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Abstract

A novel technical solution, and paradigm shift, envisioned to achieve the signif-
icant spectral efficiency enhancements required for Fifth Generation (5G) wire-
less systems is massive multiple-input-multiple-output (MIMO). Massive MIMO
systems scale up the number of transmit (TX) and receive (RX) antennas by at
least an order of magnitude relative to conventional multi-user MIMO systems,
which have been a key feature in current wireless standards, such as Long Term
Evolution. Thus, massive MIMO leverages the spatial dimension by provid-
ing significant increases in all the virtues of conventional MIMO systems but
on a much larger scale. Namely, data rate, link reliability, energy efficiency,
and multiplexing gains can all be increased with massive MIMO systems, while
simultaneously reducing inter-user interference through digital processing tech-
niques. Further motivating the surge in research of massive MIMO systems are
the additional channel properties which occur when operating with large dimen-
sions. These properties arise as a result of random matrix theory asymptotics
and under these conditions random variables become deterministic, simplifying
analysis and allowing simple processing techniques to become (near) optimal.
These idealistic properties, however, are based on the assumptions of an inde-
pendent and identically distributed channel matrix with an infinite number of
TX antennas.

Physical contraints typically prohibit the deployment of large numbers of TX
antennas. It therefore seems natural to determine the number of TX antennas
required for large MIMO systems to begin to exhibit these favourable asymp-
totic properties. Analytically deriving the first and second moments of the
composite Wishart channel matrix and numerically defining three convergence
metrics, the rate of channel convergence is examined. Limiting matched-filter
(MF) and zero-forcing precoding signal-to-interference-plus-noise-ratio (SINR)
performances are then analytically derived and rate of convergence shown.

Coordinated distributed MIMO systems can mitigate the detrimental effects of
spatial correlation relative to a colocated MIMO system. The instantaneous
and limiting MF SINR performance of a distributed massive MIMO system
is derived, allowing clear insights into the effects of imperfect channel state
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information, spatial correlation, link gains and number of antenna clusters.
The wide bandwidths vacant at millimeter-wave (mmWave) frequency bands
are suitable for 5G wireless systems since they occupy regions of uncongested
spectrum which enable large contiguous bandwidth carriers. Spatial correlation
of an arbitrary antenna array topology is analytically derived for a mmWave
channel model. Numerically, the effects of mutual coupling amongst antenna
elements is then shown on the effective spatial correlation, eigenvalue structure
and user rate of different antenna topologies.
Channel models and measurements across a wide range of candidate bands for
5G wireless systems are then considered, motivated by the different propaga-
tion and spatial characteristics between different bands and different channel
models within the same band. Key channel modelling and spatial parameter
differences are identified and, in turn, their impact on various antenna topolo-
gies investigated, in terms of system sum rate, channel eigenvalue structure,
effective degrees of freedom and massive MIMO convergence properties.
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Acronyms

2D Two-dimensional

3D Three-dimensional

3GPP 3rd Generation Partnership Project

4G Fourth Generation

5G Fifth Generation

AOA Angle-of-arrival

AOD Angle-of-departure

AWGN Additive white Gaussian noise

BS Base station

BUPT Beijing University of Posts and Telecommunications

CDF Cumulative distribution function

CSI Channel state information

DOF Degrees-of-freedom

DPC Dirty paper coding

DL Downlink

EDOF Effective degrees-of-freedom
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EMF Electromotive force

FDD Frequency-division-duplex

i.i.d. Independent and identically distributed

LOS Line-of-sight

LTE Long Term Evolution

MF Matched-filter

MIMO Multiple-input-multiple-output

MMSE Minimum mean squared error

mmWave Millimeter-wave

MSE Mean squared error

MU Multi-user

NLOS Non-line-of-sight

PAS Power azimuth spectrum

PDF Probability density function

PES Power elevation spectrum

RF Radio frequency

RMS Root mean square

RX Receiver

RZF Regularized zero-forcing

SINR Signal-to-interference-plus-noise-ratio
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SLNR Signal-to-leakage-plus-noise-ratio

SNR Signal-to-noise-ratio

SVD Singular value decomposition

TDD Time-division-duplex

TX Transmitter

UCA Uniform cylindrical array

UL Uplink

ULA Uniform linear array

URA Uniform rectangular array
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WPC White paper collaboration
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Notation and Symbols

| · | Magnitude of a constant and determinant of a matrix

‖ · ‖ Euclidean norm of a vector

‖ · ‖F Frobenius norm of a matrix

(·)∗ Conjugate of a complex number

(·)−1 Inverse of a constant or matrix

(·)T Transposition of a vector or matrix

(·)H Conjugate transposition of a vector or matrix

0M×M ′ M ×M ′ matrix of zeros

1M×M ′ M ×M ′ matrix of ones

aRX Receiver antenna array response vector

aTX Transmitter antenna array response vector

α Path loss offset constant

B Bandwidth

β Path loss exponent

χ2
a A chi-squared complex random variable with a degrees-of-freedom

C Number of clusters
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CN (µ, σ2) Complex normal distribution with mean µ and variance σ2

cov [·] Covariance operator

d Transmitter to receiver distance, in meters

d0 Reference distance, in meters

dk,k′ Distance between users k, k′ ∈ 1, . . . , K, in meters

dSC Spatial correlation reference distance, in meters

dλ Inter-element antenna spacing, in wavelengths

δ Diagonal dominance

det (·) Determinant of a matrix

diag (·) Diagonal matrix generation or diagonal matrix elements

exp (x) Exponential function of each element of the vector x

Exp (·) Exponential distribution

E Deviation matrix

E [·] Expected value

ε Shadow fading standard deviation

εγ Cluster shadow fading standard deviation

η Singular value of a matrix

f Carrier frequency

fX (x) Probability density function of x

F Noise figure
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FTX Transmit antenna array directive gain

FX (x) Cumulative distribution function of x

g Vector with independent elements

GTX Transmit antenna gain

GRX Receive antenna gain

Gθ Vertically polarized antenna gain

γ Cluster power normalization

Γ Link gain model decay parameter

hRX Receiver height in meters

hTX Transmitter height in meters

H Channel matrix

H Mutually coupled channel matrix

Ĥ Estimated channel matrix

H̃ Gaussian error matrix

Ḧ Equivalent channel matrix

H̆ Stacked channel matrix to multiple users

Hiid Channel matrix with i.i.d. entries

HLOS Specular channel matrix

ḦLOS Equivalent specular channel matrix

ι Antenna length
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Iα (·) Modified Bessel function of the first kind

IM M ×M identity matrix

I Imaginary component of a complex number

j Imaginary number

Jα (·) Bessel function of the first kind

K Number of receivers in a cellular system

KB Boltzmann constant

κ Rician K-factor

κ̈ Equivalent Rician K-factor

κ RZF precoder regularization parameter

L Number of subpaths per cluster

λ Wavelength at a carrier frequency

Λ Diagonal matrix of singular values

M Number of transmit antennas in a cellular system

µ Mean of a distribution

µκ Rician K-factor mean

N Number of antenna clusters in a cellular system

N0 Thermal noise

N (µ, σ2) Normal distribution with mean µ and variance σ2

ν Ratio of TX antennas to RX antennas
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O Reads as “order of”

ω Path loss

pLOS Probability of LOS propagation

pX(x) Power angular spectrum of X

P Link gain

PTX Transmit power

Poisson (·) Poisson distribution

φ Azimuth angle

Φ Distribution of φ

ϕ LOS azimuth angle

π Mathematical constant pi

ψ Azimuth angle

Q Number of receive antennas per receiver in a cellular system

r Cell radius

rt Delay distribution proportionality factor

rRX Receiver spherical unit vector

rTX Transmitter spherical unit vector

R System rate

RRX Receiver spatial correlation matrix

R̈RX Equivalent receiver spatial correlation matrix
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RTX Transmitter spatial correlation matrix

R̈RX Equivalent transmitter spatial correlation matrix

R Real component of a complex number

ρ Exponential spatial correlation decay parameter

% Average received cell-edge SNR

s Unprecoded vector of data symbols

σ Standard deviation of a distribution

σκ Rician K-factor standard deviation

σφ Azimuth RMS angular spread

σθ Elevation RMS angular spread

sgn (·) Signum operator

T Temperature in Kelvin of zero degrees Celsius

T Unitary matrix

tr (·) Trace of a matrix

τ Precoder/receiver normalization parameter

θ Elevation angle

Θ Distribution of θ

ϑ LOS elevation angle

U Unitary matrix

υ Channel power scaling constant
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Υ Link gain and spatial correlation scaling matrix

v Noise vector

V Normalized “channel” matrix

Viid Normalized i.i.d. “channel” matrix

var [·] Variance operator

WRX Receive antennas location matrix

WTX Transmit antennas location matrix

Xc Per-cluster uniform random variable

x Precoded data vector

ξ Imperfect CSI parameter

Ξ Mutual impedance matrix

Yφ,c Azimuth central cluster angle random variation

Yθ,c Elevation central cluster angle random variation

y Received signal

ZA Antenna impedance

ZL Load impedance

ZM Mutual impedance

Zφ Azimuth cluster scaling factor

Zθ Elevation cluster scaling factor

Z Mutual coupling matrix
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ζ Shadow fading

ζγ Cluster shadow fading
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1
Introduction

This chapter presents an introduction to the thesis. An overview of massive
multiple-input-multiple-output (MIMO) technology in the context of Fifth Gen-
eration (5G) wireless systems is given before a more detailed breakdown of the
key aspects of the thesis, including relevant literature discussion. Motivation of
the research is then provided followed by the main contributions, list of publi-
cations and thesis outline, respectively.

Massive MIMO technology scales up the number of transmit (TX) and receive
(RX) antennas in comparison to conventional multi-user (MU)-MIMO systems
by at least an order of magnitude. In ideal situations, massive MIMO offers
large improvements in data rates, link reliability, energy efficiency, and mul-
tiplexing gains while simultaneously reducing inter-user interference through
linear precoding techniques. However, in general, when large numbers of an-
tennas are located in close proximity (in terms of wavelength), the detrimental
effects of spatial correlation and mutual coupling amongst antenna elements can
significantly reduce performance. However, when operating at millimeter-wave
(mmWave) frequencies, the small wavelength allows many more antenna ele-
ments to be positioned in a fixed antenna array form factor while preserving the
promising performance gains. Hence, massive MIMO and mmWave communi-
cation are closely related and both are considered in this thesis.

1.1 5G Wireless Communications

Unprecedented growth and projected exponential increases in the volume of
wireless data traffic [1] (5000 fold by the year 2030 [2]) have motivated the
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research and development of potential next generation wireless system tech-
nologies. These efforts have led to the development of 5G system engineering
requirements which are expected to include an aggregate data-rate increase,
from Forth Generation (4G) wireless systems, of three orders of magnitude with
peak data rates in the order of tens of Gbps [3–5]. One such novel technical solu-
tion, and paradigm shift, envisioned to achieve such significant wireless system
enhancements is massive MIMO [6–8]. Combined with improvements in area
spectral efficiency, from small cell technology [9–15], and increased bandwidth,
from mmWave frequencies [16–21], massive MIMO technology is a promising
solution in achieving high data rate ubiquitous coverage. However, many impor-
tant research challenges need to be resolved before the commercial deployment
of massive MIMO is possible.
Several of the issues massive MIMO faces are examined in this thesis, such as

• The near-optimal performance of linear precoding techniques largely rely
on users’ channels becoming sufficiently decorrelated. Practical aspects
such as imperfect channel state information (CSI) and spatial correlation
reduce the level of orthogonality, and thus the performance of linear pre-
coding techniques [8, 22].

• As more antennas are added to a fixed antenna array form factor, spatial
separation between antenna elements reduces and consequently spatial
correlation and mutual coupling between the antenna elements of the array
increase [7, 23, 24].

• For evaluating massive MIMO in conjunction with mmWave technology,
accurate channel models of the different electromagnetic propagation char-
acteristics at mmWave frequencies need to be established [4, 25, 26]. One
distinguishing feature between electromagnetic propagation at mmWave
and microwave frequencies is the phenomena of blockages, observed in
recent mmWave measurement campaigns [17,27].

1.2 Overview and Literature Review

An overview and literature review of each of the key topics covered in the thesis
is now given.

1.2.1 Massive MIMO

It is well known that, on the downlink (DL), increasing the number of anten-
nas at the base station (BS), i.e., at the TX, can result in large increases in
data rate [28–35], link reliability [36], and energy efficiency [8]. In MU systems,
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increased TX antenna numbers reduce inter-user interference [7, 37, 38] and in-
crease system diversity through multiplexing gains [39–42]. Massive MIMO,
which scales up the number of TX and RX antennas by at least an order of
magnitude relative to conventional MU-MIMO systems, leverages the spatial
dimension providing significant increases in data rate, link reliability, energy
efficiency, and multiplexing gains while reducing inter-user interference. Conse-
quently, the investigation of massive MIMO technology as an emerging technol-
ogy is well underway [6–8,43–62].

Further motivating the surge in research activities into massive MIMO systems
are the additional channel properties which arise when operating with large
numbers of TX antennas. These properties arise as a result of random matrix
theory asymptotics [63]. For example, as the number of TX antennas becomes
large, users’ channels become mutually orthogonal [6, 7, 64]. This is known
as favourable propagation, and under these conditions simple linear processing
techniques, such as matched-filter (MF) and zero-forcing (ZF) precoding, can
maximize the sum rate [43,65–67]. Another virtue of massive MIMO systems is
referred to as channel hardening [68], where the variance of the Wishart channel
matrix decreases proportional to the number of TX antenna numbers, such that
the channel entries start to become deterministic [6,43]. In turn, when random
matrices become deterministic and well conditioned, system analysis and pre-
coder design becomes simplified since matrix operations can be computed more
easily [7]. For example, the computationally involved matrix inverse required
for ZF precoding becomes the identity matrix. These idealistic properties, how-
ever, are based on the assumptions of an independent and identically distributed
(i.i.d.) channel with an infinite number of TX antennas.

Since the deployment of a very large number of TX antennas may be impractical
due to physical constraints, it seems natural to determine the number of TX an-
tennas required for MIMO systems to begin to exhibit these additional benefits.
The effects of increasing array size has been the subject of a number of studies,
where the singular value spread is most commonly used to quantify the degree
of orthogonality between different channels [7,8,65,66,69]. Favourable propaga-
tion is evaluated in [66] by considering the distribution of singular values for two
extreme channel scenarios: i.i.d. Rayleigh fading and line-of-sight (LOS) chan-
nels. The authors show that both channels offer near favourable propagation
for 100 TX antenna elements. Reference [69] also measures the singular value
spread of a real massive MIMO channel. Here it is demonstrated that increasing
numbers of TX antenna elements both decorrelate and harden users’ channels
significantly from conventional MIMO systems. In [7], the authors conclude that
the asymptotic effects of random matrix theory are observable even for arrays
of 10 antennas, although the desirable properties of an “infinite” number of an-
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tennas are more prominent at 100 antennas and above. Channel measurements
with 128 TX antennas and two single-antenna users were conducted in [56,65],
and it was show that orthogonality improves for an increasing number of TX
antennas, but little improvement beyond a 20 TX antenna element array is seen.
Even in the unfavourable channel conditions of closely-spaced users with strong
LOS propagation, measured results in [65] indicate that although the singular
value spread is significantly larger than in the i.i.d. Rayleigh fading case, a large
portion of the i.i.d Rayleigh fading asymptotic capacity is still achievable in the
measured channels.

1.2.2 Linear Precoding

With the large number of antennas expected to be deployed in massive MIMO,
the complexity of baseband processing becomes extremely large. Thus, the
practical implementation of non-linear digital precoding schemes, such as dirty
paper coding (DPC) [70] and vector perturbation [71–73], becomes too diffi-
cult. This motivates the study of linear precoding [74] techniques for mas-
sive MIMO systems, which has received significant recent attention, such as
in [7, 43,45,51,53,54,56,66,69,75–77].

Early massive MIMO measurements in [56] evaluated the sum rate with ZF
precoding and showed that the ZF precoder can achieve 98% of the DPC sum
rate, even with a 20 element TX array. A further massive MIMO measure-
ment campaign was carried out by the same authors in [76] which compared
the asymptotic ZF precoder performance of 128 element linear and cylindri-
cal antenna arrays to the ideal, i.i.d., channel. The study concluded that the
real measured channels achieve most of the performance of the i.i.d. case, even
with 10 TX antenna elements. Other measurements in [69] show that ZF can
achieve 69% of optimal DPC capacity with a 64 TX antenna element array.
The authors in [43] demonstrate that by using linear precoding at the TX, im-
provements in sum spectral efficiency and energy efficiency of up to two orders
of magnitude and three orders of magnitude, respectively, can be achieved by
using 100 TX antenna elements. Also lower bounds on sum rate for MF and
ZF precoding techniques are derived, including scenarios with channel estima-
tion imperfections [54, 55, 77–79]. The later work in [45] derives instantaneous
and asymptotic (with the number of TX antennas) approximations of achiev-
able rates with MF and regularized ZF (RZF) precoding. The authors consider
the very general scenario of a multi-cell, distributed antenna cluster system op-
erating in time-division-duplex (TDD) transmission, with unequal link gains,
spatial correlation matrices and corrupted CSI from pilot contamination [6].
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1.2.3 Spatial Correlation and Mutual Coupling

As more antennas are added to a fixed antenna array form factor, inter-element
antenna spacings reduce and consequently spatial correlation [80–84] and mu-
tual coupling [24, 85–89] between antenna elements of the array increases. In
massive MIMO systems, the effects of spatial correlation and mutual coupling
are more obvious since inter-element spacings are critically reduced and an-
tennas are in close proximity to, and even surrounded by, large numbers of
other antenna elements. A number of important metrics of MIMO commu-
nication systems, such as the achievable rate and the number of independent
data streams (multiplexing gain), have been shown to be highly dependent on
the spatial correlation [23,48,65,83,84,90–102] and mutual coupling [24,85–89]
characteristics, which are a function of both the transmission channel and the
antenna array topology.

Spatially constrained antenna arrays with a very large number of antennas were
studied in [83, 103, 104], where scenarios of inter-antenna spacings shorter than
half a wavelength were considered, since these arise naturally when a large
number of antennas are packed in the fixed physical structures of realistic BSs.
Measurements at 2.59 GHz are provided in [99] which compare a horizontal
uniform linear array (ULA), a vertical ULA and a uniform rectangular array
(URA). The measurement shows that the horizontal ULA is best suited to mas-
sive MIMO systems, since the spatial correlation is lower than the other two
antenna topologies. [96] considers a (ULA) and uniform square array (USA),
concluding that when the spatial correlation structure decays rapidly, against
distance, then the USA provides substantial benefits in terms of sum rate over
the ULA. [97] analyses the performance of several antenna array topologies
(ULA, URA and uniform circular array) in a three-dimensional (3D) channel.
The analysis shows that the azimuth angular spread, rather than the elevation
angular spread, has a defining impact on the system performance. Further-
more, it is shown that the impacts of the central cluster angles on the system
performance is antenna topology dependent.

The impacts of mutual coupling have been shown to be more obvious at smaller
inter-element spacings in [7, 24, 85, 87, 89, 105, 105]. Specifically, a fixed length
ULA is considered in [89], where simulations demonstrate that mutual coupling
adversely impacts both the effective spatial correlation and the received signal-
to-noise-ratio (SNR), degrading the average rate. [106] shows that the effective
spatial correlation, including mutual coupling, is increased for a ULA with five
dipole antenna elements, degrading the number of spatial channels and MIMO
system capacity. On the other hand, [24] reports a decrease in spatial correlation
of a ULA when mutual coupling is included and thus an increase in its sum rate.
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In massive MIMO systems, [104] shows a considerable decrease in the achievable
rates due to mutual coupling.

1.2.4 Millimeter-Wave Wireless Communications

The wide bandwidths, available at mmWave frequency bands, are suitable to
cope with the demanding data rate specifications of 5G wireless systems be-
cause they occupy regions of uncongested spectrum [17–21] that enable large
contiguous bandwidth carriers. Consequently, the range of candidate bands be-
ing considered for 5G wireless systems has recently been extended to include
6-100 GHz [3]. Coexisting with massive MIMO technology [6,27,107] and small
cells technology [9–13, 108], mmWave technology is expected to be a key tech-
nique in achieving the huge data rates required to meet 5G specifications [1,4].
The large signal attenuation experienced at mmWave frequencies (due to oxygen
absorption [17], object blockages [109, 110], and lack of scattering [98]) can be
mitigated by large array gains [111,112], from massive MIMO, and reduced link
distances, from the area densification of small cells. Furthermore, the smaller
wavelength at mmWave frequencies allows large numbers of antennas to be
packed into limited array form factors [19, 113], and is thus appealing for mas-
sive MIMO antenna array design.

A number of papers have focused on characterizing radio wave propagation
in the mmWave bands, for example [19, 114–128]. These studies show that the
mmWave channel has significantly less multipath richness and a higher probabil-
ity of LOS propagation, as compared to the microwave bands. Special emphasis
has been placed on the development of statistical models based on measurement
campaigns performed in urban environments [114,116–119], which highlight the
importance of both antenna directivity and array gains to overcome the in-
creased propagation losses experienced at mmWave bands and also determine
the number of antennas required towards this end [98]. Very recently, the 3rd
Generation Partnership Project (3GPP) have published an extension of the stan-
dardized microwave 3D channel model for Long Term Evolution (LTE) [129], for
the frequency spectrum above 6 GHz [130]. The additional modelling compo-
nents in the new specification include: oxygen absorption (a function of the link
distance), wideband transmission extensions, non-stationary user extensions,
object blockages and multi-frequency simulation extensions.

1.3 Motivation

Massive MIMO is an emerging technology, which scales up the number of TX
and RX antennas by at least an order of magnitude relative to conventional
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MU-MIMO systems. This approach leverages the spatial dimension providing
significant increases in data rate, link reliability, energy efficiency, and mul-
tiplexing gains while reducing inter-user interference. Due to random matrix
theory asymptotics, simple linear precoding techniques become near-optimal in
a number of channel conditions. Massive MIMO is suited to mmWave bands,
since the small wavelength allows the dense packing of antenna elements. Also,
the large signal attenuation at mmWave frequencies, due to a lack of scattering,
can be overcome by the large array gains of massive MIMO technology.

1.3.1 Convergence to Massive MIMO

Many of the conclusions regarding the realizable performance gains with mas-
sive MIMO systems rely on the convergence of the Wishart channel matrix
to the identity matrix. It is thus of interest to thoroughly explore the con-
vergence properties of the Wishart channel matrix, and determine the number
of TX antennas required for MIMO systems to converge under a number of
channel conditions, since physical constraints typically limit the number of TX
antenna elements which can be deployed. The limiting values of linear precod-
ing techniques have been shown to be near-optimal in terms of sum rate and
therefore the convergence properties of these techniques are also examined in
various channel conditions. Hence, in Chapter 3, the convergence properties are
analysed for a number of scenarios.

1.3.2 Distributed Antenna Systems

Massive MIMO suffers from spatial correlation more than conventional MIMO
systems, since there are large numbers of (closely spaced) antennas in one physi-
cal location [80–84]. One design approach to mitigate the adverse effects of spa-
tial correlation is to divide the antennas into multiple antenna clusters, whereby
the inter-element antenna distances at each antenna cluster would increase, pro-
vided the overall form factors at each array remain the same. Such coordinated
distributed systems have the additional advantage of providing greater coverage
than a single, co-located, antenna cluster since both the minimum and average
distance to a user is reduced and the resultant received SNR is increased [131].
There is therefore a need to analyse the performance of distributed massive
MIMO systems. Therefore, the instantaneous and limiting MF SINR is anal-
ysed in Chapter 4.

1.3.3 Spatial Correlation for Millimeter-Wave Systems

The antenna array topology and its inherent inter-element antenna spacings
have been shown to significantly affect the spatial correlation, mutual cou-
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pling and resultant system capacity [23, 48, 65, 83, 84, 90, 96–102]. Furthermore,
mmWave communication channels have been shown to suffer from severe spatial
correlation due to the limited number of scattering clusters, as well as the narrow
inter-cluster and intra-cluster angular spectra, which diminish the multiplexing
and diversity gains attainable with large antenna arrays [92,114,117–119]. This
poses a challenge for mmWave transmission, since the resultant achievable data
rates depend on the richness of the multipath channel [23, 91, 132]. However,
spatial channel sparsity can be simultaneously leveraged for reducing the num-
ber of RF chains required for transmission via hybrid precoding or beamspace
strategies [133,134]. Regardless, accurate models to quantify spatial correlation
effects are needed to predict achievable rates and multiplexing gains. Thus,
the effects of spatial correlation and mutual coupling on both two-dimensional
(2D) and 3D antenna array topologies (i.e., full dimension MIMO [135–139]),
including the commonly used ULA, are considered in Chapter 5.

1.3.4 Channel Models for 5G Wireless Systems

5G wireless systems are likely to include mmWave bands to meet the demands
for high data rates in combination with existing microwave bands for wide area
coverage. Microwave and mmWave frequency bands exhibit enormous variation
in channel characteristics. For example, microwave bands provide excellent cov-
erage capabilities but bandwidth is scarce. On the other hand, mmWave bands
have an abundance of available spectrum but suffer from high electromagnetic
attenuation [20]. There is, therefore, a need to understand the differences in
propagation characteristics [140,141], such as multipath spreads, for the differ-
ent frequency bands being considered for 5G. Motivated by this, channel models
over a wide range of bands are considered and examined. Furthermore, the im-
pacts of these defining parameters on performance metrics such as eigenvalue
structure and spectral efficiency are investigated in Chapter 6.

1.4 Contributions

The contributions of this thesis, listed by chapter, are as follows.

1.4.1 Convergence to Massive MIMO

• The rates of convergence of the Wishart channel matrix to favourable
propagation and channel hardening, as the number of TX antennas in-
creases with the number of single-antenna users fixed, of Rayleigh and
Rician fading channel matrices are analytically derived. Note that the an-
alytical convergence of the Wishart i.i.d. channel matrix, as the number
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of TX antenna elements increases with the number of single-antenna users
fixed, to favourable propagation and channel hardening in Rayleigh [142]
and Rician [143] fading channels has previously been shown in the liter-
ature [6]. This analysis is extended here to the more realistic scenario of
unequal link gains.

• The convergence properties of theWishart i.i.d. channel matrix, in Rayleigh
and Rician fading channels, is numerically studied by considering three
different convergence metrics defined in Section 3.2, for increasing TX
antenna numbers, with the ratio of TX antennas to single-antenna users
fixed. This characterizes the number of TX antennas required, depending
on which convergence property is desired.

• Closed-form limiting expressions, as the number of TX antennas and
single-antenna users increase to infinity with a fixed ratio, of the per-
user ZF SNR and MF Signal-to-interference-plus-noise-ratio (SINR) are
derived for unequal link gains in a Rayleigh fading channel. Note that
this has been previously derived for the case where the number of TX
antennas increases to infinity with the number of users fixed, which is also
included as a preliminary result in Section 3.3.1 for completeness. Also
note that closed-form limiting expressions, as the number of TX antennas
and single-antenna users increase to infinity with a fixed ratio, of the per-
user ZF SNR and MF SINR has previously been derived for equal link
gains in [7] for a Rayleigh fading channel. However, it is also included in
this chapter to assist in the derivation of the unequal link gain case and
for completeness. In turn, the rate of convergence of the average instanta-
neous per-user ZF SNR and MF SINR is investigated. Since the number
of users simultaneously scheduled in a time/frequency resource is typically
a key cellular design parameter, these expressions provide insight into the
achievable ZF/MF SNR/SINR for a massive MIMO system.

• The performance of the average instantaneous per-user ZF SNR and MF
SINR under Rayleigh and Rician fading channels, with and without spatial
correlation at the TX, is shown. This illustrates the ZF/MF precoder
performance in scenarios of a small and large antenna array aperture.

1.4.2 Distributed Antenna Systems

• Based on a system model which accounts for unequal link gains, imper-
fect CSI, transmit spatial correlation and an arbitrary number of antenna
clusters, a per-user instantaneous MF SINR expression is derived. Numer-
ically, it is then shown that distributing antennas into multiple clusters is
hugely beneficial to MF SINR performance in highly spatially correlated
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scenarios. Depending on the spatial characteristics of the channel (low or
high spatial correlation), this gives practical antenna design recommenda-
tions.

• From the previously derived per-user instantaneous MF SINR, a limiting
expected per-user MF SINR is derived as the number of antenna ele-
ments approaches infinity, whilst maintaining a fixed ratio of the number
of transmit antennas to single-antenna users.

• A number of realistic link gain scenarios1 are used to illustrate the con-
vergence of the instantaneous per-user MF SINR to the limiting expected
per-user MF SINR. Numerically, this is shown for spatially correlated and
uncorrelated cases.

1.4.3 Spatial Correlation for Millimeter-Wave Systems

• Closed-form expressions for the 3D spatial correlation between any two an-
tenna elements of a Saleh-Valenzuela channel model are derived for wide,
narrow and Von Mises [144, 145] power elevation spectrum (PES) as well
as an upper bound for the general PES case. These simple expressions give
an accurate estimation of the spatial correlation in a number of channel
conditions.

• The metric of diagonal dominance is defined to measure the convergence of
a user’s channel to favourable propagation [43]. Closed-form expressions
are then derived for wide, narrow and Von Mises PES, as well as an upper
bound. The PES and antenna topology impacts on the rate of convergence
to massive MIMO properties are then shown.

• Numerically, the effects of mutual coupling are examined on different
antenna array topologies, by analysing the resultant spatial correlation
against inter-element spacing, eigenvalue properties and user rates of a
mmWave system. It is demonstrated that while mutual coupling reduces
spatial correlation for a wide range of inter-element distances and antenna
configurations, the variation in SNR becomes the dominant effect and can
either increase or decrease user rates depending on inter-element spacing.
Practically, the joint characterization of spatial correlation and mutual
coupling is benefical to antenna array design.

1.4.4 Channel Models for 5G Wireless Systems

• The impact of intra-cluster angular spread and user numbers is examined
for different antenna topologies on the cell edge, median and peak sum

1Link gain refers to the inverse of the path loss, which is explicitly defined in Section 2.1.1.
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rates of different wireless channel models across microwave and mmWave
bands.

• The impacts of inter-element antenna spacings, receiver antenna numbers,
propagation type and user numbers are investigated on the eigenvalue
structure of various antenna topologies for different channel models across
microwave and mmWave bands. Also, the rate of convergence to massive
MIMO is explored by considering the eigenvalue ratio. It is shown that the
rate of convergence is dependent on the environment, antenna topology
and user separation.

• A parameter is defined: effective degrees-of-freedom (EDOF), to measure
the total number of data streams the system can support. The effects in
terms of different antenna topologies, channel models, user numbers and
numbers of receive antennas are then shown on the EDOF.

• An equivalent Rician channel model is developed to approximate the
mmWave channel and show agreement via spectral efficiency and ZF SNR.
For single stream transmission, only the specular component is needed.
For users with two antennas, the composition of a specular and an un-
correlated diffuse component shows good agreement. For more than two
antennas per user, insights into the mmWave channel, provided by the
Rician approximation, are drawn.

1.5 List of Publications

Published and submitted papers are listed below.

• P. J. Smith, C. T. Neil, M. Shafi, and P. A. Dmochowski, “On the con-
vergence of massive MIMO systems,” IEEE Intl. Conf. Commun., pp.
5191-5196, June 2014.

• C. T. Neil, M. Shafi, P. J. Smith, and P. A. Dmochowski, “On the im-
pact of antenna topologies for massive MIMO systems,” IEEE Intl. Conf.
Commun., pp. 2030-3025, June 2015.

• C. T. Neil, M. Shafi, P. J. Smith, and P. A. Dmochowski, “Deployment is-
sues for massive MIMO systems,” IEEE Intl. Conf. Commun. Workshop,
pp. 1298-1303, June 2015.

• C. T. Neil, A. Garcia-Rodriguez, P. J. Smith, P. A. Dmochowski, C. Ma-
souros, and M. Shafi, “On the performance of spatially correlated large
antenna arrays for millimeter-wave frequencies,” submitted to IEEE Trans.
Antennas Propag., 2016.



1.6. THESIS OUTLINE 12

• C. T. Neil, M. Shafi, P. J. Smith, P. A. Dmochowski, and J. Zhang, “An
evaluation of channel models, frequency bands and antenna topologies for
5G,” to appear in IEEE Veh. Technol. Conf., June 2017.

• C. T. Neil, M. Shafi, P. J. Smith, P. A. Dmochowski, and J. Zhang, “Mea-
surements and models: Massive MIMO for microwave and millimeter-wave
frequency bands,” submitted to IEEE Trans. Antennas Propag., 2017.

1.6 Thesis Outline

The remainder of the thesis is organized as follows:

• Chapter 2 provides a theoretical background, including the system model,
channel models, and linear precoding techniques used.

• Chapter 3 examines the convergence properties of large scale MIMO sys-
tems, with the aim of determining the number of antennas required to
realize massive MIMO properties. Rayleigh and Rician fading channels
are considered as well as MF and ZF precoding techniques.

• Chapter 4 extends the MF SINR performance and convergence analysis in
Chapter 3 to distributed antenna systems. Specifically, the instantaneous
and limiting (with the number of TX antennas) performance of the MF
precoder is investigated, with the aim of determining and characterizing
the impacts of distributing transmit antennas into multiple clusters.

• Chapter 5 considers the Saleh-Valenzuela channel model to model a large
antenna array operating at mmWave frequencies. Closed-form expressions
for the 3D spatial correlation between any two antenna elements are de-
rived for wide, narrow and Von Mises PES as well as an upper bound for
arbitrary PES. Numerically, the effects of mutually coupled antennas are
shown on the effective spatial correlation, eigenvalue structure and user
rate for different antenna topologies.

• Chapter 6 considers channel models and measurements across a wide range
of candidate bands for 5G wireless systems. Light is shed into key chan-
nel modelling and spatial parameter differences. In turn, the impact of
these parameter differences for various antenna topologies is investigated
in terms of system sum rate, channel eigenvalue structure, EDOF and
massive MIMO convergence properties.

• Chapter 7 concludes the thesis with key contributions and future research
directions.
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2
Theoretical Background

This chapter is organized as follows. First, the system model, channel models
and rate/spectral efficiency of a MIMO system are discussed. Then MF, ZF,
RZF and signal-to-leakage-plus-noise-ratio (SLNR) linear precoding techniques
are mathematically motivated and detailed. Spatial correlation and mutual
coupling are then defined, followed by some theoretical background for massive
MIMO systems.

2.1 MIMO

In this section the system model, channel models and rate/spectral efficiency
of a MIMO system are discussed. MIMO systems exploit the spatial domain,
such that sufficiently diverse channel vectors can be obtained between each
TX antenna to RX antenna pair [28, 29, 146, 147]. The number of independent
channels between the TX and RX(s) is known as the multiplexing gain, which is
equal to the minimum number of TX and RX antennas. Since the capacity of a
system scales proportional to the multiplexing gain [148], MIMO systems have
been well studied over the past two decades and is now an enabling technology
in current wireless system deployments [129,149].

In this thesis, a quasi-stationary MU-MIMO system is considered, where a total
of M TX antennas serves K users, each with Q antennas, on the DL in a single
time/frequency resource. It is assumed thatM ≥ KQ and that half-wavelength
vertically polarized isotropic dipole antenna elements are used at both the TX
and RX.



2.1. MIMO 14

2.1.1 System Model

The Q× 1 received signal vector, y, for an arbitrary user can be described byy1

...
yQ

 =
√
%

h1,1 · · · h1,M

...
. . .

...
hQ,1 · · · hQ,M


 x1

...
xM

+

v1

...
vQ

 (2.1)

y =
√
%Hx + v, (2.2)

where H is the Q×M channel matrix, which is dependent on the environment,
with different channel models discussed in Section 2.1.2. x is a M × 1 precoded
vector of data symbols, s, where it is assumed E [‖x2‖] = 1, which is dependent
on the type of precoder used at the TX. Linear precoders considered in this
thesis are discussed in Section 2.2. v is the Q× 1 i.i.d. additive white Gaussian
noise (AWGN) vector with CN (0, 1) entries. % is the cell-edge received SNR at
the user (defined and discussed below) which is a function of the path loss. The
path loss to a user, at a link distance d, is assumed to follow the close-in free
space reference model [150–157], and, in decibels, is given by

ω(d) = α+ 10β log10(d) + ζ, (2.3)

where α is the path loss offset constant, β is the path loss exponent and
ζ ∼ N (0, ε2) denotes the shadow fading, with standard deviation ε. The values
for α, β and ε can be obtained from empirical data, or as an analytical approx-
imation. For example, the path loss offset value (in decibels) is typically calcu-
lated analytically via the free-space path loss at a reference distance [158,159]

α = 20 log10

(
λ

4πd0

)
, (2.4)

where λ is the wavelength of the carrier frequency, f , and d0 is the reference
distance, in meters.
The cell-edge SNR1, %, is fixed for all users based on 90% area coverage [4]. In
decibels, % is thus given by

% = 10 log10 (M) + PTX +GTX +GRX −N0 − ω(0.9r), (2.5)

where 10 log10 (M) is the TX array gain from M antenna elements, PTX is the
TX power, and GTX and GRX are the TX and RX antenna gains, respectively.
N0 denotes the thermal noise, given in decibels by

N0 = F +KB + T +B, (2.6)

where F is the noise figure, KB is the Boltzmann constant, T is the temperature

1Depending on the desired outage probability criteria, % is sometimes used to represent
the average received SNR.
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in Kelvin of 0◦ Celsius and B denotes the bandwidth. In (2.5), ω(0.9r) denotes
the fixed cell-edge path loss, at a distance of d = 0.9r, where r denotes the cell
radius. This is given by

ω(0.9r) = α+ 10β log10(0.9r) + 1.28ε, (2.7)

where a shadow fading margin is also included, with 1.28 corresponding to the
0.9 cumulative distribution function (CDF) z-value of the normalized Gaussian
distribution. Throughout the thesis, the cell-edge SNR is fixed to all users
based on an area coverage, whereas the path loss, ω(d), and therefore link gain,
P = 1/ω, (equal to the inverse path loss) varies between users.

