
 

Synthesis of Antimycobacterial Agents 

that Harness Mycothiol and Cysteine 

conjugate β-lyase Metabolic Pathways 

 

by 

Scott W. Riordan 

 

 

 
 

 

A thesis submitted to                                                                                                                                 
Victoria University of Wellington                                                                                                                  

in fulfilment of the requirements for the                                                                                     
degree of Master of Biomedical Science 

 

 

 

Victoria University of Wellington  
2015  

https://upload.wikimedia.org/wikipedia/en/8/86/Vuw-logo.png


ii 

 

Abstract 

Mycobacterium tuberculosis kills approximately two million people each year and is second 

only to HIV/AIDs in terms of death from infectious disease. The most pertinent problem in 

regards to Mycobacterium tuberculosis today is the increasing prevalence of drug resistant 

strains. Thus, there is a great need for the development of new drugs with novel targets. 

This thesis aimed to address this problem by synthesizing a compound that could exploit 

the mycothiol detoxification pathway, unique to Mycobacterium, in order to cause cell 

death, through the release of a harmful halothioketene.  

Synthetic Target

Mycothiol Detoxifaction
Pathway

β-Lyase

Halothioketene

 

The research described herein involved the successful synthesis of the desired mycothiol 

analogue, along with three other related compounds. The target compounds were 

synthesised via protection of N-acetyl glucosamine, followed by thioglycosidation with 

cyclohexane thiol. Subsequent deprotection and coupling to Boc protected S-

trichlorovinyl cysteine provided access to the synthetic target and its β-anomer, as well as 

their Boc protected precursors.  

The original synthetic target demonstrated weak antimycobacterial activity against 

Mycobacterium smegmatis and an encouraging sub 100 µM MIC against Mycobacterium 

bovis derived Bacillus Calmette–Guérin.  Unexpectedly the beta anomer of the synthetic 

target also displayed antimycobacterial activity against Bacillus Calmette–Guérin (MIC 125 

- 250 µM).  All compounds proved to be active against HL60 cells (16-114 µM).   
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Whilst further work is required to improve efficacy, the work presented here 

demonstrates the potential of these compounds as leads for the generation of new 

antimycobacterial agents.   
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Chapter 1 

1. Introduction 

The aim of this thesis is to explore whether the mycothiol pathway, in combination with 

cysteine conjugate β-lyases, could be exploited in order to activate a prodrug to produce 

an accumulation of harmful halothioketenes selectively in Mycobacterium Tuberculosis. 

This should ultimately result in cell death and thus provide a novel target and mechanism 

of action for the treatment of tuberculosis. 

 

1.1 Mycobacterium tuberculosis 
 

1.1.1 Epidemiology 

 

Mycobacterium tuberculosis is the major causative agent for tuberculosis (TB). TB is 

primarily an infection of the lung, although it may be localized elsewhere, particularly in 

immunocompromized people. Clinical symptoms include fatigue, anorexia, weight loss, 

fevers and potentially death1.  On a worldwide basis there are an estimated eight  million 

new cases of TB each year, of which approximately two million are lethal; making it second 

only to HIV/AIDs in terms of deaths from an infectious disease2.  

There are two possible outcomes that occur upon infection by Mycobacterium tuberculosis: 

Less frequently, the host will develop the clinical symptoms associated with the disease 

(active TB). Alternatively, which is more often the case, the immune system will control and 

isolate the pathogen, progressing to what is known as latent TB. This state represents a 

stalemate between the host's immune system and the Mycobacterium tuberculosis, where 

the pathogen population is not able to actively grow, nor is the immune system able 

completely eradicate the pathogen3. It is estimated that approximately one third of the 

world's population is infected with latent TB. These people will not exhibit any clinical signs 
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of TB, nor are they contagious. However they may at any time progress to its active form. 

The probability of this occurring is estimated at between two and twenty three percent 

over a lifetime, with the risk of it occurring increasing in diabetic, malnourished or 

immunocompromized people, as well as though drug use and in cancer sufferers4.  

 

1.1.2 Current Treatment  

 

1.1.2.1 Vaccines 

 

Prevention can be a very effective form of treatment and with this in mind, an effective 

vaccine would represent a great step forward in the fight against Mycobacterium 

tuberculosis. However, although there are a large number of potential vaccines being 

explored in human clinical trials, there is only one vaccine currently in use, namely bacille 

Calmette–Guerin (BCG)5, 6. Despite being the world's most widely administered vaccine, 

BCG is a long way from being optimal and carries with it some significant drawbacks7. BCG's 

major drawbacks  are its highly variable efficacy and its inefficiency in preventing TB in 

adolescents and adults8. Thus, although vaccines may represent an ideal solution for the 

control of TB, there is currently no reliable vaccine available. Therefore the use of 

antibiotics in the treatment of tuberculosis remains pertinent.   

 

1.1.2.2 Antibiotics 

 

The current TB treatment regime recommended by the world health organization involves 

treatment with a combination of four of the first line TB drugs. These drugs include 

Isoniazid, Rifampicin, Pyrazinamide, Ethambutol and Thioacetazone. After an initial two 

month treatment patients should continue treatment with Isonazid in combination with 

either Rifampicin and/or Ethambutol for a further four to six months. The combination of 

drugs used and the time they are used for is dependent on factors such as the severity of 
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the infection, whether it is a reoccurring infection, or whether the patients has a 

concomitant HIV infection2. Patients in which Mycobacterium tuberculosis is resistant to 

the first line drugs, can be given second line drugs. However, these drugs often come with 

major drawbacks, such as decreased efficacy and more severe side effects2.  The treatment 

complexity, time required and multitude of drugs needed demonstrates just how difficult 

TB is to treat.  This difficulty stems from the perseverance of drug resistant strains of 

Mycobacterium tuberculosis. 

 

1.1.3 Drug Resistance 

 

1.1.3.1 Phenotypic Resistance 

 

Mycobacterium tuberculosis possesses many mechanisms that lead to drug resistance. 

From a phenotypic perspective, Mycobacterium tuberculosis has a highly impervious cell 

wall that confers resistance to the vast majority of available antibiotics9. Resistance is 

further exacerbated by its ability to reside in multiple metabolic states. In the latent form 

described above (section 1.1.1) the Mycobacterium tuberculosis lies in a dormant, non 

replicating state. This causes problems, as current antibiotics against TB are most effective 

when the Mycobacterium tuberculosis is actively replicating10.  While they provide inherent 

resistance to a wide range of antibiotics, these phenotypes are not the reason for one of 

the biggest health concerns in regards to TB today. Instead it is the increasing prevalence 

of Mycobacterium tuberculosis that possess genetic resistance to the drugs currently used 

to treat TB, i.e. multi and extensive drug resistant TB.  
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1.1.3.2 Genetic Resistance 

 

As many as 440,000 cases of multidrug resistant TB strains were estimated to have occurred 

in 200811 and continued to rise at an alarming rate, reaching 605,000 by 201012. Doctors 

using inadequate treatment regimes and failure of patients to adhere to the regimes that 

are adequate has added to an increase in multi and extensive drug resistance to TB over 

the past decade. The multi drug resistant strains demonstrate resistance to the common 

first line drugs Isoniazid and Rifampicin. Extensive drug resistant strains "exhibit resistance 

to Rifampicin and Isoniazid, any fluoroquinolone, and one of the three injectable drugs, 

Capreomycin, Kanamycin, and Amikacin" 11..  

Resistant strains in Mycobacterium tuberculosis are a direct result of spontaneous 

mutations that occur on its genome. Hence, these resistant strains can develop in any 

population and, over time, drug based selection pressures can cause growth in the resistant 

strain to the point where it represents the largest  portion of Mycobacterium tuberculosis 

present in the host11. It is because of this phenomenon that multiple drugs are required to 

treat TB and why incorrect treatment strategies can quickly cause a proliferation in 

multidrug and extensive drug resistant strains.   

Multi and extensive drug resistant strains of TB are of serious concern. Although treatment 

is available, they pose problems due to their increased costs and fatality rates. Recently 

there has been incidence of a strain resistant to all forms of tuberculosis drugs13. With drug 

resistance to tuberculosis becoming more prevalent, the search for new treatments to 

combat the disease becomes more pertinent. 

 

1.1.4 Future Treatment Targets 

 

The need for new and novel TB treatments has increased interest and research in the area, 

with anti-TB drugs in clinical and preclinical trials currently at its highest point in 40 years12. 

Advancements made in drug screening has led to the identification of a plethora of new 
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compounds that exhibit high levels of toxicity toward Mycobacterium tuberculosis. 

Between 2006 and 2011 alone, 278 natural products and their derivatives have been found 

that have a minimum inhibitory concentration (MIC) of less than 50 µg/mL against 

Mycobacterium tuberculosis or the closely related Mycobacterium smegmatis14. However 

there is a high attrition rate in the progression of these compounds into clinical evaluation.  

At the time of writing, there are only ten drugs in clinical development (table 1.1). Of these 

just six drugs are novel, while three have been repurposed from other disease treatments 

to test their viability against TB. The remaining one is currently being re-evaluated to see if 

its efficacy can be enhanced 9, 12, 15.  

The small number of anti-TB drugs currently in clinical development demonstrates the need 

for a sustained effort in the development of new drugs to combat TB. Of particular 

importance are drugs that work through novel targets and metabolic pathways. These 

drugs will have a higher chance of success against drug resistant strains as well as a 

decreased risk of drug-drug interactions10. One such pathway that meets this criteria is the 

mycothiol pathway and for this reason much interest has been generated by considering 

the mycothiol pathway in Mycobacterium tuberculosis 16-18.  

 

 

Table 1.1. Anti-TB Drugs Currently in Clinical Trials 
 

Drug 
Novel 
Compound 

Phase of Clinical Trial Chemical Class 

PA-824 Novel 2 Nitroimidazole-oxazine 

Sutezolid Novel 2 Oxazolidinone 

Bedaquiline Novel 2 Diarylquinoline 

SQ109 Novel 2 Ethylenediamine 

Linezolid Repurposed 2 Oxazolidinone 

Rifapentine Re-evaluated 2 and 3 Rifamycin 

AZD5847 Novel 2 Oxazolidinone 

Gatifloxacin Repurposed 3 Fluoroquinolone 

Moxifloxacin Repurposed 3 Fluoroquinolone 

Delamanid Novel 3 Nitro-dihydro-Imidazoooxazole 
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1.2 Mycothiol  

 

1.2.1 Mycothiol Structure 

 

Mycothiol is the major low molecular weight thiol found in the majority of actinomycetes; 

the most clinically relevant of these being Mycobacterium tuberculosis. It was not 

discovered until 1993, when Fahey et al. were able to determine its existence in a range of 

actinomycetes. However they could not fully characterise its structure, with the only thing 

known about it at that time being that it contained cysteine 19. Since then it has been 

demonstrated that its structure is composed of an N-acetylated cysteine linked through an 

amide bond to glucosamine, which itself is linked to myo-inositol through a glycosidic bond 

(Figure 1.1)20.  

 

1.2.2 Role of Mycothiol  

 

Mycothiol performs a role analogous to that of the other low molecular weight thiols found 

in a range of organisms. These include glutathione which is found in eukaryotes and gram 

negative bacteria, trypanothione in trypanosomatids and coenzyme A in certain gram 

positive bacteria19. The discovery of mycothiol came quite late in comparison to its 

eukaryotic relative glutathione.  

 

Figure 1.1. Structure of Mycothiol 
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However, in the two decades since its discovery a large quantity of research has been 

undertaken, that provides a great wealth of knowledge in regards to its roles and functions. 

The vast majority of mycothiol-containing actinomycetes do not produce any glutathione, 

suggesting that mycothiol acts as a direct replacement to glutathione in actinomycetes. 

Thus, as with glutathione, the main roles of mycothiol are: 1) regulation of the redox 

potential in the cell in order to maintain a reducing environment and 2) protecting the cell 

against dangerous electrophilic radicals and xenobiotics21. Consequently, due to the 

important roles mycothiol plays in mycobacteria there has been a large amount of interest 

in mycothiols biosynthetic and metabolic enzymes as potential drug targets for 

Mycobacterium tuberculosis. Several of these enzymes have been researched to determine 

their viability as potential targets. The key ones are described below. 

 

1.2.3 Targeting Mycothiol 

 

1.2.3.1 Mycothiol Biosynthesis 

 

There are in total five enzymes involved in the biosynthesis of mycothiol from its N-acetyl 

glucosamine precursor. They include MshA1 and MshA2, which together are responsible 

for joining the inositol and N-acetyl glucosamine together. Once joined MshB removes the 

N-acetate from the glucosamine, allowing MshC to conjugate the cysteine portion. The final 

step in the biosynthesis is the addition of an acetate group to the cysteine amine by MshD, 

resulting in the completed mycothiol. Of these enzymes, MshA1 and MshC are essential to 

the growth of Mycobacterium tuberculosis. Disrupting the genes encoding for either of 

these enzymes causes no mycothiol to be produced and consequently prevents 

Mycobacterium tuberculosis from growing22.  

 

In one study, Newton et al. (2006) screened  2024 compounds looking for MshC inhibition, 

and discovered a compound, termed NTF1836, that has an IC50 = 100 µM against MshC. 

NTF1836 was able to completely inhibit the growth of Mycobacterium smegmatis at 40 µM. 
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However, the activity may not be a direct result of MshC inhibition, as Mycobacterium 

smegmatis has been demonstrated to grow in the absence of MshC, suggesting NTF1836 

has an alternative target as well23.  Nevertheless, the importance of MshA1 and MshC 

enzymes to Mycobacterium tuberculosis suggests a potent inhibitor of either enzyme would 

be a good candidate for an anti-TB drug.  

 

1.2.3.2 Mycothiol Disulfide Reductase 

 

One of mycothiol's most important roles is to prevent damage from harmful free radicals 

and oxidants by maintaining a reducing environment inside the cell. To achieve this 

mycothiol will react with free radicals and oxidants, subsequently causing their reduction 

as well as the oxidation of mycothiol to its corresponding disulphide mycothione (Figure 

1.2). In order to maintain the reducing environment the mycothione needs to be reduced 

so as to replenish the mycothiol. This is achieved via an NADPH-dependent flavoprotein, 

mycothiol disulfide reductase (Mtr). Studies have shown that antisense oligonucleoside 

inhibition of Mtr in Mycobacterium bovis results in a reduction of growth. However, it will 

not stop growth completely24. Thus Mtr may not be a viable anti-TB drug if it is directly  

  

 

Figure 1.2. Structure of Mycothione 
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targeted. Nonetheless, it is known that majority of antibiotics used result in a build up of 

toxic hydoxyl free radicals, regardless of the drug's target. These hydroxyl free radicals are 

a major contributor to cell death. Thus, by combining traditional drugs with drugs that 

inhibit the cell's defence against free radicals, i.e. Mtr in Mycobacterium tuberculosis, it may 

be possible to synergistically enhance the efficacy of existing antibiotics25.  

                                                        

1.2.3.3 Mycothiol S-Conjugate Amidase 

  

Mycothiol S-conjugate amidase plays an important role in the detoxification of harmful 

electrophilic xenobiotics in actinomycetes. Mycothiol will conjugate electrophilic 

xenobiotics through its cysteine sulphur. The newly formed conjugate is subsequently 

cleaved by mycothiol S-conjugate amidase (Mca), releasing the conjugated N-acetylated 

cysteine (mercapturic acid) from the inositol and glucosamine rings (GlcN-Ins). The 

mercapturic acid is then readily excreted from the cell and GlcN-Ins is recycled back into 

mycothiol's biosynthetic pathway21. Mca has a broad substrate scope in regards to what is 

conjugated to the cysteine sulphur. Variations range from large to small and polar to non 

polar, although small and polar compounds, such as mycothiol itself, show substantially 

reduced activity26.  This substrate scope can be best exemplified by the different antibiotics 

Mca is able to metabolise. Substrates range from the large, macrocyclic and complex 

Rifamycin, to the comparatively small Cerulenin21.   

 

The inhibition of Mca has been the focus of a number of studies. Over 1500 compounds 

have been tested for their activity against Mca, a number of which have IC50's less than 10 

µM16, 27. These studies and the other studies performed to date on mycothiol's other 

biosynthetic and metabolic enzymes have all been explored for inhibition in order to 

develop anti-TB drugs. The reasoning behind the focus on inhibition is due to the fact that 

mycothiol has been shown to be essential to the survival of the Mycobacterium tuberculosis 

and as it is not present in humans, its metabolic and biosynthetic enzymes provide a good 

entry point into the development of  selective drugs against TB13.  However, there is another 
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approach that warrants consideration. This is to use one of mycothiol's metabolic 

pathways, namely Mca detoxification, in the selective killing of mycobacterium tuberculosis 

through the use of halogenated alkenes. 

   

1.3 Halogenated Alkenes 
 

1.3.1 Halogenanted Alkene Toxicity 

 

1.3.1.1 Halogenated Alkenes and their Uses 

 

Of the simplest forms of halogenated alkenes, i.e. haloethenes, tetrachloroethylene and 

trichloroethylene are the most widely used due to their lipophilicity and non-flammability 

as solvents. These  properties make them useful in roles such as degreasing metals and dry 

in cleaning fabrics28. In the 1930's, trichloroethylene was even used as a general 

anaesthetic. Neither tetrachloroethylene or trichloroethylene occur naturally in nature, 

though due to their wide spread use they are found as common contaminants in both air 

and drinking water. As of 1995 an estimated 34% of America's drinking water was thought 

to be contaminated with trichloroethene, a figure that would presumably be larger today28.  

 

1.3.1.2 Discovery of Toxicity 

 

It was not until over 20 years after its first use as a general aesthetic that toxicity relating 

to haloalkene exposure was first proposed. This hypothesis manifested out of an 

observation that calves fed trichloroethylene-extracted soybeans had a high rate of aplastic 

aneamia29. It was later suggested by McKinney et al. (1959) that the cause of the aplastic 

ameamia was a metabolic product of trichloroethylene, namely 1,2-dichlorovinyl cysteine 

(DCVC)30. The discovery came about through the observation that the administration of 

DCVC to calves caused the same aplastic anaemia syndrome that was seen in the calves fed 
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trichloroethylene-extracted soybeans30.  There is still much debate around the toxicity and 

carcinogenicity of halogenated alkenes, trichloroethylene in particular. A lot of ambiguity 

and scepticism exists in the studies done to date, both in animals and humans28.  

