
Improving the Performance
of Cloud-based Scientific

Services

by

Ryan Chard

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2016





Abstract

Cloud computing provides access to a large scale set of readily available com-
puting resources at the click of a button. The cloud paradigm has commoditised
computing capacity and is often touted as a low-cost model for executing and
scaling applications. However, there are significant technical challenges associ-
ated with selecting, acquiring, configuring, and managing cloud resources which
can restrict the efficient utilisation of cloud capabilities.

Scientific computing is increasingly hosted on cloud infrastructure—in which
scientific capabilities are delivered to the broad scientific community via Internet-
accessible services. This migration from on-premise to on-demand cloud infras-
tructure is motivated by the sporadic usage patterns of scientific workloads and
the associated potential cost savings without the need to purchase, operate, and
manage compute infrastructure—a task that few scientific users are trained to
perform. However, cloud platforms are not an automatic solution. Their flexibil-
ity is derived from an enormous number of services and configuration options,
which in turn result in significant complexity for the user. In fact, naı̈ve cloud
usage can result in poor performance and excessive costs, which are then directly
passed on to researchers.

This thesis presents methods for developing efficient cloud-based scientific
services. Three real-world scientific services are analysed and a set of common
requirements are derived. To address these requirements, this thesis explores
automated and scalable methods for inferring network performance, considers
various trade-offs (e.g., cost and performance) when provisioning instances, and
profiles application performance, all in heterogeneous and dynamic cloud envi-
ronments. Specifically, network tomography provides the mechanisms to infer
network performance in dynamic and opaque cloud networks; cost-aware auto-
mated provisioning approaches enable services to consider, in real-time, various
trade-offs such as cost, performance, and reliability; and automated application
profiling allows a huge search space of applications, instance types, and configu-
rations to be analysed to determine resource requirements and application perfor-
mance. Finally, these contributions are integrated into an extensible and modu-



lar cloud provisioning and resource management service called SCRIMP. Cloud-
based scientific applications and services can subscribe to SCRIMP to outsource
their provisioning, usage, and management of cloud infrastructures. Collectively,
the approaches presented in this thesis are shown to provide order of magnitude
cost savings and significant performance improvement when employed by pro-
duction scientific services.



Acknowledgements

First of all, I wish to express my sincere gratitude to my advisors, Kris Buben-
dorfer and Bryan Ng. Not only have your contributions and guidance been in-
valuable to this work, but your hilarious combination has helped make my entire
PhD a thoroughly enjoyable experience.

I am deeply indebted to both Ravi Madduri and Ian Foster. Ravi, your guid-
ance and mentoring inspired the direction of this work and has led me into a
research area I am truly passionate about. Ian, I am very grateful for all of your
contributions and support over the last few years.

I would like to thank my examination committee: Ian Warren, Carl Kessel-
man, and Ian Welch, for making my defence such an enjoyable experience. Your
insightful comments and suggestions have strengthened my thesis. I owe a spe-
cial thanks to Ian Welch, who has also been a fantastic mentor and colleague over
the years.

I have been fortunate to work with many outstanding academics throughout
my PhD. In particular, I am thankful for the opportunities I have had to collabo-
rate with Rich Wolski, whose dedication and excitement is infectious, Nick Karo-
nis, who never fails to make work fun, and Salman Habib and Katrin Heitmann,
for being so inviting and willing to teach cosmology to a random computer sci-
ence student.

I have also been involved with many great research groups throughout my
studies. Thank you to all of the past and present MCS/ECS graduate students
and staff that have been a part of my time at VUW. In particular, I am very ap-
preciative to the DSRG and NERG groups for their discussions which have con-
tributed to this work. I am deeply thankful to everyone in the Globus Genomics
team. I am also thankful to the wider Computation Institute and Globus teams
who made me feel very welcome during my time in Chicago.

I would not have been able to undertake this research without the support of
Victoria University of Wellington. Thank you for the scholarships and assistance

iii



iv

that made this work possible. I am also grateful to The University of Chicago
and Argonne National Laboratory for supporting my research with funding and
networking opportunities. I look forward to a long and prosperous working re-
lationship with these institutions.

I am greatly appreciative for all of the support from my friends and family.
Words cannot express how thankful I am to my parents, who have fostered a
value in education and always supported my endeavours. To my brother, Kyle,
you have been my unofficial advisor and mentor throughout almost all of my
studies. I will be forever grateful for all of your patience, assistance, and guid-
ance. Finally, Janelle. None of this would have been possible without your un-
conditional love and support.



Contents

1 Introduction 1
1.1 Thesis Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Cloud Network Limitations . . . . . . . . . . . . . . . . . . . 3

1.1.2 Cloud Economics . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Provisioning Models . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Infrastructure Management . . . . . . . . . . . . . . . . . . . 5

1.1.5 Provisioning as a Service . . . . . . . . . . . . . . . . . . . . 6

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work 13
2.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Scientific Cloud Computing . . . . . . . . . . . . . . . . . . . 14

2.1.2 Cloud-based Scientific Services . . . . . . . . . . . . . . . . . 15

2.2 Commercial Cloud Platforms . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Virtualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Cloud Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Cloud Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Cost-Aware Provisioning . . . . . . . . . . . . . . . . . . . . 20

2.4 Managing Cloud Infrastructures . . . . . . . . . . . . . . . . . . . . 21

2.5 Network Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Tomographic Techniques . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Tomography in the Cloud . . . . . . . . . . . . . . . . . . . . 25

2.6 Application Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Profiling Approaches . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.2 Profiling in the Cloud . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



vi CONTENTS

3 Science as a Service – Use Cases 31
3.1 Proton Computed Tomography . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 pCT Reconstruction Service . . . . . . . . . . . . . . . . . . . 33

3.1.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 PDACS: A Cosmology Portal . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 PDACS Platform . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Globus Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Globus Galaxies Platform . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Network Limitations . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Economic Optimisation . . . . . . . . . . . . . . . . . . . . . 50

3.4.3 Resource Provisioning . . . . . . . . . . . . . . . . . . . . . . 51

3.4.4 Resource Management . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Network Health 55
4.1 Network Health and the Cloud . . . . . . . . . . . . . . . . . . . . . 56

4.2 Testbeds and Cloud Performance Baselines . . . . . . . . . . . . . . 57

4.2.1 Testbed I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Testbed II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Network Health Diagnostic System . . . . . . . . . . . . . . . . . . . 63

4.3.1 Health Indicators . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Health Markers . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Health Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Health Metric Diagnostics . . . . . . . . . . . . . . . . . . . . 69

4.4.2 Health Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Proton Computed Tomography . . . . . . . . . . . . . . . . . . . . . 73

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Cost-aware Resource Provisioning 79
5.1 Globus Genomics Platform Usage . . . . . . . . . . . . . . . . . . . 80

5.1.1 Tool Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.2 Tool Requirements . . . . . . . . . . . . . . . . . . . . . . . . 82



CONTENTS vii

5.2 Cost-Aware Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Selecting Viable Instance Types . . . . . . . . . . . . . . . . . 83

5.2.2 Cost-Aware Instance Selection . . . . . . . . . . . . . . . . . 83

5.2.3 Reverting to On-demand Instances . . . . . . . . . . . . . . . 85

5.2.4 Over-provisioning Instance Requests . . . . . . . . . . . . . 86

5.2.5 Repurposing Instance Requests . . . . . . . . . . . . . . . . . 86

5.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.2 Spot Instance Termination . . . . . . . . . . . . . . . . . . . . 91

5.4.3 Reverting to On-demand Instances . . . . . . . . . . . . . . . 92

5.4.4 Production Usage . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Profiling Workloads 97
6.1 Profiling Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.2 Profiling Process . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Creating Genomics Tool Profiles . . . . . . . . . . . . . . . . . . . . 103

6.2.1 AWS Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.2 Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.3 Execution Performance . . . . . . . . . . . . . . . . . . . . . 106

6.2.4 Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Using Profiles in Globus Genomics . . . . . . . . . . . . . . . . . . . 113

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Provisioning as a Service 117
7.1 SCRIMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1.1 Execution Frameworks . . . . . . . . . . . . . . . . . . . . . . 119

7.1.2 Instance provisioning and configuration . . . . . . . . . . . . 121

7.1.3 Cloud Provisioning . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1.4 Resource Management . . . . . . . . . . . . . . . . . . . . . . 123

7.1.5 Provisioning algorithm . . . . . . . . . . . . . . . . . . . . . 124

7.2 Experimental Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



viii CONTENTS

7.3.1 Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.3.2 Spot Instance Reliability . . . . . . . . . . . . . . . . . . . . . 136
7.3.3 Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8 Conclusion 143
8.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.1.1 Cloud Network Limitations . . . . . . . . . . . . . . . . . . . 144
8.1.2 Cloud Economics . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.1.3 Provisioning Models . . . . . . . . . . . . . . . . . . . . . . . 147
8.1.4 Provisioning as a Service . . . . . . . . . . . . . . . . . . . . 148
8.1.5 Infrastructure Management . . . . . . . . . . . . . . . . . . . 149

8.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.3.1 Network Tomography . . . . . . . . . . . . . . . . . . . . . . 153
8.3.2 Cloud Economics . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.3.3 Tool Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.3.4 Infrastructure Management . . . . . . . . . . . . . . . . . . . 155
8.3.5 Data Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . 155



List of Figures

1.1 An overview of SCRIMP. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 SCRIMP serving three Globus Galaxies gateways (a multi-tenant
deployment). SCRIMP monitors the queues of each tenant. A cost-
aware provisioner consults DrAFTS bid predictions and applica-
tion profiles to determine which instance type(s) to provision for a
waiting job. SCRIMP configures acquired instances, deploys wait-
ing workloads, and monitors the instance for the duration of the
tool execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 The configuration of the NICADD/NIU pCT detector. Protons
pass left-to-right through sensor planes and traverse the target be-
fore stopping in the detector at the far right [1]. . . . . . . . . . . . . 32

3.2 An outline of the on-demand pCT reconstruction service. . . . . . . 34

3.3 Per-image PPN=2 reconstruction costs for various datasets, when
using clusters of different sizes that are made up of either entirely
On-demand (solid) or entirely Spot (dashed) instances. . . . . . . . 35

3.4 The total time required to transfer and reconstruct a pCT image.
Each bar shows the time taken to transfer datasets to and from the
cloud service, as well as perform the reconstruction. The forecast
time required for transfer and reconstruction when supported by
a 1-Gigabit and 10-Gigabit network with 100% utilisation are also
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 The process of using NERSC’s PDACS platform to analyse cosmo-
logical models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 An outline of a Globus Galaxies gateway’s architecture. . . . . . . . 43

3.7 Total compute hours used by seven production Globus Genomics
gateways over a 14 week period. . . . . . . . . . . . . . . . . . . . . 46

ix



x LIST OF FIGURES

4.1 An outline of the Network Health Diagnostic System operating
over three instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 The frequency (log) of ICMP packet RTTs over different periods of
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 The hourly average RTT for different packet sizes between two in-
stances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 The average throughput between medium and micro instances within
and across an availability zone. . . . . . . . . . . . . . . . . . . . . . 61

4.5 The provisioning system used to construct testbeds and evaluate
network performance. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 The heat map depicting the merit of the health metrics. The red
bars indicate the lowest error range (higher merit) while beige bars
indicate the highest error range (lower merit). . . . . . . . . . . . . . 69

4.7 The residuals for linear regression. . . . . . . . . . . . . . . . . . . . 70

4.8 The Q–Q plot of the standardised residuals from the linear regres-
sion (y-axis) vs. theoretical (Normal) quantiles (x-axis). . . . . . . . 70

4.9 A heat map of the health scores computed between the one hun-
dred instances monitored in Dataset II. Each square represents the
health score computed between two instances, where red indicates
a lower, or less healthy score, and lighter values depict healthier
connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 The proximity of instances used for pCT reconstruction where edge
length is determined by health score. . . . . . . . . . . . . . . . . . . 74

4.11 The average time required for phases of pCT reconstruction by var-
ious health score clusters. . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Tool usage frequency distribution. . . . . . . . . . . . . . . . . . . . 81

5.2 The number of jobs and compute hours used per day from six
Globus Genomics gateways over a 145 day period. . . . . . . . . . . 88

5.3 The total cumulative cost of operating six Globus Genomics gate-
ways with different provisioning system search scopes over a 145
day period on a logarithmic scale. . . . . . . . . . . . . . . . . . . . 90

5.4 The cumulative cost of the naı̈ve SI-SAZ (solid line) and MI-MAZ
(dashed line) search scopes for each of the six Globus Genomics
gateways over a 145 day period on a logarithmic scale. . . . . . . . 91



LIST OF FIGURES xi

5.5 The number of Spot instance terminations for each search scope
with $0.25 bid price increments. . . . . . . . . . . . . . . . . . . . . . 93

5.6 Cumulative cost when using On-demand instances with different
timeout periods (minutes) using MI-MAZ scope. . . . . . . . . . . . 94

5.7 Cumulative execution time when using On-demand instances with
different timeout periods (minutes) using MI-MAZ scope. . . . . . 95

6.1 An outline of the profiling service’s architecture. . . . . . . . . . . . 99
6.2 A sequence diagram showing the steps involved when the profil-

ing service profiles a tool. . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 The execution time of the tools over various instance types. . . . . . 108
6.4 The percentage of free memory for each instance type during tool

execution (a) - (e). Empirical cumulative distribution function of
free memory for each workload over the r3.8xlarge instance type. . 110

6.5 The percentage of CPU utilisation for each instance type during
tool execution (a) - (e). Empirical cumulative distribution function
of CPU utilisation for each workload over the r3.8xlarge instance
type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 The cost and time of using each instance type. The four adaptive
strategies (fastest, slowest, cheapest, costliest) model automated
provisioning approaches in which an instance type is selected based
on the price or projected tool execution time. The static Globus Ge-
nomics provisioning approach is not guided by tool profile infor-
mation, but rather uses a pre-selected instance type for each gateway.115

7.1 An overview of SCRIMP. . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 The execution time and duration of the first 1000 jobs of the dataset. 127
7.3 The ECDF of the first 1000 jobs relative execution time. . . . . . . . 128
7.4 The performance of SCRIMP with various configurations. . . . . . 133





List of Tables

3.1 Globus Genomics tool usage. . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Use case characteristics and requirements. . . . . . . . . . . . . . . . 48

4.1 Forward step analysis of health metrics for two sets of trace data. . 68

5.1 The execution requirements of production Globus Genomics tools. 82
5.2 Total 145 day cost comparison between gateways. . . . . . . . . . . 92
5.3 Jobs allocated with and without the provisioning system. . . . . . . 95

6.1 Globus Genomics tool execution statistics. . . . . . . . . . . . . . . . 104
6.2 AWS instance types. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Genomics tool profiles over R3 instances. Note: * indicates tool

failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1 Ratio of execution times between instance types. . . . . . . . . . . . 129
7.2 The performance of SCRIMP with different configuration settings. . 131
7.3 Calibration of the simulation plug-in. . . . . . . . . . . . . . . . . . 135
7.4 Simulation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.5 The result of using different bidding strategies. . . . . . . . . . . . . 138
7.6 Calibration of the migration simulation. . . . . . . . . . . . . . . . . 140
7.7 Simulating the migration of instances between tenants. . . . . . . . 141

xiii





Chapter 1

Introduction

Scientific discovery is currently experiencing a disruptive transition from tradi-
tional experimental practices to computational and data-intensive approaches [2].
Such changes to the basic pattern of research have already proved transforma-
tive in many domains, from astronomy [3] to zoology [4]. Data is now being
created at unprecedented rates [5] with scientific datasets increasing in size expo-
nentially [6]. This results in increased analytical complexity [7], with researchers’
computation demands rapidly outgrowing the capabilities of their personal com-
puters [8].

Researchers have historically relied on dedicated High Performance Comput-
ing (HPC) infrastructures to satisfy large-scale analytical requirements [9]. How-
ever, for many researchers—especially those with sporadic usage—the overhead
of purchasing, supporting, and using dedicated infrastructure is cost-prohibitive.
It is these same challenges that have underpinned the success of cloud comput-
ing in the enterprise world [10]. Cloud computing has commoditised computing
capacity and represents a shift in paradigm towards an elastic utility computing
model. As the capabilities of cloud providers have increased, cloud platforms
have become a viable alternative to HPC platforms for hosting large-scale analy-
ses [11, 12, 13, 14]. The cloud is accessible and affordable [15], with low barriers of
entry [16], and reduced operational costs [17] when compared to dedicated HPC
platforms. It presents an opportunity to accelerate scientific discovery, provid-
ing researchers access to enormous on-demand and elastically scalable compute
resources at the click of a button [18].

Analysis of scientific workloads deployed on clouds has highlighted several
key challenges, including: limited network performance [19], opaque infrastruc-

1



2 CHAPTER 1. INTRODUCTION

ture [20], and economic complexity [21]. While the opaque nature of cloud in-
frastructure is often considered advantageous, it can restrict the ability to exploit
data-locality when performing data-intensive workloads. There are also inher-
ent technical challenges in acquiring, configuring, and managing the virtual ma-
chines (or instances) leased from cloud providers, for example: 1) Users require
an understanding of cloud mechanics, such as the available instance types and
pricing models, in order to efficiently utilise cloud platforms. 2) Managing large
pools of compute resources is challenging on dedicated infrastructure and doing
so on elastic (and often preemptable) cloud infrastructure further complicates the
process. Thus, methods are required to automate the provisioning, configura-
tion, management, and termination processes. 3) The cloud is not a panacea for
“cheap” and efficient resource usage. In fact, naı̈ve provisioning approaches can
result in increased cost and poor execution performance [21, 22]. One way of
mitigating these challenges is by employing dedicated services to manage the
deployment of analyses over cloud infrastructures.

Science as a service [18]—an increasingly common model for delivering scien-
tific capabilities to users—offers a separation between discipline-specific content
and the underlying computational infrastructure. Scientific services [23] provide
an opportunity to abstract the technical challenges of using the cloud and ex-
pose the benefits of on-demand, elastic, analyses to researchers. Similarly, Scien-
tific gateways [24]—a common type of scientific service which abstract domain-
specific HPC computations via easy to use web interfaces—are increasingly be-
ing deployed on cloud platforms. Scientific gateways, henceforth called gateways,
typically provide domain-specific end-to-end solutions by exposing the datasets,
analytical tools, and compute infrastructure required to perform analyses. Gen-
erally, gateways are tightly coupled with software stacks and the underlying in-
frastructure supporting the analyses of scientific data, making them difficult to
generalise and apply to multiple research domains. Cloud computing provides
the ideal platform to facilitate the operation of gateways with readily available
resources that can be horizontally scaled on-demand to meet dynamic workload
requirements.



1.1. THESIS SYNOPSIS 3

Resource Manager

Apache

Spark
HTCondor HTCondor

Tenant Queues

Instance

Instance

Instance Instance

Instance

Instance

Cloud Provider

SCRIMPLocal
Queue

Provision

Engine

Market 
Information

Network 
Performance

Resource 
Requirements

Figure 1.1: An overview of SCRIMP.

1.1 Thesis Synopsis

The research presented in this thesis is motivated by the study of three scientific
services spanning genomics, medical imaging, and cosmology use cases. Chap-
ter 3 analyses these three services and poses a set of research questions which are
explored throughout the thesis. The research questions pertain to four key chal-
lenges faced by cloud-based services: network limitations, economically aware
cloud usage, cloud provisioning models, and infrastructure management. The
findings and contributions of this thesis are collectively integrated to develop
a new Scalable Cloud Resource Management and Provisioning (SCRIMP) ser-
vice. A conceptual overview of SCRIMP is depicted in Figure 1.1. The figure
shows SCRIMP’s modular architecture in which different tenant queues, cloud
platforms, and provisioning strategies can be integrated. It also shows the ser-
vice’s ability to incorporate economic, network, and application information into
the provisioning process. This section briefly describes each of the identified chal-
lenges and outlines their investigation.

1.1.1 Cloud Network Limitations

Limited network performance is often identified as the major performance bottle-
neck when executing scientific applications on the cloud [25]. In addition, com-



4 CHAPTER 1. INTRODUCTION

mercial cloud infrastructures are typically opaque and do not publish their in-
ternal properties. This restricts the ability for developers to minimise the net-
work overhead through the exploitation of data-locality. A key research goal
of this thesis is to improve the execution performance of cloud-based scientific
applications by enabling network-aware deployments. Chapter 4 adopts net-
work tomography techniques to infer the properties and performance of cloud
networks. A network tomography framework is developed and deployed over
testbeds of cloud instances to analyse tomographic probes as they traverse the
network. The resulting information is used to formulate a set of network per-
formance measurements and metrics, to compute the relative performance and
proximity of cloud instances. The framework, called a Network Health Diagnos-
tic System (NHDS), monitors clusters of instances to identify characteristics of
the underlying networks, such as high degrees of performance variability, and
the sustained nature of performance fluctuations. The NHDS gathers and com-
putes network information over a set of instances by periodically transmitting
tomographic probes between instances and aggregating the data into usable net-
work health scores. These health scores are used to nominate instances, based on
their network performance, to execute workloads. Using the NHDS is shown to
substantially improve the execution performance of scientific workloads.

1.1.2 Cloud Economics

Commercial cloud providers offer highly flexible platforms with many different
services, instance types, and pricing models. Almost all on-demand cloud-hosted
services share a common requirement of having to cost-effectively acquire in-
stances. However, this is a surprisingly difficult task to perform in practice. The
Amazon Web Services’ (AWS) [26] Elastic Compute Cloud (EC2) [27] uses three
different pricing models to lease instances to users: Spot, On-demand, and Re-
served. The Spot tier allows users to bid on spare EC2 capacity for a fraction of the
instances’ On-demand price. However, Spot instance reliability is dependent on
users’ bid values, cloud market prices, and EC2 capacity. A research goal of this
thesis is to automate the selection of instances based on real-time Spot market in-
formation in order to minimise the monetary cost of executing workloads. Chap-
ter 5 presents the exploration of cloud pricing models to establish automated and
cost-aware resource provisioning techniques. Employing cost-aware techniques,
such as broadening search scopes and analysing real-time market information, is



1.1. THESIS SYNOPSIS 5

shown to achieve 92.1% cost savings when compared with existing approaches
used by a production Globus Galaxies [28] gateways. Further, this thesis explores
the benefits of using a predictive approach for computing bid prices with the aim
of improving instance reliability. This approach leverages the Durability Agree-
ments From Time Series (DrAFTS) [29] system which provides a list of instance
types and minimum bid price that would offer a probabilistic guarantee of in-
stance lifetime. I present these techniques as an open-source, cost-aware, provi-
sioning system which acquires instances for reduced costs.

1.1.3 Provisioning Models

For a provisioning solution to optimally select instances for workloads it must
consider both the instance capabilities and the workload’s resource requirements.
Understanding the tools and applications used by scientists is crucial to ensuring
successful execution and improving execution performance [30], as well as reduc-
ing the monetary cost of cloud-based analyses. Chapter 6 explores this problem
by investigating approaches to quantify a tool’s execution requirements, such that
they can be suitably matched to cloud instance types. I present a fine-grained pro-
filing service to automate the analysis of scientific tools. The service can deploy,
monitor, and analyse tools (executables and docker containers) dynamically over
various cloud configurations to construct resource utilisation (e.g., CPU, memory,
disk, and network) profiles. I demonstrate that employing tool profiles during the
provisioning process can decrease execution time by 15.7% and reduce cost by up
to 86.6%.

1.1.4 Infrastructure Management

In addition to resource provisioning, it is crucial for on-demand services to man-
age acquired cloud infrastructure. Cloud infrastructure is dynamic and ephemeral
in nature. For example, the reliability of a Spot instance depends on many factors
and may be terminated at any time with just two minutes warning. Persistent
monitoring of an instance’s state is necessary to identify and react to involuntary
terminations. In this thesis, I describe the resource management and analytics
platform developed for SCRIMP to monitor and manage clusters of cloud in-
stances. The platform records information regarding each request and fulfilled
instance, enabling detailed analysis of a service’s cloud utilisation and perfor-



6 CHAPTER 1. INTRODUCTION

Cost-aware 
provisioner

HTCondor
Queue

Cost-aware 
provisioner

HTCondor
Queue

Instance 
Provisioning

RDS

Provisioning 
History

Tool Profiles

Cost-aware 
provisioner

HTCondor
Queue

Galaxy

Globus

NFS

HTCondor
Queue

Worker

Worker

Worker

Galaxy

Globus

NFS

HTCondor
Queue

Worker

Worker

Worker

Galaxy

Globus

NFS

HTCondor
Queue

Worker

Worker

Worker

DrAFTS

Figure 1.2: SCRIMP serving three Globus Galaxies gateways (a multi-tenant de-
ployment). SCRIMP monitors the queues of each tenant. A cost-aware provi-
sioner consults DrAFTS bid predictions and application profiles to determine
which instance type(s) to provision for a waiting job. SCRIMP configures ac-
quired instances, deploys waiting workloads, and monitors the instance for the
duration of the tool execution.

mance. The platform also provides global-awareness and facilitates the migration
of instances between collaborative services in a multi-tenant deployment. Migra-
tion improves global efficiency by increasing instance utilisation and replacing
the approximately ten minute start up cost of launching a new instance [31] with
a one minute reconfiguration cost.

1.1.5 Provisioning as a Service

Finally, Chapter 7 presents the SCRIMP service. Scientific services can use SCRIMP,
as depicted in Figure 1.2, to outsource the creation and management of on-demand
cloud infrastructure. SCRIMP uses the cost-aware provisioning system to min-
imise costs and employs DrAFTS bid prices to improve Spot instance reliability.
Tool resource utilisation profiles are incorporated into the provisioning process
to guide instance selection, while online profiling dynamically adjusts execution
forecasts. Network tomography is used to capture network information between



1.2. CONTRIBUTIONS 7

provisioned instances to enable network-aware decision making. SCRIMP’s re-
source management platform provides detailed analysis of each tenant’s cloud
utilisation and facilitates the dynamic migration of instances between tenants to
improve global efficiency. SCRIMP is currently used by numerous production
Globus Galaxies gateways and is publicly available to the community as an open-
source project.

1.2 Contributions

This thesis explores and makes contributions in multiple research areas, includ-
ing: scientific gateways, analysing cloud networks, leveraging cloud economics,
tool profiling, and managing cloud infrastructures. Specifically, the major contri-
butions of this thesis are:

1. Development of three scientific services and gateways in collaboration with
other researchers. The requirements of these use cases motivate the research
presented in this thesis. In particular I have made the following contribu-
tions to these projects:

(a) Design and development of a cloud-based service for reconstructing
proton computed tomography (pCT) images on-demand [17]. I imple-
mented the service which utilises more than 100 GPU-enabled cloud
instances to reconstruct medical images on-demand. I also created
a simulation framework to demonstrate the scalability of the service.
This research was conducted in collaboration with researchers from
Northern Illinois University (NIU) and Argonne National Laboratory
(ANL).

(b) Design and development of the Portal for Data Analysis Services for
Cosmological Simulations (PDACS) [32, 33]. This work has allowed
researchers to perform cosmological analyses using Galaxy [34] work-
flows and seamlessly deploy large-scale analyses over HPC resources.
PDACS was developed in a collaboration with researchers from ANL,
Fermi National Accelerator Laboratory (FNAL), and the National En-
ergy Research Scientific Computing Center (NERSC).

(c) I participate in the on-going development of the Globus Galaxies plat-
form [28]. The Globus Galaxies platform combines a number of data



8 CHAPTER 1. INTRODUCTION

management and analysis services, such as Globus [35] and Galaxy, to
simplify the creation of scientific services. It leverages cloud resources
to dynamically fulfil scientific workflow requirements. The Globus
Galaxies platform has been applied to a number of different scientific
domains including genomics [36], climate and policy [37], traumatic
brain injury [31], and cardiovascular [38] research. My key contribu-
tions have been to design and develop provisioning solutions, enable
fine-grained analysis of gateways, and optimise resource selection by
profiling tools. The Globus Galaxies project is a collaborative effort
between researchers at the University of Chicago and ANL.

2. Development of a network tomography framework to analyse cloud net-
works and evaluate network performance. The primary contributions of
this work are:

(a) Development of a network tomography framework. The framework
enables users to express tomographic probing sequences and efficiently
deploy them over large cloud infrastructures to evaluate and infer net-
work properties.

(b) Analysis of tomographic information to determine properties of com-
mercial clouds. I show that cloud instances experience substantial vari-
ations in network performance which persist for prolonged periods of
time.

(c) Formulation of health metrics to derive the relative network perfor-
mance of cloud instances. These metrics are used to guide instance
selection and are demonstrated to improve the execution performance
of the pCT codes.

(d) Development of a Network Health Diagnostic System (NHDS). The
system can be deployed over a set of cloud instances and will compute
relative health scores between the hosts in order to enable network-
aware deployment decisions.

3. Analysis of cloud economics to establish cost-effective techniques to fulfil
scientific workloads. I explore various approaches to achieve cost-aware
provisioning and demonstrate substantial improvements in both cost and
execution time over production Globus Galaxies gateways.



1.2. CONTRIBUTIONS 9

4. Development of an automatic tool profiling service for the cloud. The ser-
vice enables users to profile executable applications and docker containers
over a wide range of cloud instance types. Resource (CPU, memory, disk,
and network) utilisation is monitored and used to automatically construct
fine-grained tool profiles. In addition, I explore online profiling techniques
to capture execution traces and dynamically adjust execution forecasts.

5. Development of a model for migrating cloud instances between scientific
services. In collaboration with researchers from University of Wisconsin-
Madison, the University of Chicago, and ANL, I have developed a frame-
work for dynamic migration of cloud instances between HTCondor pools.
This work has been shown to reduce the number of instances launched and
improve the throughput of several Globus Galaxies services.

6. Design and development of SCRIMP—a multi-faceted service for acquir-
ing and managing cloud infrastructure. The service combines the above
contributions to improve the performance of scientific services. SCRIMP is
unique in the following ways:

(a) Incorporates real-time market information to dynamically adjust the
provisioning approach and is capable of selecting resources across avail-
ability zones and acquirement models (On-demand or Spot requests).

(b) Uses detailed tool profiles to guide provisioning. Profiles are combined
with real-time market information to exploit the trade-off in cost and
performance.

(c) Captures network performance information between provisioned in-
stances to enable network-aware decision making.

(d) Includes a resource management and analytics platform to capture
cloud interactions and monitor provisioned instances. The platform
enables the analysis of different provisioning approaches and provides
cloud utilisation metrics.

(e) Integrates a predictive bidding strategy, DrAFTS [29, 39] to provide
reliability guarantees for provisioned Spot instances. This work was
conducted in collaboration with researchers at the University of Cali-
fornia at Santa Barbra.



10 CHAPTER 1. INTRODUCTION

(f) Includes a custom simulation plug-in to emulate the AWS cloud and
enable rapid experimentation with little resource costs.

(g) Is capable of dynamically constructing on-demand clusters (HTCon-
dor or Apache Spark) to fulfil workloads.

(h) Enables resource migration to improve global efficiency and reduces
instance acquisition time by enabling instances to be shared between
tenants.

1.3 Publications

The papers published throughout my PhD candidature are enumerated in this
section. The following publications relate to the scientific services discussed in
Chapter 3:

• R. Chard, R. K. Madduri, N. T. Karonis, K. Chard, K. L. Duffin, C. E. Ordoñez,
T. D. Uram, J. Fleischauer, I. T. Foster, M. E. Papka, and J. Winans, “Scalable
pCT image reconstruction delivered as a cloud service,” IEEE Transactions on
Cloud Computing. 2015.

• R. Chard, S. Sehrish, A. Rodriguez, R. Madduri, T. D. Uram, M. Paterno,
K. Heitmann, S. Cholia, J. Kowalkowski, S. Habib, “PDACS: a portal for data
analysis services for cosmological simulations,” 9th Gateway Computing Envi-
ronments Workshop, pp 30-33, 2014.

The following publications are partially derived from the work presented in
Chapter 4.

• R. Chard, K. Bubendorfer, B. Ng, “Network health and e-science in commercial
clouds,” Future Generation Computing Systems, 2015.

• R. Chard, K. Bubendorfer, B. Ng, “Network health and e-science in public clouds,”
10th International Conference on e-Science, pp 309 - 316, 2014.

The following publications are partially derived from the work presented in
Chapter 5.

• R. Chard, K. Chard, K. Bubendorfer, L. Lacinski, R. Madduri, I. Foster,
“Cost-Aware Cloud Provisioning,” 11th International Conference on eScience,
pp 136-144, 2015.



1.3. PUBLICATIONS 11

• R. Chard, K. Chard, K. Bubendorfer, L. Lacinski, R. Madduri, I. Foster,
“Cost-Aware Elastic Cloud Provisioning for Scientific Workloads,” 8th Interna-
tional Conference on Cloud Computing, pp 971-974, 2015.

The following publication is partially derived from the work presented in
Chapter 6.

• R. Chard, K. Chard, B. Ng, K. Bubendorfer, A. Rodriguez, R. Madduri, I.
Foster, “An Automated Tool Profiling Service for the Cloud,” Accepted to 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing, 2016.





Chapter 2

Related Work

This thesis investigates methods to improve cloud-based scientific services. In
particular it focuses on the use of elastic computing infrastructures and methods
by which they can be dynamically provisioned to facilitate on-demand analyses.
Thus, this thesis overlaps several distinct areas of related literature including:
cloud computing, scientific computing, network tomography, cloud economics
and cost-aware computing, application profiling, and cloud resource manage-
ment. The remainder of this chapter discusses these topics and their relevance to
the thesis.

2.1 Cloud Computing

The term cloud computing encapsulates a general model in which computing ca-
pacity (e.g., storage and compute) is accessed over the Internet rather than on a
local personal computer. Cloud computing is characterised by a number of dif-
ferences from traditional computing models. In particular, cloud capabilities are
offered via service interfaces through the Internet [40]; cloud models are based on
virtualisation layers in which the logical service with which a user interacts is sep-
arated from the underlying physical hardware; computing needs can be scaled up
or down elastically; and users pay only for the resources they use. Cloud com-
puting models are offered as private, public, or hybrid models. Private clouds are
delivered from within an on-premise business’ data centre to internal users. Pub-
lic clouds are offered by third-party providers and resources are sold to public
users. Hybrid clouds represent a mixture of public and private models allowing
workloads to migrate between the two depending on requirements. This thesis

13



14 CHAPTER 2. RELATED WORK

focuses primarily on public cloud models.
Broadly, cloud services can be categorised as: Infrastructure-, Platform-, or

Software-as-a-Service providers; or IaaS, PaaS, and SaaS, respectively [41].

• IaaS encompass services that provide low-level computing infrastructure
with the fewest abstractions, such as virtual machines and raw disk storage.
Prominent IaaS clouds include Amazon Web Services’ [26] (AWS) Elastic
Compute Cloud [27] (EC2) and Microsoft Azure [42].

• PaaS are offered at a higher abstraction level and provide complete appli-
cation stacks for users to develop and deploy applications. Google App
Engine [43] and Heroku [44] are two examples of leading PaaS clouds.

• SaaS encompass the idea of well-defined applications being offered via ser-
vice interfaces. For example, Dropbox [45] and Google Docs [46], offer spe-
cific applications to users over the Internet.

This thesis focuses on public IaaS clouds (primarily AWS) where virtual ma-
chines of various size and capability are leased to users on-demand. The remain-
der of this thesis will refer to IaaS clouds simply as clouds.

2.1.1 Scientific Cloud Computing

Many studies have explored the feasibility of hosting scientific applications on the
cloud [47, 48, 49, 13, 12]. Researchers have investigated commercial clouds, such
as Microsoft Azure [50] and AWS [19], and private clouds [51]. Cloud instances
have been shown to possess the necessary compute capabilities to meet the execu-
tion requirements of scientific applications [8]. However, network performance
is frequently identified as a key restriction when using cloud, rather than tradi-
tional High Performance Computing (HPC) infrastructures (Grids, clusters, and
supercomputers), for HPC applications [25].

The network performance of standard EC2 instance types has been found to
be one to two orders of magnitude worse than InfiniBand [52, 53], a technology
commonly used by dedicated HPC platforms. Scientific and HPC applications of-
ten have vastly different quality of service requirements than the applications for
which cloud computing is commonly used (e.g., e-commerce applications [52]).
HPC applications can be extremely sensitive to bandwidth and latency varia-
tions, where small overheads can compound to substantially affect an applica-



2.1. CLOUD COMPUTING 15

tion’s overall performance. Comparisons between commercial clouds and tra-
ditional HPC resources (using NAS Parallel Benchmarks (NPB) [54]) have found
the network infrastructure behind clouds to be a limiting factor when performing
scientific analyses [25]. Concerns have also been raised regarding the economic
models employed by cloud providers, especially when moving and analysing
large scientific data [47]. However, the majority of this research was conducted
prior to the inclusion of AWS cluster compute and network specialised instance
types [55], which are specifically designed to meet the demands of HPC work-
loads.

Despite these limitations, scientific cloud computing is rapidly being adopted
across almost all scientific domains. A 2013 survey [56] on the use of clouds
in research and education reported that cloud resources have been successfully
adopted in projects spanning over 25 scientific domains, from science and engi-
neering, as well as humanities, arts, and social sciences. On-demand access to
burst compute through public clouds and support for high throughput scientific
workflows were found to be two of the main causes of adoption. The growth of
cloud computing as a viable platform for science has also been proven via scien-
tometric analysis [57]. With an emphasis on current trends toward Big Data and
data analytics scientifically purposed clouds, such as Magellan [58], are also find-
ing success exploring how the cloud paradigm can be used to specifically serve
future data-intensive workloads.

The cloud is becoming an increasingly pervasive component of scientific dis-
covery. In turn, researchers are now faced with a need for the skills and capabil-
ities to utilise cloud platforms effectively. However, these skills are not yet com-
mon and efficient usage of cloud infrastructure is technically challenging: naı̈ve
use can result in unnecessary performance and cost overheads [21]. Scientific ser-
vices present a promising solution to this problem by arbitrating the execution of
analytical tools over elastic cloud infrastructures.

2.1.2 Cloud-based Scientific Services

Science as a Service [23], the idea of publishing scientific data and applications
through the Internet, is now a common model for delivering scientific capabili-
ties (e.g., via science gateways [18]). Science gateways expose tools, applications,
and data through a portal or suite of applications [24] while abstracting the com-
putational infrastructure underlying the gateway. Gateways increase access to



16 CHAPTER 2. RELATED WORK

reliable and supported analytical tools without the need for researchers to install,
maintain, or even have an in-depth understanding of the software or underlying
infrastructure.