2.1.2 Channel Models

Four different MIMO channel modelling methodologies are now discussed. Namely:
Rayleigh fading, Rician fading, the Saleh-Valenzuela model and the standard-
ized channel model developed by the 3GPP. These channel models are assumed
to be for a particular frequency at a particular instance in time, and are thus ap-
propriate for modelling the channel of a single time/frequency resource. Since
large antenna arrays are of interest throughout the thesis, spatial correlation
amongst antenna elements is discussed in Section 2.3.

Rayleigh Fading Channel

A Rayleigh channel is used to model rich scattering environments, such as those
at microwave bands and the non-line-of-sight (NLOS)/diffuse component of a
Rician fading channel. It is the simplest channel model and allows closed-
form analysis in many applications. When modelling spatial correlation at ei-
ther/both the TX and RX, the Kronecker model is used. This means that the
linearly independent and linearly dependent (i.e., correlated) components of the
composite channel matrix are separable. Note that this is not the case for the
Saleh-Valenzuela and 3GPP channel models, introduced in Sections 2.1.2 and
2.1.2, respectively.
The Q×M spatially correlated Rayleigh fading channel matrix for an arbitrary
user can be expressed via the Kronecker model [23, 95,160–163]

H =
√
PR

1/2
RXHiidR

1/2
TX, (2.8)

where Hiid is a Q×M channel matrix with i.i.d. CN (0, 1) channel entries, which
accounts for small-scale Rayleigh fading, while RTX and RRX are the M ×M
TX and Q×Q RX spatial correlation matrices, respectively, discussed in Section
2.3. P = 1/ω is the link gain from the TX to the RX, where ω is the path loss,
given in (2.3).
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Rician Fading Channel

Rician fading channels extend the fully diffuse Rayleigh fading channel to allow
for the presence of a spatially deterministic specular ray [164–166]. The ratio
of deterministic to scattered power is defined as the Rician K-factor, κ, and
varying the Rician K-factor allows the modelling channels of diverse properties,
e.g., mmWave channels [167].
The Q ×M spatially correlated Rician fading channel matrix for an arbitrary
user can be expressed by [161,168,169]

H =
√
P

(√
1

κ+ 1
R

1/2
RXHiidR

1/2
TX

)
(

+

√
κ

κ+ 1
aRX

(
ϕAOA, ϑAOA)aH

TX
(
ϕAOD, ϑAOD)) , (2.9)

where aTX
(
ϕAOD, ϑAOD

)
and aRX

(
ϕAOA, ϑAOA

)
denote the rank-1 LOS/specular

antenna array response vectors2 of the TX and RX [172], respectively, given by

aTX
(
ϕAOD, ϑAOD) = exp

(
j

2π

λ
WTXrTX

(
ϕAOD, ϑAOD)) , (2.10)

aRX
(
ϕAOD, ϑAOD) = exp

(
j

2π

λ
WRXrRX

(
ϕAOD, ϑAOD)) , (2.11)

where WTX and WRX are theM×3 and Q×3 location matrices of the TX and
RX antenna elements in 3D Cartesian coordinates, respectively. rTX

(
ϕAOD, ϑAOD

)
and rRX

(
ϕAOA, ϑAOA

)
are the 3 × 1 LOS spherical unit vectors of the TX and

RX, respectively, given by

rTX
(
ϕAOD, ϑAOD) =

sin
(
ϑAOD) cos

(
ϕAOD)

sin
(
ϑAOD) sin

(
ϕAOD)

cos
(
ϑAOD)

 , (2.12)

rRX
(
ϕAOA, ϑAOA) =

sin
(
ϑAOA) cos

(
ϕAOA)

sin
(
ϑAOA) sin

(
ϕAOA)

cos
(
ϑAOA)

 . (2.13)

The LOS antenna array response vectors are a function of the LOS azimuth
angle-of-arrival (AOA) and angle-of-departure (AOD) (denoted ϕAOA and ϕAOD,
respectively) as well as the elevation AOA and AOD (denoted ϑAOA and ϑAOD,
respectively), between the TX and RX. These angles are shown in Figure 2.1
with respect to the 3D Cartesian coordinate system, where ϕ is measured from
the x-axis and ϑ is measured from the zenith/z-axis. The LOS elevation AOD
can be calculated to be ϑAOD = tan−1

(
d

hTX−hRX

)
, where hTX and hRX are

the TX and RX height, respectively. Then ϑAOA = π − ϑAOD. If the TX

2A far field radiation pattern is assumed [170,171].



CHAPTER 2. THEORETICAL BACKGROUND 17

is omnidirectional (i.e., radiating equally in all directions with respect to the
azimuth plane) and users are randomly located within a cell, then we also have
ϕAOD ∼ U [0, 2π). Geometrically, one can then calculate ϕAOA from ϕAOD.
However, because a user inherently has a random phase, due to its orientation,
with respect to the azimuth plane, it can be assumed that the LOS azimuth
AOA is also distributed according to ϕAOA ∼ U [0, 2π). The LOS AODs are
assumed to be independent from the LOS AOAs and the LOS azimuth angles,
ϕ, are assumed to be independent from the LOS elevation angles, ϑ.

(a) LOS azimuth angles, ϕAOA and ϕAOD, with respect to
the x and y axes.

(b) LOS elevation angles, ϑAOA and ϑAOD, with respect to the z-axis.

Figure 2.1: LOS azimuth and elevation angles.
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Saleh-Valenzuela Channel Model

The Saleh-Valenzuela channel model was proposed in [173] to model indoor ra-
dio propagation. The model describes the received signal as several clusters of
rays, where each ray has an independent Rayleigh amplitude as well as an inde-
pendent phase. Physically, the clusters represent scattering objects which reflect
the individual rays between the TX and RX. The channel model is appropriate
for, and commonly used to model, sparse channels [114, 117–119, 133, 174, 175],
such as those at mmWave frequencies, since the received signal can be decom-
posed into a number of independent spatial clusters of rays and thus multipath
components.

The Q ×M DL Saleh-Valenzuela channel matrix for an arbitrary user can be
described by

H =
√
P

C∑
c=1

√
γc
L

L∑
l=1

hiid,c,laRX
(
φAOA
c,l , θAOA

c,l

)
aH

TX
(
φAOD
c,l , θAOD

c,l

)
, (2.14)

where P is the link gain between the TX and the RX, C is the number of
clusters [176], L is the number of rays per cluster, hiid,c,l ∼ CN (0, 1) is the
instantaneous channel gain of ray l in cluster c, and γc is the normalized power
magnitude of cluster c which have been shown to decay exponentially across the
clusters [173, 177]. aTX

(
φAOD
c,l , θAOD

c,l

)
and aRX

(
φAOA
c,l , θAOA

c,l

)
denote the M × 1

TX and Q× 1 RX antenna array response vectors, respectively, given as

aTX
(
φAOD
c,l , θAOD

c,l

)
= exp

(
j

2π

λ
WTXrTX

(
φAOD
c,l , θAOD

c,l

))
, (2.15)

aRX
(
φAOA
c,l , θAOA

c,l

)
= exp

(
j

2π

λ
WRXrRX

(
φAOA
c,l , θAOA

c,l

))
. (2.16)

rTX
(
φAOD
c,l , θAOD

c,l

)
and rRX

(
φAOA
c,l , θAOA

c,l

)
are the 3× 1 NLOS spherical unit vec-

tors of the TX and RX, respectively, given by

rTX
(
φAOD
c,l , θAOD

c,l

)
=


sin
(
θAOD
c,l

)
cos
(
φAOD
c,l

)
sin
(
θAOD
c,l

)
sin
(
φAOD
c,l

)
cos
(
θAOD
c,l

)
 ,

rRX
(
φAOA
c,l , θAOA

c,l

)
=


sin
(
θAOA
c,l

)
cos
(
φAOA
c,l

)
sin
(
θAOA
c,l

)
sin
(
φAOA
c,l

)
cos
(
θAOA
c,l

)
 . (2.17)

The NLOS antenna array response vectors are a function of the NLOS azimuth
AOAs and AODs (denoted φAOA

c,l and φAOD
c,l , respectively) as well as the NLOS

elevation AOAs and AODs (denoted θAOA
c,l and θAOD

c,l , respectively). The azimuth
angles, φc,l, are measured from the x-axis, whereas the elevation angles, θc,l, are
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measured from the zenith/z-axis, as shown in Figure 2.2. Figure 2.3 shows a
multipath channel (only in the azimuth domain) between a ULA of antennas
at the TX and a ULA of antennas at the RX. It is assumed that the NLOS
AODs are independent of the NLOS AOAs and that the azimuth angles, φc,l,
are independent of elevation angles, θc,l, for all c ∈ 1, . . . , C and l ∈ 1, . . . , L.

.

Figure 2.2: NLOS azimuth and elevation angles in 3D Cartesian coordinates.

Figure 2.3: Multipath channel (only in the azimuth domain) between a ULA of
antennas at the TX and a ULA of antennas at the RX.

In this thesis the AOA power azimuth spectrum (PAS), pΦ

(
φAOA
c,l

)
, and PES,

pΘ

(
θAOA
c,l

)
, describe the expected power of all the received rays in azimuth and

elevation domains, respectively. Likewise, the AOD PAS, pΦ

(
φAOD
c,l

)
, and PES,

pΘ

(
θAOD
c,l

)
, describe the expected power of all the transmitted rays in azimuth

and elevation domains, respectively. The PES is typically much more narrow
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than the PAS, and is commonly modelled via the Laplacian, raised cosine and
Von Mises distributions [144]. The relationship between the power spectra and
the probability density functions (PDFs) of the azimuth and elevation angles
are derived from the average received signal power and antenna directivity of
a vertically polarized isotropic antenna, while assuming far field radiation [132,
178, 179]. This can be seen by considering the maximized received power of a
uniform plane wave in spherical coordinates, given by [132]

4π =

∫ 2π

0

∫ π

0
Gθ (φ, θ) sin (θ) dφdθ, (2.18)

1 =

∫ 2π

0

∫ π

0
sin (θ) dφdθ, (2.19)

where Gθ (φ, θ) is the vertically polarized antenna gain which is equal to 1
4π

for
isotropic radiation. Therefore

1 =

∫
φ
fΦ(φ)dφ =

∫
φ
pΦ(φ)dφ =

∫ 2π

0
pΦ(φ)dφ, (2.20)

1 =

∫
θ
fΘ(θ)dθ =

∫
θ
pΘ(θ) sin(θ)dθ =

∫ π

0
pΘ(θ) sin(θ)dθ, (2.21)

where fΦ(φ) and fΘ(θ) denote the PDFs of the azimuth and elevation angles,
respectively. This gives the following relationships between the power spectra
and the PDFs of the azimuth and elevation angles, respectively, as [129, 132,
171,180]

pΦ (φ) = fΦ (φ) , (2.22)

pΘ (θ) =
fΘ (θ)

sin (θ)
. (2.23)

3GPP Channel Model

The 3GPP channel model [129] is standardized for frequencies below 6 GHz and
can be used to model urban micro cells and urban macro cells, both for 3D in-
door/outdoor scenarios. Due to the complexity in generating the channel model
parameters and the fact that it is based on extensive measurement campaigns,
carried out by the 3GPP, the channel model is typically only used for detailed
simulation purposes.
The NLOS and LOS channel matrix of an arbitrary user can be described as
[129,181,182]

H =
√
P

(√
1

κ+ 1

C∑
c=1

√
γc
L

L∑
l=1

aRX
(
φAOA
c,l , θAOA

c,l

)
aH

TX
(
φAOD
c,l , θAOD

c,l

))
(

+

√
κ

κ+ 1
aRX

(
ϕAOA, ϑAOA)aH

TX
(
ϕAOD, ϑAOD)) , (2.24)
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where aRX
(
φAOA
c,l , θAOA

c,l

)
, aTX

(
φAOD
c,l , θAOD

c,l

)
, aRX

(
ϕAOA, ϑAOA

)
and aTX

(
ϕAOD, ϑAOD

)
are defined in (2.16), (2.15), (2.11) and (2.10), respectively. The link gain
P = 1/ω is calculated from (different) NLOS and LOS path loss measurements,
when a user in NLOS and LOS channel conditions, respectively. When a user
is in NLOS conditions, the Rician K-factor, κ, is zero.

Unlike the parameters for the Rayleigh fading, Rician fading and Saleh-Valenzuela
channel models, which are general to any values, the 3GPP channel model pa-
rameters have specific measured values and distributions. The generation of key
parameter values and distributions are described as follows:

• When the user is in LOS channel conditions, the Rician K-factor is gener-
ated via the log-normal distribution, i.e., the Rician K-factor in decibels is
distributed asN (µκ, σ

2
κ), where µκ and σκ is the measured Rician K-factor

mean and standard deviation, respectively, different for urban macro cell
and urban micro cell environments.

• The number of clusters, C, and number of paths per cluster, L, is fixed
for all users in LOS/NLOS urban macro cell/urban micro cell scenarios.

• The (normalized) cluster powers, γc, are generated via

γc =
γ′c
C∑
c=1

γ′c

, (2.25)

with

γ′c = exp (ln (Xc) (rt − 1)) 10−0.1ζγ , (2.26)

where Xc ∼ U [0, 1), rt is the delay distribution proportionality factor,
ζγ ∼ N

(
0, ε2γ

)
is the cluster shadow fading in decibels and εγ is the cluster

shadow fading standard deviation.

• The NLOS azimuth angles are generated via

φc,l =
(
Xcφ0,c + Yφ,c + ϕ

)
+ ∆φc,l, (2.27)

where ϕ is defined in Section 2.1.2, Xc is equally likely to be ±1, Yφ,c ∼
N
(

0,
(σφ

7

)2
)

is the random variation of the central cluster angle, φ0,c,
where σφ is the azimuth root mean square (RMS) angular spread. The
PAS is distributed as a wrapped Gaussian, therefore the azimuth cen-
tral cluster angles, φ0,c, are generated by applying the inverse Gaussian
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function

φ0,c =

2
( σφ

1.4

)√
−ln

(
γc

max(γc)

)
Zφ

, (2.28)

where ϑ is defined in Section 2.1.2, Zφ is the azimuth cluster scaling fac-
tor. ∆φc,l denotes the azimuth intra-cluster path offset, distributed as
the wrapped Gaussian N (0, Cφ), where Cφ is the intra-cluster azimuth
spread.

• The NLOS elevation angles are generated via

θc,l =
(
Xcθ0,c + Yθ,c + ϑ

)
+ ∆θc,l, (2.29)

where Xc is equally likely to be ±1, Yθ,c ∼ N
(

0,
(
σθ
7

)2
)

is the random
variation of the central cluster angle, θ0,c, where σθ is the elevation RMS
angular spread. The PES is Laplacian distributed, therefore the elevation
central cluster angles, θ0,c, are generated by applying the inverse Laplacian
function

θ0,c = −
σθ

(
γc

max(γc)

)
Zθ

(2.30)

where Zθ is the elevation cluster scaling factor. ∆θc,l denotes the elevation
intra-cluster path offset, distributed as the wrapped Gaussian N (0, Cθ),
where Cθ is the intra-cluster elevation spread.

2.1.3 Rate and Spectral Efficiency

Extending the capacity of a single-input-single-output system [183], the rate of
an arbitrary user, in bits/s, assuming perfect CSI is available at the TX, for a
MIMO system is given by [28,29,159,169]

R = B log2

∣∣∣IQ +
%

M
HHH

∣∣∣ , (2.31)

=

min(Q,M)∑
q=1

B log2

(
1 +

%

M
η2
q

)
, (2.32)

where ηq denotes the qth (ordered) singular value of H. The spectral efficiency,
in bits/s/Hz, is thus obtained by dividing R by the bandwidth. In a MU system,
(2.31) is extended to give the sum rate, R, as [168]

R = B log2

∣∣∣IKQ +
%

M
H̆H̆H

∣∣∣ (2.33)
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where H̆ =
[
HT

1 , . . . ,H
T
K

]T denotes the stacked KQ×M channel matrix to all
users, with Hk denoting the Q×M DL channel to user k ∈ 1, . . . , K.

2.2 Linear Precoding

When multiple users are simultaneously served, precoding of the data at the
transmitter can help increase the received SINR/SNR at each user [184]. In
this section four common linear precoders used in a multi-user single-antenna are
detailed: matched-filter (MF), zero-forcing (ZF), regularized zero-forcing (RZF)
and signal-to-leakage-plus-noise ratio (SLNR). Linear precoders are typically
sub-optimal, however, they have very low complexity [185] in relation to non-
linear precoders, such as DPC [70] and vector perturbation [71–73]. Let H

denote the stacked K × M DL channel matrix from the BS to all K users,
where single-antenna users (Q = 1) are assumed in this section for mathematical
simplicity and clarity.

2.2.1 MF Precoding

The MF precoder is the most computationally inexpensive precoding technique
which aims at maximizing the received power at each user while neglecting the
effects of interference to the other co-scheduled users. The M × 1 MF precoded
data vector is given by [168]

x =
1√
τ

HHs, (2.34)

where s is the K × 1 data symbol vector, with E [‖s‖2] = 1, and

τ =
tr
(
HHH)
K

, (2.35)

normalizes the average power of the MF precoder. The received signal is thus
given by

y =
√
%HHH s√

τ
+ v, (2.36)

giving the instantaneous MF SINR of the kth user as

SINRMF
k =

%
Kτ

∣∣hkhH
k

∣∣2
1 + %

Kτ

K∑
k′=1
k′ 6=k

∣∣hkhH
k′

∣∣2 , (2.37)

where vk denotes the kth entry of v, where E
[
|vk|2

]
= 1, and hk denotes the

kth column of H, i.e., the 1×M DL channel from the TX to user k.
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2.2.2 ZF Precoding

The ZF precoding technique forces all intra-cell interference to zero by using co-
herent superposition of wave-fronts to send null vectors to all co-scheduled users.
The ZF precoder is more computationally expensive than the MF precoder as it
requires a matrix inverse of HHH. The M × 1 ZF precoder transmitted symbol
vector, x, is given by

x =
1√
τ

HH (HHH)−1
s, (2.38)

where the average power in x is normalized via

τ =
tr
((

HHH)−1
)

K
. (2.39)

The K × 1 received signal is thus given by

y =

√
%

τ
s + v, (2.40)

giving the instantaneous ZF SNR as

SNRZF =
%

tr
(

(HHH)
−1
) , (2.41)

where the noise power is normalized to 1. Note that the matrix inverse in (2.38),
(2.39) and (2.41) requires M ≥ KQ, which is assumed throughout this thesis.

2.2.3 RZF Precoding

Since the ZF normalization parameter, τ , in (2.39), can become large when the
matrix inverse is computed, due to small singular values in the channel, the ZF
precoder performs poorly at low SNR. The RZF precoding technique, however,
introduces a regularization parameter, κ, to the ZF precoder to help improve
the ZF precoding performance at low SNR by aiming to minimize the mean
squared error (MSE) of the transmitted and received symbol vector. TheM×1

RZF precoder transmitted symbol vector, x, is thus given by

x =
1√
τ

HH (HHH + κIM
)−1

s, (2.42)

where the average power in x is normalized via

τ =
tr
((

HHH + κIM
)−1
)

K
. (2.43)

The regularization parameter, κ, can thus be seen to control the amount of
inter-user interference. For example, when κ = 0, (2.42) is equal to the ZF
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transmitted symbol vector in (2.38) and inter-user interference is zero. On the
other hand, for non-zero κ there is some inter-user interference, however, κ
can be chosen to improve the condition number of the channel matrix, H, such
that the matrix inverse in (2.42) and (2.43) behaves well. This leads to many
variants, such as the SLNR precoder discussed below. However, in the case of
the RZF precoder, κ is chosen to minimize the MSE.
From (2.42), the K × 1 received signal for the RZF precoder is given by

y =

√
%

τ
HHH (HHH + κIM

)−1
s. (2.44)

2.2.4 SLNR Precoding

The SLNR precoder has the same general form as the RZF precoder, however
rather than minimizing the MSE of the transmitted and received symbol vectors,
as is the case for the RZF precoder, the SLNR precoder aims to maximize
the signal-to-leakage-plus-noise-ratio [186, 187]. The M × 1 SLNR precoder
transmitted symbol vector to user k ∈ 1, . . . , K, xk, is given by

xk =
(
H́H
k H́k + κIM

)−1
HH
k sk, (2.45)

where sk is the kth entry of s, Hk is the 1 × M DL channel matrix to user
k, H́k =

[
HT

1 , . . . ,H
T
k−1,H

T
k+1, . . . ,H

T
K

]T is the concatenated channel matrix of
all users except user k. The transmitted symbol vector is normalized such that
E
[
‖xk‖2] = 1. The received signal for user k is then given by

yk =

√
1

τ
Hk

(
H́H
k H́k + κIM

)−1
HH
k sk + vk. (2.46)

where τ is the normalization parameter, given by

τ =
‖H‖2F
K

, (2.47)

where ‖H‖F =
√

tr (HHH) is the Frobenius norm of H.

2.3 Spatial Correlation

In this section spatial correlation is discussed. Spatial correlation describes the
linear dependence of two or more signals in space. Without loss of generality,
the following notation and discussion relates to spatial correlation at the TX.
The spatial correlation coefficient, Rm,m′ , between two TX antennas, m,m′ ∈
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1, . . . ,M , channels is defined as [188]

Rm,m′ =
cov[hm,hm′ ]√
var[hm]var[hm′ ]

, (2.48)

where |Rm,m′ | ≤ 1 ,with equality when the two TX antenna elements channels
are linearly dependent, known as fully correlated. On the other hand, when
Rm,m′ = 0, the two TX antenna elements channels uncorrelated. Various chan-
nel characteristics can influence the level of spatial correlation. For example,
in a NLOS channel, increasing the number of clusters, C, (in (2.14)) and/or
increasing the width of the angular spectra is likely to reduce the level of spatial
correlation in the channel. This is because two colocated antenna elements are
more likely to transmit/receive signals which have undergone sufficiently inde-
pendent scattering. On the other hand, in the unique case of a single specular
(LOS) ray, two colocated antenna elements will be fully correlated since there
is no diversity in the channel.
Spatial correlation can also be affected by varying the layout/topology of an-
tenna array such that channels between adjacent antenna elements are suffi-
ciently correlated or decorrelated. For example, in general, spatial correlation
can be reduced by increasing the inter-element spacing between antennas. The
effects of antenna topologies on spatial correlation are analysed in Chapter 5 for
a number of different channel propagation characteristics. Three such antenna
topologies considered are:

1. A ULA placed on the x, y-plane.

2. A URA with one dimension parallel to the z-axis and another dimension
placed on the x, y-plane.

3. A uniform cylindrical array (UCA) where a number of x, y-plane circles
of antennas are stacked parallel to the z-axis.

The ULA, URA and UCA antenna topologies are shown in Figures 2.4, 2.5 and
2.6, respectively. For both the URA and UCA, we assume that the number
of antennas parallel to the x, y-plane are the same as the number of antennas
parallel to the z-axis. The antenna array response vectors for each topology are
given in (2.15) and (2.16), where the TX and RX antenna location matrices,
WTX and WRX, respectively, are topology specific.
Typically the resultant expression in computing (2.48) is too complex to perform
any meaningful statistical analysis, and therefore a number of simplified spatial
correlation models have been proposed. A common and simple spatial corre-
lation model, which is used throughout the thesis, is known as the exponential
spatial correlation model [189], and is described below.
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Figure 2.4: ULA antenna topology on the x-axis with M dipole antennas, of
length ι, with an inter-element spacing of dx.

...

...

...

Figure 2.5: URA antenna topology on the x, z-plane consisting of
√
M dipoles

on the x-axis, with inter-element spacing of dx, and
√
M dipoles on the z-axis,

with inter-element spacing of dz. Each dipole antenna element is of length ι.

2.3.1 The Exponential Spatial Correlation Model

The most simplistic spatial correlation model is known as the exponential spatial
correlation model [189]. The model was proposed by fitting an exponential curve
to the non-monotonically decaying peaks of the true spatial correlation. It is a
crude approximation to the true spatial correlation and can be described with
a single parameter, thus making it desirable from an analytical perspective.
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Figure 2.6: UCA antenna topology with
√
M x, y-plane circles of dipole anten-

nas separated on the z-axis by dz. Each x, y-plane circle of antennas has radius
r and inter-element spacing dxy. Each dipole antenna element is of length ι.

The TX spatial correlation matrix, RTX, using the exponential spatial correla-
tion model, can be described by

RTX =


1 ρ · · · ρM−1

(ρ)? 1 · · · ρM−2

...
...

. . .
...(

ρM−1
)? (

ρM−2
)? · · · 1

 , (2.49)

where ρ is the exponential spatial correlation decay parameter, with |ρ| ≤ 1.
Large |ρ| indicates high spatial correlation, and vice-versa.
Example: In Figure 2.7, an exponential spatial correlation model is shown
approximating the true spatial correlation. Here, the true spatial correlation
is obtained by computing the spatial correlation of a ULA, positioned on the
x-axis, with θ = π

2
and φ uniformly distributed on

[
π
2
− π

9
, π

2
+ π

9

]
, i.e., from

(2.15)3

Rm,m′ =
9

2π

∫ π
2

+π
9

π
2
−π

9

exp (j2πdλ cos(φ)) dφ. (2.50)

For more details of these types of spatial correlation calculations, see Section
5. The exponential approximation in Figure 2.7 was found by fitting the best

3The central azimuth angle, π
2 , and the offsets, ±π9 , are arbitrary chosen for example

purposes.
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exponential decay to the peaks of |Rm,m′|.
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Exponential fit

Figure 2.7: Absolute value of the spatial correlation between two TX antenna
elements m,m′ ∈ 1, . . . ,M as a function of inter-element spacing, dλ, and a
fitted exponential spatial correlation model.

2.4 Mutual Coupling

In this thesis, mutual coupling between antennas is modelled between (ideal)
dipole antenna elements. In general, mutual coupling between two antenna
elements can be interpreted as the voltage produced at the terminal of one
antenna element as a result of a current being induced on a the other antenna
element [87, 171]. Mutual coupling has been shown to influence the resultant
spatial correlation and system performance, especially for close inter-element
antenna spacings [24,87,171,190–196], and it is therefore considered in Chapter
5.
The global mutual coupling matrix can be expressed as [83,85]

Z = (ZA + ZL) (Ξ + ZLIM )−1 , (2.51)

where ZA is the antenna impedance, ZL is the load or termination impedance
and Ξ is the mutual impedance matrix given by [171]

Ξ =


ZA Z1,2

M · · · Z1,M−1
M Z1,M

M
Z2,1

M ZA · · · Z2,M−1
M Z2,M

M
...

...
...

...
...

ZM,1
M ZM,2

M · · · ZM,M−1
M ZA

 , (2.52)

if mutual coupling is modelled at the TX. Zm,m′

M denotes the mutual impedance
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between antenna elements m,m′ ∈ 1, . . .M , which is dependent on the antenna
inter-element spacings as well as the relative antenna configuration/orientation.
The mutual impedances are obtained by employing the electromotive force
(EMF) method due to its numerical convenience [89, 171], rather than the in-
tegral equation-moment method, which requires a lengthy formulation [171]. It
should be noted that the mutual coupling matrix, Z, is only dependent of the
inter-element spacings and relative antenna configuration/orientation. There-
fore, mutual coupling is independent on the propagation environment, whereas
spatial correlation, discussed in Section 2.3, is heavily dependent on both the
inter-element spacings and the channel matrix [23, 91,132].
The mutually coupled channel matrix of an arbitrary user, H, is given by the
Kronecker model [106]

H = ZRXHZTX, (2.53)

where ZRX and ZTX denote the Q × Q RX and M ×M TX mutual coupling
matrices, respectively, as given in (2.51). As an example, for a Rayleigh fading
channel with spatial correlation and mutual coupling, the channel matrix will
then become

H =
√
PZRXR

1/2
RXHiidR

1/2
TXZTX. (2.54)

Likewise, the user rate is then

R = B log2

∣∣∣∣IQ +
P%

M
ZRXR

1/2
RXHiidR

1/2
TXZTX

(
ZRXR

1/2
RXHiidR

1/2
TXZTX

)H
∣∣∣∣ . (2.55)

2.5 Massive MIMO

This section introduces some relevant theoretical background on massive MIMO.
Naturally, all previously presented theoretical background, on MIMO, also ap-
plies to massive MIMO, however, this section aims to address the additional
properties and issues which arise for massive MIMO, i.e., a MIMO system with
a very large number of TX antennas. These properties and issues do not apply
for conventional MIMO systems.
The seminal work by T. L. Marzetta in 2010 [6] and others [7, 8, 45] considered
a MIMO system with an infinite number of TX antennas, concluding that mas-
sive MIMO systems are a promising direction for future wireless systems. In
particular, it was shown that, in the limit of an infinite number of TX anten-
nas, the effects of fast fading and uncorrelated noise average out, and the only
remaining impairment results from corrupted CSI though the re-use of pilot
signals in multi-cell scenarios4. In TDD systems this corresponds to the BSs

4This limitation of massive MIMO was later disproven in [197,198] under certain circum-
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uplink channel estimate, through channel reciprocity, being corrupted by users
in adjacent cells using the same pilot sequence. In frequency-division-duplex
(FDD) systems, this corresponds to the BS transmitting duplicates of the (lim-
ited) number of pilot sequences, as the number of DL pilot sequences required
scales with the number of TX antennas.
The effects of increasing numbers of TX antennas on the channel matrix, sum
rate, linear precoding techniques, spatial correlation and mutual coupling are
discussed below where single antenna users are assumed for mathematical sim-
plicity and clarity.

2.5.1 Channel Matrix

Here, the effects of an infinite number of TX antennas on HHH

M
is shown. As-

suming a power scaled i.i.d. K×M channel matrix, H = [H1, . . . ,HK ]T, where
Hk is the 1×M DL channel matrix from the TX to user k ∈ 1, . . . K, then as
the number of TX antennas, M , tends to infinity, for fixed K, HHH

M
approaches

a diagonal matrix, i.e.,

lim
M→∞

(
HHH

M

)
= lim

M→∞

(
P1/2 HiidHH

iid
M

P1/2

)
= P, (2.56)

since each of the K users’, 1 ×M , i.i.d. channels becomes orthogonal [6, 199].
Here, P = diag (P1, . . . , PK) is a K × K diagonal matrix consisting of the
link gains to each user. Note that in this section, for the case of exposition,
uncorrelated channels are assumed, so that H = P1/2Hiid. This is known as
favourable propagation [43], and under these conditions, the channel singular
values become equal, i.e., η1 = η2 = · · · = ηmin(M,K).

2.5.2 Sum Rate

The effects of an infinite number of TX antennas on the sum rate is now shown.
Since HiidHH

iid
M

converges to the identity matrix, IK , as M → ∞ [6, 199], the
multiplexing gain is maximized and thus the sum rate achieves capacity (optimal
sum rate). This can be seen by considering the limit of (2.33), as M →∞,

lim
M→∞

(R) = lim
M→∞

(
B log2

∣∣∣IK +
%

M
HHH

∣∣∣) (2.57)

= B log2 |IK + %P| , (2.58)

which for equal link gains amongst users (P = P IK), is

lim
M→∞

(R) = B log2 |IK + %P IK | (2.59)

= KB log2 (1 + %P ) . (2.60)

stances.



2.5. MASSIVE MIMO 32

The sum rate is seen to scale with the number of users, K. Note that in the case
of multiple antenna users, the sum rate increased proportionately to the number
of receive antennas at the user, Q. However, the effects of pilot contamination
in both TDD and FDD systems reduce the sum rate by the same amount.
Therefore (2.58) and (2.60) remains the same for Q > 1.

2.5.3 Linear Precoding

In this subsection, a background on linear precoding for massive MIMO is given
for the simple case where the channel is uncorrelated, i.e., H = Hiid.
Another key observation that arises when M → ∞ is that linear precoders
have been shown to perform near to the optimal [7, 73, 168] for i.i.d. channels
and a finite number of transmit antennas, M , since the processing effectively
renders the users’ channels asymptotically orthogonal, i.e., HiidHH

iid
M

≈ IK . Thus
MF and ZF precoding techniques become equivalent, i.e., as M becomes very
large with fixed K, the transmitted symbol vector for the MF precoder can be
approximated by

x =
1√
τ

HH
iids (2.61)

=

√
K

tr
(
HiidHH

iid
)HH

iids (2.62)

=

√√√√ K

Mtr
(

HiidHH
iid

M

)HH
iids (2.63)

≈

√
K

Mtr (IK)
HH

iids (2.64)

=
1√
M

HH
iids. (2.65)

Likewise, asM becomes very large with fixed K, the transmitted symbol vector
for the ZF precoder is given by

x =
1√
τ

HH
iid
(
HiidHH

iid
)−1

s (2.66)

=

√√√√ K

tr
((

HiidHH
iid
)−1
)HH

iid
(
HiidHH

iid
)−1

s (2.67)

=

√√√√√ K

1
M tr

((
HiidHH

iid
M

)−1
) 1

M
HH

iid

(
HiidHH

iid
M

)−1

s (2.68)

≈
√√√√ K

1
M tr

(
(IK)−1

) 1

M
HH

iid (IK)−1 s (2.69)
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=
1√
M

HH
iids. (2.70)

Hence ZF precoding and MF precoding become equivalent as M → ∞. From
(2.65) and (2.70) the received SINR of user k then becomes

SINRk =
%
K |Hiid,kx|2

1 + %
K

K∑
k′=1
k′ 6=k

∣∣Hiid,k′x
∣∣2 (2.71)

=

√
M%
K

∣∣∣∣Hiid,kH
H
iid,k

M sk

∣∣∣∣2
1 +

√
M%
K

K∑
k′=1
k′ 6=k

∣∣∣Hiid,k′Hiid,k
M sk

∣∣∣2 (2.72)

=

√
M%
K

∣∣∣∣Hiid,kH
H
iid,k

M sk

∣∣∣∣2
1 +

√
M%
K

K∑
k′=1
k′ 6=k

∣∣∣∣Hiid,k′H
H
iid,k

M sk

∣∣∣∣2
(2.73)

≈
√
M%

K
|sk|2 , (2.74)

since
Hiid,k′H

H
iid,k

M
≈ 0 and

Hiid,kH
H
iid,k

M
≈ 1 for very large M . Thus, the transmitted

symbol is recovered, with strength proportional to the received SNR, %, and the
square root of the number of TX antennas, M .
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3
Convergence to Massive MIMO

In this chapter, the convergence properties of large scale MIMO systems are
examined with the aim of determining the number of antennas required to realize
massive MIMO properties. Characteristics of both Rayleigh and Rician fading
channel matrices are considered, and their asymptotic behaviour is studied.
Under a Rayleigh fading channel, limiting per-user ZF SNR and MF SINR are
derived for scenarios of equal and unequal link gains, as the number of TX and
RX antennas (with fixed ratio) increases without bound. Numerically, the effects
of spatial correlation are shown for both Rayleigh and Rician fading channels,
as well as the impact of increasing LOS strength on the rate of convergence of
the Rician fading channel. It is seen that the rate of convergence of the per-
user ZF SINR, to its limiting value, is quicker than that of the MF precoder
due to its additional inter-user interference component. Furthermore, increased
LOS strength, in a Rician fading channel, increases the rate of convergence to
favourable propagation and channel hardening, while reducing and increasing
the performance of ZF and MF precoders, respectively.

3.1 Introduction

Motivating the surge of research activities into massive MIMO systems are the
additional channel properties which arise when operating with large numbers of
TX antennas. These properties arise as a result of random matrix theory asymp-
totics [63]. For example, as the number of TX antennas becomes large, users’
channels become mutually orthogonal [64]. This is known as favourable propa-
gation, and under these conditions simple linear processing techniques, such as
MF and ZF precoding, can maximize the sum rate [43, 65–67]. Another virtue
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of massive MIMO systems is referred to as channel hardening [68], where the
variance of the elements of Viid =

HiidHH
iid

M
decreases proportional to the number

of TX antenna numbers, M , such that the entries of Viid start to become de-
terministic [6,43]. In turn, when random matrix elements become deterministic
and well conditioned, system analysis and precoder design becomes simplified
since matrix operations can be computed more easily [7]. For example, the com-
putationally intensive matrix inverse required for ZF precoding becomes simply
the inverse of an identity matrix. These idealistic properties, however, are based
on the assumptions of an i.i.d. channel with an infinite number of TX antennas.
In summary, favourable propagation and channel hardening can be defined as
when Viid becomes diagonal and deterministic, respectively, as the number of
transmit antennas, M →∞.
Since the deployment of a very large number of antennas may be impractical due
to physical constraints, it seems natural to determine the number of antennas
required for MIMO systems to begin to exhibit these additional benefits. This
is the focus of the chapter and the contributions are summarized below:

1. The rates of convergence of V = HHH

M
to favourable propagation and

channel hardening, asM →∞ with K ≤M fixed, of Rayleigh and Rician
fading channel matrices are analytically derived. Note that the analyti-
cal convergence of Viid to favourable propagation and channel hardening
in Rayleigh [142] and Rician [143] fading channels is well known. This
analysis is extended to the scenario of unequal link gains.1

2. The convergence properties of Viid, in Rayleigh and Rician fading chan-
nels, is numerically studied by considering three different convergence met-
rics defined in Section 3.2, forM →∞ with bothK ≤M fixed and ν = M

K

fixed. Practically, the convergence metrics aid the design of a system since
the number of antennas required to guarantee the magnitude of a partic-
ular convergence metric is shown.

