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Abstract

It is important to be able to accurately determine the height of a point on the Earth in
terms of the Earth’s gravitational potential field. These heights predict how water will
flow and so they are vital for engineering and surveying purposes. They are determined
using a vertical datum which consists of a specified height system and a defined
reference surface.

At present, in New Zealand, the official vertical datum is NZVD2009 which uses a
normal-orthometric height system and gravimetric quasigeoid, NZGeoid2009, as the
reference surface. The aim of this thesis is to develop a more accurate gravimetric
quasigeoid than NZGeoid2009, by incorporating new gravity data and utilising a refined
data processing strategy, to establish a better vertical datum for New Zealand.

A new airborne gravimetry data set has been collected which covers the North, South
and Stewart Islands of New Zealand with a flight line spacing of 10km. The data were
susceptible to short error prone sections of track due to poor (turbulent) flight
conditions and mean offsets which separate the recorded gravity data along flight lines
by a constant value from neighbouring lines and existing gravity models. The error
prone sections of track have been visually identified by assessing the cross track
agreement with other flight lines and with the global gravity model EGM2008, and the
mean offsets were estimated by a least squares method which takes into consideration
the spatially correlated gravity signal.

The repeatability of the data was assessed from data collected from five flights along
two separate calibration lines. The mean gravity anomaly profiles calculated along the
calibration lines each had a standard deviation of around 2.5 mGal. The internal
consistency of the data was assessed by evaluating the difference between flight line
data at intersection points. This accuracy measure was shown to be influenced by the
along track filter, anisotropic topography and the relative flight line elevations. After
correcting for all these effects the set of all intersecting differences had a standard
deviation of approximately 5.9 mGal.

From an existing terrestrial gravity database, around 40000 observations have been
reprocessed to reduce them to Bouguer gravity anomalies, this was done to ensure
consistency in the formulas that have been used. A new national 8 m digital elevation
model (DEM) was used to calculate terrain corrections and these were carefully
compared with terrain corrections estimated from field observations of the topography
to reduce any discrepancies in calculating near zone terrain effects. The largest source of
error in the terrestrial gravity anomaly data is due to inaccurate height estimates of the
marks. The height discrepancies have been estimated by comparing the recorded heights
in the database to those determined from the 8 m DEM and have been translated into
mGal by calculating the propagated effect on the free air and Bouguer slab corrections.



The airborne and terrestrial gravity data, along with a satellite altimetry marine
gravity anomaly and existing shipborne gravity data, were assimilated by least squares
collocation with a logarithmic covariance function to appropriately deal with the
downward continuation of the airborne data, and gridded at 1 arc-minute resolution in
the geographical region 25◦(S) to 60◦ (S) and 160◦(E) to 190◦(E). 1 arc-minute block
averaged heights were then used to calculate a reverse Bouguer slab correction, which
when applied to the gravity data gave a gridded Faye anomaly. Different noise level
variances were assigned to the separate data sets to optimally combine them.

Forty six of the most contemporary global gravity models (from 2008 onwards) have
each been compared to 1422 leveling and GNSS derived quasigeoid height anomalies.
Overall the Eigen-6C4 model fitted the leveling and GNSS derived quasigeoid height
anomalies best with a root mean squared error of 5.29cm.

The Eigen-6C4 gravity model was subtracted from the gridded Faye anomaly (remove)
and Stokes integral was evaluated on the residual gravity anomaly grid. A, theoretically
optimum, modified Stokes kernel has been used and the modification degree L and
spherical cap for the integration ψ0 were varied over the ranges L = 20, 40, 60, ..., 320
and ψ0 = 1◦, 1.5◦, 2◦, 2.5◦, 3◦. The Eigen-6C4 geoid undulations were then added back to
the residual geoid undulation grids and the primary indirect topographic effect was
restored to obtain 80 quasigeoids for each L and ψ0 parameter variation.

The optimal parameter choice was determined to be L = 280 and ψ0 = 1.5 which had
the best agreement with the leveling and GNSS derived quasigeoid height anomalies
with a standard deviation of 3.8cm and root mean squared residual of 4.8cm of the
differences. This is a 1.25cm improvement on NZGeoid2009. The quasigeoid was also
assessed closely in three main urban areas, Auckland, Wellington and Christchurch,
where the majority of large scale engineering projects and surveying takes place in New
Zealand. Here there were 123, 169 and 125 data points and the standard deviations of
the differences were 3.976, 3.385 and 2.071cm and root mean squared differences of
3.58,4.388 and 4.572 cm respectively. This gives an average accuracy of 3.1 cm standard
deviation in urban areas which is 1.5 cm better than the average for NZGeoid2009.
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Introduction and thesis overview

Background: It is vital to accurately know the height of a point on the surface of
the Earth relative to mean sea level for large scale engineering projects and surveying.
Mean sea level coincides with an equipotential surface in the Earth’s gravity field and so
heights defined above this surface are inherently related to the force of gravity. Water will
flow from points higher above the mean sea level to those closer to it. This is important
for engineering projects. For example, if a pipe is laid such that fluid is required to flow
through the pipe under the influence of gravity alone, the end of the pipe water is flowing
from must be higher above mean sea level than the end it is flowing to.

Heights above mean sea level on land have traditionally been obtained by leveling. This
involves transferring mean sea level estimates at the coast (made using a tide gauge)
inland using a leveling instrument (e.g. a spirit level) and a rod with a numbered scale.
However obtaining heights in this manner is time consuming and expensive.

An approximation of the separation between mean sea level and an Earth approximating
ellipsoid (hereafter referred to as the quasigeoid) can be obtained by a mathematical
transformation of measured values of the force of gravity at a set of grid points covering
inland areas. A quicker and more cost effective approach than leveling to obtain mean
sea level heights inland is to obtain a height above an Earth approximating ellipsoid mea-
sured using a global navigation satellite system (GNSS) device and subtract the value
interpolated from the gridded quasigeoid surface. Ellipsoidal heights determined using
a GNSS device can be obtained to sub centimetre accuracy. The accuracy of heights
above the quasigeoid calculated in this manner are heavily dependent on the quality of
the gridded data.

The current official national quasigeoid for New Zealand is New Zealand Quasigeoid
2009 (NZGeoid2009). It was calculated by Stokes’ integration, with the remove-compute-
restore technique, on a 1 arc-minute grid of gravity data (Claessens et al (2009)). The
interpolated gravity data consisted of more than 40000 terrestrial gravity observations
(from a GNS Science database, Stagpoole 2012) and the 2008 Danish National Space
Centre satellite altimetry marine gravity anomaly (DNSC08). Earth gravity model 2008
(EGM2008) was used to provide the reference signal for the remove and restore stages
of the calculation (Claessens et al, 2009). NZGeoid2009 is the reference surface for the
current official vertical datum, New Zealand Vertical Datum 2009 (NZVD2009), which
uses a normal-orthometric height system.

Until 2009, New Zealand had 13 official local vertical datums. There are discontinuities
between the datums since they are each referenced to separate mean sea level estimations
(from tide gauge measurements) which can differ by a constant. Each local vertical da-
tum contains numerous leveling based height measurements and, as of 2009, 1422 of the
leveling sites had had their ellipsoid height measured with a GNSS device. The ellipsoidal
height minus the leveling derived heights give quasigeoid height anomalies. By grouping
the data by one local vertical datum at a time a mean offset from the quasigeoid can
be evaluated. This process unifies the otherwise separate datums and was first put to
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practice by Amos (2007).

The accuracy of NZGeoid2009 has been evaluated by comparing it to the GNSS and
leveling height derived quasigeoid height anomalies after applying the mean local vertical
datum offsets. The difference between the two data sets had a root mean squared residual
of 6.144 cm and standard deviation (estimated from the inner 68% of the differences, see
appendix B) of 4.8 cm.

The terrestrial gravity data, used to calculate NZGeoid2009, largely consists of historic
measurements, of varying accuracy, made by several different institutions using a vari-
ety of gravimeters. They are unevenly distributed, having an average spatial density of
around 7km, and are particularly sparse in rough topography due to inaccessibility. More-
over, satellite altimetry data provide accurate mean sea level observations and gravity
field observations over the open oceans. But it is unreliable in shallow coastal areas due
to inaccurate tidal estimations and large sea surface variability (Hwang and Hsu, 2008).
These qualities of the terrestrial and satellite altimetry gravity data are undesirable for
geoid modelling but fortunately they can be overcome using airborne gravimetry.

Airborne gravimetry is a method of measuring the total accelerations experienced by
an aircraft, which include both those due to gravity and those due to aircraft motion,
and then removing the accelerations due to aircraft motion to estimate the acceleration
due to gravity. The measurements are made using a highly accurate accelerometer. Sev-
eral different types of these instruments exist, for example spring-based relative gravity
meters which are mounted on a stabilized platform (Model ’S’ Air and Sea Dynamic Grav-
ity Meter Systems (2006), used by, Forsberg et al (2015,1999,2001), Olesen (2002)) which
includes models such as the ZLS upgraded Lacoste and Romberg model ’S’ gravimeters,
Micro-g LaCoste (gravimeter models: TAGS, TAGS7) and Canadian Microgravity Ltd
(model: GT-2A) etc., and strap down inertial measurement unit gravimeters which do
not have a stabilized platform (Glennie et al (2000), Forsberg (2001b), Kwon (2001) etc.).
Areas which would be inaccessible by land or sea (for example, through mountain ranges
or shallow coastal areas) can be surveyed more easily when flying. This method can
be used to overcome the shortcomings in the terrestrial and satellite altimetry gravity
observations since the data can be collected on a uniform grid (i.e. with a regular spatial
density), seamlessly covering on and offshore areas, using consistent instrumentation.

Airborne gravimetry has become more prevalent and reliable with the advent of ac-
curate kinematic global positioning systems developed in the late 1980’s. The airborne
gravimeters measure the total vertical acceleration and so the positioning measurements
make it possible to accurately model and remove specific forces associated with aircraft
motion to obtain the residual gravity signal. Some of the first successful large scale air-
borne gravimetry surveys were conducted in Switzerland in 1992 (Klingele et al, 1996)
and Greenland in 1991-1992 (Brozena, 1991). In Switzerland the whole country was sur-
veyed at an altitude of around 5100 m. The survey confirmed that accurate gravity data
can be obtained over rugged topography which is plainly advantageous over traditional
terrestrial measurements since these areas would be otherwise inaccessible.
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After downward continuing the measurements from the flight elevation, airborne gravime-
try data can be used to model the geoid. Recent projects include a nationwide survey
in Mongolia in 2004-2005 (Forsberg et al. 2007) which had the intention of providing
data for EGM2008 as well as improving the local vertical datum, the survey in Taiwan
in 2007 (Hwang et al, 2007) and the South Korean survey in 2008-2009 (Bae et al, 2012
and Yang, 2013).

In Mongolia the flight lines were spaced at 10 nautical miles flown at varying altitudes of
2100 m to 4800 m. The data had an estimated accuracy of around 2.2 mGal assessed by
evaluating the agreement at flight line intersection points. The airborne data were down-
ward continued and merged with existing terrestrial gravity measurements to develop a
new geoid. The geoid had a reported accuracy of 20 cm on comparison to geoid height
anomalies determined from GNSS/leveling data although it was argued that this value
is not particularly representative of the true geoid accuracy due to datum offsets present
in the data.

Taiwan’s gravity field was reported to have extremely large variations between -400 to
+400 mGal, due to extremely rugged topography. The existing terrestrial gravity mea-
surement were extremely sparse due to the topography, so airborne gravity was used to
obtain accurate short wavelength gravity data for geoid modelling. Here the flight line
spacing was chosen to be 4.5 km and the average flight line altitude was around 5150
m. After the removal of large outliers the estimated accuracy of the survey was around
2 mGal from the flight line intersection discrepancies. The determined geoid was again
assessed by comparison to GNSS/leveling data and determined to be centimetre accurate
in coastal regions but only decimetre accurate in rougher topography.

In South Korea an airborne gravity survey was conducted with around 51 flight lines
flown at around 3000 m. The accuracy of the data was deduced by comparing the air-
borne measurements to terrestrial gravity data and had an agreement with a standard
deviation of around 12 mGal. A gravimetric geoid determined from the data had an
agreement with existing GNSS/leveling data of around 5 cm.

The topography in Mongolia, Taiwan and South Korea can be particularly rugged and
so similar to areas of New Zealand which have particularly sparse terrestrial gravity ob-
servations. The success of the airborne gravity surveys in assisting with accurate geoid
determination in these cases indicates that it could be similarly effective in New Zealand.

Objective: An implicit assumption throughout this work is that the leveling and
GNSS observations provide the best possible estimate of the quasigeoid height anomalies.
Here an improved vertical datum is sought which is based on a gravimetric quasigeoid that
is in better agreement with the leveling and GNSS derived quasigeoid height anomalies
than NZGeoid2009. The fundamental step which must be taken to calculate a refined
quasigeoid is to improve the underlying gravity data.

Steps taken to compute a more accurate quasigeoid: A new airborne gravimetry
data set has been collected and carefully reduced to Bouguer anomaly measurements.
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The data cover the North, South and Stewart Islands of New Zealand with a flight line
spacing of 10 km. These data were susceptible to short erroneous sections of track due to
poor flight conditions and mean offsets which separate the recorded gravity data along
flight lines by a constant value from neighbouring lines and existing gravity models. The
poor quality data have been removed by carefully assessing the cross track agreement
with other flight lines and with the global gravity model EGM2008. Offsets in the flight
lines have been estimated by a least squares method which takes into consideration the
spatially correlated gravity signal, following Reilly (1979) and Forsberg (1987).

The repeatability of the airborne data was assessed by collecting repeat measurements
along two separate calibration lines with 5 flights for each. The differences from a mean
gravity anomaly calculated along the lines had a standard deviation of approximately
2.5 mGal. The internal consistency of the data was assessed by evaluating the difference
between flight line data at intersection points. This accuracy measure is shown in chapter
6 to be susceptible to the along track filter, anisotropic topography and the relative flight
line elevations. After correcting for all these effects the set of all intersecting differences
had a standard deviation of approximately 5.9 mGal.

A new nation wide 8 m digital elevation mode (DEM) has become available since the
computation of NZGeoid2009. These data were used to calculate new terrain corrections
for the terrestrial gravity data. The DEM terrain corrections were carefully combined
with terrain corrections that had been separately estimated from field observation topo-
graphic heights when the gravity observations were made. This was performed to reduce
any discrepancies in calculating near zone terrain effects, using the DEM, for potentially
mis-located observation sites. The 8 m DEM offers a significant improvement over the 56
m model used for terrain corrections for the NZGeoid2009 gravity anomaly data. The 8 m
DEM was block averaged to a 64 m grid to ease the computational time when calculating
terrain corrections for the airborne data since there were close to 1000000 measurements
made during the survey. This results in a small loss in accuracy but it is negligible since
the high frequency effect of the topography is greatly reduced at the altitude of the air-
craft.

The largest source of error in the terrestrial gravity anomaly data arises from inaccurate
height estimates which are needed for the free air and Bouguer slab corrections (Stag-
poole, 2012). Heights have been estimated by either leveling and GNSS observations,
read from map sheets or read from a barometer. These height measurement methods
have estimated accuracies of 15 cm, 7.5 m and 9 m standard deviation respectively when
comparing the recorded heights in the database to heights extracted from the 8 m DEM
at the same points. These accuracy estimates have been translated into mGal by calcu-
lating the propagated effect on the free air and Bouguer slab corrections. The accuracy
measures were assigned to each observation in the database and outliers were given ap-
propriately large values.

The airborne and terrestrial gravity data, along with a satellite altimetry marine gravity
anomaly and existing shipborne gravity data, were augmented by least squares colloca-
tion and gridded at 1 arc-minute resolution in the region 25(S) to 60 (S) and 160(E)
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to 190(E). 1 arc-minute block averaged heights from the 8 m DEM were then used to
calculate a reverse Bouguer slab correction, which when applied to the gravity data gives
a gridded Faye anomaly (Claessen et all, 2009, Amos, 2007 and Featherstone and Kirby,
2000).

The Forsberg (1987) logarithmic covariance function was used for the least squares col-
location, since it appropriately incorporates the gravity anomaly observations at varying
elevations. Noise level variances were assigned to the terrestrial gravity data in accor-
dance with the propagated gravitational effect of the height discrepancies to the gravity
corrections, the airborne data were assigned a 9 mGal2 variance in correspondence to
the accuracy assessment, the shipborne gravity data were assigned a 4 mGal2 variance
and the satellite altimetry data variance estimates were taken from an estimated error
supplied with the data.

On comparison to the gridded Faye anomaly data used to compute NZGeoid2009 it is
shown by taking a difference between the two grids that there is a significant contribution
from the airborne data in shallow coastal regions and through rough topography. This is
because previously the data coverage had been sparse and unreliable. The airborne data
have the effect of smoothing the transition from land to sea in the gridded data which
results in a gravity anomaly grid which is seamless in coastal areas.

The most recent global gravity models (since 2008 onwards) available from http://icgem.gfz-
potsdam.de/ICGEM/modelstab.html (last accessed September 2015) have each been
compared to the terrestrial gravity data and the 1422 leveling and GNSS derived quasi-
geoid height anomalies. Overall the Eigen-6C4 model fit the leveling and GNSS derived
quasigeoid height anomalies best whilst the EGM2008 model fit the terrestrial gravity
data best.

The terrestrial gravity data are not independent from the global gravity models and
EGM2008 used the terrestrial data to determine a wider spectral range of spherical har-
monic coefficients than Eigen-6C4 did; this is the reason it fits the gravity data better.
Since the Eigen-6C4 gave the best fit to the leveling and GNSS quasigeoid height anoma-
lies, which is an independent data set, it was determined to be the best choice as the
reference signal for the remove and restore stages of a new quasigeoid computation.

The Eigen-6C4 gravity model was subtracted from the gridded Faye anomaly (remove)
and Stokes integral was evaluated on the residual gravity anomaly grid. A Featherstone
et al. (1998) modified Stokes kernel has been used and the modification degree L and
spherical cap for the integration ψ0 were varied over the ranges L = 20, 40, 60, ..., 320
and ψ0 = 1◦, 1.5◦, 2◦, 2.5◦, 3◦. This resulted in 80 residual quasigeoid undulation grids.
The computation took approximately 30 hours for each parameter variation and four
instances of the program were run simultaneously.

The Eigen-6C4 geoid undulations were then added back to the residual geoid undulation
grids and the primary indirect topographic effect was restored to obtain 80 quasigeoids
for each L and ψ0 parameter variation.
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Results, the quasigeoid accuracy assessment: Each quasigeoid has been com-
pared to the leveling and GNSS derived quasigeoid height anomalies. The optimal pa-
rameter choice was determined to be L = 280 and ψ0 = 1.5 which had the best agreement
with the leveling and GNSS derived quasigeoid height anomalies with a standard devia-
tion of 3.8 cm and root mean squared value of the differences of 4.8 cm. This is a 1.25
cm improvement on NZGeoid2009.

The L = 280 and ψ0 = 1.5 quasigeoid and leveling and GNSS derived quasigeoid height
anomalies agreement was also assessed closely in 3 main urban areas, Auckland, Welling-
ton and Christchurch. Here there were 123, 169 and 125 data points respectively and the
standard deviations were 3.976, 3.385 and 2.071 cm and root mean squared of 3.58,4.388
and 4.572 cm respectively. This gives an average accuracy of 3.1 cm standard deviation
in urban areas which is 1.5 cm better than the average for NZGeoid2009.

In summary, a quasigeoid has been computed in the region 25(S) to 60(S) and 160(E) to
190(E) at a 1 arc-minute resolution. The quasigeoid is based on new airborne gravity data,
refined terrestrial and satellite altimetry gravity anomalies and, unlike NZGeoid2009, in-
cludes the existing shipborne data. Moreover a new and more accurate global gravity
model, Eigein-6C4, has been used as the reference signal for the remove and restore stages
of the quasigeoid computation. The improved gravity data and more accurate reference
global gravity model has produced a quasigeoid with a better agreement with leveling and
GNSS derived quasigeoid height anomalies than the current official national quasigeoid,
NZGeoid2009. For this reason it would make a suitable replacement to establish a new
national vertical datum.

Personal involvement in data acquisition I was personally involved in all stages
of the airborne data acquisition and establishing ground based observation sites for the
calibration line terrestrial gravity measurements.

I was trained how to operate the gravimeter used for the airborne survey which is an
instrument owned by GNS Science. During the survey period I was on board at least
50% of the flights during which time I was solely responsible for operating the gravimeter
and instrumentation (GNSS, navigation software for the flight path etc). The gravimeter
requires regular observation even when it is not being used for airborne data collection to
ensure it is functioning properly, I was additionally responsible for this during the survey
period.

The terrestrial gravity observations along the calibration flight lines were made at regular
intervals of around 500 m resulting in around 120 measurement sites. Each of these sites
needed to be located using a GNSS and physically marked to ensure gravity measure-
ments were made at precisely the same location. I was personally involved in establishing
each of these sites, measuring their location using a GNSS device and physically marking
the sites by driving posts/rods into the ground.
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Chapter synopsis

Chapter 1 : defines the concept of heights. The distinction between geometrical and
physical height systems is given. The main height systems, ellipsoidal, orthometric (and
approximations), normal and normal-orthometric heights, and the corresponding refer-
ence surfaces, the ellipsoid, geoid, telluroid and quasigeoid, are described in detail. The
draw-backs and advantages of each height system are discussed.

Chapter 2 : defines the disturbing potential and gravity anomalies and how they are
related mathematically. Formulas which approximate the gravitational effect of an Earth-
approximating ellipsoid are given. It is discussed how the gravitational effect of the to-
pography can be estimated from field observations and by using a digital elevation model.
The effect of making a gravity observation at an elevation above a gravitational source is
demonstrated and the methods to downward continue a gravity signal from one elevation
to another are identified. The concept of the permanent tidal effects of the sun and moon
is given and three key models are specified, the preferred choice for geoid modelling made
by the International Association of Geodesy in 1993 is identified. Finally, the mathe-
matical relationship between gravity anomalies and geoid undulations is shown and the
main computational steps which need to be taken to compute a regional quasigeoid are
specified.

Chapter 3 : describes the concept of a vertical datum. New Zealand’s 13 separate
vertical datums are described in detail and the first attempt to unify them using a gravi-
metric quasigoied, computed by Amos (2007), is discussed. The current official vertical
datum NZVD2009 is identified and the computational steps taken to calculate the refer-
ence quasigeoid, NZGeoid2009, and the gravity data used to determine it are given. A
brief accuracy assessment of NZGeoid2009 is performed by a comparison to leveling and
GNSS derived quasigeoid height anomalies and the effect of the mean offsets of the local
vertical datums is demonstrated.

Chapter 4 : describes the GNS Science terrestrial gravity database. An overview of
the instrumentation used to calculate the recorded gravity values, and a discussion on
the potential sources of error are identified. The calculations made to obtain Bouguer
gravity anomalies for each observation in the database are given and the data are grid-
ded and demonstrated visually. The varying methodology of recording the heights of
the observations in the database is identified and accuracy estimates are assigned to the
observation points.

Chapter 5 : describes what is meant by a global gravity model the different types and
their use to determine quasigeoid height anomalies and gravity anomalies. Thirty seven
satellite only, and nine combined global gravity models are compared to leveling and
GNSS derived quasigeoid height anomalies and the terrestrial gravity anomalies. Of the
thirty seven satellite only models, the model GO CONS GCF 2 DIR R5 fits both the
leveling and GNSS derived quasigeoid height anomalies and the terrestrial gravity data
best. Of the nine combined global gravity anomaly models, EGM2008 fits the terres-
trial gravity the best and Eigen-6C4 fit the leveling and GNSS derived quasigeoid height
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anomalies the best.

Chapter 6 : describes what airborne gravimetry is, gives a description of the national
airborne gravimetry survey and then provides details of the apparatus used to collect the
gravity measurements. It goes on to describe the procedure taken to reduce the raw data
to Bouguer gravity anomalies along each flight line. Unfortunately the flight conditions
for the data collection were not always ideal and a description is given of the steps taken
to identify and remove erroneous data. The flight lines were also susceptible to mean off-
sets, details are given regarding the steps to remove these offsets. An accuracy assessment
of the data is provided looking at the difference of data at flight line intersection points,
and the data along two flight lines which were flown multiple times each are compared.

Chapter 7 : describes the method of least squares collocation and how it can be appro-
priately used to combine gravity anomaly observations of different quality. The airborne
and terrestrial gravity data are first combined using this method and several calculations
are made to properly account for the errors in the data. Two new data sets are intro-
duced, the shipborne gravity data and a satellite altimetry dataset. All four data sets are
combined into a single grid by least squares collocation and the results are demonstrated.

Chapter 8 : describes the steps taken to obtain a gridded Faye anomaly which will
be used to determine a new gravimetric quasigeoid. A recap on the methodology of
regional quasigeoid computation is given and the steps are applied to the gridded Faye
anomaly with Eigen-6C4 acting as the reference signal for the remove and restore stages
of the computation. Eighty different quasigeoids are computed, each of which has a dif-
ferent set of parameters used during the computation. Each of the 80 quasigeoids are
compared to the leveling and GNSS derived quasigeoid height anomalies, used to evaluate
NZGeoid2009, and the best fitting quasigeoid is determined. The difference between the
best fitting quasigeoids and the leveling and GNSS derived quasigeoid height anomalies
is evaluated in New Zealand’s main urban areas and these results are compared to the
current official national quasigeoid and are demonstrated to be better. The best fitting
quasigeoid is finally compared to a newly available dataset of leveling and GNSS derived
quasigeoid height anomalies which contains significantly more measurements. The new
data are shown to demonstrate a similar agreement as the previous smaller data set of
leveling/GNSS data; however it contains outliers which are shown to degrade the accu-
racy evaluation.

Chapter 9 : gives a summary of each stage of this thesis, the theoretical background,
historical setting and the steps taken to compute a new gravimetric quasigeoid. The key
research outcomes of the thesis are highlighted and attention is given to what could be
done in the future to improve the computational steps taken to compute the gravimetric
quasigeoid, its underlying data and its accuracy assessment.

Appendix A : gives a short report on an experiment which was undertaken to estimate
two constants used to convert the millivolt accelerometer readings from the airborne
gravimeter to mGal. The determined values are crucial to evaluate the tilt correction
when processing the airborne data in chapter 6.
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Appendix B : describes a process to estimate the standard deviation of some empirical
data which contains large outliers. The standard approach is heavily influenced by values
on the tails of an empirical distribution and the method described here appropriately
removes their influence. This method has been used throughout this work and is shown
to be crucial to accurately estimate empirical standard deviations with the type of data
(leptokurtotic) examined in this thesis.

Appendix C : describes the contents of the electronic appendices. Each of the raw
gravity datasets which have been used are made available. The least squares collocation
grids are provided for the examples shown in chapter 7. The Faye and residual gravity
anomaly grid and all of the calculated residual quasigeoids of chapter 8 are given with the
scripts to determine the optimal parameter combination. Finally, the optimal quasigeoid
is given in xyz and a Matlab format along with the scripts to compare the data to the
GNSS/leveling derived quasigeoid heights.
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Glossary

Abbreviations

CDF Cumulative distribution function
cm Centimetres
covar Covariance
DEM Digital elevation model
DGNSS Differential Global Positioning System
EGM2008 Earth gravity model 2008
GA Geoscience Australia
GBVP Geodetic Boundary Value problem
GGM Global gravity model
GNSS Global navigation satellite systems
GNSS Global positioning system
GRS80 Global reference system 1980
IAG International association of geodesy
km kilometres
LSC Least squares collocation
LVD Local vertical datum
m metres
mGal milliGal
NOAA National Oceanic and Atmospheric Administration
NZGeoid05 New Zealand Quasigeoid 2005
NZGeoid2009 New Zealand Quasigeoid 2009
NZVD2009 New Zealand vertical datum 2009
RCR Remove Compute Restore
RMS Root mean squared
s seconds
STD Standard deviation
UNCLOS United Nations Conventions on the Laws of the Sea
var Variance

Symbols

(r, θ, λ) Geocentric polar coordinates
a Ellipsoidal semi major axis
b Ellipsoidal semi minor axis
C Geopotential number
∆g Gravity anomaly
∆gB Bouguer gravity anomaly
δgBS Bouguer Slab effect
∆gEot Eotvos correction
∆gFA Free Air gravity anomaly
δgFA Free Air Correction
∆gL Long wavelength gravity anomalies
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∆gm Gravity anomaly difference in mean tide system
∆gn Gravity anomaly difference in tide-free system
∆gRES Residual gravity anomalies
δgTC Terrain Correction
∆gtilt Tilt correction
∆gz Gravity anomaly difference in zero tide system
∆Hm Height difference in mean tide system
∆Hn Height difference in tide-free system
∆Hz Height difference in zero tide system
e2 First eccentricity squared
f Ellipsoidal flattening
g Absolute gravity
ḡ Mean gravity along the plumbline
γ Normal gravity
GM gravitational constant time the mass of the Earth
h ellipsoidal heights
H Physical heights
HN Normal height
HN−O Normal-orthometric heights
Horth Orthometric Heights
J2 Second dynamic form factor
k normal gravity constant
K(ψ) Truncation error kernel
L Stokes kernel modification degree
N Geoid separation from the ellipsoid
Nind Primary indirect topographic effect
NL Long wavelength geoid undulations
Nres Residual geoid undulations
Pn,m Fully normalised associated Legendre functions
φ Latitude, in the context of gravity corrections
ψ Spherical distance
ψ0 Spherical integrations cap Stokes kernel
ρ density
S(ψ) Stokes kernel
SM(ψ) Meissel modified Stokes kernel
SWG(ψ) Wong and Gore modified Stokes kernel
SV K(ψ) Vanicek and Kleusberg modified Stokes kernel
SHG(ψ) Heck and Gruninger modified Stokes kernel
SF (ψ) Featherstone modified Stokes kernel
T Disturbing potential field
U Gravitational potential field of the Earth approximating Ellipsoid
W Gravitational potential field of the Earth
ω Angular velocity
ξ Quasigeoid separation from the ellipsoid
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Chapter 1

Heights and Reference Surfaces

1.1 Introduction

In this chapter the concept of height is defined conceptually and mathematically. Heights
must be referenced to a known surface. Commonly used reference surfaces are the el-
lipsoid, telluroid, quasigeoid and geoid. Each of these is defined explicitly in section
1.2. Section 1.3 specifies the distinction between geometrical height systems (which are
not related to the Earth’s gravity field) and physical height systems (which are based
on geopotential numbers). The advantages/disadvantages of each are identified and the
types of measurements needed to establish the heights are discussed.

1.2 Height reference surfaces

The ellipsoid: An ellipsoid is a three dimensional quadratic surface. When approxi-
mating the shape of the Earth an oblate ellipsoid of revolution is used. Oblate ellipsoids
of revolution can be parameterized by two lengths, the semi-major (a) and semi-minor
(b) axes. The semi-minor axis corresponds to the distance between the centre of the
ellipsoid and the pole and the semi-major axis corresponds to the distance between the
centre of the ellipsoid and the equator, this can be seen in figure 1.1.

Figure 1.1: An ellipsoid with its two principal parameters - the semi-major (a) and semi-
minor (b) axes.
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The GRS80 (Moritz, 1980) reference ellipsoid has the following geometric parameters,

� Semi-major axis (a): 6378137 metres

� Semi-minor axis (b): 6356752.31 metres.

Since the GRS80 ellipsoid is used to approximate the Earth, it also has the following
associated physical constants,

� Gravitational constant (GM): 3986005×108 m3s−2

� Angular velocity (ω): 7292115 ×10−11s−1.

� Second dynamic form factor (J2): = 2(a−b)
3a
− ω2a2

3GM
= 108263 ×10−8

The telluroid: The telluroid is defined in terms of the gravitational potential field of
a reference ellipsoid, U , and the gravitational potential of the Earth, W as follows.

For each point P on the surface of the Earth, the gravitational potential of the Earth
has the value WP . At the point P there is a curved line which passes through P and is
normal to equipotential surfaces in the potential field of the ellipsoid. Along this line,
there is another point Q where the gravitational potential, U , of the ellipsoid is equal to
WP . i.e. UQ = WP . For all points P on the surface of the Earth there are corresponding
points Q which form a surface called the telluroid (Featherstone and Kuhn, 2006). The
telluroid surface can be seen in figure 1.4.

The quasigeoid: The quasigeoid is also defined in terms of the gravitational potential
field of a reference ellipsoid, U , and the gravitational potential of the Earth, W .

Here, the distance between Q and P along the curved line which passes through them
is denoted ξ. For each point P there is a corresponding value of ξ which defines the
quasigeoid separation from the ellipsoid at the point the curved line passes through the
ellipsoid surface. The quasigeoid surface can also be seen in figure 1.4 (Featherstone and
Kuhn, 2006).

The geoid: The geoid is defined in terms of the gravitational potential field of the
Earth. Within the Earth’s potential gravity field there are equipotential surfaces (i.e.
where the gravitational potential is constant). A body of water on one of these equipo-
tential surfaces would not flow anywhere since fluids flow from low potential numbers to
high ones.

If the oceans on the Earth were under the influence of the Earth’s gravity and rota-
tion alone (i.e. no tides due to the sun and moon and no surface topography) the surface
of the water body would lie on an equipotential surface which is termed the geoid (Heiska-
nen and Moritz 1967). For the gravitational potential field of the Earth W the geoid is
denoted W0. The geoid surface can be extended over land hypothetically by considering
thin canals cut through the landforms which the oceans would fill. The vertical compo-
nent of gravity points normal to the surface of the geoid.
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Comparing the geoid to the idealized Earth given by the reference ellipsoid, wherever
the vertical component of gravity of the Earth is larger than that of the reference ellip-
soid the geoid is higher than the reference ellipsoid, and conversely, wherever the vertical
component of gravity of the Earth is less than that of the reference ellipsoid the geoid is
lower than the reference ellipsoid. These two scenarios correspond to mass excesses and
mass deficits respectively i.e. the shape of the geoid is governed by the irregularity of
mass distributions within the Earth.

1.3 Height systems

There are two forms of height systems. The first is purely geometrical and is typically
based on a reference ellipsoid. The second are physical height surfaces which are based
on geopotential numbers, these are useful from an engineering perspective since they
accurately predict the flow of water.

1.3.1 Geometric height systems

The ellipsoidal height (h) of an observation point is given by the distance of the point to
the surface of some defined ellipsoid, along a path which is normal to the ellipsoid surface
as shown in figure 1.2. They are strictly a geometric value that is usually obtained from
global navigation satellite systems (GNSS).

Figure 1.2: The separation between points Q0 (which is on the reference ellipsoid) and
P (on the surface of the Earth).

The ellipsoidal heights are not directly related to the Earth’s gravity field and so, although
they are easy to compute, they are not practical from an engineering and surveying
perspective as they do not accurately predict the flow of water.
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1.3.2 Physical height systems

All physical height reference systems are inherently based on geopotential numbers (Amos,
2007). These height systems can be used to predict the flow of water since it will always
flow from a low potential value to a high one.

For W the gravitational potential field of the Earth, let WA be an equipotential surface
within the field and consider a point, B (above WA) which lies on another equipotential
surface WB. The height of the point B above the reference surface WA is calculated from
the geopotential number C given by

C = WA −WB =

∫ B

A

g dz. (1.1)

dz is an infinitesimally small step along the path, called the plumbline, between the sur-
face WA and point B. The plumbline points in the direction normal to every equipotential
surface in the potential field W as can be seen in figure 1.3.

Since g is a continuous function along the path from A to the point B the first mean
value theorem for integration implies that there is a point x along the path such that
g(x) = ḡ, which is the integral average value of g over the path from A to B i.e.

ḡ =

∫ B
A
gdz∫ B

A
dz

. (1.2)

The height H of the point B above the reference surface WA is then given by,

H =
C

ḡ
. (1.3)

W and hence C are typically given in terms of m2/s2 and ḡ is given in terms of m/s2.
The units of the height H are then purely in terms of length. In general, the form of
equation 1.3 is used as a basis to define all height systems based on geopotential numbers.

Orthometric heights - based on the geoid: The equipotential surface W0 which
best agrees with mean sea level is called the geoid. It is the shape that the Earth’s oceans
would take when under the influence of gravity alone. Where W0 is the reference surface
and P is some point on or above the Earth, the geopotential number C is given by,

C = W0 −WP (1.4)

The orthometric height, Horth, is defined as the distance between a point P in the field
(above W0) and a corresponding point P0 on the surface of the geoid, along the plumbline.
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Figure 1.3: The separation between points P0 (which is on the geoid) and P defined as
the distance along the plumbline. - from Featherstone and Kuhn 2006

Equation 1.3 gives

Horth =
C

ḡ
, (1.5)

with ḡ is the mean value of the gravitational acceleration, g, along the plumbline.

The geoid surface is typically under the terrain. This means orthometric heights are
impossible to directly compute since, to accurately compute ḡ would require knowledge
of the precise variations in gravitational acceleration and the exact mass-density distri-
bution along the plumbline through the topography.

However, several approximations do exist such as Helmert (1890) orthometric heights,
Mader (1954) orthometric heights and Neithammer (1932) orthometric heights which are
as follows:

Helmert (1890) orthometric heights approximate ḡ as,

ḡ = gs +
1

2

∂γ

∂h
Horth − 2πGMρHorth (1.6)

where gs is the observed absolute gravity at the surface of the Earth, ∂γ
∂h

is the vertical
gradient of the normal gravity and ρ is the density of the topography (Amos, 2007).

Here, the mean gravity is easy to compute. However the topography is considered to
be satisfactorily approximated by a slab (see section 2.2.3) and ρ is taken to be constant.
These assumptions mean the resulting orthometric height can significantly differ from the
true orthometric height.
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Neithammer (1932) orthometric heights approximate ḡ similarly to Helmert but with
the addition of two extra terms ∂gT and ∂̄gT .

