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Abstract

This goal of this research is to investigate associations between presences
of fish species, space, and time in a selected set of areas in New Zealand
waters. In particular we use fish abundance indices on the Chatham Rise
from scientific surveys in 2002, 2011, 2012, and 2013. The data are collected
in annual bottom trawl surveys carried out by the National Institute of Wa-
ter and Atmospheric Research (NIWA). This research applies clustering
via finite mixture models that gives a likelihood-based foundation for the
analysis. We use the methods developed by Pledger and Arnold (2014)
to cluster species into common groups, conditional on the measured co-
variates (body size, depth, and water temperature). The project for the
first time applies these methods incorporating covariates, and we use sim-
ple binary presence/absence data rather than abundances. The models
are fitted using the Expectation-Maximization (EM) algorithm. The per-
formance of the models is evaluated by a simulation study. We discuss
the advantages and the disadvantages of the EM algorithm. We then in-
troduce a newly developed function clustglm (Pledger et al., 2015) in R,
which implements this clustering methodology, and perform our analysis
using this function on the real-life presence/absence data. The results are
analysed and interpreted from a biological point of view. We present a
variety of visualisations of the models to assist in their interpretation. We
found that depth is the most important factor to explain the data.
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Chapter 1

Introduction

1.1 Aim of Research

In this research, we aim to investigate geographical and interspecies asso-
ciations among fish species. We use likelihood-based cluster analysis on
trawl survey data in New Zealand waters.

Ecological community datasets are often stored as a high dimension
matrix of non-normal data. For example, species by site data recorded
as a binary data (presence/absence), or counts (number of individuals of
each species), or ordinal rankings (Braun-Banquet scale, Wikum and Shan-
holtzer, 1978). Detecting any patterns in high dimensional data can be
quite difficult, and various methods have been implemented to simplify
such datasets. A traditional approach when searching for any patterns
of occurrence by reducing the dimensionality is cluster analysis. Cluster
analysis is a statistical technique for grouping a set of objects where objects
in the same group (called a cluster) are more similar to each other than to
those in other groups. However, many methods (e.g. k-means cluster
analysis) are based on mathematical techniques (Everitt et al., 2011). They
do not have underlying probability distributions, and therefore it is im-
possible to make statistical inferences.

1



2 CHAPTER 1. INTRODUCTION

One type of analysis that overcomes this issue is cluster analysis based
on mixture models. Mixture models assume that data is generated by a
combination of two or more probability distributions, and were first ap-
plied by Pearson (1894). Clustering using mixture models gives a likelihood-
based foundation for cluster analysis, and moreover, can model hetero-
geneity of the data. This approach can provide an effective way of clus-
tering data under a variety of experimental designs (McLachlan and Peel,
2004).

The goal of this research is to investigate associations between pres-
ences of fish species, space, and time in a selected set of areas of New
Zealand waters by using a mixture-model based clustering method. This
research uses the methods developed by Pledger and Arnold (2014), and
Fernández et al. (2014) to cluster species and/or sites into common groups.
This clustering is conditional on measured covariates. We also aim to
identify patterns of biological and ecological significance in the fisheries
in these areas. To the best of our knowledge, this is the first time anyone
has applied these methods incorporationing covariates.
More specific objectives of this research are

1. To detect clustering of species and geographical areas;

2. To summarize and display features of each cluster (What are the
main characteristics of the clusters?, and are these characteristics able
to be interpreted in a biologically/ecologically meaningful way?);

3. To extend the likelihood based clustering methods to cases where
covariates (body size, depth, and water temperature) are included
and compare the results with the clustering without covariates;

4. To compare cluster composition across time;
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1.2 Background

1.2.1 Ecological Data

A variable with only two categories is called binary, dichotomous or bi-
nomial (Dobson and Barnett, 2008). Examples of binary data are pres-
ence/absence, dead/alive, male/female variables. Binary data are often
expressed as dummy variables, and take 1 or 0 to indicate the outcomes
(e.g. present = 1, absent = 0). Numerical data that can be measured with-
out rounding are called discrete data. Count, the number of animals in a
quadrat is a typical example of discrete variable. Ordinal data are categor-
ical data where outcome categories have a natural order. Examples of or-
dinal responses and their ordered categorical scales are level of agreement
with given statement (strongly agree, agree, neutral, disagree, strongly
disagree), and any other variables that use a Likert scale. In biology, ordi-
nal data arise in observations that are qualitative (e.g. absent/rare/plenty)
as in the Braun-Blanquet scale.

Ecological data often consist of binary, count, and ordinal variables.
For example, ecologists collect data on species composition as presence/absence
or count. These data are often presented in a matrix format, for instance,
the rows represent individual species and the columns represent sam-
ple locations. With possibly a large number of species or sites sampled,
a dataset can be a very large matrix, and any overall patterns in such
datasets are not obvious by inspection. Therefore, methods for reducing
dimensions are necessary in order to detect any patterns of occurrence or
abundance in the data.
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1.2.2 Cluster Analysis Using Mixture Models

Cluster analysis can be applied to organize the observed data into mean-
ingful structures to represent the large dataset in simpler and more effi-
cient way. By doing so, ecologists can identify the relationships between
the clusters and understand the information about the data more easily.
They may want to have a better way of identifying diversity patterns asso-
ciated with environmental and geographical conditions, spatial locations,
and seasonal fluctuations. Cluster analysis is a useful tool to uncover true
groups in the data, to help with discovering the pattern and structure of
the data, and to investigate the association between the groups and also
within the groups (Everitt et al., 2011). Another advantage of cluster anal-
ysis is data simplification (Gordon, 1999; Manly, 2004). If a large dataset
can be condensed to a small number of clusters, these clusters can describe
the patterns in the whole data set (Everitt et al., 2011). With the growing
number of large datasets, cluster analysis is a useful method and has been
applied in many domains.

A variety of cluster analysis techniques have been developed over the
last three decades (Everitt et al., 2011). Approaches such as measure-
ments of similarity/dissimilarity, partition optimization methods like k-
means clustering, and hierarchical methods are commonly used. These
approaches are also studied in many seminal papers. However, these ap-
proaches are based on mathematical techniques (Everitt et al., 2011) and
are sample dependent. Moreover, they do not have underlying proba-
bility distribution (Fernández et al., 2014). Therefore, they do not fully
exploit the nature of data, making it impossible to make formal statistical
inferences or provide reliable model comparison methods. It is important
to consider the nature of continuous, binary, count, ordinal, and nominal
data and employ appropriate approaches accordingly.

Clustering using mixture models gives a likelihood-based foundation
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for cluster analysis. This approach can overcome the issue described above
and provide an effective way of clustering data under a variety of exper-
imental designs (McLachlan and Peel, 2004). Finite mixture models in
the context of clustering were first proposed by Pearson (1894) and have
been studied in a number of papers (Govaert and Nadif, 2003; McLach-
lan and Chang, 2004; Pledger and Arnold, 2014). Mixture models assume
that the data to be clustered are generated from a combination of two or
more probability distributions. They enable us to estimate parameters in
each distribution and posterior probability that each individual observa-
tion comes from a particular cluster. The likelihood is used to describe the
observations. Models are often fitted using the Expectation-Maximization
(EM) algorithm. It is an iterative method for finding maximum likelihood
estimates of parameters in the model, and was first performed by Demp-
ster et al. (1977). Mixture models are useful and being widely used to
model the heterogeneity in many research areas (McLachlan and Chang,
2004). For example, McLachlan et al. (2002) demonstrated cluster analysis
based on a normal mixture models for gene expression data. Another ex-
ample is seen in Pledger (2000), where she performed cluster analysis us-
ing finite mixture models on binary data in an ecological capture-recapture
study, and moreover, proposed a biclustering method. Biclustering, a rel-
atively new development in cluster analysis, is a simultaneous procedure
where the rows and columns are grouped into row clusters and column
clusters. Govaert and Nadif (2003) and Pledger and Arnold (2014) devel-
oped biclustering via finite mixtures for binary and count data based on
Bernoulli and Poisson likelihoods. Recently, Fernández et al. (2014) ex-
tended their approach to ordinal data.

Our challenge is to further extend the clustering method developed
by Pledger and Arnold (2014) and Fernández et al. (2014) by adding co-
variates. We are particularly interested in seeing whether we get very
different clusters when covariates are included or not. A covariate is an
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observed variable that can possibly affect the outcome of an experiment.
Alternatively, the terms “explanatory”, “independent variable”, or “pre-
dictor” are used. Covariates are incorporated into the models as terms
for a linear regression. Generalized linear models (GLM) are commonly
used families of statistical models incorporating covariates. For example,
observed environmental conditions (e.g. temperature, soil moisture, vege-
tation coverage) are used as covariates to explain the abundance of species
in ecological communities. An example of inclusion of covariates to cluster
analysis is seen in a paper by Dunstan et al. (2011). Their aim was to group
coral reef fish species that had similar ecological response to the environ-
ment from presence/absence data. They took a two-stage approach (called
mixing GLM in their paper). They first carried out cluster analysis using
mixture models to group species, then applied GLM using environmental
measurements as covariates to each group, separately. Their approach did
reduce the dimension of the original data and allowed them to describe
each group’s response to the environment. However, their approach lacks
description of overall trend at a community level, and moreover, it did not
consider the interactions between the species groups. Ignoring interaction
among species opposes Francis et al. (2002) and Snelder et al. (2007)’s view
that interaction between species is a major component of marine ecosys-
tems. In addition, Bolck et al. (2004) raise their concern about multiple-
stage analysis. They pointed out that analyses are carried out sequentially,
so depending on the method used in the previous stage, the result from
succeeding analysis changes leading to the final result being very differ-
ent. Multiple-stage analysis has a risk of producing inconsistent results.
In order to avoid this risk, we develop clustering analysis which incorpo-
rates covariates at the same time.
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1.2.3 Previous Studies

Cluster analysis is a widely used method in ecology, in particular, in fish-
eries. Early examples of research into clustering in fisheries include He
et al. (1997) and Francis et al. (2002). The literature from He et al. (1997)
highlighted a classic characteristic of fishery-dependent data and risks in-
volved in their analysis. Their aim was to classify fishing methods in re-
lation to species composition of catches of sharks and tuna in Hawaiian
waters. Their data were collected from local fishermen, so their data were
fishery-dependent. Fishery-dependent data are defined as data from spe-
cific commercial and recreational fisheries as distinct from scientific eco-
logical surveys. The characteristics of fishery-dependent data are highly
diverse on fishing boats, gear, techniques, and target species. Further-
more, fishery-dependent data are self-reported data so some fishermen
may not be honestly reporting, or discarding some catch before they land.
Results from analyses using fishery-dependent data are likely to have un-
known biases, leading to invalid conclusions. The authors suffered from a
large variability of the fishery-dependent data and faced a great challenge
in averaging the variations. Although He et al. (1997) adjusted for the vari-
ability as much as possible, they admitted that they could not adjust them
fully. Therefore, it is uncertain whether their findings were conclusive.

On the other hand, a study by Francis et al. (2002) used fishery-independent
data to demonstrate the cluster analysis for fish species in New Zealand
waters. Their data came from research surveys, so the quality of the data
is better than those from He et al. (1997). Unlike the paper from Dunstan
et al. (2011), they considered the interaction between the species groups in
their analysis. However, dissimilar to Dunstan et al. (2011), their cluster-
ing method was mathematical. They used binary data (presence/absence)
and applied correspondence analysis, which does not have any underly-
ing probability distribution of the data. As it was mentioned before, it is
impossible to make any statistical inference from such analysis. These two
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papers highlights the importance of the fishery-independent data, and ap-
proaches we need to use.

Cluster analysis is classified as an unsupervised learning technique, in
which the task is to find hidden structure from data itself. However, many
studies in the field of cluster analysis seem to have combined unsuper-
vised learning approaches with supervised learning, where known infor-
mation (prior information) is included in the analysis. Everitt et al. (2011)
explains the basic idea of cluster analysis in his book. He states that clus-
ter analysis is simply about discovering groups in the data. That is, cluster
analysis reveals cluster structure but not the factors defining the cluster.
He points out that many studies that performed cluster analysis seem to
have predefined clustering factor prior to analysis, and interpreted the re-
sults according to them. He says that using distinct and natural clustering
variables may lead to classification produced by artifact clustering, and
may hinder researchers to discover unknown underlying structure. He is
also concerned that using prior information to anticipate similarity mea-
surements may not produce informative and interesting classifications.
But Leathwick et al. (2003), who studied ecological clustering, argues that
subjective choice of variables for clustering is required to increase robust-
ness of the classification and have meaningful results. In fact, the studies
of Francis et al. (2002) and Dunstan et al. (2011) predefined environmental
measurements as covariates, and produced results that were interpreted
in biologically and ecologically sensible way. In Snelder et al. (2007)’s
paper, in which the importance of ecological classification for conserva-
tion management was highlighted, the authors developed a set of candi-
date variables that can explain the results from cluster analysis. It is true
that we want to interpret the cluster structure in meaningful way, but it is
also true that many previous studies paid little attention to Everitt et al.
(2011)’s view. This research takes account of the concept of cluster anal-
ysis in Everitt et al. (2011)’s book. To evaluate whether the covariates are
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in fact clustering factors, we compare clustering model with and without
covariates. Information added as a covariate may make cluster structure
be irrelevant, may change nothing in group membership as well as the
numbers of clusters detected, or may produce different cluster structures.
The grouping factor can be predefined covariates, or be a hidden variable
called a latent variable. So, if the cluster structure is different between the
simple cluster model and the cluster with covariate model, it means that
the covariate explains the variations in the data and cluster effect will be-
come weak. On the other hand, if cluster structure is unchanged or shows
a little difference between the two models, then it means that effect of the
covariate is small so we may need to investigate what might be contribut-
ing to clustering.

1.3 Mixture Models

In this section, we discuss the formulation of mixture models followed by
the fitting of mixture models via maximum likelihood estimation. It also
illustrates the usefulness of the EM algorithm.

Mixture models are probabilistic models that assume all the data are
generated from a combination of two or more probability distributions. By
combining individual probability distributions, mixture models provide a
flexible and powerful framework for modeling heterogeneous data. Be-
cause of their usefulness, mixture models have been used in many appli-
cations, including cluster analysis, latent class analysis, discriminant anal-
ysis, and survival analysis (McLachlan and Peel, 2004). One of the first
major analysis using mixture models was performed by Pearson (1894),
where he fitted a normal mixture model using moments-based approach.
Later, McLachlan and Basford (1988) have highlighted the advantage of
using mixture models as an effective way of clustering various datasets.
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McLachlan and Peel (2004) provide a guideline of the use of mixture mod-
els.

1.3.1 Finite Mixture Models

We consider application of finite mixture model in the context of cluster
analysis. Let y be a realisation of random variable Y . Suppose we have
an n dimensional vector y = (y1, · · · ,yn)T. With mixture model based
clustering, we assume that y1, · · · , yn come from G distinct groups with
some unknown proportions π1, · · · , πG. The number of groups G is how-
ever fixed. In mixture models, the individual distributions that are com-
bined to form a mixture distribution are called mixture components, and
the probabilities πg (g = 1, · · · , G) associated with each component are
called mixture weights. Given a finite set of probability density functions
f1(yi), · · · , fG(yi) (i = 1, · · · , n) with corresponding proportions π1, · · · , πG,
the full distribution of yi is given by

f(yi) =
G∑
g=1

πgfg(yi) (1.1)

where fg is a mixture component density and πg is its mixture weight.
Note that π1, · · · , πg are non negative such that πg ≥ 0,∀g, and

∑G
g=1 πg =

1. A wide class of distributions can be approximated by equation (1.1).
This type of mixture, where the number of components is fixed and fi-
nite, and a model probability density function is presented as a sum of
parametrized functions, is called a finite mixture.

1.3.2 Infinite Mixture Models

In contrast, where the set of component distribution is uncountable (i.e. G
is not a finite number), the sum of mixture components is replaced by an
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integral over mixtures. Thus equation (1.1) becomes

f(yi) =

∫
f(yi|θg)πg(θg)dθg

where θg is a parameter of the probability density function of f(yi|θg) and
in the continuous index of the mixture components rather than being dis-
crete. This is called an infinite mixture model.

In this research, we use finite mixture models as a basis of cluster anal-
ysis. Once we define the underlying probability distribution, the next step
is to find the parameter Θ that maximises the likelihood function. The
typical approach is to use maximum likelihood estimation (MLE), which
is explained in the next section.

1.3.3 Maximum Likelihood Fitting of Mixture Models

Here we review maximum likelihood estimation. For given data Y with n
observations, the likelihood of the data, assuming that yi are independent
is

f(Y |Θ, π) = L(Θ, π|Y ) =
n∏
i=1

f(yi|Θ) =
n∏
i=1

G∑
g=1

πgfg(yi|θg) (1.2)

where Y = (y1, · · · , yn)T , Θ is a set of parameters (θ1, · · · , θG), and π =

(π1, · · · , πG)T . We wish to obtain the estimates for Θ that maximise the
likelihood of equation (1.2);

Θ∗ = arg max
Θ

n∏
i=1

G∑
g=1

πgfg(yi|θg)

or, equivalently,

Θ∗ = arg max
Θ

n∑
i=1

log

{
G∑
g=1

πgfg(yi|θg)

}
(1.3)
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However finding the MLE by solving equation (1.3) analytically in a fi-
nite mixture model is often difficult due to the following reasons. First,
the number of G and πg are unknown. Second, the summation over G
that appears inside of the logarithm makes solving this equation com-
plicated. Moreover this is further complicated due to several peaks in
the likelihood, which are unique and unbounded. We have G number
of the distributions and are required to find Θ that lead to the highest
likelihood. A number of papers have studied the fitting of finite mixture
models by maximum likelihood (McLachlan and Peel, 2004). Amongst
these papers, the paper by Dempster et al. (1977) demonstrated fitting
finite mixture distributions to modelling heterogeneous data using the
Expectation-Maximisation (EM) algorithm. The use of the EM algorithm
has been demonstrated for the analysis of heterogeneous data in a wide
variety of fields (McLachlan and Peel, 2004). It is an iterative approach to
solving the likelihood equations. The EM algorithm is also applicable in
situations where the model has multiple parameters. Therefore, the EM
algorithm is the primary tool in mixture model-based clustering. The EM
algorithm is implemented by assuming that there are some missing ob-
servations, namely the group membership, which yield the complete data
when combined with the observed data y. We focus on the maximum like-
lihood fitting of mixture models via the EM algorithm in Chapter 3.