3. Closed-form limiting expressions, as M,K →∞ with fixed ν = M
K
, of the

per-user ZF SNR and MF SINR are derived2 for unequal link gains3 in a
Rayleigh fading channel. In turn, the rate of convergence of the average
instantaneous per-user ZF SNR and MF SINR is investigated.

1In the Rayleigh fading case a particular users channel is given
by H =

√
PHiid, whereas the users channel is given by H =√

P
(√

1
κ+1Hiid +

√
κ
κ+1aRX

(
ϕAOA, ϑAOA

)
aH

TX
(
ϕAOD, ϑAOD

))
in the Rician fading

scenario.
2This has been previously derived for the case where M →∞ with K ≤ M fixed [6], but

is also included as a preliminary result in Section 3.3.1 for completeness.
3Closed-form limiting expressions, as M,K → ∞ with fixed ν = M

K , of the per-user ZF
SNR and MF SINR has previously been derived for equal link gains in [7] for a Rayleigh
fading channel. However, it is also included in this chapter to assist in the derivation of the
unequal link gain case and for completeness.
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4. The performance of the average instantaneous per-user ZF SNR and MF
SINR under Rayleigh and Rician fading channels, with and without spatial
correlation at the TX, is shown.

Note that single-antenna users are considered such that the rate of convergence
of V (channel convergence in Section 3.2) can be compared to the rate of conver-
gence of the average per-user MF SINR (linear precoding convergence in Section
3.3), which only operates with single stream transmission [57].

3.2 Channel Convergence

The convergence of V to IK is examined in Sections 3.2.1 and 3.2.2 for Rayleigh
and Rician fading channels, respectively. For both types of channels, the rate of
convergence of V to favourable propagation and channel hardening properties
are mathematically analysed for the case whereM →∞ withK ≤M fixed. The
first and second moments of V are used as a measure of favourable propagation,
while the second moment is also used to measure channel hardening.
For both Rayleigh and Rician fading channels, three different convergence met-
rics are defined as follows. Let the K ×M matrix Hiid =

[
hT

iid,1, . . . ,h
T
iid,K

]T
denote the concatenation of the K users’ 1×M channel vectors, where hiid,k is
the kth users DL i.i.d. channel vector. The convergence of Viid to IK can be
evaluated by examining a number of well known properties of Viid and a devia-
tion matrix E = Viid−IK . The following metrics are considered: mean absolute
deviation, eigenvalue ratio and diagonal dominance, respectively defined as

Mean absolute deviation =
1

K2

K∑
k=1

K∑
k′=1

∣∣Ek,k′∣∣ , (3.1)

Eigenvalue ratio =
η2
max
η2
min

, (3.2)

Diagonal Dominance =

K∑
k=1

Viid,k,k

K∑
k=1

K∑
k′=1
k′ 6=k

∣∣Viid,k,k′
∣∣ , (3.3)

where ηmax and ηmin denote the maximum and minimum singular values of
Viid, respectively, Ek,k′ denotes the (k, k′)th entry of E, and Viid,k,k′ denotes the
(k, k′)th entry of Viid. Two types of convergence scenarios are considered:

1. M →∞ with K ≤M fixed, denoted by lim
M→∞

(·),

2. K,M →∞ with ν = K
M

fixed, denoted by lim
K,M→∞

(·),

where M ≥ K in both cases.
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3.2.1 Rayleigh Fading Channel

In this subsection, the Rayleigh fading channel given in (2.8) is considered for an
uncorrelated TX antenna array, i.e., the composite K ×M DL channel matrix
to K users is given by

H = P1/2Hiid. (3.4)

Rayleigh Fading Channel Analysis

The convergence of a Rayleigh fading channel to favourable propagation and
channel hardening is now shown. The diagonal and off-diagonal elements of V

are examined independently.

Theorem 3.1. Let Vk,k denote the (k, k)th entry of V, for k ∈ 1, . . . , K, and
Xk denote a χ2

M random variable with M complex degrees-of-freedom (DOF),
then

Vk,k =
PkXk

M
. (3.5)

Proof.

Vk,k =

(
HHH

M

)
k,k

(3.6)

=

(
P1/2HiidHH

iidP1/2

M

)
k,k

(3.7)

=

√
Pkhiid,kh

H
iid,k
√
Pk

M
(3.8)

=

Pk
M∑
m=1
|Hiid,k,m|2

M
(3.9)

=
PkXk

M
, (3.10)

where Hiid,k,m denotes the (k,m)th element of Hiid. �

Corollary 3.1. Since E [Xk] = M and var
[
Xk
M

]
= 1

M
[200],

E [Vk,k] = E
[
PkXk

M

]
= Pk, (3.11)

var [Vk,k] = var
[
PkXk

M

]
=
P 2
k

M
. (3.12)

Thus lim
M→∞

(var [Vk,k]) = 0, i.e., the diagonal elements of V converge to their
expected value, Pk, with the variance decreasing proportional to the number of
TX antennas, M .
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Theorem 3.2. Let Yk,k′ =
M∑
m=1

Hiid,k,mH
H
iid,k′,m, then for k, k′ ∈ 1, . . . , K, k′ 6= k,

Vk,k′ =

√
PkPk′Yk,k′

M
. (3.13)

Proof.

Vk,k′ =

(
HHH

M

)
k,k′

(3.14)

=

(
P1/2HiidHH

iidP1/2

M

)
k,k′

(3.15)

=

√
Pkhiid,kh

H
iid,k′
√
Pk′

M
(3.16)

=

√
PkPk′

M∑
m=1

Hiid,k,mH
H
iid,k′,m

M
(3.17)

=

√
PkPk′Yk,k′

M
. (3.18)

�

Corollary 3.2. Since E [Yk,k′ ] = 0 and

var
[
Yk,k′

M

]
= var


M∑
m=1

Hiid,k,mH
H
iid,k′,m

M

 (3.19)

=

var
[
M∑
m=1

Hiid,k,mH
H
iid,k′,m

]
M2

(3.20)

=

M∑
m=1

var
[
Hiid,k,mH

H
iid,k′,m

]
M2

(3.21)

=

M∑
m=1

E
[
|Hiid,k,m|2

∣∣∣HH
iid,k′,m

∣∣∣2]
M2

(3.22)

=
1

M
, (3.23)

then for k 6= k′,

E
[
Vk,k′

]
= E

[√
PkPk′Yk,k′

M

]
= 0, (3.24)

var
[
Vk,k′

]
= var

[√
PkPk′Yk,k′

M

]
=
PkPk′

M
. (3.25)

Thus lim
M→∞

(var [Vk,k′ ]) = 0, i.e., the off-diagonal elements of V converge to their
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expected value, 0, with the variance decreasing proportional to the number of
TX antennas.

Corollary 3.3. Using the known convergence of Viid to IK as M → ∞ [142],
for finite K,

lim
M→∞

(V) = lim
M→∞

(
HHH

M

)
= lim

M→∞

(
P1/2HiidHH

iidP1/2

M

)
= P, (3.26)

Essentially, the speed of convergence of V to channel hardening is controlled
by the convergence of Viid to IK with the Pk and

√
PkPk′ values scaling the

variances of the diagonal and off-diagonal elements of V, respectively.

Rayleigh Fading Channel Numerical Results

The convergence of Viid to IK is now numerically examined for the three con-
vergence metrics defined in (3.1)-(3.3). Each convergence metric is evaluated
and averaged over 1000 channel realizations.
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Figure 3.1: Average eigenvalue ratio as a function of the number of TX antennas,
M , for an i.i.d. channel with the number of users, K, fixed.

Figure 3.1 shows the eigenvalue ratio of Viid as a function of M for the con-
vergence scenario where K is fixed at 10 and 50. It can be seen that for both
values of K, the eigenvalue ratio will only converge to 1 when M is of the order
of 104. Even for values of M as large as 100, the eigenvalue ratio for K = 50 is
more than 8 times larger than the corresponding value for K = 10.
However, when Figure 3.2 is considered, showing the mean absolute deviation
of Viid from the identity matrix, IK , it is noted that this difference quickly
approaches zero. For example, in Figure 3.1, for M = 500 and K = 50 the
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Figure 3.2: Average mean absolute deviation as a function of the number of
users, K, for an i.i.d. channel with ν = M

K
fixed.

eigenvalue ratio is about 4, yet in Figure 3.2, when K = 50, and the corre-
sponding M = 500, the mean absolute deviation is less than 0.05.
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Figure 3.3: Average diagonal dominance as a function of the number of TX
antennas, M , for an i.i.d. channel with K both fixed, at 10, and variable, where
K = M

ν
, ν = 10.

In Figure 3.3, it is observed that Viid becomes increasingly diagonally dominant
for fixed K as M →∞ since Viid has a fixed dimension (K ×K) and the sum
of the diagonal elements grows faster than the fixed number of off-diagonals. In
contrast as both M and K grow large, Viid becomes less diagonally dominant.
This follows as the number of off-diagonal elements increases as K2 and the
total contribution of the off-diagonals becomes dominant. It can be shown that
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the diagonal dominance measure grows proportionally to
√
M for fixed K and

decays proportionally to 1√
M

as both M and K increase.
It is concluded that the number of antennas required for Viid to be close to
IK (Figure 3.2) is far less than the number required for an eigenvalue ratio
of 1 (Figure 3.1), because the eigenvalues are sensitive to the large number of
(small) off-diagonal elements in Viid. This is supported by the result in Figure
3.3, which shows that the convergence of the off-diagonal elements of Viid to
zero is slow.

3.2.2 Rician Fading Channel

After examining the convergence of the Rayleigh fading channel, the convergence
of the Rician fading channel, given in (2.9), is now considered.

Rician Fading Channel Analysis

As was the case for the Rayleigh fading channel, the first two moments of V

are used as a measure of favourable propagation, while the second moment is
also used to measure channel hardening. All analysis is performed for the con-
vergence scenario where M →∞ with K ≤M fixed.

Theorem 3.3. Let κk,RTX, ϕ
AOD
k and ϑAOD

k denote the Rician K-factor, TX
spatial correlation matrix, LOS azimuth AOD and LOS elevation AOD of user k,
respectively ∀k. Let aTX,m

(
ϕAOD
k , ϑAOD

k

)
denote themth element of aTX

(
ϕAOD
k , ϑAOD

k

)
∀m, k, then the first moment of V for k, k′ ∈ 1, . . . , K is given by

E
[
Vk,k′

]
=

√
PkPk′

(κk + 1) (κk′ + 1)
E

[
hiid,kRTXhH

iid,k′

M

]

+

√
PkPk′κkκk′

(κk + 1) (κk′ + 1)

1

M

M∑
m=1

aH
TX,m

(
ϕAOD
k , ϑAOD

k

)
aTX,m

(
ϕAOD
k′ , ϑAOD

k′
)
. (3.27)

Proof. Let hk denote the 1×M DL channel to user k ∈ 1, . . . , K,

E
[
Vk,k′

]
= E

[(
HHH

M

)
k,k′

]
= E

[
hkh

H
k′

M

]
(3.28)

= E
[√

PkPk′

M

(√
1

κk + 1
hiid,kR

1/2
TX +

√
κk

κk + 1
aH

TX
(
ϕAOD
k , ϑAOD

k

))]
[
×
(√

1

κk′ + 1
R

1/2
TXhH

iid,k′ +

√
κk′

κk′ + 1
aTX

(
ϕAOD
k′ , ϑAOD

k′
))]

(3.29)

= E

[√
PkPk′

(κk + 1) (κk′ + 1)

hiid,kRTXhH
iid,k′

M

]

+ E

[√
PkPk′κk′

(κk + 1) (κk′ + 1)

hiid,kR
1/2
TXaTX

(
ϕAOD
k′ , ϑAOD

k′
)

M

]
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+ E

√ PkPk′κk
(κk + 1) (κk′ + 1)

aH
TX
(
ϕAOD
k , ϑAOD

k

)
R

1/2
TXhH

iid,k′

M


+ E

[√
PkPk′κkκk′

(κk + 1) (κk′ + 1)

aH
TX
(
ϕAOD
k , ϑAOD

k

)
aTX

(
ϕAOD
k′ , ϑAOD

k′
)

M

]
(3.30)

=

√
PkPk′

(κk + 1) (κk′ + 1)
E

[
hiid,kRTXhH

iid,k′

M

]

+

√
PkPk′κkκk′

(κk + 1) (κk′ + 1)

1

M

M∑
m=1

aH
TX,m

(
ϕAOD
k , ϑAOD

k

)
aTX,m

(
ϕAOD
k′ , ϑAOD

k′
)
, (3.31)

where the Rician channel, H, is given in (2.9) and the two middle expectations
in (3.30) are zero since E [hiid,k] = 0 ∀k. �

Corollary 3.4. The expected value of the diagonal elements of V is

E [Vk,k] = Pk. (3.32)

Proof. From (3.27),

E [Vk,k] =
Pk

κk + 1

tr (RTX)

M
+

Pkκk
κk + 1

1

M

M∑
m=1

∣∣aH
TX,m

(
ϕAOD
k , ϑAOD

k

)∣∣2 (3.33)

=
Pk

κk + 1
+

Pkκk
κk + 1

=
Pk (1 + κk)

κk + 1
= Pk, (3.34)

since tr (RTX) = M and each element of an antenna array response vector has
unit magnitude. �

Corollary 3.5. The expected value of the off-diagonal elements of V is

E
[
Vk,k′

]
=

√
PkPk′κkκk′

(κk + 1) (κk′ + 1)

aH
TX
(
ϕAOD
k , ϑAOD

k

)
aTX

(
ϕAOD
k′ , ϑAOD

k′
)

M
. (3.35)

Proof. Using the fact that E
[
tr
(

hiid,kRTXhH
iid,k′

M

)]
= 0, for k′ 6= k, in (3.27)

gives the desired result. �

The expected value of the off-diagonals of V are only a function of the LOS
component of the Rician channel and are thus deterministic. E [Vk,k′ ] becomes
zero in the case where either user has a fully scattered channel (κk = 0 or
κk′ = 0). Also, the amplitude E [Vk,k′ ] increases proportional to both the Rician
K-factor and the LOS spatial correlation (i.e., the similarity between the kth
and k′th LOS antenna array response vectors).

Corollary 3.6. The expected absolute value of the off-diagonal elements of V is
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bounded by

∣∣E [Vk,k′]∣∣ <√PkPk′ ∣∣aH
TX
(
ϕAOD
k , ϑAOD

k

)
aTX

(
ϕAOD
k′ , ϑAOD

k′
)∣∣

M
. (3.36)

Proof. Using the fact that
∣∣∣√ κkκk′

(κk+1)(κk′+1)

∣∣∣ < 1 gives the desired result. �

Since the LOS antenna array response vectors are not usually the same, their
product will tend to be small and the division byM causes convergence to zero.
Only for specially selected angles will this term not tend to zero4, i.e., when the
angles between the users are almost identical giving M ≈

∣∣aH
TX

(
ϕAOD
k , ϑAOD

k

)∣∣∣∣×aTX
(
ϕAOD
k′ , ϑAOD

k′

)∣∣.
Theorem 3.4. The variance of the elements of V is given by

var
[
Vk,k′

]
=

PkPk′

(κk + 1) (κk′ + 1)

tr
(
R2

TX
)

M2

+
PkPk′κk′

(κk + 1) (κk′ + 1)

aH
TX
(
ϕAOD
k′ , ϑAOD

k′
)
RTXaTX

(
ϕAOD
k′ , ϑAOD

k′
)

M2

+
PkPk′κk

(κk + 1) (κk′ + 1)

aH
TX
(
ϕAOD
k , ϑAOD

k

)
RTXaTX

(
ϕAOD
k , ϑAOD

k

)
M2

. (3.37)

Proof. Writing the variance in terms of expectations, gives

var
[
Vk,k′

]
= var

[(
HHH

M

)
k,k′

]
= E

[∣∣∣∣hkhH
k′

M

∣∣∣∣2
]
−
∣∣∣∣E [hkh

H
k′

M

]∣∣∣∣2 . (3.38)

Then computing the first term in (3.38),

E

[∣∣∣∣hkhH
k′

M

∣∣∣∣2
]

= E

[(
hkh

H
k′

M

)(
hkh

H
k′

M

)H]
(3.39)

=
PkPk′

(κk + 1) (κk′ + 1)
E

[
hiid,kRTXhH

iid,k′hiid,k′RTXhH
iid,k

M2

]

+
PkPk′κk′

(κk + 1) (κk′ + 1)
E

[
hiid,kR

1/2
TXaTX

(
ϕAOD
k′ , ϑAOD

k′
)
aH

TX
(
ϕAOD
k′ , ϑAOD

k′
)
R

1/2
TXhH

iid,k

M2

]

+
PkPk′κk

(κk + 1) (κk′ + 1)
E

aH
TX
(
ϕAOD
k , ϑAOD

k

)
R

1/2
TXhH

iid,k′hiid,k′R
1/2
TXaTX

(
ϕAOD
k , ϑAOD

k

)
M2


+

PkPk′κkκk′

(κk + 1) (κk′ + 1)
E

[∣∣aH
TX
(
ϕAOD
k , ϑAOD

k

)
aTX

(
ϕAOD
k′ , ϑAOD

k′
)∣∣2

M2

]
(3.40)

4Note that this is only true when M →∞ leads to large antenna array form factors, i.e.,
not for space constrained antenna arrays [84].
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=
PkPk′

(κk + 1) (κk′ + 1)

tr
(
R2

TX
)

M2

+
PkPk′κk′

(κk + 1) (κk′ + 1)

aH
TX
(
ϕAOD
k′ , ϑAOD

k′
)
RTXaTX

(
ϕAOD
k′ , ϑAOD

k′
)

M2

+
PkPk′κk

(κk + 1) (κk′ + 1)

aH
TX
(
ϕAOD
k , ϑAOD

k

)
RTXaTX

(
ϕAOD
k , ϑAOD

k

)
M2

+
PkPk′κkκk′

(κk + 1) (κk′ + 1)

∣∣aTX
(
ϕAOD
k , ϑAOD

k

)
aH

TX
(
ϕAOD
k′ , ϑAOD

k′
)∣∣2

M2
, (3.41)

where twelve of the sixteen terms in the expansion of (3.39) are zero, since
E [hiid,k] = 0 ∀k (from (2.9)). Substituting (3.41) and (3.35) in (3.38), gives the
desired result. �

Under certain circumstances (which occur with probability zero), the variance in
(3.37) can remain non-zero asM →∞. For example, if all correlations are unity,

i.e., RTX = 1M×M and
tr(R2

TX)
M2 = 1. Also if aTX

(
ϕAOD
k , ϑAOD

k

)
= 1M×1 ∀k and

RTX = 1M×M then
aH
TX(ϕAOD

k ,ϑAOD
k )RTXaTX(ϕAOD

k ,ϑAOD
k )

M2 = 1. However, whenever
the correlations decay to zero with separation, as M increases, it can be shown
that lim

M→∞
(var [Vk,k′ ]) = 0. Again, this depends on an unlimited antenna array

form factor [84].

Rician Fading Channel Numerical Results

In this subsection, the effects of increased LOS strength, in a Rician fading
channel, are shown on the rate of convergence of Viid to IK for the three con-
vergence metrics defined in (3.1)-(3.3). Each convergence metric is evaluated
and averaged over 1000 channel realizations. In each case, a Rician K-factor
of zero is shown to represent the fully diffuse/NLOS channel case, whereas
Rician K-factors of κ = 1 and κ = 9 represent 50% and 90% specular/LOS
strength, respectively. The LOS antenna array response vectors in (2.8) are
generated for a half-wavelength spaced ULA with negligible LOS elevation an-
gle, i.e., ϑAOD

k = π
2
∀k, and uniformly located users in a circular cell, i.e.,

ϕAOD
k ∼ U [0, 2π) ∀k. Note that unlike the results presented in [84], the antenna

array form factor is not constrained in space and therefore the inter-element an-
tenna spacing, dλ = 0.5, does not change with increasing numbers of transmit
antennas, M .
In Figure 3.4 the eigenvalue ratio is shown as a function of the number of
transmit antennas, M , where K = 10 and K = 50. It is seen that for a larger
Rician K-factor, κ, the rate of convergence of the eigenvalue ratio to 1 becomes
slower, as M → ∞. For example, at a system size of M = 104 and K = 50,
an increase in the Rician K-factor from κ = 0 to κ = 9 results in an increase
in the eigenvalue ratio of approximately 3.5 times. Likewise, the difference in
eigenvalue ratio between K = 10 and K = 50 drastically increases with κ. It is



3.2. CHANNEL CONVERGENCE 46

102 103 104

M

0

5

10

15

20

A
ve

ra
ge

 E
ig

en
va

lu
e 

R
at

io
 [d

B
]

5=0, K=10
5=0, K=50
5=1, K=10
5=1, K=50
5=9, K=10
5=9, K=50

Figure 3.4: Average eigenvalue ratio as a function of the number of TX antennas,
M , and Rician K-factor, κ, for an uncorrelated Rician fading channel, with the
number of users, K, fixed and an inter-element antenna spacing of dλ = 0.5
wavelengths.

also seen that for large κ, the variability of the eigenvalue ratio is increased such
that the numerical curves in Figure 3.4 no longer decay smoothly for κ = 9.
This can be explained by considering the variance of V, given in (3.37), for the
uncorrelated, equal link gain scenario (Pk = 1 ∀k), i.e.,

var
[
Viid,k,k′

]
=

1

M2 (κk + 1) (κk′ + 1)

[
M + κka

H
TX
(
ϕAOD
k′ , ϑAOD

k′
)
aTX

(
ϕAOD
k , ϑAOD

k

)]
[
+κk′a

H
TX
(
ϕAOD
k , ϑAOD

k

)
aTX

(
ϕAOD
k′ , ϑAOD

k′
)]
. (3.42)

Increases in κk or κk′ are then seen to increase the weighting of the variance on
the LOS antenna array response vectors for fixed M . Since there is also large
variability in the LOS antenna array response vectors between drops (ϕAOD

k ∼
U [0, 2π) ∀k), it follows that there becomes an unstable behaviour in the variance
of Viid and thus the eigenvalue ratio, which tends to extremely sensitive to
channel variation [201].

In Figure 3.5 the mean absolute deviation of Viid from the identity matrix, IK ,
is shown for a Rician fading channel. Contrary to the eigenvalue ratio (shown in
Figure 3.4), a larger Rician K-factor κ is seen to increase the rate of converge of
Viid to IK in terms of its mean absolute deviation. By considering the variance of
the diagonal and off-diagonal elements of Viid, given by var [Viid,k,k] = 2κk+1

M(κk+1)2

and (3.42), respectively (from (3.37)), it can be seen that the rate of conver-
gence of var [Viid] to 0, as M → ∞, is increased for larger Rician K-factors.
Intuitively this is consistent, since the specular component of the Rician chan-
nel is deterministic and therefore any increases in κ will result in the channel
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matrix Viid becoming more deterministic and therefore hardened.
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Figure 3.6: Average diagonal dominance as a function of TX antennas, M , and
Rician K-factor, κ, for an uncorrelated Rician fading channel with K both fixed,
at 10, and variable, whereK = M

ν
, ν = 10, and an inter-element antenna spacing

of dλ = 0.5 wavelengths.

In Figure 3.6, it is observed that the diagonal dominance of Viid increases for
fixed K and decreases for K = M

10
. The reader is referred to Section 3.2.1 for a

discussion regarding this phenomena. As the Rician K-factor, κ, is increased,
Viid becomes more diagonally dominant. This is because the diagonal elements
Viid,k,k are converging to their limiting value (= 1) much quicker for large κ
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(where var [Viid,k,k] = 2κk+1

M(κk+1)2 =
κk+ 1

2

2M(κk+1)2 ≈ 1
2M(κk+1)

for large κk). As with
the mean absolute deviation, the effective Rician fading channel has a larger
proportion of deterministic channel values with larger κ, i.e., smaller numbers
of random components, and therefore it becomes more diagonally dominant.
From Figures 3.4, 3.5, and 3.6, it is concluded that a larger Rician K-factor
results in a quicker rate of convergence of the mean absolute deviation and
diagonal dominance to its limiting value. However, the eigenvalue ratio conver-
gence behaves differently since eigenvalues are extremely sensitive to variations
in the channel [201], which are increased for larger κ values, since the LOS an-
tenna array response vectors become more important and lead to a statistical
structure in the channel which affects the eigenvalues.
Table 3.1 summarizes the magnitude of the three convergence metrics for dif-
ferent TX antenna numbers, M , and Rician K-factors, κ, for fixed numbers of
users, K = 10.

Table 3.1: Magnitudes of convergence metrics

Eigenvalue Mean absolute Diagonal
ratio deviation [dB] dominance

M = 100 M = 1000 M = 100 M = 1000 M = 100 M = 1000

κ = 0 2.9 1.4 -10.6 -15.6 1.3 4.0
κ = 1 3.4 1.5 -10.7 -15.9 1.3 4.4
κ = 9 10.1 2.3 -12.2 -18.1 1.9 7.7

3.3 SINR Convergence with Linear Precoders

Due to their simplicity and optimality in massive MIMO systems [56], MF and
ZF precoding techniques are now examined for i.i.d. and spatially correlated
TX antenna arrays for Rayleigh and Rician fading channels. As in [7], the
convergence scenario where ν = M

K
is fixed with K,M →∞ is considered5.

3.3.1 Rayleigh Fading Channel

Here, limiting expressions for the ZF SNR and MF SINR for the unequal link
gain scenarios are derived. First, a summary of the equal link gain results [7] is
included, as these are needed for the uequal link gain scenario derivations. For
the equal link gains case, the channel matrix becomes H = Hiid.

Lemma 3.1. (ZF SNR, Equal Link Gains) For H = Hiid, from (2.41),

5It has previously been shown in Section 2.5.3 that for K fixed and M →∞ that MF and
ZF precoding performance is equivalent.
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the limiting per-user ZF SNR as M,K →∞ with fixed ν = M
K

is given by [7],

lim
K,M→∞

(
SNRZF) = % (ν − 1) . (3.43)

Proof. Using the fact that for fixed ν = M
K
, lim
K,M→∞

(
tr
((

HiidH
H
iid

)−1
))

= 1
(ν−1)

[202] gives the desired result. �

Theorem 3.5. (ZF SNR, Unequal Link Gains) For H = P1/2Hiid, from
(2.41), the limiting per-user ZF SNR as M,K → ∞ with fixed ν = M

K
is given

by,

lim
K,M→∞

(
SNRZF) =

% (ν − 1)
−−→(

1
P

) , (3.44)

where
−−→(

1
P

)
is the limiting value of

(
1
P

)
= 1

K

K∑
k=1

1
Pk
, assuming it exists.

Proof. Considering the denominator of (2.41) and using known properties of
the inverse Wishart matrix [203]

E
[(

HHH)−1
]

= E
[(

P1/2HiidHH
iidP1/2

)−1
]

(3.45)

=
P−1

M −K
, (3.46)

and therefore

E
[
tr
((

HHH)−1
)]

= E
[
tr
((

P1/2HiidHH
iidP1/2

)−1
)]

(3.47)

=

K∑
k=1

1
Pk

M −K
(3.48)

=
( 1
P )

ν − 1
. (3.49)

Assuming that
(

1
P

)
converges to a limit,

−−→(
1
P

)
, as M,K → ∞ then it follows

that, as the variance vanishes [188],

lim
K,M→∞

(
tr
((

HHH)−1
))

= lim
K,M→∞

(
tr
((

P1/2HiidHH
iidP1/2

)−1
))

(3.50)

=

−−−→(
1

P

)
, (3.51)

which completes the proof. �

Lemma 3.2. (MF SINR, Equal Link Gains) For H = Hiid, from (2.37),
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the limiting per-user MF SINR as M,K →∞ with fixed ν = M
K

is given by [7],

lim
K,M→∞

(
SINRMF

k

)
=

%ν

%+ 1
. (3.52)

Proof. From (2.37), the instantaneous MF SINR for the kth user can be written
as

SINRMF
k =

%M2

Kτ

∣∣∣∣hiid,kh
H
iid,k

M

∣∣∣∣2
1 + %(K−1)M

Kτ
1

(K−1)M

K∑
k′=1
k′ 6=k

∣∣∣hiid,kh
H
iid,k′

∣∣∣2 , (3.53)

then the limiting value can be given as

lim
K,M→∞

(
SINRMF

k

)

=

lim
K,M→∞

(
%M
K

)
lim

K,M→∞

(
M
τ

)
lim

K,M→∞

(∣∣∣∣hiid,kh
H
iid,k

M

∣∣∣∣2
)

1 + lim
K,M→∞

(
%(K−1)
K

)
lim

K,M→∞

(
M
τ

)
lim

K,M→∞

 1
(K−1)M

K∑
k′=1
k′ 6=k

∣∣∣hiid,kh
H
iid,k′

∣∣∣2

. (3.54)

The convergence of the three limits in (3.54) are now independently considered,
as K,M →∞ with fixed ν = M

K
. First,

lim
K,M→∞

( τ
M

)
= lim

K,M→∞

(
1

K

(
tr
(

HiidHH
iid

M

)))
(3.55)

=
1

K
tr (IK) (3.56)

= 1, (3.57)

since τ
M

converges to the mean as the variance vanishes. Also,

lim
K,M→∞

 1

(K − 1)M

K∑
k′=1
k′ 6=k

∣∣hiid,kh
H
iid,k′

∣∣2


= lim
K,M→∞

 K∑
k′=1
k′ 6=k

tr
(
hiid,kh

H
iid,k′hiid,k′h

H
iid,k

)
(K − 1)M

 (3.58)
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= lim
K,M→∞

 K∑
k′=1
k′ 6=k

tr
(
hH

iid,k′hiid,k′h
H
iid,khiid,k

)
(K − 1)M

 (3.59)

= 1, (3.60)

as E
[
hH
k hk

]
= IM ∀k and the variance of the summation vanishes. Then,

using the known convergence of
hiid,kh

H
iid,k

M
to 1 ∀k as M →∞ [142], and further

substituting (3.57) and (3.60) in (3.54), the limit of (3.53) is obtained. �

Theorem 3.6. (MF SINR, Unequal Link Gains) For H = P1/2Hiid, from
(2.37), the limiting per-user MF SINR as M,K →∞ with fixed ν = M

K
is given

by

lim
K,M→∞

(
SINRMF

k

)
=

%νP 2
k−→

P + %Pk
−→
P
, (3.61)

where
−→
P is the limiting value of 1

K

K∑
k=1

Pk, as K →∞, assuming it exists.

Proof. From (2.37), the instantaneous SINR of the kth user can be written as

SINRMF
k =

%
Kτ P

2
k

∣∣∣hiid,kh
H
iid,k

∣∣∣2
1 + %Pk

Kτ

K∑
k′=1
k′ 6=k

Pk′
∣∣∣hiid,kh

H
iid,k′

∣∣∣2 (3.62)

=

%M
K
P 2
k

τ
M
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H
iid,k

M

∣∣∣∣2

1 + %
Pk

τ
M

 1
K
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H
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∣∣∣2

M
K∑

k′=1
k′ 6=k

Pk′

. (3.63)

The limiting MF SINR for user k can then be written as

lim
K,M→∞

(
SINRMF

k

)

=

lim
K,M→∞

(%MK )P 2
k

lim
K,M→∞

( τ
M )

lim
K,M→∞

(∣∣∣∣hiid,kh
H
iid,k

M

∣∣∣∣2
)

1 + %
Pk

lim
K,M→∞

(
τ
M

)
lim

K,M→∞

 1
K
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k′ 6=k

Pk′
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K,M→∞

 1
MK

K∑
k′=1
k′ 6=k

Pk′
∣∣∣hiid,kh

H
iid,k′
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lim
K,M→∞

 1
K

K∑
k′=1
k′ 6=k

Pk′



.

(3.64)
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The convergence of the limits in (3.64) are now independently considered, as
K,M →∞ with fixed ν = M

K
. First,

lim
K,M→∞

( τ
M

)
= lim

K,M→∞

(
1

K

(
tr
(

HHH

M

)))
(3.65)

= lim
K,M→∞

(
1

K

(
tr

(
P1/2HiidHH

iidP1/2

M

)))
(3.66)

= lim
K,M→∞

(
1

K
(tr (P))

)
(3.67)

= lim
K,M→∞

(
1

K

K∑
k=1

Pk

)
(3.68)

=
−→
P , (3.69)

assuming that the limit
−→
P exists, which follows since lim

K,M→∞

(
τ
M

)
= E

[
τ
M

]
as

the variance vanishes. Note that if the limit
−→
P exists then

lim
K,M→∞

 1

K

K∑
k′=1
k′ 6=k

Pk′

 =
−→
P . (3.70)

Also, from Section (3.60) and (3.69),

lim
K,M→∞

 1

MK

K∑
k′=1
k′ 6=k

Pk′
∣∣hiid,kh

H
iid,k′

∣∣2
 =

−→
P . (3.71)

In the numerator of (3.64), as shown before, lim
M→∞

(
hiid,kh

H
iid,k

M

)
= 1 and therefore

combining (3.69), (3.70) and (3.71) with (3.64), the limiting SINR of (3.63) can
be obtained. �

Link Gain Models

Cases with equal and unequal link gains are considered. The equal link gain
case models a single-user MIMO system where one user has K co-located an-
tennas. This is used as a reference case. While not considered by other authors,
the unequal link gain case models K distributed users, where each user has a
different link gain due to path-loss, shadow fading, etc. However, since the log-
normal random variable does not converge easily for moderately sized K, due
to the large variation in values which it generates, 1

K

∑K
k=1 Pk will not easily

converge to
−→
P using the classic link gain model (given in (2.3)). A new link

gain model is therefore proposed, described below, to illustrate convergence.
This proposed link gain model samples K evenly spaced users link gains from
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a restricted interval of a smoothly decaying function.
Pk values are selected from the limiting function P (x) = AΓx, where Γ is ar-
bitrarily set such that 0 < Γ < 1, A = Pmax, and 0 < x < x0, such that
x0 = log(Pmin/Pmax)

log(Γ)
. This allows us to control the range of the link gains in the

interval [Pmin, Pmax] = [AΓx0 , A] and also to control the rate of decay of the
link gains by Γ. Given the parameters Pmin, Pmax,Γ and the number of users,
K, the Pk values are given by Pk = P

(
x0

2K
(2k − 1)

)
which gives the K values

of P1, P2, . . . , PK as the values of P (x) using K values of x evenly spread over
[0, x0].

Numerical Results

Spatially Uncorrelated Channel: Figures 3.7a and 3.7b show the conver-
gence properties of the ZF and MF precoders for equal and unequal link gains,
respectively. The average per-user instantaneous SNR for a ZF precoder in
both cases of equal and unequal link gains converges to the limit quickly. For
example, in Figures 3.7a and 3.7b, when K = 10 and M = 100 the mean value
of the per-user SNR already approaches the asymptotic limit for infinite anten-
nas. It can be observed in both figures that the limiting per-user MF SINR is
smaller than the limiting per-user ZF SNR; the MF precoder SINR is effectively
reduced by a factor of %+ 1 when ν is large (looking at (3.43) and (3.52)). This
difference is obvious in Figures 3.7a and 3.7b even for ν = 10. The average
per-user instantaneous MF SINR takes a longer time to converge to its limiting
value because of the additional random variables in the numerator and denomi-
nator of (3.53). The unequal link gain case for the MF precoder has additional
terms in (3.62) which manifest itself in a small increase of the per-user SINR as
compared to the equal link gains case. The per-user MF SINR is also smaller
relative to the per-user ZF SNR due to the inter-user interference terms in the
denominator of (3.53) and (3.62); the boost in the SINR in the numerator due
to the co-phasing terms

∣∣hkhH
k

∣∣2 is not enough to compensate for the inter-user

interference given by
K∑
k′=1
k′ 6=k

∣∣hkhH
k′

∣∣2.
Spatially Correlated Channel: Here the exponential spatial correlation
model is employed, described in Section 2.3.1, to numerically evaluate the effects
of spatial correlation on the average instantaneous and limiting performance of
the per-user ZF SNR and MF SINR. Numerically, the effects of two types of
spatial correlation are shown: a large inter-element spatial correlation, where
ρ = 0.9, and a low inter-element spatial correlation, where ρ = 0.5. It is seen
that spatial correlation introduces a large penalty in the average per-user in-
stantaneous SNR and SINR for both ZF and MF precoders (equal and unequal
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Figure 3.7: Average instantaneous and limiting per-user ZF SNR and MF SINR,
as a function of the number of single-antenna users, K, where ν = 10, % = 10
dB.

link gains), when compared to the corresponding spatially uncorrelated case.
The ZF SNR and MF SINR for the lower value of correlation (ρ = 0.5) should
be similar to the i.i.d. channel for the two precoders - and this is indeed the
case.

