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Abstract
Scheduling problems arise whenever there is a choice of order in which
a number of tasks should be performed; they arise commonly, daily and
everywhere. A job shop is a common manufacturing environment in wh-
ich a schedule for processing a set of jobs through a set of machines needs
to be constructed. Job shop scheduling (JSS) has been called a fascinating
challenge as it is computationally hard and prevalent in the real-world.
Developing more effective ways of scheduling jobs could increase prof-
itability through increasing throughput and decreasing costs. Dispatching
rules (DRs) are one of the most popular scheduling heuristics. DRs are
easy to implement, have low computational cost, and cope well with the
dynamic nature of real-world manufacturing environments. However, the
manual development of DRs is time consuming and requires expert kno-
wledge of the scheduling environment. Genetic programming (GP) is an
evolutionary computation method which is ideal for automatically dis-
covering DRs. This is a hyper-heuristic approach, as GP is searching the
search space of heuristic (DR) solutions rather than constructing a sched-
ule directly.

The overall goal of this thesis is to develop GP based hyper-heuristics
for the efficient evolution (automatic generation) of robust, reusable and
effective scheduling heuristics for JSS environments, with greater interpre-
tability.

Firstly, this thesis investigates using GP to evolve optimal DRs for the
static two-machine JSS problem with makespan objective function. The re-
sults show that some evolved DRs were equivalent to an optimal schedu-
ling algorithm. This validates both the GP based hyper-heuristic approach
for generating DRs for JSS and the representation used.



Secondly, this thesis investigates developing “less-myopic” DRs throu-
gh the use of wider-looking terminals and local search to provide addi-
tional fitness information. The results show that incorporating features of
the state of the wider shop improves the mean performance of the best
evolved DRs, and that the inclusion of local search in evaluation evolves
DRs which make better decisions over the local time horizon, and attain
lower total weighted tardiness.

Thirdly, this thesis proposes using strongly typed GP (STGP) to ad-
dress the challenging issue of interpretability of DRs evolved by GP. Sev-
eral grammars are investigated and the results show that the DRs evolved
in the semantically constrained search space of STGP do not have (on av-
erage) performance that is as good as unconstrained. However, the inter-
pretability of evolved rules is substantially improved.

Fourthly, this thesis investigates using multiobjective GP to encourage
evolution of DRs which are more readily interpretable by human oper-
ators. This approach evolves DRs with similar performance but smaller
size. Fragment analysis identifies popular combinations of terminals wh-
ich are then used as high level terminals; the inclusion of these terminals
improved the mean performance of the best evolved DRs.

Through this thesis the following major contributions have been made:
(1) the first use of GP to evolve optimal DRs for the static two-machine
job shop with makespan objective function; (2) an approach to develop-
ing less-myopic DRs through the inclusion of wider looking terminals and
the use of local search to provide additional fitness information over an ex-
tended decision horizon; (3) the first use of STGP for the automatic discov-
ery of DRs with better interpretability and semantic validity for increased
trust; and (4) the first multiobjective GP approach that considers multiple
objectives investigating the trade-off between scheduling behaviour and
interpretability. This is also the first work that uses analysis of evolved GP
individuals to perform feature selection and construction for JSS.
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Glossary of Terms

This glossary lists the definitions of common terms used through this the-
sis.

arrival rate The rate at which jobs arrive into a dynamic manufacturing
system, often following a stochastic process.

balanced job shop A job shop where the average processing times of op-
erations is the same on all machines.

crossover A genetic operator in which genes of two parent individuals
are selected, manipulated and recombined to produce a new set of
genes for the child individual.

dispatching rule A scheduling heuristic which assigns a priority value
to each job waiting in a specific machine’s queue, and selects the
highest priority job to begin scheduling.

dynamic job shop scheduling A job shop scheduling problem where jobs
arrive throughout time according to a stochastic process, and there
is no knowledge about the job until its arrival into the shop.

elitism A genetic operator which selects only the fittest individuals of the
parent population up to the prescribed proportion.

evaluation The process of measuring the fitness of individuals within a
GP population during the evolutionary process.
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evolutionary computation The field of study of population based optimi-
sation methods which simulate evolution inspired by biology.

feature An attribute of the problem domain.

feature construction The process of combining existing features of a (ma-
chine learning) task to make new features.

feature manipulation The process of altering the input space of a (mach-
ine learning) task to improve the performance and (learning) quality.