1.4 Outline of the Thesis

In this research, we aim to investigate the patterns of occurrence or abun-
dance of fish species in relation to environmental factors by using clus-
ter analysis based on mixture models. This method has not so far been
applied with simultaneous inclusion of covariates. The data available in
this research is fish abundance indices on the Chatham Rise from fishery-
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independent scientific surveys from 1991 to 2013. The data are collected
from annual bottom trawl surveys contracted by Ministry for Primary In-
dustries (MPI) and carried out by National Institute of Water and Atmo-
spheric Research (NIWA). We perform mixture-based clustering method
including covariates. It is the first time that covariates have been included
in mixture-based clustering analysis and also the first time this method
has been applied in a fisheries context.

Chapter 2 introduces the annual bottom trawl survey data. We review
the aim of this scientific survey, the data collection method, and the data
management system. We also present a method to construct the data for
the analysis from the survey data. Chapter 3 presents clustering methods
used in this research including models with covariates. In order to evalu-
ate our model performance, we set up simulation studies and their results
are shown in this chapter. We then introduce a new R function clustglm

and explain how this function is used for our analyses. Chapter 4 presents
results from a selected fishery data. We illustrate the application of the
clustglm function and present our results by using a number of visual-
isation tools. We conclude with final remarks and discussion in Chapter
5.

All the statistical programs throughout this research are written in R
(R Core Team, 2015)
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Chapter 2

Data

2.1 Description of Data

2.1.1 Overview

The data used for this research are fish abundance information of selected
species from the hoki and middle depth trawl surveys of the Chatham Rise
from 1992 to 2013.

This annual bottom trawl survey is contracted by Ministry for Primary
Industries (MPI) and has been carried out by National Institute of Water
and Atmospheric Research (NIWA) every summer (December to Febru-
ary) since 1992. The main purpose of this survey is to produce the relative
biomass estimate of adult and juvenile New Zealand hoki (Macruronus no-
vaezelandiae), which is New Zealand’s largest fin-fish fishery. This trawl
survey is the only survey that can produce fishery-independent estimates
of abundance at these depths on the Chatham Rise (O‘Driscoll et al., 2011).
The methodological details of the survey are described in detail in Francis
(1984); Hurst et al. (1992); O‘Driscoll et al. (2011).
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2.1.2 How the Survey Started

Hoki are widely distributed throughout New Zealand waters and support
one of the most commercially valuable fisheries in New Zealand (Ministry
of Fisheries, 2010). Hoki is a relatively fast growing species, approach-
ing sexual maturity at three to five years of age. Hoki is assessed as two
stocks; the eastern and western stocks (Figure not shown). Juvenile hoki
from both stocks mix on the Chatham Rise, making the Chatham Rise a
major nursery ground, especially on the western side (Horn, 1994), and
therefore a principal area for recruitment (Stevens et al., 2013). Adult hoki
also occur in deep water. So, the Chatham Rise is an important region for
the derivation of estimates of hoki recruitment variability and biomass.
Initially, several random trawl surveys were carried out, but they were
not able to produce comparable estimates due to variability in boat size
and fishing procedures (Horn, 1994). In order to provide a time series of
comparable indices of abundance of adult hoki and to estimate future re-
cruitment, this trawl survey on the Chatham Rise was commenced in 1992
(Horn, 1994).

2.2 Survey Methods

2.2.1 Survey Area and Design

The Chatham Rise is a broad area of ocean floor lying east of New Zealand
(Figure not shown). It runs eastward from Banks Peninsula and extends
over 150 km beyond the Chatham Islands. The convergence of southward
and northward currents at the Chatham Rise bounds warm and cold wa-
ters, creating a subtropical front. This is a permanent oceanographic fea-
ture on the Chataham Rise (Dunn et al., 2010). The water of this conver-
gence is nutrient rich, creating a region of high primary productivity that
supports diverse and abundant animals. Therefore, the Chatham Rise is
an important and valuable commercial fishing area.
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All surveys since 1992 have been carried out in water depths of 200 to
800 m (O‘Driscoll et al., 2011). In 2010, the survey was extended to deeper
waters (to 1300 m). The reason for this was to provide fishery-independent
relative biomass indices for orange roughy (Hoplostethus atlanticus) and to
provide improved information for some species that are known to be ob-
served in deeper waters on the Chatham Rise (O‘Driscoll et al., 2011).

The survey follows a stratified random sampling design, where the
Chatham Rise is stratified by depth and longitude (Horn, 1994). The strat-
ification is a permanent setting for the survey but it has undergone several
changes since 1992, in particular, a re-numbering of strata in 1996 and sub-
stratification of many strata in 2000 (O‘Driscoll et al., 2011). These modi-
fications were made to better define key species’ (hoki and hake (Merluc-
cius australis)) spawning area where high catch rates are common, thereby
to have more precise biomass estimates. Therefore, the stratification is
unique within the trips, although most strata remained the same. In 2010,
deep strata from 800-1300 m on the northern and eastern Chatham Rise
were introduced, making the total number of strata 34 since 2012 (Figure
not shown). The stratification serves several purposes: It ensures that sam-
pling locations occur in each stratum so that the survey covers all regions
of interest, enables the creation of separate biomass estimates for each stra-
tum, and most importantly, reduces the variance of the biomass estimates
(Francis, 2006). The strata with 200-800 m water depths are referred as
core strata, while the strata in deepwater (deeper than 800 m) are referred
as non-core strata.

In addition to the stratification, the surveys follow a two-phase ran-
dom design as a further refinement to allocate sampling locations (called
trawl stations). A two-phase survey means that the survey is carried out
in two parts. Francis (1984) proposed this strategy for the trawl surveys to
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minimise the observed variance in catch rates, hence increasing precision
of the biomass estimates. Allocation of trawl stations by stratum (starting
locations of each trawl) in phase 1 is determined by computer simulations
based on the catch rate of hoki and hake from all previous trawl surveys
on the Chatham Rise. The simulation model takes into account stratum
area and the distribution of key species. For the first survey in 1992, the
phase 1 stations were allocated subjectively but with consideration of the
distribution of juvenile and recruited hoki from past surveys (Horn, 1994).
All surveys ensure that there are at least three phase 1 trawl stations in
each stratum. Phase 2 trawl stations are additional sampling locations
conducted during the survey. The aim is to improve the coefficients of
variation (CV) for targeted species, particularly juvenile hoki. Allocation
of phase 2 stations reflects the actual catch from phase 1 stations. After
each tow at a phase 1 station, the computer simulation predicts possible
phase 2 station locations that would best lower the overall biomass esti-
mate CV. The allocations of phase 2 is done at the end of phase 1 tows. But
where CVs in a stratum are known to be high, a phase 2 allocation may be
done at the time in order to reduce streaming and survey time. This allows
some degree of flexibility in achieving the desired CV. The proportion of
trawls that are from phase 1 is fixed for all trips. The proportion of phase
2 tows (as a % of phase 1) should be kept as constant as possible. Because
although phase 2 tows reduce the CV, they also introduce a bias. Keeping
the proportion of phase 2 tows constant keeps this bias constant. Fran-
cis (1984) initially suggested that the optimal proportion of phase 1 trawl
stations is 75%, but given the budget for the survey and increasing histor-
ical data, the proportion of phase 1 stations has increased to 90% in recent
years. Over the time of the survey, there have been about 25 to 34 strata,
with around 100 trawl stations for the core strata of the surveys (Stevens
and Livingstone, 2003; Stevens et al., 2012, 2013, 2014). The station allo-
cation in phase 1 in non-core strata (strata in deeper water) is based on
the biomass of orange roughy whose catch rates were obtained during the
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trips in 2010 and 2011. There are no sampling stations allocated in phase 2
for these strata (O‘Driscoll et al., 2011). All sampling stations in all strata
are allocated at least 3 nautical miles away from each other. Allocations
of strata for the trips in 2002 (tan0201), 2011 (tan1101), 2012 (tan1201), and
2013 (tan1301) are shown in Figure (not shown). As we can see the num-
bering of strata is slightly different from year to year. The trawl stations
from the tan1201 trip are shown in Figure (not shown).
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2.2.2 Vessel and Gear Specifications

The bottom trawl survey is carried out from RV Tangaroa, which is a purpose-
built research vessel operated by NIWA. Trawling is a method of fishing
that involves pulling a fishing net through the water behind one or more
boats (Figure not shown). It is a commonly used method for commercial
fishing as well as scientific research. During trawling, the net attached
to the boat by warps is dragged along the ocean floor. The net narrows
its shape towards the tail of the net (called the cod-end), where fish are
caught. Floats, weights, and the trawl door otter board are used to keep
the mouth of the net open. The speed and direction of trawling is chosen
to maintain the geometry of the net so that the net won’t collapse (Figure
not shown). Trawling gear and procedures have been kept as consistent as
possible over the trips in order to reduce sampling variability (O‘Driscoll
et al., 2011). The survey follows the guidelines of standard trawling proce-
dures, described by Hurst et al. (1992). Towing speed and gear configura-
tion are monitored regularly and maintained to be as constant as possible.
At each trawling station the trawl is towed for 3 nautical miles (about 5.5
km) at a constant speed over the ground of 3.5 knots. Towing at a faster
speed has a risk that the net is likely to be lifted from the sea floor. Tow-
ing at a slower speed will not be able to maintain the geometry of the net.
Most of the tows at less than 800 m depth were carried out during daylight
hours (as defined by Hurst et al., 1992). Trawling in deeper strata, where
light level is low or absent, are carried out at night.
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2.2.3 Measurements

Data collected by this research trawl surveys are stored in the database
“trawl”, managed for MPI by NIWA. This database contains several ta-
bles that represent trip (survey) information, strata information, trawl sta-
tion information, catch information, and biological information. Each ta-
ble consists of attributes that define properties of the table. The table t trip
holds the details for each trip. One of the attribute in this table is trip code.
It is a unique identifier for a each survey and coded by three letters and 4
digits describing the vessel name, trip year, and trip number. For example,
TAN1201 indicates the survey that was carried out from NIWA’s research
vessel RV Tangaroa in 2012 and was the first trip of the year. Attribute stra-
tum defines stratum number within each survey as in Figure (not shown).

Trawl stations (attribute: station no) are labelled and the labels are stored
with trip code in table t station. This table also includes data on location
such as latitude, longitude, depth of both the gear and seabed at start of
the tow as well as at the end the tow. Trawl survey performance can be
measured by two attributes, biomass flag and gear perf, and they are also
in t station. The attribute biomass flag indicates whether the trawl station
is valid for biomass estimation. This flag takes three values: 0, 1, and 2
indicating “not valid ”, “valid (for core strata)”, and “valid (for non-core
strata)”, respectively. Trawls with biomass flag= 0 (“not valid”) could in-
dicate that the towing was done during night when it was supposed to
be carried out during day, towing was done for different purposes (e.g.
non-survey), or towing was poor due to a gear fault. Gear performance
during a tow is indicated by gear perf. It is coded 1, 2, 3 or 4, indicating
“Excellent”, “Satisfactory”, “Unsatisfactory probably due to malfunction
or damage”and “Unsatisfactory due to malfunction or damage”, respec-
tively. This is subjectively measured by fishery scientists on board. Ex-
amples of unsatisfactory performance are that the net was torn during a
tow, and trawl doors did not keep the net open. Gear used for the sur-
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veys is coded in the attribute gear meth. It is coded with two numbers
and contains over 60 codes. Commonly used codes for trawl surveys are
01, 03, 05, 06, 51, 72, and 82, indicating bottom trawl, high operating bot-
tom trawl, midwater trawl, pots, photography, and CTD (conductivity,
temperature and Depth), respectively (Mackay, 2000). Overall survey per-
formance is evaluated by the combination of biomass flag, gear perf, and
gear meth. These attributes are used to select appropriate data for this re-
search.

The trawl database also indicates catch information for each trawl sta-
tion on a trip. It is found in the table t catch. Attributes in this table include
species, weight, and wt meth, and linked to station details via trip code and
station no. At each station, all items in the catch are weighed and iden-
tified. Three-letter species code are assigned to all items caught (includ-
ing non-animal species and rubbish) and recorded in the attribute species.
There have been a few changes in the species codes over time. For ex-
ample, the code for Tarakihi (Nemadactylus macropteru) was changed from
TAR to NMP in 2010. These changes have been standardised to the most
recent code (e.g. Tarakihi is coded as NMP throughout) in this research.
Two closely related species are thought to be caught throughout the trips.
One species from the genus Brama is southern Ray’s bream (SRB, Brama
australis), which is difficult to distinguish from Ray’s bream (RBM, Brama
brama) by external inspection. They have been reported as SRB and/or
RBM in unknown ratios. So the codes for southern Ray’s bream and Ray’s
bream is unified with RBM in this research.

Weight (in kilogram) of the item caught is recorded in attribute weight.
All items caught are weighed at each station. While most items are weighed
by scales, some items can be measured differently depending of the mag-
nitude of the catch and the size of species. The attribute wt meth indicates
how the item was weighed with the code of 1 to 8. When the item is



2.2. SURVEY METHODS 23

weighed using scales, wt meth is coded 1. Other definitions can be found
in Mackay (2000). Weight information is recorded as the total weight of
the item, and no counts of individuals are made.

Detailed biological data including length, weight, sex, age, and ma-
turity stage of the individual fishes are measured for commercially im-
portant species. These date are found in table t fish bio. However, these
species specific data are not required for this research. The tables and at-
tributes referred in this research are listed in Table 2.1.

Table 2.1: Summary of the tables and the attributes used in this research

Table Attribute Information

t trip trip code unique identifier for a each survey

t stratum stratum stratum code, unique within a trip

t station station number trawl stations, unique within a trip

biomass flag evaluates whether the station is valid for biomass estimation

gear perf evaluates the gear performance

gear meth indicates the gear used for the survey

max gdepth maximun depth (m) of lowest part of gear during the tow

bot temp temperature at the bottom (°C)

t catch species 3 letters character indicating species

weight weight (kg)

wt meth method of weighing



24 CHAPTER 2. DATA

2.3 Data Used for This Research

In this research, the data records were throughly checked for quality be-
fore the analysis. One of the objectives of the research is to classify the
fish species into common groups. Therefore species that are not classi-
fied as Teleostei (fin-fish) or Elasmobrachii (sharks, rays and skates) were
excluded. Any species codes that do not identify any particular species
were removed. For example, the code “FIS”and “SHA”were removed as
they respectively indicate any fish and shark, otherwise unidentified. The
trawls with biomass flag = 0 were also removed. This procedure left the
data with gear perf = 1 or 2, indicating that the overall towing performance
was satisfactory, hence catch information from these trawl stations are re-
liable. All of these data also had gear meth = 01 (bottom trawl). A further
data quality check was performed by checking the trawl depth. The depth
is measured at different positions (e.g. at the gear, at the vessel) but the
depths recorded are similar. The minimum and maximum depth of the
lowest part of gear (attribute:min gdepth, max gdepth) are checked whether
they are within the depth range of core survey area (200 - 800 m as de-
fined) or of deepwater strata (800 - 1300 m). Any records with inconsistent
depths were removed. The labelling changes made for stratification were
amended so that the location of the stratum is constant throughout the
years.

The data of interest are: year/stratum/species/catch, for the analysis
we record the catch as a presence/absence binary variable. That is, we
record 1 if a species was caught at a particular stratum in a particular year,
or 0 otherwise. With these records, a typical dataset has a matrix with
rows representing species caught during the selected trip and the column
representing the stratum in the trip. The dimension of the matrix differs
year to year depending on the number of species caught and the number
of strata. The number of strata increased after the deepwater strata were
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introduced in 2010. We select the data from the survey in 2002 (tan0201),
2011 (tan1101), 2012 (tan1201), and 2013 (tan1301). We are interested in
how the species groupings might have changed over time and want to
have enough information for covariates. So three adjacent years from the
recent trips and one earlier year were selected. Table 2.2 shows the number
of Teleostei and Elasmobranchii species caught in these four trips. The
number of strata increased after deep strata were introduced in 2010, and
thereby the number of species caught also increased. Hoki is the most
common species caught in all four trips.

Table 2.2: Summary of species caught and strata

Year Number of species caught Number of strata

2002 213 28

2011 286 33

2012 294 35

2013 323 35
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2.3.1 Covariates

Some of our models require covariates at species and stratum level. For
row (species) level cluster covariate, we use median body length (cm). We
are interested in how much variation between clusters is actually mediated
by species traits rather than environmental features. Initially, we consid-
ered the trophic level as a row level cluster covariate and attempted to as-
sign the trophic levels to the species caught from the surveys. Trophic level
is a representation of who eats whom in ecological communities. How-
ever, it is exceedingly difficult because it depends not only on body size,
but also on diet, prey abundance, fishing activity, and animal behaviour
(Dunn et al., 2013). The complexity of trophic levels is highlighted in Dunn
et al. (2013). They studied 11 species of squaliforme shark species, and
found that some species are opportunistic eaters and can shift between
shallow and deep water levels to avoid competition and change their diet
accordingly. They also concluded that the vulnerability to bottom trawl
survey is likely to have an influence on species niches that may lead to
alteration in the trophic level. Their study illustrates that the trophic level
is unique to the region and changeable, also there is no global guide to
define the trophic level for many of the species in our dataset.

The study by Jennings et al. (2001) also highlights the difficulty of as-
signing the trophic level to species. They also investigated the relationship
between species’ body size and the trophic level. Their study is motivated
by Joel E. Cohen (1993), and found that body size could be used to predict
the trophic level of fish in a community. Jennings et al. (2001)’s finding is
supported by Rezende et al. (2009), in which they showed that body size
and habitat affects the trophic level.