3.3.2 Rician Fading Channel

In this subsection, MF SINR and ZF SNR precoding performances are numer-
ically evaluated in a Rician fading channel. As was the case for the numer-
ical results exploring the convergence of Viid to IK in Section 3.2.2, a space-
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Figure 3.8: Spatially correlated average instantaneous per-user ZF SNR and MF
SINR, as a function of the number of single-antenna users, K, where ν = 10,
% = 10 dB.

unconstrained ULA is assumed with a dλ = 1
2
wavelength inter-element spacing

and negligible LOS elevation angle, i.e., ϑAOD
k = π

2
∀k. Users are randomly

located in a circular cell, i.e., ϕAOD
k ∼ U [0, 2π) ∀k.

In Figures 3.9a and 3.9b the average instantaneous per-user ZF SNR and MF
SINR performance for spatially uncorrelated and correlated environments is
shown, respectively, as a function of the number of single-antenna users, K. As
in the Rayleigh fading case, spatial correlation is modelled via the exponential
model, given in (2.49). When no spatial correlation is modelled (Figure 3.9a),
the SNR performance the ZF precoder is reduced with increasing κ since the
increased ratio of deterministic channel components in the composite channel
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Figure 3.9: Average instantaneous per-user ZF SNR and MF SINR, as a function
of the number of single-antenna users, K, where ν = 10, % = 10 dB.

are effectively reducing its spatial diversity.

On the other hand, the MF precoder performance increases with κ, as was seen

in [67,204], because the MF interference power,
K∑
k′=1
k′ 6=k

∣∣hkhH
k′

∣∣2, tends to reduce as

κ is increased. This fact can be shown by considering the MF interference power
in the two extreme cases: a fully NLOS channel, κ = 0, and a fully LOS channel,
κ = ∞, in Figure 3.10. The MF interference power for the fully LOS channel
is seen to have an enormous variability, relative to the fully NLOS channel MF
interference power. However, in a large proportion of channel instances, the
MF interference power is lower in the fully LOS channel than the fully NLOS
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Figure 3.10: MF interference power for fully scattered, κ = 0, and fully LOS,
κ = ∞, channels with K = 4 and ν = 10. LOS azimuth angle ranges of
ϕAOD ∼ U [0, 2π) and ϕAOD ∼ U

[
0, π

4

)
are shown.

channel, thus causing the MF SINR to increase with κ. This is because the large
range of LOS azimuth AODs (ϕ ∼ U [0, 2π)) are resulting in near-orthogonal
LOS antenna array response vectors. A smaller range of LOS azimuth AODs
scenario (ϕ ∼ U [0, π

4
)) is also included in Figure 3.10, showing that the MF

interference power is extremely sensitive to the location of the users, and thus
the diversity of the LOS antenna array response vectors.
In the spatially correlated Rician fading channel scenario (Figure 3.9b), both the
ZF SNR and MF SINR performance increases with larger κ since the (large)
spatial correlation is reducing the diversity and rank of the NLOS channel.
Compared with the uncorrelated case (Figure 3.9a), the spatial correlation is
significantly reducing the MF precoding performance. For example, an average
instantaneous per-user MF SINR is reduced by approximately 6 dB at K = 50

with a fully NLOS channel.

3.4 Conclusion

In this chapter, the number of antennas required for a system to achieve massive
MIMO properties have been analysed for Rayleigh and Rician fading channels.
For the Rayleigh fading channel, it is seen that the convergence to favourable
propagation and channel hardening are controlled by the convergence of an
i.i.d. channel to the identity matrix. Numerically, it was seen that a larger
Rician K-factor results in a quicker rate of convergence of the mean absolute
deviation and diagonal dominance limiting value. However, the eigenvalue ratio
convergence behaved differently since the eigenvalues are extremely sensitive to
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variations in the channel, which are increased for larger κ, since the LOS antenna
array response vectors create a statistical structure in the channel affecting the
eigenvectors.
ZF SNR and MF SINR closed-form instantaneous and limiting expressions for
scenarios of equal and unequal user link gains in a Rayleigh fading channel have
been derived, asK,M →∞ with fixed ν. Interestingly, the per-user SNR/SINR
for both ZF and MF precoders are less sensitive toM . In particular the per-user
SNR for a ZF precoder converges quickly even for small values ofM even though
the SNR expression requires the computation of the inverse of a matrix. In a
Rician fading channel, ZF SNR performance decreases with κ, due to reduced
channel diversity, whereas the MF SINR performance increases with κ because
the MF interference power is reduced.
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4
Distributed Antenna Systems

In this chapter, the MF SINR performance and convergence analysis presented
in Chapter 3 is extended to distributed antenna systems. Specifically, the in-
stantaneous and limiting (in the number of TX antennas) performance of a
MF precoder is investigated, with the aim of determining and characterizing
the impacts of distributing transmit antennas into multiple clusters. The sys-
tem model considered incorporates the effects of transmit spatial correlation,
unequal link gains and imperfect CSI. Instantaneous and limiting expected MF
SINR expressions of an arbitrary user are derived. From these expressions, clear
insights into the effects of link gains, spatial correlation and CSI imperfections
are drawn. Numerically, it is shown that distributing antennas into multiple
clusters increases both the per-user instantaneous received SNR and average
per-user instantaneous MF SINR, relative to a co-located antenna system, with
significant increases in spatially correlated scenarios. Spatial correlation and
CSI imperfections are shown to decrease instantaneous and limiting MF SINR
performance, but do not influence the rate of convergence of the MF SINR to
its limiting expression, as the number of TX antennas increases indefinitely.

4.1 Introduction

As more antennas are added to a fixed antenna array form factor, inter-element
antenna spacings reduce and consequently spatial correlation between antenna
elements of the array increases [80–84] degrading system performance [23, 91].
In large-scale MIMO systems, the adverse effects of spatial correlation are more
obvious since antennas are in close proximity to large numbers of other antenna
elements. One design approach to mitigate the adverse effects of spatial cor-
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relation is to divide the antennas into multiple antenna clusters, whereby the
inter-element antenna distances at each antenna cluster would increase, pro-
vided the overall form factors remain the same. Such coordinated distributed
systems have the additional advantage of providing greater coverage than a sin-
gle, co-located, antenna cluster since both the minimum and average distance
to a user is reduced and the resultant received SNR is increased [131,205,206].
Thus, applied to large-scale MIMO, distributed systems have been the subject
of a number of recent studies, such as [80,205,207–219].
The primary aim of this chapter is to analyse the performance of distributed
MF precoding for large-scale antenna arrays1. Specifically, the effects of the
number of antenna clusters on the average instantaneous and limiting (which
is different from [80, 207–217]) expected per-user MF SINR is of interest. The
contributions of this chapter can be summarized as follows:

• Accounting for unequal link gains, imperfect CSI, transmit spatial correla-
tion and an arbitrary number of antenna clusters, a per-user instantaneous
MF SINR expression is derived. Numerically, it is then shown that dis-
tributing antennas into multiple clusters is greatly beneficial to MF SINR
performance in highly spatially correlated scenarios.

• From the previously derived per-user instantaneous MF SINR, a limiting
expected per-user MF SINR is derived as the number of antenna ele-
ments approaches infinity, whilst maintaining a fixed ratio of the number
of transmit antennas to single-antenna users.

• A number of realistic link gain scenarios are used to illustrate the con-
vergence of the instantaneous per-user MF SINR to the limiting expected
per-user MF SINR. Numerically, this is shown for spatially correlated and
uncorrelated cases.

4.2 System Description

The Rayleigh fading channel model in (2.8) is extended to a distributed antenna
system where the M TX antennas, divided equally among N antenna clusters,
serve K single-antenna users, on the DL. Coordination between multiple an-
tenna clusters is assumed [217, 222, 223]. The K × M channel matrix, H, is
then

H =


√
P1,1Hiid,1,1R

1/2
TX . . .

√
P1,NHiid,1,NR

1/2
TX

...
. . .

...√
PK,1Hiid,K,1R

1/2
TX . . .

√
PK,NHiid,K,NR

1/2
TX

 , (4.1)

1Since exact limiting analysis of ZF precoding in distributed systems is difficult [220], only
MF precoding is examined. For limiting approximations of ZF precoding, see [221].
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where Pk,n and Hiid,k,n denote the link gain and K × M
N

i.i.d. channel matrix,
respectively, between user k ∈ 1, . . . , K and antenna cluster n ∈ 1, . . . , N . RTX

denotes the M
N
× M

N
spatial correlation matrix at each antenna cluster, assumed

to be equal for all antenna clusters.
Imperfect CSI is modelled using the simple statistical model given by [224,225],

Ĥ = ξH +
√

1− ξ2H̃, (4.2)

where Ĥ denotes the estimated channel matrix, H̃ is the Gaussian error matrix,
independent and statistically identical to H, and 0 ≤ ξ ≤ 1 controls the accuracy
of the CSI.
In this chapter, both instantaneous and limiting MF SINR performance is of
interest. Numerical results include multi-user simulations, where the instanta-
neous and limiting MF SINR is averaged over the users, K. For clarity, each of
the terms used in this chapter are defined as follows:

• SINRMF
k denotes the instantaneous per-user MF SINR,

• 1
K

K∑
k=1

SINRMF
k denotes the average instantaneous per-user MF SINR,

• lim
K→∞

E
[
SINRMF

k

]
denotes the limiting expected per-user MF SINR,

• 1
K

K∑
k=1

lim
K→∞

E
[
SINRMF

k

]
denotes the average limiting expected per-user MF

SINR.

4.3 Instantaneous MF SINR

In this section, the instantaneous per-user MF SINR is derived for the channel
model in (4.1), with CSI imperfections modelled by (4.2). Numerically, the
instantaneous per-user MF SINR is then examined for a number of system
scenarios.

4.3.1 Instantaneous MF SINR Analysis

Combining (4.2) with (2.34) and (2.35), the MF-precoded transmitted signal,
x, and average power normalization, τ , with CSI inaccuracy, are respectively
given by

x =
1√
τ

ĤHs, (4.3)
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and

τ =
tr
(
ĤĤH

)
K

. (4.4)

Substituting (4.3) in (2.2), the combined received signal for all users is thus
given by

y =

√
%

τ
HĤHs + v, (4.5)

with user k ∈ 1, . . . , K receiving

yk =

√
%

τ
hkĤ

Hs + vk. (4.6)

Lemma 4.1. Let h̃k and hk denote the kth user’s Gaussian error vector and
channel vector, respectively, i.e., the kth row of H̃ and H, respectively. Then

E
[
h̃H
k h̃k

]
=

Pk,1RTX
. . .

Pk,NRTX

 = Υk, (4.7)

where Υk is the M ×M block diagonal matrix which contains both the link gain
coefficients and spatial correlation effects for user k.

Proof. Since, in (4.2), H̃ is statistically identical to H,

E
[
h̃H
k h̃k

]
= E

[
hH
k hk

]
(4.8)

= E



√
Pk,1R

1/2
TXHH

k,1
...√

Pk,NR
1/2
TXHH

k,N

[√Pk,1Hk,1R
1/2
TX, . . . ,

√
Pk,NHk,NR

1/2
TX

] (4.9)

=

Pk,1RTX
. . .

Pk,NRTX

 = Υk. (4.10)

Note that hk can be expressed as hk = gkΥ
1/2
k , where gk ∈ C1×M contains

independent CN (0, 1) elements. �

Proposition 4.1. The expected value of the signal power of the kth user’s re-
ceived signal in (4.6) is given by

E

[∣∣∣∣√%

τ
hkĥ

H
k sk

∣∣∣∣2
]
≈ %

KE [τ ]

(
ξ2E

[∣∣∣ĥkĥH
k

∣∣∣2]+
(
1− ξ2

)
E
[
ĥkΥkĥ

H
k

])
. (4.11)
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Proof.

E

[∣∣∣∣√%

τ
hkĥ

H
k sk

∣∣∣∣2
]
≈
%E
[
|sk|2

]
E [τ ]

E
[∣∣∣(ξĥk +

√
1− ξ2h̃k

)
ĥH
k

∣∣∣2] (4.12)

=
%

KE [τ ]

(
ξ2E

[∣∣∣ĥkĥH
k

∣∣∣2]+
(
1− ξ2

)
E
[
h̃kĥ

H
k ĥkh̃

H
k

])
(4.13)

=
%

KE [τ ]

(
ξ2E

[∣∣∣ĥkĥH
k

∣∣∣2]+
(
1− ξ2

)
E
[
tr
(
ĥkh̃

H
k h̃kĥ

H
k

)])
(4.14)

=
%

KE [τ ]

(
ξ2E

[∣∣∣ĥkĥH
k

∣∣∣2]+
(
1− ξ2

)
E
[
ĥkΥkĥ

H
k

])
, (4.15)

where E
[
|sk|2

]
= 1

K
and the Laplacian approximation E

[
1
τ

]
≈ 1

E[τ ]
, which is very

accurate for large systems [208, 226–228] is used in (4.12). (4.15) is obtained
from Lemma 4.1. �

Proposition 4.2. The expected value of the interference and noise power of the
kth user’s received signal in (4.6) can be shown to be

E


∣∣∣∣∣∣∣∣
√
%

τ

K∑
k′=1
k′ 6=k

hkĥ
H
k′sk′ + vk

∣∣∣∣∣∣∣∣
2

≈ %

KE [τ ]

K∑
k′=1
k′ 6=k

(
ξ2E

[∣∣∣ĥkĥH
k′

∣∣∣2]+
(
1− ξ2

)
E
[
ĥk′Υkĥ

H
k′

])
+ 1, (4.16)

where the noise power is normalized to unity, i.e., E
[
|vk|2

]
= 1.

Proof. Using the Laplacian approximation, as in Proposition 4.1.

E


∣∣∣∣∣∣∣∣
√
%

τ

K∑
k′=1
k′ 6=k

hkĥ
H
k′sk′ + vk

∣∣∣∣∣∣∣∣
2

≈ %

E [τ ]
E


 K∑
k′=1
k′ 6=k

hkĥ
H
k′sk′


 K∑
k′′=1
k′′ 6=k

ĥk′′h
H
k s

H
k′′


+ E

[
|vk|2

]
(4.17)

=
%

KE [τ ]

K∑
k′=1
k′ 6=k

E
[∣∣∣hkĥH

k′

∣∣∣2]+ 1 (4.18)

=
%

KE [τ ]

K∑
k′=1
k′ 6=k

E
[∣∣∣(ξĥk +

√
1− ξ2h̃k

)
ĥH
k′

∣∣∣2]+ 1 (4.19)
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=
%

KE [τ ]

K∑
k′=1
k′ 6=k

(
ξ2E

[∣∣∣ĥkĥH
k′

∣∣∣2]+
(
1− ξ2

)
E
[
ĥk′h̃

H
k h̃kĥ

H
k′

])
+ 1 (4.20)

=
%

KE [τ ]

K∑
k′=1
k′ 6=k

(
ξ2E

[∣∣∣ĥkĥH
k′

∣∣∣2]+
(
1− ξ2

)
E
[
ĥk′Υkĥ

H
k′

])
+ 1, (4.21)

where (4.21) is obtained from Lemma 4.1. �

Combining (4.11) and (4.16), the expected MF SINR for the kth user is given
by the Laplacian approximation

E
[
SINRMF

k

]
≈

%
KE[τ ]

(
ξ2E

[∣∣∣ĥkĥH
k

∣∣∣2]+
(
1− ξ2

)
E
[
ĥkΥkĥ

H
k

])
%

KE[τ ]

K∑
k′=1
k′ 6=k

(
ξ2E

[∣∣∣ĥkĥH
k′

∣∣∣2]+ (1− ξ2)E
[
ĥk′Υkĥ

H
k′

])
+ 1

. (4.22)

Similarly, the instantaneous MF SINR performance, for a particular channel
realization, is given by

SINRMF
k =

%
Kτ

(
ξ2
∣∣∣ĥkĥH

k

∣∣∣2 +
(
1− ξ2

)
ĥkΥkĥ

H
k

)
%
Kτ

K∑
k′=1
k′ 6=k

(
ξ2
∣∣∣ĥkĥH

k′

∣∣∣2 + (1− ξ2) ĥk′Υkĥ
H
k′

)
+ 1

. (4.23)

For perfect CSI, ξ = 1, (4.23) becomes

SINRMF
k =

%
Kτ

∣∣∣ĥkĥH
k

∣∣∣2
%
Kτ

K∑
k′=1
k′ 6=k

∣∣∣ĥkĥH
k′

∣∣∣2 + 1

(4.24)

=
%
Kτ

∣∣hkhH
k

∣∣2
%
Kτ

K∑
k′=1
k′ 6=k

∣∣hkhH
k′

∣∣2 + 1

. (4.25)

Similarly for no CSI, ξ = 0, the MF SINR for the kth user is

SINRMF
k =

%
Kτ ĥkΥkĥ

H
k

%
Kτ

K∑
k′=1
k′ 6=k

ĥk′Υkĥ
H
k′ + 1

(4.26)

=
%
Kτ h̃kΥkh̃

H
k

%
Kτ

K∑
k′=1
k′ 6=k

h̃k′Υkh̃
H
k′ + 1

. (4.27)
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4.3.2 Instantaneous MF SINR Numerical Results

In this subsection, the performance of instantaneous MF SINR, given in (4.23),
is numerically evaluated for a number of system scenarios. Path loss parameters
used in all instantaneous simulations are taken from the standardized urban
macro cell NLOS microwave measurements by 3GPP [129], and are given in
Table 4.1. When N = 1, the single antenna cluster is positioned in the centre of
the coverage region. However when N ≥ 2, the antenna clusters are positioned
equidistant on the edge of the coverage region. In each case, there is an exclusion
radius around each antenna cluster of 30 m.
Note that MF SINR performance is highly dependent on the per-user received
SNR which is, in turn, dependent on the TX(s) to user distances. Therefore,
the effects of distributed antenna systems on the per-user received SNR is first
investigated, as to not misrepresent how distributed antenna systems affect the
MF SINR.

Table 4.1: Path loss parameters

Parameter Numerical Value
Path loss offset constant, α 13.5 dB

Path loss exponent, β 3.92
Shadow fading standard deviation, ε 6 dB

BS to user distance, d 30 < d ≤ 500 m

Using the path loss parameters in Table 4.1, a per-user received SNR CDF is
shown in Figure 4.1 as a function of the number of antenna clusters, N , for
a median per-user received SNR, SNRk, of -5 dB2 for cases of including and
excluding (log-normal) shadow fading. For N > 1, the per-user received SNR,

SNRk, is averaged over the antenna clusters, i.e., SNRk = 1
N

N∑
n=1

Pk,n
σ2 . The per-

user received SNR CDF is smallest for N = 2 antenna clusters, as there are large
parts of the cell where the link gains from both antenna clusters to the user are
weak, e.g., near the cell-edge half way between the two antenna clusters. The
per-user received SNR is the largest for N = 5, as an arbitrary user is likely to
be relatively close to at least one antenna cluster. Since the path loss increases
with distance quickly, at a rate of dβ = d3.92, it follows that the more antenna
clusters there are, the smaller the minimum distance between a user and an
antenna cluster there is, resulting in a larger SNRk. Furthermore, the larger the
path loss exponent, β, is, the more advantageous it is to have a larger number
of antenna clusters, N , and vice-versa. For large N , the low SNR region of the

2The median received SNR, SNRk, is computed for the single antenna cluster case, i.e.,
10−5/10 =

Pk,1

σ2 ∀k, where σ2 is the receiver noise power, assumed equal for all users.The
required TX power to guarantee the median SNR of -5 dB is then used at all antenna clusters,
independent of N .
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Figure 4.1: Per-user received SNR CDF as a function of the number of antenna
clusters, N , for a median received SNR of -5 dB.

CDF occurs when the user is located in the centre of the cell region. However,
this is relatively unlikely since users are located in the circular coverage region
based on an area coverage [4]. For all N , the high SNR region of the CDF
indicates when a user is very close to one antenna cluster.
It should be noted that when shadow fading is included, the difference between
N = 5 and N = 1 SNRk scenarios is more pronounced. This is because the
shadow fading provides an enormous variation in link gains which dominates the
CDFs. As the shadow fading standard deviation, ε, increases, the low SNR and
high SNR regions of the CDF become elongated. Also, for N 6= 1, the median
per-user received SNR will increase with larger N , since with more antenna
clusters, at least one of the log-normal shadow fades is likely to be strong.
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Figure 4.2: Uncorrelated average instantaneous per-user MF SINR CDF as a
function of the number of antenna clusters, N , and CSI accuracy parameter, ξ,
where M = 100 and ν = 10.

In Figure 4.2, the uncorrelated average instantaneous per-user MF SINR CDF,
(4.23), is shown as a function of the number of antenna clusters, N , and CSI
accuracy parameter, ξ, where M = 100 and ν = 10. In all cases of N , the aver-
age instantaneous per-user MF SINR is reduced by approximately 3 dB when
ξ is reduced from one to 0.8, i.e., reducing the CSI accuracy parameter by 0.2
effectively halves the MF SINR performance. Also, the average instantaneous
per-user MF SINR is shown to scale almost linearly with N . For example, con-
sidering the perfect CSI cases, the median CDF values for N = 1, 2 and 5 are
approximately 15.5, 17.5 and 20.5 dB, respectively. This large increase with N
is largely due to better cell coverage (seen in Figure 4.1).
In Figure 4.3, the spatially correlated average instantaneous per-user MF SINR
CDF is shown as a function of the number of antenna clusters3, N , and CSI
accuracy parameter, ξ, where M = 100 and ν = 10. The exponential spatial
correlation model, described in Section 2.3.1, is assumed, with two scenarios
shown: a fixed array form factor per antenna cluster4 (therefore ρ = 0.9N)
and a fixed spatial correlation parameter5 per antenna cluster, where ρ = 0.9.
Results for these two scenarios are shown in Figures 4.3a and 4.3b. In Figure
4.3a there is a large decrease in the average instantaneous per-user MF SINR for

3It is assumed that the distance between antenna clusters is much larger than the antenna
array form factors, and therefore spatial correlation between antenna clusters is zero.

4Assuming both the exponential spatial correlation model and fixed array form factor,
every antenna multiple of N , i.e., nN for n ∈ Z+, is placed at another antenna cluster
location. Therefore, the exponential spatial correlation parameter, with an increase in virtual
inter-element antenna distance, is reduced from ρ to ρN .

5Practically, this is equivalent to a fixed minimum inter-element spacing between antenna
elements, independent on N .
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(b) Fixed spatial correlation parameter, ρ = 0.9.

Figure 4.3: Spatially correlated average instantaneous per-user MF SINR CDF
as a function of the number of antenna clusters, N , and CSI accuracy parameter,
ξ, where M = 100 and ν = 10.

the co-located antenna cluster case, relative to the N = 5 case, since the spatial
correlation between adjacent antenna elements is significantly larger (ρ = 0.9

versus ρ = 0.95 ≈ 0.59, respectively). Thus, maintaining a fixed array form
factor for each antenna cluster is extremely beneficial for MF SINR performance
in spatially correlated channels.
Even in the case of a fixed exponential spatial correlation parameter per antenna
cluster (Figure 4.3b), it is observed that there larger difference in the perfor-
mance between N = 1 and N = 5 relative to the uncorrelated scenario (Figure
4.2). For example, the gap in median SINR increases from approximately 4.7
dB to 5.8 dB. This is because the number of spatially correlated pairs of an-
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tennas are being reduced from M(M − 1), when N = 1, to M(M
5
− 1), when

N = 5. The aggregate effects of the large number of spatially correlated pairs
of antennas, in the colocated case, are reducing the MF SINR performance.

4.4 Limiting MF SINR

In this section, the limiting expected per-user MF SINR is considered for the
convergence scenario where K,M → ∞ with a fixed ratio of ν = M

K
. Note

that although finite N is considered, the analysis can be extended to the case
where N → ∞. The limits also hold for the instantaneous per-user MF SINR,
given in (4.23), but this derivation is a little more complex, relying on non-
standard central limit theorems [229]. Hence, for ease of exposition, the limits
are derived for the expected per-user MF SINR. Note that MF SINR limiting
expressions for fixed M

K
are derived in [45] for a more general distributed system,

with unequal spatial correlation matrcies at each antenna cluster. However, due
to the overly complex nature of the derived limiting expressions in [45], little
insight can be drawn. In this section, the derived limiting per-user MF SINR
provides a clear understanding of how the various system parameters influences
the performance.

4.4.1 Limiting MF SINR Analysis

Since the asymptotic behaviour is of interest, (4.22) can be written as

lim
K→∞

E
[
SINRMF

k

]

≈

%ν

lim
K→∞

E[ τM ]

(
ξ2 lim

K→∞
E

[∣∣∣∣ ĥkĥH
k

M

∣∣∣∣2
]

+ 1−ξ2

M lim
K→∞

E
[

ĥkΥkĥ
H
k

M

])
%ν

lim
K→∞

E[ τM ]
lim
K→∞

K∑
k′=1
k′ 6=k

(
ξ2E

[∣∣∣∣ ĥkĥH
k′

M

∣∣∣∣2
]

+ (1− ξ2)E
[

ĥk′Υkĥ
H
k′

M2

])
+ 1

, (4.28)

assuming that the limit exists. The limiting expressions, as M →∞ with fixed
ν, of the expectations given in (4.28) are now evaluated.

Lemma 4.2. Using an eigen-decomposition of RTX,

Υk = ψQkψ
H, (4.29)

where Qk is a M ×M diagonal matrix containing the eigenvalues of Υk and
ψ is a M ×M unitary matrix.
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Proof.

Υk =

Pk,1RTX
. . .

Pk,NRTX

 =

Pk,1UΛUH

. . .
Pk,NUΛUH

 (4.30)

=

U
. . .

U


Pk,1Λ . . .

Pk,NΛ


UH

. . .
UH

 (4.31)

= ψQkψ
H, (4.32)

where Λ is the M
N
× M

N
diagonal matrix of eigenvalues of RTX and U is a M

N
× M

N

unitary matrix. Note that ψ is fixed for all Υk, as it only depends on RTX,
which is assumed to be the same at each antenna cluster. �

Lemma 4.3. For gk ∈ C1×M with independent CN (0, 1) elements, and, for an
arbitrary Υk,

lim
K→∞

E
[
gkΥkg

H
k

M

]
= Pk, (4.33)

where Pk = 1
N

N∑
n=1

Pk,n.

Proof.

lim
K→∞

E
[
gkΥkg

H
k

M

]
= lim

K→∞

1

M
E
[
gkψQkψ

HgH
k

]
(4.34)

= lim
K→∞

1

M
E
[
g̃kQkg̃

H
k

]
(4.35)

= lim
K→∞

1

M

M∑
m=1

E
[
Qk,m,m |g̃k,m|2

]
(4.36)

= lim
K→∞

1

M
tr (Qk) (4.37)

= lim
K→∞

1

M

N∑
n=1

Pk,ntr (Λ) (4.38)

= lim
K→∞

1

M

N∑
n=1

Pk,n
M

N
(4.39)

= Pk, (4.40)

where g̃k = gkψ ∈ C1×M has i.i.d. CN (0, 1) elements, Qk,m,m is the mth
diagonal element of Qk, and g̃k,m is the mth element of g̃k. Note that (4.37)
holds since E

[
|g̃k,m|2

]
= 1. �

Note that gkΥkg
H
k

M
→ Pk as K →∞ by the weak version of the law of large num-

bers, so that expectation is not required in (4.33). To see this result, consider
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(4.36) without the expectation:

lim
K→∞

gkΥkg
H
k

M
= lim

K→∞

1

M

M∑
m=1

Qk,m,m |g̃k,m|2 . (4.41)

The |g̃k,m|2 terms are i.i.d. exponentials with unit mean. Hence, the average
in (4.41) is the average of M non-identical, but independent, random variables.
From [230], this average converges to the mean as long as the variance vanishes.
Hence the limit of gkΥkg

H
k

M
is the same as the limit of E

[
gkΥkg

H
k

M

]
and is given by

Pk. This is useful later in Proposition 4.3.

Theorem 4.1. For k ∈ 1, . . . , K,

lim
K→∞

E

[
ĥkĥ

H
k

M

]
= Pk. (4.42)

Proof. Since ĥk has the same statistics as hk, from Lemma 4.1, ĥk can be
written as ĥk = gkΥ

1/2
k , where the elements of gk are i.i.d. CN (0, 1). Hence,

E
[

ĥkĥ
H
k

M

]
= 1

M
E
[
gkΥ

1/2
k Υ

1/2
k gH

k

]
= 1

M
E
[
gkΥkg

H
k

]
. Then, using Lemma 4.3,

the desired result is obtained. �

Theorem 4.2. For k ∈ 1, . . . , K,

lim
K→∞

E

[
ĥkΥkĥ

H
k

M

]
= P 2

k Λ2, (4.43)

where P 2
k = 1

N

N∑
n=1

P 2
k,n and Λ2 is the limiting value of N

M

M/N∑
m=1

Λ2
m,m, where

Λm,m denotes the mth diagonal entry of Λ.

Proof. Since ĥk has the same statistics as hk, from Lemma 4.1, ĥk = gkΥ
1/2
k ,

where the elements of gk are i.i.d. CN (0, 1). Hence,

lim
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k

M

]
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gkψQ2

kψ
HgH
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(4.47)
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E
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2
]

(4.48)

= lim
K→∞

1

M
tr
(
Q2
k

)
(4.49)
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= lim
K→∞

1

M

N∑
n=1

P 2
k,ntr

(
Λ2
)

(4.50)

= lim
K→∞

(
1

N

N∑
n=1

P 2
k,n

)
lim
K→∞

N

M

M/N∑
m=1

Λ2
m,m

 (4.51)

= P 2
k Λ2. (4.52)

�

Theorem 4.3. Let the MF precoder normalization constant τ be defined as in
(4.4), then

lim
K→∞

E
[ τ
M

]
= P , (4.53)

where P is the limiting average of the Pk,n values over k and n.

Proof.

lim
K→∞

E
[ τ
M

]
= lim

K→∞

1

M
E

tr
(
ĤĤH

)
K

 (4.54)

= lim
K→∞

1

K

K∑
k=1

E
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1

M
ĥkĥ

H
k

]
(4.55)

= lim
K→∞

1

K

K∑
k=1

E
[

1

M
ĝkΥkĝ

H
k

]
(4.56)

= lim
K→∞

1

KN

K∑
k=1

N∑
n=1

Pk,n (4.57)

= P , (4.58)

where (4.57) is obtained from (4.34)-(4.39). �

Proposition 4.3. The limiting signal power of the kth user, from the numerator
of (4.28), as K →∞ is given by

%ν

lim
K→∞

E
[
τ
M

]
ξ2 lim

K→∞
E

∣∣∣∣∣ ĥkĥH
k

M
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2
+

1− ξ2

M
lim
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E

[
ĥkΥkĥ

H
k

M

] =
%νξ2Pk

2

P
.

(4.59)

Proof. Substituting the results from Theorems 4.1, 4.2 and 4.3 into the numer-
ator of (4.28) gives

%ν

lim
K→∞

E
[
τ
M

]
ξ2 lim

K→∞
E

∣∣∣∣∣ ĥkĥH
k

M
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H
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]
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= lim
K→∞

%ν
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ξ2Pk

2
+

(
1− ξ2

)
M

P 2
k Λ2

)
(4.60)

=
%νξ2Pk

2

P
, (4.61)

where (4.61) is obtained since the limit in (4.52) is finite and 1−ξ2

M
→ 0 as

K →∞. �

Also, note that lim
K→∞

ĥkĥ
H
k

M
= Pk, so that lim

K→∞

∣∣∣ ĥkĥH
k

M

∣∣∣2 = Pk
2 which explains the

first term in (4.60).

Theorem 4.4. For k, k′ ∈ 1, . . . , K,

lim
K→∞
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k′=1
k′ 6=k

E

∣∣∣∣∣ ĥkĥH
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M

∣∣∣∣∣
2
 =

Λ2 Pk,k′

ν
, (4.62)

where Pk,k′ is the limiting average cross product of the kth user’s link gains with
all other users’ link gains.

Proof. Using ĥk = gkΥ
1/2
k ∀k, Υk = ψQkψ

H ∀k and g̃k = gkψ ∀k, for k, k′ ∈
1, . . . , K
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k′

M

∣∣∣∣∣
2
 = lim

K→∞

1

M2

K∑
k′=1
k′ 6=k

E
[∣∣∣gkΥ1/2

k Υ
1/2
k′ gH

k′

∣∣∣2] (4.63)

= lim
K→∞

1

M2

K∑
k′=1
k′ 6=k

E
[∣∣∣g̃kQ1/2

k Q
1/2
k′ g̃H

k′

∣∣∣2] (4.64)

= lim
K→∞

1

M2

K∑
k′=1
k′ 6=k

E
[
g̃kQ

1/2
k Q

1/2
k′ g̃H

k′ g̃k′Q
1/2
k′ Q

1/2
k g̃H

k

]
(4.65)

= lim
K→∞

1

M2

K∑
k′=1
k′ 6=k

E
[
g̃kQkQk′ g̃

H
k′
]

(4.66)

= lim
K→∞

1

M2

K∑
k′=1
k′ 6=k

tr (QkQk′) (4.67)

= lim
K→∞

1

M2

K∑
k′=1
k′ 6=k

N∑
n=1

Pk,nPk′,ntr
(
Λ2
)

(4.68)

= lim
K→∞

K − 1

νK

tr
(
Λ2
)
N

M

K∑
k′=1
k′ 6=k

N∑
n=1

Pk,nPk′,n
N (K − 1)

(4.69)
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=
Λ2 Pk,k′

ν
. (4.70)

�

Theorem 4.5. For k, k′ ∈ 1, . . . , K,
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Proof. Using ĥk = gkΥ
1/2
k ∀k, Υk = ψQkψ

H ∀k and g̃k = gkψ ∀k, for k, k′ ∈
1, . . . , K

lim
K→∞

K∑
k′=1
k′ 6=k

E

[
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�

Proposition 4.4. The limiting interference and noise power of the kth user,
from the denominator of (4.28), as K →∞ is given by
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lim
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P
+ 1. (4.77)

Proof. Substituting the results from Theorems 4.3, 4.4 and 4.5 into the denom-
inator of (4.28) gives
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)
+ 1 (4.78)

=
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P
+ 1. (4.79)

�

Thus, combining (4.59) and (4.79), the limiting expected MF SINR for the kth
user, in (4.22), is given by

lim
K→∞

E
[
SINRMF

k

]
=

%νξ2Pk
2

P

%Λ2Pk,k′

P
+ 1

=
%νξ2Pk

2

%Pk,k′ Λ2 + P
. (4.80)

From (4.80), the effects of each component on the per-user MF SINR limit can
be examined.

• The average received SNR, %, boosts the signal power but also the in-
terference power leading to a ceiling on the per-user MF SINR limit, as
lim
K→∞

E
[
SINRMF

k

]
→ νξ2Pk

2

Pk,k′ Λ2
as %→∞.

• The ratio, ν, increases the SINR due to increased diversity.

• The CSI factor, ξ, decreases the signal power but the extra interference
created by imperfect CSI disappears in the limit due to averaging.

• Λ2 reduces the SINR and implies that spatial correlation reduces SINR. To
see this, consider the extreme cases of an i.i.d. channel (RTX = Λ = Λ2 =

IM/N) and a fully spatially correlated channel, where RTX = 1M/N ,Λ =

diag
(
M
N
, 0, . . . , 0

)
and Λ2 = diag

((
M
N

)2
, 0, . . . , 0

)
. These scenarios give

Λ2 = 1 and Λ2 = M
N
, respectively. Clearly, the Λ2 term increases with

spatial correlation and reduces the per-user MF SINR limit.

• P reduces performance as it is a measure of the total power of the received
signals which includes the aggregate interference.

• Pk,k′ reduces performance as it is an inverse measure of orthogonality. If
the desired user k ∈ 1, . . . , K has strong links on the antennas in a set of
antenna clusters A ⊂ {1, 2, . . . , N} and all the interferers have weak link
gains in A then the “cross product” term Pk,k′ is weak. Here, the channels
are close to orthogonal (on average) and performance is enhanced.

Finally, several special cases of (4.80) are considered.



4.4. LIMITING MF SINR 76

Corollary 4.1. For perfect CSI, ξ = 1, the limiting expected per-user MF SINR
given by

lim
K→∞

E
[
SINRMF

k

]
=

%νPk
2

%Pk,k′ Λ2 + P
. (4.81)

Corollary 4.2. For uncorrelated TX antenna arrays, RTX = IM/N , the limiting
expected per-user MF SINR given by

lim
K→∞

E
[
SINRMF

k

]
=

%νξ2Pk
2

%Pk,k′ + P
. (4.82)

Corollary 4.3. For equal link gains amongst users and antenna clusters, Pk,n =

P ∀k, n, the limiting expected per-user MF SINR given by

lim
K→∞

E
[
SINRMF

k

]
=

%νξ2P

%PΛ2 + 1
. (4.83)

Corollary 4.4. For uncorrelated TX antenna arrays, RTX = IM/N , and equal
link gains amongst users and antenna clusters, Pk,n = P ∀k, n, the limiting
expected per-user MF SINR given by

lim
K→∞

E
[
SINRMF

k

]
=
%νξ2P

%P + 1
. (4.84)

Corollary 4.5. For perfect CSI, ξ = 1, uncorrelated TX antenna arrays, RTX =

IM/N , and equal link gains amongst users and antenna clusters, Pk,n = P ∀k, n,
the limiting expected per-user MF SINR given by

lim
K→∞

E
[
SINRMF

k

]
=

%νP

%P + 1
. (4.85)

Note that (4.85) agrees with the result derived in (3.52), when P = 1, and (4.84)
agrees with results in [7], when P = 1.
In (4.80), a limiting expected per-user value is presented which can be evaluated
for a particular link gain model. Link gain scenarios are now proposed, extend-
ing the co-located link gain model presented in Section 3.3.1, to evaluate the
(distributed) limiting results. As an example, the limiting per-user MF SINR,
in (4.80), is analytically evaluated for the scenario of a single antenna cluster
(N = 1).