Science gateways are typically comprised of four layers: the user layer, ap-
plication layer, job and data management layer, and the underlying computing
infrastructures [59]. Gateway development tools, such as Apache Airavata [60],
Agave [61], and Globus [62], facilitate the construction of science gateways by
providing the necessary APIs and libraries. Similarly, the Globus Galaxies [28]
platform expedites the creation of gateways by enabling the rapid deployment
of cloud based installations of Galaxy [34] for domain-specific research objec-
tives. Galaxy, Kepler [63], and Taverna [64], are workbenches that provide work-
flow management capabilities. These enable the creation, editing, submission,
and sharing of workflows as well as support the inclusion of custom tools and
datasets that can be shared with the community.

Many science gateways offer domain-specific end-to-end research solutions,
where data, analytical tools, and a compute infrastructure are delivered as a stan-
dalone service. Gateways are often tightly coupled with software stacks and the
underlying compute infrastructure, thus increasing the usability of analytical ap-
plications and complex infrastructures [59]. Cloud computing provides an ideal
platform for hosting scientific gateways [65, 66, 67]. Clouds provide affordable
access to resources that can be horizontally scaled on-demand in order to ful-
fil sporadic workload requirements. However, there are many challenges that
restrict cloud-based scientific services, such as cost-effectiveness, network over-
heads, and resource management, that must still be addressed.

2.2 Commercial Cloud Platforms

Commercial cloud computing platforms expose computing infrastructure as an
on-demand utility [40]. The cloud provides users access to an enormous source
of elastic and affordable computing resources [15], with low barriers to entry [16].
Large commercial clouds are built upon geographically distributed data centres.
For example, Amazon Web Services’ EC2 [27], a leading cloud provider and a
key focus of this thesis, is organised into nine geographical regions. These are
essentially distinct instantiations of the EC2 service, with each region typically
offering a subset of virtual machine types and AWS services. Regions are di-



2.2. COMMERCIAL CLOUD PLATFORMS 17

vided into a small set of availability zones, where one availability zone can fail
independently of other availability zones within the same region. A virtual ma-
chine (or instance) is provisioned within a single region and availability zone.
EC2 availability zones impose data transfer restrictions (both monetary and per-
formance) between distinct zones, thus is it optimal to group communication-
intensive workloads within a single availability zone. More fine-grained topo-
logical information regarding how instances are connected is not exposed to the
end user.

Today’s data centres can contain hundreds of thousands, if not millions, of
computers [6] and require specialised network topologies to support the full ag-
gregate bandwidth of a large scale cluster. Understanding the architecture and
topology of a cloud network is essential when trying to derive meaning from net-
work measurements. Many commercial clouds employ multi-level tree topolo-
gies of switches and routers to interconnect data centre resources [68]. A com-
mon tree design is divides resources into three tiers: core, aggregation, and edge.
These topologies often rely on a fat-tree design, where fatter network connections
are used as you move up the tree [69].

2.2.1 Virtualisation

Cloud providers use virtualisation technologies to offer a wide range of virtual
machines with different configurations and capabilities. Xen [70] (used by AWS)
and Hyper-V [71] (used by Microsoft Azure) are two prominent hypervisors used
in cloud data centres. Hypervisors create and manage virtual machines, enabling
multiple operating systems to execute concurrently on shared hardware. Virtu-
alisation allows applications to be dynamically configured, deployed, migrated,
and suspended. Virtualisation also provides security and manageability through
isolation, while emphasising high degrees of availability and recovery [6]. Many
open-source virtualisation projects, such as Nimbus [48], OpenNebula [72], and
OpenStack [73], build upon hypervisor technology and can transform local clus-
ters into IaaS clouds.

Although virtualisation has traditionally been blamed for performance over-
heads [74], modern hardware support is said to reduce these restrictions [6].
Research has demonstrated no statistically significant overhead caused by Xen
for many HPC applications [75]. In fact, a range of particle physics applications
have been shown to execute equally well on virtualised and native systems [76].



18 CHAPTER 2. RELATED WORK

A comparison between HPC benchmarks (HPCC [77] and NPB [54]) illustrate
that virtualisation results in only minimal overhead [78]. However, the authors
explain that virtualisation effects each application differently. Other work has
demonstrated that virtualisation can negatively affect application performance,
particularly those that are sensitive to latencies, as overhead increases with the
number of virtual machines deployed to shared hardware [79].

2.2.2 Cloud Usage

IaaS clouds offer resources in predefined instance types – virtual machines defined
with set resource capabilities in various units (e.g., 1 vCPU, 8GB of memory, etc).
A variety of instance types are typically offered to provide flexibility for users to
select instances and accurately meet the demands of custom use cases [80]. AWS
alone offers 48 distinct instance types (as of April 2016), each of which are offered
with set disk, memory, and CPU capabilities [27]. Instance types are categorised
into groups, known as families, which are optimised for storage, network, com-
pute, memory, or general purposes. Other families include specialised hardware
(e.g., cluster and GPU-enhanced instances). Each family is comprised of multiple
instance types which vary by size and capability. This diversity allows users to
lease resources which best match the requirements of custom workloads.

AWS charges users hourly for the occupancy of instances. Users are billed
for full hours of usage, regardless of whether the instance is terminated during a
billable hour. AWS provides three pricing models to lease instances: Reserved, On-
demand, and Spot. On-demand instances incur an advertised instance/hour price,
allowing a user to request an instance at their convenience, pay the advertised
hourly rate, and release the instance at their discretion. Reserved instances allow
users to make a one-time, upfront payment, for a fixed duration lease (typically
one or more years). In this case the price is based on forecast (light, medium, or
heavy) usage. The hourly rate of a reserved instance is typically discounted from
the short term On-demand price, making it a cost-effective method of acquiring
instances for long periods of time. Spot instances are offered via a dynamic Spot
market model in which users bid to reserve instances. Instances are available to
users while their bid price exceeds the fluctuating market price. If the market
price exceeds the bid price the instance may be terminated involuntarily. The
market price is computed to fill the excess supply of instances, where the high-
est n bids are used to exhaust the pool. Thus, the market price reflects demand



2.3. CLOUD PROVISIONING 19

and capacity, if a bid falls below the market price the instance may be terminated.
Spot instances are typically offered at a fraction of the On-demand price and po-
tentially offer the most affordable option to acquire instances [81].

Instances acquired through the Spot market are charged the current market
price at the beginning of each billable hour [39]. When the instance is terminated
by the user they are charged for the full billable hour. However, Spot instances
may be terminated with as little as two minutes notice due to fluctuating mar-
ket prices and AWS silently resizing Spot pools. If an instance is involuntarily
terminated, the user is not charged for the occupancy of the partial billable hour.

2.3 Cloud Provisioning

The elastic nature of cloud platforms present opportunities to dynamically ac-
quire infrastructure on which to host services or workloads. Cloud instances can
be provisioned on-demand and provide the flexibility to optimally match hetero-
geneous workloads to instance type capabilities. Importantly, cloud provisioning
does not consider the process by which applications are executed, data is staged,
execution is monitored, or data is returned. Instead, these tasks are performed by
existing frameworks such as the high throughput computing, MapReduce, and
general purpose data-processing frameworks (e.g., HTCondor [82], Hadoop [83],
and Apache Spark [84]) used to submit and manage executions.

Programmatically selecting and provisioning instances is fundamental to the
operation of almost every on-demand cloud service. AWS facilitates program-
matic provisioning and management of cloud instances via an Application Pro-
gram Interface (API) and Software Development Kits (SDK), such as Python-
boto [85]. However, automating the provisioning process requires comprehen-
sive consideration of instance types, services, resource requirements, provision-
ing models, bidding strategies, and market price information. This thesis inves-
tigates techniques to improve automated provisioning approaches for scientific
services.

AWS provides degrees of auto-scaling through various services, such as Spot
Fleets [86] (dynamic Spot instance management) and Elastic MapReduce [87] (on-
demand MapReduce). Although these services are capable of dynamically ac-
quiring instances to provide reliability and meet demand, they are designed to
fulfil a single goal which restricts customisation. Therefore, it is common for



20 CHAPTER 2. RELATED WORK

cloud-based services to develop custom provisioning systems.

On-demand provisioning of cloud resources is a challenge faced in both aca-
demic and commercial projects. A system to provision and manage cloud re-
sources is necessary to utilise the cloud at scale. Fenzo [88] is an example of
a commercial solution to cloud provisioning and is used to auto-scale Netflix’s
cloud infrastructure. Fenzo constructs and manages Apache Mesos [89] frame-
works on AWS in order to serve Netflix’s content globally. Cloud Scheduler [90]
is another cloud resource manager which enables the provisioning of resources
to meet the demands of HTC applications [91]. StarCluster [92] is an open-source
toolkit for automating the process of building and managing virtual clusters on
AWS. Users specify the type and count of nodes to be provisioned. The system
supports a plug-in framework to enable custom usage policies to be defined, one
such plug-in enables elastic scaling of clusters.

Dynamically provisioning cloud infrastructure can also be used to supple-
ment local infrastructures [93], or facilitate the bursting of local applications to
the cloud when necessary. For example, the Eucalyptus cloud [94] is a hybrid
cloud that acquires commercial cloud (AWS) instances to supplement local in-
frastructure.

Cloud provisioning decisions are generally made by monitoring Quality of
Service (QoS) requirements or workload intensity to guide when additional re-
sources should be provisioned [95]. Alternative approaches can focus on cost-
minimisation [96], deadline constraints [97], or a combination of both [98]. Cost-
and deadline-constraints provide Service Level Agreement (SLA) guarantees for
when and how expensively a workload will be completed [99, 100].

2.3.1 Cost-Aware Provisioning

The utility computing models employed by cloud computing providers have
driven efforts to develop cost-minimising provisioning approaches [96]. Often
the motivation for such provisioning approaches is due to cost-constrained work-
loads [101]. Increasingly, however, researchers are focused on minimising the cost
of executing workflows on the cloud [102, 103]. Cost-aware provisioning plays a
vital role in almost every provisioning system and is a key focus of this thesis.

The AWS Spot market presents a potentially cost-effective method of acquir-
ing instances. However, even when using the Spot market, ineffective provi-
sioning strategies can result in increased execution costs [21, 22]. To successfully



2.4. MANAGING CLOUD INFRASTRUCTURES 21

utilise the Spot market real-time market information must be incorporated into
the provisioning process. Cost-aware provisioning has been shown to reduce
operational costs [99] and improve the reliability of clusters composed of Spot
instances [104]. It can also improve utilisation, performance, and reduce fail-
ures [101]. The effect of cost-aware provisioning on instance reliability appears to
be at least partially due to the least expensive instances being those that experi-
ence low demand.

The Spot market provides a trade-off between cost and reliability [104, 105].
Resources provisioned through the Spot market are fulfilled as long as the spec-
ified bid price exceeds the Spot market price. Therefore, instance reliability is
dependent on nominating a suitable bid price when requesting Spot instances.
Numerous studies have investigated techniques for selecting optimal bid prices
when using the Spot market [106, 107, 108]. One such study proposes using a
probabilistic decision model to select bid prices for a specific instance type [109],
where configurable parameters are used to tune the balance between reliability
and monetary savings. This produces levels of confidence in the ability for an
instance with a specific bid price to meet QoS objectives and deadlines.

Wolski and Brevik [29] extend previous work [110] on the prediction of bounds
for queuing delays and apply their prediction techniques to the Spot market. In
this work, Wolski and Brevik present the Durability Agreements From Time Se-
ries (DrAFTS) system. DrAFTS is capable of analysing historic Spot market infor-
mation to predict bid prices for an instance type with 95% confidence that the bid
price will not being exceeded over a specific time frame. In this thesis I leverage
DrAFTS to employ reliability-aware bid prices as well as guide instance selection
in order to minimise monetary costs and improve reliability.

2.4 Managing Cloud Infrastructures

Provisioning cloud infrastructure is only one aspect of using the cloud to exe-
cute workloads on-demand. Cloud instances—particularly Spot instances—are
unreliable and therefore must be monitored and managed throughout their life
cycle to ensure reliable and efficient executions. This thesis presents several re-
source management techniques to improve the utilisation and reliability of elastic
infrastructures after they are provisioned.

The resource management capabilities of a provisioning service are typically



22 CHAPTER 2. RELATED WORK

used to track existing infrastructure and guide subsequent auto-scaling decisions.
Provisioning and auto-scaling systems react to various QoS requirements and
demand [95] to determine what and when additional resources are required.
Conversely, this information can be used to downscale elastic infrastructure as
demand declines. This is only possible by monitoring the utilisation of an in-
stance once it has been provisioned for a service. The location of where instances
are launched can also be used to load-balance services. For example, Netflix’s
Fenzo [88] system can be directed to load balance workloads by assigning related
tasks to the same availability zone.

Cloud instances generally persist until they are specifically terminated by the
user, the bid is exceeded, provider capacity is exceeded, or there is a failure.
Therefore, it is important to diligently monitor and detect instance state changes.
Furthermore, a core requirement of a cloud management system is the need to
ensure that unused or unnecessary instances are terminated prior to incurring ad-
ditional charges. The Globus Galaxies platform employs a self-termination script
on each instance to automatically downscale resources [28]. The self-termination
script is designed to shutdown the instance immediately prior to the next billable
hour if it is not currently being used. Resource management services also be-
come increasingly important as the pool of maintained resources increases in size.
Cloud Scheduler [90] employs a technique to manage large pools of resources by
logically separating them into clusters for each user.

2.5 Network Tomography

The network that connects cloud instances is often identified as the key perfor-
mance limitation when executing scientific analyses and the cloud [52, 53]. Net-
work performance is vital to scientific applications due to the size of scientific
datasets [6], the cost to move large datasets [111], and the bottlenecks caused
during processing [112]. Simply adding compute capacity does not necessarily
improve the performance of data-intensive workloads [113]. Thus, several re-
searchers have proposed techniques to minimise the movement of datasets as a
means to improve performance [114, 115].

Commercial cloud providers do not advertise their underlying infrastructure
to customers. However, network topology information can be crucial to the effi-
ciency of communication-intensive applications [116]. In addition, data-locality is



2.5. NETWORK TOMOGRAPHY 23

an increasingly common consideration when optimising the performance of dis-
tributed computing applications [112, 117]. In order to exploit data-locality and
minimise data transfers, the proximity of instances to one another (and therefore
datasets) combined with properties and the topology of the network connecting
them are required.

One of the key research topics investigated in this thesis focuses on minimis-
ing network-overheads when executing workloads in the cloud. Specifically,
network tomography [118] is used to derive network information from provi-
sioned instances to enable network-aware deployments. Network tomography is
a tool that uses end-to-end probes to infer and study network properties (e.g.
architecture and load). The field of network tomography is relatively young,
with Vardi [119] first presenting work toward estimating traffic intensity between
hosts in 1996.

Tomographic methods can be broadly classified as either loss-based or delay-
based. Loss-based methods focus on identifying congested links within a net-
work by observing packet loss. Loss-based tomography was initially a popular
research area [120, 121]. However, loss-based mechanisms have now become less
effective due to the reliability of modern connections, especially under light utili-
sation. Thousands of probes must be measured before a one percent loss rate can
significantly effect the end-to-end performance of a link [122]. Delay-based tomo-
graphic methods are more suited to today’s networks as they focus on measuring
the delay incurred by messages as they traverse a network.

Tomographic inference can be applied to a wide range of areas where knowl-
edge of the network can be exploited. For example, Karonis et al. [123] inves-
tigated exploitation of hierarchical network topologies in order to optimise the
collective communication algorithms for MPICH-G, an implementation of MPI
for Grids. The topology is discovered by Globus, and is automatically detected
by MPICH-G [124], to enable applications to infer and then exploit hierarchical
topologies. This work was later extended in MPICH-G2 [125] in order to enable
communication-intensive workloads to be co-allocated to improve execution per-
formance. This work demonstrates the potential benefits of inferring network
properties. When applied to opaque cloud networks, tomography can enable
data-locality and reduce the cost of data transfers required by communication-
intensive jobs.



24 CHAPTER 2. RELATED WORK

2.5.1 Tomographic Techniques

The earliest approaches for determining link delay within a network relied on
multicast tomographic techniques [126, 127]. These techniques use multicast end-
to-end measurement mechanisms to infer internal network delay in a multicast
tree. Network Radar [128], a technique based on Round Trip Time (RTT), im-
proved upon multicast approaches as it does not require the cooperation of re-
ceivers, multicast routing capabilities, synchronised clocks, or the capability to
capture measurements at both the sending and receiving hosts. Network Radar
captures the TCP SYN and SYN-ACK segments of a message to determine the
delay in a link.

Novel probing schemes that extend unicast end-to-end measurements have
also been explored. Sandwich probing [122] is one such technique that operates
by sending packets of different size between two hosts. The scheme transmits two
smaller packets separated by an individual large packet. With a priori knowledge
of the difference in time between the two smaller packets, the delay induced by
the large packet can be measured.

Many established applications and services benefit from recognising network
congestion and estimating link capacity. For example, Globus [35] uses UDT, a re-
liable implementation of UDP, to improve performance of GridFTP data transfers.
The mechanism involves sending every 16th data packet and its successor packet
back-to-back, creating a packet pair. A median filter on the delay between the
arrival of each packet pair can be used to measure the link capacity and amend
the transfer accordingly [129].

Network Weather Service (NWS) [130] is a distributed system designed to
capture performance measurements of networked resources and produce short-
term performance forecasts. In addition to CPU metrics, the NWS captures TCP
connection time, end-to-end TCP latency, and bandwidth measurements between
sensor pairs. These metrics are then computed to estimate the future that can be
expected at the application-level.

Tomographic systems are necessary to deploy and scale tomographic probing
schemes over large infrastructures. Typically a collector is placed on a specific
host within the infrastructure and will periodically probe other hosts of interest.
However, collecting data for each pair of hosts in a large network can be costly
and time consuming. An alternative to actively sending probes between each
pair of hosts is to identify subgraphs, where direct measurements can be replaced



2.5. NETWORK TOMOGRAPHY 25

with inference [131].

2.5.2 Tomography in the Cloud

Many network diagnostic tools, such as traceroute, rely on the cooperation of
link-layer components [132]. However, most commercial cloud providers do not
disclose their network infrastructure, rendering such tools ineffective. The pub-
lic nature of commercial clouds also presents challenges to the deployment and
verification of tomographic systems. Generally, tomography tests are conducted
with the specific intention of avoiding interference and are run multiple times
on idle networks to suppress the influence of background noise. However, com-
mercial clouds are often noisy and present a number of new challenges, such
as providers performing load balancing and multiple virtual machines sharing
physical resources.

Battre et al. [133] employed a testbed of 64 Xen VMs to evaluate the ability
of various tomographic techniques to determine the network topology of opaque
cloud infrastructures. The authors evaluated both loss- and delay-based tomog-
raphy techniques, showing loss-based approaches to be less effective and find-
ing that RTT measurements outperformed Sandwich probing when using the
Robinson-Foulds metric [134].

Cloud MPI (CMPI) [135] is a compelling use case for cloud-based network to-
mography. CMPI is a network-aware implementation of MPI designed for cloud
environments. Here the MPI collective communication algorithms are optimised
to utilise network performance information. This approach relies on basic la-
tency and bandwidth matrices to evaluate network performance and optimise the
Broadcast and Reduce, and Gather and Scatter operations. Evaluation showed
improvements of between 13% and 38%, compared to that of MPICH2 [136].
CMPI exemplifies the potential opportunities that are available within the cloud
when applying inferred network information in the deployment of distributed
computations.

Researchers have also investigated the potential of network probes to expose
cloud instances being migrated during load balancing [137]. The migration de-
tection system collects network measurements between the instance and a set of
static landmarks. The information is collected and analysed periodically to detect
significant performance changes and determine whether an instance is migrated.

This thesis employs network tomography to determine network performance



26 CHAPTER 2. RELATED WORK

between provisioned cloud instances. Network information is analysed and used
to guide the selection of instances to execute a communication-intensive scientific
application.

2.6 Application Profiling

Accurately forecasting the execution requirements of an application is crucial to
supporting efficient execution at scale [138], maximising the yield of resources
[139], and minimising monetary costs [22]. This thesis explores application pro-
filing techniques to optimise the matching of applications to cloud resources.

The HPC community has long recognised the importance of understanding
and forecasting resource requirements for the efficient management and utilisa-
tion of resources [30]. Similarly, understanding how a tool (any application or
script) executes is critical to deploying them efficiently and cost-effectively on
cloud infrastructures [22]. The flexibility of cloud providers can make it espe-
cially challenging to select a resource which best meets the requirements of a
given tool.

An application profile is the concise description of the execution performance,
behaviour, and resource (CPU, memory, network, disk) requirements of an ap-
plication as it is executed. Many profiling systems have been developed and
used to predict job run times [140, 141, 142] as this is an important input to many
scheduling algorithms. Although most profiling research has focused on making
predictions in homogeneous environments, profiling can be used to predict per-
formance in heterogeneous platforms by analysing executions on different con-
figurations [143].

2.6.1 Profiling Approaches

There are many techniques that can be used to record and analyse application
execution and then predict the performance of subsequent executions. Work-
load modelling can be conducted either online or offline [144, 145]. Online mod-
elling [146] can be used to construct application profiles of tools by analysing the
utilisation and behaviour of a workload in real-time during execution. Whereas
offline modelling is achieved by analysing traces and logs from historic execu-
tions [144].



2.6. APPLICATION PROFILING 27

Statistical analysis is a common method used to forecast execution perfor-
mance and has been shown to significantly improve job run time estimates based
on large supercomputing logs [139]. Other statistical approaches, such as ARIA
(Automatic Resource Inference and Allocation), use mathematical models to es-
timate job completion times [147]. Most often these approaches are based on
historical analysis of execution traces, however small scale benchmarks in test
environments can also be used to produce run time estimates [148].

Performance information can be derived by analysing the structured patterns
in workload execution logs [149] or by using machine learning algorithms to clas-
sify applications [150]. Another approach is to gather execution information via
microbenchmarks [151]. Microbenchmarks provide an estimate of a tool’s exe-
cution signature and can be used to forecast resource requirements. One limi-
tation of this approach is that microbenchmarks do not monitor an application
for the duration of its execution, therefore it is difficult to accurately capture the
behaviour of applications with varying degrees of resource utilisation. Canonical
correlation analysis provides an alternative method of prediction by identifying
the relationship between resource utilisation and performance [30].

Virtualisation technologies enable fine-grained resource consumption infor-
mation to be captured at the virtualisation layer. Virtualisation-level modelling
can support the construction of real-time (online) resource consumption profiles
[152]. Many of these efforts focus on profiling benchmark tests, in which work-
loads are analysed, and profiles are established, prior to production deployment.
However, similar techniques have been applied as a way of responding to re-
source utilisation and adapting long running workflows [153].

2.6.2 Profiling in the Cloud

The potential for inefficient execution and poor utilisation is more likely in cloud
deployments due to the broad range of services and instance types that are avail-
able. Different instance types can vary substantially in terms of capabilities, thus
applications can perform quite differently on different cloud configurations [80].
Optimal use of cloud infrastructure requires that knowledge of resource require-
ments is known a priori and can be used when selecting instance types.

A common use-case for profiling applications is to determine the performance
of the underlying infrastructure [154]. The performance of AWS instance types
has been measured extensively via benchmark tools (such as HPCC and NPB)



28 CHAPTER 2. RELATED WORK

and comparing execution traces between different instance configurations [14].
The performance of AWS instance types has also been compared to traditional
HPC infrastructures using a similar method [25] and have been found to have
near native computational performance [76]. Workload modelling and analysis
of resource utilisation can also aid in the identification of performance degrada-
tion and faults. El-Khamra et al. [51] demonstrate this possibility by monitoring
scientific simulations executed on the Eucalyptus-based FutureGrid cloud and
AWS to identify the cause of overheads.

Many cloud applications (e.g., services) are long running and depend on ex-
ternal factors (such as demand), making them difficult to extensively profile a
priori. Thus, cloud services require a dynamic, online, monitoring approach to
ensure that QoS requirements are met. AWS offers a built-in cloud monitoring
service, known as CloudWatch [155], which captures and publishes utilisation
data for provisioned instances. Combining CloudWatch with AWS’s Auto Scal-
ing and Elastic Load Balancing features, users can define rules to enable auto-
matic scaling for long running services [156]. However, CloudWatch is primarily
focused on instance-based QoS measurements, such as overall CPU utilisation
and responsiveness, rather than capturing fine-grained metrics regarding appli-
cation execution. Customisable event-based monitoring has been explored to fa-
cilitate highly expressive monitoring rules [157], however, these approaches fo-
cus on primitive instance metrics and are therefore suited to long running cloud
services. This thesis investigates a combination of online and offline profiling
techniques. In particular, an automatic cloud profiling service is presented as a
low overhead method of constructing fine-grain execution profiles.

2.7 Summary

Cloud computing is changing the landscape of scientific discovery. Researchers
are rapidly adapting their applications to leverage cloud resources both as an al-
ternative to on-premise infrastructure and also as a means of dynamically scaling
computing infrastructure to perform on-demand analyses. However, the sheer
number of cloud services and the complexity of provisioning and configuring
infrastructure leads to significant technical challenges. Scientific services, such
as science gateways, abstract these details and therefore enable cloud infrastruc-
ture to be more readily used by scientists. Scientific services can manage cloud



2.7. SUMMARY 29

interactions for users and facilitate on-demand analyses in a scalable fashion.
This thesis explores challenges in efficiently delivering cloud-based scientific

services. The ultimate goal of this work is to improve performance, increase
adoption, decrease costs, and accelerate scientific discovery. Given the breadth
of scope of this work this thesis touches upon a multitude of research areas as
discussed in this chapter. These areas include: cloud computing, scientific com-
puting, cloud economics and cost-aware computing, cloud infrastructure man-
agement, network tomography, and application profiling.





Chapter 3

Science as a Service – Use Cases

Scientific gateways [24] aim to abstract low level technical infrastructure while
delivering reliable and usable scientific tools, datasets, and technologies as a ser-
vice via the Internet. The on-demand and elastic cloud computing model is ide-
ally suited to hosting science gateways due to the sporadic computation require-
ments of today’s researchers. However, as science gateways become yet more
pervasive, user expectations and requirements increase. A gateway’s efficien-
cies (or inefficiencies), whether performance-based or monetary, are cumulatively
passed on to those that use the service. Therefore, optimisation at the gateway-
level can directly enhance the ability of users to conduct research.

This chapter presents the analysis of three services as use cases. I employ a di-
rect observation methodology [158] to draw generalisable conclusions from their
requirements. The generalised requirements are then translated into a set of re-
search questions which underpin the research presented in this thesis. The first
service (cf. Section 3.1) is a scalable Proton Computed Tomography (pCT) image
reconstruction service [17]. The pCT service provides on-demand medical image
reconstructions by employing more than 100 GPU-enabled cluster instances to
reconstruct 100GB datasets. The second service (cf. Section 3.2) is the the Por-
tal for Data Analysis Services for Cosmological Simulations (PDACS) [32, 33].
PDACS enables processing of enormous simulation datasets. Thus, it exhibits
unique challenges as simulation datasets cannot be readily recomputed, or trans-
ferred. The PDACS portal also leverages dedicated infrastructures from both
NERSC (the Carver HPC cluster) and ANL (the Magellan Scientific Cloud [58]).
Finally, the third service, or more accurately, services (cf. Section 3.3) considered
are Globus Genomics gateways [36] deployed using the Globus Galaxies plat-

31



32 CHAPTER 3. SCIENCE AS A SERVICE – USE CASES

form [28]. The Globus Galaxies platform offers a set of capabilities that can be
used to create domain-specific gateways which leverage on-demand cloud in-
frastructures to execute user-defined workloads.

3.1 Proton Computed Tomography

Proton Computed Tomography (pCT) [1] is a medical imaging modality based on
tracking the change in trajectory and energy loss of protons as they pass through
an object. pCT imaging was initially developed as a method for acquiring high
accuracy images for proton cancer therapy applications. pCT systems provide a
number of advantages over traditional X-ray Computed Tomography (xCT) scan-
ners, such as higher accuracy of electron density reconstruction, and lower dose
for the same density resolution [159]. A typical configuration for capturing pCT
images is shown in Figure 3.1 [1]. This configuration enables the path and en-
ergy of individual protons, known as a proton’s history, to be recorded as a broad
beam is directed at the target.

10 cm

Figure 3.1: The configuration of the NICADD/NIU pCT detector. Protons pass
left-to-right through sensor planes and traverse the target before stopping in the
detector at the far right [1].

The enhanced accuracy in reconstructed electron density allows physicians
to develop more accurate treatment plans, thus sparing healthy tissue during
treatment, and allows health care providers to more accurately position patients
during treatment sessions. Presently, a patient’s position is verified just prior to



3.1. PROTON COMPUTED TOMOGRAPHY 33

receiving each treatment through the use of two-dimensional orthogonal projec-
tions but could be significantly improved by instead using the three-dimensional
image produced by pCT.

In order to use pCT imaging for position verification, images must be recon-
structed in near real-time – initial studies suggest within ten to fifteen minutes [1].
Due to the non-linear path of protons through an imaged material, data reduc-
tion techniques cannot be applied to pCT datasets in the same way that they can
to other modalities such as positron emission tomography (PET) and xCT. Thus,
extremely large datasets must be processed in order to reconstruct an image. It
is estimated that the ratio of total protons to total number of 1mm3 voxels in a
target should be greater than 100 to 1 in order to image the target [160]. This
gives a conservative upper limit of ∼ 2× 109 proton histories required to image a
human head. Each history can be represented in 50 bytes, producing a dataset of
∼100GB. Considerable compute resources are needed to reconstruct a dataset of
this size in a timely manner. For example, Penfold [161] reports that a reconstruc-
tion on a small 6GB dataset of 131 million proton histories, using a single CPU
and GPU, took almost seventy minutes. At this rate, two billion histories (100GB)
would require almost nine hours to process.

3.1.1 pCT Reconstruction Service

To address the needs of providing near real-time reconstructions I created an on-
demand and elastic pCT reconstruction service that leverages cloud resources
to support time-varying workloads which may involve many concurrent recon-
structions of different sizes. The service processes pCT image reconstruction re-
quests by provisioning cloud resources in an on-demand fashion. The service is
hosted on AWS and offers a persistent representational state transfer (REST) [162]
API. Clients worldwide can connect to this service to request reconstructions.
A single instance is responsible for hosting the REST interface, managing data
transfers, delivering the shared file system, provisioning clusters, and schedul-
ing reconstructions across these clusters. A high performance, parallel Message
Passing Interface (MPI)-based code developed by Karonis et al. [163] is used to
perform the pCT image reconstruction. The service uses Globus [35] for asyn-
chronous upload and download of input datasets and reconstructed images.

Figure 3.2 shows the core components of the pCT reconstruction service. At
the bottom of the figure, clients, representing hospitals or proton imaging centres,



34 CHAPTER 3. SCIENCE AS A SERVICE – USE CASES

Scheduler

GPU

GPU
GPU

GPU

GPU

GPU

Master

Slave 1

Slave 2MPI

MPI

Client Client

Figure 3.2: An outline of the on-demand pCT reconstruction service.

request image reconstructions from the pCT reconstruction service. The service
includes a scheduler that both schedules reconstructions and dynamically pro-
visions and manages clusters as required. Requests submitted to the scheduler
specify a priority that represents the type of reconstruction (e.g., treatment plan
or position verification). The priority determines whether the work must be im-
mediately processed (which may require starting a new cluster), or whether the
job can be optimally scheduled over existing infrastructure. The resulting recon-
structions are transferred back to the requesting client.

The pCT service uses GPU-enhanced cluster compute instances (CG1) to per-
form reconstructions. Each instance has an On-demand price of $2.10 per hour
and therefore an entire 120 instance cluster costs $252 an hour. The largest en-
visioned images, consisting of two billion histories, require approximately nine
minutes to reconstruct. Thus six of these reconstructions can be completed within
an hour, making the price per reconstruction $42, assuming sufficient demand.



3.1. PROTON COMPUTED TOMOGRAPHY 35

● ● ● ● ●
●

●

●

●

●

●

●

0

10

20

30

40

20 40 60 80 100 120

Cluster Size

C
o
s
t 
P

e
r 

Im
a
g
e
 (

d
o
lla

rs
)

Number of Histories

●● 0.13B

0.26B

0.53B

1.05B

1.58B

2.11B

Figure 3.3: Per-image PPN=2 reconstruction costs for various datasets, when
using clusters of different sizes that are made up of either entirely On-demand
(solid) or entirely Spot (dashed) instances.

As datasets vary significantly in size, smaller and cheaper clusters can be used to
service smaller reconstruction requests. Spot instances can provide significantly
lower prices than that of On-demand instances. During the initial evaluation in
2013 the average Spot price for CG1 instances was $0.34. Based on analysis of
market fluctuations it was determined that a bid price of $0.40 provided high re-
liability when provisioning large clusters. Using Spot instances a 120 instance
cluster could be provisioned for less than $50 an hour. Two billion history re-
constructions could therefore be performed for less than $10 each. The projected
cost for reconstructing various size datasets under different cluster configurations
with both On-demand (solid line) and low Spot price (dashed line) is shown in
Figure 3.3. Whereas, a dedicated cluster, such as Gaea, has an initial cost of ap-
proximately $800,000, and an annual cost of over $150,000 in staffing and opera-
tional expenses [17].



36 CHAPTER 3. SCIENCE AS A SERVICE – USE CASES

3.1.2 Requirements

On-demand pCT reconstruction presents a number of challenges and require-
ments due to the size of input data, large and specialised clusters, and the real-
time need for image reconstructions. When compared to execution on traditional
HPC clusters, the cloud-based approach was found to be able to reconstruct im-
ages in a similar amount of time when using clusters with approximately the
same amount of collective memory. However, due to the HPC cluster nodes be-
ing significantly larger than their cloud instance counterparts (in terms of number
of cores, memory, and GPU memory) far more cloud instances were required to
reconstruct images comprised of a similar number of proton histories. Given the
strict reconstruction time requirements it is paramount that reconstructions are
conducted reliably and efficiently. However, when using a cluster composed of
Spot instances the probability of errors is significantly larger than using a ded-
icated HPC cluster. For example, instances occasionally fail to launch and are
frequently terminated by price. The real-time requirement of pCT reconstruc-
tions emphasises the requirement for reliability as failures during the provision-
ing, configuration, or management of a cluster can have real-world implications.
Therefore the service requires techniques to automatically configure, correct, and
detect the state changes (such as failures) of instances through persistent moni-
toring.

Figure 3.4 depicts the total time required to reconstruct images for various
sized input datasets. The total time is calculated by combining the time needed
to transfer the input data to the service, reconstruct the image, and transfer the
resulting image back to the client. The high transfer times are caused due to the
size of the datasets. As is further discussed in [17], the time required to upload
input datasets to the service is currently a limitation to the service’s ability to
facilitate real-time reconstructions. In turn, it is a requirement of the pCT service
to facilitate high performance and reliable data transfers.

The distribution phase of the pCT reconstruction code was identified as a key
overhead for cloud-based reconstructions. The distribution phase takes almost
ten times as long to distributed data over cloud instances when compared to a
dedicated cluster. This is due to two reasons: cloud instance memory limitations
require that more processes are required to reconstruct an image of the same size;
and the cloud network has much lower performance than the InfiniBand [164]
supported cluster. As described previously, the cloud network overhead is a key



3.1. PROTON COMPUTED TOMOGRAPHY 37

●

●

●

●

●

●

●
●

●

●

●

●10

20

30

40

50

0.13B 0.26B 0.53B 1.05B 1.58B 2.11B

Number of Histories

T
im

e
 (

m
in

u
te

s
)

Rate

●

●

10Gbps

1Gbps

Column

Execution

Transfer

TransferResult

Figure 3.4: The total time required to transfer and reconstruct a pCT image. Each
bar shows the time taken to transfer datasets to and from the cloud service, as
well as perform the reconstruction. The forecast time required for transfer and
reconstruction when supported by a 1-Gigabit and 10-Gigabit network with 100%
utilisation are also shown.

challenge to providing an effective cloud-based solution. Thus, the pCT recon-
struction service requires methods to minimise the overhead caused by cloud
networks and leverage data-locality to improve performance.

Due to the scale of the clusters used to perform reconstructions, the cost for
reconstructing a single image can be substantial. Cost-effectively selecting re-
sources is crucial to providing an affordable reconstruction solution. Interest-
ingly, given the specialised nature of the cloud instance type used (and the fact
that these instance types are offered in only two AWS regions) the pCT recon-
struction service was found to influence the Spot market price when reconstruct-
ing large images. This resulted in instances being terminated due to the raising
market price and an increased cost for reconstructions. This behaviour has impor-
tant implications. Notably, such services require more sophisticated provisioning



38 CHAPTER 3. SCIENCE AS A SERVICE – USE CASES

approaches to understand the impact that they are having on the market. To alle-
viate risks there is potential to compose clusters of mixed Spot and On-demand
instances as well as to distribute computation across availability zones.

The requirements of the pCT reconstruction service use case are:

P1 Using pCT reconstruction as a near real-time position verification tool places
strict requirements on the time to deliver results (less than 10 minutes). To
meet these goals it is imperative to accelerate the data upload and distri-
bution phase of the reconstruction. Techniques to minimise network over-
heads must be used to enable the effective deployment on cloud infrastruc-
ture.

P2 Resource management techniques are required to reliably configure and
scale cloud infrastructures.

P3 Persistent monitoring is necessary to identify terminated Spot instances and
react by acquiring additional resources to fulfil workloads.

P4 Economic principles must be leveraged to minimise the cost of image re-
constructions. In addition, cost-aware provisioning techniques enable the
resources to be distributed across availability zones, improving the services
reliability

3.2 PDACS: A Cosmology Portal

Cosmology has made rapid strides in the last two decades based on the remark-
able results from a number of large-scale sky surveys carried out across multi-
ple wavebands. Investigations of the mysteries of dark energy and dark mat-
ter increasingly rely on large, high-resolution simulations of cosmological struc-
ture formation to provide the theoretical underpinnings of cosmological research.
These advanced simulations require enormous amounts of compute resources
and are generated on leadership computing facilities [165]. The datasets gener-
ated are characteristically large and can be hundreds of terabytes in size, extend-
ing into the petabytes. Due to the size of these datasets and the complexity of
many cosmology simulations, on-demand regeneration of datasets is not feasi-
ble. When combined with the complexity of the associated analysis, the number
of analyses that can be performed, and therefore science that can potentially be
achieved from the simulations, is limited.