From these reasons above, we use only body length as a row level clus-
tering covariate. We use median because the body size can vary largely
among the individuals within the species depending on the sex and life
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stage history (juvenile/adult), and often shows a multi-modal pattern. To
note the body size variation within the species, we calculate the coefficient
of variation (CV) of body length for each species. It is an indicator of the
quality of the estimates and found by

CV =
standard deviation of body length

mean of body length

The values of CV for the species in this research vary between the species,
and across the time within the species (Figure 2.1 and 2.2). As it can be
seen, most of the CVs are under 20% which indicates the variation of body
size is not too large. The species with the highest CV are the leafscale
gulper shark (Centrophorus squamosus, CSQ) and the seal shark (Dalatias
licha, BSH).

We use depth at the bottom at the towing gear (m), and sea floor tem-
perature (°C), as column (stratum) level cluster covariates. We choose
these two variables because they are thought to be drivers of biological
patterns (Snelder et al., 2007), and have delivered ecologically and bio-
logical relevant results in clustering by Francis et al. (2002) and Dunstan
et al. (2011). Moreover, environmental variables including depth and tem-
perature are readily available measurements. They allow patterns of en-
vironmental variability to be more realistically portrayed and have been
used as covariates in some studies of marine classification (Francis et al.,
2002; Dunstan et al., 2011). These covariates are available in trawl database
(Mackay, 2000). Depth is measured at various positions of the gear and the
vessel. We use the attribute max gdepth, which is the maximum depth of
the lowest part of the gear during the tow. Water temperature (°C) at the
bottom is recorded in the attribute bot temp. There are some missing data
for the temperature. We estimated the missing temperatures by taking the
mean of the temperature in neighboring strata with similar depth from
the same year (trip) and the temperature in the same strata from other
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years. Figure 2.3 shows the temperature in the strata in the four trips. The
records of sea floor temperature (°C) and depth at the bottom of the tow-
ing gear (m) in each stratum are presented in Figure 2.4 from the tan0201
data. Water in the shallow strata (core strata) are warmer, and temperature
drops with depth. Figure 2.5, 2.6, and 2.7 are the visualisations of sea floor
temperature (°C) and depth at the bottom of the towing gear (m) in each
stratum from the tan1101, tan1201, and tan1301 data, respectively. There
is no significant change in water temperature over time.
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(a)

(b)

Figure 2.1: Coefficients of variation of the body length of species caught from tan0201
trip (a) and tan1101 trip (b).
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(a)

(b)

Figure 2.2: Coefficients of variation of the body length of species caught from tan1201
trip (a) and tan1301 trip (b).
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Figure 2.3: Bottom temperature recorded from the surveys in 2002 (tan0201), 2011
(tan1101), 2012 (tan1201), and 2013 (tan1301). The grey circle indicates the temperature
that was estimated from the neighboring strata in the same year and the same strata from
other years.
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(a)

(b)

Figure 2.4: Map of the Chatham Rise displaying (a) seabed temperature (°C) and (b)
depth (m) recorded for each stratum from the tan0201 data. The white area on the right
includes the Chatham Islands therefore not surveyed.
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(a)

(b)

Figure 2.5: Map of the Chatham Rise displaying (a) seabed temperature (°C) and (b)
depth (m) recorded for each stratum from tan1101 data. The white area on the right
includes the Chatham Islands therefore not surveyed.
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(a)

(b)

Figure 2.6: Map of the Chatham Rise displaying (a) seabed temperature (°C) and (b)
depth (m) recorded for each stratum from tan1201 data. The white area on the right
includes the Chatham Islands therefore not surveyed.
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(a)

(b)

Figure 2.7: Map of the Chatham Rise displaying (a) seabed temperature (°C) and (b)
depth (m) recorded for each stratum from tan1301 data. The white area on the right
includes the Chatham Islands therefore not surveyed.
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Chapter 3

Methods

3.1 Introduction

In this chapter, we first give the data, assumptions and likelihoods then
present models used in this research. Some of the models have been previ-
ously developed, in particular, row and/or coulmn cluster models (Pledger
and Arnold, 2014). We extend these existing models in the case where co-
variates are considered. In terms of model fitting, the Expectation-Maximisation
(EM) algorithms is used. We explain the process of the EM algorithm with
a particular model. We then demonstrate a simulation study in order to
evaluate the performance of the maximum likelihood estimation models.
Finally, we discuss the drawbacks of the EM algorithm and introduce a
newly developed R function clustglm (Pledger et al., 2015), and explain
how this function is used for this research.

3.2 Data, Assumptions and Likelihoods

Consider a binary event, called a “trial”, with only two response out-
comes: “success” or “failure”. Independently repeated trials of an experi-
ment with these two outcomes are called Bernoulli trials. We now present

37
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the data being an n × p matrix Y of binary values with value yij a re-
alization of random variable Yij (i = 1, · · · , n, j = 1, · · · , p). The random
variable Yij takes the value of 1 with the probability of success θij or 0 with
the probability of failure 1− θij . We denote Yij ∼ Bernoulli(θij). Assuming
independence in the rows and in the columns conditional on the rows, the
likelihood function of the data is

L(Θ|Y) =
n∏
i=1

p∏
j=1

θ
yij
ij (1− θij)1−yij (3.1)

The corresponding log likelihood is

`(Θ|Y) =
n∑
i=1

p∑
j=1

[yij log θij + (1− yij) log(1− θij)] (3.2)

The model specified in equation (3.2) has one parameter for every obser-
vation, and is saturated. Such a model has no predictive power, and simply
identifies θij = yij . Of more interest is the appropriate reduction of the di-
mension of the parameters θij . The simplest case is to have θij = θ, a single
parameter for all observations. Other alternatives are θij = θi, or θij = θj ,
one parameter for every row or column. In order to estimate the parame-
ters Θ in these situations above, a generalised linear model (GLM) can be
fitted. Of more interest are models that group the rows or columns into
clusters, with the rows/columns being similar within clusters but differ-
ent between the clusters. That is, θij = θrj for row clusters (r = 1, · · · , R)
where row is a member of row cluster r(i ∈ r). Likewise, θij = θic for col-
umn clusters (c = 1, · · · , C) when j ∈ c. Furthermore, we can cluster rows
and columns at the same time and have θij = θrc. When clusters are made,
the data no longer have a simple probability distribution but the mixture
of R, C, or R× C probability distributions.
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3.3 The Models and Model Fitting

In this section, we present likelihood-based clustering models for binary
data. Some of these models have already been proposed by Pledger (2000),
Govaert and Nadif (2003), and Pledger and Arnold (2014). In this research,
we extend these existing methods by including covariates.

3.3.1 The Row-clustered Model

We start with the case of row clustering. Suppose that the rows come from
a finite mixture with R groups with the rows being similar within groups
but different between groups, yielding a clustering of the rows of the data
matrix Y. A prior probability that row i belongs to row group r is πr. We
assume that 1 ≤ R < n, 0 < πr, and

∑R
r=1 πr = 1.

Let φrj be the probability that observation yij = 1 given that row i

belongs to row group r (i.e. φrj = P (yij = 1|i ∈ r)). For Bernoulli distribu-
tions, the expected values of Yij for i ∈ r is φrj , which is defined by

logitφrj = log

(
φrj

1− φrj

)
= ηrj = µ+ ar + bj + λrj (3.3)

The parameters that define φrj are µ, ar, bj , and λrj , where

• µ is the overall effect

• ar is the effect of row group r (r = 1, · · · , R)

• bj is the effect of the jth column (j = 1, · · · , p)

• λrj is the interaction between row cluster and columns

We temporarily assume that there is no association between row group
and column (λrj = 0), and for avoiding identifiability problems we impose
the constraints

∑R
r=1 ar =

∑p
j=1 bj = 0. We define Φ as the full parameter
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set for this model that defines φrj , Φ = (µ, a, b), where a = a1, · · · , ar, and
b = b1, · · · , bj . The likelihood function for the row-clustered model is

L(Φ, π|Y) =
n∏
i=1

{
R∑
r=1

πr

[
p∏
j=1

φ
yij
rj (1− φrj)1−yij

]}
(3.4)

and thus the log likelihood function is

`(Φ, π|Y) =
n∑
i=1

log

{
R∑
r=1

πr

[
p∏
j=1

φ
yij
rj (1− φrj)1−yij

]}
(3.5)

where π = (π1, · · · , πr).

3.3.2 Fitting the Models

Once models are proposed, the next step is to fit the models and obtain
parameter estimates. Here we show how the models are fitted by the EM
algorithm.

The EM algorithm treats the observed data as being incomplete and
considers the group membership as missing data. The missing informa-
tion here is the actual group membership of the row groups. Following
the procedure in McLachlan and Krishnan (2007), we express the missing
data as the n × R matrix Z in the case of row clustering. Each element
of Z is an indicator with zir = 1 if row i belongs to group r and zir = 0

otherwise. An example of Z when n = 3 and R = 2 is

Zn×r =


1 0

0 1

0 1


This means the first row of Y is a member of group 1, while the second



3.3. THE MODELS AND MODEL FITTING 41

and the third row of Y belong to group 2. We impose the constraint that
each row i only belongs to one group, e.g.

∑R
r=1 zir = 1,∀i. This implies

that each row Zi of Z independently follows a multinomial distribution
(see Appendix A for more details).

Zi ∼Multinomial(1, π) for i = 1, · · · , n

We temporarily assume that the membership Z is known and have

P (zir|π) =
n∏
i=1

R∏
r=1

πzirr =
n∏
i=1

R∑
r=1

πrzir

Then the likelihood of the complete data is

Lc(Φ, π|Y,Z) = P (Y|Z,Φ, π)

=
n∏
i=1

{
R∑
r=1

πr

[
p∏
j=1

φ
yij
rj (1− φrj)1−yij

]}
×

n∏
i=1

R∑
r=1

πrzir

=
n∏
i=1

{
R∑
r=1

zirπr

[
p∏
j=1

φ
yij
rj (1− φrj)1−yij

]}
(3.6)

and the log likelihood of the complete data is defined as follows

`c(Φ, π|Y,Z) =
n∑
i=1

log

{
R∑
r=1

zirπr

[
p∏
j=1

φ
yij
rj (1− φrj)1−yij

]}
(3.7)

Since zir is either 0 or 1, we are able to bring zir and the sum over r outside
of the log function. Hence equation (3.7) is further expanded as follows
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`c(Φ, π|Y,Z) =
n∑
i=1

log

{
R∑
r=1

zirπr

[
p∏
j=1

φ
yij
rj (1− φrj)1−yij

]}

=
n∑
i=1

R∑
r=1

zir log

{
πr

[
p∏
j=1

φ
yij
rj (1− φrj)1−yij

]}

=
n∑
i=1

R∑
r=1

zir

{
log πr +

p∑
j=1

log
(
φ
yij
rj (1− φrj)1−yij

)}

=
n∑
i=1

p∑
j=1

R∑
r=1

zir {yij log φrj + (1− yij) log(1− φrj)}

+
n∑
i=1

R∑
r=1

zir log πr

(3.8)

The EM algorithm is an iterative optimisation procedure for estimating
the maximum likelihood estimates (MLE) of the parameter set Φ, π, and
Z. The E-step of the algorithm estimates the Z matrix, conditional on a
current parameter estimate Φ̂ and π̂. The M-step then re-estimates π and
Φ conditional on Y and updated Z, by maximising equation (3.8) over Φ

and π. These steps alternate until the estimates converge (Dempster et al.,
1977).

E-step

In the E-step of the EM algorithm, we estimate the expected value of the
latent variable ẑir, using the current estimates of the parameters (Φ and π).
We apply Bayes’ theorem to obtain the expected values of zir. Applying
Bayes’ rule, we obtain
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ẑir = P (zir = 1|yij, Φ̂)

=
P (yij, Φ̂|zir = 1)P (zir = 1)∑R
u=1 P (yij, Φ̂|ziu = 1)P (ziu = 1)

=
π̂r
∏p

j=1 φ̂
yij
rj (1− φ̂rj)1−yij∑R

u=1{π̂u
∏p

l=1 φ̂
yil
ul (1− φ̂ul)1−yil}

(3.9)

Equation (3.9) is the posterior probability that row i is in group r given
that the data {yij}pj=1 have been observed, and conditioned on the current
parameter estimates Φ̂ and π̂. The elements of Ẑ is are not 0 or 1, but may
take any value between 0 and 1. This is referred as “fuzzy” allocation of
rows to a cluster because the estimated group membership is not definite,
but expressed as probability.

M-step

In the M-step, we maximise the log likelihood function over the param-
eters Φ and π, conditioned on the complete data Y and Ẑ. Using the
updated {ẑir}, we obtain new values for µ, a, b and π. First, πr are an-
alytically estimated from the updated {ẑir}. Recall that we imposed the
constraint on π. When we want to maximise the function subject to the
constraint, we use the Lagrange multiplier method (see Appendix B for
more details). The method of Lagrange multipliers is a strategy for find-
ing the local maximum of a function subject to constraints. In our case, we
want to maximise the function (3.8) subject to the constraint

∑R
r=1 πr = 1.

Applying the Lagrange multiplier method, we get

π̂r =

∑n
i=1 ẑir∑n

i=1(
∑R

u=1 ziu)
=

∑n
i=1 ẑir∑n
i=1 1

=

∑n
i=1 ẑir
n

(3.10)
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This is simply the proportion of the n cases in group r given the estimated
group memberships ẑir. The rest of parameter estimates do not have an-
alytic solutions and must be estimated numerically. These estimates are
obtained by using the numerical optimiser function optim() in R (R Core
Team, 2015). These E- and M-steps are repeated in alternation until the es-
timates have converged. That is, the changes in the parameter estimates
and/or the log likelihood between two successive iterations are less than
a specified threshold (e.g. ε = 1 × 10−4). In this research the convergence
of estimates is defined as

|`tc − `t−1
c |

|`t−1
c |

< ε and
|Φt − Φt−1|
|Φt−1|

< ε

where t indicates the tth iteration of the EM algorithm. We specify the
threshold value to be ε = 1× 10−6.

3.3.3 The Column-clustered Model

The model for column clustering is analogous to the row-clustered model,
and is just the transpose of row clustering. Now we let φic be the probabil-
ity that observation yij = 1 given that column j belongs to column group
c (i.e. φic = P (yij = 1|j ∈ c)). The linear predictor for φij is given by

logitφic = log

(
φic

1− φic

)
= ηic = µ+ ai + bc + λic (3.11)

where µ is the overall effect, ai is the effect of rows, bc is the effect of the
column group (c = 1, · · · , C), and λic is the interaction between rows and
column clusters.
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Model Fitting for Column-clustered Model

We use the same approach as described previously, but with H, which
is a p × C matrix that contains the information about the membership of
column clusters, where hjc = 1 if jth column is in column group c, or
hjc = 0 if not (c = 1, · · · , C).
The likelihood of the complete data in case of column clustering is

L(Φ, κ|Y,H) =

p∏
j=1

{
C∑
c=1

[
hjcκc

n∏
i=1

φ
yij
ic (1− φic)1−yij

]}

where κc is the probability that jth column is in column group c. Con-
straints here are κc > 0,∀c and

∑C
c=1 κc = 1. The parameter Φ are the

parameters that define φic, which are a, b, and κ(κ1, · · · , κC).
The log likelihood function of the complete data is

`c(Φ, κ|Y,H) =

p∑
j=1

log

[
C∑
c=1

hjcκc

n∏
i=1

φ
yij
ic (1− φic)1−yij

]

=

p∑
j=1

C∑
c=1

n∑
i=1

hjc [yij log φic + (1− yij) log(1− φic)]

+

p∑
j=1

C∑
c=1

hjc log κc

(3.12)

Following the same procedure as the row cluster case,

E step

ĥjc =
κ̂c
∏n

i=1 φ̂
yij
ic (1− φ̂ic)1−yij∑C

v=1 κ̂v
∏n

s=1 φ̂
yij
sv (1− φ̂sv)1−yij
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M Step

κ̂c =

∑p
j=1 ĥjc

p

The parameters µ, a and b are estimated by optim function by optimising
equation (3.12).

3.3.4 Row Cluster Model with Row Level Covariates

We introduce a new term, the row covariate matrix X to equation (3.3).
Let X be an n × D covariate matrix (d = 1, · · · , D), and δ be the D × 1

parameter vector for the covariates where D is the number of covariates.
The covariate matrix may contain information which makes the clustering
structure irrelevant, or allows a different clustering structure to emerge.
We obtain the linear predictor for the model with covariates in the case of
row clustering where yij|i ∈ r, xi ∼ Benoulli(φrj (xi)) in the following form

logit (φrj(xi)) = logit(φijr) = ηijr = µ+ ar + bj + xTi δ (3.13)

where xi is a D × 1 vector of covariate, consisting the elements of the ith
row of X,

∑R
r=1 ar = 0, and

∑p
j=1 bj = 0. There is no constraint on δ. Note

that φijr = 1
1+exp(−ηijr)

. The log likelihood function of the complete data is
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`c(Φ, π|Y,X,Z) =
n∑
i=1

p∑
j=1

R∑
r=1

zir (yij log φijr + log(1− φijr)− yij log(1− φijr))

+
n∑
i=1

R∑
r=1

zir log πr

=
n∑
i=1

p∑
j=1

R∑
r=1

zir

(
yij log

(
φijr

1− φijr

)
+ log(1− φijr)

)

+
n∑
i=1

R∑
r=1

zir log πr

=
n∑
i=1

p∑
j=1

R∑
r=1

zir

[
yijηijr − log (1 + exp(ηijr))

]
+

n∑
i=1

R∑
r=1

zir log πr

(3.14)

where Φ = {µ, a, b, δ}, and δ = δ1, · · · , δD. Note that the Φ becomes an
n× p× r array. That is, there is a different n× p matrix of probabilities φij
for each row group r.