Link Gain Model

As discussed in Section 3.3.1 for the co-located antenna system, the classic link
gain model (given in (2.3)), will obscure the limiting effects since the log-normal
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random variable does not easily converge. Thus, the link gains between each
antenna cluster and each user are assumed to be drawn from a limiting link gain
profile defined by P (x) for 0 ≤ x ≤ 1. For any finite number of users, K, the
link gains are defined by P ((2k − 1) /2K) for k = 1, . . . , K. See Figure 4.4 for
illustration.
Since it is awkward to construct reasonable scenarios for more than two antenna
clusters, due to the proliferation of potential profiles, convergence of instanta-
neous to limiting SINR results are shown for N = 1 and N = 2 cases. For the
first antenna cluster (when N = 2) P (x) = Pmax

(
Pmin
Pmax

)x
, where Pmin and Pmax

are the minimum and maximum link gains, respectively. This simple model also
appears in [47, 231] as a way of characterizing differing user link gains with a
simple exponential profile and only two parameters. For simplicity, it is assumed
that the second cluster has the same link gain profile as the first antenna clus-
ter. However, it is unrealistic to assume that the same users have the same link
gains at both antenna clusters. Hence, three scenarios for the second antenna
cluster are considered:

1. The second antenna cluster link gains are identical to that of the link gains
at the first antenna cluster.

2. The second antenna cluster link gains are the reversed link gains from the
first antenna cluster. This scenario is motivated by the likelihood that a
user with a strong link gain from the first antenna cluster will have a weak
gain from the second antenna cluster.

3. The second antenna cluster link gains are strongest when the users are re-
ceiving moderate strength link gains from the first antenna cluster. While
the second antenna cluster link gains are weakest when the users are re-
ceiving either strong or weak strength link gains from the first antenna
cluster. This is an intermediate scenario, between link gain scenarios 1
and 2.

An example of the three link gain scenarios for the second antenna cluster are
shown in Figure 4.4.
This approach gives a limiting link gain profile as K → ∞ and allows us to
investigate convergence. However, it is tightly constrained by the choice of
P (x) and the link gain scenarios listed above.

Limiting Expected Per-user MF SINR Analytical Example: Co-located
Antenna System

As an analytical example, the limiting expected per-user MF SINR is considered
using the link gain model proposed in Section 4.4.1 for N = 1, i.e., P (x) =
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Figure 4.4: Link gain scenarios of the second antenna cluster when N = 2.

Pmax

(
Pmin
Pmax

)x
. Thus, evaluating the three link gain terms in (4.80),

Pk =
1

N

N∑
n=1

Pk,n = Pk,1, (4.86)

and

P = lim
K→∞

1

NK

N∑
n=1

K∑
k=1

Pk,n (4.87)

= lim
K→∞

1

K

K∑
k=1

Pk,1 (4.88)

=

∫ 1

0
P (x)dx (4.89)

= Pmax

∫ 1

0

(
Pmin

Pmax

)x
dx (4.90)

= Pmax

∫ 1

0
exp

(
xln
(
Pmin

Pmax

))
dx (4.91)

=
Pmax

ln
(
Pmin
Pmax

) (exp(ln(Pmin

Pmax

))
− 1

)
(4.92)

=
Pmax

(
Pmin
Pmax

− 1
)

ln
(
Pmin
Pmax

) (4.93)

=
Pmax − Pmin

ln (Pmax)− ln (Pmin)
. (4.94)



CHAPTER 4. DISTRIBUTED ANTENNA SYSTEMS 79

Also,

Pk,k′ = lim
K→∞

1

NK

N∑
n=1

K∑
k′=1
k′ 6=k

Pk,nPk′,n (4.95)

= lim
K→∞

1

K

K∑
k′=1
k′ 6=k

Pk,1Pk′,1 (4.96)

= Pk,1P (4.97)

= Pk,1
Pmax − Pmin

ln (Pmax)− ln (Pmin)
. (4.98)

Evaluating the mean of the limiting MF SINR across all users,

lim
K→∞

(
1

K

K∑
k=1

E
[
SINRMF

k

])
= lim

K→∞

(
1

K

K∑
k=1

%νξ2Pk
2

%Pk,k′ Λ2 + P

)
(4.99)

=
%νξ2(

Pmax−Pmin
ln(Pmax)−ln(Pmin)

) lim
K→∞

(
1

K

K∑
k=1

P 2
k,1

%Pk,1Λ2 + 1

)
(4.100)

=
P 2

max%νξ
2(

Pmax−Pmin
ln(Pmax)−ln(Pmin)

) ∫ 1

0

(
Pmin
Pmax

)2x

%Pmax

(
Pmin
Pmax

)x
Λ2 + 1

dx. (4.101)

Letting u =
(
Pmin
Pmax

)x
→ ln (u) = xln

(
Pmin
Pmax

)
→ x = ln(u)

ln( Pmin
Pmax )

→ dx
du

= 1

uln( Pmin
Pmax )

,

lim
K→∞

(
1

K

K∑
k=1

E
[
SINRMF

k

])

=
P 2

max%νξ
2(

Pmax−Pmin
ln(Pmax)−ln(Pmin)

) ∫ Pmin
Pmax

1

u2

%PmaxΛ2u+ 1

1

uln
(
Pmin
Pmax

)du (4.102)

=
P 2

max%νξ
2(

Pmax−Pmin
ln(Pmax)−ln(Pmin)

)
ln
(
Pmin
Pmax

) ∫ Pmin
Pmax

1

u

%PmaxΛ2u+ 1
du (4.103)

=
P 2

max%νξ
2

Pmin − Pmax

∫ Pmin
Pmax

1

u+ 1

%PmaxΛ2
− 1

%PmaxΛ2

%PmaxΛ2u+ 1
du (4.104)

=
P 2

max%νξ
2

Pmin − Pmax

∫ Pmin
Pmax

1

 1

%PmaxΛ2
−

1

%PmaxΛ2

%PmaxΛ2u+ 1

 du (4.105)

=
P 2

max%νξ
2

Pmin − Pmax

[ u

%PmaxΛ2

] Pmin
Pmax

u=1

−

 ln
(
%PmaxΛ2u+ 1

)
(
%PmaxΛ2

)2


Pmin
Pmax

u=1

 (4.106)
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=
P 2

max%νξ
2

Pmin − Pmax

 Pmin
Pmax

− 1

%PmaxΛ2
−

ln
(
%PminΛ2 + 1

)
− ln

(
%PmaxΛ2 + 1

)
(
%PmaxΛ2

)2

 . (4.107)

Hence, for any limiting link gain model, the exact limit in (4.80) can be evalu-
ated.

4.4.2 Limiting MF SINR Numerical Results

In this subsection, the rate of convergence of instantaneous per-user MF SINR
to its corresponding expected limiting value is shown. Due to the constraints on
the choice of link gains, convergence is shown only for scenarios of N = 1 and
N = 2, as discussed in Section 4.4.1. For both values of N , Pmax and Pmin are
chosen to be 15 and -15 dB, respectively, as these two values are approximately
equal to the respective peak and cell edge received SNRs, as shown in Figure
4.1, for a -5 dB median received SNR.
In Figure 4.5 the average instantaneous and limiting expected per-user MF
SINR is shown for a single antenna cluster. It can be seen that CSI imper-
fections, ξ, decrease both average instantaneous and average limiting expected
per-user MF SINR, as was shown in Section 4.3.2 for instantaneous CDF per-
formance. This is due to the linear relationship between CSI imperfections and
limiting expected per-user MF SINR, seen in (4.80). Also, as the number of
single-antenna users increases, the average instantaneous per-user MF SINR
approaches its corresponding average limiting expected value but is still yet to
fully converge for K = 50 (and M = 500 transmit antenna elements). This
was also seen in Figure 3.7b, from Chapter 3, in the co-located antenna system
case. The corresponding uncorrelated, perfect CSI case, with N = 1, is shown
in Figure 4.5a. Both figures show the average instantaneous per-user MF SINR
within 0.5 dB of the corresponding expected limiting value for K = 50, with
different limiting values resulting from the different limiting link gain models
considered in each chapter. Furthermore, spatial correlation is seen to reduce
each limiting expected MF SINR value by approximately 9 dB, independent of
the CSI accuracy, ξ. This is verified by observing the expected limiting per-user
MF SINR, in (4.80), where for any presence of spatial correlation, Λ2 > 1, the
denominator reduces.
In Figure 4.6 the average instantaneous and average limiting expected per-user
MF SINR is shown for N = 2 antenna clusters. Comparing Figures 4.5 and 4.6,
it is observed that the additional antenna cluster has almost no effect on both the
rate of convergence and the uncorrelated limiting expected per-user MF SINR,
with minor differences coming from the choice of link gain scenario. This is due
to the fact that Pk,k′ in (4.80) tends to be small compared to P . This observation
is different from the instantaneous MF SINR numerical results, shown in Section
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Figure 4.5: Average instantaneous and average limiting expected per-user MF
SINR for N = 1 antenna cluster, as a function of the number of single-antenna
users, K, and CSI accuracy parameter, ξ, with ν = 10.

4.3.2, since the link gains are restricted to follow the limiting model, rather than
being distance, and therefore antenna cluster location, dependent. Also, for all
three link gain scenarios considered for the second antenna cluster, in Figure 4.6,
there are small differences in the MF SINR performance at smaller system sizes
and have nearly an identical MF SINR performance for large systems. This
is consistent with the fact that for large numbers of antennas, the aggregate
interference is a dominant factor for MF precoding. In spatially correlated
scenarios, the limiting expected per-user MF SINR is larger for N = 2 since,
assuming fixed array form factors, ρ is reduced from 0.9 to 0.81.
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Figure 4.6: Average instantaneous and average limiting expected per-user MF
SINR for N = 2 antenna clusters, as a function of the number of single-antenna
users, K, CSI accuracy parameter, ξ, and link gain scenario, with ν = 10.

4.5 Conclusion

In this chapter, a per-user instantaneous MF SINR expression is derived based
on a system model which accounts for unequal link gains, imperfect CSI, trans-
mit spatial correlation and an arbitrary number of antenna clusters. Numeri-
cally, it is shown that distributing antennas into multiple clusters benefits the
per-user received SNR since users are more likely to be receiving a strong signal
from an antenna cluster and, as a result, the average per-user instantaneous
MF SINR is increased. In spatially correlated scenarios, distributing antenna
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elements increases the MF SINR performance further, relative to the co-located
antenna system case, since inter-element antenna spacings increase and the spa-
tial correlation effects are reduced.
Limiting expected per-user MF SINR is then derived as the number of antenna
elements approaches infinity, whilst maintaining a fixed ratio of the number
of transmit antennas to single-antenna users. The convergence of the per-user
instantaneous MF SINR to the limiting expected per-user MF SINR is then
shown for scenarios of one and two antenna clusters. Results show that the rate
of convergence is not affected by spatial correlation or CSI imperfections, but
the convergence of limiting link gain parameters, which is influenced by the link
gain model considered. CSI imperfections cause a considerable decrease in all
instantaneous and limiting MF SINR results.
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5
Spatial Correlation for Millimeter-
Wave Systems

Chapters 3 and 4 considered Rayleigh and Rician fading channel models. In this
chapter a Saleh-Valenzuela channel model is considered to model a large antenna
array operating at mmWave frequencies. Based on the Saleh-Valenzuela channel
model, closed-form expressions for the 3D spatial correlation between any two
antenna elements are derived for wide, narrow and Von Mises power elevation
spectra (PES) as well as an upper bound for arbitrary PES. We show the effects
of the PES on the convergence to massive MIMO properties by defining and
deriving a diagonal dominance metric. Numerically, the effects of mutually cou-
pled antennas are shown on the effective spatial correlation, eigenvalue structure
and user rate for different antenna topologies. We conclude that although mu-
tual coupling can significantly reduce spatial correlation for side-by-side dipole
antennas, the change in antenna effective gain, and therefore SNR, from mutual
coupling becomes a dominating effect and ultimately determines the antenna
array performance of a mmWave system.

5.1 Introduction

To provide insights into the practical design of antenna arrays for mmWave
systems, closed-form expressions characterizing the 3D spatial correlation of
a Saleh-Valenzuela channel model [173] are derived. The Saleh-Valenzuela
channel model is appropriate for, and commonly used to model, sparse chan-
nels [114, 117–119, 133, 174, 175, 232], such as mmWave channels, since the re-
ceived signal can be decomposed into a number of independent spatial clus-
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ters of rays. Furthermore, the analysis is valid for the standardized microwave
NLOS channel model developed by the 3GPP [129]. This allows us to anal-
yse the differences in the channel and system performance when different array
topologies, such as ULAs, URAs and UCAs, are employed. In particular, met-
rics conventionally employed for the analysis of systems with a large number
of co-located antennas are considered, such as diagonal dominance, which is
analytically characterized, and user rate. Additionally, the system eigenvalue
properties are explored for a variety of antenna structures with the aim of deter-
mining their influence on the array spatial multiplexing gain [233]. Overall, the
results derived in this chapter allow us to characterize the impact of employing
different array topologies in mmWave systems.
The contributions of this chapter are summarized:

1. Closed-form expressions for the 3D spatial correlation between any two
antenna elements of a Saleh-Valenzuela channel model are derived for
wide, narrow and Von Mises [144,145] PES as well as an upper bound for
the general PES case.

2. The metric diagonal dominance is defined to measure the convergence of
a user’s channel to favourable propagation [43]1. Closed-form expressions
are then derived for wide, narrow and Von Mises PES, as well as an upper
bound. The PES and antenna topology impacts on the rate of convergence
to massive MIMO properties are then shown.

3. Numerically, the effects of mutual coupling are examined on different
antenna array topologies, by analysing the resultant spatial correlation
against inter-element spacing, eigenvalue properties and user rates of a
mmWave system. It is demonstrated that while mutual coupling reduces
spatial correlation for a wide range of inter-element distances and antenna
configurations, the variation in SNR becomes the dominant effect and can
either increase or decrease user rates depending on inter-element spacing.

5.2 System Model

A single-cell DL system with an M antenna element BS and users with Q

antennas is considered. The Q×M DL Saleh-Valenzuela channel matrix for an
arbitrary user is given (2.14), and described in Section 2.1.2.

1Diagonal dominance has previously been defined for a single-antenna users UL channel
in Chapter 3. In this chapter, diagonal dominance is defined for a DL channel where the user
can have an arbitrary number of receive antenna elements.



CHAPTER 5. SPATIAL CORRELATION FOR MILLIMETER-WAVE SYSTEMS 87

5.2.1 Angular Power Spectra

It is common to define the angular variation in clustered channels via a power
azimuth spectra (PAS) and PES for the central cluster angles and another, dif-
ferent, PAS/PES for the subpaths within a cluster. In this work, it is more
convenient to define the global PAS and PES of all subpaths as pΦ (φ) = fΦ (φ)

and pΘ (θ) = fΘ(θ)
sin(θ)

, respectively. Here, fΦ (φ) and fΘ (θ) denote the PDFs of the
azimuth and elevation angles of an arbitrary subpath. We assume that the TX
is omnidirectional with respect to the azimuth domain, as in mmWave measure-
ment campaigns [114,117–119,150,234,235]. Because the azimuth central clus-
ter angle-of-departures (AODs) are U [0, 2π), it also follows that pΦ

(
φAOD
c,l

)
∼

U [0, 2π) ∀c, l since the addition of a random offset to a U [0, 2π) remains uniform
over [0, 2π) variable. Similarly, we assume the central cluster AOAs are U [0, 2π)

in azimuth and hence pΦ

(
φAOA
c,l

)
∼ U [0, 2π) ∀c, l. On the other hand, we cannot

make such simple assumptions concerning the global AOD and AOA PES since
they depend on a number of factors, such as user location and downtilt angle of
the antenna array. Three different cases for the PES are therefore given, as well
as an upper bound on the spatial correlation for any PES. The three different
PES scenarios include two opposing cases: wide and narrow PES, as well as
the commonly used Von Mises distributed PES [144, 145] with arbitrary loca-
tion and concentration parameters. Here, the three PES cases and the spatial
correlation upper bound are detailed:

1. Wide PES : The PES has a wide, uniform distribution, i.e., pΘ (θc,l) is
constant over [0, π) ∀c, l. This is the case for antennas which are isotropic
at the TX and an isotropic channel at the RX. For example, an antenna
array serving users in an urban canyon.

2. Narrow PES : The PES has a narrow, uniform distribution, i.e., pΘ (θc,l)

is constant over θ0 − ∆θc,l and θ0 + ∆θc,l ∀c, l, where ∆θc,l is a small
elevation intra-cluster subpath offset of subpath l of cluster c with respect
to the central cluster angle, θ0

2. This is the case for directive antennas
and channels of sparse elevation spectrum.

3. Von Mises PES : The PES is distributed according to the Von Mises distri-

bution [144,145], i.e., pΘ (θc,l) ∼
exp(κ̃ cos(θc,l−µ))

2πI0(κ̃)
, with mean µ and variance

1− I1(κ̃)
I0(κ̃)

, where κ̃ is the concentration parameter and I0(·) denotes the ze-
roth order modified Bessel function. The Von Mises is commonly used to
model power spectra as it approximates the Gaussian well [236].

4. Upper bound : A spatial correlation upper bound, for any PES, which is
2For the narrow PES case, all clusters have the same elevation central cluster angle, θ0.

However, the subpaths in each cluster are random.
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valid as long as there is some non-zero distance between antennas on the
x, y-plane, i.e., dxym,m′ > 0 ∀m,m′ at the TX.

5.3 Spatial Correlation

In this section, closed-form expressions for the spatial correlation of the Saleh-
Valenzuela channel given in (2.14) are derived for wide, narrow and Von Mises
PES. A spatial correlation upper bound for an arbitrary PES is also given. The
derived expressions can be used to model the spatial correlation at either the
TX or RX. Without loss of generality, the notation, results and conclusions in
this section are considered for spatial correlation at the TX, i.e., R = RTX.

Lemma 5.1. Suppose dxm,m′ = dxm − dxm′ , dym,m′ = dym − dym′ , dzm,m′ =

dzm − dzm′ and dxym,m′ =
√
dx2

m,m′ + dy2
m,m′ denotes the distances in wave-

lengths between antenna element m,m′ ∈ 1, . . . ,M relative to the x-axis, y-
axis, z-axis, and x, y-plane, respectively, then the spatial correlation between
TX antenna elements m and m′, with pΦ

(
φAOD
c,l

)
∼ U [0, 2π) ∀c, l and a general

pΘ

(
θAOD
c,l

)
, is given as

Rm,m′ =
1

CL

C∑
c=1

L∑
l=1

∫
θAOD
c,l

exp
(
j2πdzm,m′ cos

(
θAOD
c,l

))
× J0

(
2πdxym,m′ sin

(
θAOD
c,l

))
pΘ

(
θAOD
c,l

)
sin
(
θAOD
c,l

)
dθAOD
c,l . (5.1)

Proof. Let hm be the mth column of H, then using the definition in (2.48),

Rm,m′ =
cov [hm,hm′ ]√
var [hm] var [hm′ ]

=
E
[(

hH
m − E

[
hH
m

])
(hm′ − E [hm′ ])

]√
E
[
‖hH

m − E [hH
m]‖2

]
E
[∥∥hm′ − E

[
hm′

]∥∥2
] (5.2)

=
E
[
hH
mhm′

]√
E
[
‖hH

m‖
2
]
E
[∥∥hm′∥∥2

] , (5.3)

as all channels have zero mean, i.e., from (2.14), E [hm] = 0 ∀m. Denoting
aTX,m

(
φAOD
c,l , θAOD

c,l

)
as the mth entry of aTX

(
φAOD
c,l , θAOD

c,l

)
, the denominator of

(5.3) can be computed as

E
[∥∥hH

m

∥∥2
]

= E

[(
1√
L

C∑
c=1

L∑
l=1

hiid,c,laRX
(
φAOA
c,l , θAOA

c,l

)
a∗TX,m

(
φAOD
c,l , θAOD

c,l

))H

]
[
×

(
1√
L

C∑
c=1

L∑
l=1

hiid,c,laRX
(
φAOA
c,l , θAOA

c,l

)
a∗TX,m

(
φAOD
c,l , θAOD

c,l

))]
(5.4)
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=
1

L

C∑
c=1

L∑
l=1

E
[
|hiid,c,l|2

]
E
[∥∥aH

RX
(
φAOA
c,l , θAOA

c,l

)∥∥2
]

× E
[∣∣aTX,m

(
φAOD
c,l , θAOD

c,l

)∣∣2] (5.5)

=
1

L

C∑
c=1

L∑
l=1

E [γc]

 Q∑
q=1

E
[∣∣aH

RX,q
(
φAOA
c,l , θAOA

c,l

)∣∣2]
× E

[∣∣aTX,m
(
φAOD
c,l , θAOD

c,l

)∣∣2] (5.6)

= Q = E
[
‖hm′‖

2
]
, (5.7)

since E [γc] = 1/C and each entry of aRX
(
φAOA
c,l , θAOA

c,l

)
and aTX

(
φAOD
c,l , θAOD

c,l

)
has unit norm. Likewise, the numerator of (5.3) can be calculated as

E
[
hH
mhm′

]
=

1

L

C∑
c=1

L∑
l=1

E
[∥∥∥aRX

(
φAOA
c,l , θAOA

c,l

)H∥∥∥2
]
E
[
|hiid,c,l|2

]
× E

[
aTX,m

(
φAOD
c,l , θAOD

c,l

)
a∗TX,m′

(
φAOD
c,l , θAOD

c,l

)]
(5.8)

=
Q

CL

C∑
c=1

L∑
l=1

E
[
aTX,m

(
φAOD
c,l , θAOD

c,l

)
a∗TX,m′

(
φAOD
c,l , θAOD

c,l

)]
. (5.9)

Combining (5.7) and (5.9), the spatial correlation in (5.3) can be written as

Rm,m′ =
1

CL

C∑
c=1

L∑
l=1

E
[
aTX,m

(
φAOD
c,l , θAOD

c,l

)
a∗TX,m′

(
φAOD
c,l , θAOD

c,l

)]
(5.10)

=
1

CL

C∑
c=1

L∑
l=1

∫
θAOD
c,l

∫
φAOD
c,l

exp
(
j

2π

λ

(
WTX,m −WTX,m′

)
rTX

(
φAOD
c,l , θAOD

c,l

))
× fΦ

(
φAOD
c,l

)
fΘ
(
θAOD
c,l

)
dφAOD

c,l dθAOD
c,l (5.11)

=
1

CL

C∑
c=1

L∑
l=1

∫
θAOD
c,l

∫
φAOD
c,l

exp
(
j2π

[
dxm,m′ sin

(
θAOD
c,l

)
cos
(
φAOD
c,l

)])
[(

+dym,m′ sin
(
θAOD
c,l

)
sin
(
φAOD
c,l

)
+ dzm,m′ cos

(
θAOD
c,l

)])
× pΦ

(
φAOD
c,l

)
pΘ

(
θAOD
c,l

)
sin
(
θAOD
c,l

)
dφAOD

c,l dθAOD
c,l (5.12)

=
1

CL

C∑
c=1

L∑
l=1

∫
θAOD
c,l

exp
(
j2πdzm,m′ cos

(
θAOD
c,l

))(∫
φAOD
c,l

exp
(
j2π sin

(
θAOD
c,l

)))
(
A

B

(
×
[
dxm,m′ cos

(
φAOD
c,l

)
+ dym,m′ sin

(
φAOD
c,l

)])
pΦ

(
φAOD
c,l

)
dφAOD

c,l

)
× pΘ

(
θAOD
c,l

)
sin
(
θAOD
c,l

)
dθAOD
c,l , (5.13)

where WTX,m denotes the mth row of WTX. Evaluating the integral in (5.13)
with respect to φAOD

c,l ,∫
φAOD
c,l

exp
(
j2π sin

(
θAOD
c,l

) [
dxm,m′ cos

(
φAOD
c,l

)
+ dym,m′ sin

(
φAOD
c,l

)])
p
(
φAOD
c,l

)
dφAOD

c,l



5.3. SPATIAL CORRELATION 90

=
1

2π

∫ 2π

0
exp

(
j2π sin

(
θAOD
c,l

)√
dx2

m,m′ + dy2
m,m′ cos

(
φAOD
c,l + φ̃

))
dφAOD

c,l (5.14)

=
1

2π

∫ 2π

0
exp

(
j2π sin

(
θAOD
c,l

)
dxym,m′ cos

(
φAOD
c,l

))
dφAOD

c,l (5.15)

= J0

(
2π sin

(
θAOD
c,l

)
dxym,m′

)
, (5.16)

where the phase offset in (5.14), φ̃ = atan2(dxm,m′ , dym,m′) + π
2
, has no effect

because the integration is taken over a whole period, and the integral in (5.15)
is evaluated in [237] pp. 491. Substituting (5.16) in (5.13) gives the desired
result. �

5.3.1 Wide AOD PES

In this subsection, the spatial correlation expression in (5.1) is evaluated for
a wide AOD PES. Numerically, the effect of inter-element antenna spacing is
then shown on the magnitude of the derived wide AOD PES spatial correlation
expression.

Theorem 5.1. Suppose sinc (x) = sin(πx)
πx

denotes the normalized sinc function

and dxyzm,m′ =
√
dxy2

m,m′ + dz2
m,m′ is the distance in wavelengths between an-

tenna elements m and m′ in 3D Cartesian coordinates, then for pΘ

(
θAOD
c,l

)
con-

stant over [0, π) ∀c, l, the spatial correlation between two TX antenna elements
m,m′ ∈ 1, . . . ,M , is

Rm,m′ =
1

CL

C∑
c=1

L∑
l=1

sinc
(
2dxyzm,m′

)
= sinc

(
2dxyzm,m′

)
, (5.17)

Proof. For any two antenna elements m,m′ ∈ 1, . . . ,M ,

Rm,m′ = A

∫ π

0
exp

(
j2πdzm,m′ cos

(
θAOD
c,l

))
J0

(
2πdxym,m′ sin

(
θAOD
c,l

))
× pΘ

(
θAOD
c,l

)
sin
(
θAOD
c,l

)
dθAOD
c,l , (5.18)

where A is the scaling constant to make sure the elevation PDF integrates to
one. A is calculated as

1 = A

∫
θAOD
c,l

pΘ

(
θAOD
c,l

)
sin
(
θAOD
c,l

)
dθAOD
c,l = A

∫ π

0
sin
(
θAOD
c,l

)
dθAOD
c,l = 2A. (5.19)

Therefore A = 1
2
. Substituting u = − cos

(
θAOD
c,l

)
, from (5.18) we have

Rm,m′ =
1

2

∫ 1

−1
exp

(
−j2πdzn,n′u

)
J0

(
2πdxyn,n′

√
1− u2

) sin
(
θAOD
c,l

)
sin
(
θAOD
c,l

)du (5.20)
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=
1

2

∫ 1

−1
exp

(
−j2πdzn,n′u

)
I0

(
j2πdxyn,n′

√
1− u2

)
du (5.21)

=

sinh

(√(
j2πdzn,n′

)2
+
(
j2πdxyn,n′

)2)
√(

j2πdzn,n′
)2

+
(
j2πdxyn,n′

)2 (5.22)

=
sinh

(
j2π
√
dz2
n,n′ + dxy2

n,n′

)
j2π
√
dz2
n,n′ + dxy2

n,n′

(5.23)

=
−j sin

(
−2πdxyzn,n′

)
j2πdxyzn,n′

(5.24)

= sinc
(
2dxyzn,n′

)
, (5.25)

where the evaluated integral, in (5.21), is given in [237] pp. 698. �

From (5.17), we observe that:

• Increasing the distance between any two TX antennas by the same amount
in any direction decorrelates the two antennas equally (non-monotonically).

• The nulls of |Rm,m′| (or zero crossings of Rm,m′) occur when dxyzm,m′ = n
2

for n ∈ Z+, i.e., an antenna array can experience zero spatial correlation
if adjacent antennas are placed at a half wavelength apart. Although
this can be achieved easily with a ULA, it cannot be achieved with the
URA and UCA topologies, as antenna elements spacings are not always a
multiple of a half-wavelength.
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Figure 5.1: Wide AOD PES spatial correlation magnitude, |Rm,m′|, between two
TX antennas, m and m′, as a function of 3D inter-element spacing, dxyzm,m′ .

In Figure 5.1 the wide AOD PES spatial correlation magnitude, |Rm,m′ |, be-
tween two TX antennas, m,m′ ∈ 1, . . . ,M , is shown as a function of their 3D
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inter-element spacing, dxyzm,m′ . It can be seen that the height of the spatial
correlation peaks decays as dxyzm,m′ increases.

5.3.2 Narrow AOD PES

In this subsection, the spatial correlation expression in (5.1) is evaluated for a
narrow AOD PES. Numerically, the effect of inter-element antenna spacing is
then shown on the magnitude of the derived narrow AOD PES spatial correla-
tion expression.

Theorem 5.2. For pΘ

(
θAOD
c,l

)
constant over

[
θAOD

0 −∆θAOD
c,l , θAOD

0 + ∆θAOD
c,l

]
∀c, l, where ∆θAOD

c,l is small, the spatial correlation between two TX antenna
elements m,m′ ∈ 1, . . . ,M , can be approximated as

Rm,m′ ≈ exp
(
j2πdzm,m′ cos

(
θAOD

0

))
J0

(
2πdxym,m′ sin

(
θAOD

0

))
. (5.26)

Proof. The integral in (5.1) can be approximated by its range multiplied by the
central value. To ensure the elevation PDF integrates to 1,

1 = A

∫
θAOD
c,l

pΘ

(
θAOD
c,l

)
sin
(
θAOD
c,l

)
dθAOD
c,l

= A

∫ θAOD
0 +∆θAOD

c,l

θAOD
0 −∆θAOD

c,l

sin
(
θAOD
c,l

)
dθAOD
c,l ≈ 2A∆θAOD

c,l sin
(
θAOD

0

)
. (5.27)

Therefore A ≈ 1

(2∆θAOD
c,l sin(θAOD

0 ))
. From (5.1),

Rm,m′ ≈
1

CL

C∑
c=1

L∑
l=1

1

2∆θAOD
c,l sin

(
θAOD

0

) ∫ θAOD
0 +∆θAOD

c,l

θAOD
0 −∆θAOD

c,l

sin
(
θAOD
c,l

)
× exp

(
j2πdzm,m′ cos

(
θAOD
c,l

))
J0

(
2πdxym,m′ sin

(
θAOD
c,l

))
dθAOD
c,l (5.28)

=
1

CL

C∑
c=1

L∑
l=1

exp
(
j2πdzm,m′ cos

(
θAOD

0

))
J0

(
2πdxym,m′ sin

(
θAOD

0

))
(5.29)

= exp
(
j2πdzm,m′ cos

(
θAOD

0

))
J0

(
2πdxym,m′ sin

(
θAOD

0

))
. (5.30)

�

Here, insights into the narrow AOD PES spatial correlation (at the TX), given
in (5.26), are drawn:

• The expression in (5.26) is independent of the intra-cluster elevation AOD
offsets, ∆θAOD

c,l , and therefore the intra-cluster elevation AOD spreads, be-
cause the multiple rays of each cluster are approximated by the constant
elevation central cluster AOD, θAOD

0 . For the same reason, Rm,m′ is inde-
pendent of the number of subpaths, L.
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• Rm,m′ is independent of azimuth angles because the AOD PAS is uniform
over its entire range.

• Rm,m′ decreases non-monotonically with dxym,m′ , as increased x, y-plane
spacing tends to reduce |Rm,m′ | since it affects the modulus of (5.26) via
the Bessel function.

• For a fixed dxym,m′ , the modulus, J0

(
2πdxym,m′ sin

(
θAOD

0

))
, is reduced

when sin
(
θAOD

0

)
is maximized. This occurs when θAOD

0 = π
2
, i.e., when

the central AOD is broadside to the TX antenna array with respect to
the z-axis. At this elevation AOD, the phase shift disappears and the
resultant spatial correlation becomes Rm,m′ = J0 (2πdxym,m′), i.e., only a
function of the x, y-plane inter-element spacings.

• When the central AOD is end-fire to the TX antenna array with re-
spect to the z-axis, the resultant spatial correlation becomes Rm,m′ =

exp (j2πdzm,m′), i.e., only a function of the z-axis inter-element spacings.
Note that here the spatial correlation has a magnitude of one. This is a
mathematical peculiarity and is due to the fact that in this scenario there
is just a phase shift in the elevation domain between m and m′.

• This scenario can be generalized to a narrow angular spread within clusters
of fixed but different central cluster AODs, i.e., the combined PES of all
clusters may not be narrow, however the PES of subpaths within a single
cluster is narrow. In this case, (5.26) becomes

Rm,m′ =
1

C

C∑
c=1

exp
(
j2πdzm,m′ cos

(
θAOD

0,c

))
J0

(
2πdxym,m′ sin

(
θAOD

0,c

))
. (5.31)

In this scenario, the phase shift, exp
(
j2πdzm,m′ cos

(
θAOD

0

))
, is able to

decrease |Rm,m′ | non-monotonically. A larger z-axis spacing increases the
phase oscillations and hence the C components are more likely to be out of
phase and cancel, reducing |Rm,m′ | by a different mechanism than dxym,m′ .

To date, all 3D spatial channel model measurement campaigns express the eleva-
tion AOD central cluster angles as some small random variation around the LOS
angle to the user, ϑAOD [118, 119, 129]3. To examine the accuracy of (5.26) to
the true spatial correlation for increasing intra-cluster subpath offsets, ∆θAOD

c,l ,
we assume θAOD

0 = ϑAOD following [114]. Therefore,

Rm,m′ = exp
(
j2πdzm,m′ cos

(
ϑAOD)) J0

(
2πdxym,m′ sin

(
ϑAOD)) . (5.32)

3Any downtilting of the TX antenna array would affect the relative LOS angle, ϑAOD.
However, we assume no mechanical downtilting of any antenna arrays.
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Figure 5.2: Magnitude of the average spatial correlation between two TX an-
tennas, m and m′, for narrow AOD PES as a function of their x, y-plane inter-
element spacing, dxym,m′ , and elevation AOD ray offsets, ∆θAOD

c,l . dzm,m′ = 0.

In Figure 5.2 we show good agreement between the magnitude of the aver-
age spatial correlation between two TX antennas, m,m′ ∈ 1, . . . ,M , for nar-
row AOD PES as a function of their x, y-plane inter-element spacing, dxym,m′ ,
and elevation AOD subpath offsets, ∆θAOD

c,l . The spatial correlation is aver-
aged over 104 LOS angles4, ϑAOD. It can be seen that as the elevation AOD
subpath offsets, ∆θAOD

c,l , are increased, the narrow AOD PES becomes a less
accurate approximation to the spatial correlation. This is intuitive since we
are approximating the spatial correlation in (5.1) by a single elevation AOD.
However, the simple narrow AOD PES results are surprisingly accurate even up
to ∆θAOD

c,l = 30◦ ∀c, l. We also see that the peaks of the spatial correlation are
slightly reduced in magnitude as the elevation AOD subpath offsets, ∆θAOD

c,l ,
are increased. This is a result of greater angular diversity in the system and
the extreme case is the wide AOD PES, shown in Figure 5.1. Furthermore,
we observe that the nulls of the spatial correlation magnitude occur for smaller
distances as ∆θAOD

c,l is reduced. This is because the LOS elevation angle to
the user, ϑAOD, is nearly always relatively close to 90◦ (due to user location)
as ∆θAOD

c,l becomes smaller, therefore increasing the Bessel function argument,
i.e., sin

(
θAOD
c,l

)
= sin

(
θAOD

0 + ∆θAOD
c,l

)
= sin

(
ϑAOD + ∆θAOD

c,l

)
≈ sin

(
ϑAOD

)
≈

1 ∀c, l, for small ∆θAOD
c,l . On the other hand, as ∆θAOD

c,l increases, there becomes
a higher likelihood that the magnitude of sin

(
θAOD
c,l

)
is reduced for a particular

ray. The extreme case, where the first null occurs at a distance of dxym,m′ = 0.5,
is equivalent to the wide AOD PES shown in Figure 5.1.

4The user is located between 30 ≤ d ≤ 200m based on area coverage, with a TX height of
hTX = 17m and a RX height of hRX = 2m [114].
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5.3.3 Von Mises AOD PES

In this subsection, the spatial correlation expression in (5.1) is evaluated for a
Von Mises AOD PES. Numerically, the effect of inter-element antenna spacing
is then shown on the magnitude of the derived Von Mises AOD PES spatial
correlation expression.

