an evolved descriptor to the change of image
illumination; and

• Investigating an evolved image descriptor to gain insight into how it can
solve the problem, and whether patterns about the data can be drawn from
those automatically evolved descriptors.
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4.1.2 Chapter Organisation

The remainder of the chapter is organised as follows. Section 4.2 presents the
proposed GP illumination-invariant image descriptor method and explains the
main steps to construct the feature vector for an image. Section 4.3.4 discusses the
datasets used to assess the performance of the proposed method, the parameter
settings, and the methods for comparison. The results of the experiments are
presented and discussed in Section 4.4. Section 4.5 provides a deep analysis of an
evolved image descriptor. The chapter summary is presented in Section 4.6.

4.2 GP Image Descriptor

The proposed illumination-invariant GP image descriptor method is discussed in this
section. The newly proposed method in this chapter is named GP-criptor throughout
this thesis. The overall algorithm is discussed first, followed by descriptions of the
program representation, feature vector, and fitness function.

4.2.1 The Overall Algorithm

The procedure adopted to evaluate the newly introduced method is made up of the
typical machine learning training and testing stages. Figure Figure 4.1 illustrates
the overall algorithm. The content of the dataset is equally divided into training
and test sets. The system then randomly picks two instances from each class and
feeds them to the GP process. The GP evolutionary process runs and the best
evolved program at the end, i.e., final generation or a program with ideal fitness,
is selected. The training instances, i.e., the two randomly selected instances per
class, are fed to the best evolved program in order to generate the knowledge base
vectors (K). Hence, K comprises the feature vectors and the corresponding class
labels of the instances that were used during the evolutionary process. The system
then uses the best evolved program to generate the feature vector for each instance
in the test set. The resulting knowledge base is used along with a classifier (e.g.
1-NN) to predict the class label for the instances of the test set. The performance
is assessed by the ability of the model to correctly classify the unseen data. More
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Figure 4.1: An overview of the overall algorithm.

Figure 4.2: An example of a program evolved by GP-criptor.

details regarding each of these steps are presented in the following subsections.

4.2.2 Program Representation
The tree-based GP representation [153] is adopted to represent a program evolved
by GP-criptor as depicted in Figure 4.2. In order to define constraints on the nodes
and to satisfy the “closure” property [153, 243] (to preserve the constraints between
the nodes of an evolved program and ensure those constraints are not violated
when crossover and mutation are performed), strongly-typed GP [207] is used.

4.2.2.1 Terminal Set

GP-criptor is designed to operate directly on image raw pixel values. Therefore,
the pixel values are the content of the terminal set. The system uses a sliding
window of a specific size, and at each position, the pixel values that fall within the
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Figure 4.3: An example demonstrating the process of generating a feature vector
for an image by the GP-criptor method.

(a) (b) (c)

Figure 4.4: Examples shows the pixel indices of sliding windows with size (a) 3× 3,
(b) 5× 5, and (c) 7× 7 pixels.

window are used as inputs as shown in Figure 4.3. The index of the ith pixel of
the sliding window is represented as Pi. Figure 4.4(a)–(c) shows three different
window sizes and the pixel indices of each of them. In our experiment, the size of
the sliding window is set to 5× 5 pixels (see Section 4.4.1 on page 130). Thus, the
terminal set for the GP is the indices of 25 pixels {P0, P1, . . . , P24}. An evolved
program is expected to be illumination-invariant as the terminal set comprises
only the indices of the pixels and not the actual values. This allows the system to
capture the relations between those indices, which will be the same if the intensity
value of all pixels has been increased or decreased uniformly.

4.2.2.2 Function Set

The function set, on the other hand, consists of the +, −, ×, protected /, and
code operators. Each of the first four operators has its regular mathematical
meaning, takes two parameters, and returns the resulting value after applying the
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corresponding operator on the inputs. The / operator is protected such that it
returns zero if the denominator is zero. These four operators have identical input
and output types. Thus, they can be used to form long chains of operators. The
code node, on the other hand, is a special node that represents the root of the
program tree. This node uses the input parameters, i.e., the values of its children,
to generate a binary code at each position of the sliding window (more details are
provided in the following subsection). The number of children of the code node
specifies the length of the generated code, which in turn specifies the range of the
values that can be represented (i.e. 2n where n is the number of children). For
example, if the number of children is 3, then the program can produce 23 = 8
different values as shown in Figure 4.3 (where the resulting feature vector comprises
the bins values {b0, b1, . . . , b7}). As the input and output types of the code node
are different, and it is also different than the other four elements of the function
set, this node only appears at the root of an evolved program.

4.2.3 Generating the Feature Vector

The aim of the program evolved by the GP-criptor method is to synthesise a set of
equations that are used to convert an image to a feature vector (histogram) via
generating binary codes using the pixel values. The process is demonstrated in
Figure 4.3. The system scans the pixels of the instance being evaluated from left
to right and from top to bottom using a sliding window. At each pixel, the system
performs four steps. Firstly, the values of the current window, i.e., centred at the
current pixel, are fed into the leaf nodes of the program tree. Secondly, the GP
program is evaluated starting from the lower part (leaves) to the top part (root).
In the third step, the negative values of the code node children are set to 0, whilst
positive and zero values are set to 1. Fourthly, the generated code in the previous
step is converted to decimal and the corresponding cell (bin) of the feature vector
is incremented by 1.

4.2.4 Generating the Knowledge base

The knowledge base is a special set of vectors that is denoted as K. This set is
generated using the evolved program and the content of the training set (i.e. the
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two randomly selected instances per class). Thus, the size of K is 2×C where C is
the total number of classes. The system follows the steps outlined in the previous
subsection to generate the feature vector for each instance in the training set and
store it in K. The set K plays two essential roles. Firstly, it is used to measure
the fitness value. Secondly, it serves as the knowledge-base to help in classifying
the unseen data.

4.2.5 Fitness Function
Due to having a small number of instances in the training set (only two instances
per class) and a large feature space, the fitness function has been designed to
extract as much information as possible from those instances. Unlike the typical
fitness function where the accuracy is considered alone, the fitness function of
GP-criptor takes in to account the distances between the training instances. The
fitness function is defined as:

fitness = 1−
( 1

1 + e−5(Db−Dw)

)
(4.1)

where Db is the average distance of between-class instances calculated using Equa-
tion (4.2), and Dw is the average distance of within-class instances calculated using
Equation (4.3).

Db = 1
z (z −m)

∑
uα,vβ∈Str
∀~u∈uα
∀~v∈vβ

χ2 (~u,~v) , α, β ∈ {1, 2, . . . , C} , α 6= β (4.2)

Dw = 1
z (m− 1)

∑
uα,vα∈Str
∀~u∈uα
∀~v∈vα

χ2 (~u,~v) , α ∈ {1, 2, . . . , C} (4.3)

Here, Str = {(~xi, yi)} is the training set, where ~xi ∈ R≥0 = {l ∈ R | l ≥ 0} is the
feature vector, yi is the class label, and i ∈ {1, 2, . . . , z}; C and m are, respectively,
the total number of classes and the number of instances per class; z is the total
number of instances in the training set (i.e. C×m), and xα is the set of all instances
of the αth class in Str. The widely used χ2 (·, ·) function measures the distance
between two normalised vectors of the same length as:

χ2 (~u,~v) = 1
2
∑
i

(ui − vi)2

ui + vi
(4.4)
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(a) (b)

Figure 4.5: Logistic function (a) f (t) = 1
1+e−t , and (b) f (t) = 1

1+e−5t .

where ui and vi are the ith element in the ~u and ~v vectors, respectively. When the
denominator of Equation (4.4) for an index i, i.e., ui + vi, is zero, the function
returns zero in order to prevent the division by zero issue [48].

This fitness measure (Equation (4.1)) returns 1 and 0, respectively, in the worst
and best case scenarios. Moreover, the second part of Equation (4.1) is a modified
version of the conventional sigmoid function as presented in Figure 4.5(a). The
value 5 is included in the exponent to scale down the input range from (−5,+5) to
(−1,+1) as depicted in Figure 4.5(b). The motivation behind making the effective
input range narrow is mainly because the χ2 (·, ·) function returns values in the
interval [0, 1]. Therefore, using the conventional sigmoid function the results of
f (t) will be in the interval [0.27, 0.73]. Therefore, including 5 is to scale the output
interval to be [0, 1].

4.3 Experiment Design

The experiments are highlighted and discussed in this section. The discussion
includes the datasets, parameter settings, and methods for comparison.

4.3.1 Datasets

The performance of the proposed method is assessed by using three datasets that
are drawn from three widely used texture benchmarks in computer vision.
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The instances of the first dataset (BrNoRo) are taken from the popular Brodatz
Textures dataset [42] (see Section 2.4 on page 62). The BrNoRo comprises of 20
classes each of which consists of 84 rotation-free instances.

The second dataset (KyNoRo) in this chapter is formed from the Kylberg
Texture [157] (see Section 2.4 on page 62). Only the instances of the without
rotation dataset are used. This dataset comprises 28 classes each of which consists
of 160 instances.

The third dataset (OutexTC00) is formed using the instances of the Outex
Texture Classification (see Section 2.4 on page 62). This dataset comprises 24
classes each of which consists of 20 instances.

The total number of instances of each of the selected classes has been equally
divided between the training and test sets in the experiments of this chap-
ter. Hence, each of the training and test sets of BrNoRo has 840 instances
(= 84 (instances) × 20 (classes)). Meanwhile, KyNoRo has 2240 instances
(= 80 (instances) × 28 (classes)) in each of the training and test sets. Finally,
the OutexTC00 dataset has 240 instances (= 10 (instances)× 24 (classes)) in each
of the training and test sets.

4.3.2 Benchmark Methods for Comparison

In order to investigate the effectiveness of the proposed method, its performance
is compared to the performance of the common state-of-the-art descriptors DIF,
GLCM, and LBPu2

p,r. Image descriptors are used as pre-processing methods to
convert an instance from raw pixel values into a feature vector after detecting some
keypoints. Hence, researchers broadly rely on classification or recognition to assess
the goodness of a descriptor [217, 185, 4, 26]. Here, the classification performance
is also used to assess whether the proposed method is capable of evolving good
descriptors. GP-criptor uses a simple instance-based classification algorithm namely
the-nearest-neighbour, i.e., k-Nearest Neighbour (k-NN) with k set to 1. Classifiers
of different types have been intentionally selected in the conducted experiments
to ensure that the new method is not biased towards a specific classifier or type
of classifier. Those classifiers are (see Section 3.3.3.1 on page 89) k-NN, Support
Vector Machines (SVM), Naïve Bayes (NB), Naïve Bayes/Decision Tree (NBTree),
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Figure 4.6: The real number line division in SRS, where ci is the ith class label, ti
is the ith threshold value, and C is the total number of classes.

Multilayer Perceptron (MLP), Adaptive Boosting (AdaBoost), Decision Trees (J48),
and Random Forest (RF). The implementations of these classifiers are taken from
the commonly used Waikato Environment for Knowledge Analysis (WEKA) [116]
software. For more details regarding these methods, see [323].

In [283], GP is utilised to perform multi-class texture classification by employing
the Static Range Selection (SRS) [295, 336] and Dynamic Range Selection (DRS)
[184, 283] methods to evolve a classifier that operates directly on the raw pixel
values. These two methods are also considered in the conducted experiments.

SRS is designed to extend GP for multi-class classification tasks. The main idea
is to keep the typical tree representation of GP that produces a single value from
the root node, and change the mapping process to predict the class label. Thus,
the real number line is divided into C intervals instead of only two (i.e. negative
and positive), where C is the total number of classes as shown in Figure 4.6. Each
of those intervals is static and assigned to a specific class. The main drawback of
this method is that it requires to manually specify C − 1 threshold values.

DRS also aims at extending GP for multi-class classification by changing the
program output mapping mechanism. Similarly, in DRS the real number line is
split into a number of intervals. However, the intervals are not fixed as in SRS and
they are determined in a dynamic way. The DRS method divides the training set
into evaluation and segmentation sets. The former is used to measure the goodness
of the evolved program (e.g. accuracy), whereas the latter is used to determine the
intervals.

The program representation, terminal and function sets, and fitness function of
SRS and DRS are similar. More details are in [283].
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Table 4.1: The parameter settings of the GP methods
Parameter Value Parameter Value

Crossover Rate 0.80 Generations 50
Mutation Rate 0.20 Population Size 300
Elitism Keep the best Initial Population Ramped half-and-half
Tree minimum-depth 2 Selection Type Tournament
Tree maximum-depth 10 Tournament Size 5

4.3.3 Parameter Settings

4.3.3.1 Evolutionary parameters of the proposed method

The parameter settings of the three GP methods, i.e., GP-criptor, SRS, and DRS,
are summarised in Table 4.1. The ramped half-and-half method is used to generate
the initial GP population. Dealing with images is an expensive task in general,
hence, the population size is set to 300 individuals. The tournament selection
strategy with a tournament of size 5 is used to maintain the population diversity.
The probabilities of applying crossover, and mutation operators are respectively
0.80, and 0.20; whereas keep the best mechanism is used to prevent the evolutionary
process from degrading. The tree depth of an evolved program is restricted to be
between 2 and 10 levels in order to avoid code bloating [318]. Finally, the evolving
process stops when an ideal individual, i.e., fitness value is 0 (or very close to ideal,
e.g., < 10−6), is found, or the maximum number of generations, i.e., 50, is reached.

4.3.3.2 Parameters of the classifiers

In this chapter, a number of well-known classification methods are used to assess the
goodness of the generated features by an image descriptor evolved by GP-criptorri

or one of the baseline methods. Those classifiers (see Section 3.3.3 on page 89), as
discussed in [116], have several parameters and tuning all of them is beyond the
scope of this study. However, some of the important ones are considered in our
experiments. Due to having only two instances of each class in the training set, the
number of the neighbours for all instance-based methods, e.g., NNge, and k-NN, is
set to 1 (the closest neighbour).
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For SVM, a study by Keerthi and Lin [144] investigated the impact of linear
and non-linear kernels on the performance. In their study, it has been observed
that using non-linear kernels in SVM are more likely to give better performance
than using linear kernels. Following their suggestions, the radial basis function
kernel is employed in our experiments.

Similarly, the network structure of MLP is specified based on the guidelines of
Trenn [298]. Typically, MLP has a single input layer that comprises of one node
for each feature in the feature vector; whereas the number of classes specifies the
number of nodes in the output layer. Only one hidden layer is used and, based on
[298], the following formula is considered to calculate the number of nodes in this
layer:

Nhidden =
⌈Nin + Nout

2

⌉
(4.5)

where the values of Nin and Nout correspond to the number of nodes in the input
and output layers.

AdaBoost is a meta-algorithm that was introduced by Freund et al. in 1996
[97] designed to be used in conjunction with other machine learning algorithms in
order to enhance their performance. The overall idea of AdaBoost is to adaptively
build a model by considering those previously misclassified instances by the current
models to improve the subsequent ones. In our experiments, the multi-class
alternating decision trees classifier [131] is used as it gave better performance than
DecisionStump.

4.3.4 Experiments

In this chapter, three sets of experiments have been conducted each of which aims as
investigating a specific aspect. GP-criptor comprises two parameters: window size,
and code length. The impact of using different settings for these two parameters on
the performance is investigated in the first set of experiments. Three window sizes
are tested in this experiment: 3× 3, 5× 5, and 7× 7 pixels. Similarly, three code
lengths are examined: 7-bits, 8-bits, and 9-bits. The second set of experiments
investigates and compares the performance of GP-criptor to the GP-based baseline
methods, i.e., SRS and DRS. Investigating and comparing the performance of the
GP-criptor method to eight state-of-the-art hand-crafted image descriptors using
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nine different classification algorithms (non-GP methods) represents the aim of the
third set of experiments.

In each experiment, each of the stochastic methods has been run independently
30 times using a different seed value each time, and the average performance is
reported; whereas deterministic methods have been executed only one time. As
mentioned earlier, only two instances per class of the training pool (the 50% of the
whole dataset instances) are randomly selected to form the training set. Thus,
the same process of the 30 independent runs for non-deterministic and the single
run of the deterministic methods has been further repeated 10 times using different
instances in the training set. Moreover, the mean (x̄) along with standard deviation
(s) statistics of these methods on the test set have been calculated and reported.

4.3.5 Implementation

Similar to One-shot GP and Compound-GP (Chapter 3 on page 75), the STGP
platform provided by ECJ version 23 [190] is used to implement the three GP
methods, i.e., SRS, DRS, and GP-criptor. Meanwhile, the WEKA package version
3.8 [116] is used to run all the non-GP methods (see Section 3.3.7 on page 94).

4.4 Results and Discussions

This section presents and discusses the results obtained from the conducted experi-
ments on the three datasets. GP-criptor comprises two parameters: window size,
and code length. The impact of using different combinations of these two parameter
settings on the performance is discussed first. The performance of the GP-based
methods (GP-criptor, SRS, and DRS) is then presented and discussed. Comparing
the performance of GP-criptor image descriptors to eight hand-crafted descriptors
using nine classification algorithms is then discussed in this section.

A significant difference between the performance of the newly introduced method
and that of each of the baseline methods has been determined using the Wilcoxon
signed-rank test [66, 320] with a significant level of 5%.



130 CHAPTER 4. GP FOR ILLUMINATION-INVARIANT IMAGE DESCRIPTORS

(a) BrNoRo (b) KyNoRo (c) OutexTC00

Figure 4.7: The impact of the window size and code length on the performance on
the (a) BrNoRo, (b) KyNoRo, and (c) OutexTC00 datasets.

4.4.1 Window Size and Code Length

The results of the first set of experiments are presented in Figure 4.7 and Table 4.2.
Generally, using more children under the code node has a positive influence on
the performance of GP-criptor. Meanwhile, the impact of the window size on
the performance is varying between the datasets. However, the performance gap
between using different sizes is not large. On the BrNoRo dataset, a 3× 3 pixels
window shows better performance than the other two sizes; where the best average
performance (97.58%) was achieved when the code length is 9-bits. The results
on the KyNoRo dataset show that the a 5 × 5 pixels window and 9-bits code
combination has achieved the best average performance (91.46%) on this dataset.
On OutexTC00, GP-criptor shows very similar performances between using 5× 5
pixels and 7× 7 pixels windows. However, the latter, i.e., 7× 7 pixels, has a slightly
higher performance on average as presented in Table 4.2; where the best achieved
performance on this dataset was 96.90% on average.

Based on the results obtained in this set of experiments, the code length is set
to 9-bits and the window size is set to 5× 5 pixels in the subsequent experiments.

4.4.2 GP-based Methods

The results of the three GP-based methods (GP-criptor, SRS, and DRS) on the
three texture datasets are presented in Table 4.3. A “∗” sign is placed beside the
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Table 4.2: Accuracy (%) for using different combinations of code lengths and
window sizes on the three datasets (x̄± s).

Window size

Dataset Code length 3× 3 pixels 5× 5 pixels 7× 7 pixels

BrNoRo
7-bits 96.63 ± 0.93 96.46 ± 0.72 95.62 ± 0.88
8-bits 97.23 ± 0.85 97.10 ± 0.63 96.52 ± 0.66
9-bits 97.58 ± 0.79 97.48 ± 0.62 96.99 ± 0.86

KyNoRo
7-bits 89.59 ± 1.02 90.66 ± 1.21 89.45 ± 1.86
8-bits 90.30 ± 1.08 91.00 ± 1.28 89.95 ± 1.91
9-bits 90.70 ± 1.09 91.46 ± 1.30 90.44 ± 1.73

OutexTC00
7-bits 93.27 ± 2.38 94.92 ± 1.95 95.03 ± 1.76
8-bits 94.34 ± 2.28 95.59 ± 1.92 95.74 ± 1.73
9-bits 94.78 ± 2.52 96.09 ± 1.98 96.09 ± 1.83

value of each method in Table 4.3 that has significantly worse performance than
that of the GP-criptor method. The SRS and DRS methods have achieved the
worst performance in the experiments on all the three datasets. GP-criptor has
significantly outperformed both of these methods as presented in Table 4.3. At this
stage, it is difficult to claim whether SRS and DRS performed poorly since there are
a large number of classes, they require a large number of instances in order to achieve
better performance, or the instances are very large (dimensions). The impact of the
three factors is not examined in this thesis and will be investigated in the future.
It is important to notice that both SRS and DRS are designed to evolve a classifier
rather than an image descriptor, whilst GP-criptor evolves an image descriptor and
uses k-NN to perform the classification task. Furthermore, those methods are not
designed to perform classification using only a few training instances. This clarifies
the poor performance of those methods in the conducted experiments. Meanwhile,
the proposed method, i.e., GP-criptor, has been specifically designed to operate
using a small number of training instances and uses a more powerful mechanism to
evolve an image descriptor that is capable of handling this problem.

4.4.3 Baseline Image Descriptors

The aim of this set of experiments is to compare the performance of GP-criptor to
eight hand-crafted image descriptors. The results are statistically tested using the
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Table 4.3: The accuracies (%) on the test set for GP-based methods on the three
datasets (x̄± s).

BrNoRo KyNoRo OutexTC00

SRS 5.70 ± 0.32 ∗ 3.55 ± 0.15 ∗ 4.73 ± 0.49 ∗
DRS 11.5 ± 0.34 ∗ 5.39 ± 0.23 ∗ 9.91 ± 1.50 ∗
GP-criptor 97.5 ± 0.62 91.5 ± 1.30 96.1 ± 1.98

Wilcoxon signed-rank test with a significant level of 5%. The statistical test has
been applied twice, first, to check whether GP-criptor with a simple classifier (1-NN)
can compete with the baseline descriptors with more powerful classifiers; and second,
to test whether the GP-criptor method can compete with the baseline methods
using the same classifier. The symbols “∗” and “−” are used to, respectively,
represent significantly better and significantly worse in the first test, whereas
significantly better and significantly worse in the second test are indicated by
“↑” and “↓”, respectively. For each dataset, the corresponding method with best
average performance for each classifier is made bold; whilst the best performance
amongst all methods and classifiers is underlined. If two or more methods have
the same best average performance, the one with the smallest standard deviation
is underlined.

Table 4.4 show the results of applying nine classification algorithms on the
BrNoRo dataset using the features of GP-criptor and the baseline image descriptors.
Using k-NN, the GP-criptor method has achieved 97.6% accuracy on average and
significantly outperformed all other hand-crafted image descriptors with k-NN
and all other classification algorithms. Using the same classification algorithm,
GP-criptor has also achieved comparable or significantly better performance in
most of the cases as shown in Table 4.4. Apart from J48, all other classifiers
have show the best performance using GP-criptor features compared to the other
state-of-the-art image descriptors.

Table 4.5 presents the results of the experiment on the KyNoRo dataset.
Similar to BrNoRo, a good performance has been achieved by GP-criptor over all
the baseline methods on the KyNoRo dataset. Apart from CLBC8,1 with k-NN,
MLP, and NNge, GP-criptor with k-NN has significantly outperformed all other
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descriptors and the gap is ranging between 3.8% and 80.2% accuracy on average.
In the case of using other classifier than k-NN, GP-criptor has significantly better
performance in more than 67% (= 43/64) of the cases. However, GP-criptor shows
the worst average performance amongst the experimented image descriptors in the
case of J48.

Finally, the results on the OutexTC00 dataset are presented in Table 4.6. This
dataset is relatively smaller than the other two (BrNoRo and KyNoRo), where each
class comprises of 20 instances in total that are divided equally between the training
set and test set. The results show that GP-criptor with k-NN has significantly
outperformed all other hand-crafted descriptors and achieved 94.8% performance on
average. Moreover, the best average performance achieved on this dataset was by
GP-criptor with MLP (94.9%). Using the same classification algorithm, GP-criptor
has significantly outperformed the other eight image descriptors in more than
90% (58 out of 64) of the cases.Furthermore, the proposed method has the best
performance amongst the experimented descriptors when the same classification
algorithm is used, apart from J48 where DRLBP8,1 has achieved significantly better
performance than GP-criptor.

4.5 Further Analysis
This section aims at analysing different components of the GP-criptor method.
The general analyses of the algorithm including the program size, fitness value,
and evolutionary time are discussed in the first subsection. Then sample programs
evolved on each of the two datasets are deeply analysed in the second subsection.

4.5.1 General Analyses

4.5.1.1 Convergence

The fitness value for the best program at each generation was reported in the
previous two sets of experiments. Here, only those programs evolved using the
combination of 9-bits code length and 5× 5 pixels window size are discussed.

Figure 4.8(a) shows the average fitness value per generation of the best program
on the BrNoRo dataset. Clearly, the system has made large jumps in the first
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20 generations where the fitness value has decreased from 0.287 to 0.169. The
improvement was slower over the subsequent 30 generations and the fitness value
has decreased to 0.141.

The average fitness value of the best programs per generation on the KyNoRo
dataset is depicted in Figure 4.8(b). Similar to BrNoRo, on KyNoRo the system
noticeably has reduced the fitness value over the first 20 generations from 0.361 to
0.261. The reduction of the fitness value was smaller that is approximately 0.028
(from 0.261 to 0.233) over the subsequent 30 generations.

Figure 4.8(c) shows the average fitness value per generation for the best programs
on the OutexTC00 dataset. Following the same pattern of the other two datasets,
the system has reduced the fitness value on average from 0.367 to 0.266 over the first
20 generations. Meanwhile, the system has reduced the fitness by approximately
0.026 (from 0.266 to 0.240) over the subsequent 30 generations.

This demonstrates the ability of the system to evolve good solutions over a
small number of generations.

4.5.1.2 Program size

The system shows a similar pattern of the program size, which starts from small
programs. The average program size (over 300 runs) of the best individual at each
generation in terms of number of nodes on the BrNoRo dataset is presented in
Figure 4.9(a). On average, the system starts with a program that comprises 120
nodes and starts to grow from the 6th generation onward. Similarly, the results
of the KyNoRo dataset are depicted in Figure 4.9(b) and show that the system
starts with individuals of size 114 nodes on average in the early generations; where
they get larger in the later generation and reaches around 179 nodes on average.
Figure 4.9(c) shows the average program size per generation of those best evolved
programs on the OutexTC00 dataset. In the early generations, the system uses a
program that comprises 104 nodes on average and starts to grow from the second
generation (114 nodes) until it reaches 177 nodes on average in the final generation.

Noticeably that the size of these best programs varies a lot as reflected by the
standard deviation bars presented in Figure 4.9(a)–(c). That means the system has
the potential to evolve diverse image descriptors that can be very small programs
(easy to interpret and fast to execute), or very big and complex programs.
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Figure 4.10: The average time in hours required to evolve a descriptor by GP-criptor
using different code lengths and window sizes.

4.5.2 Evolutionary time

The average time required to evolve a program on each of the three experimented
datasets is also measured in order to give a figure about this important characteristic.

Figure 4.10 shows the average time in hours required to evolve an image
descriptor on the BrNoRo, KyNoRo, and OutexTC00 datasets, and presents the
impact of using different window sizes and code lengths on the time. Clearly, GP-
criptor needs shorter time to evolve a descriptor on the BrNoRo dataset compared
to time needed for the other two datasets. This was expected, mainly because
BrNoRo has fewer number of classes and the size of its instances is relatively smaller
than the instances of KyNoRo and OutexTC00. Having more children under the
code node (the length of the code) increases the time required to obtain a good
descriptor; whereas the larger the window size, the shorter time that is needed to
evolve a good descriptor. Using a larger window means the number of ignored pixel
on the boundaries of each instance is more, which reduces the number of pixels
that need to be considered.

4.5.3 Sample Programs

One of the best programs evolved by the GP-criptor method on each dataset is
analysed and discussed in this subsection.
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Figure 4.11: A program evolved by GP-criptor on the BrNoRo dataset.

