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Abstract 

The exchange of individuals between populations influences demographic connectivity on the 

ecological scale and genetic connectivity on the evolutionary scale. In some circumstances there are 

similarities between demographic and genetic connectivity, but in others there are differences.  

Whenever genetic differentiation is found between populations demographic uncoupling can also be 

inferred, but when gene flow is found there is uncertainty about whether populations are 

demographically connected or not.  Marine invertebrates typically have large population sizes and 

many opportunities for dispersal. However, species that have limited planktonic dispersal power are 

often characterized by genetically and demographically discrete populations that exhibit an isolation-

by-distance (IBD) pattern of gene distribution.  Alternative methods of dispersal, such as rafting or 

drifting, produce departures from this expected pattern for species lacking planktonic larvae.  

Examining genetic patterns at fine geographic scales can identify key dispersal barriers and may give 

clues to alternative dispersal methods influencing large scale processes.  

The endemic, direct-developing spotted whelk, Cominella maculosa, is found in the intertidal rocky 

shores throughout most of New Zealand.  This distribution makes it ideal for studying a species 

expected to exhibit low realized dispersal by crawling and is unlikely to experience dispersal by rafting.  

The first aim of this study was to investigate genetic patterns between two genetically distinct 

populations along the Wairarapa Coast of the North Island to determine if a barrier to dispersal was 

present or if the expected IBD pattern was observed.  The second aim was to determine the likelihood 

of individual hatchlings undertaking long distance dispersal by drifting in the water column.  The 

mitochondrial DNA COI gene was sequenced using 324 whelk samples collected at seven sites along 125 

km of Wairarapa shoreline.  No significant level of genetic isolation-by-distance or discontinuity in 

haplotype distribution was observed.  Instead, two sites in the middle of the region form a contact area 

where the dominant northern and southern haplotypes coexist.  To investigate dispersal by drifting in 

the water, three experimental trials were conducted with hatchlings obtained from field-collected egg 

capsules.  When subjected to wave forces, or deposited directly in flow, hatchlings remained suspended 

and were carried a short distance.  However, hatchlings circulated in currents and left for a longer 

period (12 hours) were rarely found drifting after this period.  These trials indicate that wave 

dislodgement and local flow regime may result in small-scale displacement of hatchlings, but long-

distance dispersal by drift is unlikely.  Plankton sampling was also conducted at two sites with four 

nearshore traps.  The rare capture of a related Cominella virgata hatchling supports the finding that 

hatchlings can be dislodged, but prolonged drift cannot be inferred.  The findings from this study 

support the assumption that crawling is the dominant dispersal mechanism for C. maculosa.  Crawling 
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between sites best explains the blending of haplotypes in the middle of the Wairarapa and the genetic 

differentiation between populations.  Crawling-mediated connectivity is unlikely to occur at the 

ecological scale; therefore populations are expected to be demographically isolated.  The results of this 

research support the general findings in the literature that populations of direct developing species are 

often demographically isolated and have low levels of genetic connectivity.  
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Chapter 1 
Population Connectivity in the Marine 

Environment 

1.1 Introduction 

The spatial distribution and temporal stability of a population is influenced by life history traits, habitat 

characteristics,  individual interactions with conspecifics and heterospecifics, and unpredictable 

environmental conditions.  Within the range of a species distribution, populations can be defined as a 

group of individuals that live close enough together to facilitate intraspecific interactions and random 

mating (Waples and Gaggiotti 2006).  The demographic and genetic aspects of each population can be 

influenced by the exchange of gametes, larvae, juveniles, or adults between populations.  This linking of 

populations through dispersal is called population connectivity (Lowe and Allendorf 2010).  Connectivity 

can prevent local extinction, facilitate recolonization of habitat, increase adaptability, and prevent 

genetic divergence through isolation (Brown and Kodric-Brown 1977, Lowe and Allendorf 2010, 

Turgeon and Kramer 2012, Ovenden 2013).   

The demographic rates of a population (birth, death, reproduction, immigration) operate over the 

relatively short generational time frame that influences the population’s growth and stability at an 

ecological scale.  Demographic connectivity is the measure of influence that dispersal creates on the 

demographic rates and intraspecific interactions of populations (Lowe and Allendorf 2010, Schaub et al. 

2011).  Because individuals compete for resources and interact with conspecifics, demographic 

connectivity is influenced by total population and the effects of immigration will be relative to pre-

immigration population size (Waples and Gaggiotti 2006, Ovenden 2013).  When population sizes are 

known, an immigration rate of 10% is generally considered the threshold at which demographic 

connectivity is achieved (Waples and Gaggiotti 2006, Ovenden 2013).    A collection of demographically 

connected populations is referred to as a metapopulation (Levins 1970).  Metapopulation processes are 

beyond the scope of this paper, but can be influenced by landscape features, habitat patchiness, 

species dispersal potential, and habitat quality (Hanski and Gilpin 1991, Kritzer and Sale 2004).  

Detecting demographic connectivity can identify source-sink dynamics that can predict local extinction 

and recolonization probabilities.  Conversely, identifying demographically isolated populations is 

important for preventing overharvest of resources such as fish stocks. 
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While demographic connectivity considers populations at an ecological scale, genetic connectivity 

describes the degree to which gene flow through dispersal affects a population on the evolutionary 

time scale (Lowe and Allendorf 2010).  Unlike demographic connectivity, genetic connectivity is not 

influenced by population size and is dependent on the reproductive success of individuals (Lowe and 

Allendorf 2010, Ovenden 2013).  A migration of 10 reproductively successful individuals per generation 

can maintain genetic homogeneity between large or small populations (Lowe and Allendorf 2010).  

However, if the migrants carry an advantageous allele, on which the process of selection can act, then 

the allele may spread with as little as one migrant every 10 generations (Rieseberg and Burke 2001).  

Genetic differentiation is measured from 0 to 1 by the family of F-statistics (Wright 1951, Holsinger and 

Weir 2009).  Higher values reflect a restriction of gene flow while lower values reflect on-going 

reproductively successful migrants.  Restricted gene flow allows the processes of drift and mutation to 

operate independently, which results in the accumulation of new alleles and changes in the frequencies 

of shared alleles (Slatkin 1987).  The longer gene flow is restricted, the greater the level of genetic 

differentiation will become between populations.   Prolonged periods of restricted gene flow can 

eventually lead to speciation (Slatkin 1987).  The strength of genetic connectivity can also influence the 

probability of populations experiencing inbreeding depression or adapting to changing environmental 

conditions (Mills and Allendorf 1996, Hauser et al. 2002).  

While genetic and demographic connectivity are both influenced by dispersal rates, the differing effect 

of population size and necessity of reproductive success on each type of connectivity means that 

detecting connections at one level does not ensure connectivity is occurring at the other level.  Since 

very few migrants are required for genetic connectivity, it is generally accepted that populations 

exhibiting strong genetic differentiation are also not exchanging migrants at the level required to create 

demographic connectivity (Ovenden 2013).  However, a similar inference cannot be made when genetic 

connectivity is detected.  The genetic similarity created by the immigration of 10 individuals per 

generation would need to occur in a population of 101 individuals to affect the vital rates of the 

population.  Immigration of 10 individuals into a larger population would not achieve the 10% 

proportion of migrants required for demographic connectivity.  Populations that exhibit genetic 

connectivity without demographic connectivity are very difficult to detect.  Populations exhibiting this 

“crinkled connectivity” should not be managed as one stock, regardless of the genetic connectivity, 

since overharvest of demographically isolated populations could cause the collapse of one or both of 

the populations (Waples 1998, Ovenden 2013).  Ironing out crinkled populations will require the 

creation of demographic models on which genetic predictions can be tested (Ovenden 2013).    

As the majority of marine species disperse gametes, fertilized eggs, or larvae into the water column to 

drift in the plankton, the dispersal of these offspring through large, connected bodies of water was 



 

Chapter 1  3 
 

traditionally thought to be unconstrained.  However, realized dispersal of individuals is influenced by 

trans-oceanic currents, seasonal currents, local eddies, and environmental conditions (Palumbi 1994, 

Gilg and Hibish 2003, Galindo et al. 2006, Selkoe et al. 2010).  Species-specific characteristics, such as 

swimming capability and developmental history, also have a strong influence on population 

connectivity (Palumbi 1994, Higgins et al. 2013).  Rather than acting as passive particles, many larvae 

are capable of changing their position in the water column which may greatly change the direction and 

speed of dispersal (Shanks 1986, Levin 2006).  The length of time larvae remain in the water column 

varies widely between species, with non-feeding lecithotrophic larvae generally settling faster than 

feeding planktotrophic larvae.  Increased time spent in the water column can subject larvae to possible 

long-distance dispersal, but the chance of being dispersed into unsuitable habitat or becoming prey is 

also increased.  Isotopic analysis has detected self-recruitment occurring more frequently than 

expected in many planktonic dispersing taxa (Almany et al. 2006, Manríquez et al. 2012), which can 

greatly alter the realized dispersal of the species.  Therefore, fewer populations are considered to be as 

“open” as previously believed.  Conversely, species that lack planktonic larvae, direct developers, are 

expected to have low dispersal capabilities.  Yet, genetic analysis has detected greater than expected 

movement between populations for some direct developing species (e.g. Nikula et al. 2010).   

1.2 Measuring Connectivity  

Capture-mark-recapture (CMR), radio telemetry, and GPS tracking are common methods for directly 

observing movement for terrestrial species (e.g. Elliot et al. 2014, Fattebert et al. 2015).  GPS and 

satellite trackers are unable to transmit through water, but longer battery life and automatic 

detachment technologies are increasing their use in marine research.  Satellite tags are becoming 

increasingly common for tracking large marine species, such as sharks, billfish, and marine mammals 

(Gunn and Block 2001, Ortiz et al. 2003, Vincent et al. 2002, Weng et al. 2007, Andrews et al. 2008, 

Bonfil et al. 2010).  The large size of these tags limits their use to larger mobile species, so it is no 

surprise that the data often elucidates migration patterns of adults rather than dispersal events of 

offspring.  Dispersal events are difficult to track due to the prevalence of small larvae, high mortality 

rates, and the vast ocean area.  Off-bottom collectors and plankton sampling have been used to identify 

the presence of larval molluscs in the water column of near-shore habitat, but the source and fate of 

these individuals can rarely be directly tracked (Martel and Chia 1991a, McQuaid and Phillips 2000, 

Cañete et al. 2007).  Artificial tags have been used with CMR methods to elucidate adult dispersal 

abilities for multiple gastropod species (reviewed by Henry and Jarne 2007) and reproductive effort for 

hawksbill sea turtles (Eretmochelys imbricata) (Prince and Chaloupka 2012).  Chemical tags are 

commonly used to measure growth by marking or staining the hard structure of an individual (e.g. 

otolith, shell) (Wilson et al. 1987, Moran 2000, van der Geest et al. 2011).  While these tags can also be 
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used to batch mark larvae for dispersal studies, tracking the end fate of the offspring remains difficult 

(reviewed by Thorrold et al. 2002).  Due to high larval mortality and large potential dispersal distances, 

batch marking appears best suited to quantifying local recruitment of larvae (e.g. Almany et al. 2007).     

Naturally occurring differences in chemical isotope compositions creates an “isoscape” through which 

individuals travel (Reichlin et al. 2010).  The continuously growing structures of an animal (e.g. otolith, 

shell) can reflect the isotopic composition of the environment in which it was formed; acting as a record 

of an individual's movement (Reichlin et al. 2010, Hussey et al. 2012, Schmidt et al. 2014, West et al. 

2006).  Assuming a settlement or hatchling mark can be identified on the structure, different 

environmental signatures before this mark can indicate a dispersal event.  The ability to accurately 

locate natal origins requires that the chemical signature of the natal site is known and that it differs 

from the settlement location.  Chemical analysis was able to detect both dispersal and self-recruitment 

in the common triplefin fish, Forsterygion lapillum, (Shima et al. 2015) and in two mussel species, 

Mytilus californianus and M. galloprovincialis (Carson et al. 2011).  The inability to detect movement 

may confirm a lack of demographic connectivity, but inferences about genetic connectivity should be 

made with caution.  Since genetic connectivity occurs over long evolutionary time scales and can be 

highly influenced by sporadic long distance dispersal events, gene flow  does not need to be continually 

occurring and could easily be missed when observing the “normal” conditions of undisturbed 

populations (Slatkin 1987, Johnson and Black 1995, Jacobson and Pres-Neto 2010).     

Indirect measures of connectivity using genetic markers is becoming one of the most common methods 

for managing fisheries stocks, developing marine reserves, and understanding the processes of 

speciation (Bell 2012, Donald et al. 2015, Ovenden 2015).  The information gained from molecular 

studies is dependent on the marker that is used (Féral 2002, Hall and Beissinger 2014).  Markers related 

to functioning genes (e.g. allozymes) are subjected to purifying selection and accumulate differences at 

a slower rate than markers found in the neutral areas of the genome (e.g. microsatellites).   Markers 

from the nuclear genome (nuDNA) undergo meiotic recombination which can create homogeneity 

between populations faster than markers from the non-recombinant mitochondrial genome (mtDNA).  

The biparental inheritance of nuDNA increases the number of alleles available for analysis and reflects 

the influence of both sexes in connectivity. The maternally inherited, circular mtDNA produces only one 

allele per individual and only reflects long-term gene flow of female lineages.  Ideally, markers from 

both genomes are used to detect historic patterns of connectivity (phylogeography) and contemporary 

gene flow (population genetics).  While it may seem that contemporary gene flow would be of the 

greatest interest to managers, historic patterns of connectivity can be used to estimate past 

demographic trends such as bottlenecks or rapid expansions (Drummond et al. 2005, Ho and Shapiro 
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2011).  Relating these demographic events to past environmental conditions can facilitate a better 

understanding of how populations will respond to future changes.   

Theoretically, the number of migrants (Nm) between populations can be calculated from the measure 

of genetic differentiation (Wright 1951, Slatkin 1987, Mills and Allendorf 1996).  The method of 

converting FST into Nm is based on Wright’s island model (Wright 1931).   The assumptions of this model 

(no mutation or selection, infinite populations, equal dispersal probability) are often violated, reducing 

the confidence of the estimate (Whitlock and McCauley 1999).  Additionally, the non-linear relationship 

between FST and Nm produces problems when differentiation is less than 0.03 (Lowe and Allendorf 

2010).  For an Fst = 0.02, the estimated number of migrants may lie anywhere between 12 and 10,000 

(Palumbi 2003).  Populations exhibiting such low levels of differentiation are well connected genetically, 

but demographic connectivity cannot be inferred.  This is the gray area in which the "crinkled" 

populations exist.  The use of multiple methods could clarify the presence of genetic and demographic 

decoupling.  Such an example can be found in the cephalopod Macroctopus maorum around Tasmania.  

Chemical analysis of stylets suggested discrete demographic structure, but microsatellite analysis 

indicated the species was well connected genetically (Higgins et al. 2013).  Ideally, estimates of vital 

rates would produce demographic models that could be used to test predictions of genetic connectivity 

and clarify the grey area of low molecular differentiation measures (Ovenden 2013).   

1.3 Patterns of Genetic Connectivity 

Patterns of genetic connectivity are influenced by the life history of the species, habitat quality, habitat 

patchiness, and random events.  In the marine environment, it is intuitive to expect that the longer 

larvae drift in the water column the more likely it is to observe population connectivity.  While pelagic 

larval duration (PLD) has been negatively correlated to population differentiation for many species 

(Bohonak 1999), a meta-analysis of 300 studies indicates PLD is often a poor predictor of connectivity 

(Weersing and Toonen 2009).  In fact, the molecular marker used to test connectivity was the best 

predictor of differentiation, with mtDNA producing higher values of FST than microsatellites and 

allozymes (Weersing and Toonen 2009).  That is not to say that all studies should use only mtDNA.  As 

previously mentioned, each marker can inform different aspects of a species past and contemporary 

connectivity.  Differing patterns of connectivity between markers may well be more informative about 

the life history of a species than the occurrence of similar patterns. 

The most extreme pattern of genetic connectivity is the one migrant every 10 generations required to 

spread an advantageous allele.  Complete isolation of nearby populations is rare, but even low levels of 

gene flow between populations can cause significant differentiation between geographically separate 
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populations (Figure 1.1A).  Patterns of distinct populations are found in species with low dispersal 

potential (e.g. Cumming et al. 2014) or specific habitat requirements (e.g. estuarine clams, Ross et al. 

2012).  When viewed from a larger spatial scale, distinct populations may produce an isolation-by-

distance (IBD) pattern where neighbour populations are more similar to each other than to populations 

farther away (Figure 1.1B).  Patterns of IBD occur when dispersal events take place between nearby 

populations more frequently than between distant populations and are common for weakly dispersing 

species (Bird et al. 2007, Veale and Lavery 2012, Muteveri et al. 2015).  Finally, species that are able to 

exchange genes between all locations exhibit a pattern called panmixia (Figure 1.1C).  Panmictic 

populations are genetically similar to each other and will exhibit the low levels of differentiation where 

demographic connectivity may or may not occur.  Therefore, a panmictic population requires a more 

detailed level of investigation to determine the level of demographic connectivity.  Using multiple 

molecular markers can identify historic or contemporary patterns of differentiation.   Panmixia across a 

large distribution using a conservative marker (e.g. allozyme or mtDNA) may indicate historic 

connectivity, but may not reflect the contemporary connectivity of neutral nuDNA markers (e.g. 

microsatellites).  Gardner et al. (2010) suggest accepting a panmictic pattern only when a large number 

of populations (>20) have been sampled throughout the known distribution of the species and the 

pattern is suggested by multiple markers.  

 

Figure 1.1 Three patterns of population structure that can occur throughout a species range.  A) Genetically 
disconnected populations experiencing extremely low levels of gene flow (distinct).  B) High gene flow with 
nearest neighbours but low gene flow with distant populations (isolation-by-distance).  C) High gene flow and 
strong genetic connectivity (panmixia).  Figure adapted from Laikre et al. 2005. 

Unlike planktonically dispersing species, direct developing species complete development in a brood 

chamber or egg capsule before emerging as fully formed miniature adults.  These species are often 

associated with the benthos and exhibit low vagility.  Unsurprisingly, the majority of these species 

exhibit genetic patterns of distinct populations and IBD.  These species likely disperse across 

inhospitable habitat by chance and then successfully settle into pockets of favourable habitat in a 
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"stepping stone" pattern (Palumbi 2003).  Direct-developers often have widespread distributions 

separated by large distances of open water (Johannesson 1988, Barbosa et al. 2013).  The most 

common explanation presented to explain the presence of direct developing species in “far flung” 

locations is that they have attached themselves to floating substrata and rafted on the water 

(Johannesson 1988, Hoskin 1997, Thiel and Gutow 2005).  Patterns of genetic differentiation are able to 

suggest when such dispersal pathways are occurring.  Intermittent rafting dispersal can create 

intermediate connectivity in species expected to have low connectivity (Thiel and Haye 2006).  

Depending on the configuration of the currents being used for rafting, an IBD pattern can either be 

enforced or disrupted (Figure 1.2, Thiel and Haye 2006).  A pattern of IBD in a direct developing species 

is to be expected, so rafting dispersal using alongshore currents may not be detected.  However, a 

disruption to the IBD pattern could be indicative of this alternative dispersal pathway.   

 

Figure 1.2 Four population structures that could occur for a coastal species dispersing by intermittent rafting.  
Isolation-by-distance patterns are expected to be disrupted if dispersal occurs along convergent (A) or divergent 
(B) currents.  Intermittent rafting on alongshore currents can either maintain IBD patterns (C) or disrupt IBD 
patterns by bypassing neighbour populations and settling at more distant locations (D).  Figure taken from Thiel 
and Haye 2006.   
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1.4 Aim 

The spotted whelk (Cominella maculosa) is an endemic, direct developing gastropod found throughout 

the North Island, the top of the South Island, and the Chatham Islands (Figure 1.3).  This whelk is a 

carnivorous scavenger found in rocky intertidal and subtidal habitats (Morton and Miller 1968).  The 

continuous distribution of the spotted whelk is ideal for investigating realized dispersal of a species with 

low dispersal potential.  Genetic analysis of North Island populations identified several locations where 

the IBD pattern was disrupted by a genetic disjunction over a short distance (Fleming et al. in prep).  

