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Abstract
Proton magnetic resonance techniques have become indispensable for char-
acterising tissues non-invasively. These methods provide abundant in-
formation regarding metabolism, morphology and histology of the sample
under study. While these techniques were more expensive in the past
compared to radioactive methods, modern advances in hardware and
methodology provide the potential to use magnetic resonance systems
more efficiently and widely. In this context, this thesis explored innovat-
ive magnetic resonance technologies from three independent perspectives
which are suitable for tissue characterisation, utilising techniques from
a wide range of disciplines including physics, engineering, biology and
medical sciences.

One strategy relates to compressed sensing magnetic resonance ima-
ging, seeking to recover detailed features at high undersampling rates. A
data-adaptive sparse transform facilitated by principal component ana-
lysis was introduced as an alternative to the conventional pre-defined
sparse transform. Moreover, the principal component analysis was used
in a recognition algorithm for the reconstruction of undersampled data.
The performances of these approaches were studied in cases of localised
changes in the acquired images. The results demonstrated that the recogni-
tion reconstruction algorithm performed better than wavelet compressed
sensing. This progress can be utilised to accelerate current state of the art
imaging protocols at high magnetic field strengths. Furthermore, the prior
knowledge contained in high resolution databases may enhance imaging
capabilities of technologies at low magnetic field strengths.

A second approach exploits nuclear magnetic resonance diffusion con-
trast instead of contrast agents for tissue characterisation. Microstruc-



tural information and global fractional anisotropy can be obtained from
diffusion-diffusion correlation spectroscopy via a novel multi-dimensional
gradient scheme. The concept was validated by random walk simulations
and experiments of biological samples. Both correlation maps and global
fractional anisotropy of in vitro healthy and tumour-bearing mouse brains
were found to be different, thus providing a potential application of the
proposed scheme in diffusion oncology.

In addition, a threshold algorithm on the selection of a region of interest
was implemented to minimise inter-observer variations. This technique
was applied to a pilot study of diffusion weighted imaging data which
were acquired from patients after x-ray mammography indicated lesions.
The statistical analysis revealed an optimal threshold similar to values
commonly used in positron emission tomography. Apart from selecting
regions automatically, various data processing methods were implemented
and compared with each other regarding their diagnostic accuracies. This
field study provides opportunities for standardising procedures in diffusion
weighted mammography, which may be integrated into clinical analysis in
the future.
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Chapter 1

Introduction

The nuclear magnetic resonance (NMR) phenomenon was discovered
in the 1940s [1–4]. Initially, it served to study the chemical and physical
properties of pure liquids and solids. After 30 years, NMR was used
to study the metabolic, morphological and histological information of
plants, small animals and human bodies [5–8] together with the progress
of magnetic resonance spectroscopy (MRS) [9, 10] and the invention of
magnetic resonance imaging (MRI) [11, 12]. Because of abundant water
existing in tissues, hydrogen is the predominant nucleus of NMR/MRI
investigations.

Although NMR/MRI is non-invasive and non-destructive, it may not
be used as a preliminary diagnostic/screening method for various can-
cers. This is attributed to issues such as long scan time and high costs.
The time-consuming acquisition reduces the amount of possible experi-
ments/examinations within a certain time period. Moreover, the required
time for imaging may be susceptible to motion from both the instruments
and patients therefore will provide ambiguous results [13]. High costs
mainly come from the need for large cryogen cooling systems equipped
with super-conducting magnets and non-magnetic accessories, the con-
struction of a dedicated room for housing the NMR/MRI system and the
clinical use of contrast agents. Reducing acquisition time and overall ex-
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2 Introduction

pense will be particularly beneficial, yielding to more detailed studies of
biological tissues and potentially increasing patient throughput in hospital.

Recent efforts have resulted in faster MRI data collection without de-
grading the quality of the images. One such example is parallel MRI [14–
17], which can reconstruct the object based on the spatially distributed
data acquisition with the aid of independent multichannel coils. This
uses sophisticated radio-frequency (RF) hardware with the corresponding
acquisition-control software [18], thus the total expense of parallel MRI may
offset the gain of providing shorter scan time. As an alternative, magnetic
resonance (MR) images can be obtained by random undersampling k-space
with a suitable reconstruction procedure [19–22], which is known as the
compressed sensing (CS) framework. The use of CS in MRI was proposed
in 2007 [23, 24], and has been successfully demonstrated in imaging various
tissues, such as heart, brain, and breast [23, 25, 26]. CS requires no upgrade
of the existing MRI system, thus there is no additional hardware cost to
apply this framework.

While technologies like CS may help to reduce the experimental time,
other methods may be developed to reduce costs. Contrast agents are
commonly administrated into human body to increase the differentiation
of NMR responses between tissues that are imaged simultaneously [27].
However, these expensive substances may be unnecessary if other methods
can yield a sufficient contrast. Techniques such as magnetisation transfer
and chemical exchange have been developed to assist this situation [28, 29].
Another promising way is to utilise molecular random motion as an inher-
ent contrast agent, the speed of which is controlled by the microscopical
structure of the underlying tissues, such as the cellular size, density, mem-
brane boundary and fibrous construction [30]. Therefore, the change of
this speed in tissues is thought to be an indication of the biophysical and
physiological states [31]. For instance, cells in malignant breast tumours
are densely packed. Thus water motion is hindered to a large degree [32].
NMR is an inimitable technique to quantitatively measure the distance
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of this random motion by utilising a diffusion-sensitising gradient [33].
Additionally, the stereoscopic structure of the tissue can be disclosed by
applying the gradient along different directions [34].

In spite of the aforementioned progress, the application of these ad-
vanced techniques into biological tissue characterisation has been chal-
lenged in recent years. For instance, issues related to the required minimal
sampling rate in the current CS frameworks were reported [35]. However,
the cost of acquisition speed up is increased reconstruction time, requiring
advanced computing hardware [36]. Diffusion imaging methods suffer
from hardware, methodological and practical limitations [37–39]. Such
weaknesses motivate one to develop alternative approaches that offer less
instrumental and operational constraints to investigate the complex struc-
tures of tissues.

This thesis improves NMR methodologies for tissue characterisation
through the incorporation of pattern recognition algorithms with MRI
reconstruction and the development of new pulse sequence in NMR diffus-
ometry. Furthermore, the practical issue of observer variabilities in clinical
research is also addressed in this thesis.

Before going into the original contribution of this thesis, Chapter 2
provides a brief introduction of NMR and MRI fundamentals. Starting
from Bloch-Torrey equations, it introduces how an NMR signal can be
detected, and ends with how spatial and displacement encoding can be
achieved by using pulsed field gradients.

Chapter 3 reviews more advanced NMR/MRI methods, necessary back-
ground for the subsequent chapters, ranging from the application of the
CS framework into MRI to the investigation of more complex behaviour of
water movements in tissues. The general morphological and histological
information of the biological samples studied in this thesis is given at the
end of this chapter.

From Chapter 4, the original work of this thesis is introduced. Chapter 4
elucidates three new MRI reconstruction algorithms based on CS theory.



4 Introduction

The motivation of using pattern recognition algorithms is presented at the
beginning of this chapter, and the comparison between different algorithms
is made at the end of the chapter.

In Chapter 5, an innovative experimental design is suggested based on
a two-dimensional (2D) NMR spectroscopy method, in order to quantitat-
ively evaluate orientation-dependent diffusion that was only accessible by
imaging techniques. The feasibility of this methodology is addressed by a
numerical simulation of aligned fibres and experiments of three biological
tissues. The values obtained by the proposed approach are compared with
imaging results.

Chapter 6 describes a data-driving tactics to reduce the differences of
diffusion parameters read by individual radiologists in the field of MR
mammography. In the meantime, it assesses the diagnostic accuracy of
three averaging measurements. The optimal diffusion parameter and av-
eraging measurement in this particular study are given at the end of this
chapter.

As a closing remark, Chapter 7 summarises the original work contained
in the previous chapters and discusses the possible further developments
of these methodologies.



Chapter 2

Physics of MR Imaging and
Diffusometry

The inherent description of NMR phenomenon is quantum mechanics, on
the other hand, it is reasonable to explain the evolution of the NMR signal by
using classical physics. This chapter will give the necessary materials based on
the classical description for the subsequent chapters, including the well-known
Bloch-Torrey equation, elementary pulse sequences and encoding methods. More
complete and advanced discussions based on the quantum physics can be found in
textbooks such as Ref. [40, 41].

5
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2.1 Signal Evolution and Detection

In order to generate an NMR signal, it is essential to place atomic spins
(i.e. nuclei) into a static magnetic field B0, denoted as [ 0, 0, B0 ]T. This
magnetic field polarises the spins (mostly referred to 1H in tissues), result-
ing in a net magnetisation M0, denoted as [0, 0, M0]

T . This magnetisation
precesses freely around B0 with a Larmor frequency fLM

0 [2, 3]

fLM
0 =

γ

2π
B0, (2.1)

where γ is the gyromagnetic ratio (2π × 42.56 MHz/T for 1H). The main
instrument that is used in the thesis is a 9.4 T MR system, which has a
nominal Larmor frequency of 400 MHz. The configuration of the 9.4 T MR
system is shown in Figure 2.1.

The value of this magnetisation under the condition of thermal equi-
librium is proportional to the static field strength which can be described
by [41]

M0 = N0

γ2h2pB0

16π2kBT
, (2.2)

where hp is the Plank’s constant, kB is the Boltzmann constant, T repres-
ents the temperature and N0 stands for the number of 1H in tissues. As
indicated in Equation (2.2), if the tissue is measured at a middle magnetic
field strength of 1.5 T (which is normally used in a clinical setting), the
magnetisation is 5-fold less than that is measured at the 9.4 T magnetic
field.

2.1.1 Bloch-Torrey equation

Besides the static field, the generation of the NMR signal requires an
oscillating field (B1) with the Larmor frequency and perpendicular to M0.
This is usually accomplished by applying an RF pulse emitted by an RF
coil. In order to simplify the complex phenomenon of the magnetisation
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(a) (b)

Figure 2.1: Pictures of the 9.4 T system (Bruker Billerica, Massachusetts, USA)
used in this thesis. (a) Magnet; (b) Spectrometer and other peripherals.

during and after an RF pulse, a rotating frame of reference is used to
observe the evolution, oscillating with the Larmor frequency relative to
the laboratory coordinates. Therefore, B1 and M0 appear stationary in this
frame. The time evolution of the magnetisation M(t)

(
= [ Mx, My, Mz]

T
)

interacted with an external magnetic field in the rotating frame of reference
(B(t) = B1(t)) can be described by using the Bloch-Torrey equation [2, 42]:

dM(t)

dt
= γM(t)×B(t)−

 Mx/T2

My/T2

(Mz −M0) /T1

+∇ ·D∇M(t). (2.3)

In Equation (2.3), T1 describes the polarisation (i.e. recovery) of the
longitudinal component and T2 characterizes the dephasing (i.e. phase lost)
of the transverse magnetization components. Both T1 and T2 can be referred
to as a “relaxation time”, with T1 the longitudinal relaxation time and T2 the
transverse relaxation time [43], which are frequently used to differentiate
between types of tissues. However, the exact values vary with the strength
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of the applied magnetic field. For instance, T2 of a tissue ranges from 30 ms
to 300 ms and T1 from 100 ms to 1.5 s at a typical 1.5 T MR scanner [44–46];
however, if measured at a 9.4 T scanner, T2 may be halved while T1 may
be doubled [47, 48]. D is the diffusion tensor of water molecules [49]. If
external or background gradient is absent, ∇ · D∇M(t) will equal to 0.
Moreover, strictly speaking, it is independent of NMR because it reflects
the nature of molecules undergoing thermal motion. Further discussion of
D will be shown in Section 3.2.2.

Equation (2.3) is a differential equation. Thus, the solution of it is
dependent on the specified initial and boundary conditions. However,
the above equation can be simplified in particular cases. For instance, the
relaxation and diffusion mechanisms are typically neglected during an RF
pulse, meaning that only the term of γM(t)×B(t) in Equation (2.3) is left.
The assumption is valid if the pulse duration is short enough (on the order
of µs). Therefore, it is simply illustrated by “nutation”: the B1 field rotates
M0 away from the original axis (z in this thesis) with a tip angle α. It is
determined by γ, B1 and pulse duration:

α = γ

∫ τ

0

B1(t)dτ (2.4)

and normally used to name the RF pulse, e.g. an RF pulse that with a tip
angle of 90◦ is known as 90◦ pulse.

After excited by the RF pulse, the rotated magnetisation will precess
around the static field due to the relaxation and diffusion mechanisms
(γM(t)×B(t) = 0). This precession creates a changing magnetic flux, which
in turn induces a changing voltage in a receiver coil. This voltage is the
detected NMR signal that is used for further analysis in many applications.

2.1.2 Elementary pulse sequences

Usually not only one RF pulse but a series of RF pulses is applied in
an NMR experiment. The timing of the series is referred to as “pulse
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sequence”. By combing RF pulses with different tip angles at particular
time points, individual relaxation and diffusion mechanisms can contribute
to the NMR signal. Two examples that are elements for many advanced
pulse sequences are shown in the following sections.

Free Induction Decay (FID) refers to an electromagnetic signal detected
shortly after one 90◦ pulse [4, 50]. The pulse program and the acquired FID
signal are shown in Figure 2.2.

t

90◦

T ∗2 decay

Figure 2.2: FID signal and its pulse sequence.

FID signals are used commonly in MRS to study the chemical shifts of
materials. This sinusoidal signal decays exponentially with a time constant
of 1/T ∗2 . It is a combined effect of magnetic field inhomogeneities and
intrinsic T2 mechanism.

Spin Echo (SE) can be produced by adding either one 180◦ pulse (i.e.
Hahn echo) or two 90◦ pulses (STimulated echo, STE) subsequently [51].
The time interval between the first two pulses needs to be equivalent to the
time interval between the last pulse and the acquisition. In consequence,
it compensates the attenuation due to local magnetic inhomogeneities.
Through solving Equation (2.3), the signal intensity of SE in a static field
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can be described by

M(TR, TE) = M0 ·
[
1− exp

(
−TR
T1

)]
exp

(
−TE
T2

)
, (2.5)

where TE and TR are the echo time and repetition time, respectively. By
manipulating TR and TE, the relaxation-dependence of the acquired signal
can be modulated. For example, when TR = 5T1, the decay rate of the signal
is only determined by T2 because the exponential factor of T1 becomes
1− exp (−5T1/T1) ≈ 1.

The pulse programs of Hahn echo 1 and STE are shown in Figure 2.3,
where both of them appear as back-to-back FIDs. The lost phase due to the
local field inhomogeneities can be rewind after the 180◦ pulse (or two 90◦

pulses).

-

t

90◦ 180◦

FID Echo

����

90◦

� -τ � -τ

� -TR

(a)

-

t

90◦ 90◦ 90◦

FID Echo

����

90◦

� -TE

� -TR

(b)

Figure 2.3: SE signals and the pulse sequences. (a) Hahn Echo; (b) Stimulated
Echo. τ = TE/2 is the half echo time. TR is the repetition time.

1The spin echo pulse sequence proposed by Hahn in his original paper [51] is 90◦− 90◦.
The Hahn echo showed in the text is 90◦ − 180◦ variant.
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2.2 Magnetic Resonance Imaging

2.2.1 Spatial encoding

In general, a 90◦ hard pulse will excite all spins in tissues to the trans-
verse plane (or xy-plane) without carrying any spatial distribution informa-
tion. However, if a soft pulse with a limited bandwidth (e.g. a sinc shaped
envelope pulse) is emitted [52, 53], only magnetization at a slice location
corresponding to that frequency band may be excited. By further super-
imposing a gradient on the static field, the field strength becomes position
dependent, which makes it possible to obtain the spatial distributions of
spins [11]. If only the distribution of spins in the xy-plane of the Cartesian
coordinates is taken into account, angular Larmor frequencies (ω = f/2π)

of the spins in the xy-plane of the Cartesian coordinates vary with their
positions, which can be expressed as

ω(x, y) = γB0 + γ [G(x)x+G(y)y] , (2.6)

whereG(x), G(y) and x, y are the field gradient strengths and spin positions
along x- and y- directions, respectively. The detected NMR signal is an
integral of all spins with their own processing frequencies [12, 54]:

M(t) =

∫ ∫
ρ(x, y) exp{iγ [G(x)x+G(y)y] t}dxdy. (2.7)

Here, ρ(x, y) is the spin density distribution. By introducing the concept of
k-space [12, 55], Equation (2.7) can be rewritten as,

M(kx, , ky) =

∫ ∫
ρ(x, y) exp [i2π(kxx+ kyy)] dxdy. (2.8)

where,
kx,y = (2π)−1γGx,yt. (2.9)
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It is evident that ρ(x, y) and k(x, y) are a Fourier transform pair. By
sampling in time (k-space) domain in two directions and subsequently
applying a two-dimensional Fourier Transform (2D-FT) [56–58] on Equa-
tion (2.8), the spatial distribution ρ(x, y) can be obtained, which forms a 2D
proton density MR image. An example of k-space map and MR image is
given in Figure 2.4. As can be observed from Figure 2.4, signal intensities
in the MR image are distributed in the 2D map, whereas only few non-zero
points that are centred in k-space can be found. This characteristic makes
compressed sensing idea naturally applicable to MRI [23], which will be
further discussed in Section 3.1.1 of Chapter 3.

(a) (b)

Figure 2.4: Example of (a) the proton density MR image and (b) its k-space data
showing the sparsity of the MR data.

The 2D spatial encoding (in other words, sampling in k-space) includes
two-directional encodings as shown in Figure 2.5. The read gradient is
applied with a constant value during the acquisition (i.e. varying t in Equa-
tion (2.9)) to encode frequency differences [59], and another perpendicular
gradient is applied with varying the gradient strength up to its maximum
Gmax

ph in Equation (2.9), to encode phase differences [60]. Either encoding
gradient can be applied along the x or y axis, with individual determining
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the field of view (FOV) and the resolution in each direction [61]:

FOVfreq = 2π/
(
γGfreqtacq

)
;

FOVphase = 2π/
(
γGmax

ph tph

)
.

Where, Gfreq and tacq are the strength and the duration for the frequency-
encoding gradient, respectively. Gmax

ph and tph are the maximal strength and
duration of the phase-encoding gradient, respectively. Subsequently, the
resolution in each direction can be calculated by dividing the FOV with the
number of acquisition points.

(a)

F
re
qu
en
cy

Phase

(b)

Figure 2.5: Diagram of (a) 2D spatial encoding and (b) its k-space trajectory. The
soft RF pulses with limited bandwidth are shown at the top of the pulse sequence.
Gslice, Gphase and Gfreq are the slice selection, phase encoding and readout gradi-
ents, respectively. The symbol ê in the front represents the unit vector in the
direction of the respective gradient in the laboratory coordinate system. Gmax

ph
and tph are the maximal value and duration of the phase-encoding gradient, re-
spectively. tacq is the acquisition time and the duration for the frequency-encoding
gradient. The phase-encoding gradient strength is stepped in the following experi-
ment until it reaches the maximal value, which is indicated by the horizontal lines
inside the gradient pulses.
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2.2.2 k-space trajectory

The sequence of using digitised MR signals to fill in the k-space is
commonly known as “k-space trajectory”. Figure 2.5 (b) depicts the k-space
trajectory using the encoding of Figure 2.5 (a). As it fills the whole k-space
column-by-column in a Cartesian grid, the reconstruction of the MR image
only needs 2D-FT, which is simple and intuitive. However, it is sensitive
to the motion of the instrument and imaged subject, which limits its use
in some particular fields such as cardiac imaging and MR angiography.
To overcome these issues, non-Cartestian trajectories have been designed
(e.g. radial, spiral) together with non-uniform FT reconstruction [62, 63].
On the other hand, undersampling k-space is possible with the theoretical
development of CS [23].

2.3 Magnetic Resonance Diffusometry

2.3.1 Displacement encoding and q-space

Additionally to acquiring proton density, T1 and T2 weighted values
of a tissue, there exists another encoding method that has been used ex-
tensively to monitor molecular displacement in the presence of a magnetic
field gradient [33, 64–66]. It provides the morphological information of
the intracellular and extracellular spaces [67] as well as the mobility of
molecules in tissues [68].

The statistical description for molecular displacement is the probability
density or propagator, which describes the chance that a molecule starts at
r0 at time t = 0 will be found at a position of r after time t. According to
Fick’s second law, this propagator P (r0, r, t) can be described by a partial
differential equation [69], which is known as the diffusion equation:

∂

∂t
P (r0, r, t) = ∇ ·D∇P (r0, r, t). (2.10)
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If the initial condition is considered to be a Dirac delta function and the
boundary conditions are P (r0, r, t)→ 0 and r→∞, the solution of Equa-
tion (2.10) is a Gaussian function [33, 70]:

P (r0, r, t) =
1√

|D|(4πt)3
exp

(
−(r− r0)TD−1(r− r0)

4t

)
, (2.11)

where, |D| is the determinant of D.

Pulsed field gradient (PFG) or pulsed gradient spin echo (PGSE) is a
unique technique that can obtain the information about the displacement
propagator P (r0, r, t) [33, 64]. An example of the pulse sequence is shown
in Figure 2.6. It is based on a spin echo pulse sequence as shown in Fig-
ure 2.3 (a) with two additional gradient pulses (aka PFG pair). They both
last for a duration of δ and separated by a time interval of ∆. The de-
tected NMR signal as an ensemble average is the integral over the phase
differences of all spin-carrying molecules

M(Gdiff, ∆) =

∫
P (R, ∆) exp (iγδGdiff ·R) dR. (2.12)

Here, R = r−r0 is the displacement, P (R, ∆) is the average propagator [71]
introduced by the equation

P (R, ∆) =

∫
ρ(r0) · P (R, ∆)dr0, (2.13)

where ρ(r0) represents a probability of finding a molecule at position r0.
Gdiff denotes the amplitude and direction of the diffusion-sensitising gradi-
ent. The introduced “q-space” by Callaghan et al. [72] enables the reformu-
lating of Equation (2.12) to be

M(q, ∆) =

∫
P (R, ∆) exp (i2πq ·R) dR, (2.14)

with the definition of q = (2π)−1γδGdiff. Similar to Equation (2.8), a Fourier
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relationship is seen in Equation (2.14). Thus, signal sampling in q-space
allows for “imaging” molecular displacements. Equation (2.14) has become
the core of many newly developed PGSE-NMR techniques, such as over-
coming the resolution limitations of conventional imaging methods [73, 74]
or single-shot diffusion experiments [75].

-

t

6RF
90◦ 180◦

Echos

-

t

6êGdiff

�
�
��

�-δ

�
�
��

�-δ

� -∆
?

6
G

Figure 2.6: PGSE pulse sequence based on the spin echo, where δ and ∆ are the
gradient duration and observation time, respectively. Gdiff is the displacement-
encoding gradient. The symbol ê in the front represents the unit vector in the
direction of the respective gradient in the laboratory coordinate system. The
displacement-encoding gradient strength is stepped in the next experiment until it
reaches the maximal value, which is indicated by the horizontal lines inside the
gradient pulses.