4.5.3.1 BrNoRo

The tree representation of an evolved program on the BrNoRo dataset is shown
in Figure 4.11. This program has achieved 97.7% accuracy on the unseen data.
The tree shows that the system not only has successfully selected the pixels of the
window that differentiate between instances of different classes, but also synthesises
the arithmetic operators to be used to generate codes. The first, fourth, fifth,
and seventh bits of the code are generated by subtracting the value of two pixels;
whereas generating the other bits requires applying more operators. On average,
the program performs two operations to calculate the value of each bit which is
computationally efficient for online applications.

4.5.3.2 KyNoRo

Figure 4.12 presents the tree representation of a program evolved on the KyNoRo
dataset that has scored 99.1% accuracy on the unseen data. The program applies
only a single operator to generate the value of the first, third, fifth, sixth, and
seventh bits of the code. Similarly, the program performs on average 2.3 operations
to generate the value of each bit in the code.

4.5.3.3 KyNoRo

A program evolved on the OutexTC00 dataset is presented in Figure 4.13. Unlike
the previous two examples, the program presented here is larger and comprises 78
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Figure 4.12: A program evolved by GP-criptor on the KyNoRo dataset.

nodes in total. The program is evolved using a code of length 7-bits and a 3× 3
window size. This program achieved 96.67% accuracy on the unseen data and the
confusion matrix (where the row indices represent the actual classes, while column
indices the predicted classes) for this program is shown in Table 4.7.

A closer inspection of the previously presented examples shows that the “−”
operator appears more frequently than the other operators. This was expected as
this operator has the potential to switch the values from positive to negative, i.e.,
flips the bit value from 1 to 0, and vice versa.

4.6 Chapter Summary

In this chapter, GP has successfully been utilised to evolve illumination-invariant
image descriptors for multi-class texture classification using only two instances per
class. In the proposed method, only the raw pixel values have been used as inputs
along with simple mathematical operators. The proposed method synthesises a set of
mathematical formulae to generate a binary code from the pixels of a sliding window.
The codes generated are used to populate the feature vector that is then fed into a
simple instance-based classifier (1-NN) to predict the class label. The performance
of the proposed method is assessed using three publicly available datasets, and



142 CHAPTER 4. GP FOR ILLUMINATION-INVARIANT IMAGE DESCRIPTORS

Figure 4.13: A program evolved by GP-criptor on the OutexTC00 dataset.

Table 4.7: The confusion matrix on OutexTC00 for the program presented in
Figure 4.13
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compared against the performances of two GP-based methods. Moreover, the
performance of the new method is compared to that of using eight state-of-the-
art hand-crafted descriptors with nine widely-used classification algorithms. The
comparative results clearly show that a good performance has been achieved by
the new method over the other methods. Furthermore, the results make it evident
that the proposed method has the ability to evolve a descriptor that better fits the
instances under consideration than the expert-designed methods. Analysing three
programs (one one each dataset) evolved by the proposed method shows only a
few arithmetic operators are required to generate the code at each position of the
sliding window, which suggests the possibility of using those descriptors for online
applications.

Extending GP-criptor to evolve rotation-invariant descriptors will be investi-
gated in the next chapter.
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5
GP for Rotation-invariant

Image Descriptors

5.1 Introduction

Handling rotation in images and building a rotation-invariant descriptor is a
challenging task. In the previous chapter, we have shown how GP is utilised to
automatically evolve illumination-invariant image descriptors. However, further
experiments (Section 5.5.1) shows the inability of GP-criptor to handle images with
rotation. In this chapter, a novel GP based method (GP-criptorri) is developed that
automatically synthesises a rotation- and illumination-invariant descriptor using
only two training instances per class. To evolve a rotation-invariant descriptor,
GP-criptorri combines arithmetic operators and first-order statistics, e.g., mean and
standard deviation, to form a model that takes an image and generates a feature
vector.

145
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5.1.1 Chapter Goals
The aim of this chapter is to develop a new GP approach to automatically con-
structing rotation-invariant image descriptors that can detect good keypoints and
extract informative features simultaneously for image classification. Instead of
using a large number of instances to train/learn a classifier as in most existing
supervised approaches, the proposed approach will use only two instances per class
in the training set. To achieve automatic construction of rotation-invariant image
descriptors, the terminal sets of GP-criptor (Chapter 4) are changed in order to
cope with rotation, whereas all other components are kept identical. Unlike in
GP-criptor were only illumination-invariant descriptors used, the image descriptors
automatically constructed by GP-criptorri will be examined and compared with
seven state-of-the-art domain-expert illumination- and rotation-invariant designed
image descriptors on ten commonly used learning/classification methods on six
texture and two non-texture image datasets of varying difficulty with different
rotations. Specifically, we will investigate the following objectives:

• Develop a new terminal set to allow the proposed GP system to handle
the rotation variation in images for image classification and automatically
evolve/construct image descriptors from a small set of training instances;

• Investigate whether the GP-evolved image descriptors are robust to rotation
and can achieve similar or even better performance than the seven state-of-
the-art domain-expert designed image descriptors;

• Investigate whether the image features evolved/generated by the GP-
criptorri method can improve the performance of different types of learn-
ing/classification methods applied to images with different rotations; and

• Investigate to what extent the evolved image descriptors/genetic programs
can be interpreted by humans.

5.1.2 Chapter Organisation
The remainder of the chapter is organised as follows. The proposed method is
described in Section 5.2. The experiment design is explained in Section 5.3. The
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results are presented and discussed in Section 5.4. To provide some in-depth
analysis, an example program evolved by the proposed method is extensively
examined in Section 5.5. The summary of this chapter is presented in Section 5.6.

5.2 GP Image Descriptor

This section provides a detailed description of the proposed rotation-invariant
GP-criptor (GP-criptorri) method. The section starts by presenting an overview
of the algorithm to evolve a program in order to highlight the key components
of GP-criptorri, and how the evolved program is evaluated. Then the program
structure, i.e., terminal and function sets, fitness measure, and feature vector
extraction process, are discussed.

The proposed method operates directly on the raw pixel values, and therefore
it does not require human intervention to provide a set of predefined/extracted
features. Unlike methods designed by domain-experts, the proposed method does
not use domain knowledge to detect a specific set of keypoints such as lines, corners,
spots, or homogeneous regions. Instead, GP-criptorri automatically discovers good
keypoints that vary in their frequency of appearance between the instances of the
different classes. Moreover, GP-criptorri does not require human intervention to
manually combine the detected keypoints (like in LBP and GLCM) and design
them to be rotation-invariant. Instead, this method automatically synthesises a
set of mathematical formulae to accomplish this task. Another key feature of the
proposed method is that it does not need a large number of training instances to
evolve a descriptor, which makes it suitable for applications where the labelled
data is limited. In fact, being capable of operating on just a few instances has a
large impact on reducing the training costs, i.e., memory and CPU time.

5.2.1 The Overall Algorithm

As GP-criptorri is extended from GP-criptor, the two methods share some compo-
nents. The overall algorithm of the GP-criptorri is identical to that of GP-criptor
(see Section 4.2.1 on page 119). The main difference is in the program representation,
and hence, the other components are kept unchanged.
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Figure 5.1: The program representation of an individual evolved by GP-criptorri.

5.2.2 Program Representation

In GP, the individual programs are constructed from elements of the terminal and
function sets. Here, tree based GP [153] is used to represent an individual (i.e.
image descriptor) evolved by GP-criptorri, where the terminal nodes, i.e., leaves,
are taken from the terminal set, and all non-terminal nodes are drawn from the
function set. Figure 5.1 depicts an example of a GP-criptorri evolved individual.
Moreover, strongly-typed GP [207] is used to introduce restrictions on the nodes.
Each individual is a set of synthesised formulae that are used to extract the feature
vector (more details in Section 5.2.3).

5.2.2.1 Terminal Set

In GP-criptorri, the terminal set consists of four node types: min (~x), max (~x),
mean (~x), and stdev (~x), which are functions that respectively return the minimum,
maximum, mean, and standard deviation values of the elements of a vector. The
intuition behind choosing these functions is their order-independent property when
extracting features. In other words, shuffling the values of the vector will not
affect the results returned by those functions. This is very important to handle
the rotation variants of the pixels. The terminal nodes take a vector of integer
values, and return a single floating point value. It is worth noting that the design
of GP-criptorri is not limited to only these four functions and other functions that
have the same property, i.e., order-independence, can be used.

The terminal set is a key difference between GP-criptor (Chapter 4) and GP-
criptorri. In GP-criptor, the leaf nodes of an evolved program are the original pixel
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values in a chosen index of the sliding window as presented in Figure 4.2; whereas
the leaf nodes in GP-criptorri are calculated statistics of the pixel values of the
sliding window as shown in Figure 5.1.

5.2.2.2 Function Set

The function set of GP-criptorri is keep identical to that of GP-criptor (see Sec-
tion 4.2.2 on page 120). Therefore, the function set is made up of five nodes: code
and the four arithmetic operators +, −, /, and ×.

5.2.3 Feature Vector Extraction
A core task of an individual evolved by GP-criptorri is to automatically detect
keypoints and extract a feature vector from an instance, i.e., an image, being
evaluated using a sliding window of predetermined size. This process is also
very similar to the way GP-criptor generates a feature vector for an image (see
Section 4.2.3 on page 122). The length of the feature vector depends on the number
of children of the code node (the root of the individual tree). If there are n nodes in
the children list of code, then the resulting vector for each instance is of length 2n.
As demonstrated in Figure 5.2, the instance undergoes five steps at each position
of the sliding window traversing the instance pixel-by-pixel row-wise starting from
the top-left corner and ending at the bottom-right corner.

Step 1: The minimum, maximum, mean, and standard deviation values of the
current window pixels are calculated.

Step 2: Those calculated values are fed to the terminal nodes of the individual.

Step 3: The internal (non-terminal) nodes, apart from the root node, are evaluated
starting from those near the leaves by applying the corresponding operator
to the list of arguments, i.e., children.

Step 4: The root node (i.e. code) returns a binary code by converting each of its
arguments to 0 if it is negative and 1 otherwise.

Step 5: The generated binary code is converted to decimal, and the corresponding
bin of the feature vector (histogram) is incremented by 1.
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Figure 5.2: An example demonstrating the process of generating a feature vector
for an image by the GP-criptorri method.

Clearly the code node in this context mimics the thresholding step of the
conventional LBP descriptor. However, the latter uses the central pixel’s value as
a threshold; whilst 0 is used as a threshold value in the former.

5.2.4 Fitness Function

Typically, the classification accuracy is used as the fitness measure to gauge the
performance of the individual to discriminate between instances of different classes.
Accuracy is defined as the ratio between the number of correctly classified instances
and the total number of instances.

The use of accuracy to measure the fitness may not be a good option when there
are only a few examples in the training set as the algorithm will simply memorise
those examples, which can increase the possibility of “over-fitting” occurring and
affect the generalisability of the evolved program on the unseen data. Therefore,
a different measure is needed to cope with the problem of having only a limited
number of training instances. Clearly, we need a fitness function that can detect
as many representative keypoints as possible that reliably separate the instances
of different classes farther apart, and keeps the distances between instances of a
particular class as close to each other as possible [195]. Hence, the fitness measure
that is used in this chapter is the same as Section 4.2.5 (see page 123).

5.3 Experiment Design
The aim and design of the experiments are discussed in this section. The discussion
also includes the datasets, methods for comparison, and parameter settings.
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5.3.1 Datasets

GP-criptorri is evaluated using six image datasets for texture classification and
two non-texture datasets. The instances of all those image datasets are grey-scale
images, i.e., each pixel carries only brightness/intensity information that can be
white at the strongest intensity or black at the weakest intensity [138]. Therefore,
the pixel values are ranging between 0 (black) and 255 (white). Those eight image
datasets vary in number of classes (binary and multi-class), size of instances (as
small as 19× 19 pixels and as large as 128× 128 pixels), and applications (texture
classification, face classification, and coin head and tail classification).

The first (BrNoRo) and second (BrWiRo) datasets in this chapter are taken
from the Brodatz Texture [42] (see Section 2.4 on page 62). Similarly, the third
(KyNoRo) and fourth (KyWiRo) datasets are formed using the instances of Kylberg
Texture [157]. OutexTC00 and OutextTC10 are, respectively, the fifth and sixth
datasets in this chapter that are formed from Outex Texture Classification [216].
In addition to the aforementioned datasets, two datasets have been used to assess
the performance of GP-criptorri on different types of application other than texture
classification. Both of these datasets are for binary classification (two classes).
Therefore, the seventh and eighth datasets are Faces, and Coins, respectively. The
details of these datasets are provided in Section 2.4 (see page 62).

5.3.2 Benchmark Methods for Comparison

In order to investigate the effectiveness of the GP-criptorri method, its performance
is compared to the performance of the common state-of-the-art descriptors DIF,
GLCM, LBPu2

p,r, LBPriu2
p,r , CLBPp,r, LBCp,r, and CLBCp,r (see Section 2.1.2 on page

29). Image descriptors are used as pre-processing methods to convert an instance
from raw pixel values into a feature vector after detecting some keypoints. Hence,
researchers broadly rely on classification or recognition to assess the goodness of
a descriptor [217, 185, 4, 26]. Here, we also used the classification performance
to assess whether the proposed method is capable of evolving good descriptors.
We have intentionally selected classifiers of different types in this study to ensure
that the GP-criptorri method is not biased towards a specific classifier or type of
classifier. Those classifiers are (see Section 3.3.3.1 on page 89) Support Vector
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Table 5.1: The GP parameters
Parameter Value Parameter Value

Generations 50 Crossover Rate 0.80
Population Size 200 Mutation Rate 0.20
Minimum Depth 2 Maximum Depth 10
Selection Type Tournament Reproduction Keep the best
Tournament size 5 Initial Population Half-and-half

Machines (SVM), Naïve Bayes (NB), Adaptive Boosting (AdaBoost), Decision
Trees (J48), Random Forest (RF), Naïve Bayes/Decision Tree (NBTree), KStar
(K∗), Non-Nested generalised (NNge), k-Nearest Neighbour (k-NN), and Multilayer
Perceptron (MLP).

5.3.3 Parameter Settings

The methods used for comparison in this chapter as well as the proposed method
contain a number of parameters that need to be set. The parameter settings of the
proposed method are discussed first, followed by a discussion on setting those of
the other methods.

5.3.3.1 Evolutionary parameters of the proposed method

Apart from the population size, the GP evolutionary parameters are kept identical
to that of GP-criptor (see Section 4.3.3 on page 127) as presented in Table 5.1.

5.3.3.2 Parameters of the baseline methods

Based on the observations of [339] and [251], the radius (r) and the number of
neighbouring pixels (p) for LBP, CLBP, LBC and CLBC have been, respectively,
set to 3 and 24. This combination has shown very good performance in most cases
in both studies. Hence, we have also used the same settings in our experiments.
For the LBPu2

p,r method, on the other hand, our experiments show that this method
has achieved good performance when r is set to 1 and p to 8.
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5.3.3.3 Parameters of the classifiers

The parameters of all the classifiers used in this chapter are kept identical with
Section 4.3.3 (see page 127) for comparison purposes.

5.3.4 Experiments
The aim of the proposed method is to automatically evolve an image descriptor
that generates distinctive feature vectors for instances belonging to different classes.
Therefore, two sets of experiments are designed each of which aims at investigating a
specific aspect, e.g., window size and code length. On each dataset, the GP-criptorri

method is executed 30 times using different random seeds, and the performance of
the best evolved program at each run is recorded. Then the average performance
(x̄± s) of those 30 best programs is calculated. The training instances (2 instances
per class) are randomly selected, hence using different instances could give different
results. Therefore, the process of 30 runs is repeated 10 times using different
instances for training each time. The experiments have been executed on the
grid-computing facility provided by Victoria University of Wellington. This grid
runs under the Sun Grid Engine (SGE) control, and consists of a large number
of machines that are running Linux version 3.7.5-1-ARCH operating system with
an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz and a 8GByte of memory each.
It is important to notice that the measured time in all our experiments was the
CPU time and not the wall-clock time. The first experiment can be considered as a
parameter-tuning phase, where in total we have 9 combinations of different window
sizes and code lengths (details are below). Hence, we have 21, 600 (experiments) in
total, i.e., 8 (datasets) × 9 (combinations) × 10 (repetitions) × 30 (runs). Using
one more window size or code length will require 900 runs to be added, which is a
very time consuming process.

5.3.4.1 Window size and code length

In the first set of experiments, the impacts of changing the window size and the
code length on the performance of GP-criptorri are studied. Changing the sliding
window size allows a different number of pixels to contribute towards calculating
the code at each position. Therefore, three window sizes are tested: 3×3, 5×5, and
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7× 7. The use of other window sizes is possible and the system can automatically
handle it. Experimenting with more window sizes is very expensive and require
300 (= 30 (seeds)× 10 (repetitions)) independent runs. Moreover, typically LBP
methods are tested with those sizes in the literature.

The number of bits of the binary code, on the other hand, is the only factor
that specifies the feature vector length (2n where n is the number of bits/children
of code), therefore, the length is doubled for each extra bit added to the code. We
have experimented with three code lengths: 7, 8, and 9. Unlike LBP methods,
the use of different code lengths is possible without the need for changing the
implementation of the method. Experimenting with more code lengths is also
expensive similar to the window size factor.

5.3.4.2 Image classification

The second set of experiments is designed to test whether using a simple instance-
based classifier, i.e., the 1-NN (k-NN with k set to 1), with only a few learning
examples can achieve comparable or even better performance than using LBPu2,
LBPriu2, CLBP, LBC, CLPC, DIF, and GLCM with more powerful classifiers such
as SVM, K∗, RF, AdaBoost, NNge, NB, NBTree, J48, and MLP. The proposed
method heavily relies on the between-class and within-class distances as the main
criteria to evolve a good descriptor. Hence, the impact of the features generated
by the proposed method on the performance of each of the aforementioned nine
classifiers is also studied. This will help in identifying whether those features are
biased toward a specific type (i.e. instance-based or k-NN-like) of classifier or not.

5.4 Results and Discussions
The results of the experiments are presented and discussed in this section.

5.4.1 Window Size and Code Length

The effect of the size of the sliding window and the code length on the performance
are not independent. The results of each dataset are presented in a single 3D bar
chart, where the x-axis is the code length (number of bits), y-axis is the window
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Table 5.2: Accuracy (%) for using different combinations of code lengths and
window sizes on the six datasets (x̄± s).

Window size

Dataset Code length 3× 3 pixels 5× 5 pixels 7× 7 pixels

BrNoRo
7-bits 89.43 ± 1.98 90.44 ± 1.88 88.35 ± 2.00
8-bits 89.74 ± 2.13 90.53 ± 1.80 88.71 ± 1.98
9-bits 90.15 ± 2.06 90.92 ± 1.94 88.92 ± 2.04

BrWiRo
7-bits 91.78 ± 1.35 92.07 ± 1.14 89.88 ± 1.01
8-bits 92.01 ± 1.37 92.30 ± 1.14 90.44 ± 1.00
9-bits 92.18 ± 1.42 92.49 ± 1.14 90.48 ± 0.92

KyNoRo
7-bits 85.10 ± 2.71 86.01 ± 1.87 85.05 ± 1.92
8-bits 85.68 ± 2.73 86.31 ± 1.80 85.41 ± 1.84
9-bits 86.10 ± 2.65 86.66 ± 1.79 85.71 ± 1.78

KyWiRo
7-bits 86.67 ± 1.91 87.74 ± 1.31 85.96 ± 0.99
8-bits 87.11 ± 1.92 88.31 ± 1.24 86.26 ± 1.21
9-bits 87.44 ± 1.91 88.51 ± 1.39 86.47 ± 1.12

OutexTC00
7-bits 86.67 ± 2.53 87.21 ± 1.79 86.19 ± 2.14
8-bits 86.98 ± 2.41 87.46 ± 1.83 86.61 ± 2.17
9-bits 87.27 ± 2.57 87.68 ± 1.87 86.78 ± 2.23

OutexTC10
7-bits 85.18 ± 1.56 86.34 ± 1.79 85.65 ± 1.80
8-bits 85.28 ± 1.62 86.63 ± 1.84 86.02 ± 1.79
9-bits 85.68 ± 1.59 86.82 ± 1.93 86.27 ± 1.91

size, and z-axis is the average accuracy (%) over 300 independent runs as shown in
Table 5.2 and Figure 5.3.

GP-criptorri has achieved on average the minimum of 88.35% and 89.88%
accuracy on the BrNoRo and BrWiRo datasets, respectively, using the combination
of window size 7× 7 and code length 7-bits as depicted in Figure 5.3(a),(b). The
maximum average accuracies on these datasets were achieved when the window size
is set to 5× 5 and a 9-bits code length, which are 90.92% and 92.49% respectively.

Similarly, using a window of size 7 × 7 pixels and a code of length 7-bits,
GP-criptorri on the KyNoRo and KyWiRo datasets has achieved the lowest average
performance that are, respectively, 85.05% and 85.96% as shown in Figure 5.3(c),(d).
The best average performances are scored on these two datasets when the code
length is increased to 9-bits and the window size is reduced to 5× 5 pixels, which
are 86.66% (KyNoRo) and 88.51% (KyWiRo).
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While the results of the OutexTC00 dataset show a similar pattern to that of
the previous four where a minimum average performance (86.19%) is achieved with
a window of size 7× 7 pixels and code length 7-bits, the OutexTC10 dataset results
show a different pattern as the minimum performance was achieved with a window
of size 3× 3 and 7-bits code length as, respectively, presented in Figure 5.3(e),(f).
However, the combination of a 5 × 5 pixels window and 9-bits code length still
gives the best average accuracies 87.68% and 86.82%, respectively.

The Faces and Coins datasets also follow the same pattern regarding the length
of the code such that the performance is improved when the number of bits in
the code increases as shown in Figure 5.3(g),(h). However, increasing the window
size has a completely different influence on the performance on these two datasets.
Increasing the window size degrades the performance in the case of the Faces
dataset, whilst large windows give better performance than small windows in Coins.
The cause of this phenomenon is investigated and discussed in Section 5.4.3.

In summary, the six texture datasets show a similar pattern, that is, a better
performance has been achieved with a code of length 9-bits than that of length 7-
and 8-bits as depicted in Figure 5.3(a)–(f). Similarly, the proposed method has
achieved slightly better performance when the window size is 5× 5 pixels than the
other two experimented sizes, i.e., 3× 3 and 7× 7 pixels. Hence, in our subsequent
experiments we have used the combination of window size 5× 5 and code length
9-bits as it has been shown to give the best average performance. A code of length
9-bits and a sliding window with size 3× 3 pixels is used in the case of the Faces
dataset. The Coins dataset has been further experimented using larger window
sizes and is discussed in Section 5.4.3.

5.4.2 Texture Image Classification

The results for the second set of experiments on the six texture datasets are
presented in Tables 5.3 to 5.5. Horizontally each table is made up of 11 columns
(one to list the descriptors and 10 for the different classifiers). The values in
these tables are the average accuracy (over 300 independent runs) percentage ±
the standard deviation resulting from using a classifier (column) with an image
descriptor (row).
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These results are statistically tested using the Wilcoxon signed-rank test [320,
66, 68] with a significance level of 5%. The statistical test has been applied
twice, first, to check whether the proposed method with a simple classifier (1-
NN) can compete with the baseline methods (i.e. descriptors) with more powerful
classifiers; and second, to test whether the GP-criptorri method can compete with
the baseline methods using the same classifier. The symbols “∗” and “−” are
used to, respectively, represent significantly better and significantly worse in the
first test, whereas significantly better and significantly worse in the second test
are indicated by “↑” and “↓”, respectively. For each dataset, the corresponding
method with best average performance for each classifier is made bold; whilst
the best performance amongst all methods and classifiers is underlined. If two or
more methods have the same best average performance, the one with the smallest
standard deviation is underlined.

For all texture image datasets, the code length is set to 9-bits and a window
of size 5× 5 pixels is used as the majority of these datasets have performed well
with this combination in preliminary testing. Similarly, the code length is set to
9-bits for non-texture datasets; however, the window size is set to 3× 3 and 7× 7
for Faces and Coins datasets, respectively.

5.4.2.1 BrNoRo

On the BrNoRo dataset, the proposed method with 1-NN has achieved on average
90.9% accuracy which is significantly better than all other methods as presented
in the top half of Table 5.3. Meanwhile, those features extracted by the proposed
method have positive influence on the performance of all other classifiers, apart from
MLP with CLBP24,3, compared to the performances achieved using the baseline
methods.

5.4.2.2 BrWiRo

The bottom half of Table 5.3 shows the results of the BrWiRo dataset which is the
rotated version of BrNoRo. The proposed method with 1-NN has achieved the best
performance over all other methods with more sophisticated classifiers. On average,
the GP-criptorri method has scored 92.5% which is comparable to the performance
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on the without-rotation version, i.e., BrNoRo, of this dataset. This reveals the
ability of the GP-criptorri method to handle rotations. Although the GP-criptorri

method has slightly degraded the performance of MLP and SVM with CLBP24,3,
using the extracted features by GP-criptorri with the other classifiers shows a
significant improvement in their performances compared to other descriptors.

5.4.2.3 KyNoRo

The results presented in the top half of Table 5.4 correspond to the KyNoRo dataset.
The proposed method shows on average 86.7% accuracy on the unseen data of
KyNoRo. Meanwhile, both CLBP24,3 and CLBC24,3 have significantly outperformed
the GP-criptorri method by scoring on average 90.3% and 91.1%, respectively. The
same also happened when the features extracted by GP-criptorri are used with MLP,
NNge, and SVM. In all other cases, the impact of the GP-criptorri features either
significantly improved the performance or achieved a comparable level, i.e., best or
in the top-three ranked performances, to that of the expert designed methods.

5.4.2.4 KyWiRo

The results of the experiments on the rotated version of KyNoRo (KyWiRo) are
listed in the bottom half of Table 5.4. The results on this dataset are quite similar
to those that have been observed on KyNoRo. The performance achieved by any
classifier using the proposed method’s features is either the first or in the top-three
best performances compared to the use of hand-crafted descriptors.

5.4.2.5 OutexTC00

The results on OutexTC00 are presented in the top half of Table 5.5. GP-criptorri

has scored the second overall best performance (the first is LBPu2
8,1 with NNge) with

87.7% accuracy on this dataset, and has outperformed all the competitor methods.

5.4.2.6 OutexTC10

On the OutexTC10 dataset, the proposed method has achieved the best performance
with 86.8% accuracy on average over all the baseline methods as shown in the
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bottom half of Table 5.5. Furthermore, 7 out of 10 classifiers, i.e., 1-NN, AdaBoost,
J48, K∗, NB, NBTree, and RF, are ranked number one when GP-criptorri features
are used. The differences are also significant in most of these cases.

5.4.3 Non-texture Image Classification

All previously discussed datasets are for texture classification. Many descriptors
in the literature have been originally designed to detect and extract features from
such images, and some typical examples are LBP and its variants, and GLCM
(Haralick features). In order to study the ability of the proposed method to handle
different applications than texture classification, the Faces and Coins datasets are
used as discussed in Section 5.3.1.