3.2. PDACS: A COSMOLOGY PORTAL 39

The Portal for Data Analysis Services for Cosmological Simulations (PDACS)
[32, 33] is designed to increase the value of cosmological simulations by improv-
ing the accessibility of the resulting datasets. PDACS aims to enrich the entire sci-
entific community by delivering a service for researchers to contribute and share
repositories for tools, workflows, and datasets. PDACS is a workflow engine and
scientific gateway for cosmology research. The platform exposes advanced cos-
mological models as well as the tools and computational resources required to
analyse them. PDACS also provides the necessary storage services and manages
the output of analyses for researchers.

PDACS is a collaboration between Argonne National Laboratory (ANL), Fermi
National Accelerator Laboratory (FNAL), and the National Energy Research Sci-
entific Computing Center (NERSC). PDACS is built upon Galaxy [34], a workflow
engine for biomedical research, to create a research environment for cosmology.
PDACS deployments are currently in operation at NERSC and ANL, providing a
preliminary set of test users access to flexible, large-scale computational resources
and storage services through NERSC’s HPC infrastructure and ANL’s Magellan
cloud [58].

3.2.1 PDACS Platform

PDACS enables users to execute and share existing cosmology analysis tools and
execute disparate tools in orchestrated workflows with coherent metadata. While
basic workflow capabilities are already provided by Galaxy, significant enhance-
ments have been made to make Galaxy suitable for the cosmology community.
Galaxy works by allowing researchers to execute tools, where tools are wrappers
around user defined applications or scripts that invoke a user application writ-
ten in any language. I repurposed Galaxy to construct the PDACS platform by
removing biomedical tools, data types, and formats and replacing them with cos-
mology equivalents.

Figure 3.5 depicts the process by which PDACS allows researchers to anal-
yse cosmological models. Specifically, this figure shows the PDACS deployment
that uses NERSC compute resources. In this case, users are authenticated to ac-
cess PDACS by using NERSC’s NEWT [166] API. PDACS provides a range of
tools and datasets which allow researchers to experiment with analyses or con-
struct pipelines. Individual tools and pipelines can be executed by users on
supported compute infrastructure. The resulting output files can then be down-



40 CHAPTER 3. SCIENCE AS A SERVICE – USE CASES

ID

Figure 3.5: The process of using NERSC’s PDACS platform to analyse cosmolog-
ical models.

loaded, shared, or further processed by other analysis or visualisation tools that
are supported in PDACS.

PDACS currently exposes a set of 37 cosmological models known as the Coy-
ote Universe [167]. The metadata regarding the generation of each model and the
parameters used during the simulation are captured in a novel SQLite [168] data
type, developed by researchers at FNAL.

PDACS provides a set of frequently used cosmology tools, allowing users to
perform tasks such as finding clusters of particles, known as halos, within simula-
tion models. The provided tools include: Friends-of-Friends (FOF) and Spherical
Overdensity (SO) halo finders, halo profile measurements, concentration mea-
surements, binning routines to calculate, e.g., mass functions from the halo finder
outputs, a concentration-mass relation emulator, a power spectrum emulator, and
measurement tools for two-point statistics, such as the fluctuation power spec-
trum and correlation function. PDACS has been designed to execute tools in
different environments depending on their requirements. For example, compu-
tationally intensive tools, such as the halo finder, are automatically submitted as a
batch job to be run on cluster and supercomputing resources. Less computation-
ally intensive tools, such as the emulators, are executed on the same node that



3.2. PDACS: A COSMOLOGY PORTAL 41

manages the Galaxy instance. To enable user-oriented analysis of large datasets
PDACS integrates Globus [35] data management services. Globus provides re-
liable, secure and efficient data-transfer for large datasets in an asynchronous
manner. Transfers can be started from within the PDACS instance and uploaded
to the supported storage services.

The PDACS service operates as a standalone science gateway and can be de-
ployed on different compute infrastructures. Currently, two distinct PDACS plat-
forms have been deployed at NERSC and ANL. To support these different execu-
tion environments PDACS includes new job runners that transparently dispatch
jobs to these HPC resources. In order to deploy jobs to NERSC’s computing re-
sources the job runner uses the NEWT execution API. NEWT exposes a range of
NERSC functionality and resources, providing the ability to authenticate users,
monitor system status, and schedule workloads over the HPC resources main-
tained at NERSC. The NEWT runner allows custom tools to be contributed to the
service without users needing to understand the underlying compute infrastruc-
ture and submission process. The PDACS platform operating on ANL’s Magellan
cloud authenticates users with using ANL credentials via Shibboleth [169]. Tool
execution on Magellan are associated with a user’s Galaxy account to support
accountability. In contrast to the NERSC model, the Magellan runner is respon-
sible for provisioning resources before the job is executed, it also releases cloud
instances after a job completes.

3.2.2 Requirements

The data-intensive nature and size of the cosmological simulation datasets presents
a key challenge to implementing and operating PDACS. The data cannot real-
istically be downloaded to local user storage, nor can it be reconstructed on-
demand. In order to perform analyses special consideration must be given to the
location of both the compute resources and the storage location of the datasets.
Thus, PDACS requires sophisticated data management techniques. PDACS also
presents a requirement for an extensible execution interface, as the platform is
designed to be deployed over multiple leadership computing facilities with dif-
ferent execution environments.

The resources requested (e.g., number of NERSC cluster nodes) to execute
a tool must be specified prior to job submission. PDACS enables expert users
to customise the resource requirements of tools while providing hints as to ap-



42 CHAPTER 3. SCIENCE AS A SERVICE – USE CASES

propriate configurations for the most frequently run tools. However, once the
PDACS service is made publicly available, less experienced users may inadver-
tently acquire unnecessary resources and incur substantial costs. PDACS requires
an automated approach to selecting resources based on tool resource require-
ments. Similarly, as users contribute additional tools it becomes increasingly
complicated for PDACS administrators to manually provide estimates of a tool’s
resource requirements.

Another requirement of PDACS related to auditing the financial cost associ-
ated with HPC resource usage (typically determined via a user allocation). User-
level accounting and support for assigning workloads to existing allocations must
therefore be supported by PDACS. PDACS accomplishes this by linking authen-
ticated users to existing allocations. Before executing workloads PDACS will first
determine that the user has sufficient allocation remaining.

The primary requirements of the PDACS use case are:

C1 Due to the size of cosmological datasets consideration must be given to data
location and network performance when performing analyses with PDACS.

C2 Resource provisioning requires knowledge of tool requirements due to the
diverse range of computing infrastructure supported and the custom tools
provided by PDACS. The hint-based model used by PDACS provides value
for users, however automated approaches would facilitate use by less expe-
rienced users.

C3 Managing resource utilisation is essential to providing accountability and
enforcing usage constraints. PDACs must leverage and record user-level
accounting information to restrict the usage of HPC platforms to authen-
ticated users, with existing allocations, while also tracking and exposing
usage statistics.

3.3 Globus Galaxies

The Globus Galaxies platform [28] enables the creation of custom SaaS-based sci-
ence gateways. The platform serves as a rich use case for the work presented
in this thesis as it has been used to deploy over 30 gateways across a range of
domains, including genomics [36], climate and economic policy [37], medical
imaging [31], and medical research [38]. Each gateway is hosted on the cloud



3.3. GLOBUS GALAXIES 43

Worker

Worker

Instance 
Provisioning

Galaxy

Cost-aware 
provisioner

Globus
Provisioning 

History
Tool Profiles

NFS

HTCondor
Queue

Worker

Figure 3.6: An outline of a Globus Galaxies gateway’s architecture.

and uses elastic compute resources to dynamically execute the jobs submitted by
users. The gateways leverage the Galaxy workflow engine [34], for the construc-
tion, execution, and management of parallel end-to-end workflows; Globus [35]
to provide reliable and secure data transfers between users and the gateways;
Globus Nexus [170] for identity management, authentication, and access con-
trol; Swift [171] for parallelising individual workflow components; and HTCon-
dor [82] for job management. Globus Galaxies facilitates rapid development and
deployment of scientific gateways which abstract away the complexities of man-
aging advanced software and large scale infrastructures. An outline of the Globus
Galaxies architecture is depicted in Figure 3.6.

Globus Genomics [36], the largest instantiation of the Globus Galaxies plat-
form, provides state-of-the-art genomics analysis capabilities and collectively serves
over 300 researchers working on various cancers, neurodegenerative disorders,
and other disorders. While these gateways provide similar capabilities, and in
most cases the same tools, usage can vary significantly between gateways de-
pending on the requirements and research focus of users. Globus Genomics is
employed as the primary use case for the majority of the research presented in
this thesis. The usage of production Globus Genomics gateways and the ana-



44 CHAPTER 3. SCIENCE AS A SERVICE – USE CASES

lytical tools provided by the gateways enable evaluation of various techniques
to improve the performance and lower the monetary cost of operating scientific
gateways. My contributions to the Globus Galaxies platform primarily involve
the design and development of cloud provisioning and management solutions. I
have also instrumented the gateways for analytics purposes to explore and opti-
mise usage techniques.

3.3.1 Globus Galaxies Platform

Globus Galaxies employs the Galaxy workflow engine to compose workflows by
dragging and dropping arbitrarily applications and scripts, then linking their in-
puts and outputs through a web interface. As described above, Galaxy uses an
extensible architecture which allows users to define new data types and tools.
Tools are wrapped with descriptive XML files which express their input and out-
put data types, the location of the executable, and the arguments and parameters
used when invoked. Data types are used to enforce type checking and provide a
visual representation for users when combining tools into workflows.

Galaxy is designed to operate over local compute infrastructures, however, it
offers an extensible job runner interface for supporting different execution infras-
tructure. Globus Galaxies gateways each operate an HTCondor master to manage
and schedule workloads. The HTCondor runner enables jobs to be submitted di-
rectly to the HTCondor queue which then dispatches the jobs over the pool of
workers. A shared Network File System (NFS) is used to host and share the tools
and datasets required to perform analyses between the service and the workers.

Globus Galaxies gateways relies on an elastic cloud provisioner to acquire
and configure cloud instances. The provisioner monitors the HTCondor queue
and uses the wait time of idle jobs to determine whether additional instances
should be requested. If the queue length, or a job’s wait time, exceeds a prede-
fined threshold, the provisioner will request instances to meet the demand of the
gateway. Resources are configured to then join the HTCondor pool and begin
servicing jobs.

In addition to being able to parallelise the execution of workflows within
Galaxy, Globus Galaxies gateways enable the parallelisation of individual work-
flow components. The parallel scripting language, Swift, is used to compose ap-
plications into workflows which can be executed on multicore processors, clus-
ters, grids, and supercomputers. Users can wrap their tools in a Swift wrapper,



3.3. GLOBUS GALAXIES 45

allowing large-scale parallel execution of the application transparently to users.
Globus Galaxies gateways are tightly integrated with Globus Nexus, allowing the
gateways to outsource all identity and group management tasks. Globus Galax-
ies gateways do not manage users or the identity management workflows (such
as resetting forgotten passwords), instead opting to use Globus identities across
the platform.

3.3.2 Requirements

The usage of production Globus Galaxies gateways is characteristically sporadic.
Figure 3.7 shows the usage (compute hours) of seven production Globus Ge-
nomics gateways over a three month period. The usage varies considerably be-
tween gateways. The inconsistent usage patterns is exemplified by Gateway 4,
which shows considerable usage between weeks 8 and 11, but very little usage
over the other periods. In comparison, Gateway 7 shows relatively consistent
usage over the period. These usage patterns demonstrate the potential benefits
of using on-demand computing infrastructures to fulfil dynamic requirements.
Across all Globus Galaxies gateways, there can be thousands of provisioned in-
stances concurrently running. The management and configuration of these in-
stances must be automated to ensure they are capable of performing the required
analyses. Analysing the utilisation of the provisioned resources can identify opti-
misation opportunities and is necessary to provide accounting information to end
users. Thus, Globus Galaxies gateways must capture resource utilisation in order
to facilitate future analysis and relate workload executions to acquired resources.

Globus Galaxies gateways collectively offer over one thousand custom tools
to their users. Table 3.1 presents the 10 most frequently executed tools across
seven Globus Genomics gateways. The 10 most frequently executed tools ac-
count for 49.9% of all executions and 52.7% of the total execution time. The 20
most frequently executed tools account for 64.7% of executions and 77.3% of the
total execution time. This information has been used to prioritise the manual
creation of rudimentary resource requirement profiles for the most frequently ex-
ecuted tools. However, this task is labour intensive and error prone. It is not
practical to manually construct tool profiles for all of the tools offered through
Globus Galaxies gateways. Instead, an automated solution is required to analyse
resource requirements of various tools. An individual tool’s execution time can
drastically differ depending on the size of the input dataset, input parameters,



46 CHAPTER 3. SCIENCE AS A SERVICE – USE CASES

Figure 3.7: Total compute hours used by seven production Globus Genomics
gateways over a 14 week period.

and cloud configuration. Therefore, it is necessary for the execution forecasts to
employ adaptive techniques to adjust resource requirements based on analysis of
production usage.

Minimising operational costs is a primary requirement for Globus Galaxies
gateways. One technique that can lower costs is to enable workloads to be co-
allocated with resources. To achieve this, the provisioning process must consider
tools’ resource requirements and use cost-aware techniques to determine when a
large instance type should be provisioned to concurrently execute multiple jobs,
rather than provisioning many small instance types. This can be achieved by
dynamically configuring an instance to divide the resources into smaller units
(e.g., HTCondor slots). Therefore, in this case the provisioner must be able to
dynamically configure instances as they are provisioned. Similarly, gateways can
be configured to prioritise different criteria, such as deadlines and data location.



3.4. DISCUSSION 47

Table 3.1: Globus Genomics tool usage.

Tool Avg Exec Time Freq Freq (%) Time (%)
FastQ Parallel 5:48:25 1047 8.40 23.55
BWA MEM 4:34:49 994 7.98 17.64
FastQC 0:34:53 820 6.58 1.85
MarkDups 0:43:53 659 5.29 1.87
ARRG 0:27:13 512 4.11 0.90
Sickle 1:56:27 511 4.10 3.84
Flagstat 0:21:20 489 3.92 0.67
SortSam 0:15:26 421 3.38 0.42
BuildBamIndex 0:23:12 394 3.16 0.59
Bowtie2 0:15:11 273 2.19 0.27

Therefore, there is a requirement for extensible and configurable provisioning
algorithms to meet the demands of individual use cases.

The requirements of the Globus Galaxies platform use case are summarised
as:

GG1 Resource management techniques are necessary to enable each gateway to
reliably scale and manage large clusters of cloud resources.

GG2 Analysing real-time commercial cloud markets is crucial to acquiring in-
stances cost-effectively and providing a cost-effective research platform for
users.

GG3 Provisioning resources effectively requires understanding of the fine-grain
needs of applications. Reliably profiling tools is necessary to ensure that
tools are matched with appropriate cloud instances.

GG4 Expensive data transfers should be minimised by using data-aware deploy-
ment techniques.

3.4 Discussion

The scientific services described in this chapter exhibit many similarities and dif-
ferences, across three scientific domains. Table 3.2 summarises the key charac-
teristic differences between the use cases and the requirements that have been



48 CHAPTER 3. SCIENCE AS A SERVICE – USE CASES

Table 3.2: Use case characteristics and requirements.

pCT PDACS Globus Galaxies
Characteristic
Job Type Single Workflow Workflow
Datasets Uploaded Hosted Both
Execution Model Cloud Dedicated Cloud
Multi-tenant No No Yes
Data Sizes (GB) Hundreds Thousands Tens
Job Coupling Tight Loose Loose

Requirement
Cost Optimisation High Low High
Deadline Optimisation High Medium Medium
Network Optimisation High High Medium
Reliability High Medium Medium
Data Management High High Medium
Auditing Medium High High
Security High Low Medium

observed. The identified characteristics describe the behaviour and usage of each
of the use cases. The meaning of these characteristics are as follows:

Job Type describes whether a service executes an individual, heterogeneous,
workload (single) or whether it performs a wide range of custom workloads
and workflows (workflow).

Datasets indicates how input datasets are contributed to service, e.g. whether
they are uploaded by users (uploaded), provided by the service itself (hosted),
or a combination of both (both).

Execution Model pertains to the compute infrastructure employed by the
service to execute workloads, be it dedicated HPC resources (dedicated) or
commercial cloud platforms (cloud).

Multi-tenant describes whether the service has multiple instantiations (yes)
or if a single service is operated (no).

Data Sizes refers to the typical size (GB) of input datasets.



3.4. DISCUSSION 49

Job Coupling indicates whether the service’s workloads are deployed across
multiple compute nodes (tight) or if workloads are executed on indepen-
dent resources (loose).

In some ways, these services are representative of a new model of scientific
computing, in which elastic computing infrastructures are abstracted behind easy
to use web-based interfaces. These services enable elicitation of the requirements
and challenges associated with designing, developing, and operating such ser-
vices. Here the specific requirements derived from each service are generalised
into four common themes: network limitations, economic optimisation, resource
provisioning, and resource management.

3.4.1 Network Limitations

All three of the scientific services presented operate on large-scale datasets and
face challenges related to network performance. Transfers of large data must be
reduced to minimise costs and execution time. This requirement is most obvious
in the pCT scenario as users require near real-time results. However, the pCT
reconstruction service requires that large datasets are uploaded by clients before
being divided and delivered to each of the working nodes. The distribution phase
takes substantially longer (order of magnitude) to perform on cloud infrastruc-
tures than on a dedicated cluster. Similarly, in Globus Genomics gateways large
reference genomes (tens of Gigabytes) must be frequently transferred to worker
nodes to perform analyses. Although PDACS does not typically enable input
datasets to be transferred (due to their extreme size), the use case highlights the
implications on service design caused by networks with limited performance.

The use cases identify an opportunity to improve the performance of scien-
tific analyses by minimising network overheads. This problem is especially ev-
ident in low performance cloud networks [52], where many scientific applica-
tions perform poorly [25], as data-locality techniques cannot be applied exten-
sively [112, 117].

Thus, the first research question is:

RQ1 How can opaque cloud network performance be accurately measured or
inferred and used to minimise the need for, and cost of, data movement?

Network tomography provides the ability to capture network characteristics
and determine network structure. In Chapter 4 I address this research question



50 CHAPTER 3. SCIENCE AS A SERVICE – USE CASES

by proposing approaches for using network tomography to understand cloud
network structure.

3.4.2 Economic Optimisation

In most cases the operating costs of on-demand scientific services are directly
passed on to researchers. Therefore, it is imperative for scientific services to min-
imise the cost of performing analyses. Both the pCT and Globus Galaxies services
have exemplified the requirement to minimise cloud usage costs. Globus Galax-
ies gateways historically used a naı̈ve provisioning approach, in which a single
large instance type in a single availability zone was selected to fulfil all users’
workloads. As demand for this instance type grew, so too did the cost of operat-
ing the service (as it was incapable of adapting). In fact, this particular instance
type’s Spot price would frequently exceed its On-demand price, which would sig-
nificantly increase the cost of using the service. The pCT use case also identified a
unique requirement for economic optimisation techniques. When reconstructing
large pCT images over clusters of GPU-enabled instances, the service itself would
directly affect the Spot market price. This in turn would increase costs and de-
lay instance creation. These two uses cases demonstrate the need for scientific
services to optimise instance selection and usage with respect to cost.

Developing a cost-aware model for provisioning instances is particularly chal-
lenging as it requires real-time market information, an ability to predict future
prices, understanding of application requirements, and effective provisioning
techniques. The combination of the cloud’s flexibility and the fact that simple
provisioning approaches can increase costs [21, 22] underpins the second research
question explored in this thesis, RQ2.

RQ2 How can cloud computing market models be exploited to minimise the cost
of provisioning infrastructure to execute arbitrary scientific workloads?

There are a wide range of possible solutions for minimising costs associated
with executing arbitrary user workloads. For example, employing real-time Spot
market pricing data enables services to avoid volatile and expensive instance
types. In Chapter 5 I propose, evaluate, and compare several cost-aware tech-
niques, such as distributing work over multiple availability zones to derive best-
practice approaches and construct a cost-aware provisioning system. Addition-
ally, I explore bidding approaches to improve reliability and ensure instances do
not incur excessive costs.



3.4. DISCUSSION 51

3.4.3 Resource Provisioning

Resource provisioning is a challenge faced by each of the three scientific services.
Optimally selecting an instance type for a specific job requires consideration of
both the instance capabilities and the job’s resource requirements. However, it
can be challenging for researchers to accurately determine and define the re-
source requirements of custom tools. Conversely, it is labour intensive for ser-
vice providers to manually evaluate each tool that is contributed to a service
(e.g., Globus Genomics has over one thousand tools). The need for intelligent re-
source provisioning is ubiquitous across the three scientific services. PDACS and
Globus Galaxies gateways clearly exhibit a need for understanding and encod-
ing resource requirements in order to effectively provision resources. Similarly,
Globus Galaxies and pCT services highlight the need for automated resource pro-
visioning and instance configuration.

Provisioning a sufficiently, but not wastefully, powerful instance is crucial to
the effective operation of a service. For this to be achieved the provisioning al-
gorithm must accurately estimate the resource utilisation of a given workload.
There are currently 48 different instance types offered by AWS [26]. Many of
these instance families are optimised for a specific class of applications, such as
compute-, memory-, or IO-intensive applications. In turn, scientific services re-
quire an automated approach to select resources based on the resource require-
ments of the workload. Once an appropriate resource is selected, reliably acquir-
ing and configuring the resource is also essential to the operation of scientific
services. These challenges have resulted in the definition of the third and fourth
research questions investigated in this thesis:

RQ3 How can the resource requirements of custom applications, with varying in-
put data and configurations, be computed to determine the “best” instance
types for execution?

RQ4 How can provisioning decisions be automated to consider trade-offs (e.g.,
cost, time, data movement) and optimally select instances for a given appli-
cation?

This thesis presents an automated profiling service to solve the challenges
associated with manually deriving resource requirements of arbitrary tools. The
service can dynamically acquire instances and deploy user-defined workloads to
construct fine-grained profiles of their behaviour and resource requirements. In



52 CHAPTER 3. SCIENCE AS A SERVICE – USE CASES

Chapter 7 SCRIMP is presented as a system capable of using application profiles
to automate the provisioning and configuration processes.

3.4.4 Resource Management

Managing and analysing provisioned cloud instances is an essential component
of cloud-based scientific services. Large services can concurrently maintain thou-
sands of instances which must be persistently monitored in order to identify
state changes (e.g., instance terminations) and utilisation to enable effective auto-
scaling. The Globus Galaxies and pCT use cases demonstrate a requirement to
manage cloud infrastructures after they have been provisioned. This require-
ment is most obvious in the pCT reconstruction service. If a single instance in-
volved in a pCT reconstruction fails, or is terminated, an entire cluster (often over
100 instances) will become incapable of performing reconstructions. The Globus
Galaxies use case also describes a need for auditing capabilities. Globus Galaxies
can concurrently operate hundreds, if not thousands, of instances across several
gateways which presents a challenge to associating usage with specific users and
jobs. Accountability is also a key requirement for PDACS, as users’ resource allo-
cations on dedicated infrastructure must be strictly recorded and enforced.

The diverse challenges relating to resource management has prompted the
definition of two research questions:

RQ5 How can services improve the reliability of elastic clusters when employing
potentially unreliable infrastructure?

RQ6 How can fine-grain accounting information be maintained for purposes of
auditing and cost reclamation?

Chapter 7 describes online monitoring techniques that record every interac-
tion with a service. Based on these records individual instance usage can be
calculated and used to optimise allocations, while also providing fine-grained
accounting information.

3.5 Summary

Creating and operating elastic cloud-based scientific services is fraught with chal-
lenges: instances are unreliable, networks and infrastructure are opaque, there



3.5. SUMMARY 53

are an enormous number of deployment configurations, and weighing trade-
offs to determine the optimal execution environment is non-trivial. This chap-
ter presented three scientific services that span data-intensive scientific domains,
namely cosmology, medical imaging, and genomics. Based on experiences de-
veloping and operating these services a core set of requirements have been pre-
sented. These requirements provide a broad spectrum which have been used to
derive the six research questions that motivate the research presented in this the-
sis.





Chapter 4

Network Health

Many cloud providers have limited network performance which has been shown
to hamper data-intensive scientific applications [52, 25]. Exploiting the proximity
of data and compute resources is a proven technique used to minimise the ef-
fect of low-performance networks [112, 117]. Thus, to examine the first research
question, RQ1, I propose investigating network tomography as a means to infer
network information and use it to exploit data-locality within opaque clouds.

Network tomography is the process of deriving internal network information
by sending and monitoring packets as they travel between two hosts. End-to-end
probes can be used to infer the condition of a network at a fine-grain level, iden-
tifying bottlenecks, Round-Trip-Time (RTT), and packet loss [172]. By measuring
the delay incurred by a probe between two end points, congested links that incur
long queuing delays can be detected and avoided [173].

The remainder of this chapter presents the exploration of network tomog-
raphy techniques to better understand opaque cloud networks and infer both
the network load and relative proximity of instances. Throughout this chapter
I employ a health metaphor to describe the research. Network health is synony-
mous with the network performance of an instance and tomographic probing se-
quences are referred to as health indicators. Two testbeds, of up to one hundred
AWS instances, are presented to refine the tomographic techniques and aggre-
gation methods. The findings of this work are embodied in a usable Network
Health Diagnostic System (NHDS). Finally, the NHDS is deployed over a pCT
cluster to demonstrate the potential benefit of considering network performance
during the deployment of real world scientific workloads.

55



56 CHAPTER 4. NETWORK HEALTH

4.1 Network Health and the Cloud

The health metaphor used in this chapter is derived from existing literature,
where a health metric is used to compute an overall health score for a service con-
tainer and guide deployment decisions [174, 175]. In this chapter I apply the
health concept to network tomography as a means to describe the network per-
formance exhibited by provisioned cloud instances. Health metrics (the weighted
aggregation of tomographic probes) are computed to provide a mechanism to
evaluate and compare the network performance of instances.

A set of health indicators, or collections of tomographic probing sequences
(e.g., ICMP echo requests with various payload size), can be used to infer the
network health between two instances. In this context a health indicator is a
tomographic method of measuring the network performance between two in-
stances. Although AWS provides an integrated health service for EC2 instances,
its capabilities are limited to identifying instances becoming unresponsive. In
this chapter a range of health indicators are employed to thoroughly observe
the network and identify performance properties. Collectively, the health indi-
cators use multiple network protocols (ICMP, UDP, and TCP) and customisable
attributes, such as varying payload size and probe frequency. This technique of
deriving network performance through network probes can be traced back to ex-
isting literature [173, 176] and remains a preferred method to monitor the state of
a network [177, 178].

To use the information gathered from health indicators, a set of health mark-
ers are formulated. A health marker is a binary, lightweight, and easily com-
putable diagnostic, used to detect a significant change in network performance
across probing cycles and trigger an alert. This chapter presents the formulation
of a health marker for each of the health indicators that are employed. Markers
quickly establish the degree to which the network performance between two in-
stances changes over a period of time and prompt the recalculation of the overall
health score for an instance when necessary.

A health metric is a normalised aggregation of health indicator measurements.
Health metrics combine a set of health indicator measurements into a single value.
One health metric is formulated for each of the network protocols employed. The
set of health metrics are weighted and combined to compute a single, overall,
health score for a target instance. A health score provides a high-level diagnostic
of the network performance of an instance with respect to its peers. A health score



4.2. TESTBEDS AND CLOUD PERFORMANCE BASELINES 57

Shared 
Database

Instance A

From To Score

A B 0.9

A C 0.3

B C 0.7

Instance B

Instance CHealth Indicators

ICMP

TCP

UDP

Throughput

Health 
Markers

Health Metrics

Health Score
Health Indicators

ICMP

TCP

UDP

Throughput

Health 
Markers

Health Metrics

Health Score

Health Indicators

ICMP

TCP

UDP

Throughput

Health 
Markers

Health Metrics

Health Score

Figure 4.1: An outline of the Network Health Diagnostic System operating over
three instances.

is a single value which allows instances to be compared to one another. When
computed, a health score gives a perspective of the load the target instance, or
the network connecting two instances, is experiencing and can facilitate the se-
lection of healthy clusters.

Collectively, these components create a usable tool, known as the Network
Health Diagnostic System (NHDS). Figure 4.1 depicts an outline of the NHDS de-
ployed over a set of cloud instances. The NHDS uses health indicators to collect
network performance measurements between provisioned instances. It streams
information to the health markers, which can trigger performance deterioration
alerts. In addition, an overall health score is periodically computed by aggregat-
ing health metric values. An instance’s health score can be compared to other
instances in order to select clusters with high network performance.

4.2 Testbeds and Cloud Performance Baselines

Two testbeds (Testbed I and Testbed II) of AWS instances have been created to in-
vestigate the properties of commercial cloud networks and develop the compo-
nents of the NHDS. Testbed I consisted of a small set of six instances and has been
used to observe baseline AWS cloud performance characteristics and evaluate
various tomographic techniques. Testbed II consisted of one hundred instances
to represent a large-scale environment from which additional performance char-
acteristics could be identified. It also allowed the evaluation of the overhead in-



58 CHAPTER 4. NETWORK HEALTH

curred by actively performing network measurements over large infrastructures.
Monitoring of the testbeds has resulted in the creation of two datasets: Dataset
I and Dataset II. These datasets are analysed to evaluate the effectiveness of the
health indications, refine the triggering points of health markers, and determine
appropriate weights to aggregate the health indicators into health metrics. These
testbeds and analysis of their datasets has guided the development of the NHDS.
The following describes the testbeds, data collection methods, and the perfor-
mance characteristics that have been identified.

4.2.1 Testbed I

Testbed I initially consisted of just three t1.micro and three m3.medium type in-
stances. Testbed I enabled the exploration of various cloud features, such as how
recurring events (e.g., time of day) influenced the network health measurements.
The testbed’s instances were deployed across two availability zones in order to
derive the effect of data traversing between zones. The tests were run in a round-
robin process from each instance, where every five minutes each instance would
probe every other instance in the testbed. The probing schedules were deliber-
ately offset in an effort to reduce the interference caused by multiple instances
concurrently performing measurements with a single target instance. Testbed I
was later expanded to include 20, and then 50 instances, however the software
harness used to collect network information was unable to scale to larger infras-
tructures. This limitation led to the development of Testbed II, see Section 4.2.2.

ICMP echo requests are a typical method used to measure the latency between
instances. The jitter, or variance in latency, within a link can be established by
collecting RTT probes over a sufficient period of time. Different payload sizes are
used to determine how packet size effects network measurements.

Figures 4.2a – 4.2c show the variation in ICMP RTT measurements over dif-
ferent periods of time. These results show the distribution of probes contains a
significant number of high RTT values, over each period of time—demonstrating
the high degree of network RTT volatility experienced by a regular AWS instance.



4.2. TESTBEDS AND CLOUD PERFORMANCE BASELINES 59

110

10
00

0
25

0
50

0
75

0
10

00
IC

M
P

 R
T

T
 (

m
s)

Frequency

(a
)O

ne
ho

ur
.

1e
+

00

1e
+

01

1e
+

03

1e
+

05

0
25

0
50

0
75

0
10

00
IC

M
P

 R
T

T
 (

m
s)

Frequency

(b
)O

ne
da

y.

1e
+

00

1e
+

01

1e
+

03

1e
+

05

0
25

0
50

0
75

0
10

00
IC

M
P

 R
T

T
 (

m
s)

Frequency

(c
)O

ne
w

ee
k.

Fi
gu

re
4.

2:
Th

e
fr

eq
ue

nc
y

(l
og

)o
fI

C
M

P
pa

ck
et

R
TT

s
ov

er
di

ff
er

en
tp

er
io

ds
of

ti
m

e.



60 CHAPTER 4. NETWORK HEALTH

Over long measurement intervals, the variation in ICMP RTT occurs over
sufficiently long periods of time to have an impact on the performance of an
application—or in other words, the performance of a link can deteriorate (or im-
prove) for periods of hours, rather than in short intermittent bursts. One exam-
ple of this is shown in Figure 4.3, where the average hourly RTT between two
instances, for various ICMP packet sizes, over a one day period is depicted. Over
this period, the 4096 and 512 byte ICMP packets have higher RTTs at the begin-
ning of the day and then gradually improve. The performance of the 64 byte
ICMP packets is reasonably consistent over the same period. While having dif-
ferent shapes, similar trends are observable across both over other periods and
between other instance pairs. The fact that these variations occur for meaningful
lengths of time supports the theory that monitoring network performance can be
used to improve scheduling and deployment decisions.

●

●

● ●
●

●

● ● ●

● ●

●

● ●
●

● ●
●

● ●

●

●
●

●

0

5

10

15

0 5 10 15 20
Hour of Day

R
T

T
 (

m
s)

Packet Size

● 64

512

4096

Figure 4.3: The hourly average RTT for different packet sizes between two in-
stances.

A series of bandwidth measurements have been conducted in order to further
understand the network performance between various instance types and across
availability zones. The measurements involved transferring as much data as pos-



4.2. TESTBEDS AND CLOUD PERFORMANCE BASELINES 61

●

●

● ● ● ● ● ● ● ●

0

250

500

750

1000

0.0 2.5 5.0 7.5
Time (s)

T
hr

ou
gh

pu
t (

M
b/

s)

Link

● Med−Med

Med−Med−AZ

Med−Mic

Mic−Med

Mic−Mic

Mic−Mic−AZ

Figure 4.4: The average throughput between medium and micro instances within
and across an availability zone.

sible between pairs of instances over a ten second period. The results found sig-
nificant bursting characteristics for TCP transfers. Figure 4.4 shows the average
throughput over the ten second time span between various instance types, where
links across availability zones are denoted by -AZ. The figure depicts the presence
of substantial throttling and probable profiling of data transfer within the AWS
network. The throttling differs between instance types, where t1.micro instances
achieve a relatively high throughput of approximately 200Mb/s for the first four
seconds of a transfer before being throttled to approximately 80Mb/s. Similarly,
the m3.medium instances initially achieved a throughput of almost 1000Mb/s for
approximately one second before being throttled to slightly over 200Mb/s. From
this data it appears that the instances are granted a burst throughput rate for the
first 1000Mb of data being transferred. Additional tests with cluster compute,
cg1.4xlarge, instances demonstrated a sustained throughput of almost 8000Mb/s
within an availability zone, and a sustained 2000Mb/s connection across zones.
The cluster compute instance types did not appear to be subjected to the same



62 CHAPTER 4. NETWORK HEALTH

throttling techniques and were most likely achieving their maximum available
throughput.

These findings demonstrate two interesting properties that support the goal
of using network information during the deployment of scientific applications.
Firstly, network performance exhibited by instances is significantly volatile and is
subject to changes in excess of 50% over a short period of time. The performance
fluctuations also persist for sufficiently long periods of time for a scheduler to
take action. If the network variance was only observable for short periods of time
(for example, on the order of seconds), the volatility of the network would ren-
der any deployment optimisations ineffective as the network performance could
change many times during execution. However, these results indicate that this is
not the case. In a number of examples the degraded performance of an instance
is consistently observed from multiple other instances for periods of hours.

4.2.2 Testbed II

A second testbed, referred to as Testbed II, was developed to examine the scal-
ability and overhead of conducting network performance tests over large cloud
infrastructures while simultaneously generating a rich dataset of network infor-
mation to refine the NHDS. Testbed II consisted of one hundred m3.medium in-
stances distributed across three availability zones in the US-East-1 region. Due
to gradually scaling the testbed size, more instances were acquired in the first
availability zone than the others, with 35 instances on us-east-1a, 33 instances on
us-east-1b, and 32 instances on us-east-1c.

A simple provisioning system was constructed to improve the reliability of
launching and experimenting with large cloud infrastructures. Figure 4.5 rep-
resents an overview of the provisioning system used to acquire and configure
instances. The provisioning system creates spot requests for the desired instance
type and attempts to evenly distribute them across the specified availability zones.
AWS presents two methods for establishing provisioned instances: through the
use of a predefined Amazon Machine Image (AMI), or by dynamically contextu-
alising the instance. In this case, the provisioning system dynamically contextu-
alises each instance using cloud-init [179] as it provides additional flexibility in
the deployment of the health system in subsequent tests. During contextualisa-
tion the health monitoring software is downloaded to the instance and deployed.
Once the health system begins operating it contacts a shared Relational Database



4.3. NETWORK HEALTH DIAGNOSTIC SYSTEM 63

RDS

us-east-1a
us-east-1b

us-east-1c

LaunchInput

Provisioner

Terminate

Figure 4.5: The provisioning system used to construct testbeds and evaluate net-
work performance.

Service (RDS) instance to publish its address for others to probe. The system then
begins periodically probing other instances in the testbed. The collected results
are then reported to the shared RDS for analysis.

It takes approximately twelve seconds to perform all of the health indicator
measurements on a target instance. The majority of this time is spent collecting
the throughput measurements which are taken at one second intervals over a ten
second period. This means to probe each of the 99 other instances in Testbed
II requires almost 20 minutes. To reduce the risk of collisions, which could po-
tentially distort results, the rate at which instances are probed has been reduced
in Testbed II. To further minimise collisions, the shared database is used to de-
termine the order in which probes are conducted. The health system deployed
in Testbed II probes peers once hourly in a round-robin fashion, beginning with
instances that have joined the testbed since itself (as recorded in the database),
before iterating through the remaining instances.

4.3 Network Health Diagnostic System

Analysis of the two testbeds informed the creation of a Network Health Diagnos-
tic System (NHDS). The testbeds have guided the selection of health indicators
to be used in the NHDS as well as determined the trigger points for health mark-



64 CHAPTER 4. NETWORK HEALTH

ers and the aggregation weights used to compute a health score. The NHDS is
capable of capturing network performance measurements between instances in
a large cloud infrastructure. The remainder of this section discusses the compo-
nents of the NHDS.

4.3.1 Health Indicators

The performance of an instance can vary over time due to the network load both
itself and surrounding resources are experiencing. A set of health indicators have
been selected and evaluated with respect to their ability to reliably observe per-
formance fluctuations and influence the health score of a target instance. Health
indicators are capable of monitoring fine-grained latency and throughput varia-
tions as well as capturing timeout occurrences.

