
Manifold Learning
Techniques for Editing
Motion Capture Data

by

Christopher Joseph Dean

A thesis submitted to the
Victoria University of Wellington

in fulfilment of the requirements for the degree of
Master of Science

in Computer Science

Victoria University of Wellington
2016

Supervisory Committee

Primary Supervisor: Dr. John P. Lewis

Victoria University of Wellington

Computer Graphics Department

School of Engineering and Computer Science

Secondary Supervisor: Dr. Taehyun Rhee

Victoria University of Wellington

Computer Graphics Department

School of Engineering and Computer Science

iii

Abstract

Streamlining the process of editing motion capture data and keyframe
character animation is a fundamental problem in the animation field. This
thesis explores new methods for editing character animation.

In this research, we edit motion capture animations by using a data-
driven pose distance as a falloff to interpolate new poses seamlessly into
the sequence. This pose distance is the measure given by Green’s function
of the pose space Laplacian. The falloff shape and timing extent are natu-
rally suited to the skeleton’s range of motion, replacing the need for a man-
ually customized falloff spline. This data-driven falloff is somewhat anal-
ogous to the difference between a generic spline and the “magic wand”
selection in an image editor, but applied to the animation domain. It also
supports powerful non-local edit propagation, in which edits are applied
to all similar poses in the entire animation sequence.

In the second component of this research, we propose a novel applica-
tion of non-local means denoising to motion capture data. This new adap-
tation, called non-local pose means, proves to be an effective method for
reducing noise without compromising physical accuracy of motion data.

v

Acknowledgments

My most sincere thanks go to my primary advisor, Dr. John P. Lewis,
whose unparalleled passion, knowledge, and pompousness provided me
with the encouragement and enthusiasm I needed to finish this thesis.
This research would not have been possible without the guidance and aca-
demic rigor of my secondary advisor Dr. Taehyun Rhee. You two have cre-
ated an outstanding academic environment here at the Victoria Computer
Graphics lab—I am proud and honored to have been a part of it.

Special thanks are due to all of my friends, family, and parents for their
everlasting love and support.

I would especially like to express my eternal gratitude to my partner
Diana, the girl who stole my heart halfway around the world. Thank you
for inspiring me, I could not have done this without you.

The motion capture data used in this thesis was obtained from mo-
cap.cs.cmu.edu. The database was created with funding from NSF EIA-
0196217.

We would also like to thank the Blender foundation for its contribu-
tions of the character Sintel c©, from the open-source Durian project, Sintel
the movie. c© Blender Foundation — www.sintel.org

vii

Contents

Supervisory Committee iii

Abstract v

List of Figures xiii

List of Tables xv

Glossary of Acronyms xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Research Objectives . 3

1.3 Research Methodology . 4

1.4 Thesis Structure . 5

2 Background and Theory 7

2.1 Animation . 7

2.1.1 Animating Digital Characters 7

2.1.2 What is motion capture? 8

2.1.3 Defining a Pose . 11

2.1.4 Quaternions . 12

2.1.5 Animated Splines . 16

2.1.6 Falloff Splines . 19

ix

x CONTENTS

2.2 Manifolds . 20
2.2.1 The Graph Laplacian 20
2.2.2 Dimensionality Reduction Techniques 22

2.3 Chapter Summary . 26

3 Manifold Pose Distance for Intelligent Motion Capture Editing 27
3.1 Introduction . 27
3.2 Background and Related Work 31

3.2.1 Motion Editing . 31
3.2.2 Dimensionality Reduction for Motion Editing 31

3.3 Method . 34
3.3.1 The Pose Laplacian . 34
3.3.2 Green’s function . 35
3.3.3 Edited Pose Interpolation 36

3.4 Results . 37
3.4.1 Dimensionality Reduction 37
3.4.2 Pose Distance . 37
3.4.3 Edited Animation . 40
3.4.4 Evaluation . 41

3.5 Chapter Summary . 47

4 Non-local Pose Means for Motion Capture Noise Reduction 49
4.1 Introduction . 49

4.1.1 What is noise? . 49
4.1.2 Processing Noise . 51
4.1.3 Research Method . 52

4.2 Background and Related Work 54
4.2.1 Image Denoising Filters 54
4.2.2 Motion Denoising . 57
4.2.3 Non-local Means . 59

4.3 Non-local Pose Means . 63
4.3.1 Pre-processing Poses 63

CONTENTS xi

4.3.2 The Non-local Pose Mean Filter 64
4.4 Results and Evaluation . 66

4.4.1 Non-local Pose Means 66
4.4.2 NLPM Benchmark Comparisons 69

4.5 Chapter Summary . 77

5 Discussion and Conclusion 79
5.1 Summary . 79
5.2 Limitations . 81
5.3 Future work . 83
5.4 Conclusion . 86

6 Appendix A 89
Green’s Function as a similarity measure 89

List of Figures

1.1 An animated character . 2

2.1 Passive infrared motion capture body suits for a game 9
2.2 Bodysuit for passive optical motion capture 9
2.3 Graphs showing non-unique quaternion solutions 13
2.4 Quaternion interpolation on a tangent plane 15
2.5 A spline motion graph of Bézier curves 17
2.6 Motion Capture spline graph from Blender 3D 18
2.7 Artist-defined falloff spline in 3D animation software 18
2.8 Graph Laplacian Example . 21
2.9 Dimensionality reduction in the embedded Euclidean space. 23
2.10 Principal component analysis 25

3.1 Green’s function distance for a walk cycle. 38
3.2 Green’s function pose distance for mixed motion activities. . 39
3.3 Comparison of Green’s, diffusion, and isomapped distances

in a run cycle. 42
3.4 Green’s function pose distance heatmap 43
3.5 Artist’s edit propagation using Green’s distance falloff. . . . 44
3.6 Green’s function distance with varying sigma values 45
3.7 Green’s function mocap edit vs animated spline edit. 46

4.1 Gaussian LPF denoising of an image 55
4.3 Non-local means denoising of an image 61

xiii

xiv LIST OF FIGURES

4.2 Non local means algorithm example 62
4.4 Non-local pose means results 66
4.5 Angular Offset effect for NLPM denoising 67
4.6 Skating foot effect for NLPM denoising 68
4.7 Results . 70
4.9 Results . 71
4.11 Results . 72
4.13 Results . 73
4.15 Butterworth Time Delay . 75

List of Tables

2.1 Common Motion Capture Systems 10

4.1 PSNR results for denoising methods 74

xv

Glossary of Acronyms

mocap Motion Capture
dofs Degrees of Freedom
VFX Visual Effects
2D 2-Dimensional
3D 3-Dimensional
CG Computer Graphics
CMU Carnegie Mellon University
IK Inverse Kinematics
FK Forward Kinematics
PCA Principal Component Analysis
MDS Multi-dimensional Scaling
DSP Digital Signal Processing
MRI Magnetic Resonance Imaging
LPF Low-pass Filter
FFT Fast Fourier Transform
SVD Singular Value Decomposition
GPU Graphical Processing Unit
NLM Non-local Means
NLPM Non-local Pose Means
PSNR Peak signal to Noise Ratio
MSE Mean Squared Error

xvii

Chapter 1

Introduction

”Animation is the art of motion and art in motion”
–Vibeke Sorensen, Philosophy Statement, DADA at USC

1.1 Motivation

Animators mould organic gestures to breathe life and soul into digital
characters. Their craft enables us to enjoy an adventure in an imaginative
and visually immersive digital world. Like any other VFX department
in film and games, character animation is an enormous task, demanding
the effort of dozens of artists. According to the Bureau of Labor Statis-
tics, the United States is home to over 64,400 animators who instill life into
the characters, animals, and objects of our favorite television stories, films,
games, commercials, and other multimedia projects [1].

Animation is a time consuming process—the production of a few sec-
onds of animation can take many weeks, requiring a skill that takes years
to acquire [2]. Animation artists are trained in stylistic motion, obeying
laws of physical accuracy and artistic form conventions [3] [4].

To save money, time, and effort, many animators turn to motion cap-
ture (mocap), a method for recording live movement of actors and con-
verting it into mathematical data [5]. Motion capture can be a very cost-

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Short film character Sintel animated via motion capture, model provided by The
Blender Foundation and the Durian Project [6].

effective means of mass producing realistic animations.

Among the titans of animation, Pixar, Inc. once boasted of their tal-
ented animators’ independence from motion capture, skillfully animating
their characters frame by frame. Each meticulously subtle twitch of a char-
acter in a Pixar movie was the careful design of an animator [7]. The film
VFX company Weta Digital, however, revolutionized animated realism us-
ing motion capture technology in blockbuster hits Avatar and The Lord
of the Rings [8]. Their engineers and technicians are able to create ultra-
realistic human (and non-human) motion through state-of-the-art capture
techniques.

Although it could be argued that motion capture cheats by removing
an element of artistry from the equation, mocap still requires a great deal
of supervision by expert eyes. Motion capture data is extremely dense
and heavyweight compared to traditional animation data [7]. A time-
consuming component of working with motion capture data is during
post-processing. The raw capture data must be cleaned, mended, and
error-checked before it can be used for animation [9, 10, 11]. Secondly,
if a director imposes creative changes late in production, animators must
quickly edit the motion capture data by hand. This makes it a very daunt-
ing task for an animator to make extensive changes [2].

The goal of this research is to create a motion capture editing system
that allows animators to artistically manipulate mocap animations using

1.2. RESEARCH OBJECTIVES 3

familiar animation techniques. We aim to build a more solid bridge be-
tween motion capture animation and conventional digital character an-
imation. To do this, we designed an editing system that is inspired by
artist-preferred animation methods, and we improve upon the existing
tools for processing mocap data.

1.2 Research Objectives

The objective of this thesis is to create an animation editing tool for editing
character movement. To this end, we offer two solutions for the motion
capture animation pipeline:

First, the artist needs a means of editing motion capture data easily
and swiftly, such that it generates realistic motion, a necessity in film CG.
To fit our needs, the animation editing system must meet the following
requirements:

• An artist can specify a new pose for a character at a given point
in time, and the system intelligently interpolates the surrounding
frames.

• The animator should retain artistic control over the timings and po-
sitions of the poses.

• The solution should operate at interactive speeds.

• Newly synthesized motion should be stylistically similar to other
movement in the motion capture data.

Secondly, we require a method for post-processing faulty motion cap-
ture data. This calls for the following system requirements:

4 CHAPTER 1. INTRODUCTION

• The denoiser should smooth noisy data without removing the subtle
detail that makes animation realistic.

• It should clean mocap data without altering the physics of the ani-
mation.

• It should handle different types of interference, such as sudden and
unwanted impulses, outliers, random noise, and Gaussian noise.

• It should recover missing motion capture marker data.

• It should be intuitive for a seasoned animator, with minimal user
parameters and without relying on large motion database libraries.

• Like the editing system, the algorithm should be aware of the stylis-
tic animation behaviour and characteristics.

1.3 Research Methodology

The thesis objectives require the following steps to be completed:

1. Investigate current mocap editing techniques to identify an artist-
preferred workflow to emulate in motion capture editing.

2. Investigate manifold learning methods, and consider machine learn-
ing for intelligent editing.

3. Investigate state of the art techniques in signal, image, and motion
denoising for comparison.

1.4. THESIS STRUCTURE 5

4. Identify a method for interpolating poses using the above findings,
which should assist in denoising and post-processing motion capture
data.

5. Implement a viable and reasonable solution, preferably in a commer-
cial 3D software used by animators in the industry, such as Blender
or Maya.

6. Test and compare each method against other related works, and eval-
uate the pose editing against traditional keyframe-based animation.

1.4 Thesis Structure

This thesis is presented as follows:

Chapter 2 Summarizes the background concepts and mathematics for
computerized character animation, motion capture perfor-
mance, and manifold learning techniques.

Chapter 3 Presents our primary research contribution (forthcoming
publication) entitled, ”Manifold Pose Distance for Intelli-
gent Motion Capture Editing” [12].

This chapter begins with an introduction to motion capture
editing and a presentation of previous works for charac-
ter animation and manifold learning techniques in motion
capture.

6 CHAPTER 1. INTRODUCTION

We describe our novel method for finding a natural data-
driven falloff distance between character poses, along with
our process for interpolating poses using this falloff.

We discuss our results for comparing the pose-distance in-
terpolated motion to other manifold techniques and to tra-
ditional spline-based methods. Finally, we discuss the im-
plications, limitations, and future work regarding this re-
search.

Chapter 4 Presents the secondary research contribution (forthcoming
publication) entitled, ”Non-local Pose Means for Motion
Capture Noise Reduction” [13]. This research focuses on
removing noisy artifacts and signal interference from mo-
tion capture data.

After a review of contemporary works in the field, it
demonstrates our novel application of non-local means im-
age denoising to motion capture data.

We reveal our results compared to the results of other com-
mon denoising methods, and conclude with a summary
and discussion of limitations and future work.

Chapter 5 Discusses our holistic approach to designing a motion cap-
ture editing system. This chapter details the limitations
and future work for our proposed tools in the context of
a robust and unified animation editing system.

Chapter 2

Background and Theory

In this chapter, we introduce the mechanics of motion capture and com-
puterized character animation and identify key components for creating
an animator-driven motion capture editing tool. We then define the rel-
evant background and theory needed to understand the animation algo-
rithms and animation manifold in Chapter 3.

2.1 Animation

2.1.1 Animating Digital Characters

Digital characters such as Sintel (Figure 1.1) are brought to life by ani-
mators using software packages such as Blender3D or Autodesk Maya
[14, 15]. Beneath Sintel’s digital skin are invisible “bones”, analogous to
a real human being. Mathematically, a CG bone is a line connected by two
3D coordinates, and these bones are parented to one another in a depen-
dent hierarchy. The animator poses Sintel like a doll, entering x, y, and z
angular Euler rotation values for every joint in her body. To animate Sintel,
we need to understand the concept of tweening [16].

In traditional 2D drawn animation, the primary artists draw the most
important shots and images in the scene first. These are the character’s

7

8 CHAPTER 2. ANIMATION RELATED WORKS

primary action poses, and they occur once every few seconds in the an-
imation. Other artists, called tweeners, ’connect the dots’ and fill in the
remaining motion by drawing the interpolated characters between these
initial frames. A majority of hand-drawn animated content is comprised
of these ’in-between’ shots [16].

The same process is used in computer animation. The artist instructs
Sintel to enter a specific pose at a precise time. The artist sets a keyframe,
constraining Sintel’s pose at this time. After multiple keyframes are placed
over a few seconds of time, Blender automatically tweens the animation,
interpolating the joints between these constraints [16]. The result is an
animated figure.

2.1.2 What is motion capture?

In the 1932 Disney classic, Snow White and the Seven Dwarves, animators
used real-life figures to inspire their animated work. Using a method
called rotoscoping, they traced the outlines of live subjects to translate
human movements into the characters of Snow White [5]. The subject of
motion transfer is not new, as artists have been emulating live subjects
throughout the entirety of art history. Rotoscoping is a rudimentary form
of motion capture, but today we have the assistance of computers and
sensing technology to aid computer animation.