Recently, direct developing gastropod species that are highly associated with bull kelp (Durvillaea 

antaractica) have been shown to disperse on the holdfasts of detached kelp (Cumming et al. 2014).  

However, spotted whelks are not associated with algae, so the potential for rafting should be quite 

limited.  Rafting is not the only method by which species without planktonic larvae can disperse.  

Passive drifting by unattached individuals could lead to a similar disruption in the IBD pattern and 

contribute to wide spread haplotype sharing.  Several mollusc species have been observed to drift using 

gas bubbles (Cañete et al. 2007) and mucus threads (Vahl 1983, Cummings et al. 1993, Martel and 

Diefenbach 1993).  The tiny C. maculosa hatchlings have been observed to briefly float when dislodged 

in the lab environment, which indicates a potential for drifting dispersal.     

Examining dispersal at a small spatial scale can provide insight into the dispersal mechanisms that 

facilitate greater than expected realized dispersal.  Studies of direct developing connectivity at a fine 

scale are relatively rare, but indicate that populations are often highly differentiated and influenced by 

temporally stable alongshore currents (Hoskin 1997, Hoskin 2000).  The aim of this study was to 

investigate the genetic pattern of C. maculosa at a fine spatial scale to determine if crawling is the main 

dispersal mechanism of if an alternative dispersal strategy is operating.  Genetic analysis at one of the 

genetically disjunct regions was conducted in Chapter 2.  Large sample sizes were collected at a fine 

spatial scale to determine if an IBD pattern is actually occurring, if a barrier to crawling dispersal is 

operating, or if dispersal is facilitated by a mechanism other than crawling.  Experiments and field 

samplings were conducted in Chapter 3 to determine if hatchling dislodgment and drifting could act as 

an alternative dispersal strategy to crawling along the coast.   
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Figure 1.3 The spotted whelk, Cominella maculosa  A) Tagged adult in a tide pool with coralline turf. B) Egg capsules 
attached to another adult whelk during communal laying.  C) Location for all collections of spotted whelks held in 
the Museum of New Zealand Te Papa Tongarewa. Distribution map sourced on 21/4/2016 from 
http://collections.tepapa.govt.nz/taxon/49444. 

  

http://collections.tepapa.govt.nz/taxon/49444
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Chapter 2 
Genetic Connectivity in a Direct 

Developing species, Cominella maculosa 

2.1 Abstract 

Species with low vagility and direct development are expected to have limited dispersal potential.  This 

assumption is often consistent with the levels of genetic differentiation reported for direct developers.  

A recent genetic study of the endemic, direct-developing spotted whelk, Cominella maculosa, identified 

genetic structuring of populations throughout the North Island range.  Three locations also had 

significant genetic disjunctions over a small spatial scale. Here, fine scale sampling was undertaken 

around one of those breaks, along the Wairarapa coast, to clarify whether the previous findings were 

either due to small sample sizes along an IBD pattern or if they reflected historic barriers to dispersal.  

Sequencing of mitochondrial DNA from the cytochrome c oxidase subunit 1 (CO1) gene was used on 

large sample sizes to determine the extent of a southern population and its disconnection from the 

northern populations.  Sequences from seven locations spread across 125 km were used to determine 

diversity indices, conduct pairwise comparisons, run analysis of molecular variance tests, and create a 

haplotype network.  Pairwise comparisons indicated that the four northern sites were genetically 

differentiated from each other and from the southern sites.  The three southern sites showed no 

genetic differentiation and consistently clustered into a strongly supported group.  The southern 

populations were characterized by low haplotype and nucleotide diversity, small frequencies of private 

haplotypes, and high frequency of a shared southern haplotype.  This southern haplotype was highly 

divergent from all northern haplotypes.  The two sites located immediately north of the southern group 

lacked private haplotypes and contained high frequencies of the dominant northern and southern 

haplotypes.  This blending of haplotypes could occur from a slow dispersal northward and/or 

southward by crawling along the coast.  Since crawling dispersal is associated with discrete population 

structure, it is unlikely that the southern populations are genetically connected.  Rather, the genetic 

similarity and low diversity of these southern populations is likely due to founding events by sporadic 

episodes of egg capsule rafting. 
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2.2 Introduction 

Phylogeography uses the spatial distribution of genetic information to investigate the processes that 

promote gene flow, isolate populations, and result in speciation.  Species that are able to disperse 

between populations can facilitate genetic connectivity and contribute to increased diversity levels.  

Low levels of genetic differentiation may indicate demographic connectivity and a metapopulation 

network, but it may also reflect low dispersal rates that maintain genetic mixing while resulting in 

demographic isolation (Ovenden 2013).  Gene flow can be limited by geographic barriers to dispersal, 

life history traits, and physical characteristics of a species.  Genetically differentiated populations are 

unlikely to be demographically coupled and will function as separate groups.  In the marine 

environment, understanding genetic connectivity is useful for aligning harvesting pressure to natural 

boundaries and preventing stock collapse from overharvest (Waples 1998, Ovenden et al.2015).  

Marine reserve networks are best designed when they facilitate connectivity for multiple species with 

varying life history strategies so both genetic and biological diversity can be conserved (Palumbi 2003, 

Bell 2008).  Patterns of genetic connectivity can be used to test assumptions about dispersal or 

illuminate dispersal routes in environments where the direct observation of movements is difficult.    

In New Zealand, species with planktonic dispersal strategies generally exhibit a negative correlation 

between genetic differentiation and pelagic duration (Ross et al. 2009).  Species with direct 

development typically have patterns of low connectivity, with discrete populations creating an 

isolation-by-distance (IBD) pattern (Ross et al. 2009).  Interestingly, both developmental strategies tend 

towards a broad pattern of clustering into northern and southern populations, with the Cook Strait 

region dividing the two groups (Ross et al. 2009, Trewick and Bland 2012).  The location of the Cook 

Strait boundary is believed to occur at the South Island locations of Cape Campbell (east coast) and 

Westhaven (west coast) (Ross et al. 2009, Martin 2011, Wei et al. 2013).  However, variable sampling 

scales and locations make accurate detection of the boundary difficult.  The Cook Strait divide may be 

an artefact from sampling an IBD pattern at a large spatial scale (Rabone et al. 2015), it may reflect the 

historic presence of a land bridge between the two islands during the last glacial maximum (LGM) 

(Trewick and Bland 2012), or it may be the effect of upwelling processes acting on planktonically 

dispersing species (Ayers and Waters 2005).   

Ocean currents are likely to influence population structure of planktonic dispersers, but they can also 

facilitate connectivity for direct developers when algae-associated species raft on detached algae 

caught in surface currents (e.g. Cumming et al. 2014).  The Cook Strait differentiation may be 

strengthened by the East Cape Current that moves south before turning east at the mouth of the Cook 

Strait (Figure 2.1A). Transport within this current could promote dispersal from northern populations, 
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but the offshore movement at the Cook Strait and the strong circular Wairarapa Eddy would prevent 

species from arriving at the South Island (Ross et al. 2009).  Similarly, the East Cape Eddy in the north 

could transport oceanic dispersers offshore near the East Cape (Figure 2.1A).  The East Cape Eddy may 

create the disjunction that has been identified at the East Cape (Stevens and Hogg 2004, Veale and 

Lavery 2012, Martin 2011, Will et al. 2011). 

 

Figure 2.1 A) Map of New Zealand, with the exclusive economic zone (EEZ) in a dotted line, and surrounding surface currents.  
CC, Canterbury Current; DC, D'Urville Current; EAUC, East Auckland Current; ECC, East Cape Current; NCE, North Cape Eddy, SC, 
Southland Current; STF, Subtropical Front; WAUC, West Auckland Current; WC, Westland Current; WCC, Wairarapa Coastal 
Current; WE, Wairarapa Eddy.  Image adapted from NIWA data.  B) Biogeographic provinces (black dashed lines) and regions 
(grey dashed lines) identified for mainland New Zealand by Shears et al. (2008).  Image from Shears et al. 2008. 

Knowledge about biogeographic boundaries is useful for spatial planning and describing broad patterns 

in community structure (Figure 2.1B).  The environmental forces influencing the distribution of species 

used to identify biogeographic regions are likely to influence genetic connectivity between populations 

as well.  However, concordance between New Zealand’s phylogeographic boundaries and the 

biogeographic regions is rare for most species (Ross et al. 2009).  Concordance will be influenced by the 

type of molecular marker, sampling coverage, and the fact that the positions of the regional boundaries 

are only rough guides to community level changes.  The ability to precisely define biogeographic 

boundaries of community structure requires fine scale sampling that has yet to be undertaken.  The 

position of phylogeographic breaks will vary with life history traits, habitat preferences, and 

environmental conditions.  However, the limited dispersal potential of direct developing species 

suggests fine scale sampling would identify genetic boundaries that could be used for comparison 

between multiple taxa.  Such fine scale surveys have not, to my knowledge, been undertaken on the 

mainland of New Zealand.   
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The direct-developing spotted whelk, Cominella maculosa, is an abundant scavenger of rocky intertidal 

habitats throughout New Zealand (Figure 1.3).  A recent molecular survey of the North Island suggested 

discrete population structure, IBD pattern, and discordance with the biogeographic regions (Fleming et 

al. in prep).  These findings are consistent with a species that is expected to disperse short distances by 

crawling along the shore.  The study found three locations where genetic disjunctions occurred over a 

relatively small geographic scale (<130km).  All three disjunctions occurred at or near known 

biogeographic boundaries; one was located at the Portland/Northeastern boundary, one occurred 

south of the Portland/Cook boundary, and the third was located north of the Raglan/Abel boundary 

(Figure 2.1B).  It is unclear whether the findings were an artefact of a small sample size bias along an 

IBD pattern of genetic structuring or if there were barriers to dispersal that have historically restricted 

gene flow.  The aim of this study was to use large sample sizes and fine scale sampling to investigate the 

disjunction along the Wairarapa Coast, near the Portland/Cook biogeographic boundary, using DNA 

sequences from the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene.  Observations of an IBD 

pattern or a barrier to dispersal will help to clarify the potential dispersal mechanisms of the species.  

During the course of investigating this Wairarapa Coast disjunction, opportunistic sampling was 

undertaken for addition to the North Island dataset (Fleming et al. in prep).  The analysis of these new 

sites and a short summary of how they add to the Fleming et al. data set are discussed before the 

Wairarapa disjunction is presented.  

2.3 Spotted Whelk Connectivity on the North Island 

2.3.1 A Summary of the Current Situation 

Cominella maculosa sampled at 17 locations around the North Island and Nelson showed discrete 

population structure with an isolation by distance pattern (Table 2.1, Figure 2.2A).  Despite this discrete 

structuring, shared haplotypes were found at high frequencies in the Wellington region (Hap 1), the 

Auckland and Bay of Plenty regions (Hap 6), and between the two East Coast populations (Hap 27) 

(Table 2.2).  Insignificant pairwise differentiation occurred between at least two neighbouring 

populations in these regions and between three populations found across the Auckland and Bay of 

Plenty regions.   However, grouping these populations into clusters was not supported under tests for 

hierarchical structure.    
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Table 2.1 Sample sites and molecular diversity indices for Cominella maculosa at 22 locations on the North Island and Nelson.  
Broad northern and southern groupings are defined by the location of the LGM maximum sea surface isotherm of 15

o
C 

(Barrows and Juggins 2005).  Horizontal lines identify the N-S boundary between East Coast populations and Taranaki 
populations.  Five new sites were added to the 17 previously analyzed locations from Fleming et al. (in prep).  These new sites 
are WB, NA, PB, and WhB. 

Site Code   Sampling Sites  

Position   

(Latitude, Longitude) n S Hp Hn h π 

AMB Matheson Bay, Northland 36°18'S, 174°48'E 10 5 1 4 0.7778 (0.091) 0.0030 (0.002) 

ASB Snells Beach, Northland 36°25'S, 174°44'E 20 3 1 4 0.2842 (0.128) 0.0006 (0.001) 

ARB Red Beach, Northland 36°35'S, 174°42'E 23 4 2 4 0.3202 (0.121) 0.0007 (0.001) 

AAB Army Bay, Northland 36°35'S, 174°48'E 24 3 1 4 0.3696 (0.117) 0.0006 (0.001) 

WB Bowentown,Waihi Beach, Bay of Plenty 37°28'2S, 175°59'8E 11 6 2 4 0.4909 (0.175) 0.0024 (0.002) 

BMM Mt Maunganui, Bay of Plenty 37°37'S, 176°10'E 10 5 3 5 0.7556 (0.130) 0.0030 (0.002) 

BMA Maketu, Bay of Plenty  37°44'S, 176°27'E 26 5 2 6 0.7169 (0.078) 0.0015 (0.001) 

BOM Omaio, Bay of Plenty 37°48'S, 177°37'E 31 8 4 7 0.7742 (0.056) 0.0038 (0.002) 

GTA Te Aroroa, East Cape 37°37'S, 178°23'E 29 3 1 3 0.3941 (0.094) 0.0018 (0.001) 

GTT Tatopouri, Gisbourne 38°39'7S, 178°08'E 29 4 0 2 0.0690 (0.063) 0.0005 (0.001) 

MP Mahia, Mahia Peninsula 39° 5'19S, 177°55'4E 25 8 1 4 0.3600 (0.117) 0.0023 (0.002) 

NA Port Ahuriri, Napier 39°28'38S, 176°53'46E 24 1 1 2 0.0833 (0.075) 0.0001 (0.000) 

PB Pourere Beach, Hawke's Bay 40° 7'9S, 176°52'29E 24 4 0 2 0.0833 (0.075) 0.0005 (0.001) 

WhB Whangaehu Beach, Hawke’s Bay 40°24'16S, 176°38'11E 23 9 2 4 0.6047 (0.079) 0.0063 (0.004) 

WCS Castlepoint, Wellington 40°51'S, 176°14'E 28 9 2 4 0.7169 (0.042) 0.0065 (0.004) 

WCP Cape Palliser, Wellington 41°36'S, 175°17'E 27 1 1 2 0.1425 (0.086) 0.0002 (0.000) 

WPH Point Howard, Wellington 41°15'S, 174°54'E 21 0 0 1 0.0000 (0.000) 0.0000 (0.000) 

WMP Moa Point, Wellington 41°20'S, 174°48'E  19 1 1 2 0.1988 (0.112) 0.0003 (0.000) 

WMA Makara, Wellington 41°13'S, 174°42'E 20 0 0 1 0.0000 (0.000) 0.0000 (0.000) 

NEL Nelson 41°16'S, 173°15'E 26 8 4 6 0.6092 (0.102) 0.0031 (0.002) 

TNP New Plymouth 39°03'S, 174° 3'E 31 1 1 2 0.2796 (0.090) 0.0005 (0.001) 

TMA Marokopa, Waitomo 38°19'S, 174°42'E 31 0 1 1 0.0000 (0.000) 0.0000 (0.000) 

 Overall  512 41 31 41 0.8683 (0.007) 0.0060 (0.003) 

 Northern Sites   AMB-MP,TMA 269 30 19 28 0.8428 (0.014) 0.0041 (0.002) 

 Southern Sites   NA-TNP 243 21 12 16 0.6587 (0.025) 0.0055 (0.003) 

n, sample size; S, segregating sites; Hp, number of private haplotypes; Hn, number of haplotypes; h, haplotype diversity; π, nucleotide diversity 
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Figure 2.2 Haplotype distribution of a 610bp CO1 fragment for Cominella maculosa.  Black dots represent locations where whelks were absent.  Site codes are described in Table 2.1, sample sizes 
are indicated by circle size.  Each colour represents a unique haplotype sequence shared with at least one other location.  Grey colours are private haplotypes; unique haplotypes found only at 
that one location. A) Haplotype distributions for original 17 locations.  B) Haplotype distributions with new site locations added: WB, MP, NA, PB, and WhB.   
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Table 2.2 Cominella maculosa haplotypes for a 610 bp CO1 fragment at North Island and Nelson locations.  Private haplotypes 
are in bold.  Site codes and locations are described in Table 2.1.  Sites have been separated by broad regional categories that 
are used in text.  GTA is the only East Cape location and NEL is the only South Island location, hence they lack regional titles.  
Five new locations were added to 17 previously analyzed locations by Fleming et al. (in prep).  New locations are WB, MP, NA, 
PB, and WhB. 

 
  

AMB ASB ARB AAB WB BMM BMA BOM GTA GTT MP NA PB WhB WCS WCP WPH WMP WMA NEL TNP TMA

Hap_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 21 17 20 16 26 0

Hap_2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

Hap_3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_5 2 1 2 1 0 0 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Hap_6 4 17 19 19 0 5 13 5 1 0 1 0 1 0 0 0 0 0 0 3 0 0

Hap_7 0 0 0 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_8 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0

Hap_13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31

Hap_14 0 0 0 0 8 1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_15 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_16 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_17 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_18 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_19 0 0 0 0 0 0 2 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_20 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_21 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_22 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_23 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_24 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_25 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_26 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_27 0 0 0 0 0 0 0 0 0 28 20 0 0 13 9 0 0 0 0 0 0 0

Hap_28 0 0 0 0 0 0 0 0 0 0 2 23 23 7 11 0 0 0 0 0 0 0

Hap_29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

Hap_30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0

Hap_31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

Hap_32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0

Hap_33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Hap_34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Hap_35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

Hap_36 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

Hap_37 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Hap_38 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_39 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hap_40 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Hap_41 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

Auckland Region Bay of Plenty Region TaranakiWellington RegionEast Coast Region
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2.3.2 Methods 

2.3.2.1 Sampling and DNA extraction 

Cominella maculosa were collected at five new locations and added to the existing dataset (Table 2.1).  

New locations were:  Bowentown at Waihi Beach (WB) in the Bay of Plenty, Mahia on the Mahia 

Penisula (MP), Port Ahuriri at Napier (NA), Pourere Beach (PB), and Whangaehu Beach (WhB).  Samples 

were collected between November 2014 and November 2015 by searching tidepools at low tide, often 

after baiting pools with crushed limpets.  Specimens were preserved whole in 80% ethanol.  Foot and 

operculum tissue was removed and preserved in 95% ethanol by either pulling the whole whelk from 

the shell or by crushing the shell.  Intact shells from each location were deposited with the Museum of 

New Zealand Te Papa Tongarewa and assigned a registration number (MP, M.110143; NA, M.127597; 

and PB, M.162486).  

Foot tissue was excised and digested for 2 hours at 60oC in 600 μL extraction buffer (12 mM Tris-HCL pH 

8.0, 47.5 mM NaCl, 9.5 mM EDTA, 0.19% SDS, 0.5 mg proteinase-K).  DNA was recovered through the 

following modified phenol-chloroform technique.  After digestion, samples were centrifuged and the 

supernatant removed and rocked for 10 minutes with 600 μL of phenol:chloroform:isoamyl alcohol 

(25:24:1).  Samples were then centrifuged for 5 minutes and the dense phenol layer was removed and 

discarded appropriately.  The sample was again mixed with 600 μL of phenol:chloroform:isoamyl 

alcohol (25:24:1), rocked for 5 minutes, centrifuged for 5 minutes, and the phenol layer removed.  The 

sample was then mixed with 600 μL chloroform:isoamyl alcohol (24:1), rocked for 10 minutes, 

centrifuged for 5 minutes, and the bottom layer removed. Chilled 99.9% ethanol (2.5% volume of 

supernatant) and 3 M sodium acetate (10% volume of supernatant + ethanol) was added to the final 

supernatant.  Samples were placed at -20oC for 30 minutes or overnight before being centrifuged for 30 

minutes at 4oC.  The ethanol solution was removed and 1 mL of 70% chilled ethanol was added before 

being centrifuged for 10 minutes at 4oC.  Ethanol was removed and the DNA was dried in a vacuum 

centrifuge (Eppendorf Concentrator 5301) for 5-10 minutes.  DNA was suspended in 30-70 μL of TE 

buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA).  DNA concentration and quality was determined with a 

Nanodrop spectrophotometer (Thermo Fisher Scientific). 