Considering the case where the projection of the displacement on the
direction of the gradient pair is applied (R→ R), the cumulant expansion
allows replacing the integral on the right side of Equation (2.14) to be [65,
76] ∫

P (R,∆) exp (i2πqR) dR =
∞∑
n=0

(i2πqR)n

n!
〈Rn〉c, (2.15)

where, R is the component of displacement along the gradient direction
defined by q (of which, q is the amplitude). 〈·〉c stands for the cumulant
values of molecules. Therefore, the representation of M(q,∆) by averaging
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phase shift leads to

M(q) = M(0)
[
1− (1/2!)(2πq)2〈R2〉c + (1/4!)(2πq)4〈R4〉c +O(q6〈R6〉c)

]
(2.16)

where, M(0) is the magnetisation acquired when no gradient is applied.
〈R2〉c is the corresponding mean squared displacement. The Gaussian
nature of Equation (2.11) allows the higher order term (1/4!)(2πq)4〈R4〉c to
be zero. However in some cases, the displacement propagator function
may not be a Gaussian distribution, thus the higher order term is non-zero.
Chapter 3 will review an advanced technique that deals with the higher
order term. In the next section, a short introduction to molecular diffusion
and how to measure it (aka diffusometry) via the displacement information
is given.

2.3.2 Molecular diffusion

Molecular self-diffusion2, D, often simply called “diffusion” in NMR,
refers to the process that molecules undergo a stochastic (i.e. Brownian)
motion associated with thermal energy3. The Gaussianity of Equation (2.11)
leads to the Einstein equation linking diffusion and mean squared displace-
ment at a time interval of ∆ [68]:

D =
〈R2〉c
2∆

, (2.17)

By substituting Equation (2.17) into Equation (2.16) and re-using the Taylor
expansion for exponential representation, the signal decay equation can be
re-written as

M(q) = M(0) exp
(
−4π2q2D∆

)
. (2.18)

2This paragraph describes the free diffusion of molecules, thus the diffusion tensor is
reduced to a scalar value.

3It should be mentioned that the concept of conventional diffusion holds for a time
longer than 10 ps (picoseconds) [77]. “Anomalous diffusion” may be observed at times
shorter than 10 ps [78, 79]
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The value of D can then be obtained by fitting the signal using a mono-
exponential model. Figure 2.7 (a) is the signal decay curve of water mo-
lecules at 20◦C obtained by using the PGSE pulse sequence shown in
Figure 2.6, the slope of which indicates molecular thermal diffusion in-
formation, which is 2.06 ± 0.03 × 10−9 m2/s. Naturally, with increasing
the temperature, molecules diffuse more intensively, leading to a larger
diffusion coefficient value. By employing PGSE technique consecutively
under different heating conditions, the dependence of diffusion coefficients
on the temperatures can be obtained and shown in Figure 2.7 (b), which is
reproduced from [80]. A non-linear increasing tendency of the diffusion
coefficients is seen with the increment of the temperature. For instance, the
free diffusion coefficient of water increases to 2.9× 10−9 m2/s at 35◦C.
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Figure 2.7: PGSE signal decay of pure water in 20◦C (a) and the dependency of
free diffusion on various temperatures (b) [80].

It should be mentioned that at large time-scale (large ∆), the mean
squared displacement of molecules in tissues may be affected by the bound-
aries of the space, which is depicted in Figure 2.8 (a). The displacements of
the water molecules increase equally in all directions in an unhindered en-
vironment when the observation time is in the short time limit. If sufficient
time is allowed for the diffusing molecules to be impeded by the barrier
of the space (specifically, cylinder in Figure 2.8), the displacements give
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an indication of the shape and orientation of the structure. If the barrier
is impermeable, at some point, the displacements no longer increase with
the observation time because the diffusing molecules are physically restric-
ted. This leads to a fact that the derived diffusion coefficient from PGSE
signal decay is time-dependent containing the geometry of the boundar-
ies [30, 81]. In order to illustrate this, PGSE signals at various observation
times by using Monte-Carlo simulations were obtained. The PFG pair
was applied perpendicular to the cylinder. The calculated diffusion coeffi-
cients are shown in Figure 2.8 (b), following a decreasing pattern when the
observation time is increased.

If, however, the barrier is permeable, such as cell wall in a tissue, the
displacement of the molecules may be still increasing even though the
observation time is long. This is because the molecules may travel into
the adjacent compartment. It has been validated that the measured diffu-
sion coefficient in a long time limit contains both information about the
compartment length and the permeable property of the barrier [82, 83]

D =
D0

1 +D0/κa
, (2.19)

where D0 is the free diffusion coefficient of the molecules, and κ indicates
the permeability of the space boundary. This model has been used in the
quantitative mapping of tissue permeability in plants [84]. More complex
behaviour (e.g. non-Gaussian diffusion) will be explored in Chapter 3.
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Figure 2.8: The dependence of displacements (a) and simulated diffusion coef-
ficients (b) on the observation time in a cylinder model. The simulation was
implemented by using the Monte-Carlo algorithm discussed in Chapter 5. The
result shown here is for illustration purpose. White curves inside the cylinder rep-
resent the trajectories of the molecules. The displacements of the water molecules
increase equally in all directions in an unhindered environment when the observa-
tion time is in the short time limit. If sufficient time is allowed for the diffusing
molecules to be impeded by the barrier of the cylinder, the displacement is no
longer increased. Therefore, the calculated diffusion coefficient will be decreased
with the incremental observation time. It should be noted that D is the measured
or apparent diffusion coefficient and ∆ is the “effective” diffusion time. More
details will be shown in the next chapter.



Chapter 3

Advanced MR Techniques for
Image Acquisition and Tissue
Characterisation

Since its invention 70 years ago, NMR has improved dramatically in the char-
acterisation of porous media in general. Advanced techniques have revolutionised
many disciplines such as material science and medicine. This chapter reviews state-
of-art methods to which the thesis strongly related, ranging from rapid imaging
development, the use of contrast agents, and complex diffusion behaviour to feature
extraction in biological tissues. At the end of this chapter, the tissue composition,
morphologies and anatomies of biological samples studied in this thesis work are
briefly introduced.

21



22 Advanced MR Techniques

3.1 Rapid Imaging

As mentioned in the previous chapter, MRI acquisition is a process of
sampling k-space data, of which the speed is limited by physical constraints.
Scientists are attempting to reduce the amount of acquisition time without
losing essential information. One approach is to start from reducing the
number of experiments required for sampling the whole k-space. By design-
ing sophisticated gradient-encoding pulse sequences, such as echo planar
imaging (EPI) [85], fast low angle shot (FLASH) [86] and rapid acquisition
with relaxation enhancement (RARE) [87], multiple k-space lines can be
filled at once. Hence, the total acquisition time is largely reduced. Other
approaches utilise specific hardware of multiple receiver coils, increasing
the acquisition speed by a factor equal to the number of coils used [16–
18, 88]. Moreover, because MRI data is redundant, it is possible to sample
few points even if only one receiver coil is available, which is built on the
idea of compressed sensing.

3.1.1 Compressed sensing MRI

CS is one of the signal processing techniques for efficiently acquiring
and reconstructing signals. This section will review how it is developed in
the signal processing field and how it is possible to apply the CS idea into
the MRI field.

The common goal of signal processing is to capture information (e.g.
frequency range) of an analogue signal from a series of digitised measure-
ments. An early breakthrough in signal processing was the Nyquist–Shannon
theorem [89, 90]. It requires the sampling rate to be higher than the highest
frequency of the signal, in order to capture all information and reconstruct
the signal perfectly. The sampling rate below that criteria may lead to a
coherent (aliasing) artefact, which is a superposition of shifted replicas of
the true signal. As the true signal and the replicas appear the same, it is
impossible to distinguish between them.
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Figure 3.1 (a) shows an intuitive example of digitised signal and its
representation in the frequency domain. The time-domain dataset contains
a wide range of intensities at different sampling time points. The number of
sampling points is 128 in this case. However, the frequency-domain signal
only consists of 5 peaks with distinct intensities.

In order to elucidate the consequence of violating the Nyquist-Shannon
theorem, the signal in Figure 3.1 (a) is undersampled. A sampling rate of
25% is applied to the time-domain data, leading to a measurement illus-
trated in Figure 3.2 (a). This type of undersampling is commonly known
as “uniform undersampling” because time for successive sampling points
is identical. By applying FT, the frequency-domain signal is seen in Fig-
ure 3.2 (b). In order to relatively compare the reconstructed signal with
its original data, the amplitude in Figure 3.2 (b) is amplified by a factor
of 1/0.25 = 4. It is observed that now the frequency-domain signal in
Figure 3.2 (b) contains 4 replicas of the true signal in different positions and
the major features shown in Figure 3.1 (a) can not be obtained from Fig-
ure 3.2 (b) using such undersampling pattern. Therefore, Nyquist–Shannon
theorem needs to be satisfied if the signal is acquired in a uniform manner.

n
0 50 100

O
cc

u
re

n
ce

0

0.1

0.2

0.3

(a)

n
0 50 100

A
m

p
li
tu

d
e

0

0.5

1

(b)
Figure 3.1: Example of (a) the 1D time-domain (digitised) signal and (b) its
frequency-domain counterpart. n is the sampling point.

In 2005, Candès and Romberg [19, 20, 91] found that a non-uniform
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Figure 3.2: The uniform undersampling pattern in the time domain (a) and its
inverse FT signal (b).

(specifically random) undersampling manner can resolve the problem of
aliasing artefacts caused by the violation of Nyquist-Shannon theorem. The
reconstruction exhibits incoherent artefacts that behave like (but is not)
additive random noise. In fact, the artefacts are indications of the random
re-distribution of signal amplitude due to this special sampling scheme.
Figure 3.3 shows the random undersampling pattern of the time-domain
signal in Figure 3.1 (b) and the reconstructed results via FT. Note that
the amplitude of frequency-domain data is multiplied by 4. Despite the
noisy appearance, 2 peaks with relatively large amplitude stand in the
same position as in the original signal. Unlike uniform undersampling
where the replicas conceal the information of the original signal, random
undersampling makes it possible to read some features as contained in the
original peaks at first glance.

Having discussed the random undersampling strategy, the question
for reconstructing the frequency-domain signal now becomes to recover
the peaks that are drowned in the “noise” level. The answer is that not all
types of digitised signals can be fully recovered, only which is sparse in a
certain “domain” can be possibly reconstructed [22, 92]. The “domain” is
constituted of a series of orthogonal basis functions and the sparsity means
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that most of the coefficients of the orthogonal basis functions are exactly
zeros (strong sparsity) or very small relative value (weak sparsity). For
example, FT domain is formed by a set of complex exponential functions,
and the sparsity requires the coefficients of the exponential functions to
be nearly zero. In our 1D example, as can be seen in Figure 3.1, although
the signal is not sparse in the time domain, the dataset in the frequency
domain is sparse (only 5 out of 128 points contain non-zero intensities)
which meets the requirement. Therefore, it is possible to recover the true
frequency-domain signal from the random undersampled dataset via the
use of FT as a sparse transform.
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Figure 3.3: The random undersampling pattern in the time domain and its inverse
FT signal. (a) Random undersampling; (b) reconstructed signal from (a) using FT
where no aliasing effect is shown.

Once the sparse domain is chosen, the recovery of the signal follows a
common concept via an iterative optimisation approach:

argmin ||Φx̂||1, subject to ||Ψx̂− y||2 < ε, (3.1)

where x̂ and y are the estimated (reconstructed) signal and measurements,
respectively. Ψ is the transform from the signal to measurements, and
Φ is the sparse transform of the signal. ε is the threshold to control data
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consistency. || · ||1 and || · ||2 are the l1 norm (sum of the absolute elements)
and the l2 norm (sum of squared elements), respectively. Equation (3.1)
is known as “l1 norm minimisation” which is now commonly used in
CS. Other approaches, such as “l0 minimisation”, are also explored in CS
in order to recover the signal [21]. Many algorithms, such as Bregmen
iteration [93], conjugate gradient method [23, 24] and thresholding [94, 95],
are demonstrated feasible to solve the optimisation function as described
in Equation (3.1).

An example of using “soft threshold” to recover the signal based on the
measurements in Figure 3.3 (a) can be described by

Φx̂n+1 = (Φx̂n) ·
(

1− σ

Φx̂n

)
. (3.2)

Where σ is a threshold value applied on the coefficients of the FT domain,
and n is the number of iterations. Any value smaller than σ will be treated
as zero. Φx̂n+1 represents the updated coefficients after each iteration. The
reconstruction results from different iterative steps that are illustrated in
Figure 3.4. It is seen that the noise level is gradually suppressed and the
information of the true signal in the frequency domain, including peak
positions and relative intensities, is gradually recovered with the iteration.

It may be argued that CS violates the Nyquist-Shannon theorem. How-
ever, this is a misconception because CS depends on the sparsity of the
signal and not its highest frequency. Moreover, the Nyquist-Shannon the-
orem provides sufficient, but not necessary conditions for guaranteeing
perfect reconstruction. A sampling method that is fundamentally different
from classical fixed-rate sampling cannot “violate” the theorem.

The use of CS in MRI starts 2 years after the theory of CS was complete
since the idea of CS is naturally applicative to MRI [23]. CS-MRI addresses
the issue of long scan time by sampling much fewer points in k-space. In
the context of 2D MRI acquisition and reconstruction, Equation (3.1) can be



3.1 Rapid Imaging 27

n
0 50 100

A
m

p
li
tu

d
e

0

0.5

1

(a)

n
0 50 100

A
m

p
li
tu

d
e

0

0.5

1

(b)

n
0 50 100

A
m

p
li
tu

d
e

0

0.5

1

(c)

n
0 50 100

A
m

p
li
tu

d
e

0

0.5

1

(d)

Figure 3.4: The iteration of reconstruction procedure after (a) 1, (b) 15, (c) 35 and
(d) 100 steps. The blue and green bars represent the real and imaginary parts,
respectively.
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rewritten as

argmin ||ΦF (Ku)||1, subject to ||Ie −F (Ku)||2 < ε, (3.3)

where Ku and Ie are the undersampled k-space data and the estimated MR
image, respectively. F is the FT operator.

The previous example of the MR image (Figure 2.4) is used to illustrate
the procedure of CS-MRI. The k-space data will be undersampled in a
certain pattern, which is operated by a “mask”. Based on the 2D spatial-
encoding pulse sequence on Section 2.2, it is easier to undersample the
k-space lines along the phase-encoded direction. The “grating-like” mask
is shown in Figure 3.5 (a). The white slabs represent the sampling area
in the k-space data and the black slabs indicate the corresponding areas
in k-space which will be un-sampled. The size of this mask matrix is
identical to the k-space data given in Figure 2.4 (b), which is 256×256. The
sampling rate in Figure 3.5 is 0.2, meaning that only 51 (=256×0.2) lines
in the phase direction are used for future processing. Since the centre of
k-space covers the contrast of the image, 15 lines in the central area are
fully kept. Moreover, the remaining 36 lines are not evenly but randomly
spaced [89, 90]. When operating this mask matrix with the original k-space
data, an undersampled k-space can be simulated as shown in Figure 3.5 (b).
The intensities in k-space are logarithmic in order to increase the contrast
of sampled and un-sampled parts.

The reconstructed image can be obtained by applying FT on the under-
sampled data, which is shown in Figure 3.6 (b). Comparing it with the
original image in Figure 3.6 (a), no aliasing but “incoherent” artefacts are
seen along the horizontal axis, which denotes phase-encoded direction in
k-space (Figure 3.5 (a)). The difference (error image) between this image
and the original one is given in Figure 3.6 (c). Key features of this brain
image are either missing or blurred along the undersampled axis.

The next step is to find a transform through which the image appears
sparse. As discussed in the 1D case, FT is an option. In the meantime, it
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Figure 3.5: The undersampling mask along the phase encoding direction (a) and
operated k-space data (b). The intensities in k-space are logarithmic in order to
enhance the contrast of sampled and un-sampled parts.
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Figure 3.6: The fully sampled (a), undersampled (b) and the error (c) images using
the zero-FT technique.
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is evident that wavelet transform is well accepted in compressing JPEG-
2000 images [96, 97]. Unlike Fourier coefficients which only carry either
frequency or time message, the wavelet coefficients contain both [98]. These
wavelets translate a multi-scale representation of the image. The decoded
images by one type of wavelets are pictured in Figure 3.7. Coarse-scale
wavelet coefficients represent the low resolution image components and
fine-scale coefficients stand for high-resolution components. Therefore, in
the 2D case, wavelet is used as the sparse transform1.

A soft threshold value (σ = 0.01) on the wavelet coefficients is used to
solve the optimisation equation in Equation (3.3). The reconstructed image
is given in Figure 3.8 (a). It is possible to observe the boundary of the brain
and some details of in the centre of Figure 3.8 (a) with a quarter of scan
time as is required to obtain Figure 2.4 (a). Furthermore, the residual error
from the reconstructed image is shown in Figure 3.8 (b). It is obvious that
although some high-resolution components still exist in the error image, the
residual error is greatly decreased and the central part has been recovered.

HH1

LH1

HL1

HH2

LH2

HL2

...

Figure 3.7: Scheme of levels of wavelet decomposition (a) and sparse representa-
tion of the brain image in the wavelet domain (b). H and L stand for high and low
coefficients, and the number afterwards represents the level of decomposition.

1The detailed implementation of the wavelet-CS algorithm can be found in http:
//www.eecs.berkeley.edu/~mlustig/Software.html.

http://www.eecs.berkeley.edu/~mlustig/Software.html
http://www.eecs.berkeley.edu/~mlustig/Software.html
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(a) (b) (c)

Figure 3.8: The fully sampled (a), reconstructed (b) and error (c) images using the
wavelet-CS technique. The soft threshold value σ is 0.01.

Although this result is visualised better than Figure 3.6, some artefacts
can still be observed along the horizontal axis in Figure 3.8 when using
wavelet-CS algorithm. This is a known situation in wavelet CS-MRI that
the sampling rates are required to be not lower than 30% to obtain a desired
outcome [35]. A data-adaptive sparse domain (such as principal component
basis) [99, 100] may address this issue which will be discussed in Chapter 4.

3.2 Weighted Imaging Techniques

Imaging contrast in conventional MRI mainly depends on the following
parameters: proton density (ρ), longitudinal relaxation time (T1), transverse
relaxation time (T2) and molecular diffusion coefficients (D). Proton density-
weighted images are usually obtained by using the SE imaging sequence
(shown in Figure 2.5 (a)) with short echo time (TE) and long repetition time
(TR). Thus, signal intensity is a function of the amount of protons in the
voxel [101].

T1 contrasts is generally obtained using the same sequence but with
short TE and short TR, in which way, proton with high T1 value will not
have completely recovered and have a reduced intensity than protons with
low T1 values in the obtained MR Images [102]. For instance, in the cystic
astrocytoma, proton in bound water will have lower T1 value (because of
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the fast energy exchange) which will exhibit higher intensity to the image.
T2 contrast is typically obtained with long TE and long TR, as a result,

proton with higher T2 value will dephase slower and appear hyperintense
in the image [102]. Taking protons in the necrotic tissue as an example,
it has longer T2 than that in the normal tissue which will be displayed
brighter in the image.

Diffusion contrast is produced by an imaging method which is usually
a series of images by applying additional diffusion-sensitising gradients
with linearly incremental strength [103, 104]. Molecules with smaller mo-
bility will provide higher signal thus much brighter than molecules with
larger mobility. Moreover, with the increase of the diffusion-sensitising
gradients, the image contrast can be enhanced, which will be addressed in
Section 3.2.2.

In general, images with these contrast mechanisms are known as weighted
images and the corresponding techniques are named as weighted ima-
ging, such as T1-weighted imaging (T1WI), T2-weighted imaging (T2WI)
and diffusion-weighted imaging (DWI). By obtaining a series of specific
weighted images, the parameter (ρ, T1, T2 or D) in each pixel can be calcu-
lated, thus forming a parametric map.

3.2.1 Dynamic contrast enhanced MRI

Apart from earlier specified tissue disparities naturally relying on
spin dynamics or spin-bearing molecular motions, the administration of
gadolinium-based materials (or more universal, contrast agents) enhances
the signal of certain part of tissues due to high magnetisabilities of these
materials [27]. These agents are uptaken by tumour angiogenesis reducing
the T1 value of tumours, thus leading to a hyperintensity on T1-weighted
images. Such dynamic contrast-enhanced (DCE) T1-weighted MRI method
has emerged as a useful tool to characterise abnormalities and discriminate
malignant and benign lesions in tissues like breasts [105, 106].

DCE-MRI involves repeated imaging before and after the injection of the
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contrast agents. Generally speaking, the growth of neoplastic cells needs a
“thirst” for blood supply and these cells are more permeable than cells in
normal tissue. Therefore, more amount of contrast agents will be brought
to the region via the blood stream. By observing the signal intensity curve
over time in the region of interest (ROI), information about tissue pathology
can be obtained. Three classical kinetic curves are shown in Figure 3.9 [107].
Type I represents a persistent curve, exhibiting a progressive rise after the
administration of the agents, often an indication for benign lesions; Type II
contains a plateau, describing no further rise of signal intensity after 90
seconds. This type of curve is widespread in benign and malignant lesions.
Type III is a typical curve for locating malignant tumours, which is a “wash-
out” curve. A declined tendency is seen after the initial rising in type III.
The rapid washout of the contrast agents may be caused by the nutrient
metabolism needed for the proliferation of cancerous cells.

Figure 3.9: The three types of kinetic DCE-MRI curves. Type I: a persistent curve
for benign lesions; Type II: a plateau curve for both types of lesions; Type III: a
wash-out curve for malignant lesions.

In the recent years, contrast agents have been developed, such as the
superparamagnetic iron/iron oxide nanoparticles [108], to improve the
diagnosis of small-size tumours due to the enriched T2 contrast. Despite
the high quality of the images, issues are still remained when using contrast
agents in human body [109, 110]. These particles might penetrate the tissue
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through an impaired blood and brain barrier, which could interfere with
supplementary MR examinations. Moreover, these contrast medium may
cause permanent reduction in kidney function when they are injected into
patients with existing kidney malfunction. High costs associated with
purchasing the materials limit their use in rural hospitals. Hence, it is of
high significance to develop contrast agent free NMR methods to obtain
sufficient image contrast for tissue distinction.

3.2.2 Diffusion imaging techniques

As molecular diffusion is independent of magnetic field strength, the
change in local field due to contrast agents will not enhance the diffusion
contrasts between tissues. Molecule itself can be treated as an “agent” to
produce excellent tissue contrast without the injection of any other sub-
stance, which is caused by different mobilities of diffusing molecules in
tissues. Therefore, these diffusion measurements provide abundant biolo-
gical and clinical information about tissue composition, micro-structure,
and architectural organisation. The following section will introduce differ-
ent diffusion models in tissues and how to measure them by using MRI
pulse sequences.

Diffusion-weighted imaging

The fundamental technique for every diffusion imaging method is DWI,
and the pulse sequence for acquiring DW images is simply a combination
of displacement- and spatial-encoding sequences. Various implementations
of both encoded gradients have diversified the DWI pulse sequences. Fig-
ure 3.10 and Figure 3.11 show two of them which will be used in Chapter 5
and Chapter 6. Specifically, Figure 3.10 is an intuitive example of merging
the PGSE and 2D spatial-encoding pulse sequences which were initially
introduced in Chapter 2 into one diagram. Whereas, Figure 3.11 incorpor-
ates PGSE with the EPI sequence, which is most commonly used in clinical
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application due to its fast acquisition [111]. In the EPI sequence, multiple
echoes of different phase steps are acquired by reversing the frequency-
encoding gradient and stepping the phase-encoding gradient in between.