5.4.3.1 Faces

Using a code of length 9-bits and a 3× 3 pixels window, the results on the Faces
dataset are depicted in Table 5.6. The proposed method was not the best method
on this dataset. However, its performance is the second best when the 1-NN
classifier is used. Moreover, GP-criptorri has significantly better performance
than most of the other methods with more powerful classifiers. Similarly, using
the GP-criptorri features with other classifiers, apart from AdaBoost, has either
significantly improved or only slightly degraded the performances of those classifiers.
This demonstrates the capability of the proposed method to handle datasets of
different flavours. Figure 5.3(g) shows that the best performance on this dataset
is achieved when the window size is 3 × 3 pixels, and increasing the window
size has degraded the performance. This was expected mainly because the size
of this dataset’s instances is relatively smaller than all other datasets (19 × 19
pixels). Smaller windows allow the system to detect more specific (less cluttered)
and effective keypoints than larger windows. The eye region is one of those very
important regions of a human face and domain-experts commonly select these as
features for face detection tasks. If the window is small enough, it can effectively
detect the eye regions without including the surrounding regions, as demonstrated
in Figure 5.4.
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Figure 5.4: Examples demonstrate the difference between using 3 × 3 and 7 × 7
windows to highlight the eye regions on an example from the Faces dataset.

5.4.3.2 Coins

The results of the second non-texture dataset (i.e. Coins) are presented in Table 5.7,
where a window of size 7× 7 pixels and code of length 9-bits are used. Surprisingly,
all state-of-the-art methods as well as the proposed method have struggled to
perform well on this dataset. Meanwhile, the simple DIF method shows extremely
good performance that significantly outperforms all other methods. Moreover,
all classifiers show best performance when DIF (domain-independent features
[337]) features are used. The proposed method, in general, shows a comparable
performance to other image descriptors, and has significantly outperformed some
of them. The poor performance of all LBP and LBP-like methods (including the
proposed method), and the good performance of DIF on this dataset were expected.
This is because the LBP-based methods use a relatively small window that captures
small regions, which are very likely to appear in the instances of both classes,
as presented in Figure 5.5(a). This increases the difficulty of finding distinctive
keypoints to discriminate the head and tail instances. DIF, on the other hand,
divides the instances into 5 big regions (excluding the horizontal and vertical lines),
i.e., 27 × 27 pixels each, which allows more information (especially the central
region of the instances) to be captured as presented in Figure 5.5(b). Therefore,
two more experiments have been conducted on this dataset using a 9 × 9 pixel
window in the first and a window of size 11× 11 pixels in the second. The results
of these experiments along with the previous window sizes (3× 3, 5× 5, and 7× 7)
are presented in Table 5.8. Increasing the window size has allowed the system to
capture more informative features, which is clearly reflected by the improvement
in the performance. Comparing results for the 3 × 3 and 11 × 11 windows, the
minimum improvement is 6.7% (J48), whilst in the case of AdaBoost the difference
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(a) (b)

Figure 5.5: Examples of the Coins dataset show (a) some 3× 3 windows that have
identical mean and standard deviation, and (b) the regions of the DIF method
(excluding the horizontal and vertical line features).

Table 5.8: Accuracy (%) of using GP-criptorri with different window sizes on the
Coins dataset (x̄± s)

3× 3 5× 5 7× 7 9× 9 11× 11

1-NN 71.8 ± 13.3 76.7 ± 14.4 81.9 ± 15.1 85.7 ± 15.1 87.9 ± 14.6
AdaBoost 39.9 ± 6.2 35.4 ± 7.2 41.6 ± 5.4 62.5 ± 7.2 63.3 ± 6.2
J48 57.5 ± 7.7 58.7 ± 6.1 61.4 ± 5.6 63.5 ± 6.1 64.3 ± 6.6
KStar 69.3 ± 13.1 72.8 ± 12.5 77.1 ± 10.9 81.3 ± 12.4 83.5 ± 12.2
MLP 66.0 ± 10.7 69.1 ± 10.7 72.5 ± 10.8 73.4 ± 11.3 75.4 ± 11.6
NB 64.9 ± 9.6 68.0 ± 10.1 73.0 ± 8.2 75.7 ± 9.2 79.4 ± 9.5
NBTree 68.0 ± 12.3 71.1 ± 13.1 75.4 ± 13.2 79.2 ± 13.6 82.2 ± 12.7
NNge 66.1 ± 10.7 70.7 ± 10.2 73.2 ± 10.9 74.6 ± 11.6 76.8 ± 12.0
RF 63.7 ± 10.2 65.9 ± 9.9 69.2 ± 9.5 72.2 ± 10.3 75.8 ± 10.5
SVM 64.5 ± 9.9 67.6 ± 10.3 71.0 ± 10.3 71.4 ± 9.8 73.5 ± 11.0

is 23.4%. Comparing those newly obtained results (11× 11 window) to the results
of the other methods in Table 5.7 reveals that GP-criptorri, apart from J48, has
either second or third best performance. Furthermore, GP-criptorri with 1-NN has
significantly outperformed the vast majority of the competitive methods with more
powerful classifiers.

5.4.4 Summary
From the results above, the following observations can be deduced.

• The proposed method has the ability to automatically evolve an image
descriptor using the raw pixel values and without human intervention;
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• The system uses only two instances of each class and yet it has been shown
to outperform most domain-expert designed descriptors;

• The evolved descriptors do not solely detect a specific and predetermined set
of keypoints, e.g., lines, corners, and spots; rather, it automatically detects a
set of good keypoints;

• The proposed method is not limited to a specific domain, i.e., texture
classification; it has also showed better or comparable performance to state-
of-the-art methods on other domains such as face classification and coin
classification tasks (further investigation can still be made);

• The features of the GP-criptorri method have, in the majority of the cases,
positive influence on the performance of classifiers of different types;

• Unlike domain-expert designed descriptors, the proposed method evolves a
rotation-invariant descriptor that does not require human intervention to
handle this issue;

• It is easy to change the parameters, e.g., the window size and the number of
bits in the code, in the proposed method where the system can automatically
handle those changes without human intervention, while domain-expert
involvement is required to alter these parameters in other methods; and

• The program structure of the proposed method is flexible and could allow
different types of functions to be used for feature extraction.

5.5 Further Analysis

In this section, a comparison of the robustness of GP-criptor (Chapter 4) and
GP-criptorri to evolve rotation-invariant image descriptors is discussed first. Then
an individual program evolved by GP-criptorri is analysed and discussed in order
to provide more understanding on why and how the proposed method can perform
well.
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5.5.1 Comparison between GP-criptor and GP-
criptorri

To support our hypothesis of the inability of GP-criptor to handle the rotation
variance (see Section 4.2 on page 119), we have experimented with this method
using the same six texture image datasets discussed in Section 5.3.1. The results
of the non-rotated and rotated versions for each dataset (Brodatz, Kylberg and
OutexTC) are grouped in a single table in this section. A bold face font is used
in those tables to present the results of statistical testing (significantly better).
Wilcoxon signed-rank statistical test with a significance level of 5% is also used in
this experiment.

The results of using the 10 previously used classification methods (Section 5.4)
with GP-criptor and GP-criptorri automatically evolved descriptors on the BrNoRo
and BrWiRo datasets are presented in Table 5.9. Apart from AdaBoost and J48,
all other classifiers have achieved significantly better performance on BrNoRo
(rotation-free) using the descriptors evolved by the GP-criptor method than those
evolved by GP-criptorri. However, AdaBoost and J48 show, respectively, 12%
and 11.5% improvement using GP-criptorri descriptors. More importantly the
GP-criptorri method shows significantly positive influence on the performances
of all the 10 classifiers on BrWiRo (with rotation) compared to the GP-criptor
method, where the improvement is ranging on average between 37% (NB) and 23%
(J48).

Table 5.10 presents the results of these two methods’ (GP-criptor and GP-
criptorri) evolved descriptors for the 10 classification methods on the KyNoRo and
KyWiRo datasets. Although the classifiers showed better performance on the non-
rotated version of the Kylberg dataset (KyNoRo) using the features extracted by the
GP-criptor method descriptors, GP-criptorri has achieved comparable performance
and the gap is only 3.7% in the worst case (MLP). Noticeably, GP-criptorri has
improved the performances of AdaBoost and J48 by 12.8% and 7.2%, respectively.
The results on the rotated version of Kylberg (KyWiRo) show the ability of the
GP-criptorri method to handle the rotation variance where the GP-criptor method
has struggled to preserve the same level of performance on the rotation-free version
of this dataset.
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Table 5.9: Accuracy (%) of 10 classifiers using GP-criptor and GP-criptorri evolved
image descriptors on the BrNoRo and BrWiRo datasets (x̄± s).

BrNoRo BrWiRo

GP-criptor GP-criptorri GP-criptor GP-criptorri

1-NN 96.3 ± 0.8 90.9 ± 1.9 60.3 ± 1.7 92.5 ± 1.1
AdaBoost 48.9 ± 2.7 60.9 ± 3.1 26.7 ± 0.8 59.7 ± 3.4
J48 39.1 ± 1.0 50.6 ± 1.2 25.9 ± 1.3 48.9 ± 0.9
K∗ 95.1 ± 0.4 85.4 ± 1.4 51.8 ± 1.9 86.7 ± 1.5
MLP 94.4 ± 0.9 82.4 ± 1.9 52.6 ± 2.1 83.7 ± 1.4
NB 89.3 ± 1.1 79.9 ± 2.6 44.1 ± 3.7 81.1 ± 3.0
NBTree 84.5 ± 1.0 82.2 ± 1.4 50.4 ± 2.0 83.2 ± 0.9
NNge 95.1 ± 0.7 85.7 ± 1.5 56.3 ± 2.4 86.5 ± 2.0
RF 71.1 ± 2.0 69.9 ± 1.7 39.9 ± 0.9 69.6 ± 1.2
SVM 81.0 ± 1.2 70.5 ± 2.3 42.9 ± 2.1 71.3 ± 1.8

Finally, the results presented in Table 5.11 are obtained on the OutexTC00
and OutexTC10 datasets. The pattern of the results on these two datasets is very
similar to that previously observed on the Kylberg and Brodatz datasets. The
GP-criptor method shows significantly better performance than that achieved by
the GP-criptorri method on the rotation-free version of OutexTC (OutexTC00),
whereas the GP-criptorri method shows significantly better performance on the
rotated version, revealing the robustness of this method to evolve rotation-invariant
image descriptor. The differences between the performances of the two methods
are ranging between 22.3% (NB) and 12.1% (J48).

In summary, the following observations can be made:

• Although the GP-criptor method has better performance on the rotation-free
datasets, the GP-criptorri method has achieved comparable performance to
GP-criptor and still outperformed the other image descriptors studied in
Section 5.4;

• The GP-criptorri method has the potential to handle the rotation variance,
whilst the GP-criptor method struggled to preserve a satisfactory level of
performance when the dataset has rotated instances;

• The proposed method achieved more stable or consistent results between the
rotated and rotation-free datasets, compared to those results achieved by
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Table 5.10: Accuracy (%) of 10 classifiers using GP-criptor and GP-criptorri evolved
image descriptors on the KyNoRo and KyWiRo datasets (x̄± s).

KyNoRo KyWiRo

GP-criptor GP-criptorri GP-criptor GP-criptorri

1-NN 89.5 ± 1.3 86.7 ± 1.8 56.3 ± 2.4 88.5 ± 1.4
AdaBoost 44.0 ± 1.2 56.8 ± 2.5 23.5 ± 1.1 56.2 ± 1.4
J48 33.9 ± 1.1 41.1 ± 1.3 25.1 ± 1.6 41.1 ± 1.7
K∗ 85.9 ± 1.5 82.7 ± 1.8 50.5 ± 2.0 84.4 ± 1.8
MLP 82.5 ± 2.0 78.8 ± 1.7 43.1 ± 1.5 80.5 ± 1.2
NB 72.9 ± 5.4 70.7 ± 4.2 38.4 ± 2.2 72.7 ± 3.8
NBTree 75.8 ± 1.7 75.1 ± 1.6 46.7 ± 1.7 76.3 ± 1.6
NNge 85.4 ± 1.7 82.6 ± 2.1 49.4 ± 2.1 84.0 ± 1.4
RF 64.5 ± 1.4 64.4 ± 1.2 38.7 ± 1.1 65.3 ± 1.1
SVM 70.5 ± 2.0 66.9 ± 1.7 37.0 ± 1.4 68.3 ± 1.8

the GP-criptor method as the drop in performance was significant on the
rotated images; and

• The proposed method has a noticeable positive influence on improving the
performances of AdaBoost and J48 classification methods.

5.5.2 Analysis of a GP-criptorri evolved descriptor

Here, one of the good performing and relatively small programs that has been
evolved on the BrWiRo dataset is chosen. The tree representation of the program
is depicted in Figure 5.6. This program uses a 7-bit code length and a sliding
window of size 5× 5 pixels. Overall, there are 106 nodes in this program with 56
terminals and 50 functions. Hence, this program performs on average 7 operations
((50− 1 (code)) /7 = 7) to calculate the value of each bit. Most of these tree
branches can be interpreted easily such as the second (min + 2 (mean−max)),
third (mean2 − ((min×max))), fourth ((2×mean) −max), and the simplified
sixth (min2 − stdev) bit branches; whereas other branches are more complicated.
In order to present how this program responds to different patterns, two window
samples are fed into the program as depicted in Figure 5.7. In the first case
(Figure 5.7(a)), the window comprises the same values which represents an example
of a homogeneous region; meanwhile, in the second case (Figure 5.7(b)), the window
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Table 5.11: Accuracy (%) of 10 classifiers using GP-criptor and GP-criptorri evolved
image descriptors on the OutexTC00 and OutexTC10 datasets (x̄± s).

OutexTC00 OutexTC10

GP-criptor GP-criptorri GP-criptor GP-criptorri

1-NN 95.9 ± 2.0 87.7 ± 1.9 69.3 ± 2.7 86.8 ± 1.9
AdaBoost 55.5 ± 1.2 57.1 ± 2.7 30.5 ± 1.0 51.2 ± 3.1
J48 45.9 ± 2.9 47.3 ± 2.2 29.4 ± 2.2 41.5 ± 2.0
K∗ 93.4 ± 2.4 87.6 ± 2.4 65.5 ± 2.8 86.2 ± 1.6
MLP 95.8 ± 1.5 83.8 ± 1.3 66.5 ± 3.1 83.4 ± 1.5
NB 86.7 ± 3.0 72.0 ± 3.8 48.2 ± 2.9 70.5 ± 4.6
NBTree 85.7 ± 2.0 79.9 ± 1.4 58.2 ± 2.4 78.1 ± 1.9
NNge 95.4 ± 2.4 85.4 ± 2.2 66.8 ± 2.9 85.6 ± 2.1
RF 78.4 ± 1.1 72.6 ± 1.1 47.4 ± 2.4 68.6 ± 1.7
SVM 84.8 ± 1.6 73.9 ± 1.6 54.9 ± 1.9 72.2 ± 1.1

comprises only one value that is smaller than the other values which represents an
example of a dark spot region. Clearly, the generated code in the two cases are
different that each contributes toward a different bin of the generated histogram.
These two examples show that the system has successfully defined those formulae
which returns different responses for different patterns, i.e., keypoints, without any
prior knowledge or human intervention.

In terms of accuracy, this program has achieved 94.6% accuracy on the unseen
data; the confusion matrix on BrWiRo (where the row indices represent the actual
classes, while column indices the predicted classes) is presented in Table 5.12. The
program has successfully classified all instances (100%) of 6 out of the 20 classes,
over 90% accuracy on the other 11 classes, and only 3 classes are below 80%.

The average fitness value at each generation of the 30 runs, using the same
training set that was used to evolve the program in Figure 5.6, is presented in
Figure 5.8. Clearly, the system has made fast jumps in the fitness values over the
first 16 generations as the fitness value has decreased from approximately 0.2 to
approximately 0.089; while the progress after that was slower and the fitness value
dropped to approximately 0.067 over the remaining 34 generations.

In order to shed light on the time required to evolve a descriptor by GP-criptorri,
the CPU time for each evolutionary run has been measured from the beginning
of generating the initial population to the end when a stopping criterion is met.
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(a)

(b)

Figure 5.7: Two examples demonstrate how the program presented in Figure 5.6
generates codes for a (a) homogeneous region, and (b) dark spot region.

Figure 5.8: The average fitness value per generation.

Figure 5.9 presents the average time required to evolve an image descriptor by
GP-criptorri for different window sizes and code lengths. Unlike GP-criptor (see
Section 4.5.2 on page 139), the larger the window size, the longer time that is
needed to obtain a good descriptor. This is mainly because in GP-criptor the
system uses the pixel values of the sliding window directly, whilst GP-criptorri

iterates over those values in order to calculate the mean and standard deviation.
Therefore, larger windows require longer loops, i.e., more values to iterate on, at
each position of the sliding window.

A stacked representation of the resulting feature vectors by this program for 40
instances, 2 from each class, that were randomly drawn from the BrWiRo dataset
is presented in Figure 5.10. The class labels for those instances are printed on the
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Table 5.12: The confusion matrix on BrWiRo for the program presented in Figure 5.6
D01 D03 D04 D05 D06 D09 D11 D14 D15 D16 D17 D18 D20 D21 D24 D34 D37 D46 D47 D49 Total %

D01 504 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0
D03 0 466 0 0 0 0 0 0 14 0 0 0 0 0 24 0 0 0 0 0 92.5
D04 0 0 389 0 0 63 52 0 0 0 0 0 0 0 0 0 0 0 0 0 77.2
D05 0 0 1 493 0 0 0 0 5 0 0 5 0 0 0 0 0 0 0 0 97.8
D06 0 0 0 0 504 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0
D09 0 0 87 0 0 385 3 0 7 0 1 0 0 0 21 0 0 0 0 0 76.4
D11 0 0 18 0 0 4 482 0 0 0 0 0 0 0 0 0 0 0 0 0 95.6
D14 0 0 0 0 0 0 0 501 1 0 0 0 0 0 2 0 0 0 0 0 99.4
D15 0 21 10 2 0 6 0 0 451 0 0 0 0 0 14 0 0 0 0 0 89.5
D16 0 0 0 0 0 0 2 0 0 489 13 0 0 0 0 0 0 0 0 0 97.0
D17 0 0 2 0 0 0 0 0 0 0 502 0 0 0 0 0 0 0 0 0 99.6
D18 0 0 0 109 0 0 0 0 0 0 0 395 0 0 0 0 0 0 0 0 78.4
D20 0 0 0 0 0 0 0 0 0 0 0 0 504 0 0 0 0 0 0 0 100.0
D21 0 0 0 0 0 0 0 0 0 0 5 0 0 499 0 0 0 0 0 0 99.0
D24 0 3 1 0 0 2 0 0 0 0 0 0 0 0 498 0 0 0 0 0 98.8
D34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 504 0 0 0 0 100.0
D37 2 0 2 0 0 0 1 0 0 0 0 20 0 0 0 0 478 0 1 0 94.8
D46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 504 0 0 100.0
D47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 504 0 100.0
D49 0 12 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 488 96.8

horizontal axis, whereas the vertical axis shows the relative frequency. The aim of
this figure is to show that a program evolved by GP-criptorri is responding in a
similar way to those instances belonging to the same class, and differently to those
instances belonging to other classes. Each feature vector comprises 128 values (27),
each of which has been represented with a different colour in the bars of Figure 5.10.
Hence, each colour indicates the same exact feature across those bars. A closer
inspection of this figure reveals how those feature vectors belonging to the same
class are similar and have, to some extent, a distinctive fingerprint. Some typical
examples are D09, D17, D24, and D49 as they are visually easier to compare than
others. The figure also shows two important facts: firstly, the system has detected
some keypoints that appeared in one class but not, or very seldom, in the other
classes; and secondly, the system is able to find keypoints that are shared between
all those classes but appear more frequently in one class than in the other classes.
An example of the former case is the feature indicated in dark-blue at the middle
part of class D34, whereas the features indicated by light-blue and light-green of,
respectively, classes D21 and D49 are examples of the latter case.
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Figure 5.9: The average time in hours required to evolve a descriptor.

Further to our earlier discussion on the number of training instances (Sec-
tion 5.1), and from the example studied in this section, it becomes evident that the
system did not stop the evolutionary process when only one or a few distinctive
keypoints have been detected. Instead, the proposed method continued the process
of evolving a better program that can capture more prominent or good keypoints.

The main idea of using only a few instances matches reasonably well the process
of how humans teach young children to identify different objects. There are three
amazing facts in this learning process: (1) humans do not need to use thousands or
hundreds of images where only one or a few are enough [256]; (2) different children
may detect or use different characteristics to identify the object of each category,
e.g., some may focus on the body shape while others may focus on the head/face
characteristics in the case of discriminating between cow and horse examples; and
(3) humans do not specify keypoints for objects of different categories and teach
the children to use them to perform the categorisation task, instead, the children
identify those keypoints themselves.

Figure 5.10 shows that the evolved program (presented in Figure 5.6) captured
and extracted similar patterns for the two instances of each class at the end of the
evolutionary process, but the patterns for different classes are distinguished. This
shows that this method is very good at distinguishing examples in different classes.
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5.6 Chapter Summary
In this chapter, a GP approach was proposed to automatically evolve a rotation-
invariant image descriptor to detect keypoints and extract informative features
simultaneously for image classification. Different from existing methods, the
proposed GP approach does not require any human intervention, needs only two
instances per class, and aims to tackle rotation (in)variance by using simple rotation-
invariant features in the terminal set. This method is suitable for problems where
only a small number of labelled instances are available, and for the situations that
cannot afford a long time for training. To examine the performance of the proposed
GP approach, a large number of experiments have been conducted on six texture
and two non-texture image classification datasets of varying difficulty, with different
degrees of rotations. The performance of the GP approach is compared with seven
state-of-the-art domain-expert designed image descriptors and ten well-known
classifiers are used in the experiments. The results show that the proposed GP
method, using only two instances per class, performed comparably or significantly
outperformed the other methods in most cases. Furthermore, the GP approach
is robust in handling different degrees of rotations, and the evolved GP tree, i.e.,
image descriptor, is understandable and interpretable by humans, although it is
automatically constructed without human intervention.

Extending GP-criptorri to automatically specify the length of the code, i.e.,
number of children under the code node, is discussed in the next chapter.
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6
A Dynamic GP Representation
for Evolving Image Descriptors

6.1 Introduction

The process of developing an image classifier requires an appropriate set of features
and a classification method. Finding appropriate features may be more important
than designing an effective classification algorithm; in many cases, it requires a
domain-expert [341]. If the extracted features are informative/good, even a very
simple classification model, e.g., k-Nearest Neighbour, can be sufficient to achieve
good classification performance [229]. In order to construct a feature vector for
an image, a set of keypoints, i.e., regions of interest, need to be identified first.
The number of features to be extracted from each keypoint specifies the length
of the feature vector. The majority of machine learning algorithms were not
designed to handle feature vectors of varying length of one problem, i.e., performing
classification where each instance has a different number of features. Therefore,
the length of the feature vector extracted from an image is often predetermined

179
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and static. For example, conventional LBP produces a feature vector with length
2p where p is the number of neighbouring pixels; whereas uniform LBP (LBPu2)
[218] generates a feature vector with length p(p− 1) + 3. Specifying the length of
the feature vector increases the number of the parameters required to be set. This
task can be accomplished empirically; however, computationally it can be a very
expensive task to perform. Automatically determining the length of the feature
vector during the learning phase represents an alternative solution that can largely
reduce the computations and experiments.

6.1.1 Chapter Goals

This chapter aims at using GP to automate the process of constructing a rotation-
invariant image descriptor that detects a set of automatically designed keypoints,
i.e., the user does not specify those keypoints (such as corners and edges), and
extracts informative features from those keypoints simultaneously, and the system
automatically determines the length of the feature vector. Motivated by the success
of GP-criptorri (Chapter 5), a set of simple arithmetic operators and first-order
statistics (e.g. mean and standard deviation) are automatically synthesised as
a set of formulae that form an image descriptor, i.e., an evolved GP program.
More importantly, this method does not require human intervention to design
the keypoints and features; instead it uses a small sample (only two instances) of
each class to evolve a descriptor. Moreover, the length of the feature vector is
dynamic and will be determined during the evolutionary process. Quantitatively,
the performance of an image descriptor automatically constructed by GP will be
compared to that of seven domain-expert designed descriptors using ten commonly
used machine learning classification methods on seven image benchmarks for multi-
class texture classification. Those datasets are of varying difficulty, and comprised
of a different number of classes and rotations. Qualitatively, on the other hand, a
constructed descriptor will be closely examined to shed light on how the proposed
method can perform well. The following objectives will be investigated in this
chapter.

• Develop a new tree-based [243] GP program representation that allows a
node to have a dynamic number of children.
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• Assess the evolved descriptors quantitatively and compare to seven domain-
expert designed descriptors on seven texture image benchmarks.

• Provide a qualitative assessment by investigating the interpretability and
other aspects of an evolved descriptor.

6.1.2 Chapter Organisation

The remainder of the chapter is organised as follows. Section 6.2 describes the
proposed method. Section 6.3 presents the experiment design. The results are
presented and discussed in Section 6.4. A descriptor evolved by the proposed
method is thoroughly examined in Section 6.5. Section 6.6 summarises this chapter.

6.2 The Proposed Method

The proposed Rotation-invariant Evolutionary Image Descriptor (EIDri) method
is described in this section. As the method is extended from previous methods
(Chapter 5 and Chapter 4), the shared components will not be discussed and only
the main differences are highlighted. The overall algorithm is discussed first. Then
the program representation is explained. Finally, this section describes the fitness
measure and the procedure of extracting the feature vector from an image.

6.2.1 The Overall Algorithm

The overall process is depicted in Figure 6.1. The instances of each class are equally
split between the training and test sets. A key factor of the proposed method is that
only a few instances of each class are required to evolve a descriptor. Therefore,
the system randomly selects a subset (two instances per class) of the training
set and feeds it into GP. The final result of the GP evolutionary process is an
image descriptor that takes an image and produces a feature vector. The randomly
selected training instances, i.e., those used during the evolutionary process, and the
test set are then fed into the evolved descriptor to generate the transformed training
set (Str) and transformed test set (Sts) respectively. The Str is used to train a
classifier which is then evaluated using Sts. Here α = {(~xi, ci)} α ∈ Str ∪ Sts and
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Figure 6.2: Example of an evolved EIDri program.

(a) (b)

Figure 6.3: Example demonstrates the rotation-invariant property of the terminal
nodes, (a) the original window, and (b) a 45◦ rotated version of the same window.

i ∈ {1, 2, . . . , z}, where ~xi ∈ R≥0 = {l ∈ R | l ≥ 0} and ci ∈ {t1, t2, . . . , tC} denote
the ith instance’s feature vector and corresponding class label. The total number
of classes is C, and the total number of instances in α is z.

6.2.2 Program Representation

Similar to GP-criptorri, the terminal set in EIDri consists of the min, max, mean
and stdev nodes as presented in Figure 6.2. Each of these nodes performs a simple
first-order statistic on a set of values. The min and max nodes, respectively, return
the minimum, i.e., min (·), and maximum, i.e., max (·), value of a vector. The
mean and stdev nodes, on the other hand, calculate and return the average and
standard deviation using, respectively, Equation (3.5) and Equation (3.6) (see page
79). These functions are order-independent, i.e., do not consider the indices of
the elements in the vector, which is an important property to tackle the rotation
variants as demonstrated in Figure 6.3.

In order to keep the search space small, the function set in EIDri consists of
five functions. Four of these functions are the arithmetic +, −, × and protected
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Figure 6.4: Examples of code nodes with a different number of children.

/ operators. The / function will return 0 if the denominator is 0, which is very
important to prevent the occurrence of a “division by zero” exception. These
functions are identical to that of GP-criptorri where each performs the corresponding
operator on two inputs and returns the resulting value.