2.3.2.2 PCR sequencing and alignment 

The mitochondrial CO1 region was amplified by PCR using the "universal bar-coding" primers LCO1490 

(5'-ggtcaacaaatcataaagatattgg-3') and HCO2198 (5'-taaacttcagggtgaccaaaaaatca-3') (Folmer et al., 

1994).  The PCR was conducted in 25 μL volumes containing 1X Bioline PCR buffer (670 mM Tris-HCl, 

160 mM (NH4)2SO4, 0.1% stabilizer), 3.0 mM MgCl2, 0.6 mg/mL bovine serum albumin, 0.05 units Taq 

DNA polymerase (Bioline), 0.4 mM of each dNTP, 0.1 μM of each primer, and 120 ng/μL of template 



 

Chapter 2  18 
 

DNA.  Thermocycling was carried out on a Biometra TProfessional Thermocycler (Gӧttingen, Germany) 

under the following conditions: 5 minutes at 95oC, 40 cycles of 35 seconds at 95oC, 35 seconds at 50oC, 

45 seconds at 72oC, followed by a final 10 minute extension at 74oC.  PCR products were cleaned with 

ExoSAP-It (Amersham Parmacia Biotech) and DNA sequences determined using 3730xl DNA Analyzer 

(Applied Biosystems) at the Macrogen sequencing service (Macrogen Inc., Seoul, Korea).   Partial 

sequences of 710-bp were quality checked and edited by eye before being trimmed to 610-bp using 

Geneious 8.1.6  (http://www.geneious.com, Kearse et al. 2012).  Previously sequenced samples 

(Fleming et al. in prep) were added and all sequences were aligned using Geneious alignment algorithm 

under default settings. 

2.3.2.3 Statistical analyses 

All statistical analyses were performed using updated software versions, but similar settings as those 

used previously by Fleming et al. (in prep). Haplotypes were identified using DnaSP 5.10.01 (Librado and 

Rozas 2009).  Genetic diversity was determined using Arlequein 3.5.2.2 (Excoffier and Lischer 2010).  

Measures of diversity included segregating sites (S), number of haplotypes (Hn), haplotype diversity (h), 

and nucleotide diversity (π).  To determine if sample size was adequate for capturing haplotype 

diversity, a rarefaction curve was produced using Analytic Rarefaction v1.3 (Holland 2003, 

http://strata.uga.edu/software/index.html).  A flattening trend in a rarefaction curve would indicate 

sufficient sample sizes had been reached and increased sampling would not lead to the discovery of 

more haplotypes.   

Tests to determine whether the data conformed to the neutral model of evolution were conducted in 

Arlequin 3.5.2.2 (Excoffier and Lisher 2010) with 10,000 permutations.  Tajima's D (Tajima 1989) and 

Fu's FS (Fu and Li 1993) were used to detect selection and hitchhiking events, but both statistics are 

sensitive to demographic changes (Pálsson et al. 2014).  If DNA sequence neutrality is assumed, then 

significant test statistics are indications of recent population expansions or contractions (Ramos-Onsins 

and Rozas 2002).  Due to the way Fu's FS statistic is performed, p-values are significant at a value below 

0.02 (Fu 1997, Excoffier and Lischer 2015).   

Previously, Haploviewer was used to create haplotype networks for the North Island.  However, this 

program bases networks on pre-defined trees.  Since trees only allow bifurcating relationships, they do 

not adequately reflect the multiple relationships that could explain haplotype connections.  Therefore, 

PopART (http://popart.otago.ac.nz) was used to create a minimum spanning haplotype network 

(Bandelt et al. 1999) that allows for cyclical haplotype relationships.  To simplify visual assessment for 

regional patterns, the colour scheme for the new haplotype network was also updated. 

http://www.geneious.com/
http://strata.uga.edu/software/index.html


 

Chapter 2  19 
 

AMOVA was used to partition total molecular variance into three hierarchical components with an 

associated fixation index (Excoffier et al. 1992).  These indices describe variation within all populations 

(ɸST), between populations within a predefined group (ɸSC), and between all predefined groups (ɸCT) 

(Excoffier et al. 1992).  The best group structure is determined by maximizing the between group 

variation (i.e. largest significant ɸCT).  While AMOVA is useful in testing hypothesis of population 

structure (such as northern-southern differentiation), it requires a priori assignment to groups.  A priori 

bias can be removed by conducting spatial analysis of variance (SAMOVA) which clusters populations 

into a predefined number of groups with the aim of maintaining geographic homogeneity while 

maximizing between group variation (Dupanloup et al. 2002).  The optimum number of groups is 

determined by identifying the largest significant ɸCT from iterative analysis using 2 through N-1 groups, 

where N = the total number of populations.   

Population clustering was tested by AMOVA in Arlequin 3.5.2.2 (Excoffier and Lisher 2010) using 

conventional haplotype frequency analysis with 10,000 permutations.  Five a priori groupings were 

tested with AMOVA including 12 regional groups based on haplotype sharing and фST results, five groups 

based on biogeographic regions (Shears et al. 2008), a northern and southern (N-S) division based on 

LGM 15oC isotherm (Barrows and Juggins, 2005), a N-S division based on breaks at the East Cape and 

Cape Reinga, and a N-S division with only Cook Strait populations forming the southern group.  Iterative 

runs of SAMOVA using assignment into 2 through 21 geographically homogenous groups were 

conducted with SAMOVA 2.0 (Dupanlaup et al. 2002).  The grouping that produced the largest 

significant фCT statistic was then subjected to AMOVA in Arlequin 3.5.2.2 (Excoffier and Lisher 2010) to 

ensure fixation index values were comparable across programs.   

To test for an IBD pattern, a Mantel test was performed in Arlequin 3.5.2.2 using 10000 permutations 

(Mantel 1967, Excoffier and Lisher 2010).  Mantel tests use regression analysis to detect if nearby 

populations are more similar than distant populations (Smouse et al. 1986).  Previously, Fleming et al. 

(in prep) used ɸST values for the measure of differentiation and natural log kilometres for the measure 

of distance.  This method does appear in the literature (Pálsson et al. 2014), but it appears to be less 

common than using ɸST and untransformed kilometre distances (Marko 2004, Buchanan and Zuccarello 

2012, Keeney et al.2013, Crandall et al. 2014, Rabone et al. 2015). To complicate parameter selection, 

many studies compare Slatkin’s linearized genetic differentiation [фST / (1- фST)] with both transformed 

kilometres (Reisser et al. 2014, Hernández et al. 2015) and untransformed kilometres (Waters et al. 

2005, Keeney et al. 2009).  Rousset (1997) suggests using Slatkin’s linearized differentiation with 

untransformed distances when a species inhabits a one-dimensional habitat and log transformed 

distances when a species inhabits a two-dimensional habitat.  Habitats are considered one-dimensional 

when the sampling distance between populations is greater than width of the habitat (Rousset 1997).  
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Conversely, two-dimensional habitats are wider than the distance between sampled populations 

(Rousset 1997).   In order to determine if Mantel settings influence IBD detection, all four parameter 

choices were used.  Between site distances were determined using straight line measurements through 

water with Google Earth v7.1.5 (Google Inc.).   

2.3.3 The Updated Situation: Results and Brief Discussion  

The new locations increased the sample size from 404 to 512 individuals and produced better 

resolution along the East Coast region (Table 2.1, Figure 2.2B).  The rarefaction curve shows a mild 

trend towards flattening (Figure 2.3) indicating the data set has a decent sample size, but increased 

sampling would likely discover more diversity which could help explain connectivity patterns.  Overall, 

indices increased slightly for both haplotype diversity (from 0.8415 to 0.8683) and nucleotide diversity 

(from 0.0053 to 0.0060).  Diversity indices at WB, MP and WhB did not differ from neighbouring 

diversity measures (Table 2.1).  However, NA and PB had much lower haplotype diversity (0.08) 

compared to northern and southern neighbours (0.36 at MP and 0.60 at WhB, respectively).  A similar 

reduction in haplotype diversity occurs at GTT (0.06), where neighbouring diversity ranges from 0.39 to 

0.36 (Table 2.1).  The only other locations where lower haplotype diversity was observed (h=0.00) was 

at two Wellington populations (WPH and WMA) and a Taranaki population (TMA).  The southern 

locations, defined by the LGM isotherm, contain lower haplotype diversity than northern sites (0.66 vs 

0.84).  Interestingly, the southern group contains slightly more nucleotide diversity (0.0055 vs 0.0041).  

While the new locations only minutely increased the northern haplotype diversity (0.83 to 0.84), the 

new sites greatly increased southern haplotype diversity (from 0.47 to 0.66).  The additional sites raised 

nucleotide diversity for both northern (0.0037 to 0.0041) and southern groupings (0.0034 to 0.0055).   

 
Figure 2.3 Rarefaction curve for a 610bp fragment of CO1 haplotypes from Cominella maculosa sampled in the North Island 
and Nelson.  The black line represents the expected number of haplotypes found for a randomly selected sample size taken 
from the data.  The grey lines represent upper and lower 95% confidence intervals.  Rarefaction was conducted with Analytic 
Rarefaction v1.3 (Holland 2003, http://strata.uga.edu/software/index.html). 

  

http://strata.uga.edu/software/index.html
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New locations produced five new segregating sites and six new private haplotypes, with only PB not 

containing a private haplotype (Table 2.2).  A previously private haplotype with a high frequency at WCS 

became shared with all four East Coast sites and dominant in three (Hap 28, Figure 2.2).  The haplotype 

shared between GTT and WCS (Hap 27) was found in only two of the four new sites (Table 2.2).  

Surprisingly, both MP and PB contained a small proportion of the dominant Auckland haplotype (Hap 

6).  The presence of this Auckland haplotype in Nelson is currently being considered as a human 

mediated translocation by Fleming et al. (in prep). The low frequency occurrence at MP and PB could 

also reflect human mediated movement.  However, both of these locations are fairly remote with only 

small settlements, unlike Nelson with a busy port and larger populations.  It could be possible that Hap 

6 is a relic of slow migration around the coast.  If this is the case, it could indicate Auckland or Northland 

as the origin of C. maculosa divergence from C. adspersa, which is estimated to have occurred 0.4-2.6 

million years ago (Donald et al. 2015).   

A comparison between previous and updated haplotype networks is difficult, due to the use of different 

programs and colour schemes (Figure 2. 4).  The updated haplotype network has several cyclical 

connections with multiple mutations separating several of the haplotypes.  While the previous dataset 

indicated two high frequency haplotypes, the new dataset suggests four high frequency haplotypes 

found in three regions.  The dominant Auckland haplotype (Hap 6) shows the starburst pattern 

expected when an abundant species experiences recent range expansion (Avise 2000).  Its central 

position in the network supports the possibility that the Auckland region could be the origin of 

divergence.  An Auckland origin is also supported by the fact that all dominant regional haplotypes (Hap 

1, 27 and 28) are more similar to Hap 6 than to each other.  This also suggests that the two highly 

divergent East Coast haplotypes (Hap 27 and 28) originated from multiple founder events (Figure 2. 4B).  

Intermediate haplotypes are missing between Hap 6 and both East Coast haplotypes (Hap 27 and 28), 

but they are present between Hap 6 and the Wellington haplotype (Hap 1) at BMA, WB, and NEL (Figure 

2. 4B).  

  



 

Chapter 2  22 
 

 

 

 

Figure 2. 4  Haplotype network for a 610bp fragment of CO1 gene from Cominella maculosa sampled in the North Island and 
Nelson.  Circles represent haplotypes, with the colours representing number of samples containing the haplotype at each site.  
See Table 2.1 for site code information.  The four regionally dominant haplotypes are labelled.  A) The original network for 17 
sample locations.  This network was created in Haploviewer from a maximum likelihood tree created using a K80 model of 
nucleotide substitution.  Numbers in the circles represent the total number of samples for each haplotype.  Lines represent 
one mutation step, dots represent theoretical haplotypes.  B) Minimum spanning network created in PopART using expanded 
dataset from 22 locations. Hash marks represent mutational changes between haplotypes.   
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Neutrality tests were insignificant for Tajima’s D and Fu’s FS for all populations except PB (Table 2.3).  

The Tajima’s D statistic was negative and significant for PB, indicating either a population expansion or 

the process of selection is violating the assumption of neutrality.  Significant Tajima’s D statistics are 

uncommon in the North Island, with only ARB and GTT producing negative values. 

Pairwise comparison revealed significant differentiation between the new sites and the majority of all 

other populations (Table 2.4).  Insignificant differentiation, implying connectivity, was found between 

WB & BOM, NA & PB, and WhB & WCS.  Interestingly, WB is significantly differentiated from its nearest 

neighbours of AAB and BMM.  However, the sample size at WB is quite small (n=11) and should be 

interpreted with some caution.  Contrary to previous findings, grouping populations by biogeographic 

regions was better supported than grouping populations by the LGM isotherm (Table 2.5).  

Biogeographic grouping was weaker than the best N-S division, which grouped the Cook Strait 

populations together (Table 2.5).  However, using the twelve groups based on haplotype distribution 

was more strongly supported than all other a priori groupings (Table 2.5).  Maximal differentiation was 

further increased when populations were clustered into 14 groupings identified by SAMOVA (Table 2.5).     
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Table 2.3 Neutrality statistics and corresponding p-values for a 610 bp fragment of the CO1 gene for Cominella maculosa 

sampled throughout the North Island and Nelson.  Significant results are in bold (p<0.05 for Tajima’s D and p<0.02 for Fu’s Fs).  

See Table 2.1 for site code information.  Northern and southern groupings, noted by horizontal lines between populations, are 

based on LGM isotherm position (Barrows and Juggins 2005).  Five new locations were added to 17 previously analyzed 
locations by Fleming et al. (in prep).  New locations are WB, MP, NA, PB, and WhB. 

Sampling sites Tajima’s D p Fu’s FS p 

AMB 0.0739 0.5686 0.36099 0.5608 

ASB -1.44071 0.0572 -2.13527 0.0064 

ARB -1.67904 0.0262 -1.79546 0.035 

AAB -1.27878 0.0778 -1.93644 0.029 

WB -1.07757 0.1764 0.1143 0.4966 

BMM 0.12431 0.6042 -0.81501 0.2372 

BMA -0.8574 0.2272 -2.12402 0.0542 

BOM 0.43008 0.7016 0.03233 0.5368 

GTA 1.04084 0.8564 1.83817 0.853 

GTT -1.88946 0.0064 0.58716 0.3944 

MP -1.03706 0.1672 1.13217 0.7458 

NA -1.15933 0.1348 -1.02785 0.0708 

PB -1.88381 0.0056 0.79536 0.472 

WhB 1.91762 0.9826 4.68797 0.9632 

WCS 2.23481 0.988 5.45083 0.9786 

WCP -0.72804 0.2074 -0.34896 0.177 

WPH 0 1 0 N.A. 

WMP -0.56216 0.2432 -0.05451 0.225 

WMA 0 1 0 N.A. 

NEL -0.33385 0.4002 -0.01893 0.5212 

TNP 0.18025 0.7436 0.63659 0.437 

TMA 0 1 0 N.A. 

OVERALL -1.04484 0.1366 -14.9899 0.0078 

Northern -1.33911 0.0648 -12.026 0.0036 

Southern -0.07355 0.551 -0.31342 0.5292 

AMOVA groupings:    

(ASB,ARB,AAB) -1.95653 0.004 -6.82428 <0.0001 

(GTT,MP) -1.61445 0.0334 -0.58834 0.3568 

(NA,PB) -1.99239 0.0018 -1.31501 0.1288 

(WCP,WPH,WMP, 
WMA,TNP) 

-1.28005 0.0664 -3.20572 0.012 
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Table 2.4 Pairwise comparison from a 610bp fragment of the COI gene for Cominella maculosa sampled around the North Island and Nelson.  Pairwise ΦST values are below the diagonal, p-
values are above the diagonal (see foot note for interpretation).  Site codes and locations are described in Table 2.1.  The Five new locations added to 17 previously analyzed locations are WB, 
MP, NA, PB, and WhB.   

  AMB ASB ARB AAB WB BMM BMA BOM GTA GTT MP NA PB WhB WCS WCP WPH WMP WMA NEL TNP TMA 

AMB   * ** ** *** NS NS ** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

ASB 0.209   NS NS *** * * *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

ARB 0.205 -0.030   NS *** * * *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

AAB 0.190 -0.007 -0.007   *** * * *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

WB 0.369 0.634 0.616 0.585   ** *** NS *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

BMM 0.042 0.134 0.122 0.100 0.331   NS * *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

BMA 0.031 0.108 0.092 0.089 0.370 0.020   *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

BOM 0.171 0.360 0.353 0.329 0.071 0.127 0.188   *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

GTA 0.459 0.643 0.629 0.607 0.572 0.466 0.430 0.410   *** *** *** *** *** *** *** *** *** *** *** *** *** 

GTT 0.711 0.841 0.817 0.792 0.803 0.721 0.617 0.571 0.768   * *** *** *** *** *** *** *** *** *** *** *** 

MP 0.475 0.663 0.648 0.623 0.592 0.481 0.449 0.419 0.622 0.064   *** *** * *** *** *** *** *** *** *** *** 

NA 0.679 0.824 0.800 0.774 0.778 0.688 0.592 0.545 0.750 0.925 0.757   NS *** *** *** *** *** *** *** *** *** 

PB 0.673 0.818 0.793 0.766 0.778 0.680 0.583 0.542 0.749 0.925 0.757 -0.021   *** *** *** *** *** *** *** *** *** 

WhB 0.324 0.549 0.538 0.514 0.441 0.333 0.338 0.306 0.507 0.282 0.080 0.519 0.519   NS *** *** *** *** *** *** *** 

WCS 0.258 0.480 0.471 0.450 0.373 0.267 0.283 0.254 0.446 0.434 0.239 0.342 0.342 0.053   *** *** *** *** *** *** *** 

WCP 0.647 0.796 0.775 0.749 0.743 0.655 0.574 0.529 0.728 0.896 0.752 0.885 0.885 0.639 0.567   NS NS NS ** NS *** 

WPH 0.724 0.861 0.833 0.805 0.824 0.733 0.616 0.566 0.777 0.960 0.807 0.956 0.956 0.687 0.607 0.025   NS NS ** NS *** 

WMP 0.573 0.758 0.736 0.708 0.686 0.583 0.518 0.476 0.688 0.879 0.712 0.865 0.865 0.586 0.513 0.008 0.063   NS * NS *** 

WMA 0.716 0.858 0.830 0.801 0.819 0.725 0.610 0.561 0.773 0.959 0.803 0.955 0.955 0.682 0.602 0.023 0.000 0.059   ** NS *** 

NEL 0.289 0.492 0.481 0.459 0.437 0.290 0.296 0.293 0.500 0.672 0.512 0.646 0.645 0.393 0.336 0.128 0.186 0.088 0.181   * *** 

TNP 0.553 0.719 0.702 0.680 0.651 0.562 0.513 0.473 0.665 0.823 0.683 0.808 0.808 0.573 0.508 0.053 0.103 0.037 0.100 0.086   *** 

TMA 0.780 0.886 0.861 0.836 0.862 0.788 0.664 0.613 0.809 0.967 0.837 0.964 0.964 0.733 0.654 0.934 1.000 0.924 1.000 0.716 0.860   

NS, non-significant; * p<0.05; ** p<0.01; *** p<0.001 
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Table 2.5  Analysis of Molecular Variance and Spatial Analysis of Molecular Variance for population structure in C. maculosa 
using 610bp fragment of the COI gene.  Site codes can be found in Table 2.1.  A) Analysis performed with original 17 locations.  
B) Analysis performed on expanded dataset of 22 locations. 