However, simply combining diffusion- and spatial-encoding gradient
pulses is not trivial. Cross terms due to the tangling between the two
kinds of gradient pulses will contribute to the signal decay [113]. As a
simplification, a b-factor (or b-value) was suggested to include the effects
from both diffusion and imaging gradients [104], thus the signal attenuation
in a voxel is generally described by

M(b) = M0exp (−bADC) , (3.4)

where b is related to the amplitude, duration and separation of the pulsed
gradients [104], and the analytic expressions of b in different pulse se-
quences have been integrated in the standard MRI consoles. ADC is re-
ferred to as the apparent diffusion coefficients which is different from the
free diffusion coefficients D0 in Page 19. By fitting the acquired NMR signal
using Equation (3.4) in each pixel, an ADC map can be obtained. An ex-
ample of images acquired using the DWI-EPI pulse sequence with different
b-values is presented in Figure 3.12. As can be seen, with the increase of the
b-value, the signal intensity of each pixel is decreased. However, different
parts of the tissue may have distinct decreased rates, leading to the contrast
in the ADC map that is given in Figure 3.12.

The above calculation may reflect the true environment of diffusing
molecules in materials or plant tissue. Notwithstanding, for tissues which
contain vast majorities of randomly oriented micro-vessels, water molecules
following the blood stream may hold artificially increased ADC values. In
order to quantify the influence from vessels in a single voxel, an intravoxel
incoherent motion (IVIM) model was proposed by LeBihan et.al [114]. It
is a bi-exponential model separating the fast decay component caused by
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Figure 3.10: Diffusion-weighted spin echo imaging sequence [34].
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Figure 3.11: Diffusion-weighted spin echo echo-planar imaging sequence [112].
By switching the sign of the frequency-encoding gradient, multiple echoes can be
acquired at different phase-encoding gradient strengths.
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(a) (b) (c)

Figure 3.12: Images of the chive stalk with b-values of 0 (a) and 0.5× 109s/m2 (b)
and its fitted ADC map (c).

the presence of micro-vessels from the self-diffusion contribution [115]:

M(b) = M(0) · f · exp (−b ·ADCp) +M(0)(1− f) exp (−b ·ADC) . (3.5)

Where, f is the perfusion factor, indicating the fraction of the contribution
from the two movements. ADCp designates the pseudo-apparent diffusion
coefficient, which is found sometimes one order greater than ADC [116].
This should be taken into account when fitting the signal using the IVIM
model.

Diffusion Tensor Imaging

So far mentioned NMR diffusometry technique is based on a 1D model
of molecular displacement, which is the projection of all displacements onto
the axis along which the diffusion gradients are applied. However, molecu-
lar diffusion appears in all directions, which is commonly described by a
3D Gaussian model - diffusion tensor (D) [49]. It contains nine elements in



38 Advanced MR Techniques

the laboratory coordinate system:

D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 , (3.6)

whereby the subscripts denote the directions in the Cartesian coordinate
system. Dxx, Dyy and Dzz are the diffusion coefficients along x-, y- and
z-axis, respectively. Whilst Dxy, Dyx, Dxz, Dzx, Dyz and Dzy correspond to
the degree of coupling between diffusion in the two indexed directions.
Therefore, they can be negative [34]. For electrically uncharged moieties
such as water, D is symmetric [34], which means only six uncorrelated
elements are necessary to reconstruct the diffusion tensor. The values
of these elements are dependent on the spatial structure as well as the
orientation of the sample. By rotating this matrix in Equation (3.6) to its
principal coordinate system as shown in Equation (3.7), the eigenvalues
λ1, λ2 and λ3 (with 0 < λ1 ≤ λ2 ≤ λ3) are related to the intrinsic diffusing
environment independent of the orientation.

D = UTΛU = (u1, u2, u3)
T

 λ1 0 0

0 λ2 0

0 0 λ3

 (u1, u2, u3), (3.7)

where Λ holds the eigenvalues and U includes the eigenvectors. The eigen-
vectors (u1, u2, u3) with large eigenvalues indicate the preferred pathways
of the diffusing molecules. This means that the motion of the molecules is
direction-dependent (i.e. anisotropic). As an opposite, the equivalence of
these eigenvalues (λ1 = λ2 = λ3) infers an isotropic environment where no
preferable direction of molecular diffusion is present.

Figure 3.13 illustrates three diffusion tensor models. In isotropic media,
the diffusion tensor can be pictured using a spheric model (Figure 3.13 (a))
where λ1 = λ2 = λ3. However, in anisotropic media, the diffusion tensor
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model is either prolate (Figure 3.13 (b)) where λ1 = λ2 < λ3 or oblate (Fig-
ure 3.13 (c)) where λ1 < λ2 = λ3. All three principal directions are coincid-
ent with the eigenvectors.

Figure 3.13: Diffusion ellipsoid models: (a) spherical; (b) prolate; (c) oblate.

Diffusion tensor imaging (DTI) is a technique that allows the meas-
urement of the anisotropic diffusion spatially resolved into voxels. It has
been used for skeletal muscle, spinal cord, optical nerve and many other
investigations, among which, the application of DTI of white matter in the
brain is the most prevalent [117–119]. Assuming Gaussian diffusion in each
direction, the recorded signal amplitude of the PGSE pulse sequence needs
to include the contribution from different directions:

M(b) = M(0)exp (−bD)

= M(0)exp

(
−
∑
i=x,y,z

∑
j=x,y,z

bijDij

)
, (3.8)

where bij is the elements of b-matrix2. If the diffusion gradient is applied
only along one axis (x, y or z) in the Cartesian coordinates, only single term
will contribute to the signal decay:

M(t) = M(0)exp (−biiDii) ; (3.9)

If, however, the diffusion gradient is applied as a vectorised superposition

2b-matrix is the tensor representation of b-value introduced in Section 3.2.2.
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of the components from two directions, the PGSE signal intensity is

M(t) = M(0)exp [− (biiDii + bjjDjj + 2bijDij)] (i 6= j); (3.10)

the coupling of the diagonal and off-diagonal elements in Equation (3.10)
make it impossible to extract Dij only relying on single PGSE experiments.
Therefore, at least six PGSE experiments are required to be employed
in a series with diffusion gradients applied non-collinear, non-coplanar
directions to fully reconstruct the elements in diffusion tensor [113].

To evaluate the diffusional anisotropy quantitatively, fractional aniso-
tropy (FA) was defined to give a measure of the asymmetry of the diffusion
tensor [31, 120, 121]:

FA =

√
3 [(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2]

2(λ21 + λ22 + λ23)
(3.11)

where λ denotes mean eigenvalue in a pixel, i.e. λ = Tr(D)/3. Although
FA itself is an index which is expressed in the principal coordinate system,
Equation (3.11) can still be obtained directly from the non-diagonalised
diffusion tensor elements [121]:

FA =

√
1−

DxxDyy +DyyDzz +DxxDzz −D2
xy −D2

yz −D2
xz

D2
xx +D2

yy +D2
zz + 2D2

xy + 2D2
yz + 2D2

xz

. (3.12)

The relationship of FA = 0 holds true only when the off-diagonal elements
Dxy, Dxz and Dyz are all zero and the diagonal elements Dxx, Dyy and Dzz

are identical, which means that molecular diffusion is isotropic; on the
other side, FA > 0 means molecules diffuse anisotropically.

FA value is usually shown as a colour scale in a DTI map to indicate
the orientation of fibres. However, the value is an averaged degree of
anisotropy in a voxel. Therefore, it is known to be blind to the micro-
structures [37], which has confounded the diagnostic use of FA in distin-
guishing the randomly oriented fibres, such as crossing fibres/axons in the
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white matter. In these environments, the FA values will be zero but the
micro-structures are not isotropic. Several approaches, such as fractional
eccentricity (FE) [122] and microscopical fractional anisotropy (µFA) [38],
have been suggested recently to overcome this issue. For instance, ran-
domly oriented fibres will return a non-zero µFA value.

It should be noted that FA is a concept built upon the diffusion tensor,
however can only be analysed using the DTI measurements up to now.
Chapter 5 will introduce an alternative way of obtaining information about
FA without imaging parts. Akin to µFA, the new approach that is proposed
in Chapter 5 can overcome the common crossing fibre issue in FA.

Diffusion Kurtosis Imaging

The assumption that stands for both DWI and DTI is that the propagator
of molecular displacement at each direction obeys Gaussian distribution
as shown earlier in Equation (2.11). However, in biological tissues, the
presence of barriers (e.g., cell membranes or organelles) and compartments
(e.g., intracellular and extracellular spaces) will affect the diffusion beha-
viour of water molecules. Therefore, the distribution of the propagator may
exhibit non-Gaussian features. The non-Gaussianity of the distribution
can be quantified by a dimensionless statistic, which is known as kur-
tosis [123]. A positive kurtosis means the distribution is stronger peaked
and heavier tailed as compared to a Gaussian counterpart with the same
variance, whilst a negative kurtosis behaviours the opposite way. This can
be illustrated in Figure 3.14.

As the diffusion can be generalised as a 3D model, the diffusion kurtosis
can be generalised as a tensor accordingly. The diffusion kurtosis is a 4th-
rank tensor with 81 components in total [124]. However, the analysis of
kurtosis is mainly performed when one gradient direction is applied in
this thesis (Chapter 6), therefore, here for simplicity, the 4th-rank tensor is
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reduced to the 1D case, which is defined by

K =
〈R4〉c
〈R2〉2c

. (3.13)

Gaussian distribution of the displacement probability returns 〈R4〉 = 0 and
therefore K = 0. By substituting Equation (2.17) into Equation (3.13) and
rearrange it, the equation becomes

〈R4〉c = 2D2∆2K. (3.14)

Thereafter, Equation (2.16) can be re-written by combining it with Equa-
tion (2.17) and Equation (3.14),

M(q) = M0

[
1− 4π2q2D∆+

(2π)4q4D2∆2K

6
+O(q6)

]
. (3.15)

Neglecting the higher order terms and substituting b = 4π2q2∆3, a simpli-
fied form for signal attenuation can be reached [124]:

M(b) = M(0) exp

(
−bD +

b2D2K

6

)
. (3.16)

Note that D in Equation (3.14), (3.15) and (3.16) represents the Gaussian
component of water diffusion in the tissue because it is the variance of the
displacement probability distribution.

Figure 3.14 shows examples of three simulated signal attenuations with
identical diffusion coefficients but different kurtosis values using Equa-
tion (3.16) and its corresponding displacement probability distributions
via FT. In diffusion physics, zero kurtosis value indicates a free diffusion
behaviour of molecules, whereas positive kurtosis value may be obtained
due to restricted diffusion. Negative kurtosis value carries non-physical

3This is true for PGSE pulse sequence when the diffusion gradient is generated by a
narrow pulse.
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meaning, however, it can be observed in tissues associated with abnormal
phenomena, such as haemorrhage in brain, which leads to the erroneous fit
for the acquired NMR data [125].

The acquisition of the diffusion kurtosis is relatively simple, which uses
the same protocols with DWI (or DTI) that is available in clinical MRI
systems, only with measurements at higher b-values4 [126]. Subsequently,
kurtosis information can be obtained by fitting the signal attenuation using
Equation (3.16). This method has been referred to as diffusion kurtosis
imaging (DKI) [124].

3.3 Two-dimensional NMR Spectroscopy

While MRI techniques locate the position of a spin, MR spectroscopy
methods identify the environment of the spin. The environmental inform-
ation obtained from MRS can be different chemical compositions of the
spins in an organic compound (e.g. CH3CH2OH), or pore size distributions
in the porous medium. Two-dimensional NMR (2D NMR) spectroscopy
techniques were firstly proposed in 1971 and primarily used in analysing
the structure of chemical compounds which cannot be distinguished from
1D NMR spectra [57]. It has the same idea as contained in imaging encod-
ing where both frequency- and phase-encoding gradients are applied to
locate the spins in two orthogonal directions. 2D NMR spectroscopy uses
two encoding time periods to generate a multiplex signal from direct and
indirect domains. Therefore, 2D-FT is applied to process the signal. With
the mathematical development of a data processing toolbox, specifically,
the inverse Laplace transform (ILT), 2D NMR spectroscopy has been mod-
ified and used in a larger scale than the conventional NMR spectrum, to
identify fluid types and characterise pore structures, especially where the
pore length is beyond MRI resolutions [127–131]. In this section, a 2D NMR
spectroscopic method is reviewed, and how it relates to molecular diffusion

4The b-values for kurtosis measurements have been suggested higher than 1×109 s/m2.
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Figure 3.14: Signal attenuation curves (a) and displacement propagator distribu-
tions (b) at three different kurtosis values.

will be discussed in Chapter 5.

3.3.1 Diffusion-diffusion correlation spectroscopy

Diffusion-Diffusion COrrelation SpectroscopY (DDCOSY) is a 2D NMR
method that allows the observation of local structures without imaging
gradients [132–134]. It was proposed with the aim to reveal microscopic-
ally anisotropic structures in macroscopically isotropic polydomain sys-
tems [135]. In this situation, 1D measurements (single PGSE experiments)
return the same signal decay regardless of which direction the diffusion
gradient is applied. By appending another diffusion gradients to the
single PGSE with a different direction, the obtained signal of this double
PGSE [132, 136–142] contains the information of molecular displacement
interacting with gradients in two dimensions, holding the signature of local
diffusional anisotropy. The pulse sequence is shown in Figure 3.15 and the
NMR intensity in DDCOSY is a function of the two wave-vectors q1 and
q2 [143]:

M(q1, q2) =

∫
f (D1, D2) exp

(
−qT

1 D1q1∆1 − qT
2 D2q2∆2

)
dD1dD2,

(3.17)
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The integral in Equation (3.17) indicates that the diffusion coefficients in
the sample is a distribution rather than a fixed value. D1 and D2 are the
diffusion tensors interacted with the diffusion gradients in the two time
intervals5. f(D1,D2) is a 2D distribution function holding the probability of
the joint occurrence of D1 and D2. Similar to Equation (3.8), Equation (3.17)
can be simplified as by introducing the apparent diffusion coefficients6

Dapp
1,2 :

M(q1, q2) =

∫
f (Dapp

1 , Dapp
2 ) exp

(
−q21D

app
1 ∆1 − q22D

app
2 ∆2

)
dD1dD2,

(3.18)
Equation (3.18) shows a Laplace transform from f toM , and it is a classically
ill-posed problem to obtain from M to f . A 2D-ILT was introduced by
Venkataramanan and Song [144, 145] to solve this problem through an
optimisation approach [146, 147]:

f̂ = argmin
f>0

‖M −K1fK2‖2 + %‖f‖2 (3.19)

where ‖ ·‖ is the Frobenius norm of the matrix and K1 and K2 are the kernel
functions constituted from the exponential factors in Eq. (3.18). % is the
smoothing parameter controlling the stability in the estimated distribution.
This data processing protocol has been successfully applied in the study of
porous materials [129, 132–134, 148, 149]. The stability of this protocol was
investigated in detail [130, 144, 145] and uncertainties of the algorithm are
discussed in the literature [150–154].

After processing the acquired signal decay by using this 2D-ILT pro-
tocol, f (Dapp

1 , Dapp
2 ) can be displayed in a correlation map referred to as a

D-D map. Diffusivities along the main laboratory axes will be labelled Dii

with i = x, y, z, e.g. diffusion along the z-axis will be designated with Dzz.

5Given that the sample doesn’t change dramatically and the observation times in the
two encoding time are identical, physically D1 = D2. However, the subscripts are still
kept in order to differentiate these two encoding periods.

6Dapp is a substituted symbol of ADC in the spectroscopic context.
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Figure 3.15: The DDCOSY pulse sequence based on Hahn echo. Gdiff1,2 is the
pulsed field gradient applied on each direction. The symbol ê in the front repres-
ents the unit vector in the direction of the respective gradient in the laboratory
coordinate system.

Spatial orientations in the two diffusion domains will be referred to as Dij

with i, j = x, y, z. This allows for the designation of apparent diffusivities
along directions which are linear combinations of the laboratory coordin-
ate system e.g. Dxy. The 1D distributions of diffusion coefficients along
certain spatial directions can be obtained from the 1D projections onto the
axes of the D-D map. Isotropic features will manifest themselves through
diagonal peaks in the D-D maps while the anisotropic features will ap-
pear in off-diagonal peaks. It should be noted here that although negative
peak amplitudes are often present in 2D spectroscopic experiments (such
as carbon-13 NMR spectra [155] and T1-T2 correlation [156]), they are not
observed in the DDCOSY experiments due to identical spin dynamics (i.e.
transverse magnetisation) involved in both dimensions [66].

Figure 3.16 shows an example of a 2D signal decay acquired using the
DDCOSY pulse sequence and the corresponding D-D map in a chopped
chive, reproduced from [148]. The diffusion coefficientsDyy andDzz plotted
on the horizontal and vertical axes represent the diffusion coefficient along
y- and z- system. The colour bars represent the probability of diffusion
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coefficients at different values in arbitrary units. The upper and right
panels are the 1D projections from the 2D map. Diagonal lines in the D-
D maps mark identical diffusion coefficients in the two dimensions and,
thus, isotropic behaviour. Peaks on the diagonal lines will be referred as
“diagonal peaks” hereafter, while the ”off-diagonal peak” mean these peaks
are lying below or above the diagonal lines. In this example, both isotropic
and anisotropic diffusion behaviours are observed. The pattern of this map
will be used in Chapter 5.

Figure 3.16: 2D DDCOSY signal decay (a) and the corresponding D-D map (b) of
chopped chives. The colour bar in (a) indicates the signal intensity. The diffusion
coefficients Dyy and Dzz plotted on the horizontal and vertical axes represent the
diffusion coefficient along y- and z- system. The colour bars represent the signal
intensity in (a) and the probability of diffusion coefficients in (b) with arbitrary
units. The diagonal line indicates the equality of diffusion coefficients along
two axes. The upper and right panels are the 1D projections from the 2D map.
Reproduced with permission from [148].

As the DDCOSY technique inherently investigates local diffusion aniso-
tropy, it holds similar information that the µFA (mentioned in Section 3.2.2)
can provide. This enables the development and modification of the current
set-up of DDCOSY experiments and obtain local anisotropy information in
the system.
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3.4 Principal Component Analysis

Principal component analysis (PCA)7, including one-dimensional PCA
(1D-PCA) [157] and two-dimensional PCA (2D-PCA) [158], is a statistical
technique that analyses a database in which elements are described by
inter-correlated variables. The objective of the analysis is to extract the
main features (i.e. principal components) from the objects in the database
and express the information in a set of new uncorrelated variables (aka or-
thogonal bases). Hence, each element in the database can be reconstructed
by a combination of the orthogonal bases and corresponding weighting
factors. This multi-variate technique has been extensively used in face
recognition [158, 159].

The major difference between 1D-PCA and 2D-PCA is that each element
(e.g. a 2D image) in the database is required to be re-arranged as a 1D-
vector prior to 1D-PCA whilst 2D-PCA directly process a 2D matrix. It
brings the fact that a domain built from the principal components in 1D-
PCA holds orthogonality and sparsity, while this is not true in 2D-PCA.
Owing to these advantages, scientists started to use 1D-PCA in data and
image compression since 1996 [157, 160, 161], and it is now a commonly
analytical method in many disciplines which reduces highly dimensional
datasets to lower dimensionality [162]. For instance, 1D-PCA facilitates the
interpretation in a MR spectroscopy study to separate the contribution of
individual chemical constituents to the peaks [163]. At this point, elements
in the database are MR spectra. After extracting the principal components
in the spectra, metabolite compositions can be classified or identified.

In addition, 1D-PCA has been employed recently to obtain parameter
mapping (T1 [164] and T2 [165]) or improve temporal resolution in DCE-
MRI [166, 167] from highly undersampled MRI datasets. These datasets
are obtained by simultaneously acquiring spatial information (in k-space),

7In most literatures, PCA only refers to 1D-PCA unless explained elsewhere. However,
in this thesis, PCA includes 1D-PCA and 2D-PCA to clarify different usages of the two
methods.
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NMR relaxation or dynamic information as contained in multiple MR im-
ages dependent on some evolution time t, thus are commonly referred
to as k-t data. In this context, elements in the database are MR images.
Through the acquisition of similar MR images along the evolution time t, re-
dundancy is introduced into the dataset which enables the undersampling
during acquisition and subsequently restore missing information in indi-
vidual MR images via 1D-PCA, capitalising on the redundancy along t.
This holds true regardless of the particular sampling scheme employed.
For instance in [166, 167] a uniform undersampling scheme [168] was used,
while in [165, 169], k-space was sampled randomly (in conjunction with
the 1D-PCA as a sparse transform along the t-domain). Furthermore, 1D-
PCA was combined with a model-based algorithm [164, 165] to linearise
exponential decays of k-t data due to NMR relaxation. Thus, the discussed
publications [164–167, 170] are built around the additional information
(redundancy) along the evolution time t of the k-t data when reconstructing
the individual undersampled MR images. However, an approach which
does not rely on the existence of the evolution time domain t uses parallel
acquisition combined with uniform undersampling [171, 172].

The following section illustrates how to obtain the principal components
by using 1D-PCA. Afterwards, this concept will be extended to 2D which
will provide the methodological background for Chapter 4.

3.4.1 The procedure of 1D-PCA

The illustration in Figure 3.17 shows how the principal component basis
is obtained via 1D-PCA. Before performing 1D-PCA, each of the d images
in the database (I1, I2, ..., Id) is re-arranged into a vector (~I1,~I2,...,~Id), thus the
database can be treated as a L×d matrix (DB). Subsequently, a covariance
matrix C is constructed using the database matrices:

C = (DB −MB)T (DB −MB). (3.20)
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MB is a L×d matrix where the columns are identical and equal to the
vectorised mean image:

~Im =
1

d

d∑
n=1

~In. (3.21)

As a consequence, the elements in the covariance matrix represent the
correlation of each pixel among the images in the database. Through the
diagonalisation of C, the eigenvectors (U) can be determined and they
are ordered according to their corresponding eigenvalues. By projecting
the matrix (DB −MB) on U, the principal component matrix (PC) of the
database can be obtained by

PC = (DB −MB) ·U. (3.22)

The size of PC is L×d, in which the column vectors are referred to as
the principal components [159] and orthonormal to each other. Individual
images in the database can be reconstructed using the principal components
together with suitable weighting factors which characterise this image.
These weighting factors are denoted as the projection coefficients and
constitute a vector PJ in Figure 3.17 which can be determined by projecting
this image to the principal component basis.

It is known that PJ may carry negligible weighs, therefore, it may be
truncated and the principal components may therefore be used as a sparse
domain [100]. The sparsity of this orthonormal basis is evaluated by the
ratio of the number of zero elements in PJ to the number of total elements
(L).

3.4.2 The procedure of 2D-PCA

2D-PCA was proposed by Yang et al. [158] and has been used for feature
extraction and data representation. However, it has not been applied to MRI
data analysis to date. As introduced earlier in Page 48, 2D-PCA directly
processes the 2D matrices for the extraction of independent features in the
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Figure 3.17: Flow chart of the 1D-PCA procedure. MB is a L×d matrix in which
the columns are identical, equal to the vectorised mean image; U is a d×d matrix
containing the eigenvectors after eigen-decomposing the covariance matrix C. PJ
are the full set of coefficients.
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image. In 2D-PCA, the image covariance matrix (C) is constructed by using
the original d images which are represented by M×N matrices:

C =
1

d

d∑
i=1

(Ii − Î)T (Ii − Î), (3.23)

where Ii is the i-th image and Î is the mean image matrix. According to
Equation (3.23), the size of the covariance matrix C depends on the size of
the column of the image. Therefore, it has a square size of N by N. Each
element in C is then the average of the correlation magnitudes between
columns in this set of images. By diagonalising C, a matrix of eigenvectors
(U) and their corresponding eigenvalues are obtained. These eigenvectors
in U have been proven to be the optimal axis for feature extraction [158].
Through the direct projection of the 2D image matrix on U, the feature
matrix of principal components (PCi) of the ith image in the database can
be obtained and expressed by

PCi = (Ii − I) ·U, (3.24)

where PCi is a M×N matrix, for which columns are the principal compon-
ents of the image. After projecting all the images in the database to U, a
3D dataset of principal component matrices (PC1, ..., PCd) can be collected.
This procedure of 2D-PCA is illustrated in Figure 3.18.

