
Autonomous Operation and
Human-Robot Interaction on

an Indoor Mobile Robot

by

Callum J. Robinson

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Engineering
in Electronic and Computer Systems Engineering.

Victoria University of Wellington
2016

Abstract

MARVIN (Mobile Autonomous Robotic Vehicle for Indoor Navigation) was
once the flagship of Victoria University’s mobile robotic fleet. However,
over the years MARVIN has become obsolete. This thesis continues the
the redevelopment of MARVIN, transforming it into a fully autonomous
research platform for human-robot interaction (HRI).

MARVIN utilises a Segway RMP, a self balancing mobility platform. This
provides agile locomotion, but increases sensor processing complexity due
to its dynamic pitch. MARVIN’s existing sensing systems (including a laser
rangefinder and ultrasonic sensors) are augmented with tactile sensors
and a Microsoft Kinect v2 RGB-D camera for 3D sensing. This allows the
detection of the obstacles often found in MARVIN’s unmodified office-like
operating environment.

These sensors are processed using novel techniques to account for the
Segway’s dynamic pitch. A newly developed navigation stack takes the
processed sensor data to facilitate localisation, obstacle detection and mo-
tion planning.

MARVIN’s inherited humanoid robotic torso is augmented with a touch
screen and voice interface, enabling HRI. MARVIN’s HRI capabilities are
demonstrated by implementing it as a robotic guide. This implementation
is evaluated through a usability study and found to be successful.

Through evaluations of MARVIN’s locomotion, sensing, localisation and
motion planning systems, in addition to the usability study, MARVIN is
found to be capable of both autonomous navigation and engaging HRI.
These developed features open a diverse range of research directions and
HRI tasks that MARVIN can be used to explore.

ii

Acknowledgments

I would like to express my deepest gratitude to all those who have offered
me support, guidance and encouragement throughout this last year.

To Professor Dale Carnegie, my project supervisor. I am thankful for his
endless support and enthusiastic guidance throughout this project. He
always made time for me, even when there was none to give. I am especially
grateful for his tireless efforts proofing this thesis.

To Dr Will Brown, for his guidance through the second half of this project.
His kind words of encouragement motivated me to strive for success,
particularly during the final crunch.

A big thanks must go to the ECS technicians, Tim Exley, Jason Edwards
and James McVay, for their technical assistance, support and patience
throughout the year. Their efforts made this project possible.

I would like to thank my fellow lab mates for providing a fun and support-
ive work environment. Especially my fellow masters student and friend,
Lance Molyneaux, who provided many interesting conversations and a
great source of ideas.

To my parents Ann and Alan. Without their constant support and encour-
agement I could not have made it this far. Special thanks to Ann for her

iii

iv

brave work proofing the first draft of all my chapters.

Thank you to my family, especially my sister Kat. Their words of encour-
agement and offers of support helped me make it through this last year.

Thank you all.

Contents

1 Introduction 1
1.1 Motivation . 2

1.1.1 Operating Environment 4
1.1.2 Possible Tasks . 5

1.2 Aims and Objectives . 6
1.2.1 Autonomous Navigation 6
1.2.2 Human-Robot Interaction 8
1.2.3 Health and Safety . 8
1.2.4 Summary of Objectives 9

1.3 Thesis Overview . 10

2 Background 13
2.1 Related Works . 14

2.1.1 Jinny . 14
2.1.2 Robox . 16
2.1.3 CoBots . 18

2.2 Sensing . 20
2.2.1 Laser Rangefinder . 21
2.2.2 Ultrasonic Sensors . 22
2.2.3 RGB Cameras . 22
2.2.4 Depth Cameras . 23
2.2.5 Tactile Sensors . 24

2.3 Localisation . 24

v

vi CONTENTS

2.3.1 Visual Based Localisation 25
2.3.2 Wireless Signal Based Localisation 26
2.3.3 Range Based Localisation 26

2.4 Motion Planning . 27
2.5 Human Robot Interaction . 28

2.5.1 Receptive Elements . 28
2.5.2 Expressive Elements 29

3 MARVIN Platform 31
3.1 Inherited Platform . 31

3.1.1 Inherited Locomotion 32
3.1.2 Inherited Sensors . 35
3.1.3 Inherited Control . 40
3.1.4 Inherited Human-Robot Interaction 41

3.2 Augmented Platform . 42
3.2.1 Augmented Sensors 43
3.2.2 Augmented Control Hardware 48
3.2.3 Augmented Human-Robot Interaction 50

3.3 Summary . 52

4 Sensor Processing 55
4.1 Data Format . 56
4.2 Sensor Interfaces . 59

4.2.1 Laser Range Finder . 59
4.2.2 Sensor Interface Board 60
4.2.3 Kinect . 62

4.3 Laser Scan Processing . 64
4.3.1 Calculating the Sensor Transform 66
4.3.2 Predicting the Relative Ground Plane 66
4.3.3 Project Measurements to the Horizontal Plane 68

4.4 Kinect Pipeline . 69
4.4.1 Processing Steps . 69

CONTENTS vii

4.4.2 Auto Calibration . 87
4.4.3 Human Detection . 91

4.5 Summary . 95

5 Navigation Stack 97
5.1 Localisation . 99
5.2 Obstacle Detection and Sensor Fusion 101

5.2.1 Static Map Layer . 102
5.2.2 Obstacle Layers . 103
5.2.3 Whisker Layer . 104
5.2.4 Inflation Layer . 105
5.2.5 Costmap Example . 107

5.3 Motion Planning . 108
5.3.1 Global Planner . 108
5.3.2 Local Planner . 109

5.4 Mapping . 110
5.5 Summary . 114

6 Control Architecture 115
6.1 Movement Control . 117
6.2 Interaction Control . 121
6.3 Manual Control . 125
6.4 MARVIN Control . 127

6.4.1 Main Thread . 127
6.4.2 GUI Thread . 131
6.4.3 Navigation Thread . 134

7 Human-Robot Interaction 137
7.1 HRI Task’s Aims and Objectives 138
7.2 User Interface . 139

7.2.1 Graphical User Interface 143
7.2.2 Vocal Interface . 147

viii CONTENTS

7.3 Interactive Poses . 149
7.4 Usability Study . 151
7.5 Summary . 158

8 Overall Results 161
8.1 Segway RMP Characteristics 161

8.1.1 Standard-Stop . 162
8.1.2 Emergency-Stop . 166
8.1.3 Summary . 169

8.2 Navigation Stack . 171
8.2.1 Corridor Test . 172
8.2.2 Doorway Test . 184
8.2.3 Obstacle Course . 186
8.2.4 Summary . 191

8.3 Human Detection . 192
8.3.1 Human Poses . 193
8.3.2 Multiple People . 195
8.3.3 Non-Human Objects 196

8.4 Summary . 200

9 Conclusions 201
9.1 Review . 201
9.2 Future Work . 204
9.3 Summary . 207

Appendices 221

A Control Status Messages 223

B Usability Study 229

C Digital Content 233

List of Figures

1.1 Operating Environment . 4

1.2 Block Diagram Convention 12

2.1 Photo of the Jinny system . 15

2.2 Photo of a Robox system . 17

2.3 Photo of the CoBot systems [1]. 19

3.1 Segway RMP200 [2]. 33

3.2 Segway RMP augmented with tilt limiters [3]. 35

3.3 MARVIN’s SICK LMS100 Laser Rangefinder. 36

3.4 Ultrasonic Network. 38

3.5 Stairway detectors [3]. 39

3.6 MARVIN’s inherited actuated humanoid torso. 42

3.7 Microsoft Kinect v2 mounted on MARVIN. 46

3.8 Whisker sensors mounted on MARVIN’s front tilt limiters. . 47

3.9 Whisker sensor dimensions. 48

3.10 Surface 3 Pro, mounted on MARVIN’s torso. 52

3.11 Overview of MARVIN’s hardware platform. 53

4.1 Representation of a laserScan message. 56

4.2 MARVIN’s origin point, from which measurements are made.
The red dot shows the origin point, the red line shows the
origin vector. 58

ix

x LIST OF FIGURES

4.3 Block diagram of the LMS100 laser scanner’s software inter-
face. 59

4.4 The configuration (.yaml) file for the laser filter. 60
4.5 Block diagram of the sensor board’s software interface. . . . 61
4.6 Block diagram of the Kinects’s software interface. 63
4.7 Diagram of the pitch filtering algorithm, using the LiDAR as

an example. 64
4.8 Block diagram of the sensor’s ground and pitch correcting

algorithm. 65
4.9 Accounting for the polar distortion of the ground plane esti-

mates. 67
4.10 Kinect depth image processing steps. 71
4.11 Raw Depth Image. 72
4.12 Preprocessed Depth Image. 74
4.13 Normalised depth image explanation. 75
4.14 Kinect’s frame of reference. 77
4.15 Explanation of the Kinect ground removal equations. 78
4.16 Distance dependent threshold for ground filtering. 81
4.17 Ground and ceiling plane filtering. 81
4.18 Function for removing invalid, ground plane and ceiling

planes pixels. 82
4.19 Converting the depth image to a laser scan message. 83
4.20 Kinect Pipeline Output. 85
4.21 Kinect intensity filter. 87
4.22 Block diagram of the Kinect auto calibration algorithm. . . . 88
4.23 Kinect auto calibration algorithm variables. 90
4.24 Block diagram of the human detection algorithm. 92
4.25 Human Detection Process . 94

5.1 Block diagram of the Navigation Stack. 98
5.2 Block diagram of the amcl node. 100
5.3 Block diagram of the costmap 2d node. 102

LIST OF FIGURES xi

5.4 Whisker layer example. 105

5.5 Costmap inflation layer [4]. 106

5.6 Dynamic Costmap Example 107

5.7 Block diagram of the move base node. 108

5.8 Comparison of the global planner search algorithm imple-
mentations [5]. 109

5.9 Map generation method. 111

5.10 Block diagram of the map server node. 112

5.11 Example SLAM Map . 113

6.1 Block diagram of the control software hierarchy. 116

6.2 Block diagram of the Movement Control node. 117

6.3 Whisker sensor reactive control. 120

6.4 Current configuration of the interaction zones. 122

6.5 Block diagram of the Interaction Control node. 123

6.6 Block diagram of the Manual Control node. 125

6.7 Control layout for the Xbox 360 controller. 126

6.8 Block diagram of the MARVIN Control node. 128

6.9 The MARVIN control internal State Diagram. 129

6.10 MARVIN control GUI interface state diagram. 132

6.11 MARVIN control navigation stack interface state diagram. . 134

7.1 HRI State Machine . 140

7.2 GUI Layout . 144

7.3 GUI Frames . 146

7.4 Configured Interaction Zones 149

7.5 Humanoid Torso Poses . 151

8.1 Standard-stop test at 1.0 ms−1 163

8.2 Standard-stop test at 1.4 ms−1 166

8.3 Emergency-stop test at 1.0 ms−1 168

8.4 Emergency-stop test at 1.4 ms−1 169

xii LIST OF FIGURES

8.5 Rviz screen shot of a 1.4 m wide corridor test. 172
8.6 1.4 m wide corridor test with a target velocity of 1.4 ms−1,

without Kinect filter. 174
8.7 1.4 m wide corridor test with a target velocity of 1.4 ms−1,

with Kinect filter. 175
8.8 1.2m wide corridor test with a target velocity of 0.8ms−1. . 178
8.9 1.4 m wide corridor test with a target velocity of 0.8 ms−1,

with static obstruction. 180
8.10 1.4 m wide corridor test with a target velocity of 0.8 ms−1,

with human moving across MARVIN’s path. 181
8.11 1.4 m wide corridor test with a target velocity of 0.8 ms−1,

with a human moving to block MARVIN’s path. 183
8.12 0.8m wide doorway test with a target velocity of 0.4 ms−1. . 185
8.13 Photo of test obstacle course. 187
8.14 Obstacle course rviz screen shots. 188
8.15 Path taken through an unknown obstacle course with a tar-

get velocity of 0.8ms−1. 190
8.16 Base line depth image for human detection analysis. 192
8.17 Human Detection Common Human Poses 194
8.18 Human Detection Sitting Poses 195
8.19 Human Detection Multiple People 196
8.20 Human Detection True-Negatives 197
8.21 Human Detection False-Positives 197

9.1 Final figure of MARVIN. 208

List of Tables

3.1 Key characteristics of the Segway RMP200 [2]. 33
3.2 Key characteristics of the original control computer. 41
3.3 Comparison of RGB-D camera specifications. 44
3.4 Key characteristics of the NUC [6]. 49
3.5 Key characteristics of the Surface 3 Pro. 51

4.1 Description of points of interest. 86
4.2 Kinect Pipeline Performance in Frames per Second (FPS) . . 96

6.1 MARVIN Control State Overview 131
6.2 Format of the marvin control node’s response to GUI requests.133

7.1 Summary of usability study results 153

8.1 Summary of stopping distance tests. 170
8.2 Classification of Objects in Obstacle Course 187

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

MARVIN was once the flagship of Victoria University’s mobile robotic
fleet. However, with the Mechatronics Group’s focus shifting to Urban
Search and Rescue (USAR), MARVIN’s development slowed, with the last
hardware upgrade performed in 2010. Since then, many of MARVIN’s
systems had become obsolete. As an attempt to remedy this and revitalise
MARVIN, it went through a redevelopment in 2014. During this redevel-
opment, MARVIN’s mobility platform, sensors and control software were
replaced and upgraded. This thesis expands upon this redevelopment,
bringing MARVIN back to relevancy.

MARVIN was originally developed as an autonomous mobile security de-
vice that would patrol the University’s corridors, detecting and recording
the activities of intruders, and recharging itself when necessary [7]. These
goals were never successfully realised. Since then, this objective has ex-
panded to include public relations, interacting with visitors or acting as a
guide. To achieve these goals, MARVIN’s development must combine the
fields of autonomous mobile robots (AMRs) and human-robot interaction
(HRI).

1

2 CHAPTER 1. INTRODUCTION

An autonomous mobile robot is a self contained system capable of moving
in its environment and performing tasks or behaviours with a high level
of autonomy. To facilitate this, an AMR must be capable of locomotion,
sensing, localisation and motion planning.

Human-robot interaction is a multidisciplinary field combining human-
machine interfaces (HMI) and robotics. To enable HRI, a robot must be
able to communicate with humans in order to receive requests and pro-
vide responses. This is achieved through a combination of receptive and
expressive elements. Receptive elements typically include: touch screens,
keyboards, buttons, voice recognition and sensors (such as cameras for
human detection and face tracking). Expressive elements typically include:
LCD screens, LED matrices, lights, speech synthesis and actuation (such as
the robotic humanoid torso used in this project).

1.1 Motivation

Robots are becoming more common place everyday. They are no longer
thought of as just industrial machines confined to factories. As they become
more common place, robots need to be integrated into society. A large part
of this process is human-robot interaction. This creates a desire to perform
further research into HRI.

There are a number of available robotic research platforms capable of com-
plex autonomous tasks. Rethink Robotics manufacture Baxter [8], a robotic
torso with dual manipulators designed specifically to cooperate with hu-
mans in the work environment. It learns how to conduct tasks by watching
them being performed. Baxter uses an LCD screen to emulate facial ex-
pressions and can communicate through voice. However, Baxter has no
locomotion capabilities, limited sensors and costs 25,000 USD (∼38,000

1.1. MOTIVATION 3

NZD). Willow Garage manufacture the PR2 [9], a mobile robot with dual
manipulator arms and a full suite of 3D sensors for autonomous naviga-
tion. However it has no receptive or expressive elements and costs 280,000
USD (∼420,000 NZD). Both these systems are between 1.6 m and 1.8 m tall
making them a similar height to the average human (NZ males 1.77 m, NZ
females 1.64 m [10]), which is appropriate for HRI. Their dual manipulating
arms could be used as expressive elements or to perform tasks such as
opening doors. However, as they are not required for the majority of the
predicted tasks (as outlined in section 1.1.2), this unnecessarily inflates the
price of these platforms. There are also a plethora of smaller and more
affordable AMR research platforms (such as the Adept Robotics Pioneer
[11]), but very few with human-robot interaction capabilities. They are
also typically short (1 m), which makes them less appropriate for HRI. The
majority of HRI research platforms are developed in-house (either fully, or
based off an AMR research platform) and are not available for purchase, for
example [12, 13, 14, 15, 16, 1]. This motivates the in-house development of
a research platform, which aligns with MARVIN’s current redevelopment.

To develop MARVIN into a capable research platform for HRI, the operating
environment and potential future research directions must be understood.
Section 1.1.1 outlines MARVIN’s operating environment and section 1.1.2
suggests some of the possible tasks that might be achieved with the devel-
oped research platform in the future. MARVIN is currently missing the
control architecture and navigation software to allow fully autonomous
operation. It is also lacking the sensing, receptive and expressive elements
required for human-robot interaction. This thesis discusses the develop-
ment of these features, enabling MARVIN’s transformation into a fully
autonomous mobile research platform for HRI.

4 CHAPTER 1. INTRODUCTION

1.1.1 Operating Environment

MARVIN will primarily be operating in the second floor corridors of the
Cotton (CO) and Alan MacDiarmid (AM) buildings in the Kelburn cam-
pus of Victoria University of Wellington. These areas are not specifically
designed to accommodate robot operation and cannot be modified.

Both localisation and obstacle detection rely on the robot’s ability to sense
its environment. MARVIN’s office-like operating environment presents a
number of sensory challenges. These challenges can be seen in the typical
areas shown by figure 1.1.

(a) AM Corridor (b) AM218 Lab

(c) CO Corridor (d) AM/CO Foyer

Figure 1.1: Typical areas in the operating environment.

Surface materials that must be detected include: opaque walls, translucent
(glass) walls, carpeted floors and vinyl floors. Glass walls are often invisible

1.1. MOTIVATION 5

to optical based sensors, such as laser rangefinders, depth cameras and
RGB cameras. The vinyl floors can cause reflections (as seen in figure 1.1a),
which can also cause issues for optical sensors.

Obstacles that must be detected include: office furniture (such as, desks,
benches, tables, chairs, stools and couches), thin obstacles (such as poles),
glass banisters, stairways, free space (areas where there is no floor, such
as in figure 1.1d), miscellaneous small objects found in labs and offices
(such as rubbish bins) and people. Many of these obstacles have complex
3D shapes and differing heights which might not be fully detected by 2D
sensors such as laser rangefinders. This is further discussed in 3.2.1.

The localisation problem can be simplified by modifying the environment
through the addition of unique landmarks, which the robot can localise
against. However, this results in the robot only being able to localise in
specific predefined areas. A more general solution is desired that does not
involve the modification of the operating environment. This will improve
the versatility of the developed research platform.

1.1.2 Possible Tasks

To develop a successful research platform it is important to understand the
types of tasks it might perform. As a research platform for human-robot
interaction, MARVIN may perform tasks including: guiding people around
the University Library to find areas or particular books, guiding new stu-
dents and visitors around the University campus, acting as an information
point for students and visitors or as a robotic security guard autonomously
patrolling the University corridors.

6 CHAPTER 1. INTRODUCTION

To perform these tasks, MARVIN must have appropriate receptive and
expressive elements for human-robot interaction and sufficient sensing and
control systems for autonomous navigation in the operating environment
outlined in section 1.1.1.

1.2 Aims and Objectives

The aim of this project is to transform the existing MARVIN system into a
mobile autonomous research platform for human-robot interaction. This
involves the combination of three primary objectives. First, MARVIN’s
autonomous navigation functionality must be extended. This includes:
locomotion, sensing, localisation and motion planning, as detailed in sec-
tion 1.2.1. Second, MARVIN’s HRI capabilities must be developed. This
involves the addition of both receptive and expressive elements, as dis-
cussed in section 1.2.2. Third, any health and safety concerns about the
autonomous operation of MARVIN must be addressed, as explained in
section 1.2.3. A summary of the three primary objectives and their related
sub-objectives is presented in section 1.2.4.

1.2.1 Autonomous Navigation

As an autonomous mobile robot, MARVIN must be capable of: locomo-
tion, sensing, localisation and motion planning. This section discusses the
requirements of these functions.

Locomotion allows MARVIN to move through its environment. This is
achieved through the inherited Segway RMP, further explained in section

1.2. AIMS AND OBJECTIVES 7

3.1.1. Because the Segway RMP is a self balancing mobility platform,
it must be characterised to determine safe operating conditions once all
MARVIN’s subsystems have been mounted on it (the additional weight
from the mounted hardware will change the response of the Segway RMP).

Sensing provides MARVIN with information about its environment. As
explained in section 1.1.1, MARVIN will operate in an unmodified office-
like environment. This environment will contain obstacles with a range of
differing heights and 3D structures. Many of these obstacles will not be
detected by the inherited sensors, further explained in section 3.1.2. Because
of this, MARVIN requires the addition of a 3D sensor for the detection of
obstacles likely to be found in an office-like environment. As each of
MARVIN’s sensing systems will detect different surfaces and obstacles,
sensor fusion will be required to enable consistent obstacle detection.

Localisation provides MARVIN with a pose (position and heading) esti-
mate. As a fully autonomous robot, MARVIN must be able to perform high
level tasks independently, without external help. This requires MARVIN to
be aware of its position throughout its autonomous operation. To achieve
this, a localisation system must be implemented that is capable of operating
in unmodified office-like environments.

Motion planning takes the sensor and localisation data to generate move-
ment commands for the locomotion system. MARVIN must be capable of
making high level plans from its current position to any arbitrary achiev-
able goal. While following this high level plan, MARVIN must also be
capable of generating low level plans to avoid any detected obstacles.

8 CHAPTER 1. INTRODUCTION

1.2.2 Human-Robot Interaction

To facilitate human-robot interaction, MARVIN must be capable of detect-
ing humans and tracking their location. The implemented sensors must be
processed to enable this functionality.

MARVIN has inherited a robotic humanoid torso. The purpose of this torso
is to emulate basic emotions. The high level control of this torso should
be integrated with the human detection and other HRI elements to enable
MARVIN to interactively change its pose in reaction to humans movement.

MARVIN requires the development of both receptive and expressive ele-
ments to facilitate its use as a HRI research platform.

1.2.3 Health and Safety

MARVIN is a large (∼ 1.8 m tall) heavy (∼ 90 kg) self balancing robot,
operating in close proximity with humans. All reasonable steps must be
taken to ensure people’s safety, whether they are onlookers or directly
interacting with MARVIN.

MARVIN’s velocity must not exceed a safe speed. The velocity should be
limited to the average walking speed of a human, which is 1.41 ms−1 [17].
This velocity limit should be reduced if MARVIN’s current environment
requires it (for example operating in confined spaces, such as cluttered
offices or narrow corridors). These limits should be determined by the
characterisation of the Segway RMP, as per section 1.2.1.

Redundant sensors should be implemented to reduce the risk of collision
due to a human remaining undetected. This should include a combination
of range and tactile sensors to further reduce this risk.

1.2. AIMS AND OBJECTIVES 9

Additional control systems should be implemented to monitor the com-
mands sent to the locomotion system. This should be used to prevent
unauthorised control sources from commanding movement and to pre-
vent unsafe commands from being executed. Reactive control should be
implemented to command an immediate stop if a collision is detected, in
addition to the motion planning outlined in section 1.2.1.

1.2.4 Summary of Objectives

In summary, for this project to be considered successful the following
objectives must be met:

1. Autonomous Navigation

(a) Characterise the Segway RMP to determine safe operating con-
ditions.

(b) Implement a 3D sensor for the detection of obstacles in an office-
like environment.

(c) Implement sensor fusion to enable coherent obstacle detection.

(d) Implement a localisation system to maintain pose estimates in
an unmodified office-like environment.

(e) Implement motion planning for high level goals and low level
obstacle avoidance.

2. Human-Robot Interaction

(a) Detect and track humans to enable HRI.

(b) Develop interactive pose control for the inherited robotic hu-
manoid torso.

10 CHAPTER 1. INTRODUCTION

(c) Implement receptive elements for receiving requests from hu-
mans.

(d) Implement expressive elements for providing responses and
other information to humans.

3. Health and Safety

(a) Limit MARVIN’s maximum velocity should be limited to a
safe speed, not exceeding the average human’s walking speed
(1.41 ms−1) [17].

(b) Implement additional sensing systems capable of detecting hu-
mans.

(c) Monitor and control MARVIN’s mobility platform to ensure safe
operation.

1.3 Thesis Overview

This thesis is presented as follows:

Chapter 2 Presents several examples of existing autonomous mobile
robots with a focus on human-robot interaction. It analyses
their locomotion, sensing, localisation, motion planning and
human-robot interaction capabilities. From this analysis
conclusions are drawn and a list of specifications are made.

1.3. THESIS OVERVIEW 11

Chapter 3 Introduces MARVIN’s inherited hardware platform and dis-
cusses the augmentations made to meet the objectives out-
lined in section 1.2. This includes the mobility platform,
sensing systems, control electronics and receptive and ex-
pressive elements for human-robot interaction.

Chapter 4 Discusses the steps taken to process the sensor data into a
form usable by the navigation stack and human-robot in-
teraction. This includes the processing of laser range finder
data and depth images.

Chapter 5 Details MARVIN’s navigation stack. This includes localisa-
tion, obstacle detection and motion planning.

Chapter 6 Describes MARVIN’s control architecture. This encom-
passes the entire control hierarchy: from hardware interfaces
to the high level decision making.

Chapter 7 Explores the process of developing a human-robot interac-
tion application on MARVIN. This is used as a method for
evaluating MARVIN as a research platform. MARVIN’s
human-robot interaction abilities are evaluated through a
usability study.

Chapter 8 Presents the results of the Segway characterisation, naviga-
tion stack evaluation and human detection analysis.

Chapter 9 Concludes the project with recommendations for future
work and a summary of achievements.

12 CHAPTER 1. INTRODUCTION

The software Chapters 4, 5, 6, and 7 use a number of block diagrams to
explain how various software systems work and communicate with one
another. These block diagrams follow the convention shown in figure 1.2.

Figure 1.2: Block diagram convention used in Chapters 4, 5, 6, and 7.

• Topic: The message topics used by ROS to communicate between
nodes.

• Hardware: The physical hardware units which make up MARVIN.

• Node: Individual software systems in ROS are called nodes.

• Group of Nodes: Used to describe a group of nodes which work
together. For example, the navigation stack.

• Node Split into Code Segments: Used to explain the inner workings
of a node.

Chapter 2

Background

As discussed in Chapter 1, the aim of this project is to transform MARVIN
into a research platform for human-robot interaction. For this aim to be met,
MARVIN’s autonomous navigation and HRI capabilities must be devel-
oped. To inform the development of these systems, existing autonomous
mobile robots with a focus on HRI are researched. This chapter presents
this research.

Over the past two decades, a large number of mobile autonomous robots
have been developed with a focus on human-robot interaction. These sys-
tems are often designed as robotic guides for museums [12, 13, 14, 15, 16]
or as research platforms for universities and other research institutes [1].
However, no matter which task they are designed to perform, they all have
the same basic functionality. As explained by Siegwart and Nourbakhsh
[18], to enable autonomous navigation a robot must be capable of locomo-
tion, sensing, localisation and motion planning. To facilitate HRI a robot
must be capable of communicating with humans. This requires receptive
and expressive elements.

Due to this list of necessary requirements, many of the developed plat-

13

14 CHAPTER 2. BACKGROUND

forms have similar features. Therefore, this chapter will focus on three
key examples, each of which implement different approaches to facilitate
their autonomous navigation and HRI capabilities. These examples are ex-
plored in section 2.1. Further analysis is performed with regard to sensing
(section 2.2), localisation (section 2.3), motion planning (section 2.4) and
human-robot interaction (section 2.5)

2.1 Related Works

This section provides an overview of the three key platforms: Jinny, Robox
and the CoBots. Jinny is discussed due to its comprehensive set of HRI ele-
ments and its interesting approach to motion planning. Robox is discussed
because it has the most hours of operation of all the investigated platforms.
This provides a wealth of experimental data and demonstrates that Robox
was a successful platform, despite its fairly limited HRI elements. The
Cobots are discussed as have been used as a research platform since 2010,
with over 30 papers published about them. Through this research a number
of ideas relevant to MARVIN have been investigated, including approaches
to: sensing, localisation and human detection.

Section 2.1.1 discusses Jinny, section 2.1.2 discusses Robox and section 2.1.3
discusses the Cobots.

2.1.1 Jinny

Jinny is a robot tour guide developed by the Intelligent Robotics Research
Centre at the Korea Institute of Science and Technology [16]. The focus
of Jinny’s development was human-robot interaction and autonomous
navigation. A photo of the Jinny system is shown in figure 2.1.

2.1. RELATED WORKS 15

Figure 2.1: Photo of the Jinny system [19].

The Jinny platform uses a two wheeled differential drive mobile base, which
has a maximum speed of 1.0 ms−1 and a maximum acceleration of 0.5 ms−2.
This makes Jinny slower than average human walking speed of 1.41 ms−1

[17], which could frustrate humans if they are following. The system has
a total height of 1.5 m and a radius of 0.6 m. Jinny’s height is similar the
average human’s height (NZ males 1.77 m, NZ females 1.64 m [10]), which
would improve interaction. Its battery packs provide an operating time of 8
hours. Jinny’s processing is handled by three separate on-board computers;
one for navigation, one for controlling the mobility platform and one for
human-robot interaction. This improves redundancy (if one system fails the
others can keep running) and performance (as multiple processes can run
in parallel across the individual systems) through distributed computation.

Jinny uses an adaptive navigation stack, which changes its motion planner
according to the conditions of the environment, further discussed in section

16 CHAPTER 2. BACKGROUND

2.4. This improves the versatility and overall performance of the navigation
stack as each specialised motion planner is more adept at its specific task
than a generalised planner. It uses probabilistic localisation techniques
based on Monte Carlo localisation, further discussed in section 2.3. This
navigation stack makes use of data from laser rangefinders (the primary
obstacle detection and localisation sensor), infrared scanners (to detect
obstacles of varying heights that might be missed by the laser rangefinders
plannar detection zone), a gyroscope (augments the odometery from the
wheels to reduce the effects of odometry drift) and bumper sensors (used
to detect collisions for the reactive controller). These sensors are further
discussed in section 2.2.

Jinny’s human-robot interaction features include: speech synthesis and
recognition, face tracking (used to face the user, increasing their engage-
ment), touch screen, 12 LED buttons, LED matrix for expression of emotion
and gestures through the use of two 1-DOF (degree of freedom) arms and
a 2-DOF neck. The expression of emotion and gestures can be used to hu-
manise Jinny, improving the users engagement. These features are further
discussed in section 2.5.

2.1.2 Robox

Robox is a autonomous mobile robot platform developed for human-robot
interaction by the Autonomous Systems Lab at the Swiss Federal Institute
of Technology Lausanne [15]. Eleven Robox systems operated for up to
12 hours a day for 159 days at the Swiss national Exhibition Expo in 2002.
During this time they jointly travelled more than 3315 km and interacted
with over 686, 000 visitors. Figure 2.2 shows one of the Robox systems.

2.1. RELATED WORKS 17

Figure 2.2: Photo of a Robox system.

The Robox system uses a two wheeled differential drive mobile base, sim-
ilar to Jinny. The system has a total height of 1.65 m, which (like Jinny)
is comparable to the average humans height, thus improving interaction.
Robox’s batteries provide an operating time of up to 12 hours (with a
charge time of 12 hours). Similarly to Jinny, Robox’s processing is dis-
tributed across multiple computers. There are two on-board computers;
one handles human-robot interaction and the other handles the mobility
platform, sensors and navigation. Again, this improves robustness and
performance. Because multiple Robox systems might be running simulta-
neously, it also communicates with an off-board supervision computer via
radio Ethernet. This allows the Robox systems to be managed to cooperate

18 CHAPTER 2. BACKGROUND

together. It also enables a manual override in the event of an emergency or
if the robot gets stuck.

Robox’s navigation stack uses a dynamic window approach (DWA) for
motion planning and a probabilistic feature-based localisation technique.
These techniques are further discussed in sections 2.4 and 2.3. The naviga-
tion stack uses the data from two laser scanners, a RGB camera and bump
sensors. These sensing systems are discussed in section 2.2.

Robox’s human-robot interaction features include: speech synthesis and
limited speech recognition, face tracking, expression of emotion through
an LED matrix and 1-DOF eyebrows, two eyes that can individually pan
and tilt, and four large input buttons. The face tracking, LED matrix, 1-
DOF eyebrows and actuated eyes help to increase the engagement of users.
These features are further discussed in section 2.5.

2.1.3 CoBots

CoBots are a group of robots developed by the CORAL group at the
Carnegie Mellon University. As with the Jinny and Robox systems, CoBots
are developed as autonomous mobile robots with a focus on human inter-
action. CoBots are programed to know their limitations (both in terms of
intelligence and physical abilities) and proactively ask humans for help
[20]. The CORAL group have published over 30 papers on their CoBot sys-
tems, ranging from their first paper ”WiFi Localisation and Navigation for
Autonomous Indoor Mobile Robots” in 2010 [21] to their latest paper ”Lo-
calisation and Navigation of the CoBots Over Long-term Deployments” in
2013 [22]. In 2014 the CoBot robots jointly reached 1000 km of autonomous
localisation and navigation [1]. Figure 2.3 shows four of the CoBot systems.