ḡ = gs +
1

2

∂γ

∂h
Horth − 2πGMρHorth + ∂gT − ∂̄gT (1.7)

∂gT is the terrain effect (as discussed in section 2.2.3) and ∂̄gT is the integral mean terrain
effect along the plumbline.

This approximation takes into account topographic variations from the slab. However
this can be computationally expensive (as seen in section 2.2.3) and again ρ is still taken
to be constant which leads to inaccuracies.

Mader (1954) orthometric heights approximate ḡ, again similarly to Helmert but with
two extra terms ∂gT and ∂gT0 .

ḡ = gs +
1

2

∂γ

∂h
Horth − 2πGMρHorth +

∂gT − ∂gT0
2

(1.8)

∂gT is again the terrain effect at the topographic surface as discussed in section 2.2.3 and
∂gT0 is the terrain effect at the surface of the geoid (Amos, 2007).

As with the Neithammer method, computing the terrain corrections can be computa-
tionally expensive and again ρ is still taken to be constant which leads to inaccuracies.

21



Normal heights - based on the telluroid: Consider an ellipsoid which best fits the
gravitational field of the Earth in terms of the total mass and rotation. It has potential
gravity field U and there is an equipotential surface U0 in the potential field such that
U0 = W0. The normal height, as shown in figure 1.4, is given by changing the divisor in
equation 1.3 to a value, γ̄, determined from the normal gravity field, γ, generated by the
ellipsoid. i.e. in terms of equation 1.3,

HN =
C

γ̄
(1.9)

and

γ̄ =
1

HN

∫ HN

0

γ dh. (1.10)

Figure 1.4: The concept of normal heights HN and normal-orthometric heights HN−O -
from Featherstone and Kuhn (2006). Plumblines shown here are separated horizontally
for illustrative purposes only.

For a point P on the surface of the Earth, γ̄ is the average gravity on the path along the
ellipsoidal surface normal (which passes through the point P ) between a point QN

0 (on
the surface of the ellipsoid) and a point Q. The point Q is such that UQ = WP .

As discussed previously, for all points P taken on the surface of the Earth the corre-
sponding points Q form a surface which is known as the telluroid. The distance from Q
to P is called the height anomaly ξ. It is determined from ellipsoidal height h by,

ξ = h−HN . (1.11)
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Normal-Orthometric heights - based on the quasigeoid: Normal-orthometric
heights are defined as the distance between a point P0 on the quasigeoid and a point P
on the surface of the Earth which both lie along a path normal to the ellipsoidal potential
gravity field.

Figure 1.5: Ellipsoidal, orthometric and normal-orthometric heights and the geoid un-
dulation N and height anomaly ξ- adapted from Amos (2007). Again plumblines are
separated horizontally for clarity.

This time in equation 1.1 C becomes C ′ where

C ′ = U0 − UP =

∫ P

P0

γ dh (1.12)

so that,

HN−O =
C ′

γ̄
(1.13)

Where γ̄ is the average gravity on the path between point P0 and P . The path follows
the ellipsoidal surface normal between a point Q0 (on the surface of the ellipsoid) and
the point P and passes through P0. Again the height anomaly ξ is determined from
ellipsoidal height h by,

ξ = h−HN−O. (1.14)

The distance from Q0 to P0 is the same as the distance between Q and P over the el-
lipsoidal surface normal path, which is the same as saying that the distance between
the surface of the ellipsoid and the quasigeoid is the same as the distance between the
Telluroid and the surface of the Earth.

The main advantage of using a normal-orthometric height system is that once a quasi-
geoid surface has been established the height at any location on the Earth’s surface can be
simply calculated from the ellipsoidal height h and the normal (ellipsoidal) gravity field
γ. However the quasigeoid is not truly an equipotential surface of the Earth’s gravity
field and so will not predict the flow of fluids with complete reliability. The geoid (true
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equipotential surface) and quasigeoid differ most in high topography where the contribu-
tion to ḡ will be largest. Rapp (1997) and Sjberg (1995) show that the differences reach
up to 3.4 m in the Himalayas and Amos and Featherstone (2003) investigated this in the
NZ region and showed that the difference can be up to 0.5 m at Aoraki/Mt Cook.

1.4 Summary

This chapter gives a definition of the ellipsoid, telluroid, quasigeoid and geoid reference
surfaces, which will frequently be referred to throughout the remainder of this text.

The distinction between physical heights and geometrical heights is given. Geometri-
cal heights are easy to obtain from GNSS, but unlike physical heights, they cannot be
used to predict the flow of water and so are not meaningful from an engineering or sur-
veying perspective.

Physical heights have been defined mathematically in terms of geopotential numbers.
Three physical height systems have been identified; Orthometric heights (which are based
on the geoid but impossible to accurately compute without knowledge of the precise vari-
ations in gravitational acceleration and the exact mass-density distribution along the
plumbline through the topography), Normal heights and Normal-Orthometric heights
(which are based on the telluroid and quasigeoid respectively and only require a GNSS
and the normal gravity field to compute).
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Chapter 2

The Disturbing Potential, Gravity
Anomalies and Geoid Heights

2.1 Introduction

This chapter introduces the concept of the disturbing gravitational potential, which is
the difference between the gravitational potential of an Earth approximating ellipsoid
and the true gravitational potential of the Earth. Geoid heights determined from the dis-
turbing potential, by Bruns (1878) equation, and their relationship to gravity anomalies
is specified.

The necessary calculations to obtain the gravity anomalies, needed to determine the
geoid heights, from absolute gravity observations are discussed. This involves calculating
the absolute gravity of the Earth approximating ellipsoid at the location of the observed
gravity value, and also determining the gravitational effect of topography.

The effect of making gravity observations at varying elevations is discussed and methods
to upward/downward continue gravity observations are given.

The permanent (non periodic) tidal effects of the sun and moon on the gravitational
potential field of the Earth is covered. The internationally preferred tidal model is spec-
ified and transformations between different tidal models are given.

Finally, the process to transform gridded gravity values into geoid heights by Stokes’
integral and Helmert’s second method of condensation are discussed in detail.
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2.2 The disturbing potential and gravity anomalies

Following Heiskanen and Moritz (1967), for W the potential field of the Earth and U the
potential field of the reference ellipsoid, define the disturbing potential T as follows,

T = W − U. (2.1)

For a point G = (θG, λG) on the geoid,

TG = WG − UG (2.2)

Bruns’ (1878) equation gives the geoid undulation (which is the separation between the
geoid and the ellipsoid) at the point Q0 = (θ0, λ0) on the ellipsoid surface as,

N =
TG
γQ0

(2.3)

where γQ0
is the normal gravity (see section 2.2.1) at the point Q0 which is on the reference

ellipsoid. For a point P = (r, θ, λ) on the surface of the Earth,

TP = WP − UP . (2.4)

Analogously, the gravity disturbance at the point P is defined by,

δgP = gP − γP
(Alberts, 2009). Under a spherical approximation to the gravity field, the disturbing
potential is related to the gravity disturbance by the following,

dT

dr
= −δg. (2.5)

Classically, gravity anomalies ∆g at a point G on the geoid are given by,

∆gG = gG − γQ0
(2.6)

where Q0 is on the surface of the reference ellipsoid (i.e. no free air correction is used as
discussed in section 2.2.2). The modern definition is instead given by,

∆gP = gP − γQ (2.7)

where P is on the surface of the Earth and Q is on the Telluroid. This can be interpreted
as a measured gravity value at P minus the normal gravity calculated at a height above
the reference ellipsoid given by the normal-orthometric height of the point P (i.e. γQ
consists of the normal gravity and the free air effect as discussed in sections 2.2.2 and
2.2.1). When the orthometric height of the point P is zero, the classical definition of the
gravity anomaly and the modern definition are in agreement since W0 = U0. In particu-
lar, over the oceans the point P is on the geoid, so the quasigeoid and the geoid are then
the same, i.e. ξ = N .

Again, under a spherical approximation, the gravity anomaly is related to the disturbing
potential by the following equation,

dT

dr
+

2

r
T = −∆g. (2.8)

This equation is known as the geodetic boundary-value problem (GBVP), Heiskanen and
Moritz (1967).
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2.2.1 Normal gravity

Normal gravity is the absolute gravity of the Earth approximating ellipsoid (as discussed
in section 1.2). It is dependent only on the latitude, φ, at which it is evaluated and can
be written in the following closed form (Moritz 1980);

γ(φ) = γa
1 + ksin2(φ)√
1− e2sin2(φ)

(2.9)

where (for the GRS80 reference ellipsoid as discussed in section 1.2), γa = 9.7803267715 m s−2

is the absolute gravity at the equator, k = 0.001931851353 is the normal gravity constant
and e2 = 1 − b2/a2 = 0.00669438002290 is the first eccentricity squared (where a and b
are the semi-major and semi-minor axes of the reference ellipsoid).

2.2.2 Free air effect

The free air effect describes the reduction in the normal gravity when making an obser-
vation at some elevation H above the geoid. The second order accurate effect given by
Heiskanen and Moritz (1967) is,

δgFA =
dγ

dH
=

2γ

a
(1 + f +m(−3f + 5/2m)sin2(φ))H − 3γaH

2

a2
. (2.10)

Here, f = (a − b)/a (for a and b the semi-major and semi-minor axes of the ellipsoid)
and m = 0.00344978600308 is the ratio between the gravitational and centrifugal forces
at the equator. This formula corresponds to a spherical approximation to the shape of
the Earth. Historically this correction has been reduced to a linear form given by,

˜δgFA =
dγ

dH
= −2γ

R
H ≈ −0.3086H(10−5m/s2) (2.11)

Here, R is the distance from the centre of mass of the spherical Earth and H is given in
metres and is the normal-orthometric height. Throughout this thesis, the second order
free air correction will be used which is of the form of equation 2.10. The importance of
the second order free air correction is discussed in Featherstone and Dentith (1997).

N.B. In general, when observed absolute gravity values have had the Normal gravity
and free air effect removed the signal is very small, for this reason the units typically used
are mGal (milli Gal) where 1 mGal = 10−5m/s2.

The free air anomaly is given by the following,

∆gFA = g − γ + δgFA (2.12)
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2.2.3 Bouguer slab and terrain corrections

The Bouguer slab and terrain corrections account for the gravitational effect of topogra-
phy around an observation point. Correcting for this allows gravity observations to be
used to study subsurface density variations.

Hammer (1939) gives the formula for the gravitational effect of an annulus of topog-
raphy with an inner radius r, outer radius R and height h as,

δg(r, R, h, ρ) = 0.0419ρ(R− r +
√
r2 + h2 −

√
R2 + h2) (2.13)

(in the x, y plane) where ρ is the density. At the limit for R→∞ when r = 0,

lim
R→∞

δg = 0.0419ρh. (2.14)

When h is taken to be the normal-orthometric height of the observation location, this
is the expression for the infinite Bouguer slab of thickness h, denoted δgBS. The total
effect of terrain is computed as follows, δgBS is first subtracted and then the effect of the
missing mass below the slab and additional mass above the slab is be corrected for; this
is called the terrain correction δgTC .

Figure 2.1: Bouguer slab and residual terrain.

When the total effect of the topography is subtracted from a free air gravity anomaly
by the subtraction of the Bouguer slab and restoration of the residual terrain effect, the
resulting gravity anomaly is termed the Bouguer anomaly, here denoted ∆gB.

∆gB = g − γ − δgFA − δgBS + δgTC (2.15)
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Historically, when a gravity observation is made in the field, the topographic variations
around the measurement locations are estimated visually and the mean height (relative to
where the observation was made) in sectors of specified annuli are recorded. The separate
annuli are known as Hammer zones and each is divided into a number of sectors. In the
far field it is difficult to estimate the topography by eye and so the zones are laid out on
top of a topographic map and the mean height difference in each sector is estimated.

Figure 2.2: Left shows the hammer zones radii in m and number of compartments and
Right shows the geometry of the zones. Figure has been adapted from Amos (2007).

The accuracy of this method largely relies on how well the mean topographic height can
be estimated (either by eye or from maps) and also the number of sectors in each annulus
(Nowell, 1999).

Using a digital elevation model (DEM) and a prism approximation of the topography, the
estimated mean topographic height is greatly improved and the “number of sectors” can
be increased up to the resolution of the DEM. The limitations in the accuracy of terrain
corrections computed from a DEM are generally from the very near zone. For example,
a digital elevation model with a resolution of 64 m will have no topographic variability
between an observation site out to around 32 m and so the terrain correction for this
range will be zero since the DEM is band limited (Kirby and Featherstone, 2002). In
rough topography this can be problematic since the terrain corrections in the near zone
can be up to several mGal.
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Terrain corrections computed using Nagy Prisms The Nagy (1966) prism method
for making terrain corrections is performed by approximating the topography, given by
a DEM, with rectangular prisms.

Figure 2.3: Terrain correction prism - adapted from Nagy (1966).

A piece of topography centred at the point xp ,yp can be approximated with a rectangu-
lar prism with an area of ∂x × ∂y and 4 corners in the x, y plane, (xp1, yp1), (xp2, yp1),
(xp1, yp2), (xp2, yp2) where,

xp1 = xp −
∂x

2

xp2 = xp +
∂x

2

yp1 = yp −
∂y

2

yp2 = yp +
∂y

2
.

The correction, δgTC for the vertical gravity component of each piece of terrain is given
in Nagy, (1966). The coordinates (xp, yp, zp) are with respect to an observation made at
the origin and Nagy’s prism based terrain correction is calculated by the following closed
formula,
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δgTC = Gρ[xp2(ln(
yp2 +

√
x2
p2 + y2

p2

yp2 +
√
x2
p2 + y2

p2 + z2
p

)− ln(
yp1 +

√
x2
p2 + y2

p1

yp1 +
√
x2
p2 + y2

p1 + z2
p

))−

xp1(ln(
yp2 +

√
x2
p1 + y2

p2

yp2 +
√
x2
p1 + y2

p2 + z2
p

)− ln(
yp1 +

√
x2
p1 + y2

p1

yp1 +
√
x2
p1 + y2

p1 + z2
p

))+

yp2(ln(
xp2 +

√
x2
p2 + y2

p2

xp2 +
√
x2
p2 + y2

p2 + z2
p

)− ln(
xp1 +

√
x2
p1 + y2

p2

xp1 +
√
x2
p1 + y2

p2 + z2
p

))−

yp1(ln(
xp2 +

√
x2
p2 + y2

p1

xp2 +
√
x2
p2 + y2

p1 + z2
p

)− ln(
xp1 +

√
x2
p1 + y2

p1

xp1 +
√
x2
p1 + y2

p1 + z2
p

))+

zp(arcsin(
y2
p2 + h2 + yp2

√
x2
p2 + y2

p2 + h2

(yp2 +
√
x2
p2 + y2

p2 + h2)
√
y2
p2 + h2

)−

arcsin(
y2
p2 + h2 + yp2

√
x2
pq + y2

p2 + h2

(yp2 +
√
x2
pq + y2

p2 + h2)
√
y2
p2 + h2

)− arcsin(
y2
p1 + h2 + yp1

√
x2
p2 + y2

p1 + h2

(yp1 +
√
x2
p2 + y2

p1 + h2)
√
y2
p1 + h2

)+

arcsin(
y2
p1 + h2 + yp1

√
x2
p1 + y2

p1 + h2

(yp1 +
√
x2
p1 + y2

p1 + h2)
√
y2
p1 + h2

))] (2.16)

where G is the gravitational constant and ρ is the density and h = |zp − z0| with z0 the
height at the origin. To obtain the terrain correction over some area A, the ∆gp’s for all
xp, yp in the area are summed up.

Hammer prism approximation Hammer’s (1939) formula can be adapted to calcu-
late the effect of a piece of topography in the (x,y) plane as follows.

To correct for the effect of a piece of terrain at xp, yp, zp on an observation made at
the origin choose the following,

r =
√
x2
p + y2

p −
√
δ2

2
(2.17)

R =
√
x2
p + y2

p +

√
δ2

2
(2.18)

where δ is the resolution of the DEM. Then calculate a factor f which corresponds to the
ratio between the area of the piece of terrain and the area of the annulus,

f =
δ2

π(R2 − r2)
(2.19)
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The terrain correction δgTC for the piece of terrain xp, yp, hp is then given by,

δgTC = fδg(r, R, h, ρ). (2.20)

The geometry of this correction can be seen in figure 2.4.

Figure 2.4: An illustration of the geometry for a segment of Hammer’s terrain correction
for an annulus of topography.

Conservatively, the Hammer calculation returns terrain corrections around 10 times
faster. This is because the formula is simpler, i.e. less computational steps are needed.
Moreover, the Nagy prism calculation appears to be sensitive to rounding errors caused
by taking numerous square roots and logarithms; the Hammer method is less problematic
in this respect.

A comparison of the Nagy prism and Hammer prism approximation methods for syn-
thesised topography (namely a 100 × 100 m piece of topography at distances from zero
out to 2000 m from an observation point with heights taken at 10, 100 and 1000 m) is
shown in figure 2.5 and demonstrates that the difference between the two methods is
negligible even in the very near zone of the observation point.

For example, in the very extreme case of a 1000 m tall piece of topography immedi-
ately next to an observation the difference between the two methods is 0.2 mGal.
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The two methods were also tested at the location of 1000 randomly selected existing
gravity sites across New Zealand (described in detail in chapter 4.1) . Terrain corrections
were calculated for an inner zone (out to 170 m) and an outer zone out to 120 km from
an 8 m digital elevation model. The 1000 randomly selected data points had a good
distribution across the country covering areas with both smooth and rough topography
as can be seen in figure 2.6.

Figure 2.6: A map illustrating the specified locations of the 1000 marks chosen at random
from the GNS terrestrial gravity database.

The inner terrain corrections were in good agreement having a difference (Hammer -
Nagy) with a mean of 0.001 mGal and standard deviation of 0.002 mGal and maximum
difference of 0.014 mGal. The difference between the two methods for the outer zone
terrain correction was similar, with a mean of -0.003 mGal, standard deviation of 0.006
mGal and maximum difference of 0.023 mGal.
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2.3 Upward and downward continuation of gravity

anomalies

Observed gravity values change with elevation and high frequency gravity signals are
attenuated as the observation location moves away from the gravity source. When pro-
cessing gravity observations made at different elevations (e.g. when combining terrestrial,
chapter 5, and airborne gravity data sets, chapter 6) an important step is to ensure they
are on a common reference level. This is achieved by upward and downward continuation.

The gravity anomaly ∆g caused by a sphere of radius b with a density anomaly ∆ρ(i.e. a
density difference between the buried sphere and the surrounding rock) buried at a depth
h below the surface is given by the following formula (Telford et al, 1990).

∆g =
4π

3
G∆ρ

b3h

(x2 + h2)3/2
(2.21)

where x is the Euclidean distance from the centre of the sphere in the horizontal direction
and G is the gravitational constant.

As the depth of the body increases (or equivalently as the gravity field observation point
moves away from the observed body in the vertical direction) the gravity anomaly profile
across the buried sphere flattens out. This can be seen in the following figure with the
illustrative parameter choices ∆ρ = 0.4 (Mg/m3) b = 200 (m).

Figure 2.7: The gravity anomaly caused by a buried sphere with a density anomaly of
0.4Mg/m3, radius of 200m and depths varying from 200 to 500 m.
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For a planar approximation, the gravity anomaly ∆g(x, y, h) at an elevation h is related
to the gravity anomaly on a level surface (where h = 0) ∆g(x, y, 0) by the Abel-Poisson
integral (Heiskanen and Moritz, 1967),

∆g(x, y, h) =
h

2π

∫ ∞
−∞

∫ ∞
−∞

∆g(α, β, 0)

[(x− α)2 + (y − β)2 + h2]3/2
∂α∂β (2.22)

This equation can be thought of as representing the gravity field with buried spheres due
to the similarity of the integration kernel and equation 2.21.

The Fourier Domain approach

Equation 2.22 is a convolution (Schwarz, 1990) and can be expressed as

∆g(x, y, h) = w(x, y)|hz=0 ∗∆g(α, β, 0) (2.23)

with,

w(x, y)|hz=0 =
h

2π

1

[(x− α)2 + (y − β)2 + h2]3/2
|hz=0 (2.24)

In the Fourier domain the convolution corresponds to multiplication. For W (u, v)|hz=0 the
Fourier transform of w(x, y)|hz=0,

W (u, v)|hz=0 = e−2πhf (2.25)

where f =
√
u2 + v2. The Fourier transform of ∆g(x, y, h) given by G(u, v)|z=h is then

computed from the Fourier transform of g(x, y, 0) given by G(u, v)|z=0 multiplied by
W (u, v)|hz=0 = e−2πhf i.e.

G(u, v)|z=h = G(u, v)|z=0W (u, v)|hz=0. (2.26)

This operation to find the gravity anomalies at a higher elevation than where they are
already known (upward continuation) is essentially a low pass filter i.e. short wavelengths
in the gravity anomaly signal are attenuated more than longer wavelengths. If the gravity
anomalies are known at an elevation h1 and it is required to know them at a lower elevation
h2 (downward continuation) then,

G(u, v)|z=h2 = G(u, v)|z=h1W (u, v)|z=h2z=h1
. (2.27)

or,
G(u, v)|z=h2 = G(u, v)|z=h1e2π(h1−h2)f . (2.28)

Advantages G(u, v)|z=h2 is simple to obtain numerically using the fast Fourier trans-
form. The method is quick and easy to implement.

Disadvantages This process amplifies short wavelengths in the gravity signal which
can be problematic when the data contain any high frequency noise.

Moreover this approach is problematic since gravity observations are rarely made on
a consistently level surface which is a prerequisite to be able to grid them on a plane for
the 2D Fourier transform.
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Regularized Least Squares

Wang et al (2004) construct a system of equations such that the integral equation (2.22)
can be solved by a least squares approach i.e. by writing the integral equation (2.22) in
matrix form such that

∆g(x, y, h) = A∆g(α, β, 0) (2.29)

where A is a matrix, with elements determined by the integral kernel, that maps gravity
anomalies at one observation level, h, to the surface. Observations ∆g(x, y, h) can then
be used to determine gravity anomalies at the surface of the Earth by least squares. The
aim of least squares is to minimize the Euclidean norm of the vector ε where,

ε = ∆g(x, y, h)− A∆g(α, β, 0) (2.30)

As with the Fourier domain approach, the downward continuation will amplify high
frequency noise. Wang et. al (2004), demonstrate that the amplification of the noise in
the signal can be controlled by using Tikhonov regularization (Tikhonov, 1977). This
process introduces a matrix L which acts as a differential operator and the aim is to
determine ∆g(α, β, 0) subject to minimizing,

||ε||2 = ||∆g(x, y, h)− A∆g(α, β, 0)||2 + ||αLg(α, β, 0)||2 (2.31)

The use of the matrix L has a smoothing effect and α is a chosen value which controls
the amount of smoothing, acting to partition the signal to noise ratio.

Advantages This method offers an alternative to the Fourier domain approach with
the key advantage that the amplification of the noise level in the data can be controlled.
Moreover, it allows for gravity observations to be scattered i.e. they are not required to
be on a uniform grid, which is more appropriate in practice.

Disadvantages The degree of smoothing determined by α is sensitive, and it is difficult
to make a hard and fast choice for this value, and no consideration has been made here for
varying noise levels of individual data points. Also, the technique requires large matrices
to be constructed and so the method is computationally expensive for large data sets.

Virtual Point Mass Method

The Rougue theory says that the disturbing potential of the Earth can be approximated
by a harmonic function of a sphere located in the Earth called the Bjerhammar spheres
(Wang et al, 2004). The virtual point mass method represents sources of the Earth
gravity field as various Bjerhammar sphere where the potential and derivatives match
gravity observations to some precision. Gravity anomalies, ∆gi, i = 1, 2, 3, ...n, can be
written by the method as,

∆gi = G(
m∑
j=1

ri −RB
j cos(ψi,j)

ρ3
i,j

− 2

ρi,jri
)Mj (2.32)

here, ri is the geocentric range of the ith gravity anomaly, RB
j = R−Dj is the radius of

the Bjerhammar sphere, Dj is the depth of the jth point mass and ρi,j and ψi,j are the
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distance and spherical angle between the gravity anomaly observations i and j. R is the
mean Earth radius in the region,

R =
1

n

n∑
i=1

(Ri +Hi) (2.33)

where Hi is the elevation of each gravity observation.

Equation 2.32 can be written in matrix form such that,

∆g = AM (2.34)

Here, M is a vector of the m point masses and A is an n ×m vector of coefficients. M
can be solved for by least squares as,

M = (ATPA)−1ATP∆g (2.35)

where P is a weight matrix of the observations ∆g.

Using equation 2.32 a new matrix can then be constructed A′, which corresponds to
the relationship between the point masses M and the gravity anomalies, ∆gh=0 at the
surface of the Earth. ∆gh=0 can then by computed by the following,

∆gh=0 = A′M (2.36)

Advantages As with the regularized least squares approach, the observation noise is
not heavily amplified by the downward continuation procedure. This is because the high-
est frequency in the resulting gravity anomalies at the surface of the earth is related to
the number of point masses n which are determined by the procedure.

Using a weight matrix P the accuracy of each individual gravity anomaly can be taken
into account.

Disadvantages Equation 2.32 makes an assumption that the height of the gravity
anomaly observations is consistent. This is not practical in the general case with actual
field observations.

Spherical Interior Dirchlet’s Harmonic Solution Method

Following Wang et al (2004), let V (R′, γ′, λ′) be a harmonic function that is known on a
spherical surface Σ′. Let Σ be a spherical surface inside of Σ′. The harmonic function on
the surface of Σ, V (R, γ, λ) is given by the following integral of V on Σ′ (Shi, 1999).

V (R, γ, λ) =
R′(R′2 −R2

Q)

4π

∫∫
Σ′

V (R′, γ′, λ′)

ρ3
dσ (2.37)

Here, RQ is the radius of the inner sphere Σ and ρ is the distance between the moving
point of the integral and integral evaluation point. For gravity anomaly observations ∆g
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known on the surface of Σ, the function given by RQ∆g is harmonic. Then in terms of
equation 2.22, if gravity anomaly observations are known on the surface of Σ′, they can
be calculated on the surface of Σ by evaluating the following integral,

∆g(R, γ, λ) =
R′(R′2 −R2

Q)

4πRQ

∫∫
Σ′

∆g′(R′, γ′, λ′)

ρ3
dσ (2.38)

Advantages This method avoids solving equation 2.22, and the gravity anomalies are
directly determined by evaluating the integral.

Disadvantages The approach assumes again that the gravity anomaly observations are
available at a consistent height and continuously at discrete intervals so that the integral
can be evaluated. This is not possible with scattered observation data points which is
the typical case. Additonally, the method does not account for observation error, which
will propagate through the integral.

Least squares collocation method

In general least squares collocation is a sophisticated interpolation method. An n × 1
vector of interpolated values s is interpolated from an m× 1 vector observed quantities g
using the fundamental equation of least squares collocation (as given by Moritz (1972))
by,

ŝ = Csg(Cgg +N)−1x. (2.39)

Here,

� Csg is the n×m covariance matrix of the desired signal s and observations g

� Cgg is the m×m covariance matrix of the observations and

� N is the covariance matrix of the measurement noise.

The element in row i = 1, 2, 3, ..., n and j = 1, 2, 3, ...,m of the matrix Csg is determined
by a function f which is dependent on the the position of the interpolation point si(xi, yi)
and the position of observation point of gj(xj, yj). i.e.

(Csg)i,j = f(xi, yi, xj, yj) (2.40)

and elements i =, 12, 3, ...,m and j =, 12, 3, ...,m of Cgg are determined by the same
function, but the from position of pairs of the observations g(xi, yi) and g(xj, yj)

(Cgg)i,j = f(xi, yi, xj, yj) (2.41)

The function f must be a positive definite function to ensure the matrices can be inverted,
for example the Gaussian function given by,

F (xi, yi, xj, yj) = C0e
−α2r2 (2.42)
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where r =
√

((xi − xj)
2(yi − yj)

2), C0 is the variance of the observations g and α =
1
d
log(2)1/2 were d is the value at which the spatial correlation of the data reduces to

half, (a value typically referred to as the correlation length). The noise matrix N acts
to regularize the interpolated value s by attributing part of the observation signal to noise.

This method can be used to interpolate gravity anomaly quantities with the choice of
an appropriate (harmonic) covariance function F . Forsberg (1987) gives an appropriate
covariance function to interpolate gravity data that additionally acts three dimensionally
i.e. F = F (xi, yi, zi, xj, yj, zj).

The covariance function F given by Forsberg (1987) is,

F (xi, yi, zi, xj, yj, zj) = −f
∑
k

αklog(Dk +
√

(xi − xj)2 + (yi − yj)2 + (Dk + zi + zj)2).

(2.43)
with αk = 1,−3, 3,−1, Dk = D + kT and,

f = C0log(
(D + T )3(D + 3T )

D(D + 2T )3
). (2.44)

The values C0, D and T are fit to the observation data empirical spatial covariance val-
ues, where C0 is the observation variance, D is the depth to the Bjerhammar sphere (as
discussed in the point mass downward continuation approach) and T acts to suppress
long wavelengths which are not predictable from observation data over a small region.

Forsberg (2003) suggests the following parameters for gridding gravity anomaly values;
C0 = 100 mGal2, D = 10 km and T = 50 km, Toth (2009) uses parameter values of
C0 = 57.7 mGal2 D = 5 km and T = 9 km when dealing with a very high frequency
gravity signal and optimal fit for some airborne data in this thesis is obtained with
C0 = 75.8 mGal2, D = 9.5km and T = 48.5 km in chapter 6 which is remarkably close
to the Forsberg (2003) suggested parameters.

Advantages This method allows for the gravity signal to be interpolated anywhere in
three dimensional space, and avoids having to solve equation 2.22.

It does not require the observation data to be available at consistent grid intervals (i.e.
scatter data points can be used) and it does not require the data to be available at a
consistent elevation.

Due to the inclusion of the matrix N which allows an approximate noise level to be
assigned to each observation, the method is particularly powerful when combining vari-
ous data sets of different quality onto a single grid at any desired elevation (e.g. on the
surface of the Earth).

Disadvantages The method requires that a large matrix is inverted which for m ob-
servation points, has m2 elements. This is problematic for large data sets. However it is
possible to consider the data in small regions to break the problem down into manageable
chunks.
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Summary Least squares collocation has been chosen as the method to downward con-
tinue and combine datasets in this thesis. It is preferable over other methods discussed
here since it allows for varying elevation of observation heights (which is important for
the airborne data discussed in chapter 6) and allows for an optimal combination of data
sets with different qualities (which is important for combining airborne and terrestrial
measurements in the New Zealand setting as discussed in chapter 7).

The method of least squares collocation is discussed in more detail in chapter 7 and
is used to combine several different types of gravity observations which were made at
varying elevations on to a single grid at the topographic surface. The methodology is
also used extensively in section 6.1 to downward continue some airborne gravity obser-
vations for a comparison with ground based gravity data.
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2.4 Earth tides

The tidal effect of the sun and moon is periodic over time but is not zero on average,
so it can be thought of as having periodic (which is zero on average) and permanent
components. The permanent tide is low at the poles and high in the equatorial areas
(Ekman, 1989).

There are three commonly used models to represent tides which are as follows;

� Tide-free: this model eliminates the permanent tidal deformation of the shape of
the Earth and the tidal potential gravity field. i.e. The tidal effects of the sun
and moon are removed from the potential field and shape of the Earth, which
corresponds to physically moving the sun and moon out to infinity.

� Mean-tide: this model retains the permanent deformation of the shape of the Earth
and the potential field due to tidal forcing.

� Zero-tide: this model retains the permanent deformation of the shape of the Earth
under tidal forcing but removes the effect on the potential field.

The International Gravity Standardization Net 1971 (ISGN71 see: http://www.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA006203) gravity system is in terms of the mean-tide (ISGN71
is an absolute datum for worldwide gravity networks) and gravity observations made in
New Zealand have been put in terms of this standard (Stagpoole, 2012).

Resolution 16 of the International Association of Geodesy (IAG) in 1983 approved the
zero-tide model as the preferred model for Geoid modeling (Amos, 2007). This is because
it is compliant with Stokes’ formula since it assumed all external masses are removed (un-
like the mean-tide model) and unlike the tide-free model does not require the inclusion
of Love numbers to represent the rigidity of the Earth in response to tidal forces.

Ekman (1989) gives the following conversions for height differences (between one ortho-
metric height observation and another), ∆H (in cm), between each of the tidal models
(with subscripts n,m, z denoting the tide-free, mean-tide and zero-tide models) as,

∆Hm = ∆Hz + 29.6(sin2(φN)− sin2(φS))

∆Hz = ∆Hn + (γ − 1)29.6(sin2(φN)− sin2(φS))

∆Hm = ∆Hn + γ29.6(sin2(φN)− sin2(φS))

Where φN and φS are the latitude of the northern height observation and southern height
observation respectively and γ is the normal gravity. Similarly, for gravity anomalies ∆g
(mGal), the conversions between tidal systems are given as.

∆gm = ∆gz − 3.04 + 9.12sin2(φ)

∆gz = ∆gn + (δ − 1)(−3.04 + 9.12sin2(φ))

∆gm = ∆gn + (δ)(−3.04 + 9.12sin2(φ))

where δ is a theoretical constant value ≈ 1.53 and φ is latitude.
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2.5 Geoid undulations determined by Stokes’ inte-

gral

Following Heiskanen and Moritz (1967), Stokes’ integral gives the geoid undulation N at
a point (θp, λp) as,

N(θp, λp) =
R

4πγ

∫
σ

∆g(θ, λ)S(ψ)∂σ (2.45)

where,

� R: average Earth radius,

� N : geoid undulation,

� γ: normal (ellipsoidal) gravity (at θp),

� ∆g gravity anomaly,

� ∂σ: infinitesimal surface element

� S(ψ): Stokes’ kernel function.

Stokes’ kernel function has the form,

S(ψ) =
1

s
− 4− 6s+ 10s2 − (3− 6s2)ln(s+ s2) (2.46)

where,

s = sin2ψ

2
= sin2(

θp − θ
2

) + sin2(
λp − λ

2
)cos(θp)cos(θ)

Moreover, S(ψ) can also be expressed as an infinite Fourier series of Legendre polynomials
given by,

S(ψ) =
n=∞∑
n=2

2n+ 1

n− 1
Pn(ψ). (2.47)

The solution, N, to equation 2.45 has zero coefficients for the spherical harmonic terms
of degree one and zero and in practice they are provided by a global gravity model.

The solution to this equation relies on,

1. ∆g being reduced to the surface of the geoid,

2. there being no topographical masses outside of the geoid and

3. ∆g being available continuously over the surface of the Earth.

Points 1 and 2 can be resolved using Helmert’s second method of condensation and point
3 can be dealt with by using the remove-compute-restore technique. These methods are
described in the subsequent sections.
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2.5.1 Helmert’s second method of condensation:

Helmert’s second method of condensation resolves points 1 and 2 by implementing the
following 5 steps (Amos, 2007).

1. Direct topographical effect: Condense the gravitational effect of topography to the
surface of the Geoid.

2. Downward continuation: Downward continue the topography reduced gravity anoma-
lies to the surface of the geoid by solving equation 2.22.

3. Compute the Co-geoid: Use Stokes’ integral (equation 2.45) with the downward
continued reduced gravity anomalies to evaluate a surface known as the Co-geoid.

4. Primary indirect topographical effect: Perform a reverse correction to compensate
for the topographic reduction of step 1.

5. Secondary indirect topographical effect: Perform a correction to account for the
difference between the height of the true geoid and the co-geoid. This step is
typically ignored as it is of the order of 1mm (Vanicek, 1987).

Direct topographical effect and Downward continuation: In practice the first
two steps can be performed as follows,

1. From observed scattered absolute gravity values, calculate scattered Bouguer anoma-
lies by subtracting the normal gravity (following section 2.2.1), the free air effect
(following section 2.2.2) and the Bouguer slab and then add back the terrain cor-
rection (following section 2.2.3).

2. The Bouguer anomaly data are then downward continued to the surface of the geoid
by solving equation 2.22. However this step is often disregarded when the Bouguer
anomalies are available at the topographic surface. This is because the distance to
downward continue is reasonably small and the Bouguer gravity anomaly signal is
fairly long wavelength so the effect of the downward continuation is negligible.

3. Calculate Bouguer anomalies at regular grid points (using some interpolation algo-
rithm) from the scattered data points.

4. Apply a reverse Bouguer slab correction by adding 0.0419ρHorth to the gridded
Bouguer gravity anomalies.

This process overall returns gridded Faye anomalies; these are in effect terrain corrected
free air anomalies. The reverse Bouguer slab correction can be performed by extracting
heights from a digital elevation model (DEM). By gridding the Bouguer anomalies prior
to the reverse Bouguer slab correction (i.e. performing step 3 before step 4 rather than
vice versa), the potential effect of topographic aliasing in the gridded signal is reduced
(Featherstone and Kirby, 2000), since the topographic effect is high frequency and sparse
spatial sampling will result in aliasing.
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Primary indirect topographical effect The primary indirect topographical effect is
given by Wichiencharoen (1982) as,

Nind(P ) =
−πGρH2

P

γ
− GρR2

6γ

∫
σ

H3 −H3
p

l3
dσ. (2.48)

Here HP is the orthometric height of the point P and l is the distance between P and
the moving point of the integration. When equation 2.48 is written as a Taylor series and
evaluated with a dense DEM it becomes quickly divergent after the quadratic term. For
this reason in practical use it is only evaluated using the first term of the equation above
(Amos, 2007).