3.3.5 Model Fitting for Covariate Model

The basic procedure is the same as the row-clustered model, however, fur-
ther adjustment is required to allow for the altered dimension of Φ during
computation.

E-step

ẑir =
π̂r
∏p

j=1 φ̂
yij
ijr(1− φ̂ijr)1−yij∑R

u=1{π̂u
∏p

l=1 φ̂
yil
ilu(1− φ̂ilu)1−yil}

(3.15)
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This equation is similar to that of the row-clustered model, but ẑir is calcu-
lated in multiple stages. First, φ̂yijijr is computed for the individual i condi-
tional of being in group r and given its row covariate xi, also conditional
on the current parameters µ̂, â, b̂ and π̂. At this first stage, we have R ma-
trices (n × p) that contain φij for each r. When R = 3, there will be three
φ̂
yij
ijr(1 − φ̂ijr)

1−yij matrices (n × p). Next, each matrix is multiplied over
the columns (

∏p
j=1 φ̂

yij
ij1(1 − φ̂ij1)1−yij , for r = 1), making an n × 1 column

vector for each r. Then each vector is multiplied by the corresponding πr,
making the numerator of equation (3.15). Then zir is estimated by using
Bayes’ rule as before.

M step

The computation of πr is the same as the row-clustered model.

π̂r =

∑n
i=1 ẑir∑n

i=1(
∑R

u=1 ziu)
=

∑n
i=1 ẑir∑n
i=1 1

=

∑n
i=1 ẑir
n

The rest of the parameters Φ are also estimated as in the row-clustered
model, but the calculation of log likelihood involves multiple steps be-
cause Φ is the array. The first term of the equation (3.14),

[
yijηijr−log (1 + exp(ηijr))

]
is calculated for each r, making r matrices (n × p). Then, each matrix is
summed up over columns,

∑p
j=1

[
yijηijr − log (1 + exp(ηijr))

]
, making an

n × 1 vector for each r. Next, the vectors are multiplied by correspond-
ing ẑir and summed up over rows and groups, resulting in a scalar value.
The second term of the equation,

∑n
i=1

∑R
r=1 ẑir log πr is obtained by simple

two dimensional matrix calculation, and also results in a scalar value. The
sum of these two values is the complete data log likelihood, and we want
to find the parameters µ, a, b, δ that maximise the log likelihood. We repeat
these two steps of the EM algorithm until estimates have converged.
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3.3.6 Row Cluster Model with Column Level Covariates

Likewise, column level covariates can be included in the row-clustered
model. Let W be a p×W matrix that contains column level covariates and
W is the number of covariates. The linear predictor is

logit
(
φrj(wj)

)
= logit(φijr) = ηijr = µ+ ar + bj + wTj ψ (3.16)

where wj is a W × 1 elements of W (w = 1, · · · ,W ), and ψ is the vector of
parameters for the column covariates ψ = (ψ1, · · · , ψW ). The constrains are
the same as before,

∑R
r=1 ar = 0, and

∑p
j=1 bj = 0. There is no constraint

on ψ. The parameters are estimated the same way as the row cluster with
row level covariates model in 3.3.5.

3.3.7 Inclusion of an Interaction Between Clusters and Co-

variates

A situation where there is an interaction between cluster membership and
the covariates is further considered in this section. An interaction term
can be introduced to equation (3.13) and (3.16). Taking the row-clustered
model with column level covariates (3.16) for an example, let T be a W ×
R matrix consisting interaction parameters {τwr} between the row cluster
and the column covariates. We impose the sum zero constraint on rows of
the T matrix

∑R
r=1 τwr = 0, ∀w). The linear predictor for the model with

row cluster and column level covariates interaction term is

logit(φijr) = µ+ ar + bj + wTj (ψ + τ r) (3.17)

where τ r is the rth column (w × 1) of the matrix T. The complete data
log likelihood is the same as equation (3.14), with Φ containing the extra
parameters {τwr}.
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E-step

The computation of ẑir takes the same process as the solving the equation
(3.15). The only difference is that extra elements {τwr} are included to
estimate {φijr}.

ẑir =
π̂r
∏p

j=1 φ̂
yij
ijr(1− φ̂ijr)1−yij∑R

u=1{π̂u
∏p

l=1 φ̂
yil
ilu(1− φ̂ilu)1−yil}

M step

As before we have the analytic result for π̂r.

π̂r =

∑n
i=1 ẑir
n

Again, the rest of parameters µ, a, b, ψ, and {τwr} are obtained numerically
by optim() function in R (R Core Team, 2015), and the EM algorithm is
repeated until it satisfies the convergence rule. Note that we only estimate
W (R − 1) elements of τwr. The rest of the elements of the matrix T are
obtained by the constraints.

3.4 Row Standardised Model

Finally, we present the row cluster with row standardised model. This
model has a new parameter αi with

∑n
i=1 αi = 0. It can be used when

the rows (species, for example) are assumed to differ in abundance. The
parameter αi is the deviation from the overall average of frequency of oc-
currence, and may also called the row main effect. The linear predictor for
the row standardised model is

logit(φijr) = µ+ αi + ar + bj (3.18)

where
∑R

r=1 ar = 0, and
∑p

j=1 bj = 0. But this model will have ar = 0 for
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all r, because αi absorbs all variation among the rows, and therefore a has
zero for all r. The only case where ar 6= 0 is when we have interaction term
between row cluster and columns. Such situation is expressed as either

logit(φijr) = µ+ αi + ar + bj + λrj (3.19)

or with covariates

logit(φijr) = µ+ αi + ar + wTj (ψ + τ r) (3.20)

If there are any clusters (i.e. R 6= 1), then
∑R

r=1 ar = 0 and
∑n

i=1 αizir = 0,
∀r.

3.5 Model Options

We have shown some models for the linear predictor in the case of row
cluster, column cluster, row cluster with row/column covariates, cluster
with interaction between cluster and row/column covariates, and row
standardisation. The data may be modeled by unclustered GLMs, cluster-
ing models with/without interactions, clustering models with covariates
with/without interactions. Depending on the model we choose, the num-
ber of parameters varies. The list of models that may be fitted to the data
is in Table 3.1.
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Table 3.1: The list of the linear predictors.

Model equation for logitθij Number of parameters Model description

GLM

µ 1 Null

µ+ ai n Row effects

µ+ bj p Columns effects

µ+ ai + bj n+ p− 1 Main effects only

µ+ ai + bj + λij np Saturated

Row Cluster models

µ+ ar 2R− 1 All columns are alike

µ+ ar + bj 2R + p− 2 Column effects

µ+ ar + bj + λrj Rp+R− 1 Saturated

µ+ ar + xTi δ 2R +D − 1 Row covariates

µ+ ar + xTi δ + bj D + 2R + p− 2 Row covariates & column effects

µ+ ar + xTi (δ + υr) + bj R + p+DR− 2 Row covariates interaction, column effects

µ+ ar + wTj ψ 2R +W − 1 Column covariates

µ+ ar + wTj (ψ + τ r) 2R +WR− 1 Column covariates interaction

µ+ xTi δ D + 1 Row covariates only (GLM)

µ+ xTi δ + bj D + p Row covariates and column effects (GLM)

Row Standardised model

µ+ αi + ar + bj + λrj n+R +Rp− 3 Row standardisation with column effects

µ+ αi + ar + wTj (ψ + τ r) n+ 2R +WR− 2 Row standardisation with column covariates
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3.6 Random Starting Value

A note of caution is required when using the EM algorithm for mixture dis-
tributions. One of the disadvantages of mixture models is possible multi-
modal likelihood. Recall that mixture models assume that the data have
more than two probability distributions (Section 1.2.2). This means that
each mixture component has its own density function, fg(y) (see equation
1.1). There often exist many sub-optimal combinations of these distribu-
tions that are nevertheless a local maximum of the likelihood function.
The EM algorithm may climb to one of these local maximum and termi-
nate there. However, it will not necessarily have located the global max-
imum, and there is no diagnostic to indicate if an EM estimate is in fact
the global maximum. But when the shape of mixture distribution is un-
known and the EM algorithm is climbing-only iterative optimisation, how
do we ensure that the EM algorithm has converged to the global maxi-
mum? McLachlan and Krishnan (2007) said that the EM algorithm does
not guarantee the convergence at the global maximum. They reviewed a
paper from Wu (1983) in which the properties of the EM algorithm were
studied, and stressed that adjustments are required for convergence at the
global maximum. One solution is to have several starting values for the
EM iteration. However, it is still unknown how many sets of starting val-
ues are needed, how long it takes to converge, and more importantly, it
still does not confirm that the EM algorithm reached at the global maxi-
mum. Karlis and Xekalaki (2003) compared several methods for selecting
starting values in order to reach the global maximum in fewer iterations.
They recommended that to use several sets of starting values and run only
a few EM iterations without necessarily checking convergence first. Then,
take the values with the largest likelihood from the initial step, and run
the EM algorithm again using strict convergence rule. While this strategy
seems to be sensible, their approach still does not suggest how to choose
sets of random starting points. In a recent paper from Pledger et al. (2015),
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the authors point out that having an uninformed set of random starting
values is ineffective. Instead, they suggested to use k-means first to clus-
ter the rows/columns, in order to have a realistic idea of group member-
ship in the real data (called preliminary E-step). Then we can obtain es-
timates of suitable random starting points from this preliminary E-step.
Once these informed random starting values are chosen, we run the EM
algorithm to obtain the estimates. In our research, we combine the meth-
ods proposed by both papers. We run the preliminary EM algorithm with
less strict convergence rule (less setting of the maximum number of itera-
tion) in order to have good starting values followed by the concluding EM
algorithm with strict convergence rule. In the concluding EM algorithm,
the M-step is run twice to ensure that the EM algorithm has converged.
The convergence rule for the second M-step is set to be more strict than
the first M-step.
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3.7 Model Selection Method

The next challenge is to find the optimal number of groups. We want
the model which best presents the data including determining the num-
ber of groups. When the EM algorithm is applied, the different number
of groups (R or C, for row-clustered and column-clustered, respectively)
must be chosen first, and models are fitted accordingly. In order to de-
termine the optimal number of groups, candidate models are separately
fitted by the EM algorithm and compared. Commonly used approaches
for the model comparison are the likelihood ratio test and information
criteria. In this research, Akaike’s Information Criterion (AIC, (Akaike,
1973)) is used for model selection. AIC is a relative measure of infor-
mation loss, based on the likelihood function which gets penalized with
the number of parameters in the model. The information loss is obtained
by Kullback-Leibler distance (KLD) that measures the distance between
true probability distribution and predicted probability distribution by a
model (Richards, 2008). However, we can only approximate the unknown
“truth”, so the KLD is also approximate. Instead of KLD, AIC is used as a
relative estimation of the KLD. The formula for AIC is

AIC = −2`c + 2K

where `c is the maximised log of the complete likelihood of the data (e.g.
equation 3.8), K is the number of independent parameters in the model.
AIC is a relative measure of information loss so we can only meaning-
fully interpret AIC value differences between the models. It is not an
overall goodness of fit measure. The model with the smallest AIC is the
model with the minimum expected KLD, thereby the best model. How-
ever, when the difference in AIC between the models is small, typically
less than 3, the model with less parameters is chosen as the best model
from the set of models that have been estimated.
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3.8 Simulation Study

3.8.1 Introduction

In this section, we perform a simulation study on a set of models described
in Section 3.3. We must be sure that we can reliably recover the parameters
of a known model using the EM algorithm described above, in order to be
confident that the estimation procedure will identify the correct model in a
real dataset. We also need to be certain that our models satisfy underlying
assumptions of the data distribution and the constraints, so that we can
apply our models to the real-world data with confidence. But how do we
achieve the evaluation of the models with the real data alone? It is not
possible to evaluate our model performance with the data when the true
parameters are unknown. For these reasons, we have carried out a set
of simulation studies where we attempt to recover the correct parameter
values for a set of simulated datasets when the true parameter values are
known. Simulation is a numerical technique for conducting experiments
and scenarios on the computer, and a rational way of investigating the
model performance (Burton et al., 2006). The goal of the simulation study
is to evaluate the reliability of the models and their robustness.

In this section, we conduct a simulation study on our likelihood-based
clustering models. We first outline the process of the simulation study and
then present our results.

3.8.2 General Procedure

All simulation studies involve generating independent simulated datasets.
To do so we specify the true parameters first. A dataset is then generated
using the true parameters and then a set of proposed models are fitted to
the dataset. If the model is a good fit, we must be able to recover the true
population parameters. In addition to creating true parameters, the spec-
ification of the simulation study includes the choice of the number of the
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groups, the sample size, and the number of replicates for model runs. At
each run, we fit the model with several random starting values that are
chosen by the method described in Section 3.6. This procedure is repeated
a number of times.

3.8.3 Outline of Simulation Study

Here we describe the process of the simulation study in detail. The method
of the simulation study can be described in the following steps.

Notation

• n; sample size

• R; the number of clusters, 1 ≤ R < n

• p; the number of columns in a dataset, p = 5, j = 1, · · · , p

• D; the number of covariates, d = 1, · · · , D

• V ; the number of replicates, v = 1, · · · , V

• Q; the number of random starting points, q = 1, · · · , Q

Step 1. Specify the model and true values for the parameters

• Select the model

• Select R from {2, 3, 4, 5} and n from {100, 200, 500}

• Define the true parameters for the selected model.
For example of simple row-clustered model (equation 3.3), we
set µ, a, b. If we set R = 2 and p = 5, we need to specify φ =

µ, a1, b1, b2, b3, b4. With the constraints, we generate a complete
set of parameters; a2 = −a1, and b5 = −b1 − b2 − b3 − b4.

• Define the mixture weights, πr. For each model we have two
scenarios: Scenario 1 is the case when πr are equal among R,
and Scenario 2 is the situation where one πr has a large value
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(i.e. one group dominates in the population). When R = 2, we
set π1 = π2 = 0.5 in Scenario 1, and π1 = 0.95, π2 = 0.05 in
Scenario 2.

Step 2. Generate a dataset based on the true parameters

• The linear predictor for the row-clustered with column effects
model without interaction (see equation 3.3) is

logit(φrj) = µ+ ar + bj

For each i = 1, · · · , n, we assign r ∼ Discrete(π1, · · · , πr), then
set θij = φrj , and then for j = 1, · · · , p, yij ∼ Benoulli(θij) We
then generate a n× p dataset based on Y ∼ Bernoulli(Θ)

Step 3. Fit the model using the EM algorithm with Q random starting points
For any values of R,

• Set Q. We set Q = 5. That means that we run the model for five
times for one generated dataset.

• We obtain five sets of parameter estimates. When R = 2, we
obtain five sets of {µ, a1, b1, b2, b3, b4} as well as the maximised
log-likelihood value.

• We report the one with the highest log-likelihood as parameter
estimates.

Step 4. Replicates

• Repeat step 2 and 3 for V times. We set V = 100. That is, we run
the simulation forQ×V = 5×100 for each model in a particular
situation.

Step 5. Report the results
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• At the end of a simulation study, we have 100 sets of parameter
estimates. We take the mean and standard deviation of these
estimates and report these values and compare with the true
parameters. We report the mean as the parameter estimate and
the standard deviation as the standard error (S.E.).

3.8.4 Label Switching

One thing to note when reporting the results from the simulation study is
label switching. Label switching is defined as re-labelling of the mixture
components while the likelihood of the data is invariant (Stephens, 2000).
More specifically, taking R = 2 row cluster model as a example, estimates
from some EM algorithm during V = 100 runs may produce estimates
with â1 > â2, while other EM algorithm runs produce with â1 < â2. Our
true values always have a1 > a2, and we need to relabel the correspond-
ing values so that we have â1 > â2. Label switching occurs naturally in
mixture models where the likelihood can be multi-modal (McLachlan and
Peel, 2004; Stephens, 2000). McLachlan and Peel (2004) states that switch-
ing of the component label is not a problem but it is important to consider
the effect of the label switching in a simulation study. Since we know the
true values for the parameters in the simulation, we were able to identify
iterations with label switching and fix them accordingly. Identification of
the label switching is impossible in the real-world data, but it is also un-
necessary. In this research, we take the note of the occurrence of label
switching.

3.8.5 Results

We carried out simulation studies for the row-clustered model without
interaction (equation 3.3), and the row cluster with row level covariate
model (equation 3.13). Results from the simulation study after adjusting
for label switching for the row-clustered model (R = 2) are in Table 3.2
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and 3.3 for Scenario 1 and 2, respectively. Results from the simulation
study after adjusting for label switching for the row cluster with row level
covariate model (R = 3) are presented in Table 3.4 and 3.5 respectively
for Scenario 1 and 2. For the both models in Scenario 1, the estimates of
the parameters became close to the true values, and as expected the vari-
ability (S.E.) decreases with increasing sample size n (Table 3.2, 3.4). The
estimates for b are very close to the true values with small amount of the
variability, while the estimates for the µ and a show little more variability.
The ability to recover the true πr values is different between the models in
Scenario 1. The relative sampling error (RSE) is calculated for πr to evalu-
ate the quality of the estimate (RSE(π̂r) = S.E.(π̂r)

π̂r
)). For the row-clustered

model when n = 500, RSE(π̂2) = 0.1421
0.2012

= 0.71. It is high (>70%), indicating
our estimates for πr are very poor. The RSEs for the row cluster with the
covariate model are better than that of the row-clustered model. But the
RSE for π3 when n = 500 is 16%, again suggesting the estimate for πr are
poor (Table 3.4). Similarly, the estimates for a have much larger variability
in the row-clustered model (S.E. = 0.9737, for both a1 and a2, Table 3.2),
compared with that of in the row cluster with row level covariate model
(S.E.= 0.1854, 0.2355, 0.1724 for a1, a2, a3, respectively (Table 3.4). There-
fore, in the situation when πr has the equal value between the clusters, the
row cluster with row level covariate model can perform better than the
row-clustered model. It may be due to that the number of parameter is
too few to explain the whole dataset, or the simpler model requires bigger
sample size to evaluate its performance.