No. of 

groups Source of Variation ΦSC ΦST ΦCT 

AMOVA a priori 

8 (AMB) (ASB-BMA) (BOM) (GTA) 

(GTT) (WCS) (WCP-TNP) (TMA) 
0.07065**** 0.62727**** 0.59893**** 

SAMOVA 

16 (AMB) (ASB) (ARB) (AAB) (BMM) 

(BMA) (BOM) (GTA) (GTT) (WCS) 

(WCP) (WPH, WMA) (WMP) (NEL) 

(TNP) (TMA) 

-0.05131**** 0.72388**** 0.73735* 

13 (AMB) (ASB-AAB,BMA) (BMM) 

(BOM) (GTA) (GTT) (WCS) (WCP) 

(WPH, WMA) (WMP) (NEL) (TNP) 

(TMA) 

-0.00874**** 0.73176**** 0.73405**** 

 AMOVA Biogeographic regions  proposed by Shears et al. (2008) 

5 (ASB-GTA) (GTT-GTA) (WCS-

WMA) (NEL) (TNP,TMA) 
0.47688 **** 0.60750**** 0.24970** 

AMOVA Biogeographic regions inferred from estimated 150C SST isotherm in LGM by 

Barrows and Juggins (2005) 

2 (ASB-GTT,TMA) (WCS-TNP) 0.49728**** 0.64427**** 0.29239** 
       NS, non-significant; not marked, p<0.05; * p<0.01; ** p<0.005; *** p<0.00005; **** p<0.00001 

 

 

No. of 

groups Source of Variation ΦSC ΦST ΦCT 

 AMOVA regional 

 12 (AMB) (ASB-AAB) (WB) (BMM) 

(BMA) (BOM) (GTA) (GTT,MP) 

(NA,PB) (WhB,WCS) (WCP-TNP) 

(TMA) 

 0.03955** 0.63556**** 0.62055**** 

 SAMOVA 

14 (AMB) (ASB-AAB) (WB) (BMM) 

(BMA) (BOM) (GTA) (GTT,MP) 

(NA,PB) (WhB) (WCS) (WCP-

WMA,TNP) (NEL) (TMA) 

-0.00506 0.62866**** 0.63053**** 

 AMOVA Biogeographic regions  proposed by Shears et al. (2008) 

5 (ASB-GTA) (GTT-WhB) (WCS-WMA) 

(NEL) (TNP,TMA) 

0.51045**** 0.63368**** 0.25172** 

AMOVA North/South at LGM 15
o
C SST isotherm (Barrows and Juggins 2005) 

2 (ASB-GTT,TMA) (WCS-TNP) 0.56562**** 0.64686**** 0.18703** 

 AMOVA North/South at East Cape &Northland 

2 (AMB-GTA) (GTT-TMA) 0.56915**** 0.64982**** 0.18723** 

 AMOVA North/South at Cook Strait  

2 (AMB-WCS, TNP,TMA) (WCP-NEL)  0.55395**** 0.68517**** 0.29417** 

        NS, non-significant; not marked, p<0.05; * p<0.01; ** p<0.005; *** p<0.00005; **** p<0.00001 

  

A) 

B) 
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Mantel tests were significant for an IBD pattern when using фST and both untransformed (r2 = 0.423, p < 

0.0001) and natural log transformed distances (r2 = 0.531, p < 0.0001).  However, insignificant results 

were obtained when tested with Slatkin's linearized differentiation against both untransformed 

geographic distance (r2 = -0.034, p = 0.6690) and natural log transformed distances (r2 = 0.004, p = 

0.5531).  In a recent review of Mantel tests using FST and Km, Diniz-Filho et al. (2013) suggests that a 

significant result indicates structure of genetic variability through space.  This structuring could be due 

to IBD or other processes (e.g. postglacial recolonization) that create population clusters (Meirmans 

2012).  Diniz-Filho et al. (2013) then present Rousset’s (1997) work showing that Slatkin’s linearized Fst 

produces a linear relationship with distance when an IBD pattern is present.  An insignificant result 

using Rousset’s (1997) methods can be interpreted as an absence of IBD or as an indication that the 

parameter estimation process is flawed.  Therefore, comparing the results of both ɸST and Slatkin’s 

linearized Mantel tests can be informative.   

For North Island Cominella maculosa, a significant ɸST Mantel test suggests that the North Island 

populations are structured, but an insignificant Mantel test using Rousset’s (1997) methods suggests 

the structuring is not due to IBD processes or that the parameter estimates are incorrect.  A lack of IBD 

indicates that the 14 population groups identified by SAMOVA, mostly comprised of single populations, 

should not be viewed as engaging in gene flow with only nearest neighbours.  The insignificant pairwise 

comparison between non-neighbours WB and BOM highlights this point.  This result could indicate 

dispersal by means other than crawling is occurring.  Conversely, an IBD pattern may be masked if using 

through water straight line distances between populations is inappropriate.  If whelks disperse by 

crawling along the shore, then the distance between populations should be measured along the coast.   

2.4 Fine Scale Connectivity along the Wairarapa Coast 

One of the interesting features of the North Island survey of Cominella maculosa was the identification 

of several genetic disjunctions between populations situated in close geographic proximity (< 130 km).  

These disjunctions can be seen between GTA & BOM, GTA & GTT, WCS & WCP, and TNP & TMA (Figure 

2.2).  Considering the prevalence of regional haplotypes over large distances, the absence of shared 

haplotypes over such small distances is surprising.  Two of these disjunctions occur on the east and 

west of the East Cape population of GTA, where genetic disjunctions have previously been reported 

(Stevens and Hogg 2004, Veale and Lavery 2102, Martin 2011).  A second disjunction occurs between 

Taranaki populations that are separated by continuous uninhabitable soft sediment that could pose a 

barrier to crawling dispersal.  The unstable composition of the Canterbury Bight has been identified as a 

barrier to dispersal for a direct developing chiton, Sypharochiton pelliserpentis (Nikula et al. 2011).  The 

last disjunction occurs between WCS and WCP on the Wairarapa Coast.  With few roads and steep 
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coastal cliffs, this rugged and exposed area of the North Island is difficult to access.  As such, sites south 

of Castlepoint are rarely included in genetic surveys.  Examining the genetic patterns occurring at 

locations between the observed disjunctions can give insight into dispersal mechanisms and barriers to 

dispersal for the coastal whelk.  As the Wairarapa Coast was the nearest area of interest to researchers 

at Victoria University of Wellington, this area was chosen for fine scale genetic analysis. 

2.4.1 Methods 

2.4.1.1 Sampling, DNA extraction, and PCR Sequencing 

Cominella maculosa were collected in 2015 from tide pools baited with frozen mussels at low tide.  

Whelks larger than ten mm were collected over a two hour period.  Freshly collected whelks were 

either placed directly in 80% ethanol or transported in sea water and frozen before processing.  A total 

of 250 new specimens were collected at five locations between Castlepoint and Cape Palliser.  From 

north to south, these sites included Riversdale (RI), Flat Point (FP), Honeycomb Rock (HR), Glendhu (GL), 

and Tora (TO).   The original Castlepoint dataset (WCS) was increased by obtaining 19 preserved 

specimens from a 2014 collection.  In order to differentiate this larger sample size from the smaller 

sample size analyzed in the North Island dataset, this location will be coded as CA from here on out.  No 

changes were made to the Cape Palliser dataset (WCP). 

Foot and operculum tissue was removed and preserved in 95% ethanol by either pulling the whole 

whelk from the shell or by crushing the shell.  Intact shells were deposited with the Museum of New 

Zealand Te Papa Tongarewa (RI, M.120366; FP, M.081982; HR, M.129383; and for three GL subsites. 

M.103412, M.129331, M.167160).  DNA was recovered from foot tissue using the protocol outlined in 

Section 2.3.2.1.  PCR sequencing and alignment was conducted following the protocol outlined in 

Section 2.3.2.2. 

2.4.1.2 Statistical analyses 

Haplotypes were identified using DnaSP 5.10.01 (Librado and Rozas 2009).  Genetic diversity was 

determined using Arlequein 3.5.2.2 (Excoffier and Lisher 2010).  Measures of diversity included the 

number of segregating sites (S), transitions (Ts), transversions (Tv), nucleotide difference (k), number of 

haplotypes (Hn), haplotype diversity (h), nucleotide diversity (π), and nucleic acid composition.  Historic 

demographic changes were tested in Arlequin 3.5.2.2 using Tajima's D statistic (Tajima 1989) and Fu’s FS 

statistic (Fu 1997).  Pairwise genetic divergence was estimated in Arlequin 3.5.2.2 (Excoffier and Lischer 

2010) using 10,000 permutations and haplotype frequency to calculate the fixation index фST.  Sample 

size adequacy was assessed using a rarefaction curve produced with Analytic Rarefaction v1.3 (Holland 
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2003).  Haplotype relationships were visualized with a minimum spanning haplotype network (Bandelt 

et al. 1999) created in PopART (http://popart.otago.ac.nz).     

Insight into historic demographic processes can be gained by comparing haplotype diversity (h) with 

average sequence divergence (π%).  Grant and Bowen (1998) identified four categories to describe 

combinations of high and low diversity indices.  Haplotype diversity is considered low at less than 0.5, 

while nucleotide diversity is low at 0.5% (Grant and Bowen 1998).  Cominella maculosa diversity indices 

were plotted on a haplotype vs nucleotide diversity graph for individual populations and pooled 

locations.  To compare C. maculosa with other New Zealand species and other direct developing 

species, the graph was populated with diversity indices found in peer-reviewed literature.  Reported 

diversity indices were multiplied by 100 to produce the required π% value. 

Differentiation between populations was estimated in Arlequin 3.5.2.2 (Excoffier and Lisher 2010) using 

haplotype frequency to calculate the fixation index, фST, and significance was tested with 10,000 

permutations.  Three a priori groupings were tested with AMOVA in Arlequin 5.2.2.2 (Excoffier and 

Lisher 2010) using 10,000 permutations of haplotype frequency data.  The first two groups tested for a 

break between northern and southern locations.  The first scenario included HR in the northern group 

and the second scenario included HR in the southern group.  The third grouping tested the hypothesis 

that two or more neighbour populations formed distinct groups.  This third scenario combined CA with 

RI, FP with HR, and the three southern together (GL, TO, WCP).  

Iterative runs of SAMOVA were performed for two through six groups using SAMOVA 2.0 (Dupanloup et 

al. 2002).  The SAMOVA grouping was determined by identifying the largest significant фCT statistic.  To 

compare the SAMOVA groups to a priori groups, the best SAMOVA grouping was analysed by AMOVA in 

Arlequin 3.5.2.2 (Excoffier and Lisher 2010).  Mantel tests were first performed with фST and 

untransformed distance (Km) to test for population structure.  Mantel tests were then performed under 

the one-dimensional model of habitat (Rousset 1997) using Slatkin's linearized genetic differentiation 

and untransformed distance to test for IBD.  Mantel tests were performed in Arlequin 3.5.2.2 with 

10000 permutations (Excoffier and Lisher 2010).  Distances between populations were determined in 

Google Earth v7.1.5 (Google Inc.) with shortest distance through water.  Due to the linear nature of the 

Wairarapa Coast, shortest distance through water is also equal to the shortest coastal distance.    

2.4.2 Results 

A total of 324 whelks were sequenced from seven locations along 125 km of Wairarapa coastline 

(Figure 2.5, Table 2.6).  Ten haplotypes were identified with 16 segregating sites, 81% of which were 

transition type changes (Table 2.6).  Five of the seven locations contained at least one private 
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haplotype, with the central locations of HR and FP exhibiting no privatization (Table 2.7).  Overall 

haplotype diversity was 0.61, with CA and RI having the highest population level diversity (0.68 and 

0.53, respectively).  All other populations had much lower haplotype diversity, ranging from 0.06 to 

0.26 (Table 2.6).  Nucleotide diversity within populations showed the same pattern, with overall 

diversity being similar to the highest population level values (CA and RI, Table 2.6).  Even these “high” 

values are quite low (0.005), but the other populations were even lower (0.0001 for TO).  The average 

number of nucleotide differences ranged from 3.19 for the most diverse population (CA) and 0.06 for 

the least diverse population (TO, Table 2.6).  None of the populations deviated significantly from 

neutrality under Fu's Fs or Tajima's D (Table 2.6).  Since Fu’s FS is only significant at p < 0.02, the p = 

0.025 value at RI is insignificant (Fu 1997, Excoffier and Lischer 2015).   

 

Figure 2.5 Distribution of CO1 haplotypes for Cominella maculosa.  Inset is the North Island distribution found in Figure 2.2B.  
Expanded is the Wairarapa Coast distribution.  Site code information is found in Table 2.1 for the inset and Table 2.6 for the 
Wairarapa.  Sample sizes at each location are indicated by sample size.  Note the discrepancy in scale between inset and 
expanded views.  WCS (inset) is the same location as CA (Wairarapa), but CA sample size has been increased.  WCP location 
and sample size is the same along the Wairarapa and inset.   
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Table 2.6 Sample information, genetic diversity indices, and neutrality tests for Cominella maculosa sampled along the Wairarapa Coast of the North Island of New Zealand.  Analysis are based on 
610bp sequences from the CO1 gene.  

Sample information   Diversity indices   Neutrality tests 

Site 
Code Sample site Lat, Long n 

 

S Ts Tv Hn Hp h π k 

 

Fu's Fs Fs p 
Tajima's 

D D p 

CA
1 Whakataki 

Beach 
-40.865833 
176.234500 

47 

 

9 7 2 4 1 
0.6827 

(0.0352) 
0.0052 

(0.0031) 
3.1915 

(1.6794) 

 

5.65475 0.971 1.60332 0.949 

RI Riversdale 
-41.076663 
176.086164 

56 

 

3 2 1 4 1 
0.2318 

(0.0728) 
0.0004 

(0.0005) 
0.2409 

(0.2802) 

 

-2.4658 0.025 -1.2712 0.0795 

FP Flat Point 
-41.246383 
175.958717 

53 

 

9 8 1 3 0 
0.5283 

(0.0220) 
0.0052 

(0.0030) 
3.1698 

(1.6664) 

 

7.90606 0.987 1.65687 0.9495 

HR 
Honeycomb 

Rock 
-41.346634 
175.825988 

47 

 

6 5 1 2 1 
0.2590 

(0.0733) 
0.0025 

(0.0014) 
1.5541 

(0.9454) 

 

5.66577 0.979 0.37129 0.6809 

GL Glendhu 
-41.400731  
175.716665 

59 

 

1 1 0 2 1 
0.0982 

(0.0514) 
0.0002 

(0.0003) 
0.0982 

(0.1713) 

 

-0.5686 0.139 -0.7008 0.2201 

TO Tora 
-41.504460 
175.528460 

35 

 

1 1 0 2 1 
0.0571 

(0.0532) 
0.0001 

(0.0002) 
0.0571 

(0.1302) 

 

-1.3391 0.05 -1.1355 0.131 

WCP
2 

Cape 
Palliser, 

Wellington 

-41.600000 
175.283333 

27 

 

1 1 0 2 1 
0.1425 

(0.0862) 
0.0002 

(0.0004) 
0.1425 

(0.2125) 

 

-0.349 0.168 -0.728 0.2128 

  All Sites   324 
  

16 13 3 10 6 
0.6128 

(0.0151) 
0.0056 

(0.0032) 
3.3986 

(1.7442)   
3.74741 0.874 0.85897 0.8366 

n, sample size; S, segregating sites; Ts, transitions; Tv, transversions; Hn, nuber of haplotypes; Hp, number of private haplotypes; h, haplotype diversity; π, nucelotide diversity; k, nucleotide differences 
  1Same location as WCS in section 2.3.  The code has been changed to reflect the larger sample size. 
  2 Exact same sample set used in Section 2.3.  Therefore, the code has not been changed   
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Table 2.7 Haplotype counts from a 610 bp CO1 fragment for Cominella maculosa sampled along the Wairarapa Coast of the 
North Island.  Private haplotypes are in bold with an asterisk at the count value.  Site codes are described in Table 2.6.  
Haplotype numbers correlate to numbers used in North Island sampling (Table 2.2) with new haplotypes starting with Hap 42.   

 

CA RI FP HR GL TO WCP 

Hap 1 0 0 26 7 56 34 25 

Hap 27 21 49 26 40 0 0 0 

Hap 28 12 0 1 0 0 0 0 

Hap 29 2* 0 0 0 0 0 0 

Hap 30 12 4 0 0 0 0 0 

Hap 35 0 0 0 0 0 0 2* 

Hap 42 0 0 0 0 3* 0 0 

Hap 43 0 1* 0 0 0 0 0 

Hap 44 0 2* 0 0 0 0 0 

Hap 45 0 0 0 0 0 1* 0 

  

The flattening trend of the rarefaction curve indicates sufficient sampling was achieved to capture 

diversity (Figure 2.6).  The overall high haplotype diversity and low nucleotide diversity placed the 

Wairarapa into category four of demographic generalizations (Figure 2.7A).  These populations are 

often large and stable or have undergone secondary contact and contain several highly divergent 

haplotypes (Grant and Bowen 1998).  As the haplotype network shows (Figure 2.8A), highly divergent 

haplotypes are indeed present along the Wairarapa.  When individual populations are plotted, it is 

evident that the overall Wairarapa position in category four is due to high haplotype diversity at CA and 

borderline high diversity at FP (Figure 2.7A). The nucleotide diversity in CA and FP is insufficient to move 

out of category two, a group which indicates rapid expansion after an ancient bottleneck or 

maintenance of consistently low effective population size (Grant and Bowen 1998).  All other 

populations have low haplotype diversity and low nucleotide diversity, placing them firmly in category 

one (Figure 2.7A).   Category one populations may have undergone recent bottlenecks or been founded 

by a recent recolonization event (Grant and Bowen 1998).  The southern and northern groups from 

Fleming et al. (in prep) fall into the expanding population signature of category two while the overall 

North Island population falls into category four with stable populations or secondary contact.  None of 

the C. maculosa diversity indices are outliers when compared to global direct developers (Figure 2.7B).   

 

Figure 2.6 Rarefaction curve for CO1 haplotypes sampled along the Wairarapa of the North Island.  The black line represents 
the expected number of haplotypes found for a randomly selected sample size taken from the data.  The grey lines represent 
upper and lower 95% confidence intervals.  Rarefaction was conducted with Analytic Rarefaction v1.3 (Holland 2003, 
http://strata.uga.edu/software).     

http://strata.uga.edu/software/
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Figure 2.7 Haplotype diversity versus percentage nucleotide difference plots.  A) Cominella maculosa groups reported in this 
study and B) other New Zealand species and direct developing species found globally.  The numbers 1 through 4 in the central 
square indicate the four categories identified by Grant and Bowen (1998).  The information for points plotted in B can be found 
in  Table 2.8. 

Table 2.8 Reference information for points plotted in Figure2.7B, including the species and molecular marker for each study.  

Plot 
code Source 

Development 
Mode Organism Species Country mtDNA Region 

1 Hickey et al. 2009 Planktonic Fish Forsterygion lapillum NZ Control Region 

2 Hickey et al. 2009 Planktonic Fish Grahamina gymnota NZ Control Region 

3 Wilcox  2015 Planktonic Fish Notolabrus celidotus NZ Control Region 

4 Ross et al. 2012 Planktonic Bivalve Austrovenus stutchburyi NZ CO1 

5 Apte and Gardner 2002 Planktonic Bivalve Perna canaliculus NZ ND4 

6 Will et al. 2011 Planktonic Gastropod Haliotis iris NZ CO1+ATPase8-6 

7 Keeney et al. 2013 Direct Gastropod Zeacumantus subcarinatus NZ CO1 

8 Keeney et al. 2013 Direct  Gastropod Zeacumantus lutulentus NZ CO1 

9 Cumming et al. 2014 Direct Gastropod Onchidella spp. NZ CO1 

10 Nikula et al. 2010 Direct Crustacean Parawaldeckia kidderi Subantarctic CO1 

11 Nikula et al. 2010 Direct Crustacean Limnoria stephenseni Subantarctic CO1 

12 Barbosa et al. 2013 Direct Echinoderm Parvulastra exigua Australia 12S 

13 Ellingson and Krug 2016 Direct Gastropod Costasiella ocellifera USA CO1 

14 Lee and Boulding 2009 Direct Gastropod Littorina sitkana USA Cyt B 

15 Lee and Boulding 2009 Direct Gastropod Littorina subrotundata USA Cyt B 

16 Kamel et al. 2014 Direct Gastropod Solenosteira macrospira USA CO1+Cyt B 

17 Azuma et al. 2015 Direct Gastropod Neptunea arthritica Japan CO1 

18 Kojima et al. 2004 Direct Gastropod Batillaria cumingi Japan CO1 

19 Pálsson et al. 2014 Direct Gastropod Buccinum undatum N. Atlantic CO1+16S RNA 
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The "dumbbell" shaped haplotype network suggested there where two isolated populations that have 

undergone recent population expansions (Figure 2.8A, Avise 2000).  However, the haplotype network 

should not be considered in isolation from the North Island haplotype network (Figure 2.8B).  The two 

northern haplotypes are actually the two dominant East Coast haplotypes (Hap 27 and 28) observed in 

Section 2.3.  As discussed previously, these haplotypes are more similar to the Auckland haplotype (Hap 

6) than they are to the Wellington haplotype (Hap 1).   