 

1.3.1.3 Animal studies and Human studies on Toxicity and Carcinogenicity 

 

Since  the initial studies on aplastic anaemia in calves there have been numerous studies 

looking at the toxicity of trichloroethylene in both animals and humans, particularly in 

regards to its carcinogenicity. In 1995, on the back of evidence obtained from animal 

studies, the International Agency for Research on Cancer (IARC) deemed there was 

"sufficient evidence" to conclude that trichloroethylene does display carcinogenicity in 

animals. The experiments included four inhalation experiments on mice, all of which 

indicated an increase risk in various tumours. Rats and hamsters were also tested with 

varying results31. Given that trichloroethylene displayed some carcinogenicity in certain 

animal models the question remained as to whether the same carcinogenicity would be 

seen in humans. Most of the case studies into humans have considered people exposed to 

trichloroethylene at high levels. These studies tend to show a small but statistically 

significant increase in the amount of urinary proteins and other markers for 

nephrotoxicity32. Further, multiple studies have demonstrated an increase in the risk of 

contracting renal cancer in people exposed to high levels over a number of years. However, 

these studies have been criticized due to perceived methodology flaws. Nevertheless, the 

evidence obtained does suggest a weak correlation between high level trichloroethylene 

exposure and renal cancer in humans32.    
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1.3.2 Halogenated Alkene Metabolism 

  

1.3.2.1 Detoxicification Routes 

 

In order to gain a better understanding of trichloroethylene toxicity, multiple studies have 

been performed looking at the metabolic fate of trichloroethylene in human and animals. 

The results of these studies found the majority of trichloroethylene is metabolized by 

cytochromes P450 to trichloroethanol, trichloroethanol-glucuronide and trichloroacetic 

acid.  Nonetheless, it is thought that the toxicity caused by trichloroethylene is not a direct 

result of any of the metabolites formed from cytochrome P450 metabolism33. Instead the 

main culprit is believed to occur through glutathione metabolism. The amount of 

trichloroethlyene that gets metabolized through this pathway is extremely low, estimated 

to be less than 0.01% of the total dose of trichloroethylene in humans. However this small 

percentage is sufficient to cause damage, due to the high toxicity of some of the 

metabolites that are produced during this glutathione metabolism34.   

 

1.3.2.2 Glutathione Metabolism  

 

As mentioned previously (section 1.2.2), glutathione acts in an analogous manner to 

mycothiol. As such, one of its more important roles is in the detoxification of harmful 

electrophilic xenobiotics19. There is conclusive evidence that glutathione-mediated 

metabolism of trichloroethylene does occur. Both human and animal studies have isolated 

metabolic products consistent with glutathione metabolism present in urine after exposure 

to trichloroethylene35, 36. Upon entry into the cell, trichloroethylene is processed by 

glutathione S-transferases (GSTs) to the corresponding glutathione S-conjugate, which gets 

metabolized further by γ-glutamyltransferase and various dipeptidases to form DCVC33. 

Unlike trichloroethylene and tetrachloroethylene there is no doubt that DCVC is toxic; a fact 

that has been proven in numerous studies37-39. In the case of trichloroethylene metabolism 

DCVC can lead to either detoxification or toxicity. Detoxification occurs via N-acetylation of 
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cysteine's amine. This step is catalysed by amino acylases producing a non-toxic 

mercapturic acid which is rapidly excreted from the cell40. However, without N-acetylation 

the DCVC's free amine allows metabolism through an alternative route. This route is 

catalysed by β-Lyases and results in the formation of extremely toxic metabolites41.  

 

1.3.3 Cysteine Conjugate β-Lyases 

 

1.3.3.1 Distribution and Discovery 

 

The name β-lyases is given to a set of enzymes that catalyse the cleavage of the cysteine S-

conjugates through the sulphur-carbon bond of cysteine, in a β-elimination reaction40. This 

reaction was first demonstrated to occur in DCVC by Bhattacharya et al. (1967)42. 

Nonetheless, it was not until 1978 that the term "cysteine conjugate β-lyase" was first 

used43.  There are currently thirteen enzymes containing cysteine conjugate β-lyase activity 

that have been identified in mammals, eight of which are cytosolic and five of which reside 

in the mitochondria44. These -lyases are particularly prevalent in the kidney and liver, 

which explains why much of the toxicity associated with trichloroethylene exposure is 

isolated to the kidney45. The primary role of enzymes that exhibit cysteine conjugate β-lyase 

activity is not the beta elimination reaction they are usually characterized by, rather the 

majority of them are amino acid transferases44. Amino acid transferases are found widely 

throughout nature, including in bacteria and as such β-lyases should be prevalent in 

bacteria as well. A study by Dekant et al. (1986) supports this as it demonstrated Salmonella 

typhimurium have a significantly higher β-lyase concentration than mammalian cells46. 
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1.3.3.2 Cysteine S-Conjugate Metabolism by β-Lyases 

 

Both the β-elimination and transamination reactions require pyridoxal 5'-phosphate (PLP) 

as a coenzyme. The transamination reaction results in the conversion of an amino acid to 

it's corresponding α-ketoacid. In this reaction, the PLP will be converted to pyridoxamine 

5'-phospahate (PMP). In this form the enzyme is unable to catalyze a β-elimination reaction, 

though may be converted back to its PLP form through the reverse reaction, i.e. conversion 

of α-ketoacid to amino acid44. Thus, the addition of α-ketoacid can increase β-lyase 

mediated toxicity by converting the inactive PMP to PLP, allowing β-elimination to take 

place47.  As mentioned above, the β-Lyases catalyse the cleavage of the C-S bond of cysteine 

through a β-elimination reaction. The β-elimination reaction performed by β-lyases 

ultimately results in the production of pyruvate, ammonia and a halothioalkene (Figure 

1.3). It is this halothioalkene that is associated with the toxicity of trichloroethylene and 

various other halogenated alkenes45.  

 

1.3.4 Halothioalkene Toxicity 

 

The toxicity of the halothoialkenes  are a direct result of their propensity to undergo 

transformation into a number of highly reactive intermediates including tautomerization to 

form thionyl acyl chlorides, or the loss of a halogen to form halothioketenes48. The 

halothioketenes in particular have been shown to be highly toxic. Volkel et al. (1998) 

demonstrated the high reactivity of halothioketenes, namely chlorothioketenes, by 

showing under optimal conditions chlorothioketenes could react with DNA, though had a 

higher propensity toward reacting with proteins49. Halothioketenes are also capable of 

β-Lyase

 

Figure 1.3. β-lysis of cysteine-S-conjugate 
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reacting with the cell’s glutathione, causing subsequent depletion of the cell’s glutathione 

stores, resulting in oxidative stress and lipid peroxidation, ultimately leading to cell death50. 

Due to their inherent toxicity, halothioketenes could provide a novel approach to the 

treatment of TB, provided they can be made to specifically target the pathogen and avoid 

release in human cells. Utilizing mycothiol metabolism present in Mycobacterium 

tuberculosis provides an opportunity to induce the same halothioketene toxicity that is 

seen in mammals exposed to trichloroethylene. 

 

1.4 Mycothiol Induced Toxicity 

 

1.4.1 Mycothiol and Glutathione Pathway 

       

As stated previously (section 1.2.3.3 and 1.3.2.2), both Mycobacterium tuberculosis and 

mammals utilize low molecular weight thiols to detoxify harmful electrophilic xenobiotics. 

In mammals glutathione will conjugate the electrophile to its cysteine's sulphur. The 

glutathione conjugate will then undergo metabolism by a number of enzymes to produce 

the corresponding cysteine S-conjugate. This can then either get N-acetylated to produce a 

non-toxic mercapturic acid, or alternatively, β-elimination can take place resulting in the 

production of a harmful halothioketene. In comparison, Mycobacterium tuberculosis 

utilizes mycothiol to detoxify electrophilic compounds21. This method of detoxification is 

more efficient than the glutathione based system. The reason being that the cysteine in 

mycothiol is already N-acetylated, thus once a electrophile is conjugated to the mycothiol 

it requires just one enzyme, Mca, to produce the same end product of glutathione 

metabolism, i.e. a mercapturic acid.  
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1.4.2 Subverting the Mycothiol Pathway 

 

Because mycothiol metabolism is not present in mammals it  provides an opportunity to 

selectivity release halothioketenes into Mycobacterium tuberculosis. However some of the 

differences between the detoxification pathways could pose problems. The end product of 

both their detoxifications is mercapturic acid, which excretes the conjugated electrophile 

out of the cell. The key difference in the two systems in terms of haloalkene toxicity is the 

N-acetylatation of cysteine. This occurs in the last step of mercapturic acid formation in the 

glutathione pathway, while is present before conjugation in the case of the mycothiol 

pathway20. The activation and release of the toxic halothioketene is dependent on the 

cysteine not being acetylated so β-elimination can occur. Thus, the halothioketene if 

conjugated to mycothiol would not released40. Taking this into consideration, the structure 

of a proposed mycothiol analogue (Figure 1.4) is suggested as a possible carrier for selective 

release of toxic haloalkenes in Mycobacterium tuberculosis.   

1.4.3 Proposed Mechanism for Conjugated Mycothiol Analogue 

 

The proposed mechanism for the analogue causing Mycobacterium tuberculosis death is as 

follows:  Upon entry into the mycobacterial cell, the analogue is recognized by Mca and 

subsequent cleavage of the amide bond occurs. This results in the release of the cysteine 

S-conjugate. The conjugate is then cleaved by -lyases and the haloalkene sulfur fragment 

13

 

Figure 1.4. Proposed structure of conjugated mycothiol analogue 
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is released. The unstable haloalkene sulfur fragment then converts to a halothioketene and 

this results in the binding and disruption of macromolecules, as well as potentially reacting 

with the mycothiol, resulting in oxidative stress and a decrease in cell viability.  

                                                  

1.5 Structure Design 

 

The proposed structure above (Figure 1.4) was based on an analogue produced by Knapp 

et al. (2002). However, it differs in two key areas; 1) the removal of the N-acetyl group from 

the cysteine and 2) the conjugation of the cysteine sulphur with a haloalkene.  

 

1.5.1 Cysteine N-Acetylation and Hydroxyl Removal 

 

The mycothiol analogue proposed by Knapp et al. (2002) had good activity for Mca, around 

half of what is observed with mycothiol (MSH), indicating  that the simplification of the 

inositol ring by the removal of hydroxyl groups should not be too detrimental to its 

activity18. However, the removal of the N-acetyl group to allow for β-elimination to take 

place will have a greater effect on Mca recognition and activity. Newton et al. (2000) 

investigated the effect of removing the N-acetyl group from the cysteine and found a 

significant decrease in the activity of Mca toward the substrate, with it showing just 0.1% 

of the activity shown by the N-acetylated mycothiol20, 51. Furthermore, a later study noted 

that the mycothiol biosynthetic enzyme MshB, which cleaves the N-acetyl amide bond of 

GlcN-inositol (section 1.2.3.1), demonstrated a 500% increase in activity toward the same 

des-N-acetyl substrate than it's native GlcN-inositol substrate. Thus, removal of the N-

acetate from cysteine may not cause a significant decrease in the amide cleavage of the 

proposed mycothiol analogue20, 51. The other structural variation on mycothiol and the 

analogue developed by Knapp et al. (2002) is the conjugation of the haloalkene18.  
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1.5.2 Cysteine-S-Conjugate Selection 

 

1.5.2.1 Haloalkene Selection 

 

The haloalkene initially chosen is tetrachloroethene, which would produce S-(1,2,2-

tricholorvinyl)-L-cysteine (TCVC) upon cleavage by Mca. Birner et al. (1997) looked at the 

toxicity of TCVC, S-(1,2-dichlorovinyl)-L-cysteine, S-(2,2-dichlorovinyl)-L-cysteine and S-

(1,2,3,4,4-pentachlorobutadienyl)-L-cysteine (PCBC) in rat kidneys and found that TCVC 

produced the greatest amount of damage to the kidney cells41. This result suggests TCVC 

should be effective in disrupting the viability of the Mycobacterium tuberculosis and avoids 

the problem of regioselectivity that would be seen with trichloroethylene.  

 

1.5.2.2 Fluorescent Tag Selection 

 

A compound containing a fluorescent tag (Figure 1.5) was chosen to be synthesized 

alongside the compound seen in (Figure 1.4) in order to track cell entry and enzymatic 

activity. Tracking of mycothiol is typically done with the use of monobromobimane. Bimane 

is a fluorophore that gets conjugated to cysteine of mycothiol in the same way as the 

haloalkenes.  The bimane conjugate has been shown to elicit the highest activity towards 

Mca to date, making it ideal for the tracking of the mycothiol detoxification pathway21.  The 

application of the bimane conjugate's use in tracking the activity of the substrate with Mca 

was demonstrated by Knapp et al. (2002). They used fluorescence-detected HPLC to detect 

the mycothiol conjugate with bimane, and its corresponding mercapturic acid, 

demonstrating the potential to use monobromobimane in the study of the proposed 

mycothiol analogue uptake and degradation18.  



19 

 

 

1.6 Chemical Synthesis of Mycothiol 
 

1.6.1 Past Syntheses of Mycothiol 

 

In past studies involving mycothiol, two approaches are taken to obtaining mycothiol. They 

are whole cell extraction and chemical synthesis. Mycothiol is a difficult compound to 

isolate through whole cell extracts; it takes 1 litre of Mycothiol smegmatis cell culture to 

produce just 1.5 mg of mycothiol. In many cases this method is impractical, especially when 

a scale up is required21. It is therefore not surprising that a lot of effort has been dedicated 

in to producing mycothiol through chemical synthesis.  

 

There have been a number of mycothiol syntheses to date, which from a synthetic view 

point contain many challenging structural features. These include α/β selectivity at the 

anomeric centre, avoiding racemisation when conjugating cysteine, as well as 

desymmetrisation and protection of the inositol52-54. The first synthesis of mycothiol was 

developed by Bornemann et al. (1997)54. It required a cumbersome five step 

protection/deprotection sequence to produce the appropriately protected insitol . Once 

formed, this functionalized inositol was coupled to a derivatized glucosamine in a silver 

 

Figure 1.5. Structure of proposed fluorescent mycothiol analogue 
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triflate mediated reaction. Sixty percent of the conjugated adduct was obtained in a 1:1 

mixture of α/β anomers. This synthesis was in fact a semi-synthesis utilizing a undialysed 

Mycothiol smegmatis cell extract in the final step of their synthesis to conjugate the 

cysteine and GlcN-Inositol. The final step resulted in a 40% yield containing both mycothiol 

and its des-acetyl cysteine analogue in a 4:1 mixture respectively54.  A later synthesis was 

developed by Lee et al. (2004)53. They employed an Me3SiOTf-promoted coupling of a 

trichloroacetimidate functionalized glucosamine and derivatized inositol, resulting in a 9:1 

(α:β) ratio in a 45% yield. The conjugation of the GlcN-Inositol to N-acetyl cysteine however 

proved problematic, with both carbodiimide coupling reagents EDCI and DCC resulting in 

racemization. Nonetheless a diastereomerically pure product was achieved using  

HATU/HOAt and collidine, though a poor yield of 21% was obtained 53. The two syntheses 

outlined above demonstrate some of the key structural challenges in regards to mycothiol 

synthesis. A number of other syntheses have also been completed13, 52, 55.  However, none 

of these have managed to synthesise mycothiol on a scale that could not be easily reached 

via whole cell extracts and thus a higher yielding and more scalable synthesis was 

required21.  

 

1.6.2 Knapp et al. (2002) Synthesis of a Mycothiol Analogue  

  

Knapp et al. (2002) bypassed the problem of low yielding mycothiol syntheses by producing 

a mycothiol analogue (Scheme 1.1) that is biologically active toward Mca and can be readily 

synthesized in large quantities. The compound itself can be synthesized in seven steps from 

β-glucosamine pentaacetate. The synthesis involves the formation of a thiazoline through 

treatment of β-glucosamine pentaacetate with Lawesson's reagent, followed by the 

opening of the thiazoline with TFA to yield an anomeric α-mercaptan. Conjugating of a 

cyclohexane ring was achieved through an AIBN-induced radical reaction between 

cyclohexene and the mercaptan. Subsequent acetate deprotection using hydrazine 

afforded a GlcN-Inositol derivative. By stripping the hydroxyls of the inositol and using a 

sulphur linker, the issue of α/β selectivity was solved and the need for cumbersome 
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protection/deprotection to obtain the properly derived inositol was removed.  The 

production of the mycothiol derivative was achieved by coupling the GlcN-Inositol 

derivative to N-Boc-S-Acetyl cysteine using EDCI, followed by TFA treatment to remove the 

Boc protecting group. The use of a Boc protecting group allowed no racemisation to take 

place during conjugation, despite the use of the carbodiimide coupling reagent EDCI. 

Treatment of the coupled product with pyridine caused acetate transfer from the sulphur 

to nitrogen, resulting in the formation of the mycothiol analogue (Scheme 1.1). The overall 

yield of this synthesis was 53%, significantly greater than the other syntheses of mycothiol. 

Therefore the compound synthesized by Knapp et al. (2002) will be the starting point in 

regards to the synthesis of the mycothiol analogue described herein.  

1.6.3 Synthetic Plan for this Study 

 

 

1. Pyridne
2. Sephadex

100%

24 hr, 120°C, 84%

100%

EDCI, DMF, 82%

Lawesson's Reagent

Toluene, N2, 2 hr, 80°C

TFA, MeOH, H2O

rt, 2 hrs, 100%

AIBN, Cyclohexene, THF

N2, 7 hr, reflux, 79%

NH2NH2.H2O, 

TFA, 100%

 

Scheme 1.1. Knapp et al. (2002) synthesis of a simplified mycothiol analogue18 
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Knapp's (2002) synthetic strategy will provide the basis from which the desired compounds 

will synthesized. The proposed synthesis of both the haloalkene and bimane derivitives can 

be seen in schemes 1.2 and 1.3. The cysteine derivatives will be synthesized firstly by Boc 

protection of the L-cysteine's amine with di-tert-butyl dicarbonate forming N-Boc cysteine 

2. The N-Boc cysteine can then be conjugated through cysteine's sulphur to either 

tertrachloroethylene, forming N-Boc-TCVC 3, or monobromobiamane, forming the bimane 

derivative 4. The formation of 5-10 will follow Knapp's synthesis. However the synthesis will 

deviate from this point in regards to the derivatization added at cysteine's sulphur, though 

will stay true to Knapp's coupling conditions employing EDCI in DMF producing coupled 

products 11 and 12. As well the deprotection of Boc using TFA to yield products 13 and 14 

as the desired mycothiol analogues. 