The row-clustered model appears to be performing poorly in Scenario
2. The estimates for b are still close to the true values, but the estimate for
the other parameters get further from the true values. Not only the esti-
mates for µ and a get further from the true values, but also the standard
error of these parameter estimates showed small change with the size of n.
The 95% confidence intervals when n = 500 for a1 in Scenario 1 is (−1.0458,
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2.7712), and (−1.6572, 3.6892) in Scenario 2. Both intervals have the true
value of a1 = 0.3749, but the range of the interval in Scenario 2 is much
larger than that in Scenario 1. For the row cluster with row level covariate
model, the simulation results suggests there is no noticeable deterioration
in the performance (Table 3.5). Although the estimates for ar get far from
the true values, the standard errors are similar to that of in Scenario 1, sug-
gesting that the range of the 95% confidence intervals are relatively similar
between the scenarios. The parameter δ is well estimated in the both sce-
narios (δ̂ = 1.7949 (S.E. = 0.1929), and 1.7832 (S.E. = 0.1752), for Scenario
1 and 2, respectively (Table 3.4, and 3.5).

The ability to estimate true πr in Scenario 2 is similar to that of in Sce-
nario 1. The RSEs of π̂r for the row-clustered model got worse, resulting
in 92% when n = 500 (Table 3.3). Likewise, the RSEs for the row cluster
model with row covariate model also became worse, about 20%. It can
be still said that the ability to recover the true πr is still better for the row
cluster with row covariate model, but the quality of the estimates are poor
for the both model. The parameter µ seems to be better estimated for the
row cluster with row covariate model in the both scenarios.

Summary

In summary, the results from the simulation study are not really satisfac-
tory. We did have improved estimation when the sample size is large (S.E.s
are reduced), indicating having a large sample size is better for the overall
estimation. The results also show that inclusion of the covariate is useful
additional information that can improve the identification of groups. We
also noted that the estimations for ar and πr are poor in most cases. It
may be due to the particular data we generated. If the generated data for
each run had many 0’s or 1’s, that means all species are either rare or very
abundant in a ecological situation. It would make the simulation longer
to converge and produce poor estimates when the data are dominated by
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either 0 or 1. It is necessary to check generated dataset by taking the mean
of the {yij} is not close to 0 or 1, so that we could have better estimates
from the simulation study.
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Table 3.2: Simulation results for the row clustered model in Scenario 1 when R = 2

n = 100 n = 200 n = 500

Parameters true mean S.E. mean S.E. mean S.E.

µ 0.1308 0.0444 1.6975 -0.0860 1.571 0.0120 1.2223

a1 0.3749 1.0841 1.3933 1.017 1.2894 0.8627 0.9737

a2 -0.3749 -1.0841 1.3933 -1.017 1.2894 -0.8627 0.9737

b1 -0.0027 0.0250 0.1885 -0.0099 0.1379 -0.0085 0.0810

b2 0.1248 0.1240 0.1826 0.1358 0.1254 0.1370 0.0843

b3 0.4376 0.4534 0.2027 0.4475 0.1409 0.4375 0.0833

b4 -0.9028 -0.9178 0.1813 -0.9136 0.1358 -0.9088 0.0812

π1 0.5000 0.7572 0.1715 0.7658 0.1725 0.7988 0.1421

π2 0.5000 0.2428 0.1715 0.2342 0.1725 0.2012 0.1421
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Table 3.3: Simulation results for the row clustered model in Scenario 2 when R = 2

n = 100 n = 200 n = 500

Parameters true mean S.E. mean S.E. mean S.E.

µ 0.1308 0.6170 1.6975 0.6726 2.0090 0.8183 1.6361

a1 0.3749 1.2556 1.732 1.1925 1.6704 1.016 1.3639

a2 -0.3749 -1.2556 1.732 -1.1925 1.6704 -1.016 1.3639

b1 -0.0027 0.0234 0.1885 0.0120 0.1219 0.0018 0.0767

b2 0.1248 0.1378 0.1826 0.1172 0.1350 0.1334 0.0782

b3 0.4376 0.4677 0.2027 0.4242 0.1342 0.4416 0.0834

b4 -0.9028 -0.9616 0.1813 -0.9068 0.1513 -0.9212 0.0743

π1 0.9500 0.7510 0.19 0.7706 0.1944 0.7867 0.1955

π2 0.0500 0.2490 0.19 0.2294 0.1944 0.2133 0.1955
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Table 3.4: Simulation results for row clustered with a covariate model in Scenario 1 when
R = 3

n = 100 n = 200 n = 500

Parameters true mean S.E. mean S.E. mean S.E.

µ 0.1308 0.0734 0.2023 0.0768 0.1729 0.0612 0.1120

a1 0.3749 0.4310 0.3531 0.3366 0.2237 0.3758 0.1854

a2 0.1080 -0.0442 0.2738 0.0030 0.2544 0.0172 0.2355

a3 -0.4829 -0.3868 0.3118 -0.3395 0.2642 -0.3930 0.1724

b1 -0.0027 0.0290 0.2269 -0.0053 0.1527 -0.0027 0.0995

b2 0.1248 0.1167 0.2408 0.1200 0.1431 0.1249 0.0856

b3 0.4376 0.4393 0.2433 0.4321 0.1715 0.4626 0.0975

b4 -0.9028 -0.9214 0.2183 -0.9073 0.1325 -0.9131 0.0872

δ 1.7846 1.8405 0.4027 1.8156 0.2880 1.7949 0.1929

π1 0.3330 0.4342 0.0482 0.4461 0.0783 0.4440 0.0493

π2 0.3330 0.3297 0.0383 0.3221 0.0783 0.3277 0.0355

π3 0.3330 0.2360 0.0409 0.2319 0.0418 0.2283 0.0368
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Table 3.5: Simulation results for row clustered with a covariate model in Scenario 2 when
R = 3

n = 100 n = 200 n = 500

Parameters true mean S.E. mean S.E. mean S.E.

µ 0.1308 0.4352 0.2473 0.4358 0.1696 0.4440 0.1128

a1 0.3749 0.2035 0.2510 0.2184 0.2272 0.1798 0.1870

a2 0.1080 0.0003 0.1935 -0.0054 0.1948 -0.0027 0.1597

a3 -0.4829 -0.2037 0.2691 -0.2130 0.2311 -0.1772 0.1949

b1 -0.0027 0.0279 0.2461 0.0145 0.1796 -0.0008 0.1115

b2 0.1248 0.1034 0.2414 0.1320 0.1671 0.1269 0.0986

b3 0.4376 0.4802 0.2979 0.4336 0.1816 0.4538 0.0928

b4 -0.9028 -0.9271 0.2268 -0.9298 0.1534 -0.9042 0.0928

δ 1.7846 1.8525 0.4294 1.8156 0.2880 1.7832 0.1752

π1 0.9500 0.4805 0.0524 0.5045 0.0528 0.4986 0.0502

π2 0.0250 0.3217 0.0485 0.3155 0.0516 0.3157 0.0471

π3 0.0250 0.1978 0.0402 0.1800 0.0398 0.1856 0.0367
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3.9 The Use of the clustglm Function

The main disadvantage with the EM algorithm is computational time. As
McLachlan and Krishnan (2007) said in their book, the EM algorithm can
be slow to converge and moreover, it can fail to converge. Reasons why
the EM algorithm takes so long to converge are that the function used in
the M-step, optim, is a time consuming procedure, and the starting values
can be far away from the global likelihood maximum. In order to reduce
computational time, we use new computing package clustglm, devel-
oped by Pledger et al. (2015). This programme does simple row/column
clustering and biclustering, using the glm function internally instead of
optim. The switch from optim to glm immensely reduces computational
time, because the glm function in R is fast and stable. In addition, the
clustglm enable us to generate possible starting values that are close
enough to a local peak of the likelihood by using three clustering methods
that are also in R. They are the kmeans function that is used to gener-
ate the posterior probability matrix for row/column clustered models, the
hclust function, which is a standard agglomerative hierarchical cluster-
ing, and lastly the diana function, a method of divisive hierarchical clus-
ter analysis (Pledger et al., 2015). The values with the highest likelihood is
chosen as a starting value to initialise the EM algorithm until convergence.
Another big advantage is that the clustglm function can incorporate co-
variates. Because this package is based on the glm function, covariates
can easily be included as predictor variables with clustering. This function
can produce three information criteria; AIC, AICc (corrected AIC, Akaike,
1973), and BIC (Bayesian information criterion, Schwarz et al., 1978). The
clustglm allow us to explore the data by fitting many models with a
short computational time and compare between the models, therefore we
use this function for the data analyses.

One minor hiccup is that the clustglm uses different model specifica-
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tion from our specification in Section 3.3. In order to use this function, we
need to arrange the dataset and models accordingly. The original dataset
is the n×pmatrix. This is arranged to a format so that glm function can be
fitted. For example, if we have 4×2 matrix which consists binary response,
the dataset to fit glm is

original
1 0

0 1

0 1

1 1

 →

for clustglm

Y A B

1 1 1

0 2 1

0 3 1

1 4 1

0 1 2

1 2 2

1 3 2

1 4 2


where Y column contains the response variable of the original data matrix,
and A and B indicate row and column. Covariates can be easily added to
this data frame by making additional columns. Our models also need to be
arranged in order to accommodate this new data frame. As the clustglm
is based on the glm function, we need to express the generalized linear re-
gression formula. The model with main effects terms (using rows and/or
columns as factors) is delivered via αi and βj , and cluster term is expressed
in γrc. The general model equation in clustglm is

logitφrj = ν + αi + βj + γrc (3.21)

where

• ν is the intercept of the regression
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• αi are row main effects (i = 1, · · · , n),
∑n

i=1 αi = 0

• βj are column main effects (j = 1, · · · , p),
∑p

j=1 βj = 0

• γrc are the row/column cluster effects (r = 1, · · · , R, c = 1, · · · , C),∑R
r=1 γrc = 0, ∀c, and

∑C
c=1 γrc = 0, ∀r

The row/column cluster term (e.g. ar for the row clustering in equation
3.17) is expressed in γrc, and the number of row/column cluster is speci-
fied in r and c in γ. Covariates can be included in γrc term by replacing r
or c with covariates.

3.9.1 Example

Here, we illustrate how our models are transformed to clustglm model
formula.

Simple Row-clustered Model

Recall our model in simple row clustering case. Our model equation ( 3.3)
is

logitφrj = µ+ ar + bj + λrj

where we set λrj = 0. In order to use clustglm, the model above is
transformed to the following equation

logitφrj = ν + βj + γr1 (3.22)

where γr1 isR×1 vector of row cluster effect. We set αi = 0, ∀i andC = 1 in
equation (3.21) as we don’t cluster columns in this situation. The number
of parameters is the same (2R + p − 1). The parameter estimates in our
model (3.3) are computed by
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µ̂ = ν + γ..

âr = γr. − γ..
b̂j = βj

Row Cluster with Column Covariates Model

Our model in the case of row cluster with column level covariates (3.16)
is

logit(φijr) = µ+ ar + wTj ψ

This is written in the following

logitφijr = ν + wTj ψ + γr1

The column effects bj in the equation (3.22) is replaced by the column
levels covariates, wTj . The parameter estimate for ψ is obtained from the
model output. The number of parameters here is 2R +W − 1.

Row Cluster with Row Standardisation

We presented row cluster with row standardisation models earlier (Sec-
tion 3.4). These models are much more easily fitted in the clustglm. In
the case of row clustering with cluster-column interaction and row stan-
dardisation, the model is

logit(φijr) = ν + αi + βj + γrj (3.23)

where
∑n

i=1 αi = 0,
∑p

j=1 βj = 0,
∑R

r=1 γrj = 0, ∀j, and
∑p

j=1 γrj = 0, ∀r .



Chapter 4

Application to Trawl Survey Data

4.1 Introduction

In this chapter, we present the results from fitting models using clustglm
to the fisheries trawl survey data. We have selected a set of presence/absence
dataset from four survey trips, tan0201, tan1101, tan1201, and tan1301.
These indicate an early year (2002) and three late years (2011, 2012, and
2013). The number of species caught varies year to year. Species consid-
ered for the analysis are the ones that were caught in all four trips, so we
can minimise the risk of our analysis being affected by the presence of rare
species, and can easily detect year to year changes. There are a total of
61 fish or shark species in the reduced datasets (n = 61). We first fit the
simple row-clustered model, followed by the row/column level covariate
models. The results from these models motivate us to propose two fur-
ther models, which combine row and column level effects in one model.
We select the best model using the information criterion AIC, interpret the
results from the best model, and discuss possible biological/ecological ex-
planations for our results. We use visualization techniques to present the
results. Species cluster memberships, and the values of row cluster effects
and the column effects are presented in graphical displays throughout this
chapter. Geographical and depth distributions for the species studied in

71
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our analysis were illustrated by Anderson et al. (1998).

4.2 Models Fitted

There are eleven models fitted for each of the four datasets. A suite of
the models are listed in Table 4.1. We start with the simple row-clustered
model (SRC, no predictor to explain the data), then add depth and bot-
tom water temperature effect as main effect (Models 6, 7, and 8, Table 4.1),
and the bottom temperature and depth interaction terms with row clus-
ters (Models 1, 2, 3, 4, and 5, Table 4.1). We choose depth and bottom
water temperature for the column covariates because there are thought to
be important environmental factors to explain the species distribution in
the New Zealand waters (Francis et al., 2002; Leathwick et al., 2003). We
also fit the row standardised model (Model RS) and row covariate model
(Model RC). For each model, R = 2, · · · , 10 are investigated.

4.3 Model Selection

We have fitted a suite of models from the simple row-clustered model to
the row cluster models with column/row covariates. For each model, the
information criterion AIC is computed and the results from the tan0201
dataset are summarised in Table 4.2. An issue we encountered when se-
lecting the best model according to the AIC is that the model selected may
not necessarily give us results that are easily interpretable. For example,
R = 9 is selected for Model 1. However, when the 61 species are clustered
into nine groups, four groups had less than five species. For example, one
group had only two species, ribaldo (Mora Moro, RIB) and shovelnose dog-
fish (Deania calcea, SND), which are common species on the Chatham Rise
(Anderson et al., 1998). It is difficult and impractical to describe biolog-
ical/ecological characteristics from such small groups, unless the species
in that group are very different from other groups. For this reason, we set
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Table 4.1: The model specifications for the trawl survey data. n = sample size (n = 61

for all datasets), p is the number of columns, R is the number of the groups, and W is the
number of the column covariates.

Model Type Model Specification npar

Simple row-clustered (SRC) µ+ ar + bj 2R + p− 2

Model 1 µ+ ar + depthj(ψ1 + τr) + tempj(ψ2 + τr) WR + 2R− 1

(W = 2)

Model 2 µ+ ar + depthjψ1 + tempj(ψ2 + τr) WR + 2R− 1

(W = 1)

Model 3 µ+ ar + depthj(ψ1 + τr) + tempjψ2 WR + 2R− 1

(W = 1)

Model 4 µ+ ar + tempj(ψ + τr) 3R +W − 2

(W = 1)

Model 5 µ+ ar + depthj(ψ + τr) 3R +W − 2

(W = 1)

Model 6 µ+ ar + depthjψ1 + tempjψ2 2R +W − 1

(W = 2)

Model 7 µ+ ar + tempjψ 2R +W − 1

(W = 1)

Model 8 µ+ ar + depthjψ 2R +W − 1

(W = 1)

Row standardised (RS) µ+ αi + ar + bj 2R + n+ p− 3

Row covariate (RC) µ+ ar + body lengthiδ + bj 2R + p− 1

a cutoff minimum value for π̂r. If there is any group with its π̂r < 0.08,
equivalent to fewer than five species, we check the species composition
in that group. If it does not have any distinct characteristics (e.g. very
rare deepwater sharks), we reduce the number of R until all π̂r values
are greater than the cutoff value. Table 4.2 shows that the model we se-
lected (highlighted in red) is not always the model with the minimum
AIC. We show the final model selection results for the tan1101, tan1201,
and tan1301 data in Table 4.3. For all datasets, the optimal model overall
is highlighted in blue.
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The optimal model overall is Model 1 for all datasets. The number
of groups selected from this model is R = 6, 7, 5 and 7 for the tan0201,
tan1101, tan1201, and tan1301 data, respectively. This model has both
depth and bottom temperature covariates interacting with the row clus-
ters, suggesting that they explain the data differently. For all datasets,
Models 3 and 5 have similar AIC (for example, AIC = 1644.10, 1645.23 for
Models 3 and 5, for the tan1101 data, Table 4.3), and so does Models 2 and
4 (AIC = 1756.30, 1757.60 for Models 2 and 4, for the tan1101 data, Ta-
ble 4.3). Models 3 and 5 both include depth interaction term, and Model 3
has an extra covariate, bottom temperature. Likewise, both Models 2 and
4 have the bottom temperature interaction term, with Model 2 having an
extra covariate, depth. The AIC’s are very similar for Models 3 and 5, also
for Models 2 and 4, indicating that fitting one interaction term might be
enough to explain the data. However, when we compare Model 1 with
Models 4 and 5, the AIC for Model 5 is close to that for Model 1. This indi-
cates that addition of bottom temperature terms improved the model only
a small amount. Putting together, having depth and bottom temperature
with interaction effects best presents the data, but depth seems to be the
strongest explanatory variable.



4.3. MODEL SELECTION 75

Table 4.2: A suite of models fitted for the tan0201 data. The minimum AIC in each model
is shown in bold, and the model selected in each model option is shown in red. The
overall best model is highlighted in blue. Note when the difference of the AIC is less
than 3 between the two adjacent models, we take the simpler model.