The main difference between GP-criptorri and EIDri is the code function, which
is the fifth component of the function set. This function is different from the other
four functions in three ways. First, the number of inputs, i.e., children, is dynamic
and is automatically determined by GP during the evolutionary process. However,
the number of children must be greater than 0; otherwise, this node will not return
any value. Second, this function thresholds the input values such that all negative
values are substituted with 0 and all positive and zero values are substituted with 1;
which makes the type of the input and output values different. Therefore, the code
node can not appear anywhere apart from being the root node of a program tree.
Third, each individual can have only a single code node due to the input-output
type-mismatch. The system generates individuals that have a different number
of children under the code node. To accomplish this, the system is provided with
a list of code nodes each of which has a specific number of children, e.g., ranging
between 1 and 10, and the system randomly chooses one of these nodes to build an
individual as depicted in Figure 6.4.

6.2.3 Fitness Measure

An important objective of this research is to evolve image descriptors using only
a few training instances. When the number of training instances of each class is
relatively small, e.g., less than 10, the use of accuracy often becomes insufficient,
mainly because the system can easily capture features that are good enough to
discriminate between the training instances, but not sufficient to classify the unseen
data. This is an example of the well-known phenomenon in machine learning
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Algorithm 2 Measuring the fitness for an EIDri individual
1: function Fitness(S, r, ind, c, t). Training images, radius, individual, number

of classes, and number of instances per class
2: z ← (c× t) . Total number of instances in S
3: A ← ∅ . Empty set
4: for i in {1, 2, . . . , z} do
5: ~fi ← Features(Si, r, ind) . Algorithm 3 on ith image
6: ci ← class(Si) . Class label of the ith image
7: A ← A∪

{(
~fi, ci

)}
. Concatenate the ith image tuple

8: end for
9: {Dw,Db} ← distances(A, c, t) . Algorithm 4
10: return 1

/(
1 + e−5(Dw−Db)

)
. Fitness of ind on S

11: end function

called over-fitting [196]. Therefore, it is necessary to derive an alternative fitness
measure that encourages the system towards identifying a good set of representative
keypoints. The aim is to detect keypoints that have a different pattern between
instances belonging to different classes, and meanwhile, ensure that instances
belonging to the same class are following the same pattern. Measuring the distance
between the feature vectors is an alternative approach as shown in Chapter 5 (see
page 145), which is also used in this chapter as presented in Algorithm 4. Measuring
the fitness for an individual evolved by EIDri is presented in Algorithm 2.

A large number of distance measures have been proposed in the literature.
One of the widely used measures is χ2 which measures the distance between two
normalised vectors [48] as presented and discussed in Section 4.2.5 (see page 123).

Inherited from GP-criptorri, this fitness function considers the within-class and
between-class distances. Considering only the within-class distance, the system
may evolve a program that can generate nearly similar feature vectors for instances
belonging to different groups. In other words, the system will form only a single
group/cluster as the aim is to minimise the distance between the instances. Mean-
while, the system may evolve a program that separates the instances such that
each instance can form a cluster if the between-class distance considered alone.
Therefore, the aim is to find a trade-off between these two distances by minimising
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Algorithm 3 Extracting the feature vector
1: function Features(Si, r, ind) . Image, radius, and individual
2: q ← |code.children| . Number of the children under code
3: ~f ← (01, 02, . . . , 02q) . Set of length 2q of zeros
4: for each pix in image do
5: ~x← pixels(pix, r) . Neighbouring pixels
6: min← min(~x)
7: max← max(~x)
8: mean← mean(~x)
9: stdev ← stdv(~x)

10: L← {min,max,mean, stdev}
11: i← evaluate(ind,L) . Evaluate the tree on the inputs
12: ~f{i} ← ~f{i} + 1 . Increment the ith element in ~f

13: end for
14: return ~f . Feature vector
15: end function

the average distance between instances belonging to the same class and maximising
the average distance between instances belonging to different classes as shown in
Algorithm 4. In this way, GP will try to form a group/cluster for each class that
keeps its instances close to each other, and simultaneously, makes those clusters
separated apart as much as possible. The aim is that an unseen instance will be
put into a cluster consisting of instances from the same class.

6.2.4 Feature Vector Extraction
The process of extracting the feature vector from an image in EIDri is identical to
that in GP-criptorri. However, the length of the feature vector in GP-criptorri is
predetermined by the user; whereas in EIDri it is automatically determined by the
system during the evolutionary process. The number of children (q) of the code
(root) node is used to initiate an empty histogram, i.e., feature vector, of length
2q bins. This histogram is populated using a sliding window of a predetermined
size (r) that scans the image being evaluated row-wise from the left-top corner
to the right-bottom corner. At each pixel, i.e., position of the sliding window,
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Algorithm 4 The between-class and within-class distances
1: function distances(S̄, c, t). Set of tuples {(~xi, ci)} where i ∈

{
1, 2, . . . ,

∣∣∣S̄∣∣∣},
number of classes, and number of instances per class

2: z ← (c× t) . Number of instances in S̄, i.e.,
∣∣∣S̄∣∣∣

3: for each (~xi, ci) in S̄, i ∈ {1, 2, . . . , z} do
4: for each (~xj , cj) in S̄, j ∈ {1, 2, . . . , z} \ {i} do
5: distance← dist(~xi, ~xj) . Algorithm 5
6: if ci 6= cj then . Different classes
7: Db ← Db + distance . Between-class sum
8: else
9: Dw ← Dw + distance . Within-class sum
10: end if
11: end for
12: end for
13: Db ← Db

/
(z × (z − t)) . Average between-class distances

14: Dw ← Dw
/

(z × (t− 1)) . Average within-class distances
15: return {Dw,Db} . Between- and within-class distances
16: end function

the following operations are performed. The inputs (terminals) of the program’s
tree are calculated, e.g., minimum, maximum, mean, and standard deviation of
the pixel values in the window. As the terminals become available, the program
tree can be evaluated starting from the leaves up to the root (the standard GP
procedure to evaluate an individual). At this point, the root node thresholds the
values of its children in order to generate a binary code. All negative values map to
0; whereas zero and positive values map to 1. Similar to LBP, the generated code
is then converted into the corresponding decimal value, and the bin at the index of
this decimal value is incremented. This procedure is depicted in Algorithm 3.

6.3 Experiment Design

The performance of EIDri is assessed by conducting a number of experiments using
seven texture image datasets, and compared to well-known image descriptors in
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Algorithm 5 Measure the distance between two vectors
1: function dist(~u,~v) . Two vectors
2: E ← |~u| . Number of elements (|~u| = |~v|)
3: ds← 0
4: for i in {1, 2, . . . , E} do
5: if (~ui + ~vi) 6= 0 then . Different classes
6: ds← ds+

(
(~ui − ~vi)2 / (~ui + ~vi)

)
7: else . To prevent division the by zero exception
8: ds← ds+ 0 . Based on Cha [48]
9: end if
10: end for
11: distance← (0.5× ds)
12: return distance . Distance between ~u and ~v
13: end function

computer vision. The details of these datasets, parameter settings, methods for
comparison, and implementation are provided in this section.

6.3.1 Datasets

Similar to GP-criptorri, image classification is considered in this chapter to evaluate
the performance of EIDri. Seven multi-class image classification datasets are used
in this chapter, which are BrNoRo, BrWiRo, KyNoRo, KyWiRo, OutextTC00, Ou-
texTC10, and KySinHw. These datasets are presented and discussed in Section 2.4
(see page 62). Notice that these datasets comprises different number of classes,
number of instances in each class, rotation angles, illuminations, and instance
dimensions.

6.3.2 Benchmark Methods for Comparison

Since an image descriptor is only responsible for detecting keypoints and extracting
features from those keypoints, the goodness of the extracted features to perform
classification or detection is used in the literature as a measure to assess the
performance of the descriptor [217, 185, 4, 26]. Therefore, and similar to GP-
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criptorri, different machine learning algorithms such as SVM, NB, AdaBoost, J48,
RF, NBTree, K∗, NNge, k-NN, and MLP, are used in this chapter to evaluate
the performance of EIDri. These classifiers are briefly discussed in Section 3.3.3
(see page 89) and Section 4.3.2 (see page 125), and more details are in [323]. The
effectiveness of EIDri is also investigated in this study by comparing its performance
to a number of common state-of-the-art image descriptors such as DIF, GLCM,
LBPu2

p,r, LBPriu2
p,r , CLBPp,r, LBCp,r, and CLBCp,r (see Section 2.1.2 on page 29).

6.3.3 Experiments

Two sets of experiments are designed and conducted that aim at investigating
different criteria (e.g. window size and performance in terms of image classifica-
tion). Apart from the evolutionary parameters, the proposed method has only one
parameter that requires manual setting, that is the sliding window size. Therefore,
the impact of using 3 window sizes, i.e., 3× 3, 5× 5, and 7× 7, on the performance
of a simple instance-based classifier (k-NN) using the features of an evolved image
descriptor is investigated in the first experiment. This set of experiments can
be seen as a parameter tuning stage. Investigating the influence of the evolved
descriptors by EIDri on the performance of different types of classification methods
and compared to other image descriptors (baseline methods) is the aim of the
second set of experiments.

Similar to other EC methods, GP is a stochastic search method initialised
with a random seed value. Therefore, for each experiment the proposed method
has been independently executed 30 times using a different seed value each time
and the best evolved program at the end of each run is reported. Moreover, the
proposed method randomly selects two instances from each class to evolve an image
descriptor. Using different instances for training could affect the evolved program.
Hence, the process of 30 independent runs was further repeated 10 more times using
different training instances each time. Then the average performance of those 300
(= 30 (runs)× 10 (repetitions)) best individuals along with the standard deviation
are reported. Saying that, the total number of runs for the first experiment is
7 (datasets)× 3 (windows sizes)× 10 (repetitions)× 30 (runs) = 6300. Meanwhile,
there are 7 baseline methods, 1 new method (using only the best window size found



190
CHAPTER 6. A DYNAMIC GP REPRESENTATION FOR EVOLVING IMAGE

DESCRIPTORS

Table 6.1: The GP parameters
Parameter Value Parameter Value

Generations 50 Crossover Rate 0.80%
Population Size 300 Mutation Rate 0.20%
Minimum Depth 2 Maximum Depth 10
Selection Type Tournament Reproduction Keep the best
Tournament size 5 Initial Population Half-and-half

in the first experiment with 30 independent runs), 8 deterministic (single run each)
and 2 stochastic (30 runs each) classifiers, 10 repetitions, and 7 datasets; therefore,
there are 176120 experiments/runs in total in the second set of experiments.

6.3.4 Parameter Settings

This section discusses the parameter settings for the proposed method, methods
for comparison, and the different classification algorithms.

6.3.4.1 Parameter settings for EIDri

The evolutionary parameter settings for EIDri are identical to that of GP-criptorri

(see Section 5.3.3 on page 152) apart from the population size that is set to 300
individual instead of 200. Although it is more expensive to use larger population
size, allowing the system to have more individuals is worth investigating. Due to
the high computation costs of dealing with images, the population size is restricted
to 300 individuals. These parameters are summarised in Table 6.1.

6.3.4.2 Parameters of the baseline methods

Similar to [339] and [251], we have observed that the radius (r) and the number of
neighbouring pixels (p) for LBP, CLBP, LBC and CLBC have shown very good
performance in most of the cases when they are, respectively, set to 3 and 24.
Meanwhile, these two parameters, i.e., r and p, have been set to 1 and 8 for the
LBPu2

p,r and DRLBPp,r methods as our experiments revealed that this combination
shows a better performance than other settings.
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6.3.4.3 Parameters of the classifiers

The parameter settings of the classifiers used in this chapter have been discussed
in Section 4.3.3 (see page 127). As the same classification algorithms are used in
this chapter, the parameters are also kept consistent between the two chapters.

6.3.5 Implementation

EIDri is implemented using the platform provided by the Evolutionary Computa-
tion Java-based (ECJ) package version 23 [190]. The Waikato Environment for
Knowledge Analysis (WEKA) package version 3.8 [116] implementations for all
other aforementioned classifiers (see Section 3.3.3.1 on page 89) are used.

6.4 Results and Discussions
The results of the experiments are presented and discussed in this section.

6.4.1 Window Size

The aim of the first experiment is to investigate the impact of using different
window sizes on the performance of EIDri, and the obtained results are presented in
Figure 6.5. On the BrNoRo and BrWiRo datasets, the observed performances for
different window sizes were 90.21% and 92.12% for a 3× 3 pixels window, 91.04%
and 92.59% for a 5× 5 pixels window, and 89.17% and 90.78% for a 7× 7 pixels
window, respectively. The results obtained on the KyNoRo and KyWiRo datasets
in this experiment were 86.27% and 87.67% for a 3× 3 pixels window, 86.90% and
88.60% for a 5×5 pixels window, and 85.78% and 86.51% for a 7×7 pixels window,
respectively. On OutexTC00 and OutexTC10, the proposed method has achieved
87.51% and 85.90% for a 3× 3 pixels window, 87.90% and 87.09% for a 5× 5 pixels
window, and 86.94% and 86.37% for a 7× 7 pixels window, respectively. Finally,
EIDri obtained 92.85%, 94.06%, and 93.85% average accuracy using a window of
size 3× 3, 5× 5, and 7× 7 pixels, respectively. Clearly, the results of these datasets
are following a similar pattern and the differences between using different window
sizes is not large.
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Figure 6.5: The results of the first experiment, which presents the impact of the
window size on the performance on the seven datasets.

In summary, EIDri has achieved better results with a window of size 5 × 5
pixels than those of the other two experimented window sizes, i.e., 3× 3 and 7× 7
pixels, for all datasets as depicted in Figure 6.5 and Table 6.2. Larger window sizes,
e.g., 9 × 9 and 11 × 11, were not investigated mainly because the results of the
7× 7 window are generally worse than 5× 5 window. Based on the results of this
experiment, the window size has been set to 5× 5 pixels in the second experiment.

6.4.2 Image Classification

The aim of the second set of experiments is to compare the effectiveness of EIDri

descriptors against a variety of LBP based and non-LBP based hand-crafted image
descriptors that were developed by domain-experts. The results for all datasets are
presented in tables in this section, where the first column of each table lists the
dataset name; meanwhile the name of the feature extraction methods, i.e., image
descriptor, are listed in the second column. The performances of the different
classifiers are listed in columns 3 to 12 each of which reports the average accuracy
and standard deviation (x̄± s).

In order to correctly assess the significance of the results, it is very important
to use a suitable statistical test. Testing the normality and homoscedasticity are
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Table 6.2: The impact of the window size on the performance of EIDri on the seven
experimented datasets (x̄± s).

Window size (pixels)

3× 3 5× 5 7× 7

BrNoRo 90.21 ± 1.97 91.04 ± 2.01 89.17 ± 2.23
BrWiRo 92.12 ± 1.48 92.59 ± 1.08 90.78 ± 1.00
KyNoRo 86.27 ± 2.71 86.90 ± 1.88 85.78 ± 1.73
KyWiRo 87.67 ± 1.89 88.60 ± 1.31 86.51 ± 1.17
OutexTC00 87.51 ± 2.50 87.90 ± 1.84 86.94 ± 2.16
OutexTC10 85.90 ± 1.75 87.09 ± 1.91 86.37 ± 1.77
KySinHw 92.85 ± 1.52 94.06 ± 1.63 93.85 ± 2.06

required prior to the use of a parametric statistical test such as t-test and analysis of
variance (ANOVA) [66, 68]. The results of the normality test revealed the skewness
of the data, i.e., obtained results, which means the normality assumption is not
accomplished. Therefore, the significance of the obtained results are tested using a
non-parametric statistical test that is the Wilcoxon signed-rank test [320, 66] with
a significance level of 5%.

The statistical significance test has been performed to investigate how EIDri

with a simple 1-NN classification method competes with the other image descriptors
using 1-NN and more powerful classifiers. The symbol “∗” appears next to the
method that has been significantly outperformed by EIDri, and a “−” is used
to indicate that the corresponding method has significantly better performance
than that of EIDri. Moreover, the statistical significance test has been applied
again to assess whether the proposed method can compete with the baseline
methods using the same classifier. In this case, the symbols “↑” and “↓” are used
to, respectively, indicate that EIDri is significantly better and significantly worse
than the corresponding method. The overall best performance on each dataset
is underlined, and the method with the best performance for each classification
method is made bold.

6.4.2.1 BrNoRo

The results of the BrNoRo dataset are presented in the first block of Table 6.3. The
proposed method has achieved the overall best performance using 1-NN classification
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method with an average accuracy of 91.0%. The results of the first significance test
show that EIDri has significantly outperformed all the baseline methods even with
more sophisticated classifiers. The second significance test revealed that EIDri has
significantly better performance than all the 8 baseline descriptors in 5 classifiers
(excluding 1-NN), and at least better than 5 descriptors on the other 4 classification
methods.

6.4.2.2 BrWiRo

On the BrWiRo dataset, i.e., the rotated version of BrNoRo, the results in the
second block of Table 6.3 show that EIDri has achieved the overall best average
performance that is 92.6% on this dataset. Similarly, the proposed method with a
simple instance-based classifier (1-NN) has significantly outperformed the other
baseline hand-crafted descriptors on all 10 classifiers. Apart from CLBP24,3 with
MLP and SVM, EIDri with the same classification method has achieved significantly
better performance than all the 8 baseline descriptors as shown by the results of
the second significance test.

6.4.2.3 KyNoRo

The first block of Table 6.4 shows the results obtained on the KyNoRo dataset.
The newly introduced method with 1-NN shows the 4th overall best performance as
CLBP24,3 achieved the first (MLP), second (1-NN), and third (NNge). Using 1-NN,
EIDri has significantly better performance than the other descriptors in the vast
majority cases, and shows a significant improvement in the performance of 76.25%
(61/80) of the 10 classifiers compared to the use of those domain-expert designed
descriptors. On the other 23.75% (19/80) of the cases, the proposed method has
comparable performance to the domain-expert methods for 11 out of 19 cases, and
significantly degraded the performance on the other 8 cases.

6.4.2.4 KyWiRo

On the KyWiRo dataset, the proposed method shows nearly a similar pattern to
that on the rotation-free version of this dataset (KyNoRo) as presented in the second
block of Table 6.4. Using the simple 1-NN classification method, EIDri scored
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88.6% accuracy on average which represents the fourth overall best performance on
this dataset (KyWiRo) and has significantly outperformed the 8 baseline methods
in over 88% of the cases for the 10 classifiers. The results of the second statistical
test show that EIDri has a significantly positive influence on the performance of
the 10 classifiers compared to the use of the other descriptors’ features.

6.4.2.5 OutexTC00

As shown in the first block of Table 6.5, the proposed method is the overall best
performing method on the OutexTC00 dataset with 87.9% average accuracy. Apart
from LBPu2

8,1 with 1-NN, K∗, MLP, and NNge, results of the first statistical test
show that EIDri with 1-NN has significantly outperformed all other methods with
1-NN and more powerful classifier. Using the same classification method, on the
other hand, EIDri has also shown a significant positive impact on the performance
in the vast majority (over 87%) of those classifiers. However, in six cases the
improvement was not significant and on other four EIDri has either slightly or
significantly degraded the performance.

6.4.2.6 OutexTC10

On the rotated version of the OutexTC00, i.e., OutexTC10, the proposed method
shows the overall best performance that is 87.1% average accuracy as presented
in the second block of Table 6.5. The statistical results of using EIDri with a
1-NN classifier against the baseline methods with 1-NN and other classifiers reveal
that EIDri has significantly better performance than the competitor methods apart
from CLBP24,3 with 1-NN, MLP, and NNge classifiers. The results of the second
significance test show that the features extracted by the proposed method have
significantly improved 67 out of 72 of the cases, and only slightly improved or
degraded the performance of 5 cases. Only one case, i.e., CLBP24,3 with MLP,
shows significantly negative impact of EIDri features.

6.4.2.7 KySinHw

Table 6.6 lists the results obtained on the KySinHw dataset. The winner of the
overall best performance on this dataset was CLBP24,3 with NNge classification
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method, which achieved 97.9% accuracy on average. However, EIDri is ranked
fourth best performance (94.1%) amongst the other methods on the KySinHw
dataset. EIDri with 1-NN has also significantly outperformed over 96% of the
other methods with different classification methods as revealed by the results of
the first statistical test. Checking the influence of EIDri on the performance of
each classification method compared to that of the other methods shows that EIDri

features have significantly improved over 81% of the cases, but also significantly
degraded the performance of 11% of the cases. The performances of other 8%
cases show either slightly improvement or deterioration when the features of the
proposed method are used.

6.4.3 Summary

The following observations can be deduced from the results above.

• The proposed method does not require human intervention to automatically
evolve a rotation-invariant image descriptor;

• The system does not require domain knowledge and only uses two instances
of each class to find a set of good keypoints that can lead to a significantly
better performance than using domain-expert designed descriptors in most
cases;

• The newly introduced method does not solely detect a set of prede-
fined/designed keypoints such as lines and corners; rather, it automatically
designs a set of keypoints and determines how to detect those keypoints;

• The use of EIDri features have, in the majority of the cases, improved the
performance of the different classification methods compared to the use of
the other descriptors’ features;

• The proposed method dynamically sets the length of the feature vector
by automatically selecting the number of the bits in the binary codes, i.e.,
children of the code node;
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• Unlike other hand-crafted descriptors, changing the window size does not
require changing or redesigning the system since it is handled automatically
in EIDri as the results of the first experiment suggest; and

• The new method can build complicated functions using the combination of
simple ones, while it also has the flexibility to use different functions in the
function set.

6.5 Further Analysis

In this section, EIDri is investigated in depth by considering how and why the
proposed method can perform well. The convergence, time required to evolve a
descriptor, and number of children of the code node and the window size effect on
the number of children are discussed in the first subsection. A program evolved by
EIDri is analysed and discussed in details in the second subsection.

6.5.1 Overall Analysis
The average fitness value per generation for 30 independent runs using different
seed values on two randomly selected instances per class of the BrWoRo dataset is
depicted in Figure 6.6. A closer inspection of this graph reveals that on average
the programs have made larger jumps in the first few generations than the later
generations. The fitness value is decreased from 2.10 to 0.088 in the first 20
generations compared to the decrease in fitness from 0.088 to 0.070 over the
remainder 30 generations. The standard deviation bars of those 30 independent
runs show a similar pattern where the earlier generations have more variations
than the later ones.

The average time needed to evolve an image descriptor by EIDri is presented
in Figure 6.7 and Table 6.7. Clearly, the time required to evolve an individual
is affected by the number of classes, size of each instance, and size of the sliding
window. Having more classes results in having more instances to scan by each
GP individual in each generation. Similarly, a larger instance means more pixels
are required to be scanned. Although increasing the window size is assumed to
reduce the evolutionary time as more pixels (the edges) are ignored, Figure 6.7
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Figure 6.6: The average fitness value per generation on the BrWoRo dataset (the
whiskers represent the standard deviation).

shows that increasing the window size considerably increases the evolution time.
Calculating the minimum, maximum, mean, and standard deviation values require
iterations proportional to the number of pixels. This process can be optimised by
pre-calculating those values instead of re-calculating them for each individual at
each generation. However, storing those pre-calculated values for each instance
requires a large amount of memory as each pixel, i.e., a single integer value, will be
associated with four floating values.

The frequency of the number of children under the code node has been analysed
as it is automatically determined during the evolutionary process. The bar plot
presented in Figure 6.8 (and Table 6.8) shows the distribution of code lengths,
i.e., number of children for the code node, across all independent runs of the seven
datasets, and categorised based on the different window sizes. The plot shows
clearly that the vast majority of the evolved descriptors have a code node with
8, 9 or 10 children. The percentage of those programs with a code node having
more than 7 children occupy 85.6%, 86.1%, and 86.4% of the evolved programs for
window sizes 3× 3, 5× 5, and 7× 7, respectively. Also none of the best evolved
programs has less than 3 children under the code node, only one program with 3,
and only six with 4 nodes. Note that the length of the feature vector is doubled
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Figure 6.7: The impact of the window size on the average time required to evolve
a program by EIDri.

for every node added to the children list of the code node, which means more space
is required to store those feature vectors. Moreover, from the analysis of those
programs with 9 or 10 children, it has been observed that only a few cells of the
feature vectors have values/counts, whilst the other cells have zero values across all
instances. Removing those unused cells can potentially reduce the memory required
to store the feature vectors.

6.5.2 An Evolved Descriptor

A sample program evolved by EIDri on the BrNoRo dataset is presented in Figure 6.9.
Using a window of size 5× 5 pixels, this program has achieved 92.14% accuracy
on the unseen data. Overall, there are 118 nodes in this program where 61 nodes
are leaves and the other 57 are functions. The code node has 5 children/branches,
which means that the feature vector for an image is with a length of 25 = 32 values.
Although some of those branches are difficult to interpret, other branches can be
simplified and presented as mathematical formulae. For instance, the corresponding
formulae for the third, fourth and fifth branches can be presented as 2mean −
(min+max), (2mean−max)

/
(stdev −max), and

(
mean+max+ mean−min

stdev

)
−(

(mean−min) stdevmax

)
, respectively. As only a few simple mathematical operations
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Table 6.7: The impact of the window size on the average time (hour) required to
evolve a program by EIDri on the seven experimented datasets.

Window size (pixels)

3× 3 5× 5 7× 7

BrNoRo 1.84 2.32 2.95
BrWiRo 1.81 2.25 2.89
KyNoRo 7.94 10.66 14.65
KyWiRo 7.67 10.65 14.19
OutexTC00 8.30 11.52 15.64
OutexTC10 8.75 11.16 15.78
KySinHw 8.16 10.67 14.09

Table 6.8: The relative frequency of the number of children for the code node of
different window sizes.

Window size (pixels)

3× 3 5× 5 7× 7

Code length = 1 0.0000 0.0000 0.0000
Code length = 2 0.0000 0.0000 0.0000
Code length = 3 0.0000 0.0000 0.0005
Code length = 4 0.0005 0.0005 0.0019
Code length = 5 0.0205 0.0162 0.0224
Code length = 6 0.0581 0.0557 0.0624
Code length = 7 0.0648 0.0667 0.0486
Code length = 8 0.2371 0.2638 0.2700
Code length = 9 0.3357 0.3014 0.3119
Code length = 10 0.2833 0.2957 0.2824

are required to generate the feature vector for an image, such descriptors are
efficient, i.e., they have the potential to operate very fast, and therefore they can
be used for online/real-time applications.

Table 6.9 presents the confusion matrix for the program depicted in Figure 6.9.
The first column of this table lists the actual class labels, whereas the first row
lists the predicted class labels. The proportion of correctly classified instances for
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Figure 6.8: The relative frequency of the number of children for the code node of
different window sizes.

each class is presented in the last column of Table 6.9. The program has correctly
classified either all instances (100% accuracy) or achieved over 90% accuracy for 17
out of the 20 classes, scored over 70% accuracy on 2 further classes, and did not
perform well on only one class (D09) with 55% accuracy. The confusion matrix
shows that 19 out of 42 instances of the D09 class have been misclassified as D04.
A sample instance from each of these two classes, i.e., D04 and D09, are randomly
selected and two tiles of each are enlarged (zoomed-in) in Figure 6.10. A close look
at the enlarged tiles reveals the similarity between the instances of the two classes
especially when the rotation variation is considered (the position order of the pixel
values is ignored within the sliding window).

The program presented in Figure 6.9 is further analysed by feeding two ran-
domly selected instances from each class of the BrNoRo dataset to generate the
corresponding feature vectors that are visually depicted in Figure 6.11. In this
figure, the two instances drawn from each class are positioned side-by-side to ease
the comparison task, and the corresponding class label is shown on the horizontal
axis. The values of each feature vector are normalised and represented as the per-
centage that are placed on top of each other. The 25 = 32 features {f1, f2, . . . , f32}
are indicated using different colours as depicted in the legend of Figure 6.11. The
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Table 6.9: The confusion matrix for the program presented in Figure 6.9 on the
BrNoRo dataset.