2.1. RELATED WORKS 19

Figure 2.3: Photo of the CoBot systems [1].

The CoBot’s mobile base is a scaled up version of the of the CMDragons
small-size soccer robots [23], which use an omni-directional (holonomic)
drive system with four driven wheels. This allows the robots to drive
in all directions without turning, unlike differential drive systems (used
by Jinny and Robox) which must turn to change direction. This could be
particularly useful for human-interaction, as the robot can move parallel to
a human while having the screen facing them at all times. It is also more
manoeuvrable, particularly in tight spaces.

CORAL have released numerous papers on the different autonomous lo-
calisation and navigation approaches implemented on the CoBots. These
approaches include the use of laser rangefinders, depth cameras and WiFi.
As with Jinny, the CoBots also make use of Monte Carlo localisation. Each
of these approaches are discussed in section 2.3.

20 CHAPTER 2. BACKGROUND

The CoBot’s human-robot interaction is achieved through a top mounted
laptop or touch screen (depending on the CoBot) and voice recognition
and synthesis. RGB cameras and depth cameras are also used for human
detection and tracking. Unlike Jinny and Robox, the CoBots make no
attempt to portray emotion.

2.2 Sensing

Autonomous robots must be capable of sensing their environment in order
to make informed decisions through localisation, motion planning and
human-robot interaction. Through the literature review it was found that
three kinds of sensors are typically used: range sensors, tactile sensors
and image sensors (cameras). Range sensors are used by the majority
of autonomous mobile robots. They are particularly useful for obstacle
detection, motion planning and localisation. There are three forms of range
sensors that are most commonly used, laser rangefinders (discussed in
section 2.2.1), ultrasonic sensors (discussed in section 2.2.2) and depth
cameras (discussed in section 2.2.4). Tactile sensors are another common
form of sensor used by mobile robots. They inform the system if a physical
object is in contact with the sensor. Because of this, they are typically used
to trigger an emergency stop. Tactile sensors are further discussed in section
2.2.5. RGB cameras are found on many autonomous mobile robots. They
can be used in various kinds of localisation algorithms, such as RatSLAM
[24], but are more typically used for object classification and detection, such
as human or face recognition. RGB cameras are further discussed in section
2.2.3.

2.2. SENSING 21

2.2.1 Laser Rangefinder

As explained in section 3.1.2, MARVIN has inherited a SICK LMS100 laser
rangefinder. Laser rangefinders, often referred to as LiDARs, use lasers to
measure distance. The laser is aimed by reflecting it against a mirror. The
mirror is rotated rapidly providing the laser rangefinder with a 2D field of
view (FOV). The measurements are then converted into real-world values
by associating the angle of the mirror with its corresponding range mea-
surement. This provides polar measurements that can be converted into
Cartesian coordinates that a robot’s control system can use, as explained in
Chapter 4. Laser range finders often use low intensity infrared (IR) lasers
to prevent damaging onlookers’ eyes. They typically have a wide FOV,
fast response time, long range, high accuracy, good precision and have a
small processing overhead. However they are expensive, large, heavy, high
power consumption and only have a 2D planar detection area.

Laser rangefinders’ FOV, range and accuracy make them particularly useful
for localisation and are used by all three of the key examples introduced
in section 2.1. However, the 2D FOV makes laser rangefinders unreliable
if used as the exclusive sensor for obstacle detection, as any objects above
or below its planar FOV will not be detected. This issue is exacerbated
in unmodified office-like environments (such as MARVIN’s operating en-
vironment, as explained in section 1.1.1) which are typically filled with
complex 3D obstacles like tables, desks and chairs. Some robotic systems
have overcome this issue by periodically tilting a laser rangefinder up and
down, effectively turning it into a 3D laser scanner [25, 26]. However, the
faster the laser rangefinder is tilted, the larger the vertical distance between
each horizontal scan plane. This has two major effects. Firstly, the vertical
resolution is inversely proportional to the tilt speed. Secondly, the robot’s
maximum velocity (while ensuring obstacles are correctly detected) is di-

22 CHAPTER 2. BACKGROUND

rectly proportional to the laser rangefinder’s tilt speed. This introduces a
trade-off between the vertical resolution and the robots maximum speed,
which means robots using these sensors typically have to move more slowly
and can struggle to reliably detect dynamic obstacles. This trade off can be
avoided by using a depth camera, as discussed in section 2.2.4.

2.2.2 Ultrasonic Sensors

Ultrasonic sensors use high frequency (greater than 18 kHz) sound waves
to measure distances using the time-of-flight technique. They consist of a
transducer and a receiver. The transducer emits a ultrasonic pulse which
reflects off the measured surface and the resulting echo is measured by the
receiver. The time difference between the emitted pulse and received echo
is used to determine the measured distance, assuming the speed of the
sound wave is a known constant. As they use sound waves, they are not
affected by the optical properties of the measured surface. This enables the
detection of transparent materials, such as glass. However, they also have
a number of disadvantages including: changing atmospheric conditions
(such as temperature, humidity and pressure) can change the speed of the
sound wave introducing systematic errors, multiple ultrasonic sensors can
interfere with one another due to echos, false measurements can be cause
by specular reflections, and they typically have a wide measurement beam
introducing uncertainties in the position of the measured object.

2.2.3 RGB Cameras

RGB cameras are sensors that convert visible light into individual red,
green and blue signals. They typically consist of a lens which focuses
the light onto a receiver. The receiver absorbs the light and produces

2.2. SENSING 23

signals that a computer can understand. The computer uses these signals
to produce colour images. When selecting a camera for a mobile robot,
there are three major considerations: resolution (the number of pixels in
the image), FOV and frame rate (the number of images that can be taken
in a second, typically measured in frames per second (FPS)). A higher
resolution camera is capable of obtaining more detailed images, which
the robot can use to detect features. A large FOV enables the camera to
detect features in a larger area. A higher frame rate helps detect movement,
and reduces the effects of motion blur (further explained in section 2.3.1).
The amount of data produced is dependent on the resolution and frame
rate. This introduces a trade off between computation overhead and image
detail. This is an important consideration as image processing techniques
are typically computationally expensive.

RGB cameras have been used by Jinny, Robox and the CoBots. These plat-
forms have made use of the colour images for object recognition, human
detection and face tracking. RGB cameras have also been used for localisa-
tion and mapping techniques, further explained in section 2.3. The use of
RGB cameras will be investigated for these applications in section 3.2.1.

2.2.4 Depth Cameras

Depth cameras operate in a similar fashion to standard RGB cameras; how-
ever, rather than producing a colour image, they produce a depth image.
A depth image is a grey scale image where each pixel represents depth.
Depth cameras have the same major selection criteria for use with mobile
robotics as RGB cameras: resolution, FOV and frame rate. Because they
have both a vertical and a horizontal FOV, they are effective for detecting
the complex 3D obstacles that 2D laser rangefinders often miss.

Depth cameras typically use an IR emitter to illuminate the scene. They

24 CHAPTER 2. BACKGROUND

then measure the reflected light using a IR camera to determine the dis-
tance. This can be done using intensity, triangulation or time-of-flight. In
comparison to laser rangefinders, depth cameras usually have a narrower
horizontal FOV, smaller range, lower accuracy, lower precision and much
larger processing overhead. However, they have a similar response time
to a 2D laser rangefinder and the vertical FOV makes them effective for
obstacle detection. In recent years, the price of depth cameras has dropped
dramatically, making them a viable choice for mobile autonomous robots.
CORAL have published numerous papers on the use of the Microsoft’s
depth camera, the Kinect, on their CoBots for obstacle detection, localisation
and navigation [27, 28] as well as for human detection [29].

Because of their effectiveness for obstacle detection, the use of depth cam-
eras on MARVIN is explored in section 3.2.1.

2.2.5 Tactile Sensors

Tactile sensors are used by many mobile robots, including Jinny and Robox,
as a simple method for detecting obstacles that might be missed by range
sensors. They are typically used to initiate an immediate stop and are used
as part of the reactive control loop, rather than the deliberative control loop.
The use of tactile sensors for MARVIN is investigated in section 3.2.1.

2.3 Localisation

Localisation is the process of estimating the robot’s pose (position and
rotation) in a map. This estimate is required by the robot’s control system
to make high level plans from the current pose to a goal pose. This high
level planner is referred to as a global planner and is further explained

2.3. LOCALISATION 25

in section 5.3.1. For localisation to work effectively, an accurate map is
required. If the robot is working in a known environment, a pre-built map
can be used, otherwise the process of building a map and localising within
that map must be performed at the same time. This is know as simultaneous
localisation and mapping (SLAM). As MARVIN is operating in a known
environment (as explained in section 1.1.1) SLAM is not required. However,
the process of pre-building maps of the operating environment can make
use of SLAM techniques, as explained in section 5.4.

There are three general categories of localisation methods typically use by
mobile autonomous robots; visual based localisation (discussed in section
2.3.1), wireless signal based localisation (discussed in section 2.3.2) and
range based localisation (discussed in section 2.3.3).

2.3.1 Visual Based Localisation

Visual based localisation techniques use image data to localise. A common
example of this is RatSLAM [24]. RatSLAM uses artificial neural networks
(ANN) to estimate the robot’s pose from a stream of images. It is inspired
by the way a rat’s brain processes visual information to localise. RatSLAM
has been demonstrated to work on an indoor humanoid robot in [30]. This
paper discussed the issue of multiple false positive loop closes. This is
caused by the robot’s jerky vertical and lateral movement producing blurry
images. Blurry images lead to loss of detail and washed out features. This
reduces the effectiveness of visual SLAM techniques as the features used to
localises can be missed. As discussed in section 3.1.1, MARVIN’s mobility
platform is a Segway RMP. Due to the Segway’s self balancing, the problem
of blurry images would be exacerbated. For this reason, visual localisation
techniques will not be used.

Another visual localisation technique is to use 3D reconstruction to pro-

26 CHAPTER 2. BACKGROUND

duce 3D points from multiple images (either from stereo cameras or from
multiple locations). This process looks for key points in two frames and
uses the camera properties and position to estimate the key points in 3D
coordinates. The 3D points can then be used to localise through the use of
range based localisation techniques such as those explained in section 2.3.3,
for example [31]. However, visual localisation techniques are typically less
robust and less computationally efficient than range based localisation (for
example, localisation using laser rangefinders) [32].

2.3.2 Wireless Signal Based Localisation

Wireless signal based localisation uses external wireless signals to localise
within an area. The most common form of this is the global positioning sys-
tem (GPS). GPSs connect to multiple satellites to triangulate their positing.
As such they are typically used for outdoor localisation as it is difficult to
acquire reliable satellite signals indoors. Another common technique is the
use of WiFi signal strength to localise. This has been shown as an effective
localisation system inside buildings with multi-node networks (such as
in MARVIN’s operating environment) in CORAL’s paper [21]. CORAL
also discuss the usefulness of this technique in combination with range
based localisation [33]. They demonstrate that the WiFi strength localisa-
tion method can provide more accurate estimates in open areas (where the
range sensors provide less information), but range based techniques are
more accurate in confined areas.

2.3.3 Range Based Localisation

Range based localisation uses the data from range sensors to estimate
the robot’s position, typically by comparing the range measurements to

2.4. MOTION PLANNING 27

a known map. From sections 2.3.1 and 2.3.2, it is determined that range
based localisation is a more general and robust localisation solution than
visual or wireless signal based methods. Both Jinny and CoBots have
shown that the Monte Carlo localisation (MCL) technique is effective in
indoor environments, similar to MARVIN’s operating environment. For
this reason, the use of (MCL) is explored in section 5.1.

2.4 Motion Planning

The majority of mobile autonomous robots, including all three of the key
examples, make use of a hybrid navigation system. Hybrid navigation sys-
tems combine both deliberative and reactive control. Deliberative control
is the high level plan, generated by the global planner discussed in section
5.3.1. The reactive controller uses the sensor data to attempt to avoid obsta-
cles. The dynamic widow approach (DWA) is a popular reactive collision
avoidance technique [34]. It has been demonstrated an effective method by
Robox, CoBots and [25].

Jinny extends the idea of the hybrid approach by adaptively switching the
motion planner according to the condition of the robot’s environment. Dur-
ing normal operation Jinny makes use of an extended version of Konolige’s
gradient method [35]. The extensions deal with path blocking and goal
occupation. During this operation the optimal path is continually updated;
however, if a large number of people are detected, path updating is dis-
abled. This introduces a ”stop and wait” behaviour, which is deemed safer
than constantly trying to navigate around people. If Jinny is attempting
to navigate through a narrow area, then a wall following method is used
instead. This method was found to be less affected by localisation errors,
and performed better in confined areas. If the other three methods fail, a
tele-operator can take over the control of Jinny.

28 CHAPTER 2. BACKGROUND

The use of the DWA as MARVIN’s reactive controller (referred to as the local
planner) is explored in section 5.3.2. The possible extensions of adaptive
hybrid control are discussed in section 9.2.

2.5 Human Robot Interaction

Human-robot interaction requires the implementation of both receptive
and expressive elements. Receptive elements receive requests from the user,
while the expressive elements provide the response to the user. Different
implementations of these elements are discussed sections 2.5.1 and 2.5.2.

2.5.1 Receptive Elements

All three of the key examples introduced in section 2.1 make use of limited
speech recognition. These robots all operate in environments where unpre-
dictable noise can be generated at any time (for example, groups of people
talking). This makes recognising speech reliably difficult. Because of this,
they typically use key-word recognition as opposed to natural language
processing.

Both Jinny and the CoBots make use of a touch screen to get inputs from the
user. This is an effective method as the developers can dynamically change
the possible inputs to the system, depending on the current situation (unlike
buttons which are static). Touch screens also provide a much wider variety
of inputs (for example gestures like ”pinch to zoom” or ”slide to scroll”).
However, buttons have the advantage of ease of use and tactile feed back.

Systems focused on human interaction must be able to detect when a
human is present. This been achieved through motion tracking with laser

2.5. HUMAN ROBOT INTERACTION 29

range scanners (Robox), face tracking with RGB cameras (Jinny and Robx)
as well as human tracking through depth cameras (CoBots). Motion tracing
detects all moving objects (not just humans) and as such is prone to false
positives. Face tracking requires the user to be facing the camera and
is prone to false negatives if the person is not well positioned. Human
detection with depth images is typically a more robust method and is
explored in section 4.4.3.

2.5.2 Expressive Elements

Speech synthesis has been used successfully by all three key examples.
It has the advantage that people can hear the robot’s response from any
position, whereas LEDs or screens require line of sight. However, they
have the disadvantage that the synthesised voice may be drowned out by
background noise or difficult to understand for some people (especially
if they primarily speak a language foreign to the robot). The use of voice
synthesis is investigated in Chapter 7

Both Jinny and the CoBots use touch screens as both a receptive and expres-
sive element. As explained in section 2.5.1, they have improved versatility
in comparison with static elements such as LEDs.

Both Jinny and Robox use LED matrices and actuation to emulate emotion.
The LED matrices are used to produce facial expressions. Robox extends the
facial expressions through the use of actuated eyebrows, while Jinny makes
use of a 2-DOF neck and two 1-DOF arms. This ability to emulate emotion
makes the robots more personable which can produce more natural human-
robot interactions. As explained in section 3.1.4, MARVIN has inherited an
actuated torso for this reason. The use of this torso is explored in section
6.2 and Chapter 7.

30 CHAPTER 2. BACKGROUND

Chapter 3

MARVIN Platform

This chapter introduces MARVIN’s hardware platform. For MARVIN to
successfully operate as a research platform for human-robot interaction, it
must be capable of locomotion, sensing, control and human-robot interac-
tion hardware. MARVIN’s platform comprises of a combination of inher-
ited and newly augmented hardware. Section 3.1 introduces MARVIN’s
inherited hardware and section 3.2 discusses the augmented hardware.

3.1 Inherited Platform

MARVIN was first developed as a ”large autonomous robotic vehicle that
would be suitable for use as a security device”. This original development
is discussed by Daniel Loghnane’s 2001 thesis [36]. It was in this thesis that
the name ”MARVIN” was coined, which stands for Mobile Autonomous
Robotic Vehicle for Indoor Navigation. Since then, MARVIN has undergone
numerous developments. This includes the addition of an actuated hu-
manoid torso in collaboration with Robotechnology, as described by Ashil

31

32 CHAPTER 3. MARVIN PLATFORM

Prakash’s thesis [37]. This robotic torso is discussed in section 3.1.4. In 2014
MARVIN’s original differential drive mobility platform was replaced with
a Segway robotic mobility platform, as explained in [3, 38]. This mobility
platform is further discussed in section 3.1.1. The 2014 redevelopment also
replaced MARVIN’s original sensing systems and control hardware, as
explained in sections 3.1.2 and 3.1.3. The humanoid torso is the only re-
maining feature of the developments conducted prior to 2014 and is further
discussed in section 3.1.4.

3.1.1 Inherited Locomotion

MARVIN makes use of a Segway robotic mobility platform (RMP) for loco-
motion. The Segway RMP is based on the self-balancing Segway Human
Transporter (HT), which uses the inverted pendulum model to maintain
balance [39]. The Segway RMP is specifically designed for robotic research
and is controlled using serial communication via a universal serial bus
(USB) 2.0 connection. The inherited platform is the Segway RMP200 shown
in figure 3.1. The specifications of the Segway RMP200 are outlined in table
3.1.

3.1. INHERITED PLATFORM 33

Figure 3.1: Segway RMP200 [2].

Table 3.1: Key characteristics of the Segway RMP200 [2].

Parameter Value

Top plate diameter 61 cm
Overall height 74 cm

Wheel diameter 47 cm
Distance between wheels 47 cm

Weight 64 kg
Top speed 16 km/h
Payload 91 kg

Turning radius 0 m
Range under good conditions 19 km
Recharge time (from empty) 6 hours

The top speed of 16 km/h (4.44ms−1) exceeds a typical human’s walking

34 CHAPTER 3. MARVIN PLATFORM

speed (1.41ms−1 as discussed in section 2.1). This allows MARVIN to travel
at a comfortable walking speed when guiding people. The 0m turning ra-
dius (like the differential drive and omni-direction drive systems discussed
in section 2.1) allow MARVIN to navigate the enclosed spaces found in
indoor environments. The 61 cm diameter is smaller than the width of a
typical wheel chair (600 mm to 700 mm)[40]. This enables MARVIN to
move through the majority of areas in the operating environment, which
is designed to have disabled access (as discussed in section 1.1.1). The
maximum payload of 91 kg can carry MARVIN’s torso, sensors and control
electronics with spare load for future developments.

The Segway RMP has better versatility when compared to typical mobility
platforms, such as the differential drive and caster systems used by Jinny
and Robox or the omni-directional drive system used by the CoBots (dis-
cussed in sections 2.1.1, 2.1.2 and 2.1.3). This is due to its self-balancing
abilities, which allow it to climb over small obstacles that would typically
stop caster based systems and climb slopes that would make non-balancing
systems unstable. It can also account for external disturbances (such as
being pushed), which would destabilise non-balancing systems, potentially
overturning them causing physical damage.

However, this self-balancing feature also introduces a number of challenges
when operating MARVIN. One challenge is the Segway’s constantly chang-
ing pitch, which increases the complexity of sensor processing (as discussed
in Chapter 4). Another challenge is the increased risk of operation. The
Segway can only maintain balance when its control system is operating
and its motors are powered. If it fails to maintain balance, it can become
a safety hazard to onlookers and could cause damage to MARVIN and
its environment. This was addressed by the addition of tilt limiters in
[3, 38] (displayed in figure 3.2), and is further discussed through the control

3.1. INHERITED PLATFORM 35

systems described in Chapter 6.

Figure 3.2: Segway RMP augmented with tilt limiters [3].

3.1.2 Inherited Sensors

MARVIN has inherited three sensing systems: a laser rangefinder, an ultra-
sonic network and a set of stairway detectors. Each of these systems were
added to MARVIN during the 2014 development, as explained in [3, 38].

Laser Rangefinder

The inherited laser rangefinder is a SICK LMS100, which is shown mounted
at the front of MARVIN in figure 3.3a. This laser rangefinder provides
MARVIN with a 270◦ planar FOV, as visualised in figure 3.3b. The sensor
has an operating range of 0.5 to 20 m, an angular resolution of 0.5◦ a
maximum systematic error of ±30mm and a maximum statistical error of
±12mm [41].

36 CHAPTER 3. MARVIN PLATFORM

(a) Mounted Laser Rangefinder [38] (b) Detection Area [41]

Figure 3.3: MARVIN’s SICK LMS100 Laser Rangefinder.

As discussed in section 2.2.1, laser rangefinders are effective sensors for
localisation. The LMS100’s long range, wide FOV, high accuracy and low
errors allows it to reliably detect features in a large area with one sweep
of its laser. This makes it a particularly effective sensor when combined
with probabilistic localisation techniques, as it can compare a large num-
ber of accurate data points to a known map, resulting in probabilistically
likely location estimates. These characteristics also make the SICK LMS100
a capable sensor for obstacle detection; however, it must be augmented
with additional sensors to detect obstacles above and below its planar FOV.
The data from this laser rangefinder is processed to account for the Seg-
way’s dynamic pitch (further explained in section 4.3) and then used by
MARVIN’s navigation stack for localisation (explained in section 5.1) and
obstacle detection (explained in section 5.2).

3.1. INHERITED PLATFORM 37

Ultrasonic Sensor Network

As the laser rangefinder uses IR lasers to measure distances, it is unreliable
at detecting glass. MARVIN’s operating environment has a number of glass
walls, as discussed in section 1.1.1. This requires that the laser rangefinder
is augmented with additional senors for detecting glass. MARVIN has
inherited an ultrasonic sensor network (USN) as an attempt to address this
issue. Ultrasonic sensors measure distances by pulsing ultrasonic sound-
waves and measuring their time-of-flight (the time it takes for the pulse
to reach the measured surface, reflect off it and return to the ultrasonic
receiver). Unlike the laser rangefinder, their measured distances are unaf-
fected by the optical properties of the measured surfaces. This allows them
to detect the glass panels. The USN comprises of a series of four ultrasonic
sensors mounted around the front of the Segway’s mounting plate, shown
by figure 3.4. The USN is interfaced with ROS via a custom interface board
based off the Arduino Mega 2560 [38].

38 CHAPTER 3. MARVIN PLATFORM

(a) Full Network. (b) Individual Sensor.

Figure 3.4: Ultrasonic Network.

While the USN can detect glass, when compared to the laser rangefinder
it has a short range (6 m), a narrow FOV (160◦), lower range resolution
(25.4 mm) and much lower angular resolution (40◦). For this reason, the
USN is only used for obstacle detection as explained in section 5.2. As per
the suggestions from [38], the original four wide beam ultrasonic sensors
were replaced with five narrow beam sensors. This improves the angular
resolution to 30◦ and improves the detection reliability.

Stairway Detectors

To detect obstacles above and below the laser rangefinder’s planar FOV,
MARVIN has inherited two stairway detectors mounted above MARVIN’s
left and right wheels, facing forwards. Each stairway detector consists of
two SHARP position sensitive devices (PSDs). The PSDs contain an IR
emitter and detector and use triangulation techniques to measure distances.
The stairway detectors use the two PSDs to measure the angle of the ground

3.1. INHERITED PLATFORM 39

in front of MARVIN (relative to the Segway pitch) and compare it to the
predicted pitch (calculated from the Segway pitch assuming the ground
plane is horizontal). If there is a discrepancy between the measured and
predicted ground angle it can be assumed that there is an obstacle. This
obstacle could be a low-lying object, an excessive slope or an upward or
downward stairway. This process is visualised by figure 3.5.

Figure 3.5: Stairway detectors [3].

The stairway detectors were shown to be effective in [3, 38]; however, due
to the inclusion of the Kinect RGB-D camera (discussed in section 3.2.1) they
have become redundant and are no longer used. However, their obstacle
detection method is extended in the ground and celing removal algorithms
used to process the Kinect’s depth images, as discussed in section 4.4.

40 CHAPTER 3. MARVIN PLATFORM

3.1.3 Inherited Control

MARVIN’s 2014 redevelopment replaced its original robotic development
environment (RDE), Microsoft’s Robotics Developer Studio (MRDS), with
Robot Operating System (ROS) [42]. ROS is an open-source RDE that runs
on Linux. It uses a graph-based messaging network to communicate be-
tween subsystems (called nodes) [38]. Each node can subscribe and publish
to message topics. This standardises and abstracts the inter-node commu-
nication making it transparent. This allows nodes to be written in different
styles and languages without having to redevelop communication meth-
ods between them, which reduces development time. ROS handles the
processing of each node, allowing multiple nodes to run simultaneously.
This provides distributed processing for each of the robot’s subsystems on
the same machine, which leads to more efficient and robust control. ROS
also has a highly active development community, which provides support
and a vast library of packages for performing standard robotic tasks. This
also dramatically reduces development times. For these reasons, ROS will
continue to be used throughout this project.

MARVIN inherited a laptop as its control computer, the specifications of
which are outlined in table 3.2. This laptop has neither the connection hard-
ware nor processing power to interface with the depth camera (introduced
in section 3.2.1). This inherited laptop has a number of redundant features
which increase its size and weight, such as its screen, keyboard and DVD
drive. The laptop also uses a mechanical hard disk drive (HDD) which is
prone to vibration damage. As the Segway can cause large vibrations dur-
ing motion, this is a potential point of failure that can be avoided through
the use of solid state storage. These issues are resolved by replacing the
inherited laptop with a new control computer, further explained in section
3.2.2.

3.1. INHERITED PLATFORM 41

Table 3.2: Key characteristics of the original control computer.

Parameter Value

CPU Cores 2
CPU Threads 2

CPU Frequency 2.2 GHz
RAM 2.0 GB

Storage 80 GB (HDD)
Size (w × h× d) 355mm× 40mm× 265mm

USB Ports 4× USB2.0

MARVIN has no inherited control architecture and only a rudimentary pro-
totype navigation stack designed to demonstrate its potential, as opposed
to being a robust autonomous mobile platform. These systems are newly
developed in Chapters 6 and 5 respectively.

3.1.4 Inherited Human-Robot Interaction

One of MARVIN’s unique inherited features is its 7-DOF actuated torso.
This torso was developed to enable MARVIN to emulate basic emotions.
The torso can be controlled to: tilt the torso, extend the left and right
shoulders, extend the neck, nod, tilt and shake the head and individually
control the RGB LED eyes. This robotic torso can be used during human-
robot interaction to personify MARVIN, similarly to the Jinny and Robox
robots discussed in section 2.1. Figure 3.6 shows a photo of MARVIN’s
torso.

42 CHAPTER 3. MARVIN PLATFORM

Figure 3.6: MARVIN’s inherited actuated humanoid torso.

The torso was interfaced with ROS during the 2014 development, and is
controlled via a the torso node written in python. The control of this torso is
extended in section 6.2.

MARVIN has inherited no other expressive elements, or any receptive
elements for human-robot interaction. The development of these elements
are discussed in section 3.2.3.

3.2 Augmented Platform

MARVIN’s inherited systems must be augmented with new systems to
better meet the objectives introduced in Chapter 1. MARVIN requires a

3.2. AUGMENTED PLATFORM 43

sensing system to more reliably sense the 3D objects commonly found
in office-like environments (discussed in section 3.2.1), more powerful
control electronics (discussed in section 3.2.2) and additional receptive
and expressive elements for human-robot interaction (discussed in section
3.2.3).

3.2.1 Augmented Sensors

As explained in section 3.1.2, MARVIN has inherited a laser rangefinder,
ultrasonic network and stairway detectors. These sensors can be used for
effective localisation (as discussed in section 5.1); however, they can only
provide limited obstacle detection. They have dead-zones between their
detection areas, where their FOVs don’t overlap. Many objects inside the
operating environment (explained in section 1.1.1) fall into these dead-
zones, such as desk/bench tops, rubbish bins and chair legs. Additionally,
these sensors provide no reliable methods for human detection and tracking.
The laser rangefinder can be used for motion tracking to detect humans;
however, this is typically prone to false positives (as explained in section
2.5.1). These limitations are addressed through the addition of a RGB-D
camera and tactile sensors.

RGB-D Camera

Depth cameras provide both a vertical and horizontal FOV, as explained in
section 2.2.4. RGB-D cameras combine a RGB camera and a depth camera
into the same sensor. The RGB and depth cameras can be used separately,
or together to produce a RGB point-cloud. A point cloud is a set of 3D
points created from the depth image. Typically each point only contains
three values (x, y and z), but a RGB point-cloud’s contain six values (x, y,

44 CHAPTER 3. MARVIN PLATFORM

z, red, green and blue). Point-clouds are not currently used by MARVIN
due to their increased processing overhead (as discussed in section 4.4),
but they may be used in future developments. Since Microsoft released a
RGB-D camera for their Xbox 360 game console in 2010 (the Kinect), RGB-D
cameras have dropped dramatically in cost. This has made them a popular
sensor for mobile robots in recent years.

Currently there are three common manufacturers of consumer grade RGB-
D cameras: Microsoft, ASUS and Intel. When Microsoft released their
latest game console in 2013, the Xbox One, they also released the Kinect v2.
The Kinect v2 moved from the intensity based depth mapping to a time-of-
flight method, which improved its range and accuracy. ASUS manufactures
the Xtion (re-branded from PrimeSense Carmine) RGB-D camera, which
has similar specifications to the original Kinect. At the start of 2015 Intel
announced the RealSense. The RealSense has similar specifications to the
Kinect v2, however is physically much smaller and more power efficient.
All three of these systems are compared in table 3.3.

Table 3.3: Comparison of RGB-D camera specifications.

Manufacturer
RGB-D
Camera

RGB
Resolution

Depth
Resolution

RGB
FOV

(H × V)

Depth
FOV

(H × V)

Max
Depth
Range

Power
Consumption

Microsoft
Kinect v2

[43]
1920× 1080

(60 Hz)

512× 424

(30 Hz)
84◦ × 54◦ 70.6◦ × 60◦ 8m ∼ 15 W

ASUS
Xtion
[44]

1280× 1024

(60 Hz)

640× 480

(30 Hz)

or
320× 240

(60 Hz)

58◦ × 45◦ 58◦ × 45◦ 3.4m 2.5 W

Intel
RealSense

[45]
1920× 1080

(60 Hz)

640× 480

(60 Hz)
70◦ × 43◦ 59◦ × 46◦ 10m 1.6 W [46]

Of the specifications outlined in table 3.3, FOV and maximum depth range
are the most important for obstacle detection (assuming the other specifica-

3.2. AUGMENTED PLATFORM 45

tions are comparable). The area in which the sensor can detect obstacles is
proportion to the FOV and range. The Kinect v2 has the largest FOV, while
the RealSense has the longest range. The Xtion has the narrowest FOV
and shortest range, therefore it is not considered for use with MARVIN.
Multiple depth sensors could be used to increase their collective FOV. The
RealSense would be preferable for this due to its lower power consumption,
larger range and higher resolution (which would make it easier to stitch the
multiple depth images together). Due to supply issues, RealSense sensors
could not be obtained during this project. Instead, a single Kinect v2 was
used; however, multiple RealSenses may be considered in future (further
discussed in section 9.2).

The Kinect v2 has been demonstrated as an effective sensor for indoor mo-
bile robots by [47, 48]; however, it is not as effective outdoors (it has higher
noise when overcast and fails to produce valid data in direct sunlight). As
MARVIN’s operating environment consists of indoor office-like areas, this
sensor is effective for obstacle detection. The steps taken to process the
Kinect’s data are discussed in section 4.4. MARVIN uses this processed
Kinect data for obstacle detection (explained in section 5.2) and human
tracking (explained in section 4.4.3).

For better obstacle detection performance, the Kinect should be mounted
at an angle which can sense the ground in front of MARVIN (∼ 5◦ below
horizontal). For better human detection performance the Kinect should be
mounted at an angle which can view entire people in a single frame (∼ 10◦

above horizontal). To enable better performance for both obstacle detection
and human detection, the Kinect is mounted on a pivot actuated by a servo.
This mount is shown in figure 3.7.

46 CHAPTER 3. MARVIN PLATFORM

Figure 3.7: Microsoft Kinect v2 mounted on MARVIN.

This mount allows the Kinect to tilt from −20◦ to 20◦ (where 0◦ is parallel
with the Segway’s mounting plate). The servo is controlled through a
microcontroller connected to the main control computer, as explained in
section 4.2.2.

The addition of the Kinect aligns with the 3D sensor objective 1b.

Tactile Sensors

Tactile sensors are useful for reactive control as discussed in section 2.2.5.
They can be used to command the motion platform to perform an immedi-
ate stop in the event of a collision. When the Segway collides with an object,
its internal control attempts to account for the additional force the object
applies to the Segway. If the Segway gets stuck on the object, it continues
to account for this force, which can lead to unstable control and unsafe
operation. To avoid this the Segway needs to know that it has collided (or is

3.2. AUGMENTED PLATFORM 47

about to collide) with an object. This is typically achieved with MARVIN’s
range sensors, but if an object is in the range sensors’ dead-zones it will be
missed. Tactile sensors can be used to help avoid this issue. Ideally any
tactile sensors used on MARVIN would detect an obstacle before MARVIN
collides with it (to prevent the collision force problem). Whisker sensors are
tactile sensors that have a protruding trigger element (the whisker). They
use the whisker to detect obstacles before the robot collides with them. By
comparison, the bump senors introduced in section 2.2.5 only trigger when
the robot collides with an object.