Model R npar AIC the minimum πr

Simple row-clustered model

3 31 1710.70 0.16

4 33 1708.93 0.12

5 35 1712.89 0.10

Model 1

6 23 1343.77 0.13

7 27 1341.55 0.06

8 31 1318.31 0.05

9 35 1312.83 0.05

10 39 1323.75 0.01

Model 2

5 15 1539.43 0.13

6 18 1533.12 0.05

7 21 1572.39 0.05

Model 3

6 18 1372.31 0.09

7 21 1354.59 0.07

8 24 1347.78 0.05

9 27 1353.08 0.03

Model 4

5 14 1537.47 0.13

6 17 1531.14 0.05

7 20 1526.08 0.05

8 23 1525.81 0.01

Model 5

7 20 1358.85 0.08

8 23 1352.87 0.05

9 26 1358.21 0.03

Model 6

3 7 1732.60 0.16

4 9 1731.73 0.12

5 11 1735.73 0.01

Model 7

3 6 1730.88 0.16

4 8 1730.02 0.12

5 10 1734.02 0.01

Model 8

3 6 1733.99 0.16

4 8 1733.16 0.12

5 10 1737.164 0.01

Model RS

2 89 1616.35 0.04

3 91 1620.35 0.04

4 93 1624.35 0.04

Model RC

2 30 1777.59 0.49

3 32 1712.26 0.16

4 34 1709.37 0.11
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Table 4.3: A suite of best models from each model option for the tan1101, tan1201, tan1301
data. The overall best model in each year is highlighted with blue.

Dataset Model R npar AIC minimum πr

tan1101

SRC 4 38 2223.52 0.16

Model 1 7 27 1629.07 0.08

Model 2 6 18 1756.30 0.11

Model 3 7 21 1644.10 0.08

Model 4 6 17 1757.60 0.11

Model 5 7 20 1645.23 0.08

Model 6 4 9 2240.35 0.16

Model 7 4 8 2238.49 0.16

Model 8 4 8 2242.38 0.16

Model RS 2 94 2135.91 0.04

Model RC 4 39 2221.30 0.15

tan1201

SRC 4 40 2358.55 0.17

Model 1 5 19 1869.45 0.16

Model 2 5 15 1958.88 0.13

Model 3 5 15 1883.84 0.15

Model 4 5 14 1957.68 0.13

Model 5 5 14 1887.25 0.15

Model 6 4 9 2365.25 0.17

Model 7 4 8 2364.60 0.17

Model 8 4 8 2367.68 0.17

Model RS 2 96 2255.22 0.01

Model RC 4 41 2361.10 0.16

tan1301

SRC 3 38 2386.23 0.18

Model 1 7 27 1786.66 0.11

Model 2 6 18 1878.70 0.10

Model 3 7 21 1808.31 0.08

Model 4 6 17 1881.63 0.10

Model 5 7 20 1810.29 0.08

Model 6 3 7 2402.00 0.18

Model 7 3 7 2400.06 0.18

Model 8 4 7 2403.21 0.18

Model RS 2 96 2299.77 0.01

Model RC 3 39 2386.52 0.17
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4.4 Species Membership Results

We use visualization techniques to present a posteriori membership {ẑir}.
This is the probability that species i is in row cluster r. The numerical
expression is

ẑir = P (i ∈ r|Y) (4.1)

In the case of row cluster with covariates model, ẑir is calculated by equa-
tion (3.15).

ẑir =
π̂r
∏p

j=1 φ̂
yij
ijr(1− φ̂ijr)1−yij∑R

u=1{π̂u
∏p

l=1 φ̂
yil
ilu(1− φ̂ilu)1−yil}

Note that
∑R

r=1 ẑir = 1 for all i. In these visualisations we assign each
species to a single row group for simplicity. For the each row of Z, the
highest zr values is selected for the membership. Each species i is assigned
uniquely to a row group with the highest posterior probability ẑir. Fig-
ure 4.1 is the visualisation of species group memberships for the tan0201
data, ordered by the result from SRC model. The bestR selected from each
model is R = 3, 6, 5, 6, 5, 7, 3, 3, 3 respectively for SRC, Model 1, Model 2,
Model 3, Model 4, Model 5, Model 6, Model 7, and Model 8. Group 1 of
SRC model in Figure 4.1 (the bottom group, shown in pale blue) contains
hoki (HOK) and ling (LIN), which are the main target species for the trawl
survey. The species in this group were caught at almost all strata and occur
most frequently around 500 m depth. Their distributions are concentrated
on a broad area of the Chatham Rise, and are also common in the other
areas of the New Zealand’s EEZ, such as the sub-antarctic region or west
coast region (Anderson et al., 1998). Species in Group 2 of SRC model
are also frequently observed, but they are less abundant species on the
Chatham Rise (Anderson et al., 1998). Group 3 of SRC model in Figure 4.1
is the least frequently observed species group. The clusters from SRC and
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the models with covariates as the main effects only (Models 6, 7, and 8)
are identical, indicating that including the covariates only as main effects
in the model is not useful (M6, M7, and M8, Figure 4.1)

Figure 4.2 shows exactly the same group membership results for the
tan0201 data but they are ordered by the membership result from Model
1 (M1). The membership results from Model 3 (M3) and Model 5 (M5)
look very consistent with each other. Model 5 has seven groups, but one
group (Group 7, in dark blue) has only five species. Group 7 in Model
5 is a subset of Group 6 in Model 3. They both have main effect of depth
and interaction with row groups. The only difference between them is that
Model 3 includes bottom water temperature as a main effect. It indicates
that temperature as a main effect alone (without interaction) does not have
power as an explanatory variable when depth (with interaction) is already
in the model. The membership in Models 2 (M2) and 4 (M4) are also iden-
tical to each other. They both have main effect of bottom water tempera-
ture and interaction with row groups. The only difference between them
is that Model 2 includes depth as a main effect. It suggests that depth as
a main effect alone does not have power as an explanatory variable when
bottom temperature (with interaction) is already in the model. The mem-
bership results from Model 4 and Model 5 are different, suggesting depth
and bottom temperature explain the data differently. The memberships
from Model 1 (M1) are consistent with Models 3 and 5. This agrees with
the results from the model selection (Section 4.3) that depth is the most
powerful predictor to explain the data.

The membership result for the tan1101 data is shown in Figure 4.3
(memberships ordered by SRC), and 4.4 (ordered by Model 1). The num-
ber of groups R selected for each model is R = 4, 7, 6, 7, 6, 7, 4, 4, 4 re-
spectively for SRC, Model 1, Model 2, Model 3, Model 4, Model 5, Model
6, Model 7, and Model 8. The value of R increased for all models com-
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pared with the results from the tan0201 data. Similar to the tan0201 re-
sults, species are clustered by its frequency of occurrence by SRC model.
The difference from SRC for the tan0201 data is that species are clustered
into four groups for the tan1101 data by SRC. Group 1 species are most
frequently occurred species and Group 4 species are least frequently ob-
served species. Species in Groups 2 and 3 also frequently occur, how-
ever the difference between them are not clear. Figure 4.4 shows the same
group membership results in the tan1101 data ordered by the member-
ship result from Model 1 (M1). Again the membership results from Model
3 (M3) and Model 5 (M5) look very consistent with each other, and so does
Models 2 and 4. The memberships from Model 1 is slightly different from
that of Models 3 and 5 but still very similar. Results for the tan1101 data
again suggest that depth is the strongest predictor.

The membership results from the tan1201 data (Figure 4.5 (ordered by
SRC) and 4.6 (ordered by Model 1)), and from the tan1301 data (Figure
4.7 (ordered by SRC) and 4.8 (ordered by Model 1)) also show similar re-
sults from the tan0201 data and the tan1101 data. For the tan1201 data,
the value of R selected for each model is R = 4, 5, 5, 5, 5, 5, 4, 4, 4 from
SRC, Model 1, Model 2, Model 3, Model 4, Model 5, Model 6, Model 7, and
Model 8, respectively. This is the only year that species are clustered into
five groups by all models with column covariates (Models 1, 2, 3, 4, and
5). For the tan1301 data, the value of R selected for each model is R = 3,
7, 6, 7, 6, 7, 3, 3, 3. The models with depth and interaction between depth
and row groups (Models 1, 3, and 5) resulted in having more groups, in-
dicating that depth can explain the data better.

Overall, the more information we add in the model, the larger R is
selected. These figures show the cluster structure changes after we add
covariates in the model, confirming that the covariates we use (depth and
bottom water temperature) explain variations in the data. The member-
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ship visualisations reflect what we found from the model comparison;
Depth is the strongest predictor to explain the data. The number of groups
selected for each model is different across the years, which may reflect
changes in frequency of occurrence, or other environmental factors affect-
ing the preferred location for each species.
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Figure 4.1: Plot showing species group memberships for the tan0201 data from a set of
models shown in Table 4.1. The membership is ordered by result from SRC. From left,
SRC, Model 1, Model 2, Model 3, Model 4, Model 5, Model 6, Model 7, and Model 8. The
number of clusters R in the fitted model is shown on the top.



82 CHAPTER 4. APPLICATION TO TRAWL SURVEY DATA

Figure 4.2: Plot showing species group memberships for the tan0201 data from a set of
models shown in Table 4.1. The membership is ordered by result from Model 1 (M1).
From left, SRC, Model 1, Model 2, Model 3, Model 4, Model 5, Model 6, Model 7, and
Model 8. The number of clusters R in the fitted model is shown on the top.
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Figure 4.3: Plot showing species group memberships for the tan1101 data from a set of
models shown in Table 4.1. The membership is ordered by result from SRC. From left,
SRC, Model 1, Model 2, Model 3, Model 4, Model 5, Model 6, Model 7, and Model 8. The
number of clusters R in the fitted model is shown on the top.
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Figure 4.4: Plot showing species group memberships for the tan1101 data from a set of
models shown in Table 4.1. The membership is ordered by result from Model 1 (M1).
From left, SRC, Model 1, Model 2, Model 3, Model 4, Model 5, Model 6, Model 7, and
Model 8. The number of clusters R in the fitted model is shown on the top.



4.4. SPECIES MEMBERSHIP RESULTS 85

Figure 4.5: Plot showing species group memberships for the tan1201 data from a set of
models shown in Table 4.1. The membership is ordered by result from SRC. From left,
SRC, Model 1, Model 2, Model 3, Model 4, Model 5, Model 6, Model 7, and Model 8. The
number of clusters R in the fitted model is shown on the top.
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Figure 4.6: Plot showing species group memberships for the tan1201 data from a set of
models shown in Table 4.1. The membership is ordered by result from Model 1. From
left, SRC, Model 1, Model 2, Model 3, Model 4, Model 5, Model 6, Model 7, and Model 8.
The number of clusters R in the fitted model is shown on the top.
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Figure 4.7: Plot showing species group memberships for the tan1301 data from a set of
models shown in Table 4.1. The membership is ordered by result from SRC. From left,
SRC, Model 1, Model 2, Model 3, Model 4, Model 5, Model 6, Model 7, and Model 8. The
number of clusters R in the fitted model is shown on the top.
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Figure 4.8: Plot showing species group memberships for the tan1301 data from a set of
models shown in Table 4.1. The membership is ordered by result from Model 1. From
left, SRC, Model 1, Model 2, Model 3, Model 4, Model 5, Model 6, Model 7, and Model 8.
The number of clusters R in the fitted model is shown on the top.



4.5. COLUMN EFFECTS 89

4.5 Column Effects

So far we have found that the depth is the most powerful covariate ex-
plaining the data, but bottom water temperature is also important. In this
section, we further investigate how similar or different depth and bottom
temperature effects are. To do this, we calculate the column effect values
(b̂j) from SRC model, Model 1, Model 4 and Model 5 (Table 4.1). We se-
lect these four models so that we can see column effect when there is no
predictor in the model (SRC), when depth is the only predictor (Model 5),
when bottom water temperature is the only predictor (Model 4), and when
depth and temperature are both in the model (Model 1). The b̂j term is not
included in Models 1, 4, or 5 (Table 4.1), so we need to compute b̂j values.
The b̂j are computed as follows.
For SRC model, we use the estimates of bj , the independent column effect.
For Models 1, 4, and 5, the column effects are determined by the covari-
ates:

logit(φijr) = ηijr

= µ+ ar + wTj (ψ + τr) (4.2)

η̂j. =
R∑
r=1

π̂rηijr

=
R∑
r=1

π̂r[µ+ ar + wTj (ψ + τr)]

= µ+
R∑
r=1

π̂rar +
R∑
r=1

π̂rw
T
j (ψ + τr)

= C + wTj π̂r(ψ + τr) (4.3)

b̂j = wTj π̂r(ψ + τr) (4.4)

where

• ψ is the W × 1 of coefficient for the covariates
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• τr is the rth column of the row cluster - covariates interaction matrix
T coefficients

• C is a constant (C = µ+
∑R

r=1 π̂rar) across all columns

These values are further standardised by

b̂j,std. =
b̂j −minb̂j

maxb̂j −minb̂j
(4.5)

The value of b̂j,std. for the tan0201 data are visualised in Figure 4.9. A
darker colour means that the chance of observing species is high, and a
lighter, greyer colour means the species are rarely seen from that stratum.
The area with white colour was not surveyed as this area includes the
Chatham Islands (Figure ??). The visualisations from SRC model (Fig-
ure 4.9a) simply show where species were mostly caught, and the area
called Mernoo Bank (stratum 18) and Reserve Bank (stratum 19 and 20,
Figure ??) seem to be the most popular locations for many fish. SRC model
has an independent parameter for each stratum, showing the strongest
variation between areas, as expected. Figure 4.9c shows stronger peaking
along a narrow ridge of strata. Model 4 has bottom water temperature and
temperature-row group interaction term in the model. Figure 4.9c is very
similar to Figure 2.4a, indicating that species are more likely to be caught
in warmer water. In contrast, dark area in Figure 4.9d is more spread out,
indicating species also occur in deeper strata. The colour tones in Fig-
ure 4.9d is opposite of the colour tones in Figure 2.4b. Model 5 is able
to show high probability of catching species in wider areas than Model 4,
but these two figure suggests that species are likely to be caught in shal-
low water strata (200-400 m). The column effects from Model 1 seems to
be taking a balance between Model 4 and Model 5 (Figure 4.9b).

Similar patterns are seen for the tan1101, tan1201, tan1301 column ef-
fects plots (Figure 4.10a, 4.11a, 4.12a). The visualizations of the bj val-
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ues for SRC show notable difference between the strata for all trips (Fig-
ure 4.10a, 4.11a, 4.12a). Areas with high probability of catch in Model 4
are narrower than Model 5, and Model 1 shows counterbalanced effects
of depth and water temperature. There is year to year variation of catch
probability, as the visualisations from SRC models changes with time (Fig-
ure 4.10a, 4.11a, 4.12a). The visualisations of column effects from Model 4
for the tan1101, tan1201, and tan1301 data (Figure 4.10c, 4.11c, 4.12c) show
similar colour gradations as Figure 2.5a, 2.6a, and 2.7a, respectively. As be-
fore, Model 4 indicates that more species are caught in warm water areas,
and this pattern do not change with time. The column effects for Model 5
seems to have changed with time as more deeper areas are showing darker
colour. (Figure 4.10d, 4.11d, 4.12d). This is probably because of additional
tows in deep strata in the recent years, so more species were caught in
these areas. Similar to Figure 4.9d, these figures show high probability of
catching fish in wider areas, but the probability is still small in the strata
that are deeper than 800 m (Figure 2.5b, 2.6b, and 2.7b)
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(a)

(b)

(c)

(d)

Figure 4.9: Map of the Chatham Rise displaying the logit-scaled probability of catching
species for each stratum for the tan0201 data, calculated by equation 4.4 and 4.5 for four
different models. From the top, the simple row clustered model (SRC), Model 1, Model
4, and Model 5. The white area on the right includes the Chatham Islands therefore not
surveyed.
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(a)

(b)

(c)

(d)

Figure 4.10: Map of the Chatham Rise displaying the logit-scaled probability of catching
species for each stratum for the tan1101 data, calculated by equation 4.4 and 4.5 for four
different models. From the top, the simple row clustered model (SRC), Model 1, Model
4, and Model 5. The white area on the right includes the Chatham Islands therefore not
surveyed.
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(a)

(b)

(c)

(d)

Figure 4.11: Map of the Chatham Rise displaying the logit-scaled probability of catching
species for each stratum for the tan1201 data, calculated by equation 4.4 and 4.5 for four
different models. From the top, the simple row clustered model (SRC), Model 1, Model
4, and Model 5. The white area on the right includes the Chatham Islands therefore not
surveyed.
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(a)

(b)

(c)

(d)

Figure 4.12: Map of the Chatham Rise displaying the logit-scaled probability of catching
species for each stratum for the tan1301 data, calculated by equation 4.4 and 4.5 for four
different models. From the top, the simple row clustered model (SRC), Model 1, Model
4, and Model 5. The white area on the right includes the Chatham Islands therefore not
surveyed.
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Figure 4.13: Plots showing the relationship between depth (m) and bottom temperature
(°C) for the for the tan0201, tan1101, tan1201, and tan1301 data.
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4.6 Summary

We found that depth and bottom temperature are both associated with
species occurrences, and modify the clustering when included in the model.
We also found that species are also clustered by frequency of occurrence.
Comparing depth effect with bottom temperature effect, we found that
depth is the strongest predictor to explain the data. Our findings so far
are supported by previous studies, such as the paper from Francis et al.
(2002), in which they clustered 123 fish and squid species into four groups.
They found depth is the most important predictor to explain species as-
semblages. They also found that latitude and longitude are the important
factors to explain species distribution, and mentioned a possibility that the
species distributions could be explained by bottom temperature. We have
detected the effect by bottom temperature but our results do not provide
convincing explanations whether it has a significant effect. The biggest
reason is that temperature is correlated with depth (Figure 4.13). It also
may be due to the way we selected the species for the analysis. We se-
lected the species that were caught in all four trips. Recall that the deep-
water strata were introduced in 2010, therefore the most species caught in
the deep strata are likely to have been excluded, as they were probably not
caught in tan0201 trip. Another reason is that the species are also clustered
by its frequency of occurrence. To see the effect of the bottom temperature
more clearly, we need to control the difference in frequency of occurrence
for the all species.