feature selection A combinatorial optimisation problem which aims to
find a subset of the original features which is as small as possible
but still sufficiently describes the problem space.

fitness A measure of how well adapted an individual is to perform a spe-
cific task.

genetic operators Sources of variation in the evolutionary process: cross-
over, elitism and mutation.

genetic programming (GP) An evolutionary computation method.

grammar A context-free grammar is given by (S,N,Σ, P ), where S is the
start symbol, N is a set of non-terminals, Σ is the set of terminals,
and P is the set of production rules of the grammar.

heuristic A “rule of thumb” which seeks a good solution at reasonable
computational cost but does not guarantee optimality.

hyper-heuristic Search method for choosing or generating heuristics (or
components of heuristics) to solve a range of optimisation problems.

initialisation The process of randomly generating the initial population
of individuals in GP before the evolutionary process proceeds.
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job A task to be scheduled, consisting of a sequence of a least one op-
eration which must be processed on specific machines in the shop
system.

job shop A manufacturing environment with a set of machines, and a set
of jobs to be processed through the machines, where each job has a
specified route through the machines.

job shop scheduling (JSS) The task of creating a schedule for processing
jobs in a job shop manufacturing environment.

machine A resource which processes jobs in a manufacturing system.

makespan The maximum completion time (i.e. the completion time of the
last job to finish processing).

meta-heuristic Problem independent strategies which guide the search
process to find optimal, or near-optimal, solutions to optimisation
problems.

mutation A genetic operator which takes an individual, chooses a muta-
tion point at random, and the subtree routed at that point is replaced
with a randomly generated subtree to create the child individual.

myopic Short-sighted.

non-domination A solution which is not dominated by any other solution
across all objectives in a multiobjective optimisation problem.

objective function A measure of job delivery speed or customer satisfac-
tion which is to be optimised.

operation A component part of a job, with a specified machine and pro-
cessing time.

Pareto front The set of non-dominated solutions in a multiobjective opti-
misation problem.
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release time The time that a job enters the manufacturing system and is
available to be scheduled.

representation The form in which a heuristic rule or genetic program is
represented for evolution and computation purposes.

schedule An allocation of jobs to machines, including the start time of
each operation within each job.

scheduling The process of constructing a schedule.

selection The process of determining which individuals are to be used for
the genetic operators.

shop A manufacturing environment with a set of machines (resources)
available to process a set of jobs (tasks).

static job shop scheduling All jobs are available and all their properties
known at the start time of the manufacturing process.

tardiness How overdue a completed job is (tardiness is zero when the job
is completed early).

unbalanced job shop A job shop where the average processing time of
operations is not the same on all machines.

utilisation The proportion of time a machine is not idle.

weight The importance of a job, used to calculate its weighted tardiness.



Chapter 1

Introduction

1.1 Problem Statement

Job shop scheduling (JSS) is a common and difficult problem that has been
described as a “fascinating challenge” [28] and has been widely studied
in the academic literature over the past 60 years [48, 116]. A job shop is
a manufacturing environment in which products (i.e. jobs) are produced
by following a product-specific route through a finite set of machines. JSS
problems are computationally challenging, falling in the class of NP-hard
problems with only a few exceptions [12]. Further, there are many facto-
ries around the world (tens of thousands in the USA alone) that follow
the job shop model, producing billions of dollars worth of products each
year [62]. The development of more effective means of scheduling jobs is
worthwhile as it has the potential to increase throughput, decrease costs,
and increase profitability [62].

Job shop scheduling is a combinatorial optimisation problem consist-
ing of a set of machines and a set of jobs which must be processed by
the machines, subject to a set of constraints and with the aim of finding a
schedule of jobs which optimises some measure of delivery speed or cus-
tomer satisfaction [48].

The job shop scheduling problem has two main forms: the static job
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2 CHAPTER 1. INTRODUCTION

shop deals with the scheduling of an entirely known set of jobs; whereas
in the dynamic job shop no job information is known until the job arrives
into the shop system at an unknown time [118]. Due to the availability
of knowledge in the static job shop problem, scheduling often uses tradit-
ional combinatorial approaches, such as branch-and-bound [72], total enu-
meration and Lagrangian relaxation [49]. However, in dynamic job shop
scheduling problems there are no optimal solutions, as all the information
is only known at the end of the scheduling period, therefore methods that
construct complete schedules in advance are not able to be used. Heuris-
tics (including dispatching rules) are commonly used scheduling methods
in dynamic job shop environments [12, 116].