MARVIN makes use of four whisker sensors, each mounted to one of the
Segway’s tilt limiters. This is because the tilt limiters are the outermost
parts of MARVIN, making up the four corners of its footprint. Figure 3.8
shows the two front whisker sensors.

Figure 3.8: Whisker sensors mounted on MARVIN’s front tilt limiters.

The whisker sensors consist of two tactile switches on either side of a
whisker. If the whisker rotates or bends due to a collision it triggers one

48 CHAPTER 3. MARVIN PLATFORM

or both of the switches. The whiskers consist of a 1.5 mm stainless steel
core (for rigidity) surrounded by a 3.0 mm styrene shell (for flexibility
and to prevent the metal core from damaging the environment). They are
400 mm long to give the Segway time to react after an obstacle has been
detected and are mounted at an outward angle of 20◦ to help detect objects
to MARVIN’s sides. This is shown by figure 3.9.

400 mm

20°

Figure 3.9: Whisker sensor dimensions.

The whisker sensors are interfaced directly into MARVIN’s movement
control (as described in section 6.1) and the navigation stack’s obstacle
detection (as described in section 5.2).

3.2.2 Augmented Control Hardware

The inherited control computer does not have the connection hardware
to interface with the Kinect, nor the computational power to process its
data (as mentioned in section 3.1.3). Microsoft recommends the following
specifications for the Kinect’s Windows Software Development Kit (SDK):
dual core 64-bit 3.1 GHz processor, 4 GB RAM, USB 3.0 and a DX11 capable

3.2. AUGMENTED PLATFORM 49

graphics adaptor [49]. As explained in section 3.1.3, MARVIN is devel-
oped in ROS (which runs on Linux), so the windows SDK cannot be used.
However, these specifications give an indication for the requirements of
MARVIN’s new control computer. In addition to meeting the processing
requirements for the Kinect, it is desired that the new control computer is
physically small (to preserve space on MARVIN for future developments)
and power efficient (to maximise MARVIN’s operating time). The Intel
Next Unit of Computing (NUC) is a compact computer which runs mo-
bile grade hardware (which is more power efficient than desktop grade
hardware). The Intel NUC D54250WYKH was available and is used as
MARVIN’s new control computer. Its specifications are shown in table 3.4.

Table 3.4: Key characteristics of the NUC [6].

Parameter Value

CPU Intel Core i5 4250U (64-bit)
CPU Cores 2

CPU Threads 4
CPU Frequency 1.3 GHz (2.6 GHz Boost)

RAM 8.0 GB
Graphics Processor Intel HD Graphics 5000 (DX11)

Storage 120 GB (SSD)
Size (w × h× d) 115mm× 50mm× 110mm

USB Ports 4× USB3.0

From this table it can be seen that the Intel NUC D54250WYKH meets or
exceeds all the recommended specifications for the Kinect’s SDK, except
the processor speed (2.6 GHz as opposed to 3.1 GHz). However, as shown
in section 4.4, the Intel Core i5 4250U is capable of running the Kinect at
30 frames per second (FPS) at ∼ 45% CPU load. This provides sufficient
overhead for the rest of the MARVIN’s processing requirements. However,

50 CHAPTER 3. MARVIN PLATFORM

if multiple RealSenses are used in future (as suggested in section 3.2.1) the
NUC’s processor may need to be upgraded (or augmented). This is further
discussed in section 9.2.

To enable MARVIN’s development via external computers and allow the
control computer to communicate with the human-robot interface tablet
(introduced in section 3.2.3) a wireless local network is required. This
is implemented through the use of a TP-Link TL-WR702N Nano Router,
which is a compact (57 mm × 18 mm × 57 mm) low power (powered by
USB 2.0) 150 Mbps Wireless N router [50].

3.2.3 Augmented Human-Robot Interaction

MARVIN requires the addition of both expressive and receptive human-
robot interaction elements. From Chapter 2 it was found that speech recog-
nising and synthesis are required for human-interaction and that touch
screens provide a versatile receptive and expressive element. These expres-
sive and receptive elements can be introduced to MARVIN through the
addition of a tablet computer.

As explained in Chapter 7, MARVIN uses Microsoft’s Speech Platform
SDK for voice synthesis and recognition. Microsoft’s recommended system
requirements include: dual core 2 GHz processor, 1 GB RAM, DX9 compati-
ble graphics processor and 40 GB + storage [51]. As explained in section 9.2,
the Microsoft Speech Platform might be replaced with Nuance’s Dragon
NaturallySpeaking to improve the speech recognition performance in the
future. Nuance’s recommended system requirements include: dual core 2.2
GHz processor, 4 GB RAM and 4 GB + storage [52]. Thus the hardware of
the human-robot interface computer should meet both sets of specifications.

3.2. AUGMENTED PLATFORM 51

Both Microsoft’s and Nuance’s speech software only work on Microsoft’s
Windows OS. The Microsoft Surface 3 Pro is a Windows based tablet. It is
selected as MARVIN’s human-robot interface computer. The specifications
of the selected model are shown in table 3.5.

Table 3.5: Key characteristics of the Surface 3 Pro.

Parameter Value

CPU Intel Core i5-4300U Processor
CPU Cores 2

CPU Threads 4
CPU Frequency 1.9 GHz (2.9 GHz Boost)

RAM 4.0 GB
Graphics Processor Intel HD Graphics 4400 (DX11)

Storage 128 GB (SSD)
Size (w × h× d) 292mm× 201mm× 9mm

USB Ports 1× USB3.0
Display 12” 2160× 1440 pixels (Touch)

From table 3.5 it can be seen that the Surface 3 Pro meets both Microsoft’s
and Nuance’s recommended system requirements. It also has a high-
resolution 12” touch screen that can be used for further human-robot inter-
action, as explained in Chapter 7. The Surface is mounted on the front of
MARVIN’s torso, as shown in figure 3.10.

52 CHAPTER 3. MARVIN PLATFORM

Figure 3.10: Surface 3 Pro, mounted on MARVIN’s torso.

The addition of the Surface 3 Pro aligns with the receptive and expressive
element objectives 2c and 2d.

3.3 Summary

This chapter introduced MARVIN’s hardware platform. This included the
inherited mobility platform, sensing systems, control hardware and hu-
manoid torso; as well as the augmented sensing systems, control hardware,

3.3. SUMMARY 53

and human interface tablet. The structure of these hardware systems are
visualised in figure 3.11.

Figure 3.11: Overview of MARVIN’s hardware platform.

The torso and sensing systems are powered by an inherited power dis-
tribution system. The NUC is powered by a 3 Cell LiPO regulated by a
19 V DC/DC converter. The Segway, Surface and Tele-Operation Laptop
are powered by individual enclosed batteries. The NUC communicates to
the Surface and the Tele-Operation laptop via the wireless local network
provided by the nano router. The NUC communicates with the nano router

54 CHAPTER 3. MARVIN PLATFORM

via a physical Ethernet connection. The torso, sensors and Segway commu-
nicate directly with the NUC via USB connections.

The data from the sensors must be processed to account for the Segway’s
dynamic pitch before they can be used by the navigation stack and human-
robot interaction. This is explained in Chapter 4.

Chapter 4

Sensor Processing

The data from the sensing systems outlined in Chapter 3 is used by MAR-
VIN’s navigation stack (further discussed Chapter 5) and human-robot
interaction (detailed in Chapter 7) to perform localisation, obstacle de-
tection and human tracking. To facilitate this, the sensor data must be
processed to account for the Segway’s dynamic pitch (previously explained
in section 3.1.1) and converted into a format that the navigation stack and
HRI can use. This chapter details the steps taken to process this sensor
data.

Section 4.1 details the data format and coordinate systems used by the
navigation stack. Section 4.2 explain the interfaces to the sensor hardware.
Section 4.3 discusses the steps taken to process the laser rangefinder’s
and ultrasonic network’s data. Section 4.4 discusses the novel algorithms
developed to process the Kinect depth images.

55

56 CHAPTER 4. SENSOR PROCESSING

4.1 Data Format

As explained in Chapter 5, MARVIN utilises a 2D navigation stack. Because
of this, the measurements taken in the 3D world must be reduced to 2D
and communicated to the navigation stack in a format it understands. This
format is the ROS LaserScan message from the sensor msgs package [53].
LaserScan messages store sensor data in polar coordinates, with a range
and bearing. The range data is stored as a 1D array of 32-bit floats and the
bearing data is communicated as a start angle (θmin), end angle (θmax) and
the angular difference between two range measurements (θincrement). The
size of the array should be equal to θmax−θmin

θincrement
. In order to detect invalid

measurements the minimum and maximum ranges are also stored (rmin
and rmax). In addition to the array of ranges, an array of equal size can
be used to store the measurement intensities. If the LaserScan message
is generated by a laser rangefinder, this array stores the intensity of the
reflected light. Figure 4.1 visualises the LaserScan message. The green
regions represent valid measurements and the red regions represent invalid
measurements (measurements with ranges outside of rmin and rmax).

minθ

incrementθ

maxθ

maxr

minr

Figure 4.1: Representation of a laserScan message.

4.1. DATA FORMAT 57

MARVIN uses a two primary Cartesian (x, y, z) coordinate frames, local
and global. The local frame is relative to MARVIN’s origin, while the
global frame is relative to the world’s origin. In addition to these primary
coordinate frames, each sensor has their own frame of reference, referred to
as secondary coordinate frames. When a sensor takes a measurement, it is
relative to sensor’s origin and on the sensor’s individual coordinate frame.
For the navigation stack to make use of this data, the measurement must
be transformed from the secondary frame to the MARVIN’s local frame.
This is achieved in ROS using tf package [54]. As explained by [55], ”the tf
library was designed to provide a standard way to keep track of coordinate
frames and transform data within an entire system”.

The complexity of converting from the secondary frames to the primary
frames is increased by the Segway’s dynamic pitch. To avoid unnecessary
complications, the local origin is chosen as the centre of the Segway’s
wheels as this is the only point that does not change with the Segway’s
pitch. This is visualised by figure 4.2.

58 CHAPTER 4. SENSOR PROCESSING

Top

Left Front

Figure 4.2: MARVIN’s origin point, from which measurements are made.
The red dot shows the origin point, the red line shows the origin vector.

As the sensors are mounted away from MARVIN’s origin, their transforms
must be recalculated every time the Segway’s pitch is changed. Addition-
ally the measurements must be projected down from three dimensions to
two dimensions, while accounting for the Segway’s pitch. This is detailed
in section 4.3.

4.2. SENSOR INTERFACES 59

4.2 Sensor Interfaces

This section discusses the software interfaces between ROS and the sensing
systems. Section 4.2.1 explains the Laser Range finder interface, section
4.2.2 discusses the Sensor Board interface and section 4.2.3 details the Kinect
interface.

4.2.1 Laser Range Finder

As explained in section 3.1.2, MARVIN has inherited the Sick LMS100
laser rangefinder. This sensor communicates with with the NUC control
computer using an Ethernet connection, via a USB to Ethernet adaptor. The
lms1xx node [56] is utilised to interface the LMS100 with ROS to provide
unprocessed LaserScan messages in the laser/scan/raw topic. This is shown
by figure 4.3.

Figure 4.3: Block diagram of the LMS100 laser scanner’s software interface.

60 CHAPTER 4. SENSOR PROCESSING

Due to the mounting position of the LiDAR, it can detect parts of MARVIN’s
body. This results in false obstacles being detected, which prevents the
navigation stack from operating correctly. To avoid this, the laser/scan/raw
messages are first passed through a laser filter [57]. The configuration file
for this filter is shown in figure 4.4.

scan_filter_chain:

- name: laser_cutoff

 type: laser_filters/LaserScanAngularBoundsFilter

 params:

 lower_angle: -2.0

 upper_angle: 2.0

Figure 4.4: The configuration (.yaml) file for the laser filter.

In this configuration the laser filter is set to a LaserScanAngularBoundsFilter,
which removes all readings outside the angle range −2.0 to 2.0 radians.
This removes the outer regions of the scan, which have detected MARVIN’s
body.

Finally the laser/scan/filter marvin messages are passed through the ground -
filter node, discussed in section 4.3, to account for the effect of the Segway’s
pitch. These processed laser/scan/filter ground messages can then be used by
the algorithms in the navigation stack, as explained in Chapter 5.

4.2.2 Sensor Interface Board

The whisker sensors, ultrasonic network and the Kinect’s tilt servo are all
interfaced with ROS via the interface board mentioned in section 3.1.2. This
sensor interface board processes the sensor data and transmits it to control
NUC via serial communication. This process is shown be figure 4.5.

4.2. SENSOR INTERFACES 61

Figure 4.5: Block diagram of the sensor board’s software interface.

The interface board communicates with ROS by utilising the rosserial li-
brary [58]. rosserial provides standardised methods for communicating
through serial using ROS messages. The ultrasonic sensors’ and whisker
sensors’ output pins are read by the Arduino, then processed with a rolling
window filter to reduce noise. The processed data is converted to Laser-
Scan messages and sent to ROS via the /ultrasonic network/scan/raw and
/whisker sensor/scan topics. The /ultrasonic network/scan/raw messages are
then further processed inside ROS by a ground filter node, as explained in
section 4.3. These processed messages are then accessed by the navigation
stack via the /ultrasonic network/scan/filter ground topic. The whisker sensor
messages are used by both the movement control node and navigation stack,
as explained in section 6.1 and Chapter 5 respectively.

The Kinect’s tilt servo is controlled using the Arduino servo library [59].This
allows the Kinect to be tilted to 180 different positions and is set with 8-bit
integers from the /sensor board/kinect tilt topic.

62 CHAPTER 4. SENSOR PROCESSING

4.2.3 Kinect

As explained in section 3.2.1, the Microsoft Kinect V2 RGBD camera is
used to meet the 3D sensor objective (1b). As Microsoft developed the
Kinect to run on Xbox One consoles and Windows computers, there is
no native support for Linux or ROS. In order to interface the Kinect with
Linux the open source libfreenect2 driver [60] is utilised. This driver is
bridged with ROS using the iai kinect2 package [61]. This package uses
the OpenCL framework [62] to enable the connected computer’s GPU
to process the Kinect data. Without OpenCL support the Kinect data is
processed with the CPU. This causes it to run at low frame rates (less than
1 Hz) which renders the sensor unusable for obstacle detection purposes.
An open source implementation of the OpenCL specification, Beignet [63],
was installed to enable the OpenCL libraries to run on the NUC’s integrated
Intel GPU.

The kinect2 bridge node from the iai kinect2 package communicates with the
Kinect and uses ROS image transport [64] messages to publish the depth
and colour images. A depth image is a 2D grey scale image, where each
pixel represents depth (the distance from the focal point of the camera to
the measured point). The standard definition depth image (512×424) is the
primary image used by MARVIN and is published to the /kinect2/sd/image -
depth topic. This topic is subscribed to by the kinect pipeline node, as shown
in figure 4.6.

4.2. SENSOR INTERFACES 63

Figure 4.6: Block diagram of the Kinects’s software interface.

The kinect pipeline node has three functions; it processes the depth images
(explained in section 4.4.1); produces LaserScan messages for the navigation
stack (also explained in section 4.4.1); and sends commands to the Sensor
Interface Board to control the Kinect tilt servo.

As explained in section 4.2.2, the Kinect’s tilt servo is set with 8-bit integers.
The kinect pipeline node receives angle requests from the /kinect2/angle topic,
which are in degrees, and converts them into 8-bit tilt value using equation
4.1.

T = mangleθ + cangle (4.1)

where T is the tilt value and θ is the requested angle. The constants mangle

and cangle are calculated during the auto calibration process explained in
section 4.4.2.

64 CHAPTER 4. SENSOR PROCESSING

4.3 Laser Scan Processing

This section explains how the laser scan messages produced by the LiDAR
and the Ultrasonic Network are processed. Because these sensors have
planar measurement areas, as shown in section 3.1.2, the changing Segway
pitch can result in large measurement errors if not handled correctly. These
errors are caused by two factors; the origin (mounting location) of the
sensors; and the measured distance when projected to two dimensions.
This is shown in figure 4.7.

θsegway

r wheel

d actual

ymount

x mount

d measured

θmount

x local

ylocal

Figure 4.7: Diagram of the pitch filtering algorithm, using the LiDAR as an
example.

4.3. LASER SCAN PROCESSING 65

The red arrow shows the vector from MARVIN’s origin to the LiDAR’s
origin. The red dotted line represents the LiDAR measurement. As the
Segway’s pitch increases in the forward direction, figure 4.7 shows two
issues; firstly, the origin of the sensor relative to MARVIN’s origin moves
forward, which reduces the measured distance; secondly, as the sensor is
angled downwards it measures a longer distance (assuming it is measuring
a surface which is perpendicular to the ground). The process used to correct
these errors out is shown by figure 4.8.

Figure 4.8: Block diagram of the sensor’s ground and pitch correcting
algorithm.

The first step is to calculate the sensor transform, explained in section
4.3.1. The next step predicts the position of the ground plane relative
to the sensor’s frame of reference and removes any measurement points
associated with that plane (explained further in section 4.3.2). The final
step is to account for the Segway pitch by projecting the measurements to
the global horizontal plane, as explained in section 4.3.3.

The ground filter node’s code can be found in appendix C.

66 CHAPTER 4. SENSOR PROCESSING

4.3.1 Calculating the Sensor Transform

Calculating the transform from MARVIN’s origin to the sensor’s origin
is performed in two steps. Firstly, when the node is initialised, the polar
coordinates of the sensor (represented by the red arrow in figure 4.7) are cal-
culated from the mounting variables, xmount and ymount, using equation 4.2.
Secondly, these polar coordinates, rmount and bmount, are used in conjunction
with the Segway’s pitch θsegway to calculate the local coordinates, xlocal and
ylocal, using equation 4.3. It should be noted that the ylocal coordinate also
needs to account for the radius of the Segway’s wheel, rwheel.

rmount =
√
(xmount)2 + (ymount)2

bmount = tan−1

(
xmount
ymount

) (4.2)

xlocal = sin
(
bmount + θsegway

)
× rmount

ylocal = cos
(
bmount + θsegway

)
× rmount + rwheel

(4.3)

4.3.2 Predicting the Relative Ground Plane

At full acceleration, the Segway’s pitch can tilt up to ≈ 18◦, which causes
the sensors to detect the ground plane. This causes the navigation stack
to detect false obstacles, which results in jerky movement (as the motion
planner tries to avoid the false obstacles). This issue can be avoided by
filtering out any measured points which are likely to be part of the ground
plane. This is accomplished in three steps:

First, the distance from the local coordinates of the sensor to the ground
plane is calculated using equation 4.4. If this distance is outside the valid

4.3. LASER SCAN PROCESSING 67

range of the sensor, it can be assumed that the sensor is unable to detect
the ground plane at this pitch and the following steps are ignored.

dground =
ylocal

sin(θmount + θsegway)
(4.4)

Second, as explained in section 4.1, the laser rangefinder and ultrasonic
network use LaserScan messages to return their measured ranges. Because
these measurements are polar and the ground has a flat surface, the esti-
mated ground distance has to be adjusted for each n range measurement in
the array as shown in figure 4.9. This is achieved through equation 4.5.

min
θ

max
θ

min
θ

min
θn()+

Estimated Ground Plane

ground
dd(n)

Figure 4.9: Accounting for the polar distortion of the ground plane esti-
mates.

d(n) =
dground

cos(n× θincrement + θmin)
(4.5)

Finally, any points that are within a threshold, dthreshold, of the ground
estimate, d(n), are made invalid by setting them to rmin, as shown in 4.6.

68 CHAPTER 4. SENSOR PROCESSING

r(n) =

rmin if |r(n)− d(n)| ≤ dthreshold

r(n) otherwise
(4.6)

4.3.3 Project Measurements to the Horizontal Plane

Equation 4.7 is used to project the ground filtered range measurements to
the horizontal plan, effectively removing the measurement error caused by
the Segway pitch.

r(n) = cos(θsegway)× r(n) (4.7)

It should be noted that equation 4.7 relies on the assumption that all objects
have surfaces that are perpendicular to the ground (parallel with the global
vertical axis). This is a reasonable assumption to make for the LiDAR and
Ultrasonic sensors as their primary purpose is to measure the walls and
glass panels, which are vertical surfaces. For general obstacle measure-
ments, this assumption can become inaccurate. The Kinect is the primary
obstacle detection sensor and is processed using the algorithms explained
in section 4.4, which do not rely on this assumption.

This projection step could have also been achieved with a mechanical
gimbal for the laser rangefinder, however this would have increased the
complexity and price of the system, as well as introducing mechanical
lag. For these reasons it was decided that the software solution was more
appropriate. Due to the way the ultrasonic network is mounted it would
be infeasible to use a mechanical gimbal (this can be seen in figure 3.4a). It
should also be noted that this final step could be removed if 3D data was
desired in the future, if for example a 3D navigation stack was used.

4.4. KINECT PIPELINE 69

The full code for the ground filter node can be found in Appendix C.

4.4 Kinect Pipeline

This section explains the steps required to take the Kinect’s unprocessed
depth images and produce the data required for the navigation and interac-
tion stacks. This includes; noise filtering, ground and ceiling removal, cali-
bration algorithms, and human detection. The Kinect’s driver (explained
in section 4.2.3) has a large computational overhead, so it is desired that
these processing steps are computationally efficient to reduce the overall
impact to the control system.

4.4.1 Processing Steps

The primary goal of processing the Kinect depth images is to detect the loca-
tion of obstacles. To facilitate this, any pixels that don’t contain obstacles or
humans must be removed. This includes any noise, the ground plane and
the celling plane. Ground removal from depth data is a common problem
and is typically solved by converting the depth images into a point-cloud.
Once the data is in point-cloud form the ground plane is usually detected
using a robust RANSAC (random sample consensus) plane detection al-
gorithm. This approach has been used by many robotic systems ranging
from humanoid robots [65] to UAVs (unmanned flying vehicles) [66]. This
method can be implemented easily using the open source PCL (point cloud
library) [67]. However, this approach has a number of issues. The conver-
sion from the depth image to a point cloud increases the computational
overhead. This overhead would be acceptable if the point-clouds were
useful, but none of MARVIN’s other systems use point-cloud data. Due
to point clouds’ inherent computational cost they are often reduced down

70 CHAPTER 4. SENSOR PROCESSING

and stored in voxel grids [25, 68], but this loses detail. RANSAC based
algorithms tend to require large numbers of data points fitting the linear
function they are trying to detect. However, this is not always possible, for
example if most of the Kinect’s FOV is taken up by an obstacle and there
is ground visible around the edges. The edge ground points may not be
properly detected and therefore not removed. RANSAC algorithms are
also not guaranteed to find accurate solutions. To reduce computation time,
RANSAC selects random points until a ”good enough” solution is found.
The more iterations it runs through, the better the solution, meaning the
effectiveness of RANSAC based algorithms is inversely proportional to
their computational efficiency.

To avoid these issues and to reduce the computational overhead, all of the
Kinect’s data is processed using 2D image processing techniques. Addi-
tionally, rather than detecting planes in every frame, the Kinect’s mounting
position (in local coordinates) is used to predict where the ground plane
should be. This is more robust than frame by frame approaches and much
less computationally expensive. These processing steps are shown in figure
4.10.

4.4. KINECT PIPELINE 71

Figure 4.10: Kinect depth image processing steps.

The majority of these steps make use of the open source computer vision
library, OpenCV [69], which provides highly efficient implementations of
computer vision algorithms. The kinect pipeline node publishes two output
topics, /kinect2/scan used for the navigation stack’s obstacle avoidance
explained in section 5.2 and /kinect2/sd/image depth/processed used by the
human detection algorithm explained in section 4.4.3.

Input Depth Image

As explained in section 4.2.3, the kinect pipeline node subscribes to the
standard definition depth image produced by the Kinect, an example of
which is shown in figure 4.11.

72 CHAPTER 4. SENSOR PROCESSING

Figure 4.11: Raw Depth Image.

This depth image is configured so that the pixel values are proportional to
the measured depth. The pixels are 8-bit grey scale values ranging from
black (0) being the minimum depth (0m) to white (255) being the maximum
depth (12m).

Prepossessing the Depth Image

The Kinect works by projecting infrared (IR) rays in a specific pattern. It
measures the time-of-flight of the IR light using a IR camera. The longer
the light takes to illuminate a pixel, the further away the measured surface
and the larger the pixel value. This method works well for flat surfaces,
but information can be lost if the IR rays reflect away from the camera.
The Kinect returns these invalid measurements as 0 valued pixels. These
pixels are removed by passing the image through the threshold described

4.4. KINECT PIPELINE 73

by equation 4.8, where v is the pixel value.

v =

255 if v < 2

v otherwise
(4.8)

The depth image also needs to be filtered to reduce the effects of the mea-
surement noise. This is achieved using the OpenCV morphologyEx function
[70] using the MORPH OPEN kernel. This function applies morphological
transforms to images. Morphological transforms are simple operations
based on the image shape through convolution. The type of transform is
determined by the kernel which is the structuring element that is applied
to the image. The MORPH OPEN kernel performs the opening transform,
which is equivalent to performing an erosion transform followed by a di-
lation transform. Erosion ”erodes away the boundaries of the foreground
object” [70]. This essentially reduces the size of the foreground regions
in the image. Dilation is essentially the opposite of erosion, it makes the
foreground regions larger. Noise can be considered as small regions of
foreground surrounded by background, or small regions of background
surrounded by foreground. By eroding the image the first type of noise can
be removed, but this also removes some of the valid data. This lost data can
be recovered by dilating the image, which returns the foreground regions
back to their original size, but as the noise has been completely removed
those regions cannot be returned. The dilation step also simultaneously
removes the second type of noise by expanding the foreground regions and
”filling in” the holes left by the noise. The result of the threshold and noise
reduction is shown in figure 4.12.

74 CHAPTER 4. SENSOR PROCESSING

Figure 4.12: Preprocessed Depth Image.

Predicting the Relative Ground and Ceiling Planes

The next processing step is to determine which pixels are relevant to the
navigation stack and human detection algorithm. The navigation stack
needs to know which pixels are obstacles that MARVIN might collide with
and the human detection algorithm needs to know which pixels might
contain humans. Due to the Kinect’s vertical FOV it can detect the ground
and the region of space above the top of MARVIN (set at 2m), which will
be referred to as the ceiling plane. Neither region can contain obstacles nor
humans, so any pixels in these regions should be removed.

Before removing these pixels, they must associated with either the ground
or ceiling plane. To do this we must predict what each pixel value in the
image would be if it was detecting the ground plane and the ceiling plane.

4.4. KINECT PIPELINE 75

Any pixels within a threshold of the predictions can be removed. To make
these predictions we need to know what the depth image represents in real
world values.

The depth image produced by the kinect bridge node is a normalised 8-
bit depth image. This means that the values of each pixel represents the
distance from the focal plane to the measured point, not the distance from
the focal point to the measured point. This is shown in figure 4.13.

x z

y

Figure 4.13: Normalised depth image explanation.

The red dot represents the focal point (the Kinect’s origin), the red plane
represents the focal plane and the blue dot represents the measured point.
The red vector is the distance between the measured point and the focal
point. Rather than the pixels of the image representing the red vector, they
represent the blue arrow. The real-world value (in metres) of the blue vector
can be calculated using equation 4.9, where dz is the distance along the z
axis, v is the pixel value, vmax is the maximum pixel value (255) and zmax is

76 CHAPTER 4. SENSOR PROCESSING

the maximum distance (12m).

dz =
v

vmax
× dmax (4.9)

Because the pixel values represent dz, the distortion normally created by
the pin-hole camera model can be ignored. This is best visualised by aiming
the Kinect at a flat surface, parallel to the focal plane. If the pixel values
returned the measured distance, the centre of the plane would look closer
than the edges because the distance to the focal point is longer. But because
the depth image is normalised, the same pixel value is returned for the
whole surface.

For this reason, and because the Kinect and Segway only rotate in pitch and
yaw (not roll) axes, the ground and ceiling planes return the same values
for all the columns of the image, but different values for the rows of the
image. This means that we only need to predict the ground and ceiling
planes for one column of the image, then apply it to all the rows.

Using the information shown in figure 4.14 and the Kinect’s FOV we can
predict equations that represent the ground and ceiling planes.

4.4. KINECT PIPELINE 77

h kinect

θ se
gw
ay

θ kin
ec
t

θpitch

y

z

h ceiling

Ground

Ceiling

Figure 4.14: Kinect’s frame of reference.

θpitch is the angle between the Kinect’s frame of reference and the global
frame of reference. It is the combination of the Segway’s pitch, θsegway,
and the Kinect’s angle, θkinect. hkinect is the distance between the ground
plane and the Kinect, it is calculated in the same way as the other sensor
transforms, discussed in section 4.3.1. hceiling is the distance between the
ground plane and the ceiling plane. This distance is user defined, and is not
necessarily the same height as the actual ceiling. Currently it is set to 2m as
MARVIN is ≈ 1.8m tall. Figure 4.15 shows the ground and ceiling planes
relative to the Kinect’s reference frame. The y and z axes are as labelled in
figure 4.14.

78 CHAPTER 4. SENSOR PROCESSING

θpitch

θpixel

z
pixel

h
kinect

h
ceiling

c
ground

c
ceiling

Ceiling

Ground

Pixel Ray

y

z

Figure 4.15: Explanation of the Kinect ground removal equations.

The ground and ceiling planes are represented by the blue and green
lines. The light blue area is the region associated with the ceiling, and
the light green area is the region associated with the ground. The red line
represents a IR ray that is reaching one pixel row. The angle of this ray can
be determined from the pixel row and the Kinect’s FOV using equation 4.10,
where θvfov is the Kinect’s vertical FOV (60◦), himage is the image height (424
pixels) and r is the pixel row.

θpixel =
r − himage

2

himage
× θvfov (4.10)

To predict what the pixel values will be for the ground and ceiling planes,
we need to know the z value of the interception between the pixel ray line

4.4. KINECT PIPELINE 79

and the ground and ceiling lines. This is shown as zpixel and the red dot in
figure 4.15.

These lines can be expressed using the standard linear equation 4.11 and
the intercept between two lines can be found with equation 4.12.

y =mx+ c (4.11)

x =
c1 − c2
m2 −m1

(4.12)

Because the ground and ceiling planes are parallel to each other the equa-
tions share the same m constant, calculated with equation 4.13.

m = tan(θpitch) (4.13)

The c constant is separate for each plane and is determined by hkinect, hceiling
and θpitch using equation 4.14.

cground = cos(θpitch)× hkinect
cceiling = cos(θpitch)× hceiling

(4.14)

In summary, the ground, ceiling and ray lines can be expressed using
equations 4.15, 4.16 and 4.17 respectively.

y =mz + cground (4.15)

y =mz + cceiling (4.16)

y =tan(θpixel)z (4.17)

80 CHAPTER 4. SENSOR PROCESSING

From equation 4.12, the predicted z values for the ground and ceiling planes
can be found using equation 4.18.

zground =
cground

tan(θpixel)−m

zceiling =
cceiling

tan(θpixel)−m

(4.18)

The zground and zceiling values are then converted to pixel values using
equation 4.19 and saved in an array so that they can be compared to all the
columns of the depth image.

v =
z

dmax
× vmax (4.19)

Removing the Ground and Ceiling Planes

Using the arrays of predicted ground and ceiling values, the pixels can
now be associated and removed. This is done using the threshold shown
in equation 4.20, where v is the current pixel value, pground is the predicted
ground value, pceiling is the predicted ceiling value and t is the threshold.

v =


255 if |v − pground| < t(v)

255 if v > pceiling

v otherwise

(4.20)

The measurement error in the depth image is typically proportional to the
depth of the pixel. The further away the measured point, the more noise.
This is accounted for by using a user-defined non-linear threshold that is
dependent on the value of the pixel, t(v). The currently defined threshold
function is shown in figure 4.16.

4.4. KINECT PIPELINE 81

Distance

0 50 100 150 200 250

T
h

re
s
h

o
ld

0

50

100

150

200

250

Figure 4.16: Distance dependent threshold for ground filtering.

Figure 4.16 shows that as the pixel value increases, so does the threshold.
The effective areas removed by this threshold are shown in the green and
blue regions in figure 4.15. Figure 4.17a shows the pixels associated with
the ground and ceiling planes. Green represents the ground and blue
represents the ceiling. Figure 4.17b shows the depth image after the planes
have been filtered.

(a) Ground and ceiling plane associa-

tions.

(b) Ground and ceiling planes re-

moved.

Figure 4.17: Ground and ceiling plane filtering.

82 CHAPTER 4. SENSOR PROCESSING

It should be noted that the figures used to explain the Kinect’s processing
steps are taken in a vinyl floored room. The vinyl can cause reflections in
the IR projections, which can make some vertical surfaces appear to extend
through the ground plane. This can be observed as the isolated pixel re-
gions in the centre of figure 4.17b. This is not an issue, as the conversion to
laser scan messages only takes into account the nearest pixel value of each
column. This can be seen in figure 4.20b.

To improve the performance of these processing steps, all three of the thresh-
old processes (invalid pixel removal, ground removal and ceiling removal)
are conducted in a single paralleled for loop. By using the #pragma omp
parallel for command, the for loop is processed on multiple threads further
improving the performance. Figure 4.18 presents the code to implement
this.