 

 

 

 

1

2

3

4

NaHCO3(aq), Boc2O, THF

N2, rt, overnight N2, rt, 1hr

C2Cl4, Acetonitrile, DBN

NaHCO3(aq)

Monobromobimane

rt, 3 hr

 

Scheme 1.2. Proposed synthesis of the cysteine-S-conjugates 
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EDCI, DMF

R1= 

R2=

5 6

7

8
9

10

11 = R = R1

12 = R = R2

13 = R = R1

14 = R = R2

Ac2O, NaOAc

1 hr, 100 °C

Lawesson's Reagent

Toluene, N2, 2 hr, 80°C

TFA, MeOH, H2O

rt, 2 hrs

AIBN, Cyclohexene, THF

N2, 7 hr, reflux

NH2NH2.H2O, 24 hr, 120°C

TFA

 

Scheme 1.3. Proposed synthesis of mycothiol analogues 13 and 14 
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1.7 Research Objectives 
 

The thesis described herein set out to determine whether the mycothiol detoxification 

pathway, present Mycobacterium tuberculosis, can be exploited, in conjugation with β-

lyases, to cause a build-up of harmful halothioketenes and subsequent cell death.   To this 

end, the major aim was the synthesis and biological evaluation of mycothiol analogue 13.  

The objectives required to achieve this aim were: 

1) Synthesis of N-Boc-TCVC 

2) Synthesis of the simplified GlcN-Inositol 10 

3) Conjugation of fragments made from objectives 1 and 2 and deprotection to form 13 

4) Synthesis of fluorophore 14 to evaluate cell entry 

5) Synthesis of the β-anomer of 13 (became an objective part way through thesis, for 

reasons discussed in chapter 3)     
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Chapter 2  

2. Cysteine Derivative Synthesis 

One of the overarching goals in this thesis was the synthesis of the mycothiol analogue 13, 

for which, the formation of N-Boc-TCVC represents an important objective.  This chapter 

outlines the successful synthesis of N-Boc-TCVC, through N-Boc protection of L-cysteine and 

subsequent tetrachloroethylene conjugation.  

 

2.1 Boc Protection of L-Cysteine 

 

2.1.1 Reduction of N-Boc-L-Cystine 

 

Based on previous literature, the N-Boc protection of L-cysteine was thought to be 

obtainable through treatment of L-cysteine with di-tert-butyl dicarbonate under alkaline 

conditions56, 57. However, these conditions promoted the production of both the desired N-

Boc-L-cysteine and its oxidized form N-Boc-L-cystine (Scheme 2.1).  This reaction mixture 

was subjected to sodium borohydride reducing conditions in an attempt to reduce the 

unwanted N-Boc-L-cystine into the desired N-Boc-L-cysteine58. Based on 1H NMR evidence, 

a portion of the N-Boc-L-cystine was reduced, however, a significant quantity still remained. 

In order to gain a better indication of the effectiveness of this reaction, L-cystine was doubly 

1

15

2

Base(aq), Boc2O, THF

rt, overnight

 

 Scheme 2.1. Attempted synthesis of N-Boc-L-cysteine 
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protected with di-tert-butyl dicarbonate to afford N-Boc-L-cystine in 93% yield after 

isolation56. The newly obtained N-Boc-L-cystine was then reacted with a larger excess of 

sodium borohydride in an attempt to push the reaction to completion. Once again this 

resulted in only partial reduction. With sodium borohydride unable to promote the 

complete reduction of N-Boc-L-cystine, an alternative literature method was examined 

using zinc and acetic acid in ether (Table 2.1)59.  The first attempt resulted in no reduction 

occurring at all, which was put down to a lack solubility in diethyl ether. With this in mind, 

the subsequent reaction employed THF as the solvent, in which cysteine demonstrated 

much better solubility. This resulted in a partial reduction of N-Boc-L-cystine, 

demonstrating solubility as the probable culprit for the failure of the first attempt. On the 

basis of another literature method, which demonstrated that a temperature of up to 60 °C 

could be used without causing the deprotection of Boc protecting groups, a higher 

temperature was applied in order to promote the complete reduction (Reaction 3)60. This 

involved initially cooling the reaction to 0 ºC then allowing it to warm up to room 

temperature over a 1 h period, followed by an additional 3 hrs at room temperature. This 

resulted in the complete reduction of the N-Boc-L-Cystine to the desired N-Boc-L-Cysteine. 

However, this set of reaction conditions proved unreliable, with the subsequent two 

reduction attempts resulting in complex reaction mixtures.  

Table 2.1. Optimization of Zinc Mediated N-Boc-L-Cystine Reduction 

Reaction Reagents Quantity Time  Temperature 
Level of 

Reductiona 

1 Boc-Cystine 447 mg    

 Zinc dust 3.29 g 2 hr 0 °C Partial 

  5% Acetic acid in Diethyl ether 17 mL       

2 Boc-Cystine 376 mg     

 Zinc dust 2.75 g 2 hr 0 °C Partial 

  5% Acetic acid in THF 14 mL       

3 Boc-Cystine 270 mg     

 Zinc dust 2.27 g 4 hr 0 °C up to 20 °C Inconsistentb 
  5% Acetic acid in THF 10 mL       

aDetermined from 1H NMR. bThis reaction resulted in 100 % reduction in first attempt, however subsequent 
attempts yielded complex mixtures 
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2.1.2 Minimising N-Boc-L-Cystine Formation 

 

In order to bypass problems associated with the reduction of N-Boc-L-cystine, an effort was 

made to minimize  the isolation of N-Boc-L-cystine following the protection of L-cysteine. 

Variations in the reaction time, base used and number of equivalents of L-cysteine were 

investigated (Table 2.2). It was hypothesised that by shortening the reaction length the 

formation of N-Boc-L-cystine may be minimized (provided that the rate of L-cystine 

formation was significantly lower than the rate of the Boc protection of cysteine). This did 

prove to be the case, with these reaction conditions providing a reduction in the amount of 

N-Boc-Cystine formed. However, because the reaction was stopped prior to completion, 

there was also a corresponding decrease in yield.   

It was also hypothesized that the use of excess cysteine, relative to di-tert-butyl 

dicarbonate, should ensure that the majority of the oxidized L-cystine is present in either 

the unprotected or incompletely Boc-protected form. The vast majority should therefore 

remain in the aqueous layer (Figure 2.1). Based on this theory, 4 equivalents of L-cysteine 

were used, relative to di-tert-butyl dicarbonate, as expected this resulted in an increase in 

the N-Boc-L-cysteine to N-Boc-L-cystine ratio, such that N-Boc-L-cysteine represented the 

major product. Like the reaction involving a shorter reaction time, a decrease in combined 

yield was observed. It is important to note that in both cases the quantity of N-Boc-L-

cysteine obtained remained constant. Thus, the decrease in combined yield is entirely due 

to a substantial decrease in the amount of N-Boc-cystine formed.   

Table 2.2. Optimization of L-Cysteine Boc Protection 

Reaction Time (hrs) Cysteine (eq) Nitrogen  Base 
Boc-Cysteine : 
Boc-Cystinea Yieldb 

1 18 1 Yes  NaOH  42 : 58 87% 

2 3 1 Yes  NaOH 62 : 38 57% 

3 30 4 Yes  NaOH 59 : 41 59% 

4 18 4 Yes  NaHCO3   95 : 5   56% 
aDetermined by 1H NMR. bCombined yield of Boc-cysteine and Boc-cystine  
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Gratifyingly, almost no N-Boc-L-cystine was isolated when sodium bicarbonate was used 

with 4 eq. of L-cysteine, producing the desired N-Boc-L-cysteine in 66% yield.  

 

2.2 Cysteine S-Conjugation  

 

The initial plan for the synthesis of N-Boc-TCVC 3 was to utilise methodology by Bartels and 

Miner (1990) to synthesise trichlorovinyl cysteine (TCVC)61, then subsequently protect the 

amine with a Boc protecting group to afford compound 3. This sequence was initially 

undertaken due to the propensity of cysteine to oxidise to the corresponding disulfide 

under Boc protection conditions (Section 2.1). By conjugating the cysteine with 

tetrachloroethylene initially, the ability of the product to oxidise during the subsequent Boc 

protection is removed. However, the reaction proposed by Bartels and Miner (1990) proved 

troublesome in the current setting, due to formation of an inseparable impurity.  The 

synthetic methodology consisted of a reaction between L-cysteine and tetrachloroethylene 

Equivalent

Aqueous PhaseOrganic Phase

 

Figure 2.1. Species formed during the Boc protection of L-cysteine  
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in the presence of the base 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), with the desired TCVC 

rapidly crystallizing upon addition of acid61. Attempts to purify the product proved 

unsuccessful. The problem stems from the insolubility demonstrated by TCVC and the 

impurity in essentially all solvents tested. Solubility was observed only in DMSO, 100 °C 

water and aqueous base. This effectively ruled out column chromatography as a viable 

option. Both pH dependent, and hot water recrystalization failed to yield any improvement 

in purity. Hence attempts were made to remove the impurity altogether. The impurity 

obtained had a similar 1H NMR spectrum to the desired product and as such it was initially 

thought to be a disubstituted tetrachloroethylene.  

The attempts to minimise the formation of the impurity are outlined in Table 2.3. 

Performing the literature method described by Bartels and Miner (1990) resulted in a 2 : 1 

mixture of desired product to impurity. If the impurity present was the disubstituted 

tetrachloroethylene, it stands to reason, that by increasing the amount of 

tetrachloroethylene relative to cysteine the probability of disubstitution would be reduced. 

With this in mind, the equivalents of tetrachloroethylene were doubled to eighteen. This 

resulted in an improved ratio of TCVC to impurity (4 : 1). Following this promising result the 

equivalents of tetrachloroethylene were increased further to 24 and the cysteine added 

dropwise to further dilute the cysteine relative to tetrachloroethylene. Surprisingly these 

reaction conditions caused an increase in the amount of the impurity produced such that it 

represented the majority of product formed (TCVC : impurity, 3 : 7). Increasing the 

equivalents of tetrachloroethylene to 200 and adding dropwise resulted in a similar ratio 

(TCVC : impurity, 1 : 3). The reversal in the selectivity towards the impurity upon dropwise 

addition suggests that a disubstituted tetrachloroethylene is not the impurity and also 

indicates there may be additional factors, independent of dilution, governing selectivity. 

Apart from the dilution of cysteine (relative to tetrachloroethylene), the major change in 

regards to reaction conditions in the dropwise addition is the solvent system. Although both 

the dropwise and bulk addition reactions contained an overall equal quantity of DMSO 

relative to tetrachloroethylene, the variation occurs during the initial stage of the reaction. 

Upon addition of the first drop of cysteine in DMSO, the DMSO concentration is very low, 
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gradually rising in to reach its peak concentration upon addition of the last drop. At this 

point the DMSO concentration will be the same as the bulk addition reaction. This means 

the initial stages of the dropwise reaction will have a significantly lower polarity solvent 

system, which may be the cause of the observed changes in product ratios. Unable to 

remove or separate the impurity, the mixture was then subjected to Boc protection. 

Successful purification was achieved at this stage, albeit in a low 15% yield.  

The troubles with the inseparable impurity and a low yielding Boc protection prompted 

investigation into an alternative route for the formation of N-Boc-TCVC. This new route 

involved a reversal of the tetrachloroethylene conjugation and Boc protection steps, 

whereby the Boc-group is added prior to tetrachloroethylene conjugation. Using the 

previously synthesized Boc-Cysteine (Section 2.1), the synthesis of the desired N-Boc-TCVC 

was achieved through tetrachloroethylene conjugation, via an analogous method to that of 

Bartels and Miner (1990). Initial attempts involved using the same reaction conditions used 

previously for TCVC formation61. Although 1H NMR evidence indicated the reaction was 

successful, the desired product was unable to be efficiently isolated from the DMSO as, 

unlike TCVC, it could not be recrystallized. In an attempt to simplify the workup and allow 

for easier purification the reaction was trialled in dichloromethane. Unfortunately, the  

  

16

Impurity

DBN (2 eq), DMSO

Tetrachloroethene

 

Table 2.3. Reaction of L-Cysteine with Tetrachloroethylene 
 

Reaction Tetrachloroethylene (eq.) Dropwise Additiona TCVC : Impurityb 

1 9 No 2 : 1 

2 18 No 4 : 1 

3 24 Yes 3 : 7 

4 200 Yes 1 : 3 
aDropwise addition of L-cysteine hydrochloride in DMSO  and DBN. bDetermined by 1H NMR 
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reaction did not proceed in this solvent. The reason for the lack of reactivity was put down 

to the lower polarity of dichloromethane in comparison to DMSO and, as such, a reduced 

ability to stabilise the dipolar transition state. With this in mind the more polar acetonitrile 

was trialled, which gratifyingly gave the desired N-Boc-TCVC in 74% yield.  

The 1H NMR of this reaction showed two sets of peaks. These peaks were also seen in the 

spectrum of N-Boc-L-cysteine and were thought to be a result of rotamers caused by the 

steric bulk of the Boc group. To confirm this was the case, N-Boc-TCVC was subjected to 

treatment with 20% TFA in dichloromethane for 30 minutes, after which time, the solvent 

was evaporated off. Subsequent 1H NMR analysis revealed a single set of peaks, confirming 

the second set of peaks present in the 1H NMR spectrum of N-Boc-TCVC was due to the 

presence of rotamers (Figure 2.2).  

In summary, the successful synthesis of N-Boc-TCVC was achieved in two steps (46%), 

through the Boc-protection of L-cysteine and subsequent conjugation of 

tetrachloroethylene. Thus completing one of the initial objectives required to complete the 

main aim, i.e. the synthesis of mycothiol analogue 13.   
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Figure 2.2. 1H NMR spectrum comparing the α and β protons of Boc-TCVC and TCVC 
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Chapter 3   

3. Synthesis of α- and β-GlcN-Inositol 
Analogues  

Along with the synthesis of N-Boc-TCVC, another objective required to complete the 

synthesis of the mycothiol analogue 13 was the synthesis of the α-GlcN-inositol analogue 

10. This chapter outlines the successful synthesis of this fragment, while also introducing a 

new secondary aim, which involves the formation of the β-anomer of the original synthetic 

target 13. Thus, this chapter also features the successful synthesis of the β version of the 

α-GlcN-inositol analogue 10.   

 

3.1 Radical Based Synthesis to α-Thioglycoside (9)  
 

As stated previously (Section 1.6.1), there are two key challenges in GlcN-inositol synthesis. 

These are the formation of the 1,2-cis-α-linkage connecting the inositol to the glucosamine 

and the steroselective derivatization of the inositol ring52-54. Knapp et al. (2002) solved 

these problems by developing a GlcN-Inositol analogue in which the inositol hydroxyls were 

removed and the glycosidic oxygen linker was replaced by a sulfur18. Implementing these 

changes meant the stereoselective derivatization of inositol was redundant and the 

substitution of the linker oxygen with sulfur ment the 1,2-cis-α-linkage could be obtained 

selectively through a radical-based mechanism. These changes ultimately resulted in a 

significantly higher overall yield compared to previous mycothiol syntheses18. For these 

reasons the GlcN-inositol analogue developed by Knapp et al. (2002), as well as the 

synthetic steps used to make it, were chosen as the primary target. 
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3.1.1 Synthesis of β-D-Glucosamine pentaacetate 
 

The starting material used in Knapp's synthesis is β-D-glucosamine pentaacetate. It was 

envisioned this could be synthesized from N-acetylglucosamine in a peracetylation 

reaction62. A key challenge in this area is acetylation of six membered sugars so as to 

stereoselectivly obtain either the α or β anomer. In regards to glucosamine peracetylation 

there are simple stereoselective methodologies for the formation of the α-anomer, of 

which the most widely used is pyridine with acetic anhydride63-67. However, there is very 

little literature regarding high yielding β-glucosamine pentaacetate procedures to date. In 

fact, the most common routes to the synthesis of β-D-glucosamine pentaacetate require 

multistep processes68-72.  

Knapp et al. (2007) developed a method for the synthesis of β-glucosamine pentaacetate 

from N-acetyl glucosamine in a one step reaction utilizing montmorillonite K10 and acetic 

anhydride, albeit in a low yield (33%)62. Nonetheless, this reaction was chosen as a good 

starting point due to its simplicity and ability to be performed in a single step. 

Disappointingly, when the 2007 methodology of Knapp et al. was followed, a complex 

mixture of products was formed, as demonstrated by 1H NMR analysis of the crude reaction 

mixture. Present in this mix were the α and β anomers of glucosamine pentaacetate in  

a 50 : 50 ratio, relative to each other. Recrystallization of the mixture was attempted, 

though only 1% yield of the β-anomer was isolated. The reaction was repeated multiple 

times; in each case a complex mixture of products resulted. 

NaOAc, Ac2O

100 °C, 1 h

10%

5 6  

Scheme 3.1. Synthesis of β-D-glucosamine pentaacetate 
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In an attempt to produce a cleaner, higher yielding reaction, synthetic methodology used 

to produce β-D-glucose pentaacetate was trialled73.  The reaction involved heating the N-

acetyl glucosamine at 100 °C for 1 h in acetic anhydride and sodium acetate, producing both 

α- and β-glucosamine pentaacetate anomers in a ratio of 25 : 75 (β : α). The mixture was 

recrystallized from methanol to give a yield of 10% for the β-anomer (Scheme 3.1). Thus, 

although the ratio of the β-anomer relative to the α-anomer was lower, the overall yield 

was significantly higher than the montmorillonite K-10 procedure. This is due to the fact 

that production of the α and β glucosamine pentaacetates occurred in the absence of the 

complex mixture that was obtained from the Knapp methodology. 

 

3.1.2 Cyclohexane Conjugation 

 

3.1.2.1 Formation of Mercaptan (8) 

 

The synthesis of the thioglycoside 9, from β-D-glucosamine pentaacetate could be achieved 

through the methodology used by Knapp et al. (2002)18. This involved treatment of β-D-

glucosamine pentaacetate with Lawesson's reagent in toluene at 80 °C. This reaction 

proceeded to form thiazoline 7 in 68% yield62. The apparent difference in yield seen 

between Knapp's synthesis (100%) and the yield obtained may be due to the quality of the 

Lawesson's reagent. The Lawesson's reagent used was over 5 years old. The thiazoline 7, 

when treated with TFA and water yielded mercaptan 8 in quantitative yield (Scheme 3.2)74. 