2.5.2 Remove - Compute - Restore (RCR):

To compute N using equation 2.31 requires that the gravity data are available continu-
ously over the surface of the Earth; however this is not practical. This issue is resolved
by removing a long wavelength gravity anomaly from the gridded Faye anomaly obser-
vations (Remove), computing a residual geoid undulation using Stokes’ integral formula
with a spherical integration cap and a modified kernel (Compute) then adding back a
long wavelength geoid undulation (Restore) (Hirt, 2012). i.e.

1. Calculate the long wavelength anomaly ∆gL using a global gravity model (see sec-
tion 5.1) up to some maximum degree and order L at each of the gridded measure-
ment locations.

2. Calculate a residual gravity anomaly signal by removing long wavelength gravity
anomalies from gridded Faye anomalies, ∆gres = ∆g −∆gL.

3. Use the Stokes’ integral formula with a spherical integration cap ψ0 and a modified
kernel S∗(ψ) to compute the residual geoid undulation Nres. i.e.

Nres(θp, λp) =
R

4πγ

∫
ψ0

∆gres(θ, λ)S∗(ψ)∂σ (2.49)

4. Calculate the full geoid undulation N by adding back the long wavelength geoid
undulation, N = NL + Nres. NL is evaluated from the same global gravity model
(see section 5.1) as in step 1. i.e.

N(θp, λp) = NL(θp, λp) +
R

4πγ

∫
ψ0

∆gres(θ, λ)S∗(ψ)∂σ (2.50)

2.5.3 Stokes’ kernel modification:

During the RCR process, described in section 2.5.2, long wavelengths have been removed
from the gridded gravity anomalies, and so Stokes’ integration need only be performed on
a limited integration radius denoted ψ0. However, this requires the use of a modified kernel
to avoid the truncation error incurred due to omission of data outside of the integration
radius. Heiskanen and Moritz (1967) gives the truncation error, δN as follows,

N =
R

4πγ

∫ ψ0

0

∫ 2π

0

∆g(θ, λ)S(ψ)sin(ψ)dψdα + δN (2.51)
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where

δN =
R

4πγ

∫ π

ψ0

∫ 2π

0

∆g(θ, λ)K(ψ)sin(ψ)dψdα (2.52)

with the kernel K given by,

K(ψ) = 0 for 0 ≤ ψ < ψ0

K(ψ) = S(ψ) for ψ0 ≤ ψ ≤ π (2.53)

By writing K as a series of Legendre polynomials equation 2.52 can be expressed as the
following series expansion,

δN =
R

2γ

∞∑
n

∆g(θ, λ)Qn(ψ0) (2.54)

with

Qn(ψ) =

∫ π

ψ0

S(ψ)Pn(ψ)sin(ψ)dψ (2.55)

where Pn are Legendre polynomials. The coefficients Qn(ψ0) govern the rate at which
the truncation error associated with S(ψ) converges and the rate is determined by the
smoothness of the error kernel K(ψ).

Meissl modified Stokes’ Kernel, SM(ψ): In equation 2.53 , K(ψ) is not continuous
at ψ = ψ0. Meissl (1971) makes K(ψ) continuous by subtracting S(ψ0) from the kernel.
i.e.

SM(ψ) = S(ψ)− S(ψ0) for 0 ≤ ψ < ψ0

SM(ψ) = 0 for ψ0 ≤ ψ ≤ π (2.56)

and the error kernel is then given by,

KM(ψ) = S(ψ0) for 0 ≤ ψ < ψ0

KM(ψ) = S(ψ) for ψ0 ≤ ψ ≤ π (2.57)

which is continuous for all ψ, and since KM(ψ) is smoother than K(ψ) the convergence
of the of the truncation error improves.

Wong and Gore modified Stokes’ Kernel, SWG(ψ): The Wong and Gore (1969)
modified Stokes’ kernel takes a different approach to Meissl, by subtracting low degree
Legendre polynomial terms up to some maximum p from equation 2.47. i.e.

SWG(ψ) = S(ψ)−
n=p∑
n=2

2n+ 1

n− 1
Pn(ψ). (2.58)

Here p is considered to be strictly less than the maximum degree and order of the global
gravity model removed in step 2 of section 2.5.2. This time the error kernel K(ψ) is given
by,

KWG(ψ) = 0 for 0 ≤ ψ < ψ0

KWG(ψ) = SWG(ψ) for ψ0 ≤ ψ ≤ π (2.59)
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which is discontinuous at ψ0 but converges quicker than K(ψ) outside the integration
cap due to the removal of lower order terms in the series expansion of S(ψ). i.e. this
modification reduces low frequency errors in N due to the integration cap since the low
order terms of the integration kernel S(ψ) are not used. This modification is essentially
a high pass filter.

Vanicek and Kleusberg modified Stokes’ Kernel, SV K(ψ): The Vanicek and
Kleusberg (1987) modified Stokes’ kernel is similar to the Wong and Gore (1969) modified
Stokes’ kernel with an additional term. It is given by the following,

SV K(ψ) = S(ψ)−
n=p∑
n=2

2n+ 1

n− 1
Pn(ψ)−

k=L∑
k=2

2k + 1

2
tk(ψ0)Pk(ψ). (2.60)

Here, tk(ψ0) are coefficients which are determined by finding the least squares solution
to the following set of the linear equations

k=L∑
k=2

2k + 1

2
tk(ψ0)enk(ψ) = Qn(ψ0)−

k=L∑
k=2

2k + 1

2
enk(ψ) (2.61)

for n = 2, 3, 4, 5, ..., L. Qn(ψ0) are given by equation 2.55 and enk(ψ) are given by,

enk(ψ) =

∫ π

ψ0

Pn(ψ)Pk(ψ)sin(ψ)dψ (2.62)

This solution has the effect of minimizing the L2 norm of the error kernel KV K(ψ) with
respect to the integration cap ψ0, so this modified Stokes’ integration kernel is advan-
tageous over the Wong and Gore modified kernel since the error kernel is smaller. The
error kernel here is given by,

KV K(ψ) = 0 for 0 ≤ ψ < ψ0

KV K(ψ) = SV K(ψ) for ψ0 ≤ ψ ≤ π. (2.63)

Heck and Gruninger modified Stokes’ Kernel, SHG(ψ): The Heck and Gruninger(1987)
modified Stokes’ kernel is given by the following,

SHG(ψ) = SWG(ψ)− SWG(ψ0) for 0 ≤ ψ < ψ0

SHG(ψ) = 0 for ψ0 ≤ ψ ≤ π (2.64)

It essentially applies a similar modification to the Wong and Gore modified Stokes’ kernel
as Meissl applied to the unmodified kernel. This makes the Wong and Gore kernel
continuous at the boundary of the spherical cap and so improves the smoothness of the
error kernel which improves the truncation convergence rate. The error kernel is given
by the following,

KHG(ψ) = SWG(ψ0) for 0 ≤ ψ < ψ0

KHG(ψ) = SWG(ψ) for ψ0 ≤ ψ ≤ π (2.65)
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Featherstone et al. modified Stokes’ Kernel (1998), SF (ψ): The Featherstone
et al. (1998) modified Stokes’ kernel is given by the following,

SF (ψ) = SV K(ψ)− SV K(ψ0) for 0 ≤ ψ < ψ0

SF (ψ) = 0 for ψ0 ≤ ψ ≤ π. (2.66)

and the error kernel is given by

KHG(ψ) = SF (ψ0) for 0 ≤ ψ < ψ0

KHG(ψ) = SF (ψ) for ψ0 ≤ ψ ≤ π (2.67)

This kernel modification incorporates the advantages of all others. It is continuous on
the boundary of the spherical cap and also incorporates the smaller error kernel values
resulting of the least squares fit of the linear equations given by equation 2.61.

In theory this kernel is then optimum for use in regional geoid height determination,
however some instabilities have been noted by Amos (2007) when L is taken to be large
and ψ0 small (for example L = 100 and ψ0 = 0.5 ). However, as noted by Featherstone
et al (2001), these parameter combinations are unlikely when reliable long wavelength
gravity anomalies are provided (from a global gravity model) for the remove stage of the
processing.

2.6 Summary

In this section the notation for the disturbing potential T , geoid undulation N and grav-
ity anomalies ∆g were given. Bruns’ equation and the geodetic boundary value problem
were defined which are the crucial equations in Geoid modeling.

Upward and downward continuation of gravity anomalies/disturbances was defined and
the main methods have been given. Least squares collocation is the preferred method for
downward continuation since it appropriately deals with data at various initial heights
and the high frequency noise amplification can be controlled by the regularization effects
of the noise matrix assigned to the observations.

The concept of permanent Earth tides has been defined and transformations between dif-
ferent tidal models are given. Resolution 16 of the International Association of Geodesy
(IAG) in 1983 approved the zero-tide model as the preferred model for Geoid modeling.

The solution to the geodetic boundary value problem by Stokes’ integral was given. Sev-
eral practical considerations must be made for computing regional quasi-geoid, namely
∆g being on the surface of the geoid, there being no topographical masses outside of the
geoid and ∆g being available continuously over the surface of the Earth. The processes
to deal with these considerations has been discussed.
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Chapter 3

Vertical Datums in New Zealand

3.1 What is a vertical datum?

A vertical datum has two components, a specified height system and a defined reference
surface. Most vertical datums which are used are gravimetric, i.e. physical heights that
are based on the geoid/quasigeoid, or geodetic, i.e. ellipsoidal heights above on some
reference ellipsoid.

The type of height system which is chosen is dependent on the type of observations which
are made (Amos, 2007). For example, if height observations are made without gravity
measurements then only ellipsoidal heights and normal-orthometric heights can be used.
As demonstrated in Chapter 1, normal-orthometric heights can be calculated using just
the normal gravity field and the quasigeoid separation from the ellipsoid, whereas or-
thometric heights are dependent on determining the gravity potential at the observation
location to compute the geopotential number C.

3.2 New Zealand’s Local Vertical Datums

In New Zealand normal-orthometric heights are normally used. Traditionally, height
transfers have been performed using precise leveling, which has an estimated accuracy
of ± 2 mm

√
k where k is the distance the height has been transferfed in km (Amos,

2007). Precise leveling gives a series of relative measurements in terms of some reference
point where the normal-orthometric height is known. When the leveling observations are
coupled with GPS measurements, height anomalies (i.e. quasigeoid separation from the
ellipsoid) can be calculated directly.

The primary precise leveling network in New Zealand contains in excess of 16,000 km
of measurements (Amos, 2007). The leveling loops are tied off to one of 13 mean sea level
(MSL) estimations from tide gauge data. The mean sea level estimated for each of the
13 locations is complicated by long term effects due to rise in mean sea level and short
term effects such as tidal effects of the sun and moon (which requires 18.6 years of hourly
measurements to accurately predict) and sea surface topography (e.g. due to salinity or
prevailing winds).
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Figure 3.1: The 13 local vertical datums which
are used in New Zealand. The coloured points
indicate the extent of each network.

The rise in mean sea level in New
Zealand is well documented, originally
reported by Hannah (1990) and its
implications in Hannah (1989) with
updated results in Hannah (2004),
Hannah et al (2010) and Hannah
and Bell (2012). Initially tide gauge
data from 4 ports was considered
(Auckland, Wellington, Lyttelton and
Dunedin) where the measurements
span 70-100 years. A long term
linear trend of 1.7 ± 0.1 mm can
be seen in the tide gauge data
which is attributable to a rise in sea
level. This is shown in figure 3.2
of the annual mean sea level esti-
mate from tide gauge data at these
four ports over a time period ap-
proximately spanning the last 100
years.

The mean sea level the leveling data
are reference to will be fixed at some
epoch, this will result in a difference
between the leveling heights and true
mean sea level since it is time depen-
dent. Comparing leveling heights ref-
erenced to historic mean sea level mea-
surements will always be negatively
offset from the true mean sea level due to sea level rise. Moreover, MSL for other lo-
cal vertical datums (LVD), (i.e. those other than Auckland, Wellington, Lyttelton and
Dunedin) has typically been measured over substantially shorter time periods, some only
over a period of 3 years. This means the contribution of the short term tidal effects can-
not be estimated accurately and sea surface variability is difficult to predict, moreover
these data are unreliable for long term mean sea level rise estimations.

For these reasons the 13 MSL estimations are offset from true mean sea level by some
constant value due to fixing the mean sea level at some epoch and moreover the short term
effects mean that individual mean sea level estimations are not on the same equipotential
surface. This results in 13 separate LVD which are not directly comparable. However,
Amos (2007) specifies that a simple transformation from one LVD to any other and true
mean sea level can be defined in terms of a constant offset value (Amos, 2007). This means
a set of normal orthometric heights defined in terms of one LVD can be transformed to
normal-orthometric heights in terms any other by adding a constant value.
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Figure 3.2: Annual mean sea level estimates from tide gauge data at Auckland, Welling-
ton, Lyttelton and Dunedin. From Hannah and Bell (2012).

51



3.3 NZGeoid2005: local vertical datum unification

To unify the local vertical datums and to establish a single vertical datum across New
Zealand a quasigeoid was computed in 2005 (NZGeoid2005) from Earth Gravity Model
1996 (EGM96), the New Zealand terrestrial gravity network and shipborne gravity data
(Amos, 2007). A simple offset for each of the LVD was estimated from this quasigeoid
model to be used to translate normal-orthometric heights from one of the local vertical
datums to another. To determine the offset for each of the LVD the following iterative
approach was taken.

1. The terrestrial gravity measurements were all initially reduced using normal or-
thometric heights in terms of their local vertical datum, as seen in figure 3.1. A
quasigeoid was then determined from the reduced terrestrial gravity values.

2. The estimated normal-orthometric height from the quasigeoid was then computed
at the locations of precise leveling observations, the mean and standard deviation
of the height difference between the quasigeoid normal-orthometric height and LVD
normal-orthometric height was then estimated.

3. The mean height difference was then taken as the offset õ and was used to re-evaluate
the gravity anomalies. The re-evaluated gravity anomaly, ∆g̃ is given by,

∆g̃ = ∆g + 0.3086 õ

where ∆g is the initial estimated gravity anomaly in terms of the LVD and õ is
given in metres.

These steps were then repeated until convergence of the offsets was reached which took
one repetition. The quasigeoid NZGeoid2005 was recomputed in 2009 from more contem-
porary and accurate data and is used as the reference surface for New Zealand Vertical
Datum 2009 (NZVD2009).
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3.4 NZVD2009

NZVD2009 is defined as a normal-orthometric height system, with the reference surface
being the New Zealand quasigeoid 2009 (NZGeoid2009) using GRS80 as the reference
ellipsoid/normal gravity field and is in terms of the zero-tide system.

Figure 3.3: NZGeoid2009, the quasigeoid used as the reference surface for New Zealand
Vertical Datum 2009.

It is the current, quasigeoid-based, height reference system (i.e. relative to the Earth’s
gravity field) that is used in New Zealand. This vertical datum was the first quasigeoid-
based height system to be officially implemented as a national datum world-wide and
the first consistent vertical datum to be used in New Zealand. It most notably offers an
improvement on the previous convention of using local mean sea level tide-gauge based
height systems.
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NZGeoid2009 ranges from 45 metres in the north (35 S) to -15 metres in the south
(50 S) and is defined between 160◦E to 190◦E and from 25◦S to 60◦S at a spatial resolu-
tion of 1’×1’. The technical report by Claessens et al. (2009), gives the following a list
of the data sets which were used in the computation of NZGeoid2009.

1. Land gravity anomalies: Land gravity anomalies were computed from the 40,737
terrestrial gravity network data which covers the North, South, Stewart, Chatham
and Pitt Islands. These data are described in detail in section 4.1.

2. Terrain correction data: 62 individual tiles (1◦ × 1◦) with terrain corrections
given at a 56 metre horizontal resolution. The terrain corrections were used to
calculate the refined Bouguer anomalies necessary to grid the gravity data. The
corrections were determined using prism integration described in Amos (2007).

3. DNSC08: A satellite altimetry based free air anomaly grid, produced by the
Danish National Space Centre, used at a spatial resolution of 1’×1’. It was used for
two purposes. Firstly, it was merged with the terrestrial free air anomalies using a
high resolution mask around the coast line so that any extrapolation when griding
the terrestrial data could be avoided. Secondly, it was used to specify gravity
anomalies over the ocean in place of the marine gravity observations, which were
used to compute NZGeoid2005, due to its higher accuracy.

4. Digital elevation model (DEM): A high resolution digital elevation model grid-
ded at a resolution of 56 metres. It was used to reconstruct the free air anomalies
from the gridded refined Bouguer anomalies, as described by Featherstone and
Kirby (2000).

5. EGM2008: The most contemporary and accurate global gravity model (at the time
of computation). It is complete to degree and order 2160, which corresponds to a
wavelength of approximately 9 km. It was used to provide the reference long and
medium wavelength gravity and height anomalies in the remove-compute-restore
stages in the processing. This global gravity model is described in detail in section
5.1.

6. GPS/leveling data: These data were used to assess the accuracy of the deter-
mined quasigeoid and most importantly were used to determine the LVD offsets
in the iterative step to determine local vertical datum offsets (as was done for
NZGeoid2005).
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Processing steps taken to compute NZGeoid2009: The following flow diagram,
adapted from Classens et al. (2009), demonstrates the processing steps taken in the
computation of NZGeoid2009. The numbered cylinders correspond to the input data
described in the previous section and the letters A-M describe the processing steps which
were taken.

Figure 3.4: The processing steps taken in the computation of NZGeoid2009. - adapted
from Classens et al. (2009)
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Following Classens et al. (2009), the following list describes the steps taken at each of
the A-M steps in the flow chart above.

A. The land gravity measurements were reduced to scattered Bouguer anomalies, each
in terms of their LVD normal-orthometric height.

B. The 56 m resolution terrain corrections from 1◦ × 1◦ grids were then interpolated
to the location of the scattered terrestrial data points. Then interpolated terrain
corrections were added to the scattered Bouguer terrestrial gravity anomalies to obtain
refined Bouguer anomalies.

C. The offset determined for the LVD was applied to the scattered refined Bouguer
anomalies. Initially all offsets were set to zero.

D. Data from the 1’×1’ grid of satellite altimetry derived free air anomalies from the
DNSC08 gravity model were extracted inside the quasi computation area (160◦E to
190◦E and 25◦S to 60◦S) and points inside the New Zealand coast line were removed
using a high resolution mask.

E. The scattered refined Bouguer anomalies were temporarily augmented with the masked
DNSC08 gravity model and then gridded on a 1’×1’ grid. This was performed in
GMT using the surface function, which employs continuous curvature splines with a
user-define tension factor, chosen to be 0.25. The temporary augmentation with the
DNSC08 gravity model was performed to reduce the unwanted effects of extrapolation
beyond the convex hull to the terrestrial data.

F. The high resolution digital elevation model was then used to reconstruct the effect of
topography to obtain Faye anomalies. Gridding the refined Bouguer anomalies and
then reconstructing the effect of topography using the DEM to obtain gridded Faye
anomalies is more robust than just computing and then gridding the Faye anomalies
directly from the terrestrial observations. This is because the high frequency content
of the topography, which is not present in the refined Bouguer anomalies, can cause
aliasing when griding Faye anomalies directly (Amos, 2007, Featherstone, 2000). This
gives a grid with a resolution of 56m×56m.

G. The high resolution grid of Faye anomalies was then interpolated back onto the coarser
1’×1’ grid. This was performed by taking a mean of the data inside each cell. For
data points on the high resolution grid which are partially inside one of the cells on
the coarser grid, an appropriate weighting was assigned when computing the average.

H. The terrestrial Faye anomalies were then augmented with the DNSC08 gravity model
using the GMT function gridlandmask to remove any data inside the coastline for
the DNSC08 gravity anomaly model and outside the coastline for the terrestrial mea-
surements. This gives a final 1’×1’ grid of gravity anomalies inside the quasigeoid
computation area (160◦E to 190◦E and 25◦S to 60◦S).

I. A gravity anomaly grid (1’×1’) from the EGM2008 coefficients (using coefficients of
degree and order from 2 to 2160) was then computed over the quasigeoid computation
area. The gravity values on the coarse 1’×1’ grid were computed using area means
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with the areas (grid cell size) determined using an ellipsoidal approximation. All of
the gravity anomalies were computed using the ”zero-tide” system.

J. The grid of gravity anomalies generated from the EGM2008 coefficients was then al-
gebraically subtracted from the grid of augmented DNSC08 and terrestrial anomalies.
The residual signal had a mean of 0.1 mGal and standard deviation of 4.69 mGal,
with a range of about 330 mGal for the large outliers (typically through areas of rough
topography).

K. Using the gridded residual gravity anomaly signal the residual quasigeoid height
anomalies were computed by Stokes’ formula. Here the residual quasigeoid heights
depended upon the maximum spherical harmonic degree removed from the Stokes’
kernel, L, and the integration cap size ψ0. The parameters were optimised by seeking
a best fit solution to the GPS/leveling heights. (L = 40, ψ0 = 2.5),

L. Height anomalies from the EGM2008 model were then added back to the derived
residual height anomalies determined in the previous step to obtain the full quasigeoid
height.

M. The quasigeoid height anomalies determined in step L were then compared to 1422
directly observed height anomalies from GPS/leveling observations. The mean and
standard deviation of the differences were then determined for each of the LVD. The
means were then taken as the offsets and then steps C to M were repeated until the
offsets converged.

Convergence was reached in one iteration which indicates that it was not necessary to
repeat the calculations.

Accuracy assessment: In this subsection an accuracy assessment of NZGeoid2009 has
been performed by looking at the difference between NZGeoid2009 height anomalies to
those determined from the New Zealand leveling/GPS network. The leveling normal-
orthometric measurements give successive relative height differences which are referenced
to one of thirteen mean sea level estimates determined from tide gauge measurements.
The mean sea level estimate determined from the tide gauge measurements will differ
from NZGeoid2009 by some amount, this will propagate through the leveling measure-
ments that are referenced to it as a constant offset. For this reason a mean is subtracted
from the leveling/GPS height anomalies and NZGeoid2009 differences separately for data
in each LVD (Amos, 2007).

The leveling/GPS height anomalies have been compared to NZGeoid2009 before and
after the LVD offsets were added and the agreement between the data sets has been
assessed visually and statistically in both cases. With the addition of the local vertical
datum offsets, the agreement of the leveling/GPS derived height anomalies reduced the
mean to -2 cm from -32 cm and reduced the standard deviation (estimated from the inner
68% of the distribution to avoid the effect of outliers, following appendix B) to 4.8 cm
from 12.8 cm. The improvement is also evident visually with the removal of systematic
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trends in the difference between the leveling/GPS heights and NZGeoid2009.

For each leveling observation, HN−O (normal orthometric height) , in the primary precise
leveling network there is an accompanying GPS ellipsoidal height (h) observation. The
height anomaly, (denoted from here on) N , which is the separation of the quasigeoid from
the ellipsoid, is calculated at for each pair of GPS and leveling observations by,

N = h−HN−O

The following figure shows the height anomalies determined from the primary precise
leveling network and GPS observations without the adjustment for the LVD offsets. As
for NZGeoid2009 there is a negative north south trend and a range of 40 metres to 5
metres.

Figure 3.5: Height anomalies derived from the primary precise leveling network and GPS
observations. The colour scale is in metres.

The following two figures show the difference between the leveling derived height anoma-
lies and NZGeoid2009 before and after the published offsets are applied.
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After the bias adjustment for the LVD leveling data, the agreement between the leveling
derived height anomalies and NZGeoid2009 improves. This can be seen in the previous
figures with differences between the leveling data and NZGeoid2009 no longer correlated
for separate LVD’s.

The following empirical cumulative distribution function (cdf) plot (Zwillinger, 2010)
demonstrates the improvement in the distribution of the difference between the leveling
derived height anomalies and NZGeoid2009 before and after the LVD bias adjustment.
Before the bias adjustment (blue) the agreement between the leveling derived height
anomalies and NZGeoid2009 has a mean of -34.65 cm and a standard deviation of 12.8
cm. After the bias adjustment (red) the agreement between the leveling derived height
anomalies and NZGeoid2009 has a mean of -2 cm and a standard deviation of 4.8 cm.
The standard deviations were estimated from the inner 68% of the distributions since
they are leptokurtotic (long tailed), following appendix B.
The improvement in the agreement between the two data sets (leveling/GPS derived
height anomalies and NZGeoid2009) indicates that the LVD bias adjustment is a neces-
sary step and one which must be performed for any regional geoid to assess its accuracy.

3.5 Summary

In this chapter the concept of a vertical datum is defined. Descriptions of the level-
ing/GPS data available for the 13 local vertical datums, NZGeoid2005 and NZVD2009
is given.

Prior to the national geoid computation NZGeoid2005 New Zealand had 13 separate
local vertical datums. The intention of the computed Geoid was to unify the local verti-
cal datums by computing offsets for each of them from the consistent reference surface.

NZGeoid2009 superseded NZGeoid2005 and was based on the most accurate data avail-
able at the time. NZVD2009 is the vertical datum based on NZGeoid2009 and was the
first of its kind world wide.

In this study’s new assessment, NZGeoid2009 was shown to have an accuracy of 4.8
cm (standard deviation) on comparison to leveling data after local vertical datum offsets
are applied. Applying the local vertical datum offsets was shown to be a crucial step in
determining the accuracy of the geoid and should be applied for any newly created geoid.
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Figure 3.7: CDF plot of the difference between leveling derived height anomalies and
NZGeoid2009 height anomalies before (blue) and after LVD bias adjustment (red), best
fitting Gaussian cdf is in black. The LVD bias adjustment improves the standard devi-
ation of the inner 68% of the distribution by around 8 cm and also reduces the overall
bias of the distribution by 32 cm in absolute value.
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Chapter 4

Terrestrial Gravity in New Zealand

4.1 Introduction

This chapter gives an overview of the terrestrial gravity measurements in the GNS Science
database. A description of the instrumentation used to collect the data is given and the
varying spatial density of the measurements is discussed and displayed. Here, the gravity
data are reprocessed and details of the formulas used to calculate refined Bouguer gravity
anomalies are given. This is important to ensure consistency in the data reductions prior
to computing the new national geoid (chapter 8). Finally, an accuracy assessment of the
data has been performed.

4.2 GNS Science terrestrial gravity database

GNS Science maintains a database of terrestrial gravity measurements made across New
Zealand. The gravity network was established from the 1940’s. The network consists
of gravity measurements at approximately 40,000 locations nationwide which have been
made by several different institutions with various gravimeters. However, it mostly con-
sists of relative gravity readings made using Lacoste and Romberg D and G meters which
are tied to the New Zealand primary gravity network by the least squares procedure de-
scribed by Woodward and Carman (1984). In general the derived absolute gravity values
from repeat relative gravity observations have an estimated accuracy of around 0.1 mGal.

The New Zealand primary network is a set of bench marks maintained by Land In-
formation New Zealand. It was established from the 1960s to be a series points with
a “known” absolute gravity value (Stagpoole, 2012). The benchmarks were reoccupied
during the 1980s to account for any changes in their locations relative to roads and rail-
way stations nearby and to replace benchmarks which had been destroyed.

The terrestrial gravity observations were used to compute NZGeoid2009 (chapter 3).
However, they were not originally intended for geoid modeling and are not ideally suited
to it since the database contains historic measurements and are sparse in rough topogra-
phy. The spacing of the observations is on average about 7.5 km (Amos, 2007) and can
be seen in figures 4.1 and 4.2.
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Figure 4.1: Terrestrial gravity data coverage over the North Island of New Zealand. The
density of measurements can be seen to vary accross the island. In areas of scientific
interest, such as the Taupo Volcanic Zone, the density increases whereas in rougher
terrain, such as in the Opotiki region (in the East) the density reduces.
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Figure 4.2: Terrestrial gravity data coverage over the South Island and Stewart Island
of New Zealand. Where the topography is rough the data density reduces, for example
through the ranges down the centre of the country or in Fiordland (in the South-West)
where the data density drops to almost one measurement every 30 km. In flatter regions,
the data density is much higher, for example in Canterbury (centre-East).
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4.3 Gravity reduction

The database contains the absolute gravity, g, and position (latitude and longitude, and
the normal orthometric height in terms of the local vertical datum) at each of the network
locations, the gravitational effects of the normal gravity, γ, free air correction δgFA, and
the Bouguer slab and terrain corrections, δgBS and δgTC . However over the years various
conversion formulas, which are potentially inaccurate, have been used to transform his-
toric normal gravity calculations to the modern standard at the time (Stagpoole, 2012).
In the calculations that follow, this study recomputes a new set of corrected terrestrial
gravity data to ensure consistency in the application of correction terms.

The normal gravity corrections have all been made with respect to the GRS80 refer-
ence ellipsoid which has the following necessary parameters;

� a = 6378137 m: The equatorial radius

� b = 6356752.3141 m: The polar radius

� γa = 9.7803267715 m s−2: The absolute gravity at the equator

� k= 0.001 931 851 353: The normal gravity constant

� e2 = 1− b2/a2 = 0.00669438002290: The first eccentricity squared.

The recomputed corrections are;

1. Normal gravity γ(φ): calculated by the Moritz (1980) formula, γ(φ) = γa
1+ksin2(φ)√
1−e2sin2(φ)

×

105 mGal (section 2.2.1).

2. The free air correction (δgFA): δgFA = −2γ
a

(1 + f + m(−3f + 5/2m)sin2(φ))H +
3γaH2

a2
(mGal), where H is the normal-orthometric height given in metres from the

database.

3. The infinite Bouguer slab correction (δgBS): 0.0419ρH (mGal) where ρ is the stan-
dard density (2.67 Mg/m3) and again H is the normal-orthometric height given in
metres from the database.

4. The terrain correction (δgTC): Calculated using field observations and the Hammer
prism method with an 8 m (out to 2160 m) and a 64 m DEM (from 2160 m to 120
km). This is described in detail in the following section .

The corrections can be used to transform the absolute gravity values g in the GNS Science
gravity database to refined Bouguer anomalies ∆gB by the following equation,

∆gB = g − γ + δgFA − δgBS + δgTC .

Since the absolute gravity observations were in the ISGN71 standard (which is mean-
tide), the following transformation (as given in chapter 3) has been applied to obtain the
data in the zero-tide system,

∆gz = ∆gm + 3.04− 9.12sin2(φ).
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Figure 4.3 shows the free air gravity anomalies reduced using formulas from points 1)
and 2) (i.e. prior to the terrain Bouguer Slab and terrain corrections) across the North
Island, South Island and Stewart Island on a 1 arc minute grid, gridded using a linear
interpolation algorithm.

Figure 4.3: Recomputed terrestrial free air anomaly data over the North, South and Stew-
art Island, gridded at 1 arc minute for illustrative purposes using a linear interpolation
algorithm. The scale is in mGal (10−5 m/s2).
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In addition to the data coverage on the North, South and Stewart Island, 285 gravity
observations on Chatham Island and Pitt Island (to the east of mainland New Zealand)
are also available in the GNS Science database. The data have also been reduced using
the same formulas as above and the free air anomaly (i.e. prior to the Bouguer Slab and
terrain corrections) can be seen in figure 4.4.

Figure 4.4: Terrestrial free air anomaly data over Chatham (top) and Pitt (bottom)
Islands, gridded at 1 arc minute for illustrative purposes using a linear interpolation
algorithm. The scale is in mGal (10−5 m/s2).

4.4 Terrain Corrections

The GNS Science terrestrial gravity database contains inner zone terrain corrections com-
puted from field observations using the Hammer zone method (Hammer, 1939, see chapter
3) and outer zone terrain corrections (from the edge of the inner zone out to - 21900 m).
The outer zone corrections were computed with the Nagy prism method and a coarse
digital elevation model.

Horizontal positions of the gravity observations in the database have frequently been
read from 1:250000 map sheets; these readings are only accurate to around 100 m. Inac-
curate horizontal positioning causes large errors when computing inner terrain corrections
from a DEM, particularly in steep terrain.
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To attempt to reduce errors propagating from mis-locating the gravity observations when
computing the terrain corrections, a composite set of terrain corrections calculated from
the DEM and field observations has been derived. Three terrain corrections, δg1, δg2 and
δg3 , have first been calculated. δg1 was computed from the 8 m digital elevation model
from the site location out to Hammer zone H (2610 m) and δg2 was computed from the
64 m digital elevation model from 2610 m out to 120 km.

δg3 was computed from the 8 m digital elevation model from the observation location
out to the far edge (zone D, i.e. 170 m, for almost all of the marks) of the recorded inner
zone terrain correction, δgGNS, in the GNS Science data base. Figure 4.5 shows a plot
of the terrain corrections given in the GNS Science database against the DEM derived
inner terrain corrections.

Figure 4.5: Field observation terrain corrections plotted against the inner zone terrain
corrections computed by the Hammer prism method. Reference lines are shown at 0.1
mGal and Hammer=Field obs. in blue and 10 mGal in red. The scale is in mGal (10−5

m/s2).

The difference between the observed terrain corrections and those calculated from the
DEM can be explained as follows.

� Where the field observation derived terrain correction is small (e.g. less than 0.1
mGal) then it is likely to be correct, since it would be easy to estimate the topogra-
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phy by eye where it is generally flat - in this circumstance it would be advantageous
to use the field observations for the inner zone terrain correction.

� Where the field observations derived terrain correction is large (e.g. greater than
0.1 mGal) but the DEM derived terrain correction is small (e.g. less than 0.1
mGal), then the discrepancy is likely due to an over estimation of the topography
in the field, in which case it would be better to use the DEM derived inner terrain
correction.

� Where both the field observations and DEM derived terrain corrections are large
the topography will be strongly varying. In this circumstance small errors in the
observation’s recorded position will result in large changes in the inner terrain
corrections. Similarly the DEM terrain correction is band limited in the near zone
as mentioned in section 2.2.3. For these reasons it will be better to use those derived
from field observations.

To account for these points a temporary set of measurements δĝ1 is calculated where,

δĝ1 = δg1 − δg3.

then the revised terrain correction out to hammer zone H, δgH , is calculated by the fol-
lowing,

δgH = δĝ1 + δgGNS, if δgGNS < 0.1

δgH = δĝ1 + δg3, if δgGNS ≥ 0.1 and δg3 < 0.1

δgH = δĝ1 + δgGNS, if δgGNS ≥ 0.1 and δg3 ≥ 0.1

The optimal (following the points above) composite terrain correction, δgTC out to 120
km is then given by

δgTC = δgH + δg2.

The Bouguer anomaly value, ∆gB has then been obtained for each of the terrestrial free
air anomaly gravity values ∆gFA = ∆gFA(x, y, h) by subtracting the vertical compo-
nent of the gravitational attraction from a Bouguer slab, δgBS of thickness h (using the
recorded normal-orthometric height from the database) with infinite radius and adding
the calculated the terrain correction. i.e.

∆gB = ∆gFA − δgBS + δgTC .
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Figure 4.6 shows the refined Bouguer anomaly gridded at a 1 arc minute resolution using
a linear interpolation algorithm over the North, South and Stewart Islands.

Figure 4.6: Terrestrial refined Bouguer anomaly data over the North, South and Stew-
art Island, gridded at 1 arc minute for illustrative purposes using a linear interpolation
algorithm. The scale is in mGal (10−5 m/s2).
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For Chatham and Pitt Islands, the 8 m DEM was not available. For this reason the
terrain corrections in the GNS Science database have been used explicitly. Figure 4.7
shows the refined Bouguer anomaly for the two islands.

Figure 4.7: Terrestrial refined Bouguer anomaly data over Chatham (top) and Pitt (bot-
tom) Islands, gridded at 1 arc minute for illustrative purposes using a linear interpolation
algorithm. The scale is in mGal (10−5 m/s2).

4.5 Accuracy assessment

When calculating gravity anomalies from the absolute gravity values (at surveyed loca-
tions) the predominant cause of error is due to the recorded position of the observation
sites (Stagpoole, 2012), and in particular the recorded vertical positions (Amos, 2007).
In the GNS Science database the observation heights are given as normal-orthometric
heights in metres but the heights are not derived by consistent means. Three height
codes are used to specify the source of the recorded height and are as follows,

� 0 - Benchmark heights obtained by leveling and differential GPS (DGPS).

� 1 - Spot heights obtained from map sheets or by GPS.

� 2 - Barometric heights.
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Digital elevation model (DEM) heights can be useful for estimating the reliability of the
prescribed heights in the database (Stagpoole, 2012). The 8 m DEM has been used to
estimate the heights for each surveyed location in the GNS Science database. The differ-
ence between recorded heights and the DEM heights for locations with a height code of
0 (i.e. benchmarks) has a standard deviation ( fitted to the inner 68% of the distribution
to reduce the effect of the long tails, see appendix B) of 7.5754 m. This is shown in figure
4.8 of the empirical CDF plot of the differences (in blue) and the fitted distribution (in
red).

Figure 4.8: Empirical CDF of the heights with code 0 minus heights derived from the 8
m DEM (in blue) and distribution fitted to the inner 68% (in red).

The distribution shown above is the sum of two random distributions, the first is due to
the distribution of errors in the DEM heights and the second is the error in the recorded
heights in the GNS Science database. The recorded leveling/DGPS heights have a fixed
estimated error with a standard deviation σ0 ≈ 10 − 15cm. This means the standard
deviation of the DEM can be approximated as σDEM =

√
7.572 − 0.152 ≈ 7.57 to two

decimal places.

The 8 m DEM heights have then been used to estimate heights for the gravity observa-
tions with height code 1. The difference between recorded heights and the DEM heights
for locations with a height code of 1 (i.e. spot heights) has a standard deviation ( fitted
to the inner 68% of the distribution, see appendix B) of 7.82 m. This is shown figure 4.9
of the empirical CDF plot of the differences (in blue) and the fitted distribution (in red).
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Previously the estimated error in the DEM was calculated to have standard deviation of
σDEM = 7.57m. Since the distribution of the differences has a standard deviation of 7.82,
the standard deviation of the error in the height code 1 elevations can be calculated as
σ1 =

√
7.822 − 7.572 ≈ 1.96 m to two decimal places.