Motion capture animation is a means of recording motion from live
actors and mathematically applying the same motions to a digital model,
like Sintel. There are many techniques for achieving motion capture. Ta-
ble 2.1 lists the most common means of data capture, among which there
are three major categories: active markers, passive markers, and marker-
less [5]. Active marker systems (Figure 2.2) will place powered electronics
(LEDs, accelerometers, etc.) on the motion capture actor, which communi-
cate with the computer or sensing devices. Passive marker systems (Figure
2.1) are less invasive. They are coated with reflective materials, which can

2.1. ANIMATION 9

Figure 2.1: Passive infrared markers and infrared motion capture cameras. Image li-
censed by creative commons [17].

Figure 2.2: Active marker mocap system. Light-emitting markers are tracked by video
cameras. Image licensed by creative commons [18].

10 CHAPTER 2. ANIMATION RELATED WORKS

Type of Mocap Markers Characteristics

Active Optical 4-32 Cameras work in conjunction to track
the motion of LEDs; the different cameras
are registered to solve a 3D orientation.

Inertial Gyros, accelerometers, and similar sensors
are embedded in the actor’s clothing to
track physical movement.

Magnetic Magnetic transmitters and receivers are
planted on the subject and around the stu-
dio for magnetic tracking.

Mechanical Potentiometers and angular measurement
devices embedded in the suit gather joint
orientation data.

Passive Optical Similar to active opticals, the cameras emit
infra-red light and capture reflections from
passive infra-red markers on body suits.

Pattern Fiducial markers, colors, bar codes, and
other patterns can be tracked via camera
feed and computer vision algorithms.

Markerless Depth Microsoft Kinect [19], Leap Motion [20],
and other infrared depth sensors create a
3D image of the scene before them, and use
machine learning methods to identify hu-
man body parts.

Video An active research area in computer vision,
this type of tracking is handled on a case-
by-case basis. Faces and hands can be rec-
ognized using classification.

Table 2.1: Common Types of Motion Capture Sensing [5].

2.1. ANIMATION 11

be detected via tracking algorithms from a camera feed. Recently, marker-
less systems have been popularized for commercial user interaction. The
markerless systems are the least accurate tracking alternative, but are often
cost effective, non-invasive, and easy to set up [5, 19].

We use skeletal motion capture data provided by Carnegie Mellon Uni-
versity. CMU’s passive optical tracking system recorded the movements
of actors performing a large number of common human activities, such
as running, climbing, jumping, walking, turning, crawling, and sneaking
[21].

2.1.3 Defining a Pose

Our digital character model Sintel is posed much like one would pose an
action figure. A plastic toy has physical limitations. Her legs should not
be able to spin in 360◦, nor should her head or other body parts. The same
is true in animation. Artists create intricate skeletal rigs with hundreds of
such constraints that prevent the character from entering unrealistic poses.

A skeletal pose may be defined as a list of its joint rotations. Artists
commonly designate these angles by Euler rotations: x-, y-, and z-axis ro-
tations that range from 0 − 360◦ [16]. To pose this character, an artist sets
Euler rotations for the torso, spine, shoulders, arms, hands, and fingers,
sequentially toward the last children in the hierarchy. Such a skeletal con-
figuration is called a Forward-Kinematics rig [16, 22].

FK rigs become difficult to configure when the character needs to place
her hand at a specific point in space. Inverse-Kinematics (IK) corrects this
problem by posing the child joints first, and then it works out the parents’
locations in an inverse order. This is accomplished by solving kinematics
equations for a series of constrained joints [16, 22]. The equations find the
best joint angles required to reach a desired position. The artist tells the
rig the position of the hand, and the computer works out what angles the
arm and torso should form to reach that position. In this system, a pose

12 CHAPTER 2. ANIMATION RELATED WORKS

may be defined as a list of positional IK constraints.

Skeletons are not the only posable structure in animation. An animator
often poses facial expressions with numerical sliders. The values of the
collection of facial sliders constitute a facial pose. For the purposes of this
research, we will define a pose to be the configuration of any pose controls,
joints, or abstract manipulators that define a character’s position, shape, or
orientation [23].

Computationally, it is reasonable to structure the pose as a vector of
configuration values. In the case of positional or rotational data, we con-
catenate the vectors together into one long vector. Take a skeleton with n

bones, each having an Euler rotation, (x, y, z). We create a pose vector, p:

P =

x1

y1

z1

.

.

.

xn

yn

zn

(2.1)

2.1.4 Quaternions

Euler angles are user-friendly, intuitive coordinates for describing rigid ro-
tation. Yaw, pitch, and roll are important when flying an airplane that gen-
erally does not rotate beyond π/2 radians in more than two axes simulta-
neously. When the y-axis turns 90◦, for example, the rotation gimbal aligns
perfectly with one of the other axes. Rotating either axis results in the
same rotation, meaning a degree of freedom ’locks up’. This gimbal lock
and other angular problems, such as angle flipping, order-dependency,
and non-unique interpolations, render Euler rotations computationally

2.1. ANIMATION 13

(a)

(b)

Figure 2.3: Figure 2.3a shows the L2 Euclidean distance between quaternions over time
during an animation. Figure 2.3b corrects the gaps by compensating for the multiple
quaternion interpretations.

14 CHAPTER 2. ANIMATION RELATED WORKS

unfeasible for most animation algorithms [24].

Quaternions were invented to mitigate this complexity, formulating ro-
tations such that they could be added, subtracted, and otherwise operated
without complication. A rotation (x, y, z) can be transformed into a quater-
nion of form (w, ai, bj, ck), where complex numbers i, j, k have the prop-
erty:

i2 = j2 = k2 = ijk = −1 [25]. (2.2)

Conversion between Euler and quaternion notation is generally imple-
mented as built-in functionality for developers and animators in software
such as Blender and Maya. Distance metrics and interpolation for quater-
nions, however, are less straightforward.

The distance between two vectors, q and r, is the L2 norm ||q - r||.
This formulation partially works for quaternion vectors (Figure 2.3a), but
quaternions redundantly represent rotations in 4-dimensional space. Just
as 720◦ = 360◦ in Euler rotation, multiple quaternions exist for a given ro-
tation at 2π intervals. Rearranging the terms to exploit complex number
cancellation, we can correct this issue with an absolute value [26]:

d(q, r) = ||q-r|| (2.3)

= q2 + r2 − 2qr

= 1 + 1− 2|qr|

= 2(1− |qr|). (2.4)

Figure 2.3b shows the corrected result.
When animating, spherical rotations do not appear natural under lin-

ear interpolation. For this reason, Shoemake [27] introduced spherical
linear interpolation for quaternions, which interpolates rotations across
a sphere at unit-radius. This procedure computes inefficiently, but paved
the way for other similar concepts.

One such improvement is exponential mapping. In exponential map-
ping, we linearly interpolate quaternions on a tangent plane to the

2.1. ANIMATION 15

Figure 2.4: This is an example of a non-linear spherical rotation being mapped to a tan-
gent plane. This sort of motion is not easily expressed in linear interpolation for Euler or
quaternion rotations.

rotational sphere [28]. Figure 2.4 illustrates the exponential mapping. To
enter the tangent plane, we take log(q) for unit quaternion q. The inverse
mapping, elog(q), returns the vector to quaternion space. Taking advantage
of Euler’s formula [28], this can be simplified as follows:

Quaternion notation:

q = a+ bi+ cj + dk

= a+ v (2.5)

Exponential mapping:

v′ = log(q)

= cos−1(a)
v
||v||

(2.6)

16 CHAPTER 2. ANIMATION RELATED WORKS

Inverse mapping:

q’ = ev’

= cos(||v’||) + sin(||v’||) v’
||v’||

(2.7)

Exponential mapping is exploited extensively in Chapters 3 and 4, where
the pose algorithms take place within this mapping.

2.1.5 Animated Splines

To animate a character between poses, the animation software interpolates
each joint position and rotation for all keyframes in the timeline. This in-
terpolation should be smooth unless noted otherwise by an artist. Con-
trols should be made available to sharpen or flatten the “easing” of the
movement over time. This is done with splines.

Splines are graph interpolation functions that connect the dots between
constrained points. They are piecewise defined by polynomial curve seg-
ments, joined together by imperceptibly smooth seams [29]. There are
many types of splines, but Bézier curves are the most useful for anima-
tion [29]. Pose data points are interpolated smoothly, and the segments
are joined together by a flat tangent line. The tangent line is divided in
two pieces, and tangent control handles are exposed to the artist.

Figure 2.5 illustrates Bézier curve splines in Blender’s motion graph
editor. An artist can manipulate the tangent, and therefore the curve, to the
left or right of a keyframe. The length of the tangent handle determines the
extent of the motion falloff and the angle of the tangent handle determines
the falloff shape. The curves represent motion over time, where the slope
of these curves represent positional or angular velocity. An animator will
manipulate these curves to animate position and angle taking into account
a specific velocity, acceleration, and force.

2.1. ANIMATION 17

Figure 2.5: A spline motion graph of Bézier curves. These motion graphs depict time
(x-axis) vs. rotation or position value (y-axis). In this graph, X and Y rotation channels
(red and green lines) are represented as splines. The keyframes orange dots are interpolated
via the spline, guided by the tangent controls (orange circles with handle bar) for a simple
animation created in Blender3D.

18 CHAPTER 2. ANIMATION RELATED WORKS

Figure 2.6: Motion Capture data converted into splines in the Blender motion graph.
Each spline is associated with a single dof in a skeletal joint. The density and chaos of the
keyframes (orange dots) highlight the challenge of mocap editing [14].

.

Figure 2.7: This is an example of an artist-defined falloff spline used in modeling and
animation. The artist-weight-painting defines the influence an operation has on vertices.
An animated deformation may move the central vertex to a new location (center of red).
Nearby vertices would be interpolated using these falloff weights (blue is 0 influence, red
is maximum influence)

2.1. ANIMATION 19

It is typical to have upwards 150 degrees of freedom (dofs) in a production-
quality skeletal rig in the film industry [23]. A dof is assigned for each
unique movement parameterization. For example, a single rigid object
can rotate about the yaw, pitch, and roll axes while moving in the x, y, and
z directions, yielding 6 dofs [30]. Each dof has its own motion channel
spline for animation. The matter is complicated further in motion capture,
where each dof is keyframed for every single frame in the timeline. Figure
2.6 shows the scrambled web of splines for a relatively simple rig from
the CMU motion library (30 joints × 3 rotation dofs). A skeleton of n
unconstrained bones contains 3(n− 1) dofs [30]. This poses a challenging
problem for designing an interactive editing system.

2.1.6 Falloff Splines

In addition to smoothly interpolating curves, artists use splines to specify
falloff weights. Falloff weights are an additive function that interpolate
some entity from an activated state to an inert state. In other words, it is a
slow on-off switch. The falloff weights range from 0 to 1, with 1 being full
activation. These weights determine the influence that a given operation
has on an animation, deformation, or some other activity. For example, in
facial animation, the face muscles are separated into regions, and expres-
sions are applied to these muscles through falloff weights. Blend shape
sliders or splines control the activation of each muscle, and the falloff con-
trols the extent of the effect that muscle’s movement has on the skin [31].

Because linear interpolation is unnatural, splines are frequently used
to achieve organic falloffs [32]. Figure 2.7 shows falloff weight paintings
on a sphere. Four different interpolation schemes are demonstrated, each
determined by a falloff spline. The functions blend from red (maximum
weight) to blue (minimum weight) as determined by the spline. Profes-
sional animators are familiar with spline falloffs, which appear frequently
in animation software [33]. For this reason, our editing system seeks to

20 CHAPTER 2. ANIMATION RELATED WORKS

create a spline-like solution for animators.

Chapter 3 proposes the use of falloff splines for inserting edits into
motion capture data. A manifold-based distance is used to calculate these
splines. The next section will explain this manifold, as well as similar
geodesic distance techniques.

2.2 Manifolds

A pose, p, was previously defined as the n-dimensional vector of values
describing the configuration of controls that positions a character. Poses
are points that lie in very high dimensional spaces and can easily reach
vectors of n > 150 elements. When a character animates in time, the values
of this vector change, forming a line in n-dimensional space.

Humans do not move robotically and cannot perfectly execute actions.
It is incredibly difficult to perform an action twice in exactly the same
way—each movement will be slightly different [34]. If a mocap actor is
recorded for an extended length of time and continuously hits similar
poses repeatedly, the line that the vectors make in pose space start to form
concentric loops. That is, the lines are close together, but do not overlap
perfectly.

If the actor keeps performing the same motions over and over, eventu-
ally the points in this high dimensional space become so dense that they
form a surface between the lines [34]. This is the animation manifold—a
3D surface in the n-dimensional animation space, representing the range
of achievable motion along which our character animates.

2.2.1 The Graph Laplacian

To mathematically approximate the animation manifold, we will use the
graph-Laplacian to make a connected network of poses.

For a connected graph of n nodes, the graph Laplacian is expressed as

2.2. MANIFOLDS 21

Figure 2.8: An example of a connected graph of nodes.

L = DA − A, (2.8)

where DA is the diagonal degree matrix, and A is the adjacency ma-
trix. The degree matrix tells us the number of neighbors shared by a given
node. So, the ith diagonal entry is the number of connections node imakes
in the graph. The adjacency matrix tells us which nodes are neighbors i,
placing a value of 1 at the location of each neighbor j in Aij .

The node graph in Figure 2.8 gives rise to a Laplacian of the form

A =

1 −1 0 0 . . .

−1 2 −1 0 . . .

0 −1 2 −1 . . .

. . .

in which each row sums to 0. In this example, the first point has one

neighbor, the second and third points have two neighbors, and so on.

The Laplacian has a number of useful applications, namely as a differ-
ential operator in multivariable calculus [35]. The Laplace-Beltrami oper-
ator is a more advanced version of the Laplacian that weights the

22 CHAPTER 2. ANIMATION RELATED WORKS

adjacency matrix elements for structural cohesion. This is useful for situa-
tions where the shape of the graph is just as important as the connectivity.
It is known that in some circumstances the graph Laplacian converges to
the Laplace-Beltrami operator [36]. We will take advantage of this prop-
erty in the formulation of our manifold for Green’s function calculation.

In our work, instead of an adjacency matrix, we construct a normalized
probability distribution that describes the likelihood of one pose shifting
into its adjacent poses. This connectivity graph is the foundation for a
number of mathematics techniques that we can apply to the animation
manifold.

2.2.2 Dimensionality Reduction Techniques

In animation, a character’s movements will often comprise a continuous
subset of the pose space. Therefore, the animation space is a lower di-
mensional manifold within the pose space. Because these spaces are high
dimensional and unintuitive, this thesis will draw on dimensionality re-
duction techniques to define the manifold. Editing animations becomes a
practice of navigating this lower dimensional manifold and determining
geodesic pose distances on its surface.

Dimensionality Reduction is commonly used in computer science to
compress high dimensional data or to expose low dimensional patterns
that lie in high dimensional spaces. Just as its possible to draw a 1D line or
2D circle in 3D space, high dimensional poses can be part of a simple ani-
mation structure with few dimensions. It is useful to visualize animations
with these lower dimensional manifolds [37].