 
Figure 2.8 Minimum spanning network for CO1 haplotypes from Cominella maculosa. The size of each circle reflects the total 
number of samples detected for each haplotype, with colours reflecting how many individuals from each site contribute to the 
sample size.   Hash marks represent one mutational change between haplotypes.  Black dots represent theoretical haplotypes.  
A) Network for samples long the Wairarapa Coast of the North Island.  See Table 2.6 for site code descriptions.  B) Network for 
all North Island and Nelson samples discussed in this study.  See Table 2.1 for site code descriptions, except CA is in Table 2.6.   

Pairwise differentiation was significant between all populations except WCP, TO, and GL (Table 2.9).  

These three populations create a genetically similar southern grouping comprised of the dominant 

Wellington region haplotype (Hap 1).  There is no evidence of a strong, impermeable barrier to 

dispersal that separates this southern haplotype from the northern sites (Figure 2.5).  Rather, there 

appears to be a contact zone at HR and FP where the dominant southern and northern haplotypes 

merge (Figure 2.5).  A priori groupings suggested a break between N-S groups at GL and HR, due to the 

higher AMOVA support of HR in the northern cluster (Table 2.10).  Between-group variation became 

insignificant if HR was included in the southern cluster and the significant support for three groups, with 

a break between GL & HR and between FP & RI, was weaker than the N-S grouping (Table 2.10).  The 

best SAMOVA clustering was created by four groups with the three southern populations remaining 

grouped, but the northern populations separated into CA, FP, and HR & RI (Table 2.10).  The settings 

used in SAMOVA should maintain geographic homogeneity; therefore it was surprising to find that the 

best clustering was to skip over FP and group HR with RI (Table 2.10).  The relatively small spatial scale 
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between sites could explain why the algorithm allowed this clustering.  The four groups identified by 

SAMOVA were better supported than the a priori N-S grouping (Table 2.10).  Mantel tests were 

insignificant for both ɸST (r2 = 0.363, p = 0.0627) and Slatkin’s linearized differentiation (r2 = 0.18, p = 

0.1797), indicating no population structure.   

Table 2.9 Pairwise comparison (фST) for Cominella maculosa sampled along the Wairarapa Cost of the North Island using 610 
bp CO1 fragments.  Site code descriptions can be found in Table 2.6. 

 

CA RI FP HR GL TO WCP 

CA   *** *** *** *** *** *** 

RI 0.23504   *** * *** *** *** 

FP 0.22124 0.33674   *** *** *** *** 

HR 0.24023 0.03914 0.22315   *** *** *** 

GL 0.63132 0.83649 0.42356 0.80073   NS NS 

TO 0.60096 0.8381 0.40042 0.80083 0.00072   NS 

WCP 0.54459 0.7999 0.34103 0.75275 0.01136 0.01155   

NS, non-significant; * p<0.05; ** p<0.01; *** p<0.001 

 

Table 2. 10 Analysis of molecular variance (AMOVA) and spatial analysis of molecular variance (SAMOVA) using 610bp 
fragment of the COI gene for C. maculosa sampled along the Wairarapa coast.  Site codes can be found in Table 2.6.     

 

  

Number

of Groups Group Composition фSC % Variation фST % Variation фCT % Variation

2 WCP-GL, HR-CA 0.22303*** 33.37 0.66633*** 9.58 0.57054* 57.05

2 WCP-FP, RI+CA 0.45942*** 38.57 0.61427*** 32.78 0.28645NS 28.65

3 WCP-GL, HR+FP, RI+CA 0.19094*** 39.9 0.60096*** 9.42 0.50679* 50.68

SAMOVA WCP-GL, HR+RI, FP, CA 0.00262* 40.54 0.59457*** 0.11 0.59351** 59.35

2 WCP-GL, HR-CA 0.26393*** 23.77 0.76227*** 8.52 0.67702* 67.7

3 WCP-GL, FP, HR+RI+CA 0.10981*** 27.8 0.72202*** 3.43 0.68773* 68.77

4 WCP-GL, HR+RI, FP, CA 0.02219*** 30.34 0.69663*** 0.69 0.68974** 68.97

5 WCP-GL, HR, FP, RI, CA -0.02241* 31.73 0.68272*** -0.7 0.68967* 68.97

6 WCP, TO+GL, HR, FP, RI, CA -0.02053NS 33.09 0.66909*** -0.67 0.67574* 67.57

NS, non-significant; * p<0.05; ** p<0.01;  *** p<0.001

Within popsAmong pops within groups Among groups

AMOVA in Arlequin 3.5.2.2

SAMOVA in SAMOVA 2.0
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2.4.3 Discussion 

Spotted whelk populations sampled at seven locations along the Wairarapa Coast show an interesting 

pattern of high and low connectivity.  The three southern populations (WCP, TO, GL) form a genetically 

connected group that is disconnected from the northern sites.  This southern grouping is characterized 

by lower haplotype and nucleotide diversity, similar to the Wellington grouping in the North Island 

dataset.  The strong support for this southern grouping through AMOVA and SAMOVA suggests a 

genetic break between GL and HR.  This implies the presence of a semi-permeable dispersal barrier or 

the recent removal of a historically impermeable barrier.  The presence of a mixture of northern and 

southern haplotypes in the middle populations (HR and FP) suggests there is a contact zone between 

the two areas.  If crawling dispersal is slowly occurring from both northern and southern populations, 

then this blending pattern containing a high proportion of both haplotypes would be expected.  Gene 

flow into these two middle populations is also supported by the lack of unique haplotypes, which are 

expected to accumulate in isolated populations.  Between-group differentiation was maximised by 

dividing the northern cluster into three groups.  However, the grouping of HR and RI is surprising, at it 

suggests the possibility that dispersal events bypass the FP population.  Such coastal “leap frog” 

dispersal has been suggested for species that are able to raft on floating substrata (Figure 1.2, Thiel and 

Haye 2006).  This type of dispersal could explain why an isolation-by-distance pattern, which relies on 

dispersal between nearest neighbours, was not detected (Thiel and Haye 2006).  The lack of an IBD 

pattern could also be due to the small geographic scale.  Patterns of IBD are most obvious at 

intermediate scales and when the distances between locations are 2-5 times greater than the dispersal 

distance of the species (Palumbi 2003).  When the entire East Coast was used for a Mantel test, ɸST 

regression indicated insignificant structure (r2 = 0.258, p = 0.0568), but Slatkin’s linearized 

differentiation significantly supported an IBD pattern (r2 = 0.383, p = 0.0078).   

The conflicting results of the Mantel test for the North Island dataset and the leapfrog grouping 

between RI and HR on the Wairarapa suggests an alternative dispersal mechanism may influence 

spotted whelk connectivity and distribution.  While rafting dispersal has been supported for some New 

Zealand direct developing gastropods (Cumming et al.2014), these species are often highly associated 

with their algae raft.  Spotted whelks are carnivorous scavengers that are associated with shallow rocky 

habitat rather than algae or wood, which would greatly reduce their rafting potential.  However, the 

beach at the mouth of the Glendhu River is covered in a wide band of drift wood (> 1m).  It's possible 

that during communal egg laying some females attach eggs to a piece of drift wood.  The northbound, 

nearshore Wairarapa Current could then move the wood north to HR or FP (Figure 2.1A).  Since each 

capsule contains an average of 7 hatchlings (Carrasco and Phillips 2014) it would take only one or two 

random drifting events to transport a large quantity of dispersers northwards.  The maternal 
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inheritance of mtDNA and lack of variation from the Glendhu population would ensure that nearly 

every hatchling emerging from drifting capsules would contain the Wellington haplotype (Hap 1).  

Depending on survival and reproductive success, these random events could produce the high 

frequencies of southern haplotypes found at HR and FP.  However, this scenario does not explain the 

connectivity between HR and RI, as no such accumulation of driftwood was observed at HR.  Egg 

capsule rafting may not be the only mechanism for dispersal by water.  The communal egg laying 

behaviour often leads to females laying eggs on the shells of other females (Figure 1.3B).  Since spotted 

whelks like to bury in gravel and hide under rocks, it’s likely that the capsules would get dislodged 

before the 9 week developmental cycle was finished.  While drifting of unattached C. maculosa egg 

capsules has not been confirmed, a clump of C. adpsersa capsules, which are morphologically very 

similar, was observed drifting at the Napier collection location.   

Overall, genetic connectivity was low or absent in all northern Wairarapa sites but high enough to be 

panmictic between all southern sites (Table 2.9).  Advantageous alleles can be spread with the 

migration of only 1 individual every 10 generations, which corresponds to a фST < 0.35 (Lowe and 

Allendorf 2010).  All of the northern sites exhibit differentiation below this threshold between each 

other, but northern and southern differentiation is much higher.  Adaptive alleles would likely spread 

quickly within northern or southern groups, but not between the two groups and further supports the 

hypothesis of a historic barrier between the two groups.  To gain a better understanding of the 

mechanisms operating along the Wairarapa coast, finer scale sampling at the other North Island 

disjunctions should be undertaken.  If rafting events are a large contributor to dispersal, then exploring 

the rocky coastline between GTT & GTA or GTA & BOM could indicate the relative of importance of 

crawling versus rafting dispersal.  Conversely, if coastal barriers restricting crawling dispersal are the 

primary mechanism creating structure, then the Taranaki populations may show a similar pattern.  

Unfortunately, there are unlikely to be populations between TMA and TNP from which to sample, due 

to the large expanse of soft sediment and absence of rocky habitat.    

Assuming a neutral model of evolution (no selection or hitchhiking), insignificant neutrality tests 

indicate demographic stability for all populations.  Plotting overall haplotype and nucleotide diversity 

suggested the Wairarapa coast is a large, stable population or has undergone secondary contact (Figure 

2.7A).  The highly divergent haplotypes found along the Wairarapa supports the interpretation that 

secondary contact has occurred.  However, CA is the only population in which secondary contact is 

suggested, indicating that two highly divergent East Coast haplotypes are coming into secondary 

contact or that they have historically existed together after several founding events.  When viewed in 

context of the North Island dataset, the Wairarapa sites show that Hap 27 occurs at high frequencies 

along the whole of the East Coast from GTT to HR.  This haplotype is oddly missing in NA and PB, but 
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this could be due to a small sample size and the high frequency of haplotype 28.  Haplotype 28 is also 

found over a large portion of the East Coast, including a single individual at FP.     

The southern populations at both the North Island and Wairarapa scale exhibited a strong drop in 

genetic diversity.  Reductions in diversity can occur from low effective population sizes, founder events, 

or bottlenecks.  Observations of reduced diversity for direct developing gastropods in high latitudes has 

been attributed to recolonization from lower latitudes after a population constriction during the LGM 

(Kojima et al. 2004, Marko 2004, Keeney et al. 2009).  Such a recolonization is indicated from diversity 

plots of the southern Wairarapa populations.  A land bridge between the Wellington region and 

Marlborough Sounds was formed when sea levels dropped during the LGM.  The deep Cook Strait 

canyon complex, and its associated trenches up the Wairarapa, would have posed a significant barrier 

to coastal dispersal on the eastern side of the land bridge (Figure 2.9).  Slowly rising sea levels would 

allow crawling dispersal along the coast, which could explain the similarity between NEL and Wellington 

region populations.  However, this assumption of crawling dispersal raises an important question.  The 

southern Wairarapa group is farther away from the Wellington populations than from the northern 

Wairarapa, if the southern Wairarapa group was colonized by crawling after the removal of the land 

bridge, why is the Wellington haplotype (Hap 1) present and both East Coast haplotypes absent?  The 

deep trenches occurring along the Wairarapa, between HR and TO, may have acted as a prolonged 

dispersal barrier consistent with the genetic break found by AMOVA grouping (Figure 2.9, Table 2.10).  

Crawling between HR, GL, and TO would have been prevented by these trenches, while crawling from 

south island would have been restricted by the Cook Strait trench (Figure 2.9).  However, rafting of egg 

capsules from a southern refuge population containing the Wellington haplotype may have occurred.  

Two C. maculosa samples from the Kaikoura Peninsula were downloaded from the National Center for 

Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/genbank/) and compared to the 

Wairarapa dataset (reference numbers KP694145 and KP694146, Donald et al. 2015).  From the 552 bp 

that could be aligned, both individuals were identified as the Wellington region haplotype (Hap 1), 

supporting the hypothesis of a southern refuge population.  Sampling of the Chatham Islands and 

western South Island populations is needed to confirm a southern refuge hypothesis.   

http://www.ncbi.nlm.nih.gov/genbank/
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Figure 2.9 Bathymetry around at the Cook Strait and Wairarapa Coast of the North Island.  Red, 100 m; orange, 500 m; yellow, 
1000 m.  Approximate locations of Wairarapa sample sites are marked, see Table 2.6 for site code information.  Image taken 
from NIWA’s Coastal and Marine Data Portal (http://www.os2020.org.nz/project-map-sam/), source: Land Information New 
Zealand.  Contour lines were interpreted from a 1960 bathymetric chart 
(http://www.teara.govt.nz/en/map/5962/bathymetric-chart-1960).   

An Auckland origin of divergence was discussed in Section 2.3.3 and is supported by the high frequency 

of Hap 6 in the Auckland and Bay of Plenty regions.  Haplotype 6 occupies a central position in the 

haplotype network with a star burst pattern of recent haplotypes found in the North and highly 

divergent haplotypes found in the other regions.  If Auckland is the origin site and crawling is the 

dominant form of dispersal, then the question becomes how was Nelson founded?  During the Pliocene 

(6-2MYA), the North and South islands were separated by a large amount of water, Northland was 

separated by an ocean channel, and the East Coast was composed of a series of small islands (Figure 

2.10, Stevens and Hogg 2004).  If rafting of egg capsules is capable of founding distant populations, then 

dispersal from Auckland could have occurred through the Northland channel or from around the East 

Coast.  Such rafting could have occurred on pumice material created by volcanic activity in the Auckland 

region, which has been active since the late Pliocene (Kereszturi et al. 2013).  The island configuration 

of the East Coast would explain the large divergence between the two East Coast haplotypes, as 

multiple founding events could land on different islands and evolve in isolation (Figure 2.10).  Once the 

East Coast islands were connected during the LGM, both haplotypes could crawl by sporadic drifting of 

egg capsules and continuous crawling of adults.  Examining the populations around the Northland 

Peninsula could illuminate the strength of these historic dispersal pathways.   

http://www.os2020.org.nz/project-map-sam/
http://www.teara.govt.nz/en/map/5962/bathymetric-chart-1960
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Figure 2.10  Variable coastlines of New Zealand through over the last six million years (Mya).  Land above sea level is shaded 
grey.  Modern New Zealand is outlined in black for the Pliocene.  Arrows represent the dominant currents.  Image taken from 
Stevens and Hogg (2004). 

Overall, the genetic pattern of C. maculosa populations at large and small scales indicates discrete 

populations with low genetic connectivity.  This is a pattern seen for many direct developing species 

(Lee and Boulding 2009, Barbosa et al. 2013, Pálsson et al. 2014).  It is unlikely that the genetically 

differentiated northern populations will experience demographic connectivity; indicting small 

populations may be at risk of local extinction.  The lack of differentiation between southern populations 

indicates strong genetic connectivity, but it is unlikely they experience demographic connectivity from 

crawling dispersal.  The lack of differentiation between southern populations is probably due to 

recolonization after the LGM rather than exchange of individuals (Keeney et al. 2009).  This study used 

the conservative mitochondrial CO1 protein coding region to investigate genetic connectivity.  As 

discussed in Section 1.1, mtDNA is useful in detecting historic patterns of connectivity and investigating 

demographic trends.  The use of microsatellites could give a better picture of contemporary 

connectivity and current dispersal barriers.  However, microsatellites are often species specific and can 

be time consuming to create.  A couple of microsatellites have been developed for commercially 

harvested buccinidae species (White and Toonen 2008, Wang et al. 2011), but it is unlikely they would 

amplify for this endemic species.  The historic pattern of deeply divergent haplotypes on the East Coast 

and leapfrog dispersal along the Wairarapa suggests potential rafting of egg capsules as an alternative, 

though likely rare, mechanism for dispersal.  The discrete population pattern and narrow contact zone 

at HR and FP is consistent with a general dispersal by crawling strategy.  Examination of other species 

with similar life history traits and habitat requirements would strengthen these findings, particularly if 

studied at the same location.  The identification of a genetic break between HR and GL should be used 

to determine if other species, both direct developing and planktonic, also exhibit a genetic break at this 

region.  If the break is due to the deep coastal trenches during the LGM, it is likely that only direct 

developers will exhibit a genetic boundary at this location. 
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Chapter 3 
Dispersal Potential for Cominella 
maculosa Hatchlings by Drifting  

3.1 Abstract 

Sessile invertebrates with direct developing life histories are thought to maintain connectivity between 

populations through passive rafting or drifting dispersal.  However, direct observations of such dispersal 

mechanisms are rare, especially for species that do not associate with rafting substrate.  Cominella 

maculosa offspring are believed to disperse by crawling along the substrate after emergence from egg 

capsules attached to the benthos.  The aim of this study was to determine if these hatchlings might also 

disperse by drift after being suspended in the water column.  To investigate, three laboratory 

experiments were conducted and field sampling of the water column was undertaken at two sites.  

Hatchlings placed on rocks were subjected to simulated wave force and still treatments to determine if 

hatchlings could be dislodged into the water column.  Hatchlings were suspended in circular water 

currents, of variable speed, to determine if they could be carried by water flow over a short period.  

Hatchlings were maintained in circular water currents for prolonged periods to test whether they could 

remain in the water column for sufficient periods of time required to facilitate long distance 

connectivity between populations.  Plankton traps were set on rocky coastlines of the Wellington 

Harbour and the Wellington south coast to examine if hatchlings could be detected in the water 

column.  Laboratory trials indicate hatchlings can be dislodged, suspended into the water column, and 

transported short distances by water current.  However, hatchlings do not remain in drift when 

subjected to vertically circulated water columns for a prolonged period.  Plankton traps were successful 

in collecting one living Cominella virgata hatchling, supporting the lab results that prolonged suspension 

in the water column is likely to be rare.  It is probable that local water flow conditions will influence 

small-scale dispersal and distribution, but it is unlikely that long distance drift dispersal of hatchlings will 

contribute to maintaining population level connectivity.   
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3.2 Introduction 

Dispersal facilitates expansion of a species’ distribution and promotes population connectivity at the 

evolutionary  and ecological level.  Genetic connectivity maintains high genetic diversity that can allow 

populations to adapt to a changing environment (Hedgecock 1986, Losos 2011).  Demographic 

connectivity influences metapopulation dynamics, including potential recolonization of habitats after 

extinction events (Brown and Kodric-Brown 1977, Turgeon and Kramer 2012).  Understanding a species’ 

dispersal ability at all life stages is integral for inferring connectivity and interpreting patterns of genetic 

diversity.   