Dispatching rules (DRs), also known as priority rules or scheduling ru-
les, are popular for job shop scheduling due to their ease of implementa-
tion, low time complexity (and hence low computational cost), and ability
to cope with both static and dynamic environments [12]. Dispatching ru-
les are mathematical functions of attributes of the job shop, machines and
jobs currently queued at a machine awaiting dispatch. They assign a pri-
ority value to each job waiting in the machine queue, whenever a machine
becomes available to process a job. The job that is assigned the highest
priority value is selected to begin processing. This means scheduling de-
cisions are made as they are to be implemented, which is why dispatching
rules cope with dynamic environments so well. As dispatching rules are
heuristics, they cannot be guaranteed to give optimal solutions [131].

The manual development of dispatching rules is a time consuming
process that requires domain knowledge. Manually designed dispatch-
ing rules are frequently specific to a particular job shop scheduling in-
stance, defined by the number of machines, objective function, utilisation,
etc. An approach to overcoming this problem that has gained popular-
ity over the past twenty years [62] is the use of evolutionary computation
based techniques to automatically discover new dispatching rules. These
approaches are often known as hyper-heuristics [29, 21], as they search
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the search space of potential heuristics (i.e. dispatching rules) rather than
searching the space of solutions (i.e. schedules of jobs) directly. Genetic
Programming (GP) [70] is an evolutionary computation technique which
has been shown to be an ideal candidate for use as a hyper-heuristic for
shop scheduling problems [21]. The main reason for this is the common
representation of GP, tree-based GP [70], naturally lends itself to represent
mathematical functions, and hence to represent dispatching rules. GP is
also relatively easy to implement and has variable length encoding.

The overall goal of this thesis is to develop genetic programming ba-
sed hyper-heuristics for the efficient evolution (automatic generation) of
robust, reusable and effective scheduling heuristics for job shop schedu-
ling environments, with greater interpretability.

1.2 Motivations

The purpose of this section is to provide the motivations for this thesis.
Firstly, we introduce some of the challenges of scheduling. Secondly, we
describe why GP is an ideal evolutionary computation method to use to
develop scheduling heuristics. Finally, we discuss limitations of the exist-
ing research.

1.2.1 Challenges of Scheduling

Job shops are a common real-world scheduling environment [62] and the
complexity of the scheduling task combined with real-world prevalence
has led to scheduling in such environments being widely studied for many
years [62]. Scheduling is a very challenging problem. Often the scale of the
problem is very large, with many hundreds of tasks (jobs) needing to be
scheduled across many tens or hundreds of resources (machines). Even
for the smallest of scheduling problems, finding the best possible solution
can quickly become near impossible. For a ‘simple’ static single machine
problem with 10 jobs, there are 10! = 3, 628, 800 possible sequences of jobs.
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As the number of jobs and machines increases, the number of possible se-
quences increases and the scheduling task becomes increasingly difficult.
The majority of scheduling problems are NP-hard [12].

This computational challenge, and the fact that many real-world man-
ufacturing and service environments use/need scheduling, means that
there is real benefit to be found from improving scheduling. Increasing
throughput of production and decreasing costs from, e.g., idle machines,
inventory costs from holding partially completed items, and late delivery
costs, all lead to increasing profitability.

Job shop scheduling in real-world situations is certainly a multiobject-
ive problem; objective functions that relate to both the customer and the
business sides of manufacturing, as well as business values such as envi-
ronmental impact through power use or emissions, may all be of interest
to the scheduler. Sometimes these objectives may work together, e.g., min-
imising flowtime (the time jobs are in the shop system) is likely to lead to
lower inventory costs. However, frequently the objectives of interest are
in conflict, e.g., minimising the number of tardy jobs and minimising the
flowtime.

When the multiobjective nature of the scheduling task itself is com-
bined with the task of finding better means of scheduling, the task be-
comes even more difficult. An effective and efficient scheduling rule must
not only be good in terms of the multiple objectives of the scheduling prob-
lem but also in terms of the multiple attributes of a good scheduler. Fur-
ther, the majority of manually designed dispatching rules and algorithms
are designed for specific job shop scheduling instances, and do not gener-
alise well across different shop settings. Scheduling is a major challenge
due to the dynamic nature of the task. In dynamic job shops not only are
jobs arriving at unknown times, but the machines may break down unex-
pectedly as well.
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1.2.2 Why Genetic Programming?