Figure 2.9 shows the dimensionality reduction of an animation mani-
fold for a walk cycle. A person who is walking in a repetitive cycle over
and over is stuck in a loop; the low dimensional manifold can be seen as
a circle or a square. This mapping is done with two different techniques,
diffusion mapping and isomapping, each of which identify different char-

2.2. MANIFOLDS 23

(a)

t = 2

(b)

Figure 2.9: Dimensionality reduction in the embedded Euclidean space. Results from
Isomap (a) and diffusion map (b) dimensionality reduction of a run cycle. The large red
dot is the first animation frame, the blue dot is the last. The Euclidean distances measured
in the two-dimensional plot do not generally reflect distances between poses.

24 CHAPTER 2. ANIMATION RELATED WORKS

acteristics in the embedded representation. The isomapping sees the rep-
etition as a perfect circle, whereas the diffusion mapping spots distinct
moments of change, such as a stomping foot or slight mid-air pause in the
gait.

Porte et al. [38] describe four major techniques for dimensionality re-
duction: principal component analysis (PCA), multidimensional scaling
(MDS), isometric feature maps (isomap), and diffusion maps.

• PCA is a simple subspace projection that finds a linear mapping from
a high dimensional data set into a subspace of principal components
that best capture the structure of the original data. PCA fails to cap-
ture the non-linear qualities of many real-world data sets, but is use-
ful in machine learning, where PCA expresses trained data as a linear
sum of weights [38]. It is also very efficient to add new data, and use
PCA to contextualize it in the new subspace.

• MDS finds a lower-dimensional data set that minimizes strain within
the data. By minimizing strain, we mean that the pairwise distances
between points in the original high dimensional space is retained in
the lower dimensional MDS space. Euclidean-distance reliance in
MDS provides little information on the global structure of a data set,
but it is good at dealing with localized information [38].

• Isomapping is a technique similar to MDS, however it preserves
geodesic distances by accounting for graph-based path lengths. Isomap
is, therefore, representative of the manifold information of the data
set. Unfortunately, it is sensitive to noise—a problem that has pro-
found implications in home-consumer motion capture devices [38].

• Diffusion maps consider the underlying connectivity of a data set
and reorganize the set to achieve non-linear dimensionality reduc-
tion. Initially, only local information is used in the similarity mea-
sure. A time-dependent diffusion process slowly reveals more of the

2.2. MANIFOLDS 25

data. The diffusion time can be interactively changed to
encompass more of the manifold structure [38].

Figure 2.10: Principal Component Analysis finds the two basis vectors that best describe
this data set. The graph axes describe the original Euclidean coordinates. The red and
black arrows represent the new basis discovered through PCA.

These dimensionality reduction techniques are also useful for describ-
ing data in other ways. Figure 2.10 shows a scattered data set, offset from
the Euclidean axis coordinate system. It is difficult to mathematically ex-
press the primary dimensions of the data. PCA employs a spectral or
eigen-decomposition on the data to find a new mathematical basis for de-
scribing the information. Figure 2.10 shows the new basis vectors (red and
black arrows) gained by transforming the data to a new coordinate frame.
In PCA, dimensionality reduction is performed by removing unnecessary
dimensions in this way [39].

26 CHAPTER 2. ANIMATION RELATED WORKS

2.3 Chapter Summary

In this chapter, we discussed the origins and types of motion capture record-
ing techniques. We defined common animation practices, such as keyframe
and spline-based character animation. We discovered mathematical for-
mulations for high dimensional character poses as quaternions and meth-
ods for interpolating these poses. When enough of these poses accumulate
in a data pool, this large collection of poses in animation space forms a sur-
face called a manifold, which can be approximated mathematically using
the Laplacian.

Animation space is massive, and motion-capture data adds even more
density and bulk to the equation. To make this information more manage-
able computationally, we employ dimensionality reduction algorithms to
view or operate on the data in a low-dimensional space.

The original intent of this thesis research was to apply diffusion map-
ping to motion capture in a novel manner; in doing so, we discovered
another method that offers more value to motion capture editing. Chapter
3 focuses on this method, the Green’s function of the Laplacian. We will
draw on the dimensionality reduction techniques from Chapter 2 to de-
scribe the animation manifold, and we will compare them with our own
method for finding geodesic manifold distance (or similarity) between
poses.

Chapter 3

Manifold Pose Distance for
Intelligent Motion Capture
Editing

3.1 Introduction

Creating believable motion for digitally animated characters is an impor-
tant problem in film and games. Motion capture performances provide
detailed and realistic animations, but only after a tremendous amount of
effort in post-processing the data.

Suppose, for instance, that an animation director imposes a creative
change late in production, and the character needs to step over objects
that were not originally present on the motion capture set. An anima-
tor would have to re-animate hundreds of steps individually to make the
character walk with higher steps. Alternatively, perhaps the actor’s skele-
tal motion needs to be retargeted to a creature with a physiology different
to humans. An entire animation database would be off kilter, needing
countless changes. These scenarios frequently arise, as creative changes
or complications require extensive and repeated changes to a character’s
entire animation style.

27

28 CHAPTER 3. MANIFOLD POSE DISTANCE

A typical skeletal rig may have 150 degrees of freedom across hundreds
of frames. If changes are needed, editing this data on a local or global scale
is a daunting task. Re-purposing or reusing these animation sequences is
equally burdensome, and the work falls largely on the shoulders of an
animator, with assistance from animation algorithms.

Many of these techniques rely on artist-defined splines, interpolating
between character poses in the timeline. One difficulty is that splines are
not generalizable; a slow-moving bone requires a wide falloff compared
to a faster animation. These splines need to be manually defined on a case
by case basis—a cumbersome task for the artist. Secondly, splines always
have the same smooth shape, and may not appear natural for realistic mo-
tion.

We seek to find a natural method for interpolating poses and pose edits
in the timeline. To accomplish this, we find a measure for pose similarity.
Poses can be represented as high dimensional vectors that describe a char-
acter’s configuration. In the case of a skeleton, these can be concatenated
positional or rotational data vectors. The pose space of this character is the
space spanned by all possible configurations of the character controls.

Instead of relying on splines, we propose to let the data “speak for
itself” by basing the falloff directly on the change of pose of the underlying
motion. A data-driven falloff should have these characteristics:

• It should be proportional to the change in pose and correspond to
distance on the manifold of movement.

• it should be smooth if and only if the change in pose is smooth.

• It should be reasonably efficient to compute, thereby allowing inter-
active edits.

Criterion three prohibits the use of solutions (such as the length of a geodesic
on the manifold of poses) that require numerical optimization.

Unfortunately, defining a distance on poses has well known difficul-
ties: Euclidean distances are not appropriate due to the rotational nature

3.1. INTRODUCTION 29

of an articulated body. On the other hand, distances founded on concate-
nated rotational degrees of freedom (dofs) have the problem that major
joints such as the shoulder have a much larger influence than the distal
joint of a finger – a metric in joint angle space typically ignores both bone
lengths and their connections. This problem can be solved by weighting
each dof differently [40], though (depending on the underlying represen-
tation of rotations) these weights may need to be recomputed at each pose.

Manifold learning techniques find an embedding of movement in a
low (typically two- or three-) dimensional Euclidean space that approx-
imately preserves distances on the manifold. While these methods are
ideal for visualizing the abstract character of a motion, they are not imme-
diately helpful for defining falloffs: in general, it is not possible to embed
a motion in a 2- or 3-dimensional space without distorting distances and
creating a non-injective mapping. Just as well, Euclidean distances in the
2- or 3-dimensional ambient space correctly reflect distances on the mani-
fold only for nearby points (Figure 2.9).

In this thesis we instead start from another idea popularized in the
manifold learning community, specifically, that the graph Laplacian cap-
tures the intrinsic geometry of a manifold (in this case the manifold of
body movement). With this in mind, we show that the Green’s function of
the Laplacian provides a natural similarity measure between poses.

Our data-driven falloff is somewhat analogous to the difference be-
tween a generic spline and the intelligent region selection available in pop-
ular image editing software such as Photoshop (e.g. algorithms such as
[41, 42]), but applied to the animation domain. The result is intelligent
interpolation that blends new poses into the existing motion curves, with
the advantage of a thresholding dial for integrating the edits. For cyclical
animations, the data-driven falloff can be recycled, with capabilities for
powerful non-local edit propagation.

The remainder of this chapter compares several distance metrics for
use in pose interpolation. Other dimensionality reduction techniques have

30 CHAPTER 3. MANIFOLD POSE DISTANCE

been employed for this purpose [43, 44]. However, this chapter will ex-
plain the improvements to motion capture editing gained by our novel
contribution, a natural animation falloff distance that is given by Green’s
function of the pose space Laplacian.

3.2. BACKGROUND AND RELATED WORK 31

3.2 Background and Related Work

3.2.1 Motion Editing

The simplest form of editing motion is blending a pose or animation se-
quence into nearby frames. Mocap data is converted to motion splines,
where the animator can edit poses and blend the curves together with cus-
tom falloffs. Spline blending can result in awkward pose transitions with
bad timing. This problem is often treated as a signal processing problem
[45] or a constrained optimization problem.

Witkin and Kass [46] initially proposed spacetime constraints for
keyframed animation editing. Their system takes spacetime constraints
(e.g. foot placement, jump height, energy, timed targets) and finds the op-
timal solution for physically accurate animation, while animators tweak
these parameters to their liking. Gleicher [47] introduced registration curves,
which blend motion curves using time warping, local coordinate frames,
and motion constraints. These blending, constraint, and time warping
techniques have since been applied to motion capture editing [47, 48]. Gle-
icher [49] provides a useful comparison of constraint-based techniques in
animation.

This paper discusses a technique to enhance the artist’s traditional work-
flow, without resorting to an automated simulation. We do not make use
of animation constraints in this paper, but their relevance is significant in
the subject of motion editing.

3.2.2 Dimensionality Reduction for Motion Editing

In character animation, dimensionality reduction has been applied to an
array of various applications. Tournier et al. [50] used dimensionality re-
duction in motion capture to compress and reconstruct motion graph sig-
nals to make high-dimensional mocap data structures more manageable.
Pose space data tends to be high-dimensional, sparse, and non-linear, so

32 CHAPTER 3. MANIFOLD POSE DISTANCE

dimensionality reduction is a common tool for making such information
more manageable.

Barbic et al. [51] apply low-dimensional motion and probabilistic PCA
to segment motion capture databases into classifiable activities (e.g. drink-
ing, sitting, walking). Lee et al. [52] take advantage of this classifica-
tion technique to train behaviours for an AI-controlled avatar. They pre-
processed motion data with PCA to emphasize similarities between mo-
tions, where a first order Markov process helps the AI decide which mo-
tion path to follow. Glardon et al. [39] use PCA to synthesize and in-
terpolate new walk patterns from trained mocap data. Safanova et al.
[53] adopts PCA classification to procedurally synthesize new motions
between artist-configured poses. Their solution is an optimization prob-
lem over the reduced-dimension animation space using animation con-
straints, inverse kinematics, and data from similar behaviors in the low-
dimensional space.

Seward et al. [43] suggest using a lower-dimensional manifold to re-
sequence and correct animated character motions. They construct a
temporal-spatial MDS distance metric that is sensitive to the orientation
and timing of the joints. The authors make insightful developments for
motion timing in MDS, but they found that the temporal preservation was
often extraneous. As such, our focus will remain solely on the spatial as-
pect of our data set.

Seward et al. assess the L2 distance metric with the Lee distance—a
distance metric derived from a first-order Markov process—but found no
conclusive results [43, 52]. The Lee distance shares similarities with our
method, in which the random-walk Laplacian is a probability of following
a given connected path in the data set.

Shin et al. [54] compare PCA, MDS, and isomaps for categorizing mo-
tion capture data. They apply these techniques to data visualization and
motion editing. In their system, the user edits motion directly in the low-
dimensional space through path sketching. However, sketching in the

3.2. BACKGROUND AND RELATED WORK 33

manifold space limits artistic control over the poses.
Given these comparisons of the dimensionality reduction methods, we

have chosen isomapping and diffusion mapping for studying our results.
Isomapping performs equally to or better than PCA and MDS in the ex-
amined literature [43, 44, 54]. We will also compare Diffusion Mapping
due to its manifold-awareness and intrinsic similarity to our method.

Most of these related works focus on heavily automated animation
synthesis or constrained animation methods. Our paper draws on the
same resources in dimensionality reduction, but offer the artist a tool for
hand-crafted control over their animations. It is designed to fit into a char-
acter animator’s traditional workflow of posing and keyframing.

34 CHAPTER 3. MANIFOLD POSE DISTANCE

3.3 Method

3.3.1 The Pose Laplacian

We must first represent the skeletal rig as a vector. For an articulated skele-
ton, we have chosen a quaternion representation.

Let x be a concatenated vector of all quaternion joints for a single pose.
To calculate the naive distance between poses, we use the L2 quaternion
norm from Equation 2.4.

We define a connectivity matrix, K, to relate close poses to one another.
We use a Gaussian kernel to filter out distant poses,

Ki,j = e
d(xi,xj)

2σ2 , (3.1)

where σ is a user-defined constant that adjusts the width of the Gaussian.
At this point, we have a matrix that defines each pose and its closest neigh-
bors.

In a motion capture skeleton, poses have a higher probability to shift
into a slightly varied pose rather than a vastly different one. A person’s
leg, for example, is not likely to suddenly invert itself. The animation
manifold is as smooth and continuous as the captured human motion.
Therefore, we construct a random-walk Laplacian to utilize this feature
of probabilistic pose-connectivity and define the animation manifold.

To create the Laplacian, let n be a vector of constants which
row-normalize K. We then diagonalize n into D Obtain the adjacency
matrix A and degree matrix DA by

A = D−1/2KD−1/2, (3.2)

DA = diag(rowSum(A)). (3.3)

This produces the Laplacian,

L = DA − A. (3.4)

3.3. METHOD 35

Now that we have information about the animation manifold, we can
use techniques from spectral analysis to parameterize the space. To this
end, we obtain the eigenvalues and eigenvectors λk, φk of L through eigen-
decomposition.

3.3.2 Green’s function

The Green’s function of the Laplacian acts as a ”generalized covariance”
and provides a natural measure of similarity between poses. In Appendix
A there is a detailed overview of Green’s function and its use in related
fields. This thesis exploits its utility as a distance measure below. As an
intuitive justification, note that in a setting with regular samples such as
an image, the Laplacian matrix is the approximate inverse of a commonly
used covariance function (see Appendix A). Since it is defined in terms of
the eigenvectors of the Laplacian, it reflects the geometry of the manifold
itself rather than the embedding space (assuming the discrete approxima-
tion is adequate).

Methods like isomapping or diffusion mapping will approximate the
manifold surface, on which we can measure geodesic distances. For a
falloff, we don’t want a strict distance measure, but rather a weighting
that emphasizes similar poses. For the similarity measure, we turn to
the Green’s function (see Appendix A for Green’s function as a similarity
measure.)