Many marine invertebrates exhibit sessile or sedentary adult stages.  Therefore, most benthic species 

will use the water column to aid dispersal by broadcast spawning gametes (Crimaldi and Zimmer 2014) 

and/or producing planktonic larvae (Todd et al. 1998).  However, in contrast to those strategies, many 

species have a direct development life history where embryos develop in a protected environment until 

fully formed.  In gastropod molluscs, where this is relatively common, direct development may occur in 

brood chambers of adults (e.g. Higgs et al. 2009) or in egg capsules attached to a substrate (e.g. 

Carrasco and Phillips 2014).  Once development has been completed, the offspring emerge as miniature 

versions of the adults.  Since dispersal of these hatchlings is assumed to occur by crawling, like the 

adults, the expected dispersal potential of direct developers is expected to be low. 

The ability of sedentary, direct developing species to colonize distant habitat is often attributed to their 

ability to travel by passive means (Highsmith 1985, Johannesson 1988, Colson and Hughes 2004).  

Passive dispersal occurs by “rafting” on floating substrata (Thiel and Gutow 2005, Hellberg 2009) or by 

“drifting” in the water column without being attached to a substrate (Winston 2012).  Due to the 

difficulty in observing drifting and rafting events in a large ocean, genetic methods are often employed 

to infer levels of connectivity between populations and support or reject these dispersal hypotheses.  

Such a rafting hypothesis was recently supported by the observance of several direct developing taxa 

on New Zealand beach-cast bull kelp that had spent months at sea (Nikula et al. 2013, Cumming et al. 

2014).  In the same South Island area, beach-cast bull kelp (Durvillaea antarctica) has been found to 

originate as far as 400 km away in the Subantarctic Islands (Fraser et al. 2011, Bussolini and Waters 

2015), suggesting that rafting can create long distance dispersal events and even maintain genetic 

connectivity over large spatial areas.  

The spotted whelk, Cominella maculosa, is a direct developing gastropod associated with intertidal 

rocky shores of New Zealand (Morton and Miller 1968).  Dispersal by adults and hatchlings is assumed 

to occur by crawling along the substrate, although adults of the related species C. glandiformis has been 

recorded to float by their foot in calm waters (Bimler 1976).  Since C. maculosa are carnivorous 
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scavengers, they are not expected to associate with algae and the likelihood of dispersal by rafting is 

expected to be low (Donald et al. 2015).  However, analysis of mitochondrial DNA sequences indicates 

pockets of higher than expected connectivity between North Island populations that may be due to 

rafting egg capsules (Chapter 2.1 Abstract).  C. maculosa hatchlings can be easily disturbed into the 

water column in a laboratory setting (MD unpublished observations), but it is unknown if they are 

transported any substantial distance by currents.  The purpose of this study was to investigate if drifting 

could be a potential dispersal mechanism for C. maculosa hatchlings.   

To examine hatchling drift dispersal, three laboratory experiments were conducted at Victoria 

University Coastal Ecology Lab (VUCEL) and nearshore plankton sampling was undertaken at two sites in 

Wellington.  The first experiment tested whether hatchlings could be dislodged into the water column.  

The second experiment tested whether hatchlings caught in a current would be transported with the 

current or if they would sink.  The last experiment was designed to determine if hatchlings in water 

currents would remain suspended and be able to drift for a prolonged period of time.  Plankton traps 

were not expected to trap a large number of hatchlings, but if even one hatchling was caught then it 

would indicate that dislodgement and suspension in the water column is possible. 

3.3 Materials and Methods 

3.3.1 Laboratory Experiments 

3.3.1.1 Hatchling Collection, Handling, and Counting 

Egg capsules were collected by either taking small rocks with attached egg capsules from the field to 

VUCEL or by using a scalpel to detach capsules in the field.  Collections occurred in November and 

December 2015 from the following three Wellington sites:  Waitaha Cove (latitude: -41.341095°, 

longitude:  174.792412°), Point Halswell (latitude: -41.283981°, longitude: 174.825811°), and Shelly Bay 

(latitude: -41.300286°, longitude: 174.817154°).  Detached capsules and the emerging hatchlings were 

stored in a flowing seawater bath in a 97 × 97 × 80 mm plastic container with 700 µm mesh sides and a 

lid.  Rocks collected with egg capsules attached were scraped clean of algae and other sessile fauna and 

placed in aquaria (590 × 300 × 300 mm) with flowing sea water.    Experiments were undertaken when 

enough hatchlings had emerged from capsules.  

Experimental hatchlings were randomly selected from the containers or tanks and transferred to petri 

dishes for examination under a dissecting microscope where they were classified as either alive or 

unresponsive.  Alive hatchlings were either actively moving or stationary with a visibly extended siphon.  

Unresponsive hatchlings looked like empty shells or had tissue visible with no extended siphon.  Only 



 

Chapter 3  44 
 

hatchlings categorized as alive were selected and randomly assigned to an experimental treatment (50 

per treatment).  Unresponsive hatchlings were returned to holding containers. 

Initial trials began before large numbers of hatchlings emerged naturally from egg capsules.  Therefore, 

the first trials used an equal mix of hatchlings that had naturally emerged and that had been removed 

from egg capsules by scalpel.  Removal of hatchlings by scalpel does not affect their survival (MD 

unpublished observation).  This mix of hatchlings, hereafter referred to as “mixed harvest”, was used in 

seven drift in current experiments and one dislodgment experiment.  Since sustained drift experiments 

were collected and counted in the mornings, hatchlings were occasionally reassigned to a second 

experiment.  This occurred three times for dislodgement experiments and six times for drift in current 

experiments.   When reuse of hatchlings occurred, the hatchlings were pooled together, re-examined 

for activity levels, and redivided into groups of 50 for randomized treatment allocation. 

In order to account for the fact that each group of hatchlings were collected from different containers 

or tanks and might have previously undergone experiments, a variable titled “cohort” was created.  

Each batch of hatchlings collected from the same tank or container was given the same cohort 

identifier.  Hatchings from “mixed harvest” methods were also identified by cohort.  If hatchlings were 

reused from sustained drift treatments, only hatchlings from the same cohort were pooled and 

redivided.  These redivided groupings were then given a new cohort identity.  A total of 19 cohorts were 

identified in this manner for all trials.  The cohort variable, as well as the identifier of the transfer petri 

dish, was considered a random effect for all trials during analysis.   

After each experimental trial, hatchlings were collected, placed in the transfer petri dish and examined 

under a dissecting microscope.  The number of alive and unresponsive hatchlings was recorded.  

Hatchlings that were obviously alive, but had shell damage or missing shells were noted as ‘damaged’.  

Since damaged whelks would be unlikely to survive in the long term, they were pooled with the 

unresponsive category for data analysis.  Once counted, hatchlings were either reused or returned to a 

mesh container kept in the water bath.  All hatchlings were kept until experiments were completed and 

then they were released at their respective collection locations.  

3.3.1.2 Dislodgement Experiment 

This experiment was designed to test the hypothesis that intertidal wave action can facilitate hatchling 

dispersal by dislodging individuals from rocks and into water current.   A simple tide pool was simulated 

by placing an aquarium with an outflow hole into a larger water bath (Figure ).  Hatchlings were placed 

on a large rock in the aquarium and then subjected to artificial waves.  An outflow trap caught any 

dislodged hatchlings that exited the aquarium.  It was predicted that the number of hatchlings collected 
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from the outflow drain would be significantly greater under a wave treatment compared to a still 

treatment.  The null hypothesis predicted that both treatments would contain a similar number of 

hatchlings in the outflow water.  This experiment was run as a paired test, with hatchlings first 

undergoing one treatment (randomly assigned) and then undergoing the alternative treatment.  This 

was designed to compare the effect of treatments between the same individuals. 

 

Figure 3.1  Dislodgement experiment setup (mm) with inset of concurrent replicates at shallow depth.  Note the actual rocks 
are flat, the round rock in the diagram is not representative.  Rocks were placed inside aquaria (300 mm wide) to replicate a 
simple intertidal environment at low tide.   Two water depths were used: shallow depth (70 mm) exposed the rock face, deep 
depth (130 mm) covered the rock.  Wave force was created with tipping buckets positioned above the rocks; buckets were 
reset by a 35 gram bottom weight.  Dislodged hatchlings caught in outflow water were collected in drain traps with mesh sides.  

To set up this experiment, three relatively flat rocks of roughly similar size and shape were collected 

from Point Halswell on 27 December 2015.  All rocks were scraped clean of tube worms, although small 

barnacles remained, and left to dry for two days.   Each rock was placed in a separate aquarium with 

two depth treatments (Figure ).  The shallow treatment left the tops of rocks exposed, while rocks were 

submerged in the deep treatment.  Outflow water was directed into a mesh sided collection container 

via a short plastic pipe affixed opposite the rock (Figure ).   

The wave treatment was created by using a tip bucket system suspended above the rocks.  Buckets (10 

L) were suspended on stakes through two slightly offset holes and filled with raw seawater by hoses 

fixed overhead (Figure ).  Buckets filled with an average of 7.5 L (± 0.36, n = 9) before tipping directly 

onto the rock below.  Weights suspended from the bottom of the buckets ensured they reset to the 
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upright position for refilling.  Hoses were used at full pressure, creating a tip rate of 5 tips in 2 minutes. 

Aquaria were set in a seawater bath, ensuring a constant water depth for the still control treatment.  

Three replicate experimental units were set up in the same sea table and run concurrently (Figure  

inset).  The effects from rock differences, as well as any volume variation between buckets, were 

considered a tank effect.  Therefore, rocks were never switched between aquaria and aquaria were 

never switched between buckets.   Hatchlings were always tested in the same tank for the paired 

design. 

Tanks, rocks, and outflow containers were well rinsed before the commencement of each paired trial.   

Rocks were wetted before individually transferring 50 hatchlings by pipette onto the rocks.  Hatchlings 

were haphazardly placed, with the aim to scatter them across the surface, and left to acclimate for ten 

minutes.  Tanks assigned to the still treatment were covered with plastic to prevent splashing 

disturbances from the wave treatments of other tanks.  Hatchlings were initially exposed to the wave 

treatment for two hours (n = 3).  However, all subsequent trials were run for one hour as results were 

similar and this saved time (n = 15).   At the end of the trial period, the water bath was drained for 

hatchling collection.  Rocks were placed in buckets and rinsed with a strong hose and wiped down by 

hand to collect hatchlings.  Outflow containers were then detached and set aside while the remaining 

hatchlings were collected by pipette from the tank.  After all hatchlings were counted they were 

returned to their original transfer petri dish while the tanks were reset for the next trial.  The same 

individuals were then placed on the same rock in the same tank, allowed to acclimate for ten minutes, 

and subjected to the treatment they had not yet experienced.   

Ideally, all hatchlings would be recovered for running the paired design.  However, the number of 

hatchlings in each treatment was not necessarily equal, as the small size of the whelks meant they 

could be easily lost in transfer, crushed when washing rocks, or possibly dislodged out of the tank by 

wave splash.  Due to the paired nature of the design, lost hatchlings were not replaced to equal 50.  

Hatchlings identified as unresponsive after the first treatment were recorded, but also not replaced.  

Eighteen paired trials were performed on six days over a two week period using hatchlings from ten 

cohorts.  Nine paired trials were performed for each depth treatment.  Seven cohorts were tested in 

shallow treatments, including one “mixed harvest” cohort and two cohorts previously subjected to 

sustained drifting experiments.  Only four cohorts were tested in deep treatments.   

3.3.1.3 Drifting in current 

Continuous circular water currents were set up to test the hypothesis that hatchlings can be 

transported if they end up suspended up in a current.  It was predicted that the number of hatchlings 

exiting a bucket through outflow drains would be significantly larger in the presence of a fast current 
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compared to a slow current or no current.  The null hypothesis predicted there would be no difference 

between any of the current treatments.   

Raw seawater hoses were attached to buckets (10 L) that had three outflow holes drilled 25 cm apart 

(Figure 3.1).  When turned on, the hose created a constant circular current in the bucket.  Hose flow 

was adjusted so that the inflow matched the outflow at a constant water height between 10.6 and 11.6 

cm.  Three buckets were used to create slow, fast, and control still treatments.  Water currents were 

altered by changing hose flow, while the still treatment was created by placing the bucket in an 

aquarium of raw sea water.  To ensure equal set up between treatments, an inflow hose was affixed to 

the still bucket lip, but was turned off to prevent current.    

 

Figure 3.1 Drift in current experiments. A) Side view diagram with bucket and outflow trap dimensions (mm).  B) Top view of 
the fast treatment for the circular water current experiment.  Hoses were aligned parallel to the bucket lip until the last 7 cm, 
where the hose mouth was located 3.3 cm lower.  Hatchlings were added 3.5 cm up-current from the first outflow hole below 
the inflow water (black mark below black arrow).  C) Three treatments running concurrently.  The slow treatment is in the 
foreground with an outflow trap attached on the right and unattached on the left.  The fast treatment in the middle and the 
still treatment can just be seen in an aquarium (590 x 300 x 300 mm) in the background.   

To alter water current speed, yet maintain equal water height between treatments, a larger outflow 

hole (15 mm) was used in the fast treatment and a small outflow hole (10 mm) in the slow treatment.  

An equal volume of water, as indicated by height, was deemed more important to the outcome of the 

study than an equal diameter outflow hole.  To err on the side of caution, still treatment outflow holes 

were made at the larger 15 mm.  Outflow volumes were determined by measuring the volume of water 

exiting each outflow over a five second period when water height was at 10.8cm.  These volumes were 

A) 
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then combined to determine total outflow volume per second.  Outflow measurements were taken 

three times in pre-experiment set up and four times before experimental trials.  Total outflow averaged 

138.0 mL per second (± 3.4 mL, n = 7) for the slow treatment and 319.9 mL per second (± 10.2 mL, n = 7) 

for the fast treatment.  In order to compare experimental currents (mL/s) to coastal currents (m/s), the 

average volume of water exiting all three outflow holes was considered as a cylinder with a radius equal 

to the outflow hole radius (V=πr2h, 1 mL = 10-6 m3).  The height of the average cylinder was calculated 

and considered as the distance of water exiting the bucket in one second.  The increased radius of the 

fast treatment negated the increased volume of water, so that both fast and slow treatments produced 

a current of 0.6 m/s.  

Set ups were left for 10 minutes for control water to settle and to ensure water height was stable.  

Plastic cups with 700 μm mesh bottoms were affixed to the outside of the buckets to filter outflow 

water and collect hatchlings (Figure 3.1).  At the start of each trial, 50 hatchlings were individually 

added to the bucket by pipette.  To prevent hatchlings from immediately being washed out the first 

outflow hole, all hatchlings were added 3.5 cm up-current from the first outflow hole encountered by 

the incoming hose water (Figure 3.1B).  Hatchlings were not forcefully ejected into the water current, 

but were gently expelled from the tip of the pipette at the surface of the water.  Trials were run for 2 

hours after the addition of the last hatchling.  Buckets were checked every 30 minutes to count the 

number of hatchlings crawling on the bucket walls.  This check was to ensure that hatchlings in the fast 

and slow treatments weren’t actually sinking to the bottom and crawling out the outflow holes.  This 

check also verified that crawling was the means by which hatchlings exited the still treatment.  Trials 

were ended by removing the hoses and allowing the buckets to drain through the outflow holes.  The 

control was gently lifted from the filled aquaria and allowed to drain.  Hatchlings were transferred from 

collection cups and buckets to petri dishes and counted using previously outlined methods.  Treatments 

were concurrently run on seven days over a three week period.  Each treatment was replicated nine 

times.  A total of 15 cohorts were used, including three “mixed harvest” cohorts and three cohorts 

previously subjected to sustained drifting experiments.   

3.3.1.4 Sustained drifting 

Long distance dispersal will only be possible if hatchlings remain in currents for a prolonged period of 

time.  In order to prevent drifting hatchlings from exiting the experimental container, circular currents 

were driven by air pumps instead of hoses.  It was predicted that after a prolonged period (> 12 hours) 

more hatchlings would be found in the water column of strongly mixed treatments compared to weak 

or still treatments.   
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Air tubes were fixed to the lip of nine glass jars (4 L) filled with raw seawater and positioned close to the 

side of the jar, not the centre (Figure 3.2).   Six tubes were attached to a Resun LP100, 140L/min air 

pump to create mixing treatments.  The three remaining tubes were used for still control treatments 

and were not connected to the air pump.  Three strong mixing treatments were created by attaching a 

26 mm cylinder airstone to the tubes.  Three weak mixing treatments were created by using the air 

tube with no airstone.  Three replicates of each treatment were haphazardly assigned to jars during set 

up of each session.  

 

Figure 3.2 Experimental set up for the sustained drifting experiment.  A) Diagram showing jar dimensions, water level created 
with 3L of water, and position of air tube (mm).  B) Mixing treatments were created by connecting hoses to an air pump.  Weak 
treatments (left) had no attachments on the air tube and strong treatments (right) were created by attaching an airstone to 
the air tube.  Still treatments (not shown) were not connected to an air pump. 

An index of mixing strength was created by timing how long it took a drop of dye to mix into a 

consistent colour.  The timer started when a drop of blue food colouring was added by pipette to the 

centre of the jar 3 cm above the water surface.  Strong mixing treatments mixed to a constant colour in 

an average of 5.5 seconds (± 1.2 sec, n = 9), the weak mixing treatment mixed in 9.7 seconds (± 1.6 sec, 

n = 9).  The control treatment was not indexed, as one drop of dye had barely diffused from the centre 

of the water in ten minutes when first trialled.   

Before each trial, jars were rinsed with raw sea water, filled with 3 L of raw seawater, and set in a water 

bath.  Treatment tubes were haphazardly added to each jar and the air pump started.  Hatchlings were 

added by submerging the transport petri dish in the jar and dislodging whelks using water pressure 

from a turkey baster.  The turkey baster was then squeezed 3-5 times to ensure all whelks started the 

trial suspended in the water column.  Trials were run overnight; usually for 15.5 hours, but one trial ran 

16.25 hours.  At the end of the trial, jars were examined and any drifting hatchlings were collected with 

a metal strainer (1 mm mesh size).  Air tubes were pulled out of the jars and hatchlings collected.  

Eleven trials were conducted for each treatment over an eight day period, but twice a hose was found 
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disconnected from the air pump and only nine trials from each treatment were analyzed.  Of the seven 

cohorts identified for these trials, none were previously used in sustained drift experiments or collected 

by “mixed harvest”. 

3.3.1.5 Analysis 

The response variable for the first two experiments (dislodgment and drifting in current) was the 

number of hatchlings collected in outflow traps.  For the sustained drift experiments, the response 

variable was the number of hatchlings found drifting.  Only hatchlings classified as alive were used for 

analysis.  Unresponsive individuals may not actually be dead, but their lack of activity was considered a 

sign of poor survival probability.  

While all experiments began with 50 hatchlings, recovery numbers varied for each trial.  Recovery 

discrepancies were highest for the two experiments with outflow collections.  This is likely due to the 

tiny size of the hatchlings, so any overlooked hole larger than 1.5 mm was a potential escape route out 

of the outflow trap.  These escapees indicate the missing hatchlings went somewhere, therefore they 

could likely be added to the outflow count.  However, in order to err on the side of caution, all trials 

were considered to be completed with the total number of hatchlings recovered after the experiment.   

All analyses were conducted in R v3.2.2 (R Core Team 2015) using RStudio v0.99.484 (RStudio 

Team 2015). Generalized linear mixed models (GLMMs) were performed using the glmer() function in 

the lme4 package (Bates et al. 2015).  A binomial distribution, with the associated logit link function, 

was used so that each hatchling recovered in drift or in outflow was considered a “success” compared 

to the "failures" (total recovered hatchlings - successful hatchlings).  Treatments were set as the fixed 

effect and the random effects of cohort and container were modelled for the intercept. The paired 

design of the dislodgment experiment was considered by setting the pair identifier as a random effect.  