1 void removePlanes(const cv::Mat &in, cv::Mat &out){

2 cv::Mat tmp = cv::Mat(in.rows, in.cols, CV_8U);

3 #pragma omp parallel for

4 for(int r = 0; r < in.rows; ++r) {

5 const uint8_t *itI = in.ptr<uint8_t>(r);

6 uint8_t *itO = tmp.ptr<uint8_t>(r);

7 for(int c = 0; c < in.cols; ++c, ++itI, ++itO) {

8 if ((*itI < 2) || ((*itI > (ground_plane_est[r] - threshold[*itI])) && *itI <

(ground_plane_est[r] + threshold[*itI]))) || (*itI > celling_plane_est[r])) {

9 *itO = 255;

10 }else{

11 *itO = *itI;

12 }

13 }

14 }

15 tmp.copyTo(out);

16 }

Figure 4.18: Function for removing invalid, ground plane and ceiling planes
pixels.

Line 1 declares the removePlanes function. Its parameters takes two pointers
to OpenCV matrices. One pointer is to the input image and the other is to
an output image. Line 2 initialises a temporary matrix for making dynamic

4.4. KINECT PIPELINE 83

changes. Line 3 sets the for loop to run in parallel. Lines 5 and 6 initialise
pointers for accessing the input and temporary matrices. Lines 8 to 12
perform the invalid pixel removal, ground removal and ceiling removal
operations. Line 15 copies the temporary matrix to the output matrix.

Creating a Laser Scan Message

For the navigation stack to use the depth image data, it must be converted
into a laser scan message. The smallest pixel value (nearest measurment) is
selected from each column of the image. Each of these values are converted
into distances and saved in a laser scan message (with the same number of
points as the image width) and published to the /kinect2/scan topic. Because
the laser scan message contains its depth data in a polar form, the Kinect’s
horizontal FOV must be taken into account, as shown in figure 4.19

zx

y

θx

Figure 4.19: Converting the depth image to a laser scan message.

The pixel values represent the blue vector, but the laser scan data points rep-

84 CHAPTER 4. SENSOR PROCESSING

resent the green vector. θx is dependent on the pixel row and is calculated
using equation 4.21, where c is the pixel column, wimage is the image width
(512) and θhfov is the horizontal FOV (70.6◦).

θx =
c− wimage

2

wimage
× θhfov (4.21)

The length of the blue vector, dz, and be calculated as before using equation
4.9. The length of the green vector, dx, can be calculated from dz using
equation 4.22.

dx =
dz

cos(θx)
(4.22)

Figure 4.20 shows the output laser scan, compared to the Kinect’s RGB
image. Points of interest have been marked so the laser scan can be more
easily compared to the image and are labelled in table 4.1. The white points
are the Kinect’s laser scan, the blue-green points are the LiDAR’s laser scan.
The grid in figure 4.20b shows 1m increments.

4.4. KINECT PIPELINE 85

1 5

2

4
3

(a) RGB Image

2

6

5
4

3
1

(b) Laser Scan

Figure 4.20: Kinect Pipeline Output.

86 CHAPTER 4. SENSOR PROCESSING

Table 4.1: Description of points of interest.

1 Cabinet and bench stools under the side bench.
2 Equipment on side bench.
3 Cabinet at the far side of the room.
4 Robot behind front desk.
5 Front desk.
6 MARVIN’s location.

Figure 4.20b was created by taking a screen-shot from rviz [71], which a ROS
program used to visually display the robot’s sensor data. By comparing the
LiDAR and Kinect laser scans, it can be seen that the Kinect often returns
closer measurements. This is because it has a vertical FOV which allows it to
detect objects that are above or below the LiDAR’s planar detection region.
Figure 4.20b also shows the advantage of the LiDAR’s larger horizontal
FOV, allowing it to detect obstacles beside and slightly behind MARVIN,
which the Kinect cannot detect.

As demonstrated in section 8.1, noise can be introduced into the Kinect’s
depth image if the Segway’s pitch suddenly changes. This is shown by
figure 4.21a. This noise is not guarantied to be removed by the previous
processing steps and can be incorporated into the LaserScan messages. This
issue is accounted for by monitoring the confidence of each measurement.
To confidence is calculated by calculating the rolling window average µd
of each distance measurement d(n). The intensity i(n) is calculated using
equation 4.23, where dthreshold is a user defined value which can be tuned to
optimise performance.

i(n) = 1− d(n)− µd
dthreshold

(4.23)

The produced LaserScan message can then be filtered using a similar method

4.4. KINECT PIPELINE 87

to section 4.2.1, using a laser filter node. However, for this purpose the node
is configured as a LaserIntensityFilter which removes any data points with
an intensity less than 0.2. The output of this is shown in figure 4.21b.

(a) Without Intensity Filter (b) With Intensity Filter

Figure 4.21: Kinect intensity filter.

The full code for the kinect pipeline node can be found in Appendix C.

4.4.2 Auto Calibration

The processing steps discussed in section 4.4.1 requires the accurate local
coordinates of the Kinect. The Segway returns accurate pitch measure-
ments through the /segway rmp node/status topic and the local coordinates
can be calculated using the method explained in section 4.3.1. However,
this requires accurate mounting position measurements, xmount, ymount and
θkinect (see figure 4.23). If these measurements are inaccurate, the ground
and ceiling plane predictions do not work effectively and the kinect pipeline

88 CHAPTER 4. SENSOR PROCESSING

produces unusable outputs. It is difficult and time consuming to measure
these mounting variables with sufficient accuracy to produce viable results.
To avoid this issue an auto calibration algorithm is developed. The steps of
the calibration process are shown in figure 4.22.

Figure 4.22: Block diagram of the Kinect auto calibration algorithm.

Because the Kinect’s angle can be changed with the servo, the mounting
variable θkinect must be calibrated over the range of possible Kinect tilt posi-
tions. This is to generate the mangle and cangle constants for the conversion
from angle requests to servo values, outlined in section 4.2.3 (equation 4.1).

The first step requests the servo to move to required tilt position by pub-
lishing to the /sensor board/kinect tilt topic. The depth data is then read from
the kinect2/sd/image depth topic and filtered to reduce noise, using the same

4.4. KINECT PIPELINE 89

process described by section 4.4.1.

The centre column of the processed depth image is taken and RANSAC is
applied to it to estimate an equation for the ground plane relative to the
Kinect’s frame of reference, in the form of y = mx+ c. θpitch and hkinect are
then calculated using the ground estimate and equation 4.24. This is the
reverse of the steps in section 4.4.1 and can be seen in figure 4.15.

θpitch = tan−1(m)

hkinect = cos(θpitch)× c
(4.24)

The mounting variables (xmount, ymount and θkinect) are then calculated from
θpitch and hkinect, as shown in figure 4.23.

90 CHAPTER 4. SENSOR PROCESSING

h
kinect

θ se
gw
ay

θ kin
ec
t

θpitch

r
wheel

θsegway

y
mount

x
mount

Figure 4.23: Kinect auto calibration algorithm variables.

There is not enough information to back calculate both xmount and ymount,
but xmount can be manually measured with sufficient accuracy for this
application. This is because it can be easily measured along the top of the
Segway’s mounting plate, unlike ymount and θkinect which are both difficult
to measure accurately. θkinect is calculated with equation 4.25

4.4. KINECT PIPELINE 91

θkinect = θpitch − θsegway (4.25)

From figure 4.23, it can be seen that ymount is equal to the sum of the blue
and red lines. The red portion, y1, can be calculated from xmount and θsegway
using equation 4.26. The blue portion, y2, can be calculated from hkinect,
rwheel and θsegway using equation 4.27.

y1 = tan(θsegway)× xmount (4.26)

y2 =
hkinect − rwheel
cos(θsegway)

(4.27)

ymount = y1 + y2

Now that the mounting variables ymount and θkinect are known for this
particular Kinect tilt position, they are stored and the next position is
requested. Once all the tilt positions have been calibrated, RANSAC is
used to find the line of best fit for both the ymount and θkinect sets of data.
The equations for the lines of best fit are saved to the calibration file. This
file is loaded by the kinect pipeline node when it is launched.

4.4.3 Human Detection

One of the key objectives of this project is to enhance MARVIN’s ability
to interact with humans, see section 1.2. To enable this, MARVIN must be
capable of detecting and tracking humans. This is achieved by processing
the Kinect’s depth images, as shown in figure 4.24.

92 CHAPTER 4. SENSOR PROCESSING

Figure 4.24: Block diagram of the human detection algorithm.

To determine if and where humans exist inside the depth image, it under-
goes a number of processing steps. The pixels associated with the ground
plane are first filtered out, see section 4.4.1. The image is inverted and
sharpened to enhance the edges for the segmentation stage. The output of
this stage is shown in figure 4.25b.

Segmentation separates the foreground objects so they don’t touch each
other, which is required for the blob detection stage. The image is thresh-
olded so that only the background pixels remain. These background pixels
are the pixels that have been removed from the image by the kinect pipeline.
This is stored as a separate binary image, shown in figure 4.25c. A dis-
tance transform is applied to the binary image resulting in figure 4.25d.
This image is thresholded once again, resulting in figure 4.25e. This has
effectively expanded the background regions of the image. The original
input depth image is multiplied by the expanded background binary image,
resulting in figure 4.25f. This resulting image has been segmented, with

4.4. KINECT PIPELINE 93

large separations between the foreground objects.

The OpenCV blob detection algorithm [72] is applied to the segmented
image. The parameters of the blob detector have been set to look for
human-like blobs. This includes; blobs that have an area within a particular
range, are less than 2 m away and have an inertia less than 0.3 (where
an inertia of 1.0 is a circle and 0.0 is a straight line). The blobs that are
considered human by this algorithm are shown as red circles in figure 4.25f.
The value from the centre pixel of detected human blob is converted to
a range and bearing using the same technique for converting the depth
image into a laser scan message, as described in section 4.4.1. The range
and bearing are published as a transform from MARVIN’s origin to the
centre of the detected human.

94 CHAPTER 4. SENSOR PROCESSING

(a) Input (b) Inverted and Sharpened

(c) Binary (d) Distance Transform

(e) Threshold (f) Blob Detection

Figure 4.25: Human Detection Process

4.5. SUMMARY 95

This section shows a viable technique for human detection from still frames
using only 2D image processing techniques. It has a relatively low com-
putation overhead resulting in good real time performance. However,
there are a number of areas where this method could be extended. This
technique is reliable at detecting a single human, but can struggle when
multiple humans are in frame. The algorithm currently handles this prob-
lem by only returning the position of the closest human blob. It also has
a relatively high false positive rate when looking at vertical surfaces that
result in vaguely human shaped blobs. The multiple human issue can be
resolved by tracking the humans, rather than only performing frame by
frame detection. This is typically achived using some form of Kalman filter,
such as the uncentred Kalman filter approach described by [68].

The full code for the human detection node can be found in Appendix C.

4.5 Summary

This chapter discussed the algorithms used to process the sensor data,
accounting for errors introduced by the Segway’s dynamic pitch and con-
verting it to a format the navigation stack can use. It covered the interfaces
between the sensor’s hardware and ROS, the steps taken to process the
laser rangefinder and ultrasonic network, the novel approach used to re-
move the ground and ceiling planes from the Kinect’s dept images and the
process developed to detect humans.

The performance of the Kinect pipeline is evaluated by measuring its frame
rate as additional layers of processing are applied. This is shown in table
4.2.

96 CHAPTER 4. SENSOR PROCESSING

Table 4.2: Kinect Pipeline Performance in Frames per Second (FPS)

Processing Ave. Min Max Std. Dev.

No Filtering 30.00 23.72 40.92 1.453
Depth Removal 30.00 21.74 46.50 3.020

Depth Removal &
Human Detection

30.00 19.13 58.23 3.617

From this table it can be seen that the additional processing layers do not
impact the average performance of the Kinect; however, it can increase
the variation of the frame rate. If the average frame rate drops, it would
suggest that the Kinect pipeline requires more processing power than is
available. This demonstrates that the code is sufficiently transparent and
has no negative affect on the performance of MARVIN’s other systems.

This processed data is used by the navigation stack for localisation and ob-
stacle detection (as discussed in Chapter 5) and for human-robot interaction
(detailed in Chapter 7).

Chapter 5

Navigation Stack

As discussed in section 1.2, MARVIN must be capable of autonomously
operating in an environment designed for, and shared with, humans. To
achieve this, a robust navigation stack is required. Rather than redeveloping
existing solutions, the ROS navigation package is implemented. This is a “2D
navigation stack that takes information from odometry, sensor streams and
a goal pose, and outputs safe velocity commands that are sent to a mobile
base” [73]. Safe velocity commands are defined as commands that will not
result in the robot colliding with an obstacle. This navigation package has
been shown to work effectively (for example) in Willow Garage’s paper [25].
Figure 5.1 shows how the navigation package is implemented in MARVIN.

97

98 CHAPTER 5. NAVIGATION STACK

Figure 5.1: Block diagram of the Navigation Stack.

The navigation stack must be capable of three major tasks; Localisation,
Obstacle Detection and Motion Planning. Localisation allows MARVIN to
estimate where it is in a known map. This is achieved by the amcl node,
explained in section 5.1. Obstacle detection informs MARVIN about the
obstacles immediately around MARVIN, allowing it to navigate without
colliding with them. This is achieved by the costmap 2d node, explained in
section 5.2. Motion planning calculates a path from the position estimate to
a goal location taking into account any detected obstacles and the known
map. This is achieved by the move base group of nodes, explained in section
5.3. The generation of the known map is achieved using simultaneous
localisation and mapping (SLAM) techniques and is supplied to the other
nodes using the map server node, explained in section 5.4.

5.1. LOCALISATION 99

5.1 Localisation

MARVIN needs to know its current pose (position and rotation) to allow
it to navigate. The Segway measures the amount each of its wheels ro-
tates over time. From these measurements we can estimate the change in
MARVIN’s pose relative to its starting pose. This is known as the robot’s
odometry. Odometry can be used to estimate MARVIN’s pose, but it prone
to errors. These errors can be caused by the wheel radius changing (due
to flat tires), by the wheels slipping or by stochastic errors in the wheel
rotation measurements. Over time these errors accumulate providing a less
certain estimate. This is known as odometry drift. Because of this, MAR-
VIN needs additional information to correctly estimate its pose. MARVIN’s
operating environment is confined to known areas, as discussed in section
1.1.1, so a pre-built map can be used. We can compare what MARVIN is
currently sensing to the map to narrow down the list of possible poses.
If we then combine this list of possible poses with the odometry and any
previous pose estimates, a much more certain pose estimate can be made.
This process is known as probabilistic localisation.

A well known and effective probabilistic localisation method is Monte
Carlo Localisation (MCL). MCL uses a particle filter to localise, where the
particles represent pose estimates. It works by incrementally updating
the weights of each particle based on the sensor and odometry data, then
redistributing the particle pose estimates based on those weights. Over
time the distribution of the particles should converge on the robot’s ac-
tual pose. The returned pose estimate from MCL is the pose at the peak
of the probability density function (PDF) created by the particles. MCL
becomes more effective (more likely to produce a correct pose estimate in
fewer steps) the larger the number of particles, however this also makes it
more computationally intensive. MCL’s effectiveness is therefore inversely
proportional to its computational efficiency. One method to reduce this

100 CHAPTER 5. NAVIGATION STACK

trade-off is to adaptively change the number of particles. For example,
when the pose estimate is less certain it may be desirable to have more
particles to increase the chance of generating a more accurate estimate.
When the pose is more certain, the number of particles can be reduced to
improve the computational efficiency. This is known as Adaptive Monte
Carlo Localisation (AMCL). AMCL is implemented in MARVIN using the
ROS amcl package [74] which implements the approach as described by
Dieter Fox in [75]. Figure 5.2 shows how the amcl package is integrated in
MARVIN.

Figure 5.2: Block diagram of the amcl node.

The amcl uses the /map topic as the known map, the /odom topic as odometry
and the /laser/scan/processed topic as the sensor update topic. The laser
scanner topic is the only sensor topic the node is subscribed to as it is the
same sensor used to generate the map, and therefore should produce the
most consistent results. The primary output of the amcl node is a transform
from the map frame to the base link frame (where the base link frame is
MARVIN’s origin, as explained in Chapter 4). This transform is used to
link the global (map) coordinates to the local (robot) coordinates.

5.2. OBSTACLE DETECTION AND SENSOR FUSION 101

5.2 Obstacle Detection and Sensor Fusion

As MARVIN operates in an indoor human environment, it is imperative
that it has a robust method for detecting and avoiding obstacles. As ex-
plained in section 3.2.1, MARVIN utilises four sensing systems to detect
obstacles; the Kinect, the LiDAR, whisker sensors and the ultrasonic net-
work. The sensor data from these four sources have been processed into
LaserScan messages, as explained in Chapter 4, but all have different ranges
and FOVs. This sensor data must be fused so that the motion planner
knows about all the sensor sources, while taking into account their differ-
ing parameters. This is typically achieved using an occupancy grid. An
occupancy grid is essentially a local map centred at the robot’s origin. The
cells of the map are either classed as occupied or free space and are set by
converting the sensor data from polar coordinates into the local Cartesian
coordinates. This is achieved in MARVIN using the ROS costmap 2d pack-
age [4].

The costmap 2d package extends the simple occupancy grid in a number
of ways. The grid cells can be in one of three states; occupied, free or
unknown. This lets the motion planner treat unknown space differently
from free space, allowing for safer navigation. The cells in the grid are not
only set by the sensors, they are also cleared by the sensors. This means that
obstacles are only removed from the occupancy grid if it has been observed
that they are no longer present. This is further explained in section 5.2.2.
The obstacles in the occupancy grid are also inflated to take into account
the robot’s footprint, allowing the planner to safely navigate the shortest
path while ensuring that the robot’s edges won’t collide with the known
obstacles. This is further explained in section 5.2.4. Figure 5.3 shows how
the costmap 2d package is integrated with MARVIN.

102 CHAPTER 5. NAVIGATION STACK

Figure 5.3: Block diagram of the costmap 2d node.

5.2.1 Static Map Layer

The static map layer incorporates the known map into the occupancy grid.
If there are no observations in a region of the occupancy grid, the static
map is used as the observation source rather than the sensors. This allows
the planner to predict what is in unknown regions of the map before it
reaches them, using prior knowledge. This results in safer and more reliable
navigation.

5.2. OBSTACLE DETECTION AND SENSOR FUSION 103

5.2.2 Obstacle Layers

The obstacle layers handle the sensor sources and the setting and clearing of
the occupancy cells. Cells are set by converting the sensors’ polar measure-
ments into the grid’s Cartesian coordinates. Cells are cleared by ray tracing
along the sensors’ angle increments. If a sensor detects an obstacle behind
and in-line with an existing obstacle, it is assumed that the existing obstacle
no longer exists (because the senor saw through it). A separate obstacle
layer is used for each of the LaserScan based sensors; the LiDAR, Kinect
and ultrasonic network. This is because each source can sense different
obstacles. The LiDAR has a much larger horizontal FOV than the Kinect,
but the Kinect can sense obstacles above and below the LiDAR’s planar
sensing region. The ultrasonic network can sense in much lower detail than
the other two sensors, but it can sense glass. If all the sensor sources are
integrated into one obstacle layer they clear each other’s measurements.
This leads to the motion planner incorrectly believing that obstacles no
longer exist, which can cause unsafe paths to be generated.

This is best explained by imagining MARVIN moving beside a table with
legs. The LiDAR can only sense the legs but not the table’s surface. The
Kinect can sense the whole table. While the table is within the Kinect’s
limited horizontal FOV the moiton planner knows it cannot travel through
the table. However, as MARVIN moves along the table, the rear of the
table’s surface is no longer in the Kinect’s FOV. As the LiDAR can detect
obstacles behind the table, it clears the Kinect’s measurements, resulting in
the planner believing that there is now a free path through the table. This
causes MARVIN to turn towards the table, putting it back in the Kinect’s
FOV. Now MARVIN can sense the table’s surface again and turns away
from the table. This means the table is no longer in the Kinect’s FOV and the
process repeats indefinitely. This problem is avoided by having a separate

104 CHAPTER 5. NAVIGATION STACK

obstacle layer for each of the sensor sources. This means that each sensor
only sets and clears its own measurements.

5.2.3 Whisker Layer

In addition to the reactive control discussed in section 6.1, the high level
control also needs to know if the whisker sensors have been triggered. This
means the whisker sensors need to be integrated in the occupancy grid.

A standard obstacle layer cannot be used for the whisker sensors. This is
because the whisker sensors only produce four data points, which makes
them unreliable at clearing their obstacles through ray tracing. This is
caused by the resolution of the occupancy grid; if MARVIN rotates slightly
the ray traced will be slightly off the previous measurement which prevents
it from being cleared. To avoid this issue a custom layer is developed. The
custom layer checks the /whisker sensor/scan topic and sets the cells at each
corner of MARVIN’s footprint to occupied if the corresponding whisker
sensor is triggered. When a new whisker sensor message is received the
entire whisker layer is cleared and then the triggered corners are re-applied.
An example of this is shown in figure 5.4.

5.2. OBSTACLE DETECTION AND SENSOR FUSION 105

(a) Front Left Triggered (b) Front Right Triggered

(c) Back Left Triggered (d) Back Right Triggered

Figure 5.4: Whisker layer example.

5.2.4 Inflation Layer

The inflation layer inflates the regions around the occupied space in the
grid to take into account the physical size (footprint) of MARVIN. This
process converts the three state occupancy grid into an 8-bit costmap. Each

106 CHAPTER 5. NAVIGATION STACK

cell in the costmap is given a value between 0 and 254, depending on how
likely a collision is if the origin of the robot was in that cell. This can be
seen in figure 5.5.

Figure 5.5: Costmap inflation layer [4].

From [4], the cell values are split into five specific symbols. A value of 254
is ”lethal”, meaning that the robot would be inside the obstacle. Values
from 253 to 128 are ”inscribed”, meaning that these cells will result in
a collision as they are within the robot’s inscribed radius of an obstacle.
Values from 127 to 1 are ”possibly circumscribed”, meaning that these cells
might result in a collision, depending on the orientation of the robot. A
value of 0 is ”freespace”, meaning that this cell will not result in a collision.
Any ”unknown” cells are treated as ”freespace” until they are observed.
The motion planner can now use this 8-bit costmap to generate safe paths
by optimising for the lowest cost path.

5.2. OBSTACLE DETECTION AND SENSOR FUSION 107

5.2.5 Costmap Example

Figure 5.6 shows how the static map, obstacle, whisker and inflation layers
work together to produce a functional costmap. The yellow points are
obstacles and the blue regions are the inflated regions. In figure 5.6a a
human is to the front right of MARVIN. In figure 5.6b the human moves
left to be in front of MARVIN. In figure 5.6c the human moves towards
MARVIN. The cells behind the human are not cleared because the human
is blocking the sensor’s view of those cells, preventing them from being
cleared. As the human moves to the left in figure 5.6d, those cells are
cleared.

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 5.6: Dynamic costmap example over four time steps. The red circle
represents the human’s current position and the black arrow shows their
travelled path.

108 CHAPTER 5. NAVIGATION STACK

5.3 Motion Planning

Motion planning is handled by the move base package [76], which takes
commands from the control stack and interfaces with separate global and
local planners. The global planner used is the global planner package [5],
which generates a high level path from MARVIN’s current pose to a goal
pose. This is further explained in section 5.3.1. The local planner used is
the base loacal planner package [77], which generates a low level obstacle
avoidance path. This further explained is section 5.3.2. Figure 5.7 shows
how these packages are integrated in MARVIN.

Figure 5.7: Block diagram of the move base node.

5.3.1 Global Planner

The global planner gets a goal pose from the move base node and MARVIN’s
pose from the amcl node. It then uses a search algorithm to find a path from

5.3. MOTION PLANNING 109

MARVIN’s location to the goal inside of the static map. The global planner
package has two search algorithms available; A* search and Dijkstra’s
search. A* can find a path in fewer computation steps than Dijkstra’s, but
by doing so typically produces less optimised paths. This is shown by
figure 5.8. Due to the Kinect’s processing requirements, the NUC contains
high performance components (as explained in section 3.2.2). This makes
the performance loss of Dijkstra’s algorithm acceptable for the production
of more optimised paths. As such, Dijkstra’s is used over A*.

(a) A* search (b) Dijkstra’s

Figure 5.8: Comparison of the global planner search algorithm implementa-
tions [5].

5.3.2 Local Planner

The base local planner is built from the ideas explained in [78, 34, 79]. It is a
hybrid controller, meaning it combines the deliberative plan from the global
planner with the more reactive obstacle information from the costmap. It
allows the use of two different approaches; the trajectory roll-out algorithm
[78], or the dynamic window approach (DWA) [34]. Both approaches follow
the same basic idea. First they sample the robot’s current pose and velocity
(both angular and linear). Then they simulate a number of trajectories (with

110 CHAPTER 5. NAVIGATION STACK

slight variations in angle and speed) from the robot’s current pose, taking
into account its velocity. The simulated trajectories are then evaluated
against their distance from the global path, distance from the goal, speed of
the trajectory and eliminating any invalid paths that would cause collisions.
The trajectory with the highest score is then sent to the robot’s mobility
platform and the process is repeated.

Trajectory roll-out simulates the predicted trajectories for multiple steps
into the future, where as DWA only simulates one step into the future. This
makes the DWA more computationally efficient than trajectory roll-out,
but trajectory roll-out can produce better local plans, especially when the
robot is moving with low acceleration. However, according to [77], both
approaches produce similar results in practice, so MARVIN makes use of
the DWA for the reduced computational cost.

5.4 Mapping

As explained in sections 5.2.1 and 5.3.1 a static map is required for both
the costmap and the global planner. To produce a static map, SLAM
techniques are used. The gmapping package [80] contains a ROS wrapper
for OpenSLAM’s [81] GMapping algorithm, which is described by the
University of Freiburg’s papers; [82] and [83]. GMapping uses a ”highly
efficient Rao-Blackwellized particle filer to learn grid maps from laser
range data”. Figure 5.9 shows the method used to generate the map of the
environment.

5.4. MAPPING 111

Figure 5.9: Map generation method.

MARVIN is manually controlled by the XBox controller through the control
stack, discussed in section 6.3. The LiDAR’s data is processed as explained
by section 4.3 and passed to the slam gmapping node along with the Seg-
way’s odometry data. This is used to produce the map which is published
to the /map topic. This topic can then be subscribed to by rviz [71] so that
the user can monitor the generation of the map. Once the map is complete,
the map saver node from the map server package [84] can be used to save
the generated map to disk.

During run time the map server node loads the saved map and publishes it

112 CHAPTER 5. NAVIGATION STACK

to the /map topic. The amcl, costmsp 2d and global planner nodes can then
subscribe to the /map topic to make use of the known map. This is shown
in figure 5.10.

Figure 5.10: Block diagram of the map server node.

An example of a generated map is shown in figure 5.11a. This is a map of
the second floor corridors of the Cotton and Alan MacDiarmid buildings
of VUW’s Kelburn campus. This map was cleaned up manually using the
open source photo editing program, Gimp, shown in figure 5.11b. This
manual processing step is unnecessary for the navigation stack, but was
performed to better visualise the produced map.

From figure 5.11 it can be seen that the GMapping algorithm can produce
detailed maps, with good local accuracy. However, there are some areas
where sections of the map are stitched together at incorrect angles. This
problem would likely be improved by performing more loops around the
affected areas. However, as the localisation algorithm compares the local
details to the sensor data, localisation is still effective in this map. Also, as
long as the goals are inside the generated map, the global planner has no
issue generating paths in the slightly distorted map.

5.4. MAPPING 113

(a) Raw Map (b) Processed Map

Figure 5.11: Map of level 2 AM and CO corridors, generated with GMap-
ping.

114 CHAPTER 5. NAVIGATION STACK

5.5 Summary

This chapter discussed MARVIN’s navigation stack, including the algo-
rithms and techniques used for localisation, motion planning and mapping.
This process takes the sensor data and generates safe velocity commands
for the Segway RMP. These commands attempt to move MARVIN towards
a high level goal while preventing any collisions with the detected obstacles.
The process also attempts to maintain an accurate global position estimate
thought the AMCL algorithm. The sucessful implementation of these sys-
tems meet the autonomous navigation objectives outlined in section 1.2,
including objectives: 1c (sensor fusion), 1d (localisation) and 1e (motion
planning). The navigation stack is integrated with the rest of MARVIN’s
systems through a multilayer hierarchical control system, as discussed in
Chapter 6.

Chapter 6

Control Architecture

This chapter explains the design and implementation of MARVIN’s control
architecture. Control software is required to manage MARVIN’s subsys-
tems, including the navigation stack explained in Chapter 5, the interaction
stack explained in Chapter 7 and the Segaway and torso interfaces ex-
plained in sections 6.1 and 6.2. This is important to regulate the behaviour
of the system as a whole, ensuring safe and robust operation.

MARVIN’s control architecture has five layers; high level control, user
control, mid level control, low level control and the hardware interface.
This control hierarchy is shown in figure 6.1.

115

116 CHAPTER 6. CONTROL ARCHITECTURE

Figure 6.1: Block diagram of the control software hierarchy.

The high level control layer consists of the central control node marvin -
control, which manages and monitors all the lower control levels. This is
further explained in section 6.4. The user control level contains the user
interfaces, including the Microsoft Surface and the Xbox controller. The
XBox controller is interfaced with the manual control node, explained in
section 6.3. The use of the Surface is further explained in Chapter 7. The
user control layer can make control requests to the other control layers,
but does not have direct control over them. The mid level control layer
contains the intermediary nodes that are controlled by marvin control, but
also have control of the lower level layers. This includes the interaction -
control node (explained in section 6.2) and the navigation stack (explained
in Chapter 5). The low level control layer contains the movement control
node, which communicates with the Segway’s interface node (explained in
section 6.1). The hardware interface layer contains the interfaces between
the hardware and the control layers, including: the Segway’s interface
(segway rmp node), the torso’s interface (torso node) and the inherited power
distribution board’s interface (implemented with a rosserial node).

6.1. MOVEMENT CONTROL 117

6.1 Movement Control

The movement control node has two primary tasks: combine the different
movement control sources and safely command the Segway to move. As
one of the main objectives of this thesis is human interaction, it is imperative
that MARVIN is capable of moving safely in close proximity with humans.
No matter which source the movement commands originate from, they
must be processed and monitored to ensure safe operation (as defined
in section 1.2). The movement control node is a low level control node
that processes the mid level movement commands and then feeds them to
the Segway RMP interface. The process of combining and monitoring the
movement commands is shown in figure 6.2.

Figure 6.2: Block diagram of the Movement Control node.

118 CHAPTER 6. CONTROL ARCHITECTURE

The first step is to combine the control sources. Each of these sources sends
movement commands using the geometry msgs/Twist messages from the
ROS geometry messages library [85]. geometry msgs/Twist messages express
velocity with two 3D vectors, one for the linear component and the other
for the angular component. There are three movement control sources;
manual control, interaction control and the navigation stack (as illustrated
on the top of figure 6.2). Manual control allows a user to operate MARVIN
using an Xbox 360 controller, as explained in section 6.3. Interaction control
changes the pose of MARVIN when interacting with humans, as discussed
section 6.2. The navigation stack allows for the autonomous operation
of MARVIN, previously explained in Chapter 5. If improperly managed,
the combination of these control sources can cause the Segway to become
unpredictable and dangerous. As such, only one source should be passed
to the Segway at a time. To decide which source to use, they are prioritised:

1. Manual Control

2. Interaction Control

3. Navigation Stack

Manual control has the highest priority and overrides any messages from
the other two sources. If manual control is enabled, it is assumed that a
trained operator is controlling MARVIN. Because of this, it is considered the
most reliable command source. This is required to improve safety during
testing procedures as the operator can override any actions deemed to be
unsafe. The second highest priority is the interaction control, which can
override commands from the navigation stack. If MARVIN is interacting
with a user it should only adjust its pose to look at that user. As such,
any navigation commands will be invalid and should be ignored. The
lowest priority is the navigation stack, which does not override any other

6.1. MOVEMENT CONTROL 119

commands. The navigation stack should only control MARVIN if there are
no manual or interaction commands.

In addition to their priorities, each control source can be enabled or dis-
abled. This allows the marvin control node to change which source to use
depending on the current operating conditions (further explained in section
6.4). The entire movement control node can also be disabled, which prevents
any movement controls from passing to the Segway. This can be used to
stop or pause MARVIN’s motion. It is important that the control sources
can be enabled or disabled without affecting the source itself. This allows
the navigation stack to operate in the background, which is necessary for
maintaining MARVIN’s location estimate.

The next step is to limit the velocity of the movement command to a safe
level. The maximum linear velocity is set to 1.41 ms−1, as this is the av-
erage humans’ comfortable walking speed [17]. This enables the user to
follow behind MARVIN at a comfortable pace while being guided. The
linear velocity is then further limited to 1.0 ms−1 if a human is detected in
front of MARVIN. This reduces the stopping distance of MARVIN (further
explained in section 8.1), which reduces the chance of causing harm if the
human unpredictably moves into MARVIN’s path. The angular velocity is
limited to 1.0 rads−1 if no human is detected and 0.5 rads−1 otherwise. This
helps prevent the Segway’s tilt limiters from causing damage as MARVIN
turns.