The final step in the formation of thioglycoside 9 was the radical induced conjugation of 

cyclohexene to mercaptan 818. However, this step proved extremely problematic; as 

discussed below.   
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3.1.2.2 Radical Induced Thioglycoside Formation 

 

Knapp et al. (2002) reported the synthesis of thioglycoside 9 in 79% yield via a AIBN-induced 

radical reaction between mercaptan 8 and cyclohexene in chloroform (cyclohexene : 

chloroform 1 : 1 v/v) at reflux18. However, following this procedure none of the desired 

product was obtained. 1HNMR and IR spectroscopy of cyclohexene and AIBN, respectively, 

suggested that both regents were of good quality. Successful reactions using the same 

batch of AIBN, performed by various members of the research group also suggested that 

the AIBN was good in quality. Due to the high number of variables in this reaction (i.e. 

solvent, time, initiator, initiator equivalents, initiator addition sequence, cyclohexene 

addition sequence, and whether or not the reaction is performed in a nitrogen atmosphere) 

a series of experiments were performed to identify general trends in an attempt to improve 

on the yield (Table 3.1). 1HNMR evidence from the reactions performed in the presence of 

air showed small amounts of the disulfide 18 was produced (reactions 1). In contrast all 

AIBN reactions that were performed in the presence of nitrogen resulted in the recovery of 

a portion of starting material, suggesting the  

 

 

 

 

68 %
100%

6 7 8

Lawesson's Reagent

Toluene, N2, 2 hr, 80°C TFA, MeOH, H2O

 

Scheme 3.2. Synthesis of mercaptan 8 
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oxidation may have been a result of atmospheric oxygen and not a radical based 

mechanism. THF proved to be the solvent of choice, as all AIBN reactions performed in THF 

saw an improvement in both yield and the amount of starting material recovered. Using a 

model reaction, both benzoyl peroxide and tertbutylperoxide were investigated as 

potential initiators for this reaction.  They were chosen over the hydroperoxides due to 

their lower propensity to cause oxidation. Furthermore, as they exhibit lower (tert-butyl 

peroxide) and higher (benzyl peroxide) decomposition rates relative to AIBN, these 

initiators enable analysis as to the effect that initiator decomposition has on the reaction75. 

In addition, as amines have been shown to increase the decomposition rate of benzoyl 

peroxide an extra reaction in which aniline was added to benzoyl peroxide was investigated 

8

Initiator, Cyclohexene

Solvent, reflux

9  

Table 3.1 Optimization of Radical Induced Thioglycoside Formation 
 

Reaction      Solvent  Time   Initiator   
Initiator 

eq.a  
Cyclohexene 

eq.b 
Nitrogen % Yield 

Recovered 
Starting 
Material 

Yield 
brsmc  

1 Chloroform 2 hr AIBN 0.65 x2 40 No - No   - 

2  Chloroform   2 hr AIBN      0.6 x 2  40    Yes  12  Yes  18 

3 THF    2 hr AIBN    0.7 x 3 40    Yes  17  Yes  35 

4 THF    5 hr AIBN  
   0.065 

x 2 
40    Yes  19 Yes   38 

5  THF    5 hr 
Benzoyl       
Peroxide 

   0.25 x 
5 

40    Yes  25 No   25 

6  THF    5 hr 
Benzoyl 
Peroxide 

  0.065 
x 2 

40    Yes  15 Yes   16 

7 
 1,4 

Dioxane  
  5 hr 

Benzoyl 
Peroxide 

  0.065 
x 2 

40    Yes  12 Yes   15 

8   THF    7 hr  AIBN   
  (0.02 x 
5) + (0.6 

x 2) 
8 x 5    Yes  29 Yes   48 

aThe first aliquot of initiator was added at start of reaction, each subsequent aliquot was added 1 h after the previous                           

aliquot, with the exception 3, where it was added in 40 min intervals. bFor reactions with multiple iterations,                                                              

the first aliquot of cyclohexene was added at start of reaction, each subsequent aliquot was added 1 h after the previous                           

aliquot. cYield based on recovered starting material.  
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to provide increased scope in regards to rate of decomposition75. Of the three sets of 

reaction conditions, employing benzoyl peroxide in the absence of aniline showed the most 

promise. However, when benzoyl peroxide was added in place of AIBN, in the thioglycoside 

formation reaction, there was little improvement in yield, as well as a reduction in 

recoverable starting material. The total equivalents of initiator appear to have little effect; 

rather a higher yield is favoured in reactions where multiple iterations of initiator are added 

over a longer period of time, as seen in reactions 6 and 9.  After canvassing a variety of 

reaction conditions the yield was ultimately raised from 0 to 29% (48% brsm). The highest 

yield was obtained using THF as a solvent and AIBN as the initiator, under a nitrogen 

atmosphere. It contained the highest number of AIBN additions over the longest period of 

time and added cyclohexene in five iterations. While this yield was a significant 

improvement it was still not ideal. As such alternative methods were sought to form the 

desired thioglycoside 9.  

 

 3.1.3 Attempt at SN2 Type Thioglycoside Formation 

 

A SN2-type reaction was examined in order to circumvent the low yields obtained in the 

radical induced thioglycosidation. The reaction design was inspired by a paper by Schmidt 

and Zhu (2004), which conjugated the same mercaptan 8 to peptides in which the primary 

hydroxyl of serine was derivatized to a bromine76. This peptide was then subjected to 

nucleophilic attack by the sulfur of 8 in a biphasic reaction consisting of aqueous sodium 

bicarbonate, ethyl acetate and the phase-transfer catalyst tetrabutylammonium hydrogen 

sulfate (TBAHS)76. However, when mercaptan 8 was exposed to these conditions, in the 

presence of bromocyclohexane, none of the desired thioglycoside 9 was observed. Instead 

there was complete conversion to the disulfide 17 (Scheme 3.1). The reason for this 

disparity is mostly likely due to the steric difference between the primary bromide in the 

amino acids and the secondary bromide in the bromocyclohexane. This difference is further 

exaggerated by the cyclohexane ring, in which axial hydrogens will block nucleophilic attack 
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of the sulfur (Scheme 3.3). With the SN2 mechanism proving futile and the radical based 

method not optimal, focus was shifted from synthesising the α-thioglycoside 9 to the 

corresponding β-thioglycoside 22.  

 

 

 

 

 

 

 

 

3.2 Synthesis of the β-tetraacetate thioglycoside (22) 

 

Although of no use in the synthesis of the desired compound 13, the formation of the β-

thioglycoside 22, was deemed advantageous for two reasons. Firstly, it can be used as a 

model substrate in the radical induced thioglycosidation and subsequent reactions. This 

would limit the unwanted loss, in future optimizations, of the small amount of the α-

thioglycoside 9 that had been previously obtained. Secondly, β-thioglycoside 22 provides 

the opportunity to synthesize the opposite anomer of the desired target 13, which would 

provide an interesting comparison in biological testing. It was envisioned that the formation 

of thioglycoside 22 could be obtained via a Lewis acid-catalyzed reaction between 

trichloroacetimidate 20 and cyclohexane thiol. 

 

8 17

EtOAc, NaHCO
3(aq)

TBAHS

 

 

Scheme 3.3. Attempted formation of thioglycoside 9 through SN2  type reaction 



40 

 

3.2.1 Trichloroacetimidate induced thioglycoside formation 

 

The use of trichloroacetimidates in glycoside synthesis was first demonstrated by Schmidt 

and Michel (1980)77. Since then they have found widespread use, owing to their ease of 

installation and ability to be activated without the presence of heavy metal salts; as is the 

case for many halo sugar electrophiles78, 79. With these advantages in mind, the 

trichloroacetimidate 20 was chosen as a potential glycosyl donor for the production of 

thioglycoside 22 (Scheme 3.4).  

The synthesis of trichloroacetimidate 20 has been reported in the literature65. Its formation 

involves the anomeric deacetylation of α-D-glucosamine pentaacetate and subsequent 

derivatization of the newly formed hemiacetal to the trichloroacetimidate65. Following 

these methods, anomeric deacetylation of α-D-glucosamine pentaacetate 18 was achieved 

using ethylene diamine and acetic acid in THF, proceeding smoothly to afford hemiacetal 

19 in 70% yield. Hemiacetal 19 was subsequently reacted with trichloroacetonitrile in the 

presence of DBU to afford 20 in 67% yield (Scheme 3.4). 

 The final step in the sequence, involved thioglycoside formation via BF3·OEt2 catalyzed 

conjugation of cyclohexanethiol to trichloroacetimidate 2080. When trichloroacetimidate 

20 was subjected to the BF3·OEt2 conditions outlined in literature, the β-D-thioglycoside 22 

represented the majority of product isolated (35%), followed closely by the oxazoline 21 

(30%), suggesting that the reaction proceeds through an oxonium ion formation (Scheme 

3.4).   

As an aside, the observation that it was possible to form the oxazoline under these BF3·OEt2 

catalyzed conditions prompted the testing of the thioamide equivalent of the 

trichloroacetimidate 20, under the same conditions (minus the cyclohexane thiol). This was 

looked into as a way to utilize the α-glucosamine pentaacetate 18 in the formation of 

thiazoline 7. Surprisingly, no thiazoline was detected under these conditions. Thus, this 

route was never examined further.  
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The trichloroacetimidate producedure outlined above did, however, succeed in producing 

the desired β-thioglycoside 22, albeit in a disappointing overall yield (17%), from α-

glucosamine pentaacetate. As stated above this anomer was of interest as it provides an 

interesting point of comparison in biological testing (see section 4.2). Hence, the β-anomer 

was developed alongside the α-anomer for the remainder of the synthesis.  However, the 

ability to use β-thioglycoside 22 as a model substrate, to prevent unnecessary loss of the α-

anomer, was hampered due to the poor yield obtained. Thus, a more direct approach was 

trialled. This involved the use of α-glucosamine pentaacetate as a glycosyl donor and 

cyclohexanethiol as the acceptor. 

 

  

70% 67%

22: 35%

21: 30%

Diaminoethane, THF
Acetic Acid, rt, 24 hr 

Cyclohexanethiol, BF
3
.OEt

2

Trichloroacetonitrile

CH
2
Cl

2
, -42 °C, 1 hr

22

DBU, 0°C, 2 hr

21

18 19 20

 

Scheme 3.4. Synthesis of β-Thioglycoside 22 via trichloroacetimidate 20 
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3.3 Direct Route to Thioglycoside Formation 
 

3.3.1 Reactivity of peracetylated sugars 

 

The formation of thioglycosides from peracetylated sugars is prevalent throughout 

literature, in most cases the reaction is Lewis acid mediated. The reason for their 

widespread use is, in part, a result of easy access to the acetate protected precursors81. 

However, although they are easily accessible, peracetylated glycosyl donors are known to 

be among the most unreactive, particularly in comparison to glycosyl donors with ether 

protecting groups, e.g. benzyl. Fraser-Reid termed this difference in reactivity the "armed-

disarmed theory"82. The theory states that glycosyl donors are significantly more reactive 

when protected with ether groups (armed), as opposed to esters (disarmed). The difference 

in reactivity is put down to the higher electron withdrawing effects of the ester protecting 

groups. As a result, this causes a decrease in stability of the oxonium ion intermediate. 

Consequently, there is an increase in the activation energy and a corresponding decrease 

in reactivity83. The decrease in reactivity is further exacerbated if the acetatylated sugar has 

a 1,2-α-cis configuration. The lack of reactivity demonstrated in 1,2-α-cis peractylated 

donors, in comparison to 1,2-β-trans peracetylated donors, is thought to be due to 

neighbouring group participation, whereby the C-2 acetate group aids in the departure of 

the anomeric leaving group in the 1,2-β-trans configuration; but is unable to do so in the 

case of the 1,2-α-cis configuration84.   

Li et al. (2011) examined the issue of poor reactivity seen when using 1,2-α-cis peractylated 

sugars as glycosyl donors in Lewis acid catalyzed thioglycosidation reactions. They showed 

that the reactivity of 1,2-α-cis peractylated sugars could be enhanced by increasing the 

reaction temperature85. Furthermore, the change in temperature was shown to be more 

important to activity than the strength of the Lewis acid used.  Most importantly, with 

respect to this thesis, it was found that by increasing the temperature from room 

temperature to 50 °C, the thioglycosidation reaction utilizing α-glucosamine pentaacetate 
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and thiophenol was able proceed, producing the β-thioglycoside in 40% yield85. 

Unfortunately, Li et al. (2011) did not report any α-thioglycoside under these conditions. 

Nonetheless, as stated previously, the β-anomer was still desired (3.2) and so a direct 

thioglycosidation based off of Li et al's (2011) work was attempted to try to improve on the 

16% overall yield obtained through the trichloroacetimidate route85. 

 

3.3.2 Synthesis of α- and β-Thioglycoside Directly from α-Glucosamine pentaacetate   

  

The synthesis of 22 was attempted using Li et al's (2011) methodology (Scheme 3.5)85. 

Surprisingly, when α-glucosamine pentaacetate 18 and cyclohexanethiol were exposed to 

these conditions, i.e. 2 eq. of BF3.OEt2 in dichloroethane at 50 °C, the desired α-

thioglycoside 9 was the major product formed, in 22% yield. The β-thioglycoside 22 was 

also formed in the reaction, being produced in 11% yield.  This fortuitous result was a 

contrast to the result obtained by Li et al. (2011), who obtained the β-anomer in 40%, albeit 

with thiophenol as the glycosyl acceptor85.  Interestingly, the major product formed in this 

reaction contains a 1,2-α-cis glycosidic linkage. These are one of the most difficult linkages 

to make and often require either derivatization of the anomeric leaving group to something 

that undergoes SN2-type displacement, such as iodine, or, alternatively, the use of 

unconventional protecting groups that take multiple steps to put in place86.  Furthermore, 

it produced the 1,2-α-cis glycosidic linkage in the presence of an acetamide protecting 

group that typically favours the formation of the 1,2-β-cis glycosidic linkage through 

neighbouring group participation87.  

Having produced a somewhat surprising, albeit advantageous result, a re-examination of 

the literature was performed in order to gain a better understanding of the mechanism that 

leads to the α-thioglycoside being formed preferentially. There is a considerable  
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amount of literature involving the Lewis acid catalysed glycosidation of peracetylated 

glucose or glucosamine. The vast majority of these reactions report the exclusive formation 

of the β-glycoside88-92. However, there are a number of studies that report the preferential 

formation of the α-glycosides through anomerization87, 93, 94.  

 

3.3.3 Anomerization Reaction Mechanism  

 

Anomerization is the conversion of one anomer to another over a period of time, in this 

case conversion of the β-thioglycoside to the α-thioglycoside. This process is reversible and 

as such will reach an equilibrium between the two anomers if enough time is given95. It is 

widely known that underivatized sugars, such as D-galactose and D-glucose, undergo 

anomerization in solution through a hemiacetal ring opening mechanism. In contrast, 

glycosides typically need a Lewis acid catalyst for anomerization to take place95. There are 

two possible mechanisms through which anomerization may take place in glycosides; these 

are through endocyclic or exocyclic bond breakage93. The exocyclic mechanism proceeds 

Cyclohexanethiol, BF
3
.OEt

2

1,2-Dichloroethane, 55 °C, 72 hr

18

22

9

 

Scheme 3.5. Synthesis of α- and β-thioglycosides 9 and 22 directly from peracetylated                               

glucosamine 
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via breaking of the glycosidic linkage, forming the oxonium ion. The newly formed oxonium 

ion intermediate can subsequently be attacked from either the top or bottom face, forming 

the β-anomer or α-anomer respectively. The endocyclic mechanism proceeds through 

cleavage of the bond between the ring oxygen and anomeric centre. Once broken, what 

was the glycosidic bond is free to rotate, such that either the β-anomer or  α-anomer can 

be formed depending on the conformation when the ring is reformed (Scheme 3.6)93. 

Evidence for both endo- and exo-anomerization can be found in literature. Xue et al. (2009) 

looked at tin tetrachloride and silver trifluoroacetate-catalyzed glycosidation reactions 

involving a range of alcohols87. They found that the smaller alcohols (methanol, ethanol and 

isopropanol) had the propensity to undergo anomerization to form their corresponding α-

anomers. They suggested that the mechanism itself goes through an exocyclization. This 

was based on the observation that the β-methyl glycoside, when subjected to Lewis acid 

catalysed glycosidation with isopropanol, resulted in the α-isopropyl glycoside as the major 

product87. Although this does not rule out the endocyclic anomerization, it does suggest 

that under these conditions anomerization occurs, at least in part, by exocyclic bond 

breakage. A paper by Pilgrim and Murphy (2010) looked at the tin and titanium 

tetrachloride catalyzed anomerization of O- and S-glycosides93. As they were able to trap 

and isolate a ring opened intermediate, formed as a consequence of endocyclic ring 

opening, the study suggested that endocyclic anomerization was the cause of the observed 

anomerization93. However, once again this does not prove there is no anomerization taking 

place through exocyclization, only that some endocyclic anomerization is taking place. 

Regardless of which mechanism is taking place, or whether a combination of the two is 

occurring, these studies demonstrate that anomerization of peracetylated sugars can 

occur. Furthermore, this anomerization can result in the preferential formation of the α-

anomer.  
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The study performed by Pilgrim and Murphy (2010) also provided additional information 

which pointed to anomerization as a likely cause of the selectivity.  The study tested a large 

selection of variables in regards to anomerization, a number of which were of particular 

interest. It was noted that S-glycosides had a higher propensity to undergo anomerization, 

compared to their corresponding O-glycosides, although selectivity towards the α-glycoside 

was significantly lower93. Additionally, it was found that higher temperatures resulted in a 

increase in the rate of anomerization and decrease in α-glycoside selectivity. In contrast a 

higher catalyst loading resulted in a increase in α-glycoside, relative to the β-glycoside. All 

things considered, the reaction described in this thesis, involving the formation of α-

thioglycoside 9 from the peracetylated-α-D-glucosamine, fits nicely with the observations 

made by Pilgrim and Murphy (2010)93. Although a slightly different starting material, Lewis 

acid and solvent were used, based on Pilgrim and Murphy's (2010) observations, 

anomerization would be expected to take place because high temperatures, high catalyst 

loading and the formation of thioglycosides, all favour anomerization. Furthermore, the α : 

β ratio of 2 : 1 also aligns closely to what was observed by Pilgrim and Murphy (2010)93. 

Exo-Cyclic Anomerization 

 

Endo-Cyclic Anomerization 

 

Scheme 3.6. Possible anomerization mechanisms.                                                                                                      

LA = Lewis Acid. Adapted from Pilgrim 
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TLCs taken over the course of the reaction also supported anomerization as a likely 

mechanism. The TLCs showed an initial build up of the β-anomer. This was followed by an 

increase in the α-thioglycoside, relative to the β-thioglycoside, as the reaction progressed. 

All things considered, it is interesting that Li et al. (2011) made no mention of any α-

thioglycoside formation when using the same conditions described in this thesis, with the 

only variable being the use of thiophenol in place of cyclohexane thiol85. 

 The contrasting results seen when using cyclohexanethiol instead of thiophenol, may be 

due to a number of factors. Firstly, Li et al. (2011) may have obtained, but not reported the 

α-thioglycoside. This seems unlikely, given the paper was demonstrating how to improve 

the reactivity of 1,2-cis-α-peracetylated sugars, and not out to synthesise the β-

thioglycoside specifically. Alternatively, it is plausible that the β-phenylglycoside may be 

more stable than the corresponding α-phenylglycoside, greatly favouring the formation of 

the β-phenylglycoside, and resulting in none of the α-phenylglycoside being observed. 