Dislodgement trials also had the random effects of tank number and treatment order (wave or tip 

experienced first or second).  The dislodgment model was also run with a second fixed effect of tank 

depth.  Sustained drift experiments had an extra random effect of jar, but all GLMMs run with any 

combination of random effects produced variance-covariance warnings.  Therefore, a simplified 

generalized linear model (GLM) was run for this experiment.  The GLM excluded all random effects and 

was run using the glm() function in the MASS package (Venables and Ripley, 2002).   

To determine the goodness of fit for each model, pseudo R2 values were obtained using the 

r.squaredGLMM() function of the MuMIn package (Barton 2016).  The r.squaredGLMM() function 

reports a “marginal R2” value that explains data variance produced by the fixed effect and a 

“conditional R2“ which explains the variance produced by both the fixed effects and the random effects 
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(Nakagawa and Schielzeth 2013).  Pseudo R2 values for GLMs were produced using the formula 

[  
                 

             
 ] (Zuur et al. 2009).  Sustained drifting and drift in current models had three 

treatment levels, therefore the glht() function in the multcomp package (Hothorn et al. 2008) was 

used to perform Tukey post hoc tests to compare all treatments.   

3.3.2 Plankton Sampling 

3.3.2.1 Trap Construction 

Four intertidal plankton traps, based on the design of Castilla and Varas (1998) and Dudas et al. (2009), 

were constructed to sample coastal water for the presence of drifting hatchlings (Figure 3.3A).  This 

style of “swash” trap works by draining wave water through a filter during the incoming and outgoing 

low tides (Chen et al. 2013).  A stop valve prevents plankton from escaping the trap when it becomes 

submerged at high tide.  Traps were deployed at low tide on exposed rock substrate, so that 

approximately one meter of water covered the traps at high tide.  The distance from the top of the trap 

to the nearest rock of equal height was measured to indicate how far away a dislodged hatchling may 

have travelled.  Deployment occurred during known emergence of wild hatchlings from egg capsules, 

between December and February.     

 

Figure 3.3 A) One of four intertidal plankton traps deployed at two sites in Wellington.  Three outflow holes surround the main 
PVC body, a plastic funnel is adhered to the top of the pipe.  A vent cowl with Styrofoam ball inside (visible through the 
outflow hole) is glued to the bottom of the funnel and acts as a stop valve at high tide.  The mesh bag to the right would be zip 
tied to the vent cowl during deployment.  Steel L brackets are used to bolt the trap to bedrock on site.   B) Deployed in the field 
at Point Halswell during low tide. 

The traps consisted of a 145 mm length of 100 mm diameter PVC tube with three 50 mm diameter 

drainage holes set equidistant around the middle of the pipe.  Water entered the trap through a 170 ml 

plastic funnel that was hot glued to the PVC pipe.  The top of the funnel was cut so that less than 6mm 

protruded from the top of the pipe.  The funnel outflow was cut to 10 mm and a 50 mm plastic vent 

cowl was glued over it.  A 15 mm diameter Styrofoam ball trapped inside the vent cowl acted as a 

floating stop valve.  Filters were created by sewing 100 µm mesh into bags and securing the top of the 
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bag over the vent cowl with a zip tie.  Two steel “L” brackets, set opposite each other, were fixed to the 

pipe by four stainless steel bolts.  The traps were then secured to bedrock by two stainless steel screws 

and plastic wall plugs sunk into predrilled holes (Figure 3.3B).  Plankton samples were collected by 

unscrewing the traps from the rock, removing the filter bags from the bottom, fitting a clean filter bag 

by zip tie, and reattaching the trap to the rock. 

3.3.2.2 Site Descriptions 

Traps were deployed four times in the Wellington Harbour (Point Halswell) between 27 December 2015 

and 12 January 2016. Point Halswell is a rocky shore consisting of bare bedrock littered with boulders 

and cobble in the intertidal zone.  It is a fairly linear coastline with few high tide pools exposed at low 

tide.  Cominella maculosa and egg capsule presence was confirmed at the site before trap deployment. 

The sheltered position of Point Halswell in the harbour means wave energy at the site is inconsistent.  A 

couple of stormy days occurred during the deployment period, but most of the weather was settled 

with little wind induced wave action observed.  Traps were set 7-22 meters apart along the coastline, 

with the nearest rock of equal height ranging from 0.75 - 1.5 meters.   To ensure that any hatchlings 

entering the trap would remain in the trap, and not just crawl out, hatchlings were planted in two traps 

at Point Halswell for one sampling period.   

Traps were deployed eight times on the Wellington south coast (Waitaha Cove) between 12 and 28 

January 2016.  This area is a rugged bedrock shelf of peaks and valleys creating a complex network of 

tide channels, large pools, and many exposed tide pools at low tide.  The Wellington south coast is 

known for its constant southern swells and big seas in rough weather.  The rocks extending out to sea 

at Waitaha cove diffuse the majority of the water energy, but wave action is greater at Waitaha than at 

Point Halswell.  Traps were situated further apart in this area to sample the large network of pools (24-

41 m apart) with 0.1 - 1 meter between traps and nearest rock substrate of equal height.  Adult C. 

maculosa presence was confirmed at the site, during sampling, but I did not search for egg capsules. 

C. maculosa hatchlings collected for experiments were occasionally released at varying distances from 

the traps.  These releases, once at Point Halswell and five times at Waitaha Cove, were done by 

pipetting the hatchlings from a transfer container to a variety of damp, exposed, sheltered, and/or 

coralline microhabitats.  A large number of C. virgata egg capsules were removed from rocks collected 

for experiments.  These egg capsules and the emergent hatchlings were released at one time in the 

area near the Point Halswell traps.   
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3.3.2.3 Collecting and Sorting 

Filter bags were collected every two days and placed in a Ziploc bag for transport and sorting.  One trap 

was deployed for four days at Point Halswell, due to rough seas.  When immediate sorting was not 

possible, filtered sea water was added to the Ziploc and the bag was set in a water bath.   Filter bags 

were rinsed with filtered salt water into a clear container with two 700 µm mesh sides, so that small 

particulates could easily be strained.  This straining container was set inside a white container to 

maximize contrast for searching by eye.  Particulates larger than 700 µm were removed by forceps or 

pipette.   Algae blades were agitated within the straining container to dislodge any attached hatchlings.  

Highly filamentous or branching algae were examined under a dissecting microscope to ensure 

hatchlings were not well attached and hidden.  Once emptied, filter bags were thoroughly rinsed in 

warm freshwater and dried until the next deployment. 

3.4 Results 

3.4.1 Dislodgement Experiment 

An average of 46.1 hatchlings were recovered from each dislodgement trial, with recovery ranging from 

35-51.  The large number of missing hatchlings could be due to their forceful ejection out of the tank 

during wave treatments or from being lost when rocks were transferred for rinsing.    Hatchling 

recovery was not biased by the trial order or treatment.  Very few hatchlings were classified as 

unresponsive (mean = 1.53 ±1.50, n = 36).  The full GLMM model indicated that significantly more 

hatchlings were collected in outflow containers under wave treatments than under still treatments, but 

there was no effect of tank depth (Table 3.1, Figure 3.4).  All random effects (pair identity, cohort, 

container, tank, and treatment order) in the full model explained only slight variance.  The full model 

explained a large portion of the variance in the data when considering just the fixed effects (marginal 

pseudo R2 = 0.8713) and when considering fixed and random effects (conditional pseudo R2 = 0.8735).   

Table 3.1 Full GLMM model results for the dislodgement experiment considering wave and tank depth effects.  Fixed effect 
variables are on the left, with estimate coefficients, standard error, z-test values, and the associated p values.  Random effect 
variables are on the right, with estimated variance contribution and standard deviation for each variable. 

Fixed Effect Estimate Std.Error z value p 

 

Random Effect Variance Std. Dev 

Intercept -7.1031 1.0289 -6.904 <0.0001 

 

Pair 0.0115 0.3391 

Wave 9.4655 1.0236 9.247 <0.0001 

 

Cohort <0.0001 <0.0001 

Shallow 0.5462 0.3219 1.697 0.0897 

 

Container <0.0001 <0.0001 

      

Tank 0.0006 0.0760 

      

Order <0.0001 <0.0001 
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Figure 3.4  Average proportion of hatchlings captured in outflow traps for dislodgement experiments with wave and still 
treatments, separated by tank depth.  Error bars represent standard deviation.    

3.4.2 Drifting in Current 

The average recovery rate for hatchlings from this experiment was high (48.41 ± 3.82), but there was a 

standout low recovery of 32 hatchlings in one slow current trial.  It is likely that these hatchlings 

escaped through a hole in the outflow trap, but have still been considered lost.  The average number of 

unresponsive hatchlings was low (0.78 ± 1.53, n = 27).   

The GLMM model identified a significant treatment effect influencing the number of hatchlings found in 

the outflow traps (Table 3.2).  Tukey tests verified that, compared to still treatments, significantly more 

hatchlings exited the experimental buckets through drift when subjected to either slow (z =11.691, p < 

0.0001) or fast currents (z = -7.454, p < 0.0001).  Approximately 88% and 79% of hatchlings were found 

in outflow traps for fast and slow currents, respectively (Figure 3.5).  Conversely, only 7% of hatchlings 

were found in outflow traps when dropped into still current (Figure 3.5).  Considering the similar 

percentage of hatchlings found in outflow traps for the fast and slow treatments, the significant 

difference between the two treatments is surprising (Tukey post hoc test: z = -3.717, p = 0.0006).  The 

random effect of cohort had an influence on hatchling outflow (variance = 2.50 ± 1.58), while the effect 

of transfer container was minimal (variance = 0.87 ± 0.94). The GLMM fixed effects explained 44% of 

the variation in the data (marginal pseudo R2 = 0.4436) while the fixed and random effects explained 

63% of the variation (conditional pseudo R2 = 0.6257). 
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Table 3.2 GLMM model results for the drift in current experiment.  Fixed effect treatment variables are on the left, with 
estimate coefficients, standard error, z-test values, and the associated p values.  Random effect variables are on the right, with 
estimated variance contribution and standard deviation for each variable. 

Fixed Effect Estimate Std.Error z value p 

 

Random Effect Variance Std. Dev 

Intercept 1.5532 0.5638 2.755 0.0059 

 

Cohort 2.4679 1.5805 

Still flow -3.206 0.4301 -7.454 <0.0001 

 

Container 0.8772 0.9366 

Fast flow 1.5243 0.4101 3.717 0.0002 

     

 
Figure 3.5 Average proportion of hatchlings captured in outflow traps for drift in current experiments with fast, slow, and still 
current treatments.  Error bars represent standard deviation.  

The means by which hatchlings were carried into the outflow traps was obviously different between still 

and current treatments.  During the three 30 minute crawl checks, an average of 20 hatchlings (± 6, 

n=9) were observed on the bucket walls in still trials (Figure 3.6) and no hatchlings were ever observed 

on bucket walls of fast or slow trials.  This indicates hatchlings deposited in currents were transported 

out of the bucket by the flow, whereas hatchlings in still conditions dispersed by crawling.  Hatchlings 

that drifted to the bottom of the weak and strong treatments within the first 30 minute interval would 

often be swept away at the next interval.  However, there were 2 trials where less than 60% of 

hatchlings exited the current treatments.   
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Figure 3.6  Hatchling dispersal after an hour in the still treatment for drift in current experiments.  24 hatchlings are positioned 
on the walls, with one about to exit an outflow hole (black arrow).   

3.4.3 Sustained Drifting 

Hatchling recovery rates were high for this experiment with an average of 49.88 (± 0.58, n = 27) and a 

range of 48 to 51.  Hatchling losses likely occurred from miscounts at addition or loss when transferring 

from jar to petri dish.  While the still treatment often had hatchlings found above the water line inside 

the jars, hatchlings were never found outside of the jars indicating the hatchlings did not crawl out.  The 

recovery of 51 hatchlings likely resulted from a miscount at the start of the trial.    An average of 0.30 

hatchlings (± 0.54, n = 27) were classified as unresponsive overall.  

The number of hatchlings found drifting was surprisingly low for all treatments (maximum of 9) and no 

drifters were classified as unresponsive.  Drifters found in still conditions were rarely found within the 

water column.  They were always floating at the surface, apparently using the surface tension of the 

water to suspend by their foot under the air-water interface.  When disturbed these drifters would sink.  

Conversely, drifters in the strong treatment were always found moving in the circular pattern of the 

water column. 
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The GLM model, excluding random effect due to variance-covariance errors, identified a significant 

treatment effect of mixing on the number of hatchlings found drifting in the treatment container (Table 

3.3).  The pseudo R2 for the model was quite high, indicating 61.4% of the data's variation was 

described by the treatment factor.  Significantly more hatchlings drifted in still treatments than in 

strong mixing treatments (Tukey post hoc test: z = 4.084, p < 0.0001).  This result is supported by the 

observation that less than 10% of hatchlings drifted in still treatments, while less than 1% of hatchlings 

drifted in strong treatments (Figure 3.7).  Since 0% of hatchlings were found drifting in weak 

treatments, an insignificant difference between weak and strong treatments (Tukey post hoc test: z =    

-0.008, p = 1) was expected.  However, the insignificant difference between weak and still treatments 

(Tukey post hoc test: z = 0.009, p = 1) was surprising. 

Table 3.3 GLM model results for the sustained drift experiment.  Fixed effect variables are presented with estimate 
coefficients, standard error, z-test values, and the associated p values.   

Fixed Effect Estimate Std.Error z value p 

Intercept -4.7118 0.5022 -9.381 <0.0001 

Weak -17.9189 2346.583 -0.008 0.994 

Still 2.18 0.5338 4.084 <0.0001 

 

 
Figure 3.7 Average proportion of hatchlings found drifting for sustained drifting experiments with strong, weak, and still mixing 
treatments.  Error bars represent standard deviation.  

3.4.4 Plankton Sampling 

At Point Halswell, weather and maintenance issues prevented continual deployment of all traps.  

Plankton samples were successfully collected 14 times, with only one sampling period lasting four days 

instead of two days.  For the two traps that had hatchlings planted to test retention, all hatchlings were 

successfully identified as alive.  This finding indicates that the searching protocol was sufficient for 

finding hatchlings and that any trapped hatchlings would not escape by crawling.  A lot of algae and silt 

was collected in the traps at Point Halswell, as well as a mix of unidentified crustaceans.  A single living 

C. virgata hatchling was found in one trap deployed on the same day that C. virgata were released in 

the surrounding pools.  Two small unidentified gastropods were found in one trap.  These unknown 
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gastropods have been observed to associate with algae and may have entered the trap on algae also 

found in the sample. 

Poor weather did not prevent the continuous deployment of Waitaha Cove traps throughout the two 

week sampling period.  However, maintenance issues for several of the traps meant that occasionally 

only two traps were deployed at a time.  A total of 29 plankton samples were obtained, with all sample 

periods occurring over two days.  Filter bags contained less silt and algae then Point Halswell.  No living 

Cominella hatchlings were collected at Waitaha Cove, but a C. virgata shell full of debris was found once 

and an empty C. maculosa shell was found after the mass release of the experimental hatchlings.  Three 

unidentified species of living gastropods were found four times.  One of these species was the algae-

associated gastropod found at Point Halswell and commonly observed at Waitaha.  The other two 

appeared to be two top shell species.  

3.5 Discussion 

Laboratory experiments in this study indicate that Cominella maculosa hatchlings can be dislodged by 

wave action and can be carried short distances by drifting in currents.  However, sustained drifting 

experiments imply hatchlings are unlikely to remain drifting for prolonged periods in a vertically mixed 

water column.  These experiments indicate that wave dislodgement and local flow regime will likely 

result in small-scale displacement of hatchlings, but it is unlikely hatchlings will remain in drift long 

enough to undergo events of long distance dispersal over hundreds of kilometres.  The capture of a 

single living C. virgata hatchling in a Point Halswell plankton trap supports the potential for 

dislodgement and suspension into the water column for the smaller C. maculosa.  Suspension into the 

water column is the first step of the drifting processes, which requires time in currents to facilitate 

dispersal.  Due to the nearshore position of the traps, the captured hatchling is only evidence that 

suspension into the water column can occur, but the unknown time that the hatchling was in the water 

column prevents a conclusion of drifting.   

The dislodgement experiment used to investigate drifting out of tide pools was not designed to test the 

likelihood of hatchlings being dislodged from the rock.  If this was the aim of the experiment then 

hatchlings would need to be placed on all sides of the rock to vary the effects of the tip bucket energy 

and the micro-position of the hatchling (in a crack or on a steep slope) would also need to be 

considered.  Rather, the aim of this study was to determine if successfully dislodged hatchlings would 

be caught in the outflow current created by the wave and dragged out of the “tide pool” (tank).  The 

significant treatment effect of the wave factor supports this possibility.  Since hatchlings were not 

found in outflow traps from still treatments, it is unlikely that hatchlings in the wave trials crawled out 
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of the tanks.  This finding supports the conclusion that the water current is the mechanism of hatchling 

movement.  Several studies have been conducted to determine the tenacity of gastropods subjected to 

intertidal hydrology (Trussell et al. 1993, Prowse and Pile 2005, Rilov et al. 2008), but few are aimed at 

determining the fate of dislodged individuals.  Miller et al. (2007) found that over 50% of adult 

periwinkles (Littorina keenae) successfully returned to the supralittoral habitat after being manually 

dislodged into intertidal waves.  While periwinkles are quite small (>7 mm used by Miller et al. 2007), 

they are far larger than the hatchlings considered in this study (c. 1.5 mm).   

The dislodgement experiment was initially undertaken using the shallow tank depth, but placing 

hatchlings on exposed rock is likely an unrealistic situation.  While it is possible that hatchlings will 

occasionally find themselves left high and dry, it is more likely that as the tide recedes the hatchlings 

would seek refuge from desiccation.  Furthermore, hatchlings placed on dry petri dishes were rarely 

observed to actively crawl.  This means the shallow treatment was also not conducive to comparing 

wave and still treatments for the mechanism of moving out of the tank (crawling vs current).  In the 

end, tank depth did not produce a significant response in this experiment, as even in deep tanks 

hatchlings rarely crawled out of the outflow drain in still treatments. 

It was predicted that hatchlings subjected to currents, in the drift in current experiments, would more 

often be found in the outflow traps of the bucket.  The prediction was supported with significantly 

greater proportion of hatchlings found in outflow traps for slow and fast currents, compared to still 

treatments, indicating that hatchlings suspended in water columns can be transported by local currents.  

However, the random effect of cohort explained some variation in hatchling outflow.  Though cohorts 

were not replicated through enough trials to draw conclusions, this variation may be caused by variance 

in hatchling size.  While no hatchlings appeared larger than others when selected, variances in shell 

thickness could change the rate at which hatchlings exit currents.  Contrary to the initial prediction, 

hatchlings were equally likely to be transported into outflow traps by slow currents as fast currents.  

The similar response between treatments is likely due to the fact that while the volume of water 

transported was different, the actual velocity of the water was the same (0.6 m/s).  In order for long 

distance dispersal to occur, hatchlings would need to remain in alongshore currents for a prolonged 

period of time.  The northward flowing Wairarapa Coastal Current found off the southeast coast of the 

North Island (Figure 2.1A) has an average velocity of 0.21 m/s (Chiswell 2000), suggesting that the 

velocity of lab experiments (0.6 m/s) is greater than an average offshore current.  While surf zone 

velocities on the rocky shore can be as high as 25 m/s (Denny et al. 2003), the direction of the turbulent 

water is chaotic (Denny and Gaylord 2010) and is unlikely to lead to linear transport offshore.  Assuming 

a rare high flow current is able to transport a hatchling to an offshore current, the velocity of the 

current may actually be too slow to prevent sinking of the hatchlings.    
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When hatchlings were found in the bucket of current treatments, they were generally lodged against 

the small edge (<1 mm) of a 75 mm diameter circular feature on the bottom of the bucket.  This 

indicates that hatchlings could exit currents if they encounter features that may alter water flow on a 

small scale.  Preliminary trials for this experiment included using a small cobble substrate.  It was 

observed that hatchlings caught in a downdraft of the current were able to adhere directly to the 

cobbles or exit the current by going under the rocks.  The likelihood of encountering a rock in the 

middle of an ocean current is unlikely, but encountering substrate on a receding tidal current is highly 

likely.  Therefore, it is probable that a hatchling dislodged into a tidal current could exit the current 

before being transported offshore.  