D01 D03 D04 D05 D06 D09 D11 D14 D15 D16 D17 D18 D20 D21 D24 D34 D37 D46 D47 D49 Total %
D01 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 90.5
D03 0 40 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 95.2
D04 0 0 30 0 0 9 2 0 0 0 0 0 0 0 1 0 0 0 0 0 71.4
D05 0 0 0 40 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 95.2
D06 0 0 0 0 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
D09 0 0 19 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54.8
D11 0 0 2 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 95.2
D14 0 1 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 97.6
D15 0 0 2 0 0 0 0 0 38 0 0 0 0 0 2 0 0 0 0 0 90.5
D16 0 0 0 0 0 0 0 0 0 39 2 0 0 1 0 0 0 0 0 0 92.9
D17 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 0 0 100
D18 0 0 0 9 0 0 0 0 0 0 0 31 0 0 0 0 2 0 0 0 73.8
D20 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 100
D21 0 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 0 0 100
D24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 0 100
D34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 100
D37 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 38 1 0 0 90.5
D46 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 40 0 0 95.2
D47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 0 100
D49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 100

figure clearly shows that the evolved program has generated a “fingerprint” for
the instances belonging to the same class that is different from all other instances
from the other classes. Some examples are the class D16 that has a very high
percentage of f3, class D21 with a high percentage of f9, and class D49 with high
f31 percentage. The program also identified some features that occur in some
classes but not in others, e.g., feature f12 that does not appear in the vectors of
classes D01, D03, D06, D14, D16, D21, D46, and D49. The similarity between D04
and D09 instances is also noticeably high, which explains why a large number of
instances of these two classes were misclassified.

6.6 Chapter Summary

In this chapter, GP has been successfully utilised to automatically synthesise a
set of mathematical formulae that form an image descriptor. Unlike other image
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(a) (b)

Figure 6.10: A sample instance and two enlarged tiles of the (a) D04 class, and (b)
D09 class.

descriptors, the proposed method does not require human intervention to design a
set of keypoints, or any mechanism for detecting those keypoints and extracting
the feature values. Domain knowledge is not required either. In particular, the
proposed method automatically determine the length of the feature vector during
the evolutionary process, and uses two instances of each class to evolve a descriptor
that is capable of generating distinctive feature vectors for instances belong to
different classes. As this method uses only a few training instances, it is suitable
for problems where the number of labelled data is limited. Another impact of
using a few training instances is that the overall complexity of the system in
terms of time and physical computer memory will be reduced, which makes the
system suitable for the situations that cannot afford a long time for training.
Similar to GP-criptorri (Chapter 5), the proposed method uses a set of first-order
statistics to evolve a rotation-invariant descriptor relying on the order-independent
characteristic of those statistics. An evolved descriptor works in a pixel-by-pixel
fashion, using a sliding window of a predefined size. To assess the effectiveness
of the proposed method, seven texture image classification datasets with different
degrees of rotations were used and compared to the effectiveness of eight state-of-
the-art expert-designed and hand-crafted image descriptors using ten widely used
classification algorithms. Quantitatively, the results of the experiments reveal the
effectiveness of the proposed GP method to evolve an image descriptor using only
two instances per class and yet can significantly outperform or achieve comparable
results to the hand-crafted descriptors. Qualitatively, the analysis of the proposed
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system and an evolved descriptor demonstrates the robustness to tackle the rotation
variation and the interpretability of the evolved descriptor.

The use of a descriptor evolved by GP on one dataset directly on another
dataset, i.e., learning by knowledge transfer, is thoroughly investigated in the next
chapter.



7
Transfer Learning in GP: A

Study on the Generalisability of
GP Evolved Image Descriptors

7.1 Introduction

The majority of the algorithms in machine learning are designed based on two
assumptions. The first assumption is that both of the training and future (unseen)
data having the same distribution or follow the same pattern [227, 86]. This
assumption is not satisfied by many real-world applications, and hence, a well-
trained model, e.g., classifier, may perform poorly on the unseen data. A typical
example is that a model trained on a set of clean (noise-free) instances, while
the test set comprises instances that show a severe level of noise. The second
assumption is that a large number of training instances are available in order
to build a good model [134, 252, 77]. In some situations, it may be difficult or
expensive to acquire a sufficiently large number of instances such as in the medical
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domain [342]. Transfer learning, or learning by knowledge transfer, has emerged
inspired by the learning ability of humans where future problems can be tackled
based on the knowledge gained from previously solved problems [141]. Different
approaches and methods have been proposed where transfer learning can be used to
tackle different problems of the same as well as different domains (see Section 2.1.3.5
on page 38 and Section 2.3.4 on page 59).

The vast majority of existing image descriptors were designed to detect keypoints
that are believed to be reliable and are common across different domains. LBP
and its variants, and SIFT and its variants are typical examples that have been
widely used to perform texture classification on different datasets, object detection
for diverse type of objects, and face recognition and many more. This is a very
important attribute of such descriptors, as it reduces the requirement to develop
different descriptors for different domains and applications.

7.1.1 Chapter Goals

By adopting transfer learning, specifically learning by model transfer, the overall
aim of this chapter is to examine the generalisability of the image descriptors
evolved by GP-criptorri to facilitate performing classification on datasets of the
same domain as well as of different domains. In other words, a descriptor evolved
on the source domain will be directly used to tackle the problem in the target
domain using only two instances per class of the target domain. Specifically, this
chapter intends to investigate the following objectives.

• Investigate the impact of different source domains on the performance in the
problem of the target domain.

• Investigate the impact of the window size on the performance between the
source and target domains.

• Investigate the impact of the feature vector length on the performance
between the source and target domains.

• Investigate the impact of the number of classes between the source and target
domains.
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Figure 7.1: The overall transfer learning framework used in this chapter, where
dashed arrows mean there are hidden states.

• Compare the generalisability of the automatically evolved descriptors to that
of eight state-of-the-art domain-expert designed image descriptors.

7.1.2 Chapter Organisation

The remainder of the chapter is organised as follows. The general frame-work of
how to transfer a model from the source domain to the target domain is discussed
in Section 7.2. Section 7.3 presents the aims and details of the different experiments.
The results are presented and discussed in Section 7.4. Section 7.5 summarises the
discussion of this chapter.

7.2 A GP Transfer Learning Framework
This section provides detailed discussion regarding the GP framework of transfer
learning adopted in this study. The framework comprises two parts each of which
aims at performing a specific task. The first part is performed on the source domain,
whereas the second part is performed on the target domain. The overall flowchart
of this framework is depicted in Figure 7.1.

7.2.1 The Source Domain Part

The first part of the framework is performed on the source domain. In transfer
learning, typically the entire source domain is used to build a model [86, 160].
However, in this chapter the evolved programs by GP-criptorri (see Section 5.2 on
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page 147) are examined. Moreover, using a large training set to evolve a program
in GP-criptorri is a very expensive and time-consuming process mainly because
the method has been specifically designed to cope with only a few examples. As
depicted in Figure 7.2, only two instances of each class of the source domain are
randomly selected and fed into GP. The GP system will run until the last generation
is reached, and then the best evolved program is returned.

Due to the stochastic nature of GP, the evolved program can be very different
based on the seed value used between the different runs which represents the first
random component of this part. Hence, using the same two instances per class, the
process is repeated 30 independent times using a different seed value each time.
The best program that is evolved at the end of each run is reported so it can be
used later on the target domain. Therefore, we will have 30 different programs
(image descriptors) resulting from the use of different seed values.

The second random component of this part is the selected instances to evolve
a descriptor. The two instances that are selected to evolve the descriptor can
largely affect the final result. Therefore, the entire process has been further
repeated 10 times using different instances each time. Using different instances to
evolve a descriptor requires executing the 30 independent runs with different seed
values as discussed earlier. The final result of this part of the framework is 300
(= 10 (repeats)× 30 (runs)) image descriptors.

7.2.2 The Target Domain Part

The second part of the framework deals with the instances of the target domain.
As depicted in Figure 7.2, each descriptor ω resulting from a single run of the first
part of this framework, i.e., on the source domain, is used to generate a transformed
target domain dataset by generating the feature vector for each instance. If there are
α source datasets and β target datasets, the ith source and jth target datasets are
denoted as Si and Tj , respectively. Here Si =

{(
~x i1, c

i
1
)
,
(
~x i2, c

i
2
)
, . . . ,

(
~x izi , c

i
zi

)}
,

where the jth instance, i.e., feature vector and the corresponding class label,
of the ith source dataset is denoted as

(
~x ij , c

i
j

)
and zi is the total number of

instances in Si. Similarly, the ith dataset in the target domain is denoted as
Ti =

{(
~x i1, c

i
1
)
,
(
~x i2, c

i
2
)
, . . . ,

(
~x izi , c

i
zi

)}
. The feature vector for each instance in a
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target domain dataset is generated based on the GP-criptorri process for feature
vector extraction discussed in Section 5.2.3 (see page 149).

7.3 Experiment Design
This section aims at providing details of the experiments conducted in this chapter.
The discussion of this section also includes the datasets, methods for comparison,
parameter settings, and implementation.

7.3.1 Datasets
A core aim of this chapter is to investigate domain generalisation of GP-criptorri

evolved image descriptors (Chapter 5). Therefore, the source datasets are BrNoRo,
BrWiRo, KyNoRo, KyWiRo, OutexTC00, and OutexTC10. To investigate the
generalisability of those descriptors, datasets from similar, i.e., texture, and different
domains are used. Therefore, the target domain datasets are the same six source
datasets and the following seven benchmark datasets: Coins, Faces, KySinHw,
Webcam, Amazon, Dslr, and CUReT. The details about each of these 13 datasets
such as the number of classes, number of instances, rotations, illumination, and
dimensions are discussed in Section 2.4 (see page 62).

7.3.2 Benchmark Methods for Comparison
The goodness of the image descriptors automatically evolved by GP-criptorri is
compared to that of six state-of-the-art domain-expert designed descriptors: LBPu2

p,r,
LBPriu2

p,r , CLBPp,r, LBCp,r, CLBCp,r, and DRLBPp,r. Similar to GP-criptor, GP-
criptorri, and EIDri, the average accuracy of a classifier is used to assess the
goodness of each of those descriptors (evolve by GP-criptorri and the six baseline
descriptors). Only the k-NN classification algorithm is used in this chapter.

7.3.3 Experiments
In order to investigate different aspects of transfer learning in GP, the experiments
are designed to investigate different aspects. In total there are six experiments that
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have been conducted which can be categorised into two groups: identical source
and target datasets, and different source and target datasets. In each experiment,
the settings are kept fixed such that after transforming the instances of the target
dataset the system splits the transformed dataset into a training set and a test
set. Two instances from each class are randomly selected to form the training set,
whereas the remainder of the instances are used to form the test set. A classifier is
then trained using the training instances, evaluated on the unseen (test) set, and
the performance (accuracy) is reported. As the instances of the training set were
randomly chosen, the system is set to further repeat the previous steps 10 times.
At the end of the 10 repetitions, the mean and standard deviation of the accuracies
are reported.

7.3.3.1 Identical source and target datasets

The experiments of this group aim to examining different aspects of the evolved
descriptors on the same datasets that they were evolved on, i.e., the source dataset
is identical to the target dataset. The core aim of these experiments is to provide
baseline results for the subsequent experiments.

The first experiment investigates the performance of an evolved image descriptor
on the same dataset, i.e., standard supervised learning where the source and target
datasets are the same. Therefore, an image descriptor evolved on a dataset is used
to transform the instances of that dataset, and two instances are then randomly
selected and used for training with k-NN and the reminder of the instances are
used for testing.

In the first experiment, the window size of the evolved descriptor is kept fixed.
For example, an individual evolved using a window of size 3× 3 pixels is also used
on the target dataset with the exact same window size. Hence, the aim of the
second experiment is to investigate the effect of using different window sizes on the
same dataset, i.e., the source and target datasets are the same. Although it is not
limited to any window size, only three window size have been used in this study:
3× 3 pixels, 5× 5 pixels, and 7× 7 pixels. This experiment will allow investigating
whether an evolved descriptor can, or is best to, be used with the same window
size that was used during the evolutionary process or a comparable performance
can be achieved using other window sizes.
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The third experiment investigates the impact of using different code lengths, i.e.,
different feature vector length, which was kept fixed in the previous two experiments.
Investigating this factor will allow the examination of the correlation between the
number of features in the feature vector and the total number of classes in the
dataset. Moreover, the experiment will examine the impact of having different
numbers of classes in the source and target datasets on the performance.

7.3.3.2 Different source and target datasets

The second group of experiments aims at investigating the performance when using
different datasets in source and target domains, which is a core aim of this study.

The fourth experiment in this study investigates the effectiveness of evolving an
image descriptor on one dataset and using it on different datasets. Unlike the first
experiment experiment, the source and target datasets in the fourth experiment
are different. It is worth mentioning that the two datasets can be from the same
domain, e.g., texture to texture, or different domains, e.g., texture to object.

Similar to the second experiment, the fifth experiment is designed to investigate
the impact of using different window sizes between the source and target datasets;
however, the source and target datasets are different. Moreover, this experiment
will allow investigating the correlation between the window size and the size of the
instances in both domains which was not possible in the second experiment as the
source and target domain are identical (the instances have the same dimensions).

The sixth experiment is also designed to investigate the impact of using different
code lengths between the source and target domains on the performance similar to
the third experiment of the first group.

7.3.4 Parameter Settings

The parameters of GP-criptorri are kept identical to that presented and discussed in
Section 5.3.3 (see page 152), mainly because here the focus is on the transferability
of GP-criptorri evolved descriptors to tackle problems in related and unrelated
domains. Similarly, parameter settings of the baseline methods are also kept
identical to that were used in Chapter 5 (see page 145).

As mentioned earlier in this chapter, only the k-NN classification algorithm is
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used to measure the goodness of the features extracted by an image descriptor to
classify the instances of each dataset. As there are only two instances of each class
in the training set, the parameter k is set to 1, i.e., the class label of the closest
neighbour/instance is returned.

7.4 Results and Discussions

The results of the six different experiments are presented and discussed in this
section. To prevent redundancy, the results of the experiments are combined and
presented in tables for each dataset in the subsequent subsections. However, the
performance of the baseline descriptors is examined first as it provides the basis for
comparison; followed by the results and discussions on the automatically evolved
GP-criptorri descriptors.

7.4.1 The Baseline Descriptors

Table 7.1 presents the results of applying the k-NN classification algorithm on
the 13 image datasets using the features of six state-of-the-art image descriptors.
These descriptors were designed by domain-experts and have been used to perform
different tasks, e.g., classification, and clustering, in a wide range of computer vision
applications. The process to measure the goodness of each image descriptor in
Table 7.1 comprises three steps: firstly, the instances of the dataset being evaluated
are transformed using one of the six image descriptors; secondly, two instances are
randomly selected from the dataset to form the training set and the remaining
instances are used to form the test set; and thirdly, k-NN is applied to classify the
instances of the test set and the accuracy is reported. As the two instances for
training are randomly drawn, these three steps are further repeated 10 more times
using different instances for training each time. Therefore, each pair of values in
Table 7.1 represent the mean and the standard deviation (x̄± s) of the accuracy
over 10 repetitions.

The image descriptor with the best average performance on each dataset is
made bold in Table 7.1; and if two or more image descriptors have the same best
average performance, the one with the smallest standard deviation is made bold.
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Table 7.1: The average accuracy (%) of k-NN using six image descriptors on 13
images dataset (x̄± s).

LBPu2
8,1 LBPu2ri

24,3 CLBP24,3 LBC24,3 CLBC24,3 DRLBP8,1

BrNoRo 86.48 ± 1.31 70.52 ± 3.01 87.38 ± 2.57 67.91 ± 3.67 68.83 ± 2.70 85.01 ± 1.91
BrWiRo 47.42 ± 1.54 69.88 ± 2.66 85.06 ± 3.23 66.63 ± 2.88 70.07 ± 4.19 70.30 ± 2.29
KyNoRo 82.25 ± 2.01 73.99 ± 2.15 93.05 ± 1.77 73.91 ± 1.91 81.05 ± 2.84 88.56 ± 1.87
KyWiRo 46.24 ± 2.17 71.75 ± 2.80 91.95 ± 1.20 71.16 ± 2.66 78.93 ± 2.20 77.21 ± 1.83
KySinHw 58.18 ± 1.94 81.34 ± 1.40 96.63 ± 0.73 79.58 ± 1.73 87.79 ± 2.23 85.33 ± 2.73
OutexTC00 94.77 ± 1.95 83.89 ± 3.22 93.17 ± 1.19 82.80 ± 2.39 82.55 ± 3.76 93.45 ± 1.37
OutexTC10 65.64 ± 1.71 74.17 ± 2.53 88.05 ± 1.78 71.39 ± 2.54 76.15 ± 2.98 74.97 ± 2.14
CUReT 51.09 ± 1.14 45.91 ± 2.33 55.42 ± 2.40 44.45 ± 2.42 46.29 ± 1.94 54.71 ± 1.81
Coins 62.50 ± 7.28 63.68 ± 10.5 65.37 ± 9.50 64.39 ± 10.1 61.74 ± 11.2 61.79 ± 5.98
Faces 75.79 ± 9.54 73.29 ± 8.57 71.43 ± 9.84 69.88 ± 7.08 64.92 ± 4.66 70.01 ± 7.72
Dslr 40.76 ± 3.16 36.40 ± 4.23 42.75 ± 3.45 34.77 ± 4.69 43.74 ± 3.38 39.08 ± 3.98
Amazon 18.50 ± 1.63 12.66 ± 1.59 18.81 ± 1.30 12.41 ± 1.72 18.53 ± 1.24 15.12 ± 1.26
Webcam 34.69 ± 3.50 29.67 ± 3.15 37.44 ± 3.21 27.39 ± 3.04 37.87 ± 2.69 31.61 ± 2.90

7.4.2 The GP-criptorri Descriptors

The performance of using those image descriptors automatically evolved by GP-
criptorri using six source datasets (Chapter 5) on each of the 13 experimented target
datasets is presented in this subsection. For each target dataset, the results are
presented in a table and a boxplot. Each table horizontally consists of 9 columns,
where the length of the code, i.e., number of children under the code node, is
presented in the first column, the second and third columns show the source and
target window sizes, and the remaining six columns list the average performance
resulting from using the descriptors evolved on each of the six source datasets.
Meanwhile, each table vertically consists of three blocks each of which comprises
of three sub blocks that presents the results of using different source and target
window sizes combinations. It is important to notice that in Chapter 5, on each
dataset, GP-criptorri has produced 300 image descriptors that resulting from using
30 seeds and 10 repetitions (using different training instances). Therefore, each pair
of values in the following tables is the average accuracy and the standard deviation
of using k-NN on the features of 300 image descriptors. The boxplots, on the other
hand, are provided to ease comparing the performance achieved by the programs
evolved on each source dataset on the target dataset being evaluated. Each figure



7.4. RESULTS AND DISCUSSIONS 221

comprises three boxplots each of which corresponds to using a different code length
(7-, 8-, and 9-bits), whilst the different colours represent the three experimented
window sizes (3× 3 pixels, 5× 5 pixels, and 7× 7 pixels). Unlike the tables, the
boxplots only show the cases where the source window and the target window are
of the same size. The source datasets are listed on the horizontal axis and the
vertical axis show the accuracy (%).

7.4.2.1 The BrNoRo Dataset

The results of using the descriptors evolved by GP-criptorri on different source
datasets to classify the BrNoRo dataset are presented in Table 7.2 and Figure 7.3.
The results in Table 7.1 show that CLBP24,3 has achieved the best performance
amongst the baseline descriptors with 87.38% average accuracy. The GP-criptorri

evolved descriptors, on the other hand, show comparable or better performance
than the best of the baseline descriptors. Table 7.2 shows that over 57% (93 out of
162) of the cases have achieved a better performance than the best of the baseline
descriptors. Noticeably, some programs that were evolved on other source datasets
have achieved better performance than the baseline methods. Clearly, the programs
evolved on BrNoRo (source is the same as the target) show the best performance
amongst all other programs as depicted in Figure 7.3. Similarly, those programs
that were evolved on the rotation version of the BrNoRo have also achieved a very
comparable results to that of the non-rotated version. The programs of all other
source datasets also show a good level of performance where the median is greater
than or equal to 80% accuracy. Generally, using a 7× 7 pixels window size shows
worse performance than using the other two window sizes. The code length, on the
other hand, does not show large impact on the performance, and increasing the
length has slightly improved the average accuracies of the automatically evolved
descriptors.

7.4.2.2 The BrWiRo Dataset

Table 7.3 and Figure 7.4 present the results of using GP-criptorri programs evolved
on different source datasets to classify the BrWiRo dataset. Similar to BrNoRo, the
programs evolved on this dataset, i.e., BrWiRo, show very good performance that
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Figure 7.3: The performance of using individuals evolved on different datasets,
with different code lengths on the BrNoRo dataset using the same source and
target window sizes.

in most cases is above 80% accuracy as shown in Figure 7.4. The baseline methods
have achieved on average 85.06% accuracy in the best case (CLBP24,3), and the
second best is 70.30% (DRLBP8,1). The results in Table 7.3 show that over 70%
(114 out of 162) of the cases have achieved a better performance than the best of
the baseline descriptors. Furthermore, over 78% (89 out of 114) of those cases are
from programs that were not evolved on the BrWiRo. More importantly is that the
programs evolved on the unrotated version (BrNoRo) show comparable or better
performance to the programs evolved on the rotated version. This supports the
observation that those descriptors are rotation-invariant as has been investigated
in Chapter 5. Similar to BrNoRo, using a 7 × 7 pixels window size show worse
performance than using 3× 3 pixels and 5× 5 pixels window sizes. Moreover, the
impact of the code length on the performance is minimal and increasing the length
has slightly improved the average accuracy.

7.4.2.3 The KyNoRo Dataset

The results in Table 7.4 and Figure 7.5 show the performance for classifying the
KyNoRo dataset using the programs evolved from the different source datasets.
Following the same pattern to the previous datasets, the programs evolved on
this dataset (KyNoRo) show better trend to classify the instances of the dataset
compared to other source datasets. Although the average performance of the
GP-criptorri evolved programs is not better than the best of the baseline methods
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Table 7.2: The average accuracy (%) of k-NN using descriptors evolved on six
datasets with different code length, source window size, and target window size
combinations on the BrNoRo dataset (x̄± s).

Window size Source dataset

Code source target BrNoRo BrWiRo KyNoRo KyWiRo OutexTC00 OutexTC10

7

3
3 89.4 ± 1.16 89.1 ± 1.10 89.1 ± 1.36 88.8 ± 1.35 87.2 ± 2.49 86.9 ± 2.46
5 87.4 ± 2.09 87.3 ± 1.81 87.1 ± 2.33 86.6 ± 2.49 81.8 ± 4.91 81.5 ± 5.04
7 83.5 ± 3.02 83.5 ± 2.65 82.7 ± 3.56 81.9 ± 4.26 73.4 ± 7.37 73.2 ± 7.66

5
3 89.8 ± 0.97 89.5 ± 0.92 88.7 ± 1.27 89.0 ± 1.33 88.7 ± 1.60 88.7 ± 1.83
5 90.1 ± 0.90 89.7 ± 0.80 87.2 ± 1.89 87.6 ± 2.19 85.4 ± 3.08 85.1 ± 3.73
7 88.0 ± 1.17 87.7 ± 1.20 84.1 ± 2.78 84.1 ± 3.38 78.3 ± 5.38 77.8 ± 6.12

7
3 89.4 ± 1.30 88.8 ± 1.39 88.0 ± 1.41 88.4 ± 1.44 88.9 ± 1.51 89.1 ± 1.38
5 90.1 ± 1.00 89.5 ± 0.98 86.5 ± 1.80 87.1 ± 2.09 85.5 ± 3.27 85.7 ± 2.87
7 88.7 ± 1.21 88.0 ± 1.17 83.2 ± 2.64 84.0 ± 3.15 78.5 ± 5.50 79.0 ± 5.10

8

3
3 89.6 ± 1.14 89.4 ± 0.97 89.2 ± 1.31 89.1 ± 1.37 87.7 ± 2.39 87.4 ± 2.53
5 87.8 ± 2.13 87.7 ± 1.86 87.2 ± 2.07 87.0 ± 2.44 82.5 ± 4.62 82.0 ± 5.08
7 84.1 ± 3.14 84.2 ± 2.85 83.1 ± 3.33 82.5 ± 4.07 74.4 ± 7.05 73.8 ± 7.80

5
3 89.9 ± 0.83 89.7 ± 0.86 89.1 ± 1.09 89.1 ± 1.23 89.0 ± 1.73 88.9 ± 1.70
5 90.2 ± 0.85 90.0 ± 0.80 87.7 ± 1.88 87.5 ± 2.19 85.2 ± 3.59 85.2 ± 3.75
7 88.3 ± 1.16 88.1 ± 1.15 84.4 ± 3.00 83.9 ± 3.35 78.3 ± 5.91 78.2 ± 6.17

7
3 89.5 ± 1.04 89.1 ± 1.28 88.5 ± 1.32 88.8 ± 1.33 89.2 ± 1.47 89.3 ± 1.46
5 90.2 ± 0.74 89.8 ± 0.87 87.3 ± 1.70 87.3 ± 2.02 86.0 ± 3.04 86.2 ± 2.92
7 89.0 ± 0.89 88.6 ± 1.03 84.3 ± 2.55 84.1 ± 3.04 79.3 ± 5.01 79.6 ± 4.91

9

3
3 90.0 ± 1.10 89.8 ± 1.00 89.5 ± 1.30 89.6 ± 1.28 88.2 ± 2.23 88.3 ± 2.25
5 88.3 ± 1.95 88.2 ± 1.66 87.5 ± 2.24 87.9 ± 2.12 83.4 ± 4.44 83.5 ± 4.09
7 84.8 ± 2.86 85.1 ± 2.38 83.5 ± 3.53 84.1 ± 3.47 75.5 ± 7.06 75.9 ± 6.38

5
3 90.3 ± 0.86 90.0 ± 0.97 89.5 ± 1.19 89.6 ± 1.23 89.5 ± 1.50 89.4 ± 1.45
5 90.6 ± 0.80 90.2 ± 0.81 88.2 ± 1.90 88.1 ± 2.20 86.4 ± 2.94 85.8 ± 3.40
7 88.5 ± 1.07 88.3 ± 1.08 85.2 ± 2.98 84.6 ± 3.37 80.0 ± 5.19 78.9 ± 5.65

7
3 89.8 ± 1.08 89.3 ± 1.25 88.9 ± 1.38 89.1 ± 1.39 89.7 ± 1.35 89.7 ± 1.30
5 90.4 ± 0.87 89.9 ± 0.89 87.8 ± 1.76 87.8 ± 2.20 87.1 ± 2.55 86.7 ± 2.75
7 89.1 ± 1.01 88.6 ± 1.05 85.0 ± 2.79 84.9 ± 3.26 81.1 ± 4.39 80.3 ± 4.90

(CLBP42,3 with 93.05% accuracy), over 48% (78 out of 162) of the cases show
over 84% accuracy on average. Generally, the window size has a small impact
between programs evolved on the same source dataset; however, smaller window
sizes show better performance than using larger ones. Using a larger feature vector
(code length) has positive influence on the average performance as presented in
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Figure 7.4: The performance of using individuals evolved on different datasets,
with different code lengths on the BrWiRo dataset using the same source and
target window sizes.
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Figure 7.5: The performance of using individuals evolved on different datasets,
with different code lengths on the KyNoRo dataset using the same source and
target window sizes.