Theorem 5.3. For pΘ

(
θAOD
c,l

)
∼ exp(κ̃ cos(θAOD

c,l −µ))
2πI0(κ̃)

, the spatial correlation be-
tween two TX antenna elements m,m′ ∈ 1, . . . ,M , can be approximated by

Rm,m′ ≈
sinc

(
2

√
dxy2

m,m′ +
(
dzm,m′ − j κ̃ cos(µ)

2π

)2
)

sinc
(
j κ̃ cos(µ)

π

) . (5.33)

Proof. For any two antenna elements m,m′ ∈ 1, . . . ,M , the spatial correlation
in (5.1) can be approximated as

Rm,m′ =
A

2πI0(κ̃)

∫ π

0
exp

(
j2πdzn,n′ cos

(
θAOD
c,l

))
J0

(
2πdxyn,n′ sin

(
θAOD
c,l

))
× sin

(
θAOD
c,l

)
exp

(
κ̃ cos

(
θAOD
c,l − µ

))
dθAOD
c,l (5.34)

≈ Aexp (κ̃ sin(µ))

2πI0(κ̃)

∫ π

0
exp

(
j2πdzn,n′ cos

(
θAOD
c,l

))
J0

(
2πdxyn,n′ sin

(
θAOD
c,l

))
× sin

(
θAOD
c,l

)
exp

(
κ̃ cos (µ) cos

(
θAOD
c,l

))
dθAOD
c,l , (5.35)

where A is the scaling constant to ensure the elevation PDF integrates to unity
and κ̃ sin (µ) sin

(
θAOD
c,l

)
≈ κ̃ sin (µ), since θAOD

c,l ≈ π
2
. To calculate A,

1 = A

∫
θAOD
c,l

pΘ(θAOD
c,l ) sin

(
θAOD
c,l

)
dθAOD
c,l

=
Aexp (κ̃ sin (µ))

2πI0 (κ̃)

∫ π

0
sin
(
θAOD
c,l

)
exp

(
κ̃ cos (µ) cos

(
θAOD
c,l

))
dθAOD
c,l (5.36)

=
Aexp (κ̃ sin (µ))

2πI0 (κ̃)

∫ 1

−1
exp (−κ̃ cos (µ)u) du (5.37)

=
Aexp (κ̃ sin (µ))

2πκ̃ cos (µ) I0 (κ̃)
[exp(κ̃ cos (µ))− exp(−κ̃ cos (µ))] (5.38)

=
Aexp (κ̃ sin (µ)) sinh (κ̃ cos (µ))

πκ̃ cos (µ) I0 (κ̃)
, (5.39)

where u = − cos
(
θAOD
c,l

)
is substituted in (5.37). Therefore

A =
πκ cos (µ) I0 (κ̃)

exp (κ̃ sin (µ)) sinh (κ̃ cos (µ))
. (5.40)

Denoting D = 2πdxym,m′ , E = κ̃ cos(µ)
j

, G = 2πdzn,n′ and substituting x =
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− cos
(
θAOD
c,l

)
the integral in (5.35) can be evaluated as∫ 1

−1
J0

(
D
√

1− x2
)

[cos (Gx) + j sin (Gx)] [cos (Ex) + j sin (Ex)] dx (5.41)

=

∫ 1

−1
J0

(
D
√

1− x2
)

cos ((G+ E)x) dx+ j

∫ 1

−1
J0

(
D
√

1− x2
)

sin ((G+ E)x) dx

=

2 sin

(√
D2 + (G+ E)2

)
√
D2 + (G+ E)2

, (5.42)

where the second term in (5.41) integrates to zero. The desired result is obtained
by substituting (5.42) and the normalization constant, A, into (5.35). �

From (5.33) it can be seen that:

• Increasing the inter-element spacing on the either the x, y-plane or z-axis
decreases the spatial correlation non-monotonically.

• If dxym,m′ = 0,

Rm,m′ =
sinc

(
2dzm,m′ − j κ̃ cos(µ)

π

)
sinc

(
j κ̃ cos(µ)

π

) . (5.43)

Apart from when dzm,m′ = 0, Rm,m′ can never be zero since 2dzm,m′ 6=
jκ̃ cos(µ)

π
∀dzm,m′ .

• If dzm,m′ = 0,

Rm,m′ =

sinc

(
2

√
dxy2

m,m′ −
(
κ̃ cos(µ)

2π

)2
)

sinc
(
j κ̃ cos(µ)

π

) , (5.44)

and the nulls of |Rm,m′ | occur when dxym,m′ =

√
n
4

+
(
κ̃ cos(µ)

2π

)2

for n ∈
Z+. For example, at µ = π

2
and µ = π

3
, the first null of |Rm,m′| occurs at

dxym,m′ = 1
2
and dxym,m′ =

√
1
4

+
(
κ̃
2π

)2 wavelengths, respectively.

• For µ = π
2
, Rm,m′ becomes equal to the wide AOD PES spatial correlation

in (5.17).

• As µ approaches 0 or π, Rm,m′ increases.

• As the concentration parameter κ̃→ 0, the distribution of θAOD
c,l becomes

uniform over [0, π) ∀c, l and Rm,m′ becomes equal to the wide AOD PES
spatial correlation in (5.17).
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• As the concentration parameter κ̃→∞, the AOD PES becomes infinites-
imally small and thus Rm,m′ ≈ 1.
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Figure 5.3: Spatial correlation magnitude between two TX antennas, m and
m′, for a Von Mises AOD PES as a function of their x, y-plane inter-element
spacing, dxym,m′ .

In Figure 5.3 the accuracy of the average spatial correlation between two TX
antennas, m,m′ ∈ 1, . . . ,M , is shown for a Von Mises AOD PES approximation
as a function of their x, y-plane inter-element spacing, dxym,m′ . It can be seen
that the approximation is exact for κ = 0, µ = π

2
, µ = 0 and µ = π. For κ = 2

and µ = 2π
3
, the approximation is reasonably good for small spacings and large

spacings.

5.3.4 General PES Upper Bound

In this subsection, an upper bound on the spatial correlation expression in (5.1)
is deived for any AOD PES.

Theorem 5.4. For an arbitrary PES, (5.1) is bounded by

Rm,m′ ≤
1

CL

C∑
c=1

L∑
l=1

1

π
√
dxym,m′

E

 1√
sin
(
θAOD
c,l

)
 , (5.45)

Proof. For two antenna elements m,m′ ∈ 1, . . . ,M , (5.1) can be written as

Rm,m′ =
1

CL

C∑
c=1

L∑
l=1

E
[
exp

(
j2πdzm,m′ cos

(
θAOD
c,l

))
J0

(
2πdxym,m′ sin

(
θAOD
c,l

))]
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≤ 1

CL

C∑
c=1

L∑
l=1

E
[∣∣J0

(
2πdxym,m′ sin

(
θAOD
c,l

))∣∣] (5.46)

≈ 1

CL

C∑
c=1

L∑
l=1

E


∣∣∣∣∣∣∣
√√√√√2 cos

(
2πdxym,m′ sin

(
θAOD
c,l

)
− π

4

)
2π2dxym,m′′ sin

(
θAOD
c,l

)
∣∣∣∣∣∣∣
 (5.47)

≤ 1

CL

C∑
c=1

L∑
l=1

1

π
√
dxym,m′

E

 1∣∣∣∣√sin
(
θAOD
c,l

)∣∣∣∣
 (5.48)

=
1

CL

C∑
c=1

L∑
l=1

1

π
√
dxym,m′

E

 1√
sin
(
θAOD
c,l

)
 , (5.49)

where (5.47) uses the approximation J0 (x) ≈
√

2
πx

cos
(
x− π

4

)
[238], which is

a good approximation for x ≥ 1, i.e., for dxym,m′ ≥ 1

2π sin(θAOD
c,l )

. The spatial

correlation upper bound in (5.48) comes because |cos (·)| ≤ 1 and (5.49) is
obtained because

∣∣∣√sin
(
θAOD
c,l

)∣∣∣ =
√

sin
(
θAOD
c,l

)
for θAOD

c,l ∈ [0, π) ∀c, l. �

From (5.45), it can be seen that:

• The Rm,m′ upper bound is reduced for larger dxym,m′ .

• For deterministic elevation AODs, the spatial correlation upper bound
becomes

Rm,m′ ≤
1

CL

C∑
c=1

L∑
l=1

1

π

√
dxym,m′ sin

(
θAOD
c,l

) (5.50)

=
1

CL

C∑
c=1

L∑
l=1

1

π

√
dxym,m′ sin

(
θAOD

0,c + ∆θAOD
c,l

) , (5.51)

and elevation AOD spreads affect the upper bound of Rm,m′ differently
depending on the central cluster angles, θAOD

0,c .

– For θAOD
0,c away from π

2
, i.e., towards the end-fire of the TX antenna

array with respect to the z-axis:

∗ Large AOD spreads increase the probability of ∆θAOD
c,l being large

and thus the probability of θAOD
c,l being close to π

2
, reducing the

Rm,m′ upper bound.

∗ Small AOD spreads increase the probability of ∆θAOD
c,l being

small and thus the probability of θAOD
c,l being close to either 0

or π, increasing the Rm,m′ upper bound.
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– For θAOD
0,c close to π

2
, i.e., towards the broadside of the TX antenna

array with respect to the z-axis:

∗ Large AOD spreads increase the probability of ∆θAOD
c,l being large

and thus the probability of θAOD
c,l being close to 0 or π, increasing

the Rm,m′ upper bound.

∗ Small AOD spreads increase the probability of ∆θAOD
c,l being

small and thus the probability of θAOD
c,l being close to π

2
, de-

creasing the Rm,m′ upper bound.

– Similarly, PES which are more concentrated (e.g., Laplacian [144,
180]) reduce the Rm,m′ upper bound when the central cluster angle,
θAOD

0,c , is closer to the broadside of the TX antenna array and vice-
versa.

5.4 Convergence to Massive MIMO: Diagonal Dom-
inance

In this section, the rate of convergence of a user’s channel to favourable massive
MIMO propagation [43] is explored for the different antenna topologies, as the
number of RX antennas, Q, becomes large. The convergence of a user’s channel
is measured by defining the diagonal dominance5, δ, as6

δ =

1
Q(Q−1)

Q∑
q=1

Q∑
q′=1
q′ 6=q

∣∣∣E [hqhH
q′

]∣∣∣
1
Q

Q∑
q=1

E
[
hqhH

q

] , (5.52)

where hq denotes the qth row of H. Note that δ will converge to zero when
channels between antenna elements, of the user, become orthogonal, i.e., the
diagonal elements become large relative to the off-diagonals in the summations.
Note here that the diagonal dominance is a function of the user antenna ar-
ray and therefore (5.52) is dependent on the number of user antennas, Q, and
AOAs, rather the number of BS antennas, M , and AODs7.

5Diagonal dominance has previously been defined for a composite, concatenated, channel
of K single-antenna user’s in Chapter 3. In this chapter, diagonal dominance is defined for a
users channel, where the user can have an arbitrary number of receive antenna elements.

6In Chapter 3, three different convergence metrics were considered (mean absolute devia-
tion, eigenvalue ratio and diagonal dominance) since the primary aim of the chapter was to
investigate massive MIMO channel convergence. Only diagonal dominance is considered in
this chapter, however, as the focus is on analytically deriving the effects of antenna topology
and inter-element spacing on a number of different performance metrics, including channel
convergence.

7Since a DL channel is considered, the diagonal dominance is defined for a particular user.
However, all the analysis holds in the case of an UL channel, where the diagonal dominance
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Lemma 5.2. Given the Saleh-Valenzuela channel model in (2.14) and an AOA
PAS of pΦ

(
φAOA
c,l

)
∼ U [0, 2π) ∀c, l, as discussed in Section 5.2.1, the diagonal

dominance can be written as

δ =
1

Q (Q− 1)

Q∑
q=1

Q∑
q′=1
q′ 6=q

1

CL

×

∣∣∣∣∣
C∑
c=1

L∑
l=1

E
[
exp

(
j2πdzq,q′ cos

(
θAOA
c,l

))
J0

(
2πdxyq,q′ sin

(
θAOA
c,l

))]∣∣∣∣∣ , (5.53)

Proof. Let hq denotes the qth row of H, then

E
[
hqh

H
q′
]

= E

[(
1√
L

C∑
c=1

L∑
l=1

hiid,c,laRX,q
(
φAOA
c,l , θAOA

c,l

)
aH

TX
(
φAOD
c,l , θAOD

c,l

))]
[
×

(
1√
L

C∑
c=1

L∑
l=1

hiid,c,laRX,q′
(
φAOA
c,l , θAOA

c,l

)
aH

TX
(
φAOD
c,l , θAOD

c,l

))H

]
(5.54)

=
1

L

C∑
c=1

L∑
l=1

E
[
|hiid,c,l|2

]
E
[
‖aH

TX
(
φAOD
c,l , θAOD

c,l

)
‖2
]

× E
[
aRX,q

(
φAOA
c,l , θAOA

c,l

)
a∗RX,q′

(
φAOA
c,l , θAOA

c,l

)]
(5.55)

=
M

CL

C∑
c=1

L∑
l=1

E
[
aRX,q

(
φAOA
c,l , θAOA

c,l

)
a∗RX,q′

(
φAOA
c,l , θAOA

c,l

)]
(5.56)

=
M

CL

C∑
c=1

L∑
l=1

∫
θAOA
c,l

∫
φAOA
c,l

exp
(
j

2π

λ

(
WRX,q −WRX,q′

)
rRX

(
φAOA
c,l , θAOA

c,l

))
× sin

(
θAOA
c,l

)
pΦ

(
φAOA
c,l

)
pΘ

(
θAOA
c,l

)
dφAOA

c,l dθAOA
c,l (5.57)

=
M

CL

C∑
c=1

L∑
l=1

∫
θAOA
c,l

(∫ 2π

0
exp

(
j2π sin

(
θAOA
c,l

)))
(∫ B

A

(
×
[
dxq,q′ cos

(
φAOA
c,l

)
+ dyq,q′ sin

(
φAOA
c,l

)])
pΦ

(
φAOA
c,l

)
dφAOA

c,l

)
× exp

(
j2πdzq,q′ cos

(
θAOA
c,l

))
sin
(
θAOA
c,l

)
pΘ

(
θAOA
c,l

)
dθAOA
c,l (5.58)

=
M

CL

C∑
c=1

L∑
l=1

∫
θAOA
c,l

exp
(
j2πdzq,q′ cos

(
θAOA
c,l

))
J0

(
2πdxyq,q′ sin

(
θAOA
c,l

))
× sin

(
θAOA
c,l

)
pΘ

(
θAOA
c,l

)
dθAOA
c,l (5.59)

=
M

CL

C∑
c=1

L∑
l=1

E
[
exp

(
j2πdzq,q′ cos

(
θAOA
c,l

))
J0

(
2πdxyq,q′ sin

(
θAOA
c,l

))]
, (5.60)

where steps from (5.58) to (5.59) are analogous to (5.14) to (5.16) with pΦ

(
φAOA
c,l

)
∼ U [0, 2π) ∀c, l. Subsituting (5.60) in (5.52), where E

[
hqh

H
q

]
= M , gives the

would be defined for a particular BS antenna array.
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desired result. �

5.4.1 Wide AOA PES

In this subsection, the diagonal dominance expression in (5.53) is evaluated for
a wide AOA PES. Numerically, the effect of increasing receive antenna elements,
antenna topology and inter-element antenna spacing are then shown on the con-
vergence of the derived wide AOA PES diagonal dominance expression.

Corollary 5.1. Suppose dxyzq,q′ denotes the distance in wavelengths between
antenna elements q and q′ in 3D Cartesian coordinates, then analogous to the
steps of the wide AOD PES spatial correlation, given in (5.18)-(5.25), evaluating
the diagonal dominance in (5.53) for a wide AOA PES, i.e., pΘ

(
θAOA
c,l

)
constant

over [0, π) ∀c, l, δ gives

δ =
1

Q (Q− 1)

Q∑
q=1

Q∑
q′=1
q′ 6=q

∣∣sinc (2dxyzq,q′)∣∣ . (5.61)

From (5.61), it can be observed that:

• Increasing the distance between two antennas by the same amount in any
direction decreases δ equally (non-monotonically).

• Assuming uniform spacings in any direction, δ will be zero when dxyzq,q′ =
n
2
for n ∈ Z+. This can be achieved easily with a ULA, however it can-

not be achieved with the URA and UCA topologies, as antenna elements
spacings are not always a multiple of a 1/2 wavelength.

In Figure 5.4, the diagonal dominance of a user’s channel, δ, is shown for wide
AOA PES, as a function of the number of receive antenna elements, Q, antenna
topology and antenna inter-element spacing. dλ denotes the antenna inter-
element spacing in wavelengths. It can be seen that an increase in inter-element
spacing from dλ = 0.125 to 1.25 wavelengths results in nearly an order of mag-
nitude decrease in δ. The ULA has a lower value of δ as it has fewer adjacent
antenna elements, compared with the URA and UCA. Also, as Q increases, the
value of δ of the URA and UCA converge to be similar to each other. As was the
case for an i.i.d. Rayleigh fading channel in Chapter 3, the diagonal dominance
asymptotically converges to a limiting value with increasing antenna numbers.

5.4.2 Narrow AOA PES

In this subsection, the diagonal dominance expression in (5.53) is evaluated for
a narrow AOA PES. Numerically, the effect of increasing receive antenna ele-
ments, antenna topology and inter-element antenna spacing are then shown on
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Figure 5.4: Diagonal dominance of a user’s channel, δ, for a wide AOA PES, as
a function of the number of receive antenna elements, Q, antenna topology and
antenna inter-element spacing.

the convergence of the derived narrow AOA PES diagonal dominance expression.

Corollary 5.2. Since |exp (jx)| = 1, analogous to steps (5.27)-(5.30), the diag-
onal dominance of a user’s channel, with a narrow AOA PES, can be approxi-
mated as

δ =
1

Q (Q− 1)

Q∑
q=1

Q∑
q′=1
q′ 6=q

∣∣exp (j2πdzq,q′ cos
(
θAOA

0

))
J0

(
2πdxyq,q′ sin

(
θAOA

0

))∣∣ (5.62)

=
1

Q (Q− 1)

Q∑
q=1

Q∑
q′=1
q′ 6=q

∣∣J0

(
2πdxyq,q′ sin

(
θAOA

0

))∣∣ . (5.63)

Some insights from (5.63) can be drawn:

• δ is independent of dzq,q′ .

• As discussed for the narrow AOD PES spatial correlation in Section 5.3.2,
δ is independent of the angular spreads, the number of subpaths, L, and
azimuth angles. δ decreases non-monotonically with dxyq,q′ .

• For a fixed θAOA
0 , differences in δ between the URA and UCA come from

the oscillatory nature of J0(2πdxyq,q′), which is a function of the x, y-plane
inter-element spacings. Note that dxyURA

q,q′ ≥ dxyUCA
q,q′ with equality only

if q = q′ ± 1, where the layout of the antenna topologies are described in
Section 2.3.
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• If θAOA
0 = ϑAOA as in [114], then

δ =
1

Q (Q− 1)

Q∑
q=1

Q∑
q′=1
q′ 6=q

∣∣J0

(
2πdxyq,q′ sin

(
ϑAOA))∣∣, (5.64)
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Figure 5.5: Diagonal dominance of a user’s channel, δ, for a narrow AOA PES,
as a function of the number of receive antenna elements, Q, antenna topology
and antenna inter-element spacing.

In Figure 5.5, we show the diagonal dominance of a user’s channel, δ, for a
narrow AOA PES, where θAOA

0 = ϑAOA, as in (5.64) [114]. As was the case in the
wide AOA PES scenario, an increase in inter-element spacing from dλ = 0.125

to 1.25 wavelengths results in a large decrease in δ. Since δ is independent
of the z-axis inter-element spacing, the ULA now performs significantly better
than the URA and UCA topologies. The slope of the UCA δ is not smooth, as
seen for the ULA and URA topologies, and intersects the URA δ at different
numbers of RX antenna elements, Q. For large antenna spacings, the diagonal
dominance of the URA and UCA converge to similar spacings.

5.4.3 Von Mises AOA PES

In this subsection, the diagonal dominance expression in (5.53) is evaluated for
a Von Mises AOA PES.

Corollary 5.3. If pΘ

(
θAOA
c,l

)
∼ exp(κ̃ cos(θAOA

c,l −µ))
2πI0(κ̃)

, then analogous to the steps in
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(5.34)-(5.42), δ can be approximated by

δ ≈ 1

Q (Q− 1)

∣∣∣∣sinc(j κ̃ cos(µ)

π

)∣∣∣∣−1

×
Q∑
q=1

Q∑
q′=1
q′ 6=q

∣∣∣∣∣∣sinc
2

√
dxy2

q,q′ +

(
dzq,q′ − j

κ̃ cos(µ)

2π

)2
∣∣∣∣∣∣ . (5.65)

From (5.65):

• Increasing the inter-element spacing on the either the x, y-plane or z-axis
decreases δ non-monotonically.

• If dxyq,q′ = 0, δ is never zero apart from when dzq,q′ = 0, since 2dzq,q′ 6=
jκ̃ cos(µ)

π
∀dzq,q′ .

• If dzq,q′ = 0, δ is zero when dxyq,q′ =

√
n
4

+
(
κ̃ cos(µ)

2π

)2

for n ∈ Z+.

• For µ = π
2
, δ becomes equal to the wide AOA PES diagonal dominance in

(5.61).

• As µ approaches 0 or π, δ increases.

• As the concentration parameter κ̃→ 0, the distribution of θAOA
c,l becomes

uniform over [0, π) ∀c, l and δ becomes equal to the wide AOA PES δ in
(5.61).

• As the concentration parameter κ̃→∞, the AOA PES becomes infinites-
imally small and thus δ →∞.

5.4.4 General PES Upper Bound

In this subsection, an upper bound on the diagonal dominance expression in
(5.53) is deived for any AOA PES.

Corollary 5.4. Analogous to the steps in (5.46)-(5.49), the diagonal dominance
upper bound of the expectation in (5.53) can be expressed as

δ ≤ 1

Q(Q− 1)

Q∑
q=1

Q∑
q′=1
q′ 6=q

1

πCL
√
dxyq,q′

∣∣∣∣∣∣∣∣
C∑
c=1

L∑
l=1

E

 1√
sin
(
θAOA
c,l

)

∣∣∣∣∣∣∣∣ (5.66)

=
1

Q(Q− 1)

Q∑
q=1

Q∑
q′=1
q′ 6=q

1

πCL
√
dxyq,q′

C∑
c=1

L∑
l=1

E

 1√
sin
(
θAOA
c,l

)
 . (5.67)
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For a single elevation AOA, θAOA,

δ ≤ 1

Q(Q− 1)

Q∑
q=1

Q∑
q′=1
q′ 6=q

1

π
√
dxyq,q′ sin (θAOA)

. (5.68)

Hence the value of δ decays proportional to 1√
dxyq,q′

and with O
(

1√
sin(θAOA)

)
.

The bound on δ is therefore minimized when θAOA = π
2
, i.e., when the elevation

AOA is perpendicular to the z-axis of the antenna array.

5.5 Numerical Mutual Coupling Results

In this section, the effects of mutual coupling on different antenna array topolo-
gies is numerically examined, by analysing the resultant spatial correlation
against inter-element spacing, eigenvalue structure and user rate of a mmWave
system. In Sections 5.5.1 and 5.5.1, the effects of mutual coupling, on spatial
correlation and eigenvalue structure, respectively, are investigated for the two
opposing spatial correlation cases: wide and narrow AOD PES. Here, the ex-
pressions derived in Section 5.3 are used, given in (5.17) and (5.32) for the two
respective cases. In Section 5.5.3, the user rate of a mmWave channel [114] is
simulated for a carrier frequency of 28 GHz.
In all cases where mutual coupling is modelled, (2.51) is used with antenna
impedance of ZA = 73 + j42.5 Ω [171,239].

5.5.1 Impact of Antenna Separation

All results in this subsection are applicable to either the TX or RX antenna
array. Without loss of generality the effects of spatial correlation and mutual
coupling are explored with multiple antennas employed at the TX, i.e., ZRX = IQ
in (2.53).
To draw insight into how different array topologies are affected by mutual
coupling, its effects are numerically shown on three different dipole antenna
pairs [171]:

1. Side-by-side: where dxym,m′ 6= 0 and dzm,m′ = 0 for m,m′ ∈ 1, . . . ,M .

2. Collinear : where dxym,m′ = 0 and dzm,m′ 6= 0 for m,m′ ∈ 1, . . . ,M .

3. Parallel-in-echelon: where dxym,m′ 6= 0 and dzm,m′ 6= 0 for m,m′ ∈
1, . . . ,M . For simplicity, the case where dxym,m′ = dzm,m′ is considered.
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Figure 5.6: Normalized magnitude of a wide AOD PES spatial correlation,
|Rm,m′ |/|Rm,m|, with and without mutual coupling, between two TX antennas,
m,m′ ∈ 1, . . . ,M , as a function of their inter-element spacing, dm,m′ , for three
different antenna configurations.

Wide AOD PES

In Figure 5.6 the normalized magnitude of a wide AOD PES spatial correla-
tion, |Rm,m′ |/|Rm,m|, is shown with and without mutual coupling8, between two

8In the case where only spatial correlation is modelled, Rm,m′ is given as in de-
rived in Section 5.3. When mutual coupling is added, Rm,m′ = E

[
h

H
mhm′

]
=

ZH
TX,m,mE

[
hH
mhm′

]
ZTX,m′,m′ , where hm is the mth column of H, since the elements of the

mutual coupling matrix are a function of deterministic parameters [171].
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TX antennas, m,m′ ∈ 1, . . . ,M , as a function of their inter-element spacing,
dm,m′ , for three different antenna configurations. For the side-by-side antenna
configuration, the effects of mutual coupling are more obvious at smaller an-
tenna separations. For example, it can be seen that mutual coupling reduces
the magnitude of the normalized spatial correlation for inter-element spacings
dm,m′ < 0.37 wavelengths and dm,m′ < 0.43 wavelengths for ZL = 50 Ω and
ZL = 73 − j42.5 Ω, respectively. There is a negligible impact on the spatial
correlation when antennas are in the collinear configuration, because the ideal
dipole radiation pattern has a singularity at its ends and therefore the imping-
ing radiation on (collinear) adjacent antennas is minimal. On the other hand,
when antennas are in the parallel-in-echelon configuration, the mutual coupling
causes a strong increase in the normalized spatial correlation and its magnitude
is yet to converge to the scenario with no mutual coupling, as the other config-
urations do, even for inter-element spacings of up to dm,m′ = 2.5 wavelengths.
Comparing Figure 5.6a with Figure 5.6b, it is noted that the shape of the decay,
before a half-wavelength spacing for the side-by-side configuration, is dependent
on the load impedance, ZL, chosen [24, 87, 89, 105, 239]. The magnitude of the
normalized spatial correlation peaks for the side-by-side and parallel-in-echelon
configurations are reduced when the load impedance, ZL, is chosen to be the con-
jugate of the antenna impedance, ZA. In all results following, a load impedance
of ZL = 50 Ω is used.

Narrow AOD PES

In Figure 5.7 the normalized magnitude of a narrow AOD PES spatial correla-
tion, |Rm,m′ |/|Rm,m|, is shown with and without mutual coupling, between two
TX antennas, m,m′ ∈ 1, . . . ,M , as a function of their inter-element spacing,
dm,m′ , for three different antenna configurations. Two user locations are consid-
ered: a minimum distance of 30m and a maximum distance of 200m away from
the BS [114], shown in Figure 5.7a and Figure 5.7b, respectively. It can be seen
that for the side-by-side antenna configuration, mutual coupling reduces the
magnitude of the normalized spatial correlation for all inter-element spacings
less than dm,m′ = 2.5 wavelengths. As was the case with the wide AOD PES
spatial correlation (Figure 5.6), antennas in the collinear configuration have al-
most no difference when mutual coupling is modelled. For example, in both
user locations the normalized spatial correlation magnitude with and without
mutual coupling is unity. As discussed in Section 5.3.2, this is because the AOD
between two antennas only has a phase variation, i.e., no changes in the mag-
nitude. Comparing Figure 5.7a with Figure 5.7b, it is seen that as the central
elevation AOD, θAOD

0 , approaches 90◦ (i.e., the user gets further away from the
BS), the spatial correlation nulls for side-by-side and parallel-in-echelon antenna
configurations occur for smaller spacings. For the side-by-side antenna configu-
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Figure 5.7: Normalized magnitude of a narrow AOD PES spatial correlation,
|Rm,m′ |/|Rm,m|, with and without mutual coupling, between two TX antennas,
m,m′ ∈ 1, . . . ,M , as a function of their inter-element spacing, dm,m′ , for three
different antenna configurations.

ration, this is because the modulus of the narrow AOD PES spatial correlation,
given in (5.32), decreases as sin

(
ϑAOD

)
increases. For the parallel-in-echelon

configuration case (where dxym,m′ = dzm,m′), this suggests that the reduction
in spatial correlation from the modulus decrease outweighs the increase in spa-
tial correlation from a smaller phase shift (as cos

(
ϑAOD

)
is reduced). For the

parallel-in-echelon configuration, however, a large increase in the spatial corre-
lation with mutual coupling magnitude is seen as ϑAOD approaches 90◦.
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Compared with the wide AOD PES spatial correlation (Figure 5.6) the nor-
malized spatial correlation magnitude shows an increase when the AOD PES is
narrow (Figure 5.7) for all cases of antenna configurations with and without mu-
tual coupling, over nearly all spacings. This is intuitive and results from a lack
of spatial diversity when the AOD PES is narrow. In general, Figures 5.6 and
5.7 show that mutual coupling can increase or decrease the spatial correlation
at a given inter-element spacing, which is consistent with [24,85,87,105,239]. If
there are no physical space constraints on the antenna array, the ULA topology
is preferred, as the side-by-side antennas are seen to have less spatial correlation
with and without mutual coupling effects.

5.5.2 Eigenvalue Structure

In this subsection, the eigenvalue magnitude vs the eigenvalue index for spa-
tially correlated TX antenna arrays is investigated with and without mutual
coupling9. The number of significant eigenvalues provides a measure of the num-
ber of streams which can be used for efficient spatial multiplexing [233,240,241].
Each figure is truncated at an eigenvalue magnitude of -20 dB, as eigenvalues
below this value are essentially in the noise floor and do not contribute to the an-
tenna array’s spatial multiplexing abilities. When mutual coupling is modelled,
both the unnormalized eigenvalue magnitude (main figure) and the normalized
mutual coupling10 case (subfigure) are shown as to determine the impact of
mutual coupling on the power of the eigenvalues.

Wide AOD PES

In Figure 5.8a and Figure 5.8b the eigenvalue magnitude vs eigenvalue index is
shown for wide AOD PES spatially correlated TX antenna topologies with and
without mutual coupling, withM = 100 TX antenna elements, for inter-element
spacings of dλ = 0.125 and dλ = 1.25 wavelengths, respectively. For small
inter-element spacings, mutual coupling reduces the magnitude of the largest
eigenvalues in all antenna topologies when mutual coupling is unnormalized, and
only the ULA eigenvalues when mutual coupling is normalized. This indicates
that the resultant spatial correlation, with mutual coupling, is having almost no
effect on the eigenvalues of the URA and UCA for small inter-element spacings.
However, mutual coupling is causing a power reduction in the magnitude of the
largest eigenvalues.

9When only spatial correlation is modelled, the eigenvalues of E
[
HHH

]
are considered,

where H is the Saleh-Valenzuela channel matrix given in (2.14). When mutual coupling is
included, the eigenvalues of E

[
H

H
H
]
are considered, where H denotes the mutually coupled

channel matrix given in (2.53).
10Normalized mutual coupling is calculated by forcing the diagonal elements of the com-

posite matrix to unity.
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(a) dλ = 0.125 wavelengths.
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(b) dλ = 1.25 wavelengths.

Figure 5.8: Eigenvalue magnitude vs eigenvalue index for wide AOD PES
spatially correlated antenna topologies with and without mutual coupling, for
M = 100 TX antenna elements.

At small inter-element spacings, the UCA has the largest number of eigenvalues
above a magnitude of -20 dB, and therefore best spatial multiplexing capabili-
ties. On the other hand, the ULA has only a small number of eigenvalues which
are not very small in magnitude. For large inter-element spacings, the eigenval-
ues for all topologies with only spatial correlation become more similar, as they
are approaching an i.i.d. scenario. When mutual coupling is added for large
inter-element spacings, the magnitude of the first eigenvalue is increased signif-
icantly for the URA and UCA, while the magnitude of the smaller eigenvalues
is reduced for these topologies. This is because, even at larger inter-element
spacings, there is still a significant increase in spatial correlation, when mu-
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tual coupling is included, for antennas in the parallel-in-echelon configuration,
specific to the URA and UCA. Also, at dλ = 1.25, there is little difference in
eigenvalue structure between normalized and unnormalized mutual coupling.

Narrow AOD PES
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(a) dλ = 0.125 wavelengths.
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(b) dλ = 1.25 wavelengths.

Figure 5.9: Eigenvalue magnitude vs eigenvalue index for narrow AOD PES
spatially correlated antenna topologies with and without mutual coupling, for
M = 100 TX antenna elements.

In Figure 5.9a and Figure 5.9b the eigenvalue magnitude vs eigenvalue index
is shown for narrow AOD PES spatially correlated antenna topologies with
and without mutual coupling, with M = 100 TX antenna elements, for inter-
element spacings of dλ = 0.125 and dλ = 1.25 wavelengths, respectively. The
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ULA is seen to have a large increase in spatial multiplexing performance when
mutual coupling is modelled for small inter-element spacings. This is because
mutual coupling greatly reduces the side-by-side normalized spatial correlation
for small spacings, as shown in Figure 5.7. Mutual coupling is also shown to
reduce the number of significant eigenvalues (above -20 dB) for the URA and
UCA with small inter-element spacings. This can be explained, with the help of
Figure 5.7, by the increase in normalized spatial correlation magnitude for the
parallel-in-echelon antenna configuration. Increasing the inter-element antenna
spacings from dλ = 0.125 to 1.25 wavelengths improves the performance of
all antenna topologies, particularly for the ULA with mutual coupling, which
has nearly equal eigenvalues. Note here that although mutual coupling increases
the parallel-in-echelon normalized spatial correlation greatly, for a wide range of
inter-element spacings, there is almost no difference for an inter-element spacing
of dλ = 1.25 wavelengths (looking at both Figure 5.7a and Figure 5.7b). This
is why mutual coupling does not drastically affect the eigenvalue structure seen
in Figure 5.9b, as was the case for small inter-element spacings in Figure 5.9a.
Mutual coupling causes a power reduction to the largest eigenvalues of the URA
and UCA for small spacings, whereas there is a very little power difference for
large inter-element spacings.

In general, when mutual coupling is modelled, the ULA has the best spatial
multiplexing performance since the normalized spatial correlation is greatly re-
duced for the side-by-side antenna configuration. This is more obvious at large
inter-element spacings, where there is still a significant amount of spatial cor-
relation for the parallel-in-echelon antenna configuration specific to the URA
and UCA. Also, the power scaling effects of mutual coupling are only noticable
at small inter-element spacings, where the URA and UCA see a reduction in
eigenvalue magnitude.

5.5.3 User Rate

In this subsection, the impact of mutual coupling on user rate is explored as
a function of antenna inter-element spacing, number of antennas and antenna
array topology. In all results following, the 28 GHz mmWave channel [114] is
simulated with mutual coupling at both the TX and RX. The user rate, Rk, with
mutual coupling is then described by (2.31), with H replaced with the mutually
coupled channel matrix H, given in (2.53). In order not to mask the effects of
spatial correlation and mutual coupling on the user rate by large variations in
path loss, the received SNR, %, is assumed constant. Perfect CSI is assumed to
be available at the RX for all user rate simulations.
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Table 5.1: Simulation Parameters

Parameter Numerical Value
Carrier frequency, f 28 GHz

Bandwidth, B 100 MHz
Antenna length, ι λ/2

Antenna impedance, ZA 73 + 42.5j Ω
Load impedance, ZL 50 Ω
Received SNR, ρ 10 dB

Number of clusters, C ∼ max [Poisson(1.8), 1]
Number of rays per clusters, L 20
Azimuth AOA and AOD central ∼ U [0, 2π) ∀ccluster angles, φAOA

0,c , φAOD
0,c

Elevation AOA and AOD central θAOA
0,c = ϑAOA ∀c

cluster angles, θAOA
0,c , θAOD

0,c θAOD
0,c = ϑAOD ∀c

Azimuth AOA and AOD σAOA
φ ∼ Exp(15.5)◦

intra-cluster angular spreads σAOD
φ ∼ Exp(10.2)◦

Elevation AOA and AOD σAOA
θ ∼ Exp(6.0)◦

intra-cluster angular spreads σAOD
θ ∼ Exp(3.9)◦

Impact of Inter-Element Spacing

In Figure 5.10a, the single user rate vs inter-element antenna spacing with and
without mutual coupling is shown for M = 36 TX antennas and Q = 36 RX
antennas. Key simulation parameters are summarized in Table 5.111. Due to
the very small number of clusters (C = 1 or 2 73% of the time [114]), all
simulated channels have a poorer performance compared to the, ideal, i.i.d.
channel rates [7]. When only spatial correlation is modelled, the rates of all
antenna topologies increases as the inter-element antenna spacing is increased.
The ULA performs the best here as it has fewer adjacent and surrounding
antenna elements as compared to the URA and UCA. Also, as shown in Table
5.1, the small elevation RMS angular spreads, relative to the azimuth RMS
angular spreads, limits the effectiveness of placing antenna elements with non-
zero z-axis spacing. As a result, the URA and UCA performance is worse than
the ULA, even for large inter-element antenna spacings, where the URA and
UCA rates converge to similar values. When mutual coupling is modelled, the
rates are reduced for inter-element spacings less than dλ ≈ 0.65 wavelengths for
the ULA. This observation is interesting since the results presented in Section
5.5.1 show that the normalized spatial correlation is reduced for the ULA when
mutual coupling is modelled. However, although the mutual coupling alters the
spatial correlation structure, it also changes the effective gain of the antennas

11Since [114] reports no measurable elevation AOD RMS angular spread, it is assumed that
the ratio of mean azimuth to elevation RMS angular spreads is the same for AODs as AOAs,
i.e., σAOD

θ ∼ exp(6.0(10.2/15.5))◦ = exp(3.9)◦.
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[88], therefore varying the power in the resultant channel, H. This reduction in
effective SNR was also seen in [89] for a ULA with small inter-element spacings.
The oscillatory nature of the rates, against inter-element spacing, when mutual
coupling is added [88] suggests that the effective gain of the antennas is strongly
related to the antenna inter-element spacing. This is clearly seen by considering
the UCA rate, which experiences the most channel power variation as the inter-
element spacing is increased. For example, the user rate, with the UCA topology,
at an inter-element spacing of dλ ≈ 0.43 wavelengths is more than eight times
the rate seen at a larger inter-element spacing of dλ ≈ 0.6 wavelengths.
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Figure 5.10: User rate, Rk, vs inter-element antenna spacing, dλ, with and
without mutual coupling for M = 36 TX antennas, Q = 36 RX antennas. Key
simulation parameters are detailed in Table 5.1.