To obtain the manifold pose distance between poses x and y, apply
Green’s function,

d(x, y) =
∑
k>0

φk(xi)φk(xj)

λk
. (3.5)

We form a matrix P of all pose distances,

Pij = d(xi, xj). (3.6)

36 CHAPTER 3. MANIFOLD POSE DISTANCE

3.3.3 Edited Pose Interpolation

Here we illustrate a simple method for applying the Green’s function dis-
tance from equation (3.5) as an animation falloff. As mentioned previously,
animators commonly use spline falloffs to interpolate poses in keyframe
animation. We define a falloff weight ranging from 0 to 1, that effectively
shifts a pose edit from off to on.

For a pose, pi, we wish to make a change and edit the animation to tar-
get a new pose, p′i. The difference between these poses is the exponential
mapping of the delta-pose dp, given by

dpi = log(p′i)− log(pi). (3.7)

Points of inflection in the rows of the distance matrix,Pi, highlight tran-
sitions in skeletal behavior. We scale Pi between 0 and 1 across the edited
region of the timeline. That is, the pose distance must be 0 at the edited
pose Pi=j , and 1 at a sufficiently distant motion transition. Doing so en-
forces a smoothly tapered timing extent, but an artist may want interactive
control over this scaling. For each pose in the edited sequence, we find a
weight wij :

wij = min(1− Pij, 0). (3.8)

For j frames in the editing sequence, apply the weighted delta-pose:

p′j = exp(log(pj) + wijdpi). (3.9)

At pi, the edited location, the weight is at a maximum and fully activates
the delta-pose. Further down the timeline, the weight tapers off, eventu-
ally deactivating the delta-pose at 0. Once this is baked into the animation
data, the animated result is our edited output.

3.4. RESULTS 37

3.4 Results

We compare the Green’s function distance metric to two other manifold
learning techniques: isomapping and diffusion mapping. Diffusion map-
ping has not been historically applied to animation, but yields results of
comparable quality to MDS and isomaps. Diffusion mapping features an
added benefit of interactively viewing the manifold at various diffusion
times [38].

In these experiments, we process mocap data from the Carnegie Mellon
University motion capture database. We have chosen to examine animated
run cycles due to their comprehensible and periodic characteristics.

3.4.1 Dimensionality Reduction

Dimensionality reduction has been noted as an excellent visualization tool
for animation manifolds [54]. To understand the behaviors of our dis-
tance evaluation, it is useful to compare the various manifold learning
techniques.

Figure 2.9a shows a run-cycle embedded in a lower dimensional space.
Human movement never perfectly repeats itself, but recurs closely enough
that the motion is organized into similar regions of the embedded space.

The diffusion mapping shape Figure 2.9b features bulges and corners,
revealing an emphasis on the local transitions in motion behavior. Here
the four corners represent the four key poses in the run cycle: step, transi-
tion, and their mirrors.

3.4.2 Pose Distance

Using the normalized pose distance calculated from Equation 3.5, Figure
3.1 shows the distance from a control pose to every other pose in a 130-
frame animation sequence. This is periodic motion, as an actor steps right-
left-right-left and so on. Small dents, bends, and plateaus indicate the

38 CHAPTER 3. MANIFOLD POSE DISTANCE

0 20 40 60 80 100 120
Frame Number

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.1: Green’s function distance from pose 53 in a walk cycle. Compares distance
against all poses in the timeline. We see that the pose distance is zero at the current frame
(yellow bar), as the pose is compared to itself.

prominent characteristics of the skeletal motion.

In figure Figure 3.2, we see the pose distances for a non-periodic mo-
tion. This actor abruptly turns around in the middle of a walk. There ap-
pear to be points of transition in the motion, but the beginning and end of
a falloff is not well defined from this distance measure. Inflection points
and bends serve as good guidelines for falloff boundaries, but an artist
may want customized control over the falloff scaling for blending their
edit into this motion.

Poses for diffusion mapping and isomapping lie in an embedded space,
in which the L2 norm returns a manifold-preserving distance metric. Fig-
ure 3.3a depicts an overlaid comparison of all three distance metrics. Over-
all, the three methods detect the same animation characteristics and reveal

3.4. RESULTS 39

0 20 40 60 80 100 120 140 160
Frame Number

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.2: Green’s function pose distance for a different animation. In this animation, a
character is turning around mid-walk. It is non-periodic, so there are multiple phases to
the action (indicated by bends): walk, stop, turn, and walk. The falloff near the control
pose (yellow bar) breaks up the local movement into a smooth curve.

periodic motion behaviors across the entire timeline.

Figure 3.3b takes a closer look at the distance falloff near the edited
pose. Zooming in, the local pose information is very rounded for Green’s
function, somewhat tapered in the diffusion map, and sharply cornered
in the isomap. When animating the sharp isomap falloff, one will note
a quick snap into and out of the edited pose. This effect is noted in the
accompanying video results. A smooth falloff causes the animation to
ease gently through the targeted pose, demonstrating the effectiveness of
Green’s function for animation interpolation.

40 CHAPTER 3. MANIFOLD POSE DISTANCE

3.4.3 Edited Animation

Animation characteristics can be inferred from the pose distance data. A
heatmap of the Green’s function distance matrix (equation 3.6) is given in
Figure 3.4. This map visualizes the contours of the animation manifold.
The main diagonal is constant, as ||pi=j|| = 0.

Along the main diagonal, the color of the band reveals the local falloff
curve. The width of the band gives us insight into motion characteristics.
For example, areas of constant thickness (frames 35, 60) indicate unchang-
ing poses, which briefly happens between steps frozen in midair. At frame
100, a pinch occurs from the jolt experienced by planting a foot heavily on
the ground. The falloff properly reflects this jolt, and edited poses will
carry a similar feature. Noise at frame 19 distorts the graph, but only at
that localized region. An edited pose will accumulate the same motion
feature.

The periodic run-cycle shows its sinusoidal patterns along the x-axis,
suggesting the periodic running motion. This repetition is what allows for
propagated edits to similar poses throughout the timeline.

Figure 3.5 demonstrates the edit propagation in practice. For repetitive
actions, a single edited pose and falloff animation can propagate to all
instances of similar poses in the timeline. In Figure 3.5, the artist wishes
for the character to lift their knees while running. With one simple edit,
the entire run-cycle is changed.

The efficacy of the animated falloff can be observed in the accompa-
nying results video. As seen in Figure 3.3b, the pose edits for Green’s
function are smoothly eased, and the edit adheres to the local manifold.
However, large edits or physics-altering edits introduce inaccuracies in
the animation. For example, editing a foot that is planted on the ground
will produce the famous ’skating foot’ if not treated as a constrained prob-
lem. (The skating effect is just as one would expect, the sliding of body
parts on contact surfaces, such as the ground or hand-holds.)

As seen in Figure 3.6, the Green’s function distance changes

3.4. RESULTS 41

significantly on a global scale for different values of σ. Local information
near the edited frame is more stable, but a slight offset of 2-3 frames is
sometimes introduced for bad values. σ should be chosen based on den-
sity of poses in the edited pose space. This parameter, as well as the falloff
shape, should be exposed to the artist for tweaking.

3.4.4 Evaluation

This pose falloff technique is designed for an artist using spline keyframes
to animate a character, so we will compare our results to this method. In
spline animation, the motion of a single joint will be presented in a graph
of motion channels, one for each degree of freedom in the joint. After mov-
ing the joint to a new position, the spline is recalculated to incorporate the
new data point, and the new falloff is used to interpolate the in-between
poses.

In Figure 3.7 we look at the vertical movement channel of the ankle
in a walk cycle. In the first animation style, five keyframes were used to
create the motion on an inverse-kinematics foot. In the second style, the
animation was baked into a forward-kinematics motion capture format,
with 40 keyframes (1 per frame). The two animations were each edited,
forcing the character to lift her feet higher as she walks.

Figure 3.7 depicts four different motion graphs: the original keyframe
animation, keyframe animation with an edit to raise the knees in the walk
cycle, the baked ’mocap’ version of the animation, and the Green’s func-
tion falloff-edited motion.

Unsurprisingly, the original animations are nearly identical, with some
minor detail loss attributed to the baking from an intricate IK rig to a sim-
plified FK rig. For the edited animations, the spline falloff matches the
Green’s function falloff in both shape and timing extent. Editing a single
pose of mocap data with Green’s function falloff produces the same effect
as editing a pose in a spline animation.

42 CHAPTER 3. MANIFOLD POSE DISTANCE

0 20 40 60 80 100 120
Frame Number

0.0

0.2

0.4

0.6

0.8

1.0

Diffusion

Green's

Isomap

(a)

48 50 52 54 56 58
Frame Number

0.00

0.05

0.10

0.15

0.20

0.25

Diffusion

Green's

Isomap

(b)

Figure 3.3: Comparison of Green’s distance vs. diffusion distance (10 iterations) vs.
isomapped distance for frame 53 in a run cycle. Figure 3.3b is a zoomed-in compari-
son of Figure 3.3a near the control pose. Note the smoothness of Green’s function at this
point.

3.4. RESULTS 43

Figure 3.4: This map is pose distance vs. pose distance for all animation frames, describ-
ing the 3d surface from which Figure 3.1 is a single slice. Dark red indicates a minimum
distance.

44 CHAPTER 3. MANIFOLD POSE DISTANCE

Figure 3.5: An artist edits the pose only at frame 20 (left), lifting the knees higher. A
propagated edit occurs automatically at frame 110 (right), which is a similar pose in the
run-cycle.

3.4. RESULTS 45

0 20 40 60 80 100 120
Frame Number

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.6: The Green’s function distance from a control pose over several different sigma
values (lower values are more blue). There are a wide range of choices for an artist, that
may highlight different motion features.

46 CHAPTER 3. MANIFOLD POSE DISTANCE

0 5 10 15 20 25 30 35
Frame Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GreenFn Ground Truth

GreenFn Edit

Spline Ground Truth

Spline Edit

Figure 3.7: Motion Graphs: Vertical Position vs. time. This is the z motion channel of a
foot in a keyframe-animated walk-cycle. A keyframe animation was created, and then
edited to step higher. The original animation was converted to a motion capture format,
where a similar edit was made using our method.

3.5. CHAPTER SUMMARY 47

3.5 Chapter Summary

In this chapter we have introduced the Green’s function distance for the
animation manifold. We used this distance as a natural falloff for re-
sequencing pose positions in a motion capture performance animation.
Until now, this problem has been either solved tediously by hand with
splines, or automated through physical simulation solvers. AI and con-
straint solutions are available through dimensionality reduction and man-
ifold training, but such solvers remove the precision control that hand-
crafted artistry offers.

Our method proved to yield better falloff curves than diffusion map-
ping and isomapping, whose dimensionality reduction techniques have
an established history in editing motion capture animation. Our method
can be thought of as a data-driven mocap spline, treated to operate in the
animator’s usual workflow. We baked a keyframed spline-animated se-
quence into a motion capture format and tested the Green’s function falloff
directly against the spline method. The results were nearly identical, prov-
ing the accuracy of Green’s function falloffs as motion capture splines.

Chapter 4

Non-local Pose Means for Motion
Capture Noise Reduction

4.1 Introduction

4.1.1 What is noise?

Computer vision is prone to error. The algorithms and hardware are honed
by engineers to precision detail, but there always exists a slight inaccuracy
in even the most sophisticated of measurement devices. What appear to be
smoothly executed gestures on the motion capture stage will actually con-
tain small bumps, jitters, and outliers once measured. To eliminate this
unwanted noise in our data, we turn to an area of research aptly named
noise reduction, or denoising.

The predominant sources of noise in motion capture vary from system
to system, but are often attributed to intrinsic hardware faults or physical
and real-world limitations of the tracking setup. Two major sources of
noise are observed in motion capture sensing:

Gaussian noise: This is a signal-independent noise that features a pre-
dictable normal distribution. A typical source of this noise is environmen-
tal, thermal, or electronic fluctuations in the sensor [55]. Gaussian noise

49

50 CHAPTER 4. NON-LOCAL POSE MEANS

adds a jittery shake to every joint in the skeletal motion. One must be
careful to not confuse Gaussian noise with high frequency motion detail,
such as the tremors of a clenched fist.

Impulse noise: Sometimes called salt and pepper noise for its visual
appearance in imagery, this can be caused by dust or mistracked markers
[56]. This creates outlier joint orientations and discontinuities in otherwise
smooth motion data.

Impulse noise is less predictable—automated processes cannot easily
separate this systematic anomaly from the true motion data. Take, for
instance, skeletal motion tracking. The body’s underlying bone structure
is rigid, but we cannot track bones directly—we must place markers on the
skin and estimate the location of the bone. Deformation in the body tissue
causes the surface markers to displace relative to the bone orientation.

In a mocap body suit with non-rigid velcro markers loosely attached
[57], sharp movements may jostle and dislodge mocap markers out of
place. Other frequent marker issues include marker occlusion, marker
flipping, or false-positives (i.e. from shiny or reflective objects in an opti-
cal tracking space). These marker problems will cause outliers or missing
data an animation sequence.

Some tracking solutions, such as the Microsoft Kinect [19] markerless
skeletal tracking API, can estimate the underlying rigid structure of the
skeleton. However, these are only estimates, exhibiting some degree of
solver error from unknowns in the sensing data. This data is so volumous
that data compression techniques are frequently employed for easy trans-
feral or processing. When data is lost during the compression and decom-
pression stages, it often resurfaces as noise or missing information [58].
Various motion tracking sensors will encounter different types of sensor-
dependent noise, including Poisson noise, film grain, anisotropic noise, or
uniform noise [56].

These are fundamental problems in computer vision, but the enormous
variety of available motion tracking systems and noise conditions place

4.1. INTRODUCTION 51

these concerns well beyond the scope of this thesis. This research aims to
correct motion capture data itself, assuming the end user has no control
over the recording environment.

For testing our results, we gather data provided by the Carnegie Mel-
lon University motion capture database [21]. In this optical tracking sys-
tem, the prevalent noise conditions are Gaussian and impulsive, while
non-Gaussian sensor noise will contribute a reasonably small random er-
ror to the final motion tracking solution [59].

4.1.2 Processing Noise

Human motion denoising is difficult because the body’s motion is articu-
lated into a high number of degrees of freedom, with a hierarchical struc-
ture and detailed time-sensitive movements [60]. Each of these factors is
challenging in their own right; when coupled together, slight changes in
the data will create an implausibly unrealistic motion.

In basic image denoising techniques, such as a Gaussian low-pass fil-
ter, a blurring effect occurs to smooth over the noise details in an image.
Blurring in the time-domain, however, means that the position of body
parts change with respect to time. This is bad, and the blurring will alter
the timing—and therefore the physics—of our motion. This physical shift
will make a walking character appear as if they are slipping, sliding, or
skating—introducing the classic ’skating foot’ problem [61].

State of the art solutions in image denoising have made an imprint
on motion denoising in recent decades [60, 61]. These methods adapt
trends in machine learning techniques to train motion library databases
for example-based denoising systems. These methods have proven to
be extremely effective denoisers, but are not user-friendly. Additionally,
extensive motion libraries are not readily accessible to most animators
using commercial animation software, which are typically bundled with
lightweight signal processing tools.