Table 7.4. The programs evolved on OutexTC00 and OutexTC10 datasets show
worse performances compared to other datasets.

7.4.2.4 The KyWiRo Dataset

Table 7.5 presents the results obtained on the KyWiRo dataset using the GP-
criptorri programs that were evolved on the six source datasets. Compared to the
baseline methods, the results show that the achieved performance is not as good as
the best of the baseline method CLBP24,3 with 91.95% average accuracy. However,
over 87% (141 out of 162) of the situations have achieved over 80% accuracy on
average, and over 58% (83) of those 141 situation are above 85% accuracy. Apart
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Table 7.3: The average accuracy (%) of k-NN using descriptors evolved on six
datasets with different code length, source window size, and target window size
combinations on the BrWiRo dataset (x̄± s).

Window size Source dataset

Code source target BrNoRo BrWiRo KyNoRo KyWiRo OutexTC00 OutexTC10

7

3
3 89.8 ± 1.03 90.0 ± 0.89 88.9 ± 1.16 88.8 ± 1.16 87.8 ± 2.05 87.7 ± 2.03
5 88.1 ± 2.05 88.2 ± 1.77 87.8 ± 2.21 87.3 ± 2.44 81.1 ± 5.24 80.9 ± 5.45
7 83.7 ± 3.45 84.1 ± 3.07 83.3 ± 3.70 82.0 ± 4.53 71.8 ± 7.62 71.5 ± 7.79

5
3 89.9 ± 0.95 89.5 ± 0.97 88.3 ± 1.37 88.6 ± 1.30 88.9 ± 1.32 88.8 ± 1.58
5 90.7 ± 0.78 90.4 ± 0.73 87.9 ± 2.01 88.2 ± 2.10 84.5 ± 3.21 84.2 ± 3.87
7 88.7 ± 1.05 88.5 ± 1.11 84.5 ± 3.02 84.4 ± 3.38 76.6 ± 5.54 75.9 ± 6.36

7
3 88.8 ± 1.51 88.1 ± 1.71 87.8 ± 1.53 88.2 ± 1.40 89.0 ± 1.34 89.1 ± 1.17
5 90.5 ± 1.07 89.9 ± 1.11 87.1 ± 2.17 87.9 ± 2.26 84.7 ± 3.31 85.0 ± 3.00
7 89.1 ± 1.19 88.6 ± 1.18 83.8 ± 2.97 84.6 ± 3.28 76.8 ± 5.58 77.3 ± 5.33

8

3
3 89.8 ± 1.04 90.2 ± 0.78 89.0 ± 1.11 89.1 ± 1.19 88.2 ± 1.98 87.9 ± 2.11
5 88.2 ± 2.28 88.5 ± 1.84 88.0 ± 2.02 87.7 ± 2.36 81.7 ± 4.96 81.2 ± 5.46
7 84.4 ± 3.62 84.9 ± 3.10 83.6 ± 3.56 82.8 ± 4.18 72.7 ± 7.20 72.1 ± 7.93

5
3 90.0 ± 0.79 89.7 ± 0.96 88.7 ± 1.19 88.8 ± 1.26 89.1 ± 1.45 88.9 ± 1.46
5 90.8 ± 0.74 90.7 ± 0.70 88.3 ± 2.01 88.1 ± 2.31 84.4 ± 3.74 84.3 ± 3.95
7 89.0 ± 1.02 88.9 ± 0.96 85.1 ± 3.14 84.2 ± 3.57 76.7 ± 6.23 76.6 ± 6.44

7
3 89.1 ± 1.40 88.6 ± 1.51 88.3 ± 1.35 88.5 ± 1.30 89.2 ± 1.37 89.2 ± 1.25
5 90.7 ± 0.77 90.3 ± 0.92 88.0 ± 1.89 88.1 ± 2.12 85.2 ± 3.17 85.3 ± 2.98
7 89.4 ± 0.85 89.1 ± 0.98 85.2 ± 2.76 84.7 ± 3.18 77.6 ± 5.28 77.9 ± 5.09

9

3
3 90.1 ± 0.98 90.5 ± 0.74 89.3 ± 1.13 89.4 ± 1.10 88.5 ± 1.81 88.7 ± 1.85
5 88.8 ± 1.96 89.1 ± 1.55 88.2 ± 2.11 88.5 ± 1.99 82.4 ± 4.73 82.7 ± 4.45
7 85.2 ± 3.30 85.9 ± 2.54 84.1 ± 3.66 84.3 ± 3.63 73.8 ± 7.12 74.1 ± 6.56

5
3 90.2 ± 0.83 89.9 ± 1.01 89.0 ± 1.23 89.1 ± 1.24 89.4 ± 1.26 89.4 ± 1.30
5 91.1 ± 0.69 90.8 ± 0.74 88.8 ± 1.89 88.6 ± 2.17 85.5 ± 3.16 84.8 ± 3.47
7 89.2 ± 0.96 89.0 ± 0.97 85.8 ± 3.05 85.0 ± 3.47 78.3 ± 5.43 77.2 ± 5.78

7
3 89.2 ± 1.50 88.7 ± 1.67 88.6 ± 1.43 88.8 ± 1.32 89.4 ± 1.17 89.5 ± 1.07
5 90.8 ± 0.93 90.4 ± 0.96 88.6 ± 1.84 88.5 ± 2.23 86.3 ± 2.52 86.0 ± 2.75
7 89.5 ± 1.03 89.2 ± 1.04 85.9 ± 2.88 85.5 ± 3.26 79.5 ± 4.57 78.6 ± 5.14

from OutexTC00 and OutexTC10 in some cases, the majority of the programs
evolved on other than KyWiRo have achieved a reasonably good performance.
Similar to BrWiRo, the programs evolved on the unrotated version of Kylberg have
achieved similar or better performance even though they have not been evolved on
any rotated instances as presented in Figure 7.6. The window size has a negative
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Table 7.4: The average accuracy (%) of k-NN using descriptors evolved on six
datasets with different code length, source window size, and target window size
combinations on the KyNoRo dataset (x̄± s).

Window size Source dataset

Code source target BrNoRo BrWiRo KyNoRo KyWiRo OutexTC00 OutexTC10

7

3
3 85.7 ± 1.81 85.8 ± 1.66 86.2 ± 1.20 85.9 ± 1.37 81.3 ± 2.80 81.4 ± 2.51
5 84.0 ± 2.17 84.6 ± 1.97 83.2 ± 2.18 82.7 ± 2.57 74.3 ± 4.34 74.2 ± 4.15
7 79.1 ± 3.86 80.9 ± 2.87 78.3 ± 3.26 77.8 ± 4.02 64.5 ± 6.83 64.3 ± 6.67

5
3 85.9 ± 1.65 85.2 ± 1.70 86.8 ± 1.20 86.6 ± 1.18 83.5 ± 1.88 83.5 ± 1.96
5 84.5 ± 1.88 83.7 ± 2.13 86.3 ± 1.17 85.4 ± 1.50 77.6 ± 3.12 77.6 ± 3.28
7 81.4 ± 2.36 80.9 ± 2.83 83.4 ± 1.81 81.8 ± 2.39 68.6 ± 5.18 68.6 ± 5.58

7
3 84.9 ± 2.01 83.9 ± 2.24 85.9 ± 1.50 86.4 ± 1.35 83.7 ± 1.72 84.1 ± 1.66
5 83.0 ± 2.32 82.3 ± 2.65 86.7 ± 0.97 86.3 ± 1.12 78.0 ± 3.11 78.6 ± 3.24
7 79.7 ± 2.88 79.4 ± 3.20 85.0 ± 1.08 84.0 ± 1.50 69.4 ± 5.18 70.0 ± 5.65

8

3
3 86.3 ± 1.66 86.3 ± 1.61 86.9 ± 1.21 86.3 ± 1.31 82.1 ± 2.69 81.8 ± 3.03
5 84.6 ± 2.09 85.2 ± 1.86 84.2 ± 1.85 83.3 ± 2.16 75.4 ± 4.11 75.3 ± 4.49
7 80.1 ± 3.44 81.7 ± 2.83 79.8 ± 2.81 78.6 ± 3.37 66.1 ± 6.33 66.2 ± 7.00

5
3 86.3 ± 1.34 85.7 ± 1.52 87.2 ± 1.03 87.1 ± 1.06 84.2 ± 2.04 84.3 ± 1.82
5 85.1 ± 1.56 84.7 ± 1.81 86.6 ± 1.01 85.9 ± 1.29 78.7 ± 3.41 78.8 ± 3.40
7 82.0 ± 2.18 82.0 ± 2.35 83.9 ± 1.48 82.6 ± 2.02 69.9 ± 5.68 70.0 ± 5.72

7
3 85.6 ± 1.63 84.8 ± 2.14 86.4 ± 1.36 86.7 ± 1.28 84.4 ± 1.79 84.7 ± 1.61
5 84.0 ± 2.06 83.4 ± 2.32 87.0 ± 0.82 86.4 ± 1.08 79.3 ± 3.03 79.6 ± 2.85
7 80.9 ± 2.57 80.6 ± 2.80 85.2 ± 0.93 84.2 ± 1.35 71.3 ± 4.98 71.5 ± 4.77

9

3
3 87.1 ± 1.62 87.0 ± 1.55 87.3 ± 1.16 86.9 ± 1.17 82.7 ± 2.56 82.9 ± 2.72
5 85.5 ± 1.92 85.6 ± 1.82 84.5 ± 1.99 83.8 ± 2.20 76.5 ± 4.16 76.6 ± 3.94
7 81.2 ± 3.11 82.1 ± 2.66 80.1 ± 3.07 79.1 ± 3.38 67.3 ± 6.65 67.7 ± 6.20

5
3 86.9 ± 1.39 86.2 ± 1.58 87.5 ± 1.16 87.4 ± 1.08 84.8 ± 1.73 84.7 ± 1.70
5 85.4 ± 1.65 84.8 ± 1.89 86.9 ± 1.11 86.3 ± 1.24 79.7 ± 3.09 79.1 ± 3.17
7 82.3 ± 2.32 82.0 ± 2.54 84.2 ± 1.61 83.0 ± 1.93 71.7 ± 5.15 70.7 ± 5.35

7
3 85.9 ± 1.71 85.1 ± 2.10 86.8 ± 1.45 87.1 ± 1.34 85.1 ± 1.60 85.2 ± 1.56
5 84.2 ± 2.14 83.6 ± 2.51 87.3 ± 0.87 86.8 ± 1.12 80.3 ± 2.92 80.3 ± 3.13
7 81.1 ± 2.66 80.9 ± 3.01 85.5 ± 0.93 84.5 ± 1.47 72.6 ± 4.75 72.4 ± 5.22

influence on the performance as increasing the window size, generally, degraded
the accuracy. The code length has a similar impact to the previous datasets on the
performance.
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Figure 7.6: The performance of using individuals evolved on different datasets,
with different code lengths on the KyWiRo dataset using the same source and
target window sizes.

7.4.2.5 The KySinHw Dataset

The average classification accuracies of using the programs evolved on different
source datasets to classify the KySinHw dataset are presented in Table 7.6 and
Figure 7.7. As presented in Table 7.1, CLBP24,3 has scored the best performance
with 96.63% accuracy on average. The programs evolved on different source datasets
have achieved a very good level of accuracy on this dataset, where over 86% (140 out
of 162) of the cases show average accuracy higher than 90%. It important to notice
that this dataset (KySinHw) is not one of the source datasets; which means, all the
descriptors have evolved on datasets that are completely different from the target
dataset. Figure 7.7 shows that the median performance of those automatically
evolved image descriptors, apart from OutexTC00 and OutexTC10 with a 3× 3
pixels windows size, is above 90%. Increasing the code length has positive impact
on the performance of the evolved programs. Furthermore, increasing the window
size from 3 × 3 pixels to 5 pixels shows a positive influence on the performance,
whereas increasing the window size from 5× 5 pixels to 7× 7 pixels have slightly
deteriorated the performance.

7.4.2.6 The OutexTC00 Dataset

Table 7.7 and Figure 7.8 present the results obtained from using the descriptors
evolved on the six source datasets to classify the OutexTC00 dataset. The LBPu2

8,1
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Table 7.5: The average accuracy (%) of k-NN using descriptors evolved on six
datasets with different code length, source window size, and target window size
combinations on the KyWiRo dataset (x̄± s).

Window size Source dataset

Code source target BrNoRo BrWiRo KyNoRo KyWiRo OutexTC00 OutexTC10

7

3
3 85.2 ± 1.86 85.5 ± 1.72 86.2 ± 1.11 86.2 ± 1.14 84.0 ± 2.00 84.3 ± 1.72
5 85.6 ± 1.74 86.1 ± 1.36 85.7 ± 1.45 85.5 ± 1.72 79.4 ± 3.29 79.6 ± 2.93
7 81.2 ± 3.08 82.5 ± 2.19 81.8 ± 2.29 81.6 ± 2.63 71.2 ± 5.48 71.4 ± 5.02

5
3 85.3 ± 1.93 84.6 ± 1.99 86.1 ± 1.20 86.3 ± 1.02 85.4 ± 1.15 85.3 ± 1.25
5 85.5 ± 1.52 84.8 ± 2.00 87.2 ± 0.94 86.9 ± 1.05 82.1 ± 2.25 82.0 ± 2.34
7 82.4 ± 1.87 81.8 ± 2.53 84.6 ± 1.32 84.0 ± 1.60 75.1 ± 3.68 75.0 ± 3.85

7
3 84.2 ± 2.29 83.2 ± 2.70 84.9 ± 1.68 85.9 ± 1.41 85.3 ± 1.06 85.4 ± 1.07
5 83.4 ± 2.26 82.7 ± 2.70 86.9 ± 1.01 87.3 ± 0.87 82.4 ± 2.24 82.7 ± 2.32
7 80.0 ± 2.66 79.3 ± 3.09 85.0 ± 0.93 85.2 ± 1.00 75.7 ± 3.51 76.2 ± 3.77

8

3
3 85.8 ± 1.70 85.8 ± 1.65 86.6 ± 1.13 86.6 ± 1.04 84.5 ± 1.90 84.3 ± 2.20
5 86.1 ± 1.64 86.6 ± 1.35 86.5 ± 1.25 86.0 ± 1.43 80.4 ± 2.83 80.4 ± 3.19
7 82.2 ± 2.68 83.1 ± 2.07 82.9 ± 1.89 82.3 ± 2.14 72.7 ± 4.99 72.8 ± 5.22

5
3 85.6 ± 1.63 85.1 ± 1.76 86.4 ± 1.10 86.6 ± 0.92 85.7 ± 1.21 85.7 ± 1.10
5 86.1 ± 1.42 85.6 ± 1.62 87.6 ± 0.80 87.5 ± 0.81 82.9 ± 2.29 83.0 ± 2.37
7 83.0 ± 1.82 82.7 ± 1.89 85.1 ± 1.00 84.7 ± 1.17 76.1 ± 3.97 76.3 ± 4.02

7
3 84.8 ± 2.07 84.2 ± 2.51 85.4 ± 1.57 86.0 ± 1.30 85.7 ± 1.10 85.8 ± 1.03
5 84.5 ± 2.02 83.9 ± 2.45 87.3 ± 0.87 87.5 ± 0.83 83.2 ± 2.22 83.5 ± 2.02
7 81.3 ± 2.35 80.7 ± 2.70 85.4 ± 0.77 85.4 ± 0.94 77.1 ± 3.55 77.3 ± 3.25

9

3
3 86.5 ± 1.67 86.6 ± 1.58 86.9 ± 1.06 87.0 ± 0.94 84.9 ± 1.64 85.1 ± 1.76
5 86.7 ± 1.42 87.0 ± 1.29 86.6 ± 1.26 86.3 ± 1.42 81.0 ± 2.92 81.3 ± 2.68
7 82.8 ± 2.36 83.5 ± 1.95 83.0 ± 1.92 82.6 ± 2.28 73.7 ± 4.94 73.9 ± 4.42

5
3 86.2 ± 1.62 85.6 ± 1.83 86.8 ± 1.17 87.0 ± 1.00 86.1 ± 1.05 86.0 ± 0.99
5 86.4 ± 1.38 85.9 ± 1.71 87.8 ± 0.78 87.7 ± 0.75 83.4 ± 2.07 83.3 ± 2.11
7 83.3 ± 1.84 82.9 ± 2.12 85.3 ± 1.01 85.1 ± 1.07 77.2 ± 3.48 76.7 ± 3.52

7
3 85.1 ± 2.07 84.4 ± 2.45 85.9 ± 1.65 86.4 ± 1.31 86.1 ± 1.09 86.1 ± 0.97
5 84.7 ± 2.10 84.3 ± 2.56 87.5 ± 0.88 87.7 ± 0.88 83.9 ± 2.02 84.0 ± 2.13
7 81.5 ± 2.38 81.1 ± 3.02 85.7 ± 0.82 85.7 ± 0.93 78.0 ± 3.23 77.9 ± 3.44

descriptor with 94.77% average accuracy represents the best method amongst all
other descriptors on this dataset. The vast majority of the descriptors evolved
by GP-criptorri have achieved over 80% accuracy and more than 36% (59 out
of 162) of the cases have a higher performance than 85% accuracy as presented
in Table 7.7. Figure 7.8 shows that some descriptors that were evolved on the
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Figure 7.7: The performance of using individuals evolved on different datasets,
with different code lengths on the KySinHw dataset using the same source and
target window sizes.
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Figure 7.8: The performance of using individuals evolved on different datasets,
with different code lengths on the OutexTC00 dataset using the same source and
target window sizes.

Brodatz (BrNoRo and BrWiRo) and Kylberg (KyNoRo and KyWiRo) datasets
have achieved even higher (over 90%) accuracy than those descriptors evolved on
OutexTC00. Generally, increasing the window size has negative impact on the
performance of those descriptors; whilst increasing the code length shows a positive
influence on the performance.

7.4.2.7 The OutexTC10 Dataset

On OutexTC10, the performances of using those automatically evolved descriptors
are presented in Table 7.8 and Figure 7.9. On average, none of the experimented
descriptors (baseline and GP-criptorri descriptors) have achieved higher perfor-
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Table 7.6: The average accuracy (%) of k-NN using descriptors evolved on six
datasets with different code length, source window size, and target window size
combinations on the KySinHw dataset (x̄± s).

Window size Source dataset

Code source target BrNoRo BrWiRo KyNoRo KyWiRo OutexTC00 OutexTC10

7

3
3 91.7 ± 0.88 91.6 ± 0.84 91.1 ± 0.82 91.0 ± 0.87 88.8 ± 1.70 88.8 ± 1.68
5 92.3 ± 1.18 92.4 ± 1.13 91.8 ± 1.08 91.6 ± 1.21 88.7 ± 2.75 88.7 ± 2.73
7 91.5 ± 1.58 92.0 ± 1.35 91.3 ± 1.44 91.2 ± 1.68 86.4 ± 4.70 86.3 ± 4.65

5
3 91.1 ± 1.17 90.8 ± 1.25 91.0 ± 1.01 91.1 ± 0.96 89.6 ± 1.33 89.6 ± 1.35
5 92.4 ± 1.12 92.1 ± 1.14 92.3 ± 0.92 92.3 ± 1.09 90.5 ± 1.72 90.4 ± 1.87
7 92.4 ± 0.99 92.2 ± 1.00 92.0 ± 1.05 91.8 ± 1.37 89.4 ± 2.47 89.3 ± 2.83

7
3 90.1 ± 1.41 89.9 ± 1.60 90.2 ± 1.28 90.8 ± 1.14 89.7 ± 1.15 89.9 ± 1.09
5 91.8 ± 1.29 91.5 ± 1.39 91.9 ± 1.09 92.4 ± 1.07 90.7 ± 1.56 90.9 ± 1.57
7 91.9 ± 1.18 91.6 ± 1.21 92.0 ± 1.05 92.2 ± 1.13 89.7 ± 2.41 90.1 ± 2.35

8

3
3 92.0 ± 0.82 91.9 ± 0.77 91.6 ± 0.86 91.3 ± 0.89 89.6 ± 1.57 89.4 ± 1.67
5 92.6 ± 1.06 92.7 ± 0.99 92.2 ± 1.05 91.9 ± 1.15 89.7 ± 2.33 89.5 ± 2.64
7 92.0 ± 1.47 92.3 ± 1.31 91.8 ± 1.29 91.6 ± 1.53 87.8 ± 3.94 87.6 ± 4.41

5
3 91.4 ± 0.97 91.2 ± 1.05 91.3 ± 0.86 91.4 ± 0.85 90.3 ± 1.34 90.3 ± 1.13
5 92.7 ± 0.93 92.4 ± 1.00 92.5 ± 0.89 92.5 ± 0.96 91.2 ± 1.75 91.3 ± 1.51
7 92.7 ± 0.87 92.6 ± 0.89 92.2 ± 1.03 92.1 ± 1.18 90.2 ± 2.56 90.4 ± 2.29

7
3 90.7 ± 1.33 90.3 ± 1.50 90.6 ± 1.15 91.0 ± 1.06 90.4 ± 1.06 90.4 ± 1.04
5 92.1 ± 1.18 91.9 ± 1.32 92.2 ± 1.01 92.5 ± 0.99 91.4 ± 1.49 91.4 ± 1.42
7 92.1 ± 1.05 92.0 ± 1.14 92.2 ± 0.95 92.3 ± 1.10 90.7 ± 2.25 90.8 ± 2.01

9

3
3 92.3 ± 0.72 92.2 ± 0.73 91.9 ± 0.81 91.7 ± 0.82 90.0 ± 1.59 90.1 ± 1.53
5 93.1 ± 0.92 93.1 ± 0.84 92.5 ± 1.09 92.3 ± 1.05 90.0 ± 2.32 90.3 ± 2.24
7 92.4 ± 1.36 92.8 ± 1.00 92.0 ± 1.44 92.0 ± 1.41 88.3 ± 3.89 88.6 ± 3.62

5
3 91.7 ± 1.03 91.5 ± 1.06 91.6 ± 0.92 91.7 ± 0.92 90.7 ± 1.17 90.6 ± 1.07
5 93.0 ± 0.89 92.8 ± 1.00 92.8 ± 0.89 92.9 ± 0.92 91.6 ± 1.40 91.6 ± 1.41
7 92.9 ± 0.80 92.8 ± 0.90 92.5 ± 0.97 92.6 ± 1.01 90.9 ± 1.90 90.8 ± 2.05

7
3 90.9 ± 1.44 90.6 ± 1.51 91.0 ± 1.20 91.3 ± 1.07 90.7 ± 1.03 90.7 ± 0.97
5 92.5 ± 1.17 92.2 ± 1.28 92.6 ± 1.01 92.8 ± 1.03 91.8 ± 1.38 91.8 ± 1.34
7 92.5 ± 1.03 92.2 ± 1.15 92.6 ± 0.96 92.6 ± 1.11 91.2 ± 1.97 91.3 ± 1.94

mance than the 88.05% that was scored by CLBP24,3. However, all the cases
presented in Table 7.8 show that the automatically evolved programs on average
have achieved better performance than the second best domain-expert designed
descriptor. Moreover, over 54% (88 out of 162) of the cases have achieved over
84% accuracy on average. Figure 7.9 shows that OutexTC10 is following the same
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Table 7.7: The average accuracy (%) of k-NN using descriptors evolved on six
datasets with different code length, source window size, and target window size
combinations on the OutexTC00 dataset (x̄± s).

Window size Source dataset

Code source target BrNoRo BrWiRo KyNoRo KyWiRo OutexTC00 OutexTC10

7

3
3 84.0 ± 2.18 83.8 ± 2.06 84.8 ± 2.17 85.7 ± 1.85 86.2 ± 1.36 86.1 ± 1.07
5 83.5 ± 2.33 83.6 ± 2.09 83.9 ± 2.01 84.6 ± 1.82 84.8 ± 1.58 84.9 ± 1.31
7 83.2 ± 2.94 83.6 ± 2.62 83.9 ± 2.24 84.4 ± 2.14 83.7 ± 2.18 84.0 ± 1.98

5
3 83.0 ± 3.64 82.2 ± 3.60 82.7 ± 4.13 85.1 ± 3.27 87.1 ± 0.95 87.1 ± 1.11
5 82.9 ± 3.17 81.9 ± 3.40 82.2 ± 3.06 83.8 ± 2.51 86.3 ± 0.80 86.3 ± 0.87
7 82.8 ± 3.65 81.5 ± 4.05 82.8 ± 2.92 84.1 ± 2.35 85.9 ± 0.98 86.0 ± 0.92

7
3 81.4 ± 5.23 79.9 ± 6.63 78.8 ± 6.29 82.7 ± 4.79 87.0 ± 1.12 87.2 ± 1.09
5 80.8 ± 5.44 79.4 ± 6.18 79.6 ± 4.46 82.5 ± 3.35 86.4 ± 0.84 86.6 ± 0.66
7 79.6 ± 6.03 78.1 ± 6.86 80.2 ± 4.62 83.5 ± 2.76 86.3 ± 1.02 86.6 ± 0.80

8

3
3 84.5 ± 1.98 84.0 ± 1.90 85.1 ± 2.42 86.1 ± 1.77 86.5 ± 1.22 86.3 ± 1.39
5 83.9 ± 2.00 83.9 ± 1.88 84.2 ± 2.09 85.0 ± 1.66 85.2 ± 1.50 85.0 ± 1.73
7 84.1 ± 2.58 84.1 ± 2.39 84.3 ± 2.05 84.9 ± 1.95 84.1 ± 2.16 84.0 ± 2.39

5
3 83.4 ± 3.11 82.3 ± 3.79 83.4 ± 3.72 85.0 ± 3.12 87.3 ± 1.01 87.4 ± 0.94
5 83.3 ± 2.70 82.3 ± 3.31 82.8 ± 2.74 84.1 ± 2.27 86.5 ± 0.86 86.6 ± 0.84
7 83.4 ± 2.99 82.1 ± 3.83 83.6 ± 2.55 84.6 ± 1.85 86.2 ± 1.06 86.2 ± 0.95

7
3 81.9 ± 4.56 80.6 ± 5.82 80.1 ± 5.59 82.7 ± 4.51 87.2 ± 1.03 87.4 ± 0.98
5 81.6 ± 4.48 80.3 ± 5.56 80.2 ± 4.15 82.6 ± 3.33 86.7 ± 0.73 86.7 ± 0.70
7 81.1 ± 4.81 79.4 ± 6.17 81.2 ± 4.30 83.7 ± 3.06 86.8 ± 0.92 86.8 ± 0.86

9

3
3 85.2 ± 1.83 84.8 ± 1.92 85.7 ± 2.21 86.8 ± 1.63 86.8 ± 1.08 86.7 ± 1.31
5 84.6 ± 1.79 84.5 ± 1.77 84.5 ± 1.94 85.5 ± 1.51 85.6 ± 1.23 85.6 ± 1.36
7 84.5 ± 2.42 84.6 ± 2.41 84.7 ± 2.11 85.3 ± 1.68 84.7 ± 1.69 84.8 ± 1.80

5
3 84.2 ± 3.17 83.3 ± 3.50 84.4 ± 3.66 85.8 ± 2.89 87.6 ± 0.90 87.6 ± 0.95
5 83.9 ± 2.78 83.0 ± 3.35 83.7 ± 2.77 84.6 ± 2.23 86.8 ± 0.83 86.8 ± 0.82
7 83.9 ± 3.08 82.7 ± 3.87 84.2 ± 2.54 85.2 ± 1.92 86.5 ± 0.92 86.5 ± 0.91

7
3 82.8 ± 5.01 81.3 ± 6.12 81.1 ± 5.86 83.7 ± 4.59 87.7 ± 0.90 87.7 ± 0.98
5 82.4 ± 4.43 81.0 ± 5.48 81.3 ± 4.21 83.3 ± 3.18 87.0 ± 0.76 87.0 ± 0.76
7 81.7 ± 4.72 80.2 ± 5.95 82.1 ± 4.16 84.3 ± 2.66 87.0 ± 0.86 87.0 ± 0.80

pattern of the unrotated version of this dataset, i.e., OutexTC00, of the window size
and code length impacts on the performance. Noticeably, over 59% (16 out of 27)
of the OutexTC00 cases (the unrotated version) have similar or better performance
than the programs evolved on OutexTC10 as presented in Table 7.8.
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Figure 7.9: The performance of using individuals evolved on different datasets,
with different code lengths on the OutexTC10 dataset using the same source and
target window sizes.