Genetic programming is an ideal evolutionary computation method to au-
tomatically generate dispatching rules because of the following reasons.

Representation. Tree-based genetic programming [70] is the most com-
mon form of genetic programming; programs are represented as tre-
es, made up of function and terminal nodes. Dispatching rules are
mathematical functions used to determine the priority of jobs await-
ing processing, and choose which job must begin next. Such mathe-
matical functions are naturally represented as trees with mathemat-
ical functions as the function nodes, and constants and variables of
the job shop problem domain as the terminal nodes in GP.

Variable Length Encoding. One advantage of genetic programming over
other evolutionary computation methods is that the size of the pro-
gram trees evolved is able to vary [7], between a minimum depth,
m1, and maximum depth, m2. This means genetic programming is
covering a larger search space of potential functions than a fixed
length method such as a genetic algorithm. This is suitable for JSS
where variable lengths of rules are needed, particularly for dyna-
mic JSS environments which are complex and therefore require more
complex dispatching rules to schedule effectively.

Previous Research. There is a large body of research using genetic pro-
gramming for the automated design of scheduling rules [50, 56, 57,
83, 95, 96, 98, 107], giving us confidence in the approach and set-
ting successful precedents. These approaches are classified as hyper-
heuristic approaches [29, 21], as GP is searching for a scheduling
heuristic (the dispatching rule) rather than searching for a sched-
ule of jobs directly. Dispatching rules (DRs) are able to be reused
in new JSS problems, with the same and different parameters, unlike
the development of a schedule which is specific to a given instance.
This is an advantage of the hyper-heuristic approach. GP has been
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used to develop DRs in a range of scheduling environments, from
the simpler static two-machine flow shop [42], through job shops
with many machines [50], dynamic flexible JSS [126], to very com-
plex manufacturing environments such as semi-conductor manufac-
turing [108]. These works consider differing simplifications of the
JSS model; some focus on static problems [83] and others on dyna-
mic problems [50]. Works focus on different objectives of delivery
speed, including those based on makespan [58, 57], flowtime [50],
tardiness [58], and combinations of these [126]. Further works also
consider evolving due date assignment rules alongside DRs [94] and
DRs for order acceptance and scheduling [106]. Rules evolved by
GP are frequently reported to compete with rules from the literature
[94, 57]. However, there are limitations to this body of existing re-
search which are discussed below.

Ease of Implementation. It is relatively easy to implement a genetic pro-
gramming based system to evolve dispatching rules, using one of the
many existing GP software packages, such as ECJ [78]. These pack-
ages require extension to include a job shop discrete-event simula-
tion model to evaluate how good a dispatching rule is. Suitable func-
tions need to be identified as DRs are mathematical functions and
there are a large number of such functions which can be explored. It
is less easy to identify which variables relevant to the problem do-
main of job shop scheduling should be included. The attributes of
machines (e.g. number of jobs in the queue or how long the machine
has been idle), jobs (e.g. the processing time of the current operation
or the due date) and of the shop as a whole (e.g. the current clock
time of the simulation) are naturally represented as terminals.
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1.2.3 Limitations of Existing Work

Genetic programming has been used for the automated design of dis-
patching rules and other forms of scheduling policy. However, there are
limitations to the research that has been conducted.

Dispatching rules evolved by most approaches lack a global perspec-
tive as the features of the jobs, machines and the shop used are mainly lim-
ited to the current state of the current machine and its queue. Research has
explored the use of look-ahead functions to try and improve the scheduling
performance, as they have the ability to significantly improve schedules
when used with a reasonable DR [43]. Most DRs construct non-delay sched-
ules where a machine cannot be idle while there is an operation awaiting
processing [110]. Some works [98, 50] incorporate a “look-ahead” in which
a machine is notified that a job will be arriving once it is finished its cur-
rent operation. When the jobs in the queue at the machine are evaluated, if
the job which has not yet arrived has the highest priority then the machine
is able to enforce idle time, and wait for the job to arrive. However, there
are other ways in which dispatching rules can be encouraged to take into
account the wider state of the shop. Ways in which the longer term conse-
quences of a particular scheduling decision are yet to be investigated.