The sustained drifting experiments, using circular air-driven currents, aimed to investigate the 

likelihood of hatchlings remaining suspended in a water column for a sufficient amount of time to be 

transported long distances.  However, the vertical circular current created by the air pump was not 

optimal for addressing this question.  A horizontal current, similar to the drift in current trials, would be 

better suited to the question.  Ideally, a horizontally circular flume would be built out of wide clear 

tubing that could be filled to create a continuous flow of variable currents.  Hatchlings could then be 

added to this flume and observed for their ability to sink or drift.  Recently, a redesign of the bucket set 

up used for the drifting in current experiment has been considered.  Using elevated outflow drains at 

the centre of the bucket instead of the edges might reduce hatchling transport out of the bucket while 

keeping hatchlings subjected to a horizontal current.     

The sustained drifting experiment may not directly answer the question of hatchlings drifting in a 

horizontal current, but it does suggest that hatchlings dislodged into the chaotic turbulence of the rocky 

coastline (Denny and Shibata 1989, Denny and Gaylord 2010) may not actually be pulled into offshore 

waters.  It is likely that once dislodged, hatchlings will be tumbled into various substrata that they may 

be able to adhere too.  Juvenile snails (Lacuna spp.) and limpets (Helcion pellucidus) are able to produce 

mucus threads that they can use to aid drifting and facilitate capture of a stationary object to exit the 

water column (Vahl 1983, Martel and Chia 1991b, Martel and Diefenbach 1993).  There is no indication 

that Cominella spp. produce mucus threads, but mucus production is probably not necessary if pebbles 

and cobble facilitate hatchlings exiting the water current, as noticed in preliminary trials.  Recent 

hydrological studies indicate that vertical mixing, due to wind and wave energy, is more common above 

the thermocline of surface currents than previously considered (Qiao et al. 2016).  However, the 

sustained drifting design can’t be said to directly address the likelihood of hatchlings becoming trapped 

in this micro current either, as a larger volume of water would be required to ensure that contact with 

container walls did not facilitate exit of the current.   



 

Chapter 3  61 
 

An interesting finding of the sustained drift experiment was that significantly more hatchlings drifted on 

the surface tension of the still treatment than drifted in the water column of the strong mixing 

treatment.  This behaviour was also observed under a dissecting microscope when hatchlings were 

viewed in a small amount of water.  Several hatchlings crawled to the barrier of the water puddle, 

crawled up the vertical wall of water, and proceeded to crawl upside down under the water.  Similar 

floating-by-foot behaviours have been observed in low energy environments for adult Cominella 

glandiformis (Bimler 1976) and juvenile Japanese turret shells (Batillaria cumingi) (Adachi and Wada 

1999).  Adachi and Wada (1999) attributed the disparity between frequent observations of floating 

juveniles in soft bottomed habitats and rare observations in rocky habitats to the increased wave 

intensity of the rocky environment.  This disruption to surface tension is likely why zero hatchlings were 

found drifting at the surface of the weak mixing treatment.  It is likely the mixing was too weak to 

suspend hatchlings into the water column, but the air bubbles sufficiently disrupted the surface of the 

water to prevent floating.  Tukey tests identified a significant difference between still and strong mixing 

treatments, but not between still and weak mixing treatments.  I am unable to explain this discrepancy.   

The successful capture of one C. virgata hatchling in plankton traps is important, as it indicates that 

dislodgement into the water column can occur.  Since C. virgata hatchlings are larger than C. maculosa 

hatchlings (Carrasco et al. 2012), it can be inferred that C. maculosa hatchlings are also likely to be 

dislodged.  Dislodgement and retention in the water column is probably uncommon for Cominella spp., 

as only one living C. virgata was captured out of hundreds released and unknown numbers of wild 

hatched.   Rare collections of direct developers in plankton traps have also been observed by Martel 

and Chia (1991b).  Of the four species of direct developing gastropods (Barleeia spp., Onchidella 

borealis, Nucella emarginata, and Littorina sitkana) found in their off-bottom collectors, only Barleeia 

spp. was captured more than three times over the 30 days of sampling (Martel and Chia 1991b).  Martel 

and Chia (1991b) concluded that frequent drifting by these algae-associated taxa would increase 

chance rafting and long distance dispersal events.  However, further investigation with similar off 

bottom collectors was unsuccessful in trapping the snail Nucella emarginata and drifting dispersal was 

considered infrequent (Gosselin and Chia 1995).  This variation in observance indicates that rare events 

of drift dispersal can occur, but the frequency with which they occur cannot be extrapolated.  While 

these collectors were suspended off the rock substrate, these traps were deployed near shore and 

really only reflect the process of dislodgement into the water column.  Conclusions of long distance 

dispersal from presence in the trap should be made with caution.   

Swash traps may not be the most effective tool for detecting drift, as only a small portion of surface 

water enters the trap through wave or wind energy.  During calm periods, like many days at Point 

Halswell, the incoming tide may produce very little wave energy and the stop valve may close before a 
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large amount of surface water has entered the trap.  A better collection method might be a settlement 

tube in which a dense fixative agent (formaldehyde or formalin) sits at the bottom to preserve any 

organisms that drift into the tube (Yund et al. 1991, Landry and Miron 2011).  However, the likelihood 

of positioning these tubes in areas where at least one hatchling would settle out of the water column is 

low.  Ideally, a plankton trap that filters a large area of the water column would be used, such as that 

employed by  Martel and Chia (1991b), who suspended nets filled with red algae off the bottom of 

surge channels.  This design allows a larger volume of water to contact the collector, but it also assumes 

that the captured species associate with the red algae and don't leave looking for better habitat or fall 

off.  Algal filled collectors are likely not ideal for attracting a scavenging species.  It would be interesting 

to fill an off bottom collector, supported by copper pipes to prevent crawling into the net, with 

decaying bait to see what was collected.  However, it is likely that large, mobile scavengers such as 

crustaceans and fish would disturb, or predate on, the attracted gastropods.   

We currently don’t know what processes affect survival and dispersal of Cominella spp. hatchlings.  It is 

assumed that hatchlings, like adults, feed as scavengers.  Cominella maculosa and C. virgata hatchlings  

have been successfully  maintained in the lab with Perna canaliculus tissue for short time periods (van 

der Sman et al. 2009, Carrasco and Phillips 2012, Carrasco et al. 2012), but prolonged rearing and food 

preference trials have not been undertaken.  Attempts to determine the food preference for C. 

glandiformis hatchlings ended in death when a crab was accidentally introduced (Morley 2013).  

Determining hatchling food and habitat preferences could provide important clues to actual dispersal 

rates by indicating crawling rates for food or affiliating with potential rafting substrata. 

There is also a lack of knowledge about hatchling behaviour.  Hatchlings were observed to crawl a lot.  

Unfortunately, several of the hatchling holding containers had tiny, unnoticed holes that facilitated a 

steady supply of hatchling escapees into the sea table water bath.  At the end of most nights, escapees 

would be collected and put into a container (marked unknown origin and not used in tests).  The next 

morning, hatchlings could be found at the far end of the sea table again (4.1 m).  Rajasekharan and 

Crowe (2006) observed that when periwinkles (Littorina littorea) were found in naturally dense 

populations, they exhibited higher rates of movement than individuals from naturally sparse 

populations.  This behaviour may have contributed to the large distances the escapee hatchlings 

wandered.  Hatchlings kept in the aquaria were often found at, or slightly above, the water line.  This 

behaviour was also observed for adults, and could be related to the expectation of a tidal cycle.  When 

hatchlings from the more populous Waitaha Cove tank were dislodged, they were observed along the 

water line 30 minutes later. In contrast, those from the less populous Point Halswell tank appeared 

slower to respond.  Obviously, until hatchling habitat is identified, natural densities of hatchlings in the 

field are also unknown, but crowding could be a trigger for hatchlings to disperse more widely. 
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Mucus production by C. maculosa hatchlings was not observed on an individual level.  However, when 

separating individuals from aggregations (>50 hatchlings together) it was common to observe one 

hatchling being pulled behind another, as if by an invisible thread.  Sometimes hatchlings were so 

connected by the mucus that they would have to be moved to a dry area of the petri dish to break the 

thread.  Active mucus thread production for promoting drift and reducing sinking speeds has been 

observed for juvenile snails, Lacuna spp. (Martel and Chia 1991b), indicating a potential mechanism for 

hatchlings to get caught in currents.  However, mucus production observed in the lab may be a reaction 

to stress and artificially high densities of the holding containers. All hatchlings used in the experiments 

were added individually to ensure there was no mucus thread connection influencing one of the 

hatchlings. 

The rare events of dispersal by drifting individuals can never be completely rejected, as the absence of 

observation is not the same as absence of occurrence.  Drifting and rafting are common dispersal 

mechanisms used to explain why direct developing benthic species have such large geographic 

distributions (Johannesson 1988, Colson and Hughes 2004) and how their populations maintain genetic 

connectivity (Hoskin 2000, Bell 2008, Cumming et al. 2014).  The results of this study indicate that long-

distance dispersal by individually drifting C. maculosa hatchlings is uncommon, though rare events may 

occur.  Local flow regimes likely influence distribution on the small scale, but will not contribute to large 

geographic transport.  However, depending on where hatchlings ultimately settle, long-term exposure 

to dislodgement and small-scale transport may facilitate significant movement along a coast line.  These 

tiny gastropod hatchlings can be suspended in the water column by wave force and get washed off 

rocks.  However, the position of the individual in the microhabitat of the rock and tidepool are likely to 

influence how prone it is to the dislodgment force.   The behaviour of the individual within the water 

column will likely influence its fate as well.  Drift experiments in this study were not conducted with a 

floating substrate, so it is unknown if drifting hatchlings can attach and be subjected to rafting dispersal.  

Future areas of research into the habitat and feeding ecology of hatchlings would contribute to further 

determining the actual dispersal potential of C. maculosa.   
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Chapter 4 
General Discussion 

Uncovering genetic and demographic connectivity between populations facilitates a better 

understanding of the ecological and evolutionary process operating on a species and its distribution.  

Genetic analyses can elucidate historical and contemporary exchange of genes between populations, 

but it can often be difficult matching it to the demographic influences of migration.  Discrete genetic 

population structure is generally evidence that populations exist in demographic isolation and are 

unlikely to form a metapopulation that can recolonize locally extinct sites.  Conversely, high levels of 

genetic connectivity do not necessarily reflect demographic connectivity (Ovenden 2013).  The 

decoupling of genetic and demographic connectivity in “crinkled” populations can be caused by founder 

events, migration into large populations, or the appearance of a recent barrier to dispersal. 

The dispersal potential of an organism could be used to infer the likelihood of a crinkled population 

occurring during high levels of genetic connectivity.  The production of planktonic larvae greatly 

enhances the dispersal potential of a species and therefore the likelihood that demographic 

connectivity is occurring when gene flow is high.  Sedentary, direct-developing species are more likely 

to be genetically similar due to low immigration rates or founder events that have not had time to 

differentiate from the source population.  However, dispersal potential is not necessarily equal to 

realized dispersal; which is the actual distance travelled by a disperser.  There are many studies that 

indicate larval behaviour, coastal features, and local currents play an important role in reducing the 

distance planktonic offspring actually disperse, with self-recruitment being much more common than 

previously believed (Barber et al. 2002, Swearer et al. 2002).  Higher than expected levels of genetic 

connectivity for direct developers is attributed to long-distance dispersal events through rafting on a 

substrate or hitchhiking on birds (Hoskin 2000, Miura et al. 2012).  These same mechanisms are often 

proposed to describe the wide spread distribution of direct developing species across large bodies of 

water (Johannesson 1988, Wilhelmesen 1998).    

Realized dispersal of a species is influenced by its inherent dispersal potential (mode of development, 

ability to raft), the costs of dispersal (predation, post-settlement mortality), and local landscape 

features (inhospitable habitat, ocean currents) (Grantham et al. 2003, Burgess et al. 2012, Smith et al. 

2015).  The description of Cominella maculosa as a low realized dispersal species is supported by the 

discrete genetic population structure observed over large and small spatial scales (Chapter 2.1).  The 

genetic similarity and appearance of genetic connectivity between some populations, particularly the 

southern Wairarapa, is more likely due to rare dispersal events of numerous eggs rather than drifting of 



 

Chapter 4  65 
 

individual hatchlings (Chapter 3.1 Abstract).  Drifting egg capsules have been observed for the speckled 

whelk C. adspersa (MD unpublished observation) and the top shell Margarella antarctica (Hoffman et 

al. 2011).  The large number of hatchlings with identical mitochondrial lineages from rafting or drifting 

egg capsules would produce a large immigrant population of low genetic diversity.  Assuming low post-

hatching mortality, this influx of homogeneous immigrants could be large enough to create a high 

frequency signature of the haplotype in the population.  Conversely, if landing at an unpopulated 

location, the large number of hatchlings could create a “founder takes all” effect where the levels of 

crawling immigration from neighbouring populations is too low to contribute long term genetic lineages 

(Waters et al. 2013).  A founder take all effect is a reasonable explanation for the genetic patterns of 

the populations in Southern Wairarapa, where a major recolonization after the LGM is now blocking the 

northern haplotypes from spreading down the coast into the southern populations.  Large stretches of 

sandy habitat between the two locations may further reduce the possibility for new immigrants to 

enter a population through crawling.  However, large stretches of sandy beaches are not obviously 

visible on Google Earth images between Honeycomb Rock and Glendhu, where a genetic barrier 

appears to be present. 

While larvae are often the main dispersers in the marine environment, adult migration can also 

influence colonization (Grantham et al. 2003, Armitage and Fong 2004).  Colonization of distant 

breakwaters in Belgium has been suggested to occur from the dislodgement of adults that are rolled by 

water currents along the sand (Johannesson and Warmoes 1990).  When subjected to dislodgment 

trials, adult C. maculosa withdrew into their shells and rolled to the bottom of tanks (MD unpublished 

observations).  Whelks remained withdrawn well after the wave energy dissipated; indicating that a 

strong water current over a sandy subtidal habitat could promote dispersal across an inhospitable 

habitat.  However, dispersal by rolling is unlikely to occur in the rocky habitats where spotted whelks 

would most likely get lodged in rocks before reaching flat habitat.  Chapman (2000) found that three 

intertidal grazing snails moved in a random daily pattern that accumulated into long term retention in a 

local area.  The carnivorous C. maculosa were successfully collected by baiting tide pools, suggesting 

whelk movement is strongly influenced by the ability to detect food.  Bait detection distances for the 

scavenging snails Ergalatax contracuts and Nassarius festivus were found to be greater than 80 cm in 

flowing water (Morton and Yuen 2000, Morton 2006).  This relatively short detection limit, coupled with 

the personal observation that captive Cominella maculosa burrow and wait for food before emergence, 

suggests that large dispersal distances for adults will be uncommon.  There is no support for Cominella 

species engaging in homing behaviours.  However, field-based capture-mark-recapture (CMR) studies 

for C. maculosa support the conclusion that adults do not move large distances and may exhibit low 

levels of philopatry (MD unpublished data).  While only 6% of 680 marked C. maculosa were recovered 

one year after marking 16 tidepools, 80% of the marked whelks were recovered from the same pool in 
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which they were last caught.  The one-year recapture result is consistent with the original mark-

recapture study performed over 2.5 months where 95% of the total recaptured whelks were found in 

the same pool they had last been captured.  The low rates of recapture recovery are typical of 

gastropod CMR (Janson 1983, Johnson and Black 1995, Boulding et al. 2007, Castro et al. 2006) and may 

indicate transient movements, satiation that prevents detection at bait traps, or high mortality.  High 

mortality for C. maculosa is not supported by CMR analysis conducted on the 2.5 month study (MD 

unpublished data), indicating low recovery is due to satiation in a highly productive environment or 

transient movements are occurring.     

The low probabilities of observing rafting egg capsules, detecting drifting hatchlings, or recapturing 

migrating adults at large distances is problematic for determining accurate realized dispersal for direct 

developing gastropods.  Mass marking hatchlings with a chemical marker could potentially be of use, 

but knowledge of where to find the hatchlings after marking is currently lacking.  While Cominella spp. 

hatchlings have been raised on mussel flesh (van der Sman et al. 2009, Carrasco et al. 2012), it is 

unclear if food or habitat preference is exhibited at this life stage.  Indirect estimates of migration can 

be made from genetic data, but the population sizes must be known.  If population sizes are known, 

then the standard deviation of the lifetime dispersal displacements (σ) can be determined from the 

slope of a line fitted to differentiation vs geographic distance plots (Rousset 1997).  This method 

successfully estimated σ from microsatellite DNA data for a periwinkle (Littorina subrotundata) that 

matched the lower range of σ observed from CMR experiments (Boulding et al. 2007).  Therefore, the 

best method to gain insight into realized dispersal and population connectivity for direct developing 

species may be to use accurate population-size survey methods that can be carried out at the time of 

genetic sampling. 

Demographic surveys of populations at areas of genetic disjunction, such as the Wairarapa, could 

illuminate how recently founded populations differ from historically isolated populations.  It is likely 

that the southern Wairarapa group contains low genetic diversity and the appearance of genetic 

connectivity due to recent founding events.  Founding events of direct developing species may lead to 

successful, permanent populations since the hatchlings are unlikely to be displaced by water currents 

(Johannesson 1988).  However, a recent study suggests that species with planktonic dispersal are more 

temporally stable because realized connectivity can buffer population fluctuations (Sahara et al. 2016).  

The low diversity in recently founded populations would be maintained if the population fails to expand 

or if the location is subject to frequent local extinction and recolonization events.  Population surveys of 

abundance and age class structure could indicate size and stability of the Wairarapa populations.  Initial 

sampling at Cape Palliser required 3 days to collect the 27 whelks used in genetic analysis and only a 

handful were found in the following years, indicating that Cape Palliser may be a small population that 
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could be at risk of local extinction from unpredictable environmental events.  Conversely, the Tora 

population appears to be quite large, with the 35 samples easily found in a few hours of searching.  

Short term CMR coupled with transect and quadrat surveys could be used to estimate extinction 

probabilities.  Contemporary connectivity from nuclear molecular markers should then be used and 

analyzed in light of this demographic information.  When possible, genetic and demographic data 

should be combined with information regarding habitat composition (presence of rafting substrate) and 

hydrological models that can predict connectivity if rafting occurs.  Such large scale population surveys 

of remote locations are logistically difficult and costly.  Therefore, genetic examination of species with 

similar life history traits should be compared to the patterns observed for Cominella maculosa.  Two 

direct developing whelk species commonly found in the rocky shores inhabited by Cominella maculosa 

are the oyster borer (Haustrum scobina) and dark rock whelk (H. haustorium).  Genetic analysis of these 

two species with the mitochondrial CO1 gene would allow a comparison of connectivity patterns at 

locations subjected to the same environmental and hydrological conditions. 

The genetic analysis and ecological experiments of this study confirmed that the realized dispersal of 

Cominella maculosa is typically limited by crawling short distances.  However, random events of egg 

capsule rafting or drifting eggs may still promote site recolonization and spread genetic variation.  

These findings support the reports in the broader literature that indicate demographic isolation and low 

genetic connectivity in direct developing species (e.g. Barbosa et al. 2013, Ellingson and Krug 2016).  

While some species of algae-associated direct developers can maintain genetic connectivity across long 

distances (Nikula et al. 2010), this study supports the assumption that populations of direct developers 

not associated with rafting substrate appear to form isolated populations.  On the one hand, long-term 

isolation can lead to local extinction and cause a reduction of genetic diversity.  On the other hand, 

isolation can promote local adaptation and speciation.     
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Appendix  

Mismatch distributions for combined Wairarapa populations and separated by populations.  Analysis 

performed in DnaSP 5.10.01 (Librado and Rozas 2009).   

 

 

 

  