The delay-based tomographic indicators utilise ICMP, UDP, and TCP proto-
cols, with the goal of establishing load by observing variations in RTT and mea-
suring jitter in the network. A range of packet sizes and varying intervals be-
tween sending packets have been used to identify the effect of queuing in the
network.

Spot instances, which are often used to reduce costs, are characteristically un-
reliable. Involuntary termination results in an instance becoming unresponsive
to those that are probing it. For this reason, timeouts have been incorporated as
indicators as it is critical to identify unresponsive instances.

Throughput indicators and Sandwich probing, first presented by Coates et
al. [122], have also been employed. Sandwich probing measures the delay in-
curred by a small packet traversing a network when preceded by a large packet.
This is accomplished by sending two small packets separated by a time d with a
larger packet immediately preceding the second packet. By measuring the time
between the arrival of the two packets, d′, the difference between d and d′ can be
obtained to infer the delay caused by the large packet.

Consideration of Sandwich probing packet sizes is required when implement-
ing the probing scheme. The maximum transmission unit (MTU) for t1.micro and
m3.medium instances is 1500 bytes. However, AWS supports jumbo frames for
cluster compute instances types, allowing packet sizes of up to 9001 bytes to be
used when probing cg1.4xlarge instances. I adapt the Sandwich probing large
packet size to reflect the MTU, while maintaining a small packet size of 64 bytes
regardless of instance type.



4.3. NETWORK HEALTH DIAGNOSTIC SYSTEM 65

4.3.2 Health Markers

Health markers have been defined to provide lightweight diagnostic values and
alert the NHDS of degrading network performance. A health marker is a bi-
nary indicator (trigger/no-trigger) of the presence of a problematic state in the
network (analogous to tumor markers in medicine). Five markers have been
selected and implemented in order to alert the NHDS of significant variations
in network performance. These markers each represent a quantifiable threshold
value related to a specific goal gathered from a protocol between two instances.
The following describes the implementation details of each health marker. The
decisions regarding the point at which a marker is trigged, and an alert is raised,
have been established through experimental analysis in order to identify targets
which are only triggered when a significant degree of volatility or degradation is
detected in the network.

• Timeout A timeout health marker is used to raise a notification when an in-
stance becomes unresponsive. This health marker requires consensus from
more than one indicator of unresponsiveness, or lack of response within
five seconds, of another instance.

• ICMP An ICMP health marker combines each of the three packet sized RTT
measurements and compares them with the standard deviation from the
previous round of probes. The marker is triggered when 20% of the cur-
rent round’s measurements exceed the standard deviation of the previous
round.

• UDP The UDP health marker employs UDP RTT and Sandwich probing.
The RTT is gathered from 1024 and 64 byte probes and the standard de-
viation from the previous round is used to infer degradation. Sandwich
probing measurements are used to trigger a notification when a 50% in-
crease in delay is observed, implying the effect of queuing in the network is
significant.

• TCP The TCP health marker monitors the time required to establish a TCP
connection between two instances as well as the RTT of the connection. The
standard deviation from the previous round is used to establish threshold
times, which when exceeded triggers the marker to raise a diagnostic noti-
fication.



66 CHAPTER 4. NETWORK HEALTH

• Throughput The throughout health marker measures the available through-
put between two instances over a ten second period. The marker is trig-
gered when the total throughput over the ten second period drops below a
longer term threshold.

The next section introduces the concept of health metrics, which are concrete
measures used to inform selection of instances for improved performance. Health
markers are not used in computing the health metrics but both utilise the same
information (health indicators) collected by the tomographic probes, as shown in
Figure 4.1.

4.4 Health Metrics

Health metrics provide a normalised mechanism to evaluate instances against
one another. A health metric has been formulated for each individual network
protocol utilised by the indicators and typically aggregates the information col-
lected from multiple indicators into a single value. Each health metric computed
for an instance is normalised with the other instances that are being monitored,
providing a relative health for each network protocol.

An overall health score is computed by combining each of the individual
health metrics through weighted aggregation. The weights associated with each
health metric have been selected through a statistical evaluation in order to give
each marker meaningful influence on the overall health score. The overall health
score, H−All, of an instance gives the host a mechanism to directly compare each
instance in the environment and select healthy nodes to perform workloads.

The ICMP health metric (denoted by H−ICMPij) prioritises packet size from
largest to smallest, with heavier weights given to the larger payload measure-
ments. The health metric computes the ICMP score by averaging the RTT of each
packet size, and normalises it against the average RTT of its respective size for
each instance the host has probed during a round. Eq 4.1 shows the calculation
of the ICMP health score where S = {64, 512, 4096} is the set of packet sizes being
used as probes and Pijs represents a set of probes from host i to j of size s where
s ∈ S. Ais denotes the set of the average ICMP probe measurements sent by host
i, of size s, to every other host in the environment. Finally a weight (denoted by
ωs) is associated with each packet size, such that larger packets are given more
influential than smaller packets.



4.4. HEALTH METRICS 67

H − ICMPij =
∑
s∈S

avg(Pijs)−min(Ais)

max(Ais)−min(Ais)
× ωs (4.1)

The UDP health metric (denoted by H − UDPij) normalises the average RTT
values and the average delay measured from Sandwich probing to evaluate the
link between instances i and j. The two RTT values and the Sandwich probing
delay are measured by the UDP health indicator and are combined with weights
giving more influence to larger packets. The Sandwich delay is given an equal
weighting to the RTT measurements to give influence to the delaying properties
of the network.

The TCP health metric (denoted by H − TCPij) is computed in a similar fash-
ion and normalises the average connection time and RTT through the connection
during a measurement period. Each value is then combined with equal weight-
ing to provide a relative health score of the connection ij.

The throughput health metric (denoted by H − TPij) incorporates the total
amount of data transferred over the ten second measurement period with the
variance in throughput during each one second interval. These values are indi-
vidually normalised and then combined with equal weighting to construct the
throughput health score.

Two datasets, Dataset I and Dataset II, which have been collected from Testbed
I and Testbed II, respectively, are used to analyse the role and influence of each
health metric. An associated weight is required for each health metric in order
to aggregate the metrics to compute an overall health score. For each health met-
ric the variable selection technique was applied to a linear regression model over
the complete dataset and the metrics with the strongest influence on the aggre-
gate health score were ranked [180, 181]. Based on trace data collected from AWS
from 29 April 2014 (10:45:16) to 6 May 2014 (14:24:27) forward step analysis was
applied on Eq. (4.2) to rank the influence of the individual health metrics on the
overall health score. Starting from Step 4 (Column Dataset I) in Table 4.1, One
health metric is added per step and the corresponding Akaike Information Crite-
ria (AIC) measure and p-values are calculated.

H − ALLij ∼

H − TPij +H − ICMPij +H − UDPij +H − TCPij (4.2)

Lower values of the AIC signify stronger influence of the health metric in the



68 CHAPTER 4. NETWORK HEALTH

regression while the p-values indicate confidence in health metric influence on the
health score. In Table 4.1 for example, using the sole metric H − TCPij , the step
analysis at Step 1 yields an AIC of 106.842 and corresponding p-value of 0.00609,
adding the H−UDPij metric reduces the AIC to 90.221 but increases the resulting
p-value to 0.00752. The reduced confidence in the regression at Step 2 is expected
due to collinearities in metrics H − TCPij and H − UDPij . The predictive power
of the throughput metric is captured by both H − TCPij and H − UDPij thus
weakening the H − TCPij metric in the forward step analysis. Upon terminating
the forward step analysis, all four health metrics are selected because the p-value
is greater than 0.05, which indicates that the health indicators are significant and
hence all four health metrics influence the network performance prediction.

Another set of trace data, referred to as Dataset II, was collected from AWS
from 28 January 2015 (16:59:15) to 28 January 2015 (22:09:31). The forward vari-
able selection analysis on this newly collected data is presented in Table 4.1. The
observed AIC trend is consistent with the results from Dataset I and therefore
reinforces the earlier findings on the merits of the four selected health metrics
on predicting the health score. For both datasets, the reverse step (elimination)
analysis yields final AIC values identical to the forward analysis.

Table 4.1: Forward step analysis of health metrics for two sets of trace data.

Dataset I Dataset II
April 2014 January 2015

Step Health met-
ric

AIC p-value AIC p-value

4 H − TPij 216.311 0.04126 106.686 0.02454
3 H − ICMPij 98.227 0.00587 99.114 0.01399
2 H − UDPij 90.221 0.00752 103.098 0.00605
1 H − TCPij 106.842 0.00609 118.212 0.00465

The adjusted–R2 (adjr2) measure for different subsets of network health met-
rics are shown in Figure 4.6. The adjr2 compares the errors in the regression that
is adjusted to the different numbers of health metrics. For example, in the plot of
Figure 4.6, using a single health metric H − TPij yields an adjr2 value of −0.034.
This value is calculated by taking into account the fact that only a single health
metric is used. For the case of using three health metrics (H − TPij , H − UDPij

and H − TCPij) a smaller adjr2 value of −0.0099 is obtained, this value is a fair



4.4. HEALTH METRICS 69

comparison with −0.034 because it has been adjusted for three health metrics.
The minimum value of the adjusted adjr2 is −0.0071 when all four health met-
rics are used and this is marked with red bars denoting the lowest error range.
The maximum value of adjr2 is −0.050 and it occurs when a single metric is used
(H − TPij). This is marked with beige bars (highest error range) in Figure 4.6.
These observations from the heat map suggests that all the selected health met-
rics have merit in predicting network health, some more than others, and this
conclusion agrees with the conclusion drawn from the forward step analysis.

In
te

rc
ep

t

H
-T

P
ij

H
-IC

M
P

ij

H
-T

C
P

ij

H
-U

D
P

ij

−0.05
−0.034
−0.031
−0.024
−0.015
−0.0099
−0.0071

ad
jr2

Figure 4.6: The heat map depicting the merit of the health metrics. The red bars
indicate the lowest error range (higher merit) while beige bars indicate the high-
est error range (lower merit).

4.4.1 Health Metric Diagnostics

The health metric selection diagnostics are used after performing variable selec-
tion to check if the linear regression and its assumptions are consistent with the
observed data. The basic indicator for the diagnostic is the residual. A residual or
fitting error, is an observable estimate of the statistical error. If the linear regres-
sion does not give a set of residuals that appear to be reasonable, then the choice
of the health metrics (one or more) may be called into doubt. Visual inspection is
used to analyse the merit of the health metric used to predict network health.



70 CHAPTER 4. NETWORK HEALTH

0.30 0.35 0.40 0.45 0.50 0.55 0.60

−0
.6

−0
.2

0.
2

0.
4

0.
6

Fitted values

R
es

id
ua

ls

lm(Y ~ H-TCPij + H-UDPij + H-TPij + H-ICMPij)

Residuals vs Fitted

5

35

48

Figure 4.7: The residuals for linear regression.

The evenly distributed residuals (with respect to Residuals=0) in the plot of
Figure 4.7 shows that the residuals (errors) and the fitted values of the health met-
rics are uncorrelated. This validates the choice of health metrics as appropriate
measures for predicting network performance.

−2 −1 0

−1
0

1
2

Theoretical Quantiles

St
an

da
rd

iz
ed

 re
si

du
al

s

Normal Q−Q
5

39

48

1 2

lm(Y ~ H-TCPij + H-UDPij + H-TPij + H-ICMPij)

Figure 4.8: The Q–Q plot of the standardised residuals from the linear regression
(y-axis) vs. theoretical (Normal) quantiles (x-axis).

The quantile–quantile or Q–Q plot is a graphical diagnostic used to check the
validity of a distributional assumption [182] for the linear regression model used
in Eq. 4.2. In the linear regression, the residuals are assumed to have a normal
distribution and thus the Q–Q plot for the standardised residuals will be close to
a straight if this assumption is valid. Figure 4.8 shows that the distribution of the
model residuals are balanced with respect to both the upper and lower quantiles.



4.4. HEALTH METRICS 71

Moreover, the curve tracks the straight line quite well for theoretical quantiles be-
tween−1.5 and +1.5 which is what is expected of normally distributed residuals.

This shows the relative significance of each health metric and their respec-
tive statistical interpretations, however, this analysis must be framed within a
networking perspective. The following section introduces an aggregate measure
called the health score, which summarises the four health metrics, and discusses
the effect of each health metric on the health score.

4.4.2 Health Score

The timeout of an instance is critical to identify and nullifies additional health
metrics. Therefore, the overall health metric incorporates timeout values by com-
puting a health score of zero, or H − ALLij = 0. However, if no timeouts are
identified, and an instance is considered operational, the overall health metric
is computed as seen in Eq 4.3. From the variable selection analysis, the marker
H − TPij is weaker than the remaining markers. Moreover, throughput is one
of the key metrics in service level agreements in AWS specifications. Thus, the
weight of 0.4 is chosen for marker H − TPij to prioritise throughput over latency.
Each of the individual metrics are normalised against the other connections in the
system and aggregated together with weights.

H − ALLij = 0.4×H − TPij +

0.2×H − ICMPij +

0.2×H − UDPij +

0.2×H − TCPij (4.3)

The health score has been computed between each instance in Testbed II and
is represented as a heat map in Figure 4.9. The instances are ordered by avail-
ability zone, with the first 35 residing in us-east-1a, 33 in us-east-1b, and 32 in
us-east-1c. While the heat map demonstrates the similarities between availability
zones, it clearly depicts the boundaries of the us-east-1b and us-east-1c availabil-
ity zones, showing the deprecation in network performance across them. The
heat map also clearly demonstrates the volatility in network performance that
can be experienced within a single availability zone.



72 CHAPTER 4. NETWORK HEALTH

Figure 4.9: A heat map of the health scores computed between the one hundred
instances monitored in Dataset II. Each square represents the health score com-
puted between two instances, where red indicates a lower, or less healthy score,
and lighter values depict healthier connections.



4.5. PROTON COMPUTED TOMOGRAPHY 73

The collection and computation of health scores between every pair of in-
stances in the environment requires a significant amount of time. When employ-
ing the health system for a scientific application, the profile of the application
should be considered. For example, the pCT application utilises a centralised file
system to distribute workloads, which is pivotal to the performance of the data
distribution phase of a reconstruction. Therefore instances can focus their moni-
toring efforts on the connection between themselves and the shared file system,
rather than monitoring all instances in the environment which could negatively
influence the execution of the application.

4.5 Proton Computed Tomography

The pCT application, described in Section 3.1, is used here to evaluate the effec-
tiveness of the NHDS. pCT leverages a shared Gluster [183] file system to dis-
tribute the input data to each working process. The data distribution phase of
pCT reconstructions was found to take substantially longer (approximately an
order of magnitude) on the cloud when compared to a dedicated HPC infrastruc-
ture. For small 131 million history reconstruction over 20 instances, the data dis-
tribution phase accounted for 25.8% of the total execution time. Moreover, when
deployed over 120 instances, the data distribution phase accounted for 38% of the
total execution time when reconstructing a two billion history image.

The NHDS has been deployed over a pCT reconstruction cluster to explore the
potential of network inference and health metrics to improve execution perfor-
mance. The network-aware pCT reconstruction experiment was deployed over
fifteen GPU enhanced cluster compute instances, known as the cg1.4xlarge in-
stance type. The instances were provisioned from two separate availability zones
within the US-East-1 region. The pCT codes were used to reconstruct a 131 mil-
lion proton history image over eight instances, utilising two processes per in-
stance to match each available GPU.

Each test requires eight instances to be selected to perform a reconstruction.
Three groups of clusters are used to evaluate the affect of using the NHDS: those
with the highest health score, lowest health score, or random. Health scores have
been calculated between each instance and the shared file system immediately
prior to selection. Figure 4.10 depicts the inferred distance of each instance from
the shared file system, using health scores to weight edge lengths. The topological



74 CHAPTER 4. NETWORK HEALTH

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 4.10: The proximity of instances used for pCT reconstruction where edge
length is determined by health score.

distribution of each instance is not considered in this figure.

The average result of multiple pCT reconstructions over each group has been
computed and is presented in Figure 4.11. The figure demonstrates a distinct ad-
vantage to leveraging the proximity of instances when deploying the application.
Improvements in performance can be seen during the data distribution phase
and during execution of the linear solver. The inclusion of health information re-
sulted in the data distribution phase taking, on average, less than half as long as
that of the least healthy group of instances. Similarly, the cuts and margins phase
has been reduced as it requires data to be communicated between the instances,
whereas the time required to compute a proton’s most-likely-path (MLP) is con-
sistent between clusters as little data is transferred. Due to the small number of
instances being used to reconstruct the 131 million history dataset, the compu-
tationally intensive linear solver accounts for the majority of the reconstruction
time. Over eight instances the linear solver accounts for between 80% and 85% of
the reconstruction time. Whereas when performing larger reconstructions over
120 node clusters the linear solver accounted for less than 55% of the execution.



4.6. DISCUSSION 75

0

10

20

30

40

50

Highest Random Lowest
Health Score Cluster

Ti
m

e 
(s

) Phase
Cuts_&_Margins

Distribution

MLP

Figure 4.11: The average time required for phases of pCT reconstruction by vari-
ous health score clusters.

4.6 Discussion

The network information captured in Testbed I and Testbed II has shown that the
selected health indicators are capable of identifying network fluctuations. The
volatile nature of the cloud network resulted in substantial variations across all of
the health indicator measurements. Capturing the network performance between
Testbed II’s one hundred instances highlighted the volatility in cloud network
performance. The testbed showed unexpectedly high levels of variation within
availability zones.

An evaluation of the variance observed by the health indicator measurements
has been used to rank the influence of health metrics and contributed to the
weights used when computing the overall health score. Counterintuitively, the
throughput health metric was identified as less influential than other metrics in
the forward step regression analysis. To reflect data-intensive scientific applica-
tions’ reliance on efficient network transfers, the throughput indicator was as-
signed a larger weight than other indicators when computing the overall health
score.

Diagnostic health markers have been established from these variations in or-
der to prompt reassessment of the overall network health. Due to the noisy na-



76 CHAPTER 4. NETWORK HEALTH

ture of the regular instance testbed, an initial set of threshold-based markers fre-
quently responded to network fluctuations. However, the cluster compute 10-
Gigabit Ethernet connection is far less volatile and resulted in fewer notifications
being raised by the health markers. In order to operate more effectively, the health
markers need to adapt to the environment in which they are executing. Lower tol-
erances and the inclusion of more historic data is needed to fine tune the markers
over various platforms.

Health metrics provide an effective method to compare and evaluate instances
against one another. The metrics operate successfully in all of the monitored en-
vironments, and have demonstrated the ability to improve the data distribution
performance of pCT reconstructions. Although the difference in cluster compute
instance health scores is most apparent between availability zones, the health
metrics were accurate enough to consistently identify low performance cluster
compute instances within a single zone as well.

The deployment and evaluation of Testbed II has also identified limitations of
the health diagnostic system to scaling. The risk of interference and the time re-
quired to establish health scores for each instance grew sharply as more instances
joined the testbed. This restricts the ability for the NHDS to identify network
variations in a timely manner, and also limits the viability of applying it to larger
scientific applications.

The throughput indicators account for the majority of the time required to es-
tablish network health and are most likely to negatively impact the performance
of an instance. However, the throughput metrics have been shown to have little
significance on the overall health score computed for an instance, meaning they
can be reduced in length, or eliminated from the health score calculation entirely.

4.7 Summary

The research presented in this chapter has been conducted to investigate the first
research question, RQ1. This question asks how opaque cloud networks can be
measured to minimise the effect of low-performance networks. This chapter ex-
plored network tomography as a means of revealing cloud network information.
A number of properties of commercial clouds have been identified, such as the
variability in network performance, and the sustained nature of performance
fluctuations that an instance can experience. Two testbeds, comprised of up to



4.7. SUMMARY 77

one hundred AWS instances, have been used to investigate and analyse the capa-
bilities of tomographic probes.

A Network Health Diagnostic System (NHDS) has been presented. The NHDS
is capable of being deployed over large cloud infrastructures to monitor and es-
tablish the network health between instances. Health markers have been defined
to trigger alerts when significant changes in network performance are detected
and health metrics have been formulated to compute comparable health scores,
indicative of an instance’s current network performance.

Overall, this chapter addresses RQ1 by demonstrating the ability for the NHDS
to improve the execution performance of a scientific application by enabling network-
aware deployment. The system is generalisable and can be employed over almost
all networked resources to capture and evaluate network performance.





Chapter 5

Cost-aware Resource Provisioning

The lure of cost-effective and elastic computing capacity has resulted in a move
towards hosting scientific applications on commercial clouds [56]. However, us-
ing commercial clouds does not necessarily result in cost-effective and efficient
computing. Naı̈ve resource provisioning can often result in inefficient and ex-
pensive execution [21, 22]. Analysis of the use cases has identified a require-
ment for economical cloud usage and resulted in the formation of the second
research question, RQ2, which asks how cloud markets can be leveraged to min-
imise costs. To address this research question I explore techniques to minimise
the monetary cost of provisioning cloud resources.

This chapter presents an investigation into cost-aware provisioning techniques.
An analysis of production Globus Genomics gateways is first presented to iden-
tify usage characteristics. I then present a cost-aware provisioning system. The
system employs real-time analysis of Spot market prices and an expanded scope
of instance types and availability zones. Four provisioning scopes are explored
and it is shown that a broad search scope can substantially reduce monetary
costs while also improving throughput. In addition, the approaches can lower
instance termination rates, thus increasing the reliability and availability of cloud
infrastructures. The provisioning system incorporates numerous cost-aware pro-
visioning techniques and can be used to monitor HTCondor [82] queues to select
instances to fulfil jobs. Leveraging the Globus Galaxies use case, multiple pro-
duction Globus Genomics gateways are employed to evaluate the effectiveness
of the cost-aware techniques. The cost-aware provisioning system is later incor-
porated into the SCRIMP service to cost-effectively select instances to perform
workloads.

79



80 CHAPTER 5. COST-AWARE RESOURCE PROVISIONING

5.1 Globus Genomics Platform Usage

Globus Genomics [36] gateways are individual instantiations of the Globus Galax-
ies platform [28]. As described in Chapter 3, each gateway executes user de-
fined workflows composed of various tools. Upon execution, workflows are
decomposed into a series of computational jobs, each with varying resource re-
quirements (e.g., compute, storage, memory). The cost-aware provisioning sys-
tem aims to dynamically acquire cloud resources on which these jobs are exe-
cuted while minimising cost and/or execution time. The approach builds upon
rudimentary tool profiles that describe the requirements of individual workflow
jobs, leverages different cloud computing acquisition and pricing models (e.g.,
Spot and On-demand instances), considers real-time pricing information across
instance types and availability zones, repurposes Spot requests to satisfy wait-
ing jobs, and can use On-demand instances when Spot requests are not fulfilled
within a customisable period of time.

To reach a better understanding of the properties of workflows and their tools
(prior to building the provisioning system), I have analysed usage data from six
production Globus Genomics gateways. Globus Genomics gateways are used
because they are the longest running applications built upon the Globus Galaxies
platform and therefore the richest source of usage data. During analysis, the
Galaxy logs and HTCondor execution traces are integrated to find tool execution
frequencies and execution times. Data has been collected over 308 days on more
than 14,500 completed jobs and 25,500 hours of execution.

5.1.1 Tool Usage

Collectively, Globus Genomics gateways provide their users with access to over
one thousand custom tools. In many cases, several tools are provided that per-
form the same (or a comparable) task. Each has advantages and disadvantages in
different settings and are selected based on user preferences when constructing
workflows. The frequency of number of tool executions and tool execution time
are shown in Figure 5.1a and Figure 5.1b, respectively. These figures illustrate the
long tail nature of tool execution in Globus Genomics. A small number of tools
are executed many times while many are executed only a small number of times.
Of the 212 tools analysed, the 10 most frequently executed account for 52.3% of all
executions, while the 20 most frequently executed account for 68.1%. Similarly,



5.1. GLOBUS GENOMICS PLATFORM USAGE 81

many tools execute for short periods of time, with 75 tools executing for less than
one minute on average, while a small number execute for long periods of time –
over 2200 minutes (35 hours) on average.

0

25

50

75

100

0 500 1000 1500

Executions

F
re

q
u

e
n

c
y

(a) Tool executions.

0

25

50

75

100

125

0 500 1000 1500 2000

Run Time (Minutes)

F
re

q
u

e
n

c
y

(b) Job execution time.

Figure 5.1: Tool usage frequency distribution.



82 CHAPTER 5. COST-AWARE RESOURCE PROVISIONING

Table 5.1: The execution requirements of production Globus Genomics tools.

Tool Execs Avg Run Time vCPUs Memory Disk Instance

FastQ Parallel 1047 5:48:25 32 High High r3.4xlarge

BWA MEM 994 4:34:49 32 High High r3.4xlarge

FastQC 820 0:34:53 4 Medium Medium c3.2xlarge

MarkDups 659 0:43:53 32 High Medium r3.4xlarge

ARRG 512 0:27:13 32 Medium Low r3.4xlarge

Sickle 511 1:56:27 4 Medium High m2.4xlarge

Flagstat 489 0:21:20 4 Low Low c3.2xlarge

SortSam 421 0:15:26 8 Medium Low m2.4xlarge

BuildBamIndex 394 0:23:12 4 Low Low c3.2xlarge

Bowtie2 273 0:15:11 32 Medium Low r3.4xlarge

5.1.2 Tool Requirements

Each tool offered by Globus Genomics has different memory and compute re-
quirements, which may furthermore vary with input datasets and tool settings.
It is important to understand these requirements as they directly impact the re-
quired cloud instance types. Rather than consistently launching large instance
types – capable of fulfilling all jobs – we manually analysed individual tool re-
quirements to determine the optimal instance type. To model tool requirements
we have constructed primitive profiles for a set of frequently run tools as a three-
tuple of compute, memory, and disk requirements. This information was col-
lected by executing tools with different input datasets to determine general in-
stance type requirements.

Table 5.1 shows, for ten commonly used tools, both the tool profile and the
smallest instance type that can be used to satisfy their requirements. These sim-
ple profiles highlight the range of requirements of commonly used tools, with
execution time ranging from 15 minutes to almost 6 hours, number of vCPUs (or
virtual CPUs) from 4 to 32, and memory and disk requirements from low and
high.

Tool profiles allow the specification of approximate requirements when sub-
mitting jobs to the HTCondor queue using ClassAds [184]. This information is
in turn used by the cost-aware provisioning system to restrict the set of eligible
instances to those that can satisfy job requirements. In the case of small jobs it in-
creases the search scope and enables a wider range of instances to be considered



5.2. COST-AWARE PROVISIONING 83

which can decrease cost and improve efficiency. It also allows several instances
of the same tool to be run concurrently on the same large instance.

5.2 Cost-Aware Provisioning

The cost-aware elastic provisioning system combines job requirements with real-
time cloud resource pricing to cost-effectively provision cloud resources. Once
instances are requested, a record of the request is stored in an Amazon Relational
Database Service (RDS) instance for subsequent analysis.

Algorithm 1 outlines the algorithm used to provision cloud instances. The
algorithm periodically monitors an HTCondor queue for unallocated idle jobs
whose wait time exceeds a customisable value. Line 12 shows it filtering and
ranking viable instance types (based on profiles) from each availability zone to
select the most cost-effective instance for a job. A timeout threshold prevents
starvation by acquiring On-demand instances when Spot requests are not readily
fulfilled. Spot request repurposing (line 27) aims to reduce overall execution time
by reusing excess Spot requests. The following sections describe the key features
of the provisioning system.

5.2.1 Selecting Viable Instance Types

Before submitting instance requests the provisioning system first consults prede-
fined job profiles to determine which instance types can satisfy the requirements
of the job. Generally, the use of profiles greatly increases the number of instance
types that can potentially be used to service a job. It therefore increases the poten-
tial for cost reduction as additional instance types can be surveyed. 14 different
instance types are used in this study, with selection restricted by compute, mem-
ory, and disk requirements. In the absence of a job profile, the provisioning sys-
tem uses a system-wide default instance type that is chosen to be suitably large
that it is capable of satisfying the requirements of all jobs.

5.2.2 Cost-Aware Instance Selection

Having identified a set of suitable instances, the provisioning system requests
real-time Spot pricing information using AWS APIs. Spot prices are collected for
each viable instance type from each availability zone. The resulting prices are



84 CHAPTER 5. COST-AWARE RESOURCE PROVISIONING

Algorithm 1 EC2 instance provisioning.
1: timeout = /* configurable */

2: threshold = /* configurable */

3: while true do
4: /* periodically run */

5: idleJobs = jobs in HTCondor queue

6: for job in idleJobs do
7: if job not allocated then
8: if job queue time > timeout then
9: launch On-demand instance

10: cancel or repurpose outstanding Spot requests for job
11: else
12: eligibleIns = instance types that meet job profile

13: for instance in eligibleIns do
14: onDemandP = On-demand price for instance
15: minZoneSpotP = min zone Spot price for instance
16: if minZoneSpotP > threshold × onDemandP then
17: instancePrice = onDemandP
18: else
19: instancePrice = minZoneSpotP
20: end if
21: end for
22: sort eligibleIns by instancePrice
23: select instance with lowest instancePrice
24: launch instance
25: end if
26: else
27: cancel or repurpose outstanding Spot requests for job
28: end if
29: end for
30: end while



5.2. COST-AWARE PROVISIONING 85

compared with published On-demand prices for each instance type to determine
the cheapest real-time price.

Depending on gateway-specific pre-defined policies (such as the maximum
time to wait for a Spot request), the cheapest instance type in the cheapest avail-
ability zone is generally selected. It may therefore select a faster instance type
than is necessary if the cost is lower than the best match. Individual gateways
can be configured with maximum bid prices for each instance type ensuring that
potential costs can be limited at the expense of execution time. As some appli-
cations are more sensitive to termination and gateway administrators may have
different levels of risk aversion the provisioning system can be pre-configured
with default bidding policies that determine what acquisition model to use: On-
demand, Spot, or a combination of both. This work is later extended to using
predictive techniques to compute a bid (cf. Section 7.3.2).

5.2.3 Reverting to On-demand Instances

The price of Spot instances fluctuates over time depending on demand and the
available pool of excess resources. Popular instance types can sometimes have
much higher Spot prices than their On-demand equivalents. For example, the
price of the m2.4xlarge instance type frequently exceeds $6, more than six times
the On-demand price of $0.98, behaviour that is likely attributed to legacy ap-
plications that were configured to use this instance type when it was first intro-
duced and have not yet been migrated to newer instance types. As the Spot price
increases, so too does the time required to fulfil Spot requests, especially if the
bid price is lower than the current Spot price. Moreover, during volatile peri-
ods, the risk of having instances terminated is much higher. In response to these
challenges, the cost-aware provisioning system includes functionality to revert to
using On-demand instances when Spot prices begin to increase (based on analy-
sis of Spot price history). The decision to revert to On-demand instances is based
on a pre-defined wait time threshold. If Spot requests exceed this threshold, the
cost-aware provisioning system will request the cheapest On-demand instance
capable of satisfying the job’s requirements. The threshold is configurable for
each gateway and is typically set to 20 minutes. This strategy can reduce costs,
improve execution time, and minimise the risk of having instances terminated
during execution.



86 CHAPTER 5. COST-AWARE RESOURCE PROVISIONING

5.2.4 Over-provisioning Instance Requests

When making a Spot request it is difficult to predict whether and when the re-
quest will be fulfilled. The cost-aware provisioning system includes functionality
to configure how frequently new Spot requests are made as well as how many dif-
ferent requests can be made simultaneously for an individual job. This strategy
allows multiple instances of different types to be requested for each job (either
immediately or over regular intervals). The reason for this approach is that Spot
requests can take considerable time to be fulfilled and it is often faster to request
a different instance type while waiting for a request to be fulfilled. Once a re-
quest is fulfilled, the provisioning system either cancels outstanding requests (if
possible) or uses them to satisfy other jobs waiting to be allocated.

5.2.5 Repurposing Instance Requests

Once an instance has been provisioned or a job has been dispatched to existing
instances (instances can become available once completing other workloads), un-
necessary Spot requests can either be terminated or used to satisfy other idle jobs.
In situations with many jobs and high throughput, instance request repurposing
presents an opportunity to improve the overall execution time. That is, rather
than cancelling requests and incurring the cost of requesting a new instance, the
provisioning system can instead assign excess requests to other waiting jobs, as-
suming that job requirements are satisfied.

5.3 Data Collection

The fact that the Globus Galaxies platform is used extensively for large-scale com-
puting provides a unique opportunity to gather usage information on which to
base an evaluation of the cost-aware provisioning system. The following section
describes the methods by which this information is recorded and integrated to
establish a representative workload.

I instrumented the cost-aware provisioning system to record information re-
garding provisioning decisions, such as important event times, selected instance
type, and availability zone, in an RDS database. The provisioning system logs
for each request: 1) the time a request is made, 2) the time the request is satis-
fied, and 3) the time any new instances are started. This information is stored



5.3. DATA COLLECTION 87

alongside Galaxy records for each execution, including the tool, input datasets,
parameters, submitting user, and the identifier (condor ID) assigned to the task
by HTCondor. HTCondor records, for each job that is submitted, its identifier,
queue time, execution time, and the AWS instance used (the IP address of the
host it is dispatched to).

The Galaxy database, HTCondor logs, and the RDS provisioning database
are combined to compute the cost of every job that has has been executed by a
Globus Galaxies gateway. The AWS API provides historic Spot price for each
EC2 instance and availability zone for the previous 90 days. Using the historic
Spot price information in conjunction with the logs, which record the time and
duration of a job, the cost of the instance used to fulfil a job can be calculated.
Similarly, the hypothetical cost of using other instance types to fulfil the job can
also be computed. This method of computing the cost of a job enables the emula-
tion of counter-factual provisioning schedules for comparison. Using the unique
identifier assigned to every job in the HTCondor logs, every job can be mapped
to the instance it was executed on, allowing the cost of the job to be computed.
As HTCondor supports a multi-job slot model, the total cost is divided across jobs
that share a single instance.

Usage data from six Globus Genomics gateways has been collected over a pe-
riod of 145 days to provide a representative production workload to analyse the
cost-aware provisioning system. Figure 5.2a shows the number of jobs executed
and Figure 5.2b the total compute time consumed by each gateway over this pe-
riod. The difference between the two figures shows the distinct usage character-
istics of the gateways. For example, it is evident that gateway 1 is primarily used
for long running jobs: it has higher compute hours than job executions. Within
this period there have been over 35,000 job executions requiring over 53,000 com-
pute hours. These figures highlight the sporadic nature of Globus Genomics us-
age, where a gateway is often used extensively for a period of days or weeks at
a time (such as gateway 3). The workload includes both infrequently used and
frequently used Globus Genomics gateways to analyse the provisioning system
across a range of scenarios.



88 CHAPTER 5. COST-AWARE RESOURCE PROVISIONING

0

1000

2000

3000

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Days

N
um

be
r o

f J
ob

s

Gateway
1

2

3

4

5

6

(a) Number of jobs executed.

0

1000

2000

3000

4000

5000

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Days

C
om

pu
te

 H
ou

rs

Gateway
1

2

3

4

5

6

(b) Compute hours used.

Figure 5.2: The number of jobs and compute hours used per day from six Globus
Genomics gateways over a 145 day period.



5.4. ANALYSIS 89

5.4 Analysis

The cost-aware provisioning system is analysed with respect to the execution
time and cost of executing workloads. Various search scopes, in terms of in-
stance types and availability zones, are used to investigate the provisioning per-
formance. The scopes considered are:

• Single-Instance, Single Availability Zone (SI-SAZ): A baseline approach
in which the provisioning system uses only one instance type (m2.4xlarge)
in a single availability zone (us-east-1c).

• Multi-Instance, Single Availability Zone (MI-SAZ): The provisioning sys-
tem requests different instance types in a single availability zone (us-east-
1c) and selects the instance with the lowest price.

• Single-Instance, Multiple Availability Zone (SI-MAZ): The provisioning
system requests a single instance type (m2.4xlarge) across all availability
zones and selects the instance with the lowest price.

• Multi-Instance, Multiple Availability Zone (MI-MAZ): The provisioning
system requests different instance types across all availability zones and
selects the instance type with the lowest price.

Based on analysis of the Spot history for various instance types over the past
three months a bid price of $6.56 is selected to avoid termination and establish a
worst-case scenario (in terms of cost) for each of the provisioning scopes. While
individual gateways may use lower bid prices this will result in some reduction
in cost at the expense of execution delays incurred while waiting for resources to
be provisioned. It is important to note that users are not charged their bid price
but rather the Spot price at the time of use. That is, usage of a high bid price adds
significant financial risk but not necessarily financial cost. The following results
apply this same method by re-calculating Spot prices every hour.

5.4.1 Cost

The total projected cumulative cost for each search scope across six production
Globus Genomics gateways over a 145 day period is shown in Figure 5.3. The
figure shows, using a naı̈ve approach that considers only a single instance and
availability zone (SI-SAZ), costs over $27,000. Whereas, expanding the scope to



90 CHAPTER 5. COST-AWARE RESOURCE PROVISIONING

multiple instance types (MI-SAZ) reduces the cost to approximately $2,250. Over-
all the potential savings are $25,486.75, or 92.1% from the worst-case SI-SAZ to
the best-case MI-MAZ scope. In comparison to the naı̈ve approach, incorporating
multiple availability zones provides a 15.8% improvement. Unexpectedly, the use
of multiple availability zones and instance types (MI-MAZ) provides little ben-
efit over simply using multiple instance types (MI-SAZ). The results show that
even simple improvements can substantially reduce the cost of executing scien-
tific workloads in the cloud.

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Days

C
os

t (
$) SI-SAZ

SI-MAZ

MI-SAZ

MI-MAZ

Figure 5.3: The total cumulative cost of operating six Globus Genomics gateways
with different provisioning system search scopes over a 145 day period on a log-
arithmic scale.

Figure 5.4 shows the cumulative cost for each of the six Globus Genomics
gateways. The figure shows the total cost when using the naı̈ve, SI-SAZ, ap-
proach (solid) as well as the reduced cost achieved by the cost-aware, MI-MAZ,
provisioning system (dashed) over the 145 day period. The results show that sub-
stantial reductions in cost can be achieved for each of the gateways irrespective
of their workload requirements. A breakdown of each of the provisioning scopes



5.4. ANALYSIS 91

for each gateway is presented in Table 5.2. This shows, on average, that an indi-
vidual gateway can reduce its operating costs by 75.9% (Max 95.0%, Min 43.0%)
when using multiple instance types and availability zones over the baseline SI-
SAZ approach.