7.4.2.8 The CUReT Dataset

The results obtained from using different image descriptors on CUReT are presented
in Table 7.9 and Figure 7.10. The CUReT dataset is more challenging than all
other texture datasets as it comprises a very large number of classes (61 in total).
Similar to KySinHw, the CUReT dataset was not used as a source dataset to evolve
image descriptors, and hence, all the programs were evolved on other datasets.
On average, all baseline descriptors have outperformed the automatically evolved
image descriptors. GP-criptorri programs have struggled to achieve higher than
35% average accuracy on this dataset, whereas the minimum reported average
performance by the baseline methods is 44.45%. Increasing the number of features,
i.e., the number of children under code, the performance has improved compared
to those programs with small number of features. The use of 5× 5 pixels windows
have shown to achieve better performance than the other two window sizes as
depicted in Figure 7.10.

7.4.2.9 The Coins Dataset

Table 7.10 and Figure 7.11 show the results of applying classifying the Coins dataset
by k-NN using the features of the automatically evolved image descriptors on the
six source datasets. This dataset comprises only two classes and the task is to
discriminate between a 5 cent New Zealand coin head and tail instances. The
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Table 7.8: The average accuracy (%) of k-NN using descriptors evolved on six
datasets with different code length, source window size, and target window size
combinations on the OutexTC10 dataset (x̄± s).

Window size Source dataset

Code source target BrNoRo BrWiRo KyNoRo KyWiRo OutexTC00 OutexTC10

7

3
3 83.5 ± 2.17 83.5 ± 2.03 84.0 ± 2.09 84.9 ± 1.69 85.6 ± 1.13 85.7 ± 0.83
5 84.6 ± 2.14 84.8 ± 1.90 85.0 ± 1.74 85.5 ± 1.44 85.8 ± 1.33 85.9 ± 1.06
7 83.0 ± 2.84 83.5 ± 2.48 83.7 ± 2.26 84.1 ± 2.16 83.5 ± 2.08 83.8 ± 1.84

5
3 81.9 ± 4.15 81.2 ± 4.24 80.2 ± 4.87 83.0 ± 3.59 86.2 ± 0.71 86.1 ± 0.84
5 83.1 ± 3.22 82.1 ± 3.45 82.4 ± 3.21 84.1 ± 2.43 86.8 ± 0.60 86.8 ± 0.64
7 82.0 ± 3.52 80.6 ± 4.07 82.3 ± 3.00 83.8 ± 2.39 85.5 ± 1.02 85.6 ± 1.00

7
3 79.2 ± 6.18 77.8 ± 7.72 74.9 ± 8.03 79.6 ± 5.91 86.0 ± 0.85 86.1 ± 0.72
5 79.8 ± 5.73 78.5 ± 6.54 79.1 ± 5.11 82.4 ± 3.47 86.8 ± 0.70 86.8 ± 0.61
7 77.9 ± 6.28 76.5 ± 7.04 79.5 ± 4.96 82.9 ± 2.86 85.8 ± 1.11 86.0 ± 0.94

8

3
3 84.1 ± 1.87 83.8 ± 1.83 84.4 ± 2.16 85.4 ± 1.52 85.9 ± 0.99 85.8 ± 1.15
5 85.2 ± 1.79 85.3 ± 1.66 85.3 ± 1.72 86.0 ± 1.28 86.1 ± 1.28 86.0 ± 1.47
7 84.0 ± 2.45 84.1 ± 2.30 84.3 ± 2.01 84.7 ± 1.91 84.0 ± 2.06 83.9 ± 2.28

5
3 82.6 ± 3.50 81.5 ± 4.30 81.1 ± 4.40 83.1 ± 3.25 86.3 ± 0.83 86.3 ± 0.70
5 83.7 ± 2.77 82.7 ± 3.46 83.1 ± 2.75 84.4 ± 2.12 87.0 ± 0.65 87.0 ± 0.60
7 82.7 ± 3.00 81.5 ± 3.87 83.2 ± 2.56 84.3 ± 1.84 85.9 ± 1.02 86.0 ± 0.94

7
3 80.2 ± 5.47 78.9 ± 6.87 76.7 ± 7.15 79.9 ± 5.53 86.2 ± 0.82 86.3 ± 0.76
5 81.1 ± 4.63 79.8 ± 5.86 80.0 ± 4.67 82.5 ± 3.51 87.1 ± 0.62 87.1 ± 0.61
7 79.7 ± 4.87 78.1 ± 6.25 80.7 ± 4.49 83.1 ± 3.05 86.3 ± 1.01 86.4 ± 0.87

9

3
3 84.7 ± 1.77 84.6 ± 1.84 84.9 ± 1.96 85.9 ± 1.40 86.1 ± 0.77 86.2 ± 0.99
5 85.8 ± 1.51 85.7 ± 1.56 85.7 ± 1.60 86.4 ± 1.08 86.4 ± 0.98 86.4 ± 1.11
7 84.5 ± 2.27 84.5 ± 2.24 84.6 ± 2.12 85.1 ± 1.61 84.4 ± 1.65 84.6 ± 1.73

5
3 83.3 ± 3.55 82.6 ± 3.87 82.3 ± 4.11 83.9 ± 3.13 86.5 ± 0.62 86.5 ± 0.65
5 84.3 ± 2.80 83.3 ± 3.50 84.0 ± 2.74 85.0 ± 2.15 87.2 ± 0.61 87.2 ± 0.60
7 83.3 ± 3.05 81.9 ± 3.87 83.9 ± 2.45 84.9 ± 1.91 86.2 ± 0.94 86.2 ± 0.91

7
3 81.2 ± 5.88 79.7 ± 7.23 77.9 ± 7.31 81.0 ± 5.65 86.5 ± 0.63 86.4 ± 0.74
5 81.8 ± 4.86 80.5 ± 5.87 81.1 ± 4.71 83.4 ± 3.32 87.3 ± 0.61 87.3 ± 0.64
7 80.3 ± 4.97 78.8 ± 6.21 81.6 ± 4.24 83.8 ± 2.81 86.6 ± 0.91 86.6 ± 0.84

best average performance reported on this dataset by the baseline descriptors is
65.37% (CLBP24,3). GP-criptorri descriptors on the other hand, have outperformed
all baseline methods in over 89% (145 out of 162) of the cases as presented in
Table 7.10. Unlike previous datasets, increasing the code length shows negative
influence on the performance; whereas using large window sizes tend to result in
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Figure 7.10: The performance of using individuals evolved on different datasets,
with different code lengths on the CUReT dataset using the same source and
target window sizes.
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Figure 7.11: The performance of using individuals evolved on different datasets,
with different code lengths on the Coins dataset using the same source and target
window sizes.

better performance than using small windows as presented in Figure 7.11. This
behaviour was expected as it has been previously observed (see Section 5.4.3on
page 162). Over 15% (25 out of 162) of the cases in Table 7.10 have a higher
performance than 70% accuracy on average.

7.4.2.10 The Faces Dataset

The results on the Faces dataset are presented in Table 7.11 and Figure 7.12.
Similar to the Coins dataset, the Faces dataset comprises only two classes and the
task is to classify those instances that show a face from others, i.e., a non-face.
The majority of the automatically evolved descriptors have achieved above 60%
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Table 7.9: The average accuracy (%) of k-NN using descriptors evolved on six
datasets with different code length, source window size, and target window size
combinations on the CUReT dataset (x̄± s).

Window size Source dataset

Code source target BrNoRo BrWiRo KyNoRo KyWiRo OutexTC00 OutexTC10

7

3
3 32.8 ± 0.93 32.7 ± 0.86 33.2 ± 1.00 33.0 ± 1.05 32.4 ± 1.35 32.3 ± 1.31
5 32.3 ± 1.53 32.3 ± 1.31 32.6 ± 1.55 32.7 ± 1.68 31.8 ± 2.23 31.6 ± 2.24
7 30.9 ± 2.00 30.9 ± 1.74 31.1 ± 1.96 31.3 ± 2.13 30.0 ± 2.76 29.8 ± 2.80

5
3 33.5 ± 0.94 33.4 ± 0.88 32.8 ± 0.99 33.1 ± 1.03 32.8 ± 1.18 32.8 ± 1.29
5 34.0 ± 1.12 33.9 ± 1.01 32.7 ± 1.43 33.2 ± 1.63 33.0 ± 1.90 32.9 ± 2.11
7 33.3 ± 1.31 33.3 ± 1.22 31.4 ± 1.78 32.0 ± 1.99 31.7 ± 2.28 31.5 ± 2.59

7
3 33.6 ± 1.05 33.2 ± 1.08 32.3 ± 0.96 32.6 ± 1.09 32.5 ± 1.15 32.5 ± 1.14
5 34.3 ± 1.22 34.0 ± 1.19 32.2 ± 1.31 32.8 ± 1.53 32.7 ± 1.84 32.7 ± 1.80
7 33.6 ± 1.41 33.4 ± 1.29 31.1 ± 1.63 31.8 ± 1.86 31.5 ± 2.36 31.5 ± 2.34

8

3
3 33.2 ± 0.92 33.0 ± 0.87 33.4 ± 0.97 33.3 ± 1.02 32.7 ± 1.36 32.6 ± 1.40
5 32.7 ± 1.54 32.6 ± 1.32 32.8 ± 1.57 33.0 ± 1.56 32.2 ± 2.25 32.0 ± 2.37
7 31.4 ± 2.00 31.4 ± 1.64 31.5 ± 2.04 31.8 ± 1.97 30.6 ± 2.75 30.4 ± 2.85

5
3 33.7 ± 0.88 33.7 ± 0.86 33.1 ± 0.96 33.2 ± 1.12 32.9 ± 1.26 32.9 ± 1.25
5 34.2 ± 1.11 34.2 ± 1.03 33.1 ± 1.43 33.2 ± 1.68 33.1 ± 2.08 33.1 ± 2.12
7 33.6 ± 1.38 33.6 ± 1.25 31.9 ± 1.72 32.1 ± 1.99 31.9 ± 2.61 31.9 ± 2.63

7
3 33.9 ± 0.90 33.8 ± 1.06 32.7 ± 0.96 32.8 ± 1.00 32.7 ± 1.19 32.8 ± 1.08
5 34.6 ± 1.05 34.5 ± 1.10 32.8 ± 1.28 32.9 ± 1.41 33.1 ± 1.94 33.1 ± 1.80
7 34.0 ± 1.20 34.0 ± 1.23 31.9 ± 1.56 31.9 ± 1.72 32.0 ± 2.44 32.1 ± 2.33

9

3
3 33.4 ± 0.94 33.3 ± 0.85 33.6 ± 1.07 33.7 ± 1.07 32.9 ± 1.27 32.9 ± 1.19
5 32.9 ± 1.55 33.0 ± 1.29 33.1 ± 1.57 33.6 ± 1.52 32.5 ± 2.13 32.6 ± 1.93
7 31.6 ± 2.02 31.8 ± 1.71 31.8 ± 1.98 32.4 ± 1.89 31.0 ± 2.72 31.1 ± 2.37

5
3 34.1 ± 0.95 34.0 ± 0.92 33.5 ± 1.11 33.6 ± 1.01 33.3 ± 1.13 33.2 ± 1.14
5 34.7 ± 1.12 34.5 ± 1.09 33.5 ± 1.50 33.6 ± 1.46 33.7 ± 1.79 33.5 ± 1.91
7 34.0 ± 1.29 33.8 ± 1.25 32.4 ± 1.77 32.6 ± 1.77 32.7 ± 2.14 32.4 ± 2.37

7
3 34.1 ± 1.04 33.9 ± 1.00 33.1 ± 1.12 33.2 ± 1.20 33.2 ± 1.16 33.1 ± 1.08
5 34.9 ± 1.12 34.8 ± 1.09 33.3 ± 1.37 33.4 ± 1.61 33.8 ± 1.78 33.5 ± 1.82
7 34.3 ± 1.28 34.2 ± 1.19 32.4 ± 1.70 32.5 ± 1.95 32.9 ± 2.22 32.5 ± 2.39

accuracy on average, and over 82% (134 out of 162) of those cases show more than
65% accuracy. The baseline descriptors, specifically LBPu2

8,1 with 75.79% average
accuracy, have achieved reasonably better performance than the automatically
evolved descriptors; however the gap is about 4.17% between the best average of
the two groups (baseline and GP-criptorri descriptors). Increasing the window
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Table 7.10: The average accuracy (%) of k-NN using descriptors evolved on six
datasets with different code length, source window size, and target window size
combinations on the Coins dataset (x̄± s).

Window size Source dataset

Code source target BrNoRo BrWiRo KyNoRo KyWiRo OutexTC00 OutexTC10

7

3
3 67.7 ± 4.79 67.0 ± 4.67 66.6 ± 4.94 66.5 ± 5.21 66.7 ± 5.69 66.7 ± 5.54
5 68.6 ± 8.17 68.3 ± 8.45 66.4 ± 7.77 65.6 ± 7.84 66.3 ± 8.21 66.1 ± 7.95
7 71.7 ± 11.3 71.9 ± 11.9 69.1 ± 10.6 67.6 ± 10.9 68.1 ± 10.4 67.9 ± 9.86

5
3 68.3 ± 4.19 68.0 ± 4.51 67.2 ± 4.77 68.0 ± 4.63 67.1 ± 5.63 66.7 ± 6.03
5 68.5 ± 7.47 68.4 ± 8.25 66.9 ± 8.04 68.5 ± 7.83 64.9 ± 7.47 64.2 ± 7.66
7 71.4 ± 11.0 70.9 ± 11.7 69.1 ± 11.0 71.6 ± 11.1 66.8 ± 9.66 65.5 ± 9.36

7
3 69.1 ± 4.67 68.3 ± 4.69 66.6 ± 4.66 68.4 ± 4.11 66.2 ± 5.97 65.7 ± 5.83
5 68.3 ± 8.06 66.8 ± 7.85 67.0 ± 8.88 69.5 ± 7.75 63.1 ± 7.10 62.6 ± 7.21
7 70.2 ± 11.4 68.2 ± 11.0 69.6 ± 12.3 73.5 ± 11.2 63.9 ± 8.62 63.4 ± 8.42

8

3
3 66.8 ± 4.55 67.4 ± 4.49 66.8 ± 4.52 67.3 ± 4.63 66.9 ± 5.07 66.3 ± 5.23
5 67.9 ± 8.22 69.2 ± 8.82 67.0 ± 7.81 67.5 ± 7.93 66.3 ± 7.59 65.5 ± 7.47
7 71.0 ± 11.1 72.5 ± 11.9 69.3 ± 10.9 70.4 ± 10.9 68.0 ± 9.61 67.0 ± 9.94

5
3 68.5 ± 4.32 67.7 ± 4.03 67.6 ± 4.31 68.3 ± 4.55 66.8 ± 5.20 66.7 ± 5.37
5 69.0 ± 8.14 67.8 ± 8.24 67.8 ± 8.08 69.3 ± 8.13 65.1 ± 7.56 64.8 ± 7.62
7 71.0 ± 11.0 69.5 ± 11.4 70.3 ± 11.6 72.6 ± 11.4 66.9 ± 9.74 66.9 ± 10.2

7
3 68.4 ± 4.33 68.1 ± 4.34 68.1 ± 4.60 68.4 ± 3.76 66.6 ± 5.26 66.4 ± 5.63
5 68.5 ± 8.08 67.7 ± 7.69 68.9 ± 8.78 71.1 ± 7.73 64.6 ± 7.53 64.1 ± 7.40
7 70.1 ± 11.4 68.5 ± 11.2 71.3 ± 12.4 75.5 ± 11.1 65.7 ± 9.48 65.4 ± 9.33

9

3
3 66.3 ± 4.50 66.9 ± 4.29 66.3 ± 4.10 67.3 ± 4.44 66.8 ± 5.28 66.4 ± 4.94
5 66.5 ± 8.47 69.0 ± 8.76 66.3 ± 7.16 66.6 ± 7.48 65.3 ± 7.35 65.2 ± 7.47
7 68.7 ± 11.4 72.5 ± 11.8 69.2 ± 10.4 68.7 ± 10.4 66.9 ± 9.72 67.3 ± 10.0

5
3 68.3 ± 4.34 67.5 ± 4.05 67.9 ± 3.91 68.3 ± 3.98 67.1 ± 4.91 67.4 ± 5.21
5 68.6 ± 7.79 67.5 ± 7.75 69.6 ± 7.72 69.1 ± 7.56 64.9 ± 7.07 65.4 ± 7.54
7 70.9 ± 11.2 68.6 ± 11.2 73.3 ± 10.8 72.9 ± 10.9 66.8 ± 9.92 66.9 ± 9.91

7
3 68.9 ± 4.43 68.4 ± 4.14 67.8 ± 4.21 68.6 ± 3.30 66.5 ± 5.21 65.5 ± 5.25
5 68.5 ± 7.66 67.5 ± 7.24 69.8 ± 8.44 71.4 ± 7.30 63.8 ± 6.89 63.2 ± 6.68
7 70.1 ± 10.9 68.5 ± 10.6 72.9 ± 12.0 75.9 ± 10.4 65.3 ± 9.09 64.0 ± 9.11

size shows negative influence on the performance on this dataset as depicted in
Figure 7.12. Meanwhile, the effect of the code length is minimal, although it shows
some improvement with longer feature vectors (more children under the code node).
This behaviour was also expected as has been previously observed in Section 5.4.3.1
(see page 162), and it is due mainly to the size of each instance (19× 19 pixels).
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Figure 7.12: The performance of using individuals evolved on different datasets,
with different code lengths on the Faces dataset using the same source and target
window sizes.

7.4.2.11 The Dslr Dataset

The results on the first domain of the Office dataset (Dslr) are presented in
Table 7.12 and Figure 7.13. The instances of Dslr are larger than all other datasets’
instances, which each of size 1000× 1000 pixels. Although each instance in this
dataset presents an object, the pose of those objects are uncontrolled, the objects of
each category are different (e.g. phones with different types, shapes, and colours),
and the background of each instance is different. As presented in Table 7.1, the best
average performance on this dataset by the baseline descriptors has been achieved
by CLBC24,3 with 43.74% accuracy. Meanwhile, the best average accuracy that was
achieved by the automatically evolved descriptors is 47.80%. Moreover, over 57%
(93 out of 162) of the cases in Table 7.12 show on average better performance than
the best of the baseline descriptors. Unlike other datasets, increasing the target
window size has positive influence on the performance as depicted in Figure 7.13.
This is expected as the size of those instances are very large and small windows
can capture very small amount of information. The use of smaller source window
size has better performance than those descriptors that were evolved with a larger
window. The impact of the code length, on the other hand, is minimal and only a
slight improvement has been observed by increasing this factor.
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Table 7.11: The average accuracy (%) of k-NN using descriptors evolved on six
datasets with different code length, source window size, and target window size
combinations on the Faces dataset (x̄± s).

Window size Source dataset

Code source target BrNoRo BrWiRo KyNoRo KyWiRo OutexTC00 OutexTC10

7

3
3 71.0 ± 1.38 70.9 ± 1.23 69.7 ± 1.24 69.3 ± 1.37 68.4 ± 1.57 68.4 ± 1.64
5 68.4 ± 1.97 68.6 ± 1.65 67.6 ± 1.83 66.9 ± 2.07 64.9 ± 2.19 64.7 ± 2.18
7 65.7 ± 2.44 66.2 ± 2.26 64.7 ± 2.45 63.7 ± 2.73 61.3 ± 2.67 61.0 ± 2.77

5
3 69.1 ± 1.47 68.3 ± 1.60 69.3 ± 1.45 69.0 ± 1.33 68.3 ± 1.60 68.0 ± 1.76
5 67.8 ± 1.68 67.2 ± 1.82 68.4 ± 1.49 67.9 ± 1.69 65.6 ± 2.05 65.4 ± 2.19
7 65.4 ± 2.15 65.2 ± 2.19 66.2 ± 1.98 65.7 ± 2.33 62.0 ± 2.85 61.7 ± 2.89

7
3 68.1 ± 1.73 67.6 ± 1.97 68.3 ± 1.90 68.3 ± 1.66 67.8 ± 1.57 67.8 ± 1.61
5 67.3 ± 1.90 66.6 ± 1.87 68.4 ± 1.78 67.7 ± 1.76 65.0 ± 2.19 65.0 ± 2.38
7 65.0 ± 2.28 64.8 ± 2.21 66.3 ± 1.80 65.7 ± 2.06 61.3 ± 2.93 61.5 ± 3.06

8

3
3 71.5 ± 1.27 71.4 ± 1.24 70.2 ± 1.30 69.5 ± 1.31 68.8 ± 1.58 68.6 ± 1.64
5 68.8 ± 1.72 69.1 ± 1.48 68.0 ± 1.76 67.1 ± 2.02 65.2 ± 2.14 65.1 ± 2.14
7 66.1 ± 2.46 66.5 ± 2.06 65.0 ± 2.52 63.8 ± 2.82 61.5 ± 2.73 61.4 ± 2.77

5
3 69.2 ± 1.49 68.9 ± 1.45 69.6 ± 1.17 69.4 ± 1.35 68.7 ± 1.60 68.5 ± 1.66
5 67.9 ± 1.64 67.6 ± 1.54 68.8 ± 1.35 68.2 ± 1.60 65.9 ± 2.33 65.7 ± 2.12
7 65.9 ± 2.03 65.8 ± 2.02 66.5 ± 1.84 65.7 ± 2.26 62.1 ± 2.99 62.2 ± 2.75

7
3 68.2 ± 1.75 67.9 ± 1.58 68.7 ± 1.64 68.7 ± 1.53 68.0 ± 1.35 67.9 ± 1.62
5 67.5 ± 1.77 67.1 ± 1.86 68.5 ± 1.51 68.2 ± 1.66 65.2 ± 2.21 65.1 ± 2.35
7 65.5 ± 2.25 65.3 ± 2.20 66.5 ± 1.60 66.1 ± 2.03 61.8 ± 3.06 61.6 ± 3.08

9

3
3 71.8 ± 1.18 71.4 ± 1.23 70.2 ± 1.29 69.7 ± 1.27 68.9 ± 1.71 69.1 ± 1.60
5 69.1 ± 1.60 69.0 ± 1.68 68.0 ± 1.79 67.3 ± 1.86 65.4 ± 2.08 65.6 ± 2.00
7 66.3 ± 2.39 66.5 ± 2.23 64.8 ± 2.79 63.9 ± 2.74 61.7 ± 2.77 61.9 ± 2.64

5
3 69.3 ± 1.42 68.8 ± 1.46 69.5 ± 1.33 69.4 ± 1.26 68.8 ± 1.63 68.6 ± 1.48
5 68.1 ± 1.75 67.6 ± 1.67 68.9 ± 1.36 68.3 ± 1.57 65.9 ± 2.08 65.8 ± 1.92
7 65.9 ± 2.30 65.6 ± 2.11 66.8 ± 1.69 66.0 ± 2.11 62.1 ± 2.83 62.0 ± 2.66

7
3 68.2 ± 1.72 67.9 ± 1.76 68.7 ± 1.78 68.7 ± 1.56 68.3 ± 1.51 68.1 ± 1.55
5 67.4 ± 1.65 67.1 ± 1.82 68.6 ± 1.67 68.1 ± 1.75 65.6 ± 2.14 65.1 ± 2.45
7 65.3 ± 2.15 65.3 ± 2.18 66.7 ± 1.64 66.0 ± 1.94 62.0 ± 2.83 61.3 ± 3.21

7.4.2.12 The Amazon Dataset

Table 7.13 and Figure 7.14 show the results on the Amazon dataset (the second
domain of Office). This dataset is more challenging compared to the other datasets
of Office due to the variations of its instances’ content. For example, two objects of
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Figure 7.13: The performance of using individuals evolved on different datasets,
with different code lengths on the Dslr dataset using the same source and target
window sizes.
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Figure 7.14: The performance of using individuals evolved on different datasets,
with different code lengths on the Amazon dataset using the same source and
target window sizes.

the same group or from different groups can be on the same instance as shown in
Figure 2.24 (see page 71). Overall, the baseline and GP-criptorri image descriptors
did not achieve over 18.81% (CLBP24,3) accuracy on average. In the best case
scenario of the automatically evolved descriptors shows on average 15.5% accuracy.
The impact of the code length on the performance is similar to that on the Dslr
dataset, which shows a slightly improvement with increased number of children
under the code node as depicted in Figure 7.14. Similarly, increasing the source
window has negative influence on the performance; whilst the target window with
size 5× 5 shows better performance than the other two sizes.
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Table 7.12: The average accuracy (%) of k-NN using descriptors evolved on six
datasets with different code length, source window size, and target window size
combinations on the Dslr dataset (x̄± s).