The whisker sensors are monitored to help prevent MARVIN from turning
or driving into obstacles. There are four whisker sensors mounted on
MARVIN’s four outermost corners, as discussed in section 3.2.1. As these
sensors are contact sensors, they are useful as reactive sensors in case any
obstacles are missed by the range senors. Figure 6.3 shows how the whisker
sensors’ reactive control is configured. Red indicates that that linear motion

120 CHAPTER 6. CONTROL ARCHITECTURE

or angular direction has been disabled and green indicates that they are
enabled.

(a) Front Left (b) Front Right

(c) Back Left (d) Back Right

Figure 6.3: Whisker sensor reactive control.

The final step of the movement control node is to monitor the output com-
mand velocity topic. This allows the movement control node to enforce its
monopoly on the control of the Segway. This is important to ensure the safe
operation of the Segway. As previously stated, whenever multiple sources
control the Segway directly it can lead to unpredicted and dangerous oper-
ation. If the movement control node detects unauthorised control messages
(messages that differ from its own output) the Segway is shutdown.

6.2. INTERACTION CONTROL 121

To allow the marvin control node to monitor the movement control node, it
publishes MovmentControlStatus messages to the movement control/status
topic. These status messages can be seen in appendix A. The code for the
movement control node can be seen in appendix C.

6.2 Interaction Control

Interaction control provides an interface between the interaction stack (ex-
plained in Chapter 7) and MARVIN’s actuation hardware. This abstracts
the hardware interface layer, allowing future researchers to control MAR-
VIN’s pose without an in-depth knowledge of the low level systems.

This abstraction is achieved using configurable zones. The interaction -
control node subscribes to the base link to human transforms, provided by
the human detection node (explained in section 4.4.3). These transforms are
used to determine if a human is inside of one of the configured zones. If
this is the case, MARVIN’s torso and the Segway are requested to move to
match the pose set for that particular zone. Figure 6.4 shows the current
zone configuration.

122 CHAPTER 6. CONTROL ARCHITECTURE

Zone 1

Zone 2

Zone 4Zone 3

Figure 6.4: Current configuration of the interaction zones.

Any number of zones can be configured, allowing researchers to change
the way MARVIN reacts to humans quickly and easily. Each zone contains
range and bearing limits, a torso frame and a Segway tracking enable flag.
The current zone configuration is explained in Chapter 7.

Range and bearing limits set the area of the zone. The torso frame stores the
values for each of the torso’s changeable elements. This includes; the left
and right shoulders, torso tilt, head rise, tilt, nod and shake, as well as the
RGB values for each eye. The eyes can also be set to modulate with an input
audio signal. This is typically used by inputting MARVIN’s synthesised
voice (further explained in Chapter 7). When the detected human enters
a zone, its torso frame is sent to the torso node via the /torso/request topic.

6.2. INTERACTION CONTROL 123

If the Segway tracking flag is enabled, the interaction control requests that
MARVIN faces the detected human directly.

Figure 6.5 shows how these zones are used to control the Segway and torso
poses.

Figure 6.5: Block diagram of the Interaction Control node.

The first step is to check if the interaction control node is enabled. This is
controlled by the marvin control node, see section 6.4. If the interact control

124 CHAPTER 6. CONTROL ARCHITECTURE

node is disabled, no further actions are taken. The next step is to check if
a human has been detected. If a human has been detected the range and
bearing to them is calculated, otherwise no further actions are taken.

The range and bearing from MARVIN’s origin to the detected human is
calculated from the base link to human transform using equation 6.1, where
rhuman is the range to the human, bhuman is the bearing to the human, tx is
the x value of the transform’s origin and ty is the y value of the transform’s
origin.

rhuman =
√
tx 2 + ty 2

bhuman = tan−1

(
ty
tx

) (6.1)

The range and bearing is used to determine which zone the detected human
is in. This is achieved by comparing them against each of the configured
zones’ limits until a match is found. If no match is found it is assumed the
human is outside the interaction area and no further actions are taken.

If Segway tracking is enabled, a movement request is sent to the movement -
control node via the /movement control/cmd vel/interaction topic. This request
has a linear velocity of 0.0 m−1 and an angular velocity of bhuman, which
turns MARVIN to face the human.

If the zone has a configured torso frame, the relevant commands are sent
to the torso node via the /torso/request topic. The torso node is the inherited
software used to interface the torso’s control boards with ROS.

The interaction control node outputs status messages that are used for debug-

6.3. MANUAL CONTROL 125

ging purposes and allows the marvin control node to monitor the interaction
subsystems. The status messages can be seen in appendix A. The code for
the interaction control node can be seen in appendix C.

6.3 Manual Control

Manual control of MARVIN is necessary for mapping new environments,
transporting MARVIN between test environments and as a manual override
during autonomous tests. Manual control is achieved using a wireless
XBox 360 controller and is interfaced with ROS using the joy node [86].
The /joy messages are processed by the manual control node and published
as geometry msgs/Twist and std msgs/Bool messages. This communication
structure is shown by figure 6.6.

Figure 6.6: Block diagram of the Manual Control node.

126 CHAPTER 6. CONTROL ARCHITECTURE

The y axis of the left analog stick and the x axis of the right analog stick
are used to produce the linear and angular velocity components of the
geometry msgs/Twist message. This velocity command is published to /move-
ment control/cmd vel/manual topic. The A and B buttons are used to request
that movement is enabled and disabled by publishing std msgs/Bool mes-
sages to the /marvin control/request/movement topic. The X and Y buttons
are used to request that manual control is enabled and disabled by publish-
ing std msgs/Bool messages to the /marvin control/request/manual topic. The
control layout is visualised by figure 6.7.

Disable Manual Control

Enable Movement

Linear Velocity

Angular Velocity

Disable Movement

Enable Manual Control

Figure 6.7: Control layout for the Xbox 360 controller.

The code for the manual control node can be seen in appendix C.

6.4. MARVIN CONTROL 127

6.4 MARVIN Control

The high level control node, marvin control, monitors and manages MAR-
VIN’s other control nodes and subsystems. It can be used to control MAR-
VIN’s overall behaviour by processing high level goals and passing them
down to lower level control nodes. It has three major tasks; monitoring and
managing the other control nodes, interfacing with MARVIN’s GUI (ex-
plained in Chapter 7) and interfacing with the navigation stack (explained
in Chapter 5).

To improve the performance and robustness of marvin control, it operates
over three separate threads. The first thread manages the other control
nodes and controls MARVIN’s overall behaviour, further explained in
section 6.4.1. The second thread interfaces with the GUI, discussed in
section 6.4.2. The third thread interfaces with the navigation stack, detailed
in section 6.4.3.

6.4.1 Main Thread

The purpose of this thread is to control MARVIN’s overall behaviour and
ensure robust operation. This is achieved by monitoring the other control
nodes’ statuses and controlling them when appropriate. This is shown in
figure 6.8.

128 CHAPTER 6. CONTROL ARCHITECTURE

Figure 6.8: Block diagram of the MARVIN Control node.

First, the movement control and interaction control statuses are checked for
faults. If faults are detected they can be shut down in a controlled manner.
If status messages have not been received for longer than a 2 s threshold it
is assumed that the control node has disconnected. In this case MARVIN is
commanded to become inactive until the control nodes have reconnected.
Second, any requests from the manual control are stored from the /marvin -
control/request/movement and /marvin control/request/manual topics. Third,
the state-machine shown in figure 6.9 is processed. This will be further
explained in the next paragraph. The information from the processed
requests and state machine are then used to enable and disable the various
movement control sources and the interaction control node.

6.4. MARVIN CONTROL 129

Figure 6.9: The MARVIN control internal State Diagram.

Figure 6.9 shows the state machine used to control MARVIN’s behaviour.
Each state enables and disables the movement control and interaction control
nodes as well as the movement command sources according to table 6.1.
The Initialise state is used to initialise the marvin control node at launch. The
Interaction state is the default state in normal operation. In this state a user
can interact with MARVIN’s GUI, and MARVIN’s pose changes according
to the user’s position (as discussed in section 6.2). The Navigation Start
state is used to communicate the goal request to the navigation stack (as

130 CHAPTER 6. CONTROL ARCHITECTURE

discussed in Chapter 5) and wait for the user to inform MARVIN that they
are ready to be guided (as discussed in Chapter 7). The Navigation Active
state is used to ensure the other control nodes and GUI are aware that the
navigation stack has control of MARVIN. The Navigation End state is used
to inform the other control nodes and GUI that the navigation stack is no
longer in control of MARVIN. The Inactive state is used as a intermediary
state when going from one from one behaviour to another. It clears any
existing commands and ensures the next behaviour has uncontested control
of MARVIN. The Manual Control state informs the other control nodes that
MARVIN is being controlled manually and prevents the navigation and
interaction stacks from taking control.

6.4. MARVIN CONTROL 131

Table 6.1: MARVIN Control State Overview

State Control Enabled/Disabled

Initialised
Inactive
Navigation Start
Navigation End

Movement Control Disabled
Movement (Manual) Disabled
Movement (Interaction) Disabled
Movement (Navigating) Disabled
Interaction Control Disabled

Interaction

Movement Control Enabled
Movement (Manual) Disabled
Movement (Interaction) Enabled
Movement (Navigating) Disabled
Interaction Control Enabled

Navigation Active

Movement Control Enabled
Movement (Manual) Disabled
Movement (Interaction) Disabled
Movement (Navigating) Enabled
Interaction Control Disabled

Manual Control

Movement Control Enabled
Movement (Manual) Enabled
Movement (Interaction) Disabled
Movement (Navigating) Disabled
Interaction Control Disabled

6.4.2 GUI Thread

The GUI is used to allow humans to interact with MARVIN, as discussed in
Chapter 7. To enable this interaction, the GUI must be able to communicate
with the marvin control node. As the GUI runs on a tablet running the
Windows OS, standard ROS messages cannot be used for communication.

132 CHAPTER 6. CONTROL ARCHITECTURE

Instead, Transmission Control Protocol (TCP) serial communication is used.
This method of communication is visualised in figure 6.10.

Figure 6.10: MARVIN control GUI interface state diagram.

First, the communication is initialised. This involves creating a TCP socket
with the NUC as host, then waiting for a client to connect. Once a client has
connected, a handshaking process is conducted to ensure the client is MAR-
VIN’s GUI. The Initialise state is maintained until a client has connected
with a successful handshake. Next, the TCP socket is read. This process
can detect if the client has disconnected. If this is the case Initialise state
is reinstated. Otherwise, the read data is compared to the list of known
requests and then processed. Once processed, the result is sent to the GUI
via the TCP socket. Once again, this process can detect if the client has dis-
connected. Both the Read GUI and Send GUI steps use blocking processes.
This requires that the GUI interface runs on a separate thread from the rest
of the marvin control node’s processes.

6.4. MARVIN CONTROL 133

There are four types of requests the GUI can make; update, stop, start and
guide. The update request sends updated data without changing MARVIN’s
behaviour. The stop and start requests are used when MARVIN is in the
Navigation Active state to allow the user to enable and disable MARVIN’s
movement. The guide request enables the GUI to request navigation goals.
The goal is a string that contains the name of the location. This means
that the location must be known by both the GUI and the control stack.
Locations are stored in the locations file with values for name, x, y and yaw.
The marvin control node responds to each request using the same message
format shown in table 6.2.

Table 6.2: Format of the marvin control node’s response to GUI requests.

MARVIN Navigation Human Location
Command Result

State Status Detected (x, y, yaw)

The same message structure is used for all responses so that the GUI main-
tains up to date information from the marvin control node. The MARVIN
State informs the GUI which state the main thread is in. This is used to
change the GUI’s display accordingly (further explained in Chapter 7). The
Navigation Status informs the GUI what state the navigation thread is in.
This is used so that the GUI knows when the request goal has been met
or has failed. Human Detected informs the GUI if a human is currently
detected, which is used to determine when a new user has arrived or when
the current user has left. The Location is used to inform the user of their
location by drawing it on a map. The Command contains the command that
marvin control is responding to and is used to detect if the communication
has become out of sync. The Result informs the GUI of the outcome of the
command that marvin control is responding to.

134 CHAPTER 6. CONTROL ARCHITECTURE

6.4.3 Navigation Thread

The marvin contol node must be interfaced with the navigation stack to re-
quest goals and detect when those goals are met. This interface is visualised
by figure 6.11.

Figure 6.11: MARVIN control navigation stack interface state diagram.

The Initialise state waits until the move base action server has connected
(further explained in section 5.3). The Inactive state waits for a new goal
request from the GUI. During this state, the navigation stack is running

6.4. MARVIN CONTROL 135

in the background to maintain MARVIN’s location estimates. Once a goal
request has been received, the New Request state is entered. The goal request
is checked against the list of known locations. If it is valid, it is sent to the
move base action server. The Active state waits until the navigation either
returns a success or a failure. If it results in failure, it informs the main and
GUI threads, then moves to the Inactive state. Otherwise it moves to the
Success state, which informs the main and GUI threads and proceeds to the
Inactive state.

The code for the marvin control node can be seen in appendix C.

136 CHAPTER 6. CONTROL ARCHITECTURE

Chapter 7

Human-Robot Interaction

As introduced in section 1.2, the aim of this project is to develop MAR-
VIN into a research platform for human-robot interaction. To demonstrate
MARVIN’s effectiveness at meeting this aim, MARVIN is implemented as
a robotic guide. To enable MARVIN’s performance of this HRI task, all
its subsystems must be fully integrated, including: locomotion, sensing,
localisation, obstacle detection, motion planning and human-robot interac-
tion. The successful completion of this HRI task helps evaluate MARVIN’s
suitability as a HRI research platform.

This chapter details the development of this HRI task. Section 7.1 out-
lines its aims and objectives, section 7.2 discusses the development of its
user interface (UI), section 7.3 explains how MARVIN’s torso is used to
engage users and section 7.4 evaluates the success of the HRI task through
a usability study.

137

138 CHAPTER 7. HUMAN-ROBOT INTERACTION

7.1 HRI Task’s Aims and Objectives

The aim of the HRI task is to guide users through an unmodified office-like
environment. To achieve this aim MARVIN must be capable of meeting the
following objectives:

1. Detect a new user and introduce MARVIN. Demonstrates the inte-
gration of MARVIN’s human detection capabilities and HRI elements.

2. Display the user’s location. Demonstrates the integration of MAR-
VIN’s localisation and HRI elements.

3. Guide the user to a selected location. Demonstrates the integration
of obstacle detection, motion planning and HRI elements.

4. Clearly communicate through voice synthesis and recognising. Eval-
uates the effectiveness of MARVIN’s vocal communication.

5. Provide an intuitive interface through the tablet’s touchscreen. Eval-
uates the effectiveness of MARVIN’s touchscreen interface.

6. Engage the user by actuating the humanoid torso. Demonstrates
the integration of the robotic torso with the other HRI elements.

Objectives 1 to 5 are implemented through the development of the task’s
user interface, explained in section 7.2. Objective 6 is discussed in section
7.3. The task’s implementation is evaluated against these objectives with a
usability study, discussed in section 7.4.

7.2. USER INTERFACE 139

7.2 User Interface

The user interface allows the user to make requests to MARVIN, whilst
MARVIN feeds information back to the user. This is achieved through a
graphical user interface (GUI) and a vocal interface. The GUI makes use
of the tablet’s touch screen to display information to, and receive requests
from, the user (in the form of button presses). As explained in section 2.5.1,
touch screens provide a versatile receptive and expressive element. The
development of this GUI is explained in section 7.2.1. The vocal interface
utilises the tablet’s speakers and microphone with voice synthesis and
voice recognition to communicate with the user through audio. Voice
synthesis and recognition provide an interface that does not require line-
of-sight (unlike the GUI), as discussed in sections 2.5.1 and 2.5.2. The
implementation of the vocal interface is discussed in section 7.2.2.

The GUI and vocal interfaces are both controlled through the same state
machine. This improves the coherency between both forms of interface.
The state machine is designed to lead the interaction between the user
and MARVIN. This limits the number of likely responses from the user,
improving the robustness of the UI. It also avoids inflating the user’s
expectations of MARVIN. If the communication was led by the user, it
could give them the belief that they can have an unlimited conversation
with MARVIN. This invalid notion frustrates the user when the system
fails to understand their requests. Having MARVIN drive the interaction
helps avoid the illusion that MARVIN can have an unlimited conversation
with the user, which better aligns the user’s expectations with MARVIN’s
functionality.

The HRI application’s state machine is shown in figure 7.1. The letters in
each state correspond to the GUI screens shown in figure 7.3.

140 CHAPTER 7. HUMAN-ROBOT INTERACTION

Figure 7.1: HRI application’s state machine. Green lines represents positive
responses, red represents negative responses and blue represents time
delays.

7.2. USER INTERFACE 141

The Initialise state waits for a successful connection with MARVIN’s central
control node marvin control (explained in section 6.4). The communication
between the HRI application layer and control layer uses TCP, as explained
in section 6.4.2. After a successful handshake with the marvin control node,
the state machine moves to the Inactive state.

During the Inactive state, MARVIN actively seeks out a user by turning
slowly on the spot, scanning its surrounding area for humans. Once a user
has been detected, the Introduction state is set. The Introduction state intro-
duces MARVIN to the newly detected user, saying ”Hello, I am MARVIN”.
This meets HRI objective 1, as explained in section 7.1. After a short time
delay, the Location Ask state is set.

The Location Ask state asks the user ”Would you like to see our location?”.
If the the user replies in the affirmative, the Location Show state is set,
otherwise the Guide Ask state is set.

The Location Show state displays a map of the environment with MARVIN’s
location marked on it and says ”Here is our location, tell me when you
are done”. The location is estimated from the amcl node, as explained in
section 5.1. This meets the HRI objective 2, as explained in section 7.1. The
Location Show state is maintained until the user confirms that they have
finished observing the location map, which sets the Guide Ask state.

The Guide Ask state asks the user ”Would you like me to guide you some-
where?”. A positive response sets the the Guide Options state, while a
negative response sets the End Ask state.

The Guide Options presents the user with the set of possible goal locations,
asking ”Where would you like to go?”. As the aim of the HRI application is
to guide users, it is assumed that the user does not know where their goal
location is, but they do know the name of it (for example, a particular room
or office; such as CO239 or AM218). Because of this, they are provided with

142 CHAPTER 7. HUMAN-ROBOT INTERACTION

a list of known locations that they can select from. Once they select a goal
location, the name of the location is sent to marvin control and the Guide
Start state is set.

The Guide Start state requests that the user ”Tell me when you are ready to
go.”. This allows the user to get in a safe position behind MARVIN, before
MARVIN starts moving. It also prevents the user from getting startled
by MARVIN moving unexpectedly. When the user confirms that they are
ready, the Guide Active state is set.

The Guide Active state requests to enable MARVIN’s movement through
the marvin control node and informs the user ”All right, let’s go. Tell me if
we need to stop.” During this state the user can request MARVIN to stop
or continue at any point, which can be used in fail conditions, or if the
user wants to temporarily stop during the guiding process. This state is
maintained until the marvin control node has reported that MARVIN has
reached the goal location, which sets the Guide Success state, or that the
navigation stack has encountered an error (for example if there is no path
found to the goal), which sets the Guide Error state.

The Guide Error state asks ”Sorry, I was unable to guide you. Would you
like to try again?”. If a positive response is received, the Guide Options
state is set, allowing the user to change the guide location goal if necessary.
Otherwise, the End Ask state is set.

The Guide Success state informs the user that ”We have arrived.”, then
moves to the End Ask state after a short delay (which gives MARVIN
enough time to turn and face the user). The user can use the ”cancel”
response during the Guide Options, Guide Start and Guide Active states to
cancel MARVIN’s movement and move to the End Ask state.

The End Ask state asks ”Can I do anything else for you?”. A positive
response sets the Location Ask state, repeating the interaction process. A

7.2. USER INTERFACE 143

negative response sets the End state.

The End state says ”OK, See you later.”, informing the user that the interac-
tion has finished. After no human has been detected for a specified time,
the Inactive state is set. This waits for a new user and then repeats the whole
interaction process.

The user interface has been developed with the Windows Presentation
Foundation (WPF). WPF is Microsoft’s latest approach to a GUI framework
and makes use of the .NET framework [87]. A GUI framework provides all
the necessary elements required for developing a GUI, such as: labels, text-
boxes, buttons and event handlers. Having the underlying code provided
for these elements simplifies the development process. WPF was specifi-
cally selected for three reasons. Firstly, MARVIN’s tablet computer runs
the Windows operating system for better voice synthesis and recognition
support, as explained in section 3.2.3. This necessitates a GUI framework
that supports Windows. By using one of Microsoft’s frameworks (such as
WPF) it is guaranteed to support Windows. Secondly, WPF is designed to
work on touch screen devices. This makes it more effective for developing
on MARVIN’s tablet than the older GUI frameworks that are designed
primarily for keyboards and mice. Thirdly, WPF is developed to make
use of the .NET framework. The .NET framework is a group of libraries
that provides a large range of functionality, including (most notably for
MARVIN) voice synthesis and voice recognising. WPF applications are
written in a combination of XAML and C#.

7.2.1 Graphical User Interface

The GUI is the primary source of information for the user. As such, it is
required to be clear and understandable. To achieve this, considerations
must be made for all the GUI elements, including: size, layout and colour.

144 CHAPTER 7. HUMAN-ROBOT INTERACTION

These considerations will be discussed throughout this section. The GUI
has two functions, present information to the user, and receive responses
from the user. Information is provided to the user through text and imagery,
while responses are received from the user through buttons. This GUI is
developed to meet the HRI objective 5, as explained in section 7.1.

The GUI is split into four primary areas: the Frame Title, Primary Button
Panel, Status and Secondary Button Panel. These areas are shown in figure
7.2.

Frame Title

Status

Primary Button Panel

Secondary Button
Panel

Figure 7.2: Basic layout of the HRI guide application’s GUI.

The Frame Title is used to inform the user what the current frame is for. It
typically displays what MARVIN has said. It is located at the top of the
screen to encourage the user to read it first, providing context for the rest
of the elements in the frame. The text in the Frame Title is large (72 pt)
and white, which contrasts against the dark grey background improving
readability and making it stand out.

The Primary Button Panel houses the majority of the response buttons. It is
placed in the centre of the screen, making it the second element the user

7.2. USER INTERFACE 145

should notice as they observe the frame. Its central location also emphasises
that it is an interactive element that the user can press, which helps improve
the intuitiveness of the GUI.

The Status element displays the UI’s current status. It provides the user
with additional information, such as: ”connecting to MARVIN” in the
Initialising state, ”waiting for human” in the Inactive state and ”listening”
when the GUI is waiting for a response from the user. As the Status is a less
important element than the Frame Title and Primary Button Panel elements,
it is located at the bottom of the screen. It also uses a smaller font than the
Frame Title (50 pt) and a light grey colour with less contrast against the dark
grey background.

The Secondary Button Panel is used to house buttons if there is other infor-
mation displayed in the centre of the screen (such as in the Location Show
state), or to house secondary buttons (such as ”cancel”). It is located at the
bottom right of the screen, making it the last element the user should notice.
This is because these buttons only have relevance once the rest of the frame
has been observed.

The buttons are designed to be clear and intuitive to use. They are large
enough to touch (45 mm × 22 mm) and use vibrant colours to contrast
against the dark grey background. The buttons’ text (used to explain the
buttons’ purpose) uses a large (60 pt) white font that contrasts against the
vibrant button colour, improving its clarity. The buttons’ colour follows a
coherent theme to help make the buttons’ purpose more intuitive. Positive
buttons are green (such as ”yes” and ”start”), negative buttons are red
(such as ”no”, ”cancel” and ”stop”) and option buttons are blue (such as
the guide locations).

Figure 7.3 presents a screen shot of each of the GUI’s frames. The figure
letters correspond to the states in figure 7.1.

146 CHAPTER 7. HUMAN-ROBOT INTERACTION

(a) Initialisation (b) Introduction (c) Location Ask

(d) Location Show (e) Guide Ask (f) Guide Options

(g) Guide Start (h) Guide Active (i) Guide Success

(j) Guide Error (k) End Ask (l) End

Figure 7.3: HRI application’s GUI frames.

7.2. USER INTERFACE 147

7.2.2 Vocal Interface

As explained at the start of section 7.2, the UI is written using the WPF.
This allows the integration of Microsoft’s .NET speech platform, which
is implemented to meet the HRI objective 4, as explained in section 7.1.
Listing 7.1 shows the setup required for the voice synthesiser. Listing 7.2
shows the setup required for the voice recogniser.

1 using System.Speech.Synthesis;

2

3 // Setup the Voice Synthesiser

4 SpeechSynthesizer synth = new SpeechSynthesizer();

5 synth.SetOutputToDefaultAudioDevice();

6 synth.SelectVoiceByHints(VoiceGender.Male);

Listing 7.1: Voice Synthesiser Setup

Line 1 includes the .NET speech platform voice synthesis library. Line 4
initialises the speech synthesis object. Line 5 sets the audio output for the
synthesiser to the default audio device (the tablet’s speakers). Line 6 sets the
voice of the synthesiser to a male voice (if one is installed). Unfortunately
Microsoft have removed native support for different voices, so the standard
Microsoft Ann voice is used. This should be replaced with a more MARVIN
appropriate voice in future.

1 using System.Speech.Recognition;

2

3 // Setup the voice recogniser

4 SpeechRecognitionEngine recogniser = new

SpeechRecognitionEngine();

5

6 // Add the dictionary of commands to choices

7 Choices choices = new Choices();

8 foreach (KeyValuePair<string, List<string>> entry in _commands)

9 foreach (String choice in entry.Value)

10 choices.Add(choice);

148 CHAPTER 7. HUMAN-ROBOT INTERACTION

11

12 // Build the grammar for the voice recognition.

13 GrammarBuilder gb = new GrammarBuilder();

14 gb.Append(choices);

15 Grammar g = new Grammar(gb);

16 recogniser.LoadGrammar(g);

17 recogniser.SpeechRecognized += new

EventHandler<SpeechRecognizedEventArgs>(sre_SpeechRecognized);

18 recogniser.SetInputToDefaultAudioDevice();

19 recogniser.RecognizeAsync(RecognizeMode.Multiple);

Listing 7.2: Voice Recogniser Setup

Line 1 includes the .NET speech platform voice recognition library. Line
4 initialises the speech recogniser object. Lines 7 to 10 initialises a Choices
data set and adds the values from the dictionary of commands to it. The
dictionary of commands is further explained in the following paragraph.
Lines 13 to 15 initialises a GrammarBuilder object, loads the set of choices
into it and then creates a Grammar object from the GrammarBuilder. Line
15 loads the Grammar object into the speech recogniser. Line 17 creates
an event handler for the speech recogniser. This allows the recogniser to
act like a button press when it detects a known word. Line 18 sets the
speech recogniser’s audio input to the default audio device (the tablet’s
microphone). Line 19 starts the voice recogniser in its asynchronous mode,
which allows it to operate in parallel (on a separate thread) with the main
program.

Originally, likely alternatives for each response were added to the Speech-
RecognitionEngine’s GrammarBuilder. For example, the positive response
included ”yes”, ”yeah”, ”yea”, ”yup”, ”OK” and ”sure”. However, during
testing it was found that the larger the set of recognisable words in the data
base, the larger the chance of false positives. False positives can trigger the
UI to change state unexpectedly, which can frustrate the user. It was also
noted during a pilot study that the majority of people used the buttons’

7.3. INTERACTIVE POSES 149

text as their verbal response, rather than using alternative words. Therefore
the number of possible responses was restricted to the button labels. These
known keywords are stored in the dictionary of commands, which is loaded
into the GrammarBuilder.

The full GUI code can be found in Appendix C.

7.3 Interactive Poses

As explained in section 6.2, MARVIN’s robotic torso pose can be changed
depending on the detected human’s location, through the use of config-
urable zones. This feature is used to attempt to meet the HRI objective 6, as
explained in section 7.1. The HRI guide task makes use of five zones: Close,
Nominal, Left, Right and Far. These zones are visualised in figure 7.4.

Zone 1:
Close

Zone 2:
Nominal

Zone 4:
Right

Zone 3:
Left

Zone 5:
Far

Not to Scale

1.0
 m

0.5
 m

1.5
 m

-12° 12°

0°

-34
° 34°

Figure 7.4: Configured Interaction Zones

150 CHAPTER 7. HUMAN-ROBOT INTERACTION

If a user is in the Close zone, they are considered to be too close to MARVIN.
They might get injured or startled if MARVIN moves suddenly. As an
attempt to dissuade people from entering this zone, the torso is set to an
aggressive pose (as shown in figure 7.5a). The neck and shoulders are
extended and the eyes are set to red. This aggressive pose is used to make
the user feel uncomfortable and take a step back. However, through a pilot
study it was found that this made the users excessively uncomfortable
and discouraged them from further interaction with MARVIN. While this
would be effective if MARVIN were operating as a security guard, it is
counterproductive when acting as a guide. Because of this, the Close zone
was disabled during the usability study.

The Nominal zone is the optimal zone for standard interaction. The touch
screen is easily observable, the voice synthesis is at an audible volume (60
to 65 dB) and the voice recognition is at its most reliable. The torso is set to
an attentive pose, as shown by figure 7.5b. The shoulders are back, neck
halfway extended (so that MARVIN’s eyes are approximately in line with
the user’s) and the eyes are green. While the user is in this zone, Segway
tracking is enabled. This commands the Segway to turn towards the user,
giving the appearance that MARVIN is looking at the user.

If the user is within the Left or Right zones the torso’s pose is changed to lean
towards them, as shown in figures 7.5c and 7.5d. This gives the gives the
appearance that MARVIN is straining to look at them, encouraging the user
to move in front of MARVIN (into the Nominal zone). If the user is within
the Far zone, the shoulder and neck extends. This gives the appearance
that MARVIN is craning towards them, as if it were struggling to see or
hear the user properly. This is shown in figure 7.5e.

7.4. USABILITY STUDY 151

(a) Zone 1: Close (b) Zone 2: Nominal

(c) Zone 3: Left (d) Zone 4: Right

(e) Zone 5: Far

Figure 7.5: Torso poses for each interaction zone.

7.4 Usability Study

As stated at the start of this chapter, the HRI guide task is developed to
demonstrate MARVIN’s effectiveness as a HRI research platform. To ac-

152 CHAPTER 7. HUMAN-ROBOT INTERACTION

complish this, the HRI task’s implementation must be evaluated against
the objectives specified in section 7.1. This evaluation is achieved through a
usability study involving 18 participants with the required ethics approval
obtained (included as appendix B). The participants were selected nondis-
criminatively with people of differing backgrounds, including: sonic arts,
law, bio-medical, physics, economics, computer science and engineering.
The majority of participants were students with ages ranging from early
20’s to mid 30’s. This may introduce some response bias (such as aptitude
towards technology). Further research should be conducted in the future
to investigate how a broader range of ages react to MARVIN. No prior
training is provided, other than a brief explanation of what MARVIN is.

MARVIN is initialised and set to the Inactive state. Participants interact
with MARVIN one at a time, without seeing MARVIN in operation prior to
the test. Each participant is asked to perform the following set of tasks:

1. Approach MARVIN and wait for it to initiate interaction.

2. Request a map of your current location.

3. Request to be guided to a location.

4. Follow MARVIN to the location.

5. Request to be guided to the original location.

6. End your interaction with MARVIN.

These tasks were conducted twice for each participant, once with the voice
recognition disabled, then again with the voice enabled. This allows the
participant to directly compare each input method.

Following the completion of these tasks, the participants are asked to fill
in a questionnaire. The questionnaire contains a series of statements that

7.4. USABILITY STUDY 153

the participants rate on the Likert scale, where 5 corresponds to ”Strongly
Agree” and 1 corresponds to ”Strongly Disagree”. Table 7.1 presents an
summary of these results.

Table 7.1: Summary of usability study results

Number Question Mean Std. Dev.

1 MARVIN’s voice was easy to under-
stand.

4.7 0.5

2 MARVIN’s voice was loud enough to
hear clearly.

4.4 0.7

3 The touch interface text was large
enough to read.

4.8 0.4

4 The touch interface layout helped me
interact with MARVIN.

4.4 0.7

5 Interaction with MARVIN was at a
comfortable distance.

4.1 0.6

6 MARVIN understood my voice well. 3.3 1.1
7 Voice interaction (synthesis and

recognition) was more useful than
the touch screen interface.

3.8 1.2

8 Requesting my location was easy. 4.3 0.7
9 The displayed location map was easy

to read.
4.5 0.9

10 Requesting to be guided was easy. 4.3 0.8
11 MARVIN moved too slowly. 2.2 1.0
12 MARVIN moved too quickly. 1.9 0.7
13 MARVIN’s upper body movement

improved my interaction experience.
3.6 1.1

Question 1 shows that 100% of the users found the voice easy to understand

154 CHAPTER 7. HUMAN-ROBOT INTERACTION

(72% strongly agreed and 28% agreed). This demonstrates that Microsoft’s
speech platform is an effective method for voice synthesis.