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Days

C
os

t (
$)

Gateway
1

2

3

4

5

6

Figure 5.4: The cumulative cost of the naı̈ve SI-SAZ (solid line) and MI-MAZ
(dashed line) search scopes for each of the six Globus Genomics gateways over a
145 day period on a logarithmic scale.

5.4.2 Spot Instance Termination

Applying real Spot price traces (obtained from AWS APIs) to each of the provi-
sioning scopes enables identification of when the Spot price would of exceeded
the bid price and therefore when an instance would be terminated. Figure 5.5
shows the frequency of instance termination for each of the provisioning scopes
with varying bid prices (in $0.25 increments). The results show that the single-
instance scopes (utilising m2.4xlarge instances) are highly susceptible to instance
termination, as demand for a specific instance type can effect the Spot price in
all availability zones. The figure also demonstrates a lack of sensitivity to bid



92 CHAPTER 5. COST-AWARE RESOURCE PROVISIONING

Table 5.2: Total 145 day cost comparison between gateways.

Gateway SI-SAZ SI-MAZ MI-SAZ MI-MAZ
1 551.38 341.20 371.57 314.16
2 31.08 4.86 2.95 2.95
3 24269.89 22080.71 1219.03 1213.44
4 1867.33 499.92 410.07 406.55
5 216.08 55.00 46.48 50.08
6 751.25 339.59 209.26 213.05
Total 27686.99 23321.29 2259.36 2200.24

prices as the rate of termination does not change significantly with different bid
prices. This implies that when an instance type experiences an increase in de-
mand (which increases the Spot price) it will often increase substantially. Thus,
when configuring bid prices, they can be defined to be high (to avoid termination)
or low if they can easily repurpose workloads. Similarly, On-demand instances
should be used if the Spot price increases as it is likely to increase significantly.

5.4.3 Reverting to On-demand Instances

As shown in Figure 5.5 there is potential for Spot instances to be terminated dur-
ing job execution. The cost-aware provisioning system is configured to revert to
On-demand instances in some situations to minimise execution time. However,
when reverting to On-demand instances there is a trade-off between execution
time and cost. This trade-off is shown in Figure 5.6 and Figure 5.7. These figures
show the total cost and execution time when five timeout values (None, 5, 10, 15,
and 20 minutes) are used and the search scope is set to MI-MAZ. The timeout
value specifies how long a job is allowed to wait for a Spot instance before revert-
ing to an On-demand instance. The results indicate that short timeout periods can
improve overall execution time at the expense of substantially increasing the op-
erating cost of a gateway (a 5 minute timeout results in increased cost over eight
times the MI-MAZ price). The substantial increase in cost is reflective of the com-
petitive Spot pricing market in which Spot prices across availability zones rarely
remain higher than On-demand prices. The effect of timeouts has also been eval-
uated using the SI-SAZ scope and found that the total cost was lower when a
5 minute timeout value was used. This was due to a prolonged increased Spot



5.4. ANALYSIS 93

0

500

1000

1500

2000

1 2 3 4 5 6 7
Bid Price ($)

In
st

an
ce

 T
er

m
in

at
io

ns

MI-MAZ

MI-SAZ

SI-MAZ

SI-SAZ

Figure 5.5: The number of Spot instance terminations for each search scope with
$0.25 bid price increments.

price in the selected availability zone and a lack of alternative availability zones
in which to provision new instances.

5.4.4 Production Usage

To analyse the performance of the cost-aware provisioning system in its entirety I
compare the performance of three production Globus Genomics gateways before
and after the provisioning system was deployed. Without the provisioning sys-
tem the gateways employ a simple, yet common, approach that acquires a single
instance type (in this case m2.4xlarge) in a single availability zone. This provi-
sioner operates periodically by polling the HTCondor queue to find idle jobs. If
the job can not be scheduled to idle instances, the provisioner acquires an in-
stance to fulfil the workload. With the cost-aware provisioning system deployed
the gateways select the cheapest instance type and availability zone, allows re-
quest repurposing, and has the ability to revert to On-demand instances when
needed. In both cases the length of time that jobs must wait before being allo-



94 CHAPTER 5. COST-AWARE RESOURCE PROVISIONING

0

5000

10000

15000

20000

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Days

C
o
s
t 
($

)

None

5

10

15

20

Figure 5.6: Cumulative cost when using On-demand instances with different
timeout periods (minutes) using MI-MAZ scope.

cated to a provisioned resource is recorded. Only jobs that wait for a resource
to be acquired are used, rather than those that may be allocated to existing re-
sources. Logs are analysed from a 168 day period where the simple provisioner
was used are compared against the logs of the subsequent 80 days where the
cost-aware provisioning system has been deployed. In total 1775 jobs are allo-
cated with the simple provisioner, and 2302 are allocated using the cost-aware
provisioning system. When using the simple provisioner jobs wait, on average,
650 seconds before being executed. When using the cost-aware provisioning sys-
tem the average wait time is reduced to 570 seconds, an average reduction of
80 seconds per job. This represents a 12.3% reduction in the time spent waiting
for an instance to be provisioned. While some of this improvement may be at-
tributed to different workloads and economic conditions at the time of analysis
it may also be due to the ability to repurpose requests. A comparison of the two
workloads in Table 5.3 shows that the average arrival time and execution time of
jobs is relatively consistent.



5.5. SUMMARY 95

0

500000

1000000

1500000

10 20 30 40 50 60 70 80 90 100 110 120 130 140

Days

T
im

e
 (

m
in

u
te

s
)

None

5

10

15

20

Figure 5.7: Cumulative execution time when using On-demand instances with
different timeout periods (minutes) using MI-MAZ scope.

Table 5.3: Jobs allocated with and without the provisioning system.

Provisioner Jobs Avg Wait Avg Exec Avg Arrival Time
Simple 1775 0:10:50 3:54:07 13:38:59
Cost-aware 2302 0:09:30 3:37:01 13:58:05

5.5 Summary

Acquiring instances in a cost-aware manner is a challenge faced by cloud-based
scientific services. The second research question investigated in this thesis, RQ2,
asks how cloud computing markets can be exploited to minimise the cost of pro-
visioning infrastructure to facilitate on-demand computation.

This chapter explored cost-aware techniques and presented a multi-faceted,
cost-aware, provisioning system that automatically selects and provisions cloud
instances. Analysis of six production Globus Genomics gateways demonstrated
that the cost-aware provisioning system can reduce costs, improve execution



96 CHAPTER 5. COST-AWARE RESOURCE PROVISIONING

time, and minimise Spot instance terminations. The analysis showed that cost-
aware provisioning can result in substantial economic advantages over simple
provisioning approaches. Increasing the provisioning system’s search scope to
consider additional instance types and availability zones resulted in a 92.1% re-
duction in overall cost between the worst-case SI-SAZ and best-case MI-MAZ
scopes. Overall, the findings presented in this chapter address RQ2 by identify-
ing provisioning techniques that can minimise the cost of using cloud infrastruc-
ture.



Chapter 6

Profiling Workloads

Cloud providers can accommodate the execution of a wide range of custom an-
alytical tools with different configurations. Cloud instance types are heteroge-
neous, coming in many different shapes and sizes, providing unique capabili-
ties and specialisations. This means tools can be deployed to an instance type
that best suits their needs. However, in order to accurately select an instance
type to optimally execute a tool, the resource requirements of the tool must be
known. The challenge of selecting appropriate instance types for unknown appli-
cations prompted the third research question, RQ3, which asks how the resource
requirements of unknown applications can be computed to determine appropri-
ate instance types. To explore RQ3 I investigate techniques to reveal the resource
requirements of applications such that they can be mapped to instance types.
The fourth research question, RQ4, asks how this can be achieved automatically.
To investigate this question I explore techniques to dynamically incorporate re-
source requirements into the provisioning decisions.

This chapter presents the design, implementation, and evaluation of a novel
cloud profiling service. The purpose of this service is to automate the creation of
tool (any executable application or Docker [185] container) profiles, concise de-
scriptions of the performance and CPU, memory, network, and disk requirements
of a supplied tool under different environments and scenarios. These profiles can
then be used to optimise instance selection, enable tool comparison, and improve
provisioning and scheduling algorithms. The profiling service is self-contained
and can be deployed externally, and used to automatically profile tools on dif-
ferent cloud instances with different input configurations. The service can au-
tomatically provision test instances, deploy and configure tools on provisioned

97



98 CHAPTER 6. PROFILING WORKLOADS

instances, stage input datasets, monitor tool execution, record fine-grained tool
behaviour, and construct and return resource utilisation profiles.

The same application may perform very differently on distinct cloud instance
types [25]. Different instances can also have quite different costs [27]. Thus, effec-
tive use of cloud infrastructure requires that the user understand how an appli-
cation behaves, such that the most suitable instance type can be used and config-
ured. Good choices become more important when large amounts of computing
are to be performed, as is the case with scientific services, gateways, and portals
that offer access to a set of predefined tools. For example, the Globus Galaxies
platform consumed more than half a million EC2 instance hours in 2015, for a to-
tal cost of more than $150,000. The performance and cost of executing a single job
can vary by an order of magnitude or more on different instance types, meaning
it is easy to make expensive mistakes when choosing cloud instance types.

Five commonly used Globus Genomics tools are used to evaluate the profiling
service. For each of these tools I compute profiles using representative input data
and settings (derived from production usage) and evaluate the extent to which
profiles can be used to improve performance and decrease cost for Globus Ge-
nomics users. Analysis shows that selecting instance types based on tool profiles
can reduce execution time by up to 15.7% and costs by up to 86.6% relative to
simpler heuristics that do not consider profiles. The profiling service is later used
by SCRIMP to improve the provisioning and deployment processes.

6.1 Profiling Service

The information included in a tool profile can range from a binary measure of
whether a tool can execute on a specific instance through to fine-grained repre-
sentation of resource usage over time. Manually constructing these profiles can
be time-consuming due to the numerous permutations that must be considered,
as well as the frequency with which tools and instance types change or are con-
tributed to services. For example, tool performance is dependent on instance
type, specific settings of that instance (e.g., optimised storage and network), in-
put datasets, and invocation parameters. Having identified the range of configu-
rations to be profiled, users must then painstakingly embark on a trial-and-error
analysis of instance types by deploying suitable infrastructure, configuring and
installing the tool and its dependencies, and measuring tool performance and



6.1. PROFILING SERVICE 99

resource usage.

To address this challenge, the profiling service is designed to enable the auto-
mated execution and monitoring of arbitrary tools over any cloud instance type.
A tool can be provided as a self-contained package with the application exe-
cutable and a collection of input data files, as a contextualisation script that can be
used to install the tool and its dependencies on-demand, or as a Docker container.
The user specifies the instance types and configurations to be evaluated and the
profiling service then executes the application on all specified combinations and
collects performance metrics periodically. Performance Co-Pilot (PCP) [186] is
used to collect performance metrics as it is light-weight and has little overhead
on application execution.

6.1.1 Architecture

The profiling service is implemented as a Web application. As shown in Fig-
ure 6.1, it includes the profiling Web service, a reliable database (hosted on AWS
RDS), and a dynamic pool of provisioned worker nodes, each with a management
Web service for control and monitoring tool execution.

Profiler

1. Submit 
profiling request 5. Return profiles

Worker

Worker web service

PCP HTCondor

2. Provision 
workers

3. Start/monitor profiling

Worker

Worker web service

PCP HTCondor Worker

Worker web service

PCP HTCondor Worker

Worker web service

PCP HTCondor

4. Parse PCP 
log and store 
profiles

Figure 6.1: An outline of the profiling service’s architecture.



100 CHAPTER 6. PROFILING WORKLOADS

The profiling service exposes a REST API for requesting and managing pro-
files. The service can be deployed on any cloud instance configured with access
to a profile database (local or RDS) and a mounted NFS shared file system. The
profiling service uses the shared file system for staging data and tools to worker
nodes.

The profiling service is implemented as a multi-threaded Python application.
When a profiling job is requested the service creates a new thread that is respon-
sible for overseeing the execution and monitoring of the tool. The thread will
provision EC2 instances, stage/deploy the input data and tool, monitor execu-
tion, parse monitoring logs, and store the profile in the database.

Each worker node is deployed with a dynamic Web service that allows the
provisioning service to control and monitor the executed tool. It is also config-
ured with a local HTCondor client to manage the execution of the tool locally.
Cloud-init [179] is used to dynamically contextualise the worker instance after it
is provisioned. This contextualisation process installs and configures the worker
Web service, HTCondor, and PCP, as well as mounting the shared file system.

Profiling 
Service

Client

NFS Directory

Request Profile

Transfer Data

Worker

Request 
Instances

Check running

Transfer Data

Profile Tool

RDS S3

Return Logs
Store Details

Store Logs

Return Results

Get Status
Get Profile Status

Figure 6.2: A sequence diagram showing the steps involved when the profiling
service profiles a tool.



6.1. PROFILING SERVICE 101

6.1.2 Profiling Process

Figure 6.2 shows the profiling process. A user requests a new profile by submit-
ting a JSON profile request (Listing 6.1) specifying the tool, instance types, and in-
stance and tool configurations. The profiling service includes a light-weight client
application to simplify interactions with the profiling service API. The client in-
terprets the user’s JSON profile requests to initiate and manage the employment
of the profiling service.

In response to a profile request the profiling service creates a unique working
directory for each profiling job and returns this path to the client. The client can
then optionally upload the tool and any input files used for execution. Alterna-
tively, the client may choose to upload a contextualisation script for deploying the
tool automatically. A profiling service thread is started for each instance type and
configuration to manage provisioning and tool execution. The job request may
optionally specify other properties such as target availability zones and cloud ac-
quisition model: either On-demand or Spot pricing. In the case of Spot pricing,
the request may also optionally specify a bid price. If no bid price is set the max-
imum bid is used. The techniques described in Chapter 5 are used to ensure the
necessary workers are provisioned cost-effectively.

Once a cloud instance is provisioned, cloud-init is used to contextualise the
worker. This process includes the installation and configuration of the worker
Web service and the mounting of the shared file system. Once the Web service
becomes responsive, the profiler thread initiates a request to the worker’s Web
service indicating the executable to be profiled and the location of the workload.
The worker service then copies the input data to its local drive from the shared
file system. This is done to eliminate overhead incurred from accessing the shared
file system during profiling. The worker service then processes the executable
and appends a command to isolate execution within the local working directory.
In addition, a string template is used to swap any overriding configurable param-
eters based on the instance type. For example, a client may specify the number
of threads to use on each instance type to make optimal use of available cores.
Immediately prior to executing the workload, a PCP logger is initiated to collect
performance statistics on the host machine at one second intervals. The workload
is then submitted to HTCondor to be executed on a local slot. During execution,
PCP appends resource usage statistics to a pre-defined log file.



102 CHAPTER 6. PROFILING WORKLOADS

{
name: ‘my profile’,

executable: ‘my_app.sh’,

type: {script|docker}
workloads: {
workload_1: [‘file1’, ‘file2’],

}, configurations: {
config_1: ‘--config 1 --config 2’,

config_2: ‘--config 1 --config 3’,

}, instance_types : [{
type: ‘r3.xlarge’,

override: ‘$threads=8’,

acquisition: ‘spot’,

bid: 6

},{
type: ‘c3.8xlarge’,

override: ‘$threads=32’

}]
}

Listing 6.1: A partial JSON profile request.

The profiling service probes each worker periodically to determine the sta-
tus of the job being profiled, and records these progress markers in the database.
Once the workload completes the PCP logger is halted and the exit code and ex-
ecution time are updated in the database. The PCP logs are then transferred to
the shared file system and the profiler thread parses them into CSV format. The
resulting CSV file is uploaded to an S3 bucket for long-term storage. Through-
out the profiling process the client can request status updates. Once the profiling
job is complete the client can download the resulting profiles. Listing 6.2 shows
an example profile, which includes high level summary information for each in-
stance type as well as the location of the stored CSV logs for each configuration.

The profiler is also capable of profiling Docker containers [185]. To profile
a container the type attribute in Listing 6.1 must be set to Docker and the exe-
cutable field should specify a Docker run command. When using the Docker
configuration of the profiler the worker nodes are contextualised via cloud-init
to start an InfluxData [187] (database) container and Google’s cAdvisor [188] is
used to stream Docker performance statistics to the InfluxData database. The
user’s Docker run command is modified to give the container a name with its job
number as the suffix. This allows the container to be monitored and its perfor-



6.2. CREATING GENOMICS TOOL PROFILES 103

mance information to be searched in the InfluxData database. Once the container
finishes running, a profile is created by querying the InfluxData’s Web API in or-
der to process the logs to determine resource utilisation. The resulting profiles
are then returned to the user in the same way as described above.

{
name: ‘my profile’,

executable: ‘my_app.sh’,

log_files: ‘s3/output_bucket’,

results: [ {
workload: [‘file1’, ‘file2’],

configuration: ‘--config 1 --config 2’,

instance_type: {
type: ‘c3.8xlarge’,

override: ‘$threads=32’,

exit_status: ‘Completed’

execution_time: 8399

performance: {
memory: { ... },
cpu: { ... },
disk: { ... },
network: { ... }

}
}

}, ... ]

}

Listing 6.2: A partial JSON tool profile.

6.2 Creating Genomics Tool Profiles

The following five genomics tools are used to evaluate the capabilities of the pro-
filing service. These tools are among the most frequently used tools on Globus
Genomics, accounting for 17.7% of compute time consumed on four production
gateways (summary statistics are included in Table 6.1). They also have varied
resource requirements, ranging in execution time from ten minutes to more than
an hour.

1. FastQC [189] provides quality control on raw sequence data.



104 CHAPTER 6. PROFILING WORKLOADS

Table 6.1: Globus Genomics tool execution statistics.

Tool Times Exec Freq Exec % Avg Exec
Run Rank Time (hours)

BWA MEM 1473 4 5.9% 00:38:22
FastQC 1471 5 5.9% 00:29:13
MarkDups 1341 7 5.3% 00:35:43
Bowtie 85 39 0.3% 01:23:57
BWA ALN 83 40 0.3% 00:20:40

2. PICARD MarkDuplicates (MarkDups) [190] flags or removes duplicate
reads in a SAM or BAM file.

3. BWA ALN [191] aligns short sequences to a reference sequence (e.g., the
human genome).

4. Bowtie [192] is a short read aligner designed for high performance and
memory efficiency.

5. BWA MEM [193] maps low-divergent sequences against large reference
genomes. It chooses automatically between local and end-to-end align-
ments, supports paired-end reads, and performs chimeric alignment.

6.2.1 AWS Testbed

Ten different AWS instance types have been selected to create tool profiles. For
consistency, only instance types that support instance storage are used. That is,
instance types that use EBS storage (m4, c4, etc.) are not used, as this would
likely have a significant affect on application performance when compared to
those that use instance storage. The instances type families selected are: the M3
(general purpose), G2 (GPU enabled), C3 (compute optimised) and R3 (memory
optimised). All profiling is performed in the US-East-1 AWS region, using Spot
instances in the cheapest availability zone at the time of profiling. The selected
instance types are described in Table 6.2.



6.2. CREATING GENOMICS TOOL PROFILES 105

Table 6.2: AWS instance types.

Type Family vCPU Memory (GB) Storage (GB) Network

c3.2xlarge Compute optimised 8 15 2 x 80 High

c3.4xlarge Compute optimised 16 30 2 x 160 High

c3.8xlarge Compute optimised 32 60 2 x 320 High

g2.2xlarge GPU instances 8 15 1 x 60 High

g2.8xlarge GPU instances 32 60 2 x 120 10 Gigabit

r3.xlarge Memory optimised 4 30.5 1 x 80 Moderate

r3.2xlarge Memory optimised 8 61 1 x 160 High

r3.4xlarge Memory optimised 16 122 1 x 320 High

r3.8xlarge Memory optimised 32 244 2 x 320 10 Gigabit

m3.2xlarge General purpose 8 30 2 x 80 High

6.2.2 Profiles

Table 6.3 summarises profile data for the five genomics tools on four R3 instance
types. These instance types range in capacity from r3.xlarge, with 4 vCPUs and
30.5GB of memory, through to r3.8xlarge, which has 32 vCPUs and 244GB of
memory. Where possible, each profiled tool is dynamically configured to use all
available vCPUs and memory during execution. Table 6.3 highlights the richness
of the profile information collected. It also shows fairly consistent usage across
instance types, indicating that execution time and resource requirements could
be forecast for other instance types.

The results show the performance of a tool is not entirely dependent on in-
stance type. For example, Bowtie consumes roughly the same amount of memory
regardless of the amount of available memory, number of threads, and vCPUs.
FastQC executes for roughly the same amount of time on all of the employed
instances. This is because it uses only a single vCPU rather than all available vC-
PUs. The most memory-intensive of the tools, BWA ALN and BWA MEM, fail to
execute on the smallest r3.xlarge instance type. Both of these tools load the entire
reference dataset, which is over 30GB, into memory for processing. However, the
r3.xlarge instance type has only 30.5GB of memory which results in the tools ex-
hausting the machine’s free memory during execution. These results present ex-
amples of where the provisioning and deployment processes could be improved
by incorporating information on a tool’s behaviour and resource requirements.
For example, larger instances should be provisioned for data-intensive tools to



106 CHAPTER 6. PROFILING WORKLOADS

avoid execution failures and could also be partitioned to concurrently satisfy mul-
tiple tools with static requirements.

Disk and network usage are minimal for each of the five tools profiled. Net-
work usage is low as the profiling service attempts to minimise network over-
head by staging data to the local file system. In addition, the tools themselves
are loosely coupled and are executed on a single instance, requiring no network
communication. Disk usage is (near) identical between instance types because
the tools are executed with the same input datasets and settings, thus, the re-
sulting data written to disk is also the same. An exception is seen where small
instance types show increased disk usage as the disk is used for swap space when
memory requirements exceed capacity.

6.2.3 Execution Performance

Figure 6.3 shows the execution time for each tool on each instance type. As ex-
pected, the tools perform differently on different instance types. For example,
Bowtie (Figure 6.3c) and BWA ALN (Figure 6.3d) exhibit a strong correlation be-
tween the number of vCPUs and execution time. In contrast, FastQC (Figure 6.3a),
which uses only a single vCPU, performs similarly regardless of instance type. In
all cases, the tools execute fastest on c3.4xlarge, c3.8xlarge, g2.8xlarge, r3.4xlarge,
and r3.8xlarge. These instances have at least 16 cores and 60 GB of memory each,
with the exception of c3.4xlarge with only 30 GB of memory. In fact, the largest
difference in execution time across these five instance types is 31%, with an av-
erage difference across all tools of 19.48% (Bowtie: 31%, BWA ALN: 28.4%, BWA
MEM: 21.7%, FastQC: 8.8%, MarkDups: 7.5%), indicating that these instance types
can be used somewhat interchangeably for these tools. It is important to note that
tool performance is heavily dependent on the input dataset used.



6.2. CREATING GENOMICS TOOL PROFILES 107

Ta
bl

e
6.

3:
G

en
om

ic
s

to
ol

pr
ofi

le
s

ov
er

R
3

in
st

an
ce

s.
N

ot
e:

*
in

di
ca

te
s

to
ol

fa
ilu

re
.

In
st

an
ce

To
ol

Ti
m

e
(H

)
M

em
or

y
(M

B)
M

em
or

y
%

Id
le

C
PU

%
U

se
r

C
PU

%
Sy

s
C

PU
%

D
is

k-
R

(M
B)

D
is

k-
W

(M
B)

r3
.x

la
rg

e
Bo

w
ti

e
2:

23
69

20
.5

4
22

.5
6

0.
35

86
.6

2
12

.9
7

7.
46

95
26

.8
7

r3
.2

xl
ar

ge
Bo

w
ti

e
0:

52
60

11
.2

9
9.

78
0.

08
76

.5
2

23
.3

7
0.

35
10

33
4.

18
r3

.4
xl

ar
ge

Bo
w

ti
e

0:
29

61
20

.8
8

4.
98

0.
33

65
.9

4
33

.5
9

0.
12

76
73

.2
4

r3
.8

xl
ar

ge
Bo

w
ti

e
0:

22
64

74
.3

3
2.

63
2.

51
49

.7
3

47
.4

8
0.

42
71

23
.7

0
*r

3.
xl

ar
ge

BW
A

M
EM

2:
37

24
31

4.
41

79
.2

5
0.

65
98

.5
3

0.
39

11
81

2.
97

25
45

.7
0

r3
.2

xl
ar

ge
BW

A
M

EM
1:

22
10

10
0.

33
16

.4
4

4.
18

94
.7

9
0.

57
37

00
.7

5
87

85
.7

8
r3

.4
xl

ar
ge

BW
A

M
EM

1:
19

37
93

5.
04

30
.8

5
13

.7
7

85
.3

0
0.

49
0.

35
84

82
.0

1
r3

.8
xl

ar
ge

BW
A

M
EM

0:
43

41
27

9.
97

16
.7

8
47

.1
0

49
.0

2
2.

92
0.

28
90

30
.9

3
r3

.x
la

rg
e

Fa
st

Q
C

0:
15

54
.2

3
0.

18
75

.0
5

24
.1

7
0.

53
29

02
6.

68
15

.9
7

r3
.2

xl
ar

ge
Fa

st
Q

C
0:

15
31

.0
7

0.
05

87
.3

7
12

.3
3

0.
13

5.
45

58
3.

09
r3

.4
xl

ar
ge

Fa
st

Q
C

0:
15

23
3.

66
0.

19
93

.6
9

6.
18

0.
08

0.
02

96
2.

15
r3

.8
xl

ar
ge

Fa
st

Q
C

0:
14

23
5.

66
0.

10
96

.8
4

3.
10

0.
04

0.
02

27
.7

5
*r

3.
xl

ar
ge

BW
A

A
LN

5:
24

23
11

.5
3

7.
53

2.
76

96
.9

8
0.

20
29

.0
4

90
09

.7
9

r3
.2

xl
ar

ge
BW

A
A

LN
2:

43
32

76
0.

49
53

.3
2

22
.5

9
76

.5
7

0.
60

3.
99

31
63

1.
29

r3
.4

xl
ar

ge
BW

A
A

LN
1:

40
36

74
8.

67
29

.8
9

37
.6

8
61

.6
8

0.
52

1.
18

32
27

3.
80

r3
.8

xl
ar

ge
BW

A
A

LN
1:

15
34

27
8.

09
13

.9
3

53
.4

7
45

.8
0

0.
64

1.
18

31
88

6.
82

r3
.x

la
rg

e
M

ar
kD

up
s

0:
24

11
51

2.
12

37
.5

2
70

.8
5

27
.1

8
0.

50
49

27
.7

1
69

28
.9

1
r3

.2
xl

ar
ge

M
ar

kD
up

s
0:

23
41

63
9.

11
67

.7
7

83
.4

6
15

.9
3

0.
24

0.
22

66
81

.0
6

r3
.4

xl
ar

ge
M

ar
kD

up
s

0:
22

69
22

6.
44

56
.3

0
90

.8
0

8.
95

0.
15

0.
45

69
89

.0
4

r3
.8

xl
ar

ge
M

ar
kD

up
s

0:
24

52
19

8.
18

21
.2

2
93

.1
2

6.
69

0.
11

0.
45

72
15

.3
2



108 CHAPTER 6. PROFILING WORKLOADS

0

5000

10000

15000

20000

c3.2xlarge
c3.4xlarge
c3.8xlarge
g2.2xlarge
g2.8xlarge
m3.2xlarge
r3.2xlarge
r3.4xlarge
r3.8xlarge
r3.xlarge

Instance Type

Time (s)

(a)FastQ
C

0

5000

10000

15000

20000

c3.2xlarge

c3.4xlarge

c3.8xlarge

g2.2xlarge

g2.8xlarge
m3.2xlarge

r3.2xlarge

r3.4xlarge

r3.8xlarge

Instance Type

Time (s)

(b)BW
A

M
EM

0

5000

10000

15000

20000

c3.2xlarge
c3.4xlarge
c3.8xlarge
g2.2xlarge
g2.8xlarge
m3.2xlarge
r3.2xlarge
r3.4xlarge
r3.8xlarge
r3.xlarge

Instance Type

Time (s)

(c)Bow
tie

0

5000

10000

15000

20000

c3.2xlarge

c3.4xlarge

c3.8xlarge

g2.2xlarge

g2.8xlarge
m3.2xlarge

r3.2xlarge

r3.4xlarge

r3.8xlarge

Instance Type

Time (s)

(d)BW
A

A
LN

0

5000

10000

15000

20000

c3.2xlarge
c3.4xlarge
c3.8xlarge
g2.2xlarge
g2.8xlarge
m3.2xlarge
r3.2xlarge
r3.4xlarge
r3.8xlarge
r3.xlarge

Instance Type

Time (s)

(e)M
arkD

ups

Figure
6.3:T

he
execution

tim
e

ofthe
tools

over
various

instance
types.



6.2. CREATING GENOMICS TOOL PROFILES 109

6.2.4 Resource Usage

The profiling service can capture fine-grained execution characteristics. By de-
fault, the profiling service is configured to monitor resource usage every second.
The following discusses investigation into the resource utilisation and behaviour
of the profiled tools over the R3 family of instance types.

Figure 6.4a–6.4e show temporal memory profiles and Figure 6.4f the empir-
ical cumulative distribution function (ECDF) of free memory for each tool on
r3.8xlarge instances. The memory profile gives the amount of free memory, as a
percentage of total instance memory, for each second of execution. Figure 6.4b
shows that BWA MEM has two distinct phases of execution: first, memory us-
age gradually decreases over the first phase of execution, before it is re-acquired
towards the end of execution for a secondary phase. This is because the BWA
MEM tool loads the entire input dataset into memory and pipes output to a sort-
ing phase (which reduces memory usage). Once the initial phase ends, memory
is released and the sorted output is written to disk. BWA ALN’s memory use
(Figure 6.4d) also presents an interesting pattern. This tool’s memory profile is
governed by two phases, with a substantial change in memory usage approxi-
mately half way through the execution. All of the tools use only a fraction of the
available memory when executed on large instance types, indicating that, from a
memory perspective, each tool could be executed concurrently on these instance
types.

The ECDFs in Figure 6.4f show the proportion of time spent with various
amounts of free memory throughout execution. Each of the five profiled tools ex-
hibits distinct and identifiable ECDF curves. For example, the Bowtie tool exhibits
bimodality which manifests as memory utilisation occurring with the greatest
probability in two distinct phases while FastQC has constant memory utilisation
and MarkDups exhibits high kurtosis (a measure of whether data is peaked or flat
relative to a normal distribution).



110 CHAPTER 6. PROFILING WORKLOADS

0 25 50 75

100

0
250

500
750

Tim
e (s)

Percent Free Memory

r3.xlarge
r3.2xlarge

r3.4xlarge
r3.8xlarge

(a)FastQ
C

0 25 50 75

100

0
1000

2000
3000

4000
5000

Tim
e (s)

Percent Free Memory

r3.2xlarge
r3.4xlarge

r3.8xlarge

(b)BW
A

M
EM

0 25 50 75

100

0
1000

2000
3000

4000
5000

Tim
e (s)

Percent Free Memory

r3.xlarge
r3.2xlarge

r3.4xlarge
r3.8xlarge

(c)Bow
tie

0 25 50 75

100

0
2500

5000
7500

10000
Tim

e (s)

Percent Free Memory

r3.2xlarge
r3.4xlarge

r3.8xlarge

(d)BW
A

A
LN

0 25 50 75

100

0
500

1000
1500

Tim
e (s)

Percent Free Memory

r3.xlarge
r3.2xlarge

r3.4xlarge
r3.8xlarge

(e)M
arkD

ups

0.00

0.25

0.50

0.75

1.00

0.7
0.8

M
em

ory U
tilization

ECDF

Bow
tie

BW
A ALN

BW
A M

EM
FastQ

C
M

arkD
ups

(f)EC
D

F
ofM

em
ory

U
tilisation

Figure
6.4:

T
he

percentage
of

free
m

em
ory

for
each

instance
type

during
tool

execution
(a)

-
(e).

Em
pirical

cum
ulative

distribution
function

offree
m

em
ory

for
each

w
orkload

over
the

r3.8xlarge
instance

type.



6.2. CREATING GENOMICS TOOL PROFILES 111

Figure 6.5a–6.5e plot the temporal CPU profile while Figure 6.5f shows the
ECDF of CPU usage for each tool on r3.8xlarge instances. FastQC CPU usage ap-
pears as flat lines in Figure 6.5a and a vertical line in the ECDF Figure 6.5f with
very little CPU utilisation because only a single core (out of thirty two available
cores) is used. BWA MEM (Figure 6.5b) and BWA ALN (Figure 6.5d) consume
most of the instance’s CPU resources for approximately half of their execution
time. Both tools exhibit symmetrical ECDF curves with low kurtosis for CPU
utilisation, suggesting that the computational intensity of these tools (Figure 6.5f)
is due to frequent fluctuations. MarkDups (Figure 6.5e) exhibits volatile CPU us-
age for the first third of its execution, from that point, CPU usage is constant and
below 25%. Finally, Bowtie (Figure 6.5c) uses a constant amount of CPU through-
out execution. Interestingly, this tool does not use all available CPU resources: it
uses only 50% on the 32 vCPU r3.8xlarge but 80% on the four vCPUs instance.
This result implies that CPU usage is constrained by another factor.

6.2.5 Discussion

The profiles highlight the practical benefits of selecting appropriate instance types
for tools. While any one tool may execute on a range of different instance types,
its resource consumption may vary across different types, as may its response to
resource limits. For example, BWA ALN and BWA MEM perform significantly
worse on smaller instances and fail when using the r3.xlarge instance type. Thus,
from the above results, BWA ALN should be executed on instances with at least 60
GB of memory. The tool also executes at least 38% faster on 16 core machines than
on 8 core machines. Conversely, tools such as FastQC cannot take advantage of
enhanced capabilities (e.g., more than one vCPU) and in fact should be deployed
on the smallest available instance type, with its performance varying by only 10%
across all instance types. Similarly Bowtie uses a maximum of 8GB of memory and
therefore does not need instance types with large amounts of memory.



112 CHAPTER 6. PROFILING WORKLOADS

0 25 50 75

100

0
250

500
750

Tim
e (s)

Percent CPU Utilization

r3.xlarge
r3.2xlarge

r3.4xlarge
r3.8xlarge

(a)FastQ
C

0 25 50 75

100

0
1000

2000
3000

4000
5000

Tim
e (s)

Percent CPU Utilization

r3.2xlarge
r3.4xlarge

r3.8xlarge

(b)BW
A

M
EM

0 25 50 75

100

0
1000

2000
3000

4000
5000

Tim
e (s)

Percent CPU Utilization

r3.xlarge
r3.2xlarge

r3.4xlarge
r3.8xlarge

(c)Bow
tie

0 25 50 75

100

0
2500

5000
7500

10000
Tim

e (s)

Percent CPU Utilization

r3.2xlarge
r3.4xlarge

r3.8xlarge

(d)BW
A

A
LN

0 25 50 75

100

0
500

1000
1500

Tim
e (s)

Percent CPU Utilization

r3.xlarge
r3.2xlarge

r3.4xlarge
r3.8xlarge

(e)M
arkD

ups

0.00

0.25

0.50

0.75

1.00

0.00
0.25

0.50
0.75

1.00
C

PU
 U

tilization

ECDF

Bow
tie

BW
A ALN

BW
A M

EM
FastQ

C
M

arkD
ups

(f)EC
D

F
ofC

PU
U

tilisation

Figure
6.5:

T
he

percentage
of

C
PU

utilisation
for

each
instance

type
during

toolexecution
(a)

-
(e).

Em
piricalcum

ulative
distribution

function
ofC

PU
utilisation

for
each

w
orkload

over
the

r3.8xlarge
instance

type.



6.3. USING PROFILES IN GLOBUS GENOMICS 113

6.3 Using Profiles in Globus Genomics

In collaboration with the Globus Galaxies team I am extending the Globus Galax-
ies platform to encode profiles and resource requirements for tools. This is ben-
eficial for two reasons: 1) SCRIMP can employ these profiles to select the best
instance type for a tool given current economic conditions, and 2) it will enable
SCRIMP to schedule concurrent execution of tools that would individually not
make full use of an instance’s resources. In the second case, HTCondor can be
used to partition instances into multiple slots – units of specific computational
capacity. SCRIMP can enable this model by using profiles obtained from the pro-
filing service to dynamically assign slots to tools based on requirements derived
from their profile.

When executing workloads on the cloud, execution time is only one dimen-
sion by which to assess tool performance. Often, users are equally concerned
with cost. To evaluate the cost and execution performance benefits that can be
achieved by using profiles, I analysed four production Globus Genomics gate-
ways to construct a representative workload. This workload contains over 2,000
executions of the five profiled tools over a period of 90 days. The cost of executing
this workload is computed in the same way as is described in Section 5.3, where
workload logs are processed to determine the time at which each job was submit-
ted. Tool profiles are used to determine the execution time of each workload on
each instance type. These execution times are then rounded up to the number of
required billable hours for that instance type. The cost of using each instance type
is then computed using historical AWS On-demand and Spot pricing information
at time of each job’s submission for its billable duration.

Figure 6.6 shows the total cost and execution time for the workload using
each instance type. The figure also shows the execution time and cost that are
obtained when using the Globus Genomics provisioning approach and several
adaptive strategies that use profiles to guide provisioning decisions. The Globus
Genomics provisioning approach applies a single static instance type for each
gateway (in these gateways either m3.2xlarge and r3.8xlarge). The new adaptive
strategies are designed to explore the trade-offs involved in selecting the fastest
and slowest, vs. the cheapest and most expensive, instances. In these results the
BWA MEM and BWA ALN tools are restricted to using instance types with at least
60GB of memory.

Figure 6.6a presents the total cost of executing the tools over each instance



114 CHAPTER 6. PROFILING WORKLOADS

type. As expected, using the larger instance types increase costs. Counterintu-
itively, the adaptive fastest solution, in which the fastest instance type for each
tool is selected, is only marginally more expensive than the adaptive slowest ap-
proach – a result that can be attributed to the fact that the frequently executed
FastQC tool has, on average (according to the above profiles), a slightly faster ex-
ecution time on the pre-selected c3.4xlarge instances than on the more expensive
8xlarge instance type. The adaptive costliest approach presents the worst-case
scenario for executing a workload based on Spot instance price. Its overall cost
is greater than that of any individual instance type due to it selecting the most
expensive instance type, regardless of tool, at the time of a job’s submission.