Figure 4.9: Empirical CDF of the heights with code 1 minus heights derived from the 8
m DEM (in blue) and distribution fitted to the inner 68% (in red).

The distribution shown in figure 4.9 has long tails. Height differences on these tails most
likely correspond to data points which have been incorrectly located horizontally or the
spot height has been estimated poorly. For these data points the estimated 1.96m error
in height is too small and so more appropriate standard deviation have been calculated
for these points as follows. The Gaussian CDF function can be written as,

F (x) =
1

2
(1 + erf(

x√
2σ

)).

For all the height differences x in the distribution greater than 2σ1 in absolute value, a
revised standard deviation σ̃1 has been calculated by,

σ̃1 =

√
(

x√
2erf−1(2F̃ (x)− 1)

)2 − 7.572
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where F̃ (x) is drawn from the empirical CDF. Finally, heights have also been estimated
for the locations with a height code 2 from the DEM. The difference between recorded
heights and the DEM heights for locations with a height code of 2 (i.e. barometric
heights) has a standard deviation ( fitted to the inner 68% of the distribution) of 11.84
m. This is shown in figure 4.10 of the empirical CDF plot of the differences (in blue) and
the fitted distribution (in red). Since the distribution of the differences has a standard
deviation of 7.8201, the standard deviation of the error in the height code 2 elevations
can be calculated as σ2 =

√
11.842 − 7.572 ≈ 9.10 m to two decimal places.

Figure 4.10: Empirical CDF of the heights with code 2 minus heights derived from the 8
m DEM (in blue) and distribution fitted to the inner 68% (in red).

Again, the distribution shown in figure 4.10 has long tails (outside the 2σ2 range). Height
differences on these tails most likely correspond to data points where the barometric
height has been estimated poorly. For these data points the estimated 9 m error in
height is too small and so more appropriate height error standard deviations have been
calculated, as before.

Figure 4.11 shows the estimated standard deviations of the heights of the gravity ob-
servations in the GNS Science terrestrial gravity database gridded at a 1 arc minute
resolution. Predominantly the standard deviations are around 9m with sparsely located
larger values (which were the points on the tails of the height code 1 and 2 DEM height
differences) which are typically isolated to individual points.

During the gravity reductions the heights, Hi, were used when performing the free air
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Figure 4.11: Derived height standard deviations (in metres) for each gravity observation
in the GNS Science terrestrial gravity database.

correction (≈ 0.3086Hi (mGal)) and the Bouguer slab correction (−0.0419ρHi mGal).
For this reason the estimated variances of the noise level, Ni for each gravity observation
has been calculated as Ni = ((0.3086− 0.0419ρ)σi)

2.

Figure 4.12 shows the estimated standard deviation (in mGal) for each of the gravity
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anomalies gridded at 1 arc minute using a linear interpolation algorithm. In general the
estimated error is approximately 3 mGal with concentrated patches of 0.5 mGal and 0.02
mGal where heights have code 0 and larger values where the heights have been estimated
to be particularly poor.

Figure 4.12: Linearly gridded estimated error of the terrestrial gravity observations in
mGal.

These estimated errors will be used to down weight the effect of outliers when the data
is gridded using least squares collocation (see chapter 7).
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4.6 Summary

This chapter gives an overview of the terrestrial gravity observations available in the GNS
Science terrestrial gravity database. The density of the measurements has been discussed
and displayed over the North Island, South Island and Stewart Island. Additionally the
data covering Chatham and Pitt Islands have been shown.

The gravitational effect of normal gravity and the topography have been re-calculated,
despite being provided in the database. This was done to ensure consistency in the data
reductions due to the historic calculations and conversion formulas used to derive similar
corrections in the database. The optimal terrain correction was shown to be a composite
correction of both the terrain corrections calculated from the 8 m digital elevation model
and field observations, since it best reduced any errors arising from mis-locating the ter-
restrial gravity sites.

An assessment of the discrepancies in the recorded vertical positions of the gravity ob-
servation sites was also discussed. Discrepancies were determined by comparing recorded
heights to those derived from the 8 m DEM following Stagpoole (2012) and they were
used to estimate the propagated error in the free air and Bouguer slab gravity corrections.
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Chapter 5

Global Gravity Models (GGM)

5.1 Introduction

This chapter gives a description of global gravity models (GGM) and how they are used
to approximate the disturbing potential gravity field/ geoid height anomalies and gravity
disturbances up to some maximum spherical harmonic degree and order.

Following Amos and Featherstone (2003), thirty seven satellite only global gravity models
and nine combined global gravity models are compared against terrestrial gravity data
and leveling data derived height anomalies. Of the thirty seven satellite only models,
GO CONS GCF 2 DIR R5 provides the best fit to the terrestrial gravity and leveling
derived height anomalies data sets.

For the nine combined models, EGM2008 fits the terrestrial gravity data best and EIGEN-
6C4 best fits the leveling data derived height anomalies, this is similar to the result ob-
tained by Huang, J. and Veronneau, M. (2015). The difference between the two models
is discussed in detail.

5.2 Spherical harmonic coefficients

Global gravity models (GGM) consist of a set of spherical harmonic coefficients (δC̄nm
and S̄nm) and standard deviations of the harmonic coefficients (qC̄nm and qS̄nm) up to
some maximum degree and order M (Amos, 2007).

The disturbing potential TM is approximated from coefficients by the spherical harmonic
expansion,

TM =
GM

r

M∑
n=2

(
a

r
)n

n∑
m=0

(δC̄nmcos mλ+ S̄nmsin mλ)P̄nm(cosθ), (5.1)

P̄nm(cosθ) are fully normalized associated Legendre functions and δC̄nm and S̄nm are
fully normalized spherical harmonic coefficients which have been reduced for the zonal
harmonics of the reference ellipsoid. a is the average radius of the earth and (r, θ, λ) is
an arbitrary point in space in geocentric spherical polar coordinates.
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For a given value of M , the minimum wavelength of the expansion is approximated
by the following,

Lmax =
2πR

M
cos φ (5.2)

and resolution is given by

ρmax =
πR

M
cos φ (5.3)

at some latitude φ and Earth radius R. e.g if M = 2160 and R = 6378.137 km then the
minimum wavelength at φ = 45◦ is approximately 9km.

By Bruns’ equation, the geoid height anomaly is given by,

ξM =
GM

rγ

M∑
n=2

(
a

r
)n

n∑
m=0

(δC̄nmcos mλ+ S̄nmsin mλ)P̄nm(cosθ), (5.4)

and the gravity anomaly is given by the radial derivative,

∆gM =
GM

r2

M∑
n=2

(
a

r
)n(n− 1)

n∑
m=0

(δC̄nmcos mλ+ S̄nmsin mλ)P̄nm(cosθ). (5.5)

The following equation is used to calculate the error degree variances ε2 for gravity anoma-
lies. It is used to assess the accuracy of global gravity model coefficients for degree n in
predicting the n-th spherical harmonic of the gravity field.

ε2(n) = (
GM

a2
)2(n− 1)2

n∑
m=0

q2
C̄nm

+ q2
S̄nm

. (5.6)

To determine the most accurate global gravity model of a given set, it is useful to compare
computed values of ε2 between models. It is also useful to compare derived values of ∆g
and ξ to ground based gravity free air anomaly data and leveling derived height anomalies.

Global gravity models come in two main forms, satellite only and combined. The satellite
only models are determined solely from satellite gravity field measurements. Typically,
satellites can only detect long wavelengths in the gravity field (in part due to their ele-
vation above the earth causing severe attenuation of short wavelength gravity signal as
discussed in section 2.3). For this reason the models only contain coefficients δC̄nm and
S̄nm up to a maximum degree M ≈ 300.

Combined global gravity models are determined from multiple data sources, namely satel-
lite gravity observations supplemented with ground based gravity data, satellite altimetry
measurements and occasionally shipborne and airborne data. The additional data sets
contain higher frequency gravity signals which means higher degree coefficients in the
global gravity model can be determined. These models often include coefficients up to
maximum degree and order M = 1500 and higher, as can be seen in table 5.2.
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5.3 GGM comparison

Gravity anomalies ∆g and geoid heights ξ have been determined for 37 satellite only
gravity models and 9 combined models. These data have been compared to 40667 New
Zealand terrestrial gravity derived free air anomalies (as discussed in section 4.3) and
1442 leveling derived geoid heights. The two types of global gravity models are compared
separately. The following two tables show the satellite only and combined global gravity
models compared here.

Table 5.1: Satellite only global gravity models compared.

Model name Year Max Degree Satellite data sources, S( )
ULux CHAMP2013s 2013 120 S(Champ)
Tongji-GRACE01 2013 160 S(Grace)
JYY GOCE04S 2014 230 S(Goce)
JYY GOCE02S 2013 230 S(Goce)
ITSG-Grace2014s 2014 200 S(Grace)
ITSG-Grace2014k 2014 200 S(Grace)
ITG-Grace2010s 2010 180 S(Grace)
ITG-Goce02 2013 240 S(Goce)
GOGRA04S 2014 230 S(Goce,Grace)
GOGRA02S 2013 230 S(Goce,Grace)
GOCO05s 2015 280 S(GOCE,GRACE,CHAMP)
GOCO03S 2012 250 S(Goce,Grace)
GOCO02S 2011 250 S(Goce,Grace)
GOCO01S 2010 224 S(Goce,Grace)
GO CONS GCF 2 TIM R4 2013 250 S(Goce)
GO CONS GCF 2 TIM R3 2011 250 S(Goce)
GO CONS GCF 2 TIM R2 2011 250 S(Goce)
GO CONS GCF 2 TIM R1 2010 224 S(Goce)
GO CONS GCF 2 SPW R4 2014 280 S(Goce)
GO CONS GCF 2 SPW R2 2011 240 S(Goce)
GO CONS GCF 2 SPW R1 2010 210 S(Goce)
GO CONS GCF 2 DIR R5 2014 300 S(Goce,Grace,Lageos)
GO CONS GCF 2 DIR R4 2013 260 S(Goce,Grace,Lageos)
GO CONS GCF 2 DIR R3 2011 240 S(Goce,Grace,Lageos)
GO CONS GCF 2 DIR R2 2011 240 S(Goce)
GO CONS GCF 2 DIR R1 2010 240 S(Goce)
GGM05S 2014 180 S(Grace)
GGM05G 2015 240 S(Grace,Goce)
GGM03S 2008 180 S(Grace)
EIGEN-CHAMP05S 2010 150 S(Champ)
EIGEN-6S 2011 240 S(Goce,Grace,Lageos)
EIGEN-5S 2008 150 S(Grace,Lageos)
DGM-1S 2012 250 S(Goce,Grace)
AIUB-GRACE03S 2011 160 S(Grace)
AIUB-GRACE02S 2009 150 S(Grace)
AIUB-GRACE01S 2008 120 S(Grace)
AIUB-CHAMP03S 2010 100 S(Champ)
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Table 5.2: Combined global gravity models compared

Model name Year Max Degree
Data sources, S () satellite
G terrestrial gravity data,
A altimetry data

EGM2008 2008 2190 S(Grace),G,A
EIGEN-51C 2010 359 S(Grace,Champ),G,A
EIGEN-5C 2008 360 S(Grace,Lageos),G,A
EIGEN-6C 2011 1420 S(Goce,Grace,Lageos),G,A
EIGEN-6C2 2012 1949 S(Goce,Grace,Lageos),G,A
EIGEN-6C3stat 2014 1949 S(Goce - dir 4, Grace,Lageos),G,A
EIGEN-6C4 2014 2190 S(Goce dir 5,Grace,Lageos),G,A
GGM03C 2009 360 S(Grace),G,A
GIF48 2011 360 S(Grace),G,A

All of the models here have been evaluated up to their maximum degree and order. The
coefficients are freely available from http://icgem.gfz-potsdam.de/ICGEM/modelstab.html,
(at the time of writing, 2015).

The calculated values of ∆g and ξ for each model have been subtracted from the terres-
trial free air anomalies and leveling derived height anomalies. The root mean squared
residual, standard deviation (computed from the inner 68% of each distribution since the
distributions are generally leptokurtotic i.e. kurtosis>3, see appendix B), min, max and
kurtosis of the difference has been given in each case.

5.3.1 Satellite only global gravity models:

Of the satellite only models, GO CONS GCF 2 DIR R5 (Bruinsma et al, 2013) provided
the best fit to the terrestrial free air anomaly data and the leveling derived height anoma-
lies. This is shown in tables 5.3 and 5.4. Moreover GO CONS GCF 2 DIR R5 contains
coefficients up to the highest maximum degree and order and overall it has the smallest
error degree variances beyond degree and order 130 and has a negligible difference in
accuracy for lower degrees in comparison to other satellite only coefficients. This can be
seen in figure 5.1.

5th Generation GOCE model ( GO CONS GCF 2 DIR R5): The fith gener-
ation GOCE gravity model (model name GO CONS GCF 2 DIR R5) has a maximum
degree and order of 300 and was computed from GOCE-SGG with GRACE and LA-
GEOS satellite data sets. The GOCE data used for the model were collected over a
period of approximately 1259 days and 19380 orbital revolutions. The GRACE data
have a measurement period of approximately 10 years (2003 - 2012) and its contribution
in the model was taken only up to degree and order 130. The LAGEOS-1 and -2 data
have been collected over approximately a 25 year period (1985 - 2011) and were used in
the model for the very low degrees (2 and 3) since these cannot be estimated accurately
by the GRACE and GOCE data.
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Table 5.3: Table of statistics of the terrestrial gravity free air anomalies at 40667 locations
minus ∆g computed from the 37 satellite only global gravity models in mGals.

Model name RMS STD Min Max Kurtosis
GO CONS GCF 2 DIR R5 37.6073 22.1671 -93.0868 112.9472 4.9775
GGM05S 36.264 22.1813 -74.4339 110.1558 3.5592
GOCO05s 37.575 22.1867 -93.2082 112.6967 4.8659
AIUB-CHAMP03S 30.1996 22.5748 -88.7753 62.012 4.1235
GO CONS GCF 2 DIR R4 36.8304 22.7331 -77.3117 113.1452 4.2265
GOCO01S 38.0639 22.8123 -80.1339 94.705 3.6377
GO CONS GCF 2 SPW R4 37.4639 22.966 -84.9444 122.9355 4.5249
GO CONS GCF 2 DIR R1 38.1742 23.003 -84.4961 114.2464 4.2723
GO CONS GCF 2 DIR R3 37.6143 23.2482 -75.2231 103.2209 3.757
GO CONS GCF 2 TIM R4 37.7004 23.3532 -81.8812 115.7305 4.1983
GO CONS GCF 2 TIM R1 38.6305 23.3743 -82.5647 94.1266 3.6444
GOCO03S 37.4925 23.4205 -75.2881 106.6389 3.9148
GOCO02S 37.4944 23.4334 -74.8143 102.7886 3.9584
GOGRA02S 38.1268 23.6293 -84.1123 113.6498 4.1554
JYY GOCE02S 38.1267 23.6316 -84.1164 113.5754 4.1579
GO CONS GCF 2 TIM R2 37.7021 23.673 -76.011 103.2832 3.9698
GGM05G 38.0033 23.6948 -76.8299 119.0587 3.9467
GOGRA04S 38.0151 23.9338 -76.287 109.2225 3.9362
JYY GOCE04S 38.0287 23.9368 -76.317 108.9305 3.9349
ITG-Goce02 38.0438 23.9536 -73.0812 104.8443 3.7965
GO CONS GCF 2 TIM R3 37.719 23.959 -76.3918 108.2268 3.9504
DGM-1S 37.4792 23.9628 -73.8347 106.5596 3.7326
EIGEN-6S 37.6672 24.0817 -87.2624 110.3405 3.9528
GO CONS GCF 2 DIR R2 38.1105 24.4199 -86.811 110.3547 3.8868
AIUB-GRACE01S 37.042 24.5684 -96.7775 83.9338 3.7917
GO CONS GCF 2 SPW R2 38.3276 25.0336 -72.3152 94.9571 3.2665
ITG-Grace2010s 38.8598 25.3639 -61.8203 93.8103 2.9013
EIGEN-CHAMP05S 29.4033 25.8592 -79.801 57.1033 3.2923
ITSG-Grace2014k 39.3789 25.9488 -67.9165 91.9359 3.0217
GO CONS GCF 2 SPW R1 38.8685 26.2716 -82.5727 88.9577 3.3558
Tongji-GRACE01 38.933 26.703 -75.0992 84.0589 2.9155
EIGEN-5S 38.3322 26.8785 -77.6046 84.5698 2.8317
AIUB-GRACE03S 39.394 27.3156 -75.4189 85.9106 2.9971
AIUB-GRACE02S 40.7018 27.7031 -97.4028 83.4522 3.1711
ULux CHAMP2013s 34.0017 28.7899 -84.1968 69.7918 2.6834
GGM03S 48.0025 38.6618 -132.2975 122.9492 3.126
ITSG-Grace2014s 50.7239 46.2059 -118.2534 108.1328 2.4802

82



Table 5.4: Table of statistics of the leveling derived height anomalies at 1442 locations
minus ξ computed from the 37 satellite only global gravity models. The residual for each
of the 13 local vertical datums has been demeaned for each model as discussed in section
3.4 i.e. to remove any local vertical datum offsets. Values are in metres.

Model RMS STD Min Max Kurtosis
GO CONS GCF 2 DIR R5 0.2959 0.2960 -1.1363 0.855 3.7597
GOCO05s 0.301 0.3011 -1.1587 0.9008 3.5757
GO CONS GCF 2 SPW R4 0.3117 0.3118 -1.1016 0.949 3.5946
GO CONS GCF 2 DIR R4 0.3286 0.3287 -1.1559 1.1581 4.0621
GO CONS GCF 2 TIM R4 0.3295 0.3296 -1.0786 1.1142 3.7335
GO CONS GCF 2 DIR R1 0.3377 0.3378 -1.2008 1.0258 3.5649
GO CONS GCF 2 TIM R3 0.3418 0.3419 -1.1428 1.2087 3.9984
GOCO03S 0.3514 0.3515 -1.1817 1.2319 4.2393
GO CONS GCF 2 TIM R2 0.353 0.3531 -1.1378 1.2104 3.9305
GOCO02S 0.3565 0.3566 -1.1405 1.2214 4.0095
JYY GOCE02S 0.3577 0.3579 -1.2084 1.2988 3.6636
GOGRA02S 0.3583 0.3584 -1.1995 1.3021 3.6664
GGM05G 0.3592 0.3593 -1.2541 1.0764 3.7223
JYY GOCE04S 0.364 0.3641 -1.2793 1.2682 4.1168
GOGRA04S 0.3648 0.3649 -1.2716 1.2702 4.1052
ITG-Goce02 0.3655 0.3656 -1.2086 1.2747 4.0581
DGM-1S 0.3678 0.3679 -1.164 1.3102 4.1792
GO CONS GCF 2 DIR R2 0.369 0.3692 -1.2274 1.2604 3.6315
GO CONS GCF 2 DIR R3 0.3714 0.3716 -1.3773 1.3315 4.5353
EIGEN-6S 0.3759 0.376 -1.217 1.2407 3.4455
GOCO01S 0.4608 0.461 -1.4504 1.714 4.6961
GO CONS GCF 2 TIM R1 0.4611 0.4613 -1.436 1.7393 4.753
GO CONS GCF 2 SPW R2 0.4645 0.4646 -1.8544 2.0984 4.9671
GO CONS GCF 2 SPW R1 0.5045 0.5047 -1.9645 2.0774 4.8493
ITG-Grace2010s 0.608 0.6082 -2.3908 2.8321 5.9777
ITSG-Grace2014k 0.6125 0.6127 -2.3545 3.0439 5.8506
GGM05S 0.6558 0.6561 -2.1962 2.8913 4.2781
Tongji-GRACE01 0.7092 0.7095 -2.5449 3.863 7.9658
AIUB-GRACE02S 0.7518 0.7521 -3.1222 4.1126 6.9664
AIUB-GRACE03S 0.7549 0.7552 -2.6117 4.0152 7.6883
EIGEN-5S 0.7569 0.7572 -2.903 4.0912 8.2753
AIUB-GRACE01S 0.8644 0.8647 -4.653 4.8502 9.3208
AIUB-CHAMP03S 0.9309 0.9312 -4.9137 5.0933 11.1112
EIGEN-CHAMP05S 0.9397 0.9401 -3.7561 4.896 9.4562
ITSG-Grace2014s 0.9699 0.9703 -3.6884 3.1677 3.6093
ULux CHAMP2013s 1.0032 1.0036 -3.1938 4.4255 6.1044
GGM03S 1.1046 1.105 -4.6427 2.8927 3.8498
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Figure 5.1: Error degree variance plots for all satellite only models with
GO CONS GCF 2 DIR R5 in red.

5.3.2 Combined global gravity models.

Of the nine combined global gravity models, two particular models give favourable fits.
EGM2008 (Pavlis et al, 2008) fits the terrestrial gravity data the best whilst EIGEN-6C4
(Forste et al, 2015) gives the best fit to the leveling derived height anomalies. Both
models contain coefficients up to degree 2190. These optimal fits are shown by the
standard deviations in tables 5.5 and 5.6.
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Table 5.5: Table of statistics of the terrestrial gravity free air anomalies at 40667 locations
minus ∆g computed from the 9 combined global gravity models in mGals.

Name RMS STD Min Max Kurtosis
EGM2008 17.895 10.7595 -93.3966 153.8344 9.839
EIGEN-6C4 18.5244 11.2757 -91.1377 158.6221 9.7456
EIGEN-6C3stat 19.1893 11.8747 -93.276 156.2887 9.2259
EIGEN-6C2 19.7802 12.901 -92.5833 158.429 8.7311
EIGEN-6C 23.0343 15.7583 -95.6303 146.6954 7.3267
GIF48 31.6523 25.1956 -130.2008 128.2044 4.4832
EIGEN-51C 32.7893 27.7791 -132.5116 135.7618 3.9617
GGM03C 33.6504 27.8076 -148.9071 127.9324 4.1237
EIGEN-5C 34.2565 29.5735 -152.7708 112.7076 3.6278

Table 5.6: Table of statistics of the leveling derived height anomalies at 1442 locations
minus ξ computed from the 9 combined global gravity models. The residual for each of
the 13 local vertical datums has been demeaned for each model as discussed in section
3.4 i.e. to remove any local vertical datum offsets. Values are in metres.

Name RMS STD Min Max Kurtosis
EIGEN-6C4 0.052913 0.045695 -0.32938 0.29049 5.9625
EIGEN-6C2 0.053179 0.044851 -0.33072 0.27795 5.9508
EIGEN-6C3stat 0.053506 0.04537 -0.34567 0.2608 5.8171
EGM2008 0.063349 0.05191 -0.33815 0.28139 4.9277
EIGEN-6C 0.062464 0.054001 -0.38508 0.2568 4.5999
EIGEN-51C 0.20066 0.18726 -0.64107 0.94671 4.5778
GIF48 0.20864 0.19757 -0.68574 0.82133 4.0082
GGM03C 0.3073 0.27562 -1.3577 0.98843 4.2713
EIGEN-5C 0.32364 0.2944 -1.6636 1.4704 4.5849

EGM2008: EGM2008 is a high resolution gravity model which was released by the
National Geospatial-Intelligence Agency (NGA) in 2008. EGM2008 is complete to de-
gree and order 2159 (i.e. it has coefficients C̄nm and S̄nm up to M = 2159) and contains
coefficients up to degree 2190 where as its predecessor, EGM96 only contained spherical
harmonic coefficients up to degree and order 360. This is an improvement in resolution
of around 24 km at latitudes of 45 degrees. The model coefficients are freely available
from http://earth-info.nima.mil/GandG/.

The model was computed from a 5′ × 5′ global gravity database (from land and satellite
altimetry sources) and (at the time of computation) the latest GRACE - based satellite
gravity data for low order spherical harmonic coefficients. Over New Zealand, gridded
terrestrial gravity data were supplied for the model from the GNS Science terrestrial
gravity database; this data set is described in detail in section 4.1.

The accuracy of EGM2008 has been evaluated by several authors. Gruber (2009) com-
pared the EGM2008, EGM96 and other satellite gravity models to independent GPS-
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leveling heights from Australia (197 points), Germany (675 points ), Europe (1233 points),
Canada (430 points), Japan (837 points) and USA (5168 points). The accuracy of
EGM2008 varied, from 3.8 cm (for Germany) to 33.4 cm (USA), but was consistently
better than the EGM96 model over all maximum degrees M .

The 3 cm accuracy in Germany is confirmed in Hirt (2012) and the high accuracy is
attributed to the dense gravity data sets which were used for the model’s development.
Claessens et al (2009b) compared EGM2008 to 254 GPS-leveling data and gravity obser-
vations across Australia. They found the standard deviation of the difference between
the GGM and the leveling data to be 17.3 cm and 5.5 mGal for the free air anomaly data.
This is better than twice the accuracy of EGM96 which had a disagreement between the
GGM and leveling data set of 33.4 cm and 11.7 mGal for the free air anomalies.

EIGEN-6C4 is also a high resolution global gravity model which was released in 2014
and similarly is complete to degree and order 2159 (i.e. it has coefficients C̄nm and S̄nm
up to M = 2159) and contains coefficient up to degree 2190. It was computed from
LAGEOS-1/2, the latest GRACE and GO CONS GCF 2 DIR R5 satellite gravity data
and surface gravity data from a 2’x2’ global gravity anomaly grid which consists of al-
timetry data over the oceans and EGM2008 over continents. The combination of the
data sets with respect to varying degrees is shown in the following figure.

Figure 5.2: Combination scheme with respect to model degree of data sets used to com-
pute EIGEN-6C4. Adapted from slide 4 of Forste et al (2014)
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Figure 5.2 demonstrates the key difference between EGM2008 and EIGEN-6C4 is that
just satellite gravity data is used to derive the long wavelength coefficients up to de-
gree 150 for EIGEN-6C4. These satellite sources include the GO CONS GCF 2 DIR R5
model which was determined to be superior over other satellite only models in section
5.3.1, and new GRACE data, whereas, the longer wavelength coefficients derived for
EGM2008 were based on older GRACE data and a 5’x5’ grid of surface gravity data.
Additionally EIGEN-6C4 incorporates more contemporary satellite altimetry data than
EGM2008.

Huang, J. and Veronneau, M. (2015) evaluated the fit of EGM2008 and EIGEN-6C4
to (231079) land gravity data and (2668) leveling derived height anomalies in Canada.
Here the root mean squared difference of EGM2008 compared to the gravity data was
0.82 mGal smaller than EIGEN-6C4 which indicates a better fit, although the value does
not exceed the 1.8 mGal estimated accuracy of the gravity data. In contrast, the standard
deviation of the difference between EIGEN-6C4 and the leveling derived height anomalies
is shown to be around 1cm smaller than that for EGM2008.

This improved result is attributed to the satellite gravity data having the only influ-
ence on the derived EIGEN-6C4 model coefficients for lower degrees. In contrast for
EGM2008, more of the spectrum is influenced by the terrestrial gravity data, which
causes it to fit terrestrial gravity data better than EIGEN-6C4. The better fit of EIGEN-
6C4 to the leveling derived height anomalies (which is an independent data set) indicates
the satellite gravity data provides a better signal than terrestrial for geoid determination
for the longer wavelengths (Huang, J. and Veronneau, M., 2015).

The same result is paralleled in New Zealand. EGM2008 fits the terrestrial gravity
anomaly data with approximately 0.5 mGal smaller standard deviation than EIGEN-6C4,
and EIGEN-6C4 fits the leveling derived heights anomalies better than EGM2008 with
an approximately 0.5 cm smaller standard deviation. More interestingly, the EIGEN-6C4
model appears to have a marginally better agreement with the leveling derived height
anomalies than NZGeoid2009 which had a 4.8 cm standard deviation (0.2 cm larger).

5.4 Summary

In this Chapter a description of global gravity models (GGM) and how they are used to
approximate the disturbing potential gravity field/ geoid height anomalies and gravity
disturbances has been given. The global gravity models consist of spherical harmonic
coefficients and coefficient standard deviation estimates. The coefficients are used in
equations 5.4 and 5.5 to determine the geoid height and gravity anomalies.

Thirty seven satellite only global gravity models and 9 combined global gravity mod-
els have been evaluated up to their maximum degree and order and compared against
terrestrial gravity data and leveling derived height anomalies.
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Of the thirty seven satellite only models GO CONS GCF 2 DIR R5 provided the best fit
to the terrestrial gravity (with a RMS of 37.6073 mGal and standard deviation of 22.1671
taken of the inner 68% of the distribution since it is leptokurtotic) and leveling derived
height anomalies data sets(with a RMS of 29.59 cm and standard deviation of 29.60 cm
again taken of the inner 68% of the distribution).

For the nine combined models EGM2008 fit the terrestrial gravity data best and EIGEN-
6C4 best fit the leveling derived height anomalies. This is the same as the result obtained
by Huang, J. and Veronneau, M. (2015) in Canada. Huang, J. and Veronneau, M. (2015)
attribute this result to computation of EIGEN-6C4 having not used the terrestrial gravity
data at all to determine low order spherical harmonic coefficients, instead using the new
highly accurate GO CONS GCF 2 DIR R5 and GRACE satellite data. So it doesn’t fit
the terrestrial data as well as EGM2008 which used the terrestrial gravity data to de-
termine a wider spectrum of coefficients. However the better fit of EIGEN-6C4 to the
leveling data, which is an independent data set, suggests that the satellite data is slightly
more reliable at longer wavelengths than the terrestrial for geoid determination.
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Chapter 6

Airborne Gravity across New
Zealand

6.1 Introduction

This chapter introduces the practice of airborne gravimetry, which is the method of mea-
suring gravity from an aircraft. A national airborne gravity survey has been conducted
over New Zealand and the details of the survey are given. The necessary reductions
needed to transform the collected airborne gravity data in to gravity anomalies are dis-
cussed in detail. An accuracy assessment of the data is given by considering the difference
in collected data at flight line intersection points, the agreement of the data with ter-
restrial gravity measurements and the discrepancies amongst data collected along flight
lines which have been flown multiple times. Overall the data have been assessed to be
accurate to approximately 3 mGal.

The airborne data set offers a spatially uniform set of measurements made with con-
sistent apparatus, which will be used to enhance the existing terrestrial gravity data
particularly where these data are sparse and near-offshore regions.

6.1.1 What is Airborne Gravimetry?

Airborne gravimetry is a method of making vertical acceleration measurements with ap-
paratus that are mounted on an aircraft. The history of airborne gravity dates back as
far as the 1950’s (LaCoste, 1967 Huang, 2012) but, as discussed in the introduction, it
has become more prevalent and reliable with the advent of accurate kinematic global
positioning systems developed in the late 1980’s.

Contemporary examples of the use of airborne gravimetry include the surveys conducted
in Switzerland in 1992 (Klingele et al, 1996) and Greenland in 1991-1992 (Brozena, 1991),
Mongolia in 2004-2005 (Forsberg et al. 2007), Taiwan in 2007 (Hwang et al, 2007) and
the South Korean survey in 2008-2009 (Bae et al 2012, Yang 2013 and Jekeli 2013).

Airborne gravimeters measure the total vertical acceleration and so the positioning mea-
surements make it possible to accurately model and remove specific forces associated
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with aircraft motion to obtain a gravity signal e.g. they must be corrected for the ver-
tical accelerations experienced by the aircraft derived from GNSS data, the effect of the
measurements not being made along a vertical gravity gradient (the tilt correction) and
the Eotvos effect which is the perceived increase or decrease in the force of gravity when
traveling west or east respectively (Bell et al, 1991).

The resolvable wavelength of the airborne data is dependent on a number of factors.
For example, the measurement logging frequency and flight speed (i.e. if the gravimeter
only logs once a second and the measurement platform (aircraft) is moving at 50 m per
second then the shortest spatial wavelength that can be resolved is 100 m) and similarly
the flight line spacing has a similar effect on the cross track direction. Also, the airborne
signal is often masked in high frequency high amplitude noise which needs to be removed.
To do this an along track filter is applied however the filter also acts on the underlying
gravity signal and so affects the resolvable wavelength and accuracy of the airborne data.
This is discussed in details by Childers (1999), and in sections 6.3.5 and 6.6.

Various types of gravimeter are used for airborne gravity, for example the Chekan-AM
gravimeter which is based on a dual quartz flexible pendulum element system with fluid
dampening (Forsberg et al, 2015) or upgraded LaCoste and Romberg model S gravime-
ters which are spring-based relative gravity meters, (e.g. used by Hwang et al, 2007 and
Brozena, 1991) that were originally designed to be used on board a ship at sea. They
are mounted on a stabilized platform, which ensures the gravimeter is pointing along the
vertical gravity gradient (Olesen, 2002). This is the type of gravimeter which has been
used in a national airborne survey across New Zealand and is discussed in detail in the
following sections.

The key advantage of airborne gravity is that areas which would be inaccessible by land
or sea (i.e. over ranges or shallow coastal areas) can be surveyed more easily when flying,
and so this method was chosen to improve the uniformity and density of the existing New
Zealand gravity network by conducting a nationwide survey.
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6.2 The New Zealand national airborne gravity sur-

vey

Figure 6.1: The surveyed flight lines (in white)
and calibration lines (in red). The four hangers
used during the survey are marked with stars.

The airborne survey was conducted
in two campaigns, the first between
September and October 2013 and the
second between February and June
2014.

During the survey periods two sur-
vey flights were performed per day
but averaging only 3 survey days per
week due to intermittent poor weather
conditions. Ideally the flight con-
ditions should be smooth to avoid
unnecessary aircraft motion which
leads to spurious gravimeter measure-
ments.

The surveyed region covers New
Zealand’s North and South Islands
and Stewart Island with around
150 flight lines which are typi-
cally spaced 10 km apart, theoret-
ically this is the resolvable wave-
length of the data set (Hwang,
2007).

At the 10 km spatial resolution it is
possible to determine a 2-5 cm accu-
rate quasigeoid from airborne gravity
data (Bruton, 2000). The length of
the lines ranged from around 100km for the shorter lines on the North Island to around
600 km across the South Island. The longer lines in the South were typically flown in
two 300 km length pieces to ensure the aircraft had enough fuel to return.

Twenty one of the flight lines are ”cross lines” which intersect with a number of the
other lines. These are spaced every 50 km and differences between data collected along
these lines and those they intersect with were to check the internal consistency of the
data (see section 6.6.1).

Each line has been flown at a near constant speed of 130 knots and measurements were
made by the gravimeter at a rate of 1Hz so that data points were acquired approximately
every 65 metres.

Lines were flown as close as possible to the highest topography along them (at a near
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constant altitude), this was typically between 2000 (in the flatter regions of the North
Island) and 4000 metres (in the rougher topography of the South Island).

There are also two ”calibration” lines. The first is directly above High Level Road near
Lake Taupo in the North Island, and the second runs along Thomson’s Track in the South
Island (marked in red on figure 6.1). These lines were flown over multiple times to assess
the repeatability of the data which were collected.

Also terrestrial gravity observations were collected along the calibration lines at ground
level. Measurements were made every 500 m and were used as ground truth comparison
for the airborne data. This was done since the airborne data are dense due to the repeat
flights so a robust comparison can be made.

Flights were based out of four separate locations, Hastings, Auckland, Nelson and Timaru,
which were chosen so that a minimal amount of transiting was necessary between flight
lines. The furthest distance to transit was around 100 km when flying from Timaru to
fly the far west lines on the South Island.

At each base location an absolute gravity value has been obtained where the aircraft
was parked using a Lacoste and Romberg model D relative gravimeter. These relative
gravity values were tied into the existing terrestrial gravity network using a GNS Sci-
ence owned software package (Gsolve) which corrects repeat relative terrestrial gravity
observations for tidal effects and determines the gravity value at the observation points
(compensated for gravimeter drift) by least squares. The data were tied into the existing
gravity network (at BM2217 and ACQT for the North Island and B470 and AFQL on
the South Island) with a standard deviation of approximately 0.1 mGal.
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6.2.1 The Aircraft

Figure 6.2: Piper Chieftain ZK-RDT

The aircraft which was used for the sur-
vey was a Piper Chieftain (ZK-RDT). It is
a twin engined aircraft which was chosen
for its long endurance (of around 2000km)
due to the typical 6 hour flight length re-
quired to ensure optimal data capture. It
can normally seat 8 passengers and has a
maximum operating weight of over 3000 kg
which meant it was suitable to house all of
the equipment necessary for the gravity sur-
vey.

The aircraft was fitted with an autopilot which was used during the flight to maintain a
steady air speed and consistent elevation. The autopilot estimated the aircrafts elevation
using barometric measurements, in turbulent conditions the aircraft was susceptible to
elevation changes. The pilot offset these elevation changes by adjusting the elevation of
the aircraft’s height relative to values determined by GNSS measurements.

6.2.2 The GNSS and post processing methods

The aircraft was fitted with a Novatel DL-4 L1 L2 GNSS receiver (serial number NYB06110012)
and a permanent antenna (AT2774-41NTW-TNCF-000-RG-26-NM) mounted on the roof
1.32 metres (52”) from the cabin floor where the gravimeter is placed (this can be seen
in figure 6.3).

Figure 6.3: Piper Chieftain ZK-RDT schematic diagram

93



The GNSS receiver logged at a rate of 2Hz and output 2 data file types,

� a NMEA file, which provides the receiver’s position and additional information
about the determined position (e.g. how many satellites were used)

� and a PDC file which provided the information needed to calculate a position (e.g.
satellite range, orbits and clock models of the satellites)

The GNSS data files were post-processed by Land Information New Zealand using the
software package Waypoint GrafNav 8.40 (GrafNav/GrafNet User Guide, 2013). The
software only required the PDC to calculate the position of the receiver.