Finally, it is possible that the observed difference in reaction outcomes is down to the S-

phenyl glycoside having a significantly greater energy barrier to anomerization to 

overcome, relative to the S-cyclohexyl glycoside. Irrespective of how they are occurring, the 

differing results seen between the experiment performed in this thesis and the one 

performed by Li et al. (2011) were highly advantageous. 

Due to time constraints additional experiments were not able to be performed. However, 

to confirm anomerization is taking place, the β-thioglycoside 22 could be subjected to the 

same reaction conditions (α-glucosamine pentaacetate excluded) used in the thioglycoside 

forming reactions. This would ascertain whether 22 is in fact getting converted to the α-

thioglycoside 9, as the TLC suggests, or whether it is getting formed in parallel. Secondly, 

the reaction could be optimized to improve on the modest yield of 33% (2 : 1, α : β). As 

BF3·OEt2 has been implicated as the main cause of product degradation in a number of 

studies, its replacement would be a good starting point for optimization85, 87.  Pilgrim and 

Murphy (2010) found SnCl4 as the best Lewis acid for promoting anomerization in 

peracetylated glucose thioglycosides, so it would represent a good starting point93. Even 
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without optimization the reaction provided a very practical means of synthesizing both the 

α and β anomers and possessed many advantages over the syntheses of both the α-

thioglycoside 9 and β-thioglycoside 22 described previously. 

 

3.3.4 Comparison to Knapp's Methodology 

 

There are a number of inherent advantages to utilizing the direct route to thioglycoside 

formation in place of Knapp's (2002) synthetic route18. These advantages include: 1) The 

reaction can be performed on a large scale, producing gram scale quantities of both the α 

and β thioglycosides; 2) It utilizes the significantly more available α-glucosamine 

pentaacetate; 3) The desired thioglycosides can be synthesized from the α-glucosamine 

pentaacetate in just a single step, as opposed to the 3 steps for the synthetic routes used 

to synthesise α-thioglycoside 9 and β-thioglycoside 22 previously; 4) The overall yield 

(starting from N-acetyl glucosamine) for the formation of  α-thioglycoside 9  is higher than 

what was obtained using Knapp's route (12% vs 1.5%). However, the overall yield of the β- 

thioglycoside 22 was slightly less than the trichloroacetimidate route (6% vs 9%). In 

conclusion, this reaction, though currently only producing modest yields, upon 

optimization, may represent an effective way to synthesize the 1,2-α-cis-thioglycoside 9 

directly from easily accessed peracetylated sugars. Having successfully produced a large 

quantity of both the α-thioglycoside 9 and the β-thioglycoside 22, all that remained in the 

synthesis of the GlcN-inositol analogues was to deprotect the alcohols and amine by 

removing the acetates.       
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3.4 Acetate and Acetamide Deprotection 
 

The acetate and acetamide deprotection was originally proposed to be achieved through 

methodology used by Knapp et al. (2002)18. However, this reaction required the use of the 

highly toxic hydrazine at elevated temperatures over an extended period of time. 

Furthermore, purification required the use of a specific silca gel, namely Iatrobead silica18. 

With these limitations in mind, an alternative approach to acetate/acetamide deprotection 

was employed, which involves activating the acetamide, through addition of a Boc group, 

to allow for a more facile deprotection96.  

 

3.4.1 Addition of the Boc Group to Acetate Protected Thioglycosides (9) and (22) 

 

Activation of thioglycosides 9 and 22 was achieved by reacting them with di-tert-butyl 

dicarbonate in the presence of DMAP. The reaction was carried out in THF at 60 °C, 

producing N-Boc-α-thioglycoside 23 and N-Boc-β-thioglycoside 24 in 100% and 80% yield 

respectively (Scheme 3.7)96. Interestingly, the 1H NMR spectrum of the N-Boc-β-

thioglycoside 24 showed an approximately 1 : 1 ratio of two rotamers, which demonstrated 

different shifts for all protons, with the exception of the cyclohexane ring. In contrast the 

N-Boc-α-thioglycoside 23 showed just a single set of peaks. (Figure 3.1). 

 

α = 9

β = 22

α = 23 (100%)

β = 24 (80%)

DMAP, Boc2O, THF

reflux, overnight

 

Scheme 3.7. Boc activation of N-acetyl thioglycosides 9 and 22 



50 

 

Figure 3.1. 1H NMR of the α-Boc 23 and β-Boc 24 
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Interested in the apparent disparity between the two anomers, the structures were 

subjected to molecular modelling analysis utilizing MacroModel, which allowed 

examination of the lowest energy conformations for each anomer. The results showed that 

both the α and β anomer had two main populations of conformers; these, broadly, had Boc-

up or Boc-down features (Figure 3.2). In the N-Boc-β-thioglycoside, both these 

conformations were essentially the same in regards to their energy. In contrast, there was 

a difference of approximately 10 kJ mol-1 in the Boc-up and Boc-down versions of the N-

Boc-α-thioglycoside.  Alongside the lowest energy conformations, the other pertinent point 

to consider, in regards to the origins of the rotamers in the β-anomer, is the barrier to 

rotation between the Boc-up and Boc-down rotamers. An approximate value for this barrier 

was determined by rotating about the C2-N bond 360 degrees in 5 degree iterations for 

both the α and β anomers. It was found that in both cases the lowest energy pathway the 

rotation could proceed through had a near identical, and equally significant, energy barrier 

of approximately 70 kJ mol-1. This large value suggests that at room temperature both the 

α and β anomers will be unable to easily switch between conformations, and as such, the 

reason rotamers are observed in the β-anomer and absent in the α-anomer is likely 

determined during the course of the reaction. Initially it was thought that, given the high 

barrier to rotation, the rotamers present in the β-anomer may just be a representation of 

the conformation the acetamide was in when the nucleophilic attack took place. However, 

given the α-anomer had an equally high energy barrier to rotation and no rotamers were 

observed, this option seems unlikely. Furthermore, at the elevated temperatures under 

which the reaction was performed (60 °C), there is most likely enough energy in the system 

to overcome the 70 kJ mol-1 barrier to rotation and allow for interconversion between the 

conformers. Thus, it is more likely that production of rotamers in the β-anomer, and not 

the α-anomer, is due to the difference in energies between the Boc-up and Boc-down 

conformers of these anomers, i.e. a thermodynamic not a kinetic effect. As stated above 

there is very little difference between the Boc-up and Boc-down conformation in the N-

Boc-β-thioglycoside, whereas, the N-Boc-α-thioglycoside has a 10 kJ mol-1 difference 

between the two. This difference is  
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most likely negligible under the 60 °C reaction conditions; however, once the reaction 

mixture begins to cool down this difference in energy preferentially favours the lower 

energy conformer, resulting in the formation of this conformer in isolation. On the other 

hand, in the β-anomer there is only a small difference in energy between the two 

conformations, as such, a 50 : 50 mix of each conformer would be expected, such as is seen 

experimentally. Thus, both the experimental observations and molecular modelling suggest 

that the reason for the disparity between the α and β anomers, in regards to rotamers, is 

due to, firstly, to a high rotational barrier for both anomers, and secondly, the presence of 

a significant energy difference in the conformations of the α-anomer that is not present in 

the β-anomer.   

β-Boc-up β-Boc-down 

 

 

α-Boc-up α-Boc-down 

 

 

Figure 3.2. Molecular models of the lowest energy Boc-up and Boc-down conformations for the 
α-Boc 23 and β-Boc 24.  
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Putting the difference in rotamers aside, the purpose of the placing the Boc group on was 

to allow for a more facile deprotection of the acetamide. Thus, with it in place, attempts 

were made to remove all the acetate groups, the acetamide and newly added Boc group in 

a sequential one-pot deprotection.   

 

3.4.2 Deprotection of Boc, Acetamide and Acetate Protecting Groups from (23) and (24) 

 

With the Boc group in place, both the O-acetates and the N-acetate could be removed 

under relatively mild conditions, using sodium methoxide in methanol at room 

temperature. Concentration of the reaction mixture, followed by addition of concentrated 

aqueous hydrochloric acid formed the desired deprotected sugars 25 and 26 as 

hydrochloride salts96. Hence, the removal of the acetates/acetamide and Boc protecting 

groups, was performed in a one-pot reaction and the only work up that was required was 

the removal of the solvent in vacuo (Scheme 3.8). This meant there was no loss of material 

during the deprotection steps. However, this did mean sodium chloride remained mixed in 

with the desired products. With access to both the GlcN-inositol analogues 25/26 and the 

cysteine derivative 3, all that was required was to conjugate both fragments together. The 

presence of sodium chloride was deemed not to be a problem in regards to the following 

conjugation step. Thus no attempt was made to remove it. 

α = 23

β = 24
α = 25

β = 26

i) Na0, methanol, rt, 1 hr

ii) HCl(aq), methanol, rt, 12 hr

 

Scheme 3.8. One-pot deprotection of N-Boc thioglycosides 23 and 24 
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Chapter 4 

4. Synthesis of Mycothiol Analogues and 
Biological Studies  

 

This chapter outlines the successful synthesis of the original synthetic target, mycothiol 

analogue 13. As well as the structurally related β-anomer 28. Thus completing the main 

aim of this thesis. These compounds, along with two of their precursors, were submitted 

for testing against Mycobacterium smegmatis, Mycobacterium boivs (BCG strain) and 

HL60 cells, the results of which are also discussed.  

 

4.1 Coupling of N-Boc-TCVC and GlcN-Inositol Analogues  

 

The coupling of N-Boc-TCVC to the GlcN-inositol analogues 25 and 26 was modified from 

the literature procedure by Knapp et al. (2002)18. Differences included use of N-Boc-TCVC 

in place of the N-Boc-S-acetyl cysteine, as well as the use of amine hydrochloride salts for 

the GlcN-Inositol analogues. In Knapp's (2002) procedure N-Boc-S-acetyl cysteine and  the 

GlcN-inositol analogue 25 (as the free amine) were coupled in DMF using EDCI, affording 

an 82% yield18. These same reaction conditions were trialled, albeit with triethylamine 

added to neutralize the hydrochloride salt, in an attempt to produce the desired N-Boc-

mycothiol analogue 11 (Scheme 4.1). However under these conditions only a trace amount 

of product was obtained. TLC analysis throughout the reaction suggested that a significant 

amount of the starting material 25 was not reacting. With these observations in mind, an 

additional two equivalents of triethylamine were used in the next reaction, bringing the 

total number of equivalents to five. It was thought that this would be sufficient to 

deprotonate the carboxylic acids from the two equivalents of  N-Boc-TCVC, the 
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hydrochloride salt from the two equivalents of EDCI and the hydrochloride salt from 25. 

However, after 1 hr, TLC analysis suggested a large amount of starting material was still 

present; this prompted a further equivalent of a stronger base, DMAP, to be added in an 

attempt to progress the reaction. However, once again only trace amounts of the desired 

product was obtained. These results suggested that the sugar hydrochloride 25 was not 

being effectively deprotonated and as a consequence, leading to a reduction in its 

reactivity. In an effort to try and explore the ability of triethylamine to deprotonate 25, a 

large excess was used to quench the reaction in the Boc-deprotection step (section 3.4.2). 

This was expected to remove the remaining excess HCl and depronate 25. Surprisingly, 

none of the desired free amine of 25 was produced, instead, triethylamine hydrochloride 

and the protonated GlcN-inositol analogue 25 were the only compounds observed through 

1H NMR spectroscopy. This result added further weight to the hypothesis that the low 

yielding reactions were primarily resulting from the inability of triethylamine to 

deprotonate the hydrochloride salt of 25. Due to its low nucleophilicity and higher basicity, 

potassium tert-butoxide was chosen as a suitable replacement to triethylamine in the 

coupling reaction. A change in the addition of 25 was also employed, whereby, 25 and one 

equivalent of potassium tert-butoxide were stirred for 30 minutes in DMF, then 

subsequently added to a mixture of N-Boc-TCVC and EDCI. This change in base and reaction 

conditions resulted in the complete consumption of 25 (determined via TLC analysis). Using 

this method, the desired N-Boc-mycothiol analogues 11 and 27 were synthesized in 26% 

and 35% yield respectively (Scheme 4.1) (Note: due the presence of sodium chloride in the 

starting materials 25 and 26, these yields are calculated from the Boc-protected sugars 23 

and 24, see chapter 6 for details).   A likely cause of this low yield, despite the consumption 

of all the starting material, may be due to difficulties in purification. Initial attempts 

involved the use of flash chromatography on silica, as was used by Knapp et al. (2002)18. 

However, this resulted in substantial loss of product with each pass through the column, 

suggesting the product may have an undesirable interaction with the silica gel.  In an effort 

to avoid the product spending a lengthy time on the column, a series of quick elutions were 

performed on a short column of silica.  This involved, in order, use of:  petroleum ether; 
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dichloromethane; diethyl ether; ethyl acetate; and dichloromethane : methanol (3 : 2) as 

the eluents. Using this elution system the product was, for the most part, confined to the 

diethyl ether fraction, with small amount present in the ethyl acetate fraction. Subsequent 

1H NMR analysis of these fractions revealed the major impurity to be the excess N-Boc-

TCVC, which could be separated by trituration with chloroform. Although this method 

represented a vast improvement, there is still a lot of room for optimization, with trialling 

additional coupling agents being the next logical step.  

 

 

 

 

 

 

 

Two papers in the literature have used hydrochloride salts of GlcN-inositol analogues for 

coupling of cysteine derivatives, in both cases HATU was used as the coupling agent13, 53. 

With these studies in mind HATU would be a good choice for further optimization. Time 

pressures meant this option was never tested.  

With sufficient quantities of both the α and β anomers, all that remained in the synthesis 

of the desired mycothiol analogue was removal of the Boc protecting group. To achieve this 

α-Boc 11 was treated with neat TFA for 15 minutes and concentrated in vacuo. However, 

the subsequent 1H NMR revealed a significant amount of impurities, most of which were 

concentrated around 0 ppm. Given the quantity and positioning of the impurity in the 1H 

NMR, it was believed that these peaks were a product of degradation of the rubber, present 

in the vial adapter used to remove the TFA. Fortunately the impurities present were able to 

α = 13 (35%)

β = 28 (100%)α = 25

β = 26

N-Boc-TCVC, EDCI

Base, rt, 2 hr

TFA

α = 11 (26%)

β = 27 (35%)

  

Scheme 4.1. Formation of mycothiol analogues through N-Boc-TCVC conjugation and Boc 

deprotection 
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be removed via chloroform trituration, though as a consequence the yield obtained for this 

step was only 35 %. With only limited time and a small quantity of the starting material 11 

(which was set aside for biological testing), the reaction was never repeated in order to 

confirm the origin of the impurity. However, when the β-Boc 27, was tested under the same 

reaction conditions and concentrated in vacuo (this time without using a vial adapter) the 

TFA salt 28 was formed in quantitative yield. A subsequent CDCl3/TFA 1H NMR spectrum 

showed no signs of the impurity, although the peaks pertaining to the glucosamine protons 

showed extreme broadening. Unfortunately, by time a 1H NMR was performed in CD3OD, 

the compound showed signs of degradation (see appendix). Compound 28 will be re-

synthesized in the future to obtain full characterization data for publication. In regards to 

biological testing the issue with the degradation of 28 was deemed not to be a problem, as 

in each case the sample was prepared on the day of, or the day before, testing. In contrast, 

the alpha anomer 27 has exhibited no signs of degradation over storage in CD3OD for 2 

weeks.   

With the successful synthesis of the mycothiol analogues 13 and 28 the main aim of this 

thesis was complete. The optimized scheme leading to the synthesis of these products can 

be seen in scheme 4.2. Following their synthesis, the compounds were able to be tested for 

their biological activity.      
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Pyridine, Ac2O

rt, 18 h, 56%

22%11%

35%
26%

35%100%

22

18

Cyclohexanethiol, BF3.OEt2

TFA, rt, 20 min

iii) N-Boc-TCVC, EDCI,
     tBuOK, rt, 2 h

iii) N-Boc-TCVC, EDCI,
     tBuOK, rt, 2 h

9

i) Na0, methanol, rt, 1 h

DMAP, Boc2O, THF

i) Na0, methanol, rt, 1 h

ii) HCl(aq), methanol, rt, 12 h

DMAP, Boc2O, THF

ii) HCl(aq), methanol, rt, 12 h

reflux, 18 h

TFA, rt, 20 min

reflux, 18 h

1,2-Dichloroethane, 55 °C, 72 h

23

24

27

28

11

13

80% 100%

 

Scheme 4.2. Synthesis of mycothiol analogues 11, 27, 13, and 28 
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4.2 Biological Testing 

 

The original hypothesis stated that the synthesized mycothiol analogue 13, will be able to 

cause cell death in Mycobacterium tuberculosis, through an accumulation of harmful 

halothioketenes. It was theorized that this could occur through metabolism by Mca, or 

MshB, to form trichlorovinyl cysteine, which has the ability to undergo cleavage by β-lyases 

to release the halothioketene, hopefully resulting in cell death (section 1.4.2). 

Mycobacterium smegmatis  and BCG were both chosen to test this hypothesis. These 

mycobacteria both have the advantage of being non virulent, and as they both express 

Mca/MshB they should also produce halothioketenes on exposure to 13, making them ideal 

for initial investigations. The reason two mycobacterial assays were chosen is due to the 

variance in dependence on the mycothiol pathway exhibited by many mycobacteria. For 

example, while Mycobacterium tuberculosis is known to require the mycothiol pathway to 

be viable, while Mycobacterium smegmatis can survive even if the mycothiol pathway is 

completely absent. Furthermore, Mycobacterium smegmatis, being a soil bacterium, has 

many mechanisms in place to manage oxidative stress. Since halothioketene exposure, at 

least in part mediates its toxicity through oxidative stress, Mycobacterium smegmatis may 

be better suited to cope with the synthesized drug21. Thus, by testing against two strains 

the chance of drawing false conclusions, in regards to potential Mycobacterium tuberculosis 

activity,  is lessened.  An HL60 assay was also performed to give an indication of the 

selectivity of these compounds towards mycobacteria, hence, giving a crude indication of 

potential toxicity that may be observed in a clinical setting.  

Four compounds were chosen to have their activity against Mycobacterium smegmatis,  the 

BCG strain of Mycobacterium Bovis and HL60 cells tested. The α-TFA salt 13 was the original 

synthetic target of this thesis. The β-TFA salt 28 was synthesized as it makes, from a 

biological point of view, an interesting comparison and should in theory act as a negative 

biological control. Boc-protected precursors 11 and 27 were also tested as the increased 
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lipophilicty of the Boc-group may aid in cell entry, with the possibility of Boc removal 

occurring once inside the cell.  