These findings demonstrate the savings that can be achieved when tool pro-
files are considered in the provisioning process. As expected, the cheapest so-
lution uses multiple instance types (each the most suitable for a specific tool at a
specific time), as the projected cost is less than using any single instance type. Fig-
ure 6.6b shows the cost when using On-demand instances for each instance type
and strategy. A substantial increase in cost is seen across all approaches relative
to Spot prices. However, the general patterns are comparable.

Figure 6.6c shows the time required to compute the entire workload when
using specific instance types and each adaptive solution. Clear differences can
be seen in performance across instance types. For example, the execution time
when using r3.xlarge is almost double that of other, larger instances. In contrast,
execution time with standard Globus Genomics provisioning is not significantly
larger than any single instance type; this is because individual gateways are of-
ten preconfigured with relatively large instance types (r3.8xlarge) and thus exe-
cution time is near optimal. The results also make clear the trade-offs between
performance and cost. The cheapest solution reduces overall cost by 86.6% while
increasing execution time by 29.2%, when compared to the Globus Genomics ap-
proach. The fastest solution reduces the monetary cost and execution time by
62.6% and 15.7%, respectively.



6.3. USING PROFILES IN GLOBUS GENOMICS 115

0

10
00

20
00

c3.2xlarge c3.4xlarge c3.8xlarge g2.2xlarge g2.8xlarge r3.xlarge r3.2xlarge r3.4xlarge r3.8xlarge
Adaptive Fastest
Adaptive Slowest

Adaptive Cheapest
Adaptive Costliest
Globus Genomics

In
st

an
ce

 T
yp

e

Cost ($)

Bo
w

tie
BW

A 
AL

N
BW

A 
M

EM
Fa

st
Q

C
M

ar
kD

up
s

(a
)S

po
tP

ri
ce

0

2,
50

0

5,
00

0

7,
50

0

10
,0

00

c3.2xlarge c3.4xlarge c3.8xlarge g2.2xlarge g2.8xlarge r3.xlarge r3.2xlarge r3.4xlarge r3.8xlarge
Adaptive Fastest
Adaptive Slowest

Adaptive Cheapest
Adaptive Costliest
Globus Genomics

In
st

an
ce

 T
yp

e

Cost ($)

Bo
w

tie
BW

A 
AL

N
BW

A 
M

em
Fa

st
Q

C
M

ar
kD

up
s

(b
)O

n-
de

m
an

d
Pr

ic
e

0e
+0

0

2e
+0

6

4e
+0

6

6e
+0

6

8e
+0

6

c3.2xlarge c3.4xlarge c3.8xlarge g2.2xlarge g2.8xlarge r3.xlarge r3.2xlarge r3.4xlarge r3.8xlarge
Adaptive Fastest
Adaptive Slowest

Adaptive Cheapest
Adaptive Costliest
Globus Genomics

In
st

an
ce

 T
yp

e

Time (s)

Bo
w

tie
BW

A 
AL

N
BW

A 
M

EM
Fa

st
Q

C
M

ar
kD

up
s

(c
)E

xe
cu

ti
on

Ti
m

e

Fi
gu

re
6.

6:
Th

e
co

st
an

d
ti

m
e

of
us

in
g

ea
ch

in
st

an
ce

ty
pe

.T
he

fo
ur

ad
ap

ti
ve

st
ra

te
gi

es
(f

as
te

st
,s

lo
w

es
t,

ch
ea

pe
st

,c
os

tl
ie

st
)

m
od

el
au

to
m

at
ed

pr
ov

is
io

ni
ng

ap
pr

oa
ch

es
in

w
hi

ch
an

in
st

an
ce

ty
pe

is
se

le
ct

ed
ba

se
d

on
th

e
pr

ic
e

or
pr

oj
ec

te
d

to
ol

ex
e-

cu
ti

on
ti

m
e.

Th
e

st
at

ic
G

lo
bu

s
G

en
om

ic
s

pr
ov

is
io

ni
ng

ap
pr

oa
ch

is
no

tg
ui

de
d

by
to

ol
pr

ofi
le

in
fo

rm
at

io
n,

bu
tr

at
he

r
us

es
a

pr
e-

se
le

ct
ed

in
st

an
ce

ty
pe

fo
r

ea
ch

ga
te

w
ay

.



116 CHAPTER 6. PROFILING WORKLOADS

6.4 Summary

Globus Genomics exposes over one thousand custom tools across the various
gateways. Manually determining the optimal cloud instance type for each tool
is both labour intensive and error prone. A common problem shared between
Globus Galaxies gateways, PDACS, and likely many other scientific services, is
that users are encouraged to contribute their own analytical tools and share them
with the community. It is unlikely that these tools are provided with high de-
grees of documentation regarding their execution, and are therefore difficult to
intuitively associate with an optimal instance type.

This chapter presented an automated profiling service capable of creating rich
profiles from arbitrary workloads. The profiling service manages the deployment
and execution of tools across an elastic pool of provisioned and configured in-
stances. It captures fine-grained performance statistics from the tool’s execution
and uses them to create profiles which can be used for instance provisioning, tool
deployment, and scheduling. I have applied this approach to several genomics
tools and shown that the resulting profiles can significantly improve performance
and cost in real-world cloud provisioning scenarios. The findings of this chapter
address the third and fourth research questions by automatically measuring the
resource requirements of tools and incorporating them into the provisioning pro-
cess.



Chapter 7

Provisioning as a Service

A common requirement of cloud-based applications, high performance comput-
ing algorithms, and data analytics is the need to scale across many cloud in-
stances. To address this requirement a number of auto-scaling systems have been
developed, such as Fenzo [88], Cloud Scheduler [90], and Kingfisher [96], to name
a few. However, in most cases these systems are designed for a specific applica-
tion and are not easily repurposed by others, many require manual configuration
to optimise efficiency, and most are not able to dynamically assess cloud market-
places to cost-effectively provision infrastructure. Without such sophistication, it
is likely that there are many cloud deployments that are inefficient with respect
to performance and cost.

The complex landscape of instance types and economic models creates new
opportunities to optimise many aspects of the provisioning process. Cost, execu-
tion time (for jobs and related jobs), data locations, instance types, and instance
terminations offer many potential trade-offs when determining the most appro-
priate cloud instance to provision for a given workload. For example, although
the Spot market can substantially reduce operational costs it can also compro-
mise a service’s ability to reliably fulfil workloads. This trade-off prompted the
fifth research question, RQ5, which asks how reliable clusters can be achieved
when using potentially unreliable infrastructures. I explore this by investigating
the use of predictive bid prices and the affect they can have on instance reliability.

This chapter presents the Scalable Cloud Resource Management and Provi-
sioning service (SCRIMP). SCRIMP is an automated and cost-aware provisioning
service for efficiently acquiring and managing elastic cloud infrastructure to ex-
ecute arbitrary workloads. SCRIMP combines many of the techniques and tech-

117



118 CHAPTER 7. PROVISIONING AS A SERVICE

nologies described thus far in this thesis. SCRIMP is used in production by over
30 different gateways and more than 300 researchers. It has been shown to re-
duce cost, execution time, and instance termination rate.In response to the grow-
ing needs for similar capabilities in other gateways and scientific applications,
SCRIMP is designed with an independent, generalised, and modular architec-
ture that can be leveraged via its APIs to efficiently provision cloud infrastructure
on behalf of external applications. In this chapter I employ SCRIMP to explore
the final research question, RQ6, by investigating how fine-grained accounting
information can be maintained and used for auditing and cost reclamation.

7.1 SCRIMP

SCRIMP is designed with a modular architecture in which different execution
frameworks, cloud platforms, provisioning strategies, and optimisation meth-
ods can be integrated. An overview of the SCRIMP architecture is depicted in
Figure 7.1. SCRIMP also provides tune-able knobs for many features (run rate,
thresholds, bid price, etc.), enabling customisation and optimisation of different
aspects of the provisioning process. SCRIMP is delivered as a cloud-hosted ser-
vice through which users may customise the deployment to the needs of their
application and manage on-demand infrastructure via RESTful APIs. This chap-
ter presents the architecture of SCRIMP and investigates the performance and
cost benefits that can be obtained via execution of production workloads. I de-
scribe integrations of both HTCondor [82] and Apache Spark [84] which support
provisioning of dynamic condor pools and on-demand Mesos [89] clusters, re-
spectively.

SCRIMP is architected as a stand-alone service that can support a broad range
of execution environments. As a service, users are able to configure and manage
every aspect of the provisioning approach independent from a particular appli-
cation or gateway. As a single organisation may operate multiple execution envi-
ronments (each environment is referred to as a tenant), SCRIMP is able to manage
multiple tenants simultaneously and can improve global efficiency by enabling
the cooperative sharing of execution infrastructure.



7.1. SCRIMP 119

Resource Manager

Apache

Spark
HTCondor HTCondor

Tenant Queues

Instance

Instance

Instance Instance

Instance

Instance

Cloud Provider

SCRIMPLocal
Queue

Provision

Engine

Market 
Information

Network 
Performance

Resource 
Requirements

Figure 7.1: An overview of SCRIMP.

7.1.1 Execution Frameworks

SCRIMP is designed to meet a broad range of use cases and in turn supports a
range of execution frameworks. To facilitate this flexibility, SCRIMP is designed
to monitor arbitrary execution queues to retrieve real-time workload information.
It currently incorporates two scheduler modules, or implementations of a queue
interface, and can be easily extended. These modules leverage HTCondor and
Apache Spark APIs to retrieve the list of jobs awaiting execution, information
about the requirements of each job, and other queue-level metadata (e.g., wait
time). These properties are harmonised into a common data model that is used
by SCRIMP to make provisioning decisions.

HTCondor

HTCondor [82] is a commonly used high throughput computing framework that
is built upon a master/worker model. Jobs are submitted to a master HTCon-
dor queue. HTCondor workers are registered with a single master node. When
workers are available the master’s negotiator matches idle jobs from the queue
to appropriate workers. ClassAds [184] describe the requirements and depen-
dencies of a particular job. This model enables resource requirements, such as
number of cores, memory, and disk to be expressed for every job. HTCondor is



120 CHAPTER 7. PROVISIONING AS A SERVICE

used by the Globus Galaxies platform (and many other scientific gateways) as a
scalable model for executing workflows.

Hierarchical HTCondor pools (collections of worker nodes) can be established
by having several HTCondor queues report their job ClassAds to other queues.
This is often used in multi-tenant deployments in which a single organisation
may have many condor pools for different purposes and may wish to exchange
workload between these pools when excess capacity is available. Such models
can be established by linking HTCondor collectors, which are responsible for col-
lecting the state (daemons, resources, etc.) of the HTCondor pool. Individual
tenants are then configured to enable passing of ClassAds between collectors,
which allows all jobs to be monitored and queried by the highest level collector
(SCRIMP’s collector).

Apache Spark

Apache Spark is a framework for for supporting parallel data-intensive appli-
cations on commodity clusters. Spark is built on top of Apache Mesos, a clus-
ter management system that allows parallel applications to be executed on a
cluster. Spark can also use other cluster management systems such as Hadoop
YARN [194]. It can also operate on top of a wide variety of storage systems such
as Hadoop Distributed File System (HDFS) [195].

Spark uses a task per data partition to represent a parallel operation on a
dataset. Each task can be executed in parallel on one or more worker nodes.
Mesos provides a machine independent representation of a distributed system.
It is built upon a master/slave model in which tasks are submitted to the mas-
ter and are then executed on various slaves. Spark can operate with Mesos in
coarse-grained and fine-grained models. In the coarse-grained model a single
long-running Spark task is executed on each Mesos worker. The Spark task is
therefore responsible for scheduling sub tasks on that worker. In the fine-grained
model each Spark task is executed as a Mesos task, therefore allowing workers
to host multiple Spark tasks. Mesos includes a resource advertising model from
which the master is able to determine the available capacity of worker nodes for
submission.



7.1. SCRIMP 121

7.1.2 Instance provisioning and configuration

SCRIMP relies on cloud platform APIs to request and configure instances used to
execute workloads. The service is designed with a plug-in cloud module interface
which must support several simple operations:

1. Provision an instance with particular resource capabilities.

2. Configure the instance with required software and data dependencies.

3. Request information about the running instance (e.g., IP, health check, run-
ning time).

4. Manage the instance via a unique reference (e.g., instance termination).

SCRIMP currently supports an EC2 cloud module that uses EC2 REST APIs to
perform these operations. An alternative cloud module is also provided which
simulates AWS functionality, allowing the exploration of provisioning features
for little to no cost.

Irrespective of the execution framework, cloud infrastructure, and application
requirements every provisioned instance must be configured to enable execution
of the associated workload. In the case of HTCondor this is an HTCondor worker
node, for Spark it is a Mesos slave. Moreover, application requirements (e.g.,
application binaries and dependencies) must be available on the provisioned in-
stance in order to execute the job. In some cases, such as Globus Galaxies, several
other dependencies are required such as a shared file system to access reference
and input data.

SCRIMP relies on the cloud-init model to dynamically configure instances
with software dependencies and/or settings. To expedite the configuration pro-
cess, SCRIMP supports the use of predefined virtual machine images (e.g., an
Amazon Machine Images (AMI)) that include a static image of pre-installed soft-
ware. Typically these images include software such as the worker execution soft-
ware (e.g., Spark worker node), but they may also include a suite of other appli-
cations. SCRIMP currently uses dynamic contextualisation of raw images when
fulfilling HTCondor workloads and an AMI for Spark workloads as building and
deploying Spark can be particularly time consuming. After provisioning either a
raw image or AMI, SCRIMP uses cloud-init to configure the instance. This con-
figuration includes registering the worker node with the master and optionally



122 CHAPTER 7. PROVISIONING AS A SERVICE

linking the node with other shared infrastructure (e.g., NFS). SCRIMP also allows
custom cloud-init scripts to be defined on a per-tenant basis.

7.1.3 Cloud Provisioning

In large-scale application scenarios there is infrequently sufficient a priori infor-
mation to optimise execution. Workloads are dynamic, whereby two sequential
workloads can have very different execution characteristics. There are a huge
range of complex and dynamic trade-offs that can be considered at any time, for
example provisioning decisions may be optimised for execution cost, execution
time, data transfer cost, reliability, resource utilisation, to name a few.

Given the search space and complex optimisation decisions it can be difficult
for a user to efficiently provision resources [22]. As shown in Chapter 5, simplistic
provisioning approaches (such as using a single Spot instance type) can increase
cost by an order of magnitude and degrade performance. Many real-world auto-
mated provisioning systems employ static instance selection strategies [196, 197].
These systems present an enormous potential for optimisation and are a key mo-
tivation for the development of SCRIMP.

There is a rich amount of information that can inform the provisioning pro-
cess. Real-time instance pricing and usage information can be retrieved, applica-
tion performance can be profiled and derived from execution traces, and depen-
dencies and resource requirements can be derived from job information. All of
this information can then be factored into predictions and provisioning decisions.

SCRIMP incorporates the cost-aware techniques discussed in Chapter 5 to
minimise the cost of acquiring and operating cloud infrastructure. SCRIMP is
also compatible with the work presented in Chapter 6, enabling custom work-
load profiles to be created and used during the provisioning process. These capa-
bilities give SCRIMP the potential to reduce costs and optimise performance for
many scientific services.

Predictive Bidding

Dynamic pricing models provide opportunities to provision infrastructure for re-
duced cost in exchange for reduced availability and reliability. However, a lack
of knowledge of Spot market volatility may lead to increased costs and instance
terminations [21, 22]. If future Spot prices can be accurately predicted, users can



7.1. SCRIMP 123

customise the provisioning process to select more reliable Spot instances to min-
imise costs and terminations.

SCRIMP includes a modular instance selection interface that can be extended
to implement more advanced selection and bid calculation algorithms. The de-
fault selection algorithm can be configured to assess On-demand and Spot mar-
kets and sort potential requests by the cheapest instance type and availability
zone. The default bid calculation algorithm can be configured to bid either a
static value or a percentage of the On-demand price.

To exemplify the advantages of this approach and explore the potential op-
timisations that can be achieved with Spot market forecasts, I, in collaboration
with researchers from the University of California at Santa Barbara [39], have
integrated support for the DrAFTS (Durability Agreements From Time Series)
system [29] into SCRIMP. DrAFTS is designed to compute a bid value that guar-
antees (with a given probability) that an instance lifetime will exceed a specified
time (i.e., that the market price of the selected instance will not surpass the bid
price). DrAFTS computes this bid based on time series analysis of historical Spot
prices for all instance types and availability zones. SCRIMP employs DrAFTS by
querying the predicted bid prices for all suitable instance types and availability
zones. SCRIMP then ranks these bid prices, in the same way that it ranks low-
est cost instances when using current Spot prices, when selecting an instance to
provision.

7.1.4 Resource Management

SCRIMP goes beyond the acquisition of cloud infrastructure and manages in-
stances from the submission of requests through to their termination. Examples
of resource management activities include cancelling or repurposing unused in-
stance requests, restarting jobs if instances are terminated, terminating instances
if they are not used, and migrating instances between tenants.

The resource management aspects of SCRIMP take advantage of cloud com-
puting models to improve performance and cost. For example, the time to satisfy
a Spot instance request varies and can take several minutes. However, users are
not charged for instance requests that are not satisfied and these requests can be
cancelled at any time. Thus, SCRIMP can over-request instances (typically of dif-
ferent types or in different availability zones) and monitor the requests as a group
until one is satisfied. SCRIMP will then cancel the outstanding requests, unless



124 CHAPTER 7. PROVISIONING AS A SERVICE

there are other waiting jobs, in which case those requests will be repurposed to
other jobs. SCRIMP also facilitates the migration of cloud instances between co-
operative tenants through the development of a novel migration framework, dis-
cussed in Section 7.3.3.

Given the unreliable nature of Spot instances it is important that SCRIMP
monitors running instances and responds to terminations. In this case, jobs are
returned to the job queue and a new instance will be provisioned. Another cloud-
based optimisation that SCRIMP can apply relates to fully utilising the billable
period of EC2 instances. EC2 instances are billed on an hourly basis. Thus, there
is no benefit in terminating an instance within an hour (from a cost perspective).
With this knowledge SCRIMP only terminates instances as they approach the end
of the hourly billing cycle. This ensures that idle instances are kept alive and can
therefore be used satisfy incoming requests immediately.

SCRIMP records all cloud interactions and associates decisions with specific
workloads. A reliable RDS database stores important instance details (type, avail-
ability zone, price, etc.), event times (request, launch, termination, and migra-
tion), as well as many other details regarding job, workload, and provisioner
state. This allows SCRIMP to report fine-grained usage and accounting statistics
for tenants and their individual users. In addition, the cost of each instance is
calculated and recorded. Thus, SCRIMP can expose detailed billing information
regarding a tenant and enable administrators to analyse usage characteristics to
optimise the provisioning process.

7.1.5 Provisioning algorithm

The provisioning algorithm used by SCRIMP is summarised in Algorithm 2. It
is specifically designed with a number of configurable parameters which can be
defined at the provisioning service level or for specific tenants. The service pe-
riodically checks the status of the job queue based on a configurable run rate
parameter. When the provisioning service checks the global queue it identifies
waiting jobs and matches them to a specific tenant. The provisioning algorithm
has two primary phases. The first phase involves the management of existing
infrastructure (lines 9–26). This phase first checks the state of instance requests to
identify requests that have been fulfilled and either cancel or repurpose unnec-
essary requests (e.g., a previously idle job may have been deployed to a newly
idle instance). Provisioned instances are also monitored for state changes to de-



7.2. EXPERIMENTAL DATASET 125

tect terminations and terminate idle instances when necessary. Another aspect
of the management phase is to migrate instances to a cooperative tenant if one
tenant has excess idle instances and another has idle jobs. The second phase of
the provisioning algorithm focuses on acquiring additional instances (lines 28–
34). Idle jobs are checked against the RDS database to determine whether a new
request is necessary (based on existing requests and tenant settings). If a request
is required, job profiles are used to filter the available instance types based on
their CPU, disk, and memory requirements. Instance types and their potential
availability zones are then ranked by price before SCRIMP makes requests for
the selected instances.

7.2 Experimental Dataset

To assemble a representative multi-tenant workload to evaluate the performance
of SCRIMP I analysed the execution traces of five production Globus Genomics
gateways. Specifically, I selected the busiest day from each of the gateways to
construct a single dataset with a broad range of job executions. Each job’s sub-
mission time, execution time, and instance requirements (e.g., required number
of vCPUs specified by the gateway) are included in the dataset. The dataset is
comprised of 8452 jobs over a 24 hour period. In order to reduce the execution
time and cost of running experiments on a commercial cloud only the first 1000
jobs of the dataset are used. This represents a three hour and twenty minute pe-
riod of job submissions, for a total of approximately eight hours of execution and
537 cumulative compute hours.

To enable the dataset to be replayed at different times the submission time of
each job has been transformed into a relative submission time, offset by the time
of the day the job was submitted. This allows the dataset to be deployed at differ-
ent times while still reflecting the production distribution of jobs. The execution
of the jobs can be seen in Figure 7.2. This figure shows the rate at which the first
1000 jobs are dispatched. The width of each job indicates execution duration. The
ECDF of the jobs shows that the distribution of jobs is approximately normal, as
shown in Figure 7.3



126 CHAPTER 7. PROVISIONING AS A SERVICE

Algorithm 2 SCRIMP provisioning process.
1: runRate = /* configurable */

2: idleReq = /* configurable */

3: while true do
4: tenantList = subscribed tenants

5: for tenant in tenantList do
6: jobList = idle jobs in queue

7: requestList = EC2 instance requests

8: # Manage acquired resources #

9: for request in requestList do
10: for job in jobList do
11: if request belongs to job and request is fulfilled then
12: Remove job from jobList
13: end if
14: end for
15: if request does not belong to any job then
16: Re-purpose or cancel request
17: end if
18: end for
19: # Migrate excess resources #

20: if jobList == empty AND instanceList != empty then
21: for tenant in tenantList do
22: if instanceList < jobList then
23: Migrate an instance to an idle job

24: end if
25: end for
26: end if
27: # Provision additional resources #

28: for job in jobList do
29: if job not fulfilled AND job idle time > idleReq then
30: eligibleIns = restrict instance types by job requirements

31: instanceRequest = select best type from eligibleIns
32: Request instanceRequest
33: end if
34: end for
35: end for
36: SLEEP runRate
37: end while



7.2. EXPERIMENTAL DATASET 127

100

200

300

400

500

600

700

800

900

1000

5000 10000 15000 20000 25000
Duration (s)

Jo
bs

Tenant
1
2
3
4
5

Figure 7.2: The execution time and duration of the first 1000 jobs of the dataset.



128 CHAPTER 7. PROVISIONING AS A SERVICE

0 2000 4000 6000 8000 10000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Arrival Time

E
C

D
F

()

●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●●● ●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●

Figure 7.3: The ECDF of the first 1000 jobs relative execution time.



7.3. EVALUATION 129

Many of the jobs included in this workload represent executions of propri-
etary tools and analysis of real datasets. Thus, executing these workloads re-
quires both installation of these tools and access to the input datasets. To alleviate
the need to manage a production execution environment, instead the execution
of individual jobs is modelled by a sleep command with a simulated execution
length. The duration of the sleep command is determined by the recorded execu-
tion length of the job in the original execution log. However, one difficulty with
this approach is that the provisioning model supports multiple instance types
whereas the job was originally executed on a single instance type. As such, the ex-
ecution time for each job is likely to be very different on different instance types.
To address this discrepancy the findings from Chapter 6 are used to forecast and
transform the execution duration between instance types. Execution ratios are
used to scale the execution duration from the recorded execution’s instance type
to the simulated instance type. Table 7.1 presents a summary of the execution
ratios between several common instance types and the m3.2xlarge and r3.8xlarge
instance types.

Table 7.1: Ratio of execution times between instance types.

Instance m3.2xlarge r3.8xlarge
m3.2xlarge 1.00 1.84
c3.2xlarge 0.98 1.80
c3.4xlarge 0.61 1.12
c3.8xlarge 0.51 0.94
g2.2xlarge 1.05 1.93
g2.8xlarge 0.56 1.03
r3.2xlarge 1.01 1.86
r3.4xlarge 0.64 1.18
r3.8xlarge 0.54 1.00

7.3 Evaluation

Evaluating the performance of SCRIMP is challenging for a number of reasons:
firstly, the production usage of SCRIMP cannot be easily replicated due to signif-
icant costs; secondly, workloads are not always repeatable; and thirdly, jobs are



130 CHAPTER 7. PROVISIONING AS A SERVICE

run at different times, with different cloud market conditions. A series of emu-
lated experiments have been conducted to address these challenges. The emu-
lated experiments utilise the reproducible workload dataset and the AWS cloud
module to deploy sleep jobs to real AWS instances. To mitigate the changing
market condition’s influence over tests, a simulation plug-in is used to verify the
results of the emulation tests. The simulation plug-in is able to simulate the AWS
market at a given time and can therefore be used in place of the cloud module to
compare different strategies under the same market conditions.

The experiments focus specifically on the affect of various optimisations and
configurations that can be applied to SCRIMP, such as queue polling, idle times,
and request repurposing. In each case the experiment process is the same. The
workload described in Section 7.2 is dispatched to an HTCondor queue and the
management component of SCRIMP records how each job is assigned to instances.
Properties such as instance requests, instance terminations, individual job wait
and run time, instance cost, and makespan are also captured and compared.

Various bidding strategies are employed in each experiment to explore the
affect of static and predictive models:

• Static: Selects the cheapest instance at the time of job submission and uses
a configurable bid price relative to the On-demand instance price. E.g., 0.8
× On-demand price.

• Predictive: Uses DrAFTS to compute a bid that will ensure that an instance
remains active for at least one hour with 99% confidence. Selects the in-
stance with the lowest such bid.

• Profiles: Uses DrAFTS to compute a bid that will ensure that an instance
remains active for the duration of the job with 99% confidence. Selects the
instance with the lowest such bid.

Finally, the potential benefit of facilitating the migration of instances between
tenants is explored by replaying production execution traces.

7.3.1 Emulation

Emulation tests have been conducted to explore SCRIMP’s tunable configuration
options. It is important to note that each experiment has been run at a different
time and is therefore subject to dynamic market conditions. Table 7.2 shows the



7.3. EVALUATION 131

averaged results (from four executions) of the tests that have been performed for
each configuration option. The table’s description column describes the config-
uration parameter that is explored in each test, where IR (Idle Requirement) is
the length of time a job must be idle before being processed, Re (Repurposing) is
whether or not orphaned requests are reused and moved to other idle jobs once
a job becomes fulfilled, RR (Run Rate) is the amount of time the SCRIMP waits
between monitoring periods, and AZ (Availability Zone) is the number of avail-
ability zones the service is configured to use. The base test cast employs a run rate
of five seconds, an idle requirement of two minutes, enables request repurpos-
ing, and can select from nine instance types (those presented in Table 7.1 across
all availability zones.

Table 7.2: The performance of SCRIMP with different configuration settings.

Description Avg Wait (s) Requests Instances Spot Cost On-demand Cost
Base 115.71 354 313 $83.17 $534.06
AZ=1 101.91 355 345 $77.36 $547.03
Re=F 224.77 563 411 $79.26 $578.81
RR=120 136.63 355 355 $84.05 $668.73
RR=600 251.21 291 291 $91.10 $541.44
IR=0 73.50 766 467 $82.36 $618.88
IR=600 376.05 359 354 $76.17 $538.75

The configurable parameters have considerable influence over the performance
of SCRIMP and enable users to manage trade-offs between performance and cost.
The results of the tests are further shown in Figure 7.4. The following examines
these results in further detail.

Run Rate

The run rate parameter determines SCRIMP’s monitoring period for polling the
queue data and instance resource information. The base case employs a run rate
value of 5 seconds. Two additional test cases have been used to investigate the
affect of delaying SCRIMP’s run rate to once every 120 seconds and once every
600 seconds. Both of these test cases result in fewer instance requests, as shown in
Figure 7.4b, and fewer provisioned instances (Figure 7.4c) than the base test case.
The delayed monitoring period means SCRIMP detects idle jobs less frequently.



132 CHAPTER 7. PROVISIONING AS A SERVICE

This provides the HTCondor negotiator a greater opportunity to schedule jobs to
existing instances before SCRIMP detects them, thus resulting in fewer instances
being launched. However, acquiring fewer instances results in jobs having to
wait for existing instances to become idle and therefore increases the average
wait time for both of these tests, as shown in Figure 7.4a. The tests show the av-
erage wait time for the 120 and 600 second run rate tests increases 18% and 117%,
respectively, over the base case. Finally, a less frequent run rate means SCRIMP is
unable to terminate unnecessary requests before they are fulfilled by AWS. This
is reflected by the number of requests matching the number of provisioned in-
stances for both of these tests.

Idle Time Requirement

SCRIMP enables configuration of the length of time a job must wait before it is
identified as requiring resources. This configuration is designed to allow the HT-
Condor negotiator time to execute and therefore reuse of existing instances. Each
of the emulation tests are executed with HTCondor configured to use the highest
possible negotiation rate (20 seconds). The base test case employs a two minute
idle time requirement to reduce the number of unnecessary instances that are re-
quested. Two additional test cases have been explored to determine the role of
the idle requirement. These execute SCRIMP with no idle requirement and a 600
second idle requirement. When no idle requirement is specified, jobs are detected
when submitted and will have an instance provisioned immediately. Removing
the idle requirement results in an almost 100% increase in the number of instance
requests, and due to the AWS fulfilment rate, an average of 141 more instances
provisioned than the base test case. Lengthening the idle time requirement to 600
seconds provides the opportunity for workloads to reuse existing infrastructure
rather than launch new instances. It therefore results in far fewer requests being
made. However, the greater idle requirement triples the average wait time for
jobs, when compared to the base test case.



7.3. EVALUATION 133

0

10
0

20
0

30
0

AZ
=1

Ba
se

IR
=0

IR
=6

00
Re

=F
R

R
=1

20
R

R
=6

00
Te

st

Average Wait Time (s)

Te
st AZ

=1
Ba

se
IR

=0
IR

=6
00

Re
=F

R
R

=1
20

R
R

=6
00

(a
)W

ai
tt

im
e.

0

20
0

40
0

60
0

80
0

AZ
=1

Ba
se

IR
=0

IR
=6

00
Re

=F
R

R
=1

20
R

R
=6

00
Te

st

Average Requests Made

Te
st AZ

=1
Ba

se
IR

=0
IR

=6
00

Re
=F

R
R

=1
20

R
R

=6
00

(b
)I

ns
ta

nc
e

re
qu

es
ts

.

0

10
0

20
0

30
0

40
0

AZ
=1

Ba
se

IR
=0

IR
=6

00
Re

=F
R

R
=1

20
R

R
=6

00
Te

st

Average Instances Provisioned

Te
st AZ

=1
Ba

se
IR

=0
IR

=6
00

Re
=F

R
R

=1
20

R
R

=6
00

(c
)I

ns
ta

nc
es

pr
ov

is
io

ne
d.

0255075

AZ
=1

Ba
se

IR
=0

IR
=6

00
Re

=F
R

R
=1

20
R

R
=6

00
Te

st

Average Spot Cost ($)

Te
st AZ

=1
Ba

se
IR

=0
IR

=6
00

Re
=F

R
R

=1
20

R
R

=6
00

(d
)S

po
tc

os
t.

0

20
0

40
0

60
0

AZ
=1

Ba
se

IR
=0

IR
=6

00
Re

=F
R

R
=1

20
R

R
=6

00
Te

st

Average Ondemand Cost ($)

Te
st AZ

=1
Ba

se
IR

=0
IR

=6
00

Re
=F

R
R

=1
20

R
R

=6
00

(e
)O

n-
de

m
an

d
co

st
.

Fi
gu

re
7.

4:
Th

e
pe

rf
or

m
an

ce
of

SC
R

IM
P

w
it

h
va

ri
ou

s
co

nfi
gu

ra
ti

on
s.



134 CHAPTER 7. PROVISIONING AS A SERVICE

Resource Restriction

Tenants can specify the instance types and availability zones that SCRIMP can
select. A test has been conducted to investigate the influence of limiting the po-
tential resource pool to a single availability zone. The results of this test show
very little effect on SCRIMP’s performance, in fact, in some of the cases the re-
stricted executions actually performed better than the base case. These results
confirm the findings presented in Chapter 6, where less than a 1% difference was
found between provisioning resources across all possible availability zones and a
single availability zone.

Repurposing Requests

Instance requests can often become orphaned if the job for which they were re-
quested is scheduled to an existing instance. Rather than cancelling these re-
quests, SCRIMP attempts to capitalise on the situation by repurposing orphaned
requests to other idle jobs. The base test case includes request reuse, whereas the
Re=F test case does not. The test case without request reuse terminates excess
instance requests when a job is removed from the idle queue or when an instance
request is fulfilled for it. The results show that disabling request reuse increases
both the number of instance requests and provisioned instances.

Disabling request repurposing results in an increase in provisioned instances
of 31.1%. Counterintuitively, the Spot instance cost, shown in Figure 7.4d, is
lower than the base test case. This is due to the dynamic Spot market condi-
tions at the time of the tests’ execution. This conclusion is supported by the On-
demand cost (Figure 7.4e) reflecting the higher number of provisioned instances.
Additionally, the average wait time increases by 94.2% over the base test due to
new requests having to be made for each idle job.

Cost & Performance

SCRIMP allows tenants to describe custom provisioning strategies to trade-off
performance and cost. For example, if cost is not prohibitive, the throughput of a
tenant can be improved by electing to use On-demand instances. In addition to
utilising On-demand instances, SCRIMP’s extensible provisioning strategies pro-
vide a range of opportunities for cost and performance customisation. The dy-
namic AWS environment makes it difficult to reliably compare the performance



7.3. EVALUATION 135

and cost of subsequent tests. Therefore, makespan and Spot instance cost are
not reliable performance and cost indicators. Instead, average wait time and On-
demand cost (which is not subject to dynamic pricing) can be used to compare
test results.

An example of SCRIMP’s ability to trade performance and cost is demon-
strated by the idle requirement test cases. These test cases show that reducing
the idle requirement can substantially improve the throughput (reducing aver-
age wait time) of the service in exchange for an additional $84.82 On-demand
cost.

Emulation Validation

In order to validate the emulation the simulation cloud module plug-in is used
to remove market variability by allowing workloads to be replayed at the same
time under the same market conditions. A comparison of executing SCRIMP
with and without the simulation plug-in is given in Table 7.3. The results in-
dicate the simulation plug-in creates 11% fewer instance requests and acquires
17% fewer instances than using the AWS cloud module to fulfil a 100 job dataset.
There are two main causes for these discrepancies: firstly, the simulation plug-in
uses average observed values for the time required to request, launch, and con-
figure instances, whereas the AWS-based tests experience variable times for each.
Secondly, HTCondor does not always negotiate jobs at the specified rate which
makes it difficult to accurately simulate its behaviour. However, using the simu-
lation plug-in to execute the 100 job dataset exhibits a standard deviation of 1.70
provisioned instances over seven executions. Thus, the simulation cloud module
plug-in is able to produce relatively consistent results.

Table 7.3: Calibration of the simulation plug-in.

Real Simulated
Jobs Requests Instances Requests Instances
1 1 1 1 1
5 5 5 5 5
10 10 10 10 10
25 11 10 16 14
50 21 21 17 16
100 45 42 40 35



136 CHAPTER 7. PROVISIONING AS A SERVICE

The results of using the simulation cloud module plug-in to perform the previ-
ously emulated test cases are given in Table 7.4. Despite the results not matching
the emulation tests exactly, they do support the emulated findings. For example
removing the idle requirement in the emulated experiments resulted in 413 addi-
tional requests being made, whereas simulating the same test case resulted in an
additional 440 requests. Although many of the simulation results are less similar
(e.g., the improvement in average wait time for the same test was 36.0% when
emulated and 15.76% when simulated), the overall results show the configurable
parameters to have similar effects to the emulated tests. Therefore the simulation
cloud module plug-in corroborates the findings of the emulated test cases.

Table 7.4: Simulation results.

Description Requests Instances Average Wait (s)
Base 313 274 247.84
AZ=1 325 291 146.38
Re=F 392 309 317.23
RR=120 330 330 279.05
RR=600 229 229 344.68
IR=0 753 567 208.79
IR=600 231 231 365.94

7.3.2 Spot Instance Reliability

To explore the importance of Spot market bid values I have integrated and emu-
lated multiple bidding strategies. To minimise the impact of performing tests at
different times the resource management component of SCRIMP has been con-
figured to capture the decisions of multiple bidding strategies concurrently. That
is, when provisioning a new instance for an idle job each bidding strategy is ex-
ecuted to nominate an instance type, availability zone, and bid value, which is
then recorded. For each test case only one of the bidding strategies is used to
launch a new instance. The other strategies simply nominate an instance and
record their decisions for later analysis.

The bidding strategies analysed with the 1000 job dataset are: DrAFTS Cheap-
est, DrAFTS Average, DrAFTS Profiles, and Cost-aware. The DrAFTS Cheapest ap-
proach queries the DrAFTS service to determine the bid price for each instance



7.3. EVALUATION 137

type and availability zone assuming the instance will be required for one hour.
The cheapest of these instances is then selected and its corresponding bid value
is used. The DrAFTS Average strategy uses DrAFTS’s forecast average cost of
each instance over the next hour to select the instance with the lowest predicted
volatility in that hour. The DrAFTS one hour predictive bid is used, however
the selected instance is not necessarily the same. The DrAFTS Profiles strategy
employs the DrAFTS service to select the cheapest instance type based on the
known execution length of a job. This strategy uses profiles obtained from the
profiling service, discussed in Chapter 6, the execution length of a job (scaled to
each instance type) is used to select a DrAFTS bid with a 99% guarantee that the
instance will persist throughout the job’s execution. These bids are then sorted
and the instance type with the lowest price is selected. The Cost-aware strategy
employs the cost-based selection techniques described in Chapter 5. It selects the
cheapest instance type at the time of provisioning. A simplistic bidding approach
is used where a bid is determined as 80% of the instance type’s On-demand price.