3.5 Biological tissues studied in this thesis

Three different biological tissues were used in this thesis to either prove
the feasibility of the proposed methods experimentally or as objects for
field study. This section will provide relevant information of these tissues
for the discussions in Chapter 4, 5 and 6.
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Figure 3.18: Flow chart of the 2D-PCA procedure. Ii and Î are the i-th and the
mean image matrices, respectively. PC1, ..., PCd are the principal components of
the database.
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3.5.1 Plant tissue - carrot

As a widely available biological tissues, carrots were used in this thesis
to build up an image database in Chapter 4. A cross section of the carrot
tissue is seen in Figure 3.19. From the outer to the inner layer, it is mainly
composed of epidermis, cortex, pericycle, xylem and phloem.

A

B

C
D

E
Figure 3.19: The cross section of a
carrot.

A – Epidermis;
B – Cortex;
C – Pericycle;
D – Xylem;
E – Phloem

Epidermis is the single exterior layer that protects against water loss
and absorbs water from the external environment. The epidermal cells
are typically more prolonged than other parts of the tissue, with a radial
and azimuthal in-plane diameters of around 30 µm and 75 µm [173]. The
cortex cell, however, has a smaller diameter in the azimuthal direction
and slightly larger length in the plane. The most important function of
the cortex is to transport the water and nutrients into the central cylinder
(which is not shown in Figure 3.19), while xylem conducts water and
nutrients from the roots throughout the plant. Xylem tissue is structurally
complex, composed of a series of long tubes made up of shorter vessels.
The transport function of the cortex and xylem makes the cell wall very thin
and permeable. Phloem is the innermost layer of Figure 3.19, transporting
sugar from photosynthesis throughout the plant, holding the elongated
cells. However, the centre cylinder of the carrot is composed of more
rounded cells, with a spherical diameter of around 100 µm.

The distinct shapes and diameters of different compartments in the
carrot make it a sample suitable for the investigation of isotropic and
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anisotropic environments in plant tissues [84, 173, 174], as will be presented
in Chapter 5.

3.5.2 Animal tissue - mouse brain

It is known that a tumour usually indicates an abnormal growth of
tissue, therefore, the structure of normal tissues may be changed due to
the tumour development. In order to test the capability of a NMR method
for identifying these structural changes, two examples of healthy tumour-
bearing mouse brains were used in Chapter 5. The morphological informa-
tion of a healthy adult mouse brain is briefly shown in Figure 3.20 [175–178].

E

D

A

B
C

Figure 3.20: Normal mouse brain
anatomy.

A – Cerebral cortex;
B – External capsule;
C – Thalamus;
D – Hypothalamus;
E – Hippocampus.

It can be seen that the mouse brain is radial symmetric. Two cerebral
hemispheres are clearly divided by the longitudinal fissure, and covered
by the cerebral cortex. It is gray matter, consisting mostly of cell bodies
and capillaries. The layer below is white matter, which consists mainly of
glial cells and myelinated axons. These axons are transmission lines known
as nerve fibres. By tracking the orientation of the fibres, it is possible
to understand how information is transmitted throughout the neurons,
which is usually accomplished by using the DTI technique. Hippocampus
reaches the edge of the cerebral cortex, and is shaped as a curved tube in
Figure 3.20. The thalamus is located near the centre of the brain, with nerve
fibres projecting out of the cerebral cortex in all directions. This leads to the
existence of the crossing fibres inside the thalamus. The hypothalamus is a
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small region located below the thalamus, holding complex white matter
connectivities.

It should be mentioned here that the human brain has similar anatomic
structures as compared to the mouse brain despite larger size and more
complex neural networks. As a consequence, the detailed structures of the
human brain will not be discussed.

3.5.3 Human tissue - breast

Breast tissue was used in a field study contained in this thesis work (Chapter 6).
It is supported by the ribs and the pectoral muscles of the chest wall (Fig-
ure 3.21). Breast tissue is mainly made of glands (including lobes, ducts)
and fat [179].
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C

Figure 3.21: Normal breast anatomy.

A – Ducts;
B – Lobules;
C – Cross-section of A;
D – Nipple;
E – Fat;
F – Pectorals major muscle;
G – Chest wall.

Breast lesions

Breast lesions are abnormal changes in breast tissue due to disease
or injury. However, not all lesions are cancerous; only these diseases
due to the uncontrollable cell growth and division are known as breast
cancers. Cancerous neoplasms can spread to more distant parts of the
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body through the lymphatic system or blood stream. They are usually
classified by different histopathologies, grades, stages and the expressions
of proteins and genes [107]. The studied lesion types in this thesis are
briefly introduced below.

• Invasive ductal carcinoma (IDC): It is one type of malignant tumour
that begins in the ducts but invades more into the rest of breast tissues,
and it carries the potential of spreading to other organs of the body.
IDC is the most common breast cancer, accounting 55% of the total
population of breast cancers.

• Ductal carcinoma in situ (DCIS): It is a non-invasive malignant lesion
that is grown within ducts, accounting 13% of the total breast cancers.

• Invasive lobular carcinoma (ILC): It is an invasive lesion that starts
from the milk-producing lobule cells, accounting 5% of the total breast
cancers.

• Cyst: A non-cancerous fluid-filled sac in the breast, usually has a
round or oval edge.

• Fibroadenoma: A common non-cancerous solid lesion with a clear
edge. It origins from the terminal of the lobules and has high mobility.

• Papilloma: A non-cancerous, nipple-like tumour that arises from the
ducts.

Despite of various types of breast cancers, the most common screening
method of them is X-ray mammography [110]. It primarily relies on the
presence of calcifications, which appear bright on a mammogram. These
calcium deposits usually indicate the presence of cancer or other disease.
The assessment of the lesion based on X-ray is breast imaging reporting and
data system (BIRADS) [180]. For instance, BIRADS 0-2 indicates benign or
no suspicious findings; BIRADS 4-5 means that there is a mammographic
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appearance in the image which is suspicious or highly suggestive for ma-
lignancy.

For an x-ray image of the breast to be acquired, the breast is compressed
to reduce overlap of tissue and decrease the scatter of photons. This, how-
ever, represents a major source of discomfort to patients. Furthermore,
mammography makes use of ionising radiation, which is harmful to the
imaged breast tissue. In contrast, MRI has gained its acceptance in breast
imaging as it is non-invasive. The issue of current state of MRI in detect-
ing breast lesions and the contribution of this thesis to this field will be
discussed in Chapter 6.



Chapter 4

Tissue Identification by Fast
Reconstruction of Highly
Undersampled MRI Data

Imaging of tissues is often time-consuming. Recent CS techniques allow signal
acquisition with fewer sampling points than required by the Nyquist-Shannon
theorem. However, prior knowledge becomes essential to reconstruct detailed
features of the imaged tissue when the sampling rate is exceedingly low. As the
beginning of the original work presented in this thesis, this chapter introduces
fast MRI algorithms to obtain tissue features. A CS scheme developed in wireless
sensing networks is adapted for the purpose of reconstructing magnetic resonance
images. Moreover, other related reconstruction methods are proposed based on
the idea of fingerprinting. These algorithms are demonstrated to be feasible and
efficient at high undersampling rates after the comparison with wavelet-CS. This
enables the location of some features that are abnormal in tissues more quickly.

59
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4.1 Introduction

CS-MRI permits sampling fewer points in k-space as required by the
Nyquist-Shannon theorem. However, detailed features may not be ap-
propriately reconstructed by using the wavelet basis when the k-space is
largely undersampled as discussed in Page 31. In addition, the computa-
tional time for data processing using a workstation with a 2.4 GHz Intel
Xeon processor and 12 GB memory may be in the order of days [36]. In this
situation, to reconstruct the undersampled k-space data appropriately and
rapidly, prior knowledge (obtained from similar images) regarding global
(e.g. shapes) or local information (e.g. relative contrast to adjacent features)
may become essential for image reconstruction.

As provided in Section 3.4, after reshaping individual datasets into
vectors, the principal components extracted from 1D-PCA are suitable
to represent the data in a lower dimension [157, 159, 161, 162]. Hence,
each dataset in the database can be reconstructed by a combination of
the principal components and their corresponding projection coefficients.
For objects which are not in the database but are sufficiently similar, they
may be approximated by a suitable set of principal components. As this
orthonormal basis is sparse, 1D-PCA can be used as a transform domain
in CS for reconstruction. This method was successfully implemented and
has been proven effective for the recovery of randomly undersampled
signals in wireless sensor networks (WSN) [100]. Due to the fact that
datasets with various dimensions can be rearranged to 1D vectors, 1D-PCA-
CS can be adapted to recover undersampled MR images, which will be
discussed later on. Although 1D-PCA has been applied for the processing
of undersampled MRI k-t datasets [164–167, 169, 170] or data acquired by
multiple coils [171, 172], so-far discussed applications have not addressed
the issue of utilising the principal components as a sparse domain inside
the framework of CS-MRI.

The procedure proposed in this chapter is based on 1D-PCA but does
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not rely on the existence of k-t data as for [164–167, 169, 170]. Moreover, un-
like previous works [171, 172], k-space is undersampled randomly using a
single RF-coil, thus providing an alternative reconstruction algorithm when
parallel acquisition is not available. Our approach is based on a single ded-
icated PCA database (independent from individual RF coil and receiving
channel configurations) providing prior knowledge when reconstructing
MR images at very low sampling rates.

The first approach adopts 1D-PCA as a method to generate a sparse
transform domain when reconstructing randomly undersampled k-space
data, which is the core of our 1D-PCA compressed sensing implementation.
The second approach is based on a recognition algorithm for reconstructing
undersampled k-t data, which is graphically named as magnetic resonance
fingerprinting (MRF) [181]. While adapting the concept of fingerprinting
into the image direction, 1D-PCA and subsequent 2D-PCA [158] recognition
reconstruction algorithms are presented in this chapter.

4.2 1D-PCA Compressed Sensing

4.2.1 Methodology

Independent of the particular sparse domain used, the CS MRI scheme
follows a common concept [22]. As discussed in Section 3.1.1, the sparsity
of Φ is crucial for successful recovery of the object image, because it allows
a clean representation and efficient compression of the object class. Sparsity
basis used in CS can be classified into two categories; pre-defined diction-
ary and data-adaptative dictionary. The most frequently used methods
belong to the pre-defined dictionaries, such as wavelets, discrete cosine
and contourlet transform domain [23, 26, 95, 182, 183]. This kind of basis is
isolated from the studied image, meaning that the sparsity is largely liable
to the individual image. Thus, they can only accurately represent a limited
range of images or image features [99]. Furthermore, the sampling rates
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are required to be not lower than thirty percent in order to obtain a desired
outcome [35]. The other category is a data-adaptive dictionary, which is
a dynamic basis that can be adapted according to the available database
of a certain object class [99]. One of the data-adaptive transforms is the
principal components obtained via 1D-PCA [162]. This method has been
successfully utilised as a sparse transform domain to be employed in CS
reconstruction in WSN [100], and will be named as 1D-PCA-CS. In this
chapter, the concept of 1D-PCA for CS reconstruction is adapted into MR
images.

The purpose of 1D-PCA-CS is to obtain the best possible estimation of
the original (fully sampled) image using the undersampled image Iu in
conjunction with the 1D-PCA algorithm. To this end, an undersampled k-
space dataset Ku is prepared. This dataset is created by placing a designed
mask on the fully sampled data as explained in Page 29. Thus, the FT of Ku

results in an undersampled image Iu which will be used in our calculations.
By projecting Iu onto the principal component basis, a sparse representation
(i.e. projection coefficients PJ′) can be achieved. This enables to obtain an
approximate image via a suitable subset of principal components even if
the sample image is not in the database (but similar enough to the image
class constituting the database). According to the l1 norm minimisation
rules, a proper subset of PJ′ can be chosen above a threshold value δ while
the components of PJ′ which are smaller than δ will be discarded. This
will form a new vector PJ′′.

In the next step, an image IPCA can be reconstructed by this truncated
PJ′′ vector and its corresponding m principal components (m < d). The k-
space data KPCA is then obtained using the inverse FT of IPCA and the data in
the equivalent area in KPCA is chosen to replace the initially zero-filled gaps
of the undersampled k-space data, Ku. By computing the FT of the updated
k-space, a new undersampled image Iu is obtained as the input for the next
iteration. The reconstruction procedure of this undersampled image will
be iterated for p steps until the Euclidean distance of the neighbouring two
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output Iu is smaller than a pre-set value ε shown in Equation (3.3).
The reconstructed data can be quantitatively evaluated in terms of peak-

signal-to-noise ratio (PSNR). PSNR measures the differences between the
reconstructed image and the original image, and is defined by [184]

PSNR = 20 log10

(
MAX√

MSE

)
(4.1)

where, MSE is the mean square error and MAX is the maximum pixel
value of the image. PSNR is often used to compare performance of various
algorithms.

4.2.2 Database evaluation

As a proof of concepts, carrots were chosen to test the feasibility of
the proposed algorithm. This thesis work included images from 25 carrot
taproots on the 9.4 T Bruker BioSpec pre-clinical MRI system (Figure 2.1),
and obtained 200 axial proton density images in total by using the multi-
slice SE pulse sequence. These images were used to construct a database
for subsequent algorithm analysis. TR was 6 s and TE was 15 ms. The MR
images were sliced with a thickness of 2 mm and an interval of 4 mm. The
field of view was 25×25 mm2 with the resolution of 0.0977×0.0977 mm2.
Thus, the size of each slice was 256×256.

1D-PCA principal components of this database were extracted according
to Equation (3.20) and (3.22), for which the first six ones are shown in
Figure 4.2 (a) with respect to the descending order of importance to the
database. These indices of importance (normalised eigenvalues) of all
principal components are shown in Figure 4.2 (b). As can be discovered
straightforwardly from the images, the most important feature is the round
shape of the carrot (the epidermis tissue, PC1) as it holds the highest image
contrast. The thickness of the epidermis tissue is influenced by the variation
of the taproots’ size. The second notable feature is the cortex area and the
vascular tissue (PC2), followed by the endodermis area (PC3). Subsequent
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high-order principal components characterise more detailed and localised
shapes and features.

All images in the database were projected onto the principal component
basis, resulting in a map of projection coefficients as shown in Figure 4.2
(c). The order of the principal components is identical to Figure 4.2 (b). The
intensities in this map indicate the amplitudes of projection coefficients,
representing the weights of the individual principal components. As can
be observed in Figure 4.2 (c) the projection values in all images are much
larger for low-order principal components, while becoming less significant
for high-order ones. Therefore, this basis can be considered sparse enough
to be a transform domain for the subsequent CS reconstruction.
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Figure 4.2: Database evaluation. (a) First six principal components with descend-
ing order of importance; b) Eigenvalues of the correlation matrix in Equation (3.20)
of each principal component; (c) Map of projection coefficients for all images in
the database.
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4.2.3 Reconstructed results

The reconstruction results of 1D-PCA-CS are compared using the un-
dersampled k-space data in two purposely chosen cases. Case I deals with
an image which is included in the database while in case II another im-
age is chosen but not included in the database. Figure 4.3 (a) and (d) are
the fully sampled images, where (a) was included in the database (case I)
and (d) was excluded from the same database (case II). After applying the
undersampling mask to k-space as already explained in Page 29, the recon-
structed (undersampled) images after FT are shown in Figure 4.3 (b) and
(e). Due to high undersampling rate, the aliasing artefacts were significant
in the reconstructed images although the random sampling pattern was
employed.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: 1D-PCA-CS reconstruction results of case I and case II: (a) the full
image included in database; (b) the undersampled image in case I (PSNR = 22.5);
(c) 1D-PCA-CS reconstructed images in case I (PSNR = 67.3); (d) the full image
excluded in database; (e) the undersampled image in case II (PSNR = 19.1); (f)
1D-PCA-CS reconstructed images in case II (PSNR = 21.2).
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In contrast, the aliasing artefacts decreased as shown in Figure 4.3 (c)
and (f) when 1D-PCA-CS was applied. The same thresholds (σ =10−3 in
Figure 4.1 and ε =10−4 in Equation (3.3)) were used in 1D-PCA-CS of both
cases, leading to the reconstructed images with a PSNR of 67.3 and 21.2,
respectively. The enhancements compared with the undersampled images
(i.e. Figure 4.3 (b) and (e)) were 198% for case I and 11% for case II. These
distinct improvements demonstrated the effectiveness of applying 1D-PCA-
CS to MRI. Not surprisingly, 1D-PCA-CS manifested its superior response
when the image was contained in the database. In this case, similar features
of the undersampled image and the images in the database were kept in the
l1 norm minimisation procedure, thus leading to a close approximation of
the original image. On the contrary, if features are not part of the database
(case II) projection coefficients remain relatively small and will be discarded
during the minimization procedure.

4.3 1D-PCA Recognition Reconstruction

4.3.1 Methodology

Although 1D-PCA-CS in case II shows its superiority over the zero-
filling FT, the features of the reconstructed results are still unclear. Recently,
a novel approach was introduced, namely MRF [181], to overcome these
constraints by taking a distinctive post-processing procedure. It uses a
dot-product algorithm to match the randomly acquired signal to a pre-
defined dictionary of predicted signal evolutions and select the best match
to represent the undersampled data. The inherent merits of 1D-PCA in
pattern recognition have been widely strengthened, which allows adapting
it in conjunction with the concept of MRF.

Given these merits, 1D-PCA Recognition Reconstruction (1D-PCA-RR)
was proposed to improve the image quality. Instead of enforcing only
one matched image as a representative, a subset of the MR images are
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chosen to complement the undersampled k-space data. The procedure of
1D-PCA-RR is outlined in Figure 4.4. Same with 1D-PCA-CS, a vector of
projection coefficients (PJ′) is obtained from projecting the undersampled
image to the principal components. Subsequently, a subset of p images
in the database are selected if the Euclidean distance (die) between the
corresponding PJi and PJ′ is smaller than δ,

die = ||PJ′ −PJi||2 < δ, (4.2)

where δ is a user-controlling parameter sensitively determining the per-
formance of the algorithm. Once these p images are selected, they are used
in the next step to constitute an image Ic with the corresponding weighting
factor, i.e. the inverse of the normalized Euclidean distance:

Ic =

p∑
i=1

1

die
Ii (4.3)

The image Ic is a weighted combination of the most similar images in the
database. By performing the inverse FT of Ic, its k-space data (Kc) is then
used to fill up the gaps of the initially undersampled k-space (Ku).

Therefore, an updated image Iu can be obtained using the FT of the
updated Ku which is now the new input for the 1D-PCA. The protocol
will be repeated heading to an iteration until the condition as defined in
Equation (3.3) is satisfied. At the end of the iterations, Iu will be the best
estimate of the original image returned by the 1D-PCA-RR technique.

4.3.2 Reconstructed results

The reconstructed results using 1D-PCA-RR of case I and case II are
shown in Figure 4.5 with δ = 10−3 and ε = 10−4. To have a better visual
comparison, the fully and undersampled (Figure 4.3 (a), (d), (b) and (e))
images of both case I and case II are repeated in Figure 4.5 (a), (d), (b) and
(e). PSNR of the reconstructed images using 1D-PCA-RR in case I and
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case II were 319.6 and 26, respectively, which show improvements of 1318%
and 36% from their initial inputs (i.e. Figure 4.5 (b) and (e)). As can be
seen, case I and case II exhibited surprisingly distinct improvements. This
is because in case I, the fully sampled image was in the database, and the
algorithm recognised the same image from the database which then was
used to represent the undersampled image, as is shown in Figure 4.5 (c).
However in case II, the algorithm recognised a set of similar images in the
database to fill in the undersampled k-space data, with the result being
shown in Figure 4.5 (f).

(a) (b) (c)

(d) (e) (f)

Figure 4.5: 1D-PCA-RR reconstruction results of case I and case II: (a) the full
image included in database; (b) the undersampled image in case I (PSNR = 22.5);
(c) 2D-PCA-RR reconstructed images in case I (PSNR = 319.6); (d) the full image
excluded in database; (e) the undersampled image in case II (PSNR = 19.1); (f)
2D-PCA-RR reconstructed images in case II (PSNR = 26).

As mentioned in the methodology part, the degree of similarity between
images under reconstruction with respect to the information contained in
the database can be quantitatively represented by the calculation of the
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Euclidean distance in 1D-PCA. As a consequence, the reconstructed results
vary with the quality of the database, and the number of matched images
to be chosen. The relationship of PSNR and the number of matched images
in the two cases are shown in Figure 4.6. In case I (Figure 4.6 (a)), it is
noticeable that PSNR of the reconstructed image was the highest (319.62)
when one matched image was in use. A similar PSNR value is seen when
the number of matched images is either two or three, simply meaning that
there were two images in the database which had similar distances to the
undersampled image. If more than three images were matched, a steady
decrease in PSNR is seen. When more than twenty images were matched, a
plateau of PSNR approximately equal to 22.5 is observed in Figure 4.6 (a),
which is the same level as the initial input (Figure 4.5 (b)).

In case II (Figure 4.6 (b)), PSNR was continuously increasing with the
number of matched images until PSNR reached 26, when the number
of matched images was twelve. After that, PSNR decreased and then
remained at the same value which was slightly higher than the initial input
(Figure 4.5 (e)). As the image covariance matrix in 1D-PCA depends on
the database, the optimal number of matched images relies on the quality
of the database and can be determined while the iteration procedure is
scanning the database.

4.4 2D-PCA Recognition Reconstruction

As discussed in Section 3.4.2, 2D-PCA is faster and occupies less com-
puter memory than 1D-PCA, because images in the database are not re-
quired to be re-sized to vectors [158]. Therefore, it is intuitive to replace
1D-PCA part in the aforementioned recognition algorithm, offering a new
reconstruction method 2D-PCA-RR.
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Figure 4.6: The relationship of PSNR and number of matched images in two cases:
(a) case I: the full image of the undersampled image was included in the database;
(b) case II: the full image of the undersampled image was excluded in the database.

4.4.1 Methodology

This algorithm directly projects the 2D matrix of undersampled image
Iu on the eigenvector matrix U and compares the resulting (PC′) with the
principal component database. The only difference from 1D-PCA-RR is
that the recognition procedure uses the sum over the Euclidean distances
of the column vectors from the matrices PC′ and PCi as selection criterion

die =
M∑
i=1

√√√√ N∑
i=1

(PC ′kl − PC
(i)
kl )2. (4.4)

It is worth mentioning that the way of calculating the distance in
Equation (4.4) diverges from the calculation of the Euclidean counterpart

between the two matrices
(

=

√∑M
i=1

∑N
i=1(PC

′
kl − PC

(i)
kl )2

)
. This is due to

the fact that each column vector in PC′ and PCi represents an independent
feature in the 2D images [158], and the kernel of the recognition is not to
calculate how close two matrices (images) are globally, but to determine
whether individual features are similar locally. Therefore, it is crucial to
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measure the difference between individual columns of PC′ and PCi and
then accumulate these differences to indicate the similarity. The degree of
similarity between PC′ and PCi can then be quantitatively described by
dei as defined in Equation (4.4) and thus, the most similar images in the
MR database can be identified and combined to represent the image under
study.