The four synthesized compounds described above were all tested in Mycobacterium 

smegmatis by Nathanial Dasyam (from the natural products group at Victoria University of 

Wellington (VUW)). A green fluorescent protein (GFP) reporter and optical density (OD) 

were used to determine cell numbers and a resazurin reduction assay was used to 

determine the presence of metabolically active cells. The BCG assay was performed by 

Hilary Corkran (from the immunoglycomics research group at Malaghan Institute of Medical 

Research), using a resazurin-based detection. Activity against HL60 cells was assessed with 

assistance from Jessica Field (from the Centre for Biodiscovery at VUW), using an MTT 

assay. The results of these assays are shown in Table 4.1. 

 

 

 

 

 

 

 

 

The results obtained demonstrated a few interesting points. The most important results in 

regards to the hypothesis were those pertaining to compound 13. Gratifyingly, this 

compound proved to have the highest MIC against both types of Mycobacterium tested, 

the most promising of which was the MIC of close to 62.5 µM observed in BCG. Although 

not overly potent, this level of activity represents a good starting point for future 

development. Compound 13 also demonstrated the highest selectivity index (defined as 

Table 4.1. Activity of Synthesized Compounds Against Varying Cell Lines   
 

Compound Smegmatis  (MIC) BCG (MIC)  HL60 (IC50) 
Selectivity 

Indexb 

11  > 1000 µMa 500-1000 µM 59.6 ± 9.5 µM 0.12 - 0.24 

27 > 1000 µM  1000 µM 16.5 ± 0.2 µM > 0.017 

13 250 - 500 µM 62.5-125 µM 75.7 ± 1.4µM 1.2 - 0.6 

28 250 - 500 µM 125 -250 µM 112 ± 18.2 µM 0.9 - 0.45 
aOD and GFP suggest there was activity (IC50 = 4 µM); however, the maximum inhibition never drops below 30% of the                 

maximal growth. bSelectivity is defined as the MIC of BCG assay divided by the IC50 of the HL60 assay.    
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the IC50 of the HL60 cells divided by the MIC of BCG), at 0.6 to 1.2. However, this level of 

selectivity is lower than what would be deemed optimal, and may be indicative of potential 

for toxicity in a clinical setting. Nevertheless, it is worth pointing out again that the toxicity 

in HL60 cells is a very crude comparison and results against non-malignant cells and whole 

organisms may vary significantly. Regardless of its selectivity, the activity of compound 13 

towards BCG suggests cell penetrance is not an issue. At the beginning of this thesis the 

high polarity of the original synthetic target 13 was identified as a potential problem in 

regards to cell penetrance. This was part of the motivation behind the proposed synthesis 

of the fluorescent compound 14 as an objective, as well as the testing of the Boc 

compounds 11 and 27. However, although it appears the drug is getting into the cell, the 

mechanism through which it is entering unclear. It is possible that 13 is getting is getting 

into the cell through an active transport mechanism, as is known to occur with mycothiol97. 

Regardless, as a result of the activity seen, the synthesis of fluorescent compound 14 to test 

cell entrance was no longer required.    

Looking at compound 13 in isolation shows some promising results. However, when it is 

examined in context with the other three compounds some additional points of interest 

can be seen; particularly when compared to the compound that was originally designed to 

act as a negative control, i.e. 28. Surprisingly, this compound showed a similar level of 

activity to 13 in both the BCG and Mycobacterium smegmatis assays. This was unexpected, 

as it was hypothesized the change in stereochemistry at the anomeric centre would result 

in a significant conformational change, such that the compound would no longer be a 

substrate for Mca or MshB. Thus, the fact that activity is seen may indicate the 

streochemistry of the cyclohexane ring attachment only plays a very small role in 

recognition either by Mca or MshB. Alternatively, the toxicity observed may be 

independent of Mca/Msh B activity. With this in mind, one possibility is that the toxicity of 

these compounds is due to β-lysis of the compounds in their entirety. The mode of action 

will be tested in further studies.  
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Comparing the Mycobacterium smegmatis and BCG assays shows that, in general, 

compounds show a higher level of activity in BCG. This suggests that, as stated above, the 

ability of Mycobacterium smegmatis to cope with oxidative stress may be contributing the 

lower level of activity seen, in comparison to BCG21. The other interesting result seen in the 

smegmatis assay was the activity of the α-Boc 11, which showed contrasting results 

between the resazurin and GFP/OD detection methods. The resazurin results suggested 

100% growth (relative to control) was occurring up to the 1 mM concentration tested. In 

contrast, the OD and GFP detection methods both gave near identical IC50 values of 4.6 µM 

and 4.2 µM respectively. However, the OD and GFP data showed inhibition never dropped 

below 30% of maximal growth (relative to control). The reason for the apparent disparity 

may be due to the different ways each detection method determines cell growth. GFP and 

OD directly determine cell numbers through fluorescence and light scattering respectively, 

in comparison resazurin measures metabolic activity (through reduction of resazurin)98. 

One explanation of this effect is that 11 is bacteriostatic, leading to a reduction in cell 

numbers compared to the control, but retaining sufficient metabolic activity to reduce all 

the resazurin present. This could arise, for example, if α-Boc 11 is inhibiting one or more of 

mycothiol's biosynthetic enzymes. As stated above Mycobacterium smegmatis does not 

require mycothiol to survive, however, if its ability to produce mycothiol is inhibited there 

is a concurrent reduction in the growth rate21. However, given the low level of activity 

exhibited by 11 in the BCG assay this theory seem unlikely and further testing will be 

required to determine the cause of the activity. 

Finally, aside from providing a comparison to the mycobacterial assays, the HL60 assay had 

some interesting results of its own, particularly in regards to compound 27, which showed 

the highest level of activity, with an IC50 of 17 µM. Though the level of activity seen in 27  is 

well below what is seen in many natural products99, 100, it may hold promise as a lead 

compound for future investigations; particularly given it's unique structural features. 

In summary, the results obtained from the biological assays were satisfactory in terms of 

activity, with the original synthetic target 13 proving to have the highest MIC in both BCG 
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and Mycobacterium smegmatis assays. Surprisingly, it corresponding β-anomer 28 showed 

similar activity. These results suggest further investigations into the mechanism of toxicity 

and optimization of the activity, through structural changes, may be warranted.  

 

 

 

 

 

 

 

 

 

 

 

 

  



64 

 

Chapter 5 

5. Conclusions and Future Work 

 

5.1 Concluding Remarks 

 

The original goal of this thesis was to explore whether the mycothiol and β-lyase pathways 

present in Mycobacterium tuberculosis could be exploited in order to produce an 

accumulation of harmful halothioketenes, ultimately resulting in cell death. This 

combination provides a novel target and mechanism towards the treatment of 

tuberculosis. The original synthetic target 13 was a derivatized version of a simplified 

mycothiol analogue developed by Knapp et al. (2002)18. However, their synthetic route 

proved to be extremely problematic in our hands. Gratifyingly,  these problems were 

completely circumvented through a direct thioglycosidation of α-glucosmaine 

pentaacetate to form the α-thioglycoside 9 in 22% yield, accompanied by formation of the 

β-thioglycoside 22, which had previously been identified as a desired control compound, in 

11% yield. To avoid the use of hydrazine, the synthetic route to the deprotection of the 

thioglycosides 9 and 22 also involved deviation away from Knapp et al's (2002) synthesis. 

This was achieved by first activating the acetimide through addition of a Boc group, after 

which, a more facile deprotection involving Na0 in methanol followed by HCl was possible. 

The deprotected sugars 25/26 were coupled to TCVC, resulting in 11 and 27 in 26% and 35% 

yield respectively. The final step in the synthesis involved the treatment of 11 and 27 with 

TFA to afford the original synthetic target in 35% yield, while the corresponding β-anomer 

was produced in 100% yield. The N-Boc-TCVC used in the formation of 11 and 27 was 

synthesized in 46 % yield over two steps from L-cysteine. Whist some steps remain to be 

optimized, compounds 11 and 27 were produced in 3.2% and 1.7% yields respectively, over 
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4 steps (longest linear sequence). While, 13 and 28 were synthesized in 1.1% and 1.7% 

yields respectively, over 5 steps (longest linear sequence).   

Having successfully synthesized all the desired compounds, they were tested for their 

activity against Mycobacterium smegmatis, the BCG strain of Mycobacterium bovis and 

HL60 cells. The results obtained from these biological assays were satisfactory in terms of 

activity, with the original synthetic target 13 proving to have the MIC's of 250 - 500 µM and 

62.5 - 125 µM in Mycobacterium smegmatis and BCG assays respectively. Surprisingly, the 

corresponding β-anomer 28 showed similar activity. These results suggest further 

investigations into the mechanism of toxicity and optimization of the activity, through 

structural changes, may be warranted. 

 

5.2 Future Directives 

 

This thesis describes the synthesis a mycothiol analogue 13 and three other structurally 

related variants (11, 27 and 28). These were made to test whether mycothiol and β-Lyase 

metabolism could be selectively targeted in Mycobacterium tuberculosis, in order to 

produce an accumulation of harmful halothioketenes, with the end goal being cell death. 

Both interesting chemical and biological results were obtained on the way to achieving this 

goal that warrant future investigation. 

From a chemical perspective, the most interesting result obtained was the synthesis of the 

α-thioglycoside 9 directly from α-glucosmaine pentaacetate. If the reaction was able to be 

optimized further to improve on the 33 % yield (α : β, 2 : 1) obtained, it would provide a 

very easy access to Knapp et al's (2002) analogue, along with the added advantage of 

producing the β-anomer concurrently. In regards to yield the only other reaction that 

warrants further optimization is the coupling of the deprotected thioglycoside salts 25 and 

26 to N-Boc-TCVC. 
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From a biological perspective there are a number of interesting results that warrant further 

investigation. Firstly, the β-Boc compound 27 had an IC50 of 17 µM in the HL60 MTT assay. 

This level of activity is sufficient to suggest it may be worthwhile examining the use of this 

compound as a lead for the development of related compounds that may further enhance 

the anti-cancer properties.   

In regards to the Mycobacterium smegmatis assay, the activity of N-Boc-α-thioglycoside 11 

was promising (IC50 = 4 µM), despite its inability to cause complete cell death even at the 

highest concentration tested (1 mM). These results suggested 11 may be exerting a 

bacteriostatic effect. As such, it would be interesting to ascertain whether this is the case, 

as well as determining if prolonged exposure leads to a bacteriocidal effect. 

With respect to the original aim of this thesis, there are two main questions that remain 

unanswered. Firstly, although compound 13 (MIC 62.5-125 µM) and, to a lesser extent 28 

(125-250 µM), show activity, the mechanism through which this activity occurs is unknown. 

Thus, testing should be performed to elucidate the mechanism that leads to toxicity. 

Secondly, a structure activity relationship could be explored in order to evaluate whether 

to antimicrobial activity could be enhanced and the toxicity to human cells reduced. Given 

the methodology developed, a library of compounds could be easily synthesized by 

substituting the cyclohexanethiol used in the glycosidation step with a range of other thiols, 

in combination with, switching of the substituent conjugated to the sulfur of cysteine.     
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Chapter 6 

6. Experimental 

6.1 General Experimental  
 

Unless otherwise stated, the following conditions apply. All reactions were performed 

with magnetic stirring. Moisture- and oxygen sensitive liquids and solutions were 

transferred using a stainless steel syringe. Before use, solvents were refluxed over the 

appropriate drying agent and distilled under nitrogen; acetonitrile (MeCN) and 

triethylamine (NEt3) from calcium hydride; methanol (MeOH) and toluene from sodium. 

Dichloromethane, toluene and THF were used directly from Innovative Technology Pure 

Solv MD-5 solvent purifier.  Anhydrous N,N-dimethylformamide (DMF) and acetic 

anhydride were used as purchased, without further purification. All reagents were of 

commercial quality and used as received, without further purification. Analytical thin layer 

chromatography (TLC) was performed using plastic-backed pre-coated silica TLC plates 

(Polygram SilG/UV254). Visualisation was achieved by UV irradiation (254 nm) or by 

heating after treatment with a potassium permanganate dip (1.5 g KMnO4, 10 g K2CO3, 

1.25 mL of 10% aqueous NaOH solution and 200 mL of water) or p-anisaldehyde dip (0.7 

mL p-anisaldehyde, 9.5 mL conc. 

H2SO4, 2.7 mL acetic acid and 250 mL of EtOH). The purification of products by 

flash column chromatography was conducted using silica gel 60 (220-240 mesh) with 

the solvent systems indicated. 1H NMR spectra were recorded on either: a Varian 

Unity Inova 500 spectrometer at 500 MHz, or a Varian Inova 300 at 300 MHz. Data are 

listed as follows: chemical shift in ppm using chloroform as internal standard (7.26 ppm) 

or  water (4.79 ppm) or d4-MeOH (3.31), multiplicity (s = singlet, d = doublet, t =triplet, q = 

quartet, m = multiplet or overlap of non-equivalentresonances, br = broad, app. = 

apparent, obs. = (partially) obscured), integration, peak assignment. 13C NMR spectra 
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were recorded on either: a Varian Unity Inova 500 spectrometer at 125 MHz or a Varian 

DirectDrive 600 spectrometer at 150 MHz and the data listed as follows: chemical shift in 

ppm using chloroform as internal standard (77.0 ppm) or d4-MeOH (49.00). The 

assignment of atom connectivity and spatial relationships are exclusively based on 2D 

NMR correlations (NOESY, 1H/1H-COSY, 1H/13C-HMBC and 1H/13C-HSQC). IR bands were 

measured as either a thin film on a Bruker FT-IR Tensor 27 spectrometer with ATR 

sampling accessory or a Bruker ALPHA FT-IR spectrometer as a KBr disc on a Perkin-Elmer 

Spectrum One FT-IR spectrometer. High-resolution mass spectrometry (HRMS) was 

performed on a Agilent 6530 Accurate-Mass Q-TOF LC/MS mass spectrometer with 

Agilent Jet Stream ESI source. Melting points were measured on a Gallenkamp melting 

point apparatus and are uncorrected. Optical rotations were measured on an Autopol II 

polarimeter from Rudolph Research Analytical. The structure of each compound is 

presented with the corresponding method of preparation and spectroscopic data. 
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6.2 Experimental detail for chemical synthesis 

 
 
2-acetamido-2-deoxy-1,3,4,6-tetra-O-acetyl-β-D-glucopyranose (6) 
 

Sodium acetate (4.18 g, 51.0 mmol) was stirred in acetic anhydride 

(40 mL, 424 mmol) at 100 °C for 5 min, after which time N-acetyl 

glucosamine (8.13g, 36.7mmol) was slowly added over a period of 

10 min and the reaction allowed to stir at 100 °C for an additional 1 h. Water (60 mL) was 

then added to the reaction mixture and the compound extracted with dichloromethane (3 

x 60 mL). The organic layer was then washed with brine (200 mL), dried with anhydrous 

anhydrous MgSO4 and concentrated in vacuo to produce a yellow oil, which was 

recrystallized from methanol to afford the title compound as a white solid (1.46 g, 10%). 

Rf  0.36 (EtOAc). 1HNMR (500 MHz, CDCl3) δ: 5.69 (d, J = 8.5 Hz, 1 H), 5.57 (d, J = 10.0 Hz, 1 

H), 5.14 (m, 2 H), 4.32 (app t, J =  9.5, 1 H), 4.27 (dd, J = 4.5, 12.5 Hz, 1 H), 4.13 (dd, J = 2.0 

Hz, 12.5 Hz, 1 H), 3.81 (m, 1 H), 2.12 (s, 3 H), 2.10 (s, 3 H), 2.05 (s, 3 H), 2.04 (s, 3 H), 1.94 

(s, 3 H). 13CNMR (125 MHz, CDCl3) δ: 171.23, 170.69, 170.07, 169.57, 169.24, 92.61, 72.93, 

72.58, 67.44, 61.62, 53.04, 23.22, 20.91, 20.74, 20.65, 20.60.                                                      

Matched Literature data62   

 

(3aR,5R,6S,7R,7aR)-5-(Acetoxymethyl-6,7-diacetoxy-2-methyl-5,6,7,7a-tetrahydro-3aH-
pyrano[3,2-d]thiazole (7) 
                                                                                                                                                                                               

β-D-Glucosamine pentaacetate (0.370 g, 0.95 mmol) and Lawesson's 

reagent (0.500 g, 1.20 mmol) were stirred in toluene (4 mL) at 90 °C for 3 h, 

after which time the reaction mixture was cooled and concentrated in 

vacuo to afford a yellow oil. The oil was then purified by flash 

chromatography on silica gel (eluent: ethyl acetate/dichloromethane, 3 : 7) 

to give the title compound as a yellow oil (222 mg, 68%). Rf  0.24 (1:3 EtOAc:CH2Cl2).  

1HNMR (500 MHz, CDCl3) δ: 6.24 (d, J = 7.0 Hz, 1 H), 5.57 (dd, J = 1.5, 3.0 Hz, 1 H), 4.95 (d, 

J = 9.5 Hz), 4.48 (s, 1 H), 4.12 (app d, J = 11.0 Hz), 3.53-3.55 (m, 1H), 2.32 (s, 3 H), 2.13 (s, 
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3H), 2.08 (s, 6H). 13CNMR (125 MHz, CDCl3) δ: 170.64, 169.62, 169.34, 168.27, 88.83, 

76.66, 70.72, 69.31, 68.42, 63.30, 20.99, 20.91, 20.78, 20.71.   

Matched Literature data62 

 

2-Acetamido-2-deoxy-1-thio-3,4,6-tri-O-acetyl-β-D-glucopyranoside (8) 

 

GlcNAc-thiazoline triacetate (66 mg, 0.19 mmol) was dissolved in methanol (3.0 mL) and 

cooled to 0 °C. Two drops of TFA and 2 drops of water were then added 

and the reaction stirred for 15 min. The reaction was then removed 

from the ice bath, allowed to warm up to room temperature and 

continued for an additional 2 h, after which time the reaction was concentrated in vacuo 

to afford the title compound as a colourless oil (69 mg, 100%). 1H NMR (500 MHz, CDCl3) 

δ: 5.79 (m, 2 H), 5.13 (t, J = 9.5 Hz, 1 H), 5.09 (t, J = 9.0 Hz, 1 H), 4.32-4.51 (m, 1 H), 4.25-

4.31 (m, 2 H), 4.12 (dd, J = 12.0, 1.5 Hz, 1 H), 2.07 (s, 3 H), 2.02 (s, 3 H), 2.01 (s, 3 H), and 

1.99 (s, 3 H). 13C NMR (125 MHz, CDCl3) δ: 171.7, 171.4, 170.8, 169.3, 78.5, 70.5, 68.9, 

67.9, 61.7, 52.6, 22.9, 20.6, 20.5.                                                                                                                                                                                                 

Matched literature data74 

 

Cyclohexyl 2-Acetamido-2-deoxy-1-thio-3,4,6-tri-O-acetyl-α-D-glucopyranoside (9) 

 

Method 1: AIBN (1.8 mg, 0.011 mmol) and thiol 8 (200 mg, 

0.55 mmol) were dissolved in THF (2.2 mL) and cyclohexene 

(0.45 mL, 4.4 mmol) under a nitrogen atomosphere and 

stirred for 1 h, after which time an addition aliquot of 

cyclohexene (0.45 mL, 4.4 mmol)  and AIBN (1.8 mg, 0.011 mmol) were added. The same 

quantity of AIBN and cyclohexene was added each hour, till the reaction had been stirring 

for 4 hours in total. The reaction was then stirred for an additional 1 h, after which time 

AIBN (10.8 mg, 0.066 mmol) was added, the reaction stirred for an hour, and another 

portion of AIBN (10.mg, 0.066) added. The reaction was then allowed to stirred for one 
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more hour, after which time the reaction was cooled and concentrated in vacuo. The 

resulting oil was then purified by flash chromatography on silica (eluent: ethyl acetate : 

dichloromethane 1 : 3) to afford the title compound as a colourless oil, that crystallized 

over time (71 mg, 29%).        