52 CHAPTER 4. NON-LOCAL POSE MEANS

4.1.3 Research Method

Reiterating our objectives from the thesis introduction, this research aims
to find a noise reduction solution that:

• preserves motion details with little blurring or skating,

• requires no external training data and relies only on the active ani-
mation,

• works at interactive computation speeds,

• reliably reduces noise for a variety of noisy conditions: uniform noise,
gaussian noise, spikes,

• outperforms other denoising filters,

• and incorporates manifold learning, whereby the filter is aware of
the pose space of our animation.

Most denoising techniques characteristically fit into one of two cate-
gories, using either local or non-local information from the noisy manifold.
Local denoising techniques will compare the noisy sample to its spatially
nearest neighbors. A non-local filter extends this comparison to any sam-
ples in the entire manifold—as long as they are similar signals (or in our
case, poses) [61].

To fulfill our denoising objectives, this research proposes the novel
adaptation of the non-local means (NLM or NLMeans) image denoising
algorithm for motion capture noise reduction. Non-local means is an im-
age processing technique that compares the averages of distant and lo-
cal neighborhoods for data smoothing [62]. It smooths textures using
this non-local information, and is able to preserve sharp edges. This de-
tail preservation is highly important for motion capture—it will enforce
spatio-temporal cohesion in the animation, preserving the ’texture’ of the
motion curves (a.k.a. high frequency motion details).

4.1. INTRODUCTION 53

Our research contribution is the adaptation of NLMeans to mocap data,
in which we average weighted pose-vectors using similar non-local fea-
tures from the animation space. This novel application of non-local pose
means (NLPM) retains the strengths of its image-based predecessor, pro-
viding a strong denoising method that does not rely on large motion databases.

In the following sections, we will identify related works in image and
motion denoising, explain the non-local pose means method, and compare
the NLPM results to standard benchmarks in this research domain.

54 CHAPTER 4. NON-LOCAL POSE MEANS

4.2 Background and Related Work

4.2.1 Image Denoising Filters

Signal interference can appear in any measurement, so it is an area of in-
terest in many academic fields, e.g. bio-medicine, astronomy, computer
vision, audio engineering, radiometry, chemistry, or any field which ana-
lyzes empirically gathered numerical information. In Astronomy, for ex-
ample, what once was believed to be static background noise in measure-
ments of cosmic radiation actually contain information about the forma-
tion of our universe [63]. In medicine, a speck in an MRI biometric scan
of the brain is important information for a brain surgeon, where the dif-
ference between a physical anomaly and magnetic field noise is crucial for
patient diagnosis [64].

Consumer-grade computer sensing devices are recently popularized
by low-cost products like the Microsoft Kinect [19], Thalmic Labs’ Myo1,
and the Leap Motion [20] revolutionizing the way we interact with tech-
nology in our day-to-day lives. This increase in technological availability
has garnered a large amount of attraction to the denoising problem [65].
Denoising is a is a well researched field, but its techniques are still being
applied in new ways to pave the road for these exciting new computer
vision technologies.

Of the many image denoising options available, the Gaussian filter
ranks among the simplest and most commonly cited. The Gaussian low-
pass image filter is expressed as:

G(x, y) =
1√
2πσ

e(
−(x2+y2)

2σ2
), (4.1)

where σ is standard deviation of the Gaussian curve, σ2 describes the
variance, and the Gaussian is situated in a square 2D kernel of size l. A
Gaussian curve is infinite in size, so this cutoff point is user defined—by

1https://www.myo.com

4.2. BACKGROUND AND RELATED WORK 55

Figure 4.1: Gaussian LPF denoising of an image. Shows the original image (left), noisy
image (middle), and denoised image (right).

convention it is set to encompass 3σ of the data.
The kernel size, (−l ≤ (x, y) ≥ l), can then be determined by eliminating
values less than 5 percent of the kernel maximum [66]. The convolution of
an image with the Gaussian kernel has the effect of averaging a pixel with
its neighbors. The Gaussian falloff determines the weight and extent of
this averaging. This convolution can be implemented as a multiplication
in the frequency domain by exploiting the properties of the Fast Fourier
Transform (FFT) [67].

Despite this filter’s prominence and widespread use, there are a num-
ber of issues. The present noise is smoothed, but in doing so the original
data is distorted—blurring, edge displacement, and phantom edges ap-
pear in the filtered data [66]. Figure 4.1 shows an example of this qual-
ity loss, as Gaussian noise is added and removed from a photo. Due to
this poor performance, the Gaussian filter is often used as a groundwork
for more intricate denoising algorithms, but is seldom a solution in itself.
Deng and Cahill [66] proposed one such improvement. Their adaptive
Gaussian filtration partially combats the Gaussian’s limitations by incor-
porating multiple variance values in pre-processing, and by partitioning
the image to smooth sections of the image independently. A number of
Gaussian filter adaptations like theirs exist, but they are numerous and
only partially remedy Gaussian’s limitations [56].

The Butterworth filter, first described by Stephen Butterworth in 1930,

56 CHAPTER 4. NON-LOCAL POSE MEANS

is designed to have a flat-as-possible frequency response [68]. This 85-
year-old filter excels at removing spikes from noisy data. It is useful for
dust on a camera lens, or the common marker jumps noted in motion cap-
ture.

Perhaps inspired by the Gaussian FFT denoising, wavelet decompo-
sition allows a signal to be reduced to a linear combination of wavelets–
dozens of small impulse signals that, when combined, form a much more
complicated and structured signal [69]. In image terms, we wish to re-
move seemingly random static and preserve high frequency details (hair
strands, grass blades, sharp lines). In the wavelet domain, most of the
image lies in only a few of the coefficients [69]. Denoising with wavelets
becomes a practice of tweaking or thresholding unwanted coefficients to
filter their respective contributions to the image.

One drawback to the wavelet thresholding method, however, is that all
images will be decomposed differently, meaning wavelet coefficients will
need to be tweaked for even slightly disparate images [70]. Automatic
thresholding of the wavelet coefficients can be achieved through Bayesian
statistics, placing a probabilistic belief distribution on each coefficient [71,
72]. This method is only useful for images that can be described using
sparse coefficients, or for signals with a singular type of noise perturbation
[71].

Kalman filters are another probability-based denoising method. The
Kalman filter is a set of mathematical equations that also estimates noise
using prior probabilistic information [73]. Unlike Bayesian wavelet thresh-
olding, it is a linear predictive filter. It repeats this prediction process re-
cursively, trying to minimize mean-squared-error as it progresses. It is
often used for motion guidance systems in robotics, and has been applied
to the denoising problem in DSP, images, gesture prediction, and motion
capture [74].

In another approach to finding information about the underlying man-
ifold beneath the noise, anisotropic diffusion [75] improves the Gaussian

4.2. BACKGROUND AND RELATED WORK 57

model by incorporating edge detection mechanics and encourages blur-
ring through diffusion in regions between hard lines. This diffusion is
similar to the diffusion mapping seen in Chapters 2 and 3, in which the
diffusion is a computationally expensive iterative process. Huang [76] ap-
plied the diffusion improvements as Porte [38], and performed eigende-
composition on the diffusion matrix to calculate diffusion time iterations
with linear algorithmic complexity. Anisotropic Diffusion is a manifold-
aware blurring technique, marking this algorithm as a strong candidate
for the theme of this thesis and a good candidate for future work.

Lastly, example-based machine learning offers a different perspective
on denoising. A number of techniques rely on example image libraries,
and decompose images into a linear combination of overcomplete basis
vectors that describe the images in the library [77]. This method, called
sparse coding, is a popular trend in machine learning and non-local de-
noising. Yan et al. [61] performs such a technique on wavelet-decomposed
images with impressive noise reduction results. Our research avoids these
example-based methods, in preference of lightweight solutions that re-
quire no external data training. We cannot assume that an animator has
access to large motion capture libraries. With the large range of possible
motions in human movement, we cannot even guarantee that a library
will contain similar motions to any given animation.

4.2.2 Motion Denoising

Many researchers have applied the aforementioned image filters to mo-
tion capture, which have become common benchmarks for comparison in
this research area. In motion denoising, researchers have come to prefer
systems aware of the spatio-temporal motion characteristics, such as dy-
namical systems.

The previously-mentioned Kalman filter is a type of dynamical system,
in which a spatial and time dependent system of multiple states, driven

58 CHAPTER 4. NON-LOCAL POSE MEANS

by variables hidden to the observer [78]. Linear dynamic systems (LDS)
model observed measurements as noisy linear projections that evolve via
a low-dimensional dynamic process—such as a Markov process, in which
the state evolution of a system is dependent on a finite set of previous
states [79, 80]. Temporal lag is a problem in dynamical systems, as a time
delay will offset the data [9, 58]

Lately, data-driven methods have been noted as the most successful
denoising techniques [58, 60]. Lou and Chai’s example-based method em-
ploys singular value decomposition (SVD) to construct filter bases, iter-
ating over the solutions to optimize noise elimination [60]. It denoises
extremely well, but only when the database contains very similar ’fami-
lies’ of motion [58]. Actions from different spatio-temporal patterns lead
to poor filter bases.

To compensate for this limitation, Xiao et al. [58] adopt ideas from
sparse coding. While techniques such as PCA allow us to learn a complete
set of basis vectors efficiently, sparse coding returns an over-complete set
of basis vectors to represent input. The advantage of having an over-
complete basis is that our basis vectors are better able to capture structures
and patterns inherent in the input data [81].

Xiao et al. [58] and Feng et al. [9] break the pose up into partitions,
called poselets, to segment motion learning into smaller and more man-
ageable chunks. Their initial results outperform the previously mentioned
methods, but rely on pre-cleaned motion input libraries to function prop-
erly.

Animation Software Denoising

Raw motion capture data is usually directly applied to skeletons inside
major animation software, where it is then processed. Occasionally, the
tracking system software will offer some form of data processing, espe-
cially where compression and decompression is required [58], but typi-
cally the editing is left to the animator. Blender, Maya, Motion Builder

4.2. BACKGROUND AND RELATED WORK 59

[82], and other major animation software titles often rely on simple signal
processing kits and are seldom bundled with extensive denoising libraries.

Blender features a simple weighted moving means function filter for
smoothing bumps in motion curves. This tool is very handy for eliminat-
ing basic noise. Although there is little documentation on their method,
conceptually it is similar to the averaging scheme in NLMeans. We will
compare Blender’s results to our own in the evaluation section.

Maya is packaged only with a Euler filter for correcting Euler gimbal
lock or angle flipping. Motion Builder is a software exclusively for de-
veloping character motion, containing the most comprehensive collection
of animation data tools: Gaussian, Butterworth, smoothing, resampling,
and other rudimentary signal processing functions are available for minor
edits.

4.2.3 Non-local Means

To locally denoise a pixel in an image, one simple strategy is to take the
average pixel value in its local neighborhood, blending the noisy pixel into
its neighbors, as in the Gaussian filter above. This naive approach leads to
spotty and blurred images, where the noise is simply spread around the
neighborhood.

To further improve the texture recovery, it helps to define non-local
neighborhoods of similar textures from elsewhere in the image. Take, for
instance, a noisy picture of a brick building. Various elements and features
of the scene will be repeated throughout the image. One can use textural
information from distant bricks to recover degraded pixel detail for nearby
bricks [62].

To denoise a pixel p(x, y), its pixel neighborhood—or pixel patch— is
compared to all other patches q in a learning region of the image. The
pixel patches are weighted based on similarity to the original noisy patch.
This step allows us to find all of the most relevant texture patterns in the

60 CHAPTER 4. NON-LOCAL POSE MEANS

image. The mean pixel value is computed from these weights. Figure 4.2
illustrates the concept of non-local comparisons in the learning region [62].

Given an image M , target noisy pixel patch p, and learning window I

of radius r < min(width(I), height(I)), we create a library of pixel patches
for image I q of radius 1 < rq < r for every pixel in the learning window.
Then non-local means can be expressed as:

pfiltered(x, y) =
1

C(p)

∑
q∈I

q(x, y)f(p, q), (4.2)

where (x, y) are pixel coordinates and C(p) is the sum of the Gaussian
weights,

f(p, q) = e−
|q−p|2

2σ2 . (4.3)

Put simply, the output pixel is a normalized sum of the most similar
pixel patches in a learning window. When p = q, the Gaussian weight is
equal to 1. To prevent a pixel from weighting itself too highly, we instead
assign it the maximum weight of the other pixel patches [83].

Related Research for NLM

Later research [84] has categorized NLM as a semi-local filter, rather than
a truly non-local one. Results are dependent on input image structure,
but the best output is usually constrained within a smaller learning win-
dow. As the training area tends toward non-locality by expanding to the
size of the image, MSE declines for many practical examples of pictures.
This phenomenon is due to the large number of small weights contained
within the oversized training window [84]. Too many weights, although
insignificant, lead to the averaging of dissimilar patches.

Conversely, in periodic images where patterns repeat themselves at a
larger scale, increasing the radius of the learning window has a profound
positive impact on mean-squared error (MSE). When we later apply this
technique to motion capture, human motion can be both periodic and non-

4.2. BACKGROUND AND RELATED WORK 61

periodic, so it is necessary to choose a locality measure for case-by-case
denoising.

Figure 4.3: Non-local means denoising of an image. Denoised output image (left), from
the badly noised input image (right).

Figure 4.3 shows non-local means correcting a slightly corrupted im-
age. There is no visible blurring, and all of the noise appears to be elimi-
nated.

Goossens et al. [85] remark that NLMeans is not able to compete with
the recent trends in sparse-coding methods. It is for this reason, per-
haps, that NLMeans has been overlooked in motion capture denoising.
Goossens observes that NLMeans is the first iteration of a Jacobi algo-
rithm, or the diagonal normalized steepest descent algorithm, and offer
improvements from this method. Their NLM method is able to produce
comparable results to sparse coding solutions.

Goossens et al. also criticize the algorithm for its O(n4) complexity,
which increases exponentially given in large 2D image arrays. In a later
paper, these authors accelerate the algorithm by reducing the enormous
number of weight computations [86]. Other research enhancements to
NLMeans include FFT-inspired acceleration [87], integration with the Lapla-
cian Pyramid [87], and a GPU-based implementation [88].

62 CHAPTER 4. NON-LOCAL POSE MEANS

Figure 4.2: An example of the non-local means algorithm. A noisy pixel (center of red
square) is denoised by comparing its local patch to other similar patches of pixels (black
squares) inside the learning radius (blue square).

4.3. NON-LOCAL POSE MEANS 63

4.3 Non-local Pose Means

This section details our contribution to motion capture denoising using
the non-local means algorithm. We explain our method for a novel adap-
tation of the image processing technique to process n-dimensional rotation
vectors.

4.3.1 Pre-processing Poses

NLMeans linearly interpolates data by averaging points via distance
weights. This works well for vectorized patches of pixels, but special con-
sideration is needed for averaging rotational poses. Therefore, we initial-
ize all pose vectors as concatenated unit quaternions, and exponentially
map them into log-space via Chapter 2’s exponential mapping (equation
2.6). This allows linear operation on quaternion pose data.