Figure 4.7 illustrates the procedure of 2D-PCA-RR. The black box in
Figure 4.7 simplifies the calculation of 2D-PCA, outputting the eigenvector
matrix (U) and the corresponding eigenvalues. Subsequently, a set of
principal component matrices (PC1, PC2, ..., PCd) is derived by projecting
all the images on the database onto U, according to Equation (3.24). Each
PCi will then be compared with the principal components (PC′) of the
undersampled image (Iu) through the similarity function which is defined
by Equation (4.4). Based on the distances, a set of p images is selected
from the database, along with its corresponding principal components. In
addition, the distances between the principal components are re-normalised
and the selected images are added together as in Equation (4.3). The rest of
the procedure is the same with 1D-PCA-RR.

It should be noted that both 1D-PCA-RR and 2D-PCA-RR require the
same kind of input variable (Ku). If the two methods share the same image
database, the final reconstructed results of the 1D-PCA-RR and 2D-PCA-RR
are the same, which were able to be confirmed using various experiments.
As 2D-PCA-RR requires less computational time, further studies were
based on 2D-PCA-RR in replace of 1D-PCA-RR.

4.4.2 Comparison with CS-based algorithms

In addition to PSNR, SSIM [185] estimates the differences of two images
in terms of luminance, contrast, as well as structural changes in a user-
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defined window. SSIM [186] is defined as1

SSIM(a,b) =
2µaµb + c1
µ2
a + µ2

b + c1
· 2σaσb + c2
σ2
a + σ2

b + c2
· σab + c3
σa + σb + c3

, (4.5)

where µa and µb substitute the mean value of the original and reconstructed
images a and b, respectively. σa and σb represent the standard deviations,
and σab is the covariance of the two images. The constants of c1, c2 and c3
are introduced to avoid computational error when the denominators are
close to zero. SSIM varies from -1 to 1, and only when a = b, SSIM = 1 [186].
SSIM was calculated for a set of 11×11 windows, which were displaced
pixel-by-pixel to cover the whole image. From the set of SSIM values, the
mean SSIM (MSSIM) was calculated and the result used as a similarity
measure between the original and reconstructed images.

The reconstructed images from 2D-PCA-RR, 1D-PCA-CS and wavelet-
CS for case I (the image in the database) and case II (the image not in the
database) are compared in Figure 4.8. The produced error images of differ-
ent algorithms are shown in Figure 4.9 and the PSNR and SSIM values are
summarised in Table 4.1. PSNR of the undersampled images (Figure 4.5 (b)
and (e)) and reconstructed images via wavelet-CS (Figure 4.8 (d) and (h))
with a sampling rate of 20% were consistent with the results from [95].

In case I, PSNR and SSIM of the reconstructed images (Figure 4.8 (b)-(d))
using 2D-PCA-RR are the highest, followed by 1D-PCA-CS and wavelet-
CS. Some aliasing artefacts can still be observed from the reconstructed
image via wavelet-CS, while the reconstructed images via 1D-PCA-CS
and 2D-PCA-RR are visually better than wavelet-CS, either in terms of the
reconstructed images themselves, or the error images. Moreover, 2D-PCA-
RR returns exactly the same image from the database, resulting in no error.
This may be the case I in clinical MRI if some fully sampled images of a
patient are pre-available or a patient has repeated MRI investigations of the

1The detailed implementation of the SSIM algorithm can be found in https://ece.
uwaterloo.ca/~z70wang/research/ssim/ssim.m.

https://ece.uwaterloo.ca/~z70wang/research/ssim/ssim.m
https://ece.uwaterloo.ca/~z70wang/research/ssim/ssim.m
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(a) (b) (c)

(e) (f) (g)

(d)

(h)

Figure 4.8: Comparison of the reconstruction methods: (a) the full image in case I;
(b) 2D-PCA-RR reconstructed images in case I; (c) 1D-PCA-CS reconstructed im-
ages in case I; (d) Wavelet-CS reconstructed images in case I ; (e) the full image
in case II; (f) 2D-PCA-RR reconstructed images in case II ; (g) 1D-PCA-CS recon-
structed images in case II; (h) Wavelet-CS reconstructed images in case II. Arrows
indicate the features that may not exist in the database.

Table 4.1: Comparison of (a) PSNR (b) SSIM values using different methods
(sampling rate = 0.2)

(a) PSNR

Methods case I case II

zero-filling FT 22.5 19.1

2D-PCA-RR 319.6 26

1D-PCA-CS 67.3 21.2

wavelet-CS 34.3 23.7

(b) SSIM

Methods case I case II

zero-filling FT 0.71 0.60

2D-PCA-RR 1.00 0.91

1D-PCA-CS 0.71 0.72

wavelet-CS 0.70 0.87
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Error images of the reconstruction methods: (a) 2D-PCA-RR recon-
structed images in case I; (b) 1D-PCA-CS in case I; (c) Wavelet-CS in case I ; (d)
2D-PCA-RR reconstructed images in case II ; (e) 1D-PCA-CS in case II; (f) Wavelet-
CS in case II.
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same area. It is possible that some alterations may occur when a patient
has more than one scan, such as tissue composition or stiffness changes.
These differences will result in different signal intensity distributions in the
images, and will be discussed in detail in Section 4.4.3. The error image
from 1D-PCA-CS shows that this algorithm is capable of reconstructing the
correct contrast of the eptimis tissues. The error image from wavelet-CS
still presents some blurring features, resulting from the insufficient sparsity
of wavelet to the particular case I image.

In case II, PSNR and SSIM of the reconstructed images (Figure 4.8 (f)-
(h)) using 2D-PCA-RR are the highest, followed by wavelet-CS and 1D-
PCA-CS. Furthermore, 2D-PCA-RR still reveals unique features (indicated
by arrows in Figure 4.8 (e)-(h)) which might not exist in the database.
The reconstructed image via wavelet-CS maintains the unique features
because this method is independent of the image database and only relies
on the pre-defined wavelet forms. While 1D-PCA-CS performed better than
wavelet-CS in case I (the image in the database), PSNR and SSIM of case II
(the image not in database) indicate superior performance by wavelet-CS.
However, wavelet-CS is known to fail when reconstructing circular shapes
and curves [95], while PCA-based methods were found to perform better in
this regard. This behaviour is clearly observed when comparing the central
parts of the taproots in Figure 4.8 (f)-(h) and Figure 4.9 (d)-(f).

Both 1D-PCA-CS and 2D-PCA-RR rely on the image database, while
wavelet-CS is irrelevant to it. As a result, wavelet-CS may have more
advantages in reconstructing the images if the database is of low qual-
ity. However, this performance gain may vanish if the database itself is
self-learning (e.g. by adding rotated and realigned images already exist-
ing in the database, or adding more examination results as pointed out
in [171]), thus increasing the probability of having more similar images in
the database over time.

The number of iterations (necessary for image reconstruction in case II)
is compared for the three reconstruction methods and the results are shown
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in Figure 4.10. 2D-PCA-RR needed the smallest number of iterations con-
verging to the ultimate result, which was five iterations in total. Whilst
1D-PCA-CS needed two more iterations and the wavelet-CS required quad-
rupled iterations than 2D-PCA-RR to converge. Therefore, comparing
the rates of convergence, 1D-PCA-CS and 2D-PCA-RR are more efficient
options to reconstruct the undersampling MR images. In addition, the
reconstruction time for obtaining the same results with already optimised
parameters requires 1.04 s, 1.12 s and 2.43 s for 2D-PCA-RR, 1D-PCA-CS
and wavelet-CS, respectively. This demonstrates 2D-PCA-RR to be most
time-efficient.
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Figure 4.10: Comparison of number of iterations between different reconstruction
methods when the full k-space information of undersampled image is excluded
from database: wavelet-CS (�), 1D-PCA-CS (•), 2D-PCA-RR (�).

The relationship between the sampling rates and PSNR values of the
different reconstruction methods in case II is shown in Figure 4.11. Not
surprisingly, PSNR increases with increasing sampling rate, in other words,
with a reduced amount of undersampling. For sampling rates lower than
0.6, PSNR of 2D-PCA-RR is the highest, while wavelet-CS presents the
highest PSNR for sampling rates above 0.6. The PSNR value of 1D-PCA-
CS is smaller than the value obtained with wavelet-CS for sampling rates
larger than 0.2. When the sampling rate is lower than 0.2, PSNR of 1D-PCA-
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CS, wavelet-CS and zero-filling FT are comparable, while 2D-PCA-RR still
performs reasonably better. This clearly shows the power of 2D-PCA-RR
reconstruction method when the image is highly undersampled.
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Figure 4.11: The relationship between PSNR values and sampling rates for differ-
ent reconstruction methods in case II: 2D-PCA-RR (�), wavelet-CS (�), 1D-PCA-CS
(•) and zero-filling FT (∗).

4.4.3 Image with alterations

As discussed in Section 4.3.2, case I may emulate the situation where
a patient’s fully sampled MRI scan is pre-available in the database. As
there might be some alterations due to specific medical conditions, the new
image may not be in the database, so strictly speaking it falls into case II.
However, most of the features in the image are preserved in the database,
only localised changes may occur in the image but are not registered in the
database. In order to investigate the response of different reconstruction
methods to this scenario, a Gaussian mask was applied to the fully sampled
image as shown in Figure 4.8 (a) to simulate localised tissue changes in
biological samples. Such modified fully sampled image with the Gaus-
sian mask is given in Figure 4.12 (a). It should be pointed out that this
alteration of the image is not part of the database. When applying the
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random undersampling pattern (Figure 3.5) in k-space, the reconstructed
image by zero-filling FT is illustrated in Figure 4.12 (b). The reconstructed
images by using 2D-PCA-RR, 1D-PCA-CS and wavelet-CS are presented in
Figure 4.12 (c), (d) and (e) respectively. Error images with zero-filling FT,
2D-PCA-RR, 1D-PCA-CS and wavelet-CS are shown in Figure 4.13. While
2D-PCA-RR performs best and returns the highest PSNR, the result is still
based on only one image (the unaltered one in the database) as selected by
the algorithm. In addition, 1D-PCA-CS performs better than wavelet-CS
for this case of image alterations.

(a) (b) (c) (d) (e)

Figure 4.12: Comparison of the reconstruction methods: (a) the altered image
in case I; Reconstructed images using (b) zero-filling FT (PSNR = 19.9).; (c) 2D-
PCA-RR (PSNR = 42.5); (d) 1D-PCA-CS (PSNR = 26.1); (e) Wavelet-CS (PSNR =
22.4).

(a) (b) (c) (d)

Figure 4.13: Error images of the reconstruction methods: (a) zero-filling FT; (b)
2D-PCA-RR; (c) 1D-PCA-CS; (d) Wavelet-CS.

The relationship of PSNR values and sampling rates for the case of
image alteration is depicted in Figure 4.14. PSNR of 2D-PCA-RR is the
highest for the entire range, whereas, PSNR of wavelet-CS is higher than
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1D-PCA-CS when the sampling rate is larger than 0.8. However, when
the sampling rate decreases below 0.8, 1D-PCA-CS performs better than
wavelet-CS. Therefore, it can be concluded that the reconstruction methods
based on PCA are still capable of returning better results compared to
wavelet-CS which is not bound to any image database and thus lacks prior
knowledge.
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Figure 4.14: The relationship between PSNR values and sampling rates for differ-
ent reconstruction methods in the case of an altered image (case III): 2D-PCA-RR
(�), wavelet-CS (�), 1D-PCA-CS (•) and zero-filling FT (∗).

Apart from the simulated alterations, other types of changes may exist
when repeating scans. For example, the image of the initial scan is in
the database, but the subsequent scans have rotational and translational
changes. This has two solutions: one is that the database is trained to
include the rotated or translated images, which is simple but requires more
computer memory and search time when executing PCA (both 1D and 2D).
The other solution is including rotational or translational matching into the
algorithm during the recognition procedure, where a localised feature can
be extracted and convoluted with images (vector-based) in the database.
Such algorithms are available, however it is beyond the scope of this thesis
to study their joint implementation with the proposed algorithm.

The comparison of different cases suggests that the overall performances
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of PCA-based reconstructions (including 1D-PCA-CS, 1D-PCA-RR and 2D-
PCA-RR) are better than the wavelet-CS method for case I followed by
case III. Case II still allows the PCA-based algorithms to recover the image
with small gains in performance as compared to wavelet-CS. Going with the
undersampled image even further away from the class of objects included
in the database (for instance, using the carrot database to reconstruct an
undersampled image of an apple), the proposed approaches may have little
or negative improvements.

While the handling of a mask based on Cartesian coordinates is more
straightforward as compared to other undersampling patterns (e.g. radial
or variable density spiral sampling) it is known to be more sensitive to
certain image artefacts (such as patient movements or gradient induced
vibrations) [62, 63]. More advanced sampling schemes may potentially re-
duce the required number of iterations during reconstruction and improve
the overall performance of the algorithm.

It is worth mentioning that this procedure as studied uses a database
containing MRI intensities. Therefore, it is restricted to the processing of
proton density distributions and their contrasts. However, if T1, T2 or D
data is included in the database as well, the presented methods may lend
itself to process a wide set of undersampled k-t or k-b2 data as has been
investigated by several pioneers [164–167, 169, 170, 187]. Moreover, due
to the merit that the PCA-based recognition algorithms are not relying
on particular NMR parameters, it has the potential to be applied to other
imaging techniques, such as ultrasound tomography [188].

4.4.4 Different database

In order to corroborate the applicability of our algorithm a set of cross-
sectional T1-weighted MRI scans of healthy brains retrieved from OASIS
database [189] were used for comparison. The algorithms for cases I and

2DWI data, by analogy with k-t.
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II were implemented on this database, among which the reconstructions
showed similar trend to the carrot database, 2D-PCA-RR had the best
performance, while 1D-PCA-CS and wavelet-CS competed each other de-
pending on whether the fully sampled image existed in the database or
not. More importantly, a Gaussian mask was also applied on one of the
brain images to simulate a hemorrhagic infarct, similarly to how an image
alteration was done for case III using the carrot database.

Figure 4.15 shows the results for the 20% sampling rate image and the
corresponding reconstructed and error images of 2D-PCA-RR and wavelet-
CS. Although the error image of 2D-PCA-RR reconstruction shows that the
Gaussian mask area was not fully recovered, it still returned an improved
image as compared to Figure 4.15 (a) and (d). In the meantime, wavelet-
CS retrieved higher PSNR compared to the direct zero-filling FT method.
However, detailed features are more distorted as compared to 2D-PCA-RR
as shown in Figure 4.15 (c) and (f).

4.5 Conclusions

A CS scheme based on a sparse transformation domain utilising prin-
cipal components (1D-PCA-CS) was adapted to MRI. In addition, new
reconstruction algorithms (1D-PCA-RR and 2D-PCA-RR) for highly un-
dersampled MR images were introduced in this chapter. When k-space is
undersampled (as low as 20%), it is important to draw on prior knowledge
for the image under reconstruction. The three methods utilise the merits
of a self-learning database and shares the benefits of reduced acquisition
time as typical for CS schemes. The experimental results of undersampled
images for carrot taproots were shown in this chapter for three cases; Case I
was when the fully sampled image was included in the database and case II
was that the fully sampled image was excluded from the database. In
case I, 1D-PCA-RR and 2D-PCA-RR returned the exact image from the
database leading to the highest PSNR, and 1D-PCA-CS showed better res-
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(a) (b) (c)

(d) (e) (f)
Figure 4.15: Comparison of the reconstruction methods by using the brain dataset:
(a) zero-filling FT (PSNR = 21.6); (b) 2D-PCA-RR (PSNR = 33.3); (c) Wavelet-CS
(PSNR = 22.5). Error images are shown below in parallel with the reconstructed
image.
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ults than wavelet-CS. In case II, PCA-RR methods still performed better
due to prior knowledge of similar images in the database. 1D-PCA-CS
performed similar to wavelet-CS for case II. In the meantime, with the
increase of sampling rate, using wavelet-CS as the reconstruction method
could achieve higher PSNR than using PCA-based methods. However, the
performance of 1D-PCA-CS might improve over time due to self-learning
capabilities of the database. Moreover, in the case of a locally altered image
(case III) PCA-based methods performed superior over wavelet-CS for
sampling rates below 0.8. As a consequence, the experimental results of
the three cases as well as the brain dataset demonstrated the speed and
feasibility of PCA-based methods in MRI with sampling rates as low as 0.2.
It is noticeable that the performances of PCA-based methods rely on the
quality of the database, which means that the training of the database is
essential before applying these two methods. While only proton density
distributions were reconstructed in this chapter, these methods could be
extended to recover T1, T2 or D information and have the potential to be
applied to more general imaging techniques.



Chapter 5

Tissue Anisotropy Determination
by NMR Spectroscopy

The structures of biological tissues are complex. One important parameter for
characterising their morphology is the degree of anisotropy. This chapter offers an
alternative way of determining the fractional anisotropy as a sample average. It is
based on an established NMR diffusometry protocol –DDCOSY– in conjunction
with an appropriate gradient scheme. Consequently, mean FA values obtained
from biological tissues are compared with DTI results at the end of this chapter.

87
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5.1 Introduction

As introduced in Section 3.2.2, FA [31] can quantitatively characterise
orientation dependence of molecular mobility, which enables the differenti-
ation of compartment shapes or identify pathological changes in tissues.
For instance, in a material with an internal structure (e.g. a spherical pore or
compartment filled with fluids) returns a FA value of zero due to isotropic
diffusion. However, anisotropic diffusion exhibits a FA value between zero
and one. In biological tissues, interior fibre structures and cell alignments
result in different FA values. It has been reported that FA in breast cysts
was smaller in comparison to the surrounding healthy tissues [190]; The
changes of FA in the central nervous system due to the disordering of the
fibres can be indicators of abnormalities such as stroke [191]. Therefore, this
concept has been widely studied and used in structural biology, material
science and medicine [192–195].

Spatially resolved FA is usually obtained by further processing DTI
data [34]. However, a trend has been shown to utilise sample-averaged FA
in the study of the post-natal development of mouse brain at various ages,
as carried out by Larvaron and co-workers [196]. In their study, data was
acquired using DTI initially, followed by averaging over all pixels. This
processing step would be obsolete if the NMR signal was measured using
a spectroscopic method returning the response from the whole sample
volume, thus directly yielding the mean value of FA. As already men-
tioned in Section 3.3.1, DDCOSY will be an appropriate choice for this
purpose. While early applications to chive plants returned signatures of
cell shapes [148], its potential to quantitatively extract sample-averaged FA
was so far not discovered.

A new approach which combines the conventional DDCOSY scheme
with the strategy learnt from DTI will be introduced in this chapter. Through-
out numerical simulations on fibres and experiments on three biological
samples, the new approach will show its capability of obtaining bulk dif-
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fusion tensor elements and subsequent mean FA values as quantitative
progress.

5.2 Methodology

5.2.1 From DTI to DDCOSY

In order to obtain the six uncorrelated elements of the bulk diffusion
tensor (i.e. averaged over the sample volume), a novel scheme is presented
in this section to combine three DDCOSY experiments with gradient orient-
ations as depicted in Figure 5.1. While q1 is the gradient wave-vector along
the main axis in the laboratory (Cartesian) system (x−, y−, or z−axis), q2

is the gradient wave-vector on the plane (yz−, xz−, or xy−plane) with
an off-axis angle of θ. If the directions of the gradient pairs follow Fig-
ure 5.1 (a), the exponential factor in the first dimension in Equation (3.17)
can be expanded as:

qT
1 D1q1∆1 =

 q1

0

0


T Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 q1

0

0

∆1

=

 q1Dxx

q1Dxy

q1Dxz


T q1

0

0

∆1

= q21Dxx∆1. (5.1)

The comparison between Equation (3.18) and Equation (5.1) returns the
relationship of

Dapp
1 = Dxx (5.2)

in the first dimension. However, because the second gradient pair is not
applied on the coordinate axis, the expansion of the exponential factor
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in the second dimension will be more complex as compared to the first
dimension:

qT
2 D2q2∆2 =

 0

q2 cos θ

q2 sin θ


T Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 0

q2 cos θ

q2 sin θ

∆2

=

 q2 cos θDyx + q2 sin θDzx

q2 cos θDyy + q2 sin θDzy

q2 cos θDyz + q2 sin θDzz


T 0

q2 cos θ

q2 sin θ

∆2

= q22
(
Dyy cos2 θ +Dzz sin2 θ + 2Dyz cos θ sin θ

)
∆2. (5.3)

Thereafter, the equality of Equation (5.3) and Equation (3.18) gives the
formula of the apparent diffusion coefficient in the second dimension,
which is

Dapp
2 = Dyy cos2 θ +Dzz sin2 θ + 2Dyz cos θ sin θ. (5.4)

(a) x-yz (b) y-xz (c) z-xy

Figure 5.1: Diagram of the gradient directions in the three independent DDCOSY
experiments. Diffusion gradient pairs (q1 and q2) applied along (a) [1, 0, 0] and
[0, sin θ, cos θ]; (b) [0, 1, 0] and [cos θ, 0, sin θ]; (c) [0, 0, 1] and [sin θ, cos θ, 0],
respectively.

Similarly, it can be worked out that gradient directions in Figure 5.1 (b)
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return apparent diffusion coefficients as

Dapp
1 = Dyy,

Dapp
2 = Dxx cos2 θ +Dzz sin2 θ + 2Dxz cos θ sin θ ; (5.5)

and Figure 5.1 (c) gives:

Dapp
1 = Dzz,

Dapp
2 = Dxx cos2 θ +Dyy sin2 θ + 2Dxy cos θ sin θ. (5.6)

Consequently, in the three DDCOSY experiments, only one diagonal
matrix element Dii contributes to the signal decay in the first dimension.
However, signal decay in the second dimension includes one off-diagonal
element Dij (i 6= j) besides the remaining two other diagonal elements. A
convenient choice for θ is π/4 such that the apparent diffusion coefficient
in the second dimension can be calculated as:

Dapp
ij =

Dii

2
+
Djj

2
+Dij (5.7)

If the system is macroscopically isotropic, the off-diagonal elements equal
to zero (Dij = 0) and the diagonal elements are identical (Dii = Djj), thus
delivering the relationship of Dapp

2 = Dii = Djj 6= 0.

5.3 Simulation

5.3.1 D-D maps with gradients along laboratory axes

In order to study D-D maps for different cases, Monte-Carlo simulation
is implemented in Matlab to model NMR responses of water diffusion
through different networks [197, 198]. It is a computational algorithm that
obtains numerical results from repeated random motions of tracers, which
is different from the approach to use analytic solution to model the coupled



92 Determine mean FA values by triple DDCOSY schemes

pore system as described by Schwartz and co-workers [199].

In Monte-Carlo simulation, each tracer is considered to carry a magnet-
isation. The continuous displacement is decomposed into discrete steps,
and the new position of a random-walk tracer after a time interval dt
depends on the previous position rn(t) yielded by

rxn(t+ dt) = rxn(t) + dr · cos θ sinφ,

ryn(t+ dt) = ryn(t) + dr · sin θ sinφ,

rzn(t+ dt) = r(nt) + dr · cosφ, (5.8)

where, the walk step is dr =
√

6 ·D · dt, cos θ and φ are randomly chosen
in the range of [-1, 1] and [0, π], respectively. The tracer displacement dr
in each step is required to be smaller than surrounding geometric length
scales to obtain effective responses. During the random walk simulation,
the rule of elastic collision was adopted when the molecule hit the solid
matrix (sphere) or the simulated volume wall.

Once the tracer is put into the simulated volume, the DDCOSY pulse
sequence is applied to manipulate its magnetisation. In order to better il-
lustrate the procedure, the pulse sequence of DDCOSY experiments shown
in Figure 3.15 is simplified in Figure 5.2. It only contains the timing of
the effective PFGs. The negative signs of the second PFG in the pairs are
caused by the refocusing RF pulses.