Window size Source dataset

Code source target BrNoRo BrWiRo KyNoRo KyWiRo OutexTC00 OutexTC10

7

3
3 42.6 ± 1.51 42.7 ± 1.55 41.4 ± 1.63 41.8 ± 1.66 42.7 ± 1.26 42.7 ± 1.24
5 45.1 ± 1.47 45.2 ± 1.46 44.1 ± 1.63 44.7 ± 1.63 45.3 ± 1.13 45.2 ± 1.09
7 46.5 ± 1.51 46.8 ± 1.46 45.6 ± 1.66 46.2 ± 1.70 46.9 ± 1.34 46.8 ± 1.29

5
3 41.0 ± 1.86 40.7 ± 2.03 39.6 ± 2.19 40.3 ± 1.93 42.5 ± 1.41 42.4 ± 1.46
5 44.1 ± 1.72 43.8 ± 1.89 42.7 ± 2.16 43.6 ± 1.80 45.0 ± 1.21 45.0 ± 1.27
7 45.8 ± 1.67 45.5 ± 1.77 44.3 ± 2.14 45.1 ± 1.85 46.4 ± 1.30 46.5 ± 1.44

7
3 39.7 ± 2.20 39.2 ± 2.56 38.4 ± 2.35 39.3 ± 2.26 42.4 ± 1.46 42.5 ± 1.37
5 43.0 ± 1.98 42.5 ± 2.29 41.6 ± 2.35 42.6 ± 2.19 45.0 ± 1.18 45.0 ± 1.11
7 44.6 ± 1.99 44.2 ± 2.22 43.3 ± 2.33 44.1 ± 2.29 46.4 ± 1.31 46.4 ± 1.19

8

3
3 42.9 ± 1.48 43.1 ± 1.46 41.9 ± 1.59 42.3 ± 1.46 43.1 ± 1.37 43.1 ± 1.17
5 45.5 ± 1.38 45.7 ± 1.45 44.6 ± 1.47 45.1 ± 1.38 45.7 ± 1.17 45.6 ± 1.14
7 47.1 ± 1.46 47.3 ± 1.53 46.1 ± 1.55 46.6 ± 1.46 47.3 ± 1.30 47.2 ± 1.32

5
3 41.4 ± 1.78 41.3 ± 1.67 40.2 ± 2.03 40.7 ± 1.92 43.0 ± 1.37 42.9 ± 1.33
5 44.6 ± 1.65 44.5 ± 1.58 43.3 ± 2.05 43.8 ± 1.80 45.5 ± 1.11 45.5 ± 1.15
7 46.3 ± 1.57 46.1 ± 1.52 44.8 ± 2.09 45.3 ± 1.78 47.1 ± 1.27 47.0 ± 1.33

7
3 40.4 ± 1.79 40.0 ± 1.96 39.1 ± 2.24 39.5 ± 2.29 42.8 ± 1.32 42.9 ± 1.26
5 43.7 ± 1.54 43.3 ± 1.89 42.4 ± 2.17 42.8 ± 2.25 45.5 ± 1.14 45.4 ± 1.12
7 45.3 ± 1.60 45.0 ± 1.89 44.0 ± 2.09 44.4 ± 2.28 47.0 ± 1.26 46.9 ± 1.23

9

3
3 43.4 ± 1.58 43.6 ± 1.20 42.3 ± 1.59 42.7 ± 1.59 43.6 ± 1.17 43.6 ± 1.14
5 45.9 ± 1.52 46.2 ± 1.21 45.0 ± 1.50 45.6 ± 1.34 46.1 ± 0.96 46.0 ± 1.11
7 47.5 ± 1.61 47.8 ± 1.29 46.5 ± 1.57 47.1 ± 1.40 47.7 ± 1.12 47.7 ± 1.36

5
3 41.8 ± 1.67 41.6 ± 1.78 40.7 ± 2.00 41.3 ± 1.90 43.5 ± 1.13 43.3 ± 1.27
5 44.9 ± 1.43 44.7 ± 1.61 43.9 ± 1.92 44.5 ± 1.89 46.0 ± 1.06 45.8 ± 1.10
7 46.6 ± 1.45 46.4 ± 1.58 45.5 ± 1.93 45.9 ± 1.96 47.6 ± 1.20 47.4 ± 1.25

7
3 40.6 ± 2.02 40.2 ± 2.17 39.5 ± 2.39 40.1 ± 2.16 43.1 ± 1.21 43.1 ± 1.27
5 43.9 ± 1.91 43.5 ± 1.99 42.8 ± 2.20 43.4 ± 2.15 45.9 ± 1.05 45.8 ± 1.18
7 45.6 ± 1.87 45.2 ± 1.98 44.3 ± 2.18 45.0 ± 2.22 47.3 ± 1.20 47.2 ± 1.32

7.4.2.13 The Webcam Dataset

The third dataset of Office is Webcam, and the results obtained on this dataset
are presented in Table 7.14 and Figure 7.15. Amongst the baseline descriptors,
CLBC24,3 has achieved the best performance with 37.87% accuracy on average.
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Table 7.13: The average accuracy (%) of k-NN using descriptors evolved on six
datasets with different code length, source window size, and target window size
combinations on the Amazon dataset (x̄± s).

Window size Source dataset

Code source target BrNoRo BrWiRo KyNoRo KyWiRo OutexTC00 OutexTC10

7

3
3 14.6 ± 0.66 14.5 ± 0.68 14.7 ± 0.89 14.8 ± 0.83 14.9 ± 0.63 14.8 ± 0.61
5 14.7 ± 0.61 14.7 ± 0.63 14.7 ± 0.76 14.9 ± 0.73 14.8 ± 0.55 14.8 ± 0.56
7 14.6 ± 0.61 14.6 ± 0.60 14.6 ± 0.67 14.8 ± 0.67 14.7 ± 0.55 14.7 ± 0.55

5
3 14.3 ± 0.74 14.2 ± 0.76 14.0 ± 0.89 14.4 ± 0.84 14.8 ± 0.69 14.8 ± 0.73
5 14.5 ± 0.70 14.3 ± 0.69 14.2 ± 0.81 14.6 ± 0.77 14.9 ± 0.59 14.9 ± 0.64
7 14.4 ± 0.65 14.3 ± 0.61 14.2 ± 0.75 14.5 ± 0.70 14.8 ± 0.54 14.8 ± 0.58

7
3 14.1 ± 0.85 13.8 ± 0.92 13.4 ± 0.91 13.8 ± 0.97 14.6 ± 0.64 14.6 ± 0.67
5 14.2 ± 0.79 14.0 ± 0.82 13.7 ± 0.82 14.0 ± 0.86 14.8 ± 0.58 14.9 ± 0.55
7 14.2 ± 0.71 14.0 ± 0.74 13.7 ± 0.75 14.0 ± 0.78 14.7 ± 0.54 14.8 ± 0.48

8

3
3 14.7 ± 0.68 14.6 ± 0.61 14.8 ± 0.82 15.0 ± 0.75 15.1 ± 0.68 15.0 ± 0.64
5 14.8 ± 0.62 14.8 ± 0.58 14.9 ± 0.75 15.2 ± 0.66 15.0 ± 0.64 15.0 ± 0.57
7 14.7 ± 0.61 14.6 ± 0.55 14.8 ± 0.68 15.1 ± 0.59 14.9 ± 0.61 14.8 ± 0.56

5
3 14.5 ± 0.65 14.4 ± 0.64 14.2 ± 0.89 14.3 ± 0.89 15.0 ± 0.64 14.9 ± 0.61
5 14.7 ± 0.60 14.5 ± 0.62 14.3 ± 0.78 14.5 ± 0.82 15.1 ± 0.54 15.1 ± 0.49
7 14.6 ± 0.56 14.4 ± 0.59 14.3 ± 0.71 14.5 ± 0.76 15.0 ± 0.49 15.0 ± 0.47

7
3 14.3 ± 0.66 14.1 ± 0.78 13.7 ± 0.92 13.9 ± 0.92 14.8 ± 0.63 14.8 ± 0.60
5 14.4 ± 0.62 14.3 ± 0.73 13.9 ± 0.78 14.1 ± 0.87 15.0 ± 0.54 15.0 ± 0.52
7 14.3 ± 0.55 14.2 ± 0.67 13.9 ± 0.70 14.1 ± 0.79 14.9 ± 0.50 14.9 ± 0.49

9

3
3 14.9 ± 0.72 14.8 ± 0.56 15.1 ± 0.81 15.3 ± 0.79 15.3 ± 0.62 15.2 ± 0.60
5 15.0 ± 0.60 15.0 ± 0.50 15.1 ± 0.77 15.5 ± 0.73 15.2 ± 0.56 15.2 ± 0.57
7 14.9 ± 0.56 14.9 ± 0.49 15.0 ± 0.70 15.3 ± 0.67 15.1 ± 0.53 15.0 ± 0.54

5
3 14.7 ± 0.72 14.7 ± 0.73 14.4 ± 0.98 14.6 ± 0.87 15.2 ± 0.63 15.1 ± 0.67
5 14.9 ± 0.70 14.7 ± 0.68 14.6 ± 0.89 14.8 ± 0.81 15.3 ± 0.53 15.2 ± 0.57
7 14.7 ± 0.64 14.6 ± 0.61 14.6 ± 0.77 14.8 ± 0.76 15.2 ± 0.47 15.1 ± 0.52

7
3 14.4 ± 0.83 14.3 ± 0.85 13.9 ± 0.99 14.1 ± 1.01 15.1 ± 0.61 15.0 ± 0.66
5 14.6 ± 0.73 14.4 ± 0.77 14.1 ± 0.84 14.3 ± 0.87 15.2 ± 0.52 15.2 ± 0.55
7 14.5 ± 0.70 14.3 ± 0.70 14.1 ± 0.74 14.3 ± 0.78 15.1 ± 0.48 15.1 ± 0.53

Meanwhile, the best average performance reported on the Webcam dataset was
44.10% on by those descriptors automatically evolved on the BrWiRo source dataset
with a code of length 9-bits and source and target windows, respectively, 3×3 pixels
and 7×7 pixels. Table 7.14 shows that there are over 56% (92 out of 162) cases have
achieved better performance than the best of the baseline descriptors. Following
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Figure 7.15: The performance of using individuals evolved on different datasets,
with different code lengths on the Webcam dataset using the same source and
target window sizes.

the same pattern of Dslr and Amazon, increase the code length shows slightly
improvement in the performance as depicted in Figure 7.15. The combination of a
large target window and a small source window shows better performance than
small target windows or large source windows only as presented in Table 7.14.

7.4.2.14 Summary

In summary, the following observations can be drawn from the obtained results of
the conducted experiments:

• The automatically evolved image descriptors can be directly used on other
datasets without changing or modifying any part of those descriptors.

• The performance achieved from those automatically designed descriptors is
comparable or better than that of the domain-expert hand-crafted descriptors
in most cases.

• The descriptors can be applied to datasets that have a different number of
classes, rotation, illumination, and instances sizes.

• The descriptors can be used to perform classification on datasets of a related
domain to the source dataset, e.g., texture, or different domains, e.g., object
and face classification.
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Table 7.14: The average accuracy (%) of k-NN using descriptors evolved on six
datasets with different code length, source window size, and target window size
combinations on the Webcam dataset (x̄± s).

Window size Source dataset

Code source target BrNoRo BrWiRo KyNoRo KyWiRo OutexTC00 OutexTC10

7

3
3 38.6 ± 1.69 38.9 ± 1.64 34.9 ± 2.33 35.9 ± 2.23 38.6 ± 1.76 38.3 ± 1.72
5 41.5 ± 1.64 42.0 ± 1.55 38.6 ± 2.11 39.3 ± 1.99 41.4 ± 1.45 41.2 ± 1.49
7 42.5 ± 1.71 43.1 ± 1.68 40.3 ± 1.97 40.9 ± 1.85 42.4 ± 1.43 42.3 ± 1.50

5
3 34.8 ± 2.46 34.3 ± 2.16 31.5 ± 2.91 32.4 ± 2.77 36.8 ± 2.07 36.7 ± 2.16
5 38.6 ± 2.28 38.2 ± 1.99 35.1 ± 2.68 35.8 ± 2.57 40.1 ± 1.87 40.1 ± 1.91
7 40.4 ± 2.21 40.2 ± 1.95 37.1 ± 2.59 37.8 ± 2.43 41.6 ± 1.85 41.6 ± 1.87

7
3 31.5 ± 3.00 31.5 ± 3.04 29.6 ± 2.97 30.8 ± 3.02 36.0 ± 2.23 35.8 ± 2.13
5 35.3 ± 2.70 35.2 ± 2.96 33.3 ± 2.72 34.3 ± 2.67 39.6 ± 2.04 39.5 ± 1.84
7 37.5 ± 2.51 37.4 ± 2.82 35.4 ± 2.64 36.4 ± 2.57 41.2 ± 1.95 41.1 ± 1.72

8

3
3 39.2 ± 1.85 39.4 ± 1.67 35.8 ± 2.29 36.5 ± 2.25 38.9 ± 1.72 38.9 ± 1.60
5 42.0 ± 1.63 42.5 ± 1.52 39.4 ± 2.05 39.9 ± 1.91 41.8 ± 1.39 41.8 ± 1.32
7 43.1 ± 1.66 43.6 ± 1.51 41.0 ± 1.97 41.5 ± 1.78 43.0 ± 1.40 42.9 ± 1.35

5
3 35.4 ± 2.30 35.1 ± 2.04 32.1 ± 2.81 33.1 ± 2.74 37.6 ± 2.08 37.2 ± 2.17
5 39.3 ± 2.07 39.0 ± 1.87 35.7 ± 2.60 36.5 ± 2.46 41.0 ± 1.85 40.7 ± 1.94
7 41.0 ± 2.01 40.8 ± 1.87 37.8 ± 2.43 38.5 ± 2.29 42.5 ± 1.82 42.2 ± 1.84

7
3 32.6 ± 2.93 32.3 ± 2.92 30.2 ± 3.14 30.9 ± 2.95 36.9 ± 2.18 36.6 ± 2.32
5 36.3 ± 2.82 36.0 ± 2.89 33.8 ± 2.84 34.5 ± 2.63 40.6 ± 1.99 40.3 ± 1.94
7 38.4 ± 2.69 38.1 ± 2.80 36.0 ± 2.68 36.6 ± 2.56 42.1 ± 1.92 41.9 ± 1.75

9

3
3 39.8 ± 1.58 39.7 ± 1.47 36.1 ± 2.23 36.9 ± 2.27 39.5 ± 1.53 39.5 ± 1.64
5 42.7 ± 1.41 42.8 ± 1.36 39.8 ± 1.87 40.4 ± 1.88 42.3 ± 1.30 42.4 ± 1.42
7 43.8 ± 1.51 44.1 ± 1.51 41.5 ± 1.83 42.1 ± 1.76 43.4 ± 1.33 43.5 ± 1.48

5
3 35.6 ± 2.35 35.4 ± 2.26 32.8 ± 2.82 33.2 ± 2.99 38.0 ± 2.00 37.7 ± 2.06
5 39.6 ± 2.05 39.4 ± 2.04 36.5 ± 2.56 37.0 ± 2.69 41.5 ± 1.70 41.2 ± 1.80
7 41.5 ± 1.94 41.4 ± 2.03 38.6 ± 2.45 39.1 ± 2.50 43.0 ± 1.69 42.8 ± 1.79

7
3 32.9 ± 2.73 32.7 ± 3.04 30.9 ± 3.12 31.8 ± 3.14 36.8 ± 2.15 36.7 ± 2.18
5 36.8 ± 2.61 36.4 ± 2.86 34.7 ± 2.81 35.4 ± 2.73 40.6 ± 1.89 40.5 ± 1.88
7 39.1 ± 2.53 38.6 ± 2.76 36.9 ± 2.65 37.5 ± 2.61 42.3 ± 1.79 42.1 ± 1.78

• The descriptors can be used on the target dataset with a different window
size from the one used to evolve that descriptor on the source dataset. This
flexibility is not available in the vast majority of the existing descriptors.

• The results show that the window size is highly dependent on the size of
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the instances, such that larger instances require a larger window in order to
capture more distinctive features.

• The results also show that the impact of the code length is less than the
window size.

7.5 Chapter Summary
In this chapter, the generalisability of the automatically evolved image descriptors
by GP-criptorri has been investigated via adopting transfer learning in order to
examine the possibility of directly use an image descriptor to tackle problems in
related and unrelated domains. The experiments have been designed to assess
different aspects of those descriptors, which were evaluated using 13 image classifi-
cation benchmarks that vary in number of classes, instances per class, rotations,
illumination, type (texture, faces, and object classification tasks), and instance
size/dimension. The performance of those automatically evolved descriptors are
compared to six state-of-the-art domain-expert designed image descriptors. The
results of the conducted experiments show that GP-criptorri evolved descriptors
have achieved comparable or better performance to that of the competitive descrip-
tors. Moreover, those automatically designed descriptors have successfully tackled
problems of the same domain of the datasets they were originally used to evolve
them as well as different domains. More importantly, the automatically evolved
descriptors have the flexibility to apply them on the target dataset using different
window sizes without adjusting or changing any part of the descriptor. The majority
of hand-crafted descriptors lack this flexibility and changing such a parameter most
likely needs human intervention to undertake the required modifications.

Although a number of aspects have been investigated in this chapter, more
deep and through investigation is needed. The initial results are promising and
show the potential of those automatically evolved descriptors to tackle different
problems.



8
Conclusions and Future Work

This chapter concludes the discussion of this thesis, highlights the main findings,
and outlines directions for future work.

The overall goal of this thesis was to develop a new domain independent
GP approach to image classification by utilising GP to evolve programs that are
capable of automatically detecting diverse and informative keypoints, designing
a set of features, and performing feature extraction using only a small number of
training instances to facilitate image classification, and are robust to different image
changes such as illumination and rotation. This goal was successfully achieved by
developing a number of new GP representations to automatically evolve image
descriptors that operate directly on the raw pixel values of an image and generate
the corresponding feature vectors. The proposed methods were evaluated on a range
of image classification benchmarks and compared with existing state-of-the-art
methods. The results show that the newly proposed methods in this thesis have
achieved either competitive performance or outperformed the prior state-of-the-art
methods. The proposed methods have been also thoroughly examined and analysed
to assess their capability to handle different image changes such as illumination
and rotation.

245
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The remainder of the chapter provides conclusions for the individual objectives
and highlights the main findings from each chapter. Then an insightful discussion
is provided to suggest several potential research directions for future work.

8.1 Achieved Objectives

This thesis has successfully fulfilled the following research objectives:

• Through this thesis, two new GP representations were proposed to evolve
models for binary classification in images using only a few instances per class.
The two methods correspond to One-shot GP and Compound-GP (Chapter 3)
and aim at detecting image regions that best classify the instances of the
two classes. The two methods rely on measuring the distances between
the feature vectors of the instances from the same class and those from a
different class. The experimental results show that the programs evolved by
those methods have either significantly outperformed or achieved comparable
performance to both GP and non-GP well-known methods in the literature.

• This thesis developed three new GP representations to automatically con-
struct image descriptors, namely GP-criptor (Chapter 4), GP-criptorri (Chap-
ter 5), and EIDri (Chapter 6), for multi-class image classification tasks using
only a few instances per class. Instead of evolving a classifier to classify the
instances of more than two classes, the new methods take a step backward
and tackle the problem from the feature generation step such that they
transform instances of the same class to have similar feature vectors that are
distinctive from instances of the other classes. The results of the conducted
experiments have made it evident that these methods have significantly
better performance than both automatically designed and domain-expert
hand-crafted features, and are robust to different image changes such as
illumination and rotation.

• This thesis proposed a transfer learning methodology in GP (Chapter 7) by
investigating the generalizability of those image descriptors automatically
synthesised on one dataset to perform the classification on different datasets
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that are from related and unrelated domains. The experimental results
demonstrate the transferability of those descriptors and their goodness to
achieve comparable or better results to domain-expert designed image de-
scriptors, particularly for problems in the same domain and some tasks in a
different domain.

8.2 Main Conclusions

Overall, this thesis finds that GP is effective to address the problem of having a few
training instances for image classification by automatically evolving programs that
can detect informative keypoints, and extract features that are more representative
of each class. Most of the newly proposed methods in this thesis have successfully
provided better classification performance than the prior state-of-the-art algorithms.

The main conclusions drawn from each of the five contribution chapters (Chap-
ter 3 through Chapter 7) for the three research objectives are presented and
discussed in this section.

8.2.1 Sparse Keypoints and Dense Features for Image
Classification

Chapter 3 proposes two new GP methods for automatic sparse keypoints detection,
feature extraction and image classification in a single program. The proposed
methods combine the concepts of both sparse and dense image descriptors. The
performance of the proposed methods have been compared with Two-tier GP
[7], conventional GP and six well-known classification algorithms from the liter-
ature with domain-expert hand-crafted features. The 95% confidence intervals
from multiple runs of these two newly proposed methods, i.e., One-shot GP and
Compound-GP, show that they potentially outperformed the competitive methods
in many cases. These two methods have achieved over 90.0% average accuracy in
many cases.

Following is a summary of the main findings in terms of: 1) program represen-
tation, 2) fitness measure, and 3) generality of the evolved programs.
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8.2.1.1 Representation

Chapter 3 proposes two methods that demonstrate how the attributes of sparse
descriptors and dense descriptors can be integrated into a single GP individual.
Combining the attributes of sparse descriptors to detect some good regions of the
image, and dense descriptors to extract more effective features from each region
rather than relying on the pixel values (low-features) has been found to improve
the classification performance.

8.2.1.2 Fitness measure

It has been observed (Chapter 3) that those methods that rely on the accuracy
measure to build/evolve a classifier have performed poorly when the number
of training examples is limited. The accuracy measure is inappropriate mainly
because the learning algorithm can simply select a few unreliable features to
perfectly discriminate the training instances. Therefore, to address the problem of
having only a few learning instances, the proposed methods rely on the goodness of
multiple keypoints through considering the distances (separability) between those
keypoints in instances of different classes.

8.2.1.3 Generality

Although the evolved GP models have been shown to outperform the other com-
petitive methods, the detected keypoints and extracted features are not biased
to a specific type of classification algorithm. Using the features extracted by the
proposed GP methods has been found to be effective and has the potential to
improve the performance of different classification algorithms.

8.2.2 Illumination-invariant Dense Image Descriptors

This thesis proposes the first illumination-invariant dense image descriptor for image
classification using a few instances per class (Chapter 4). From the experimental
results of Chapter 4, it has been observed that GP has the potential to automatically
synthesise a set of formulae to form an LBP-like image descriptor (operating in a
pixel-by-pixel fashion), and yet can significantly outperform domain-expert image
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descriptors. From Chapter 4, it is found that previous GP methods for multi-class
image classification cannot cope with a large number of classes, larger size instances,
or having a few instances per class; whereas the developed method in this thesis
has successfully addressed all these difficulties. The experiments yielded substantial
classification performance improvement of 86% on average compared to the two
GP-based methods. Meanwhile, the automatically synthesised image descriptors
have outperformed the hand-crafted descriptors in more than 89.3% of the cases. It
has also been found that this newly proposed method in this thesis is illumination-
invariant through assessing its performance using datasets that comprises instances
that were captured under uncontrolled environment (lighting).

8.2.3 Rotation-invariant Dense Image Descriptors

This thesis proposes the first approach to automatically evolving rotation-
invariant image descriptors for multi-class image classification tasks, where human-
intervention is not needed to handle the design of the required formulae (Chapter 5).
Although an instances can appear in any degree of rotation, it has been found from
the results in Chapter 5 that GP is capable of evolving rotation-invariant image
descriptors using a small sample of the instances in each class. In other words, the
proposed method does not need a sample from each and every rotation situation.
The results show that automatically evolved descriptors have outperformed the
state-of-the-art methods in more than 83.7% of the cases; where over 90.0% average
accuracy has been achieved on some datasets.

8.2.4 Parameter Self-tuning GP Representation

Chapter 6 proposes a new GP representation that allows the system to automatically
self-tune a parameter through introducing a set of similar nodes with a different
number of arguments. Tuning a parameter can be a very time-consuming task that
may require executing expensive experiments in order to find a good value as has
been observed in Chapter 5. From the experimental results in Chapter 6, it has been
found that a significantly fewer runs are needed to evolve the descriptors compared
to Chapter 5 where 30 independent runs are needed for each code length. The EIDri

method was able to improve upon several benchmark hand-crafted descriptors with
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an improvement of 2.9% compared to the best or second best performing methods.
The EIDri method has outperformed 8 hand-crafted image descriptors in more
than 91.9% of the cases. It has been found that descriptors with a small feature
vector (small number of children under the code node) cannot achieve the desirable
performance, and the system tends towards evolving descriptors with larger and
more effective feature vectors (but not over too large).

8.2.5 Transferable Image Descriptors

This thesis investigates and shows the generalizability of those automatically evolved
image descriptors to perform classification on other datasets that are different from
the source dataset (Chapter 7). Previous works assume that both the training set
and test set are drawn from the same distribution, and therefore, models evolved
by such methods are not expected to perform well on different datasets. From
Chapter 7, it has been observed that an image descriptor automatically constructed
by GP-criptorri on one dataset can (or has the potential to) be directly used on
other datasets from the same domain or different domain to that of the source
dataset. The 95% confidence intervals from multiple runs of the automatically
evolved descriptors demonstrate that they often outperformed the hand-crafted
methods. In over 56.1% of the cases, those automatically evolved descriptors on
other datasets (source domain) has improved the performance compared to the
state-of-the-art descriptors. Furthermore, those automatically evolved descriptors
do not require any modification to change the window size, which is not the case
in the vast majority of existing descriptors. It has been also found from the
experimental results in Chapter 7 that those descriptors can cope very well in
most cases with the target datasets even though the source dataset has completely
different number of classes, size of instances, rotation, illumination, and type.

8.3 Future Work

Finally, this section provides some possible research directions for future work.
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8.3.1 GP and Convolutional Neural Networks

Over the past 30 years, Convolutional Neural Networks (CNNs) became very
popular and have received considerable attention in many domains [166]. They
have been used to tackle many problems in computer vision and pattern recognition
domains [286, 75]. Unlike conventional neural networks, CNNs use a set of shared
weights, also called filters or kernels, between layers which potentially reduces the
number of weights, i.e., free parameters, that need to be learnt. Moreover, each
filter is applied to the entire image (convolution operator) in order to generate a
feature map. This makes such an algorithm invariant to object shifting. Another
important operator is pooling, where a single value of a region on a feature map
is returned. This operator has the potential to reduce the size of the generated
feature map in the subsequent layer and to select prominent/good features. Clearly,
the ability of GP to automatically evolve a model has been successfully presented in
this thesis. Furthermore, the automatically evolved image descriptors in this thesis
share some properties and objectives, e.g., keypoints detection, feature extraction,
and being invariant to image deformations, with CNNs. One of the main issues
with CNNs is the requirement to specify the structure of the network beforehand,
which imposes some challenges to determine the number of layers, nodes, filters,
and how to connect the nodes in adjacent layers. GP can be utilised to all or
some of these engineering issues. For example, the coefficients of the filters can
be automatically utilised by GP which may improve the performance of CNNs, or
those filters can be used as a starting point for further improvements by CNNs
which can speed-up the convergence of the network.

8.3.2 Scale-invariant Image Descriptors

This thesis has successfully developed illumination-invariant and rotation-invariant
image descriptors. However, handling scale invariance is more challenging and
extending the proposed methods to be scale-invariant requires careful consideration.
One way to deal with the scale factor could be through using different window sizes
simultaneously, similar to SIFT and most of its variants. However, using multiple
window sizes means each image needs to be scanned multiple times. This may
significantly slow-down the evolutionary process.
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8.3.3 Multi-objective Approach for Evolving Image
Descriptor

In this thesis, only a single-objective approach has been adopted to develop the
different methods. Adopting a multi-objective approach could help in evolving
programs that are fast to execute, small in size, and have a good performance.

8.3.4 Colour Image Descriptors

There is much less work on colour image descriptors compared to grey-scale image
descriptors. Colours can provide richer information than grey-scale. In this thesis,
the proposed methods have been developed to operate on grey-scale images only
and extending them to consider colours is important and possible. One way to
accomplish this task is by changing the program representation to generate a
number of sub feature vectors (one from each channel) and then combine (fusion or
simply concatenate) them together to produce the complete feature vector. Another
possibility is by generating multiple programs (one for each channel).

8.3.5 Beyond Image Classification

This thesis is concerned mainly with image classification as it is a cornerstone task
in computer vision. Image descriptors can be used to perform other tasks that are
also important such as object detection and image segmentation. Therefore, both
of these two tasks (object detection and image segmentation) can be formulated
and performed as image classification by slicing the image being evaluated into a
number of sub images (tiles), and then assigning a class label for each of those tiles.

8.3.6 GP for Unsupervised Image Clustering

GP has seldom been used for unsupervised learning, e.g., clustering. All the
methods proposed in this thesis are supervised and the class label is needed in
order to measure the between-class and within-class distances. Extending GP to
consider unlabelled instances could largely help to improve the classification task
by borrowing instances from a related domain and transferring the knowledge to
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tackle the problem at hand. However, utilising GP to perform clustering is not
an easy task and several factors have to be taken into consideration such as the
number of clusters and evaluation of clustering results.

8.3.7 Transfer Learning
This thesis only investigates some preliminary works in applying transfer learning
in GP for computer vision tasks. However, the investigation carried out in this
thesis is not through and more work needs to be done in the future to investigate
deeply the concepts of transfer learning in GP. One direction is investigating the
impact of reusing some building blocks of those descriptors evolved by GP to build
more powerful descriptors. Another direction is to evolve image descriptors using a
combination of datasets from different domains and investigate whether this can
help improving the performance.
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