Question 2 shows that 88.9% of the users felt that MARVIN’s voice was loud
enough to hear clearly. None of the users disagreed with this statement;
however, 11.1% were neutral towards it. This suggests that the tablet’s
speakers are loud enough for low background noise (measured at 42±0.5 dB
in the test environment, with the voice volume measured at 60 to 65 dB
from 1 to 1.5 m in front of MARVIN). However, in more noisy environments
additional speakers may be required to ensure voice synthesis clarity.

Question 3 shows that 100% of the users found the text large enough to
read (78% strongly agreed and 22% agreed). This demonstrates that the
tablet’s 12” screen is appropriate for MARVIN’s HRI and that the text sizes
used can be used for future developments.

Question 4 shows that 88.9% of participants felt that the layout of the
GUI helped them interact with MARVIN (50% strongly agreed and 38.9%
agreed). This suggests that the layout is effective and understandable, and
could be used for future HRI applications.

Question 5 shows that none of the users felt that the integration distance
with MARVIN was uncomfortable (83.3% of people felt that it was comfort-
able and 16.7% of people were neutral). This also suggests that the tablet’s
12” screen is sufficiently large to read at a comfortable distance and that
MARVIN’s appearance as a whole is not particularly unsettling.

Question 6 shows that the voice recognition was effective for some users,
but not others. The participants’ answers are fairly bimodal, with 50% of
users agreeing that MARVIN understood them well and 27.8% disagreeing.
This suggests that Microsoft’s speech recognition algorithm is not robust
enough for HRI in its current form. This could be improved through the
addition of better audio recording hardware (such as a microphone array

7.4. USABILITY STUDY 155

[88], rather than using the tablet’s inbuilt microphone), or through the
implementation of different speech recognition software (such as Nuance’s
Dragon NaturallySpeaking). These improvements are further discussed in
section 9.2.

The speech recognition discrepancy is carried through to Question 7, which
asks if the user agrees that the vocal interface was more useful than the
touch interface. 72.2% of users agree with this statement, 16.7% disagree
and 11.1% are neutral. This produces a standard deviation of 1.2, which
makes it difficult to draw reliable conclusions. However, if the set of
answers is split into users who found MARVIN could understand them or
were neutral (≥ 3) and users who felt MARVIN could not understand them
(> 3), then this discrepancy can be resolved.

Of the users who felt MARVIN could understand them, 78.6% agreed that
the vocal interface was more useful and only 7.1% disagreed. This increases
the mean to 4.1 and drops the standard deviation to 0.9, which provides a
stronger relationship suggesting that most people found the vocal interface
useful if MARVIN understood their voice.

Of the users who found that MARVIN did not understand their voice, 50%
agreed and 50% disagreed that the vocal interface was more useful than the
touch interface. This produces a mean of 3.0 and a standard deviation of
1.8, which cannot be used to draw any robust conclusions. However, this
might mean that some participants felt that the voice interface would be
more useful than the touch interface if MARVIN understood their voice
more reliably.

The results from questions 6 and 7 suggest that despite the voice recognition
software not understanding some users, the majority of people found it
useful. As such, the combination of touch screen and voice interfaces
complement each other and should continue to be used in future HRI

156 CHAPTER 7. HUMAN-ROBOT INTERACTION

applications.

From questions 11 and 12, no users felt that MARVIN moved too quickly
and 16.7% of users felt that MARVIN moved too slowly. During these tests
MARVIN’s maximum velocity was set to 1.0 ms−1. These results suggest
that this limit was slightly low, and a maximum velocity of 1.1 or 1.2 ms−1

would be more appropriate. This aligns with the average human walking
speed of 1.41 ms−1 [17].

Question 13 has a large spread with 55.6% of users agreeing that MARVIN’s
torso poses improved their experience and 33.3% of users disagreeing.
This makes it difficult to draw any reliable conclusions, however it does
suggest that further development is required to reach the full potential of
the actuated torso. The current zone configuration is relatively simple and
could be extended with more complex responses to the user’s requests and
actions. Another improvement would be to replace the LED eyes with an
LCD screen, enabling full facial expressions such as the Baxter robot [8].

In addition to the 13 questions, the participants are also asked write down
any comments they had under the following questions:

• What aspects did you enjoy about interacting with MARVIN?

• Are there any additional methods of interaction that you would like
incorporated into MARVIN? For example, hand gestures such as
pointing?

• Is there any additional functionality you would like incorporated into
MARVIN?

• Was there anything about MARVIN’s appearance that made interact-
ing with it more difficult?

7.4. USABILITY STUDY 157

• What do you feel could be improved about MARVIN’s existing fea-
tures?

• Do you have any other comments?

What aspects did you enjoy about interacting with MARVIN? This question
resulted a number of aspects that the users enjoyed when interacting with
MARVIN, including: six comments about the voice interaction, three com-
ments about the novelty of interacting with a self-balancing and/or au-
tonomous robot, five comments about MARVIN’s perceived polite charac-
ter, five comments about MARVIN’s human detection ability and looking
at the user, six comments about the interactive poses (some overlap with
the human detection comments), two comments about MARVIN’s function-
ality, two comments about MARVIN’s responsiveness and two comments
about MARVIN’s ease-of-use.

Are there any additional methods of interaction that you would like incorporated
into MARVIN? This question resulted in six comments expressing interest
in hand gestures (33.3% of participants), four users felt that the voice and
touch interfaces are sufficient (22.2%), one comment suggesting the addition
of an LCD screen for facial expression and simple emotions, one comment
suggesting a mobile-phone app, one comment suggesting physical buttons
and one requesting more head movement from MARVIN.

Is there any additional functionality you would like incorporated into MARVIN?
Five comments suggested interest in MARVIN acting as an information
point, answering questions like the popular personal assistant programs
(Google Now, Apple Siri or Microsoft Cortana), or providing location
specific information such as showing a requested location on the map.
Three comments requested more personable features, such as telling jokes
or doing a trick. One comment suggested providing an estimated time
of arrival to the selected goal location, one comment suggested a follow

158 CHAPTER 7. HUMAN-ROBOT INTERACTION

me command, one comment suggested MARVIN asks detected humans to
move out of the way when navigating (rather than the current ”stop and
wait” behaviour) and one comment suggested a gentle tone to warn that
MARVIN is about to move.

Was there anything about MARVIN’s appearance that made interacting with it
more difficult? Six comments noted that MARVIN could be intimidating
at times, particularly in close proximity. This could be of particular use
when used for security tasks. Two comments suggested that the tablet
could be mounted higher and angled up slightly to improve readability
and improve the usability of the touch interface. One comment noted that
the tilt limiters and whiskers stick out and can be cumbersome.

What do you feel could be improved about MARVIN’s existing features? Six com-
ments requested more robust voice recognition, two comments requested
natural language processing, two comments suggested more facial features,
two suggestions to add a skirt to cover the electronics and mobility plat-
form, one comment requested a male voice to match the masculine torso
and one complaint that the LED eyes are too bright.

Do you have any other comments? The majority of these comments fit into one
of the other categories and have been included in the previous paragraphs.
However, there were six additional comments suggesting that the users
enjoyed interacting with MARVIN.

A scan of the full responses can be found in appendix C.

7.5 Summary

This chapter demonstrated MARVIN’s effectiveness as a HRI research
platform through the implementation of a guide task. This included the

7.5. SUMMARY 159

development of a GUI and a vocal interface. The implementation of this
task was evaluated against its objectives through a usability study.

This usability study found that:

• MARVIN can detect humans in a real-world situation. This was a
feature that many participants commented about positively.

• MARVIN’s localisation and HRI functionality are fully integrated.
Users found it easy to request their location and read the displayed
map.

• MARVIN’s navigation stack and HRI functionality are fully integrated
and operate with humans acting as dynamic obstacles. Users found it
easy to request to be guided, but found 1.0 ms−1 slightly slow.

• MARVIN can communicate clearly through voice synthesis; however,
voice recognition will require some further development to improve
its robustness.

• The developed GUI was clear and intuitive to use. Many of its features
could be used in future HRI applications.

• Many users enjoyed MARVIN’s actuated torso poses; however, it
could be further developed through the addition of an LCD screen to
display facial expressions (in place of the LED eyes).

• Many users displayed an interest in hand-gestures and the develop-
ment of MARVIN into an information point.

The successful implementation of this guide task demonstrates that MAR-
VIN is capable of succesful HRI. MARVIN’s locomotion, sensing, locali-
sation and motion planning must now be evaluated to ensure MARVIN
meets the objectives outlined in section 1.2. The results required to evaluate
these systems are presented and discussed in Chapter 8.

160 CHAPTER 7. HUMAN-ROBOT INTERACTION

Chapter 8

Overall Results

This chapter presents the results and analysis of MARVIN’s key systems,
including: locomotion, sensing, localisation, obstacle detection, human
detection and motion planning. This is achieved through the characterising
of the Segway RMP (section 8.1), the evaluation of MARVIN’s naviga-
tion stack (section 8.2) and the analysis of MARVIN’s human detection
capabilities (section 8.3).

8.1 Segway RMP Characteristics

As explained in section 3.1.1, MARVIN uses a Segway RMP for locomotion.
This mobility platform is characterised to determine safe velocity limits
during autonomous operation, as per objective 3a. This is achieved by com-
manding it to drive in a straight line (from stopped) until a target velocity is
met, then commanding MARVIN to stop. A large flat measurement surface
is placed in front of MARVIN so that the odometry, laser rangefinder and
Kinect data can be compared and analysed. This test is used to analyse:

161

162 CHAPTER 8. OVERALL RESULTS

• Acceleration profile

• Deceleration profile

• Stopping distance

• Odometry data

• Laser Rangefinder data

• Kinect data

MARVIN can stop in two ways; standard-stop and emergency-stop. A
standard-stop commands MARVIN to reduce its velocity to zero in a con-
trolled manner, which maintains the Segway RMP’s balance. An emergency-
stop disables the Segway RMP’s motors, causing MARVIN to fall onto its
tilt limiters. The emergency stop is uncontrolled and should only be used
as a last resort. Each of these stopping methods are tested at two target
velocities; 1.0 ms−1 (a common maximum velocity for indoor mobile robots,
such as Jinny) and 1.4 ms−1 (the average human’s walking speed [17]).

Section 8.1.1 presents the results for the standard-stop tests and section 8.1.2
presents the results for the emergency-stop tests. Section 8.1.3 provides a
summary of the Segway RMP’s characteristics.

8.1.1 Standard-Stop

Figures 8.1 and 8.2 present a typical run of a standard-stop test with a target
velocity of 1.0 ms−1 and 1.4 ms−1 respectively. Figures 8.1a and 8.2a show
the velocity of MARVIN throughout the runs, figures 8.1b and 8.2b show
the pitch, figures 8.1c and 8.2c show the forward displacement and figures
8.1d and 8.2d show the yaw displacement.

8.1. SEGWAY RMP CHARACTERISTICS 163

Time (s)

0 1 2 3 4 5 6 7 8 9

F
o

rw
a

rd
 V

e
lo

c
it
y
 (

m
/s

)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Forward Velocity

Target Velocity Reached

Stop Command

Sucessfully Stopped

(a) Forward Velocity

Time (s)

0 1 2 3 4 5 6 7 8 9

P
it
c
h
 A

n
g
le

 (
d
e
g
re

e
s
)

-12

-10

-8

-6

-4

-2

0

2

4

6

8

Pitch Angle

Target Velocity Reached

Stop Command

Sucessfully Stopped

(b) Pitch

Time (s)

0 1 2 3 4 5 6 7 8 9

F
o

rw
a

rd
 D

is
p

la
c
e

m
e

n
t

(m
)

-0.5

0

0.5

1

1.5

2

2.5

3

Odometery Measurements

LiDAR Measurements

Kinect Measurements

Target Velocity Reached

Stop Command

Sucessfully Stopped

(c) Forward Displacement

Time (s)

0 1 2 3 4 5 6 7 8 9

Y
a

w
 D

is
p

la
c
e

m
e

n
t

(d
e

g
re

e
s
)

-0.5

0

0.5

1

1.5

Yaw Displacement

Target Velocity Reached

Stop Command

Sucessfully Stopped

(d) Yaw Displacement

Figure 8.1: Standard stopping distance with a target velocity of 1.0 ms−1

Figure 8.1a presents MARVIN’s acceleration and deceleration profiles.
When MARVIN is first commanded to move, it appears to initially move
backwards (shown by the negative velocity peak at 0.5 s). However, when
observing figure 8.1c, it can be seen that the laser rangefinder and Kinect
do not detect this backward movement. Because of this, it can be deter-
mined that this backward motion is caused by odometry drift. Velocity is
calculated from the odometry data (by integrating the forward displace-
ment over time), so this odometry drift introduces errors into the velocity

164 CHAPTER 8. OVERALL RESULTS

estimates. The odometry drift is caused by the way the Segway moves. To
accelerate, the Segway leans forwards (as shown by the 7◦ peak at 0.5 s
in figure 8.1b). To lean forward it applies enough torque to the motors
to change the Segway’s pitch, but not enough to rotate the wheels. How-
ever, this introduces a relative rotation between the Segway and its wheels,
which is picked up by the odometers. This makes it appear that the Segway
has move backwards, when in fact, it has remained stationary.

After this initial ”deceleration”, the Segway accelerates to its target velocity
between 0.5 s and 2 s. This results in a slight overshoot (∼ 5%); however,
this is to be expected in a closed loop control system that is maintaining
both pitch and velocity. Once the target velocity has been reached and main-
tained for the specified time threshold (0.2 s), the Segway is commanded to
stop.

The Segway then decelerates slowly (at ∼ 0.2 ms−2), before a velocity peak
at 4 s. Once again, this peak is caused by odometry drift and is artificial.
This can be seen by the −10◦ peak at 4 s in figure 8.1b, where the Segway
leans backwards to slowdown. This is essentially the inverse of the effect
the initial acceleration caused (at 0.5 s). Because of this, the shape of both
peaks are inverted versions of one another. This period of slow deceleration
(2.5 s to 4 s) is likely caused by the Segway’s control system attempting to
maintain balance. This is suggested by the absence of this slow deceleration
in the emergency-stop trial, shown in figure 8.3a.

After the slow deceleration, the Segway’s velocity drops suddenly (at
∼ 1.8 ms−2) until it reaches 0 ms−1. As expected, this is followed by an
overshoot (∼ 20◦), resulting in some backwards movement. After 6 s, the
Segway’s velocity continues to oscillate as it maintains balance.

Figure 8.1d shows that the yaw displacement is maintained within 0 ±
0.5◦, except for a spike at 4 s. This spike coincides with the ∼ 1.8 ms−2

8.1. SEGWAY RMP CHARACTERISTICS 165

deceleration. It is likely caused by the wheels stopping at slightly different
times.

Figure 8.1c, shows that the Kinect and laser rangefinder are consistent with
one another. The odometry is consistent with the range measurements,
except at points of large acceleration (or deceleration) which results in
odometery drift. The consistency of the laser rangefinder and Kinect data
demonstrates that the Kinect processing, particularly the ground removal
algorithm, is effective over the range of Segway pitches (−10◦ to 8◦).

Figure 8.2 presents a typical run of the standard-stop test at 1.4 ms−1. Many
of the same observations can be made as the 1.0 ms−1 test; however, there
are three key differences. Firstly, the Segway accelerates at ∼ 0.7 ms−2,
resulting in an overshoot of ∼ 7% and decelerates at ∼ 2.8 ms−2, resulting
in an overshoot of ∼ 25%. Secondly, the Segway’s pitch ranges from
−14◦ to 12◦. Thirdly, there are errors in the laser rangefinder and Kinect
measurements from 0.5 s to 1.1 s. These errors are caused by the 12◦ peak
in the Segway pitch. At this angle the laser rangefinder, briefly detects
the ground plane, measuring points closer than the measurement surface.
This problem is fixed through the addition of the laser scan ground filter,
explained in section 4.3.2. The Kinect’s error is caused by noise introduced
by sudden changes in pitch. This issue is addressed in section 8.2.1.

166 CHAPTER 8. OVERALL RESULTS

Time (s)

0 1 2 3 4 5 6 7 8 9

F
o

rw
a

rd
 V

e
lo

c
it
y
 (

m
/s

)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Forward Velocity

Target Velocity Reached

Stop Command

Sucessfully Stopped

(a) Forward velocity

Time (s)

0 1 2 3 4 5 6 7 8 9

P
it
c
h
 A

n
g
le

 (
d
e
g
re

e
s
)

-15

-10

-5

0

5

10

15

Pitch Angle

Target Velocity Reached

Stop Command

Sucessfully Stopped

(b) Pitch

Time (s)

0 1 2 3 4 5 6 7 8 9

F
o

rw
a

rd
 D

is
p

la
c
e

m
e

n
t

(m
)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Odometery Measurements

LiDAR Measurements

Kinect Measurements

Target Velocity Reached

Stop Command

Sucessfully Stopped

(c) Forward displacement

Time (s)

0 1 2 3 4 5 6 7 8 9

Y
a

w
 D

is
p

la
c
e

m
e

n
t

(d
e

g
re

e
s
)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Yaw Displacement

Target Velocity Reached

Stop Command

Sucessfully Stopped

(d) Yaw

Figure 8.2: Standard stopping distance with a target velocity of 1.4 ms−1

8.1.2 Emergency-Stop

Figures 8.3 and 8.4 each show a typical run of a emergency-stop test with a
target velocity of 1.0 ms−1 and 1.4 ms−1 respectively. Figures 8.3a and 8.4a
show the velocity of MARVIN throughout the runs, figures 8.3b and 8.4b
show the pitch, figures 8.3c and 8.4c show the forward displacement and
figures 8.3d and 8.4d show the yaw displacement.

8.1. SEGWAY RMP CHARACTERISTICS 167

As expected, the acceleration profile is consistent with the standard-stop
tests. However, as the emergency-stop disables the Segway’s motors, as
opposed to performing a controlled stop, the deceleration profile has some
major differences. Because the Segway makes no attempt to control its
balance, there is no artificial peak or period of slow deceleration after the
stop command. Instead, the Segway falls forwards onto its tilt limiters,
resulting in a 20◦ pitch. Once the the Segway lands, its velocity slowly
decreases (at ∼ 0.4 ms−2) due to friction as it rolls on its tilt limiters. As
the motors are not powered, this results in a much wider variation in yaw
when compared to the standard-stop.

The Kinect, laser rangefinder and odometry data is constant up until the
emergency-stop command, but diverge afterwards. Due to the Segway’s
pitch, the laser rangefinder can detect the ground plane, which produces
invalid measurements. Any errors in the Kinect calibration are amplified
by extreme Segway pitches. The 20◦ pitch causes the Kinect to produce
invalid data; however, this is not an issue as the Segway can only tilt this far
in fail conditions. The odometery continues to measure the wheel rotations
and (as the Segway is not attempting to balance) it is less prone to drift.
Because of this, the odometery is considered the most reliable of the three
measurements for determining the stop distance for the emergency-stop
tests.

Figure 8.4 presents a typical run of the emergency-stop test at 1.4 ms−1.
Many of the same observations can be made as the previous tests. The
data prior to the stop command is consistent with the data in the 1.4 ms−1

standard-stop test, as shown in figure 8.2. This includes the laser range-
finder’s and Kinect’s measurement errors from 0.5 s to 1.1 s. The data after
the stop command is consistent with the 1.0 ms−1 emergency-stop test, as
shown in figure 8.3; however, with larger velocity, displacement and pitch
ranges.

168 CHAPTER 8. OVERALL RESULTS

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
o

rw
a

rd
 V

e
lo

c
it
y
 (

m
/s

)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Forward Velocity

Target Velocity Reached

Stop Command

Sucessfully Stopped

(a) Forward velocity

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
it
c
h

 A
n

g
le

 (
d

e
g

re
e

s
)

-5

0

5

10

15

20

25

Pitch Angle

Target Velocity Reached

Stop Command

Sucessfully Stopped

(b) Pitch

Time (s)

0 1 2 3 4 5 6

F
o

rw
a

rd
 D

is
p

la
c
e

m
e

n
t

(m
)

-0.5

0

0.5

1

1.5

2

2.5

3

Odometery Measurements

LiDAR Measurements

Kinect Measurements

Target Velocity Reached

Stop Command

Sucessfully Stopped

(c) Forward displacement

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Y
a

w
 D

is
p

la
c
e

m
e

n
t

(d
e

g
re

e
s
)

-1.5

-1

-0.5

0

0.5

1

1.5

Yaw Displacement

Target Velocity Reached

Stop Command

Sucessfully Stopped

(d) Yaw

Figure 8.3: Emergency stopping distance with a target velocity of 1.0 ms−1

8.1. SEGWAY RMP CHARACTERISTICS 169

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
o

rw
a

rd
 V

e
lo

c
it
y
 (

m
/s

)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Forward Velocity

Target Velocity Reached

Stop Command

Sucessfully Stopped

(a) Forward velocity

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
it
c
h

 A
n

g
le

 (
d

e
g

re
e

s
)

-5

0

5

10

15

20

25

Pitch Angle

Target Velocity Reached

Stop Command

Sucessfully Stopped

(b) Pitch

Time (s)

0 1 2 3 4 5 6

F
o

rw
a

rd
 D

is
p

la
c
e

m
e

n
t

(m
)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Odometery Measurements

LiDAR Measurements

Kinect Measurements

Target Velocity Reached

Stop Command

Sucessfully Stopped

(c) Forward displacement

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Y
a

w
 D

is
p

la
c
e

m
e

n
t

(d
e

g
re

e
s
)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Yaw Displacement

Target Velocity Reached

Stop Command

Sucessfully Stopped

(d) Yaw

Figure 8.4: Emergency stopping distance with a target velocity of 1.4 ms−1

8.1.3 Summary

Table 8.1 presents a comparison of the four stopping distance tests: standard-
stop at target velocities of 1.0 ms−1 and 1.4 ms−1, as well as emergency-stop
at target velocities of 1.0 ms−1 and 1.4 ms−1.

170 CHAPTER 8. OVERALL RESULTS

Table 8.1: Summary of stopping distance tests.

Test
Type

Target
Velocity
(ms −1)

Stopping
Distance

(m±σ)

Velocity
Range

(ms −1 ± σ)

Pitch
Range
(◦ ± σ)

Pitch
Range
(◦ ± σ)

Standard
Stop

1.0 1.48± 0.05 -0.25 ... 1.08 ± 0.04 -9.22 ... 7.5 ± 0.54 -0.57 ... 1.06 ± 0.36
1.4 2.08± 0.07 -0.36 ... 1.49 ± 0.04 -1.35 ... 10.3 ± 0.49 -0.61 ... 1.19 ± 0.43

Emergency
Stop

1.0 0.76± 0.10 -0.25 ... 1.07 ± 0.02 -1.24 ... 21.9 ± 0.66 -1.29 ... 1.04 ± 1.13
1.4 1.53± 0.26 -0.31 ... 1.48 ± 0.02 -12.44 ... 22.1 ± 0.74 -2.03 ... 2.76 ± 3.36

When comparing the standard-stop and emergency-stop results it can be
seen that the emergency-stop has shorter stopping distances on average,
but are typically less constant (they have larger σ). This is because MARVIN
slides to a stop once the motors are turned off, and so the stopping distance
is dependent on external factors (such as the friction with the ground).
Because of this it is not recommended to perform an emergency-stop on
sloped ground.

By comparing the laser rangefinder, Kinect and odometery data, it can be
seen that the range sensors produce valid measurements in the typical oper-
ating pitch of −10◦ to 10◦. This comparison also shows that the odometery
suffers from drift, especially during periods of high acceleration or decel-
eration. This demonstrates the need for localisation as part of MARVIN’s
navigation stack.

When operating in open spaces (areas larger than 4 m × 4 m) or travelling
along the centre wide corridors (2.5 m or wider), a stopping distance of
2.1 m is acceptable. If MARVIN is travelling along the centre of a 2.5 m
corridor, there is ∼ 900 mm on either side of it. This gives enough room
for a person to step around a blind corner, or out of a doorway without
intercepting MARVIN’s path. This suggests that the 1.4 ms−1 velocity limit
is safe for these areas. When operating in less open spaces such as areas 3 m
× 3 m (or larger) and corridors 1.4 m (or wider) a 1.5 m stopping distance

8.2. NAVIGATION STACK 171

is acceptable. This suggest that the 1.0 ms−1 velocity limit is safe for these
areas. When operating in confined areas, such as cluttered offices or narrow
corridors a 0.8 ms−1 velocity limit should be used.

Through the characterisation of the Segway RMP presented in this section,
objective 1a has been met. The implementation of the discussed velocity
limits meets objective 3a.

8.2 Navigation Stack

As a research platform, MARVIN must be capable of operating in environ-
ments that may vary from the test environment. Because of this, the test
environment needs to be generalised to encompass all predicted operating
environments. From section 1.1.1, it is known that the likely operating
environments will be contained in the second floor corridors of the Alan
MacDiarmid and Cotton buildings, in the Kelburn campus of VUW (or in
similar office-like environments). These areas have the following gener-
alised key features:

• Minimum measured corridor width of 1.4 m. However the minimum
allowable width for a disabled access building is 1.2 m [40].

• 90◦ corridor corners.

• Minimum measured doorway width of 800 mm.

• Areas populated with unpredictable obstacles (objects that are relo-
cated regularly), such as office furniture.

By evaluating each of these key features, it is possible to generalise MAR-
VIN’s navigation performance. This provides confidence that MARVIN

172 CHAPTER 8. OVERALL RESULTS

can operate in any area in the predicted operating environment. Corridor
traversal is evaluated in section 8.2.1, doorway navigation is discussed in
8.2.2 and unknown obstacle navigation is evaluated in 8.2.3.

8.2.1 Corridor Test

This section evaluates MARVIN’s ability to traverse corridors. These tests
involved manually controlling MARVIN to the starting point at one end of
the corridor, then providing a high level goal at the other end of the corridor
after a 90◦ corner. As MARVIN travels from the start pose to the goal pose,
the travelled path, segway pitch, forward displacement, yaw displacement,
linear velocity and angular velocity are recorded. This demonstrates both
MARVIN’s ability to travel down a corridor as well as its ability to turn
in the corridor’s limited area. Figure 8.5 shows a rviz screen-shot of the
corridor test.

Figure 8.5: Rviz screen shot of a 1.4 m wide corridor test.

8.2. NAVIGATION STACK 173

The black lines form the pre-built map of the test environment (generated
using the SLAM techniques discussed in section 5.4), the yellow points
show the detected obstacles and the blue/red areas show the inflated
areas that MARVIN’s motion planner knows to avoid (generated using the
costmap discussed in section 5.2).

The first test used a corridor width of 1.4 m and a maximum motion planner
velocity of 1.4 ms−1. This test was run for 6 trials. Figure 8.6a shows the
travelled path for each of the trials, figure 8.6b shows the Segway pitch,
figure 8.6c shows the forward displacement (how far MARVIN travelled),
figure 8.6d shows the yaw displacement (how much MARVIN turned),
figure 8.6e shows the linear velocity (how quickly MARVIN travelled) and
figure 8.6f shows the angular velocity (how quickly MARVIN turned).

Figure 8.6a shows that in all six trials MARVIN successfully traversed the
corridor; however, figures 8.6b to 8.6f show that MARVIN’s motion was not
smooth. This was caused by artifacts in the Kinect’s depth image. When
the Segway’s pitch changes rapidly (such as when the Segway acceler-
ates) noise is generated in the depth image. This noise is not filtered by
the ground and ceiling plane removal algorithm and gets translated into
the produced laser scan message. This introduces false obstacles into the
costmap, which the motion planner attempts to avoid. This slows the Seg-
way down, reducing its pitch and removing the noise. The motion planner
interprets this as if the false obstacles have been removed, increasing the
Segway’s velocity and reintroducing the noise. This oscillatory behaviour
results in the unsteady movement seen in figure 8.6. These trials were 6.5 m
long and had a duration of 10.3± 1.83 s, resulting in an average velocity of
0.61± 0.10 ms−1.

This problem is solved using the intensity based filter discussed at the end
of section 4.4.1. Figure 8.7 presents the results of this test after the Kinect
intensity filter was implemented.

174 CHAPTER 8. OVERALL RESULTS

X Position (m)

-1 0 1 2 3 4 5

Y
 P

o
s
it
io

n
 (

m
)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Trial1

Trial2

Trial3

Trial4

Trial5

Trial6

(a) Navigation Path

Time (s)

0 5 10 15 20 25 30

S
e

g
w

a
y
 P

it
c
h

 (
ra

d
)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Trial1

Trial2

Trial3

Trial4

Trial5

Trial6

(b) Segway Pitch

Time (s)

0 5 10 15 20 25 30

F
o

rw
a

rd
 D

is
p
la

c
e
m

e
n

t
(m

)

-1

0

1

2

3

4

5

6

7

Trial1

Trial2

Trial3

Trial4

Trial5

Trial6

(c) Forward Displacement

Time (s)

0 5 10 15 20 25 30

Y
a

w
 D

is
p

la
c
e

m
e

n
t

(r
a

d
)

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Trial1

Trial2

Trial3

Trial4

Trial5

Trial6

(d) Yaw Displacement

Time (s)

0 5 10 15 20 25 30

L
in

e
a

r
V

e
lo

c
it
y
 (

m
/s

)

-1

-0.5

0

0.5

1

1.5

2

Trial1

Trial2

Trial3

Trial4

Trial5

Trial6

(e) Linear Velocity

Time (s)

0 5 10 15 20 25 30

A
n

g
u

la
r

V
e

lo
c
it
y
 (

ra
d

/s
)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Trial1

Trial2

Trial3

Trial4

Trial5

Trial6

(f) Angular Velocity

Figure 8.6: 1.4 m wide corridor test with a target velocity of 1.4 ms−1,
without Kinect filter.

8.2. NAVIGATION STACK 175

X Position (m)

-1 0 1 2 3 4 5

Y
 P

o
s
it
io

n
 (

m
)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Trial1

Trial2

Trial3

Trial4

Trial5

(a) Navigation Path

Time (s)

0 2 4 6 8 10 12 14

S
e

g
w

a
y
 P

it
c
h

 (
ra

d
)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Trial1

Trial2

Trial3

Trial4

Trial5

(b) Segway Pitch

Time (s)

0 2 4 6 8 10 12 14

F
o

rw
a

rd
 D

is
p
la

c
e
m

e
n

t
(m

)

-1

0

1

2

3

4

5

6

7

Trial1

Trial2

Trial3

Trial4

Trial5

(c) Forward Displacement

Time (s)

0 2 4 6 8 10 12 14

Y
a

w
 D

is
p

la
c
e

m
e

n
t

(r
a

d
)

-2

-1.5

-1

-0.5

0

0.5

Trial1

Trial2

Trial3

Trial4

Trial5

(d) Yaw Displacement

Time (s)

0 2 4 6 8 10 12 14

L
in

e
a

r
V

e
lo

c
it
y
 (

m
/s

)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Trial1

Trial2

Trial3

Trial4

Trial5

(e) Linear Velocity

Time (s)

0 2 4 6 8 10 12 14

A
n

g
u

la
r

V
e

lo
c
it
y
 (

ra
d

/s
)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Trial1

Trial2

Trial3

Trial4

Trial5

(f) Angular Velocity

Figure 8.7: 1.4m wide corridor test with a target velocity of 1.4ms−1, with
Kinect filter.

176 CHAPTER 8. OVERALL RESULTS

Figure 8.7a shows that all 5 trials were once again successful. However,
figures 8.7b to 8.7f show that MARVIN’s motion was smoother and more
repeatable that the previous trials. This results in a higher average velocity
and faster trial times.

Figures 8.7c and 8.7e show that MARVIN’s velocity increases until it reaches
the 1.4 ms−1 velocity limit, then drops while navigating around the 90◦

corner. After the corner it accelerates again before decelerating to stop at the
goal location. As explained in section 8.1, the Segway’s pitch is dependent
on its velocity. This can be seen in figures 8.7b and 8.7e as the pitch curve
is an inverted form for the velocity curve. Figures 8.7e and 8.7f show that
MARVIN travels in a straight line (with some minor corrections) before
and after the 90◦ corner.

Four of the trials in figure 8.7 are consistent; however trial 2 (represented
as orange) is noticeably different. At the start of this trial the Segway tilted
more violently than normal, possibly due to one of the wheels getting
slightly stuck. However, the Segway’s controller quickly compensated
for this and stabilised its balance, which resulted in a sudden velocity
drop (at ∼ 2.5 s). After this event, the rest of trial 2’s motion is consistent
with the other four trials. This shows that MARVIN is capable of robustly
traversing a 1.4 m wide corridor with a maximum velocity of 1.4 ms−1. It
also shows that the Segway and motion planner are capable of recovering
from unexpected inputs into the system. It should also be noted that there
will be some slight discrepancies between the trials introduced by human
error when manually controlling MARVIN to the start position (before each
trial).

These trials were 6.5 m long and had a duration of 9.0 ± 0.5 s, resulting
in an average velocity of 0.72 ± 0.04 ms−1. This shows that the Kinect’s
intensity filter has increased the average trial velocity by 0.11 ms−1 and
reduced the standard deviation by 0.06 ms−1.

8.2. NAVIGATION STACK 177

Figure 8.8 presents the results of a similar test; however, with a 1.2 m
corridor and a maximum velocity of 0.8 ms−1. This demonstrates that
MARVIN is capable of navigating the minimum corridor allowable in the
operating environment, and as such should be able to navigate all corridors
it is likely to encounter in future.