Given an applied PFG, the phase shift of the tracer is proportional to
the dot product of the displacement and the field gradient:

φn(t+ dt) = γG · rn(t+ dt)dt. (5.9)

It should note here that if there is no PFG applied (e.g. from t1 + δ to t1 +∆

in Figure 5.2), there will be no phase shift during that period. Therefore,
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Figure 5.2: Simplified DDCOSY pulse sequence from Figure 3.15. Geff
diff is the

effective PFG imposed on the tracers. The symbol ê in the front represents the
unit vector in the direction of the respective gradient in the laboratory coordinate
system. t1 and t2 are the starting times of the two gradient pairs, respectively.

the magnetisation of the tracer after the PFG pair is

mn(t) = m0 exp{−iγG1 · [rn(t1 + δ)− rn(t1)− rn(t1 + ∆ + δ) + rn(t1 + ∆)]}

· exp{−iγG2 · [rn(t2 + δ)− rn(t2)− rn(t2 + ∆ + δ) + rn(t2 + ∆)]},
(5.10)

where t1 and t2 are the starting points of two PFGs. Therefore, the overall
magnetisation can be calculated by accumulation,

M(t) =

Np∑
n=1

mn(t), (5.11)

where, Np is the number of tracers in the space. The mean square displace-
ment of all tracers can then be calculated by

〈rirj〉 =
1

Np

Np∑
n=1

[
rin(t)− rin(0)

] [
rjn(t)− rjn(0)

]
. (5.12)

The numerical simulations were implemented in four different scenarios.
One simulation scenario was modelled by a cube with the length of 2000
µm occupied with spheres as shown in Figure 5.3 (a). The spheres constitute
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the solid matrix. Tracers were put into the simulation volume with empty
space (outside the solid matrix), and randomly walk through the space. The
number of tracers was set to be NP = 5000 for practical reasons 1. The time
interval of the discrete displacement was dt = 5 µs. The diffusion coefficient
was set to be D0 = 2.5 × 10−9m2/s. Thus, the length (displacement) step
was dr ≈ 0.24 µm, much less than the characteristic length of the phantom,
enabling sufficient walk steps in the geometry. The starting position of
each molecule was determined by uniformly sampling points within the
simulation volume to guarantee that water molecules spread the entire
space in the simulated volume. The observation time∆was set to be 100 ms
and gradient duration δ was 2 ms. The gradients in the two time intervals
of the DDCOSY pulse sequence were applied parallel to the x and z-axis in
the laboratory coordinates. This translated into molecular displacements
and the corresponding apparent diffusion coefficients after the processing
tools of 2D-ILT, and are represented by the two axes shown in each of the
D-D maps in Figure 5.3 (b). A diagonal peak is found in the D-D map and
the corresponding 1D projections are identical. As a result, the D-D map
indicates that the system is microscopically isotropic.

The second case was modelled by using the same cube but occupied
with solid matrix modelled by fibres. The fibres were cylinders of radius
R = 10 µm and represented by a randomly generated pivot point and
directional vector [200, 201]. The random walk parameters were set the
same as the first model. The second model and its correspondingD-D maps
are shown in Figure 5.4. It simulates a system which is globally isotropic but
locally anisotropic (e.g. liquid-crystal, powder-like or randomly oriented
fibres). From the simulated D-D map, both diagonal and off-diagonal
peaks are observed. 1D projections are identical, exhibiting two separated
peaks. While a continuous 1D distribution (from free diffusion along the
capillary axis to most restricted diffusion perpendicular to it) is expected,

1Various numbers of tracers were tested and the stable results showed the choice of
5000 was sufficient
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Figure 5.3: Microscopically isotropic system and its corresponding D-D map,
modelled by bead pack. The gradients are applied along the x and z-axis.

the ILT returns a discrete distribution due to a “pearling” effect [133, 134],
which breaks the distribution into multiple sharp peaks shown in the 2D
plot 2.

The next simulation model kept the directions of all the fibres along
z-axis, which is shown in Figure 5.5 (a). It illustrates a system which was
globally anisotropic with no locally isotropic compartments (e.g. oriented
or aligned fibres). This will be the limiting case where all cells/collagen
fibres are aligned along one direction in the plant/animal tissue. Cor-
respondingly, only off-diagonal peaks indicating inequivalent diffusion
coefficient values are observed in the D-D map in Figure 5.5 (b).

By tilting all fibres to a certain degree, the gradient main axes will be
deviated from the main phantom geometry. If the tilting angle changes
from 0 (which is the case shown in Figure 5.5) to π/4, the off-diagonal peak
will gradually move close to and even lay on the diagonal line, which were
confirmed by our simulations (not shown). This indicate that single D-D
map is insufficient to characterise the system, which will be addressed by

2It is possible to“smooth” the distribution by using a larger regularising parameter, but
that would lead to the “over-smoothing” case, which also need to be avoid when applying
ILT algorithm



96 Determine mean FA values by triple DDCOSY schemes

(a)

D
xx
(m2/s)

D
zz
(m
2 /
s)

10-11 10-10 10-9 10-8

10-11

10-10

10-9

10-8

(b)

Figure 5.4: Macroscopically isotropic system and its corresponding D-D map,
modelled by randomly oriented fibres. The gradients are applied along the x and
z-axis.

the newly proposed approach in this thesis.

By mixing the second and third models, a system which was globally
anisotropic containing isotropic components can be built. In this scenario,
the degree of alignment of the fibres were randomly distributed between
0 and 90◦. Both diagonal and off-diagonal peaks are observed in the D-D
map Figure 5.6 (b), but only one main off-diagonal peak is seen indicating
an unsymmetrical structure. Moreover, 1D projections from x- and z-
directions are distinct. The off-diagonal peak with very small intensity
might come from two reasons. They might originate from insufficient
numbers of tracers (molecules) used for the simulations. Additionally,
squared boundaries and the cubic simulation volume might break the
cylindrical symmetry resulting in molecular displacements depending on
the direction in which diffusion was observed in the xy plane. Therefore,
in the following simulation, the number of tracers was increased. In the
meantime, the simulation volume was modified to a cylinder.
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Figure 5.5: Macroscopically anisotropic system and its corresponding D-D map,
modelled by aligned fibres. The gradients are applied along the x and z-axis.
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Figure 5.6: Macroscopically anisotropic system and its corresponding D-D map,
modelled by fibres with alignment degree randomly distributed between 0 and
90◦. The gradients are applied along the x and z-axis.
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5.3.2 D-D maps with the new gradient scheme

In order to verify the concepts of obtaining FA using the proposed gradi-
ent schemes, the D-D maps of the three DDCOSYs were simulated. The
fibre networks were modelled as shown in Figure 5.7 (a). The simulation
volume was defined as a symmetrical cylinder of length 1000 µm with
a diameter of 600 µm. Tracers were placed randomly before starting the
random walk through the space in Figure 5.7 (a). The number of tracers
was set to be NP = 7000. Other parameters were set to the same as in
Figure 5.3–5.6.

Figure 5.7 (b)-(d) are the simulated results using the proposed gradient
combinations. Only one peak can be observed in the three D-D maps. As
the system is axial symmetric, molecular diffusion is restricted to the same
degree along the x- and y-axis, leading to the similarity of Figure 5.7 (b)
and Figure 5.7 (c). A diffusion coefficient of 2.5× 10−9 m2/s (equal to the
pre-set diffusion coefficient in the random walk simulation) is seen along
the z-axis in Figure 5.7 (d), indicating that water diffusion is not restricted.
As a consequence of the macroscopically anisotropic system, no diagonal
peaks can be inspected in any of the D-D maps.

Logarithmic mean values of the diffusion coefficients in the projected
1D distribution were calculated using Equation (5.13):

log10(D
app
ij ) =

∑
m log10(Dm)× fm∑

fm
, (5.13)

where Dm is the pre-defined diffusion coefficients and fm is the correspond-
ing probabilities. Subsequently, the elements of the symmetric diffusion
tensor matrix Dcap were reconstructed from the simulation results by ex-
tracting the logarithmic mean values from the D-D maps in Figure 5.7 and
using Equation (5.7):
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Figure 5.7: Aligned fibres in the symmetric cylinder volume and its DDCOSY
simulations of the new approach using gradients combination (b) x-yz; (c) y-xz;
and (d) z-xy.
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Dcap =

 0.22± 0.04 0.00± 0.01 −0.02± 0.02

0.0± 0.01 −0.22± 0.04 −0.01± 0.02

−0.02± 0.02 −0.01± 0.02 2.35± 0.07

× 10−9m2/s (5.14)

The errors of the logarithmic means were obtained from the 95% confidence
interval of the ILT fitting [150].

By rotating the above diffusion tensor matrix, the eigenvectors and
eigenvalues of each principal axes can be derived:

u1 = (0.98, 0.20, 0.01)T, λ1 = 0.22± 0.10× 10−9m2/s;

u2 = (0.19, 0.98, 0.00)T, λ2 = 0.22± 0.12× 10−9m2/s;

u3 = (0.01, 0.00, 0.99)T, λ3 = 2.35± 0.20× 10−9m2/s.

(5.15)

It is noticeable that the eigenvalues are identical to the diagonal elements of
Dcap. The diffusion coefficient along z-axis is the largest, while the values
along x-axis and y-axis are the same as expected. This further supports that
the z-axis is the preferred pathway for water to diffuse, which is consistent
with our initial model.

An alternative way to calculate the diffusion tensor is to utilise the
discrete displacements which are recorded in the Monte-Carlo simulation.
The ensemble mean squared displacement of all tracers can be obtained by
using Equation (5.12). By further using the Einstein equation in 3D space
as stated in Equation (5.16), the bulk diffusion tensor can be constructed
independent of the NMR response/signal.

Dij =
〈RiRj〉c

6∆
, (5.16)
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This approach results in the following tensor matrix,

Dcap =

 0.24 0.01 0.01

0.01 0.24 0.01

0.01 0.01 2.30

× 10−9m2/s. (5.17)

The values correspond well with the results obtained by three D-D maps
with uncertainties.

By either using Equation (3.11) or Equation (3.12), the same value of
FA = 0.90 can be derived. However, Equation (3.12) gives a smaller uncer-
tainty of 0.3 (due to less calculation involved and less errors propagating),
thus in the rest of the chapter, Equation (3.12) is used to calculate FA directly
from the diffusion tensor in the laboratory coordinate system.

It should be noted that the bulk diffusion tensor could be constructed
by using six single PFG experiments with different gradient directions,
which may be more time-efficient than the proposed approach. However,
individual single PFG experiments will return the same 1D distributions in
a system as presented in Figure 5.4, thus they fail to resolve local anisotropic
structure. However, by combining the observation of peak features in the
correlation maps (i.e. qualitative analysis) and the derivation of bulk FA
values (i.e. quantitative analysis) as presented in this thesis, it is possible
to identify microscopical features of the system. This is similar to the idea
of combing µFA with FA to better characterise crossing fibres as well as
macroscopically isotropic system.

5.4 Experimental

As a widely used phantom in diffusion anisotropy experiments [174,
202], a carrot was measured as sample I. Sample II was a 6-week-old healthy
mouse brain and sample III was an 8-week-old tumour-bearing mouse brain
that had received an intracranial administration of GL261 glioma tumour
cells 20 days prior to isolation [203]. Both brains were isolated immediately



102 Determine mean FA values by triple DDCOSY schemes

after the mice were euthanized and stored in IMDM medium (Invitrogen,
Waltham, Massachusetts, USA) supplemented with 5% fetal bovine serum
(Sigma-Aldrich, St. Louis, Missouri, USA), and 2 mM glutamax, 100 U/ml
penicillin, 100 mg/ml streptomycin, and 50 mM 2-mercaptoethanol (all
Invitrogen) at 4oC. Both mice brains (with and without tumour) were
measured in vitro.

Experiments were carried out on the Bruker Advance 400 MHz NMR
spectrometer (Figure 2.1) equipped with a Bruker Micro2.5 micro-imaging
system with a maximum gradient of 1.45 T/m and RF coil diameter of
25 mm. All experiments were carried out at the 1H resonance frequency of
399.14 MHz at ambient temperature of 20oC. Experimental protocols were
approved by the Victoria University Animal Ethics Committee.

DDCOSY experiments using the pulse sequence [133] in Figure 3.15
with the proposed three gradient orientation schemes shown in Figure 5.1
were applied for the three different biological samples. In order to achieve a
pronounced influence of the tissue structure on the water diffusion, ∆ was
chosen to be 500 ms for carrot and 800 ms for brains. These parameters were
set based on 1D diffusion measurements along different directions. The
much longer observation time for brains was to eliminate the signal from
the free fluid surrounding the tissues. δ was set to be 2 ms for all tissues.
The amplitude of diffusion encoding gradient was increased linearly by
32 steps from -0.5 to 0.5 T/m for the carrot, and from -0.732 to 0.732 T/m
for both brains respectively. The repetition time was 3 s and the number of
scan was 4, yielding the total acquisition time of 2 hours and 34 minutes
for one sample.

DTI experiments were performed on the same equipment subsequently.
The six independent gradient orientations were set the same with these
indicated in Figure 5.1. The pulse sequence used in our experiments has
been shown earlier in Figure 3.10. The b-values shown in Equation (3.8)
were linearly increased from 0 to 800 s/mm2 in 4 steps along every direc-
tion. This way sufficiently stables the obtained DTI results although the
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minimum required number of gradient directions was used. The resolution
of DTI was 97.6 µm×97.6 µm in both directions, with a field of view of
25 mm×25 mm and a slice thickness of 1 mm. The observation time and
gradient duration of DTI were set to be the same as DDCOSY experiments.
The repetition time for DTI was set to be 3 s, the echo time was set to be 25
ms and the total imaging time for each sample was 3 hours.

5.5 Results and Discussions

5.5.1 Plant tissue

One slice obtained from the SE imaging sequence and the DDCOSY
results of sample I are given in Figure 5.8. It reveals distinct behaviours
depending on the different choices of gradient directions. The peak distri-
butions of the correlation maps in Figure 5.8 (b) and (c) are similar, where
the peaks with the largest intensities are located on the diagonal line. This
indicates a rotationally symmetric structure in the xy-plane. Evaluating Fig-
ure 5.8 (b) to (d) returns the largest diffusivity along the z-axis, suggesting
global anisotropic diffusion preferably along z. In fact diffusion coeffi-
cients are distributed mainly off-diagonally in Figure 5.8 (d), highlighting
again that this sample is globally anisotropic with little or no isotropic
components (Figure 5.4).

The elements of diffusion tensor matrix were reconstructed from the
DDCOSY experiments by using the same approach shown in Section 5.3.2,
yielding

Dcar =

 1.01± 0.02 0.03± 0.06 0.74± 0.07

0.03± 0.06 1.02± 0.02 0.74± 0.05

0.74± 0.07 0.74± 0.05 2.03± 0.03

× 10−9m2/s. (5.18)

By using Equation (3.12), FA = 0.72± 0.02 can be derived, showing a
high degree of anisotropy of sample I. This may be caused by the elongated
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Figure 5.8: Cross-section image (a) of the carrot and the DDCOSY experiments
using the proposed gradients combinations: (b) x-yz; (c) y-xz; and (d) z-xy.
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shape of the plant cells such as the xylem cells (Figure 3.19) or water
diffusing in the intercellular space. For comparison, the histogram of FA
was determined from its DTI result, which is shown in Figure 5.9. FA is
seen to be centred around 0.7 with an averaged value of 0.72. This was in
line with the value obtained from the proposed DDCOSY measurements 3.

While the eigenvalues of the diffusion tensor are not used for calculating
the FA, it is provided for a better comprehension of the anisotropic tissue
structure:

λ1 = 0.38± 0.15× 10−9m2/s,

λ2 = 0.99± 0.13× 10−9m2/s,

λ3 = 2.69± 0.15× 10−9m2/s.

(5.19)

Given that our observation time was 500 ms, the length of cells could be√
6D∆ =

√
6× 2.7× 10−9m2/s× 0.5s = 90 µm, which was in the range of

the mean cell size of carrot reported from 30 µm to 100 µm (as mentioned in
Section 3.5.1). However, Dzz and λ3 appear to be above the value reported
for free water diffusion at 20◦C [80] (see Page 18). As suggested in Figure 2.7,
this might be ascribed to the increasing temperature from the gradient and
RF heating of the sample. Although different tissues would exhibit various
degrees of heating, the variation was assumed to be uniform thus neglected
when a bulk value is calculated. Therefore, temperature gradients would
not affect the fractional anisotropy values.

To further validate the concept, experiments on other two different
carrot samples were carried out. The D-D maps showed similar patterns
therefore is no longer present in the thesis.

3Although the FA map would reveal more detailed spatial information about the
system, the purpose of performing DTI is for benchmarking the bulk result from DDCOSY,
thus the FA map is omitted in this thesis



106 Determine mean FA values by triple DDCOSY schemes

FA
0 0.25 0.5 0.75 1

N
um

be
r 

of
 p

ix
el

s

0   

2000

4000

6000

Figure 5.9: The histogram of FA values calculated from DTI results in the carrot.

5.5.2 Animal tissues

Normal mouse brain

The DDCOSY experiments of one animal tissue (mouse brain) without
the injection of tumour (i.e. healthy) are shown in Figure 5.10. Given a
long observation time we set, no separated isotropic peaks from the free
fluid surrounding the brain tissues. The results in Figure 5.10 (c) and (d)
are similar and the main diffusion coefficients in the first domain along
the y- and z-axis are constantly above 1 × 10−10 m2/s, whereas diffusion
coefficients in Figure 5.10 (d) along the x-axis are mainly distributed be-
low 1× 10−10 m2/s. Off-diagonal peaks can be identified, eliciting that the
healthy brain is microscopically anisotropic. Diagonal peaks can be ob-
served in Figure 5.10 (b), while they disappear in (c) and (d). This suggests
that the healthy brain is macroscopically anisotropic.

Again, by extracting the logarithmic mean values from the diffusion
coefficient distributions in Figure 5.10 for each dimension, the diffusion
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Figure 5.10: Cross-section image (a) of the healthy brain and the DDCOSY ex-
periments using the proposed gradients combinations: (b) x-yz; (c) y-xz; and (d)
z-xy.
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tensor matrix was calculated to be

Dnor =

 0.45± 0.02 −0.31± 0.02 −0.38± 0.05

−0.31± 0.02 0.95± 0.05 −0.28± 0.06

−0.38± 0.05 −0.28± 0.06 0.95± 0.04

× 10−10m2/s,

(5.20)
with the following eigenvalues:

λ1 = 0.06± 0.01× 10−10m2/s,

λ2 = 1.06± 0.18× 10−10m2/s,

λ3 = 1.24± 0.15× 10−10m2/s,

(5.21)

resulting in a FA = 0.68 ± 0.03. This is in agreement with values from
ex-vivo measurements of mouse brain as reported in [204]. The histogram
of FA values obtained from DTI of this sample is shown in Figure 5.11,
which holds a mean value of 0.68, supporting the result from the DDCOSY
schemes. Anisotropy in mouse brain tissues may be attributable to the
orientation of axonal tracks that affects water motion. Due to the various
degrees of alignments, the environment of water motion in brain tissues is
complex, neither pure isotropic nor anisotropic, thus resembling the fourth
scenario as illustrated in Figure 5.6.
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Figure 5.11: The histogram of FA values calculated from DTI results in the healthy
brain.
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It may surprise that the mean FA value obtained for the healthy brain is
similar to the mean FA value as obtained for carrots. However, this does not
imply that the structures of these two tissues are similar or even identical.
It only means that molecular diffusion is affected on a microscopic level
by anisotropic obstructions in a similar way, thus the normalised diffusion
ellipsoid obtained from DTI is similar.

Tumour-bearing mouse brain

In order to study the changes of the brain structures caused by a tumour,
three DDCOSY experiments were performed on a mouse brain with an
established tumour in the thalamus region. Figure 5.12 exhibits significant
differences as compared to the results of the healthy brain shown in Fig-
ure 5.10. Firstly, all three maps contain peaks on the diagonals. Secondly,
the positions of the dominant peaks in the 2D maps are nearly identical.
Last but not least, all peaks in Figure 5.12 (c) and (d) are more symmetric
to the diagonals. It is observed that the gradients applied to different axis-
combination produce more similar DDCOSY distributions as compared to
the healthy brain, indicating a substantial contribution of isotropic com-
partments locally. However, differences can still be spotted on the three
2D maps; for instance, only one diagonal peak is seen in Figure 5.12 (c),
while two diagonal peaks are seen in Figure 5.12 (b) and (d). Off-diagonal
peaks clearly prove that the system contains anisotropic components. It
should be noted that the shape of peaks in D-D maps of healthy brain is
strikingly different from tumour-bearing brain. This is mainly ascribed
to the different signal-to-noise ratio (SNR). The SNR of the healthy brain
was found to be eight times smaller as compared to the other brain in our
experiments 4. Thus the 2D-ILT will automatically choose a larger smooth-
ing factor, leading to more broadened peaks while detailed features will
be lost. Detailed validation of this statement will be seen in Section 5.5.2.

4This may be caused by the fact that the size of sample II is much smaller than sample III,
leading to a decreased water volume and detected signal in sample II
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However, the logarithmic mean values extracted from the peak positions
will not change, which is critical in calculating the FA.

(a) sample III
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Figure 5.12: Cross-section image (a) of the tumour-bearing brain and the DDCOSY
experiments using the proposed gradients combinations: (b) x-yz; (c) y-xz; and (d)
z-xy.

Diffusion tensor elements were extracted subsequently from the three
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D-D maps as provided by Figure 5.12,

Dtum =

 1.63± 0.03 2.68± 0.08 2.15± 0.09

2.68± 0.08 1.63± 0.06 2.11± 0.08

2.15± 0.09 2.11± 0.08 1.87± 0.02

× 10−10m2/s, (5.22)

with the eigenvalues of

λ1 = 0.60± 0.01× 10−10m2/s,

λ2 = 1.06± 0.08× 10−10m2/s,

λ3 = 2.95± 0.18× 10−10m2/s,

(5.23)

yielding FA = 0.60±0.03, which was smaller than the mean FA values in the
healthy brain tissue. This may be attributed to more irregular orientation of
the fibres growing inside the cancerous tissues [201]. The histogram of FA
in the tumour-bearing brain is shown in Figure 5.13, and a mean value of
0.59 was found. This was again in accord with the DDCOSY calculations.
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Figure 5.13: The histogram of FA values calculated from DTI results in the tumour-
bearing brain.

Surprisingly, only a 10% decrease of sample-averaged FA of the tumour-
bearing brain was found as compared to the healthy counterpart which
may be due to the partial volume effect. Therefore, further investigation
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was exploited based on the DTI experiments. The tumour area was defined
in the DTI results and the pixels that the tumour occupied were counted
in order to calculate the volume ratio. The corresponding FA histogram of
this tumour region is shown in Figure 5.14 with a mean value of 0.47. This
is consistent with FA values in glioma as found in the literature ranging
from 0.1 to 0.7, due to different observation times of DTI protocols and
variable grades of glioma used in the independent experiments [205, 206].
By further processing the DTI data, the tumour was found to take up 40% of
the total brain volume. If a simple bi-compartment model was assumed, the
mean FA value of tumour-bearing brain was 0.47× 0.4 + 0.68× 0.6 = 0.59,
which again validated the mean values of FA obtained by DDCOSY.
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Figure 5.14: The histogram of FA values of the isolated tumour part from the
tumour-bearing brain.