To investigate the impacts of mutual coupling on the user rate by only variations
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in the effective SNR, i.e., no spatial correlation changes, the user rate, Rk, is
shown as a function of inter-element spacing, dλ, with a modified channel power
in Figure 5.10b. The variation in effective SNR, with mutual coupling, can be
shown to be υ = tr

(
HH

H
)
/tr
(
HHH

)
. Thus, the user rate in Figure 5.10b, is

given by

Rk = B log2

∣∣∣IQ +
%

M
υHHH

∣∣∣ . (5.69)

Comparing Figures 5.10a and 5.10b, reveals similar results for small inter-
element spacings, where the power scaling effects are more noticable, as dis-
cussed in Section 5.5.2. As dλ is increased, the effects of spatial correlation
become dominant and thus the two figures become dissimilar. The modified
channel power user rate is more accurate for the ULA, where the spatial cor-
relation is the lowest, than the other topologies and is emulates the effects of
mutual coupling relatively well for inter-element spacings of up to dλ ≈ 1 wave-
length.

Impact of Antenna Numbers

In Figure 5.11 the impact of system size on user rate, Rk, is shown for var-
ious inter-element spacings and antenna topologies. When mutual coupling
is not modelled, in Figure 5.11a, the UCA outperforms the URA for small
inter-element spacings and becomes similar in performance as the inter-element
spacing is increased. This trend was also seen in Figure 5.8 for the eigenvalue
structure. The ULA has the largest rate for all inter-element spacings as it
experiences less spatial correlation due to fewer adjacent antenna elements and
larger azimuth diversity. When mutual coupling is modelled, in Figure 5.11b,
the rates of the different antenna topologies are most affected at small inter-
element spacings. For example, at dλ = 1/8 and M = Q = 9, the UCA, relative
to the URA, experiences a reduction in user rate of almost two orders of magni-
tude. This performance degradation of the UCA at small spacings was also seen
in Figure 5.10a for M = Q = 36. For large inter-element spacings, the perfor-
mance of the different antenna topologies become similar. There also becomes
less of a difference between the performances of the relative antenna topologies
at larger inter-element spacings with and without mutual coupling. This can
be seen by comparing the rates of the various antenna topologies in Figures
5.11a and 5.11b, which indicates that the overall effects of mutual coupling on
performance are more prominent at smaller inter-element spacings [87,88].
When mutual coupling is not included, the ULA topology consistently has the
largest user rate due to both the sparse nature of the PES and the inherently
smaller number of adjacent antenna elements. The effects of mutual coupling
on normalized spatial correlation do not translate into similar trends for user
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Figure 5.11: User rate, Rk, vs system size (M = Q) for various inter-element an-
tenna spacings and antenna topologies. Key simulation parameters are detailed
in Table 5.1.

rate due to the dominating effects of SNR variation. This effective antenna gain
variation is strongly dependent on inter-element spacing and is seen to have
more of an influence at smaller inter-element spacings.

5.6 Conclusion

In this chapter, closed-form expressions of the 3D spatial correlation have been
derived for wide, narrow and Von Mises PES. An upper bound on the spatial
correlation was also given for the general PES case. Diagonal dominance, a mea-
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sure of massive MIMO convergence, was defined and derived for wide, narrow
and Von Mises PES. The ULA was shown to have quicker diagonal dominance
convergence than the URA and UCA topologies, due to the smaller numbers of
adjacent antenna elements. Numerically, the effects of mutual coupling on nor-
malized spatial correlation, eigenvalue structure and user rate was then shown.
It was seen that mutual coupling impacts are more obvious at smaller inter-
element spacings, agreeing with previous works [7, 24, 87, 89, 105]. At smaller
inter-element spacings mutual coupling was shown to decrease the normalized
spatial correlation for side-by-side antennas. However, the change to normal-
ized spatial correlation do not translate into similar trends for user rate, as the
effective gain of the antennas becomes a dominating effect [88] and its variation
is shown to be highly dependent on the antenna inter-element spacings.
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6
Channel Models for 5G Wireless Sys-
tems

While in previous chapters one-two channel models were considered, in this
chapter channel models and measurements across a wide range of candidate
bands for 5G wireless networks are considered. The chapter is motivated by the
different propagation and spatial characteristics between both different bands
and different channel models within the same band. Light is shed into key
channel modelling and spatial parameter differences. In turn, the impact of
these parameter differences for various antenna topologies is investigated in
terms of system sum rate, channel eigenvalue structure, EDOF and massive
MIMO convergence properties.

It is shown that because channels at mmWave bands are so sparse, any varia-
tion in spatial parameters can dramatically affect the sum rate. In microwave
scenarios, where the probability of LOS propagation is low (due to larger cell
radii), the structure of the eigenvalues is highly dependent on the richness of
scattering. On the other hand, in mmWave bands, where the probability of
LOS is high (due to smaller cell radii), the structure of the eigenvalues is largely
dependent on the LOS channel model. The ULA is seen to have superior sum
rate and eigenvalue structure due to the inherently larger inter-element spacings
and the wider azimuth spectra (relative to elevation spectra), which makes it
less effective for antennas to be placed vertically at the antenna array. These
observations of the eigenvalue structure are seen to affect sum rate, EDOF and
massive MIMO convergence performance.

Furthermore, an equivalent Rician channel model is developed to approximate
the complex Saleh-Valenzuela channel model, proposed in [114], to model mmWave
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systems. The simple equivalent model is shown to perform well for small num-
bers of receive antennas and is used to gain insight into mmWave channels.

6.1 Introduction

Microwave bands have a standardized 3D channel model, developed by 3GPP
[129], for frequencies below 6 GHz. Here, a NLOS, i.e. scattered, channel path is
modelled following the Saleh-Valenzuela [173] channel model, while LOS propa-
gation is modelled via a Rician channel [165] extension of the NLOS component.
3GPP have also very recently published an extension of the standardized mi-
crowave 3D channel model, in [129], for frequencies above 6 GHz [130]. The
additional modelling components in the new specification include: oxygen ab-
sorption (a function of the link distance), wideband transmission extensions,
non-stationary user extensions, object blockages and multi-frequency simula-
tion extensions. Therefore, the overall channel model structure remains the
same as the standardized microwave channel model. This general structure
of the channel model, or minor variations thereof, between different frequency
bands have been suported by recent mmWave measurement campaigns. For
example, the channel model presented by Akdeniz et al., in [114], for 28 and
73 GHz follows a path loss scaled Saleh-Valenzuela structure. This type of
channel model is used widely in analysing beamforming techniques at mmWave
frequencies, for example [133, 175]. Thus, frequency bands can not only be dif-
ferentiated by slight variations in SCMs, but also by differences in key spatial
parameters which form the basis of the complex channel impulse response. A
detailed discussion of the differences in the channel models considered is left to
Section 6.2.1. In this chapter, measurements at 6 GHz in China are reported,
while both standardized SCMs [129] and recently published measurement cam-
paigns [114,117–119,151,235] are considered, all across a variety candidate fre-
quency bands. Key channel model parameter differences between different fre-
quency bands and different SCMs in the same frequency band are identified. In
turn, the impact of these key parameters on sum rate, eigenvalue distributions
and convergence to massive MIMO properties are investigated.
The second part of this chapter is motivated by the complexity of the Saleh-
Valenzuela channel model, proposed by Akdeniz et al. [114], to model mmWave
systems. The Saleh-Valenzuela channel model does not explicitly model LOS
channels with a Rician K-factor as is done with the standardized models. Also,
it is known that simplified statistical channel models can be used as good ap-
proximations to 3GPP microwave channels [47,242], using Rician channels. The
Rician channel model allows closed-form analysis and the exploration of signal
processing techniques [165]. Therefore, the possibility of creating an equivalent
Rician channel to approximate the Saleh-Valenzuela channel model in [114] is
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investigated.
The contributions of this chapter are as follows:

1. The impact of intra-cluster angular spread and user numbers is examined
for different antenna topologies on the cell edge, median and peak sum
rates of different wireless channel models across microwave and mmWave
bands.

2. The impacts of inter-element antenna spacings, receiver antenna numbers,
propagation type and user numbers are investigated on the eigenvalue
structure of various antenna topologies for different channel models across
microwave and mmWave bands. Also, the rate of convergence to massive
MIMO is explored by considering the eigenvalue ratio. It is shown that the
rate of convergence is dependent on the environment, antenna topology
and user separation.

3. A parameter is defined: EDOF, to measure the total number of data
streams the system can support. The effects in terms of different antenna
topologies, channel models, user numbers and numbers of receive antennas
are then shown on the EDOF.

4. An equivalent Rician channel model is developed to approximate the
mmWave channel and show agreement via spectral efficiency and ZF SNR.
For single stream transmission, only the specular component is needed.
For users with two antennas, the composition of a specular and an un-
correlated diffuse component shows good agreement. For more than two
antennas per user, insights into the mmWave channel, provided by the
Rician approximation, are drawn.

6.2 Channel Models

In this section the cellular environments considered are detailed, along with
their respective channel model structure. A detailed discussion of the key mod-
elling differences among the environments is also provided. The nine cellular
environments considered are:

• 3GPP : 2.6 GHz standardized channel model by 3GPP, detailed in [129].

• BUPT : 6 GHz measurements following the 3GPP channel model struc-
ture, carried out by Beijing University of Posts and Telecommunications
(BUPT).

• WPC : 18 GHz measurements in a white paper collaboration (WPC), given
in [151].
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• Hur : 28 GHz measurements from a Sumsung Electronics, University of
Southern California, New York University, and Aalto University collabo-
ration [119].

• Akdeniz : New York University 28 GHz and 73 GHz measurements given
in [114].

• Samimi : New York University 28 GHz and 73 GHz measurements given
in [235]. These measurements are for the channel model presented in
[117], which extends a 2D ultra-wideband mmWave channel model given
in [234]1. The corresponding omnidirectional path loss measurements are
given in [150].

• Thomas : 73 GHz measurements from a Nokia, Aalborg University, and
New York University collaboration [118].

6.2.1 Channel Modelling Differences

All simulation environments use either variations of the Saleh-Valenzuela chan-
nel model [173] or the 3GPP channel model [129], given in (2.14) and (2.24),
respectively, and described in Subsection 2.1.2.
3GPP, BUPT and WPC simulation environments follow the 3GPP channel
model [129], with a different set of parameters used for users in LOS and NLOS
propagation. In contrast, Samimi and Thomas environments use slight vari-
ations in the 3GPP channel model. In the case of the Samimi environment,
a (different) Rician K-factor, κ, is defined for both LOS and NLOS users so
that (2.24) is used to model LOS and NLOS propagation. Note that the 3GPP
model only defines a K-factor for LOS channels. The 73 GHz Thomas simu-
lation environment differs from 3GPP as it only defines a single set of spatial
parameters for LOS and NLOS users. In this model LOS and NLOS users are
solely differentiated by different path loss and shadow fading parameters.
On the other hand, the Akdeniz 28 GHz and 73 GHz measurements use the
Saleh-Valenzuela channel model [173] described in Section 2.1.2. However, un-
like the 3GPP channel model, the Saleh-Valenzuela channel model does not
use a Rician channel to model LOS propagation. Instead the only difference
between LOS and NLOS users is a different path loss from the BS to the user.
The generation of the central cluster angles differs between the Akdeniz channel
model and all other environments. In the case of the Akdeniz environment,
the azimuth central cluster AOAs and AODs are generated as uniform random
variables over the entire range of azimuth angles, φ ∈ [0, 2π). Also, the elevation
central cluster AOAs and AODs are defined to be the LOS angle between the

1Note: a narrowband channel model is considered and therefore the time and angular space
correlation (lobe) extension, described in [234], is neglected.
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BS and user. In contrast, in all environments which follow the basic 3GPP
channel model structure, the azimuth and elevation central cluster angles are
derived from a wrapped Gaussian and Laplacian distribution, respectively.

6.3 System Description

In this section key system and environmental specific parameters, the antenna
topologies considered and channel model assumptions made are detailed.

6.3.1 Simulation Description

ULA, URA and UCA antenna topologies are considered, all described and de-
picted in Section 2.3. It is assumed that the cell is sectorized into 120◦ sectors,
in which the BS serves users in this region [129]. Thus if the antenna array is
broadside to an arbitrary azimuth angle, φ̇, then[

φAOD
min , φAOD

max
]

=
[
φ̇− 60◦, φ̇+ 60◦

]
. (6.1)

In all simulations the bandwidth is B = 100 MHz and cell edge received SNR
is % = −5 dB2. Here, a noise figure of 8 dB, a fixed TX power of 15 dBm
(independent of user numbers and carrier frequency) and a gain per TX antenna
of 10 dBi are assumed. The path loss to each user is calculated via the close-in
free space reference model in (2.3). Cell radii, r, for each environment are then
derived from this based on 95% area coverage [4].
In Figure 6.1, the cell radius, r, is shown as a function of the carrier frequency, f ,
and the number of users, K, is shown for M = 400, Q = 4 and a cell edge SNR
of % = −5 dB with 95% area reliability. It can be seen that as both the carrier
frequency and the number of users is increased, the cell radius is reduced. First,
the TX power of 15 dBm is fixed and is thus divided over K users. Therefore,
when K increases, the cell radius is seen to reduce exponentially to maintain
the same average received SNR per user. Secondly, as detailed in Table 6.1, as
the carrier frequency increases, the path loss offset constant, α, is increased due
to higher signal attenuation [17]. Therefore, as with increasing user numbers,
the cell size must be reduced.
The probability of LOS propagation, pLOS, has been shown to increase with
carrier frequency [17,244], due to differences in diffraction, scattering, reflection
and absorption of the wireless signal as the carrier frequency is varied. All pLOS

models, as a function of distance, encapsulate these effects for the various chan-
nel models. In Figure 6.2, the probability of LOS, pLOS, as a function of BS to

2Although mmWave systems typically have higher bandwidth, low TX powers and strong
blocking [243, 244] (resulting in a low received SNR), it is assumed that the bandwidth and
received SNR is the same over all frequencies such that insights into the spatial and statistical
differences of the various frequencies can be drawn.
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Figure 6.1: Cell radius, r, as a function of the number of users, K, and carrier
frequency, f , for M = 400 and Q = 4.
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Figure 6.2: Probability of LOS propagation, pLOS, as a function of BS to user
distance, d, for different simulation environments.

user distance, d, is summarized for each environment. The circles represent the
cell radius, where M = 400 and K = 4, based on the link budget parameters
described above. Three different LOS probability models can be seen, where for
a given distance, the Hur model gives the highest pLOS. The mmWave environ-
ments are seen to have smaller cell radii and thus increased LOS probability for
a typical user distance compared with the microwave environments.

Spatial correlation of intra-cluster spreads, Rician K-factors and shadow fading
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standard deviations are modelled via [129,245]

ρ
(
dk,k′

)
= exp

(
dk,k′

dSC

)
, (6.2)

where ρ (dk,k′) is the spatial correlation of a particular parameter between users
k, k′ ∈ 1, . . . , K, as a function of their separation distance dk,k′ . dSC denotes
the spatial correlation reference distance in the azimuth plane (different for
every parameter). dSC and all other key environmental statistical spatial pa-
rameters are detailed in Table 6.1. Here, φ0 and θ0 denote the central cluster
angles of the azimuth and elevation domains, respectively, σφ and σθ denote
the RMS angular spreads of the intra-cluster azimuth and elevation subpaths,
respectively. Note that the per-cluster AOD elevation RMS spread, σAOD

θ , is
not specified for the mmWave measurements in [114]. We therefore assume
σAOD
φ /σAOD

θ = σAOA
φ /σAOA

θ for the two Akdeniz scenarios. A street width of
20m and building height of 20m are assumed for 3GPP 2.6 GHz, BUPT 6 GHz
and WPC 18 GHz scenarios. We consider half-wavelength vertical dipole an-
tenna elements with no polarization and assume that the TX and RX are static
over the channel realization.

6.4 System Sum Rate

The effects of intra-cluster angular spreads, σφ and σθ, on the system sum rate,
R, are considered for various simulation environments and bands. Also, the
effects of channel modelling techniques are explored on the cell edge (0.05 CDF
value), median (0.5 CDF value) and peak (0.95 CDF value) sum rates as well
as the impacts of an increasing number of system users, whilst maintaining a
fixed number of total RX antenna elements (= KQ). The sum rate, R, of a
multi-user MIMO system can be described as given in (2.33) [28].

6.4.1 The Impact of Varying Intra-Cluster Angular Spread

In Figures 6.3-6.11 the sum rate, R, CDFs are shown for each of the nine cel-
lular environments, described in Section 6.2, for M = 400 and K = Q = 4,
as a function of the antenna topology and intra-cluster azimuth and elevation
RMS angular spreads, σφ and σθ, respectively3. Here both the AOA and AOD
intra-cluster RMS spreads are varied from one-quarter of their tabulated values,
σφ/4, σθ/4, to four times their tabulated values, 4σφ, 4σθ. In each environment,
cell edge users are receiving a SNR of -5 dB for all users and thus the i.i.d. chan-
nel CDFs should be similar, with marginal differences coming from differences

3Note that to find R per dimension, one should divide the sum rate by the number of
streams [28].
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Figure 6.3: Sum rate, R, CDF for 3GPP 2.6 GHz.
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Figure 6.4: Sum rate, R, CDF for BUPT 6 GHz.

in the distribution of path loss between the models. For all environments, an
increase in intra-cluster azimuth and elevation RMS angular spreads, σφ and
σθ, produces a greater sum rate for each antenna topology resulting from more
spatial diversity and, therefore, a reduction in spatial correlation.
In nearly all environments, the ULA antenna topology has the largest sum
rate over all ranges of intra-cluster RMS angular spreads and CDF values. Al-
though the ULA cannot resolve angular discrepancies in the elevation domain,
it performs better because of the inherently larger inter-element spacings be-
tween antenna element combinations of the array, as well as the (nearly always)
wider azimuth angular spectrum, compared with the (narrower) elevation angu-
lar spectrum. For scenarios with a very narrow intra-cluster elevation AOD RMS
spread, such as the case in the Samimi 73 GHz environment, (σAOD

θ ∼ N (0.8, 1)
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Figure 6.5: Sum rate, R, CDF for WPC 18 GHz.
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Figure 6.6: Sum rate, R, CDF for Hur 28 GHz.

and σAOD
θ ∼ N (0.8, 1.3) degrees for LOS and NLOS, respectively), the URA and

UCA essentially function as a smaller ULA with fewer TX antenna elements,
since antenna elements stacked vertically provide a little additional gain. In
the Thomas 73 GHz scenario, the URA and UCA outperform the ULA because
the intra-cluster elevation RMS AOA spread is infact larger than the corre-
sponding azimuth angular spread. More specifically, the intra-cluster elevation
RMS AOA spread (equal to log10

(
σAOA
θ

)
= max[0,−0.002d + 0.83] degrees) is

always greater than σAOA
φ = 5.3◦ for every user location within the cell radius

(r = 49m). Therefore, in the Thomas 73 GHz environment, the vertical spacing
of antenna elements at the antenna array provides more benefit than horizontal
spacing.
Most of the CDFs have a noticeable bimodal distribution which indicates two
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Figure 6.7: Sum rate, R, CDF for Akdeniz 28 GHz.
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Figure 6.8: Sum rate, R, CDF for Samimi 28 GHz.

underlying PDFs, resulting from different path loss exponent, β, and shadow
fading variances, ε2, for LOS and NLOS propagation. This is most obvious in
the Hur 28 GHz scenario CDFs, which show a large kink just below a CDF
value of 0.2. Here, the difference in the shadow fading variance between LOS
and NLOS is significantly large (ε2 = 3.4 dB for LOS vs ε2 = 31.8 dB for
NLOS). In the 3GPP 2.6 GHz and BUPT 6 GHz environments, the two PDFs
are less obvious as both the path loss exponent and shadow fading variances are
similar for LOS and NLOS (e.g., β = 4 and 3.92 73.2% of the time for 3GPP 2.6
GHz LOS and NLOS, respectively4). The y-axis value where the CDF changes
from NLOS to LOS propagation is dependent on the LOS probability, pLOS,

4These values occur 73.2% of the time since the distance dependent value of β is 4 for
73.2% of the channel drops.
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Figure 6.9: Sum rate, R, CDF for Akdeniz 73 GHz.
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Figure 6.10: Sum rate, R, CDF for Samimi 73 GHz.

which is a function of the BS to user distance, d, as shown in Figure 6.2 for
all environments. The Hur 28 GHz scenario has the largest probability of LOS
propagation over all user locations, and thus the kink occurs at a smaller CDF
value than any other environment.
For environments in the microwave bands, there are typically a large number
of clusters, e.g., C = 20 clusters for the 3GPP 2.6 GHz NLOS environment,
and therefore the performance of all antenna topologies is relatively close to the
(ideal) i.i.d. scenario. Here, the impact of intra-cluster RMS angular spreads on
sum rate is minor as there is still richness in the scattering, even when the intra-
cluster RMS angular spread is reduced to one-quarter of its measured value.
On the other hand, for mmWave bands, there are large sum rate differences
between the i.i.d. CDFs and the spatially correlated cases. In general, this can
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Figure 6.11: Sum rate, R, CDF for Thomas 73 GHz.

be explained by the smaller number of clusters and subpaths as well as narrower
inter-cluster and intra-cluster angular spreads for the measurements at mmWave
bands5. For example, the Akdeniz 28 GHz channel experiences just C = 1 or
C = 2 clusters 73% of the time.
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Figure 6.12: Azimuth and elevation RMS angular spread, σφ and σθ, variation.

In Figures 6.12-6.14 the difference in median sum rate, as a function of carrier
frequency, f , is summarized as the intra-cluster RMS angular spread is varied
between four times and one quarter the tabulated intra-cluster RMS angular
spread (Table 6.1), for the ULA and URA antenna topologies with M = 400

5An exception to this statement is the inter-cluster angular spread for both 28 GHz and
73 GHz Akdeniz channels. Here, the azimuth cluster central angles are uniformly distributed
over the entire range of possible azimuth angles. Whereas in all other environments, azimuth
cluster central angles are normally distributed with a mean spread less than 90◦.
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Figure 6.13: Azimuth RMS angular spread, σφ, variation.
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Figure 6.14: Elevation RMS angular spread, σθ, variation.

and K = Q = 4. Here it can be seen that as the intra-cluster RMS angular
spreads are varied, there is a larger change in median sum rate for mmWave
bands, compared with the microwave bands. When both azimuth and elevation
intra-cluster RMS angular spreads are varied, the URA is seen to have a larger
variation than the ULA in median sum rate for nearly all environments. This
trend is also clearly seen in Figures 6.3-6.11 for the Akdeniz 73 GHz environ-
ment, where the relative gap between the ULA and URA median sum rate is
reduced when the intra-cluster RMS angular spread is increased. When only
the azimuth intra-cluster RMS angular spread, σφ, is varied, the ULA has the
largest median sum rate difference as it has

√
M more antennas than the URA

on the x, y-plane which are able to fully utilize the azimuth spread. On the other
hand, when only the elevation intra-cluster RMS angular spread, σθ, varies, the
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URA has a significantly larger difference in median sum rate. In this scenario,
the ULA effectively only has a single antenna element with respect to the z-
axis, whereas the URA has

√
M antenna elements which are able to resolve

more independent subpaths.
The Akdeniz 28 and 73 GHz channels have a much larger variation than the
other mmWave channels because the spread of the azimuth cluster central angles
is significantly larger (φ0 ∼ U [0, 2π)). Due to the clusters having a more diverse
location, any variation in the intra-cluster RMS angular spreads is likely to
directly influence the sum rate. For all other simulation environments, clusters
are grouped (Gaussian and Laplacian distributed for azimuth and elevation,
respectively) and therefore any increase in the intra-cluster RMS angular spreads
are likely to result in subpath angles from one cluster spatially overlapping with
another cluster, therefore providing no additional spatial diversity. This is more
evident in environments with a large number of clusters, such as 3GPP 2.6 GHz,
BUPT 6 GHz and WPC 18 GHz.

6.4.2 Cell Wide Sum Rate

5% ULA 5% URA 50% ULA 50% URA 95% ULA 95% URA
CDF Value

0

2

4

6

8

10

12

14

16

18

20

S
um

 R
at

e 
[G

bp
s]

3GPP 2.6GHz
BUPT 6GHz
WPC 18GHz
Hur 28GHz
Akdeniz 28GHz
Samimi 28GHz
Akdeniz 73GHz
Samimi 73GHz
Thomas 73GHz

Figure 6.15: Bar chart of cell edge (5%), median (50%) and peak (95%) sum
rates, R, CDF values. Different environments are shown for a ULA and URA at
half-wavelength inter-element antenna spacing, whereM = 400 andK = Q = 4.

In Figure 6.15, a bar chart of the cell edge (5%), median (50%) and peak (95%)
sum rates is shown. Here, different environments are shown for a ULA and URA
at half-wavelength inter-element antenna spacing. All environments are seen to
have a similar cell edge sum rate as the corresponding SNR is fixed at -5 dB
for all cases. Median rates for the mmWave bands are larger, whereas the peak
sum rates are lower. This is due to the particular shape of the CDFs at different
bands, seen in Figures 6.3-6.11, which are directly related to the probability of
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LOS, pLOS (shown in Figure 6.2). For mmWave channels the median is larger
due to the LOS behaviour, evident in the rapid rise of the CDFs at higher sum
rates. Whereas, in the case of 3GPP, BUPT and WPC environments, the CDF
at the median is dominantly NLOS propagation. Therefore, higher median sum
rates are seen in the mmWave bands due to the smaller (LOS) path loss as
compared to the (NLOS) path loss of the microwave bands. As was seen in the
sum rate CDFs, in Figures 6.3-6.11, the ULA performs better than the URA for
most of the environments. This is most evident in the 3GPP 2.6 GHz scenario,
where both the inter-cluster angular spreads and the intra-cluster RMS angular
spreads are significantly larger in the azimuth domain.

6.4.3 Impact of User Numbers
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Figure 6.16: Cell edge (5%), median (50%) and peak (95%) sum rates, R, CDF
values as a function of the number of users, K, where KQ = 128 is fixed
and M = 400. All curves are for a ULA with a half-wavelength inter-element
antenna spacing.

In Figure 6.16 the cell edge (5%), median (50%) and peak (95%) sum rates are
shown as a function of the number of users, K, where the total number of receive
antenna elements KQ = 128 is fixed6. All curves are for a ULA with a half-
wavelength inter-element antenna spacing. As the number of users increases
beyond K = 4 (and the number of receive antennas per user, Q, decreases),
the sum rate increases. This is due to the reduced receive spatial correlation
at each receiver and the resultant increase in spatial diversity by having widely

6Since the sum rate performance when users become more closely spaced is of interest,
only 3GPP, BUPT and WPC environments are considered since they define spatial correlation
reference distances between parameters, dSC. In none of the other environments are any of
these distances given.
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separated users, and therefore antennas. However, as the number of users, K,
is increased further, the cell radius shrinks due to the fixed transmit power of
15 dBm divided equally amongst the users (this is shown in Figure 6.1). As
a result, users become more closely spaced and experience spatial correlation
amongst their parameters. This is one factor in the saturation of the sum rate.
The initial drop in peak rates asK increases is due to the fact that one user with
excellent signal strength will make very good use of its antennas and achieve
a very high peak rate. In contrast, it is less likely to find two users, both
experiencing excellent signal strength.
The WPC 18 GHz environment is seen to significantly outperform the 3GPP 2.6
GHz and BUPT 6 GHz cellular environments in all CDF sum rate values shown.
This can be explained by the much larger NLOS path loss offset constant, α,
used to calculate the cell radius, r, resulting in a much smaller cell size for the
WPC 18 GHz environment, as compared to the other two environments. For
example, for K = 128 users, the cell radius of the WPC 18 GHz environment is
r = 62m, whereas the 3GPP 2.6 GHz and BUPT 6 GHz cell radii are both r =

334m. For smaller cell sizes, users have a higher probability of LOS propagation
and therefore less path loss on average, boosting the signal power and sum
rate. For example, (as shown in Figure 6.2) for K = 128 users, WPC 18 GHz
pLOS = 0.42, whereas 3GPP 2.6 GHz and BUPT 6 GHz pLOS = 0.05. The
BUPT environment performs the worst since, on average, the Rician K-factor
is the largest, therefore further reducing the channel rank [166] and sum rate.

6.5 Channel Eigenvalue Properties

In this section the effects of inter-element antenna spacing, receiver antenna
numbers, Q, propagation type and user numbers, K, on the eigenvalue distri-
butions and EDOF of the various antenna array topologies is investigated.

6.5.1 Impact of Inter-Element Antenna Spacings

Spatial multiplexing abilities of the antenna array topologies are evaluated by
considering the normalized eigenvalue magnitudes [233]. The magnitude of the
ith normalized eigenvalue, η2

i , is given as

η2
i =

η2
i

KQ∑
i′=1

η2
i′

, (6.3)

where ηi denotes the ith singular value of HHH. The normalized eigenvalue
magnitude is useful in constructing a measure of the maximum number of eigen-
channels for spatial multiplexing.
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Figure 6.17: Average normalized eigenvalue magnitude vs eigenvalue index for
3GPP 2.6 GHz.
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Figure 6.18: Average normalized eigenvalue magnitude vs eigenvalue index for
BUPT 6 GHz.

In Figures 6.17-6.25 the average normalized eigenvalue magnitude vs eigenvalue
index is shown as a function of antenna topology and antenna inter-element
spacings for M = 400, K = 1 and Q = 16, where dλ denotes the inter-element
antenna spacing in wavelengths. In every scenario, the average normalized eigen-
value magnitude axis is truncated at -30 dB, as all eigenvalues below this value
are extremely weak and do not contribute to the spatial multiplexing capabilities
of the TX antenna array. Due to the large number of TX antennas (M = 400), it
can be seen that the i.i.d. channel has almost equal eigenvalues. If the number
of TX antennas, M , was to increase further, one would expect the eigenval-
ues would converge in magnitude (known as favourable propagation [43]). For
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Figure 6.19: Average normalized eigenvalue magnitude vs eigenvalue index for
WPC 18 GHz.
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Figure 6.20: Average normalized eigenvalue magnitude vs eigenvalue index for
Hur 28 GHz.

spatially correlated channels in every environment, the eigenvalue magnitudes
become more equal [48] as the antenna inter-element spacing is increased from
dλ = 1/8 to dλ = 2 wavelengths.
For the microwave bands, the magnitude of the eigenvalues with large antenna
spacings are reasonably equal and approach the i.i.d. case. For example, in the
BUPT 6 GHz environment, the smallest (16th) eigenvalue for a ULA with dλ = 2

wavelengths is only about 3 dB less than the corresponding i.i.d. eigenvalue.
Whereas, in the mmWave bands, the eigenvalue magnitudes are significantly
reduced. For example, in the Thomas 73 GHz environment, the average nor-
malized magnitude of the 16th eigenvalue is below -30 dB, even for large antenna
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Figure 6.21: Average normalized eigenvalue magnitude vs eigenvalue index for
Akdeniz 28 GHz.
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Figure 6.22: Average normalized eigenvalue magnitude vs eigenvalue index for
Samimi 28 GHz.

inter-element spacings. This is a result of the small number of clusters seen at
mmWave frequencies which effectively reduces the multipath richness of the
channel. For more sparse channels, at mmWave bands, a greater inter-element
spacing is required to get the same eigenvalue structure as the rich sacttering
microwave environments, e.g., the URA and UCA eigenvalue structure in the
Akdeniz 73 GHz for dλ = 1/2 is approximately the same as the 3GPP 2.6 GHz
at dλ = 1/8. This is intuitive since the spatial coherence distance is inversely
proportional to the angular spread.
As was the case for the sum rate in Section 6.4, the ULA usually performs the
best in terms of spatial multiplexing over all environments, due to the inher-
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Figure 6.23: Average normalized eigenvalue magnitude vs eigenvalue index for
Akdeniz 73 GHz.
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Figure 6.24: Average normalized eigenvalue magnitude vs eigenvalue index for
Samimi 73 GHz.

ently larger antenna spacings. The wider azimuth spectrum, compared to the
elevation spectrum, makes it more effective for antennas to be placed in the
azimuth domain. In scenarios with sparse elevation scattering, such as BUPT 6
GHz, additional inter-element spacing is required for the URA and UCA to have
the same eigenvalue structure as the ULA, e.g., the URA and UCA eigenvalue
structure at dλ = 2 is approximately the same as the ULA for just dλ = 1/2.
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Figure 6.25: Average normalized eigenvalue magnitude vs eigenvalue index for
Thomas 73 GHz.
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Figure 6.26: Single-user eigenvalue CDFs with a half-wavelength spacing ULA
for 3GPP 2.6 GHz.

6.5.2 Impact of Propagation Type

In Figures 6.26-6.34 single-user eigenvalue CDFs are shown for a ULA with
half-wavelength spacings, for M = 400 and Q = 16. For each environment, the
combined channel eigenvalue CDFs as well as both the LOS and NLOS eigen-
value CDFs are shown. As the carrier frequency is increased from microwave
to mmWave bands, the eigenvalue CDFs become more widely spread. For ex-
ample, the Thomas 73 GHz environment only has a single eigenvalue which is
much larger in magnitude than all the others. This is a result of both the lack
of randomness in the channel, which is coming from smaller numbers of clusters
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Figure 6.27: Single-user eigenvalue CDFs with a half-wavelength spacing ULA
for BUPT 6 GHz.
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Figure 6.28: Single-user eigenvalue CDFs with a half-wavelength spacing ULA
for WPC 18 GHz.

and subpaths, and the increased probability of LOS propagation, causing the
combined eigenvalue CDFs to have more similarity to the LOS only case.
The distribution of the NLOS eigenvalue CDFs are completely dependent on the
amount of scattering in the environments. In microwave environments, there are
large numbers of clusters and subpaths, therefore the NLOS eigenvalue CDFs
are more similar than the corresponding mmWave NLOS eigenvalues. On the
other hand, the distribution of the LOS eigenvalue CDFs are dependent on how
LOS propagation is modelled.
In the simulation environments which use a Rician channel to model LOS prop-
agation exclusively (i.e., all environments except Akdeniz and Samimi), the
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Figure 6.29: Single-user eigenvalue CDFs with a half-wavelength spacing ULA
for Hur 28 GHz.
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Figure 6.30: Single-user eigenvalue CDFs with a half-wavelength spacing ULA
for Akdeniz 28 GHz.

distribution of LOS eigenvalues are seen to have just one dominant CDF. The
Rician K-factor mean in these environments is large (e.g., 9 dB for 3GPP) and
thus the one dominant eigenvalue represents the strong specular ray. The mag-
nitude of this dominant eigenvalue, in LOS propagation, increases as the Rician
K-factor increases. Furthermore, as the Rician K-factor increases, the variabil-
ity of the dominant eigenvalue reduces. This is due to an increased proportion
of the, deterministic, specular component in the combined channel. For exam-
ple, the BUPT 6 GHz environment has a mean Rician K-factor of 12.4 dB (vs
9 dB for 3GPP) and the dominant LOS eigenvalue CDF is seen to be almost
vertical at a magnitude of 6000 (vs a variability of almost 2000 for 3GPP). In
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Figure 6.31: Single-user eigenvalue CDFs with a half-wavelength spacing ULA
for Samimi 28 GHz.
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Figure 6.32: Single-user eigenvalue CDFs with a half-wavelength spacing ULA
for Akdeniz 73 GHz.

the Samimi simulation environments, a Rician channel is used to model both
LOS and NLOS propagation, therefore the eigenvalue CDFs are more similar
than the environments which only use a Rician channel for LOS propagation.
The small difference between LOS and NLOS eigenvalues for the Samimi en-
vironments is mostly coming from the difference in Rician K-factor mean and
standard deviation of the two propagation types. However, in the Akdeniz en-
vironments, the eigenvalues for LOS and NLOS are exactly the same7, since
the only difference in the channel modelling approach between LOS and NLOS
come from different path loss parameters, which do not affect the eigenvalue

7This is only true for a single-user channel, as is shown in Figures 6.26-6.34.
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Figure 6.33: Single-user eigenvalue CDFs with a half-wavelength spacing ULA
for Samimi 73 GHz.
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Figure 6.34: Single-user eigenvalue CDFs with a half-wavelength spacing ULA
for Thomas 73 GHz.

structure.