Method 2: α-D-glucosamine pentaacetate 19 (1.01 g, 2.59 mmol) was dissolved in 1,2-

dichloroethane (35 mL). Cyclohexanethiol (1.28 mL, 10.46 mmol) was then added and the 

reaction stirred under nitrogen for 20 min at room temperature. The reaction was then 

cooled to 0 °C and BF3·OEt2 (0.643 mL, 5.21 mmol) added dropwise. The reaction was 

subsequently heated to 55 °C and stirred for 3 h, after which time the reaction was 

quenched with saturated aqueous sodium bicarbonate (35 mL) and extracted into the 

organic phase. The aqueous phase was then washed with additional dichloromethane (2 x 

40 mL). The organic fractions were then combined and washed with saturated brine (100 

mL), dried over anhydrous MgSO4 and concentrated in vacuo. The compound was then 

purified by flash chromatography on silica (eluent: petroleum ether/ethyl acetate, 1 : 2 ) 

to afford the title compound as a white solid (256 mg, 22%). Rf 0.75 (ethyl acetate). M.p. 

119-121 °C.  1H NMR (500 MHz, CDCl3) δ 5.69 (br d, J = 9.2 Hz, 1 H), 5.45 (d, J = 5.2 Hz, 1 

H), 5.09 (t, J = 9.6 Hz, 1 H), 5.02 (t, J = 10 Hz, 1 H), 4.49 (ddd, J = 5.6, 9.2, 10.8 Hz, 1 H), 4.38 

(ddd, J = 2.2, 4.8, 10.0 Hz, 1H), 4.24 (dd, J = 4.8, 12.4 Hz, 1 H), 4.07 (dd, J = 2.4, 12.4 Hz, 1 

H), 2.81 (tt, J = 3.4, 10.2 Hz, 1 H), 2.07 (s, 3 H), 2.02 (s, 3 H), 2.01(s, 3 H), 1.94 (s, 3 H) , 

1.94–2.10 (m, 2 H), 1.67–1.79 (m, 2 H), 1.54–1.63 (m, 1 H), 1.22–1.42 (m, 5 H). 13C NMR 

(125 MHz, CDCl3) δ 171.1, 170.3, 169.5, 169.0, 83.5, 71.4, 68.3, 68.2, 61.0, 52.1, 44.9, 

34.2, 33.6, 25.9, 25.8, 25.5, 23.2, 20.7 (2 C), 20.6. 

Matched data from literature18    
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2-Acetamido-2-deoxy-1,3,4,6-tetra-O-acetyl-α-D-glucopyranose (18) 

 

To a solution of D-glucosamine 1  (1.49g, 8.33 mmol) in pyridine (8.3 

mL) was added acetic anhydride (7.8 mL) and the mixture stirred for 18 

h, after which time the mixture was concentrated in vacuo to give a 

yellow/green syrup. Recrystallization of this oil using ethanol yielded the title compound 

as a white powder (1.83g, 4.63 mmol, 56%). 1H NMR (500 MHz, CDCl3) δ: 6.18 (d, J = 3.0 

Hz, 1 H), 5.56 (d, J = 8.5 Hz), 5.17-5.27 (m, 2H), 4.46-4.51 (m, 1H), 4.26 (dd, J = 3.0, 9.0 Hz, 

1H), 4.06 (d, J = 7.5 Hz, 1H), 3.98-4.01 (m, 1H), 2.16 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 2.01 

(s, 3H), 1.90 (s, 3H). 13C NMR (125 MHz, CDCl3) δ: 171.7, 170.6, 169.9, 169.0, 168.6, 90.6, 

70.6, 69.6, 67.4, 61.4, 51.0.  

 

2-Acetamido-2-deoxy-3,4,6-tri-O-acetyl-α-D-glucopyranose (19) 

 

Glacial acetic acid (0.31 mL, 5.43 mmol) was added to solution of 

ethylenediamine (0.25 mL, 3.81 mmol) in THF (80 mL) and stirred 

under a nitrogen atomosphere for 5 min  at room temperature. α-D-

Glucosamine pentaacetate (1.06 g, 2.72 mmol) was then added to the solution and the 

reaction stirred for 30 h, after which time water (40 mL) was added and the reaction 

extracted into the organic phase. The organic layer was then washed with 10% KHSO4 (40 

mL), saturated aqueous sodium bicarbonate (40 mL) and saturated brine (40 mL), dried 

over anhydrous MgSO4 and concentrated in vacuo. Purification was achieved by flash 

chromatography on silica (eluant: ethyl acetate) to afford the title compound as a white 

soild (666 mg, 70%). Rf 0.33 (ethyl acetate). 1H NMR (500 MHz, CDCl3) δ: 5.98 (d, J = 9.5 

Hz, 1H), 5.30 (t, J = 10.0 Hz, 1 H), 5.25 (d, J = 4.0 Hz, 1 H), 5.12 (t, J = 9.5 Hz, 1 H), 4.28 (td, J 

= 3.0, 9.5 Hz, 1 H), 4.17-4.23 (m, 2 H), 4.09-4.15 (m, 1 H) 2.09 (s, 3H), 2.03 (s, 3H), 2.02 (s, 

3H), 1.96 (s, 3H). 13C NMR (125 MHz, CDCl3) δ: 171.4, 171.0, 170.6, 169.5, 91.4, 71.0, 68.3, 

67.3, 62.1, 52.3, 23.0, 20.7, 20.6 

Matched literature data65 
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2-Acetamido-2-deoxy-3,4,6-tri-O-acetyl-α-D-glucopyranosyl trichloroacetimidate (20) 

 

Glucosamine tetraacetate 19 (666 mg, 1.92 mmol) was dissolved in 

dichloromethane (15 mL), stirring under a nitrogen atmosphere, and 

subsequently cooled to 0 °C. DBU (0.55 mL, 3.68 mmol) was then 

added, followed by trichloroacetonitrile (0.76 mL, 7.58 mmol). The 

reaction mixture was then stirred for 2 h at 0 °C, after which time the solvent was 

removed in vacuo and the resulting oil purified by flash chromatography on silica (eluant : 

petroleum ether/ethyl acetate, 2 : 1) to afford the title compound as a yellow oil (633 mg, 

67%) Rf  0.71 (ethyl acetate); 1H NMR (300 MHz, CDCl3) δ: 8.80 (s, 1 H), 6.36 (d, J = 3.9 Hz), 

5.60 (d, J = 8.7 Hz), 5.32 (t, J = 9.6 Hz), 5.26 (t, J = 8.7 Hz), 4.41 (td, J = 3.6, 9.3 Hz, 1 H), 

4.55 (dd, J = 3.6, 12.9 Hz, 1 H) 4.11 (m, 2 H), 2.08 (s, 3H), 2.07 (s, 3 H), 2. 06 (s, 3 H), 1.94 

(s, 3 H). 13C NMR (125 MHz, CDCl3) δ: 171.59, 170.62, 169.17, 160.25, 94.74, 70.66, 70.22, 

67.24, 61.41, 51.74, 23.07, 20.74, 20.68, 20.58. 

Matched literature data65 

 

Cyclohexyl 2-Acetamido-2-deoxy-1-thio-3,4,6-tri-O-acetyl-β-D-glucopyranoside (22) 

 

Method 1: Cyclohexanethiol (25 µL, 0.20 mmol) and 

trichloroacetimidate 20 (90 mg, 0.20 mmol) were stirred in 

dichloromethane (1 mL) under a nitrogen atomosphere at  -

42 °C. BF3·OEt2 (2.5 µL, 0.02 mmol) was then added and the reaction stirred for 1 h, after 

which time, the reaction was diluted with dichloromethane (4 mL) quenched with 

saturated aqueous sodium bicarbonate (4 mL) and extracted into the organic layer. The 

aqueous layer was then extracted with additional dichloromethane (2 x 5 mL). The 

combined organic fractions were subsequently washed with saturated brine (15 mL), 

dried over anhydrous MgSO4 and concentrated in vacou. The resulting oil was then 

purified by flash chromatography on silica (eluant: petroleum ether/ethyl acetate ,1 : 2)  

to afford the title compound as a white solid (28 mg, 35%) Rf 0.61 (ethyl acetate) 
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Method 2: α-D-glucosamine pentaacetate 18 (1.01 g, 2.59 mmol) was dissolved in 1,2-

dichloroethane (35 mL). Cyclohexanethiol (1.28 mL, 10.46 mmol) was then added and the 

reaction stirred under nitrogen for 20 minutes at room temperature. The reaction was 

then cooled to 0 °C in a ice salt bath and BF3·OEt2 (0.643 mL, 5.21 mmol) added dropwise. 

The reaction was subsequently heated to 55 °C and stirred for 3 h, after which time the 

reaction was quenched with saturated aqueous sodium bicarbonate (35 mL) and 

extracted into the organic phase. The aqueous phase was then washed with additional 

dichloromethane (2 x 40 mL). The organic fractions were then combined and washed with 

saturated brine (100 mL), dried over anhydrous MgSO4 and concentrated in vacuo. The 

compound was then purified by flash chromatography on silica (eluent:  petroleum 

ether/ethyl acetate,  1 : 2) to afford the title compound as a white solid (128 mg, 11%). Rf 

0.61 (ethyl acetate). 1H NMR (500 MHz, CDCl3) δ: 5.46 (d, J = 9 Hz, 1 H), 5.23 (t, J = 10.2 Hz, 

1 H), 5.07 (t, J = 10.2 Hz, 1 H), 4.76 (d, J = 10.2 Hz, 1 H), 4.21 (dd, J = 5.7, 12.3 Hz, 1 H), 4.12 

(dd, J = 2.4, 12.3 Hz, 1 H), 3.97 (q, J = 9.9 Hz, 1H), 3.69 (ddd, J = 2.79, 5.7, 10.2 Hz, 1 H), 

2.91 (m, 1 H), 2.07 (s, 3H), 2.03 (s, 6 H), 1.95 (m, 5 H) 1.74 (m, 2 H), 1.60 (m, 1 H), 1.15-

1.47 (m, 5 H). 13C NMR (125 MHz, CDCl3) δ: 171.0, 170.6, 170.1, 169.3, 83.6, 75.6, 73.7, 

68.6, 72.5, 53.8, 43.49, 34.0, 26.1, 25.9, 25.6, 23.3, 20.7 (2 C), 20.6. HRMS (ESI): m/z 

C20H32NO8S + [M + H]+ calculated 446.1843, found 446.1846  
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Cyclohexyl 2-(N-tert-butyloxycarbonylacetamido)-2-deoxy-3,4,6-tri-O-acetyl-1-thio-α-D-

glucopyranoside (24) 

 

Thioglycoside 9 (960 mg, 2.15 mmol), DMAP (25.3 mg, 0.207 

mmol) and di-tert-butyl dicarbonate (2.57 g, 11.79 mmol) 

were dissolved in THF (10 mL) and stirred at reflux for 18 h, 

after which time, the reaction mixture was concentrated in 

vacuo. The resulting oil was then purified by flash chromatography on silica (eluent: 

petroleum ether/ethyl acetate, 4 : 1) to afford the title compound as a colorless oil ( 1.18 

g, 100 %). Rf 0.8 (3 : 1 CH2Cl2 : EtOAc). [α]26
𝐷

 = + 106. IR: 2958, 1742, 1691, 1450, 1368, 

1221, 1148, 1040 cm -1. 1H NMR (500 MHz, CDCl3) δ: 5.93 (app t, J = 10 Hz, 1 H, C-3), 5.44 

(d, J = 5 Hz, 1 H, C-1), 5.03 (br s, 1 H, C-2), 4.94 (t, J = 10 Hz, 1 H, C-4), 4.51 (d, J = 10 Hz, 1 

H, C-5), 4.32 (d, J = 12.5 Hz, 1 H, C-6), 4.07 (d, J = 12.5 Hz, 1 H, C-6'), 2.72 (app t, J = 10 Hz, 

1 H, C-7), 2.41 (s, 3 H, COCH3), 2.08 (s, 3 H, COCH3), 2.01 (s, 3 H, COCH3 ), 1.89-1.98 (m, 5 

H, COCH3 and cy), 1.71, (m, 2 H, cy), 1.49-1.63 (m, 10 H, NHCOOC(CH3)3 and cy), 1.18-1.44 

(m, 5 H, cy). 13C NMR (125 MHz, CDCl3) δ: 173.7 (COCH3), 170.7 (COCH3), 170.1 (COCH3), 

169.5 (COCH3), 152.5 (NHCOOC(CH3)3), 85.2 (NHCOOC(CH3)3)  82.9 (C-1), 70.8 (C-4), 70.7 

(C-3), 67.8 (C-5), 62.2 (C-6), 44.3 (C-7), 34.2 (cy), 33.5 (cy), 27.8 (NHCOOC(CH3)3), 26.9 

(COCH3), 26.0 (cy), 25.8 (cy), 25.6 (cy), 20.8 (COCH3), 20.7 (2 x COCH3). HRMS (ESI): m/z 

C
25

H
40

NO
10

S+ [M + H]+ calculated 546.2367, found 546.2367   
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Cyclohexyl 2-(N-tert-butyloxycarbonylacetamido)-2-deoxy-3,4,6-tri-O-acetyl-1-thio-β-D-

glucopyranoside (25) 

 

Thioglycoside 22 (360 mg, 0.81 mmol), DMAP (13.2 mg, 

0.11 mmol) and di-tert-butyl dicarbonate (955 mg, 4.38 

mmol) were dissolved in THF (4 mL) and refluxed while 

stirring for 18 h. The reaction mixture was subsequently concentrated in vacuo. The 

resulting oil was then purified by flash chromatography on silica (eluent: petroleum 

ether/ethyl acetate, 4 : 1) to afford the title compound as a yellow oil (360 mg, 82 %). Rf 

0.5 (9 : 1, CH2Cl2 : EtOAc). [α]24
𝐷

 = - 5.2. IR: 2931, 2854, 1739, 1698, 1368, 1235, 1141, 1012 

cm-1.  1H NMR (500 MHz, CDCl3) δ: 5.81 (t, J = 10.0 Hz, 1 H, H-3), 5.70 (t, J = 10.0 Hz, 1 H, 

H'-3), 5.57 (d, J = 10.0 Hz, 1 H, H-1), 5.33 (d, J = 10.0 Hz, 1 H, H'-1), 5.07 (t, J = 10.0 Hz, 1 H, 

H'-4), 5.01 (t, J = 10.0 Hz, 1 H, H-4), 4.90 (t, J = 10.0 Hz, H'-2), 4.22 (m, 3 H, H-2, H-6a and 

H'-6a), 4.09 (t, 10.0 Hz, 2 H, H-6b and H'-6b), 3.76 (m, 1 H, H-5), 3.68 (m, 1 H, H'-5), 2.83 

(m, 2 H, H-7 and H'-7), 2.41 (s, 3 H, COCH3), 2.33 (s, 3 H, COCH3 ), 2.06 (s, 3 H, COCH3 ), 

2.05 (s, 3 H, COCH3 ), 2.00 (s, 6 H, 2 x COCH3), 1.87-1.97 (m, 10 H, 2 x COCH3 and cy), 1.71 

(br s, 4 H, cy), 1.48-1.61 (m, 20 H, 2 x NHCOOC(CH3)3 and cy), 1.15-1.39 (10 H, cy). 13C 

NMR (125 MHz, CDCl3) δ: 173.9 (COCH3), 173.2(COCH3) , 170.7 (2 x COCH3), 170.3 

(COCH3), 170.0 (COCH3),169.7 (COCH3),  169.4 (COCH3), 153.0 (NHCOOC(CH3)3), 151.7 

(NHCOOC(CH3)3), 84.7 (NHCOOC(CH3)3), 84.3 (NHCOOC(CH3)3), 82.7 (C-1') , 82.0 (C-1), 75.7 

(C-5'), 75.4 (C-5), 71.8 (C-3'), 71.4 (C-3), 69.7 (C-4 and C-4'), 62.6 (C-6 and C-6'), 60.5 (C-2), 

55.9 (C-2'), 44.1 (C-7), 43.5 (C'-7), 34.1 (2 x cy), 33.8 (2 x cy), 28.1 (NHCOOC(CH3)3), 27.9 

(NHCOOC(CH3)3), 27.5 (cy), 26.9 (2 x COCH3), 26.1 (cy), 26.0 (cy), 25.9 (2 x cy), 25.6 (2 x cy), 

20.8 (COCH3), 20.7 (3 x COCH3), 20.6 (COCH3), 20.5 (COCH3). HRMS (ESI): m/z C
25

H
40

NO
10

S+ 

[M + H]+ calculated 546.2367, found 546.2367.  

 

 

1

6

7



77 

 

Cyclohexyl 2-Amino-2-deoxy-1-thio-α-D-glucopyranoside·HCl (26) 

 

Sodium(33 mg, 1.5 mmol) was added to distilled methanol 

(10 mL) under the presence of a nitrogen atmosphere. Boc-

thioglycoside 24 (990 mg, 1.8 mmol) was subsequently added 

and the reaction stirred at room temperature for 2 hrs, after 

which time concentrated aqueous HCl (2 mL) was added and the reaction stirred for an 

additional 18 h. The compound was then concentrated in vacou to afford the title 

compound as a light yellow solid. This compound was characterized by 1H and 13C NMR 

then a portion of it (5%) carried through to the reaction directly below. 1H NMR (500 MHz, 

D2O) δ: 5.65 (d, 5.5 Hz, 1 H, C-1), 4.08 (m, 1H, C-5), 3.84 (d, J = 12.5 Hz, 1 H, C-6), 3.79 (dd, 

J = 5.0, 12.5 Hz, 1 H, C-6'), 3.68 (t, J = 10.0 Hz, 1 H, C-3), 3.55 (dd, J = 5.0, 11.0 Hz, C-2), 

3.45 (t, J = 9.5 Hz, C-4), 2.98 (m, 1 H, C-7), 1.97 (m, 2 H, cy), 1.71 (m, 2 H, cy), 1.55 (m, 1 H, 

cy), 1.18-1.49 (m, 5 H, cy); 13C NMR (125 MHz, D2O) δ: 81.1 (C-1), 72.7 (C-5), 70.1 (C-3), 

69.8 (C-4), 60.1 (C-6), 53.7 (C-2), 45.0 (C-7), 33.7 (cy), 33.0 (cy), 25.2 (cy), 25.0 (cy). HRMS 

(ESI): m/z C
12

H
24

NO
4
S+ [M + H]+ calculated 278.1421, found 278.1421. 