The software package Waypoint GrafNav 8.40 was chosen since it performed optimally
over other software during a pilot airborne survey the year previous to the national sur-
vey and additionally produces accuracy estimates of positioning calculations, which may
prove useful for further study. It was specifically developed to handle airborne kine-
matic GNSS data, and so it was used to obtain a DGNSS (Differential Global Navigation
Satellite System) solution for each flight.

Processing Method

From the GPS PDC data collected a position solution was determined by the baseline
DGPS method. This method required supplementary GPS data from base stations, in or-
der to determine the baseline processing. All base station data were provided by the Land
Information New Zealand LINZ PositionNZ network (http://apps.linz.govt.nz/positionz/,
last accessed 2016). The network consists of 33 continuously operating reference stations
across mainland New Zealand and the Chatham Islands, and the data at the stations are
recorded every 30 seconds.

Up to 6 base stations were used to process the solutions and were selected by assess-
ing the extent of each flight line in QGIS and picking those which ensure approximately
100 km coverage of the flight line.

The ”GNSS Airborne (High Altitude)” method was used and the option ”Dual frequency
carrier phase” was selected since it proved to give better accuracy on baselines longer
than 10 km.

The data were then assessed for gaps after processing, typically based on poor satel-
lite visibility/ the geometry of the satellite positions. The gaps were resolved by lowering
the elevation masks (which filter out signals from satellites below a specified angle of
elevation above the horizon) from the default 12◦ until the gap was resolved, typically
around 9◦.
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6.2.3 The gravimeter

Figure 6.4: Upgraded ZLS LaCoste and
Romberg S80 gravimeter used for the New
Zealand national airborne gravity survey.

An upgraded ZLS LaCoste and Romberg
S80 meter was used for the airborne
data collection (LaCoste, 1967). It is a
zero-length spring based relative gravity
meter which sits on a stabilized, damped
platform.

The platform aligns the gravimeter with
the vertical gravity gradient (over a pe-
riod of around 240 seconds) using 2 ac-
celerometers (fx and fy) and gyroscopes
and the dampening reduces any high
frequency vibrations. This means the
meter is ideally suited to being mounted
on an aircraft to determine gravity vari-
ations across a survey area, where fine
scale roll and pitch manoeuvres of the
aircraft along a flight line are adjusted

for by the platform.

The gravimeter largely consists of a hinged beam supported by a zero-length spring.
When the force of gravity changes the beam begins to move. The spring length (tension)
can be adjusted to null the beam and the change in spring tension can be used to measure
the change in gravity. Internally large scale accelerations of the beam are reduced using
an air dampener on the model of gravimeter used for the data collection. The stabilized
platform is damped by oil shock absorbers and bungee cords around the base. This is
depicted in figures 6.5 and 6.4.

When the gravimeter is in motion it is not practical to constantly null the beam so the
gravimeter must be read whilst the beam is in motion. Mathematical analysis of the
gravimeter dynamics (described in Dehlinger (1978) pg 110 to 113 and the Model S in-
struction manual) shows that a relative gravity measurement, made at time t, can be
calculated from the gravimeter component values: spring tension (S), beam position (B)
and cross coupling (C), as follows,

gt = α(St + kḂt + Ct). (6.1)

The constant values α = 0.9899 and k = 30 have been provided by the manufacturer,
where k is called the beam scale factor and α converts the counter units of the spring
tension, beam derivative and cross coupling to mGal.

Ḃt is the differential of the beam position B with respect to time and has been calculated
from the raw data by a central difference,

Ḃt =
Bt+1 −Bt−1

2
. (6.2)
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Figure 6.5: Schematic design of the Lacoste and Romber model S gravimeter adapted
from Dehlinger (1978).

The cross coupling is computed by the gravimeter automatically and is given by,

C = c1Ḃ
2 + c2(fyB) + c3(fxḂ) + c4(fyḂ) + c5(f 2

xḂ) (6.3)

where the constants c1, c2.c3, c4 and c5 have been provided by the manufacturer.

The meter logs its data directly to a laptop and saves a new file once an hour and
the individual measurements are logged once every second.

The gravimeter has certain limitations which require consideration when it is used in
a practical environment. For example, the system consists of highly sensitive moving
parts and so when it is subjected to extreme/jerky motions it can easily be broken.

To avoid any unnecessary breakages when conducting the national survey, during take-
off, landing and turning from one flight line to the next, the spring tension motor was
turned off and the beam was clamped down, and also the platform torque motors (which
are used to align it with the vertical) were switched off.

Once the whole system was re-engaged on a flight line it took approximately 5 min-
utes for the gravimeter to begin logging meaningful gravity data again. However, the
transient time for the gravimeter was a known factor during the survey design and was
accounted for by extending the flight lines by approximately 10 km; also for lines that
were flown in two pieces, a sufficient overlap was ensured.
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6.3 Gravity reductions

This section documents the initial processing step taken to reduce the raw airborne gravity
measurements to free air gravity anomalies, namely

� the components of the gravimeter output file, spring tension S, beam position B,
cross coupling C, cross accelerometer fx and long accelerometer fy and

� processed DGNSS data which contains ellipsoidal (GRS80) latitudes, longitudes
and heights, (φ, λ, h).

The following 7 key steps were taken (Olesen, 2002).

1. Calculate relative measurements from the raw components of the gravimeter for all
readings by equation 6.1.

2. Obtain the following constants: A “still” relative gravity measurement, gB (using
the Lacoste and Romberg S metre described above), and the absolute gravity value
GB, where the ”still” data was recorded. These measurements were made where
the aircraft was stored over night as described in section 6.2.

3. From the GPS data, calculate the vertical accelerations, ḧt, and use these to syn-
chronise the relative gravity measurements, gt with GPS data in the time domain.

4. Using the gravimeter accelerometer data, fx and fy and cross/along track GPS
derived accelerations, ax and ay, calculate the tilt correction, ∆gtilt.

5. From the GPS data, calculate the Eotvos effect, ∆geot, ellipsoidal absolute gravity
effect γ, and free air effect δgFA for each record in the GPS data file.

6. Calculate the airborne free air anomaly using the following equation,

∆gFA = gt − gB +GB − ḧ+ ∆gtilt −∆geot − γ + δgFA. (6.4)

7. Low pass filter the along track free air anomalies to remove high frequency noise.

By expanding on the points above, this section details the initial processing steps taken
for the airborne gravity measurement to obtain free air anomalies along each flight line.

A worked example is followed throughout this section, using a particular flight line in
the airborne data set, to demonstrate the typical amplitude of the initial relative grav-
ity data and the required reductions necessary to obtain a meaningful signal for further
processing.

Relative gravity measurements from raw components of the gravimeter

For each flight line the individual gravimeter output components were extracted and the
relative gravity value has been computed for each measurement point along by equation
6.1.

Figure 6.6 shows the relative gravity readings along a particular flight line. The am-
plitude of the signal is of the order 104 mGal, which is significantly larger than the ±200
mGal that is expected of the gravity signal.
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Figure 6.6: The relative gravity from the gravimeter computed from the raw gravimeter
components. The amplitude of the signal is 104 mGal, this is significantly larger than
what is expected from the gravity field. Corrections must be made to obtain a meaningful
gravity signal.

Obtaining absolute gravity values from the relative measurements

Relative gravity measurements gB and absolute gravity values GB have been obtained
at each of the base locations. The relative measurements made by airborne gravimeter
are prone to a small amount of drifting, i.e. the base value of the gravimeter given by
GB − gB steadily increases over time. The drift rate has been estimated at around 0.3
mGal per month from a long term series of measurements made at the same location
where the gravimeter is stored when it is not in use.

To minimize the effect any drift in the relative measurements during the survey gB was
recorded on a daily basis. The daily readings have then only been used to calculate ab-
solute gravity (vertical accelerations) from the relative measurements made on that day
of surveying.

The absolute gravity along each flight line has been obtained by the following equation,

Gt = gt − gB +GB (6.5)

Gt is shown in figure 6.7.
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Figure 6.7: The derived absolute vertical accelerations along the flight line measured by
the gravimeter.

6.3.1 Vertical Accelerations and Synchronising the GPS with
the Gravimeter measurements

The gravimeter is measuring the total acceleration along which its axis is aligned. When
the gravimeter is mounted on a moving body (such as a boat or an aircraft) Gt addition-
ally contains contributions from non gravitational accelerations. To recover the gravity
signal the effect of the platform motion must be modeled and subtracted.

Both the gravimeter and the GPS contain a time channel. To accurately locate the
gravimeter measurements and correct for the effects of the platform motion the two sig-
nals must be synchronised.

When the gravimeter is mounted on an aircraft, the vertical accelerations of the aircraft’s
motion are significantly greater and higher frequency than any other factor contributing
to the measured acceleration Gt. For the most part, the gravimeter is just measuring
the vertical accelerations of the aircraft’s motion. This is useful since the large similarity
between two signals can be used to synchronise the data sets.

The vertical accelerations, az = ḧ, of the aircraft motion can be deduced by taking
two successive central differences to the elevation above the reference ellipsoid h given by
the GPS. This is,

ḧt =
ht+2 − 2ht + ht−2

4
, (6.6)

where h is given in units of 0.001 cm. Figure 6.8 shows the GPS vertical accelerations
for the example flight line.

99



Figure 6.8: The GPS derived vertical accelerations along the example flight line. Similar
to the relative gravimeter data the amplitude of the GPS derived vertical accelerations
is around 104 indicating that the aircraft’s motion is the likely source of high ampli-
tude signal in the gravimeter measurements. For this reason the GPS derived vertical
accelerations must be subtracted from the gravimeter signal.

Gt and ḧ can then be used to find any offset between the gravimeter and GPS time
channels by finding the argument which maximizes a convolution of them. i.e. for
G(t+ δt) = Gt+δt and ḧt = ¨h(t) δt is given by,

δt = argmax
t

∫ ∞
−∞

G(t− τ)ḧ(t)dτ.

The convolution is then just a multiplication in the Fourier domain giving,

Q̂ = Ĝ ∗ ˆ̈h.

For Qt the inverse Fourier transform of Q̂ , δt is given by δt = argmaxt(Q). At the start
of the survey the gravimeter time was set using a GPS clock. The GPS sends a pulse
exactly every second to the gravimeter which is used to set the time precisely on the
second. For this reason, for the data collected during this survey, δt is an integer number
of seconds.

For the example flight line data the offset was determined to be 16 seconds. The fol-
lowing figure shows the GPS derived vertical accelerations (in red) and de-meaned (just
for illustrative purposes) gravimeter data for a small section of track. The agreement
between the two signals is striking in terms of the amplitude and general correlation.
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Figure 6.9: A zoomed in plot of the GPS derived vertical accelerations (red) and de-
meaned gravimeter absolute gravity along the example flight line (blue). The two signals
are remarkably similar indicating most of what the gravimeter is measuring is the vertical
accelerations of the plane.

6.3.2 Tilt Correction

The gravimeter has two accelerometers (one pointing across the meter, fx, and one along
the meter, fy) which are used in conjunction with gyros and torque motors to level the
platform. However the platform leveling is not immediate and so the gravimeter axis
can be perturbed from the vertical gravity gradient. When this happens the gravimeter
is less sensitive in the vertical direction and sensitive to horizontal accelerations which
causes biases and correlated errors in the signal. Horizontal accelerations are common-
place during the survey where there has been a cross wind along the flight line and during
turbulence, and so a tilt correction is important, particularly for these flight conditions.

The tilt correction is given by,

∆gtilt = g −
√
g2 + f 2

x + f 2
y − a2

x − a2
y (6.7)

where g is the nominal value of gravity, and ax and ay are the across and along track
accelerations (all given in mGal) ( Peters and Brozena, 1995).The general amplitude of
this correction can be seen in figure 6.10 of the tilt correction along the example flight line.

The readings from the accelerometers are included in the gravimeter output file but
are given in millivolts. The millivolt readings can be transformed into mGal using a scale
factor which must be calculated. This calculation was performed for the gravimeter used
for the airborne survey and the details of this process are given in appendix 1.
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Figure 6.10: The calculated tilt correction along the example flight line.

6.3.3 The Eotvos effect

The Eotvos effect is a change in the strength of gravity due to the aircraft’s velocity
relative to the rotation of the earth (Bell, 1991). When moving in the same direction as
the rotation of the earth (i.e. eastbound) the angular velocity is greater so there is a per-
ceived decrease in the force of gravity, and conversely when moving west. The following
steps outline how to calculate this effect following Harlan (1968).

First calculate the radii of curvature of the prime and equatorial meridians at each point
(φt, λt) as follows,

� Nt = a√
1−e2sin(φt)2

Radius of Curvature for equatorial meridian

� Mt = a(1−e2)

(1−e2sin(φt)2)3/2
Radius of Curvature for Prime meridian

where a = 6378137 metres is the equatorial radius of the GRS80 reference ellipsoid and
e2 is the eccentricity squared of the GRS80 reference ellipsoid as given in section 2.2.1.
Next, calculate the Longitudinal and Latitudinal derivatives in radians per second. This
can be done numerically by taking a central difference and multiplying by π/180. This
gives the following,

� φ̇t = φt+1−φt−1

2
π/180

� λ̇t = λt+1−λt−1

2
π/180

Then the velocity in the East and North directions on the surface of the ellipsoid are
given as,

� VE(t) = Ntcos(φt)λ̇t;

� VN(t) = Mtφ̇t
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The Eotvos effect is then given by,

∆gEot = −V
2
N(t)

a
[1 +

ht
a

+ f(2− 3sin(φt)
2)]− V 2

E(t)

a
[1 +

ht
a
−

fsin(φt)
2)]− 2VE(t)ωcos(φt)(1 +

ht
a

) x 105 for mGal

(6.8)

here f is the ellipsoid flattening as given in section 2.2.1 and ht is the height above the
reference ellipsoid in metres.

The following figure shows the Eotvos correction computed for the example flight line.
The correction is positive since the flight line was flown from west to East.

Figure 6.11: This figure shows the Eotvos correction along the example flight line. The
correction is positive since the flight line was flown from South-West to North-East.

6.3.4 The Free Air gravity anomaly

As discussed in section 2.2.2 the free air anomaly is calculated by subtracting the gravity
field of a reference ellipsoid γ, and the free air effect, −δgFA from the gravity observa-
tions. The GRS80 coordinates acquired by the airborne GPS have been used to obtain
the normal gravity γ, and the GRS80 height minus the Eigen-6C4 geoid undulations (to
estimate the normal-orthometric height) has been used to calculate −δgFA.

The free air anomaly is then given a long each flight line by,

∆gFA(t) = G(t)− Ḧ(t) + ∆gtilt(t)−∆gEot(t)− γ(t) + δgFA(t) (6.9)

Figures 6.12 and 6.13 show the two corrections −γ and δgFA along the example flight
line and figure 6.14 shows the free air gravity signal ∆gFA(t).
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Figure 6.12: The ellipsoidal gravity along the example flight line. There is a negative
gradient in the correction since ellipsoidal gravity is strongest at the poles and the flight
line was flown from south-west to north-east.

Figure 6.13: The free air correction along the example flight line.
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Figure 6.14: The noisy free air gravity signal along the example flight line. Note that the
signal amplitude is significantly higher than the expected ±200 mGal range of the free
air gravity anomaly. The signal is completely masked in high amplitude, high frequency
noise.

6.3.5 Low Pass Filtering

The free air anomaly for each individual flight line is masked in high frequency, high
amplitude noise. This can be seen in figure 6.14 of the final free air gravity profile (after
applying the discussed corrections to the gravimeter data) along the example flight line.
The amplitude of the signal is around 104 mGal however the anticipated gravity signal is
more likely to be within the range of around ±150 mGal as can be seen in figure 4.3 of
the terrestrial free air anomaly.

The standard approach to remove the noise is to implement a low pass filter along the
flight line data in the time domain (Olesen, 2002). A Gaussian low pass filter has been
used for all flight line data in the survey. The filter has the form,

g(t) =
1√
2πσ

e−
t2

2σ2 (6.10)

where the frequency response is given by the Fourier transform, ĝ(f) = e−f
22σ2

f and with
σσf = 1

2π
. The filtered free air anomaly, ˜∆gFA(t) , is given by

˜∆gFA(t) =

∫ ∞
−∞

∆gFA(t− τ)g(t)dτ. (6.11)

The filter attenuates the high frequencies in the signal so that the noise is removed. Figure
6.15 shows the noisy free air anomaly data after a Gaussian filter with a σ parameter of
120 seconds is used (for illustrative purposes, this parameter is optimized in section 6.6),
in red the EGM2008 global gravity anomaly along the line is also shown to demonstrate
the effectiveness of the filter.
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Figure 6.15: This figure shows the filtered free air gravity signal (in blue) along the
example flight line and the EGM2008 gravity anomaly along the same line (red) for
comparison.

6.3.6 Terrain corrections for the airborne gravity data

The operation to correct for the vertical component of gravity caused by the terrain
with terrestrial gravity measurements is split into two parts. First the effect of a slab
of topography the height of the gravity observation is removed, then the effect of mass
missing below the slab and additional mass above the slab is corrected for with the ter-
rain correction as discussed above. The vertical gravity component of the deviations of
the terrain from this slab beyond some maximum radius (taken before as 120 km) is
considered negligible.

The airborne measurements are made at least 500 m above the topography. If the same
two step operation is performed for the airborne gravity data the thickness of the Bouguer
slab would be substantially larger and would necessitate a significantly larger maximum
radius for the terrain corrections to adequately remove the effect of the topographic de-
viations from the slab. Instead an amended form of the equation 2.13 given in section
2.2.3 gives the vertical gravitational effect of an annulus of topography of height h for a
measurement made at height e above the geoid as,

δg(r, R, h, e, ρ) = 0.0419ρ(
√
R2 + (e− h)2 −

√
r2 + (e− h)2 +

√
r2 + e2 −

√
R2 + e2).

(6.12)
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Where δ is the resolution of the DEM, as before calculate a factor f which corresponds
to the ratio between the area of the piece of terrain and the area of the annulus,

f =
δ2

π(R2 − r2)
(6.13)

and the terrain correction δgTC for the piece of terrain xp, yp, hp is given by,

δgTC = fδg(r, R, h, e, ρ). (6.14)

This way, the vertical gravitational effect of a piece of topography right down to the geoid
can be calculated directly. The geometry of this correction is illustrated in figure 6.16.

Figure 6.16: An illustration of the geometry for a segment of Hammer’s terrain correction
for an annulus of topography e− h below the observation location.

Terrain corrections have been computed for each of the airborne gravity observations.
The near zone effect of topography on the airborne gravity observations is significantly
reduced due to the elevation of the gravity observations above the earth’s surface. More-
over, in total there were close to 1 000 000 measurements made. For these reasons it was
considered advantageous to use the 64 m resolution digital elevation model over the 8 m
resolution model since it reduced the computation time from around 45 days to about 5
without any substantial loss in accuracy.

When computing the along track Bouguer anomalies, the terrain correction is added
to the noisy free air gravity anomaly before the line is filtered to reduce topographic
aliasing.

107



6.4 Detecting erroneous sections of track

The free air airborne gravity signal for each flight line (after applying a Gaussian filter
with σ = 120s) was assessed for erroneous sections of track by comparing it to neighbour-
ing flight line data and a gravity anomaly derived from the EGM2008 coefficients. Any
biases/dc offsets in the flight line data were not considered during this process, only the
general shape of the gravity profile.

There appeared to be three predominant causes of erroneous data.

1. At the start and end of each flight line, the along track filtering process has edge
effects where the full filter kernel is not used.

2. At the start of each flight line, there is a transient period of up to 5 minutes where
the gravimeter settles down to logging realistic acceleration data following the beam
being un-clamped and torque motors being reengaged.

The beam was clamped and the platform torque motors were turned off during
times when the aircraft turned. The beam was clamped because the accelerations
during aircraft turnings exceeded the range of the gravimeter and could potentially
damage it. The stabilized platform has a maximum tilt angle smaller than needed
for the aircraft to manoeuver quickly between lines, necessitating the torque motors
to be turned off.

However, the transient time for the gravimeter was a known factor during the
survey design and was accounted for by extending the flight lines by approximately
10 km; also for lines that were flown in two pieces a sufficient overlap was ensured.
This meant that clipping the start of each flight line results in minimal data loss
over the whole survey region. Moreover the change in the measured gravity due to
heading, latitude and elevation coming onto a new flight line was approximated and
the spring tension was offset prior to reengaging the torque motors and un-clamping
the beam so that transient period was minimized.

3. The beam position has a maximum range of ± 9000 mV. However in extreme turbu-
lence the vertical acceleration of the aircraft cause the beam to reach this threshold.

When the beam position changes the gravimeter adjusts the spring tension to pull
the beam back to the null position. However when the beam position reaches the
threshold the adjustments made by the gravimeter to the spring tension are exces-
sive. It takes several minutes before the gravimeter is again logging realistic vertical
acceleration data.

To flag the bad data without having to delete observations from the whole data base, a
vector of weights for each flight line has been established. The weights have been assigned
a one where the data are considered good and a zero for data in the bad sections of track.
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Detecting and flagging erroneous data at the start of the flight lines: The
gravimeter measurements during the transient period at the beginning of each flight line
approach the true vertical accelerations like a damped harmonic oscillator and the edge
effect of the filter causes large deviations. Zero weights have been given during the start
and end of each flight line to flag the data for removal/down weighting when they are
further processed.

Figure 6.17: This figure demonstrates where zero weights were manually assigned to the
erroneous sections of track at the beginning and end of the example flight line. The top
plot shows the filtered signal (black), clipped filtered signal (blue) and gravity anomaly
from EGM2008 (red) and the bottom plot shows the weights which have been manually
assigned to the along track data.
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Detecting and flagging erroneous data along the flight lines Erroneous sections
of data appear as brief patches of impulse noise in the raw unfiltered gravity signal and
as a sudden high amplitude oscillation in the filtered signal as shown in the following
figure.

These incidents were isolated by comparing the filtered airborne gravity signal to neigh-
bouring flight line data using a grid and also comparing the gravity anomaly profile to
EGM2008.

Figure 6.18: This figure illustrates where zero weights were manually assigned to the
data. The gridded data are shown in subplot (a) with the flight line in black. These
plots were used to examine the cross track agreement of the data. Subplot (b) shows the
raw unfiltered free air gravity signal. Here there is some impulse noise characteristic of
the beam reaching the threshold, around 1800 s and 4700 s. Subplot (c) shows the filter
signal (blue) and gravity anomaly from EGM2008 and subplot (d) shows the weights
which have been assigned to the data.

The worst of these events have been visually identified and flagged in the along track
data using the filtered free air anomaly signal and comparing it to neighbouring flight
lines and a gravity anomaly at flight elevation derived from EGM2008. The total amount
of data that have been identified as erroneous is 6.38%. Figures 6.19a and 6.19b demon-
strates where data has been assigned a zero weight and has not been plotted.
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6.5 Flight line biases

Data along several flight lines appear to be offset from a gravity anomaly derived from
the EGM2008 coefficients and the surrounding flight line data. Potential sources of the
biases include the tilt correction (if the accelerometer millivolts to mGal scaling coeffi-
cients are modelled poorly), insufficiently accurate gravimeter still readings, GPS height
errors and gravimeter operational errors which result in there being a difference between
the spring tension counter on the gravimeter and what is recorded on the computer.

The following figure shows the free air anomaly along an example flight line and the
gravity anomaly derived from the EGM2008 coefficients along the line.

Figure 6.20: Along track free air profile showing a bias present in the airborne gravity
data along flight line 23. Airborne data is plotted in blue, EGM2008 is plotted in red and
the bias adjusted line by the methodology described in the following section is plotted
in green. There is a clear dc offset between the red and blue lines, estimated by a mean
difference to be 15.7 mGal. This bias is not present visually between the red and green
lines.
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A bias, bi for each flight line i has been estimated, using the methodology laid out in
Reilly (1979), by the following procedure. Details regarding each of these steps are given
in the remainder of this section.

1. First compute the Bouguer anomaly for each flight line in the airborne gravity data
set.

2. Then calculate the EGM2008 gravity anomaly along each flight line at flight level.

3. Next remove the approximate effect of terrain in the EGM2008 gravity anomaly
model.

4. Subtract the terrain corrected EGM2008 signal from the airborne Bouguer anomaly
data to obtain residual gravity observations here denoted ∆g.

5. Calculate the empirical covariance of the residual gravity observations ∆g, and find
the best fitting analytic logarithmic covariance model parameters.

6. Calculate the covariance matrix, Cgg, of residual gravity observations, the bias co-
efficient matrix A, and the diagonal regularization matrix N .

7. Calculate the biases b by the following equation,

b = (AT (Cgg +N)−1A)−1AT (Cgg +N)−1∆g. (6.15)

b is a 1 by M vector, where M is the number of separate lines of data in the survey, i.e
each entry in the vector b is the bias for a flight line, which must be subtracted from the
line data so that it becomes ”bias free”. Equation 6.15 consists of the matrix Cg,g, which
is a covariance matrix that describes the spatially correlated signal in the residual gravity
data ∆g, N which is a covariance matrix which describes the noise in the residual gravity
observations and A which describes which bias element each residual gravity observation
will contribute to in the solution.

The inclusion of matrices Cg,g and N ensures the spatially correlated residual gravity
signal and signal noise modeled by N do not contribute to the determined biases. The
method described above to compute flight line biases is advantageous over just estimat-
ing a mean offset from EGM2008 for each flight line since it takes into consideration the
correlated signal between separate flight lines.

A terrain corrected EGM2008 is subtracted from the Bouguer gravity observations in
step 4 to ensure the estimated biases, calculated for the residual signal ∆g, are indepen-
dent of the long wavelengths in the gravity field. EGM2008 was chosen for this procedure
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since it gave the best fit to the gravity data in section 5.1. The reason for using the
Bouguer gravity anomaly and a terrain corrected EGM2008 gravity anomaly is to avoid
topographical aliasing, Jekeli (2013) indicates terrain can introduce a bias of up to 8
mGal if not properly taken into account.

Advantages of using the bias adjustment procedure described above over the
traditional cross-over adjustment method. Below the standard cross-over adjust-
ment procedure for line bias estimation is described. It has been used historically for
shipborne data for example the ship track data discussed in the Amos (2005), and simi-
larly for airborne data e.g. the 1998 Greenland survey described in Forsberg et al (1999),
in Tahiti by Shih et al (2015). The traditional method considers the difference between
values recorded along different flight lines at intersection points and solves a least squares
formulation of the flight lines bias based on the intersection differences.

i.e. Let fj, j = 1, 2, 3, ....J and fk, k = 1, 2, 3, ...K be two distinct sets of flight lines
which run perpendicular to each other. Let xj,k be the intersection point of lines fj and
fk with ∆gj,k the true gravity anomaly at that point.

If ∆̃gj,k and ∆̃ψj,k are the measured gravity anomaly along lines fj and fk respectively
at the point xj,k,

∆̃gj,k = ∆gj,k + µj,k (6.16)

and
∆̃ψj,k = ∆gj,k + vj,k (6.17)

then the cross-over difference, Cj,k, is given by,

∆̃gj,k − ∆̃ψj,k = µj,k − vj,k = Cj,k. (6.18)

Let Bj = b1, b2, ..., bJ and B̂k = b̂1, b̂2, ...b̂K be two distinct sets of biases for the two sets
of perpendicular flight lines. Then for each intersection point,

bj − b̂k = Cj,k + εj,k (6.19)

The biases Bj and B̂k can then be solved for by least squares, i.e. minimizing the set
of εj,k’s. Hwang et al (2006) and Hwang et al (2007) use a weighted least squares solution.

The standard deviation of the set of all cross-over differences is typically used to as-
sess the noise level of the data, this is described in detail in section 6.6. The cross-over
adjustment results in a set of cross-over differences which have a standard deviation that
is smaller than it was initially, e.g. in the 1998 Greenland airborne survey (Forsberg,
1999) the cross-over adjustment reduced the RMS of the crossover discrepancies by 1
mGal, and for Hwang (2007) it reduced the cross-over RMS of the difference by around 2
mGal. However the reduction in the RMS error value does not necessarily mean the noise
level in the new data is smaller, just that noise at the intersection points has been partly
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absorbed into the estimated biases, this degrades the quality of the noise assessment.

Moreover the biases will be in part based on the measurement errors at the intersec-
tion points. This is acknowledged by Olesen et al (2002) and Forsberg et al (2001) which
both indicates that the traditional cross-over adjustment procedure (equation 6.19) will
distribute the errors at measurement points into the estimated flight line biases. This
problem is compounded by the fact the cross-over adjustment problem is typically poorly
constrained (i.e. the flight line bias for each line is determined from very few points).
Some of the flight lines in the national airborne survey only have one intersection point
as can be seen in figure 6.29. Which means the total error in the airborne data at that
intersection point will be absorbed by the flight line bias which is inappropriate.

Finally, section 6.6 illustrates that the along track filter applied to the airborne data
additionally introduces intersection differences between flight lines. It would not be ap-
propriate to allow these intersection differences to have influence over the bias estimation.
This is acknowledged by Murray (2001) who describes this bias adjustment procedure as
ineffective for airborne gravimetry due to gravity signal attenuation caused by the filter.

The alternative method described previously which is based on the Reilly (1979) for-
mula, is advantageous compared to the traditional approach with respect to the issues
raised above. The alternative method is not poorly constrained and is instead based on
all the data. This reduces the influence of zero mean Gaussian noise in the independent
measurements on the biases since the mean of the noise is more likely to be zero due to
the larger sample size (i.e. the variance of the mean noise level is equal to the variance
divided by the square root of the sample size). The random measurement noise is further
excluded from the bias estimation using the Reilly (1979) method due to the inclusion
of the matrix N which has a regularization effect on the determined biases with respect
to the estimated noise level of the flight line data. Finally, there is still some validity
to the cross-over error analysis (discussed in detail in section 6.6) since the cross-over
discrepancies have not been inappropriately parameterized.

Step 1. the Bouguer anomaly airborne gravity data: Figure 6.21 shows the
calculated Bouguer gravity anomaly signal after a 120 second Gaussian filter along each
separate flight line. The figure corresponds to step 1.
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Figure 6.21: The airborne Bouguer anomaly data for each flight line. Only the data
which have not been flagged as erroneous (white gaps) are shown here.

Steps 2,3 and 4. obtaining a zero mean random signal To ensure the estimated
flight line biases b are independent of the long wavelengths in the gravity field a long
wavelength gravity anomaly from global gravity model EGM2008 was subtracted to ob-
tain a residual gravity signal g.
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To avoid topographical aliasing when gridding residual gravity observations, ∆g1, by
least squares collocation (see section 7.1) Forsberg and Kenyon (1995) says an airborne
gravity observation ∆g can be broken into three parts,

∆g = ∆g1 + ∆g2 + ∆g3 (6.20)

where ∆g3 is a long wavelength gravity signal from some GGM (global gravity model)
such as EGM2008, ∆g2 is the residual terrain effect and ∆g1 is the residual gravity signal.

The residual terrain effect ∆g2 is computed from a DEM which has had the long wave-
length (approximately the same as the minimum wavelength in the GGM) topographic
variations removed. This prevents the effect of the long wavelength topography present
in the GGM being subtracted twice when obtaining ∆g1.

It is well known that the effect of terrain is distributive, i.e. if F (ti) is the effect of
a piece of terrain denoted ti, then for ti = t̂i + t̄i (i.e. the prism has been broken into two
sections), F (ti) = F (t̂i + t̄i) = F (t̂i) + F (t̄i).

This property of the terrain effect is most commonly employed when using a Bouguer
slab/shell plus the effect of topographic variations from the slab/shell i.e. the terrain
has been broken into the average terrain (the Bouguer slab) plus high frequency terrain
(variations from the slab).

For this reason, here the residual terrain effect, ∆g2 has been calculated in two parts
as,

∆g2 = ∆ĝ2 −∆ḡ2 (6.21)

which is the effect of the full terrain minus the effect of the long wavelength terrain. Then

∆g = ∆g1 + ∆ĝ2 −∆ḡ2 + ∆g3 (6.22)

so that
∆g1 = (∆g −∆ĝ2)− (∆g3 −∆ḡ2). (6.23)

(g−∆ĝ2) is the observed Bouguer anomaly (as seen in the previous figure) and (∆g3−∆ḡ2)
is the GGM gravity anomaly approximately corrected for the effect of long wavelength
topography. In the absence of the along track biases ∆g1 would be a zero mean random
variable which is spatially correlated and should be independent of the gravitational effect

of topography. However for each line i, ∆g
(i)
1 =

˜
∆g

(i)
1 + bi where bi is the along track bias

and
˜

∆g
(i)
1 s is the spatially correlated zero mean random variable.

Figures 6.22a shows the 8 m DEM filtered to a wavelength of 9 km (approximately
the minimum wavelength of EGM2008 expanded up to degree and order 2160 at mid
latitudes) using 2D Gaussian window function to avoid any high frequency ringing, and
figure 6.22b shows the estimated terrain effect on a grid 5000 m above the reference ellip-
soid. Figures 6.23a and 6.23b show the EGM2008 gravity anomaly at 5000 m above the
reference ellipsoid before and after the terrain correction is applied. Figures 6.24a and
6.24b show the terrain corrected EGM2008 along the flight lines and the residual gravity
signal ∆g1.
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Step 5: Calculating the empirical covariance of the residual signal and fitting
a covariance model: The empirical spatial covariance of the residual gravity data,
here denoted ∆g is a function of distance. To compute it, the latitude and longitude
coordinates must first be transformed to NZTM eastings and northings x and y, the
covariance values can be then calculated by equation 6.24.

Cov(ŝk) =

j=N∑
j=1

∑
i:
√

(xi−xj)2+(yi−yj)2∈ŝk

∆gi∆gj
nk

(6.24)

where N is the total number of residual gravity data, ŝk is a radial “bin” with the range
[(k − 1)s, ks] so that s is the width of the “bin”, and nk is the sum over j of the number
of points in each radial “bin” around the points (xj, yj).

Cov(ŝk), (seen in figure 6.25 marked as blue circles), has been determined for the residual
airborne gravity signal shown in figure 6.24b with radial step sizes of s = 250 m..

Figure 6.25: Empirical covariance is shown in blue and the fitted logarithmic covariance
function is shown in green.
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A Forsberg (1987) covariance model of the form of equation 6.25 was then fitted to
the empirical covariance values. The choice of this covariance model over multiple others
is justified in section 7.1.

C = −f
k=3∑
k=0

αklog(Dk +
√
s2 + (Dk + h1 + h2)2) (6.25)

with

f = C0log(
(D + T )3(D + 3T )

D(D + 2T )3
) (6.26)

here h1 and h2 are taken to be zero, s distance in the x-y aircraft (i.e. the x-axis in
figure 6.25), αk = 1,−3, 3,−1 and Dk = D + kT . The parameters D, T , and C0 were
varied over a range of values, and the model was evaluated at successive intervals of
s = 0, 125, 375, 625, ...m and compared to the empirical covariances. An optimal fit was
obtained with C0 = 75.8mGal, D = 9.5km and T = 48.5km. This can be seen by the
green line in figure 6.25.

Step 6: calculating the covariance matrix Cgg, bias coefficient matrix A and
noise matrix N : For n residuals gravity observations ∆gi known at locations in 3D
Euclidean space xi, yi, zi (with i = 1, 2, 3, 4, .., n), the covariance matrix Cgg is an n × n
matrix.

An element in row i column j of Cgg is determined as follows,

C(∆gi,∆gj) = −f
k=3∑
k=0

αklog(Dk +
√

(xi − xj)2 + (yi − yj)2 + (Dk + zi + zj)2) (6.27)

where C0 = 75.8mGal, D = 9.5km and T = 48.5km and f is calculated using equation 6.26.

Each residual gravity observation ∆gi was collected along 1 of 197 different flight lines k. A is
an n× k matrix where for a row i = 1, 2, 3, ..n and column k = 1, 2, 3, ...197 Ai,k is determined
as to be either a 1 or a 0 as follows,

Ai,k = 1 if ∆gi is a measurement along on flight line k

Ai,k = 0 otherwise (6.28)

Here, the matrix N of equation 6.15 is a diagonal matrix with values on the diagonal which
corresponds to the uncorrelated noise level variance in the residual gravity observations. It has
a regularization effect and the noise level variance value has been taken to be 9 mGal2. 9 mGal2

is in agreement with the derived accuracy of the data given in section 6.6.
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Step 7: practical considerations and results of solving equation 6.15 for b:
Figure 6.25 demonstrates that the covariance function with the determined parameters quickly
decays to zero for s > 100km. The number of residual gravity anomalies is of the order 106

which makes the matrices Cgg and N impractically large.

The bias calculation has been performed in Matlab which has the ability to only store non
zero elements of large sparse matrices, for this reason Cgg and N have been stored as sparse
matrices with C(∆gi,∆gj) set exactly to zero for all si =

√
(xi − xj)2 + (yi − yj)2 > 100km.

Using the sparse matrices Cgg and N , matrix A and a vector of the residual gravity anomalies
∆g, the track biases, b were then solved for using equation 6.15 where b is a 197 × 1 vector
of constants which correspond to the track bias for each of the 197 flight lines. If the residual
gravity observations were uncorrelated spatially and “noise free” equation 6.29 would reduce to

b = (AT (I)−1A)−1AT (I)−1∆g = (ATA)−1AT∆g, (6.29)

which is just a least squares solution for the average value of the residual gravity vector along
each track. The inclusion of the matrix Cgg ensures that spatially correlated signal in the resid-
ual gravity observations does not influence the estimated biases b.