Another limitation of DRs evolved automatically is their interpretabi-
lity. The interpretability of heuristics evolved by genetic programming,
and black box optimisers, has been identified as a crucial aspect to gain
the trust of operators or managers [16]. How well, or even whether, these
people are able to understand and interpret how and why the DR works is
therefore important if DRs evolved using evolutionary computation (EC)
techniques are to be used in real-world situations. One particular limi-
tation is that many of the comparisons made in evolved DRs cannot be
readily interpreted in terms of units, i.e., semantically most DRs evolved
using GP are incorrect [58] because standard tree-based GP allows the un-
restricted composition of available functions and features, subject only to
the tree-depth restriction. Knowing how well a given rule will generalise
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across different distributions of arrivals and processing times, and differ-
ent scales of shops (number of machines and jobs), is also necessary if they
are to be used in practice. Means of improving the interpretability previ-
ously employed include online rule simplification techniques [61, 66, 137],
analysis and visualisation of priority indices [15], and identifying weak-
nesses in decision logic of a given dispatching rule [17]. The interpre-
tability of DRs evolved by GP is a particularly interesting problem as it
has been reported that there is evidence that complex scheduling envi-
ronments require heuristics with a certain level of complexity, so often an
easy-to-interpret representation can result in lower quality heuristics [15].

Job shop scheduling is inherently a multiobjective problem. Often the
multiple objectives explored in research are different manufacturing objec-
tives such as tardiness and flowtime, or utilisation levels of the machines
in the shop. While the job shop scheduling task is recognised as a multi-
objective problem, we believe that the effectiveness of a dispatching rule
should also be multiobjective. A limitation of existing research into mu-
ltiobjective genetic programming for the automated design of scheduling
rules is that very frequently researchers have been interested only in the
performance of the evolved rules in terms of a measures of manufactur-
ing speed or efficiency. There are other factors which are important if ru-
les designed without human expert domain knowledge are to be trusted
by human operators involved in the manufacturing process, particularly,
how are the evolved rules to be understood? There are many more poten-
tial objectives to be explored relating directly to the scheduling problem
as well as to the evolved dispatching rule that can enable the discovery of
dispatching rules which better account for the issues of myopia (“short-
sightedness”) and understandability.

Job shop scheduling problems have a large number of attributes wh-
ich could potentially be used in the terminal set of a genetic programming
approach, and hence could appear in a useful dispatching rule. However,
not all of these attributes are important, and some may be redundant in
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the presence of other attributes. The disadvantage of using a large num-
ber of attributes is that the more attributes, the larger the search space that
GP has to cover. These attributes are often known as ‘features’ within the
machine learning and evolutionary computation communities. In this the-
sis we will use the terms ‘feature’ and ‘attribute’ interchangeably. Feature
manipulation [91] is the process of altering the input space of a (mach-
ine learning) task to improve the performance and (learning) quality. In
scheduling, the input space consists of the attributes that are chosen from
the scheduling domain to be part of the terminal set, together with the
function set. Feature selection is one form of feature manipulation, which
aims to find a subset of the original features which is as small as possible
but still sufficiently describes the problem space [67]. Feature construc-
tion [77, 92] is another form of feature manipulation; existing features are
combined to make new features. Feature manipulation in genetic pro-
gramming for scheduling has not previously been explored. GP performs
feature selection automatically as the most effective GP trees survive to fu-
ture generations, but seldom are the features appearing across best-of-run
evolved dispatching rules examined and the information gleaned used.
GP can also be considered to perform feature construction automatically,
as there are ‘fragments’ or sub-branches of the GP trees which may appear
frequently in multiple trees and these may be used as constructed features.
Overall, the use of feature manipulation aims to reduce the size of the sea-
rch space, improve the learning performance, and potentially make the
output easier to interpret.

1.3 Research Goals

The overall goal of this thesis is to develop genetic programming based
hyper-heuristics for the efficient evolution (automatic generation) of ro-
bust, reusable and effective scheduling heuristics for job shop scheduling
environments, with greater interpretability. The focus of this research is to
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investigate how the use of genetic programming to discover new dispatch-
ing rules for job shop scheduling problems can be improved through stud-
ying the representations used, the incorporation of additional feedback on
the performance of dispatching rules through other heuristic methods and
the inclusion of additional objectives. We aim to use genetic programming
to evolve new dispatching rules that are effective, incorporate attributes
of the wider shop system and are interpretable to human operators. The
evolved rules should be reusable in unseen job shop scheduling scenarios
and competitive with existing dispatching rules from the literature. There
is always some gap between the robustness and reusability of scheduling
rules. Evolved rules not only need to be robust and reusable in terms of ef-
fective performance across different machine configurations, but we also
should be able to understand the rules enough to trust the use of them
across different configurations by increasing our understanding and inter-
pretation of the way they work.