While the decrease of FA in the tumour-bearing brain is significant but
small, it is possible that our approach may be insensitive to smaller tumours
as compared to the total tissue volume without supplementary means of
volume localisation. It is envisioned that this could be achieved for in-
stance by combining low-field NMR concepts (which conveniently limit
the detected sample volume by the “sweet spot”) [207] with our scheme.
Alternatively, coarse grain imaging methods or appropriate 3D slice selec-
tion schemes could be another means of limiting the sample volume under
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investigation, thus controlling the effective tumour-to-total volume ratio.
Nevertheless, there are observable differences between the two tissues
types (healthy and tumour) in the patterns of D-D maps which may assist
in discriminating them. These isotropic patterns may be attributed to the
destruction of aligned fibres during the tumour growth [208], resulting in a
smaller overall fractional anisotropy.

The SNR influence on the peak shape of 2D D-D map

In order to understand the difference of peak shapes in Figure 5.10
and Figure 5.12, another healthy mouse brain (sample IV) was prepared
which had a similar size as compared to sample III and contained same
volume of water, implying that the signal intensities should be at the same
level. Sample IV was measured using the same parameters of DDCOSY
experiments as used in sample II and III. The MRI slice and the D-D maps
of sample IV are shown in Figure 5.15. The SNR of sample IV was at
the same level of sample III. It is observable that peak features (but not
positions) are also similar in Figure 5.12 (b) and Figure 5.15 (b).

By extracting the logarithmic mean values from the diffusion coefficient
distributions in Figure 5.15 for each dimension, the diffusion tensor matrix
was calculated to be

Dnor =

 1.45± 0.02 −0.80± 0.12 0.97± 0.09

−0.80± 0.12 1.45± 0.02 0.47± 0.09

0.97± 0.08 0.47± 0.08 2.50± 0.06

× 10−10m2/s, (5.24)

with the following eigenvalues:

λ1 = 0.18± 0.22× 10−10m2/s,

λ2 = 2.13± 0.23× 10−10m2/s,

λ3 = 3.08± 0.24× 10−10m2/s,

(5.25)

which resulted in a FA = 0.68± 0.02. It is found that the value of FA was
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Figure 5.15: Cross-section image (a) of another healthy brain and the DDCOSY
experiments using the proposed gradients combinations: (b) x-yz; (c) y-xz; and
(d) z-xy. It can be seen from the image that is healthy brain had similar size to
sample III.
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identical to that was calculated in sample II, however, a slightly smaller
uncertainty presented in sample IV. One may notice a 3-fold increase in
the λ-values of sample IV as compared to the values of sample II, which
is attributed to the calculation of log mean value on spectra with different
width. The broader distribution will result in more deviation of the peak
value. What need to be noted here is that the degree of the deviation were
the same for three eigenvalues, thus FA of the two samples were the same.

The signal decay of sample IV obtained from the x-yz gradient scheme
is shown in Figure 5.16 (a). By manually superposing a Gaussian noise, the
signal decay became Figure 5.16 (b), where a similar SNR level to sample II
was obtained. The resulting D-D map after 2D-ILT is shown in Figure 5.17.
It is observed that the shape of the peak in Figure 5.17 is akin to that in
Figure 5.10 (b), but differs now from Figure 5.15 (b). The peak become
spread, leading to a limited resolution. However, the position of the main
peak in Figure 5.15 (b) and Figure 5.17 remains the same, which poses very
small influence to the calculation of the logarithmic mean values of the
diffusion tensor.

It may be argued that when SNR is below a certain limit, off-diagonal
peaks may not be resolved in the D-D map, therefore an anisotropic system
might appear isotropic in the 2D map. However, it should be kept in mind
that although the peaks may not be separated, the position of the main
peak will still be off-diagonal (because the SNR level does not influence
the position of the main peak). The quantitative method as presented in
this thesis will allow obtaining a non-zero mean FA values, and subsequent
identifying the anisotropic system. Therefore, the combination of the qual-
itative 2D map and the quantitative measure is of significant importance to
characterise the micro-structure of a system.

One may find parameters such as the restriction size and tortuosity can
reveal intrinsic properties of microstructure [84, 209]. However, the access
to these parameters either involves more mathematical fitting procedures
or more experiments than FA. For instance, in order to obtain the tortuosity,
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diffusion coefficients need to be measured at different observation times,
leading to a overall long time measurement. Therefore, only FA was con-
sidered in this thesis, and the current protocol can be extended to obtain
such information by rearranging the sigal decay equation and including
more experimental data.
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Figure 5.16: Signal decays before (a) and after (b) addition of Gaussian noise for
various values of Gyz

.

5.6 Conclusions

Random walk simulations of four scenarios were implemented by ap-
plying the conventional DDCOSY strategy. The comparison of different
scenarios supported that the 2D D-D map can be used to distinguish the
microscopic environments of tissues. Further simulation on aligned fibres
validated the concepts of obtaining mean FA values by employing DDCOSY
in combination with three particularly chosen gradient direction schemes.

As a proof of concept, the experiment on a carrot tissue demonstrated
that our approach is capable of obtaining FA which compares very well to
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Figure 5.17: TheD-D map after superposing the Gaussian noise using the gradient
combination of x-yz. The D-D map before adding noise is shown in Figure 5.15 (b).

the averaged value obtained from the imaging method. In addition, the
experiments conducted with two brain tissues revealed that the healthy
brain has a higher FA, also leading to larger differences in the patterns of the
three D-D maps. On the contrary, the tumour-bearing brain has a reduced
FA accompanied by more isotropic patterns in the D-D maps. Moreover,
these patterns of diffusion coefficients along all diffusion directions in the
tumour-bearing brain were essentially identical, thus providing a contrast
to the pattern obtained from the healthy brain.
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Chapter 6

Quantitative Characterisation of
Breast Tissue – A Field Study

MRI has been developed as a routine approach in the clinical study of detecting
cancers. Known as magnetic resonance mammography (MRM), it has emerged
as a promising modality for detection, diagnosis, and staging of breast cancer.
The purpose of this chapter is to evaluate the variability of DWI quantifications
(apparent diffusion coefficients, perfusion factor, diffusivity and kurtosis) with
different regions of interests, and introduce a threshold isocontouring strategy in
order to increase intra-readers repeatability.

119
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6.1 Introduction

Breast cancer is the leading disease in women [210]. According to the
cancer statistics reported in 2013, one in eight women in the United State
have a breast cancer [211]; About 15,321 people in New Zealand died
in 2012 because of various cancers, of which breast cancer accounts for
40% [212]. The latency period for breast cancers usually takes five to eight
years allowing for early detection, which is essential for patient survival.

Breast cancers can be detected in a number of ways, including the pres-
ence of certain signs and symptoms, screening tests and medical imaging.
Breast imaging methods include X-ray mammography, ultrasonography,
MRI and PET. While mammography represents the “golden standard” for
breast cancer screening since 1969, it still has certain limitations, including
false-positive results and radiation exposure. Moreover, it shows low per-
formance in finding cancers in dense tissues [213]. MRI has been proven to
be more sensitive with the aid of contrast agents as compared to X-ray mam-
mography [214]. The wash-out pattern in the time-signal intensity curve
shown in Figure 3.9 is a strong indication for malignancy. But issues such
as low specificity, long examination time and high costs in the DCE-MRI
were reported [215]. However, these limitations were overcome by intro-
ducing the DWI technique into the field of breast imaging [216]. It allows
measuring the mobility of water molecules which can be quantified by the
values of apparent diffusion coefficients (ADC) [31]. Other quantifications,
such as perfusion factor (f ), diffusivity (D) and Kurtosis (K) [115, 217–221],
also describe different behaviours of water mobility in voxels of tissues. As
malignant breast lesions are commonly characterised by densely packed
cells, water mobility inside will be considerably restricted, yielding small
mean ADC but large K values [217, 222].

However, the structural composition of breast tissues is heterogeneous,
which contains fatty, fibrous, glandular and lobular components, leading to
the large variation of the ADC values with different tissues. Furthermore,
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regions with different volumes and volumetric ratios of these tissues affect
the obtained ADC values [39, 223]. Even if a uniform region is selected for
interest, the representative ADC values can be different due to averaging
methods (e.g. mean, median) used in various studies as summarised by
Kim and co-workers [224]. This emphasises that a correct definition of ROI
and a proper measuring method are essential to separate tumour types
more effectively and accurately.

However, the classification of breast lesions based on DW images is
usually difficult because of the undistinguishable boundaries. Similar diffi-
culties were found in PET images [225], where the intensity represents a
relative concentration of radiotracers in any given pixel after injection. In
order to delineate tumour boundaries in PET images, a “threshold isocon-
touring” procedure is often used [226] which selects pixels with an intensity
higher than a certain threshold. These pixels are subsequently defined as
the tumour region. The similarity between breast DWI and PET suggests
utilising an analogous isocontouring procedure in DW images as will be
presented in this chapter, thus providing better tumour categorisation in
DW images.

In this chapter, the dependencies of diffusion-related quantifications
on the size of ROIs are investigated, followed by the evaluation of the
applicability to use the threshold isocontouring strategy in the available
DWI data. In addition, different measuring methods are compared and
the impact of threshold isocontouring on the diagnostic accuracy is also
addressed.

6.2 Methods

6.2.1 Participants and MR Imaging

The clinical trials leading to this pilot study thesis work were carried
out in the German Cancer Research Centre (Deutsches Krebsforschungszen-
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trum, Heidelberg, Germany). The retrospective analysis was approved by
an institutional and governmental ethical review board. Written informed
consent was obtained. The pilot study presented in this thesis included
data from 23 female participants with suspicious findings on screening
X-ray mammograms (BIRADS 4-5) (December 2014 to February 2015).

Breast MRI examinations were performed prior to the biopsy using
a clinical 1.5 T MRI scanner (Siemens) with an 18-channel breast coil in
Mannheim radiology centre (Radiologiezentrum Mannheim, Mannheim,
Germany). All participants were placed in a prone position with the breasts
slightly fixed in the dedicated breast coil using foamed material. DWI
data was acquired with b-values of 0, 0.1, 0.75 and 1.5× 109 s/m2 using a
SE-EPI sequence with spectral attenuated inversion recovery (SPAIR) fat
saturation [227] (TR/TE = 1.43 s/ 0.08 s). The FOV was 0.48 m× 0.24 m×
0.3 m, the matrix size was 192×96×50, and the bandwidth was 870 Hz/pixel.

All included participants underwent ultrasound- or X-ray-guided breast
biopsy in concordance to the regular mammography screening procedures.
All biopsies were performed after the MRI examination, and the histopath-
ological diagnosis served as a standard of reference for final validation of
the quantitative analysis.

6.2.2 ROI determination

For each patient data, four ROIs were used to test the effect of varying
ROI sizes and positions on ADC, f , D and K differences. For simplicity,
all ROIs in this study were rectangularly shaped. The four ROIs were
determined based on DCE-MR images and transferred to DW images as
follows:

• ROI1: defined by a radiologist with 2-year experience;

• ROI2: obtained by expanding 2 pixels of the ROI1 in x and y dimen-
sions;
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• ROI3: obtained by shifting 2 pixels of the ROI1 in x and y directions;

• ROI4: drawn by another independent radiologist with 10-year experi-
ence.

6.2.3 Threshold isocontouring

After determining the ROI (ROI1, 2, 3 or 4) in the DW image with b =

1.5× 109 s/m2 (b1500 image), a threshold (ε) relative to the maximal signal
intensity (Smax) in the ROI was used to select a number of pixels (Npixels)
for subsequent analysis. The selection criterion was defined as the signal
intensity of the pixel (Si) above the threshold level, i.e.

Si ≥ ε · Smax, (6.1)

where i is the pixel number. ε = 0 indicates that all pixels in the ROI were
selected whereas ε = 1 means only the pixels with signal intensity equal
to Smax were chosen. This procedure was repeated for each type of ROI as
introduced in Section 6.2.2.

In addition, in order to find the optimal thresholds for these four quanti-
fications, 20 threshold values linearly distributed in the range of [0, 1] were
applied to the four types of ROI in this study.

6.2.4 Averaging measurements

Once the pixels were selected by Equation (6.1), three averaging al-
gorithms were applied, which will be named as “Averaged Signal”, “Pixel-
wise Mean” and “Pixelwise Median” in this chapter. “Averaged Signal”
means pixel signals inside the threshold-isocontourred ROI were averaged
prior to the calculation of ADC, f , D and K values, while “Pixelwise Mean”
and “Pixelwise Median” indicates that the ADC, f , D and K values of each
pixel was calculated individually. “Pixelwise Mean” picks the mean value,
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while “Pixelwise Median” chose the median value of the selected pixels as
the representative for each diffusion parameter.

6.2.5 Mathematical models

The calculations of the four quantifications were performed by fit-
ting the signal intensities with various b-values. The fitting models were
IVIM (Equation (3.5)) and diffusion kurtosis models (Equation (3.15)) as
introduced in Section 3.2.2 [220, 221].

Regarding to the use of the IVIM model, as ADCp is much faster than
ADC [116], ADC was fitted firstly with signals acquired at b-value larger
than 0 s/m2, where S(0) · f · (−b · ADCp) is considered to be 0. f is calcu-
lated afterwards by substituting the fitted ADC and S(0) and values into
Equation (3.5).

The diffusion kurtosis model essentially describes a mono-exponential
decay, which may lead to an erroneous fit if blood vessels are present in
the breast tissue. Therefore, when using diffusion kurtosis model to fit the
acquired NMR data, b0 (b = 0 s/m2) data point was excluded to minimise
the perfusion effects.

6.2.6 Statistical analysis

After processing all included patients’ datasets as described in Sec-
tion 6.2.2 – 6.2.5, a series of statistical analysis was performed by correlating
the quantification values with the histopathological information.

In order to compare the diagnostic accuracies of different quantifications
using three averaging methods, the receiver operating characteristic (ROC)
curves were analysed. The ROC curves are 2D graphical plots, with vertical
axis being the true positive rate (i.e. sensitivity) and the horizontal axis
being the false positive rate (i.e. 1-specificity) respectively [228]. Each data
point in a ROC curve is obtained by evaluating the probabilities of four
classifications (true positive, false positive, true negative and false negative)
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at a certain discriminative (i.e. cut-off) value1. A single quantitative index of
the diagnostic accuracy can be reflected by computing the area under a ROC
curve, which is commonly referred to as the area under curve (AUC) [228].
Larger AUC values indicate higher diagnostic accuracy of the studied
method.

Differences between measured values for benign and malignant lesions
were evaluated using the two-sample Student’s t-test2 [229] after normality
testing using the Shapiro-Wilk test3 [230]. The two-sample Student’s t-test
is one type of statistical hypothesis tests. It is often used to determine
whether two datasets (e.g. ADC values of benign and malignant lesions)
are significantly different from each other. The normality test is frequently
used to determine whether a dataset follows a normal distribution, which
is the prerequisite to perform the Student’s t-test. A p-value of less than
0.05 was considered significant. All analyses in Section 6.2.2 – 6.2.6 were
implemented by using MATLAB R2015b software (Mathworks, Cambridge,
UK).

6.3 Results

6.3.1 Lesion information and representative images

Of 23 subjects imaged for this study, 3 were excluded due to the invis-
ibility of lesions on the b1500 images. Among the DWI-detectable lesions,
7 were benign, including cyst (n=2), fibroadenoma (n = 4), and chronic
inflammation (n=1). Whilst 13 lesions were malignant, including invasive

1The detailed implementation can be found in http://www.mathworks.com/
help/stats/perfcurve.html.

2The detailed implementation of the two-sample Student’s t-test can be found in
http://www.mathworks.com/help/stats/ttest2.html.

3Shapiro-Wilk test is one type of the normality test, suitable for the sample size
between 3 and 5000. The detailed implementation of the Shapiro-Wilk test can be found
in the website of http://www.mathworks.com/matlabcentral/fileexchange/
13964-shapiro-wilk-and-shapiro-francia-normality-tests/content/
swtest.m.

http://www.mathworks.com/help/stats/perfcurve.html
http://www.mathworks.com/help/stats/perfcurve.html
http://www.mathworks.com/help/stats/ttest2.html
http://www.mathworks.com/matlabcentral/fileexchange/13964-shapiro-wilk-and-shapiro-francia-normality-tests/content/swtest.m
http://www.mathworks.com/matlabcentral/fileexchange/13964-shapiro-wilk-and-shapiro-francia-normality-tests/content/swtest.m
http://www.mathworks.com/matlabcentral/fileexchange/13964-shapiro-wilk-and-shapiro-francia-normality-tests/content/swtest.m
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ductal carcinoma (IDC, n=11), invasive lobular carcinoma (ILC, n=1) and
ductal carcinoma in situ (DCIS, n=1). The mean age of the subjects was
59.4(±10) years old. Figure 6.1 shows representative images of benign
and malignant lesions. Figure 6.1 (a) is from a 50 years old patient with
a fibroadenoma, while Figure 6.1 (b) is from a 54 years old patient with
an IDC. The images in the first row were obtained from DCE-T1WI, while
the second row shows b1500 images. Both lesions were visible and shown
high intensities in DCE T1-weighted and DW images, indicating that it is
impossible to identify the pathological differences only using the images,
and that further quantitative analysis needs to be performed in order to
distinguish them.

(a) (b)

Figure 6.1: DCE-T1WI (upper panel) and DWI with b of 1500 s/mm2 (lower panel)
of (a) a 50 year-old female patient with fibroadenoma and (b) a 54 year-old female
patient with IDC.
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6.3.2 Dependency of quantifications on thresholds, ROI types

and averaging measurements

The ADC, f , D andK values were calculated in the four types of ROI by
using the three averaging measurements according to Section 6.2.2 – 6.2.5.
The quantitative analyses were repeated at various threshold values, and
the results of the two representative subjects were shown in Figure 6.2
and Figure 6.3 respectively. Dependencies and variations of Npixels, ADC,
f , D and K values against different relative thresholds, ROI types and
averaging measurements are seen in both cases. The ADC, f , D and K

values for the four ROIs were diverse at the beginning, but converged at
specific thresholds independent of individual measurements. For instance,
as can be seen in Figure 6.2 (a), initial ADC values from “Averaged Signal”
for ROI1, ROI2, ROI3 and ROI4 were 1.15, 0.94, 1.07 and 1.35 × 10−9m2/s,
respectively. They all approached to be 1.33× 10−9m2/s when the threshold
was larger than 0.55. All three averaging measurements returned the ADC,
f , and D values with larger deviations at smaller thresholds, but the same
values when the thresholds reached to 1. However, the relative change of
K values in ROI2 when varying the thresholds from 0 to 1 was found to
be the largest. The four quantifications finally returned the same value for
each parameter when threshold arrived at 0.85. In this case, 3 pixels were
selected for calculation. The initial values in ROI4, the size of which was
the smallest, were found to be the closest to the converged value.

Figure 6.3 follows the same tendency. The only slight difference was
that the threshold for the ADC, f , D and K values to converge was at 0.75.
By comparing the converged values of the two representative subjects, the
converged ADC and D values in Figure 6.3 were found to be smaller as
compared to the values in Figure 6.2, while f and K values were larger in
the malignant lesions.

The observer differences (δADC, δf , δD and δK) averaged on all included
patients datasets were shown in Figure 6.4 when comparing ROI1 and
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Figure 6.2: Data evolution for Npixels, ADC, f , D and K values of the lesion in
Figure 6.1 (a) as a function of thresholds based on ROI1 (�), ROI2 (�), ROI3 (∗) and
ROI4 (•) on the b1500 image, using three different measurements: (a) Averaging
signal; (b) Pixelwise Mean; (c) Pixelwise Median. Vertical black dash lines indicate
ε = 0.85.
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(a) (b) (c)

Figure 6.3: Data evolution for Npixels, ADC, f , D and K values of the lesion in
Figure 6.1 (b) as a function of thresholds based on ROI1 (�), ROI2 (�), ROI3 (∗) and
ROI4 (•) on the b1500 image, using three different measurements: (a) Averaging
signal; (b) Pixelwise Mean; (c) Pixelwise Median. Vertical black dash lines indicate
ε = 0.75.
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ROI4 defined by two independent radiologists. Although local variations
were seen in the three measurements, all differences vanished when the
threshold approach to 0.85. However, it was surprising that the difference
of the mean K values was much larger, may indicating insufficient data
points used for fitting K values.

Figure 6.4: Averaged reading differences from the two independent radiologists.

6.3.3 Statistical results

By using the histopathological information obtained from the biopsy as
a reference, the diagnostic accuracy of the diffusion parameters at different
threshold values can be compared. The changes of the AUC values versus
thresholds were thus calculated and shown in Figure 6.5 for the four para-
meters. AUC of ADC varied from 0.53 to 0.99, and its maximum occurred
when threshold was 0.85 when “Average Signal” was used. Whilst, AUC
of D varied from 0.55 to 0.95, and rose to its maximum when threshold was
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0.8 or by using “Average signal” again. However, the AUC of K kept con-
stantly larger (=0.86, “Averaging Signal”) when the threshold was smaller
than 0.2 compared to the rest of the threshold levels. More interestingly, the
best AUC of f was 0.67, much lower than other parameters, meaning that
in this study, f was the least accurate choice in differentiating benign and
malignant lesions. Nevertheless, the “Average Signal” returned better per-
formance, as compared to “Pixelwise Mean” or “Pixelwise Median” when
the threshold was small. As the threshold approached 0.9, the algorithm
only selected one or two pixels for calculation, thus no differences in the
three averaging strategies were seen.

Figure 6.5: The relationship of the AUC values with different thresholds.

Boxplots of the calculated ADC, f , D and K values at certain thresholds
are shown in Figure 6.6. It elicited that differences across thresholds were
considerable, with the most stretching box presenting in the K values. In
particular, the boxes for both lesions were spread widely when a threshold
of 1 was applied. Under the threshold of 0.85, no outliers were shown
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except for K. Moreover, with this threshold, a clear separation of the ADC
value in malignant lesions than in benign lesions can be seen in Figure 6.6,
with “Averaging signal” shows better capability of discrimination. A separ-
ation of lesion histology appears to be possible based onD andK. However,
the f values of malignant and benign lesions show little separation.
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Figure 6.6: Boxplots of calculated ADC, f , D and K values with the thresholds of
0 (gray), 0.4 (green), 0.85 (red) and 1 (blue). “B” stands for “Benign” and “M” for
“Malignant”.

Based on the previous analyses, ADC was found to deliver the largest
differentiation between benign and malignant lesions among the four dif-
fusion parameters in this field study. Although the two-sample student’s
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test revealed a significant difference of D between benign and malignant
tissues which explains the little visual differences between ADC and D in
the boxplot of Figure 6.6, the overall AUC values of ADC were higher than
that of D as shown in Figure 6.5. Therefore, a detailed investigation on
ADC values with a threshold of 0.85 (red boxes shown on the top panel of
Figure 6.6) was exploited and the results were summarised in Table 6.1. As
expected, three averaging measurements returned similar ADC values in
benign and malignant lesions. However, “Average Signal” held the smal-
lest uncertainties. Significant differences between benign and malignant
tumours were presented in the three averaging measurements (p = 0.0025,
0.01 and 0.02 for “Averaging signal”, “Pixelwise Mean” and “Pixelwise
Median”, respectively). By further performing the ROC analysis, the cut-
off value in “Averaging signal” was found to be 0.85 × 10−9m2/s with a
sensitivity of 87.5% and specificity of 90.9%. The cut-off value in “Pixel-
wise Mean” was 0.84 × 10−9m2/s with the same sensitivity but a smaller
specificity (81.8%). Whilst, the cut-off value in “Pixelwise Median” was
found to be 0.8× 10−9m2/s with the same sensitivity and specificity as in
“Pixelwise Mean”.

Table 6.1: ADC values and the corresponding sensitivities and specificities in
malignant and benign lesions with a threshold of 0.85 by using three measurement
methods.