Much like the image-based NLM, we begin by pre-processing the mo-
tion capture poses into ’patches’ of pose vectors. The patch radius rp deter-
mines the number of included poses from the animation timeline, forming
a patch of size (2rp + 1). The patch vector is expressed as:

P(t) =
[
p(−rp) ... p(−2) p(−1) p(0) p(1) p(2) ... p(rp)

]T
(4.4)

for pose p(t) and patch P(t) at time t in the mocap timeline. When we
calculate weights for points beyond the edges of the data set, we optionally
employ mirroring, Neumann (data boundary gradient is held constant),
or Dirichlet (values are assumed constant) boundary conditions [89]. The
choice of boundary condition should depend on the nature of the motion
bounds.

This patch calculation step can be implemented as a method at run-
time, but we have found that pre-processing the pose patches improves
computation speeds of the algorithm.

64 CHAPTER 4. NON-LOCAL POSE MEANS

4.3.2 The Non-local Pose Mean Filter

Locality on the Manifold or Time Domain

The choice of learning window determines the type of locality our algo-
rithm covers. A direct implementation of non-local means would place the
learning window bounds as the k-nearest pose frames: p(t − k) < p(t) <

p(t+ k) for learning window T of radius k frames.

Alternatively, we can build on the pose space manifold learning dis-
cussed in Chapter 3 and choose a learning window that exists for k-nearest
neighbors in the animation space. The manifold method averages poses
in a truly non-local scope, but the former option is limited to semi-local
information. Much like images, in the case of periodic actions, the more
non-local solution will offer the optimal denoising. If the k-nearest patches
have a large variance, however, the noise reduction will falter.

The Pose Mean

The remainder of our algorithm follows the original NLMeans scheme.
Instead of a weighted-average pixel, we will find the average pose de-
termined by distance weights. This average pose represents either the
average collection of spherical joint rotations or the average pose on the
animation manifold. To denoise a pose corresponding to the patch P(t),
we calculate the Gaussian weights for all other patches Q(t):

f(p, q) = e−
|Q−P|2

2σ2 . (4.5)

The distance evaluation may be performed by equation 2.4 or the L2

norm in the exponentially mapped space. A further manifold-based im-
provement might even utilize the Green’s distance falloff instead of the
Gaussian weights for refined manifold feature detection, but we leave this
task for future work.

The poses can be averaged via their weights,

4.3. NON-LOCAL POSE MEANS 65

Pfiltered(x, y) =
1

C(P)

∑
Q∈T

Q(t)f(P,Q), (4.6)

once again taking care to set P(t)’s weight to the maximum weight of
its neighbors.

66 CHAPTER 4. NON-LOCAL POSE MEANS

4.4 Results and Evaluation

Here we present the results of our method, and evaluate the NLPM noise
reduction quality against some of the methods discussed in the related
works section.

Figure 4.4: Non-local means applied to noisy motion capture data. Top: Original data,
with increasing degrees of Gaussian noise from left to right (ranging from 1σ to 100σ).
Bottom: The recovered motion for each respective animation, after applying non-local
means.

4.4.1 Non-local Pose Means

Figure 4.4 highlights our method’s noise reduction capabilities for light to
drastic jitters in a skeleton. The top row of animated rigs feature a range
of Gaussian additive noise, added individually to each joint in the ani-
mated skeletal rig. Non-local means can recover up to σ = 1 of normally-
distributed rotational noise while retaining the original motion. Beyond
this, even in the most extreme case of noise degradation the original mo-
tion can be identified, although some distortion is inevitably irrecoverable.

4.4. RESULTS AND EVALUATION 67

Figure 4.5: This figure shows the NLPM’s susceptibility to angle offsets for denoised
skeletons (orange wireframes) compared to the ground truth (grey rig). For low to medium
input noise, there is no noticeable slipping. For medium to high noise, an angular offset is
detected, but Figure 4.6 shows that the foot placement remains constant during its contact
with the floor.

One concern for algorithms that edit motion capture data is the ability
to retain the physics and timing constraints of the original motion. Figure
4.5 shows the variation of pose averaging for different amplitudes of noise,
at the precise moment when the foot stomps on the floor. At low noise in-
tervals, the skeletal configuration is consistent with the original. At high
levels of noise, an angular offset is introduced. This commonly causes
slipping and hand/foot skating in animation. However, Figure 4.6 shows
the foot’s contact with the ground over a 20-frame step interval. In both
low and high noise conditions, the foot contact remains solid, despite this
angle offset. This is due to the NLPM’s spatio-temporal gradient preser-
vation, which preserves ’hard edges’ in the motion curves. Although the
values of the angles changed, the gradient information did not.

68 CHAPTER 4. NON-LOCAL POSE MEANS

Figure 4.6: This figure shows the NLPM’s resistance to foot skating. For medium noise
(left) and high noise (right) the foot remains planted in the same location over 20 frames in
a stepping animation. There is no noticeable skating effect, unlike many other algorithms,
although we do note an overall slight change in skeletal angles.

A Note on Rotational Noise

The Gaussian noise introduced by the tracking system is experienced as
displacement noise—that is, perturbations in the spatial domain that con-
fuse the true marker positions. The skeleton is later inferred from these
joint marker positions and converted into an angle-driven FK animated
rig. When we add noise to quaternions in log-space, a small value for σ
produces enormous joint displacement.

Due to the effect of hierarchical joint importance and bone length, dis-
cussed in Chapter 3.1, a single σ value produces erratic compounding

4.4. RESULTS AND EVALUATION 69

noise variations for every bone in the skeleton. This does not affect the in-
dividual dof signals, whose parent joint rotations have been ignored, nor
does it affect the denoising table results in Table 4.1. This only impacts the
visual distribution of noise in the output animation and the incredibly tiny
size of sigma (which exists in exponentially mapped quaternion space).
These denoising comparisons are still valid, but future studies should take
caution and devise a means to add experimental noise in the spatial do-
main to simulate realistic motion noise.

4.4.2 NLPM Benchmark Comparisons

Figures 4.8a-4.10a show the ground truth data, the noisy motion data, and
the NLPM denoised output. The output looks much like the original, with
a single sharp bend for all curves on the far right side of the graph. This
is due to a poor choice of boundary condition, where mirroring causes ab-
normal weight distributions. Generally, the Dirichlet condition for holding
assuming the gradient remains constant works best.

In Figures 4.10b-4.12b, a single motion channel is isolated from these
dense figures, and we compare the NLPM result to ground truth and noise
signals. We can note some loss of precision, and a small degree of temporal
shifting (e.g. Figure 4.10b at frame 90).

70 CHAPTER 4. NON-LOCAL POSE MEANS

0 20 40 60 80 100 120

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Ground Truth Data

(a) Ground Truth curves for all rotations in the motion graph

0 20 40 60 80 100 120

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Noisy Data

(b) Added Gaussian noise to motion curves (rotational σ = .4) for all rotations in

the motion graph

Figure 4.7: Results

4.4. RESULTS AND EVALUATION 71

0 20 40 60 80 100 120

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

NLMeans Denoised

(a) Non-local pose means solution for all rotations in the motion graph, using

noisy curves from Figure 4.8b as input.

(b) NLPM vs. Ground Truth vs. Noisy data for a single channel of joint rotation

data.

Figure 4.9: Results

72 CHAPTER 4. NON-LOCAL POSE MEANS

(a) NLPM vs. Ground Truth vs. Noisy data for a single channel of joint rotation

data.

(b) NLPM vs. Ground Truth vs. Noisy data for a single channel of joint rotation

data.

Figure 4.11: Results

4.4. RESULTS AND EVALUATION 73

(a) An overlaid comparison of all denoising methods from Table 4.1, for the light

noise condition (15σ).

(b) An overlaid comparison of all denoising methods from Table 4.1, for the

medium noise condition (30σ).

Figure 4.13: Results

74 CHAPTER 4. NON-LOCAL POSE MEANS

PSNR, when compared to ground truth
σ 15σ 30σ 50σ 75σ Impulse

Gaussian LPF 73.89 73.87 73.76 73.33 72.02 73.61
Kalman 80.46 80.42 78.50 73.83 – 80.01
Blender WMM 93.39 92.53 84.99 84.40 78.99 88.61
Wavelet 93.76 67.01 – – – 82.59
Butterworth 82.21 82.14 81.69 80.30 77.21 81.39
Our method 85.58 85.52 85.29 84.68 82.46 85.18

Table 4.1: PSNR Noise Elimination Result Comparison. The optimal result in each col-
umn has been emboldened or excluded where smooth data was not possible. σ = .008,
added in quaternion log-space.

Table 4.1 compares the peak signal to noise ratios (PSNRs) of the com-
mon motion denoising techniques that we discovered in the literature re-
view. PSNR is related to the mean squared error, but describes the We
add normally-distributed noise to the quaternion poses of the CMU li-
brary motion capture data and compare the mean-squared error of the
denoised output to the original ground truth. For each denoising method,
care was taken to find the optimal input parameters for the smoothest re-
sult, without sacrificing motion detail. We used Matlab signal processing
libraries for Gaussian, wavelet thresholding, and Butterworth denoising.
The python Kalman filter implementation was borrowed from Bishop and
Welch [73], where it was optimized specifically for motion denoising re-
search.

We denoised a running character from the CMU library and applied
NLPM with a learning window of 21 poses, a patch size of 11 poses, and a
Gaussian width (σ = .008). In every noise category, our method produced
superior denoised-signals that most resembled the ground truth data. As
noise degradation consumes the original data, PSNR slowly and steadily
declines in our method. In the most extreme noise, the animated output
appears smooth, but the physical actions are visibly different. At 50σ,

4.4. RESULTS AND EVALUATION 75

smoothed trembles appear for the more prominent bones. In the other
noise conditions, it is difficult to visibly spot any difference between the
denoised animations.

Figure 4.15: Butterworth (blue) vs. ground truth (red). The Butterworth filter is capable
of smooth results, but only after introducing a time-delay. A similar effect occurs in
dynamical filters, like the Kalman filter. The Butterworth filter has a problem with edge
boundaries, and sometimes is too smooth, losing important detail.

The Butterworth filter perform surprisingly well. The results in Ta-
ble 4.1 are not indicative of this performance, as an offset develops for in-
creasing cutoff values. Figure 4.15 shows the offset from the ground-truth
data. The same effect can be observed in the Kalman figure, whose time-
delay is a well-known problem in dynamical systems. Kalman eventually
destabilizes, and cannot handle large quantities of noise, where Butter-
worth’s PSNR slowly diminishes. Butterworth is especially noted for its
ability to filter out peaks and outliers and bests most of the other methods
in these results. The Butterworth and Kalman filters compete with NLPM

76 CHAPTER 4. NON-LOCAL POSE MEANS

for light noise conditions, but our method shows the better PSNR in every
listed category.

Wavelet thresholding produced the best smoothing for the smallest
noise amplitudes. At every other noise interval, however, the smooth-
ing was ineffective, or it warped the motion unrecognizably. A PSNR
comparison does not represent a meaningful measure in either of these
cases. A different threshold condition may perhaps yield more conclusive
results, but we were unable to draw a consistent denoising for hundreds
of thresholds. This variability makes wavelets a difficult, unintuitive, and
unpredictable denoising tool for an artist. As mentioned in the related lit-
erature, statistical thresholding algorithms exist that may aid in this pro-
cess, but for now we will dismiss wavelets as an unwieldy noise reduction
technique.

Blender’s weighted moving means algorithm performs equally well as
or better than NLPM for small levels of noise degradation, but worsens
as noise increases. Our input parameters were optimized for medium to
high-levels of noise; with further experimentation, NLPM may be able to
match Blender’s performance in the lower noise conditions. Regardless,
the strong performance of NLPM against professional-grade software is
indicative of our method’s limited but promising success.

Figures 4.14b and 4.14b depict an overlaid comparison of the best de-
noising methods, for two different noise conditions. Between these two
graphs, NLPM shows the best consistency and fewest artifacts. Blender’s
method declines in quality, as it derails from the ground truth between the
two graphs. The minimum of NLPM does not reach the same minimum
as the ground truth in this curve; this is an example of too many dissimilar
poses watering down the result with their accumulated weights. A better
non-local manifold parameterization may correct this, but we must leave
this optimization for future work.

4.5. CHAPTER SUMMARY 77

4.5 Chapter Summary

In this chapter, we have examined image and signal filters for noisy data
reduction. We identified previously implemented denoising techniques
and their applications to motion capture processing. We found that a re-
cent trend employs the use of unsupervised learning tools to denoise mo-
tion using extensive motion capture data libraries. Sparse coding tech-
niques are drawn from to optimize the denoising process. Because few
people have access to the resources required for these solutions, we sought
to model our solution after untrained denoising filters.

A number of these methods have previously been adapted to suit mo-
tion capture data, such as Gaussian, wavelet, Kalman, and Butterworth
filters. NLMeans image denoising, to our knowledge, had not yet been
applied to motion capture data.

Our adaptation of NLMeans to mocap required the preprocessing of
pose vectors, such that they could be averaged within the exponential
mapping or a manifold space. We then applied non-local averages,
weighted by quaternion pose distance, to denoise the data.

The results of NLPM were compellingly smoothed animation curves.
Surprisingly, Blender’s weighted moving means algorithm bested NLPM
for low degrees of noise. When noise interference increases, our algorithm
better adapted to the noise, creating a stronger result. For the remaining
denoising methods, the NLPM denoising yielded the smoothest results
without compromising character motion.

Chapter 5

Discussion and Conclusion

This research proposed that the Green’s function falloff distance is an ef-
fective interpolant for inserting edits into mocap data. Additionally, we
used non-local means denoising as a smoothing filter for raw motion cap-
ture data. Both of these techniques draw on information from the anima-
tion manifold in the space of character poses.

In this chapter, we present a review of these techniques and a summary
of their effectiveness at manipulating motion capture data. We discuss the
Limitations of the Green’s function falloff and NLPM as well as ideas for
future work that can address these flaws or expand the research scope.

5.1 Summary

This thesis introduced a new spline-like falloff interpolant and denoising
method for editing animation.

To accomplish this, Chapter 2 investigated animation workflows for
creating animations with spline-based motion graphs. We learned useful
mathematics for processing poses with linear techniques. Chapter 2 also
presented various machine learning and dimensionality reduction tech-
niques to define a low-dimensional animation manifold within the char-
acter pose space.

79

80 CHAPTER 5. DISCUSSION AND CONCLUSION

In Chapter 3, we looked at popular methods for editing motion capture
animation and discovered the role of dimensionality reduction methods in
motion editing. Our subsequent contribution defined a novel measure for
pose similarity by using Green’s function in a pose-space manifold. This
pose-similarity doubles as pose distance, from which we defined falloff
weights for pose interpolation. This method was implemented in Blender,
where we edit motion capture data by reposing a character. The algorithm
handles the falloff in a data-driven manner, returning an artist-editable
falloff spline for pose interpolation.

We compared our manifold distance, the Green’s function distance, to
metrics in isomapping and diffusion mapping. Green’s distance falloff
outperformed the others for seamless animation blending. We showed
that our falloff curve is smoother than those obtained with the isomap
and diffusion map methods, while still retaining the benefits of a mani-
fold learning method. In some cases, diffusion maps have similar quali-
ties to the Green’s function falloff. However, our method creates consis-
tent falloff graphs from fewer user input parameters. For repeated motion
activities, we showed that motion edits can be generated and propagated
throughout an entire animation sequence automatically.