The experiment required 348 instances to be provisioned to satisfy the 1000
job dataset. The four bidding strategies are compared in terms of the dollar value,
potential cost, financial risk, and the number of terminations their provisioning
decisions would have been subject to. The potential cost is computed as the max-
imum value the provisioned instances could have incurred had the user been
charged the bid price. Financial risk is computed as the potential cost minus the
actual cost. Terminations are determined by identifying if an instance’s bid price
would have been exceeded by, or equal to, the Spot market price at any time
during the job’s execution.

The results of the experiment are presented in Table 7.5. The table shows that
using predictive bidding strategies can substantially lower financial risk, with
the Cost-aware bidding strategy having over 20 times the financial risk of the
DrAFTS strategies. Incorporating the execution length into the bidding strategy
(DrAFTS Profiles) reduces the number of Spot instance terminations from 44 to
32. There were no identified instance terminations when using the Cost-aware
approach due to its use of high bid prices and relatively stable instance prices
at the time of experimentation. However, the cost-aware approach presents a
significantly larger financial risk.

An initial assumption supposed that EC2 instances were billed in a cumula-
tive manner, incorporating the moving Spot market price into the instance’s cost.
However, it was found that EC2 instances are billed at the Spot market price at the



138 CHAPTER 7. PROVISIONING AS A SERVICE

time the request is fulfilled and then charged the market price at the beginning
of each subsequent billable hour. Therefore, the DrAFTS Average strategy was
not as effective as anticipated. In fact, the results demonstrate that in these mar-
ket conditions simply selecting the cheapest instance at the time of provisioning
is the most cost-effective approach, with an almost 10% reduction in cost when
compared to DrAFTS strategies.

DrAFTS is an ongoing research project and is not yet deployed as a production
service. When conducting these experiments it was discovered that acquiring
complete DrAFTS predictions for an individual job required almost ten seconds.
This overhead would cumulatively grow as additional jobs were serviced, result-
ing in an abnormally high number of provisioned instances and excessive job
wait times. To minimise this overhead, and make the results comparable to other
SCRIMP experiments, a copy of the DrAFTS data was stored in a local database
during testing.

Table 7.5: The result of using different bidding strategies.

Strategy Cost Potential Cost Financial Risk Terminations
DrAFTS Cheapest $95.53 $110.77 $15.24 42
DrAFTS Average $95.99 $111.76 $15.77 44
DrAFTS Profiles $92.94 $117.04 $24.10 33
Cost-aware $84.31 $418.39 $334.08 0

7.3.3 Migration

Migration allows cooperative tenants (e.g., those run by the same organisation)
to exchange compute resources in order to improve global efficiency. SCRIMP is
designed to detect migration opportunities (such as an excess of idle resources)
and initiate the transfer of resources between two tenant’s HTCondor pools.

The process by which instances are migrated has been developed in collab-
oration with researchers at Argonne National Laboratory and the University of
Wisconsin–Madison. SCRIMP enables migration by configuring each provisioned
instance with a RESTful Web service as it is deployed. SCRIMP initiates migra-
tion by first identifying a suitable candidate instance to move between two ten-
ants. SCRIMP then communicates with the instance’s Web service and instructs
it to reconfigure its HTCondor worker. The Web service instructs the HTCondor



7.3. EVALUATION 139

worker to advertise that it is peacefully leaving the current pool, meaning the
worker will leave once idle. Once the instance has been removed from the pool,
the Web service initiates a reconfiguration process on the worker’s HTCondor
installation. Reconfiguration provides a unique opportunity to dynamically reas-
sign the properties of the worker’s HTCondor slot (which can only be achieved
when a worker is not in a pool) such that the worker can be tailored to the require-
ments of the target tenant. During the reconfiguration process the Web service
overwrites the condor host address of the worker and restarts HTCondor. When
the resource restarts it attempts to communicate with the new HTCondor master
to join the new pool. The process of leaving a pool, reconfiguring and restarting
a worker, and joining a new pool takes less than one minute. This is substantially
faster than the approximately ten minutes [31] required to create a Spot request,
fulfil the request, boot the instance, and configure the worker to join a pool.

An experimental platform was developed to investigate the effectiveness of
migration. The platform consistently replays execution traces by using SCRIMP
and a modified version of the simulation cloud module plug-in. The modified
simulation cloud module does not enforce time constraints (such as instances
starting and jobs executing). Instead, it steps through time in five second incre-
ments and evaluates and updates the state of the environment (tenants, HTCon-
dor, and AWS). This means tests can be rapidly deployed and evaluated in a short
period of time. The execution traces of five Globus Genomics gateways have been
used to study migration. The execution traces span a 99 day period (Jan 4th 2015
to April 14th 2015) and include 6640 distinct jobs.

Migration Simulation Calibration

Calibration tests have been performed on the experimental platform to ensure
its behaviour is representative of a real deployment. A basis for comparison has
been constructed by analysing the execution traces. The traces contain informa-
tion regarding each job, including an identifier of the instance the job was dis-
patched to, the queue time, start time, and execution length. Counting the num-
ber of unique host identifiers provides an estimate of the number of instances that
were used to execute the jobs. However, host names can be reused. To mitigate
this problem the definition of what constitutes a unique host has been limited to
identifiers that have not been used by another job within the previous eight hours.
If the same host name is used by two jobs within an eight hour period, they are



140 CHAPTER 7. PROVISIONING AS A SERVICE

assumed to be an individual instance. This analysis resulted in the identification
of 2731 distinct instances collectively used by the tenants. The average wait time
of each job has been computed by subtracting the job’s start time from the job’s
queue arrival time. Doing so identifies an average wait time of 347 seconds across
the 6640 jobs.

Table 7.6 shows a comparison of the analysed execution traces and the result
of replaying the 6640 job dataset. The table shows that the average wait time is
98.54% accurate when simulating the execution traces with the platform. How-
ever, replaying the traces results in 12.12% more instances than were identified
from analysis of the execution traces. It should be noted that a slight discrepancy
between the number of recorded and simulated instances was expected. The ex-
act number of instances launched to perform the 6640 job dataset is unknown.
The execution traces do not capture instances which are provisioned but not used
by any jobs. These results confirm the accuracy of the platform and support its
use as a tool to evaluate the performance of the migration strategy.

Table 7.6: Calibration of the migration simulation.

Instances Avg Wait
Tenant Recorded Simulated Recorded Simulated
1 364 430 302 308
2 14 12 370 306
3 62 67 276 242
4 319 292 449 407
5 1972 2261 348 347
Total 2731 3062 347 342

Migration Evaluation

The 6640 job dataset has been replayed through the platform twice, once with mi-
gration enabled and once with it disabled. In these tests the platform is responsi-
ble for identifying opportunities to migrate an instance between two tenants. The
platform employs a push technique to achieve migration. That is, for each time
step it checks each tenant to identify idle instances. It then checks other tenants to
find idle jobs which have not yet had an instance provisioned for them. Migration
is simulated by removing the idle instance from the first tenant and appending it



7.3. EVALUATION 141

to the target tenant’s pool of resources. The migrating instance is flagged as being
busy for one minute to simulate the time required to migrate. Target tenants treat
the migrating instance as a fulfilled instance request, meaning they terminate or
repurpose outstanding requests.

Table 7.7 shows the results of deploying the platform with and without mi-
gration to fulfil the 6640 job dataset. During this period the platform detects 43
migration opportunities and transfers an instance between two tenants for each.
The results show reductions in the overall number of instances across all but one
of the tenants, with 16 fewer instances provisioned in total. Importantly, the av-
erage wait time also decreases for all but one of the tenants. The exception is due
to the tenant donating too many of its resources and then having to acquire addi-
tional resources for subsequent jobs. Overall, these improvements demonstrate
the potential benefits that can be gained by enabling services to collaboratively
work together and share compute resources.

Table 7.7: Simulating the migration of instances between tenants.

Instances Avg Wait
Tenant Base Migration Base Migration
1 430 425 308 299
2 22 18 306 260
3 67 68 242 223
4 292 285 407 410
5 2261 2250 347 346
Total 3062 3046 342 339

The results of this test show that migration can improve the global efficiency of
cooperative cloud services by reducing the total number of instances (and there-
fore cost) as well as improving responsiveness. It is important to note that the
test is conducted over a relatively short period of time with only five gateways. If
applied to the collective services offered by Globus Galaxies (more than 30 gate-
ways) over a period of years, migration could substantially reduce the overall
operational costs of the gateways.



142 CHAPTER 7. PROVISIONING AS A SERVICE

7.4 Summary

SCRIMP is an automated and cost-aware provisioning service which can be used
by scientific services to manage cloud interactions while minimising costs, im-
proving reliability, and exposing fine-grained auditing information. This chapter
presented SCRIMP and investigated two research questions pertaining to reli-
ably using unreliable cloud infrastructures and enabling the auditing of cloud
utilisation. To address the fifth research question, RQ5, I explored the use of
the predictive bidding strategy, DrAFTS. The results showed that using the fore-
cast execution length of a workload can reduce the rate of instance terminations.
Overall, DrAFTS-based bids substantially reduced the financial risk of using Spot
instances and could help reduce instance terminations. The final research ques-
tion, RQ6, asked how fine-grained account information can be maintained and
used. This chapter has demonstrated the ability of SCRIMP’s resource manage-
ment component to record and enable the auditing of cloud utilisation. The
resource management aspects of SCRIMP underpin many of the investigations
conducted throughout this thesis by providing datasets to analyse and recording
experimental results.

The role of SCRIMP’s configurable parameters have been analysed in this
chapter. A representative and repeatable dataset of workloads was defined and
used to reliably evaluate the result of modifying SCRIMP’s configuration. A sim-
ulation plug-in was presented to enable the comparison of tests using the same
cloud market conditions. The simulation’s results supported the findings of the
emulated experiments.

Instance migration was explored as a means to improve global efficiency by
enabling cooperative tenants to dynamically exchange resources. A platform to
replay execution traces was used to evaluate the effectiveness of migration. The
platform demonstrated migration was capable of reduction the number of re-
quired instances and improving the average wait time of jobs.



Chapter 8

Conclusion

This thesis presented an investigation into how scientific services can better utilise
the cloud. Analysis of real-world scientific services identified a number of impor-
tant challenges faced when performing on-demand computations in the cloud.
Six research questions were defined to guide the research presented in this thesis.
The research questions relate to a range of cloud-based issues, including: net-
work limitations, cloud economics, provisioning models, and provisioning as a
service. This thesis investigated these six research questions and describes tech-
nologies and techniques developed to address their underlying challenges.

A primary contribution of this research is SCRIMP. SCRIMP simplifies cloud
usage by enabling applications and services to outsource the acquisition and
management of on-demand cloud infrastructures. SCRIMP integrates many of
the contributions presented throughout this thesis and has been demonstrated to
reduce costs and improve throughput, reliability, and global efficiency.

This chapter reviews the research that has been presented in this thesis. The
key contributions are then enumerated in Section 8.2. Finally, future research
directions are proposed in Section 8.3.

8.1 Review

Chapter 3 presented the analysis of three scientific use cases. Analysis of these
use cases identified a set of common challenges and were used to derive a set of
research questions. The research questions explored in this thesis are as follows:

RQ1 How can opaque cloud network performance be accurately measured or
inferred and used to minimise the need for, and cost of, data movement?

143



144 CHAPTER 8. CONCLUSION

RQ2 How can cloud computing market models be exploited to minimise the cost
of provisioning infrastructure to execute arbitrary scientific workloads?

RQ3 How can the resource requirements of unknown applications, with vary-
ing input data and configurations, be computed to determine the “best”
instance types for execution?

RQ4 How can provisioning decisions be automated to consider trade-offs (e.g.,
cost, time, data movement) and optimally select instances for a given appli-
cation?

RQ5 How can services improve the reliability of elastic clusters when employing
potentially unreliable infrastructure?

RQ6 How can fine-grain accounting information be maintained for purposes of
auditing and cost reclamation?

The remainder of this section discusses the research presented to address these
research questions.

8.1.1 Cloud Network Limitations

Many scientific services rely on large datasets to perform analyses. However,
cloud computing presents new challenges to data-intensive computing. The per-
formance of cloud networks is often cited as a key limitation to performing sci-
entific analyses in the cloud. In addition, cloud networks are opaque and do not
publicly expose network information. This restricts the ability to exploit data-
locality, which is an important optimisation feature for many distributed appli-
cations. These problems were captured by the first research question, RQ1. This
thesis explored network tomography as a tool to reduce the limitations imposed
by cloud networks, with a goal of enabling network-awareness for cloud-based
services.

Chapter 4 presented an evaluation of tomographic techniques with respect to
their ability to infer the network properties of commercial clouds. Two testbeds,
comprised of up to 100 cloud instances, and distributed across multiple avail-
ability zones, were used to measure the effectiveness of different tomographic
probing techniquesThe results of this work highlighted the noisy and inconsis-
tent nature of an instance’s network performance. Throttling of network through-
put was also observed between instance types and across availability zones. The



8.1. REVIEW 145

results showed that the network performance varies considerably and that varia-
tions persist for prolonged periods of time. This provides an opportunity to react
to network variations and make deployment decisions based on the measured
network performance of resources.

A network health diagnostic system (NHDS) was developed and used to col-
lect, monitor, and report on network performance. The NHDS employs a num-
ber of novel research contributions to determine and utilise network informa-
tion. A set of health indicators, or tomographic probing schemes and bandwidth
measurements, were analysed and evaluated to determine the influence each has
when computing an overall health score. Regression testing determined appro-
priate weights of each indicator to reflect the priorities of data-intensive appli-
cations. Health markers were formulated and established to trigger notifications
when substantial network volatility is detected. Health metrics are formulated to
aggregate the information collected by each indicator into a comparable health
score.

The NHDS can be deployed over a set of distributed resources to collect and
compare the network performance of hosts. Once deployed, a relative health
score is computed for either a specific host (e.g. the host maintaining a dataset),
or all hosts in the environment. The health score provides insight into the topol-
ogy and properties of the network connecting a set of resources. The deployment
harness was shown to scale to over one hundred cloud resources and employs
techniques to minimise the overhead incurred by using the system. The NHDS
contributes to the understanding of the cloud infrastructure and can guide de-
ployment and facilitate data-locality-based executions, alleviating the problem
identified by the RQ1.

8.1.2 Cloud Economics

It is essential to leverage the full economic properties of a cloud provider to min-
imise the operational costs and establish a cost-aware scientific service. The need
for economic cloud utilisation has been captured by RQ2. Chapter 5 explored
techniques to cost-effectively select cloud resources when provisioning infras-
tructures. Four provisioning scopes were employed to to analyse the effect of
expanding provisionable instance types and availability zones. Execution traces
from six production science gateways were used in conjunction with price history
data to explore different provisioning models and evaluate their cost and perfor-



146 CHAPTER 8. CONCLUSION

mance. The effect of bid prices and their relation to instance reliability was also
investigated, showing that instance reliability can be substantially improved via
different bidding approaches. Over-provisioning strategies were also explored,
where multiple requests are made for an individual job, as a means to improve
throughput of the gateways. Overall, these techniques address the second re-
search question and were shown to provide order of magnitude savings across
the six gateways while improving reliability and increasing throughput.

The provisioning system can be deployed on a host with an HTCondor queue.
The cost-aware provisioning system monitors the queue to identify idle jobs in
need of resources. Customisable policies specify when an instance should be
provisioned for a job. Once a set of appropriate resources is determined the sys-
tem employs real-time cost information to guide the decision making process and
minimise the costs of fulfilling a workload. Multiple cost-aware techniques are
then employed to select an instance type, availability zone, and pricing model.
Cloud-init is used to dynamically configure provisioned resources. In addition to
selecting and launching a cloud resource, the system exposes an API which can be
used to determine the lowest cost resource for a given set of requirements. Users
can employ this system in custom provisioning systems to address the challenges
associated with economically using the cloud and accomplish cost-aware cloud
utilisation.

The provisioning system has two main limitations. Firstly, in recent trials, the
over-provisioning technique has become less effective. This is due to the batch
fulfilment process used by AWS, where multiple resources are occasionally ac-
quired concurrently for an individual job. To counter this, the configurable run
rate of the provisioning system was modified to increase its execution frequency
and the duration between subsequent requests was expanded. Secondly, the sys-
tem was not designed to scale over many services. The process of maintaining
and upgrading the provisioning systems is tedious as it is operated indepen-
dently on each infrastructure. This also means the system is restricted to a lo-
cal perspective of the environment and can not make provisioning optimisations
based on the global state of jobs and resources. These limitations motivated the
development of SCRIMP, which is capable of concurrently serving many tenants.



8.1. REVIEW 147

8.1.3 Provisioning Models

Commercial cloud providers offer a plethora of instance types with different opti-
misations and configurations. While this flexibility enables resources to be specif-
ically selected to optimally meet tool requirements, it also complicates the provi-
sioning process. RQ3 and RQ4 capture the need to derive tool resource require-
ments to automatically and optimally select instances for arbitrary workloads.
Chapter 6 explored these questions and presented an automated profiling service
as the solution. Novel instrumentation of cloud instances is used to capture per-
formance statistics during the execution of a tool. The profiling service records
the memory, CPU, disk, and network utilisation throughout a tool’s execution to
provide detailed profiles of the tool behaviour and resource usage. A key contri-
bution of this work was to demonstrate the advantages of using fine-grained tool
profiles during the provisioning process. The logs from four production Globus
Genomics gateways, with over 2000 executions of the monitored tools, were used
to analyse the cost and performance benefits realised when using profiles. The re-
sults showed that employing profiles to minimise cost can achieve an 86.6% cost
reduction in exchange for a 29.2% increase in execution time. Conversely, using
profiles to improve throughput can reduce the execution time by 15.7% with a
62.6% reduction in cost when compared to the previous approach which used a
predefined instance type for all jobs.

The automated profiling service can be used to deploy and monitor a tool as
it is executed over a wide selection of cloud instance types. These records are
automatically processed to construct profiles which summarise the resource re-
quirements (such as total and maximum memory used). The profiling service
leverages the cost-aware provisioning system, discussed in Chapter 5, to cost-
effectively acquire the worker nodes used for profiling. It uses cloud-init to dy-
namically configure instances with profiling capabilities. Performance Co-Pilot
is used to capture system performance and its logs are processed to construct a
consumable JSON profile which is returned after execution. The service also sup-
ports the profiling of Docker containers. cAdvisor and an InfluxData are used
to stream and store execution performance metrics, respectively, which is then
used to create the same consumable JSON profiles as when profiling traditional
executables.

The profiling service has two pertinent limitations. Firstly, the profiler is not
currently capable of capturing the utilisation of specialised hardware, such as



148 CHAPTER 8. CONCLUSION

GPUs. However, the profiler has been designed for extensibility to enable the
incorporation of further monitoring components. Secondly, the profiler is unable
to forecast the performance of a tool when executed with drastically different in-
put datasets. This limitation has motivated SCRIMP’s ability to employ feedback
from production executions.

8.1.4 Provisioning as a Service

SCRIMP, described in Chapter 7, combines many of the contributions presented
in this thesis into a single, usable, service. The service is currently used by pro-
duction Globus Galaxies gateways to facilitate on-demand analyses in the cloud
and is openly available on github [198]. SCRIMP presents a unique nexus in
cross-over between these research areas and has been demonstrated to reduce
costs, improve throughput, and improve the execution performance of scientific
analyses deployed on the cloud.

SCRIMP incorporates the cost-aware provisioning system presented in Chap-
ter 5. The provisioning system provides a model from which new provisioning
and bidding strategies can be investigated to further reduce cloud computing
costs. For example, SCRIMP has been instrumented to leverage DrAFTS [29] to
use predictive bidding strategies and enable the exploration of RQ5. Predictive
bidding was shown to be an effective mechanism able to reduce financial risk
and improve the reliability of Spot instances. SCRIMP enables the combination
of the DrAFTS service with forecast execution lengths (from profiles) which pro-
vides 99% probability guarantees that instances will not be terminated during the
execution of a workload.

The profiling service allows SCRIMP to employ tool execution profiles and
fine-grained resource requirements during instance provisioning. Combining
tool profiles with cost-aware provisioning techniques gives SCRIMP a unique
advantage over other cloud provisioning solutions. For example, SCRIMP is ca-
pable of exposing the trade-off between execution performance and monetary
optimisation. This allows researchers to employ provisioning strategies which
meet their requirements in terms of prioritising execution or cost.

At the heart of SCRIMP is a resource management and analytics platform.
The platform is responsible for performing and recording all cloud interactions
as well as monitoring the state of instances, tenants, and jobs. The data collected
by the platform has been fundamental to much of the research presented in this



8.1. REVIEW 149

thesis. For example, the cost-aware research relied on gathering cost data from
the instances deployed by production science gateways. The platform’s records
were also used to identify the most frequently executed Globus Genomics tools
to guide profiling efforts. Furthermore, analysis of the platform’s logs regard-
ing production usage has enabled the creation of a dataset of genomics analysis
workflows. The dataset contains information on over 8000 tool executions, in-
cluding their specified requirements (CPU, memory, etc.), and can be repeatedly
deployed to a queue to emulate workloads of varying intensity and size. This
dataset enabled investigation of SCRIMP under a wide range of loads and con-
figurations. The dataset was also used as the basis for evaluating the DrAFTS
predictive bidding system, providing the workloads to be deployed, and then
capturing the instances launched and costs incurred by each strategy.

8.1.5 Infrastructure Management

A common challenge faced by cloud-based services is reliably and efficiently
managing and analysing provisioned resources. Programmatic provisioning so-
lutions, which leverage cloud APIs and custom management scripts, are neces-
sary to acquire, organise, and govern large cloud infrastructures. Ensuring an
appropriate number of resources are launched, correctly configured, and subse-
quently terminated is essential for an on-demand scientific service. Additionally,
recording the provisioned resource types, important event times, termination
causes, overall cost, and associating instances with individual users, are crucial
to adapting provisioning approaches, analysing usage, and providing account-
ability and auditing mechanisms.

Research presented in Chapter 7 explored techniques for managing provi-
sioned cloud resources. One such technique was to employ a novel framework
for migrating instances between cooperative tenants in order to improve global
efficiency. The chapter also investigated RQ6, which asks how usage can be mea-
sured and how auditing capabilities can be leveraged to reduce costs. A key
design goal of SCRIMP’s management platform was to enable the exploration of
this research question by capturing provisioning decisions and cloud usage. The
management platform is capable of recording both usage as well as speculative
usage, where multiple provisioning algorithms can be employed concurrently
and evaluated with the same market conditions. The analytical capabilities of the
management platform enable users to compare and contrast provisioning strate-



150 CHAPTER 8. CONCLUSION

gies to optimise usage and minimise costs. Finally, a cloud simulation plug-in
was also presented. The highly customisable plug-in is able to replace the cloud
provider and enables provisioning techniques to be explored without incurring
the cost of launching cloud resources.

8.2 Contributions

This thesis explored a number of different aspects regarding the operation of
cloud-based scientific services. Research contributions have been made in multi-
ple areas, including: scientific gateways, analysis of cloud networks, cost-aware
cloud utilisation, tool profiling, and cloud provisioning. The research contribu-
tions presented in this thesis are restated here from Section 1.2. Specifically, the
major contributions of this thesis are:

1. Development of three scientific services and gateways in collaboration with
other researchers. The requirements of these use cases motivate the research
presented in this thesis. In particular I have made the following contribu-
tions to these projects:

(a) Design and development of a cloud-based service for reconstructing
proton computed tomography (pCT) images on-demand [17]. I imple-
mented the service which utilises more than 100 GPU-enabled cloud
instances to reconstruct medical images on-demand. I also created
a simulation framework to demonstrate the scalability of the service.
This research was conducted in collaboration with researchers from
Northern Illinois University (NIU) and Argonne National Laboratory
(ANL).

(b) Design and development of the Portal for Data Analysis Services for
Cosmological Simulations (PDACS) [32, 33]. This work has allowed
researchers to perform cosmological analyses using Galaxy [34] work-
flows and seamlessly deploy large-scale analyses over HPC resources.
PDACS was developed in a collaboration with researchers from ANL,
Fermi National Accelerator Laboratory (FNAL), and the National En-
ergy Research Scientific Computing Center (NERSC).

(c) I participate in the on-going development of the Globus Galaxies plat-
form [28]. The Globus Galaxies platform combines a number of data



8.2. CONTRIBUTIONS 151

management and analysis services, such as Globus [35] and Galaxy, to
simplify the creation of scientific services. It leverages cloud resources
to dynamically fulfil scientific workflow requirements. The Globus
Galaxies platform has been applied to a number of different scientific
domains including genomics [36], climate and policy [37], traumatic
brain injury [31], and cardiovascular [38] research. My key contribu-
tions have been to design and develop provisioning solutions, enable
fine-grained analysis of gateways, and optimise resource selection by
profiling tools. The Globus Galaxies project is a collaborative effort
between researchers at the University of Chicago and ANL.

2. Development of a network tomography framework to analyse cloud net-
works and evaluate network performance. The primary contributions of
this work are:

(a) Development of a network tomography framework. The framework
enables users to express tomographic probing sequences and efficiently
deploy them over large cloud infrastructures to evaluate and infer net-
work properties.

(b) Analysis of tomographic information to determine properties of com-
mercial clouds. I show that cloud instances experience substantial vari-
ations in network performance which persist for prolonged periods of
time.

(c) Formulation of health metrics to derive the relative network perfor-
mance of cloud instances. These metrics are used to guide instance
selection and are demonstrated to improve the execution performance
of the pCT codes.

(d) Development of a Network Health Diagnostic System (NHDS). The
system can be deployed over a set of cloud instances and will compute
relative health scores between the hosts in order to enable network-
aware deployment decisions.

3. Analysis of cloud economics to establish cost-effective techniques to fulfil
scientific workloads. I explore various approaches to achieve cost-aware
provisioning and demonstrate substantial improvements in both cost and
execution time over production Globus Galaxies gateways.



152 CHAPTER 8. CONCLUSION

4. Development of an automatic tool profiling service for the cloud. The ser-
vice enables users to profile executable applications and docker containers
over a wide range of cloud instance types. Resource (CPU, memory, disk,
and network) utilisation is monitored and used to automatically construct
fine-grained tool profiles. In addition, I explore online profiling techniques
to capture execution traces and dynamically adjust execution forecasts.

5. Development of a model for migrating cloud instances between scientific
services. In collaboration with researchers from University of Wisconsin-
Madison, the University of Chicago, and ANL, I have developed a frame-
work for dynamic migration of cloud instances between HTCondor pools.
This work has been shown to reduce the number of instances launched and
improve the throughput of several Globus Galaxies services.

6. Design and development of SCRIMP—a multi-faceted service for acquir-
ing and managing cloud infrastructure. The service combines the above
contributions to improve the performance of scientific services. SCRIMP is
unique in the following ways:

(a) Incorporates real-time market information to dynamically adjust the
provisioning approach and is capable of selecting resources across avail-
ability zones and acquirement models (On-demand or Spot requests).

(b) Uses detailed tool profiles to guide provisioning. Profiles are combined
with real-time market information to exploit the trade-off in cost and
performance.

(c) Captures network performance information between provisioned in-
stances to enable network-aware decision making.

(d) Includes a resource management and analytics platform to capture
cloud interactions and monitor provisioned instances. The platform
enables the analysis of different provisioning approaches and provides
cloud utilisation metrics.

(e) Integrates a predictive bidding strategy, DrAFTS [29, 39] to provide
reliability guarantees for provisioned Spot instances. This work was
conducted in collaboration with researchers at the University of Cali-
fornia at Santa Barbra.



8.3. FUTURE WORK 153

(f) Includes a custom simulation plug-in to emulate the AWS cloud and
enable rapid experimentation with little resource costs.

(g) Is capable of dynamically constructing on-demand clusters (HTCon-
dor or Apache Spark) to fulfil workloads.

(h) Enables resource migration to improve global efficiency and reduces
instance acquisition time by enabling instances to be shared between
tenants.

8.3 Future Work

Due to the scope of the research presented in this thesis there are numerous areas
for potential extension and future work.

8.3.1 Network Tomography

Using network tomography to select clusters of cloud resources, based on their
network performance, has been shown to improve the performance of scientific
applications. An immediate research direction is to combine tomographic in-
formation with the resource migration capabilities of SCRIMP. This would en-
able resources to be shuffled between collaborative services to globally improve
throughput. Collecting tomographic information between each worker and its
headnode would enable resources to be migrated to optimally create cloud in-
frastructures.

Another goal is to further integrate network information into SCRIMP, pro-
viding forecasts and estimates on data transfers. This information could be used
to guide the deployment of data-intensive workloads. For example, the location
of data sources could be encoded within jobs and used by the provisioner to se-
lect the regions and availability zones of resources in order to minimise expensive
cross-region executions.

Techniques to visualise the information that is inferred from the tomographic
measurements should be applied. Real-time visualisations of large cloud services
could aid in management decisions and provide intuitive feedback on the state
and operation of large scientific services.

Further research is required to establish custom tomographic probing schemes
specifically designed for cloud infrastructures. The traditional tomographic mea-



154 CHAPTER 8. CONCLUSION

surements are typically evaluated over prototype networks to avoid interference.
However, more research is required to develop new tomographic schemes which
are resilient to noise and can reliably infer cloud topologies. The cloud also
presents many new challenges to network tomography. For example, resources
can be migrated by providers for load-balancing reasons without advising the
customer. Therefore, adaptive probing schemes must be explored to meet the
unique challenges of the cloud.

8.3.2 Cloud Economics

Cost-aware provisioning is essential to the success of cloud-based scientific ser-
vices. Using the DrAFTS system I aim to further evaluate bidding strategies in
order to increase the reliability of Spot instances while minimising the cost of
operating scientific services.

Another topic for future research is to explore the ability to acquire free cloud
computing resources. AWS does not bill users for partial instance hours when a
spot request is preempted due to a bid being exceeded. Employing the DrAFTS
service in reverse, whereby it nominates bid prices with a guarantee that the in-
stance will be terminated within a billable hour, presents an opportunity to ac-
quire free compute resources. This would be a novel application of research into
bidding strategies with potential economic benefit.

8.3.3 Tool Profiling

The profiling service provides an automated mechanism for capturing resource
requirements. However, the service requires additional work in order to support
more complex configurations, such as those involving EBS storage. Future work
is also needed to integrate support for delegated IAM roles to enable use of the
service without the need for user AWS credentials.

The incorporation of online profile feedback into the provisioning process
requires further investigation. Additional research is required to improve and
evaluate the aggregation of tool profiles that are automatically captured during
production executions. In order to react to changes in use, such as researchers
employing different datasets, or tool optimisations, the automatic aggregation
techniques should prioritise recent execution traces over historic traces.

The profiling service is currently being used to survey a large selection of tools



8.3. FUTURE WORK 155

used in Globus Genomics deployments. Once the survey is complete, I aim to
publicly release a large dataset consisting of fine-grained tool profiles and thou-
sands of execution traces from numerous production gateways. This dataset will
provide a real-world use case for researchers exploring scheduling techniques
and investigating scientific deployments.

8.3.4 Infrastructure Management

The resource management platform has been demonstrated to effectively inte-
grate the cost-aware provisioning service with the AWS cloud and the simulation
plug-in. However, additional work is required to expand the capabilities of the
platform to include additional cloud providers. In turn, this could enable the
federation of cloud providers and present new avenues for cost-aware resource
provisioning.

The cloud simulation plug-in requires further investigation in order to better
validate its performance. Currently, the plug-in has been used to emulate cloud
functionality and has been compared against a set of provisioning tests. More rig-
orous evaluation is required to ensure the performance of the plug-in is represen-
tative of the cloud provider. This plug-in should also be made publicly available
as it is shown to enable rapid prototyping of provisioning approaches without
the need for acquiring cloud resources and could benefit many researchers.

Additional research should be conducted to investigate the use of autonomic
computing practices in order to incorporate the analytical capabilities of the ser-
vice into the provisioning process. In turn, analysing resource utilisation could
be used dynamically to alter the provisioning policies to match workload char-
acteristics in order to optimise the number of instances that are acquired by a
service.

8.3.5 Data Analytics

Scientific discovery is increasingly reliant on big data, computation and data-
science, and large-scale computing infrastructure. Efficiently and reliably man-
aging, curating, synthesising, and analysing data is a challenge faced in almost
every scientific domain. My primary research direction is to extend SCRIMP to
address these challenges. I aim to develop an extensible data-oriented analytics
platform. The goal of this platform is to lower the barriers for use of new analysis



156 CHAPTER 8. CONCLUSION

capabilities and large computational infrastructures (supercomputers, clusters,
and clouds) to enable scientists to more easily conduct cutting edge computa-
tion and data-science irrespective of data sizes. This platform will make scientific
data, housed in disparate repositories and storage systems, available and man-
ageable. It will provide a fabric for integrating and synthesising heterogeneous
data. It will enable access to a suite of analytics applications that can be effi-
ciently applied to a variety of data to derive new insights. SCRIMP will underpin
the platform by providing an extensible framework that facilitates the exploita-
tion of large-scale computing resources. I aim to extend SCRIMP to incorporate
multiple computing resources and enable the deployment of specialised comput-
ing modalities (e.g., HTC, MapReduce, and Many Task computing). In turn, this
platform will democratise access to advanced capabilities, enabling a huge pool
of researchers to access and use novel and best practice analytics techniques on
leadership class computing systems.



Bibliography

[1] R. Schulte, V. Bashkirov, T. Li, Z. Liang, K. Mueller, J. Heimann, L. Johnson,
B. Keeney, H. F.-W. Sadrozinski, A. Seiden, D. Williams, L. Zhang, Z. Li,
S. Peggs, T. Satogata, and C. Woody, “Conceptual design of a proton com-
puted tomography system for applications in proton radiation therapy,”
IEEE Transactions on Nuclear Science, vol. 51, no. 3, pp. 866–872, 2004.

[2] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Ha-
zlewood, S. Lathrop, D. Lifka, G. D. Peterson, et al., “Xsede: accelerating sci-
entific discovery,” Computing in Science & Engineering, vol. 16, no. 5, pp. 62–
74, 2014.

[3] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. Lazio, “The square
kilometre array,” Proceedings of the IEEE, vol. 97, no. 8, pp. 1482–1496, 2009.

[4] L. Boatman, “The significance of Big Data in invertebrate zool-
ogy.” http://nmnh.typepad.com/no bones/2015/02/the-significance-of-
big-data-in-invertebrate-zoology.html, 2015.

[5] R. L. Villars, C. W. Olofson, and M. Eastwood, “Big data: What it is and
why you should care,” White Paper, IDC, 2011.

[6] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and Grid comput-
ing 360-degree compared,” in Grid Computing Environments Workshop, 2008.
GCE’08, pp. 1–10, Ieee, 2008.

[7] V. Mayer-Schönberger and K. Cukier, Big data: A revolution that will trans-
form how we live, work, and think. Houghton Mifflin Harcourt, 2013.

[8] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn, “Case study for run-
ning HPC applications in public clouds,” in Proceedings of the 19th ACM

157



158 BIBLIOGRAPHY

International Symposium on High Performance Distributed Computing, pp. 395–
401, 2010.

[9] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud comput-
ing: A view of scientific applications,” in Pervasive Systems, Algorithms, and
Networks (ISPAN), 2009 10th International Symposium on, pp. 4–16, IEEE,
2009.

[10] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville, “Cloud migration:
a case study of migrating an enterprise it system to iaas,” in 3rd International
Conference on Cloud Computing (CLOUD),, pp. 450–457, IEEE, 2010.

[11] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U.
Khan, “The rise of big data on cloud computing: Review and open research
issues,” Information Systems, vol. 47, pp. 98–115, 2015.

[12] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and D. H.
Epema, “Performance analysis of cloud computing services for many-tasks
scientific computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 6, pp. 931–945, 2011.

[13] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and
J. Good, “On the use of cloud computing for scientific workflows,” in Pro-
ceedings of the 4th International Conference on eScience, pp. 640–645, IEEE,
2008.

[14] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A performance analysis of ec2 cloud computing services for
scientific computing,” in Cloud computing, pp. 115–131, Springer, 2009.

[15] C. Evangelinos and C. Hill, “Cloud computing for parallel scientific hpc ap-
plications: Feasibility of running coupled atmosphere-ocean climate mod-
els on amazons ec2,” ratio, vol. 2, no. 2.40, pp. 2–34, 2008.

[16] S. C. Park and S. Y. Ryoo, “An empirical investigation of end-users switch-
ing toward cloud computing: A two factor theory perspective,” Computers
in Human Behavior, vol. 29, no. 1, pp. 160–170, 2013.

[17] R. Chard, R. Madduri, N. Karonis, K. Chard, K. Duffin, C. Ordonez,
T. Uram, J. Fleischauer, I. Foster, M. Papka, and J. Winans, “Scalable pCT



BIBLIOGRAPHY 159

image reconstruction delivered as a cloud service,” IEEE Transactions on
Cloud Computing, vol. Preprint, no. 99, pp. 1–1, 2015.

[18] I. T. Foster and R. K. Madduri, “Science as a service: how on-demand com-
puting can accelerate discovery,” in Proceedings of the 4th ACM workshop on
Scientific cloud computing, pp. 1–2, ACM, 2013.

[19] S. Hazelhurst, “Scientific computing using virtual high-performance com-
puting: a case study using the amazon elastic computing cloud,” in Pro-
ceedings of the 2008 annual research conference of the South African Institute of
Computer Scientists and Information Technologists on IT research in developing
countries: riding the wave of technology, pp. 94–103, ACM, 2008.

[20] D. Battré, N. Frejnik, S. Goel, O. Kao, and D. Warneke, “Inferring network
topologies in infrastructure as a service cloud,” in 11th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 604
–605, may 2011.

[21] S. Yi, A. Andrzejak, and D. Kondo, “Monetary cost-aware checkpointing
and migration on Amazon cloud spot instances,” IEEE Transactions on Ser-
vices Computing, vol. 5, no. 4, pp. 512–524, 2012.

[22] H. Huang, L. Wang, B. C. Tak, L. Wang, and C. Tang, “Cap3: A cloud auto-
provisioning framework for parallel processing using on-demand and spot
instances,” in 2013 IEEE Sixth International Conference on Cloud Computing,
pp. 228–235, IEEE, 2013.

[23] I. Foster, “Service-oriented science,” Science, vol. 308, no. 5723, pp. 814–817,
2005.

[24] N. Wilkins-Diehr, D. Gannon, G. Klimeck, S. Oster, and S. Pamidighantam,
“Teragrid science gateways and their impact on science,” Computer, vol. 41,
no. 11, pp. 32–41, 2008.