ADC (×10−9m2/s) Benign Malignant Cut-off Sensitivity/Specificity

Average Signal 1.19± 0.35 0.70± 0.15 0.85 87.5% / 90.9%

Pixelwise Mean 1.08± 0.47 0.68± 0.17 0.84 87.5% / 81.8%

Pixelwise Median 1.03± 0.6 0.72± 0.25 0.8 87.5% / 81.8%
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6.4 Discussion

This present study compared various small-size ROIs by imposing
thresholds on signal intensities of the large-size ROI based on the b1500
image, quantitatively selecting the most effective “small-size” ROI, with the
optimal threshold of 0.85 on ADC, f , D and K values. A subsequent stat-
istical analysis at different thresholds established an improved diagnostic
accuracy of ADC values in differentiating benign and malignant breast
lesions when a threshold of 0.85 and the measurement of “Average Signal”
were applied.

The use of DWI data has proven to hold a high diagnostic accuracy in
the identification of breast cancer [222]. Malignant lesions show lower ADC
values as compared to their benign counterparts. However, the dependence
of the calculated ADC values on the size of the ROI has been recognised
as the biggest source of error in ADC readings [231]. The ADC values
from a smaller-range ROI were found to offer better cut-off values for the
differentiation of tumour histopathology [223], which is consistent with
our findings. More interestingly, similar threshold value was used (=0.78)
in PET studies to obtain the correct tumour boundaries [226].

The effects of ROI measurements on f , D and K values were not invest-
igated previously. Our study shows that these values also depended on
the size of the selected ROIs and different averaging strategies. K values
have shown large variations with “Pixelwise Mean”, and overall worse
diagnostic performance as compared to ADC values, which contradict to
Sun’s study [232]. This may be ascribed to a smaller number and a narrower
range of b-values used for fitting in this study.

Several limitations must be considered in interpreting the results of the
present study. Firstly, the non-linear least squares algorithm (in specific,
trust-region) was used to fit all parameters. Recent study on upper ab-
dominal organs [233] showed that bayesian probability reached the highest
precision and accuracy when computing f as compared to other discussed
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algorithms. Moreover, K is known to be sensitive to noise, thus using
the advanced fitting or more data points may yield higher accuracy [234].
Datasets involved in this study were solely acquired from Siemens scanner,
thus variabilities between multiple brands of scanners may also need to be
investigated while using this algorithm. It should be pointed out that the
population of this pilot study is limited, but reasonable for demonstrating
the feasibility of the present method.

6.5 Conclusions

In summary, the threshold isocontouring strategy on the selected ROI
is a reliable and intuitive approach that can largely reduce the influences
from ROI sizes, thus applying it prior to the quantitative evaluation and
statistical analysis of DWI data is suggested. The present results sup-
port that ADC value was the most promising quantification parameter in
providing the highest AUC values while f value was least suggested in
DW-mammography. As revealed by the statistic analysis, although all three
averaging measurements can significantly differentiate benign tumours
from cancers, “Averaging signal” was found to be the optimal strategy in
this pilot study, returning the cut-off value with the highest specificity.
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Chapter 7

Conclusions

This thesis reports on the developments of cost-effective methodologies
for characterising biological tissues. To this end, various novel techniques
from both MR imaging and spectroscopy have been explored. These meth-
ods not only facilitate the identification of distinctive structures and features
in tissues, but also highlight the significance of applying contrast agent free
NMR protocol in practise.

7.1 Summary of original research in this thesis

Firstly, three image reconstruction algorithms all based on a dedicated
database were presented. These new methods include 1D-PCA-CS, 1D-
PCA-RR and 2D-PCA-RR which allows tissue features to be identified with
fewer sampling points. In addition, the wavelet-CS algorithm was served as
a comparison with respect to PCA based methods. In implementing these
three algorithms, a k-space dataset was randomly undersampled, which
in the case of zero-filling FT reconstruction resulted in a blurred image.
However, if this image was projected into a database-driven principal
component basis (1D-PCA-CS), the blurred features became much clearer
by selecting components with large weighing factors. In order to overcome
the issues arising from the CS sampling limit, 1D-PCA-RR was proposed

137
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by incorporating a pattern recognition algorithm with the reconstruction
procedure. Furthermore, by extending 1D-PCA-RR to 2D-PCA-RR, it is
possible to reduce the reconstruction time as 2D datasets are not required to
be converted to 1D vectors. As these three PCA based algorithms rely on the
database, the reconstruction results depend on whether the corresponding
fully sampled image is included in the database. As discussed in Chapter 4,
in case I where the fully sampled image was available in the database, 1D-
PCA-RR and 2D-PCA-RR returned the exact image from the database, thus
the undersampled dataset was perfectly recovered. Whereas in case II, the
fully sampled image was not available in the database, both 1D-PCA-RR
and 2D-PCA-RR selected a set of images most similar to the undersampled
image and used this set to fill in the un-sampled k-space. Although in
this case, no methods were able to reconstruct the exact image as fully
sampled, 1D-PCA-RR and 2D-PCA-RR were shown to perform better than
1D-PCA-CS and wavelet-CS. Finally, in case III, these algorithms were used
to reconstruct a dataset which was generated by locally modifying the fully
sampled image from case I. However, this new image was not included in
the database. For these comparisons, all PCA based methods were shown
to perform better than the wavelet-CS algorithm even at low sampling
rates. In particular, case III closely simulated a common situation in clinical
studies, where follow-up scans of patients might appear different from the
previous image. Speed and feasibility of PCA based methods in MRI were
demonstrated in both carrot and brain databases. In future applications,
these proposed algorithms can be utilised to quickly locate specific features,
such as suspicious lesions in clinical study.

In addition to improving imaging algorithms, this thesis has improved
the ability of the DDCOSY method to provide excellent tissue differences
which does not require the injection of contrast agents. Both numerical
simulations and experiments were implemented in Chapter 5. In specific,
random walk simulations and the NMR responses in four different systems
were studied, yielding unique features in the four 2DD-D maps. The signal
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decay of DDCOSY was re-evaluated by treating the diffusion coefficients
as tensor expansion instead of a scalar value, which was learnt from DTI.
Isotropic and anisotropic features were characterised by diagonal and off-
diagonal peaks in the extended DDCOSY distributions. Furthermore, the
eigenvalues of the diffusion tensor were extracted from the orthogonal
apparent coefficients by applying three DDCOSY experiments with the
gradient scheme proposed in Chapter 5 and summarised below. The first
PFG pair of each DDCOSY experiment was applied on a coordinate axis
and the second pair was on the diagonal axis in the perpendicular plane.
Diffusion tensor matrices and FA values were calculated as a sample av-
erage. Through the analysis of the experimental results, it was shown
that the elongated shapes of the cells in a carrot led to more freedom
of water molecules in the growing direction. The similar degree of re-
strictions in the perpendicular plane demonstrated a radially symmetric
structure in the carrot. Moreover, the structural differences in healthy and
tumour-bearing brain tissues were observed by comparing the mean FA
values and the peak patterns in the three D-D maps. The healthy mouse
brains were demonstrated to have more anisotropic structures while the
tumour-bearing mouse brain contained certain isotropic structure. These
experimental results supported that this methodology enables both macro-
scopic and microscopic investigations of the spatial structures of a tissue,
with the aid of interpreting three D-D maps and deriving sample-average
FA values. Furthermore, more isotropic patterns in the D-D map of the
tumour-bearing brain were found as compared to the healthy brain in
our study, indicating that the isotropic pattern in the D-D map may assist
in diagnosing the tumour globally. Therefore, the offered approach can
be potentially used in medical investigations when imaging protocols are
inaccessible.

While diffusion NMR can distinguish between tissues, it is certainly not
restricted to bulk measurements. Diffusion imaging techniques offer excel-
lent human tissue contrasts routinely used in cancer research. Therefore, a
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pilot study of human breast data which was led by the German Cancer Re-
search Centre (Deutsches Krebsforschungszentrum, Heidelberg, Germany)
was subsequently reported in this thesis. This study analysed datasets
from 23 female participants with suspicious lesions, acquired from the DWI
protocol with various b-values. By utilising three diffusion models that
were previously proposed, the variabilities of ADC, f , D and K in breast
lesions with different ROI selections were evaluated, and consequently a
threshold isocontouring strategy was introduced to reduce the influence
of the ROI sizes. Values of ADC, f , D and K were found to be dependent
on the ROI selected for measurement initially, but showed no differences
after choosing an approximate threshold of 0.85. Similar threshold value is
commonly used in PET analysis, highlighting the most significant finding
in this pilot study. Besides, it was found that a small ROI and averaging
signal returned a high diagnostic accuracy level. Thus, the results from
this field study strengthened the idea of applying a threshold isocontour-
ing strategy on the selected ROI prior to the quantitative assessment of
diffusion weighted mammography data. This idea may assist with the
standardisation of parameters in the clinical work flow.

7.2 Recommendations for future work

The results presented in this thesis are limited, which may be the subject
of future research. For instance, the performances of the PCA based recon-
struction algorithms depend on the quality of the database. In future work,
a database can be expanded over time (i.e. self-learning), may resulting in
better performances of these algorithms.

In the characterisation of tumour in tissue, a decreasing tumour-to-total
volume ratio may return the same FA values and isotropic patterns may
not exist in D-D maps. However, different means of volume selection, for
instance as offered by NMR methodologies at low magnetic field strength
or appropriate 3D slice selection schemes [207], may address these partial
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volume effects. Hence, it is possible to envision scanning devices for medi-
cine and material science returning sample-average fractional anisotropy
at affordable prices.

As the pilot study included limited population of participants, the fluc-
tuations were seen in the AUC curves. In addition, the fitting algorithm in
that study was set to be the same for IVIM and kurtosis models, which may
not have been the perfect choice. Recent publication [233, 234] suggested
optimised procedures in fitting the perfusion factor and kurtosis. With a
larger population and the use of advanced regression algorithms, the AUC
curves may be fluctuated less and the threshold-isocontourred ROI may
achieve higher diagnostic accuracy.

Apart from further investigations concerning the limitations presented
in this thesis, a few fresh thoughts may excite future developments with
low-cost NMR/MRI devices:

• As the random undersampling in Cartesian coordinates is simple
and easy to implement, the presented image reconstruction algorithm
packages can be extended to MRI techniques at low magnetic field
strength, with an available high-resolution database of fully sampled
images built from instruments with high magnetic field strength.
Apparatuses with low magnetic field strengths are usually built from
permanent magnets, thus operating prices can be dramatically cut
down.

• A short version of DDCOSY (sDDCOSY) scheme was published in
2011 [143]. It would be an interesting study to migrate the proposed
gradient scheme from this thesis to sDDCOSY pulse sequences and
subsequently obtain FA and µFA values of materials. The challenge
is to cancel the mixing term in the signal attenuation equation as
presented in [143]. Similar to the DTI pulse sequence using three
directions of gradients at once, a 3D experiment of sDDCOSY and its
corresponding data processing toolbox may be developed to improve
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the investigation of water diffusion behaviours.

• As the reader may be aware, the diffusion kurtosis information inher-
ently exists in the signal decay of DDCOSY, therefore a new form of
the signal evolution equation considering the kurtosis term may be
needed and a new data processing method may provide the informa-
tion of non-Gaussian behaviours of water movements in tissues.

• Over the last few years, spectroscopic imaging has aroused appre-
ciable interest for the diagnosis of tissue lesions by localising the
region of interest and acquiring the spectrum within the local re-
gion [182]. In this context, a combination of the DDCOSY schemes
and 2D-PCA-RR may be possible to characterise tissue types and
elicit underlying structures more rapidly.

7.3 Final remarks

In general, this thesis has revolved around MR acquisition and pro-
cessing advances in characterising various types of tissues. Along this
line of thinking, three scientific projects were carried out independently,
including the implementation of fast image reconstruction algorithms (1D-
PCA-CS, 1D-PCA-RR and 2D-PCA-RR), the extraction of mean FA values
from bulk measurements and the selection of regions and averaging meth-
ods for improving diagnostic accuracy. These progresses are believed to be
valuable contributions to the multi-disciplinary research between physics,
engineering, biology, medicine, and more broadly, material sciences. The
improvements as presented in thesis can stimulate future research themes
and worldwide collaborations as well.
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fanoğlu, C. Pierpaoli, and P. J. Basser, “Mean apparent propagator
(MAP) MRI: a novel diffusion imaging method for mapping tissue
microstructure,” NeuroImage, vol. 78, pp. 16–32, 2013.

[210] B. W. Stewart and C. P. Wild, “World cancer report for 2014,” tech.
rep., World Health Organization, 2014.

[211] R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics,” CA.
Cancer J. Clin., vol. 63, no. 1, pp. 11–30, 2013.



167

[212] Ministry of Health, “Cancer: New registrations and deaths in 2012,”
2013.

[213] S. J. Lord, W. Lei, P. Craft, J. N. Cawson, I. Morris, S. Walleser, et al., “A
systematic review of the effectiveness of magnetic resonance imaging
(MRI) as an addition to mammography and ultrasound in screening
young women at high risk of breast cancer,” Eur. J. Cancer, vol. 43,
no. 13, pp. 1905–1917, 2007.

[214] C. Boetes, R. D. Mus, R. Holland, J. O. Barentsz, S. P. Strijk, T. Wobbes,
J. H. Hendriks, and S. H. Ruys, “Breast tumors: comparative accuracy
of MR imaging relative to mammography and US for demonstrating
extent,” Radiology, vol. 197, no. 3, pp. 743–747, 1995.

[215] C. K. Kuhl, “Current status of breast MR imaging part II. Clinical
applications,” Radiology, vol. 244, no. 3, pp. 672–691, 2007.

[216] S. A. Englander, A. M. Uluğ, R. Brem, J. D. Glickson, and P. C. van
Zijl, “Diffusion imaging of human breast,” NMR Biomed., vol. 10,
no. 7, pp. 348–352, 1997.

[217] F. Borlinhas, L. Lacerda, A. Andrade, and H. A. Ferreira, “Diffusional
kurtosis as a biomarker of breast tumors,” Eur. Congr. Radiol., pp. 1–20,
2012.

[218] D. Wu, G. Li, J. Zhang, S. Chang, J. Hu, and Y. Dai, “Characterization
of breast tumors using diffusion kurtosis imaging (DKI),” PLoS One,
vol. 9, no. 11, p. e113240, 2014.

[219] L. Nogueira, S. Brandão, E. Matos, R. G. Nunes, J. Loureiro, I. Ramos,
and H. A. Ferreira, “Application of the diffusion kurtosis model for
the study of breast lesions,” Eur. Radiol., vol. 24, no. 6, pp. 1197–1203,
2014.



168 Bibliography

[220] R. Panek, M. Borri, M. Orton, E. O’Flynn, V. Morgan, S. L. Giles, M. O.
Leach, M. A. Schmidt, et al., “Evaluation of diffusion models in breast
cancer,” Med. Phys., vol. 42, no. 8, pp. 4833–4839, 2015.

[221] M. Iima, K. Yano, M. Kataoka, M. Umehana, K. Murata, S. Kanao,
K. Togashi, and D. Le Bihan, “Quantitative non-gaussian diffusion
and intravoxel incoherent motion magnetic resonance imaging: dif-
ferentiation of malignant and benign breast lesions,” Investig. Radiol.,
vol. 50, no. 4, pp. 205–211, 2015.

[222] R. Woodhams, K. Matsunaga, S. Kan, H. Hata, M. Ozaki, K. Iwabuchi,
et al., “ADC mapping of benign and malignant breast tumors,” Magn.
Reson. Med. Sci., vol. 4, no. 1, pp. 35–42, 2005.

[223] O. Arponent, M. Sudah, A. Masarwah, M. Taina, S. Rautiainen,
M. Könönen, et al., “Diffusion-weighted imaging in 3.0 Tesla breast
MRI: Diagnostic performance and tumor characterization using small
subregions vs. whole tumor regions of interest,” PLoS One, vol. 10,
no. 10, p. e0138702, 2015.

[224] E. J. Kim, S. H. Kim, G. E. Park, B. J. Kang, B. J. Song, Y. J. Kim,
et al., “Histogram analysis of apparent diffusion coefficient at 3.0 T:
Correlation with prognostic factors and subtypes of invasive ductal
carcinoma,” J. Magn. Reson. Imaging, vol. 42, no. 6, pp. 1666–1678,
2015.

[225] T. C. Kwee, T. Takahara, and T. Niwa, “Diffusion-weighted whole-
body imaging with background body signal suppression facilitates
detection and evaluation of an anterior rib contusion,” Clin. Imaging,
vol. 34, no. 4, pp. 298–301, 2010.

[226] B. Foster, U. Bagci, A. Mansoor, Z. Xu, and D. J. Mollura, “A review
on segmentation of positron emission tomography images.,” Comput.
Biol. Med., vol. 50, pp. 76–96, 2014.



169

[227] E. Kaldoudi, S. C. Williams, G. J. Barker, and P. S. Tofts, “A chemical
shift selective inversion recovery sequence for fat-suppressed MRI:
theory and experimental validation,” Magn. Reson. Imag., vol. 11,
no. 3, pp. 341–355, 1993.

[228] J. A. Hanley and B. J. McNeil, “The meaning and use of the area
under a receiver operating characteristic (ROC) curve.,” Radiology,
vol. 143, no. 1, pp. 29–36, 1982.

[229] B. L. Welch, “The generalization ofstudent’s’ problem when sev-
eral different population variances are involved,” Biometrika, vol. 34,
no. 1/2, pp. 28–35, 1947.

[230] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for nor-
mality (complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611,
1965.

[231] E. Giannotti, S. Waugh, L. Priba, Z. Davis, E. Crowe, and S. Vin-
nicombe, “Assessment and quantification of sources of variability in
breast apparent diffusion coefficient (ADC) measurements at diffu-
sion weighted imaging,” Eur. J. Radiol., vol. 84, no. 9, pp. 1729–1736,
2015.

[232] K. Sun, X. Chen, W. Chai, X. Fei, C. Fu, X. Yan, Y. Zhan, K. Chen,
K. Shen, and F. Yan, “Breast cancer: Diffusion kurtosis MR ima-
ging—diagnostic accuracy and correlation with clinical-pathologic
factors,” Radiology, vol. 277, no. 1, pp. 46–55, 2015.

[233] S. Barbieri, O. F. Donati, J. M. Froehlich, and H. C. Thoeny,
“Impact of the calculation algorithm on biexponential fitting
of diffusion-weighted MRI in upper abdominal organs,” 2015.
10.1002/mrm.25765.

[234] T. A. Kuder, B. Stieltjes, P. Bachert, W. Semmler, and F. B. Laun,
“Advanced fit of the diffusion kurtosis tensor by directional weighting



170 Bibliography

and regularization,” Magn. Reson. Med., vol. 67, no. 5, pp. 1401–1411,
2012.



Conference Attendance

1. F. Zong, et. al., The 12th International Conference on Magnetic Reson-
ance Microscopy, poster presentation, London, 2013.

2. F. Zong, et. al., The 5th Asia-Pacific NMR symposium & The 9th

Australian and New Zealand Society for Magnetic Resonance, poster
presentation, Brisbane, 2013.

3. F. Zong, et. al., The 12th International Bologna Conference on Mag-
netic Resonance in Porous Media, poster presentation, Wellington, 2014.

4. F. Zong, et. al., The 7th Advanced Materials & Nanotechnology, poster
presentation, Nelson, 2015.

5. F. Zong, et. al., The 13th International Conference on Magnetic Reson-
ance Microscopy, oral presentation, Münich, 2015.

6. F. Zong, et. al., The 19th International Society of Magnetic Resonance,
oral presentation, Shanghai, 2015.

7. F. Zong, et. al., The 10th Australian and New Zealand Society for
Magnetic Resonance, oral presentation, Bay of Islands, 2015.

8. F. Zong, et. al., The 13th International Bologna Conference on Mag-
netic Resonance in Porous Media, poster presentation, Bologna, 2016.

171



172 Bibliography



Publications

Accepted

1. F. Zong, L. R. Ancelet, I. F. Hermans, and P. Galvosas, “Determining
mean fractional anisotropy using DDCOSY”, Magn. Reson. Chem.,
2016. DOI: 10.1002/mrc.4492.

2. F. Zong, M. N. d’Eurydice, and P. Galvosas, “Fast reconstruction of
highly undersampled MR images using one and two dimensional
principal component analysis”, Magn. Reson. Imaging, vol. 34, no. 2,
pp. 227-238, 2016.

3. F. B. Laun, T. A. Kuder, F. Zong, S. Hertel, and P. Galvosas, “Symmetry
of the gradient profile as second experimental dimension in the short-
time expansion of the apparent diffusion coefficient as measured with
NMR diffusometry”, J. Magn. Reson., vol. 259, pp. 10-19, 2015.

4. F. Zong, M. N. d’Eurydice, and P. Galvosas, “Reconstructing under-
sampled MR Images by utilizing principal-component-analysis-based
pattern recognition”, Diffusion Fundamentals,In:Proc 12th MRPM Conf,
2014.

173



174 Bibliography

Submitted

1. A. McGrath, C. Dolan, F. Zong, and et. al., “Synthesis of phosphonate-
grafted polymers for functionalization of iron/iron oxide core/shell
nanoparticles for magnetic resonance imaging”. Langmuir.

In preparation

1. F. Zong, N. Spindler, and P. Galvosas, “Diffusion-diffusion correlation
spectroscopy in marcoscopically anisotropy system”.

2. F. Zong, S. Bickelhaupt, T. A. Kuder, and et. al., “Quantitative ana-
lysis of diffusion weighted imaging data in MR-mammography by
threshold isocontouring”.


	List of Figures
	List of Tables
	List of Symbols and Abbreviations
	Introduction
	Physics of MR Imaging and Diffusometry
	Signal Evolution and Detection
	Bloch-Torrey equation
	Elementary pulse sequences

	Magnetic Resonance Imaging
	Spatial encoding
	k-space trajectory

	Magnetic Resonance Diffusometry
	Displacement encoding and q-space
	Molecular diffusion


	Advanced MR Techniques
	Rapid Imaging
	Compressed sensing MRI

	Weighted Imaging Techniques
	Dynamic contrast enhanced MRI
	Diffusion imaging techniques

	Two-dimensional NMR Spectroscopy
	Diffusion-diffusion correlation spectroscopy

	Principal Component Analysis
	The procedure of 1D-PCA
	The procedure of 2D-PCA

	Biological tissues studied in this thesis
	Plant tissue - carrot
	Animal tissue - mouse brain
	Human tissue - breast


	Tissue Identification by Fast Reconstruction of Highly Undersampled MRI Data
	Introduction
	1D-PCA Compressed Sensing
	Methodology
	Database evaluation
	Reconstructed results

	1D-PCA Recognition Reconstruction
	Methodology
	Reconstructed results

	2D-PCA Recognition Reconstruction
	Methodology
	Comparison with CS-based algorithms
	Image with alterations
	Different database

	Conclusions

	Tissue Anisotropy Determination by NMR Spectroscopy
	Introduction
	Methodology
	From DTI to DDCOSY

	Simulation
	D-D maps with gradients along laboratory axes
	D-D maps with the new gradient scheme

	Experimental
	Results and Discussions
	Plant tissue
	Animal tissues

	Conclusions

	Quantitative Characterisation of Breast Tissue – A Field Study
	Introduction
	Methods
	Participants and MR Imaging
	ROI determination
	Threshold isocontouring
	Averaging measurements
	Mathematical models
	Statistical analysis

	Results
	Lesion information and representative images
	Dependency of quantifications on thresholds, ROI types and averaging measurements
	Statistical results

	Discussion
	Conclusions

	Conclusions
	Summary of original research in this thesis
	Recommendations for future work
	Final remarks

	Bibliography
	Conference Attendance
	Publications