Many of the same observations can be made as in the 1.4 m corridor test;
however, there are two notable differences. Firstly, due to the lower velocity
limit MARVIN was not required to reduce its linear velocity while travers-
ing around the 90◦ corner. Secondly, MARVIN’s motion was not as smooth
as in the 1.4 m corridor test. This is due to the costmap’s inflation leaving a
narrow region of allowable space for the motion planner. This means the
motion planner has to meet tighter tolerances, which requires more correc-
tions to MARVIN’s path. These corrections introduced the jerky movement.
This tight tolerance would also prevent MARVIN from traversing a 1.2 m
corridor if there were any obstructions along it, such as people. These trials
were 6.5 m long and had a duration of 14.3± 1.2 s, resulting in an average
velocity of 0.46± 0.04 ms−1. This shows that MARVIN can travel through
a 1.2 m corridor at an average velocity 0.26 ms−1 (36%) slower than a 1.4 m
corridor.

One method to improve the performance in narrow corridors would be to
dynamically switch the motion planner depending on MARVIN’s situation.
In general the DWA approach (discussed in section 5.3.2) performs well;
however, in narrow regions a wall following technique may exhibit better
performance. This idea of dynamically switching motion planners was
used by the Jinny robot [16], as discussed in 2.1.1.

178 CHAPTER 8. OVERALL RESULTS

X Position (m)

-1 0 1 2 3 4 5

Y
 P

o
s
it
io

n
 (

m
)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Trial1

Trial2

Trial3

Trial4

Trial5

(a) Navigation Path

Time (s)

0 2 4 6 8 10 12 14 16 18

S
e

g
w

a
y
 P

it
c
h

 (
ra

d
)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Trial1

Trial2

Trial3

Trial4

Trial5

(b) Segway Pitch

Time (s)

0 2 4 6 8 10 12 14 16 18

F
o

rw
a

rd
 D

is
p
la

c
e
m

e
n

t
(m

)

-1

0

1

2

3

4

5

6

7

Trial1

Trial2

Trial3

Trial4

Trial5

(c) Forward Displacement

Time (s)

0 2 4 6 8 10 12 14 16 18

Y
a

w
 D

is
p

la
c
e

m
e

n
t

(r
a

d
)

-2

-1.5

-1

-0.5

0

0.5

Trial1

Trial2

Trial3

Trial4

Trial5

(d) Yaw Displacement

Time (s)

0 2 4 6 8 10 12 14 16 18

L
in

e
a

r
V

e
lo

c
it
y
 (

m
/s

)

-0.2

0

0.2

0.4

0.6

0.8

1

Trial1

Trial2

Trial3

Trial4

Trial5

(e) Linear Velocity

Time (s)

0 2 4 6 8 10 12 14 16 18

A
n

g
u

la
r

V
e

lo
c
it
y
 (

ra
d

/s
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Trial1

Trial2

Trial3

Trial4

Trial5

(f) Angular Velocity

Figure 8.8: 1.2m wide corridor test with a target velocity of 0.8ms−1.

8.2. NAVIGATION STACK 179

Corridors often have obstructions along them, such as: people, couches,
tables or columns. To ensure MARVIN can operate in real-world situations,
the navigation stack should be able to traverse a corridor with limited
obstructions. This is evaluated through another 1.4 m corridor test, however
with a chair obstructing part of the corridor. The chair has a diameter of
∼ 600 mm, leaving a passable gap of ∼ 800 mm. Figure 8.9 presents the
results of this test, where the black circle represents the chair.

Figure 8.9 shows that MARVIN can smoothly navigate around the chair
as it traverses down the corridor. All three trials conducted are consistent
and many of the same observations from the empty 1.4 m corridor test
can be made. The primary difference is that MARVIN detects the chair
and immediately creates a plan to move around it. This can be seen in
the smooth changes in yaw displacement, shown in figure 8.9d. During
the trials the linear velocity is fairly constant, except for a slight drop as
MARVIN travels around the chair (between 4 s and 4.5 s). These trials were
6 m long and had a duration of 11.2± 0.3 s, resulting in an average velocity
of 0.54± 0.01 ms−1.

The operating environment’s corridors are not guaranteed to be void of
humans. As such, it is important to evaluate MARVIN’s behaviour when
encountering a dynamic obstacle while traversing a corridor. Therefore the
previous test was repeated; however, the chair was replaced with a human.
Initially, the human stood in front and to the right of MARVIN. As MARVIN
approached them, they moved to the other side of the corridor. The results
of this test are presented by figure 8.10. The human’s original position
is represented by the dotted circle, their final position is represented by
the solid circle and their path is represented by the dotted line. The blue
dashed line shows MARVIN’s behaviour if the human does not move.

180 CHAPTER 8. OVERALL RESULTS

X Position (m)

-1 0 1 2 3 4 5

Y
 P

o
s
it
io

n
 (

m
)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Trial1

Trial2

Trial3

(a) Navigation Path

Time (s)

0 2 4 6 8 10 12 14 16

S
e

g
w

a
y
 P

it
c
h

 (
ra

d
)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Trial1

Trial2

Trial3

(b) Segway Pitch

Time (s)

0 2 4 6 8 10 12 14 16

F
o

rw
a

rd
 D

is
p
la

c
e
m

e
n

t
(m

)

-1

0

1

2

3

4

5

6

7

Trial1

Trial2

Trial3

(c) Forward Displacement

Time (s)

0 2 4 6 8 10 12 14 16

Y
a

w
 D

is
p

la
c
e

m
e

n
t

(r
a

d
)

-2

-1.5

-1

-0.5

0

0.5

Trial1

Trial2

Trial3

(d) Yaw Displacement

Time (s)

0 2 4 6 8 10 12 14 16

L
in

e
a

r
V

e
lo

c
it
y
 (

m
/s

)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Trial1

Trial2

Trial3

(e) Linear Velocity

Time (s)

0 2 4 6 8 10 12 14 16

A
n

g
u

la
r

V
e

lo
c
it
y
 (

ra
d

/s
)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Trial1

Trial2

Trial3

(f) Angular Velocity

Figure 8.9: 1.4m wide corridor test with a target velocity of 0.8ms−1, with
static obstruction.

8.2. NAVIGATION STACK 181

X Position (m)

-1 0 1 2 3 4 5

Y
 P

o
s
it
io

n
 (

m
)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Trial1

Trial2

Trial3

Trial4

Trial5

(a) Navigation Path

Time (s)

0 2 4 6 8 10 12 14 16 18

S
e

g
w

a
y
 P

it
c
h

 (
ra

d
)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Trial1

Trial2

Trial3

Trial4

Trial5

(b) Segway Pitch

Time (s)

0 2 4 6 8 10 12 14 16 18

F
o

rw
a

rd
 D

is
p
la

c
e
m

e
n

t
(m

)

-1

0

1

2

3

4

5

6

7

Trial1

Trial2

Trial3

Trial4

Trial5

(c) Forward Displacement

Time (s)

0 2 4 6 8 10 12 14 16 18

Y
a

w
 D

is
p

la
c
e

m
e

n
t

(r
a

d
)

-2.5

-2

-1.5

-1

-0.5

0

0.5

Trial1

Trial2

Trial3

Trial4

Trial5

(d) Yaw Displacement

Time (s)

0 2 4 6 8 10 12 14 16 18

L
in

e
a

r
V

e
lo

c
it
y
 (

m
/s

)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Trial1

Trial2

Trial3

Trial4

Trial5

(e) Linear Velocity

Time (s)

0 2 4 6 8 10 12 14 16 18

A
n

g
u

la
r

V
e

lo
c
it
y
 (

ra
d

/s
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Trial1

Trial2

Trial3

Trial4

Trial5

(f) Angular Velocity

Figure 8.10: 1.4m wide corridor test with a target velocity of 0.8ms−1, with
human moving across MARVIN’s path.

182 CHAPTER 8. OVERALL RESULTS

As expected, this test starts similarly to the static obstacle test. MARVIN
detects the human and the motion planner immediately generates a path
to avoid them. However, as the human moves in front of MARVIN to get
to the other side of the corridor, MARVIN stops. This can be seen in figure
8.10e, from 4 s to 6 s. Once the human is at the other side and no longer
blocking MARVIN’s path, the motion planner recalculates a path around
the human’s new position and continues to reach the goal location. Once
again all three trials are consistent; however, there are some slight timing
variations caused by human error when walking in front of MARVIN.
These trials were 6 m long and had a duration of 14.3± 0.6 s, resulting in
an average velocity of 0.42 ± 0.02 ms−1. Compared to trial 1 (when the
human remains stationary), which had a duration of 12.5 s and an average
velocity of 0.48 ms−1, the dynamic trials are ∼ 1.8 s (12.5%) slower. This is
as expected, as MARVIN has to stop to allow the human to pass in front of
it.

MARVIN’s behaviour should also be observed when its path is fully
blocked. It is important that MARVIN does not attempt move around
obstacles if there is not enough room. This is tested using the same method
as demonstrated in figure 8.10; however, the human stops in front of MAR-
VIN rather than continuing to the other side of the corridor. The results
of this test are presented by figure 8.11. As with figure 8.10, the human’s
original position is represented by the dotted circle, their final position is
represented by the solid circle and their path is represented by the dotted
line. The blue dashed line shows MARVIN’s behaviour if the human does
not move.

8.2. NAVIGATION STACK 183

X Position (m)

-1 0 1 2 3 4 5

Y
 P

o
s
it
io

n
 (

m
)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Trial1

Trial2

Trial3

Trial4

(a) Navigation Path

Time (s)

0 5 10 15

S
e

g
w

a
y
 P

it
c
h

 (
ra

d
)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Trial1

Trial2

Trial3

Trial4

(b) Segway Pitch

Time (s)

0 5 10 15

F
o

rw
a

rd
 D

is
p
la

c
e
m

e
n

t
(m

)

-1

0

1

2

3

4

5

6

Trial1

Trial2

Trial3

Trial4

(c) Forward Displacement

Time (s)

0 5 10 15

Y
a

w
 D

is
p

la
c
e

m
e

n
t

(r
a

d
)

-2

-1.5

-1

-0.5

0

0.5

Trial1

Trial2

Trial3

Trial4

(d) Yaw Displacement

Time (s)

0 5 10 15

L
in

e
a

r
V

e
lo

c
it
y
 (

m
/s

)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Trial1

Trial2

Trial3

Trial4

(e) Linear Velocity

Time (s)

0 5 10 15

A
n

g
u

la
r

V
e

lo
c
it
y
 (

ra
d

/s
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Trial1

Trial2

Trial3

Trial4

(f) Angular Velocity

Figure 8.11: 1.4m wide corridor test with a target velocity of 0.8ms−1, with
a human moving to block MARVIN’s path.

184 CHAPTER 8. OVERALL RESULTS

Again, the test starts similarly to the static obstacle test. MARVIN de-
tects the human and starts to move around them. Then when the human
moves in front of MARVIN, intercepting its planned path, MARVIN stops.
MARVIN makes no attempt to move around until there is a viable path
to its goal location. This behaviour is referred to as ”stop and wait”. As
introduced in section 2.4, it is deemed the safest behaviour when dealing
with unpredictable obstacles, such as humans. During each trial MARVIN
was allowed to travel ∼ 0.5 m further, before the human stepped in front
of it. This can be seen in figure 8.11c. This demonstrates that MARVIN’s
response time (including sensing and control) is sufficiently fast to have
no noticeable effect on the stopping distance of the motion platform, as
evaluated in section 8.1.

These corridor tests demonstrate that MARVIN is capable of traversing the
corridors likely to be found in the operating environment, even when there
are static or dynamic obstacles present. This meets the corridor navigation
objective outlined in 1.2.

8.2.2 Doorway Test

MARVIN’s ability to traverse through open doorways is evaluated. All of
the doorways measured in the operating environment were at least 800 mm
wide, and therefore a 800 mm wide gap between two walls was created as
a general case to represent the typical doors in the operating environment.
MARVIN was given a high level goal on the other side of the door, after a
90◦ turn. The results of this test are presented in figure 8.12.

8.2. NAVIGATION STACK 185

X Position (m)

0 0.5 1 1.5 2 2.5 3 3.5 4

Y
 P

o
s
it
io

n
 (

m
)

-1

-0.5

0

0.5

1

1.5

2

Trial1

Trial2

Trial3

(a) Navigation Path

Time (s)

0 5 10 15 20 25

S
e

g
w

a
y
 P

it
c
h

 (
ra

d
)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Trial1

Trial2

Trial3

(b) Segway Pitch

Time (s)

0 5 10 15 20 25

F
o
rw

a
rd

 D
is

p
la

c
e

m
e

n
t

(m
)

-1

0

1

2

3

4

5

6

Trial1

Trial2

Trial3

(c) Forward Displacement

Time (s)

0 5 10 15 20 25

Y
a

w
 D

is
p

la
c
e

m
e

n
t

(r
a

d
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Trial1

Trial2

Trial3

(d) Yaw Displacement

Time (s)

0 5 10 15 20 25

L
in

e
a

r
V

e
lo

c
it
y
 (

m
/s

)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Trial1

Trial2

Trial3

(e) Linear Velocity

Time (s)

0 5 10 15 20 25

A
n

g
u

la
r

V
e

lo
c
it
y
 (

ra
d

/s
)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Trial1

Trial2

Trial3

(f) Angular Velocity

Figure 8.12: 0.8m wide doorway test with a target velocity of 0.4 ms−1.

186 CHAPTER 8. OVERALL RESULTS

Figure 8.12 shows that MARVIN could traverse through the 800 mm door-
way, with all three trials providing consistent results. These trials were
4.7 m long and had a duration of 19.1±0.2 s, resulting in an average velocity
of 0.25± 0.03 ms−1. However, this required the motion planner configura-
tion to be tuned, specifically reducing the costmap’s inflation radius and
reducing the maximum velocity to 0.4 ms−1. Reducing the inflation radius
allows the motion planner to travel closer to detected obstacles, however,
this requires lowering of the maximum velocity to maintain safe path gen-
eration (paths that do not result in collisions). In general circumstances
0.4 ms−1 is too slow, especially when interacting with people (the usability
study in section 7.4 found that 1.0 ms−1 was slightly slow for most people).
Additionally, MARVIN could only reliably traverse the doorway when
approaching it head on.

This could be improved by using a separate motion planner developed
specifically to navigate doorways, and switching to it when ever a doorway
is detected (similarly to Jinny’s dynamic motion planners as discussed in
section 2.1.1). Any doorways in the map could be marked out so that the
global planner knows when to switch to the doorway local planner.

8.2.3 Obstacle Course

Many of MARVIN’s potential operating environments will contain un-
known obstacles. These are obstacles that are not part of the known map
and may be regularly moved (such as: chairs, rubbish bins and other objects
commonly found in office-like environments). MARVIN must be capable of
operating in an environment that contains obstacles that MARVIN has no
prior knowledge of, as specified in section 1.2. To evaluate this, an obstacle
course was constructed out of objects with various sizes. A photo of this
course is shown by 8.13.

8.2. NAVIGATION STACK 187

1

2

3

4 5

6

7

Figure 8.13: Photo of test obstacle course.

The objects used to construct the obstacle course are numbered in the figure
8.13 and classified in table 8.2.

Table 8.2: Classification of Objects in Obstacle Course

Number Description Dimensions

1, 2, 6 Office Chair ∼ 600 mm diameter
∼ 900 mm height

3 Aluminium
Extrusion

60 mm × 2500 mm × 10 mm
(W × L × H)

4 Rubbish Bin ∼ 400 mm diameter
∼ 700 mm height

5 Bookcase 300 mm × 1000 mm × 200 mm
(W × L × H)

7 Cardboard Box 500 mm × 350 mm × 300 mm
(W × L × H)

188 CHAPTER 8. OVERALL RESULTS

The selected objects cannot all be detected by all the sensing systems. For
example; the laser rangefinder can only detect the chairs and rubbish bin,
but not the aluminium extrusion, cardboard box or bookcase. Additionally,
the obstacle course is surrounded by desks, walls and glass planes. This
is used to evaluate the sensor fusion and obstacle detection (provided by
the costmap discussed in section 5.2), the localisation (provided by AMCL
as discussed in section 5.1) and the motion planner (provided by the local
planner and global planner discussed in section 5.3). Figure 8.14 presents
MARVIN’s costmap before and after a typical trial (screen shots taken from
rviz).

(a) Global Path (b) Navigation after local planer correc-

tions.

Figure 8.14: Obstacle course rviz screen shots.

The red polygon represents MARVIN’s current pose, the red arrow repre-
sents the goal pose, the red line represents the global plan, the blue arrows
represents MARVIN’s odometery data (showing the travelled path), the
green points represents the current sensor data, the yellow points represent
detected obstacles on the costmap, the blue regions show the costmap’s
inflation radius and the black lines represents the known map (generated
prior to the test using SLAM). Figure 8.14a shows that the map only knows

8.2. NAVIGATION STACK 189

about the room’s walls and sections of the desks. The initial global plan
attempt doesn’t know about the obstacles and generates a path directly to
the goal. Figure 8.14b shows that as MARVIN attempts to follow the global
plan, the sensors detect obstacles that are added to the costmap and the
local planner attempts to avoid them. This results in a safe path (a path
that does not result in collisions), as shown by the blue arrows.

Five trials were conducted for this test, with their results presented in figure
8.15. At the completion of each trial, MARVIN is manually controlled back
to the starting pose. As with the corridor tests, this could introduce some
slight discrepancies between each trial; however, these discrepancies are
minor relative to the other factors in the trial.

Figure 8.15a shows the paths taken by MARVIN in each trial. These paths
are fairly consistent at 11 ± 0.2 m long with a duration of 29.8 ± 4.1 s,
resulting in an average velocity of 0.37 ± 0.04 ms−1. However, trial 5
is noticeably different from the other four. This is more clearly seen in
figures 8.15c and 8.15d. This discrepancy occurred as MARVIN approached
obstacle 6. As MARVIN turned round obstacle 7, its angle of approach
and velocity would have resulted in a collision with obstacle 6. To prevent
this MARVIN stopped, then backed slowly. Once the motion planner
determined that there was enough room to navigate around obstacle 6, it
resumed its journey to the goal pose. Trial 5 is consistent with the other
four trials before and after this event. This shows that MARVIN is capable
of recovering after detecting a dangerous trajectory, and creating a safe
path to avoid the potential collision. Ignoring trial 5, the other four trials
result in an average duration of 28.0 ± 0.8 s and an average velocity of
0.39± 0.01 ms−1.

190 CHAPTER 8. OVERALL RESULTS

X Position (m)

-2 -1 0 1 2 3 4 5 6 7

Y
 P

o
s
it
io

n
 (

m
)

-5

-4

-3

-2

-1

0

1

2

1

2

3

4 5

6

7

Trial1

Trial2

Trial3

Trial4

Trial5

(a) Navigation Path

Time (s)

0 5 10 15 20 25 30 35 40 45

S
e

g
w

a
y
 P

it
c
h

 (
ra

d
)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Trial1

Trial2

Trial3

Trial4

Trial5

(b) Segway Pitch

Time (s)

0 5 10 15 20 25 30 35 40 45

F
o
rw

a
rd

 D
is

p
la

c
e
m

e
n
t
(m

)

-2

0

2

4

6

8

10

12

Trial1

Trial2

Trial3

Trial4

Trial5

(c) Forward Displacement

Time (s)

0 5 10 15 20 25 30 35 40 45

Y
a

w
 D

is
p
la

c
e
m

e
n

t
(r

a
d
)

-2

-1

0

1

2

3

4

Trial1

Trial2

Trial3

Trial4

Trial5

(d) Yaw Displacement

Time (s)

0 5 10 15 20 25 30 35 40 45

L
in

e
a

r
V

e
lo

c
it
y
 (

m
/s

)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Trial1

Trial2

Trial3

Trial4

Trial5

(e) Linear Velocity

Time (s)

0 5 10 15 20 25 30 35 40 45

A
n

g
u

la
r

V
e

lo
c
it
y
 (

ra
d

/s
)

-1

-0.5

0

0.5

1

1.5

Trial1

Trial2

Trial3

Trial4

Trial5

(f) Angular Velocity

Figure 8.15: Path taken through an unknown obstacle course with a target
velocity of 0.8ms−1.

8.2. NAVIGATION STACK 191

Figures 8.15b, 8.15e and 8.15f show that while MARVIN’s responses start
off consistent, after ∼ 10 s the minor discrepancies introduced by operating
in a real-world environment (such as: noisy sensor data, wheel slippage
and differing starting poses) combine over time, causing inconsistent data.
Despite this, the majority of the trials maintain a consistent path. This
demonstrates MARVIN’s ability to operate in real-world environments and
still produce consistent results.

By successfully navigating the obstacle course, the integration of MAR-
VIN’s subsystems has been demonstrated, including the sensing systems
(laser rangefinder, Kinect, whisker sensors and USN), localisation (used
to maintain a correct pose estimate throughout these trials), control stack,
mobility platform and motion planning. Prior to this project, MARVIN did
not have the ability to detect the majority of the objects used to construct
the obstacle course, nor the ability to navigate it.

8.2.4 Summary

By evaluating MARVIN’s ability to traverse corridors, doorways and obsta-
cle courses, MARVIN has been demonstrated to be capable of locomotion,
sensing, localisation, obstacle detection and motion planning. As intro-
duced in Chapter 2, these are the characteristics required of autonomous
mobile robots. By this definition, MARVIN is capable of performing as a
autonomous mobile robot.

The successful completion of the obstacle course demonstrates that the
3D sensor objective (1b) and sensor fusion objective (1c) have been met.
The corridor traversal and obstacle course tests both demonstrate that the
localisation objective (1d) and motion planning objective (1e) have been
met.

192 CHAPTER 8. OVERALL RESULTS

8.3 Human Detection

As introduced in section 1.2, the aim of this project is to develop MARVIN
into a HRI research platform. To properly interact with people, MARVIN
must be capable of detecting them. This is achieved through the processing
of the Kinect’s depth images, as discussed in section 4.4.3. The performance
of this feature is evaluated in three sections: its ability to detect a single
human irrespective of their pose (section 8.3.1), its ability to detect multiple
people in a single frame (section 8.3.2) and its behaviour when observing
non-human objects (section 8.3.3).

As this is a binary classification problem (where all objects are considered
as human or non-human) each result can be considered as one of four
categories: true-positive (human detected), true-negative (non-human not
detected), false-positive (non-human detected) or false-negative (human
not detected). These categories will be used throughout this section.

As a comparison point, figure 8.16 presents a base-line depth image. This is
a depth image of the empty test scene with no objects in frame. It has been
processed by the algorithms discussed in section 4.4 (such as ground and
ceiling removal).

Figure 8.16: Base line depth image for human detection analysis.

8.3. HUMAN DETECTION 193

8.3.1 Human Poses

As explained by the human detection objective (2a), it is important to
detect humans irrespective of their pose. This has been achieved through
the implementation of OpenCV’s blob detection algorithm, as discussed
in section 4.4.3. Because the human detection algorithm detects blobs as
opposed to specific shapes, the limbs of the human become irrelevant.
Instead the torso is detected by configuring the blob detector to only detect
blobs of the right size, shape and depth value. This allows the human
detection algorithm to detect humans in almost any pose, as demonstrated
in figure 8.17.

As with the other depth images in this thesis, darker pixels represent closer
distances and lighter pixels represent further distances. The red circles
represent the detected humans (if any). The circles are centred on the blobs
classified as humans and have a diameter proportional to the blobs’ areas.

The only poses found to generate false-negatives are crouching, bending-
over or squatting, as demonstrated in figure 8.17l. This is caused by the
human’s blob having an inertia ratio that is too high (it is too circular
and not elliptical enough). However, this is unlikely to cause any issues
during interaction. People will typically be standing when interacting with
MARVIN and the crouching human is still detected as an obstacle.

All the other tested poses returned true-positive results. This included the
human sitting on a chair (figure 8.17i), which is important for any users that
may be wheel chair bound. It should be noted that the sitting human was
detected irrespective of the angle they were facing. This is demonstrated
by figure 8.18.

194 CHAPTER 8. OVERALL RESULTS

(a) Arms by sides (b) Arms crossed (c) Hands on hips

(d) Arms out (e) Arms Up (f) Pointing

(g) Hands on head (h) Side on (i) Sitting

(j) Walking (k) Running (l) Crouching

Figure 8.17: Human Detection Common Human Poses

8.3. HUMAN DETECTION 195

(a) Facing Left (b) Facing Front (c) Facing Right

Figure 8.18: Human Detection Sitting Poses

8.3.2 Multiple People

During HRI tasks, there will likely be multiple humans standing in close
proximity together. MARVIN’s ability to distinguish between these humans
is evaluated in this section. Figure 8.19 shows three frames as two people
stand progressively closer to one another.

MARVIN is capable of detecting both humans in figure 8.19a, 8.19b and
8.19d; however, figure 8.19c produces a false-negative. This demonstrates
that MARVIN can individually detect multiple people unless they are in
contact with each other. People typically stand apart from each other (the
average human’s personal space can be estimated as a circle with a 1.21 m
radius [89]), so this problem should be infrequent. However, this issue
could potentially be improved by using the RGB data from the Kinect in
addition to the depth image human detection algorithm. This could be
used to segment the depth image by colour (which could separate multiple
people if they were wearing different coloured clothing), or for face tracking
(such as the skin colour based face detection algorithm described by [90]).
Face tracking could be further improved by installing additional RGB
cameras at head height, to improve the robustness of the face detection
algorithm.

196 CHAPTER 8. OVERALL RESULTS

(a) Apart (b) Close

(c) In Contact (d) Behind

Figure 8.19: Human Detection Multiple People

8.3.3 Non-Human Objects

It is important that MARVIN does not falsely classify non-human objects as
humans, otherwise it could attempt to interact with inanimate objects. Fig-
ure 8.20 presents a subset of objects resulting in true-negative classifications
and figure 8.21 presents the objects with false-positive classifications.

Figure 8.20a, shows that office chairs are correctly classified as non-human.
This is because the seat and the back of the chair get separated into in-
dividual blobs. This occurs during the image segmentation step of the
human detection algorithm, further explained in section 4.4.3. Each blob
has an inertia ratio that is too high (they are too circular) and an area that
is too small to be considered human. This can be generalised to say that
objects with relatively complex and separable shapes (shapes that contain

8.3. HUMAN DETECTION 197

segments connected by narrow regions) typically result in true-negative
classifications. This includes objects such as: chairs, stools and tables.

(a) Chair (b) 1 m×1 m flat panel (c) Vertical Pole

Figure 8.20: Human Detection True-Negatives

Figure 8.20b, shows that large flat surfaces are also classified as non-human.
They have a high inertia ratio and a large area. This includes other large
flat surfaces, such as walls.

Figure 8.20c, shows that objects with low inertia ratios (not circular enough)
result in true-negative classifications. This includes objects such as: poles,
railings, cables and rubbish bins.

(a) Desk (b) Angled panel (c) Panel half in frame

Figure 8.21: Human Detection False-Positives

By angling flat surfaces away from the Kinect, their inertia ratio lowers and

198 CHAPTER 8. OVERALL RESULTS

can result in false-positive classifications. This is shown by figures 8.21a
and 8.21b. This issue also occurs if the flat surface is only partially in frame,
as shown by figure 8.21c.

The human detection algorithm has a low rate of false-negatives making
it reliable at detecting humans in a range of different poses, thus meeting
objective 2a. However, it suffers from a relatively high false-positive rate. To
improve MARVIN’s effectiveness during HRI tasks, this false-positive rate
should be reduced. This could be accomplished in a number of different
ways, including:

Segmenting the input image into depth regions. By segmenting the im-
age into depth regions, angled surfaces such as those in figures 8.21a and
8.21b will be broken into separate blobs. Each individual blob will have
inertia ratios too low to be considered as human, thus preventing their
false-positive classifications. This method has the benefit that it would
be computationally efficient; however, it has two major issues. Firstly, it
does nothing to prevent the false-positive classifications of narrower flat
surfaces parallel with the Kinect, such as figure 8.21c. Secondly, depending
on how the image is segmented, humans may be segmented at certain
distances causing false-negative classifications. For example, if a human
was standing at a distance from MARVIN that coincided with a border
between two depth regions, the human will get segmented into two blobs,
one blob containing the closer pixels and the other containing the further
pixels.

Filtering the detected blobs by standard deviation (σ). Humans typically
have uneven surfaces, unlike the surfaces demonstrated in figure 8.21. If
the blobs are filtered by a surface roughness metric, it may be possible to
reduce the false-positive rate without negatively affecting the true-positive
rate. This could be achieved by measuring the σ of each blob. The surfaces
in figures 8.21a and 8.21b are angled away from the Kinect, giving them a

8.3. HUMAN DETECTION 199

wide range of depth values. This would give them a relatively high σ. The
flat surface in figure 8.21c is parallel with the Kinect and has no notable
features. This causes it to have a low range of depth values, giving it a low
σ. Humans are mostly flat, but have some uneven features. This would
give them a σ between the angled and parallel surfaces. This provides an
additional metric to filter the detected blobs, reducing the false-positive
rate for all the examples demonstrated in figure 8.21, without reducing
the true-positive rates. This method would be more computationally ex-
pensive than the segmentation method. However, OpenCV contains many
efficient functions for standard image processing methods (such as mean
and standard deviations through cv::meanStdDev), so this cost should be
minimal.

Another extension to the human detection algorithm would be to improve
the range at which humans can be reliably detected. As explained in section
4.4.3, the current detection range is 2 m. This is because the blob detection
algorithm classifies humans using area as one of its metrics. If a human
is closer to the Kinect, they will take up more of the Kinect’s FOV. This
increases the number of pixels associated with them, increasing their blob’s
area. This means that having a static area threshold limits the range in
which humans can be correctly classified. If a dynamic area threshold
is used (the further the depth, the smaller the area threshold), it may be
possible to detect humans over a larger range.

These extensions to the human detection algorithm require further develop-
ment and testing. They should be considered for future work, as discussed
in section 9.2.

200 CHAPTER 8. OVERALL RESULTS

8.4 Summary

This chapter has presented the results and analysis of MARVIN’s mobility
platform, navigation stack and human detection algorithm. Through the
characterisation of the Segway RMP, objectives 1a and 3a are met. The
evaluation of the navigation stack addresses the 3D sensor objective (1b),
sensor fusion objective (1c), localisation objective (1d) and motion planning
objective (1e). The analysis of the human detection algorithm demonstrates
the completion of objective 2a. With objectives 2b, 2c and 2d addressed
by the usability study (section 7.4), and objectives 3b and 3c addressed in
sections 3.2.1 and 6.1, all the objectives detailed in 1.2.4 have been met.

With the objectives met, Chapter 9 can conclude the thesis. It reviews the
chapters, provides a summary and discusses potential future work.

Chapter 9

Conclusions

This chapter reviews the completed work, outlines options for future work
and concludes by comparing MARVIN’s capabilities against the original
objectives detailed in section 1.2.

9.1 Review

Chapter 1 introduced the motivation to transform the exiting MARVIN
system into a research platform for human-robot interaction. Through the
background research presented in Chapter 2, a list of required functionality
was determined, including: locomotion, sensing, localisation, motion plan-
ning, receptive elements and expressive elements. This thesis presents the
design and development of this functionality, enabling MARVIN to operate
fully autonomously and interact with humans.

MARVIN is capable of locomotion through the inherited Segway RMP. This
provides an agile mobility platform with fast acceleration/deceleration
profiles, high top speeds and the ability to maintain its balance. This

201

202 CHAPTER 9. CONCLUSIONS

makes the Segway more versatile than standard differential drive systems,
allowing it to climb over small obstacles, traverse steeper slopes and recover
from external forces (such as getting pushed). However, this self balancing
functionality introduces a dynamic pitch that increases the complexity
when processing MARVIN’s sensing systems.

MARVIN inherited a laser rangefinder and ultrasonic network for the detec-
tion of opaque and transparent obstacles. However, both sensing systems
have planar measurement areas and would fail to detect the majority of
obstacles in an office-like environment. To overcome this, two additional
sensing systems are implemented. First, Microsoft’s Kinect v2 RGB-D cam-
era is introduced as a 3D sensor. Second, four custom built whisker sensors
are mounted on each of MARVIN’s corners, providing tactile feedback to
MARVIN’s control systems. However, to interface with these new sensors
a newer control computer was required. An Intel NUC was integrated into
MARVIN due to its compact size and high performance hardware. ROS
is installed on the NUC, allowing the development of MARVIN’s control
software.