98 CHAPTER 4. APPLICATION TO TRAWL SURVEY DATA

4.7 The Row Standardised and the Row Covari-

ate Models

In this section, we present the results from the row standardised model
(Model RS) and the row covariate model (Model RC). Both models are
presented in Table 4.1 earlier, here we revisit these models. The row stan-
dardised model is expressed in equation (3.18)

logit(φijr) = µ+ αi + ar + bj

where αi is row standardisation term for each row iwith constraint
∑n

i=1 αi =

0, ar is the cluster effect for each row cluster r with constraint
∑R

r=1 ar = 0,
and bj is the effect of the column j with

∑p
j=1 bj = 0 constraint.

The row covariate model is written in equation (3.13)

logit(φijr) = µ+ ar + bj + xTi δ

where δ is the coefficients of the row covariate (body length), xi is the ith
element of row covariate matrix X (e.g. xi is median body length for each
species i),

∑R
r=1 ar = 0, and

∑p
j=1 bj = 0.

In terms of the model selection, Model RS and Model RC both have
larger value of the AIC than Model 1, therefore we still take Model 1 as
the optimal model for all datasets (Table 4.2, 4.3).

To investigate the effects of row level terms, we display the values of
âr from SRC model, α̂i and âr from Model RS, and âr, xTi δ̂, and âr + xTi δ̂

from Model RC. Figure 4.14 illustrates the values described above for the
tan0201 data. Values with small numbers are shown in red tones, and they
shift to yellow tones as the value become larger. The column in far left
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(SRC, ar) are the value of row cluster effect âr , shown in three different
tones as there are three clusters made from this model (Table 4.2). The sec-
ond column from left in this figure shows the value of row cluster effect âr

from Model RS. There is no colour difference (i.e. monotonic) indicating
that ar values are not identifiable. This is expected because the variations
among the species are explained by α̂i, and therefore, âr = 0 for the simple
row standardised model. Then Model RS drops ar term from the model,
becoming the GLM where yij = θij , with logit(φij) = αi + bj . This model
does not reduces the dimension of the original data, therefore this model
cannot explain the species groupings. The row standardisation value α̂i
from Model RS is displayed in the third column (Row Std, αi). It is difficult
to see the difference in abundance among the species as there is not much
colour difference. But there are three species in yellow colour. They are
hoki (HOK), javelin fish (JAV), and bollons rattail (CBO), which are most
frequently occurred species in this trip. The three right hand columns in
Figure 4.14 illustrate the row level effects value from Model RC. The row
cluster effect (shown as Row Cov ar) has three colour bands with the same
clusters as SRC, indicating that body length does not explain the data. This
is confirmed by the column showing xTi δ̂, as it shows no colour variation,
indicating that δ̂ does not have significant effect, and thereby the data is
explained by the row clusters. Therefore, the far right column, which is a
visualisation of âr + xTi δ̂, shows the same cluster structure as SRC.

Similar patterns are seen for the tan1201 and tan1301 data (Figure 4.16
and 4.17). But Figure 4.15, the results for the tan1101 data, show very dif-
ferent colour display from others. It is clearer to see the variation among
the species explained by αi (third column from left, Figure 4.15). There is
no obvious colour variation within the species in Group 4 (shown in red),
indicating that frequency of occurrence is similar between these species.
It is also clearer to see that there is not much variation explained by xTi δ̂

(second column from right, Figure 4.15), indicating that the body length
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is not important predictor for the data. The reason why Figure 4.15 is be-
cause the row standardisation value α̂i for hoki (HOK) from tan1101 trip
is lower than other three trips. The value of α̂i for hoki is 17.178 (tan0201),
3.8295 (tan1101), 16.7592 (tan1201), and 16.7706 (tan1301), showing the
value from tan1101 trip is less than a quarter of the values from the other
years. This can be explained by the observation frequencies. Hoki is the
dominant species caught on the Chatham Rise and it was caught in almost
all strata in every year. In fact, hoki was present in the all strata in tan0201,
tan1201, and tan1301 trip (e.g. recorded 1 in the all strata). But it was not
observed in all strata in the tan1101 trip, and where it was was stratum
28. So the observation frequencies for hoki in the tan1101 data was treated
the same as other species that were also not observed in one stratum, re-
gardless of the location. This is probably why hoki did not stand out in
the tan1101 data like other datasets. However, the survey in stratum 28
was not completed in this trip due to the lack of time (Stevens et al., 2012).
Because this stratum is deep, it is likely that the survey there was carried
out targeting only deepwater species, not hoki, so surveying in stratum
28 was considered a low priority. This is responsible for the dramatically
different appearance in Figure 4.15: The value of α̂i and âr are much lower,
and so the heat map covers a smaller range of values, showing structure
not easily visible in the heat maps for the other three years. This uncom-
pleted survey significantly affected on our analysis, therefore stratum 28
should have excluded from the tan1101 data.
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Figure 4.14: Heat map of the row cluster effect value (âr) of SRC model, the row cluster
effect value (âr) and the row standardisation value (α̂i) of Model RS, and fitted values of
their effects of Model RC for the tan0201 data.
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Figure 4.15: Heat map of the row cluster effect value (âr) of SRC model, the row cluster
effect value (âr) and the row standardisation value (α̂i) of Model RS, and fitted values of
their effects of Model RC for the tan1101 data.
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Figure 4.16: Heat map of the row cluster effect value (âr) of SRC model, the row cluster
effect value (âr) and the row standardisation value (α̂i) of Model RS, and fitted values of
their effects of Model RC for the tan1201 data.
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Figure 4.17: Heat map of the row cluster effect value (âr) of SRC model, the row cluster
effect value (âr) and the row standardisation value (α̂i) of Model RS, and fitted values of
their effects of Model RC for the tan1301 data.
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4.8 Further Models

The results from previous sections have motivated us to investigate two
further models. We combine the row level information and the column
level information to a single model and further investigate the species
clustering. The models we propose here are: Row cluster with row stan-
dardisation and the column covariates (Model 10, M10); and row cluster
with row and column covariates model (Model 11, M11). More specifi-
cally,

• Model 10: Row cluster with row standardisation and the column co-
variates (equation 3.20 in Section 3.4)

logit(φijr) = µ+ αi + ar + wj(ψ + τ r) (4.6)

= µ+ αi + ar + depthj(ψ1 + τr) + tempj(ψ2 + τr)

• Model 11: Row cluster with the row covariates and the column co-
variates

logit(φijr) = µ+ xTj δ + wj(ψ + τ r) (4.7)

= µ+ body lengthiδ + ar + depthj(ψ1 + τr) + tempj(ψ2 + τr)

4.8.1 Model Selection

Table 4.4 compares the AIC values from Model 1, Model 10, and Model 11.
The same cutoff value (π̂r > 0.08) is applied. For the all datasets, the AIC
value for Model 10 is the smallest of all. As Model 1 was the best model
with the minimum value of AIC (Table 4.2, 4.3), Model 10 best presents the
data for all trips.
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4.8.2 Membership Results

We use the same visualization techniques as in Section 4.3 to present the
membership {ẑir}. Figures 4.19 compared membership results from SRC,
Model 1, and Model 10 for the tan0201 data. It shows that the member-
ships have changed dramatically by Model 10. The biggest change from
the earlier results is that the species are no longer clustered by its fre-
quency of occurrence, as the species memberships obtained by SRC model
are fairly scattered. This is expected because αi term in Model 10 absorbs
the effect of frequency of occurrence. The same results are seen for the
tan1101 data (Figure 4.20), tan1201 data (Figure 4.21), and tan1301 data
(Figure 4.22). The species are also clustered differently between Model 1
and Model 10 for all datasets. But it can be seen that the membership re-
sults from Model 1 are retained in Model 10 to some degree. The most
obvious example is seen from the tan1101 data in Figure 4.20. The species
in Group 7 in Model 1 (the darkest blue group in M1), which is a deepwa-
ter species group, are seen in the same group (Group 5) with other deep-

Table 4.4: Comparison of Model 1, Model 10, and Model 11. The overall best model in
each year is highlighted with blue.

Dataset Model R npar AIC minimum πr

tan0201

Model 1 6 23 1343.77 0.13

Model 10 5 79 1208.19 0.18

Model 11 6 24 1340.524 0.11

tan1101

Model 1 7 27 1629.07 0.08

Model 10 5 79 1536.28 0.14

Model 11 6 24 1675.110 0.10

tan1201

Model 1 5 19 1869.45 0.16

Model 10 6 83 1641.42 0.08

Model 11 6 24 1823.60 0.09

tan1301

Model 1 7 27 1786.66 0.11

Model 10 5 79 1656.50 0.14

Model 11 6 24 1813.14 0.09
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water species in Model 10. The species are not clustered in the same way
by Model 10 across the years (Figure 4.18). However, it seems that there
are two big groups that do not change over time. One group is a group of
deepwater species, and another is a group of shallow water species. The
species membership changes across Groups 1, 2, 3, and 4 across time for
all trips, but they were hardly clustered to Groups 5 or 6. Likewise, most
species in Groups 5 and 6 did not join to Groups 1, 2, 3, or 4 for all trips.
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Figure 4.18: The membership results from Model 10 for the tan0201, tan1101, tan1201,
and tan1301 data. The number of clusters made is shown on top.
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Figure 4.19: Plot showing species group memberships for the tan0201 data from SRC,
Model 1, and Model 10. The membership is ordered by result from Model 10. The number
of the best cluster R for the model is shown on the top.
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Figure 4.20: Plot showing species group memberships for the tan1101 data from SRC,
Model 1, and Model 10. The membership is ordered by result from Model 10. The number
of the best cluster R for the model is shown on the top.
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Figure 4.21: Plot showing species group memberships for the tan1201 data from SRC,
Model 1, and Model 10. The membership is ordered by result from Model 10. The number
of the best cluster R for the model is shown on the top.
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Figure 4.22: Plot showing species group memberships for the tan1301 data from SRC,
Model 1, and Model 10. The membership is ordered by result from Model 10. The number
of the best cluster R for the model is shown on the top.
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4.9 Description of Group Characteristics

In this section, we present species frequency against depth and bottom
temperature. We also give a brief description for each group in a selected
trip. Figure 4.23, 4.24, 4.25, 4.26 are smoothed frequency polygons of the
depth for each group. We first find the frequencies of presence in each
strata for a selected group species. So a larger number means more species
were caught in a particular stratum. The frequency for each group is given
by

n∑
i=1

I(i ∈ r)yij = frj (4.8)

where frj is the frequency of the species in group r observed at stratum
j, I(i ∈ r) is the indicator function selects the species in the group r (i.e.
the group for which zir is the highest). Once we found frj , we refer to our
dataset to obtain the value of the depth (denoted by dj) and the bottom
temperature (denoted tj) for in each group. The value of {dj} and {tj}
are plotted first, and a kernel of density function is drawn as a smooth
line, coloured by the group. The smoothed frequency polygons of bottom
temperature are just mirror images of depth, because they are correlated
(Figure 4.13).
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(a) (b)

Figure 4.23: The smoothed frequency polygons of depth (a) and bottom temperature (in
°C, (b)) for each species group, clustered by Model 10 for the tan0201 data.

(a) (b)

Figure 4.24: The smoothed frequency polygons of depth (a) and bottom temperature (in
°C, (b)) for each species group, clustered by Model 10 for the tan1101 data.
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(a) (b)

Figure 4.25: The smoothed frequency polygons of depth (a) and bottom temperature (in
°C, (b)) for each species group, clustered by Model 10 for the tan1201 data.

(a) (b)

Figure 4.26: The smoothed frequency polygons of depth (a) and bottom temperature (in
°C, (b)) for each species group, clustered by Model 10 for the tan1301 data.
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4.9.1 Group Characteristics for the tan1301 data

Here we show the features of groups clustered by Model 10 for the tan1301
data. The species are clustered to five groups by Model 10. There are
two shallow water (200-400 m) species groups, two middle water species
group (400-800 m), and one deepwater species group (>800 m). The depth
preference is the lower quartile and the upper quartile of depth records
(dj) for each group r. Trawl survey area for the tan1301 trip is shown in
Figure ??.

Group 1: Shallow water species
The species in this group can be classified as shallow water species.
Their distribution is concentrated at Mernoo Bank (stratum 18) and
Reserve Bank (stratum 19 and 20). The depth preference ranges from
360 to 550 m.

Group 2: Shallow water species
Group 2 species were caught in almost every stratum except the deep
strata. Similar to Group 1, they show concentrated distribution at
Mernoo Bank (stratum 18), but they cover the south side of shallow
strata (stratum 12, 13, 14, 15, 16, and 17). They have similar depth
preference as Group 1 with the range of 380-530 m.

Group 3: Middle water species
The depth preference of this group is at 430- 630m, but their distri-
butions are concentrated in shallow water strata. The species in this
group were most frequently caught in the west side of shallow strata
(stratum 10A, 10B, 11A, 11B, 11C, and 11D).

Group 4: Middle water species
The distributions of Group 4 species are similar to Group 3 but less
dense in the shallow water strata. So this group prefers slightly
deeper water at 500 -800 m.
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Group 5: Deepwater species
Species in this group are deepwater species with the depth prefer-
ence of 800-1000 m. They were seen in the all deep strata, but quite
a few species were also seen in the stratum 1, which is neighboring
stratum of the stratum 22.

4.9.2 Fuzziness of Clustering

Our approach applies fuzzy clustering via finite mixtures, so any fuzzi-
ness in the cluster structure should appear in any visualisation tools. Fig-
ure 4.27 shows two heat maps showing the probability Cii′ of any pair of
species i and i′ (i, i′ = 1, · · · , n) of being allocated to the same cluster for
the tan1301 dataset. The displayed probability Cii′ in both heat maps is
calculated as follows:

Cii′ =
R∑
r=1

P
(
zir = 1, zi′r = 1|Y,Φ, πr

)
=

R∑
r=1

P
(
zir = 1|zi′r = 1Y,Φ, πr

)
P
(
zi′r = 1|Y,Φ, πr

)
=

R∑
r=1

P
(
zir = 1|Y,Φ, πr

)
P
(
zi′r = 1|Y,Φ, πr

)
=

R∑
r=1

zirzi′r

where zir and zi′r are the posterior probabilities that row i and i′ respec-
tively belong to row group r as defined in equation (3.15). The equation
above is valid because we assume the independence over the rows condi-
tional on Φ. It is difficult to detect any pattern from Figure 4.27a, because
the species are presented by species ID (Table C.1). On the other hand,
it is much easier to see that there are five clusters in the tan1301 data in
Figure 4.27b, because the species are sorted by the clusters. A strong red
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colour indicates that the two species are highly likely to be allocated to the
same cluster. Otherwise, an orange colour are the species with a moderate
probability and a yellow colour occurs for those species with lower prob-
ability of being allocated to the same cluster. It seems that the posterior
probabilities that row i and i′ belong to the same row group r is sharp
for most species, as the graph is mostly dark red or yellow. The species
with ID= 27 shows moderate probability of being in the same group for
all species. This is hoki (Table C.1). Because hoki was caught in all strata
in every year (except one stratum in tan1101 trip), hoki has the same prob-
ability of being allocated to the same row group for any other species.
Fuzziness of clustering from the other datasets are presented in Figure
4.28, 4.29, and 4.30 for tan0201, tan1101, and tan1201 data, respectively.
They all show similar patters as Figure 4.27. There are three species that
show moderate probability of being in the same group for all species for
the tan0201 data (Figure 4.28). They are hoki (ID=27), javelin fish (ID=28),
and bollons rattail (ID=8). The same pattern is seen for hoki for the tan1201
data (Figure 4.30). No species has constant probability of being in the
same group in Figure 4.29. As it was mentioned before, this is because
hoki was not caught in stratum 28 due to the limited time for the survey
in tan1101 trip. These graphs have an advantage of showing the fuzzy as-
signment of rows to clusters based on the posterior probabilities zir. How-
ever, they all show sharp boundaries between the clusters, indicating that
most species are assigned to a group with high probability.
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(a) (b)

Figure 4.27: Heat map plot depicting the fuzzy cluster structure for the tan1301 data with
R = 5 groups. Both axes identify the species (rows). The figure (a) shows the species
without any sorting (i.e. as they appear in the original data set). The figure (b) is sorted
by the row cluster structure given by Model 10.
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(a) (b)

Figure 4.28: Heat map plot depicting the fuzzy cluster structure for the tan0201 data with
R = 5 groups. Both axes identify the species (rows). The figure (a) shows the species
without any sorting (i.e. as they appear in the original data set). The figure (b) is sorted
by the row cluster structure given by Model 10.
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(a) (b)

Figure 4.29: Heat map plot depicting the fuzzy cluster structure for the tan1101 data with
R = 5 groups. Both axes identify the species (rows). The figure (a) shows the species
without any sorting (i.e. as they appear in the original data set). The figure (b) is sorted
by the row cluster structure given by Model 10
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(a) (b)

Figure 4.30: Heat map plot depicting the fuzzy cluster structure for the tan1201 data with
R = 5 groups. Both axes identify the species (rows). The figure (a) shows the species
without any sorting (i.e. as they appear in the original data set). The figure (b) is sorted
by the row cluster structure given by Model 10
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4.9.3 Any Other Candidate Factors?

In this section, we fitted two further models and found that the species
clusters are best presented when we control for frequency of occurrence.
We also confirmed that depth is the important factor to explain the data.
We presented the results using visualisation tools for easier interpreta-
tion. The membership visalisations (Figure 4.19, 4.20, 4.21, 4.22) show
that when row standardisation is included the species are no longer clus-
tered by its frequency of occurrence, but only by depth. There are year to
year changes in clustering, but the main groups (shallow water, deepwa-
ter species) remained constant across the years (Figure 4.18). Figure 4.23,
4.24, 4.23 and 4.26 confirm that we cannot separate the effect of bottom
temperature from depth as they are inverse of each other. The descrip-
tions of the species features in each group from the tan1301 data suggest
that each group has different depth preference but there is an overlap, es-
pecially in the shallow water groups. The results also suggest that there
might be other factors contributing to the clusters. Possible factors are
spatial location (e.g. latitude, longitude), because we can see the spatial
difference between Groups 1 and 2. Another reason is that spatial location
has been used to explain species assemblages in previous studies (for ex-
ample, Francis et al., 2002).