To satisfy our initial research objective of creating an editing tool in-
spired by conventional animation workflows, we compared our method to
traditional spline-based keyframe animation. The Green’s function method
produced the same falloff curve as the spline-based animation edit in
Blender, interpolating the animated edits in a nearly identical manner.
Artists are accustomed to viewing and editing spline-like curves, making
our solution useful and convenient. In fact, this method is complementary
to most editing algorithms in animation software, which rely on artist-
defined falloff splines. Incorporating our method in this software should
be simple, as the default distance measure can be replaced by our Green’s
function distance.

In Chapter 4, we examined methods for post-processing motion data

5.2. LIMITATIONS 81

for noise reduction. Our novel application of non-local means image de-
noising is used to smooth motion capture data. Our method differs from
image denoising in that we are smoothing a collection of hundreds of
inter-dependent spatio-temporal skeletal joint dofs. We altered the algo-
rithm to allow quaternion pose interpolation in the animation manifold or
quaternion log-space.

We compared our results against other non-example based methods,
and found promising, yet mixed, results. In conditions of low noise, the
best results were produced by wavelet thresholding and Blender’s
weighted moving means algorithm. However, our method offered con-
sistent results for a variety of noise samples, and offered stronger denois-
ing capabilities than Blender or wavelets for large amounts of normally-
distributed noise.

5.2 Limitations

The largest drawback of the Green’s function is the unpredictability of σ
as an input parameter. Poor choices of σ can lead to a timing offset, where
edited animations slip a few frames out of synchronization. Green’s func-
tion is not a pure distance measure, but rather a measurement of pose
arrangement on the manifold. This is valuable for treating it as a falloff,
but care should be taken in parameterization.

The σ parameter should be exposed to the artist and varied experimen-
tally based on the local and global density of the pose space. An overly
narrow σ does not capture the relation between similar poses, resulting in
abrupt falloff curves. An overly broad σ views all poses as similar, and
thus cannot localize edits.

The complexity of the Green’s function algorithm scales byO(n3). Work-
ing with a typical movie shot of few hundred frames is nearly instanta-
neous. A C++ implementation exploiting the sparseness of the Laplacian
would improve interaction times.

82 CHAPTER 5. DISCUSSION AND CONCLUSION

Noise in sparse pose samples may lead to a poorly defined manifold,
resulting in unreliable falloffs. However, using a non-local pose means
denoising should alleviate this concern.

Our proposed solution for noise reduction boasts successful results,
however it still leaves clear room for improvement. Chief among our con-
cerns is the performance for low-noise conditions, in which our algorithm
was bested by Blender. We believe that this is a case of non-optimized in-
put parameters or improper choice of locality. The NLPM algorithm has
three different user input values: patch size, training window size, and a
σ for pose distance threshold. This is not nearly as cumbersome as some
denoising filters, such as the input-heavy Kalman filter, but slight changes
in NLPM input parameters tend to have a large impact on filter quality.

Many denoising techniques from the literature review also address
missing marker recovery, a common challenge in processing motion cap-
ture data. Our method is able to recover a few frames of missing data
through averaging, but cannot yet handle extensive recovery.

Another concern in applying NLPM is the choice of locality. A fully-
non local pose estimation that uses a large training window usually re-
sults in a drooping-skeleton effect. The many poses blend together, and
the skeleton drifts toward the average pose of the sample set when too
many weights are calculated (even if most are significantly small). One
way to eliminate this problem is to use k-nearest neighbors on the man-
ifold, instead of k-nearest frames in the training window. For periodic
motions, this manifold-based NLPM will function well. For non-periodic
motions, a semi-local solution will work much better. However, most mo-
tion is somewhere between these two poles; only trial and error will yield
optimal results.

5.3. FUTURE WORK 83

5.3 Future work

The promising results from this research suggest that further development
is a worthy cause. These methods are not production ready, and should
naturally undergo further research, development, and testing.

The ultimate test of our method is live interaction with artists. Feed-
back and usage statistics from production artists in the game or film in-
dustries is invaluable for research of this nature, and will help guide the
direction of future research.

Motion Capture Splines

In Chapter 3, we presented a mathematical formulation for a motion capture
spline, derived from the Green’s function of the pose Laplacian. The pri-
mary future work for this research is the development of a motion capture
editing system with a fully integrated motion capture spline workflow.
Based on elements from this research, the envisioned system should meet
the following criteria:

• It should continually update the Pose Laplacian as the animator up-
dates the animation.

• The Green’s function pose distance graph should be interactively
viewable.

• Multiple spline editing methods should be available to the artist,
who can then directly edit the Green’s function falloff for tweaks or
custom interpolation.

• It should display inflection points in the pose distance curve, so the
artist can interactively choose how their edits blend back into the
animation.

• It should allow the editing of a sequence of poses, rather than just a
single frame.

84 CHAPTER 5. DISCUSSION AND CONCLUSION

• The system should be able to read from motion repositories, for data-
driven manifolds learning using mocap libraries.

• The system should use dimensionality reduction for animation man-
ifold visualization.

• And lastly, this system should be integrated in common animation
environments, like Maya or Blender.

The most challenging point in this list is the requirement for anima-
tion sequence editing. In our system, many different pose edits can be
made before recalculating the Laplacian. However, if edits are very close
together on the manifold, there will be an issue of overlapping falloffs.

Instead of editing a single pose, an artist may want to edit several at
once. In this case, animation splines replace the falloff between poses, but
the first and final pose still use our data-driven falloff to blend into the
overall animation. However, edit propagation then becomes nontrivial, as
our algorithm does not currently make any temporal considerations for
comparing sequences of poses—it only compares individual poses. The
propagated animation timing will likely be squished or stretched, since
timing can differ slightly among similar gestures. Overcoming these chal-
lenges would establish a robust animation editing system.

Non-Local Pose Means

Noise occurs in a variety of ways, for an infinite number of skeletal motion
and construction possibilities. It is difficult to foresee every complication
that will arise in raw signal data, which is why the denoising field is such
an active area of research. A number of minor enhancements to NLPM
can address the limitations of our system, leaving room for many future
works:

• Our method should be compared against hundreds of animation
samples for robust evaluation. Our method works great with overly

5.3. FUTURE WORK 85

noisy signals for the chosen mocap samples. Improving the denois-
ing for smaller amplitude noise may be a matter of fine-tuning pa-
rameters by exploring best practices with different mocap data sets.

• The manifold-based methods for non-local means should be ana-
lyzed with large motion databases and compared to other example-
based methods.

• Related to the question of locality, experimentation for partitioned
skeletal subsets of joints should be carried out. The pose-distance
metric in NLPM calculates weights based on the distance between
poses in the training window. It is possible that including the en-
tire skeleton as opposed to skeletal partitions (poselets or partlets) will
have an impact on denoising results.

• Goossens et al. [85] points out that the NLM is a first-order Jacobi
operation, and they suggest improvements that allow the method to
compete with sparse coding techniques. In a future work, NLPM
should make these same improvements, and a study should be con-
ducted comparing our method against mocap sparse coding.

• As we pointed out in Chapter 4, adding rotational interference cre-
ates unpredictable positional noise amplitudes across the entire skele-
ton. Future studies should add noise in the spatial domain, instead
of the rotational domain, to conduct experiments on data that better
represents real-life noise situations.

• Related to the previous note, experiments should be conducted on
mocap data that features multiple sources of noise interference. The
configuration of many denoising algorithms are, in our experience,
dependent on a noise signal with a singular σ value, whereas ours
is an acceptable level of stability for various noise conditions. This
could prove further that our method is more effective at dealing with
real-life mocap data.

86 CHAPTER 5. DISCUSSION AND CONCLUSION

• NLPM-based missing marker recovery should be explored for mo-
cap data that is broken or missing large segments of motion curves.
Many of the other denoising algorithms offer data recovery solu-
tions.

• Future work could seek to incorporate our findings from Green’s
function pose distance in NLPM. Using Green’s function distance,
or another weighting metric, instead of a Gaussian weighting could
address the limitations for non-local schemes featuring large training
windows.

• Many mocap denoising algorithms are specially treated to handle
spatio-temporal awareness. Our method has little awareness of time-
domain constraints, but is designed to preserve hard edges in this
domain. Regardless, future work could explore alternate methods of
enforcing physics constraints.

5.4 Conclusion

Modern animation software is disorienting in its enormity and com-
plexity. New users are often at a total loss in their first time encoun-
tering Maya, and advanced users only ever use a small fraction of
its available tools. To complete any one task in animation, there are
dozens of built-in tools, hundreds of downloadable plug-ins, and
even more research papers for completing the task—and despite all
of this, most large production companies still hire in-house program-
mers to write custom software.

Each of these tools was designed with questions in mind: How
do we allow for more creative control? How do we make it cheaper,
faster, prettier, or more realistic?

5.4. CONCLUSION 87

Many researchers have attempted to delegate, assist, and even au-
tomate the animation job for artists, approaching the problem from
countless angles, applying techniques from the far reaches of ab-
stract geometry or artificial intelligence programming to find a so-
lution.

In this thesis we drew on dimensionality reduction, manifold
learning, and image processing techniques to solve a few specific
problems. Our data-driven splines bridged the gap between the clas-
sical animator and the motion capture technician, so that an anima-
tor can mould a live actor’s performance just as they would a digital
character. Our non-local pose means denoising technique attempts
to make mocap processing tools lightweight and reliable. Hopefully
in doing so, we have made it slightly easier for an animator to bring
fantasy to life on the big screen.

Chapter 6

Appendix A

Green’s function as a similarity measure

The Green’s function of the Laplacian is not widely used as a similar-
ity measure in computer graphics, but it has appeared in other fields.
In geostatistics the Green’s function of the Laplacian has been used
as a generalized covariance [90]. In machine learning, the Green’s
function of the Laplacian is know to be a kernel, and kernels are of-
ten employed to summarize the similarity between data points.

The use of the Green’s function of the Laplacian as a similarity mea-
sure can be intuitively motivated by considering the case of regu-
larly sampled signals, such as audio signals or images. In this case,
the Laplacian matrix has Toeplitz structure with the stencil −1, 2,−1
shifted by one place in each subsequent row. For ρ 6= 1 but near 1,
the matrix

1

1− ρ2

1 −ρ 0 0 . . .

−ρ 1 + ρ2 −ρ 0 . . .

0 −ρ 1 + ρ2 −ρ . . .

. . .

89

90 CHAPTER 6. APPENDIX A

is an approximate Laplacian. This matrix is known to be the inverse
of the Kac-Murdock-Szego matrix, [Ci,j] = ρ|i−j| (this relationship
appears in the literature on the Discrete Cosine Transform, where
Ci,j = ρ|i−j| has been used as a generic covariance matrix for images
[91]).

The Green’s function of the graph Laplacian also appears in several
expressions for distances on graphs. For example the resistance dis-
tance [92] between two nodes i, j is

rij = G(i, i) +G(j, j)− 2G(i, j)

where the Green’s function acts as a similarity (G(i, j) small means
the distance is large). This distance also has a well-known interpre-
tation as the expected length of a random walk from node i to j and
back [93].

Bibliography

[1] Bureau of Labor Statistics, U.S. Department of Labor,
“Occupational outlook handbook,” 2014. [Online]. Avail-
able: http://www.bls.gov/ooh/arts-and-design/multimedia-
artists-and-animators.htm. Accessed 21- Feb- 2016.

[2] L. M. Tanco and A. Hilton, “Realistic Synthesis of Novel Hu-
man Movements from a Database of Motion Capture Exam-
ples,” 2000.

[3] O. Johnston and F. Thomas, “The illusion of life: Disney anima-
tion,” 1995.

[4] J. Lasseter, “Princples of Traditional Animation Applied to 3D
Computer animation,” Computer Graphics, volume 21, Number 4,
1987.

[5] A. Menache, Understanding Motion Capture for Computer Anima-
tion, Second Edition (Morgan Kaufmann Series in Computer Graph-
ics). Morgan Kaufmann, 2010.

[6] “Syntel,” Blender Foundation — Durian Project, 2013. [Online].
Available: https://www.flickr.com/photos/communitymag/.
Flickr. Licensed Under CC BY 3.0. [Accessed 20- Feb- 2016].

[7] Y. Freedman, “Is It Real... or is it Motion Capture?: The Battle To
Redefine Animation in the Age of Digital Performance,” 2012.

91

92 BIBLIOGRAPHY

[8] T. Allison, “More than a Man in a Monkey Suit: Andy Serkis,
Motion Capture, and Digital Realism,” 2011.

[9] Y. Feng, M. Ji, J. Xiao, X. Yang, J. J. Zhang, Y. Zhuang, and X. Li,
“Mining Spatial-Temporal Patterns and Structural Sparsity for
Human Motion Data Denoising,” IEEE Transactions on Cybernet-
ics, vol. 45, no. 12, pp. 2693–2706, 2014.

[10] R. Lai, P. Yuen, and K. Lee, “Motion capture data completion
and denoising by singular value thresholding,” Proc. Eurograph-
ics Association, pp. 1–4, 2011.

[11] L. Herda, P. Fua, R. Plänkers, R. Boulic, and D. Thalmann,
“Skeleton-based motion capture for robust reconstruction of hu-
man motion,” in Computer Animation 2000. Proceedings, pp. 77–
83, IEEE, 2000.

[12] C. Dean, J. Lewis, A. Chalmers, and J. Kim, “Motion splines:
Manifold pose distance for intelligent motion capture editing,”
Publication forthcoming.

[13] C. Dean and J. Lewis, “Non-local pose means for motion cap-
ture noise reduction,” Publication forthcoming.

[14] The Blender Foundation, “Blender 3d,” v2.74. 2016.

[15] Autodesk, Inc., “Autodesk maya,” version 2016.

[16] C. Cabrera, An Essential Introduction to Maya Character Rigging
with DVD. Focal Press, 2008.

[17] “Beyond: Two souls - motion capture,” Community Mag., 2013.
Available: https://www.flickr.com/photos/communitymag/.
Flickr. Licensed Under CC BY-NC 2.0. [Accessed 20- Feb- 2016].

[18] N. Rico., “Motion capture suit.,” 2007. [Online]. Available:
https://www.flickr.com/photos/nrico/. Flickr. Licensed Un-
der CC BY-NC-ND 2.0. [Accessed 20- Feb- 2016].

BIBLIOGRAPHY 93

[19] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE Multi-
media, vol. 19, no. 2, pp. 4–10, 2012.

[20] Leap Motion, Inc., “Leap motion,” 2010.

[21] C. M. U. G. Lab, “Cmu motion capture library database,” [On-
line.] Available: mocap.cs.cmu.edu. Accessed 7- January- 2016.

[22] J. McCarthy, “An introduction to theoretical kinematics mit
press,” Cambridge, Mass, 1990.