The range sensors’ data needed to be processed into a coherent form that
MARVIN’s navigation stack can understand. The ultrasonic network and
laser rangefinder are interfaced with ROS through laserScan messages,
which store the sensor data in polar coordinates. This is the standard
method used by the majority of mobile robots developed using ROS; how-
ever, the Segway’s dynamic pitch introduced two challenges. First, the
origin of the sensors are dependent on the Segway’s pitch. This causes all
of their range measurements to be offset. Second, the angle of the sensors
is depended on the Segway’s pitch. This introduces parallax errors into
the range measurements. These errors are accounted for by dynamically
recalculating the sensors’ transforms and projecting the sensors range mea-
surements to the horizontal plane each time the Segway’s pitch is updated.
The Kinect stores its range data in depth images. These depth images

9.1. REVIEW 203

are converted into laserScan messages so they can be fused with the laser
rangefinder’s and ultrasonic network’s measurements. To do this, the
ground and ceiling planes must be removed from the depth images. Once
again, the Segway’s dynamic pitch increases the complexity of this process.
As the Segway’s pitch changes, the relative angles of the ground and ceiling
planes also change. To overcome these challenges, a novel algorithm is
developed to process the depth images directly, as opposed to converting
the images in 3D coordinates (point-clouds). This removes the need for
complex 3D equations, reducing computational overhead. Once the ground
and ceiling planes are removed, the depth images are further processed to
produce laserScan messages and to detect humans. The laserScan messages
are further processed by an intensity filter to reduce the effects of any noise
that the depth image processing failed to remove. Humans are detected
using OpenCV’s blob detector algorithm. The detection of humans has a
very low false-negative rate, but suffers from a higher false-positive rate.
Possible solutions are provided for this problem in section 8.3.

The processed sensor data is used by MARVIN’s navigation stack for local-
isation, obstacle detection and motion planning. Localisation is achieved
using the adaptive Monte Carlo localisation technique, which makes use
of particle filters. Obstacle detection involves the fusion of the range sen-
sors’ data into a local grid-based map, called a costmap. The detected
obstacles are then inflated to account for MARVIN’s physical dimensions.
The costmap is used in-conjunction with a global map of the environment
(generated using SLAM techniques) by MARVIN’s motion planner. The
motion planner consists of a global planner and a local planner. The global
planner takes MARVIN’s location estimate and generates a high level path
to a goal location. The local planner attempts to follow the global planner’s
path while accounting for the detected obstacles in the costmap. It produces
safe velocity commands (commands that don’t result in collisions) that are
sent to the Segway RMP via MARVIN’s control systems.

204 CHAPTER 9. CONCLUSIONS

MARVIN makes use of a hierarchical control architecture. A central control
node, marvin control, is used to monitor and control the lower level nodes.
marvin control takes requests from the user (either from the interface tablet
or from the XBox controller), and distills them into commands for the lower
level nodes. These lower level nodes include, the motion controller (move -
base), interaction control and movement control. The interaction control node
provides the high level control of MARVIN’s robotic humanoid torso. It
uses the relative location of the detected human to interactively change the
torso’s and Segway’s pose, reacting as the human moves. The movement -
control processes the Segway’s velocity commands. These commands can
come from three sources: from the Xbox controller (via the manual control
node), the move base node or the interaction control. The movement control
ensures that commands are only executed from one source at a time and
disables the Segway if it detects any unauthorised commands. It also
provides reactive control, stopping the Segway if the whisker sensors detect
a collision.

These systems are fully integrated to enable human-robot interaction. MAR-
VIN makes use of a Surface 3 Pro as the primary interface between itself
and humans. This provides an LCD touch screen as well as voice synthesis
and recognition. MARVIN was implemented as a robotic guide to evaluate
its effectiveness as a HRI research platform. This robotic guide implementa-
tion was evaluated with a usability study, which resulted in largely positive
responses.

9.2 Future Work

Throughout this thesis, suggestions have been made for possible avenues
of future research and development. This section provides an summary of
these suggestions.

9.2. FUTURE WORK 205

Section 3.2.1 discussed the selection of the Kinect as MARVIN’s RGB-D
camera; however, it suggested that Intel RealSense RGB-D cameras could be
investigated in future. Due to their compact size, low power consumption
(∼ 10% of the Kinect) and lower cost (99 USD in comparison to the Kinect’s
150 USD or the SICK LMS100’s 5000 USD MSRP), it could be feasible to
use multiple RealSenses. As RealSenses use IR projectors to measure depth,
there is a possibility that they may interfere with one another if their FOV’s
overlap [91]. To avoid this issue, a possible sensor layout would be to
have one RGB-D camera on the front, right, left and back of MARVIN. The
front RGB-D camera could be the existing Kinect to maintain its larger
FOV. The additional RGB-D cameras would allow MARVIN to have better
awareness of the obstacles around it, providing it with more flexibility
when generating safe paths. It would also give a greater area for detecting
humans, for example the rear RGB-D camera could be used to monitor if the
person MARVIN is guiding is still following. The additional data produced
by the extra RGB-D cameras will likely exceed the processing capabilities of
the existing control computer. One possible solution would be to make use
of multiple NUC’s, one for the high level control of MARVIN (including
the navigation stack) and the other dedicated to sensor processing.

First introduced in section 2.1.1, an adaptive navigation stack could be im-
plemented on MARVIN, which would change its motion planner according
to the conditions of MARVIN’s current environment. The dynamic window
approach implemented is effective as a general motion planner; however,
in specific situations other approaches may be more appropriate. The moti-
vation for this was demonstrated in the narrow corridor test (section 8.2.1)
and doorway test (section 8.2.2).

The usability study presented in section 7.4 demonstrated that the voice
recognition could be unreliable for some participants. The current imple-
mentation uses Microsoft’s .NET speech platform to process the audio
signals from Surface 3 Pro’s in-built microphone to recognise key words.

206 CHAPTER 9. CONCLUSIONS

Both the hardware and software of this approach could be improved. The
in-built microphone could be replaced with a microphone array designed
to filter background noise (ambient noise was measured at 42.0± 0.5 dB,
which increased to 52.2± 2.5 dB when the torso was actuated). This should
help reduce the number of false-positive key word detections. The soft-
ware could be replaced with Nuance’s Dragon NaturallySpeaking, which
is generally considered one of the better voice recognition packages [92, 93].
Another option would be to make use of one of the server based voice recog-
nition approaches, such as SoundHound’s Houndify API [94] or Api.ai [95].
These approaches send the processed audio signal to an external server to
be recognised. This requires a constant internet connection and produces
slower results; however, they are also typically much more powerful and
easier to integrate with the rest of the software.

While the human detection algorithm was found to work effectively and
met the human detection objective (2a), sections 4.4.3 and 8.3 suggest some
possible extensions. These extensions include: segmenting the input image
into depth regions, filtering the detected blobs by standard deviation, using
a dynamic area threshold to detect humans over a longer range, replacing
the blob detector with a trained classifier, making use of the RGB data to
augment the depth data (for separating close humans or detecting faces),
or by using depth images to detect humans’ poses and hand gestures.

With the successful development of MARVIN, the possible tasks outlined
in section 1.1.2 could be explored. These included being a: robotic guide
for the University Library, robotic guide for new students or visitors, an
information point for students or as a security guard.

9.3. SUMMARY 207

9.3 Summary

This project has successfully transformed MARVIN into a research platform
for human-robot interaction, meeting all the objectives detailed in section
1.2.

The Segway was characterised to determine appropriate velocity limits in
section 8.1 (objective 1a). Kinect v2 was implemented as a 3D sensor with
a novel method developed for removing the ground and ceiling planes
from its depth images (objective 1b). A costmap was implemented to fuse
the laser rangefinder, ultrasonic network, whisker sensor and Kinect data
streams for obstacle detection (objective 1c). The adaptive Monte Carlo
localisation technique was implemented for the successful localisation
of MARVIN in unmodified office-like environments. Dijkstra’s search
algorithm was implemented to find high level plans through a map of
MARVIN’s environment (generated using the Gmapping SLAM technique)
and the adaptive window approach is used to produce local plans (objective
1e). This meets all of the autonomous navigation objectives.

The Kinect’s depth images are processed to successfully meet the human
detection algorithm with a number of possible extensions suggested (objec-
tive 2a). The robotic humanoid torso is controlled to interactively change
its pose according to the detected human’s relative position (objective 2b).
The Surface 3 Pro is utilised to provide receptive and expressive elements
for MARVIN, including: a GUI, voice synthesis and voice recognition (ob-
jectives 2c and 2d). This meets all the human-robot interaction objectives.

The Segway’s characteristics are used to determine velocity limits for open
spaces, regular spaces and confined spaces (objective 3a). MARVIN utilises
laser rangefinders, ultrasonic sensors, Kinect and whisker sensors all of
which can detect humans, providing sensor redundancy (objective 3b).
A hierarchical control architecture was developed which monitors and

208 CHAPTER 9. CONCLUSIONS

controls all aspects of MARVIN, including reactive control of the Segway
RMP (objective 3c). This meets all the health and safety objectives.

MARVIN was successfully implemented as a robotic guide, demonstrating
MARVIN’s effectiveness as a HRI platform. Through this project MARVIN
now has the locomotion, sensing, localisation, motion planning, receptive
elements and expressive elements to facilitate both autonomous naviga-
tion and HRI. These developed features open a diverse range of research
directions and HRI tasks that MARVIN can be used to explore.

Figure 9.1: Final figure of MARVIN.

Bibliography

[1] CORAL Research Group, “Cobots.” http://www.cs.cmu.edu/

˜coral/projects/cobot/, 2010 – 2014. [Online; accessed 17-
Feburary-2016].

[2] Segway Inc., “RMP 200.” http://www.segway.

co.nz/business/products-solutions/

robotic-mobility-platform.html. [Online; accessed 22-
February-2015].

[3] C. Robinson and D. A. Carnegie, “Modifying an indoor mobile robot
to enhance autonomous operation,” in Proceedings of the 21st Electronics
New Zealand Conference, pp. 14 – 19, ENZCon, 2014.

[4] E. Marder-Eppstein, D. V. Lu, and D. Hershberge, “ROS Costmap
2D Package.” http://wiki.ros.org/costmap_2d, 2015. [Online;
accessed 30-January-2016].

[5] D. Lu, “ROS global planner package.” http://wiki.ros.org/

global_planner, 2014. [Online; accessed 31-January-2016].

[6] Intel, “NUC D54250WYKH Specifications.” http://www.intel.

com/content/www/us/en/nuc/nuc-kit-d54250wykh.html.
[Online; accessed 22-February-2015].

[7] C. P. Lee-Johnson, “The development of a control system for an au-
tonomous mobile robot,” Master’s thesis, University of Waikato, 2004.

209

210 BIBLIOGRAPHY

[8] Rethink Robotics, “Baxter.” http://www.rethinkrobotics.

com/baxter/. [Online; accessed 25-February-2016].

[9] Willow Garage, “PR2.” https://www.willowgarage.com/

pages/pr2/overview. [Online; accessed 25-February-2016].

[10] O. for Economic Co-operation and Development, Society at a Glance
2009: OECD Social Indicators. OECD Publishing, 2008.

[11] Adept Robotics, “Pioneer.” http://www.mobilerobots.com/

ResearchRobots/PioneerLX.aspx. [Online; accessed 25-
February-2016].

[12] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun, “The interactive museum tour-
guide robot,” in Aaai/iaai, pp. 11–18, 1998.

[13] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D. Fox,
D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, et al., “Minerva: A second-
generation museum tour-guide robot,” in Robotics and automation, 1999.
Proceedings. 1999 IEEE international conference on, vol. 3, IEEE, 1999.

[14] I. R. Nourbakhsh, C. Kunz, and T. Willeke, “The mobot museum robot
installations: A five year experiment,” in Intelligent Robots and Systems,
2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference
on, vol. 4, pp. 3636–3641, IEEE, 2003.

[15] R. Siegwart, K. O. Arras, S. Bouabdallah, D. Burnier, G. Froidevaux,
X. Greppin, B. Jensen, A. Lorotte, L. Mayor, M. Meisser, et al., “Robox
at expo. 02: A large-scale installation of personal robots,” Robotics and
Autonomous Systems, vol. 42, no. 3, pp. 203–222, 2003.

[16] G. Kim, W. Chung, K.-R. Kim, M. Kim, S. Han, and R. H. Shinn, “The
autonomous tour-guide robot jinny,” in Intelligent Robots and Systems,

BIBLIOGRAPHY 211

2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference
on, vol. 4, pp. 3450–3455, IEEE, 2004.

[17] B. Mohler, W. Thompson, S. Creem-Regehr, J. Pick, HerbertL., and
J. Warren, WilliamH., “Visual flow influences gait transition speed and
preferred walking speed,” Experimental Brain Research, vol. 181, no. 2,
pp. 221–228, 2007.

[18] R. Siegwart and I. Nourbakhsh, Introduction to Autonomous Mobile
Robots. A Bradford book, Bradford Book, 2004.

[19] ISR Lab, “Photo of Jinny.” http://isrlab.tistory.com/34,
2010. [Online; accessed 12-February-2016].

[20] S. Rosenthal and M. Veloso, “Using symbiotic relationships with hu-
mans to help robots overcome limitations,” in Workshop for Collaborative
Human/AI Control for Interactive Experiences, 2010.

[21] J. Biswas and M. M. Veloso, “Wifi localization and navigation for
autonomous indoor mobile robots,” 2010. IEEE.

[22] J. Biswas and M. M. Veloso, “Localization and navigation of the cobots
over long-term deployments,” The International Journal of Robotics Re-
search, vol. 32, no. 14, pp. 1679–1694, 2013.

[23] J. Bruce, S. Zickler, M. Licitra, and M. Veloso, “Cmdragons: Dynamic
passing and strategy on a champion robot soccer team,” in Robotics and
Automation, 2008. ICRA 2008. IEEE International Conference on, pp. 4074–
4079, IEEE, 2008.

[24] M. J. Milford, G. F. Wyeth, and D. Rasser, “Ratslam: a hippocampal
model for simultaneous localization and mapping,” in Robotics and Au-
tomation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference
on, vol. 1, pp. 403–408, IEEE, 2004.

212 BIBLIOGRAPHY

[25] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige,
“The office marathon: Robust navigation in an indoor office environ-
ment,” in IEEE International Conference on Robotics and Automation,
2010.

[26] H. Surmann, A. Nüchter, and J. Hertzberg, “An autonomous mobile
robot with a 3d laser range finder for 3d exploration and digitalization
of indoor environments,” Robotics and Autonomous Systems, vol. 45,
no. 3, pp. 181–198, 2003.

[27] J. Biswas and M. Veloso, “Planar polygon extraction and merging from
depth images,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pp. 3859–3864, IEEE, 2012.

[28] J. Biswas and M. Veloso, “Depth camera based indoor mobile robot
localization and navigation,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on, pp. 1697–1702, IEEE, 2012.

[29] B. Choi, C. Meriçli, J. Biswas, and M. Veloso, “Fast human detection for
indoor mobile robots using depth images,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pp. 1108–1113, IEEE,
2013.

[30] S. Müller, C. Weber, and S. Wermter, “Ratslam on humanoids-a bio-
inspired slam model adapted to a humanoid robot,” in Artificial Neural
Networks and Machine Learning–ICANN 2014, pp. 789–796, Springer,
2014.

[31] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd,
“Real time localization and 3d reconstruction,” in Computer Vision and
Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1,
pp. 363–370, IEEE, 2006.

[32] J. Pérez, J. A. Castellanos, J. Montiel, J. Neira, and J. D. Tardós, “Con-
tinuous mobile robot localization: Vision vs. laser,” in Robotics and

BIBLIOGRAPHY 213

Automation, 1999. Proceedings. 1999 IEEE International Conference on,
vol. 4, pp. 2917–2923, IEEE, 1999.

[33] J. Biswas and M. Veloso, “Multi-sensor mobile robot localization for di-
verse environments,” in RoboCup 2013: Robot World Cup XVII, pp. 468–
479, Springer, 2013.

[34] D. Fox, W. Burgard, S. Thrun, et al., “The dynamic window approach
to collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[35] K. Konolige, “A gradient method for realtime robot control,” in Intelli-
gent Robots and Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ
International Conference on, vol. 1, pp. 639–646, IEEE, 2000.

[36] D. Loughnane, “Design and construction of an autonomous mobile
security device,” Master’s thesis, University of Waikato, 2001.

[37] A. Prakash, “Humanisation of an autonomous guided vehicle,” Mas-
ter’s thesis, University of Waikato, 2004.

[38] C. Robinson, “Modifying an indoor mobile robot to enhance au-
tonomous operation.” Honours Report, Victoria University of Welling-
ton, 2014.

[39] H. G. Nguyen, J. Morrell, K. D. Mullens, A. B. Burmeister, S. Miles,
N. Farrington, K. M. Thomas, and D. W. Gage, “Segway robotic mo-
bility platform,” in Optics East, pp. 207–220, International Society for
Optics and Photonics, 2004.

[40] S. N. Zealand, “Design for Access and Mobility - Buildings and Asso-
ciated Facilities (NZS 4121:2001),” RFC 1654, RFC Editor, July 1995.

[41] SICK, “LMS100.” http://www.sick.com/group/EN/home/

products/product_news/laser_measurement_systems/

Pages/lms100.aspx. [Online; accessed 22-February-2015].

214 BIBLIOGRAPHY

[42] ROS, “Robot operating system.” http://www.ros.org/, 2015. [On-
line; accessed 23-February-2016].

[43] Microsoft, “Kinect for Windows.” https://dev.windows.com/

en-us/kinect, 2015. [Online; accessed 23-February-2016].

[44] ASUS, “Xtion Pro.” https://www.asus.com/3D-Sensor/

Xtion_PRO/, 2015. [Online; accessed 23-February-2016].

[45] Intel, “RealSense.” http://www.intel.com/content/www/us/

en/architecture-and-technology/realsense-overview.

html, 2015. [Online; accessed 23-February-2016].

[46] Intel, “RealSense Specifications.” https://software.intel.

com/en-us/articles/realsense-r200-camera, 2015. [On-
line; accessed 23-February-2016].

[47] P. Fankhauser, M. Bloesch, D. Rodriguez, R. Kaestner, M. Hutter, and
R. Siegwart, “Kinect v2 for mobile robot navigation: Evaluation and
modeling,” in Advanced Robotics (ICAR), 2015 International Conference
on, pp. 388–394, IEEE, 2015.

[48] T. Butkiewicz, “Low-cost coastal mapping using kinect v2 time-of-
flight cameras,” in Oceans-St. John’s, 2014, pp. 1–9, IEEE, 2014.

[49] Microsoft, “Kinect for Windows SDK System Requirements.” https:
//msdn.microsoft.com/en-us/library/dn782036.aspx,
2014. [Online; accessed 22-February-2016].

[50] TP-Link, “TL-WR702N Nano Router Specifications.” http:

//www.tp-link.com/en/products/details/cat-9_

TL-WR702N.html#specifications. [Online; accessed 22-
February-2015].

[51] Microsoft, “Speech Platform SDK recommended system re-
quirements.” https://msdn.microsoft.com/en-us/library/

BIBLIOGRAPHY 215

hh362873(v=office.14).aspx. [Online; accessed 22-February-
2015].

[52] Nuance, “Dragon NaturallySpeacking recom-
mended system requirements.” http://nuance.

custhelp.com/app/answers/detail/a_id/16262/˜/

system-requirements-for-dragon-naturallyspeaking-13.
[Online; accessed 22-February-2015].

[53] ROS, “Laser scan message.” http://docs.ros.org/api/

sensor_msgs/html/msg/LaserScan.html, 2015. [Online;
accessed 11-January-2016].

[54] T. Foote, E. Marder-Eppstein, and W. Meeussen, “ROS Transform
Package.” http://wiki.ros.org/tf, 2015. [Online; accessed 21-
January-2016].

[55] T. Foote, “tf: The transform library,” in Technologies for Practical Robot
Applications (TePRA), 2013 IEEE International Conference on, Open-
Source Software workshop, pp. 1–6, April 2013.

[56] K. Banachowicz, “ROS LMS1xx Package.” http://wiki.ros.org/
LMS1xx, 2014. [Online; accessed 11-January-2016].

[57] J. Binney, “ROS Laser Filters Package.” http://wiki.ros.org/

laser_filters, 2014. [Online; accessed 11-January-2016].

[58] M. Ferguson, “ROS rosserial Package.” http://wiki.ros.org/

rosserial, 2015. [Online; accessed 21-January-2016].

[59] Arduino, “Servo library.” https://www.arduino.cc/en/

reference/servo, 2015. [Online; accessed 21-January-2016].

[60] J. Blake, F. Echtler, C. Kerl, and L. Xiang, “libfreenect2.” https://
github.com/OpenKinect/libfreenect2, 2014 – 2016. [Online;
accessed 20-February-2016.

216 BIBLIOGRAPHY

[61] T. Wiedemeyer, “IAI Kinect2.” https://github.com/code-iai/
iai_kinect2, 2014 – 2016. [Online; accessed 12-June-2015.

[62] Khronos Group, “Opencl.” https://www.khronos.org/

opencl/, 2009 – 2016. [Online; accessed 21-January-2016].

[63] Intel China OTC, “Beignet.” http://www.freedesktop.org/

wiki/Software/Beignet/, 2013 – 2015. [Online; accessed 21-
January-2016].

[64] P. Mihelich, “ROS Image Transport Package.” http://wiki.ros.

org/image_transport, 2015. [Online; accessed 21-January-2016].

[65] C. Rasmussen, K. Yuvraj, R. Vallett, K. Sohn, and P. Oh, “Towards func-
tional labeling of utility vehicle point clouds for humanoid driving,”
Intelligent Service Robotics, vol. 7, no. 3, pp. 133–143, 2014.

[66] J. K. Mackay, “Automated landing site determination for unmanned
rotocraft surveillance applications,” 2014. Brigham Young University-
Provo.

[67] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
Robotics and Automation (ICRA), 2011 IEEE International Conference on,
pp. 1–4, IEEE, 2011.

[68] F. Basso, M. Munaro, S. Michieletto, E. Pagello, and E. Menegatti, “Fast
and robust multi-people tracking from rgb-d data for a mobile robot,”
in Intelligent Autonomous Systems 12, pp. 265–276, Springer, 2013.

[69] itseez, “OpenCV.” http://opencv.org/, 2000 – 2016. [Online;
accessed 22-January-2016].

[70] OpenCV, “Morphological Transformations.” http://docs.opencv.
org/master/d9/d61/tutorial_py_morphological_ops.

html#gsc.tab=0, 2016. [Online; accessed 24-January-2016].

BIBLIOGRAPHY 217

[71] J. F. Dave Hershberger, David Gossow, “ROS rviz 3D visualisation
tool.” http://wiki.ros.org/rviz, 2014. [Online; accessed 30-
January-2016].

[72] OpenCV, “Blob Detector.” http://docs.opencv.org/master/

d0/d7a/classcv_1_1SimpleBlobDetector.html#gsc.tab=

0, 2016. [Online; accessed 24-January-2016].

[73] E. Marder-Eppstein, “ROS Navigation Stack.” http://wiki.ros.

org/navigation, 2014. [Online; accessed 18-January-2016].

[74] B. P. Gerkey, “ROS AMCL.” http://wiki.ros.org/amcl, 2015.
[Online; accessed 18-January-2016].

[75] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Intelligent
robotics and autonomous agents, MIT Press, 2005.

[76] E. Marder-Eppstein, “ROS move base package.” http://wiki.ros.
org/move_base, 2014. [Online; accessed 31-January-2016].

[77] E. Marder-Eppstein and E. Perko, “ROS local planner package.” http:
//wiki.ros.org/base_local_planner, 2014. [Online; accessed
31-January-2016].

[78] B. P. Gerkey and K. Konolige, “Planning and control in unstructured
terrain,” in ICRA Workshop on Path Planning on Costmaps, 2008.

[79] A. Kelly, “An intelligent predictive controller for autonomous vehicles,”
tech. rep., DTIC Document, 1994.

[80] B. Gerkey, “ROS GMapping Package.” http://wiki.ros.org/

gmapping, 2015. [Online; accessed 18-January-2016].

[81] G. Grisetti, C. Stachniss, and W. Burgard, “OpenSLAM GMapping Al-
gorithm.” http://openslam.org/gmapping.html. [Online; ac-
cessed 18-January-2016].

218 BIBLIOGRAPHY

[82] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” in IEEE Transac-
tions on Robotics, 2007.

[83] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and
selective resampling,” in IEEE International Conference on Robotics and
Automation, 2005.

[84] B. Gerkey and T. Pratkanis, “ROS map server package.” http://

wiki.ros.org/map_server, 2012. [Online; accessed 31-January-
2016].

[85] ROS, “Geometry twist message.” http://docs.ros.org/api/

geometry_msgs/html/msg/Twist.html, 2015. [Online; accessed
11-January-2016].

[86] K. W. B. G. Morgan Quigley, Brian Gerkey, “ROS joy package.” http:
//wiki.ros.org/joy, 2013. [Online; accessed 10-February-2016].

[87] Microsoft, “Windows Presentation Foundation.” https:

//msdn.microsoft.com/en-us/library/ms754130(v=

vs.110).aspx. [Online; accessed 28-February-2015].

[88] D. Van Compernolle, W. Ma, F. Xie, and M. Van Diest, “Speech recogni-
tion in noisy environments with the aid of microphone arrays,” Speech
Communication, vol. 9, no. 5, pp. 433–442, 1990.

[89] E. T. Hall, The hidden dimension. Anchor Books, 1 ed., 1990.

[90] S. K. Singh, D. Chauhan, M. Vatsa, and R. Singh, “A robust skin
color based face detection algorithm,” Tamkang Journal of Science and
Engineering, vol. 6, no. 4, pp. 227–234, 2003.

BIBLIOGRAPHY 219

[91] Anastasia T, “Multiple RealSense Interference.” https://software.
intel.com/en-us/forums/realsense/topic/543419, 2015.
[Online; accessed 23-February-2016].

[92] Jonathan Knoder, “Voice Recognition Software Review.” http:

//voice-recognition-software-review.toptenreviews.

com/. [Online; accessed 2-March-2016].

[93] Stu Robarts, “Speech recognition software: top
six on the market.” http://www.techradar.

com/news/software/business-software/

speech-recognition-software-top-six-on-the-market-1259815/

2. [Online; accessed 2-March-2016].

[94] SoundHound Inc., “Houndify API.” https://www.houndify.

com/. [Online; accessed 2-March-2016].

[95] Api.ai, “Conversational Voice Interface.” https://api.ai/. [On-
line; accessed 2-March-2016].

220 BIBLIOGRAPHY

Appendices

221

Appendix A

Control Status Messages

1 Header header

2

3 # Connected Topics

4 string topic_enable_movement

5 string topic_enable_manual

6 string topic_enable_interaction

7 string topic_enable_navigation

8 string topic_cmd_vel_manual

9 string topic_cmd_vel_interaction

10 string topic_cmd_vel_navigation

11 string topic_cmd_vel_output

12 string topic_segway_status

13 string topic_segway_estop

14 string topic_whisker_scan

15 string topic_human_detected

16

17 # Command Source Enabled/Disabled

18 bool enable_movement

19 bool enable_manual

20 bool enable_interaction

21 bool enable_navigation

22

23 # Velocity Limits

24 float32 velocity_linear_max_human # m/s

223

224 APPENDIX A. CONTROL STATUS MESSAGES

25 float32 velocity_angular_max_human # rad/s

26 float32 velocity_linear_max_normal # m/s

27 float32 velocity_angular_max_normal # rad/s

28

29 # Velocity Error Thresholds

30 float32 velocity_threshold_linear # m/s

31 float32 velocity_threshold_angular # rad/s

32 float32 velocity_threshold_linear_time # seconds

33 float32 velocity_threshold_angular_time # seconds

34

35 # Current Velocity Values

36 float32 velocity_current_linear_max # m/s

37 float32 velocity_current_angular_max # rad/s

38 float32 velocity_current_linear # m/s

39 float32 velocity_current_angular # rad/s

40 float32 velocity_measured_linear # m/s

41 float32 velocity_measured_angular # rad/s

42 float32 velocity_error_linear # m/s

43 float32 velocity_error_angular # rad/s

44 float32 velocity_error_linear_time # seconds

45 float32 velocity_error_angular_time # seconds

46

47 # Whisker Sensors

48 bool front_left

49 bool front_right

50 bool back_left

51 bool back_right

52

53 # Segway Connected

54 bool segway_connected

55

56 # Movement Control OK

57 bool ok

Listing A.1: Movement Control Status

1 Header header

2

225

3 # Connected Topics

4 string topic_enable_interaction

5 string topic_torso_request

6 string topic_torso_status

7 string topic_goal_request

8 string topic_cmd_vel

9 string topic_human_detected

10 string frame_base

11 string frame_human

12

13 # Thresholds and Deadzones

14 float32 zone_change_range_threshold

15 float32 zone_change_bearing_threshold

16 float32 segway_tracking_deadzone

17

18 # Flags

19 bool enable_interaction

20 bool human_detected

21 bool segway_tracking

22 bool ok

23

24 # Human Tracking

25 float32 human_range

26 float32 human_bearing

27 string zone

Listing A.2: Interaction Control Status

1 Header header

2

3 # Connected Topics

4 string topic_movement_status

5 string topic_movement_enable

6 string topic_movement_enable_manual

7 string topic_movement_enable_interaction

8 string topic_movement_enable_navigaiton

9 string topic_interaction_status

10 string topic_interaction_enable

226 APPENDIX A. CONTROL STATUS MESSAGES

11 string topic_power_status

12 string topic_kinect_angle

13 string topic_human_detected

14 string topic_request_manual

15 string topic_request_movement

16

17 # Timeout

18 float32 timeout_movement # seconds

19 float32 timeout_interaction # seconds

20 float32 timeout_power # seconds

21

22 # Configuration

23 float32 process_rate # hertz

24 float32 kinect_angle_default # degrees

25 float32 kinect_angle_interaction # degrees

26 float32 kinect_angle_navigation # degrees

27

28 # State Machine

29 string state

30

31 # Navigation Stack

32 string current_goal

33 string navigation_status

34

35 # Flags

36 bool ok_movement

37 bool ok_interaction

38 bool ok_power

39 bool connected_movement

40 bool connected_interaction

41 bool connected_power

42 bool connected_gui

43 bool connected_navigation

44 bool enable_movement

45 bool enable_manual

46 bool enable_interaction

47 bool enable_navigation

227

Listing A.3: MARVIN Control Status

228 APPENDIX A. CONTROL STATUS MESSAGES

Appendix B

Usability Study

229

230 APPENDIX B. USABILITY STUDY

Ethics Approval

Phone 0-4-463 5480

Email susan.corbett@vuw.ac.nz

TO Callum Robinson

COPY TO

FROM AProf Susan Corbett, Convener, Human Ethics Committee

DATE 12 February 2016

PAGES 1

SUBJECT Ethics Approval: 22366
MARVIN: An Interactive Autonomous Mobile Robot

Thank you for your request to amend your ethics approval. This has now been
considered and the request granted.

Your application has approval until 2 March 2016. If your data collection is not
completed by this date you should apply to the Human Ethics Committee for an
extension to this approval.

 Best wishes with the research.

 Kind regards

Susan Corbett

Convener, Victoria University Human Ethics Committee

231

Questionnaire

MARVIN – an Interactive Autonomous Mobile Robot, Victoria University of Wellington:

Robot Interaction Evaluation

Please attempt each of the following tasks.

1. Approach MARVIN and wait for MARVIN to initiate interaction.

2. Request a map of your current location.

3. Request to be guided to one of the location options.

4. Follow MARVIN to your selected location. Please follow MARVIN from behind at a distance

no closer than 1 m.

5. Request to be guided to start location.

6. Follow MARVIN back to the start location, as with step 4, follow from behind.

7. End your interaction with MARVIN.

Do you agree with the following statements? (Please circle one answer per question).

Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

Voice interaction (syntheses and recognition) was

more useful than the touch screen interface. ○ ○ ○ ○ ○

MARVIN’s voice was easy to understand. ○ ○ ○ ○ ○

MARVIN’s voice was loud enough to hear clearly. ○ ○ ○ ○ ○

MARVIN understood my voice well. ○ ○ ○ ○ ○

The touch interface text was large enough to read. ○ ○ ○ ○ ○
The touch interface layout helped me interact with

MARVIN. ○ ○ ○ ○ ○
Interaction with MARVIN was at a comfortable

distance. ○ ○ ○ ○ ○

Requesting my location was easy. ○ ○ ○ ○ ○

The displayed location map was easy to read. ○ ○ ○ ○ ○

Requesting to be guided was easy. ○ ○ ○ ○ ○

MARVIN moved too slowly. ○ ○ ○ ○ ○

MARVIN moved too quickly. ○ ○ ○ ○ ○
MARVIN's upper body movement improved my

interaction experience. ○ ○ ○ ○ ○

232 APPENDIX B. USABILITY STUDY

Please answer the following questions in the boxes provided below.

What aspects did you enjoy about interacting with MARVIN?

Are there any additional methods of interaction that you would like incorporated into MARVIN? For

example, hand gestures such as pointing.

Is there any additional functionality you would like incorporated into MARVIN?

Was there anything about MARVIN’s appearance that made interacting with it more difficult?

What do you feel could be improved about MARVIN’s existing features?

Do you have any other comments?

Appendix C

Digital Content

The attached DVD contains the following:

• PDF of this thesis

• Sensor Processing Code

– ground filter.cpp

– kinect calibration.cpp

– kinect pipeline.cpp

• Navigation Stack Code

– whisker layer.cpp

• Control Software Code

– marvin control.cpp

– movement control.cpp

– interaction control.cpp

– manual control.cpp

• HRI Code

233

234 APPENDIX C. DIGITAL CONTENT

– marvin gui.cs

• Video of MARVIN interacting with and guiding a human.

• Scan of full responses for Usability Study.