In order to explore the characteristics of the groups in more details, we
present the distributions of the frequencies of observation by depth, bot-
tom temperature, latitude, and longitude across all of the strata, but sep-
arately by group. That is, frj from equation (4.8) is referred to the trawl
survey database (Mackay, 2000) and we obtain raw data of depth (d∗j ), bot-
tom temperature (t∗j ), latitude (denoted by sj), and longitude (denoted by
ej) for each species. Figure 4.31 shows the species frequencies according to
these four environmental variables for the tan0201 data. It shows species
frequencies against depth (first column from left), bottom water temper-
ature (second column), latitude (third column) and longitude (forth col-
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umn) for each group (from the top row, Group 1, 2, 3, 4, 5). Overall, species
are more likely to be present on the north side of the Chatham Rise (cen-
tered at 44°S). This pattern is particularly strong for deep water species
(Group 5). This is because the most deep strata are on the north side of the
Chatham Rise. There are only two deep water strata, stratum 25 and 28 on
the south while there are five deep strata on the north. In addition, there is
only one deep strata for tan0201 trip (stratum 22, Figure ??) which sits on
the north side of the Chatham Rise. Group 1, 2, and 3 are shallow water
species groups with no obvious difference in depth histograms, with the
mean around 500 m for all groups. There is no difference in temperature
either, reaching peak at 8 °C. The histograms of latitude overlap each other,
suggesting there is no latitudinal difference between these three groups.
All three groups show flat frequencies on longitude. Groups 4 and 5 both
show deeper depth range than Groups 1, 2, and 3, and are seen in colder
water, about 7 °C. The histogram of latitude for Group 4 is similar to the
three shallow water groups. The histograms of longitude for Groups 4 and
5 are similar, showing a peak on the west side of the Chatham Rise.

Similar patterns are seen for the rest of the data (Figure 4.32, 4.33, and
4.34). The tan1201 data is the only data that species are clustered to six
groups. It seems that there are two middle water groups (Groups 3 and
6). Species in these groups share similar depth and spatial location range,
but Group 3 species seems to occur more frequently in warmer water than
Group 6.

There is no obvious difference in the latitude range between the shal-
low and middle water species groups, so we doubt whether latitude could
be an important variable to explain species clusters. It is difficult to say
whether there is any pattern in the histograms of longitude. They show
similar pattern across the groups in each dataset, and there is no signif-
icant change from year to year. Our visual inspections suggest that the
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spatial information may not be influential to explain the data. Therefore
we conclude that spatial location is not effective predictor and the depth
is still the most powerful predictor.
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Figure 4.31: Histogram of depth, bottom temperature, latitude, and longitude record ob-
tained from the database for each group selected by Model 10 for the tan0201 data. From
left, depth (m), bottom temperature (°C), latitude (Negative sign means south), and east
longitude. The vertical lines in the histograms of depth and bottom water temperature
are the mean.
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Figure 4.32: Histogram of depth, bottom temperature, latitude, and longitude record ob-
tained from the database for each group selected by Model 10 for the tan1101 data. From
left, depth (m), bottom temperature (°C), latitude (Negative sign means south), and east
longitude. The vertical lines in the histograms of depth and bottom water temperature
are the mean.
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Figure 4.33: Histogram of depth, bottom temperature, latitude, and longitude record ob-
tained from the database for each group selected by Model 10 for the tan1201 data. From
left, depth (m), bottom temperature (°C), latitude (Negative sign means south), and east
longitude. The vertical lines in the histograms of depth and bottom water temperature
are the mean.
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Figure 4.34: Histogram of depth, bottom temperature, latitude, and longitude record ob-
tained from the database for each group selected by Model 10 for the tan1301 data. From
left, depth (m), bottom temperature (°C), latitude (Negative sign means south), and east
longitude. The vertical lines in the histograms of depth and bottom water temperature
are the mean.



Chapter 5

Discussion

In this project we conducted cluster analysis for fish and shark species on
the Chatham Rise, using a likelihood based clustering methods via finite
mixture models. We implemented a clustering method that for the first
time includes covariates and compared them with the existing models. We
first programmed from scratch our own implementation of finite mixture
fitting using standard R functions. The simulation study revealed that our
new models might not be so robust for very rare or very common species,
and required a long computational time. We discussed the advantages
and the disadvantages of the EM algorithm, and introduced a newly de-
veloped R package, clustglm function (Pledger et al., 2015), in order to
improve our analysis. We then performed cluster analysis with inclusion
of covariates using the clustglm routine, and used several visualisation
tools to present our results. Our initial analysis, which indicated species
were clustered by the environmental variables and frequency of occur-
rence, prompted us to improve our models by combining the row and
column level information. Inclusion of a term that controls the species’
frequency of occurrence gave us improved model performance and results
that are easier to understand.
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5.1 Links between Species Clusters and the En-

vironment

Our results indicate that there is a strong relationship between the species
clusters and ocean depth. We also found that sea floor temperature is a sig-
nificant predictor of species presence/absence, but depth is the strongest
predictor. Our main findings support results from Francis et al. (2002) and
Leathwick et al. (2003). They studied the relationship between the species
richness and the environment in the New Zealand waters, and also con-
cluded that depth is the most important environmental predictor. Leath-
wick et al. (2003) give us possible explanations why the bottom tempera-
ture effect is weak. They said water temperature is highly correlated with
depth, which we also found, but they also said that the relationship is not
perfectly linear. This is because water temperature becomes more stable
with depth due to decreasing influence of other environmental variations
(e.g. sunlight). Then temperature becomes more nearly constant, and is
no longer related to depth. Another reason is that temperature in shallow
water varies with other environmental factors, such as the weather, sea-
son, and time of the day (morning, afternoon, and night). But this applies
only to regions that are not affected by a subtropical front (Leathwick et al.,
2003). A subtropical front is an oceanographic feature creating by warm
water currents and cold water currents, and it occurs on the Chatham Rise
(Section 2.2). In addition, it is unlikely that the environmental factors can
change water temperature deeper than 200 m, because sea water temper-
ature is relatively stable. Having considered that temperature is highly
related with depth, temperature in shallow water strata (200-400 m) are
too deep to be affected by the environmental factors, and the effect of the
subtropical front, water temperature is a weak predictor to explain our
data. However, water temperature is time variant whereas depth is not,
so water temperature might become more powerful predictor in longer
term analysis, or when surveys are carried out in each season.



5.1. LINKS BETWEEN SPECIES CLUSTERS AND THE ENVIRONMENT133

The Chatham Rise subtropical front creates nutrient rich water that af-
fects fish distribution, so including variables that capture the patterns of
the front is important. Dunn et al. (2010) explained that the subtropical
front had a wide latitudinal range, up to 100 km. They also said that the
surface water temperature gradient could be explained by latitude. We
however argue whether latitude is a important factor to explain the data.
Our visual inspections (for example, Figure 4.31) show that latitude distri-
bution is different only in deep species groups. But the deepwater species
group is clearly separated from other groups by depth. It is uncertain
whether latitude is a good predictor for the data, we therefore agree with
Leathwick et al. (2003)’s view of the importance of latitude. In their pa-
per they compared several studies on species richness in the New Zealand
waters. They stated that spatial information could be used, along with a
range of environmental variables, but only in a large scale study. So the
inclusion of spatial variables in a regional scale study like ours is unlikely
to be important.

Our initial analysis included body length information. It was the only
biological information used in the analysis. Our focus on use of the me-
dian body length as a predictor was that the body length might explain
the trophic level of species on the Chatham Rise, and thereby explains the
data. But we found the median body length covariate was not an impor-
tant predictor. This suggests that the median body length does not explain
the trophic levels, or the trophic level on the Chatham Rise is too complex.
A study from Dunn et al. (2010) separated chimaera species niche by their
diet, the depth and spatial distributions. So where a range of the biolog-
ical information is available, it may be worthwhile to carry out a cluster
analysis including biological information and depth.
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5.2 Analytical Considerations

Our ability to analyse and interpret fish species clusters is limited by the
use of presence/absence data, rather than abundance. Both common species
and rare species are simply recorded as present when they were observed,
irrespective of their abundance. Francis et al. (2002) and Dunstan et al.
(2011) also raise their concerns about that cluster analysis for presence/absence
data may not fully explain the species relationship at a community level.
The original data we used were recorded as weights (kg), so some might
say we could have used their weights instead. However, using the catch
weight as a response variables also hinders species abundance. One big
species might weight as much as thousands of a small fish. A possible al-
ternative to our application is to transform the catch weights to a rank (e.g.
very abundant, abundant, rare), with a consultation from a fishery expert.
Such an approach (though without covariates) was studied by Fernández
et al. (2014). Species clustering may occur differently in this method.

We may have found the importance of spatial location for the data if
we had included column standardisation term. Our best model, Model
10 (3.20) can be written as logit(φijr) = µ + αi + βj + depthj(ψ1 + τr) +

tempj(ψ2 + τr), with βj controlling variation in the columns. Clustering
after controlling variation over rows and columns should be undertaken
to fit clustering models to complex ecological data. It is also important to
have sensible cutoff value for πr when a cluster contains only few species.
Setting the range of number of clusters before analysis interfere model per-
formance and may result in failing to cluster rare species. When a cluster
has few species, it is important to investigate species biological/ecological
features, and also to set sensible cutoff value for πr to provide results that
make sense in biological/ecological way.

Other further research directions are
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• Investigation of cluster structure of all species observed rather than
61 species. Inclusion of all fish and shark species for analysis may
give a different clusters.

• Considering biclustering models that reduce column dimensions. This
is already implemented in the clustglm function, so the analysis
should be straight forward.

• Analysis of spatial effects for clustering. Our visual inspections only
indicated that they may not be important. Thereby spatial informa-
tion needs to be included in models. However, care should be ex-
ercised in fitting the models for this datasets, because the strata on
the Chatham Rise are defined by depth and longitude (Stevens and
Livingstone, 2003). It may be necessary to carry out analysis at the
sampling station level (location within each stratum), not at the stra-
tum level.

• Performing cluster analysis on a subset selected species, for example,
rattail species, chimaeras, and hoki, whose biological information is
more comprehensively available. It may give us deeper insights into
how the species distribution changes with their life stage.
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Appendix A

Multinomial distribution

The multinomial distribution is a generalisation of the binomial distribu-
tion. In the binomial distribution, a random variable resluts from an ex-
periment consisting of n independent trials with two possible outcomes
(often called success/failure). Each outcome has a fixed probability; the
probability of success is expressed as π and the probability of failure is
1− π.

We may wish to model trials with more than two possible outcomes.
In a multinomial distribution, a random variable from n independent and
identical trials can have more than two outcomes, say, K possible out-
comes (K ≥ 2), with each outcome having a fixed probability πk (k =

1, · · · , K) and
∑K

k=1 πk = 1. Suppose we have n independent and identical
trials that can have an outcome in any of K categories. Let yi be a reali-
sation of random variable Yi. yik = 1 if trial i has outcome k, and yik = 0

otherwise (i = 1, · · · , n, k = 1, · · · , K). Such dataset can be seen as
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Y =



1 2 · · · K

1 1 0 · · · 0

2 0 1 0 · · · 0

3 1 1 1 · · · 1
...

...
... . . . ...

n 1 0 · · · 0


πk is the probability of that ith trial falls into category k, where πk ≥ 0 and∑K

k=1 πk = 1.

If we define yk =
∑n

i=1 yik, with
∑K

k=1 yk = n, then the multinomial
probability mass function (pmf) is

f(Y |n) = P (y1, · · · , yk|π) =
n!

y1!y2! · · · yK !
πy11 π

y2
2 · · · π

yK
K

is denoted by

Y ∼ Multinomial(n, π) for n× k matrix Y

For the ith row,

Yi ∼ Multinomial(1, π) for k × 1 vector Y i



Appendix B

Maximun Likelihood Estimation
of the Mixing Proportion πr

In this section, we show how to find the MLE for the parameter πr ana-
lytically. Recall that we impose a constraint on π,

∑R
r=1 πr = 1. When we

want to maximise function subject to a constraint, we can use the Lagrange
multiplier method. The method of Lagrange multipliers is a strategy for
finding the local maximum of a function subject to constraints. In the case
of row clustering, we want to maximise the function (3.8) subject to the
constraint

∑R
r=1 πr = 1.

We introduce a new variable λ, called Lagrange multiplier, to the equa-
tion (3.8), and define a new function Q to be

Q(Θ, πr, λ|yij, zir) = lc(Θ, πr|yij, zir) + λ(
R∑
r=1

πr − 1)

=
n∑
i=1

p∑
j=1

R∑
r=1

zir [yij log θrj + (1− yij) log(1− θrj)]

+
n∑
i=1

R∑
r=1

zir log πr + λ(
R∑
r=1

πr − 1) (B.1)

To maximise Q, we take partial derivatives with respect to θrj , πr and
λ, and set them simuteneously to zero. θrj depends on a set of parameters,
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denoted by Ω. We can maximise lc(Θ, πr|yij, zir) numerically over Ω.

However, to maximise over πr, we have an analytical solution. We take
the derivative of the equation (B.1) with respect to πr to get the MLE:

∂Q

∂πr
=

1

πr

n∑
i=1

zir + λ

Set the equation above to be zero,

1

πr

n∑
i=1

zir + λ = 0

1

πr
dr = −λ (Set

n∑
i=1

zir = dr)

πr = −dr
λ

(B.2)

Since
∑R

r=1 πr = 1,

R∑
r=1

πr = −
R∑
r=1

dr
λ

= 1

We then get the estimate for the λ = −
∑R

r=1 dr, which we put back into
(B.2)

π̂r = − dr

−
∑R

r=1 dr

=

∑n
i=1 zir∑R

r=1

∑n
i=1 zir
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Since
∑R

r=1 zir = 1,∀i

π̂r =

∑n
i=1 zir∑n
i=1 1

=

∑n
i=1 zir
n

(B.3)

Lastly, differentiating (B.1) with respect to λ ensures the constraint

∂Q

∂λ
=

R∑
r=1

πr − 1 = 0

R∑
r=1

πr = 1
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Appendix C

List of the Species

Table C.1: Common and Scientific names of species used for the analysis. These species
were caught fron all tan0201, tan1101, tan1201, and tan1301 survey. The species are listed
in alphabetical order of the species code.

ID Code Common name Scientific name

1 BAR Barracouta Thyrsites atun

2 BBE Banded bellowsfish Centriscops humerosus

3 BNS Bluenose Hyperoglyphe antarctica

4 BOE Black oreo Allocyttus niger

5 BYS Alfonsino Beryx splendens

6 CAS Oblique banded rattail Caelorinchus aspercephalus

7 CBI Two saddle rattail Caelorinchus biclinozonalis

8 CBO Bollons rattail Caelorinchus bollonsi

9 CFA Banded rattail Caelorinchus fasciatus

10 CIN Notable rattail Caelorinchus innotabilis

11 COL Olivers rattail Caelorinchus oliverianus

12 CSQ Leafscale gluper shark Centrophorus squamosus

Continued on next page
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Table C.1 – Continued from previous page

ID Code Common name Scientific name

13 CYO Smooth skin dogfish Centroscymnus owstoni

14 CYP Longnose velvet dogfish Centroscymnus crepidater

15 EPL Bigeye cardinalfish Epigonus lenimen

16 EPT Deepsea cardinalfish Epigonus telescopus

17 ETB Baxter’s dogfish Etmopterus baxteri

18 ETL Lucifer dogfish Etmopterus lucifer

19 FRO Frostfish Lepidopus caudatus

20 GIZ Giant stargazer Kathetostoma giganteum

21 GSH Dark ghost shark Hydrolagus novaezealandiae

22 GSP Pale ghost shark Hydrolagus bemisi

23 HAK Hake Merluccius australis

24 HAP Hapuku Polyprion oxygeneios

25 HCO Hairy conger Bassanago hirsutus

26 HJO Johnson’s cod Halargyreus johnsonii

27 HOK Hoki Macruronus novaezelandiae

28 JAV Javelin fish Lepidorhynchus denticulatus

29 JMM Slender jack mackerel Trachurus murphyi

30 LCH Longnose spookfish Harriotta raleighana

31 LDO Lookdown dory Cyttus traversi

32 LIN Ling Genypterus blacodes

33 LSO Lemon sole Pelotretis flavilatus

34 NMP Tarakihi Nemadactylus macropterus

35 OPE Orange perch Lepidoperca aurantia

Continued on next page
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Table C.1 – Continued from previous page

ID Code Common name Scientific name

36 ORH Orange roughy Hoplostethus atlanticus

37 PDG Prickly dogfish Oxynotus bruniensis

38 PLS Plunkets shark Centroscymnus plunketi

39 PSK Longnosed deepsea skate Bathyraja shuntovi

40 RBM Rays’ bream Brama brama

41 RBT Redbait Emmelichthys nitidus

42 RCH Pacific spookfish Rhinochimaera pacifica

43 RCO Red cod Pseudophycis bachus

44 RHY Common roughy Paratrachichthys trailli

45 RIB Ribaldo Mora moro

46 SBW Southern blue whiting Micromesistius australis

47 SCH School shark Galeorhinus galeus

48 SCO Swollenhead conger Bassanago bulbiceps

49 SDO Silver dory Cyttus novaezealandiae

50 SND Shovelnose dogfish Deania calcea

51 SOR Spiky oreo Neocyttus rhomboidalis

52 SPD Spiny dogfish Squalus acanthias

53 SPE Sea perch Helicolenus spp.

54 SRH Silver roughy Hoplostethus mediterraneus

55 SSI Silverside Argentina elongata

56 SSK Smooth skate Dipturus innominatus

57 SSM Smallscaled brown slickhead Alepocephalus antipodianus

58 SSO Smooth oreo Pseudocyttus maculatus

Continued on next page
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Table C.1 – Continued from previous page

ID Code Common name Scientific name

59 SWA Silver warehou Seriolella punctata

60 WHX White rattail Trachyrincus aphyodes

61 WWA White warehou Seriolella caerulea
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