Figure 6.26a shows the calculated biases b along each flight line and figure 6.26b shows the
empirical distribution of the biases which has a standard deviation of around 5 mGal.

Figures 6.27a and 6.27b show the residual gravity signal before and after the bias adjustment
and figures 6.28a and 6.28b shows the airborne gravity Bouguer anomaly before and after the
bias adjustment.

The bias adjustment improves the internal consistency of the gravity anomalies which is demon-
strated by the reduced cross-over error and improved agreement of the airborne data with the
terrestrial gravity data as discussed in section 6.6. These improvements indicate the bias ad-
justment is appropriate and necessary.
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6.6 Accuracy assessment

The accuracy of the data has been assessed in 3 ways.

1. The difference in gravity anomalies at the intersection points of flight lines has been as-
sessed.

These differences are shown to be sensitive to the along track filter parameter, the
anisotropic terrain effects and the varying elevation of the flight lines. These points
are explored by synthesizing flight line data using the EGM2008 global gravity model
and applying the same along track filtering as used for the airborne data.

Over all the bias adjusted data had significantly smaller intersection point differences
than before the bias adjustment. This indicates the bias adjustment improves the inter-
nal consistency of the data.

2. The airborne data are downward continued to the topographic surface and compared
with all of the terrestrial gravity measurements discussed in section 4.1, this comparison
is assessed before and after the bias adjustment. The bias adjustment had a significantly
better agreement with the terrestrial than without the adjustment this indicates the bias
adjustment is appropriate.

3. The difference in gravity anomalies for repeated flights along the calibration lines is as-
sessed. Also, along these lines terrestrial gravity measurements have been obtained and
so they are compared to the airborne data.

6.6.1 Cross-over error

Let fj , j = 1, 2, 3, ....J and fk, k = 1, 2, 3, ...K be two distinct sets of flight lines which run
perpendicular to each other. Let xj,k be the intersection point of lines fj and fk with ∆gj,k the
true gravity anomaly at that point.

If ∆̃gj,k and ∆̃ψj,k are the measured gravity anomaly along lines fj and fk respectively at
the point xj,k,

∆̃gj,k = ∆gj,k + µj,k (6.30)

and
∆̃ψj,k = ∆gj,k + vj,k (6.31)

then the cross-over difference, Cj,k, is given by,

∆̃gj,k − ∆̃ψj,k = µj,k − vj,k = Cj,k. (6.32)

The cross-over error is then given by the standard deviation of Cj,k ∀j, k.
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The cross-over differences have been calculated for all intersection points, before and after the
along track bias correction, for all airborne gravity data where there has not been a zero weight
assigned. These points are shown in figure 6.29.

Figure 6.29: Flight lines and tie line intersection points.

The free air anomaly data before and after the bias correction have been filtered with a varied
Gaussian filter parameter and the results of the cross-over error have been recorded in table
6.1. The cross-over difference is smallest with a filter parameter of 120 seconds before the bias
adjustment is applied. With an average flight speed of 130 knots and a measurement made at
1Hz, 120 seconds corresponds to around 8 km spatially. Figure 6.30 shows the empirical cdf
plots of the cross-over difference before and after the bias adjustment for a 120 seconds filter.
The standard deviation of the inner 68% of the distributions is 9.3 mGal before bias adjustment
and 7.3 mGal after.
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Table 6.1: The filter sigma parameter in seconds and free air cross-over difference standard
deviation (of the inner 68% following appendix B) before and after bias correction.

Filter Parameter
Free air anomaly
cross-over std 68%

Cross-over
after bias correction std 68%

10 149.46 149.87
20 31.97 32.01
30 17.65 16.61
40 14.71 12.98
50 12.48 11.65
60 11.67 10.26
70 11.07 9.421
80 10.46 8.572
90 10.12 7.858
100 9.705 7.307
110 9.404 7.175
120 9.362 7.313
130 9.763 7.438
140 10.35 7.445
150 11.02 7.481
160 11.44 7.652
170 11.99 7.796
180 12.69 8.091
190 13.09 8.402
200 13.45 8.654

Figure 6.30: Empirical CDF plot of free air cross-over differences (in blue), Gaussian
distribution fitted to the inner 68% has a standard deviation of 9.3 mGal before bias
adjustment and 7.3 mGal after.
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Systematic error in the cross-over differences.

The comparison between the normal flight lines and the cross tie lines is not strictly fair. This
is due to the following two reasons.

1. The data have been along track filtered in the time domain (which is essentially a direc-
tional spatial filter). This is problematic as the gravitational effect of the topography and
the underlying gravity field are anisotropic.

2. The flight lines were flown at a varying elevations.

Investigating the effect of the along track filtering and terrain on the cross-
over error. To investigate the effect of the along track filtering on the cross-over differences,
the gravity anomaly along each flight line has been estimated using EGM2008.

When an along track filter is applied to the EGM2008 gravity anomaly data, the gravity values
at intersection points of perpendicular flight lines diverge. To illustrate this, figure 6.31 shows
two flight lines on the south Island, 25 (North-East, South-West) and 47 (South-East , North-
West), and their along track gravity anomalies.

Figure 6.31: Flight lines 25 (North-East, South-West) and 47 (South-East , North-West)
on the South Island and free air anomaly profiles along each line and intersection point
marked by a black ’o’ .

The topography in that part of the country in general runs in the North-East, South-West
direction. When filtering along the line, the gravitational effect of the topography is smoothed
out in the direction of the line only. For this reason as the filter width increases so does the
difference between the gravity anomaly at the intersection point along both lines.
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Figure 6.32: Flight lines 25 (North-East, South-West) and 47 (South-East, North-West)
value at intersection point (top) and the difference (bottom).

Figure 6.33 shows the empirical cdf plot of the cross-over differences for the synthetic data
with a filter width of 120 seconds. The distribution is leptokurtotic so a Gaussian cumulative
density function was fitted to the inner 68% of the distribution, the fitted distribution has a
standard deviation of 4.9 mGal.

Table 6.2 shows the standard deviation of the inner 68% of all of the cross-over differences
for a range of filter parameters. It can be seen clearly that the standard deviation increases
with the filter width and the internal consistency of the synthesized flight lines decays.

The large cross-over differences are typically located at the local minima and maxima of the
along track gravity profile since the filtering will suppress sharp peaks and troughs. This is
demonstrated in the figure 6.34, (using the synthetic EGM2008 data) where the gravity profile
of the tie line is shown on the right in red with the blue circles the data extracted from the
perpendicular across track flight lines at the intersection points.

Most of the high frequency content of the gravity field is due to topography. By perform-
ing a terrain correction (as discussed in section 6.5) to the synthetic data before filtering many
of the peaks and troughs are removed. This can be seen in figure 6.35 of the terrain corrected
gravity profile over the same flight line.

Performing the terrain correction prior to the along track filtering reduces the cross-over er-
ror at the intersection points compared to the free air anomaly. The standard deviation of the
synthetic data cross-over difference for a range of parameters is shown in table 6.3.
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Table 6.2: Table of filter parameters and EGM2008 synthetic flight line cross-over differ-
ence standard deviations in mGal.

Filter parameter (s)
EGM2008 Free Air
Cross-Over std 68%

10 0.90
20 0.98
30 1.30
40 1.70
50 2.14
60 2.62
70 3.07
80 3.49
90 3.88
100 4.25
110 4.60
120 4.94
130 5.23
140 5.51
150 5.82
160 6.11
170 6.39
180 6.67
190 6.95
200 7.24

Figure 6.33: Empirical CDF of EGM2008 cross-over differences (in blue), fitted distribu-
tion (in red) with standard deviation of 4.94 mGal, with Gaussian filter parameter of 120
seconds.
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Figure 6.34: Left: Flight lines (blue), tie line (red) and intersection points (blue o’s),
Right: Tie line free air gravity profile in seconds along the line (red) and line values at
intersection points (blue o’s).

Figure 6.35: Left: Flight lines (blue), tie line (red) and intersection points (blue o’s),
Right: Tie line Bouguer gravity profile in seconds along the line (red) and line values at
intersection points (blue o’s).
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Table 6.3: Table of filter parameters and terrain corrected EGM2008 synthetic flight line
cross-over difference standard deviations in mGal.

Filter parameter (s)
Terrain corrected EGM2008
Cross-Over std 68%

10 0.93
20 1.01
30 1.16
40 1.39
50 1.66
60 1.93
70 2.18
80 2.44
90 2.67
100 2.87
110 3.06
120 3.24
130 3.41
140 3.56
150 3.71
160 3.85
170 3.99
180 4.13
190 4.27
200 4.41

Figure 6.36: Empirical CDF plot of EGM2008 cross-over differences (in blue), Gaussian
distribution fitted to the inner 68% has a standard deviation of 3.24 mGal.
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The cross-over error has similarly been calculate for the airborne Bouguer anomaly data. The
standard deviation of the inner 68% of the cross-over difference for a range of filter parameters
is shown in table 6.4 for both before and after the bias correction. The Bouguer anomaly cross-
over differences are distinctly smaller than those for the free air anomaly data.

As with the free air anomaly, prior to the cross-over adjustment a 120 second filter has the
smallest cross-over difference standard deviation.

Figure 6.37 shows the empirical cdf of the cross-over differences for a filter parameter of 120
seconds before and after the bias correction. A Gaussian distribution has been fitted to the
inner 68% of each and the standard deviations are 8.4 mGal before bias adjustment and 6.3
mGal after.

Table 6.4: The filter sigma parameter in seconds and Bouguer cross-over difference stan-
dard deviation (estimated from the inner 68%) before and after bias correction.

Filter Parameter
Airborne Bouguer anomaly
cross-over std 68%

Cross-over
after bias correction std 68%

10 149.21 149.56
20 31.68 32.02
30 17.44 16.23
40 14.36 12.58
50 12.08 11.06
60 11.38 9.48
70 10.54 8.65
80 9.736 7.72
90 9.206 6.87
100 8.786 6.54
110 8.443 6.36
120 8.434 6.33
130 8.870 6.21
140 9.558 6.19
150 9.906 6.27
160 10.19 6.25
170 10.47 6.41
180 10.86 6.55
190 11.13 6.69
200 11.34 6.76
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Figure 6.37: Empirical CDF plot of Bouguer cross-over differences (in blue), Gaussian
distribution fitted to the inner 68% has a standard deviation of 8.4 mGal before bias
adjustment and 6.3 mGal after.

For both the free air and Bouguer airborne gravity anomalies, an along track Gaussian filter
σ parameter of 120 seconds minimizes the standard deviation of cross-over differences before a
bias adjustment is made.

The relationship between the improperly attenuated gravity signal due to the along track filter
and the noise reduction can be seen by plotting the EGM2008 and airborne cross-over differ-
ences standard deviations against the filter parameter. Figures 6.38 and 6.39 appear to show
that the bias corrected cross-over differences and EGM2008 cross-over differences converge.
The EGM2008 cross-over difference standard deviation gives a good measure of the cross-over
discrepancy level due to the filter parameter. The noise level in the airborne data can be esti-
mated by taking the square root of the variance of the airborne cross-over differences minus the
variance of the EGM2008 cross-over differences. i.e. for σ2

k the variance of the airborne cross-
over differences for some filter parameter k and σ̂2

k the variance of the EGM2008 cross-over
differences, σ̃k the estimated noise level standard deviation is given by,

σ̃k =
√
σ2
k − σ̂2

k (6.33)

The free air anomaly noise level σ̃k intersects with the EGM2008 cross-over difference standard
deviation for a filter length of 120 seconds as can be seen in figure 6.40. This indicates any
filter length greater than 120 seconds is likely to be attenuating more of the gravity signal than
noise.

It has been seen that the along track filter strongly influences the cross-over differences. The
along track filter is a directional filter which attenuates high frequency gravity anomalies along
the flight lines. Most of the high frequency gravity signal is attributable to the topography.
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Figure 6.38: Standard deviation of the EGM2008, airborne free air anomaly and bias
corrected airborne free air anomaly for varying filter parameters.

Figure 6.39: Standard deviation of the EGM2008, airborne Bouguer anomaly and bias
corrected airborne Bouguer anomaly for varying filter parameters.

137



Figure 6.40: Standard deviation of the estimated noise level and cross-over difference
standard deviation for EGM2008. The two lines intersect at around 120 seconds, this
indicates that more gravity signal is being filtered than noise beyond 120 seconds.

The cross-over differences for the terrain corrected airborne gravity anomalies are substantially
smaller than those for the free air gravity anomalies.

The along track bias adjustment improved the cross-over agreement for the free air and Bouguer
anomaly data and the cross-over error for large filter lengths agrees better with EGM2008 than
without the bias adjustment.

It can be seen that a filter parameter of around 120 seconds is optimal. This is because it
produces the smallest cross-over difference in the free air anomaly and Bouguer anomaly data
sets and the estimated signal error is equal to the estimated signal attenuation as seen in figure
6.40.

With an along track filter parameter of 120 seconds, the cross-over differences
of the bias corrected airborne Bouguer anomaly data have a standard deviation of
5.9 mGal.

138



Cross-over error after continuing the flight line data to the height of the cross
lines using least squares collocation.

To account for the variable height in the flight line data when estimating the cross-over er-
ror, the gravity anomalies from the flight lines which are not labelled as cross tie lines were
upward/downward continued on to the flight lines which are labelled as cross ties. Here the
filter parameter was chosen to be 120 seconds which is consistent with previous analysis. The
continuation was done using least squares collocation as follows,

1. i residual gravity anomalies ∆gi = ∆g(xi, yi, zi) were obtained for the flight lines, which
were not cross ties, and k residual gravity anomalies ∆gk = ∆g(xk, yk, zk) were obtained
for the flight lines, which were cross ties, following steps 1-4 of section 6.5.

2. A matrix Cgs was determined such that for each of the intersection points, (xj , yj , zj),
along the cross tie lines,

(Cgs)i,j = −f
k=3∑
k=0

αklog(Dk +
√

(xi − xj)2 + (yi − yj)2 + (Dk + zi + zj)2) (6.34)

where C0 = 75.8mGal, D = 9.5km and T = 48.5km and f is calculated using equation
6.26 as determined previously.

3. a similar matrix Cgg was obtain for the i residual gravity anomalies ∆gi = ∆g(xi, yi, zi)
by equation 6.27.

4. a residual gravity signal ∆̂gj was obtained at the intersection points from the ∆gi’s as
follows

∆̂gj = Cgs(Cgg +N)−1∆gi (6.35)

N is of the same form as for equation 6.29.

This operation has been performed for the Bouguer anomaly airborne data both before and
after the bias correction. The ∆̂gj values have then been compared to the ∆gk values at the
intersection points and the empirical cdf can be seen in figure 6.41.

The standard deviation of the cross-over differences before the bias adjustment
has been reduced from 8.4 mGal to 7.9 mGal and after the bias adjustment from
6.3 mGal to 5.9 mGal by the least squares collocation continuation. The standard
deviations have been fitted to the inner 68% of the distributions to avoid the influence of outliers.

The improvement in the cross-over error before and after the upward continuation indicates
that the varying flight line elevations impact on the cross-over error. Again here, the cross-over
for the bias adjusted data set is smaller than the flight lines without the bias adjustment.
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Figure 6.41: Empirical CDF plot of cross-over differences of least squares collocation
downward continued airborne Bouguer gravity anomaly to the cross tie measurement
locations. Before bias adjustment is plotted in blue and after the bias adjustment in
red. Gaussian distributions are fitted to the inner 68% of each empirical distribution and
are plotted in black. The standard deviation of the (inner 68% of) cross-over differences
before the bias adjustment is 7.9 mGal and after the bias adjustment is 5.9 mGal.

6.6.2 Comparison to the terrestrial gravity data.

The airborne gravity measurements have been downward continued by least squares collocation
to the height of the topographic surface (estimated from the 8 m digital elevation model used
for the terrain corrections) and estimated at the measurement locations. This calculation was
performed as follows.
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1. Firstly, residual Bouguer gravity anomalies ∆gi = ∆g(xi, yi, zi) were obtained for each
observation i = 1, 2, ...K in the flight line data. This was done by calculating the gravity
anomaly at the locations of the flight line data from a terrain corrected GO CONS GCF
2 DIR R5 global gravity model. The long wavelength model was used since rather than

EGM2008 (as in section 6.5) since GO CONS GCF 2 DIR R5 is a satellite only model
(i.e. independent of the terrestrial gravity data) which ensures the downward continued
airborne gravity data is independent from the terrestrial data for the comparison.

2. The GO CONS GCF 2 DIR R5 gravity model was corrected for long wavelength terrain
(by filtering the DEM to a 77 km wavelength following step 3 of section 6.5) this can be
seen in figures 6.42a and 6.42b of the GO CONS GCF 2 DIR R5 gravity anomaly and
GO CONS GCF 2 DIR R5 corrected for 77km wavelength terrain at the topographic sur-
face.

3. The empirical covariance of the residual gravity anomalies (i.e. the airborne data minus
the terrain corrected GO CONS GCF 2 DIR R5 gravity anomaly data) was estimated
and a logarithmic covariance function of the form of equation was fitted. The optimal
parameters of the covariance function fitted to the empirical data were C0 = 576.42mGal,
D = 23.5km and T = 46.5km which were determined by the methodology of step 5 of
section 6.5

4. The residual gravity signal ∆̂gl was then obtained at the terrestrial gravity locations
l = 1, 2, 3, ..., L by solving the following equation

∆̂gl = Cgs(Cgg +N)−1∆gi. (6.36)

Here, the matrix Cgg was constructed such that elements in the matrix were given by

(Cgg)i,j = −f
k=3∑
k=0

αklog(Dk +
√

(xi − xj)2 + (yi − yj)2 + (Dk + zi + zj)2). (6.37)

for every possible pair of residual gravity anomalies in the airborne data ∆gi = ∆g(xi, yi, zi),
and ∆gj = ∆g(xj , yj , zj) i = 1, 2, 3, ...,K and j = 1, 2, 3, ...,K, i.e. Cgg is a K ×K vari-
ance covariance matrix of the data.

The matrix Cgs is a K × K matrix of covariance values calculated such that for each
pair of airborne observations ∆gi and terrestrial gravity observations, ∆gl,

(Cgs)i,l = −f
k=3∑
k=0

αklog(Dk +
√

(xi − xl)2 + (yi − yl)2 + (Dk + zi + zl)2) (6.38)

where N is a K × K diagonal matrix with values on the diagonal corresponding to the
variance of the airborne gravity data uncorrelated noise here set to 9 mGal2.

5. The long wavelength terrain corrected GO CONS GCF 2 DIR R5 gravity model was then
restored to the residual gravity anomalies ∆̂gl to obtain the Bouguer anomaly which can
then be compared to the terrestrial gravity observations.

The difference between the terrestrial and airborne Bouguer anomalies before and after the bias
is shown in figures 6.43a and 6.43b. Figure 6.44 shows the empirical cdf plots of the differences /
best fitting Gaussian distributions and table 6.5 gives the root mean squared, standard deviation
of the inner 68%, mean, min, max and kurtosis statistics of the differences.
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Table 6.5: Statistics of the Terrestrial Bouguer anomaly minus the downward continued
airborne gravity data before and after the bias correction. The airborne data after the
bias adjustment fit the terrestrial gravity data better.

RMS std mean min max kurtosis
Before bias adjustment 10.4750 7.8671 5.8688 -95.1232 77.7873 5.1820
After bias adjustment 7.7943 7.0517 1.0444 -100.7074 77.9590 5.2952

It can be seen here that the bias adjusted downward continued airborne gravity anomaly has
a significantly better agreement with the terrestrial gravity data. This is further evidenced in
the empirical cdf plots below.

Figure 6.44: Empirical cdf plots of the terrestrial Bouguer anomaly data minus the
downward continued airborne data before (black) and after the bias correction (red).
Gaussian distributions fitted to the inner 68% of the distributions are seen as dashes.
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6.6.3 Repeatability of the airborne gravity data - the calibra-
tion lines

The repeatability of the survey data was tested by flying over two calibration flight lines mul-
tiple times. One calibration line is on the North Island directly above High Level Road near
Taupo and the second is located in Canterbury on the South Island. Both of the two flight lines
are about 60 km long and are marked in red on figure 6.1.

Five successful flights were made along the North Island flight line. The five lines of data
along the calibration line do not contain measurements at exactly the same locations, for this
reason an ”average” track was estimated from the five flights. The recorded free air anomalies
along the five single tracks where then interpolated to the average track using a nearest neigh-
bour procedure. Figure 6.45 illustrates the (bias corrected) free air anomaly of the five separate
flights along the North Island calibration line and an average in green.

The standard deviation from the average was calculated by generating a 1000 random sam-
ple points along the five lines. Their distribution from the mean free air anomaly along the line
was then assessed to have a standard deviation of 2.21 mGal.

Figure 6.45: The free air anomaly of 5 separate flights, corrected for flight line biases,
along the North Island calibration line and an average in green. The standard deviation
from the average is 2.21 mGal.

Similarly, Five successful flights were made along the South Island flight line. Again, an ”aver-
age” track was estimated from the five flights and the recorded free air anomalies along the five
single tracks were then interpolated to the average track using a nearest neighbor procedure.
Figure 6.46 illustrates the free air anomaly of the five separate flights along the South Island
calibration line and an average in green. The standard deviation from the average was calcu-
lated the same as was for the North Island calibration line and has a standard deviation of 2.53
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mGal.

Figure 6.46: The free air anomaly of 5 separate flights along the South Island calibration
line and an average in green. The standard deviation from the average is 2.53 mGal.

Terrestrial gravity observations were made along both calibration lines.

For the North Island, the locations of the terrestrial gravity observations were determined using
a hand held GPS device. More specifically, a Garmin eTrex receiver, which is a recreational
grade GPS (only) receiver. This type of hand held receiver provides an autonomous position
and the expected accuracy of this device is ± 15m horizontally and ± 50m vertically. Moreover,
the observation environment was generally poor due to the mature forestry obstructing sky vis-
ibility to both the East and West at all times. This resulted in ellipsoid height estimates which
were only accurate to around 50 metres. For this reason the heights were estimated from the
8 DEM which should be accurate to approximately 10m. In terms of the free air and Bouguer
slab corrections this translates to approximately 3 mGal accuracy.

For the South Island, coordinates were obtained using a Trimble R6 which is a survey grade
GNSS (Global Navigation Satellite System) antenna/receiver. This model observes both GPS
and GLONASS satellite systems. The base station was provided via the Trimble iBASE, Vir-
tual Reference Station (VRS) network. Observations, of 2 minute epochs, were made using
RTK (real-time kinematic) with network solutions provided in real time via a mobile link to the
VRS network. The observation environment was good although occasionally sky visibility was
restricted by shelterbelts to the south. These measurements are accurate to 2 cm horizontally
and 4 cm vertically. In terms of the free air and Bouguer slab corrections this translates to
approximately 0.1 mGal accuracy.

Terrain corrections for the terrestrial gravity observations along the calibrations lines were
computed from the 8 metre digital elevation model out to 120 km to reduce the effect of topo-
graphical aliasing when comparing the airborne and terrestrial measurements. The topography
corrected airborne gravity data were downward continued to the topographic surface along the
calibration lines by least squares collocation as discussed in section 6.6.2.

146



Figures 6.47 and 6.48 show the terrestrial Bouguer gravity anomalies in blue and downward
continued Bouguer gravity anomalies in red for the North and South Island calibration lines
plotted west to east. The statistics of the differences are given in table 6.6.

Figure 6.47: The airborne Bouguer anomaly downward continued to the topographic
surface along the North Island calibration line in red and terrestrial Bouguer anomaly in
blue.
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Figure 6.48: The airborne Bouguer anomaly downward continued to the topographic
surface along the South Island calibration line in red and terrestrial Bouguer anomaly in
blue.

Table 6.6: Statistics of the terrestrial Bouguer gravity anomalies minus the downward
continued Bouguer gravity anomalies for the North and South Island calibration lines.

RMS std min max
North Island 2.98 2.13 -2.63 6.51
South Island 4.18 3.28 -1.36 10.22

6.6.4 Summary of accuracy assessment

The accuracy of the airborne gravity data has been assessed by three methods.

1. The cross-over error, this is the difference between observed gravity values at flight line
intersection points

After accounting for along track biases and varying flight line elevations the standard
deviation of the cross-over differences was shown to be approximately 5.9 mGal.

2. A comparison to terrestrial gravity measurements. After accounting for along track biases
the flight data were downward continued by least squares collocation and compared to
the terrestrial gravity data. The difference between the two data sets had a standard
deviation of 7.1 mGal.

3. Repeated flights along two flight lines, one on the North Island and one on the South
Island demonstrated a repeatability of 2.2 and 2.5 mGal respectively. Terrestrial gravity
data were also obtained along these flight lines and had an agreement of 2.1 mGal standard
deviation for the North Island airborne data and 3.3 mGal for the South Island.

The cross-over differences are largely influenced by the along track filter which improperly at-
tenuates the gravity signal. This indicates that the cross-over error is perhaps not the best
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indication the airborne gravity data accuracy.

Section 4.5 demonstrated that the terrestrial gravity data base is contaminated by position-
ing errors which propagates through into the gravity signal due to the corrections necessary to
obtain the Bouguer anomalies. For this reason these data are perhaps not ideal to determine
the accuracy of the airborne data.

The most reliable accuracy assessment is the repeatability along the calibration lines and com-
parison to the ground terrestrial gravity observations made along the flight line. This is because
the along track filter is applied in the same direction spatially, and the terrestrial gravity obser-
vations have not been obtained with accurate positioning and consistent instrumentation. Over
all here, the standard deviation of the discrepancies in the airborne data is around 3 mGal.
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6.7 Summary

In this chapter the methodology and apparatus used for airborne gravimetry has been discussed.
The basic processing techniques are given and attention is given to the high noise level present
in the raw airborne gravity signal, this is attributed to the observations being made on a moving
platform.

An airborne gravimetry survey was conducted over New Zealand and the details of the sur-
vey and instrumentation used were given. The flight lines were spaced 10 km apart and a
Lacoste and Romberg model S gravimeter was used to collect the data. The steps taken to re-
duce the acquired data to Bouguer gravity anomalies has been discussed in detail. The airborne
data offer an improvement over the existing sparse gravity data over New Zealand since they
are uniform and seamlessly cover on shore and shallow coastal areas.

The accuracy of the data has been examined by comparing gravity values at the intersection
point of flight lines, comparing the downward continued airborne data to existing terrestrial
gravity data and by comparing data for repeat flights along the two calibration lines. The
accuracy of the data estimated from repeated flight lines and reliable ground truth data has
been evaluated to be around 3 mGal.
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Chapter 7

Combining Data Sets using Least
Squares Collocation (LSC)

7.1 Introduction

This chapter discusses the method of least squares collocation and how it can be used to com-
bine scattered gravity observations (of different accuracies) onto a regular grid. A discussion of
the background and methodology of least squares collocation is given. Here, the fundamental
assumptions of the underlying gravity observations are specified and the key equations which
are used to estimate the gravity signal from the scattered observations are given. The gravity
observations must have a zero mean and typically the errors are assumed to be independent.

With the appropriate choice of covariance function, least squares collocation can be used for
downward continuation. This means observations that have been made at varying elevations,
such as airborne and terrestrial gravity data, can be combined. Several covariance functions
are identified and the logarithmic covariance function is shown to have this three dimensional
property.

The terrestrial gravity observations were discussed in detail in section 4.1 and their estimated
errors were given in section 4.5 and are used to determine the noise matrix N used for the least
squares collocation process. Here the error estimates are shown to be too small in some areas
which causes the gridded data to become too constrained at individual points. This results in
“bulls eye” features. A revised minimum accuracy estimate is given and the results of adjusting
the estimated errors are demonstrated.

The use of least squares collocation to downward continue the along track airborne gravity
observations, and griding at regular intervals, is discussed. The filtering of the airborne gravity
observations causes the along track observation errors to be correlated. It is demonstrated how
the effect of the filtering can be appropriately incorporated in to the least squares collocation
formulas.

A grid of combined airborne and terrestrial gravity observations is presented and the effect
of combining the data sets is discussed. The combined grid draws on the strengths of both data
sets by merging the uniform (but generally lower accuracy) airborne data and highly accurate
(but non-uniform and in some areas sparse spatially) terrestrial data. This is demonstrated by
looking at a grid of propagated errors.
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Two new data sets are introduced, the shipborne gravity data which were cross-over adjusted
by Amos et al (2005) and a highly accurate satellite gravity anomaly dataset from Sandwell
et al. (2014). Steps have been taken to remove potentially erroneous data on-shore from the
satellite gravity data, and the accompanying error estimates of the satellite model are used to
heavily down weight the influence of gravity values of the satellite gravity model in shallow
coastal areas on the least squares collocation grid.

A final grid of gravity anomalies is presented which has been estimated from all available grav-
ity observation sources. The observations are optimally combined by the appropriate choice of
covariance function and a careful consideration of prior error estimates.

7.2 Basic mathematical setting

The methodology here is given Moritz (1972) but the text largely follows Reilly (1979). Least
squares collocation (LSC) gives a method to interpolate gravity anomalies at a desired location
from scattered observations. The desired signal is denote here as ŝ = s(θ̂, φ̂, Ĥ) and the scattered
gravity anomalies are denoted ∆g = ∆g(θ, φ,H). Reilly (1979) says a q × 1 vector of observed
gravity anomalies ∆g can be written as follows,

∆g = Ax+ s+ n (7.1)

where x is an m × 1 vector of parameters A is a q ×m matrix of coordinates, s is a random
(but spatially correlated) q × 1 signal vector and n is additive white noise. It is convenient to
re-write equation 7.1 as,

h = s+ n = ∆g −Ax (7.2)

so that h corresponds to the purely random part of the observed gravity signal. In practice
Ax embodies any regular part of the gravity signal such as long wavelength gravity anomalies
(estimated from a global gravity model) or in the case of section 6.5, the flight line biases. It
is assumed that the signal s and noise n are uncorrelated and purely random, such that their
expected value M at each observation location is zero i.e.

Csn = Cov(s, n) = 0, (7.3)

Cn,s = Cov(n, s) = 0. (7.4)

and
M(s) = M(n) = 0 (7.5)

The covariance of the “observed” signal h with itself can then be written as,

Ch,h = Cs,s + Cn,n (7.6)

and the covariance of the “observed” signal h and the desired signal ŝ is given by Cŝ,h. As a
result of this the desired random signal ŝ can be written as,

ŝ = Cŝ,hC
−1
h,hh. (7.7)

Equation 7.7 can then be used to interpolate the signal s at any desired location. Under the
assumption that the regular part of the gravity signal, which is subtracted from the observed
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gravity anomalies, is “known” the error covariance in the determined signal Es,s can be written
as,

Eŝ,ŝ = Cŝ,ŝ − Cŝ,hC−1
h,hCh,ŝ. (7.8)

where the diagonal elements of Eŝ,ŝ give the variances of the determined values ŝ propagated
from the error n of the gravity observations.

In equation 7.7 there are q observations, so the matrices Cs,s and Cn,n are of the size q × q
and supposing that the signal ŝ is desired at p locations, Cŝ,h is a p × q matrix. The Cs,s and
Cn,n matrix elements are determined from an analytical function known as a covariance function
which are discussed in section 7.3.

The matrix Cn,n is the variance covariance matrix of observation noise n, when the obser-
vations are assumed to be independent the matrix is strictly diagonal and a diagonal entry
in row i is the variance of observation i which is given as a prior. Section 7.5 demonstrates
that this is not necessarily appropriate for the along track filtered airborne gravity data and a
method to estimate the off diagonal entries is given.

7.3 Covariance functions

In section 6.5 it was demonstrated how the empirical covariance of residual gravity observations
(i.e. after subtracting a long wavelength gravity anomaly from a global gravity model) can be
estimated for some airborne gravity data. The parameters of an analytical function are fitted
to the empirical covariance values and then this function can be used to determine the matrix
entries of Cs,s and Cŝ,h. The covariance matrix is positive definite and so this property is also
required of the analytical function (called the covariance function). A wide range of functions
have this property; some commonly used functions for 2D geophysical mapping are given in the
following table.

Table 7.1: Commonly used covariance functions for geophysical mapping - adapted from
Neda (2009).

Name Covariance fun. Parameter Ref.
Exponential C0e

− r
d - Shaw et al. (1969)

Triangular C0(1− r
αd

) α = 2 Duquenne et al. (2005)

Gaussian C0e
−α2r2 α = 1

d
(log2)1/2 Kearsley (1977)

Second order Markov C0(1− r
d
)e−

r
d - Kasper (1971)

In table 7.1, r is the spatial separation between two gravity measurements in the (x,y) plane,
C0 is the variance of the signal s and d is the value of r at which the covariance function value
reduces to C0

2 . So the covariance between any two gravity observations can be determined from
the covariance function by knowing the observation locations. For example, for two gravity
anomalies in Euclidean space ∆gi = ∆g(xi, yi) and ∆gj = ∆g(xj , yj) the entry in row i and
column j of matrix Cs,s using the exponential covariance function can be written as,

(Cs,s)i,j = C0e
−
ri,j log2

d = C0e
−
√

(xi−xj)2+(yi−yj)2log2
d (7.9)
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The Forsberg (1987) covariance function is 3 dimensional. The model gives the covariance
between gravity anomalies in 3 dimensional Euclidean space, ∆gi = ∆g(xi, yi, Hi) and ∆gj =
∆g(xj , yj , Hj), at two altitudes and takes the following form,

(Cs,s)i,j = −f
k=3∑
k=0

αklog(Dk +
√
r2
i.j + (Dk +Hi +Hj)2) (7.10)

with

f = C0log(
(D + T )3(D + 3T )

D(D + 2T )3
) (7.11)

again ri,j is the distance in the x-y plane between ∆gi and ∆gj , αk = 1,−3, 3,−1 and Dk =
D + kT , where the parameters D, T and C0 are fitted to the empirical covariance values.
Since this covariance function is 3 dimensional it can be used to downward continue airborne
gravimetry data as is discussed in Forsberg (1995) and is used here for that purpose in sections
6.6 and 7.5.

7.4 General steps taken to grid gravity anomalies us-

ing least squares collocation.

In general, the procedure to grid/downward continue the gravity data using least squares col-
location is broken down into the following steps.

1. Compute the Bouguer anomaly for each of the available gravity observations.

2. Calculate the long wavelength gravity anomaly at the location at each of the gravity
observations from a topography corrected global gravity model. Here the satellite only
GOCE direct 5 model has been used throughout.

3. Subtract the long wavelength GGM gravity signal from the Bouguer anomaly data to
obtain residual gravity observations.

4. Calculate the empirical covariance of the residual gravity observations and find the best
fitting analytic logarithmic covariance model parameters, C0, D and T .

5. Calculate the covariance matrix, Cs,s, of residual gravity observations, and the entries for
the noise matrix Cn,n.

6. Calculate the desired signal s by equation 7.7 and the propagated error of the residual
gravity signal Eŝ,ŝ by equation 7.8.

7. Restore (add back) the long wavelength gravity model.

These steps are explained in detail in section 6.5 when dealing with the airborne gravity data.
As discussed in section 6.5, the vast amount of data causes the matrices Cs,s, Cn,n and Cŝ,h to be
impractically large. To resolve this issue, here, the least squares collocation has been performed
in a series of 1 degree blocks with a 15 arc minute over lap between each. This reduces the
matrices size to around 4000 × 4000 on average and there are no evident discontinuities between
the blocks.
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7.5 Combining all of the available datasets into a sin-

gle gravity anomaly grid

A grid of latitudes and longitudes has been established with a cell size of 1 arc minute over the
range of 25◦ (S) to 60◦ (S) and from 160◦(E) to 190◦(E). The mean topographic height was then
determined for each 1 arc minute cell by block averaging the 8 m DEM (described in sections
6.3.6 and 4.4), and database recorded heights where the DEM is not available. The averaged
topographic map is shown in figure 7.1. The (x, y, z) locations of this grid are used throughout
this section as the points to where the gravity data are interpolated.

Figure 7.1: 1 arc minute grid of topographic heights from block averaged 8 m DEM
heights. This figure shows the full computation area although in other figures throughout
this section the area has been restricted for illustrative purposes.

155



The Terrestrial gravity data: The terrestrial Bouguer gravity anomaly data of section
4.4 have been gridded using least squares collocation. Noise level standard deviations have been
assigned to the observations in section 4.5 and have been squared and used as the diagonal
elements of the matrix N in the least squares collocation procedure. The resulting gravity
anomaly grid and propagated error map are shown in figures 7.2 and 7.3.

Figure 7.2: Least squares collocation gridded terrestrial gravity observations in mGal.
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Figure 7.3: Least squares collocation gridded propagated terrestrial gravity observations
error in mGal.

There are several “bulls eye” features in the gravity anomaly map which are undesirable. Most
notable is one near the Taupo Volcanic Zone and a suite of small artifacts in Otago, these
features are shown in figures 7.4a and 7.4b.

157



(a) (b)

Figure 7.4: Least squares collocation gridded terrestrial gravity observations in mGal in
the Taupo volcanic zone (a) and Otago region (b). There are undesirable ”bulls eye”
artifacts in the gridded data. The black marks indicate the measurement locations.

These kinds of artifacts generally seem to occur where there is a transition from dense data
with particularly small noise levels to sparse areas of data coverage, as can be seen in figures
7.5a and 7.5b showing the propagated error and data density in each region.

(a) (b)

Figure 7.5: Least squares collocation gridded terrestrial gravity observations error in
mGal in the Taupo volcanic zone (a) and Otago region (b).

To resolve this problem, the smallest noise level assigned to the data has been set to 1 mGal,
which allows for more flexibility in the gridded data where data density and accuracy change.
The resulting gravity anomaly and propagated error maps are shown in figures 7.6a and 7.6b.
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For the two test regions, the Taupo volcanic zone region and Otago, the anomalous artifacts
are no longer evident in the gridded data as can be seen in figures 7.7a and 7.7b.