In summary, the largest channel eigenvalue is dependent on how the LOS chan-
nel is modelled. For Rician channels, such as 3GPP, the dominant eigenvalue
represents a strong specular, deterministic, path whereas for Akdeniz environ-
ments, the largest eigenvalue is coming from a lack of clusters and variation of
the path loss parameters. However, this strong difference in eigenvalue structure
between the different channel models is less obvious in the sum rate results, in
Section 6.4, since LOS probability and variation in the path loss parameters
dominate the shape of the CDFs.
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6.6 Channel Effective Degrees of Freedom

EDOF is motivated by the fact that in typical (rank deficient) systems, many
of the smallest eigenvalues contribute little to the system rate (seen in (2.32)
and (2.33)). Therefore, the conventional DOF system measure = min(KQ,M)

becomes misleading. A new metric EDOF is proposed to more accurately quan-
tify the number of independent data streams in which the system can simulta-
neously support. Thus, EDOF is defined as the number of eigenchannels which
contribute to greater than or equal to 1% of the sum rate. In this section, the
impact of receiver antenna numbers and user numbers on both the EDOF and
EDOF% is explored, where EDOF% is defined as

EDOF% = 100
EDOF

min(M,KQ)
, (6.4)

i.e., the EDOF of the system out of the total possible streams available.

6.6.1 Impact of Receiver Antenna Numbers

In Figure 6.35, the EDOF and EDOF% are shown for the ULA and URA as
a function of the number of receive antennas, Q, for a single-user, with M =

400. Both the ULA and URA antenna topologies have half-wavelength antenna
spacings at both the TX and RX. As the number of receive antennas at the user
increases from Q = 1 to Q = 100, the EDOF increases. Therefore it is better
to have more users with less receive antennas. However, the increase in EDOF
of all environments starts to saturate to a fixed value, as Q increases to 100.
This suggests that adding more and more antennas at the user gives diminishing
returns on the EDOF and therefore the EDOF% for all environments decreases
as Q increases. Note that the ULA EDOF at Q = 16 can be compared to
Figures 6.26-6.34. For example, the EDOF for the Samimi 73 GHz environment
at Q = 16 is approximately three. Correspondingly in Figure Figures 6.26-6.34,
the Samimi 73 GHz environment shows three significant eigenvalue CDFs.
In general, the EDOF decreases with frequency and there is little gain in adding
more receive antennas at the mmWave bands as compared to microwave bands.
This is because when the number of clusters is large, there is a reduced spatial
correlation and thus more independent data streams can be supported. For
example, at Q = 40 receive antennas, the ULA EDOF% for the Thomas 73
GHz scenario is 10%, whereas the corresponding EDOF% for the BUPT 6 GHz
is 50%. Therefore, at 73 GHz the ULA is only sending 4 spatial streams vs
20 spatial streams at 6 GHz. In these environments, the intra-cluster azimuth
AOA RMS spread, σAOA

θ , is 5.5 and 4.5 times larger in the BUPT 6 GHz case,
for LOS and NLOS propagation, respectively. At the mmWave scenarios, when
the EDOF is reduced, the number of eigenvalues which contribute to sum rate
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Figure 6.35: Single-user (K = 1) EDOF% as a function of the number of receive
antennas, Q, for M = 400.

is reduced and therefore the rate per dimension [28] is increased. This results
in a higher order of modulation needed [246].

Even at the same frequency, there is still a large difference in EDOF% perfor-
mance, e.g., the Akdeniz and Samimi 28 GHz environments have a constant
difference in EDOF% as the number of receive antennas increases beyond about
Q = 20. This is more evident in the case of the ULA topology. Even though the
Samimi 28 GHz environment has larger cluster numbers, the Akdeniz 28 GHz
environment has a greater azimuth angular diversity for both intra-cluster and
inter-cluster spreads which result in the ULA supporting more spatial streams.
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Comparing the EDOF% of the ULA and URA, in Figure 6.35, the URA has a
significantly worse performance for all environments. As the number of receive
antennas, Q, increases, the inter-cluster and intra-cluster AOA spreads have
more of an effect on the EDOF. For example, at Q = 100 receive antennas
at the user, the ULA provides 20 EDOF for the 3GPP 2.6 GHz environment,
whereas the URA only provides 6 EDOF. The NLOS intra-cluster AOA RMS
spreads here are σAOA

φ = 15◦ and σAOA
θ = 3◦, for azimuth and elevation domains,

respectively. Compared with the azimuth AOA spreads, the narrow elevation
AOA spreads are significantly reducing the EDOF when antennas are placed
vertically at the BS.

6.6.2 Impact of Number of Users

In Figure 6.36 the impact of user numbers on the EDOF% and EDOF is shown,
where M = 400 and Q = 4. Both ULA and URA topologies are considered
with a half-wavelength spacing at the TX and RX. As the number of users, K,
increases, the EDOF for each environment also increases. However, the increase
in EDOF is at a smaller rate than the number of users, K, and so the EDOF%
decreases in every case. In general, the microwave bands have more EDOF
than the mmWave bands, as was the case in Section 6.6.1, as a function of the
number of receive antennas, Q, due to richer scattering. However, the increase
in EDOF for the microwave environments starts to saturate for large numbers
of users, whereas the mmWave bands increase almost linearly with K. This is
because users start to experience similar channels, thus reducing the number of
independent streams.

At mmWave frequencies there are very little difference between the EDOF and
EDOF% performances of the ULA and URA, since the azimuth and elevation
angular spectrums are more equal in width at higher frequencies. However, for
the microwave bands, the ULA performs the best for all numbers of users due
to the very narrow elevation spectrum. For example, as the number of users
is increased to more than K = 16, the URA in all mmWave bands outperform
the URA in the 3GPP 2.6 GHz environment, since there is a narrow elevation
spectrum in the 3GPP 2.6 GHz environment.

In summary, from Figures 6.35 and 6.36, it is more beneficial to add more
users in a system instead of more antennas per user, since the increased spatial
separation of users reduces the spatial correlation. This is more evident in
environments which have narrow angular spectrums.
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Figure 6.36: EDOF% as a function of the number of users, K, for M = 400 and
Q = 4.

6.7 Channel Convergence to Massive MIMO

To examine the convergence to the massive MIMO regime, the eigenvalue ratio
of the composite channel matrix, H, is considered and defined as given in (3.2).
In Figures 6.37-6.39 the CDF of the eigenvalue ratio, withM = 400, K = Q = 4

and half-wavelength spacing is shown as a function of different user spatial sep-
arations [65, 69, 75] and antenna array topologies for 3GPP, BUPT and WPC
environments, which define spatial correlation between parameters. For each
environment two user location scenarios are considered: users randomly located
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Figure 6.37: Eigenvalue Ratio CDF with randomly and closely spaced users for
3GPP 2.6 GHz.

0 10 20 30 40 50
2

max
/2

min
 [dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

(2
m

ax
/2

m
in

 <
 a

bs
ci

ss
a)

i.i.d. Channel
Users Randomly Located
Users Closely Spaced
ULA
URA
UCA

Figure 6.38: Eigenvalue Ratio CDF with randomly and closely spaced users for
BUPT 6 GHz.

within the coverage region and users located within 2m of each other (closely
spaced) on the azimuth plane. Closely spaced users experience correlated pa-
rameters, share the same clusters, but have independent subpaths. For all
environments, users being randomly located is shown to reduce the eigenvalue
ratio and approach the i.i.d. eigenvalue ratio, which is almost vertical due to the
large number of transmit antennas, M = 400, therefore approaching favourable
propagation [6,7,43,247]. On the other hand when users are closely spaced, the
highly correlated user channels are reducing the composite channel rank, and
in turn, degrading the onset of favourable propagation.
Close user spacing is shown to have a significantly adverse impact on eigenvalue
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Figure 6.39: Eigenvalue Ratio CDF with randomly and closely spaced users for
WPC 18 GHz.

ratio convergence for all environments, but less so in the WPC 18 GHz environ-
ment, which only has a reduction in the median eigenvalue ratio of 4 dB for the
ULA topology. This is because the WPC has a wider azimuth power spectrum
in comparison to the 3GPP and BUPT scenarios. The CDF knee in many of
the CDFs indicates a bimodal distribution and is due to the large difference in
parameters between LOS and NLOS propagation. This is most noticeable for
the BUPT environment which has a Rician K-factor mean of 12.4 dB (vs. 9 dB
for both 3GPP and WPC).
Comparing the relative convergence rates of the different antenna topologies
in Figures 6.37-6.39, it can be seen that the ULA performance is superior in
all cases where users are randomly located and closely spaced, agreeing with
the results presented in [65]. This is a consequence of the large aperture of
the ULA, which is able to resolve more spatial variation, thus reducing spatial
correlation effects. Even for closely spaced users, the ULA still has the same
performance as the URA and UCA for randomly located users. Therefore, the
ULA is recommended as the antenna array approaches the onset of favourable
propagation more quickly than the URA and UCA.

6.8 Equivalent Rician Fading Channel Model

The proposed Akdeniz mmWave channel model in [114], and (2.14), does not
model LOS scenarios with an explicit specular component as in (2.24), but
instead gives more variability to the size of the small-scale fading coefficients so
that some paths tend to dominate leading to a similar effect.
In this section, a new model to approximate the, complex, Saleh-Valenzuela
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channel model is proposed based on the classical statistical Rician fading channel
model. If such a process is possible, then it opens up more opportunities for
system analysis. A simple, spatially correlated equivalent Rician fading channel,
Ḧ, is defined as

Ḧ =
√
P

(√
1

κ̈+ 1
R̈

1/2
RXHiidR̈

1/2
TX +

√
κ̈

κ̈+ 1
ḦLOS

)
, (6.5)

where P is the link gain, κ̈ is the Rician K-factor, Hiid is the Q ×M matrix
of i.i.d. CN (0, 1) entries, R̈TX and R̈RX are the TX and RX spatial correlation
matrices, respectively, and ḦLOS is the Q ×M specular channel matrix. Such
a model allows a different link gain, P , and a different Rician K-factor, κ̈, for
each user. However, it fixes the spatial correlation matrices R̈TX and R̈RX, for
simplicity. This is possibly the simplest classical model which might be expected
to approximate the Saleh-Valenzuela behaviour. In order to parametrize the
model in (6.5), P , κ̈, ḦLOS, R̈TX and R̈RX must be defined. The value of P
is simply the link gain defined (2.14). However, the value of κ̈ is less easy to
obtain. While one approach would be identify the strongest of the CL paths
as the LOS component, this ignores the projections of the other paths onto
this dominant path. The singular value decomposition (SVD) offers a method
of obtaining the strength of the strongest possible rank one specular channel
matrix. If H = TΛUH is the SVD of H, with T = [t1, . . . , tQ] and U =

[u1, . . . ,uM ] being the Q×Q and M ×M unitary matrices, respectively. Λ =[
diag(η1, . . . , ηQ) 0Q×(M−Q)

]
is the Q ×M matrix with singular values on the

diagonal. The LOS matrix t1u
H
1 could then be proposed with

κ̈ =
η2

1

Q∑
i=2

η2
i

. (6.6)

This is the approach taken here. Since the singular vectors are not of the correct
form given in (2.15)-(2.16), they can be replaced by antenna array response
vectors with fixed AOAs and AODs. Hence, for simplicity, a rank one specular
matrix of the form

ḦLOS = aRX
(
ϕAOA, ϑAOA) aH

TX

(
ϕAOD, ϑAOD) , (6.7)

is assumed, as in (2.9), where ϕ and ϑ are the LOS azimuth and elevation angles
between the BS and the user, respectively. The spatial correlation matrices, R̈TX

and R̈RX, are also complex to model. The Saleh-Valenzuela channel generates
spatial correlations similar to the Bessel function, J0(·), but every drop gives a
spatial correlation structure with different zero crossings. Hence, if you compute
the average spatial correlation from the Saleh-Valenzuela model, the individual
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spatial correlations tend to cancel out and the average values are small. In con-
trast, if you average the absolute spatial correlations then the average decays
in an exponential-like fashion at first and then reaches a constant. This moti-
vates two very simple models: exponential spatial correlation [189] (described
in Section 2.3.1) and equal spatial correlation. In summary, the simple spatially
correlated Rician model in (6.5) with P provided in (2.14), is investigated with
κ̈ given in (6.6), ḦLOS given in (6.7) and spatial correlation matrices modelled
as an exponential decay or equal spatial correlation.
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Figure 6.40: Akdeniz 28 GHz channel, given in [114], vs equivalent Rician chan-
nel for M = 100 TX antennas and K = 4 users.

To explore this model, a M = 100 element ULA is considered with K = 4 users
in the Akdeniz 28 GHz channel [114] for all equivalent Rician results. Three
cases are discussed: where Q = 1, Q = 2 and Q ≥ 3. In order to evaluate
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the Rician equivalence, two metrics are considered: spectral efficiency and the
average per-user instantaneous ZF SNR. The CDFs of these two metrics are
shown in Figure 6.40. Using two metrics is a more thorough approach to testing
the equivalence.

6.8.1 Single Antenna Users, Q = 1

For the case where Q = 1, the tendency for large K-factors led us to investigate
a pure LOS model, setting κ̈ = ∞ in (6.5). It can be seen that this equivalent
Rician channel model gives almost the same performance as the Akdeniz 28
GHz channel for both spectral efficiency and average per-user instantaneous ZF
SNR. Hence, a greatly simplified analysis becomes possible.

6.8.2 Double Antenna Users, Q = 2

For Q = 2, again an agreement in performance is seen between the original
Akdeniz 28 GHz channel and the equivalent Rician. An excellent agreement
is obtained even when we use (6.5) with no spatial correlation, i.e., R̈TX =

IM , R̈RX = IQ. The equivalent Rician channel fits well with no spatial correla-
tion because the Rician K-factor is so large and the diffuse component of the
channel only has a slight effect.

6.8.3 Multiple Antenna Users, Q ≥ 3

In the case where users have multiple antenna users (Q ≥ 3), it is possible
to tune the parameters in (6.5) to give a good agreement between Akdeniz 28
GHz and equivalent Rician models for spectral efficiency and average per-user
instantaneous ZF SNR separately. However, a single model does not adequately
reproduce both spectral efficiency and ZF SNR results. Hence, the Akdeniz 28
GHz model has subtleties which cannot be represented in such a simple Rician
model. Nevertheless, some insights can be noted:

• The equivalent Rician K-factors obtained from the SVD, as in (6.6), are
large. In decibels, the K-factors tend to look quite exponential and the
distribution of the equivalent Rician K-factor can be approximated by
κ̈ ∼ Exp(7.7).

• Spatial correlation decays smoothly to a fixed value and does not decay
with antenna separation past this point.

• By either having a fixed spatial correlation value or using an exponential
model [189], the equivalent Rician can give similar spectral efficiency or
ZF SNR results to the original Akdeniz 28 GHz channel, but extremely
high spatial correlations are required, of the order 0.95-1.
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• The spectral efficiency CDFs for the equivalent Rician channel are typi-
cally steeper than those of the original model. Agreement between the two
requires the use of a random exponential spatial correlation decay param-
eter or a random constant spatial correlation parameter. This increases
the spectral efficiency at high SNR and vice-versa.

Overall, for Q ≥ 3 RX antennas per user, a Rician model is insufficient to
mimic the true channel. Nevertheless, the broad behaviour of the Akdeniz 28
GHz channel can be identified. This includes a very strong Rician K-factor and
high spatial correlation, as would be expected. It is particularly interesting that
spatially correlated Rician channels which yield similar performance rely on a
random spatial correlation parameter. Hence, the variation in spatial correlation
between drops appears to play an important role in performance.

6.9 Conclusion

The system sum rate, eigenvalue structure, EDOF and massive MIMO con-
vergence have been shown to be significantly affected by the frequency band
and antenna topology. The system performance is typically worse at mmWave
bands, relative to microwave, where there is sparse scattering. However, because
the channel is so sparse at mmWave bands, any change in the intra-cluster RMS
angular spread drastically affects the sum rate. Furthermore, because the el-
evation spectrum is typically narrower than the azimuth, the URA topology
experiences the largest variation in sum rate with angular spread. A larger
number of system users, with a fixed number of streams, has been shown to
both reduce the cell radius and increase the sum rate from an increase in angu-
lar diversity. However, due to the smaller cell radius, users become more closely
spaced causing in the increase in diversity (and sum rate) to saturate.
In microwave scenarios, where the probability of LOS propagation is low, the
structure of eigenvalues is highly dependent on the richness of scattering. On
the other hand, in mmWave bands, where the probability of LOS is high, the
structure of the eigenvalues is largely dependent on the LOS channel model.
For Rician channels, the eigenvalue structure deteriorates with larger Rician
K-factor. However, for a path loss scaled Saleh-Valenzuela LOS channel model,
such as in Akdeniz et al. [114], the eigenvalues are the same as the NLOS case.
The ULA is seen to have superior eigenvalue structure due to the inherently
larger inter-element spacings and wider azimuth spectra (relative to elevation
spectra), which makes it less effective for antennas to be placed vertically at
the antenna array. These observations in eigenvalue are seen to affect sum
rate performance. The EDOF has been explored for all environments and an-
tenna topologies as a function of the number of users and receive antennas. A
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larger gain in EDOF is seen when the user numbers are increased since this pro-
vides a greater angular diversity than adding more co-located antennas [248].
The ULA topology and microwave environments are shown to have the largest
EDOF since the azimuth resolution is wider and cluster numbers are larger,
respectively. This conclusion is also seen in terms of the eigenvalue ratio, where
the ULA has the same performance for closely spaced users as the URA and
UCA with randomly located users. Based on these observations, the ULA is able
to support more users simultaneously and is recommended due to its superior
massive MIMO convergence properties.
Furthermore, an equivalent Rician fading channel model has been proposed to
replicate both spectral efficiency and ZF SNR performance of a Saleh-Valenzuela
mmWave channel (Akdeniz 28 GHz), for scenarios with single and double an-
tenna users. Here, it has been shown that the statistically complex Saleh-
Valenzuela channel model can be represented by simple statistical channel mod-
els offering far greater analytical tractability.
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Table 6.1: Environmental Statistical Spatial Parameters

Parameter Microwave Bands Intermediate mmWave BandsBands
3GPP [129] BUPT WPC [151] Hur [119] Akdeniz [114] Samimi [117,150] Akdeniz [114] Samimi [117,150] Thomas [118]

f (GHz) 2.6 6 18 28 28 28 73 73 73
r (m) 810 810 198 63 60 63 38 48 49
α (dB) X0 | 13.5 43.6 | 13.5 57.6 61.4 61.4 | 72.0 61.4 69.8 | 82.7 69.8 69.7
β (dB) X1 | 3.92 2.2 | 3.92 2 | 3 1.87 | 2.97 2 | 2.92 2.1 | 3.4 2 | 2.69 2.0 | 3.3 2.1 | 3.3
ε (dB) 4 | 6 4 | 6 4.1 | 6.8 1.7 | 15.9 5.8 | 8.7 3.6 | 9.7 5.8 | 7.7 5.2 | 7.6 4.9 | 7.6
C 12 | 20 15 | 16 12 | 20 6 | 6 X2 X3 | X4 X5 X3 | X7 5
L 20 | 20 7 | 7 20 | 20 10 | 10 20 X8 | X9 20 X8 | X11 10

κ (dB) ∼ µ = 9 |N/A µ = 12.4 |N/A µ = 9 |N/A µ = 7 |N/A N/A µ = 2.4 | −0.4 N/A µ = 2.4 | 1.5 µ = 12 |N/A
N (µ, σ2) σ = 3.5 |N/A σ = 6.6 |N/A σ = 3.5 |N/A σ = 6.84 |N/A σ = 2.0 | 4.3 σ = 2.0 | 6.8 σ = 3 |N/A

Cluster φAOA
0 N (64.6, 2.5) | N (49.0, 2.0) | N (64.6, 2.5) | N (30.9, 5.8) | N/A N (49.0, 3.5) | N/A N (49.0, 3.5) | N (20.0, 5.2)spread (◦) N (74.1, 1.7) N (67.6, 1.7) N (55.1, 1.7) N (32.4, 6.9) N (24.5, 6.0) N (31.6, 2.5)

Cluster φAOD
0 N (14.1, 3.6) | N (22.4, 2.8) | N (15.8, 3.6) | N (11.7, 12.0) | N/A N (19.1, 10.0) | N/A N (19.1, 10.0) | N (12.6, 6.9)spread (◦) N (25.7, 3.6) N (19.5, 3.6) N (22.7, 3.6) N (16.2, 22.9) N (24.0, 6.6) N (21.9, 6.0)

Cluster θAOA
0 N (8.9, 2.1) | N (22.9, 1.7) | N (8.9, 2.1) | N (4.6, 5.2) | N/A N (4.0, 1.5) | N/A N (4.0, 1.5) | N (X12, 3.3)spread (◦) N (18.2, 2.1) N (23.4, 1.9) N (12.8, 2.1) N (3.4, 5.5) N (5.2, 4.0) N (3.5, 2.0)

Cluster θAOD
0 N (Y (0.75), 6.3) | N (13.2, 2.6) | N (Y (0.75), 6.3) | N (Y (0.75), 6.3) | N/A N/A N/A N/A N (X13, 4.4)spread (◦) N (Y (0.9), 9.5) N (17.4, 6.3) N (Y (0.9), 9.5) N (Y (0.9), 9.5)

φ0 distribution Gaussian Gaussian Gaussian Gaussian U [0, 2π) Gaussian U [0, 2π) Gaussian Gaussian
θ0 distribution Laplacian Laplacian Laplacian Laplacian LOS angle Laplacian LOS angle Laplacian Laplacian

σAOA
φ (◦) 11 | 15 24 | 29 11 | 15 2.7 | 6.8 Exp(15.5)

N (6.7, 259.2) | Exp(15.4)
N (6.7, 259.2) | 5.3N (9.6, 404.0) N (5.2, 146.4)

σAOD
φ (◦) 5 | 2 9 | 11 5 | 2 1.9 | 4.8 Exp(10.2)

N (1.5, 4.8) | Exp(10.5)
N (1.5, 4.8) | 6N (3.0, 20.2) N (2.1, 47.6)

σAOA
θ (◦) 3 | 3 3 | 3 3 | 3 3.4 | 6.4 Exp(6.0)

N (1.8, 4) | Exp(3.5)
N (1.8, 4) |

X14N (1.6, 12.2) N (1.5, 3.6)

σAOD
θ (◦) Y (0.75) | Y (0.9) Y (0.75) | Y (0.9) Y (0.75) | Y (0.9) 1.0 | 2.2 N/A N (0.8, 1) | N/A N (0.8, 1) |

X15N/A N (0.8, 1.3)
ε dSC (m) 37 | 50 37 | 50 37 | 50 N/A N/A N/A N/A N/A N/A
κ dSC (m) 12 |N/A 40 |N/A 12 |N/A N/A N/A N/A N/A N/A N/A

σAOA
φ dSC (m) 15 | 50 44 | 8.3 15 | 50 N/A N/A N/A N/A N/A N/A
σAOD
φ dSC (m) 18 | 50 47 | 2 18 | 50 N/A N/A N/A N/A N/A N/A
σAOA
θ dSC (m) 15 | 50 15 | 50 15 | 50 N/A N/A N/A N/A N/A N/A
σAOD
θ dSC (m) 15 | 50 15 | 50 15 | 50 N/A N/A N/A N/A N/A N/A

where log10 (Y (x)) = max[−0.5, x− 2.1(d/1000)], {X0, X1} = {36.3, 2.2} for d < 417m and {X0, X1} = {−10.9, 4} for d ≥ 417m. X2 ∼ max[Poisson(1.8), 1], X3 ∼ N (5, 12.3),
X4 ∼ N (5.3, 5.8), X5 ∼ max[Poisson(1.9), 1], X7 ∼ N (4.6, 10.9), X8 ∼ N (12.4, 219.0), X9 ∼ N (12.8, 458.0), X11 ∼ N (13.2, 488.4), log10 (X12) = max[0.3,−0.0025d],

log10 (X13) = max[0.4,−0.002d], log10 (X14) = max[0,−0.002d+ 0.83] and log10 (X15) = max[0,−0.0023d+ 0.81].
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7
Conclusions and Future Work

This chapter includes a summary and conclusion for the research presented in
this thesis. Several potential directions for future research are also provided.

7.1 Conclusions

In this thesis, a DL large-scale MU-MIMO system was considered. Chapter 3
demonstrated that for increasing numbers of antennas, a Rician fading channel
(which is more deterministic than a Rayleigh fading channel) converged to the
massive MIMO property of channel hardening quicker. It was also seen that
effects of spatial correlation significantly reduced the performance of the MF
SINR.
In order to mitigate the effects of spatial correlation, a distributed antenna sys-
tem was considered for in Chapter 4 where the performance and convergence, to
its limiting value, of the MF precoder was analytically and numerically shown.
It was seen that the reduction in spatial correlation, and better cell-wide cover-
age, from distributing antennas into multiple clusters increased the MF SINR
performance.
Although spatial correlation is reduced when distributing antennas into multi-
ple clusters, the antenna arrays at each cluster are still large in size and thus
the aggregate effects of small amounts of spatial correlation from all antennas is
still prominent. Thus, in Chapter 5 spatial correlation is analysed for a (more
realistic) Saleh-Valenzuela channel model. Including the effects of mutual cou-
pling, it was seen that the performance of a large antenna array operating at
mmWave bands is dominanted by the change in antenna effective gain, and
therefore SNR, of the coupling mechanisms between the antennas.
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Channel models and measurements across a wide range of candidate bands for
5G wireless networks were considered in Chapter 6, motivated by the differ-
ent propagation and spatial characteristics between both different bands and
different channel models within the same band. Although mmWave channels
have poor scattering characteristics, an increase in the EDOF can be seen by
distributing the total number of RX antenna elements into single-antenna users
(rather than one user with many antennas), since the large receive spatial cor-
relation at mmWave bands becomes significantly reduced.

A detailed summary and conclusion of each chapter is now presented.

7.1.1 Convergence to Massive MIMO

In Chapter 3, the convergence properties of large scale MIMO systems were
examined to determine the number of antennas required for a system to re-
alize massive MIMO properties. Characteristics of both Rayleigh and Rician
fading channel matrices were considered, and their asymptotic behaviour was
studied. Limiting per-user ZF SNR and MF SINR were derived in a Rayleigh
fading channel for scenarios of equal and unequal link gains, as the number of
TX and RX antennas (with fixed ratio) increased without bound. Numerically,
the effects of spatial correlation were then shown for both Rayleigh and Rician
fading channels, as well as the impact of increasing LOS strength on the rate of
convergence of the Rician fading channel.

For the Rayleigh fading channel, it was seen that the rate of convergence to
favourable propagation and channel hardening was controlled by the rate of
convergence of an i.i.d. channel to the identity matrix. Also the increased LOS
strength, in a Rician fading channel, increased the rate of convergence to mean
absolute deviation and diagonal dominance limiting values. However, the eigen-
value ratio convergence behaved differently since the eigenvalues are extremely
sensitive to variations in the channel, which are increased for a larger Rician
K-factor, since the LOS antenna array response vectors create a statistical struc-
ture in the channel affecting the eigenvectors.
The convergence properties of the per-user SNR/SINR for both ZF and MF pre-
coders were less sensitive to the number of TX antennas. In particular, the rate
of convergence of the per-user ZF SNR, to its limiting value, was quicker than
that of the MF precoder due to its additional inter-user interference component.
In a Rician fading channel, ZF SNR performance decreased with increased Ri-
cian K-factor, due to the reduced channel diversity. On the other hand, the MF
SINR performance increased with increased Rician K-factor because the MF
interference power reduced.
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7.1.2 Distributed Antenna Systems

Chapter 4 analysed the performance and convergence, to its limiting value, of
MF SINR for distributed antenna systems. Specifically, the instantaneous and
limiting (in the number of TX antennas) performance of a MF precoder was
investigated, whilst maintaining a fixed ratio of the number of TX antennas to
single-antenna users, with the aim of determining and characterizing the im-
pacts of distributing TX antennas into multiple clusters. The system model
considered the effects of TX spatial correlation, unequal link gains and imper-
fect CSI. From the derived MF SINR expressions, a clear insight into the effect
of link gains, spatial correlation and CSI imperfections were drawn.

Numerically, it was shown that distributing antennas into multiple clusters in-
creased both the per-user instantaneous received SNR and average per-user
instantaneous MF SINR, relative to a co-located antenna system. Significant
increases in MF SINR were seen in a spatially correlated scenario since antenna
inter-element antenna spacings increased and thus the spatial correlation effects
reduced. In both spatially correlated and uncorrelated scenarios, CSI imperfec-
tions caused a considerable decrease in all instantaneous and limiting MF SINR
results. Limiting MF SINR results further showed that the rate of convergence
was not affected by spatial correlation or CSI imperfections, but the convergence
of limiting link gain parameters, which was influenced by the link gain model
considered.

7.1.3 Millimeter-Wave Wireless Communications

The Saleh-Valenzuela channel model was considered to model a large antenna
array operating at mmWave frequencies. Based on the Saleh-Valenzuela channel
model, closed-form expressions for the 3D spatial correlation between any two
antenna elements was derived for wide, narrow and Von Mises PES as well as
an upper bound for arbitrary PES. The effects of the PES on massive MIMO
convergence properties was shown by defining and deriving a diagonal domi-
nance metric. Numerically, the effects of mutually coupled antennas was then
shown on the effective spatial correlation, eigenvalue structure and user rate for
different antenna topologies.

The ULA was shown to have quicker diagonal dominance convergence than
the URA and UCA topologies, due to the smaller numbers of adjacent antenna
elements. Numerically, it was seen that the impacts of mutual coupling impacts
were more obvious at smaller inter-element spacings, agreeing with previous
works [7, 24, 87, 89, 105]. At these smaller inter-element spacings, mutual cou-
pling was shown to decrease the normalized spatial correlation for side-by-side
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antennas. However, the change to normalized spatial correlation did not trans-
late into similar trends for user rate, as the effective gain of the antennas became
a dominating effect and its variation was shown to be highly dependent on the
antenna inter-element spacings. It is therefore concluded that although mutual
coupling can significantly reduce spatial correlation for side-by-side dipole an-
tennas, the change in antenna effective gain, and therefore SNR, from mutual
coupling becomes a dominating effect and ultimately determines the antenna
array performance of a mmWave system.

7.1.4 Channel Models for 5G Wireless Systems

Channel models and measurements across a wide range of candidate bands for
5G wireless networks were considered in Chapter 6, motivated by the different
propagation and spatial characteristics between both different bands and differ-
ent channel models within the same band. Key channel modelling and spatial
parameter differences were identified and, in turn, their impact on various an-
tenna topologies investigated, in terms of system sum rate, channel eigenvalue
structure, EDOF and massive MIMO convergence properties. An equivalent
Rician channel model was also developed to approximate the complex Saleh-
Valenzuela channel model, proposed in [114], to model mmWave systems. The
simple equivalent model was shown to perform well for small numbers of receive
antennas and was used to gain insight into mmWave channels.

The system sum rate, eigenvalue structure, EDOF and massive MIMO con-
vergence were shown to be significantly affected by the frequency band and
antenna topology. The system performance was typically worse at mmWave
bands, relative to microwave, since the scattering at higher frequencies is sparse.
However, because the channel is so sparse at mmWave bands, any change in the
intra-cluster RMS angular spread drastically affected the sum rate. Further-
more, because the elevation spectrum is typically narrower than the azimuth,
the URA topology experienced the largest variation in sum rate with angular
spread. A larger number of system users, with a fixed number of streams, was
shown to reduce both the cell radius and increase the sum rate from an increase
in angular diversity. However, due to the smaller cell radius, users become more
closely spaced and the increase in diversity and therefore sum rate saturated
In microwave scenarios, where the probability of LOS propagation is low, the
structure of eigenvalues is highly dependent on the richness of scattering. On
the other hand, in mmWave bands, where the probability of LOS is high, the
structure of the eigenvalues is largely dependent on the LOS channel model.
For Rician channels, the eigenvalue structure deteriorates with larger Rician
K-factor. However, for a path loss scaled Saleh-Valenzuela LOS channel model,
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such as in Akdeniz et al. [114], the eigenvalues are the same as the NLOS case.
The ULA is seen to have superior eigenvalue structure due to the inherently
larger inter-element spacings and wider azimuth spectrums, which makes it
less effective for antennas to be placed vertically at the antenna array. These
observations in eigenvalue are seen to affect sum rate performance.
The EDOF was then explored for all environments and antenna topologies as
a function of the user numbers and receive antennas. A larger gain in EDOF
was seen when the user numbers were increased, since this provided a greater
angular diversity than adding more co-located antennas at the same location.
The ULA topology and microwave environments were shown to have the largest
EDOF since the azimuth resolution is wider and cluster numbers are larger,
respectively. This conclusion is also seen in terms of the eigenvalue ratio, where
the ULA has the same performance for closely spaced users as the URA and
UCA with randomly located users. Based on these observations, the ULA is able
to support more users simultaneously and is recommended due to its superior
massive MIMO convergence properties.

7.2 Future Work

Several potential directions for future work are provided.

7.2.1 Eigenvalue Sensitivity

It was shown in Chapter 3 that the convergence of the eigenvalue ratio to unity,
as the number of transmit antennas increased, behaved differently in Rician
fading channels the other convergence metrics. Specifically, the eigenvalue ratio
converged at a slower rate for increased LOS propagation, whereas the mean
absolute deviation and diagonal dominance was seen to converge at a faster
rate. This phenomenon was explained by the extreme sensitivity of eigenvalues
to variations in the channel. Whilst the entries of the NLOS, Rayleigh fading,
component of the composite Rician fading channel are expected to converge to
their statistical mean for large numbers of transmit antennas, the variation of
the LOS component of the Rician fading channel is less influenced by the number
of antennas. It is thus of interest to extend the above finding to explore, and
characterize, the variations in the eigenvalue ratio (or individual eigenvalues
as in [201]) to more realistic channel modelling techniques [249]. For example,
exploring the eigenvalue sensitivity of the Saleh-Valenzuela channel, in terms
of its underlying parameters, which forms the basis for standardized channel
models (see [129, 130, 245, 250–252]), and is commonly used to model mmWave
band channels.
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7.2.2 Hybrid Beamforming with Sub-Arrays

Due to the larger signal attenuation in mmWave band channels, the TX must
compensate to maintain coverage by providing an additional array gain propor-
tional to the number of TX antenna elements [253]. Since digital beamforming
requires a dedicated RF chain for each antenna, the hardware cost scales with
the number of transmit antennas and conventional digital precoding techniques,
such as MF, no longer become feasible. One way to mitigate the large hardware
cost of this is to reduce the number of RF chains, such that each RF chain feeds
digitally precoded data vector to a subset (sub-array) of antenna elements, be-
fore each antenna performs analog beamforming, altering the phase of the signal.
This is referred to as hybrid (digital and analog) beamforming [113, 254–259].
Given a multi-user MIMO system with number of RF chains and antenna array
constraints, the practical design of sub-arrays for different types of channels is
of interest. For example, a sub-array of antennas sharing a single RF chain
can be a located as a tight group of adjacent antennas, or the antennas from
multiple sub-arrays can be inter-leaved. Different designs will influence factors
such as mutual coupling, spatial correlation, insertion loss and ultimately the
system performance [98,134,260–263].

7.2.3 Massive MIMO for TDD or FDD?

All work in this thesis assumed TDD operation for massive MIMO to acquire
CSI at the BS for DL transmission. However, it is still unknown whether mas-
sive MIMO will operate at TDD or frequency-division-duplexing (FDD) when
deployed, since both have their advantages and disadvantages for acquiring
CSI [53, 57, 264–267]. Namely, FDD operation, which current cellular systems
use, requires each user to estimate and quantize its own channel, before sending
codebook indices (common to the BS to the user) back to the BS. TDD on the
other hand requires each user to send UL pilots to the BS, which then estimates
the reciprocal (i.e., DL) channel before precoding. Since TDD UL pilots do
not contain any payload, the overhead is greatly reduced, however the chan-
nel estimation at the BS relies on channel reciprocity and pilot contamination
can occur (discussed in Section 2.5). It is noted that the performance of both
duplexing protocols rely on accurate channel estimation.
In massive MIMO mmWave systems, the channel estimation techniques and
approaches change to those more suited to sparse channels, e.g., compressive
sensing [268, 269]. This motivates the exploration of the fundamental limits of
various channel estimation techniques, as well as how they perform for both
microwave and mmWave frequencies. This will provide a framework from which
a duplexing protocol can be proposed for a given system.
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