 

Cyclohexyl 2-Amino-2-N-(N-tert-butylcarbonyl-S-trichlorovinyl -L-cysteinyl)-2-deoxy-1-

thio-α-D-glucopyranoside (11) 

 

α-thioglycoside 26 (31 mga)  and potassium-tert butoxide (11 

mg, 0.098 mmol) were stirred in DMF (0.75 mL) under a 

nitrogen atmosphere. This mixture was subsequently added 

to EDCI (37 mg, 0.193 mmol) and Boc-TCVC (60 mg, 0.239 

mmol) in DMF (0.75 mL), which had been stirring under 

nitrogen at 0 °C for 10 min prior. The reaction was then 

allowed to warm up to room temperature and mixed for 2 h, after which time the DMF 

was concentrated via distillation in vacuo. The reaction mixture was then passed through 

a silica column using a stepwise elution consisting of: petroleum ether; dichloromethane; 

1

6

7

1

6

7
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diethyl ether; ethyl acetate and; dichloromethane : methanol (3 : 2) as the eluents. The 

diethyl ether and ethyl acetate fractions were combined and concentrated in vacuu to 

afford a orange solid. Subsequent trituration with chloroform yielded the title compound 

as a white solid (14.5 mg,  26%b) Rf 0.51 (ethyl acetate). M.p. 148 - 149 °C. [α]27
𝐷

 = + 55. IR: 

3316, 2929, 2855, 1691, 1649, 1546, 1523, 1278 cm-1.  1H NMR (500 MHz, CD3OD) δ: 5.53 

(d, J = 5.0 Hz, 1 H, H-1), 4.30 (m, 1 H, H-8), 3.96 (m, 2 H, H-2 and H-5), 3.79 (d, J = 12.0 Hz, 

1 H, H-6), 3.72 (dd, J = 5.0, 12.0 Hz, 1H, H-6'), 3.51 (t, J = 9.5 Hz, 1 H, H-3), 3.44 (dd, J = 5.0, 

14.0 Hz, 1 H, H-9), 3.35 (t, J = 9.5 Hz, 1 H, H-4), 3.14 (dd, J = 9.5, 14 Hz, 1 H, H-9'), 2.81 (m, 

1 H, H -12), 1.98 (m, 2 H, cy), 1.74 (m, 2 H, cy), 1.59 (m, 1 H, cy), 1.47 (m, 9 H, 

NHCOOC(CH3)3), 1.21-1.43 (m, 5 H, cy). 13C NMR (125 MHz, CD3OD) δ:  171.15 (C-7), 

156.15 (NHCOOC(CH3)3), 127.07 (C-11 or C-12), 121.07 (C-11 or C-12), 82.70 (C-1), 79.63 

(NHCOOC(CH3)3), 73.13 (C-5), 71.59 (C-3), 71.02 (C-4), 61.11 (C-6), 54.55 (C-2), 54.05 (C-8), 

43.73 (C-12), 35.33 (C-9), 33.98 (cy), 33.59 (cy), 27.37 (NHCOO(CH3)3), 25.69 (cy), 25.53 

(cy), 25.47 (cy). HRMS (ESI): C
22

H
36

Cl
3
N

2
O

7
S

2
+ [M + H]+ calculated 609.1024 found 

609.1036. 

 a5%, by weight, of compound 26 synthesized above. bCalculated over two steps starting 

from 24 

 

Cyclohexyl 2-Amino-2-deoxy-1-thio-β-D-glucopyranoside·HCl (27) 

 

Sodium (12 mg, 0.55 mmol) was added to distilled 

methanol (1.6 mL) under the presence of a nitrogen 

atmosphere. Boc-thioglycoside 25 (342 mg, 0.63 mmol) was 

subsequently added and the reaction stirred at room 

temperature for 2 h, after which time concentrated aqueous HCl (0.8 mL) was added and 

the reaction stirred for an additional 18 h. The compound was then concentrated in vacuo 

to afford the title compound as a light yellow solid. This compound was characterized by 

1H and 13C NMR then a portion of it (32%) carried through to the reaction directly below.  

1H NMR (500 MHz, D2O) δ: 4.90 (d, J = 10.5 Hz, 1 H, H-1), 3.90 (d, J = 12.0 Hz, 1 H, C-6), 
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3.73 (br d, J = 11.0 Hz, 1 H, C-6'), 3.68 (t, J = 9.0 Hz, 1 H, C-3), 3.51 (m, 2 H, C-4 and C-5), 

3.14 (t, J = 11.0 Hz, 1 H, C-2), 3.08 (m, 1 H, C-7), 1.99 (br s, 2 H), 1.74 (m, 2 H), 1.59 (m, 1 

H), 1.19-1.51 (m, 5 H). 13C NMR (125 MHz, D2O) δ: 80.8 (C-1), 79.9 (C-5), 73.5 (C-3), 69.5, 

60.5 (C-4), 55.1 (C-2), 44.6 (C-7), 33.7 (cy), 33.4 (cy), 25.5 (cy), 25.4 (cy), 24.9 (cy).  HRMS 

(ESI): m/z C
12

H
24

NO
4
S+ [M + H]+ calculated 278.1421, found 278.1420. 

 

Cyclohexyl 2-Amino-2-N-(N-tert-butylcarbonyl-S-trichlorovinyl -L-cysteinyl)-2-deoxy-1-

thio-β-D-glucopyranoside (28) 

 

β-thioglycoside 27 (67 mga) of and potassium-tert butoxide 

(25 mg, 0.22 mmol) were stirred in DMF (2 mL) under a 

nitrogen atomoshpere. This mixture was subsequently 

added to EDCI (84 mg, 0.54 mmol) and Boc-TCVC (119 mg, 

0.33 mmol) in DMF (2 mL), which had been stirring under 

nitrogen at 0 ° C for 10 min prior. The reaction was then 

allowed to warm up to room temperature and mixed for 2 h,  after which time the DMF 

was concentrated via distillation in vacuo. The reaction mixture was then passed through 

a silica column using a stepwise elution consisting of: petroleum ether; dichloromethane; 

diethyl ether; ethyl acetate; and dichloromethane : methanol (3 : 2) as the eluents. The 

diethyl ether and ethyl acetate fractions were combined and concentrated in vacuo to 

afford an orange solid. Subsequent trituration with chloroform yielded the title compound 

as a white solid (43.1 mg, 35%b) Rf  0.30 (ethyl acetate). M.p. 195-197 °C (degraded). [α]23
𝐷

 

= - 2.89. IR: 3316, 2930, 2854, 1690, 1654, 1541, 1529, 1205, 1141 cm-1. 1H NMR (500 

MHz, CD3OD) δ: 4.73 (d, J = 10 Hz, 1 H, H-1), 4.27 (dd, J = 4.5, 8.5 Hz, 1 H, H-8), 3.85 (d, J = 

12 Hz, 1 H, H-6), 3.67 (dd, J = 7.0, 12.0 Hz, 1 H, H-6'), 3.56 (m, 2 H,  H-2 and H-3), 3.48 (dd, 

4.5, 14 Hz, H-9), 3.25-3.37 (m, 2 H, H-4 and H-5), 3.13 (dd, 8.5, 14 Hz, H-9'), 2.93 (m, 1 H, 

H-12), 2.00 (m, 1 H, cy), 1.93 (m, 1H, cy), 1.73 (m, 2 H, cy), 1.59 (m, 1 H, cy), 1.45 (s, 9 H, 

NHCOOC(CH3)3), 1.17-1.39 (m, 5 H, cy). 13C NMR (125 MHz, CD3OD) δ: 170.9 (C-7), 156.1 

(NHCOOC(CH3)3), 127.2 (C-10 or C-11), 120.9 (C-10 or C-11), 83.0 (C-1), 80.4 
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(NHCOOC(CH3)3), 79.9 (C-5), 75.25 (C-3), 70.62 (C-3), 61.62 (C-6), 55.78 (C-2), 54.33 (C-8), 

42.88 (C-12), 35.93 (C-9), 33.96 (cy), 33.77 (cy), 27.67 (NHCOOC(CH3)3), 25.81 (cy), 25.63 

(cy), 25.53 (cy). HRMS (ESI): m/z C
22

H
36

Cl
3
N

2
O

7
S

2
+ [M + H]+ calculated 609.1024 found 

609.1032. 

 a32%, by weight, of compound 27 that synthesized above).bCalculated over two steps 

starting from 25                                           

Cyclohexyl 2-Amino-2-N-(S-trichlorovinyl -L-cysteinyl)-2-deoxy-1-thio-α-D-

glucopyranoside·Trifluoroacetic acid (13) 

 

Anhydrous TFA (1 mL) was cooled to 0 °C and added to β-N-

Boc-TCVC thoglycoside 28 (9.5 mg, 0.014 mmol). The 

reaction was stirred at 0 °C for 5 min, after which time the 

reaction was warmed  up to room temperature over a 20 

min period. The reaction was then concentrated to afford 

an orange oil. The compound was then triturated with 

chloroform to afford the title compound an orange oil (3 mg, 35%) Rf  0.52 (19 : 1, EtOAc : 

Methanol). [α]26
𝐷

 = + 77. IR: 3350, 2999, 2845, 1672, 1563, 1448, 1201, 1092 cm-1. 1H NMR 

(500 MHz, CD3OD) δ: 5.56 (d, J = 5.0 Hz, 1H, C-1), 3.95-4.11 (m, 3 H, H-2, H-5 and H-8), 

3.80 (dd, J = 2.4, 12.5 Hz, 1 H, H-6), 3.73 (dd, J = 6.5, 12 Hz, 1 H, H6'), 3.59 (m, 2 H, H9' and 

H-3), 3.36 (t, J = 10 Hz, 1 H, H-4), 3.32 (obs m, 1 H, H-9'), 2.84, (m, 1 H), 1.99 (m, 2 H), 1.74 

(m, 2 H), 1.60 (m, 1 H), 1.22-1.44 (m, 5H). 13C NMR (125 MHz, CD3OD) δ: 166.6 (C-7), 125.3 

(C-10 or C-11), 123.2 (C-10 or C-11), 82.5 (C-1), 72.9 (C-5), 71.3 (C-3 and C-4), 61.0 (C-6), 

54.8 (C-2), 52.2 (C-8), 43.5 (C-12), 35.2 (cy), 34.0 (cy), 33.4 (cy), 25.7 (cy), 25.6 (cy), 25.5 

(cy). HRMS (ESI): m/z C
17

H
28

Cl
3
N

2
O

5
S

2
+ [M + H]+ calculated 509.0500 found 509.0495.  
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Cyclohexyl 2-Amino-2-N-(S-trichlorovinyl -L-cysteinyl)-2-deoxy-1-thio-β-D-

glucopyranoside·Trifluoroacetic acid (29)  

  

Anhydrous TFA (2 mL) was cooled to 0 °C and added to β-N-Boc-

TVCV thioglycoside 28 (20.4 mg, 0.033 mmol). The reaction was 

stirred at 0 °C for 5 min, after which time the reaction was 

warmed  up to room temperature over a 20 min period. The 

reaction was then concentrated to afford the title compound as an orange oil (21mg, 

100%) 1H NMR (500 MHz, CD3OD) δ: 4.82 (obs d, J = 11.5 Hz, 1 - H), 4.03 (m, 1 H), 3.86 (d, 

J = 12 Hz, 1 H), 3.58-3.71 (m, 3 H), 3.54 (t, J = 10 Hz, 1 H), 3.25-3.38 (obs, 3H), 3.00 (br s, 1 

H), 2.00 (m, 2 H), 1.20-1.74 (obs by degradation product, 8 H). 13C NMR (125 Hz, CD3OD) 

δ: 166.6, 125.3, 82.3, 80.7, 75.4, 70.8, 61.4, 56.3, 52.5, 42.7, 35.3, 34.0, 33.8, 25.7, 25.5 (2 

C). HRMS (ESI): m/z C
17

H
28

Cl
3
N

2
O

5
S

2
+ [M + H]+ calculated 509.0500 found 509.0508. 

 

N-Boc-L-Cystine (15) 

L-cystine (2.12 g, 8.88 mmol) was dissolved sodium hydroxide 

(0.5 M, 25 mL). Subsequently, di-tert-butyl dicarbonate (4.30 

g, 19.7 mmol) in THF (7.6 mL) was added slowly over a period 

of 30 min. The reaction was then stirred for 18 hr, after which time, ethyl acetate (40 mL) 

was added and the reaction cooled in an ice-salt bath to 0 °C. The pH was then dropped to 

approximately 2 using HCl (1 M) and the organic layer seperated.  The organic layer was 

subsequently washed with saturated brine, dried over Anhydrous MgSO and concentrated 

to afford the title compound as a white solid (3.51 g, 93%) Rf  0.68 (3 : 1 CH2Cl2 : EtOAc). 

1H NMR (500 MHz, CDCl3) δ: 5.56 (d, J = 8.5 Hz, 1 H), 4.77 (br s, 1 H), 3.31 (d, J = 10 Hz, 1 

H), 3.20 (d, J = 10 Hz, 1 H).  
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N-Boc-L-Cysteine (2) 

Method 1: N-Boc-cystine  (270 mg, 0.62 mmol) was dissolved in 5% 

glacial acetic acid in THF (10 mL) at 0 ºC, Zinc dust (2.27 g) was 

added slowly over a period of 20 min. The reaction was then 

allowed to warm to room temperature over a 1 h period and left 

stirring for an additional 3 h. The reaction was then filtered through celite and washed 

with glacial acetic acid. The filtrate was subsequently concentrated in vacuo and the 

resulting residue taken up in 1M HCl (8 mL) the aqueous phase was extracted with 

ethylacetate (8 mL), washed with saturated brine and dried over Anhydrous MgSO. The 

organic was then concentrated in vacuo to produce the title compound as a colourless oil 

(131 mg, 97%) 

Method 2: L-Cysteine hydrochloride monohydrate (2.09 g, 11.9 mmol), sodium 

bicarbonate (1.96 g, 23.3 mmol) and di-tert-butyl dicarbonate (654 mg, 3.0 mmol) were 

placed in a round bottom flask under a nitrogen atmosphere. In two additional, separate, 

round bottom flasks, water (50 mL) and THF (10 mL) were bubbled through with nitrogen 

for 30 min each. Aliquots of 43 mL and 3 mL of water and THF respectively, were added to 

the flask containing the L-cysteine hydrochloride monohydrate, sodium bicarbonate)and 

di-tert-butyl dicarbonate and the reaction stirred at room temperature for 18 h. Ethyl 

acetate (50 mL) was then added and the reaction acidified to pH 3 using H2SO4 (1 M). The 

organic layer was then washed with saturated  brine, dried over Anhydrous MgSO and 

concentrated to afford the title compound as a colorless oil (440 mg, 66%) Rf 0.68 (3 : 1 

CH2Cl2 : EtOAc) 1H NMR (500 MHz, CDCl3) δ:  5.47 ( app d, J = 6.5 Hz, 1 H), 4.65 (br s, 1 H), 

2.95-3.10 (m, 2 H).  
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N-Boc-S-triclorovinyl Cysteine (3) 

N-Boc-L-cysteine 2 (440 mg, 1.25 mmol)  was dissolved in 

tetrachloroethylene (10 mL, 97.6 mmol) and acetonitrile 

(6.4 mL). The reaction mixture was then stirred under a 

nitrogen atmosphere for 45 min, after which time DBN (0.64 mL, 5.18 mmol) was added 

dropwise and the reaction allowed to stir for an additional 30 min. Dichloromethane (50 

mL) and water (20 mL) was then added and the reaction mixture acidified to 

approximately pH 2 using H2SO4 (1 M). The organic layer was then extracted, washed with 

brine, dried over Anhydrous MgSO and concentrated in vacuo to afford the title 

compound as a colourless oil (480 mg, 69%). 1H NMR (500 MHz, CDCl3) δ: 5.35 (d, J = 7 

Hz), 4.66 (d, J = 6 Hz),  3.56 (dd, J = 3.5, 14.5 Hz), 3.36 (dd, J = 4.5 Hz, 14.5 Hz), 1.46 (s, 9 H). 

13C NMR (125 MHz, CDCl3) δ: 174.35, 155.03, 126.76, 122.49, 80.92, 53.62, 35.80, 28.28 

 

6.3 Experimental Details for Macromodel Calculations 

 

Lowest energy conformers of the compounds studied were obtained by molecular 

mechanics and methodology.  Each structure was subjected to exhaustive conformational 

searching using the mixed torsional/low mode sampling routine as implemented in 

MacroModel version 9.7 (Mohamadi, 1990)101 and visualised in Maestro 9.0.  The 

simulation was continued until the five lowest energy structures reported had been 

replicated at least 25 times.  Structures obtained were minimized using the OPLS_2005 

forcefield using the chloroform model (Still, 1990) and the Polak–Ribiere conjugate 

gradient (PRCG) conjugate gradients method and terminated on a gradient threshold of 

0.01 kJ mol-1Å-1.  
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6.4 Experimental Detail for MTT Cell Proliferation Assay 

 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium) and the solubilizer were 

prepared according to Berridge et al. (1996). An HL60 cell suspension (1 x 106 cells/mL) 

was added to 2-fold dilutions of the compounds in RPMI 1640 in sterile 96-well plates, 

giving final concentrations ranging from250 to 1.2 µM. The volume was brought up to 100 

µL with RPMI 1640. Cells were incubated for either for 24 h at 37°C. After the incubation, 

MTT (20 µl per well) was added and allowed to react for 2 h at 37°C, solubilizer (200 µl per 

well) was added and the plates incubated overnight at 37°C. The absorbance was read in a 

microplate reader at 570 nm102. 
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Appendix 

 

 
1H NMR and 13C NMR spectrum of 11 



86 

 

 

 
1H NMR and 13C NMR spectrum of 27 
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1H NMR and 13C NMR spectrum of 13 
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1H NMR (CDCl3/TFA)(Top) and 1H NMR (MeOD)(Bottom) spectrum of 28 
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