[25] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. J.
Wasserman, and N. J. Wright, “Performance analysis of high performance
computing applications on the Amazon Web Services cloud,” in Proceedings
of the 2nd International Conference on Cloud Computing Technology and Science
(CloudCom), pp. 159–168, IEEE, 2010.



160 BIBLIOGRAPHY

[26] “Amazon Web Services (AWS).” http://aws.amazon.com/, Accessed on
April 2016.

[27] “Amazon Elastic Compute Cloud (EC2).” https://aws.amazon.com/ec2/,
Accessed on April 2016.

[28] R. Madduri, K. Chard, R. Chard, L. Lacinski, A. Rodriguez, D. Sulakhe,
D. Kelly, U. Dave, and I. Foster, “The Globus Galaxies platform: delivering
science gateways as a service,” Concurrency and Computation: Practice and
Experience, vol. 27, no. 16, pp. 4344–4360, 2015.

[29] R. Wolski and J. Brevik, “Providing statistical reliability guarantees in the
aws spot tier,” in Proceedings of the 24th High Performance Computing Sympo-
sium, 2016.

[30] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Zomaya, and B. B. Zhou, “Profil-
ing applications for virtual machine placement in clouds,” in Proceedings of
the IEEE International Conference on Cloud Computing (CLOUD), pp. 660–667,
July 2011.

[31] K. Chard, R. Madduri, X. Jiang, F. Dahi, M. W. Vannier, and I. Foster, “A
cloud-based image analysis gateway for traumatic brain injury research,”
in Proceedings of the 9th Gateway Computing Environments Workshop, pp. 13–
16, IEEE, 2014.

[32] R. Chard, S. Sehrish, A. Rodriguez, R. Madduri, T. D. Uram, M. Paterno,
K. Heitmann, S. Cholia, J. Kowalkowski, and S. Habib, “PDACS: a portal
for data analysis services for cosmological simulations,” in Proceedings of
the 9th Gateway Computing Environments Workshop, pp. 30–33, IEEE, 2014.

[33] R. Madduri, A. Rodriguez, T. Uram, K. Heitmann, T. Malik, S. Sehrish,
R. Chard, S. Cholia, M. Paterno, J. Kowalkowski, and S. Habib, “PDACS: a
portal for data analysis services for cosmological simulations,” Computing
in Science & Engineering, vol. 17, no. 5, pp. 18–26, 2015.

[34] J. Goecks, A. Nekrutenko, J. Taylor, et al., “Galaxy: a comprehensive ap-
proach for supporting accessible, reproducible, and transparent computa-
tional research in the life sciences,” Genome Biol, vol. 11, no. 8, p. R86, 2010.



BIBLIOGRAPHY 161

[35] I. Foster, “Globus Online: Accelerating and democratizing science through
cloud-based services,” Internet Computing, IEEE, vol. 15, pp. 70–73, May
2011.

[36] R. K. Madduri, D. Sulakhe, L. Lacinski, B. Liu, A. Rodriguez, K. Chard,
U. J. Dave, and I. T. Foster, “Experiences building Globus Genomics: a next-
generation sequencing analysis service using Galaxy, Globus, and Amazon
Web Services,” Concurrency and Computation: Practice and Experience, vol. 26,
no. 13, pp. 2266–2279, 2014.

[37] R. Montella, D. Kelly, W. Xiong, A. Brizius, J. Elliott, R. Madduri, K. Ma-
heshwari, C. Porter, P. Vilter, M. Wilde, M. Zhang, and I. Foster, “FACE-IT:
A science gateway for food security research,” Concurrency and Computa-
tion: Practice and Experience, vol. 27, no. 16, pp. 4423–4436, 2015.

[38] R. Winslow, J. Saltz, I. Foster, et al., “The cardiovascular research grid
(CVRG) project,” Proceedings of the AMIA Summit on Translational Bioinfor-
matics, pp. 77–81, 2011.

[39] R. Wolski, J. Brevik, R. Chard, and K. Chard, “Probabilistic guarantees of
execution duration for amazon spot instances,” in Submitted to the IEEE In-
ternational Conference on Cloud Engineering (IC2E), 2017.

[40] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., “A view of cloud comput-
ing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[41] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of internet services and applications, vol. 1,
no. 1, pp. 7–18, 2010.

[42] “Microsoft Azure.” https://azure.microsoft.com/, Accessed on April 2016.

[43] “Google App Engine.” https://cloud.google.com/appengine/, Accessed
on April 2016.

[44] “Heroku.” https://heroku.com/, Accessed on April 2016.

[45] “Dropbox.” https://www.dropbox.com/, Accessed on April 2016.

[46] “Google Docs.” https://docs.google.com/, Accessed on April 2016.



162 BIBLIOGRAPHY

[47] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost of do-
ing science on the cloud: The Montage example,” in Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, SC ’08, (Piscataway, NJ, USA),
pp. 50:1–50:12, IEEE Press, 2008.

[48] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa, “Science
clouds: Early experiences in cloud computing for scientific applications,”
Cloud computing and applications, vol. 2008, pp. 825–830, 2008.

[49] K. Keahey, “Cloud computing for science.,” in SSDBM, p. 478, 2009.

[50] H. A. Hassan, S. A. Mohamed, and W. M. Sheta, “Scalability and commu-
nication performance of hpc on azure cloud,” Egyptian Informatics Journal,
2015.

[51] Y. El-Khamra, H. Kim, S. Jha, and M. Parashar, “Exploring the performance
fluctuations of hpc workloads on clouds,” in Cloud Computing Technology
and Science (CloudCom), 2010 IEEE Second International Conference on, pp. 383
–387, 30 2010-dec. 3 2010.

[52] A. Gupta and D. Milojicic, “Evaluation of hpc applications on cloud,” in
Open Cirrus Summit (OCS), 2011 Sixth, pp. 22 –26, oct. 2011.

[53] E. Walker, “Benchmarking amazon ec2 for high-performance scientific
computing,” Usenix Login, vol. 33, no. 5, pp. 18–23, 2008.

[54] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, et al., “The
NAS parallel benchmarks summary and preliminary results,” in Supercom-
puting, 1991. Supercomputing’91. Proceedings of the 1991 ACM/IEEE Confer-
ence on, pp. 158–165, IEEE, 1991.

[55] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff, S. Saini,
and R. Biswas, “Performance evaluation of Amazon EC2 for NASA HPC
applications,” in Proceedings of the 3rd workshop on Scientific Cloud Comput-
ing, pp. 41–50, 2012.

[56] D. Lifka, I. Foster, S. Mehringer, M. Parashar, P. Redfern, C. Stewart, and
S. Tuecke, “XSEDE cloud survey report,” tech. rep., Technical report, Na-
tional Science Foundation, USA, 2013.



BIBLIOGRAPHY 163

[57] L. Heilig and S. Voss, “A scientometric analysis of cloud computing liter-
ature,” Cloud Computing, IEEE Transactions on, vol. 2, no. 3, pp. 266–278,
2014.

[58] L. Ramakrishnan, P. T. Zbiegel, S. Campbell, R. Bradshaw, R. S. Canon,
S. Coghlan, I. Sakrejda, N. Desai, T. Declerck, and A. Liu, “Magellan: Expe-
riences from a science cloud,” in Proceedings of the 2nd international workshop
on Scientific cloud computing, pp. 49–58, 2011.

[59] S. Gesing, R. Dooley, M. Pierce, J. Kruger, R. Grunzke, S. Herres-Pawlis, and
A. Hoffmann, “Science gateways-leveraging modeling and simulations in
hpc infrastructures via increased usability,” in High Performance Computing
& Simulation (HPCS), 2015 International Conference on, pp. 19–26, IEEE, 2015.

[60] S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin, M. Pierce,
C. Mattmann, R. Singh, T. Gunarathne, E. Chinthaka, R. Gardler, et al.,
“Apache Airavata: a framework for distributed applications and computa-
tional workflows,” in Proceedings of the 2011 workshop on Gateway computing
environments, pp. 21–28, ACM, 2011.

[61] R. Dooley, M. Vaughn, D. Stanzione, S. Terry, and E. Skidmore, “Software-
as-a-service: the iPlant foundation API,” in 5th IEEE Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS), Citeseer, 2012.

[62] R. Ananthakrishnan, K. Chard, I. Foster, and S. Tuecke, “Globus platform-
as-a-service for collaborative science applications,” Concurrency and Com-
putation: Practice and Experience, vol. 27, no. 2, pp. 290–305, 2015. CPE-13-
0323.R1.

[63] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A.
Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the ke-
pler system,” Concurrency and Computation: Practice and Experience, vol. 18,
no. 10, pp. 1039–1065, 2006.

[64] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,
S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al., “The taverna work-
flow suite: designing and executing workflows of web services on the desk-
top, web or in the cloud,” Nucleic acids research, p. gkt328, 2013.



164 BIBLIOGRAPHY

[65] L. K. Zentner, S. M. Clark, P. M. Smith, S. Shivarajapura, V. Farnsworth,
K. P. Madhavan, and G. Klimeck, “Practical considerations in cloud utiliza-
tion for the science gateway nanoHUB.org,” in Procceedings of the 4th IEEE
International Conference on Utility and Cloud Computing (UCC), pp. 287–292,
IEEE, 2011.

[66] E. Skidmore, S.-j. Kim, S. Kuchimanchi, S. Singaram, N. Merchant, and
D. Stanzione, “iPlant atmosphere: A gateway to cloud infrastructure for
the plant sciences,” in Proceedings of the 2011 ACM Workshop on Gateway
Computing Environments (GCE), pp. 59–64, ACM, 2011.

[67] W. Wu, H. Zhang, Z. Li, and Y. Mao, “Creating a cloud-based life science
gateway,” in E-Science (e-Science), 2011 IEEE 7th International Conference on,
pp. 55–61, IEEE, 2011.

[68] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proceedings of the ACM SIGCOMM confer-
ence on Data communication, SIGCOMM ’08, (New York, NY, USA), pp. 63–
74, ACM, 2008.

[69] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient su-
percomputing,” IEEE Trans. Comput., vol. 34, pp. 892–901, Oct. 1985.

[70] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in Proceedings
of the nineteenth ACM symposium on Operating systems principles, SOSP ’03,
(New York, NY, USA), pp. 164–177, ACM, 2003.

[71] A. Velte and T. Velte, Microsoft virtualization with Hyper-V. McGraw-Hill,
Inc., 2009.

[72] D. Milojicic, I. Llorente, and R. S. Montero, “Opennebula: A cloud manage-
ment tool,” Internet Computing, IEEE, vol. 15, no. 2, pp. 11–14, 2011.

[73] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer Ap-
plications, vol. 55, no. 3, 2012.

[74] G. Wang and T. Ng, “The impact of virtualization on network performance
of amazon ec2 data center,” in INFOCOM, 2010 Proceedings IEEE, pp. 1 –9,
march 2010.



BIBLIOGRAPHY 165

[75] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Evaluating the performance
impact of xen on mpi and process execution for hpc systems,” in Virtualiza-
tion Technology in Distributed Computing, 2006. VTDC 2006. First International
Workshop on, pp. 1–1, 2006.

[76] A. Agarwal, R. Desmarais, I. Gable, D. Grundy, D. P-Brown, R. Seuster,
D. C. Vanderster, A. Charbonneau, R. Enge, and R. Sobie, “Deploying hep
applications using xen and globus virtual workspaces,” Journal of Physics:
Conference Series, vol. 119, no. 6, p. 062002, 2008.

[77] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas, R. Raben-
seifner, and D. Takahashi, “The hpc challenge (hpcc) benchmark suite,” in
Proceedings of the 2006 ACM/IEEE conference on Supercomputing, p. 213, Cite-
seer, 2006.

[78] A. Tikotekar, G. Vallée, T. Naughton, H. Ong, C. Engelmann, and S. L. Scott,
“An analysis of hpc benchmarks in virtual machine environments,” in Euro-
Par 2008 Workshops-Parallel Processing, pp. 63–71, Springer, 2009.

[79] J. Ekanayake and G. Fox, “High performance parallel computing with
clouds and cloud technologies.,” in CloudComp (D. R. Avresky, M. Diaz,
A. Bode, B. Ciciani, and E. Dekel, eds.), vol. 34 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering,
pp. 20–38, Springer, 2009.

[80] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: comparing public
cloud providers,” in Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement, pp. 1–14, ACM, 2010.

[81] W. Voorsluys, S. K. Garg, and R. Buyya, “Provisioning spot market cloud
resources to create cost-effective virtual clusters,” in Algorithms and Archi-
tectures for Parallel Processing, pp. 395–408, Springer, 2011.

[82] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor–a hunter of idle work-
stations,” in Proceedings of the 8th International Conference on Distributed Com-
puting Systems, pp. 104–111, IEEE, 1988.

[83] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st ed., 2009.

[84] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:
Cluster computing with working sets.,” HotCloud, vol. 10, pp. 10–10, 2010.



166 BIBLIOGRAPHY

[85] “Python-boto.” http://boto3.readthedocs.org/en/latest/index.html, Ac-
cessed on April 2016.

[86] “Amazon Spot Fleet.” http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-
fleet.html, Accessed on April 2016.

[87] “Amazon Elastic MapReduce (EMR).” https://aws.amazon.com/elasticmapreduce/,
Accessed on April 2016.

[88] “Fenzo).” https://github.com/Netflix/Fenzo/wiki, Accessed on April
2016.

[89] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource
sharing in the data center.,” in NSDI, vol. 11, pp. 22–22, 2011.

[90] P. Armstrong, A. Agarwal, A. Bishop, A. Charbonneau, R. Desmarais,
K. Fransham, N. Hill, I. Gable, S. Gaudet, S. Goliath, et al., “Cloud sched-
uler: a resource manager for distributed compute clouds,” arXiv preprint
arXiv:1007.0050, 2010.

[91] R. Sobie, A. Agarwal, I. Gable, C. Leavett-Brown, M. Paterson, R. Taylor,
A. Charbonneau, R. Impey, and W. Podiama, “Htc scientific computing in a
distributed cloud environment,” in Proceedings of the 4th ACM workshop on
Scientific cloud computing, pp. 45–52, ACM, 2013.

[92] “StarCluster.” http://star.mit.edu/cluster/, Accessed on April 2016.

[93] M. D. de Assuncao, A. di Costanzo, and R. Buyya, “Evaluating the cost-
benefit of using cloud computing to extend the capacity of clusters,” in
Proceedings of the 18th ACM international symposium on High performance dis-
tributed computing, HPDC ’09, (New York, NY, USA), pp. 141–150, ACM,
2009.

[94] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,
and D. Zagorodnov, “The Eucalyptus open-source cloud-computing sys-
tem,” in Cluster Computing and the Grid, 2009. CCGRID’09. 9th IEEE/ACM
International Symposium on, pp. 124–131, IEEE, 2009.



BIBLIOGRAPHY 167

[95] R. N. Calheiros, R. Ranjan, and R. Buyya, “Virtual machine provision-
ing based on analytical performance and qos in cloud computing envi-
ronments,” in Parallel Processing (ICPP), 2011 International Conference on,
pp. 295–304, IEEE, 2011.

[96] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity pro-
visioning system for the cloud,” in Distributed Computing Systems (ICDCS),
2011 31st International Conference on, pp. 559–570, IEEE, 2011.

[97] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds,” Fu-
ture Generation Computer Systems, vol. 29, no. 1, pp. 158–169, 2013.

[98] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-optimal
scheduling in hybrid IaaS clouds for deadline constrained workloads,”
in Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on,
pp. 228–235, IEEE, 2010.

[99] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet appli-
cation deadlines in cloud workflows,” in Proceedings of International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, p. 49,
ACM, 2011.

[100] V. Arabnejad and K. Bubendorfer, “Cost effective and deadline constrained
scientific workflow scheduling for commercial clouds,” in Network Com-
puting and Applications (NCA), 2015 IEEE 14th International Symposium on,
pp. 106–113, IEEE, 2015.

[101] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost- and deadline-
constrained provisioning for scientific workflow ensembles in IaaS clouds,”
in Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, (Los Alamitos, CA, USA), pp. 22:1–22:11,
IEEE Computer Society Press, 2012.

[102] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Online cost-
efficient scheduling of deadline-constrained workloads on hybrid clouds,”
Future Generation Computer Systems, vol. 29, no. 4, pp. 973–985, 2013.

[103] N. Netjinda, B. Sirinaovakul, and T. Achalakul, “Cost optimization in cloud
provisioning using particle swarm optimization,” in Electrical Engineering/-



168 BIBLIOGRAPHY

Electronics, Computer, Telecommunications and Information Technology (ECTI-
CON), 2012 9th International Conference on, pp. 1–4, IEEE, 2012.

[104] W. Voorsluys and R. Buyya, “Reliable provisioning of spot instances for
compute-intensive applications,” in Proceedings of the 26th International Con-
ference on Advanced Information Networking and Applications (AINA), pp. 542–
549, IEEE, 2012.

[105] L. M. Leslie, Y. C. Lee, and A. Y. Zomaya, “Ramp: reliability-aware elastic
instance provisioning for profit maximization,” The Journal of Supercomput-
ing, vol. 71, no. 12, pp. 4529–4554, 2015.

[106] S. Tang, J. Yuan, and X.-Y. Li, “Towards optimal bidding strategy for ama-
zon ec2 cloud spot instance,” in 5th International Conference on Cloud Com-
puting (CLOUD), pp. 91–98, IEEE, 2012.

[107] Y. Song, M. Zafer, and K.-W. Lee, “Optimal bidding in spot instance mar-
ket,” in 2012 Proceedings INFOCOM, pp. 190–198, IEEE, 2012.

[108] M. Mazzucco and M. Dumas, “Achieving performance and availability
guarantees with spot instances,” in 13th International Conference on High Per-
formance Computing and Communications (HPCC), pp. 296–303, IEEE, 2011.

[109] A. Andrzejak, D. Kondo, and S. Yi, “Decision model for cloud comput-
ing under SLA constraints,” in Proceedings of the International Symposium on
Modeling, Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 257–266, IEEE, 2010.

[110] J. Brevik, D. Nurmi, and R. Wolski, “Predicting bounds on queuing de-
lay for batch-scheduled parallel machines,” in Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of parallel programming,
pp. 110–118, ACM, 2006.

[111] J. Gray, “Distributed computing economics,” Queue, vol. 6, pp. 63–68, May
2008.

[112] A. Szalay, A. Bunn, J. Gray, I. Foster, and I. Raicu, “The importance of data
locality in distributed computing applications,” in NSF Workflow Workshop,
2006.



BIBLIOGRAPHY 169

[113] M. Taifi and J. Shi, “Mapreduce performance evaluation on a private hpc
cloud,” in Parallel Processing Workshops (ICPPW), 2012 41st International Con-
ference on, pp. 606 –607, sept. 2012.

[114] W. Xiaohui, W. W. Li, O. Tatebe, X. Gaochao, H. Liang, and J. Jiubin, “Im-
plementing data aware scheduling in gfarm using lsf scheduler plugin
mechanism,” in International Conference on Grid Computing and Applications
(GCA’05, pp. 3–10, 2005.

[115] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, “Leen: Locality/fairness-
aware key partitioning for mapreduce in the cloud,” in Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International Conference
on, pp. 17–24, 2010.

[116] D. Warneke and O. Kao, “Nephele: efficient parallel data processing in the
cloud,” in Proceedings of the 2nd workshop on many-task computing on grids and
supercomputers, p. 8, ACM, 2009.

[117] Z. Guo, G. Fox, and M. Zhou, “Investigation of data locality in mapreduce,”
in Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM Interna-
tional Symposium on, pp. 419–426, 2012.

[118] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network tomogra-
phy: recent developments,” Statistical science, vol. 19, pp. 499–517, 2004.

[119] Y. Vardi, “Network tomography: Estimating source-destination traffic in-
tensities from link data,” Journal of the American Statistical Association,
vol. 91, no. 433, pp. pp. 365–377, 1996.

[120] N. G. Duffield, F. Lo Presti, V. Paxson, and D. Towsley, “Inferring link loss
using striped unicast probes,” in INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 915–
923, 2001.

[121] M. Coates and R. Nowak, “Network loss inference using unicast end-to-
end measurement,” in Proceedings of the ITC Conference on IP Traffic, Mod-
elling and Management, pp. 28–1, 2000.

[122] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and Y. Tsang, “Max-
imum likelihood network topology identification from edge-based unicast



170 BIBLIOGRAPHY

measurements,” in Proceedings of the 2002 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, pp. 11–20, 2002.

[123] N. T. Karonis, B. R. De Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresna-
han, “Exploiting hierarchy in parallel computer networks to optimize col-
lective operation performance,” in Parallel and Distributed Processing Sym-
posium, 2000. IPDPS 2000. Proceedings. 14th International, pp. 377–384, IEEE,
2000.

[124] I. Foster and N. Karonis, “A Grid-enabled MPI: Message passing in het-
erogeneous distributed computing systems,” in Supercomputing, 1998.SC98.
IEEE/ACM Conference on, pp. 46–46, 1998.

[125] N. T. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A Grid-enabled im-
plementation of the message passing interface,” Journal of Parallel and Dis-
tributed Computing, vol. 63, no. 5, pp. 551–563, 2003.

[126] R. Cáceres, N. G. Duffield, J. Horowitz, and D. F. Towsley, “Multicast-based
inference of network-internal loss characteristics,” Information Theory, IEEE
Transactions on, vol. 45, no. 7, pp. 2462–2480, 1999.

[127] F. Lo Presti, N. Duffield, J. Horowitz, and D. Towsley, “Multicast-based
inference of network-internal delay distributions,” Networking, IEEE/ACM
Transactions on, vol. 10, no. 6, pp. 761–775, 2002.

[128] Y. Tsang, M. Yildiz, P. Barford, and R. Nowak, “Network radar: tomog-
raphy from round trip time measurements,” in Proceedings of the 4th ACM
SIGCOMM conference on Internet measurement, pp. 175–180, 2004.

[129] J. Bresnahan, M. Link, R. Kettimuthu, and I. Foster, “Udt as an alterna-
tive transport protocol for gridftp,” in International Workshop on Protocols
for Future, Large-Scale and Diverse Network Transports (PFLDNeT), pp. 21–22,
Citeseer, 2009.

[130] R. Wolski, N. T. Spring, and J. Hayes, “The network weather service: a
distributed resource performance forecasting service for metacomputing,”
Future Generation Computer Systems, vol. 15, no. 5, pp. 757–768, 1999.

[131] E. Blanton, S. Fahmy, G. Frederickson, and S. Gangam, “On the cost of net-
work inference mechanisms,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 22, no. 4, pp. 662–672, 2011.



BIBLIOGRAPHY 171

[132] B. Yao, R. Viswanathan, F. Chang, and D. Waddington, “Topology inference
in the presence of anonymous routers,” in INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications. IEEE Soci-
eties, vol. 1, pp. 353–363, IEEE, 2003.

[133] D. Battré, N. Frejnik, S. Goel, O. Kao, and D. Warneke, “Evaluation of
network topology inference in opaque compute clouds through end-to-
end measurements,” in IEEE International Conference on Cloud Computing
(CLOUD), pp. 17 –24, 2011.

[134] D. F. Robinson and L. R. Foulds, “Comparison of phylogenetic trees,” Math-
ematical Biosciences, vol. 53, no. 1-2, pp. 131–147, 1981.

[135] Y. Gong, B. He, and J. Zhong, “Network performance aware MPI collective
communication operations in the cloud,” IEEE Transactions on Parallel and
Distributed Systems, vol. 99, no. 1, p. 11, 2013.

[136] W. Gropp, E. Lusk, D. Ashton, P. Balaji, D. Buntinas, R. Butler, A. Chan,
D. Goodell, J. Krishna, G. Mercier, et al., “MPICH2 users guide,” Mathemat-
ics and Computer Science Division-Argonne National Laboratory, Version 0.4,
2005.

[137] T. A. Said and O. Rana, “Implementing migration-aware virtual machines,”
in Cyber Security and Cloud Computing (CSCloud), 2015 IEEE 2nd International
Conference on, pp. 54–61, IEEE, 2015.

[138] B. Ciciani, D. Didona, P. D. Sanzo, R. Palmieri, S. Peluso, F. Quaglia, and
P. Romano, “Automated workload characterization in cloud-based trans-
actional data grids,” in 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), pp. 1525–1533, IEEE, 2012.

[139] W. Tang, N. Desai, D. Buettner, and Z. Lan, “Job scheduling with adjusted
runtime estimates on production supercomputers,” Journal of Parallel and
Distributed Computing, vol. 73, no. 7, pp. 926–938, 2013.

[140] R. Gibbons, “A historical application profiler for use by parallel sched-
ulers,” in Job scheduling strategies for parallel processing, pp. 58–77, Springer,
1997.



172 BIBLIOGRAPHY

[141] A. B. Downey, “Predicting queue times on space-sharing parallel comput-
ers,” in Parallel Processing Symposium, 1997. Proceedings., 11th International,
pp. 209–218, IEEE, 1997.

[142] W. Smith, I. Foster, and V. Taylor, “Predicting application run times us-
ing historical information,” in Job Scheduling Strategies for Parallel Processing,
pp. 122–142, Springer, 1998.

[143] L. Yang, X. Ma, and F. Mueller, “Cross-platform performance predic-
tion of parallel applications using partial execution,” in Proceedings of the
ACM/IEEE Supercomputing Conference, pp. 40–40, Nov 2005.

[144] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling virtual machine
performance: challenges and approaches,” ACM SIGMETRICS Performance
Evaluation Review, vol. 37, no. 3, pp. 55–60, 2010.

[145] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie: Online mod-
elling and performance-aware systems.,” in HotOS, pp. 85–90, 2003.

[146] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using magpie for re-
quest extraction and workload modelling.,” in OSDI TODO, vol. 4, pp. 18–
18, 2004.

[147] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Automatic resource
inference and allocation for mapreduce environments,” in Proceedings of the
8th ACM International Conference on Autonomic Computing (ICAC), pp. 235–
244, ACM, 2011.

[148] E. Elmroth and J. Tordsson, “Grid resource brokering algorithms enabling
advance reservations and resource selection based on performance predic-
tions,” Future Generation Computer Systems, vol. 24, no. 6, pp. 585–593, 2008.

[149] O. DeMasi, T. Samak, and D. H. Bailey, “Identifying HPC codes via per-
formance logs and machine learning,” in Proceedings of the first workshop on
Changing landscapes in HPC security, pp. 23–30, ACM, 2013.

[150] J. Zhang and R. Figueiredo, “Application classification through monitoring
and learning of resource consumption patterns,” in Proceedings of the 20th
International Parallel and Distributed Processing Symposium (IPDPS), p. 10 pp,
April 2006.



BIBLIOGRAPHY 173

[151] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, “Profiling and modeling
resource usage of virtualized applications,” in Proceedings of the 9th ACM/I-
FIP/USENIX International Conference on Middleware, pp. 366–387, 2008.

[152] Y. Becerra, D. Carrera, and E. Ayguade, “Batch job profiling and adaptive
profile enforcement for virtualized environments,” in Proceedings of hte 17th
Euromicro International Conference on Parallel, Distributed and Network-based
Processing, pp. 414–418, Feb 2009.

[153] H.-L. Truong, T. Fahringer, and S. Dustdar, “Dynamic instrumentation, per-
formance monitoring and analysis of grid scientific workflows,” Journal of
Grid Computing, vol. 3, no. 1-2, pp. 1–18, 2005.

[154] D. G. Feitelson, Workload modeling for computer systems performance evalua-
tion. Cambridge University Press, 2015.

[155] “Amazon CloudWatch.” https://aws.amazon.com/cloudwatch/, Ac-
cessed on April 2016.

[156] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud computing: principles and
paradigms, vol. 87. John Wiley & Sons, 2010.

[157] P. Leitner, C. Inzinger, W. Hummer, B. Satzger, and S. Dustdar,
“Application-level performance monitoring of cloud services based on the
complex event processing paradigm,” in Proceedings of the 5th International
Conference on Service-Oriented Computing and Applications (SOCA), pp. 1–8,
IEEE, 2012.

[158] C. Voss, N. Tsikriktsis, and M. Frohlich, “Case research in operations
management,” International journal of operations & production management,
vol. 22, no. 2, pp. 195–219, 2002.

[159] V. Bashkirov, R. Schulte, G. Coutrakon, B. Erdelyi, K. Wong, H. Sadrozinski,
S. Penfold, A. Rosenfeld, S. McAllister, and K. Schubert, “Development of
proton computed tomography for applications in proton therapy,” in AIP
Conference Proceedings, vol. 1099, p. 460, 2009.

[160] R. W. Schulte, V. Bashkirov, M. C. L. Klock, T. Li, A. J. Wroe, I. Evseev,
D. C. Williams, and T. Satogata, “Density resolution of proton computed
tomography,” Medical physics, vol. 32, p. 1035, 2005.



174 BIBLIOGRAPHY

[161] S. Penfold, Image reconstruction and Monte Carlo simulations in the development
of proton computed Tomography for applications in proton radiation therapy. PhD
thesis, University of Wollongong, 2010.

[162] R. T. Fielding and R. N. Taylor, “Principled design of the modern web ar-
chitecture,” ACM Transactions on Internet Technology (TOIT), vol. 2, no. 2,
pp. 115–150, 2002.

[163] N. T. Karonis, K. L. Duffin, C. E. Ordoñez, B. Erdelyi, T. D. Uram, E. C.
Olson, G. Coutrakon, and M. E. Papka, “Distributed and hardware ac-
celerated computing for clinical medical imaging using proton computed
tomography (pCT),” Journal of Parallel and Distributed Computing, vol. 73,
no. 12, pp. 1605–1612, 2013.

[164] InfiniBand Trade Association and others, InfiniBand Architecture Specifica-
tion: Release 1.0. InfiniBand Trade Association, 2000.

[165] A. Connolly, S. Habib, A. Szalay, J. Borrill, G. Fuller, N. Gnedin, K. Heit-
mann, D. Jacobs, D. Lamb, T. Mezzacappa, et al., “Snowmass computing
frontier: Computing for the cosmic frontier, astrophysics, and cosmology,”
arXiv preprint arXiv:1311.2841, 2013.

[166] S. Cholia, D. Skinner, and J. Boverhof, “NEWT: A RESTful service for build-
ing high performance computing web applications,” in Proceedings of the 5th
Gateway Computing Environments Workshop (GCE), pp. 1–11, IEEE, 2010.

[167] K. Heitmann, D. Higdon, M. White, S. Habib, B. J. Williams, E. Lawrence,
and C. Wagner, “The coyote universe. ii. cosmological models and preci-
sion emulation of the nonlinear matter power spectrum,” The Astrophysical
Journal, vol. 705, no. 1, p. 156, 2009.

[168] M. Owens and G. Allen, SQLite. Springer, 2010.

[169] “Shibboleth.” https://shibboleth.net/. Accessed: 2015-11-13.

[170] K. Chard, M. Lidman, B. McCollam, J. Bryan, R. Ananthakrishnan,
S. Tuecke, and I. Foster, “Globus Nexus: A platform-as-a-service provider
of research identity, profile, and group management,” Future Generation
Computer Systems, pp. –, 2015.

https://shibboleth.net/


BIBLIOGRAPHY 175

[171] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa, M. Hate-
gan, B. Clifford, and I. Raicu, “Parallel scripting for applications at the
petascale and beyond,” Computer, vol. 42, no. 11, pp. 50–60, 2009.

[172] A. Bestavros, J. W. Byers, and K. A. Harfoush, “Inference and labeling of
metric-induced network topologies,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 16, no. 10, pp. 1053–1065, 2005.

[173] Y. Tsang, M. Coates, and R. D. Nowak, “Network delay tomography,” IEEE
Transactions on Signal Processing, vol. 51, no. 8, pp. 2125–2136, 2003.

[174] C. Reich, K. Bubendorfer, M. Banholzer, and R. Buyya, “A SLA-oriented
management of containers for hosting stateful web services,” in Proceed-
ings of the 3rd IEEE International Conference on e-Science and Grid Computing,
pp. 85–92, 2007.

[175] C. Reich, M. Banholzer, R. Buyya, and K. Bubendorfer, “Engineering an
autonomic container for WSRF-based web services,” in International Con-
ference on Advanced Computing and Communications, (ADCOM), pp. 277–282,
2007.

[176] Y. Gu, G. Jiang, V. Singh, and Y. Zhang, “Optimal probing for unicast net-
work delay tomography,” in Proceedings of INFOCOM, pp. 1–9, IEEE, 2010.

[177] P. Qin, B. Dai, B. Huang, G. Xu, and K. Wu, “A survey on network tomogra-
phy with network coding,” IEEE Communications Surveys Tutorials, vol. 16,
pp. 1981–1995, September 2014.

[178] L. Bai and S. Roy, “A two-stage approach for network monitoring,” Journal
of network and systems management, vol. 21, no. 2, pp. 238–263, 2013.

[179] “Cloud-init.” http://cloudinit.readthedocs.io/en/latest/.
Accessed: 2015-11-13.

[180] K. P. Burnham and D. R. Anderson, Model selection and multimodel inference:
a practical information-theoretic approach. Springer, 2002.

[181] T. W. Arnold, “Uninformative parameters and model selection using
Akaike’s information criterion,” The Journal of Wildlife Management, vol. 74,
no. 6, pp. 1175–1178, 2010.

http://cloudinit.readthedocs.io/en/latest/


176 BIBLIOGRAPHY

[182] K.-Y. Liang and S. L. Zeger, “Longitudinal data analysis using generalized
linear models,” Biometrika, vol. 73, no. 1, pp. 13–22, 1986.

[183] “The Gluster web site.” http://www.gluster.org/, Accessed on May 2015.

[184] M. Livny, J. Basney, R. Raman, and T. Tannenbaum, “Mechanisms for high
throughput computing,” SPEEDUP journal, vol. 11, no. 1, pp. 36–40, 1997.

[185] “Docker.” https://www.docker.com/. Accessed: 2015-11-13.

[186] The Performance Co-Pilot Development Team, Performance Co-Pilot User’s
and Administrator’s Guide. Silicon Graphics, Inc., 2016.

[187] “Influxdata.” https://influxdata.com/. Accessed: 2015-11-13.

[188] “Container Advisor (cAdvisor).” https://github.com/google/

cadvisor. Accessed: 2015-11-13.

[189] S. Andrews et al., “FastQC: A quality control tool for high throughput se-
quence data,” Reference Source, 2010.

[190] “PICARD mark duplicates.” http://broadinstitute.github.io/

picard/. Accessed: 2015-11-13.

[191] H. Li and R. Durbin, “Fast and accurate short read alignment with
Burrows–Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760,
2009.

[192] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with Bowtie
2,” Nature methods, vol. 9, no. 4, pp. 357–359, 2012.

[193] H. Li, “Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM,” arXiv preprint arXiv:1303.3997, 2013.

[194] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, et al., “Apache hadoop yarn: Yet an-
other resource negotiator,” in Proceedings of the 4th annual Symposium on
Cloud Computing, p. 5, ACM, 2013.

[195] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed
file system,” in 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10, IEEE, 2010.

https://www.docker.com/
https://influxdata.com/
https://github.com/google/cadvisor
https://github.com/google/cadvisor
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/


BIBLIOGRAPHY 177

[196] G. Juve and E. Deelman, “Automating application deployment in infras-
tructure clouds,” in Third International Conference on Cloud Computing Tech-
nology and Science (CloudCom), pp. 658–665, IEEE, 2011.

[197] J. Kirschnick, J. M. A. Calero, L. Wilcock, and N. Edwards, “Toward an
architecture for the automated provisioning of cloud services,” Communi-
cations Magazine, vol. 48, no. 12, pp. 124–131, 2010.

[198] “GitHub.” https://github.com/ryanchard/cloud-provisioner, Accessed
on April 2016.


	Introduction
	Thesis Synopsis
	Cloud Network Limitations
	Cloud Economics
	Provisioning Models
	Infrastructure Management
	Provisioning as a Service

	Contributions
	Publications

	Related Work
	Cloud Computing
	Scientific Cloud Computing
	Cloud-based Scientific Services

	Commercial Cloud Platforms
	Virtualisation
	Cloud Usage

	Cloud Provisioning
	Cost-Aware Provisioning

	Managing Cloud Infrastructures
	Network Tomography
	Tomographic Techniques
	Tomography in the Cloud

	Application Profiling
	Profiling Approaches
	Profiling in the Cloud

	Summary

	Science as a Service – Use Cases
	Proton Computed Tomography
	pCT Reconstruction Service
	Requirements

	PDACS: A Cosmology Portal
	PDACS Platform
	Requirements

	Globus Galaxies
	Globus Galaxies Platform
	Requirements

	Discussion
	Network Limitations
	Economic Optimisation
	Resource Provisioning
	Resource Management

	Summary

	Network Health
	Network Health and the Cloud
	Testbeds and Cloud Performance Baselines
	Testbed I
	Testbed II

	Network Health Diagnostic System
	Health Indicators
	Health Markers

	Health Metrics
	Health Metric Diagnostics
	Health Score

	Proton Computed Tomography
	Discussion
	Summary

	Cost-aware Resource Provisioning
	Globus Genomics Platform Usage
	Tool Usage
	Tool Requirements

	Cost-Aware Provisioning
	Selecting Viable Instance Types
	Cost-Aware Instance Selection
	Reverting to On-demand Instances
	Over-provisioning Instance Requests
	Repurposing Instance Requests

	Data Collection
	Analysis
	Cost
	Spot Instance Termination
	Reverting to On-demand Instances
	Production Usage

	Summary

	Profiling Workloads
	Profiling Service
	Architecture
	Profiling Process

	Creating Genomics Tool Profiles
	AWS Testbed
	Profiles
	Execution Performance
	Resource Usage
	Discussion

	Using Profiles in Globus Genomics
	Summary

	Provisioning as a Service
	SCRIMP
	Execution Frameworks
	Instance provisioning and configuration
	Cloud Provisioning
	Resource Management
	Provisioning algorithm

	Experimental Dataset
	Evaluation
	Emulation
	Spot Instance Reliability
	Migration

	Summary

	Conclusion
	Review
	Cloud Network Limitations
	Cloud Economics
	Provisioning Models
	Provisioning as a Service
	Infrastructure Management

	Contributions
	Future Work
	Network Tomography
	Cloud Economics
	Tool Profiling
	Infrastructure Management
	Data Analytics