(a) (b)

Figure 7.7: Least squares collocation gridded terrestrial gravity observations in mGal in
the Taupo volcanic zone (a) and Otago region (b). The undesirable ”bulls eye” artifacts
in the gridded data have been removed by increasing the minimum noise level to 1 mGal.

Figure 7.8 shows the difference between the new grid and the previous grid in these particular
regions.

Figure 7.8: Gravity anomaly difference maps for the two regions. (New minus old)
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The big differences fall where the data has changed from being particularly dense and accurate
to sparse. The previously prescribed small noise values must constrain the grid too much around
individual points, resulting in spikes in transition areas. On average, on a nation wide scale,
increasing the minimum noise level to 1 mGal appears to have a negligible effect and only
moderately smooths the gridded gravity field, as can be seen in the following difference map
between the new and previous gridded gravity anomaly and error maps, since all of the features
are high frequency.

161



(a
)

(b
)

F
ig

u
re

7.
9:

(a
)

D
iff

er
en

ce
m

ap
s

b
et

w
ee

n
le

as
t

sq
u
ar

es
co

ll
o
ca

ti
on

gr
id

d
ed

te
rr

es
tr

ia
l

gr
av

it
y

ob
se

rv
at

io
n
s

w
it

h
a

m
in

im
u
m

n
oi

se
in

cr
ea

se
d

to
1

m
G

al
an

d
th

e
or

ig
in

al
n
oi

se
va

lu
es

.
(b

)
D

iff
er

en
ce

m
ap

s
b

et
w

ee
n

le
as

t
sq

u
ar

es
co

ll
o
ca

ti
on

gr
id

d
ed

te
rr

es
tr

ia
l

gr
av

it
y

ob
se

rv
at

io
n
s

p
ro

p
ag

at
ed

er
ro

r
w

it
h

a
m

in
im

u
m

n
oi

se
in

cr
ea

se
d

to
1

m
G

al
an

d
th

e
or

ig
in

al
n
oi

se
va

lu
es

162



The airborne gravity data: The airborne gravity data are discussed in section 6.1.
Least squares collocation with the logarithmic covariance function has been used to transform
the along track gravity observations above the surface of the Earth, into a regular grid of grav-
ity anomalies downward continued to the topographic surface. In section 6.5, the logarithmic
covariance parameters for the airborne gravity data after removing the GOCE gravity anomaly
were determined to be C0 = 576mGal, D = 23.5km and T = 46.5km and the noise level was
estimated to have a standard deviaiton of around 3 mGal.

A typical assumption of least squares collocation is that the noise in the input data is white.
However, due to the along track filtering required for airborne gravity data reduction, obser-
vations are not independent along flight lines. The false assumption results in unrealistic error
propagation where the data are dense along a single line. The off diagonal elements of the noise
matrix have been estimated by considering the covariance between successive filtered gravity
observations.

The low pass filter which was used to reduce the along track noise in the time domain was
a Gaussian window function (with a half width of k) of the form,

∆̄gn =

∑n+k
i=n−k wi∆gi∑n+k
i=n−k wi

where ∆gi are the raw gravity observations along a fight line before filtering (which are assumed
to contain additive white noise with variance σ2) and wi are the weights of the window function.
This means that that variance of the additive white noise in the ∆̄gn’s, denoted N̄n, is related
to the variance of noise in the ∆gn’s, denoted Nn, by the following,

var(N̄n) = var(

∑n+k
i=n−k wiNi∑n+k
i=n−k wi

)

=⇒ var(N̄n) =
1

(
∑n+k

i=n−k wi)
2
var(

n+k∑
i=n−k

wiNi)

=⇒ var(N̄n) =

∑n+k
i=n−k w

2
i

(
∑n+k

i=n−k wi)
2
var(Ni)

=⇒ var(N̄n) = σ2

∑n+k
i=n−k w

2
i

(
∑n+k

i=n−k wi)
2

Then for some time lag t,

var(N̄n+t) = σ2

∑n+t+k
i=n+t−k w

2
i

(
∑n+t+k

i=n+t−k wi)
2

and the covariance between N̄n and N̄n+t is given by (with the expectation of N̄n and N̄n+t

zero),

=⇒ covar(N̄n, N̄n+t) = E(

∑n+k
i=n−k wiNi∑n+k
i=n−k wi

×
∑n+t+k

j=n+t−k wjNj∑n+t+k
j=n+t−k wj

)

=⇒ covar(N̄n, N̄n+t) = E(

∑n+k
i=n−k

∑n+k
j=n−k wiNiwj+tNj+t∑n+k

i=n−k
∑n+k

j=n−k wiwj+t
)
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=⇒ covar(N̄n, N̄n+t) =

∑n+k
i=n−k

∑n+k
j=n−k wiwj+tE(NiNj+t)∑n+k

i=n−k
∑n+k

j=n−k wiwj+t

since it was assumed that Ni and Ni+t are independent,

E(NiNj+t) =

{
0 : i 6= j + t
σ2 : i = j + t

then covar(N̄n, N̄n+t) is given by,

covar(N̄n, N̄n+t) = σ2

∑n+k
j=n+t−k w

2
j∑n+k

i=n−k
∑n+k

j=n−k wiwj+t

The covariance for the Gaussian filter applied to the airborne data has a standard deviation
parameter of 120 seconds (see section 5). Figure 7.10 shows this function normalized by the
variance, var(N̄n), plotted against a time lag t.

Figure 7.10: Covariance of Gaussian filtered noise with σ parameter 120 with time lag t.

Figures 7.11, 7.12 and 7.13 show the airborne data gridded by least squares collocation at
the topographic surface and the propagated error map for; the noise matrix being strictly diag-
onal, the noise matrix with the covariance values, and the difference between them. Data which
have been assigned a zero weight in section 6.4 have been excluded and this is reflected in the
error propogation.
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On a national scale the differences appear to be reasonably small, and typically between -10
and +10 mGal. However on a smaller scale, using off diagonal elements in the noise matrix
results in smoother contours and removes artifacts which are not particularly well correlated
spatially (i.e. across neighboring flight lines).

Figure 7.14a shows the gravity anomaly in and around the Taranaki Bight using just a di-
agonal noise matrix and figure 7.14b shows the same thing using off diagonal noise matrix
elements. The flight lines have been overlaid on the maps to show where the poorly spatially
correlated features along individual flight lines are removed. This is most noticeable in the
gridded anomalies in the South Wairarapa District in the South-East.

(a) (b)

Figure 7.14: Least squares collocation gridded airborne gravity observations in mGal
around the Taranaki Bight using just diagonal noise matrix elements (a) and off diagonal
noise matrix elements (b).

This amended form of the noise matrix for the airborne data is a crucial step to appropri-
ately combine airborne and terrestrial gravity data since otherwise the high data density of the
airborne data will cause the gridded gravity data to be unfairly biased towards it, drastically
restricting the influence of the terrestrial gravity observations.

The effect of combining the airborne and terrestrial gravity data: The airborne
and terrestrial gravity anomalies have been combined using least squares collocation (with the
logarithmic covariance parameters derived for the covariance of the airborne data alone) and
the gridded gravity anomaly and propagated error map can be seen in figures 7.15a and 7.15b.
Looking at the map of propagated errors it is clear that the least squares collocation pulls on
the strengths of both data sets. The terrestrial data is (in general) highly accurate although it
is restricted (on the whole) to onshore areas and has varying density, the contribution of the
airborne data to the grid is to provide consistently dense on and off shore data coverage with
a (prior) 3mGal accuracy. This results in a propagated error map which is more uniform in
comparison to just the terrestrial data, more accurate than the airborne alone, and a gravity
anomaly map which is seamless between on and off shore areas.
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The Shipborne gravity data: Marine gravity observations have been collected in the
New Zealand continental region over a time period spanning 50 years. The measurements have
been made by various institutions (UNCLOS, GNS Science, NOAA and GA) primarily for min-
eral exploration. The database contains around 2 million individual observations and figure
7.16 shows where these data have been obtained in the region 160 (E) to 190 (E) and 25 (S) to
60(S). The database of measurements contains gravity values, horizontal coordinates (latitude
and longitude in terms of the GRS80 reference ellipsoid), normal gravity and Eotvos corrections.

A cross-over adjustment was performed on the ship track gravity data to remove potential
offsets between separate gravity surveys and individual lines of data (as identified by Wessel
and Watts 1988). This was performed by Intrepid Geophysics (Amos et al, 2005) and allowed
several separate datasets to be combine into a single set of self consistent measurements. The
data were also further cleaned by removing any spikes and obviously anomalous data.

Initially, prior to the cross-over adjustment, the cross-over error was evaluated to have a stan-
dard deviation of around 2 mGal. This can be seen in table 7.2 of the cross-over statistic for
each set of gravity observations treated separately for each institution, and as a whole. This
was reduced to approximately 0.3 mGal after the cross-over adjustment as can be seen in table
7.3.

Table 7.2: The cross-over statistics for the shipborne gravity data prior to the cross-over
adjustment - adapted from Amos (2007) appendix C.

Data Cross-overs Max Min Mean STD
UNCLOS 345 79.7 0 7.6 12.9
GNS 57512 271.3 0 2.5 7.6
NOAA 971988 236.1 0 0.7 0.7
GA 36271 52.6 0 1.6 2.7
All data 1069289 271.3 0 0.8 2

Table 7.3: The cross-over statistics for the shipborne gravity data after the cross-over
adjustment - adapted from Amos (2007) appendix C.

Data Cross-overs Max Min Mean STD
UNCLOS 345 12.1 0 0.45 1.39
GNS 57512 68.9 0 0.19 1.5
NOAA 971988 1.9 0 0.09 0.08
GA 36271 14.9 0 0.04 0.11
All data 1069244 93.4 0 0.05 0.28

Cross-over adjustments, as identified in section 6.6, in general are poorly constrained prob-
lems and so the cross-over standard deviation after the adjustment does not necessarily reflect
the accuracy of the data. i.e. if each line only had one intersection point, the cross-over dif-
ference after an adjustment would be exactly zero for all intersections. For this reason the
shipborne data has been assigned a prior 2 mGal standard deviation error estimate for the least
squares collocation griding.
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Figure 7.16: Ship track data coverage in the region 160 (E) to 190 (E) and 25 (S) to
60(S). Adapted from Amos (2007) appendix C.
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The Satellite gravity data: A satellite marine gravity anomaly grid (at one arc minute)
released in 2014 by Sandwell et al (2014) has been obtained from http://topex.ucsd.edu/cgi-
bin/get data.cgi (last accessed September 2015). The grid is based on data from two new satel-
lite altimeters, CryoSat-2 and Jason-1 (contributing over 70 months of data) which have been
augmented with older altimeter data from Geosat and ERS-1. The augmentation is reported
to have resulted in an improvement of a factor of 2-4 in the marine gravity field ( Sandwell et.
al, 2014).

CrySat-2 ’s primary objective is to measure changes in sea ice to approximately 0.7 cm. It
has dense data coverage and, after 4 years in operation, a nominal track spacing of approxi-
mately 2.5 km. Jason-1’s mission objectives are to provide a 5-year view of global ocean surface
topography and increase the understanding of ocean circulation. It has provided 14 months of
dense track coverage with a track spacing of 7.5 km. Geosat (U.S Navy Geodetic Satellite),
was launched in 1985 and carried an altimeter that could measure it’s relative position to the
ocean to an accuracy of around 5 cm. After a brief period on a classified mission, it’s scientific
mission began in November 1986 and ended in January 1990 resulting in 3 years of 5cm accu-
rate altimeter data which are available to the scientific community. ERS-1 (European remote
sensing), was launched in July 1991 and provided altimeter data for a 9 year period.

The altimeter derived gravity field is estimated to be accurate to around 2 mGal. The im-
provements in the estimated gravity field, over the older altimeter data, occurs mostly in the
12 - 40 km wavelengths. Over the land areas, gravity anomalies from EGM2008 have been
used, which are based on a (approximately) 10 km grid of terrestrial gravity observations. The
supplied grid is shown in figure 7.17 over the latitude range of 25(S) to 60(S) and longitudes
from 160(E) to 190(E).

On a visual inspection of the map, smaller errors appear to fall directly along the path of
the satellite and in general, in the open ocean, the error is around 1-2 mGal with small variabil-
ity. In shallow coastal areas the error increases up to 50 mGal. On shore the data have been
taken from EGM2008 and have been given a zero error.

To remove the EGM2008 coastal and on shore data in the satellite grid, data inside a coastline
mask of the North Island, South Island, Stewart Island and Chatham Island have been removed
from the grid. The data in shallow coastal areas have much larger (gridded) noise values; these
gridded noise values will be used in the least squares collocation process, to assign Gaussian
white noise to the matrix N . The larger noise values on the coast will reduce the influence of
these data on the combined least squares collocation grid.

The satellite gravity grid has an accompanying map of estimated errors. (Fenoglio et al 2008) In
the open oceans the error is approximately 2 mGal as described in the documentation (Sandwell
et al, 2014) however in shallow coastal areas the accuracy drops predominately due to large sea
surface variability (Chein and Hsin, 2008). The map of estimated errors is shown in figure 7.18.

Figure 7.19 shows the mask applied to the error map and figure 7.20 shows the gravity anomaly
map with marks indicating where the airborne, terrestrial and shipborne gravity data are. There
is good data coverage, from the terrestrial, airborne and shipborne data, where the satellite data
have been removed and in transitional areas.

172



Figure 7.17: 1 arc minute gridded Sandwell et al (2014) gravity anomaly in mGal.
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Figure 7.18: 1 arc minute gridded Sandwell et al (2014) gravity anomaly error in mGal.
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Figure 7.19: 1 arc minute gridded Sandwell et al (2014) gravity anomaly error in mGal
masked onshore and near offshore.
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Figure 7.20: 1 arc minute gridded Sandwell et al (2014) gravity anomaly masked with
indicative marks (in black) where the other data are. There is good data coverage, from
the terrestrial, airborne and shipborne data, where the satellite data have been removed
and in transitional areas.
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A combined gravity anomaly grid at the topographic surface using all available
gravity data: The airborne, terrestrial, shipborne and satellite gravity data have been
combined into a single data set and gridded using least squares collocation. The final gridded
gravity values and propagated error standard deviations (taking the square root of the diagonal
entries of Ess) are given at the 1 arc minutes locations shown in figure 7.1. The airborne data
were given a prior noise value of 3 mGal standard deviation, the terrestrial noise level is as
described previously, the shipborne data have been assigned a 2mGal standard deviation and
the supplied satellite error estimates have been used. Figure 7.21 shows the gridded gravity
anomaly and figure 7.22 shows the propagated error map.

Figure 7.21: Topography corrected gravity anomaly map in the region 160 (E) to 190 (E)
and 25 (S) to 60(S) gridded using least squares collocation using the airborne, terrestrial,
shipborne and satellite gravity data. The scale is in mGal.
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Figure 7.22: Gravity anomaly propagated error map in the region 160 (E) to 190 (E)
and 25 (S) to 60(S) gridded using least squares collocation using the airborne, terrestrial,
shipborne and satellite gravity data. The scale is in mGal.

7.6 Summary

This chapter discussed the method of least squares collocation and how it can be used to combine
scattered gravity observations (of different accuracies) into a regular grid. The key methodology
and equations for least squares collocation are given in section 7.2.

It has been shown that least squares collocation can be used to combine observations that
have been made at varying elevations using the logarithmic covariance since it is 3 dimensional.
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Steps were taken to eliminate potentially erroneous artifacts in the gridded data by appro-
priately adjusting the terrestrial noise estimates, by setting a 1mGal minimum value, and it
was shown how the effect of the along track filter on the observation errors for the airborne data
can be incorporated into the least squares collocation formulae. Two new data sets have been
introduced, the shipborne gravity data and a new high resolution satellite gravity anomaly from
Sandwell et al (2014). Further steps have been taken to remove potentially erroneous coastal
data from the satellite gravity data, and the accompanying error estimates of the satellite model
have been used to heavily down weight the influence of gravity values of the satellite gravity
model in shallow coastal areas on the least squares collocation grid.

A final grid of gravity anomalies and accompanying propagated error map has been presented.
These have been estimated from all available gravity observation sources which have been op-
timally combined with a careful consideration of observation errors and an appropriate choice
of covariance function. This grid will be used to calculate a new gravimetric quasi-geoid in the
following chapter.
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Chapter 8

Computation of a New Gravimetric
Quasigeoid

8.1 Introduction

A new gravimetric quasigeoid has been computed from the gridded gravity data shown in figure
7.21. Utilising the methodology described in section 2.5, Helmert’s second method of conden-
sation and the remove-compute-restore technique have been employed.

The topographic effect has first been restored to the gridded gravity data shown in figure
7.21, using the 1 arc minute block averaged heights from the 8 m DEM shown in figure 7.1, by
performing a reverse Bouguer slab correction. These gridded data are compared to the gridded
gravity data used to compute the quasigeoid NZGeoid2009, described in section 3.4.

In section 5.1 the Eigen-6C4 global gravity model fitted the leveling derived quasigeoid height
anomalies better than any other global gravity model. For this reason this model was chosen
to provide the long wave length gravity signal when performing the remove-compute-restore
technique. i.e. the Eigen-6C4 gravity anomaly, expanded up to its maximum degree and or-
der, has been subtracted from the gridded gravity data, Stokes integral equation has been used
to determine residual quasigeoid height anomalies from the residual gravity signal, then the
Eigen-6C4 quasigeoid height anomalies have been added back to the residual quasigeoid height
anomalies.

Stokes integration has been performed with the Featherstone et al (1998) modified Stokes Ker-
nel since it was identified to be theoretically optimal. The modification degree L and spherical
cap ψ have been varied over the range L = 20, 40, ..., 320 and ψ0 = 1◦, 1.5◦, 2◦, 2.5◦, 3◦. After
restoring the primary indirect topographical effect (described in section 2.5 ) and adding back
the long wavelength quasigeoid height anomalies from the Eigen-6C4 global gravity model the
new geoids have been compared to the leveling-derived quasigeoid height anomalies to deter-
mine the optimal L and ψ parameter combination.

It is shown that the quasigeoid determined using the optimal L and ψ parameter combina-
tion is in better agreement with the leveling derived height anomalies than the current official
quasigeoid, NZGeoid2009, and the quasigeoid height anomalies determined from the Eigen-6C4
global gravity model. For this reason implementing a vertical datum with the newly derived
regional quasigeoid height anomalies as the reference surface will provide more accurate normal-
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orthometric heights than presently possible.

8.2 The gridded gravity anomaly used to determine

a new quasigeoid

Section 2.5.1 identifies the initial steps which need to be taken to obtain a gridded gravity
anomaly with the gravitational effect of topography reduced to the quasigeoid. First a gridded
Bouguer anomaly must be obtained and then the effect of topography must be restored by
performing an inverse Bouguer slab correction (described in section 2.2.3).

Figure 7.21 shows the gridded Bouguer gravity anomaly at the topographic surface and fig-
ure 7.1 shows the height of the topographic surface at the grid points. These heights h have
been used in equation 8.1 to obtain a grid of Bouguer slab corrections δgB which are then
subtracted from the gridded Bouguer gravity anomaly.

δgB = −2πρGh = −0.0419ρh (8.1)

where ρ is the density of the topography taken as 2.67 g/cm3.

This results in a gridded Faye anomaly (i.e. a Free air anomaly plus the terrain correction
δgTC) and these gridded data can be seen in figure 8.1a.

Figure 8.1b shows the gravity anomaly grid used to determine NZGeoid2009 and figure 8.2a
shows the new gridded gravity data minus the gravity anomaly grid used to determine NZ-
Geoid2009. It can be seen that the difference between the two grids largely consists of high
frequency features which are present in the new gravity anomaly grid which were not present
in the previously used grid.

Around shallow coastal areas and where the terrestrial gravity data’s spatial density thins
out the new gridded data also contains features which are not present in the previous grid. This
is due to the airborne gravity data providing observations where there had previously been no
data coverage due to the inaccessibility of these regions. These difference are shown in figure
8.2b. It is demonstrated in subsequent sections that these features improve the quality of the
derived quasigeoid in comparison to the current quasigeoid NZGeoid2009.
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8.3 Remove - Compute - Restore

8.3.1 Recap on the methodology of regional quasigeoid compu-
tation

In section 2.5 it was shown that to determine quasigeoid height anomalies, N , using Stokes in-
tegral, given here by equation 8.2, requires the gravity data to be available over the entire Earth.

Gridded gravity data which only cover a small area of the Earth cannot be used to deter-
mine wavelengths longer than the region where the gravity data are available, i.e. the gravity
signal is band limited. For example, it is easy to see that the mean Earth gravity value (i.e. the
zero degree term in a spherical harmonic expansion) cannot be obtained from a small patch of
gravity data. For this reason it was shown in section 2.5.2 that to compute a regional quasigeoid
from gridded gravity data, the remove-compute-restore technique must be employed.

N(θp, λp) =
R

4πγ

∫
ψ

∆g(θ, λ)S(ψ)∂ψ (8.2)

The remove-compute-restore technique consists of subtracting a long wavelength gravity anomaly
from a global gravity model to obtain a residual gravity anomaly, computing residual quasi-
geoid height anomalies from the residual gravity anomaly grid and then adding back the long
wavelength quasigeoid height anomalies from the global gravity model.

Since the long wavelengths in the gravity field have been removed from the gridded gravity
signal they must also be removed from the integral kernel S(ψ) up to some maximum degree L
so that they are not resolved during the Stokes integration. Also since the low degree terms are
removed from the kernel the integration only need to be performed inside a spherical cap de-
noted ψ0. The Featherstone et al (1998) modified Stokes kernel, SF (ψ), which was determined
in section 2.5.3 to be theoretically optimal, takes the following form,

ŜF (ψ) = S(ψ)−
n=p∑
n=2

2n+ 1

n− 1
Pn(ψ)−

k=L∑
k=2

2k + 1

2
tk(ψ0)Pk(ψ). (8.3)

and

SF (ψ) = ŜF (ψ)− ŜF (ψ0) for 0 ≤ ψ < ψ0

SF (ψ) = 0 for ψ0 ≤ ψ ≤ π. (8.4)

tk(ψ0) are coefficients which are determined by finding the least squares solution to the following
set of the linear equations

k=L∑
k=2

2k + 1

2
tk(ψ0)enk(ψ) = Qn(ψ0)−

k=L∑
k=2

2k + 1

2
enk(ψ) (8.5)

for n = 2, 3, 4, 5, ..., L. Qn(ψ0) are given by equation 2.55 and enk(ψ) are given by,

enk(ψ) =

∫ π

ψ0

Pn(ψ)Pk(ψ)sin(ψ)dψ (8.6)
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8.3.2 Computational steps taken to compute the new gravimet-
ric quasigeoid

Remove: The Eigen-6C4 global gravity model, expanded up to its maximum degree and
order, was shown to have the best agreement with the leveling derived height anomalies in sec-
tion 5.1. For this reason it has been used as the reference global gravity model for the remove
compute restore procedure.

Figure 8.3a shows the Eigen-6C4 gridded global gravity model gravity anomaly at the grid-
ded locations of the Faye anomaly shown in figure 7.1. Figure 8.3b shows the residual gravity
signal, i.e. the gridded Faye anomaly minus the Eigen-6C4 gravity anomaly.

Compute: Stokes integration was performed on the residual gravity grid using
FFT1Dmod2009.f to obtain the residual quasigeoid height anomalies, Nres. This is a Fortran
program which was used by Claessens et al (2009) to compute NZGeoid2009.

The program allows the user to specify the type of Stokes kernel modification, the degree
of modification L and the spherical cap ψ0. The modification degree L and spherical cap ψ0

have been varied over the range L = 20, 40, ..., 320 and ψ0 = 1◦, 1.5◦, 2◦, 2.5◦, 3◦ and the Stokes
kernel modification type was chosen to be the Featherstone et al (1998) modified Stokes kernel.

Residual quasigeoid height anomalies have been computed for each combination of parame-
ters. Each of the residual quasigeoid undulation grids took approximately 30 hours to process
and 4 instances of the parameter sets were run in parallel using the c4.xlarge instance type of
the Amazon cloud computing web services.

Restore: The long wavelength quasigeoid height anomalies of the global gravity model, NL

were then calculated at the grid locations from the Eigen-6C4 global gravity model coefficients.

The primary indirect topographical effect, Nind, which is described in section 2.5, was also
computed using equation 8.7 with heights, H, extracted from the 1 arc minute grid shown in
figure 7.1.

Nind =
−πGρH2

γ
(8.7)

Both the primary indirect topographical effect and the long wavelength quasigeoid height
anomalies were then added back to the residual quasigeoid observations.

Figure 8.4a shows the Eigen-6C4 gridded global gravity model quasigeoid height anomalies at
the gridded locations and figure 8.4b shows the calculated primary indirect topographical effect.

Adding back these two grids to the residual quasigeoid height anomalies completes the re-
store step of the processing and so returns the final regional quasigeoid height anomalies N over
the computation area, where

N = Nres +NL −Nind. (8.8)
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8.4 Results

For each parameter variation of L and ψ0 the gridded geoids have been compared to the leveling
derived height anomalies. As was similarly done for NZGeoid2009, a mean has been computed
for each local vertical datum and subtracted from the differences, following section 3.4 . Tables
8.1 and 8.2 show the standard deviation (estimated from the inner 68% of the distribution) and
root mean squared of the differences for each parameter combination.

Table 8.1: Standard deviation estimated from the inner 68% of the distribution of leveling
derived height anomalies minus the quasigeoid height anomalies derived with parameter
combinations L and ψ0. The units are centimetres.

L=20 L=40 L=60 L=80 L=100 L=120 L=140 L=160
ψ0=1◦ 4.670 4.658 4.633 4.598 4.555 4.514 4.468 4.423
ψ0=1.5◦ 5.039 5.008 4.961 4.899 4.831 4.768 4.701 4.628
ψ0=2◦ 5.102 5.072 5.026 4.970 4.912 4.843 4.735 4.559
ψ0=2.5◦ 5.060 5.040 5.006 4.967 4.910 4.791 4.599 4.420
ψ0=3◦ 5.044 5.029 5.004 4.967 4.877 4.743 4.619 4.510

L=180 L=200 L=220 L=240 L=260 L=280 L=300 L=320
ψ0=1◦ 4.379 4.342 4.301 4.261 4.228 4.187 4.154 4.118
ψ0=1.5◦ 4.548 4.431 4.263 4.072 3.897 3.833 3.858 3.935
ψ0=2◦ 4.324 4.138 4.039 3.981 3.955 3.992 4.437 13.712
ψ0=2.5◦ 4.304 4.219 4.156 4.138 4.389 32.597 7.436 6.811
ψ0=3◦ 4.420 4.337 4.246 4.091 3.871 3.834 3.843 3.912

Table 8.2: Root mean squared of the distribution of leveling derived height anomalies
minus the quasigeoid height anomalies derived with parameter combinations L and ψ0.
The units are centimetres.

L=20 L=40 L=60 L=80 L=100 L=120 L=140 L=160
ψ0=1◦ 5.757 5.740 5.710 5.671 5.621 5.569 5.515 5.463
ψ0=1.5◦ 6.170 6.160 6.144 6.110 6.013 5.841 5.680 5.555
ψ0=2◦ 6.273 6.238 6.187 6.125 6.054 5.970 5.842 5.628
ψ0=2.5◦ 6.194 6.178 6.151 6.114 6.050 5.912 5.671 5.450
ψ0=3◦ 6.217 6.182 6.122 6.049 5.966 5.888 5.806 5.718

L=180 L=200 L=220 L=240 L=260 L=280 L=300 L=320
ψ0=1◦ 5.414 5.366 5.321 5.280 5.239 5.196 5.157 5.111
ψ0=1.5◦ 5.445 5.345 5.236 5.062 4.861 4.819 4.823 4.821
ψ0=2◦ 5.350 5.134 5.017 4.961 4.940 4.970 5.436 15.240
ψ0=2.5◦ 5.303 5.204 5.134 5.116 5.400 39.049 7.622 6.941
ψ0=3◦ 5.615 5.474 5.279 5.059 4.898 4.844 4.852 4.882

Figure 8.5 and 8.6 show the standard deviation of the inner 68% and the root mean squared of
the differences, respectively, for each spherical cap ψ0 plotted against the modification degree
L.

188



Figure 8.5: Standard deviation estimated from the inner 68% of the leveling height
anomalies minus the quasigeoid computed with parameters ψ0 and L.

Figure 8.6: Root mean squared of the leveling height anomalies minus the quasigeoid
computed with parameters ψ0 and L.
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As the L parameter increases more wavelengths are removed from the integration kernel and
so the residual gridded gravity anomaly is used to determine smaller maximum wavelengths of
the geoid undulations. From figures 8.5 and 8.6 it can be seen that:

� For spherical caps ψ0 = 1.5, 2 & 2.5 the standard deviation and root mean squared
smoothly decay until reaching a minimum and then increase, the smallest standard devi-
ation and root mean squared is given by ψ0 = 1.5 where L = 280.

� For the spherical cap ψ0 = 3 the decay of the standard deviation and root mean squared
is not as smooth as for ψ0 = 1.5, 2 & 2.5 and it reaches a negligibly different minimum to
that of ψ0 = 1.5.

� For the spherical cap ψ0 = 1 there is a significantly shallower decay as L increases than for
all the other tested values of ψ0, and a sharp turning point between L = 360 and L = 380.
This could be attributable to the spherical cap not being wide enough to evaluate the
longer wavelengths in the quasigeoid height anomalies, i.e. taking ψ0 = 1 could be cutting
too much off of the ends of the modified Stokes kernel SF (ψ), where the ends are not
sufficiently close to zero, causing aliasing.

Spherical caps ψ0 = 1.5, 2 & 2.5 have a minima at L = 280, 260 & 240, respectively. The mini-
mum standard deviation for each of these parameter combinations are 3.8, 3.9 & 4.1 cm and 4.8,
4.9 & 5.1 cm for the root mean squared residual. There is little difference between them and so
the quasigeoid overall accuracy is fairly insensitive for these choices of parameter combinations,
although overall ψ0 = 1.5 and L = 280 gives the best fit. Similarly, for ψ0 = 3 the minimum is
at L = 280 with the a standard deviation of 3.834cm. However this is less than 10−2cm differ-
ent from that of ψ0 = 1.5 and L = 280, again indicating the insensitivity of the parameter choice.

For the reasons stated above it appears that the preferable parameter choice is ψ0 = 1.5 and
L = 280. Figures 8.7a and 8.7b show the residual geoid undulations for this parameter com-
bination and the resulting quasigeoid after restoring the global gravity model and topographic
effect. Figure 8.8a shows the leveling derived height anomalies minus the quasigeoid computed
with parameters ψ0 = 1.5 and L = 280 after subtracting mean local vertical datum offsets, for
reference figure 8.8b shows the same thing for NZGeoid2009. It can be seen in these figures that
overall the new quasigeoid fits the leveling derived heights anomalies better than NZGeoid2009,
in particular over coastal areas and in rough topography through the centre of the South Island.
This is due to the contribution of the new airborne gravity data where previously there was
poor coverage. The new quasigeoid model out-performs both the current official quasigeoid
NZGeoid2009 and the global gravity model Eigen-6C4 in terms of its fit to the leveling derived
height anomalies. This is evidenced in table 8.3 which gives the statistics of the differences.

Table 8.3: Statistics of the difference between leveling derived height anomalies, and those
of the ψ0 = 1.5 and L = 280 quasigeoid, NZGeoid2009 and Eigen-6C4. Values are in cm.

Std RMS Kurtosis Minimum Maximum
Quasigeoid ψ0 = 1.5 and L = 280 3.83 4.81 6.03 -27.62 26.11
NZGeoid2009 4.88 6.14 6.76 -37.69 28.3
Eigen-6C4 4.57 5.29 5.96 -32.93 29.05
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The accuracy of the ψ0 = 1.5 and L = 280 quasigeoid has also been evaluated in 3 main urban
areas, Auckland, Wellington and Christchurch. These areas are shown in figures 8.8a and 8.8b.
The accuracy in these densely populated urban regions is of particular importance for engineer-
ing purposes. For these urban areas, tables 8.4 and 8.5 shows the standard deviation estimated
from the inner 68% and the root mean squared of the differences between the leveling derived
height anomalies and the ψ0 = 1.5 and L = 280 quasigeoid, and similarly for NZGeoid2009.

Table 8.4: Standard deviation of the inner 68% of the differences between the leveling
derived height anomalies and the (ψ0 = 1.5, L = 280) quasigeoid, and NZGeoid2009

Standard deviation Auckland Wellington Christchurch
Quasigeoid ψ0 = 1.5 and L = 280 3.976 3.385 2.071
NZGeoid2009 3.427 5.158 5.063
Number of points 123 169 125

Table 8.5: Root mean squared of the differences between the leveling derived height
anomalies and the (ψ0 = 1.5, L = 280) quasigeoid, and NZGeoid2009

RMS Auckland Wellington Christchurch
Quasigeoid ψ0 = 1.5 and L = 280 3.580 4.388 4.572
NZGeoid2009 3.733 5.127 6.164
Number of points 123 169 125

It can again be seen here that the ψ0 = 1.5 and L = 280 quasigeoid outperforms the NZ-
Geoid2009 in terms of fit to the leveling derived height anomalies. In these areas the ψ0 = 1.5
and L = 280 quasigeoid has a mean standard deviation of 3.1cm which is more than 1cm better
than the mean standard deviation of 4.68cm for NZGeoid2009.

8.4.1 Additional leveling/GPS points

Up until here, the leveling derived height anomalies have come from a database which was used
to evaluate the accuracy NZGeoid2009. It consists of joint leveling and GPS observations at
1442 points in 13 local vertical datums. Each datum has a mean offset from the quasigeoid
which has been computed from the ψ0 = 1.5 and L = 280 quasigeoid and NZGeoid2009. These
offsets are shown table 8.6. Differences between the two sets of datum offsets are attributable
to differences in long wavelength quasigeoid height anomalies between the two models. The
two sets of offsets are highly correlated but the new offsets are smaller which indicates a better
initial fit of the quasigeoid to the leveling-derived height anomalies.

Since this original database was put together another 1454 leveling points have been located
using GPS which have been added to the database. The fit of the quasigeoid for each parameter
combination L and ψ0 to the new set of leveling derived height anomalies has been computed
in terms of the standard deviation and root mean squared, as before.

After recomputing mean local vertical datum offsets the new differences appear to contain
significantly more outliers than before. This is evidenced in the large difference between the
RMS of 14.77cm and standard deviation of 5.44cm for the NZGeoid2009 differences, and by the
large difference between the root mean squared and standard deviations in tables 8.7 and 8.8
for the various L and ψ0 quasigeoids.
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Table 8.6: Local vertical datum offsets given for NZGeoid2009 and computed for the
original leveling data. Values are given in cm.

LVD NZGeoid2009 Offset in cm Quasigeoid ψ0 = 1.5 and L = 280 in cm

Auckland 33.90 25.48

Bluff 36.00 22.75

Dun/Bluff 38.10 19.41

Dunedin 48.50 30.13

Gisbourne 34.40 29.83

Lyttleton 46.60 29.23

Moturiki 24.10 21.69

Napier 20.30 17.63

Nelson 29.40 26.46

One tree point 6.30 2.77

Stewart Island 38.50 22.70

Taranaki 31.50 25.41

Wellington 43.60 31.99

Table 8.7: Std. dev. of inner 68% of 2857 leveling height anomalies minus quasigeoid for
ψ0 and L.

Std. dev. L=20 L=40 L=60 L=80 L=100 L=120 L=140 L=160

ψ0 =1◦ 5.263 5.248 5.216 5.173 5.120 5.059 4.997 4.935

ψ0 =1.5◦ 5.530 5.533 5.531 5.525 5.496 5.416 5.298 5.168

ψ0 =2◦ 5.672 5.650 5.614 5.570 5.518 5.453 5.348 5.147

ψ0 =2.5◦ 5.554 5.552 5.545 5.532 5.502 5.420 5.243 5.027

ψ0 =3◦ 5.709 5.676 5.621 5.558 5.482 5.403 5.323 5.231

L=180 L=200 L=220 L=240 L=260 L=280 L=300 L=320

ψ0 =1◦ 4.874 4.818 4.762 4.709 4.653 4.594 4.534 4.464

ψ0 =1.5◦ 5.036 4.904 4.747 4.472 4.077 3.949 3.975 3.996

ψ0 =2◦ 4.840 4.561 4.378 4.279 4.233 4.296 5.015 14.774

ψ0 =2.5◦ 4.844 4.702 4.596 4.567 4.996 35.155 7.161 6.410

ψ0 =3◦ 5.117 4.950 4.709 4.395 4.105 3.976 3.947 3.971

Table 8.8: RMS of 2857 leveling height anomalies minus quasigeoid for ψ0 and L.

RMS L=20 L=40 L=60 L=80 L=100 L=120 L=140 L=160

ψ0 =1◦ 14.593 14.588 14.576 14.560 14.543 14.525 14.505 14.487

ψ0 =1.5◦ 14.769 14.764 14.759 14.747 14.710 14.644 14.582 14.533

ψ0 =2◦ 14.819 14.804 14.782 14.756 14.727 14.692 14.639 14.554

ψ0 =2.5◦ 14.775 14.770 14.761 14.748 14.723 14.670 14.578 14.493

ψ0 =3◦ 14.805 14.790 14.762 14.730 14.694 14.660 14.625 14.590

L=180 L=200 L=220 L=240 L=260 L=280 L=300 L=320

ψ0 =1◦ 14.470 14.454 14.439 14.426 14.414 14.401 14.389 14.377

ψ0 =1.5◦ 14.491 14.454 14.414 14.356 14.301 14.301 14.297 14.285

ψ0 =2◦ 14.451 14.376 14.340 14.325 14.320 14.327 14.470 21.356

ψ0 =2.5◦ 14.438 14.403 14.378 14.373 14.473 44.125 15.859 15.457

ψ0 =3◦ 14.549 14.495 14.426 14.355 14.316 14.316 14.335 14.359
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Figure 8.9: Standard deviation of the inner 68% of the leveling height anomalies minus
the quasigeoid computed with parameters ψ0 and L. Scale is in cm

Figure 8.9 and 8.10 show the standard deviation estimated from the inner 68% and the root
mean squared of the differences, respectively, for each spherical cap ψ0 plotted against the
modification degree L for the larger leveling height anomaly data base.