[23] J. P. Lewis, M. Cordner, and N. Fong, “Pose space deforma-
tion: a unified approach to shape interpolation and skeleton-
driven deformation,” in Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, pp. 165–172,
ACM Press/Addison-Wesley Publishing Co., 2000.

[24] J. Diebel, “Representing attitude: Euler angles, unit quater-
nions, and rotation vectors,” 2006.

[25] E. W. Weisstein., “Quaternion,” in MathWorld–A Wolfram Web
Resource, [Online]. Available: http://mathworld.wolfram.com
/quaternion.html. Accessed: 20- February- 2016.

[26] F. Gissen, “Quaternion distance metrics,” in The ryg blog, [On-
line]. Available: https://fgiesen.wordpress.com/. Accessed:
16- January- 2016.

[27] K. Shoemake, “Animating rotation with quaternion curves,” in
ACM SIGGRAPH computer graphics, vol. 19, pp. 245–254, ACM,
1985.

[28] F. S. Grassia, “Practical parameterization of rotations using the
exponential map.,” in Journal of graphics tools, 3(3), 29-48., 1998.

[29] R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction to
Splines for Use in Computer Graphics and Geometric Modeling (The
Morgan Kaufmann Series in Computer Graphics). Morgan Kauf-
mann Pub, 1987.

94 BIBLIOGRAPHY

[30] M. M. Stanisic, Mechanisms and Machines: Kinematics, Dynamics,
and Synthesis. CL Engineering, 2014.

[31] B. Choe, H. Lee, and H.-S. Ko, “Performance-driven muscle-
based facial animation,” The Journal of Visualization and Computer
Animation, vol. 12, no. 2, pp. 67–79, 2001.

[32] Q. Li and Z. Deng, “Orthogonal-blendshape-based editing sys-
tem for facial motion capture data,” Computer Graphics and Ap-
plications, IEEE, vol. 28, no. 6, pp. 76–82, 2008.

[33] J. Lewis and K.-i. Anjyo, “Direct manipulation blendshapes,”
IEEE Computer Graphics and Applications, no. 4, pp. 42–50, 2010.

[34] H. Mllerland, E. Loosch, and P. H. Erfurt, “Functional variabil-
ity and an equifinal path of movement during targeted throw-
ing.”

[35] E. W. Weisstein., “Laplacian,” in MathWorld–A Wolfram Web
Resource, [Online]. Available: http://mathworld.wolfram.com
/Laplacian.html. Accessed: 20- February- 2016.

[36] M. Hein, J. Audibert, and U. von Luxburg, “Graph laplacians
and their convergence on random neighborhood graphs,” Jour-
nal of Machine Learning Research, vol. 8, pp. 1325–1368, 2007.

[37] H. J. Shin and J. Lee, “Motion synthesis and editing in low-
dimensional spaces,” Computer Animation and Virtual Worlds,
vol. 17, no. 3-4, pp. 219–227, 2006.

[38] J. de la Porte, B. M. Herbst, W. Hereman, and S. J. van der Walt,
“An introduction to diffusion maps,” in Pattern Recognition As-
sociation of South Africa, 2008.

[39] P. Glardon, R. Boulic, and D. Thalmann, “PCA-based walking
engine using motion capture data.,” in Computer Graphics Inter-
national. Proceedings (pp. 292-298), 2004.

BIBLIOGRAPHY 95

[40] J. Wang and B. Bodenheimer, “An evaluation of a cost metric for
selecting transitions between motion segments,” in Proceedings
of the 2003 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, SCA ’03, (Aire-la-Ville, Switzerland), pp. 232–
238, Eurographics Association, 2003.

[41] E. N. Mortensen and W. A. Barrett, “Intelligent scissors for im-
age composition,” in Proceedings of the 22Nd Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’95,
(New York, NY, USA), pp. 191–198, ACM, 1995.

[42] M. Gleicher, “Image snapping,” in Proceedings of the 22Nd An-
nual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’95, (New York, NY, USA), pp. 183–190, ACM, 1995.

[43] A. E. Seward and B. Bodenheimer, “Using nonlinear dimension-
ality reduction in 3d figure animation,” in ACM Southeast Con-
ference, 2005.

[44] S. Hauberg and K. S. Pedersen, “Spatial measures between hu-
man poses for classification and understanding,” in Articulated
Motion and Deformable Objects, 2012.

[45] A. Bruderlin and L. Williams, “Motion signal processing.,” in
Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques (pp. 97-104), 1995.

[46] A. Witkin and M. Kass, “Spacetime constraints.,” in ACM Sig-
graph Computer Graphics (Vol. 22, No. 4, pp. 159-168), 1988.

[47] M. Gleicher, “Motion editing with spacetime constraints.,” in
Proceedings of the 1997 symposium on Interactive 3D graphics (pp.
139-ff), 1997.

[48] C. K. Liu and Z. Popovic, “Synthesis of complex dynamic char-
acter motion from simple animations.,” in ACM Transactions on
Graphics (TOG) (Vol. 21, No. 3, pp. 408-416)., 2002.

96 BIBLIOGRAPHY

[49] M. Gleicher, “Comparing constraint-based motion editing
methods.,” in Graphical models, 63(2), 107-134, 2001.

[50] M. Tournier, X. Wu, N. Courty, E. Arnaud, and L. Reveret, “Mo-
tion compression using principal geodesics analysis,” in Com-
puter Graphics Forum 28(2) (2009) 355364, 2009.

[51] J. Barbic, A. Safonova, J. Y. Pan, C. Faloutsos, J. K. Hodgins, and
N. S. Pollard, “Segmenting motion capture data into distinct be-
haviors.,” in Proceedings of Graphics Interface 2004 (pp. 185-194).
Canadian Human-Computer Communications Society, 2004.

[52] J. Lee, J. Chai, P. Reitsma, J. K. Hodgins, and N. S. Pollard, “In-
teractive control of avatars animated with human motion data,”
in ACM Transactions on Graphics 21, 3 (July 2002), 491500. ISSN
0730-0301 (Proceedings of ACM SIGGRAPH 2002), 2002.

[53] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthesiz-
ing physically realistic human motion in low-dimensional,
behavior-specific spaces.,” in ACM Transactions on Graphics
(TOG) (Vol. 23, No. 3, pp. 514-521), 2004.

[54] H. J. Shin and J. Lee, “Motion synthesis and editing in low-
dimensional spaces.,” in Computer Animation and Virtual Worlds,
17(34), 219-227, 2006.

[55] F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed pois-
songaussian noise,” IEEE Transactions on Image Processing, 2011.

[56] R. Verma and J. Ali, “A Comparative Study of Various Types
of Image Noise and Efficient Noise Removal Techniques,” In-
ternational Journal of Advanced Research in Computer Science and
Software Engineering, vol. 3, no. 10, pp. 2277–128, 2013.

[57] D. J. Sturman, “A Brief History of Motion Capture for Computer
Character Animation,”

BIBLIOGRAPHY 97

[58] J. Xiao, Y. Feng, M. Ji, X. Yang, J. J. Zhang, and Y. Zhuang,
“Sparse motion bases selection for human motion denoising,”
Signal Processing, 2015.

[59] R. Khadem, C. C. Yeh, M. Sadeghi-Tehrani, M. R. Bax, J. A. John-
son, J. N. Welch, E. P. E. Wilkinson, and R. Shahidi, “Compara-
tive Tracking Error Analysis of Five Different Optical Tracking
Systems,” Comp Aid Surg, vol. 5, pp. 98–107, 2000.

[60] H. Lou and J. Chai, “Example-based human motion denoising,”
IEEE Transactions on Visualization and Computer Graphics, vol. 16,
no. 5, pp. 870–879, 2010.

[61] R. Yan, L. Shao, and Y. Liu, “Nonlocal hierarchical dictionary
learning using wavelets for image denoising.,” IEEE transactions
on image processing : a publication of the IEEE Signal Processing
Society, vol. 22, no. 12, pp. 4689–98, 2013.

[62] A. Buades and B. Coll, “A Non-local Algorithm for Image De-
noising,” Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 2, no. 0, pp. 60–65, 2005.

[63] S. Vaseghi in Advanced Digital Signal Processing and Noise Reduc-
tion., (Chichester, West Sussex), pp. 35–50, John Wiley, 2000.

[64] I. Lemahieu, “Technique for Medical Imaging,” no. February
2016, 2002.

[65] I. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh, “Bilin-
ear spatiotemporal basis models,” ACM Transactions on Graphics
(TOG), vol. 31, no. 2, p. 17, 2012.

[66] G. Deng and L. Cahill, “An adaptive Gaussian filter for noise re-
duction and edge detection,” IEEE Conference Record Nuclear Sci-
ence Symposium and Medical Imaging Conference, no. JANUARY
1993, pp. 1615–1619, 1993.

[67] H. J. Blinchikoff and A. I. Zverev, “Filtering in the time and fre-
quency domains,” 1986.

98 BIBLIOGRAPHY

[68] S. Butterworth, “Experimental wireless and the wireless engi-
neer,” Wireless Eng, vol. 7, p. 536, 1930.

[69] S. Mallat, “A wavelet tour of signal processing,” pp. 391–444,
1999.

[70] M. Forouzanfar, H. A. Moghaddam, and S. Ghadimi, “Lo-
cally adaptive multiscale bayesian method for image denois-
ing based on bivariate normal inverse gaussian distributions,”
International Journal of Wavelets, Multiresolution and Information
Processing, vol. 6, no. 04, pp. 653–664, 2008.

[71] A. K. Seghouane, “An adaptive bayesian wavelet thresholding
approach to multifractal signal denoising,” in Proceedings of the
6th Nordic Signal Processing Symposium-NORSIG, vol. 2004, Cite-
seer, 2004.

[72] S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresh-
olding for image denoising and compression,” Image Processing,
IEEE Transactions on, vol. 9, no. 9, pp. 1532–1546, 2000.

[73] G. Welch and G. Bishop, “An introduction to the kalman filter,”
1995.

[74] R. Hyndman and R. D. Snyder, “Kalman filter,” 2001.

[75] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 12, no. 7, pp. 629–639, 1990.

[76] W. Huang, “Computation of eigenvalue problems with
anisotropic diffusion operators,” in Proceedings of the interna-
tional conference on numerical analysis and aplied mathematics 2014
(ICNAAM-2014)., vol. 1648, p. 020008, AIP Publishing, 2015.

[77] A. Danielyan, V. Katkovnik, and K. Egiazarian, “Bm3d frames
and variational image deblurring,” Image Processing, IEEE Trans-
actions on, vol. 21, no. 4, pp. 1715–1728, 2012.

BIBLIOGRAPHY 99

[78] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process
dynamical models for human motion,” Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, vol. 30, no. 2, pp. 283–298,
2008.

[79] L. Li, J. Mccann, N. Pollard, C. Faloutsos, L. Li, J. Mccann,
N. Pollard, and C. Faloutsos, “Bolero: A principled tech-
nique for including bone length constraints in motion cap-
ture occlusion filling,” in In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2010.

[80] L. Li, J. Mccann, N. Pollard, and C. Faloutsos, “Dynammo: Min-
ing and summarization of coevolving sequences with missing
values.”

[81] B. A. Olshausen and D. J. Fieldt, “Sparse coding with an over-
complete basis set: a strategy employed by v1,” Vision Research,
vol. 37, pp. 3311–3325, 1997.

[82] Autodesk, Inc., “Autodesk motionbuilder,” version 2016.

[83] D. Raghuvanshi, S. Hasan, and M. Agrawal, “Analysing Im-
age Denoising using Non Local Means Algorithm,” International
Journal of Computer Applications, vol. 56, no. 13, pp. 7–11, 2012.

[84] J. Salmon, “On two parameters for denoising with non-local
means,” Signal Processing Letters, IEEE, vol. 17, no. 3, pp. 269–
272, 2010.

[85] B. Goossens, H. Luong, A. Pizurica, and W. Philips, “An im-
proved non-local denoising algorithm,” 2008 International Work-
shop on Local and Non-Local Approximation in Image Processing,
2008.

[86] A. Dauwe, B. Goossens, H. Luong, and W. Philips, “A fast non-
local image denoising algorithm,” Proceedings of SPIE - The In-
ternational Society for Optical Engineering, 2008.

100 BIBLIOGRAPHY

[87] Y.-L. Liu, J. Wang, X. Chen, Y.-W. Guo, and Q.-S. Peng, “A ro-
bust and fast non-local means algorithm for image denoising,”
Journal of Computer Science and Technology, vol. 23, no. 2, pp. 270–
279, 2008.

[88] K. Huang, D. Zhang, and K. Wang, “Non-local means denois-
ing algorithm accelerated by gpu,” in Sixth International Sym-
posium on Multispectral Image Processing and Pattern Recognition,
pp. 749711–749711, International Society for Optics and Photon-
ics, 2009.

[89] S. B. Gueye, K. Talla, and C. Mbow, “Solution of 1d pois-
son equation with neumann-dirichlet and dirichlet-neumann
boundary conditions, using the finite difference method,” Jour-
nal of Electromagnetic Analysis and Applications, vol. 6, no. 10,
p. 309, 2014.

[90] P. K. Kitanidis, “Generalized covariance functions in estima-
tion,” Mathematical Geology, vol. 25, no. 5, pp. 525–540.

[91] K. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advan-
tages, Applications. Academic Press, 1990.

[92] C. Ding, H. D. Simon, R. Jin, and T. Li, “A learning framework
using green’s function and kernel regularization with applica-
tion to recommender system,” in Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pp. 260–269, ACM, 2007.

[93] A. K. Chandra, P. Raghavan, W. L. Ruzzo, and R. Smolensky,
“The electrical resistance of a graph captures its commute and
cover times,” in Proceedings of the Twenty-first Annual ACM Sym-
posium on Theory of Computing, STOC ’89, (New York, NY, USA),
pp. 574–586, ACM, 1989.

	Supervisory Committee
	Abstract
	List of Figures
	List of Tables
	Glossary of Acronyms
	Introduction
	Motivation
	Research Objectives
	Research Methodology
	Thesis Structure

	Background and Theory
	Animation
	Animating Digital Characters
	What is motion capture?
	Defining a Pose
	Quaternions
	Animated Splines
	Falloff Splines

	Manifolds
	The Graph Laplacian
	Dimensionality Reduction Techniques

	Chapter Summary

	Manifold Pose Distance for Intelligent Motion Capture Editing
	Introduction
	Background and Related Work
	Motion Editing
	Dimensionality Reduction for Motion Editing

	Method
	The Pose Laplacian
	Green's function
	Edited Pose Interpolation

	Results
	Dimensionality Reduction
	Pose Distance
	Edited Animation
	Evaluation

	Chapter Summary

	Non-local Pose Means for Motion Capture Noise Reduction
	Introduction
	What is noise?
	Processing Noise
	Research Method

	Background and Related Work
	Image Denoising Filters
	Motion Denoising
	Non-local Means

	Non-local Pose Means
	Pre-processing Poses
	The Non-local Pose Mean Filter

	Results and Evaluation
	Non-local Pose Means
	NLPM Benchmark Comparisons

	Chapter Summary

	Discussion and Conclusion
	Summary
	Limitations
	Future work
	Conclusion

	Appendix A
	Green's Function as a similarity measure