Figure 8.10: Root mean squared of the leveling height anomalies minus the quasigeoid
computed with parameters ψ0 and L. Scale is in cm
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It can be seen here that the optimal parameter combination is again ψ0 = 1.5 and L = 280
determined by similar logic as before. At this minimum the standard deviation estimated from
the inner 68% of the differences is 3.9 cm whereas using the smaller data set it is 3.8 cm; this is
a negligible change. The root mean squared residual here is 14.361 which is much larger than
the 4.8 cm for the smaller leveling/GPS data set.

The standard deviations estimated from the inner 68% of both the larger and the smaller
data sets are effectively the same, indicating a consistent accuracy around 3.8 cm. The large
root mean squared of around 14 cm is being caused by outliers in the additional leveling data.
These points can be seen in figures 8.11a and 8.11b of the new larger set of leveling derived
height anomalies minus the quasigeoid computed with parameters ψ0 = 1.5 and L = 280 (after
subtracting mean local vertical datum offsets), and the same using NZGeoid2009, respectively.

8.4.2 Summary of results

In this subsection the gridded residual gravity anomaly has been used to compute 80 different
residual geoid undulations for parameters L = 20, 40, ..., 320 and ψ0 = 1◦, 1.5◦, 2◦, 2.5◦, 3◦. The
Eigen-6C4 geoid undulations and topographic effect have been added back to the residual geoids
to obtain 80 quasigeoids.

Each of the 80 quasigeoids has been compared to the same leveling data used to evaluate the
accuracy of NZGeoid2009. The best fitting quasigeoid had parameters of L = 280 and ψ0 = 1.5
and a standard deviation (estimated from the inner 68% of the differences) of 3.8 cm and root
mean squared residual of 4.8 cm. This is around a 1.25 cm improvement on NZGeoid2009.
These statistics were calculated after subtracting a mean local vertical datum offset which are
given in table 8.6.

The leveling derived height anomalies and gravimetric quasigeoid height differences were also
inspected in 3 main urban areas, Auckland, Wellington and Christchurch. On average in these
areas the differences had a standard deviation of 3.1 cm which is around 1.5 cm smaller than
the 4.68 cm mean standard deviation derived for NZGeoid2009.

Finally the data have been compared to a new larger set of coupled leveling and GPS data.
Over all the inner 68% of the differences between the large data set and the optimally chosen
quasigeoid had a similar standard deviation to that of the smaller leveling database at 3.8 cm
and the standard deviation for NZGeoid2009 was 5.44 cm. However the root mean squared
residual of the differences for the optimal new quasigeoid was around 14 cm and similarly 14.77
cm for NZGeoid2009. This is due to several anomalous points in the leveling data base which
need to investigated and fixed or removed before these data can be used effectively.
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8.5 Summary

In this chapter the computational steps and results of a new gravimetric quasigeoid have been
given.

The gridded gravity anomaly given at the end of section 7.5 has been transformed into a gridded
Faye anomaly by restoring the effect of the Bouguer slab. Heights for this reverse correction
were taken from a 1 arc minute grid of heights which were determined from a block averaged 8
m digital elevation model.

The remove-compute-restore technique has been employed to determine the new gravimetric
quasigeoid. Eigen-6C4 was demonstrated to provide the best fit to the leveling derived height
anomalies over all other global gravity models in section 5.1 For this reason it was chosen as
the reference model for the remove-compute-restore stages of the computation.

The Eigen-6C4 gravity anomaly was first subtracted from the gridded Faye anomaly data (re-
move) to obtain a residual gravity anomaly. Stokes integral was then evaluated using the
residual gravity anomaly grid, with a Featherstone et al (1998) modified stokes kernel. The
kernel modification degree L and spherical integration cap ψ0 were then varied over the ranges
L = 20, 40, ..., 320 and ψ0 = 1◦, 1.5◦, 2◦, 2.5◦, 3◦ to obtain 80 different residual quasigeoid height
anomalies (compute). Finally the long wavelength quasigeoid height anomalies of Eigen-6C4
were then added back to the residual quasigeoid height anomalies and the primary indirect
topographic effect was added (restore) to obtain 80 different regional quasigeoids.

Each quasigeoid was compared to the leveling derived height anomalies and overall the pa-
rameter combination L = 280 and ψ0 = 1.5 gave the best fitting quasigeoid, with a standard
deviation (estimated from the inner 68% of the differences) of 3.8 cm and root mean squared
residual of 4.8 cm. This is around 1 cm better than the current official regional quasigeoid
NZGeoid2009 and 0.77 cm better than the remove-compute-restore reference signal Eigen-6C4
in standard deviation.

The L = 280 and ψ0 = 1.5 quasigeoid was also evaluate in 3 main urban areas, Auckland,
Wellington and Christchurch and had a standard deviation (again estimated from the inner
68% of the differences) of 3.976, 3.385 and 2.071cm and root mean squared of 3.58, 4.388 and
4.572 cm respectively. These have an average of 3.1 cm std when considering the number of
data points used in each region and it is a 1.5cm improvement on the 4.68 cm average for
NZGeoid2009.

Finally, the L = 280 and ψ0 = 1.5 quasigeoid was compared to a new larger set of leveling
derived height anomalies which has only recently become available. Overall the standard devi-
ation (again estimated from the inner 68% of the differences) was no different from that of the
smaller data set, however the root mean squared was around 14 cm. This result was consistent
for NZGeoid2009 and indicates the new leveling data contain some extreme outliers which need
to be removed before the data can be used to evaluate the quasigeoid effectively.
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N.B. Unlike the computation of NZGeoid2005 and NZGeoid2009 discussed in chap-
ter 3, the observed heights for the terrestrial gravity anomalies have not been ad-
justed for the estimated LVD offsets and the quasigeoid calculation repeated. This
is because for NZGeoid2009 the iteration converged in two steps indicating that it
is unnecessary.
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Chapter 9

Summary, Research Outcomes and
Recommendations for Future Work

9.1 Summary

Theoretical Setting: Heights have been described mathematically in relation to approx-
imations of the gravitational potential field of the Earth and Earth approximating ellipsoids.
Normal-orthometric heights have been defined as the distance along the line orientated outward
normal to an equipotential surface known as the quasigeoid and it was shown how the quasi-
geoid can be determined from physical measurements of the Earth’s gravity gradient.

Knowing the quasigeoid separation from an Earth approximating ellipsoid, the normal-orthometric
height can be calculated by subtracting it from an ellipsoidal height from a GPS device. These
heights are easy to obtain and are important since they approximately describe how water will
flow.

Background, vertical datums used in New Zealand: Until 2009, New Zealand
had 13 official local vertical datums. There are discontinuities between the datums since they
are each referenced to separate mean sea level estimations (from tide gauge measurements)
which can differ by a constant. Each local vertical datum contains numerous leveling based
height measurements and, as of 2009, 1422 of the leveling sites had had an ellipsoid height mea-
sured with a GPS device and so quasigeoid height anomalies can be determined. Grouping the
data by one local vertical datum at a time, a mean offset from the quasigeoid can be evaluated.
This process unifies the otherwise separate datums and was first put to practice by Amos (2007).

In 2009 an official regional quasigeoid for New Zealand, NZGeoid2009, was computed by
Claessens et al (2009) with the intention of unifying the local vertical datums. By specifying
the use of a normal-orthometric height system, NZGeoid2009 was further used as a reference
surface to establish a new official single national vertical datum, NZVD2009. With this vertical
datum, normal-orthometric heights can be determined using the NZGeoid2009 height and a
GPS ellipsoidal elevation at any point within the region it covers. This is advantageous over
leveling height transfers since it is less time consuming, however the accuracy of the determined
heights can only ever be as good as the accuracy of NZGeoid2009.

The accuracy of NZGeoid2009 was evaluated by comparing it to the ellipsoidal and leveling
height derived quasigeoid height anomalies after the mean local vertical datum offsets had been
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applied. The difference between the two data sets had a root mean squared residual of 6.144
cm and standard deviation (estimated from the inner 68% of the differences) of 4.8 cm.

NZGeoid2009 was computed by evaluating Stokes’ integral using the remove compute restore
technique on gridded gravity data from the GNS Science terrestrial gravity database and a
marine satellite altimetry gravity anomaly. It used EGM2008 to provide long wavelengths in
the gravity field for the remove and restore stages of the computation.

The terrestrial gravity data NZGeoid2009 is based on have been collected over a time pe-
riod of around 60 years. The measurements are generally accurate to 0.1 mGal, however the
recorded heights of the points are quite uncertain due to the instrumentation used to obtain
them (predominantly using barometers). The inaccuracies in the recorded heights degrade the
quality of the determined gravity anomalies. Moreover the data were not collected with the
intention of quasigeoid modelling, for this reason they are non uniform and particularly sparse
in rough topography. Similarly the gravity data in all offshore areas came from the satellite
altimetry marine gravity anomaly. Satellite altimetry is unreliable in shallow coastal areas since
it is not possible to accurately determine sea level, this will degrade the quality of the derived
quasigeoid in these areas.

The better the quality and density of the gravity measurements the more accurately the quasi-
geoid can be determined. To compute a more accurate quasigeoid for New Zealand the under-
lying data must be improved.

Steps taken to improve the underlying gravity data for a new quasigeoid com-
putation: Initially, steps have been taken to improve the terrestrial gravity measurements.
To ensure consistency in the historic terrestrial gravity data all of the calculations necessary
to compute Bouguer anomalies have been performed again. This reduced the potential for any
erroneous conversion formulas between ellipsoidal gravity corrections, which have given used
in the database, to cause inconsistencies. More over terrain corrections have been recomputed
utilizing a new 8 m resolution digital elevation model. These data have been appropriately as-
similated with existing terrain corrections to obtain the best possible refined Bouguer anomaly
observations from the data.

To improve upon the limitations of the previously available data coverage, an airborne gravity
data set has been collected which covers New Zealand’s North, South and Stewart Islands with
a 10km flight line spacing. These data are seamless between on and offshore areas and cover
the rough topography uniformly. Unfortunately the data were susceptible to short erroneous
sections of track due to poor flight conditions and the gravity profiles appeared to contain mean
offsets from existing gravity models and between neighbouring lines. The bad data have been
removed by carefully assessing the cross track agreement with other flight lines and with the
global gravity model EGM2008, and offsets in the flight lines have been estimated by a least
squares method which takes into consideration the spatially correlated gravity signal, following
Reilly (1979) and Forsberg (1987).

The repeatability of the airborne data was assessed by collecting measurements along two sep-
arate calibration lines with 5 flights for each. The differences from a mean gravity anomaly
along the lines had a standard deviation of approximately 2.5 mGal. The internal consistency
of the data was assessed by evaluating the difference between flight line data at intersection
points. This accuracy measure was shown to be susceptible to the along track filter, anisotropic

201



topography and the relative flight line elevations. After correcting for all these effects the set
of all intersecting differences had a standard deviation of approximately 5.9 mGal.

The airborne gravity data, recomputed terrestrial gravity data, shipborne gravity data (pre-
viously unused for NZGeoid2009) and new satellite altimetry gravity anomaly data were aug-
mented into a single grid using least squares collocation and a logarithmic covariance function.
This griding process optimally combined the separate data sets since it was able to appropri-
ately deal with the different qualities of the input observations and handling the downward
continuation of observations at different elevations (i.e. the airborne data). This grid has un-
precedented accuracy and internal consistency and was compared to the gridded gravity data
used to compute NZGeoid2009 explicitly.

Topographic effects were restored to the gridded data using a reverse Bouguer slab correc-
tion and a 1 arc-minute grid of elevations to obtain a gridded Faye anomaly. On comparison
to the grid used to compute NZGeoid2009 the contribution of the airborne data is clear around
shallow coastal areas and through rough topography through the centre of the South Island.

Investigating the accuracy of the most recent global gravity models to be used
as the reference for a newly derived regional quasigeoid: The most recent global
gravity models (since 2008 onwards) available from http://icgem.gfz-potsdam.de/ICGEM/ mod-
elstab.html (last accessed September 2015) have each been compared to the terrestrial gravity
data and the 1422 leveling and GPS derived quasigeoid height anomalies. Over all, after sub-
tracting mean offsets for the local vertical datums, the Eigen-6C4 model fit the leveling and
GPS derived quasigeoid height anomalies best whilst the EGM2008 model fit the terrestrial
gravity data best.

The terrestrial gravity data is not an independent data set from the global gravity models
and EGM2008 used the terrestrial data to determine a wider spectral range of spherical har-
monic coefficients than Eigen-6C4 did, this is the reason it fits the gravity data better. Since
the Eigen-6C4 gave the best fit to the leveling and GPS quasigeoid height anomalies, which is
an independent data set, it was determined to be the most accurate model.

The computation of a new gravimetric quasigeoid: A new gravimetric quasigeoid
has been computed from the gridded Faye anomaly by Stokes integral equation. The Feather-
stone et al (1998) modified Stokes kernel and the remove-compute-restore technique were used,
with Eigen-6C4 as the reference gravity signal.

The Eigen-6C4 gravity model was subtracted from the gridded Faye anomaly (remove) and
Stokes integral was evaluated on the residual gravity anomaly grid. A Featherstone et al (1998)
modified Stokes kernel has been used and the modification degree L and spherical cap for the
integration ψ0 were varied over the ranges L = 20, 40, 60, ..., 320 and ψ0 = 1◦, 1.5◦, 2◦, 2.5◦, 3◦.
This resulted in 80 residual quasigeoid undulation grids. The computation took approximately
30 hours for each parameter variation and four instances of the program were run simulta-
neously. The Eigen-6C4 quasigeoid height anomalies were then added back to the residual
quasigeoid undulation grids and the primary indirect topographic effect was restored to obtain
80 quasigeoid for each L and ψ0 parameter variation. Each quasigeoid was then compared to
the leveling and GPS derived quasigeoid height anomalies after computing and subtracting LVD
mean offset values. The optimal parameter choice was determined to be L = 280 and ψ0 = 1.5
which had the best agreement with the leveling and GPS derived quasigeoid height anomalies
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with a standard deviation of 3.8cm and root mean squared of 4.8 cm.

The L = 280 and ψ0 = 1.5 quasigeoid and leveling and GPS derived quasigeoid height anoma-
lies agreement was also assessed closely in 3 main urban areas, Auckland, Wellington and
Christchurch. Here there were 123, 169 and 125 data points respectively and the standard
deviations were 3.976, 3.385 and 2.071 cm and root mean squared of 3.58, 4.388 and 4.572 cm
respectively. This gives an average accuracy of 3.1cm standard deviation in urban areas which
is 1.5 cm better than NZGeoid2009.

9.2 Research Outcomes

Here the key research outcomes of this research project have been listed.

� The collection of a national airborne gravity dataset. These data provide gravity mea-
surements with uniform coverage across the whole of New Zealand, including shallow
coastal areas and parts of the country which have previously been impractical to survey.
The main advantage of the airborne data over previous measurements is that it has been
made using consistent instrumentations and so, on the whole, has a consistent accuracy.

� The accurate reduction of the terrestrial gravity data to refined Bouguer gravity anoma-
lies. This process involved; computing the free air, normal gravity and Bouguer slab
corrections using consistent formulas, estimating more accurate terrain corrections than
what is provided in the data base by using an 8 m digital elevation model (which is sig-
nificantly higher resolution than used for any other terrain corrections computed in the
past), and computing an accuracy estimate for each gravity observation in the database
by considering the discrepancies in the recorded heights.

� The most accurate global gravity model, which is currently available, in relation to the
the leveling and GPS derived height anomalies in New Zealand has been determined to
be Eigen-6C4. This is the first time some of the most contemporary global gravity models
have been compared over New Zealand.

� The new airborne gravity data have been augmented with the refined terrestrial gravity
measurements, the existing shipborne gravity data and a new high resolution satellite
altimetry gravity anomaly by utilizing the method of least squares collocation. This
resulted in a 1-arc minute grid of gravity anomaly data with unprecedented accuracy
and internal consistency for quasigeoid modelling on comparison to that used for the
computation of NZGeoid2005 (Amos, 2007) and NZGeoid2009 (Claessens et al, 2009).

� A set of 80 quasigeoids has been determined from the gridded gravity anomaly data. They
were computed by Stokes integral equation using the Featherstone et al (1998) modified
Stokes kernel and the remove-compute-restore technique, with Eigen-6C4 as the reference
gravity signal. Each used a different parameter variation of the modification degree L
and ψ0. Using the 1442 leveling and GPS derived quasigeoid height anomalies new local
vertical datum offsets have been computed following the methodology of Amos (2007)
for each quasigeoid. The local vertical datum offset corrected leveling and GPS derived
quasigeoid height anomalies were then compared to the quasigeoids to determine which
one they fit best to. The parameters combination L = 280 and ψ0 = 1.5 gave the best fit.

� A new quasigeoid (L = 280 and ψ0 = 1.5) has been produced which has a significant
improvement in the agreement with the leveling data over NZGeoid2009 and Eigen-6C4.
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In particular the new quasigeoid has an average accuracy of 3.08 cm in urban areas which
is 1.6cm better than for NZGeoid2009.

In summary, the airborne data acquisitions and careful treatment and augmentation of existing
datasets has resulted in a gridded gravity anomaly which has been used to compute a new
highly accurate quasigeoid. The new quasigeoid has been shown to be in better agreement
with leveling and GPS derived quasigeoid height anomalies than the current official national
quasigeoid NZGeoid2009, and has an estimated accuracy in urban areas of 3.08 cm.

9.3 Future Work

Here, recommendations for future work are given.

Computational Steps

� To be in keeping with the computational procedure for NZGeoid2009, the Featherstone
et al (1998) modified stokes kernel was used. This is because it is theoretically optimal.
However it would be interesting to determine if it is optimal in practice by evaluating
Stokes integral for other kernel modifications discussed in chapter 2.

� There was an implied bifurcation point in the agreement between the quasigeoid height
anomalies and the leveling and GPS derived ones between Stokes integral spherical caps
of ψ0 = 2.5 and ψ0 = 3. Here the root mean squared and standard deviation of the
differences, with respect to the modification degree L, changed from being a smoothly
decaying function with a distinct minimum, to a function which does not smoothly decay
and has no minimum which is consistent for the root mean squared and the standard
deviation. For this reason it would be advantageous to explore a finer range of parameters
to better determine the optimal parameter combination of L and ψ0.

� The gravity anomaly data were gridded at 1-arc minute, which results in a quasigeoid
gridded at the same resolution. When evaluating the fit of the quasigeoid to the leveling
and GPS quasigeoid height anomalies, these gridded data must be interpolated to the
leveling and GPS observation locations, and so there is potential here for aliasing of the
quasigeoid height anomalies. It would be interesting to evaluate the effect of griding the
gravity data at a finer resolution to investigate this effect, however this would have an
impact on the computation time.

Underlying data

� As new global gravity models become available it would be advantageous to evaluate
their accuracy with respect to the leveling and GPS derived quasigeoid height anoma-
lies. If any are better than Eigen-6C4, they could be used as the reference signal for
the remove-compute-restore technique to evaluate a new regional quasigeoid with better
accuracy. Improvements in these models are mostly due to better satellite gravity data
which contribute to the long wavelengths.

� It can be seen in the propagated errors that there is an area in Fiordland (in the South)
where the error increases. This is due to the turbulence during the airborne data acqui-
sition in this region and the sparse terrestrial data coverage. It would be advantageous
to include more data in this region as they become available. This is also true of other
areas where erroneous sections in the airborne data have been identified.
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� Substantial improvements have been given by the new quasigeoid near the coast and
through the rough topography of the South Island, however most important is the im-
provement in urban areas. This is largely due to the inclusion of the airborne gravity
data. If more highly accurate gravity observations could be acquired in these areas the
quasigeoid could be determined even more accurately.

Accuracy assessment

� The quasigeoid accuracy was determined by a comparison to leveling and GPS derived
height anomalies. The data set used to evaluated NZGeoid2009 had 1422 data points in
13 separate datums. Since 2009 approximately another 1400 points have been added to
the database. However the new data set contains some extreme outliers which degrade
the effectiveness of the quasigeoid and leveling data comparison. The erroneous data
points need to be carefully identified and fixed, or removed, before the new data set can
be used effectively.

� As more GPS ellipsoidal height observations are made at existing or new leveling height
observation locations, they should be used to re-evaluate the accuracy of the quasigeoid.

In summary, as new gravity data become available they should be used to evaluate a new
gridded gravity anomaly, perhaps at a finer resolution if appropriate for the spatial density of
the new data, and newly released global gravity models should be constantly evaluated. The
new gravity data and more accurate global gravity models should be used to calculate ever more
accurate regional quasigeoids. It would advantageous to explore a wider range of Stokes kernel
modification types, and a finer range of parameters variations. The accuracy assessment of the
quasigeoid should also be ongoing so that as more reliable leveling and GPS derived quasigeoid
height anomalies become available, regional quasigeoids can be assessed more accurately.
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Appendix A

Calculating the Lacoste and
Romberg model ‘S80’ gravimeter
accelerometer MV to mGal scale
factor

A.1 Introduction

The Lacoste and Romberg model ‘S80’ has two accelerometers (one pointing across the meter,
XACC, and one along the meter, LACC perpendicular to the horizontal) which are used in
conjunction with the gyros and torque motors to level the platform and calculate the cross
coupling correction.

The readings from the accelerometers are included in the gravimeter output file but are given
in millivolts. The millivolt (MV) readings can be transformed into mGal using a scale factor
which must be calculated. Here, the methodology and the results of an experiment to compute
this scale factor are given.

A.2 Methodology

The methodological step to calculate the scale factor for a single accelerometer.

1. Record the absolute gravity at the location of the gravimeter, g.

2. Record the spring tension when the gravimeter is level (i.e. the accelerometer reading
should be approximately zero), S0.

3. Tilt the gravimeter through one axis holding the other fixed and record the new spring
tension value, Sn and accelerometer reading for the axis that is being titled. e.g.XACCn
for the cross accelerometer.

4. Repeat step 3 for various tilt angles, at each stage recording the spring tension and
accelerometer readings.

5. Calculate ∆gn = 0.9899 ∗ (Sn − S0) for each measurement (where 0.9899 is the counter
units to mGal scale factor).
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6. Calculate the tilt angle θn = cos−1(1− ∆gn
g ) for each measurement.

7. Calculate An = gsin(θn). This is an approximation of the accelerometer reading in mGal
derived solely from the vertical gravity measurement.

8. The mean scale factor k such that k ×XACC = A is then given by,∑N
n=1 |XACCn|/An

N

where N is the number of measurements made.

Figure A.1 gives a graphical representation of the process described above.

Figure A.1: Graphical representation of the change in the strength of gravity due to a
tilt. Adapted from Model ’S’ Air Sea Dynamic Gravity Meter System II, Instruction
Manual (2006)
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A.3 Results

The gravimeter was tilted to various angles whilst retaining one of the axes as close to perpen-
dicular to the vertical gravity gradient as possible. Tables A.1 and A.2 demonstrate the recorded
measurements for each of the accelerometers for various tilt angles in MV, the recorded spring
tension, derived tilt angle θn and calculated values An, in accordance with the computational
steps described in the previous section.

Table A.1: Results of tilting the gravimeter through an axis parallel to the XACC ac-
celerometer to record changes in the LACC accelerometer.

XACC LACC Spring tension θ A
10.4 8.2 10611.6 0 0
19.1 291.2 10588.1 0.00688 6753.27
14.1 976.6 10289.5 0.02550 25000.17
10.1 1802.3 9493.2 0.04753 46575.65
11.1 659.8 10479.3 0.01634 16023.17
17.3 -304.8 10576.2 0.00845 8288.59
19.7 -622.2 10406.7 0.02034 19940.29
7.2 -1031.2 10205.5 0.02863 28070.81

Table A.2: Results of tilting the gravimeter through an axis parallel to the LACC ac-
celerometer to record changes in the XACC accelerometer.

XACC LACC Spring tension θ A
15.6 13.9 10611.6 0 0
110.0 13.5 10609.0 0.00229 2246.30
268.5 13.7 10589.5 0.00668 6549.02
533.3 13.8 10517.4 0.01379 13520.66
909.3 13.8 10331.5 0.02378 23313.57
-108.3 13.8 10607.0 0.00304 2987.86
-257.7 13.6 10585.2 0.00730 7157.84
-548.6 13.7 10497.6 0.01517 14873.83
-843.3 13.7 10448.1 0.01817 17812.46
-1299.6 13.5 9996.2 0.03525 34553.67

From the data recorded in these tables, a least squares solution to the conversion factor k
has been determined for each of the accelerometers. For the LACC accelerometer the estimated
conversion factor is 26.4830 and for the XACC accelerometer the estimated conversion factor is
25.1101. Figures A.2 and A.3 show the absolute value of the accelerometer value and derived
value A for both the LACC and XACC accelerometer and the lines of best fit which have a
gradient of k.
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Figure A.2: The absolute value of the LACC accelerometer recording and derived value A for
various tilt angles a line of best fit with gradient k = 26.4830.

Figure A.3: The absolute value of the XACC accelerometer recording and derived value A for
various tilt angles a line of best fit with gradient k = 25.1101.
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Appendix B

Fitting Gaussian distributions to
leptokurtotic data sets

Throughout this research project it has been necessary to measure the “goodness of fit” of
mathematical models to real life data. The differences between models and data, here denoted
x, have been assumed to follow a Gaussian distribution which is parameterized by a mean, µ
and a standard deviation, σ.

The assumption that the differences, x, are Gaussian is fair for a large central portion of
the empirical distributions but in many instances there are large outliers on the tails. These
outliers result in unrealistically large estimated standard deviations, σ, for the empirical distri-
butions when the standard deviation is calculated by the standard formula, given by equation
B.1. These large standard deviation estimates do not represent the majority of the residuals
particularly well.

σ =

√∑i=N
i=1 (xi − µ)2

N
(B.1)

A method here is presented which accurately estimates the standard deviation of an underlying
dataset in the presence of outliers. Most importantly it is robust since it does not underestimate
the standard deviation if the assumption that outliers are present is false.

B.1 Standard methodology

Consider X to be a set of random values drawn from a Gaussian distribution with a zero mean
and standard deviation of 5 (e.g. this could be the set of cross over discrepancies discussed
in section 6 of the difference between the quasigeoid and the leveling/GPS data described in
section 3 ). Suppose as well there is a set of Y values which are also drawn from a Gaussian
distribution with a zero mean, but this time a standard deviation of 20 (e.g. In the context of
section 6 these could be larger cross over discrepancies where one of the flight lines has been
affected by turbulence). In reality often datasets which are assumed to be Gaussian are actually
a mix of data which consists mostly of values drawn from the X distribution but in addition
a handful of values also drawn from the Y distribution (e.g. with the cross over discrepancies
most were around 5 mGal, but on occasion several intersection points were not reliable due to
extreme factors).

The standard deviation as estimated by equation B.1 will actually be mixture of the stan-
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dard deviation of X and the standard deviation of Y depending on how many values from each
distribution you have. i.e if you have 90 data points from the X distribution and 10 data points
from the Y distribution, an empirical standard deviation using equation B.1 will give a σ value
close to

√
52 ∗ 90/100 + 202 ∗ 10/100 ≈ 7.9. The standard deviation of the mixed distribution

is much larger than data drawn from the distribution X and so the true distribution of most of
the data is heavily masked by the influence of a few bad points.

A standard approach to estimating standard deviations in the presence of outliers is by ex-
cluding all values from the distribution larger in magnitude than some fixed value, for example
using a confidence interval - where only an inner percentage of the data is considered. This
approach has an inherent danger since it will always result in an under estimation of the true
standard deviation if the assumption that there are outliers is false. The under estimation
worsens as the size of the confidence interval shrinks. The following figure depicts this, a set of
10,000 values has been chosen at random from a Gaussian distribution with a zero mean and
standard deviation of 5, data from an inner percentage (varied from 0 to 100%) is excluded and
the standard deviation of the selected portion of the data is computed by equation B.1.

Figure B.1: Standard deviation (y-axis) calculated from inner percentage (x-axis) of
Gaussian distribution with a standard deviation of 5.
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B.2 Derivation of an alternative method to derive

the standard deviation of an empirical distribu-

tion in the presence of outliers.

Building on Jeffereys (1932 and 1961), a Gaussian density function, F (x̂) = P (x < x̂), gives
the probability of drawing some value, x, is less than x̂, where (for x with a zero mean),

F (x̂) =

∫ x̂

−∞

1√
2πσ

e−x
2/2σ2

dx (B.2)

and the variance, σ2 is given by,

σ2 =

∫ ∞
−∞

x2 1√
2πσ

e−x
2/2σ2

dx. (B.3)

The probability that a value, x, drawn from a Gaussian distribution is between two values a
and b (i.e. P (a < x < b)) is given by,∫ b

a

1√
2πσ

e−x
2/2σ2

dx = F (b)− F (a). (B.4)

A variance, σ̂2, can be estimated from some central portion of the set of some empirical values
xi, between portions a and b of the distribution, similarly to equation B.1, by the following,

σ̂2 =

√∑
i(xi)

2

N

∣∣∣b
a
. (B.5)

This formula gives the estimated variance from the central portion of some empirical data.
Similarly, the theoretical variance of a Gaussian distribution determined between a restricted
integral range [a, b] is given by the following,

σ̂2 =
1

F (b)− F (a)

∫ b

a
x2 1√

2πσ
e−x

2/2σ2
dx (B.6)

letting u = x =⇒ du = dx and letting v = −σ2e−u
2/2σ2

=⇒ dv = ue−u
2/2σ2

dx then equation
B.6 can be solved using integration by parts so that,

σ̂2 =
1

F (b)− F (a)
[u

1√
2πσ

σ2e−u
2/2σ2

∣∣∣b
a
]− 1

F (b)− F (a)

∫ b

a
σ2 1√

2πσ
e−u

2/2σ2
du. (B.7)

This simplifies down to,

σ̂2 = σ2(
1

F (b)− F (a)
[u

1√
2πσ

e−u
2/2σ2

∣∣∣b
a
] + 1). (B.8)

A quantity q is chosen such that for some inner central percentage of the distribution p

F (qσ) =

∫ p

∞

1√
2πσ

e−x
2/2σ2

du (B.9)

and a and b are set to a = qσ and b = qσ. Then equation B.8 becomes,

σ̂2 = σ2(
−2q

F̃ (q)− F̃ (−q)
1√
2π
e−q

2/2 + 1) (B.10)

219



where F̃ (x) = P (x < x̂), for a Gaussian probability density function with a variance equal to
1. Setting B.5 equal to B.10 and solving for σ2, the variance of the distribution estimated from
the inner percentage of the distribution p is then given by,

σ =

√
1/[(

−2q

F̃ (q)− F̃ (−q)
1√
2π
e−q2/2 + 1)]

∑
i(xi)

2

N

∣∣∣p
−p
. (B.11)

i.e. The variance of the distribution is estimated from the variance of the inner central portion
of the data given by σ̂2 is multiplied by the scaling factor 1/[( −2q

F̃ (q)−F̃ (−q)
1√
2π
e−q

2/2 + 1)].

B.2.1 Advantages of this method

There are two key advantages of this method when dealing with real life data.

� If the assumption that there are outliers is false, this method (unlike that of just removing
larger values) will not underestimate the standard deviation when a sensible proportion
(/inner percentage q) of the data is used to estimate it. This is demonstrated in the figure
below, the inner percentage used to estimate the standard deviation of 10,000 randomly
selected values from a Gaussian distribution with a zero mean and standard deviation of
5. It can be seen that for inner percentages greater than 20 % the estimated standard
deviation is almost exactly 5.

Figure B.2: Standard deviation (y-axis) estimated from inner percentage (x-axis) of Gaus-
sian distribution with a standard deviation of 5.

� In the presence of outliers, this method provides the best estimate of the majority dis-
tribution. For example, consider a dataset which should contain values drawn from a
distribution with a standard deviation σx 5, consider also that some percentage p of this
data set has been contaminated with other data which are drawn from a distribution
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with a larger standard deviation σy e.g. of 20. As the percentage increases, the standard
deviation estimated by the standard formula, σ of the whole data set increases such that

σ =
√
σ2
x ∗ p+ σ2

y(1− p).

If we need to estimate the standard deviation of the uncontaminated data, estimating
the standard deviation using equation B.11 from the inner percentage q will be more rep-
resentative than considering the whole data set. This is demonstrated in the figure B.3
the standard deviation estimated from the inner 68% using equation B.11 (black crosses)
and the standard deviation of the whole data set as estimated by equation B.1 (blue line)
of a mixture of two distributions X and Y where the percentage of value drawn from Y is
the x-axis. Where the standard deviation of X is 5 and the standard deviation of Y is 20.
It can be seen the standard deviation estimated by equation B.11 is more representative
of the uncontaminated data than the standard method.

Figure B.3: Standard deviation estimated from inner 68% (black x’s) and the standard
deviation of the whole data set (blue points) for a mixture of two Gaussian distributions
with standard deviations of 5 and 20 with the percentage of the whole dataset made up
of the larger standard deviation distribution shown on the x-axis.

Throughout this research project, when estimating standard deviations, the inner portion of
the distribution has been taken as 68% (which is approximately 1 standard deviation either side
of the mean) so that around two thirds of the empirical distribution values x are well modelled
by the fitted Gaussian distribution and the estimated standard deviation is not influenced by
outliers.
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B.3 A worked example using data from section 4

Consider the difference between the recorded heights of the terrestrial gravity locations in the
GNS Science terrestrial gravity database and those estimated from the 8 m digital elevation
model (discussed in detail in chapter 4), for those with height code 0. The empirical distribution
of the difference is shown in figure B.4, plotted in blue and a Gaussian cumulative distribution
function with mean zero and standard deviation, σ, estimated by equation B.1 is plotted in red.

Figure B.4: Empirical cdf plot of height code 0 heights minus DEM heights (blue),
Gaussian cumulative distribution function with σ estimated by equation B.1 in red.

The standard deviation calculated by equation B.1 here is 12.44 m. This value is clearly far
larger than it should be, since the plotted Gaussian distribution does not fit the empirical dis-
tribution very well, particularly through the central portion of the distribution. This can be
resolved by fitting a Gaussian distribution to just the central portion of the data by equation
B.11 .

Figure B.5 shows the empirical distribution of the differences plotted in blue and a Gaus-
sian cumulative distribution function with mean zero and standard deviation estimated from
the inner 68% of the distribution (by the methodology described here) plotted in red.

Here the standard deviation estimated from the inner 68% of the distribution is 7.58 m. Clearly
the fit of the Gaussian distribution to the empirical distribution is better, particularly through
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Figure B.5: Empirical cdf plot of height code 0 heights minus DEM heights (blue),
Gaussian cumulative distribution function with σ estimated from the inner 68% of the
empirical distribution in red.

the central portion, as it is not influenced by outliers. The newly estimated standard deviation
is then more representative of the majority of the residuals x than the previous estimate of
12.44 m.
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Appendix C

Electronic Appendices

The data and processing scripts used throughout this thesis can be found in the attached elec-

tronic appendix. The file tree structure and details of the files inside each directory are listed

below.

Electronic Appendix

Appendix B - Files used to put appendix B together, example Matlab files to

compute standard deviation from an inner percentage of a distribution

Chapter 4 - Terrestrial gravity data - Terrestrial gravity data in an Excel

spread sheet

Chapter 5 - Global Gravity Models

Scripts and coefficients - the coefficients and scripts used to evaluate

the fit of the global gravity models to the terrestrial gravity data and

levling/GPS observations in NZ

Chapter 6 - Airborne gravity data

Hanger Spring tension reading and in flight notes - Contains the meta data

from the airborne survey, the inflight notes which were made whilst observing

the gravimeter during flight and a spread sheet indicating where the flights

lines were flown from

Processed Data - The processed airborne gravity data files

CSV - The flight line data in csv file format, see readme.txt here for

more details

Matlab - The flight lines in matlab format

Raw Data

DGPS - The raw processed GPS files supplied by land information New Zealand

Gravimeter Data - The raw gravimeter data files from the survey period

Useful scripts - Some matlab scripts used to reduce/process the raw data

to gravity anomlies

Chapter 7 - LSC Gravity Anomaly Grids

Gridded Gravity data - The output gridded gravity data

Matlab Files - in matlab format

XYZ Files - in xyz file format
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LSC Package - The set of matlab scripts used to perfomr the LSC gridding/data

combining

Satellite altimetry - Raw Data - The Sandwell and Smith gravity data

Shipborne gravity data- Raw Data

Chapter 8 - New Quasigeoid

Eigen 6C4 residual gravity anomalies

Matlab Files - matlab files used to obtain the resdidual gravity grid

and comparison to that used for NZGeoid09

XYZ Files - XYZ files of the residual gravity grid

Quasigeoid

Matlab - matlab files used to compare the quasigeoid to the leveling/GPS

geoid undulations

XYZ - The final quasigeoid grid

Residual Geoid Undulation and Optimal Parameter determination

Fortran scripts and outputs - Fortran files used to obtain the residual

geoid undulations for various parameter variations

Matlab files - Matlab files used to analyse the output residual geoid

undulation grids to determine the optimal L and psi parameter combination
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