This thesis will address the following research objectives:

1. Investigate whether GP can discover dispatching rules which are competi-
tive with known optimal approaches on static job shop scheduling problems.

The static two-machine job shop scheduling environment is perhaps
the simplest of all job shop environments. The makespan, Cmax, is
the maximum completion time of all jobs (1, . . . , N ) in the shop, i.e.,
Cmax = max{C1, . . . , CN}, where Cj is the completion time of job j.
When the objective of interest is to minimise the makespan, Jack-
son’s algorithm [55] gives the minimum makespan. It is not clear
(initially) whether GP can evolve rules that perform as well as Jack-
son’s algorithm, i.e., always dispatching jobs in a way that gives the
optimal makespan. We aim to find a good representation within GP
to evolve such rules. Success in this task can be considered as certi-
fication of the representation being used and of the search capability
of GP. This will give confidence in the ability of the system to evolve
heuristics for the more complicated job shop environments for wh-
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ich we do not have an optimal solution to compare against. If GP
is not able to evolve a heuristic which can match the performance
of Jackson’s algorithm then the representation being used should be
modified.

Specific sub-objectives to investigate are:

(a) Investigate representation of Jackson’s algorithm as a dispatch-
ing rule and how a dispatching rule can be shown to be equiva-
lent to Jackson’s algorithm.

(b) Investigate whether GP can discover a dispatching rule which is
equivalent to Jackson’s algorithm.

(c) Investigate evolving two dispatching rules simultaneously, one
for each machine in the dynamic two-machine job shop, and
compare this to the standard approach of using one dispatching
rule to make scheduling decisions at all machines in the shop.
While focusing on the simpler job shop environments, as part
of the baseline of the thesis, we will also investigate the dyna-
mic two-machine job shop. The typical approach to evolution-
ary scheduling takes the single best DR evolved by the system
and applies this DR to determine which job should be processed
next at every machine in the shop (the job shop model is simpli-
fied to use one DR). However there are other ways that a fixed
amount of computational time could be used to develop rules
for a system.

2. Investigate the use of GP to develop “less myopic” scheduling rules.

The majority of current research lies at two extremes: a global ap-
proach through optimisation methods where an entire schedule is
constructed or the other extreme of very local approaches using dis-
patching rules. Dispatching rules are generally myopic, i.e., short
sighted, and take into account the local and current conditions of the
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shop only [2, 42]. Dispatching rules generally examine the proper-
ties of the machine which is now available, including the queue of
jobs awaiting processing at that machine at that point in time. The
dispatching rule is used to make scheduling decisions at each ma-
chine in the job shop independently, so there is no consideration of
the movement of jobs from one machine to another, or the impact a
decision may have on the subsequent machines, whether positive or
negative [108].

We will investigate two approaches to encourage dispatching rules
to take into account the wider state of the shop and the consequences
of scheduling decisions over an extended decision horizon. These
aim to address the following sub-objectives:

(a) Determine which possible attributes of jobs, machines and/or the shop
system as a whole are useful to improve DR performance and how
“less-myopic” features improve the scheduling performance.
The attributes used in the terminal set have a large impact on
the performance of the evolved scheduling rules, determining
what information is available to the GP system, and how lo-
cal/global the approach is. We will incorporate features from
the wider shop system, to see if the rules evolved are less-myopic
and give improved performance.

(b) Investigate whether the inclusion of local search as an additional means
of providing feedback on the fitness of a given dispatching rule throu-
ghout evolution can improve the performance and generalisation abil-
ity of evolved DRs.
We want to find dispatching rules that make good decisions.
The incorporation of local search allows us to examine the wider
local effect of dispatching decisions over an extended decision
horizon, and investigate whether this can encourage the evolu-
tion of dispatching rules that schedule jobs in an order which
is better for more than just the first job dispatched, leading to
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better global performance and better generalisation to unseen
problem instances.

3. Investigate whether a strongly typed GP (STGP) based hyper-heuristic ap-
proach can be used to encourage the evolution of interpretable dispatching
rules.

The effectiveness and suitability of a dispatching rule evolved by ge-
netic programming is normally measured only in terms of the sched-
uling objectives such as tardiness or flowtime, but for dispatching
rules to be used in real-world scheduling environments they must
be able to be trusted by human managers and operators involved in
the scheduling process. This aspect of how well the rules are able
to be understood, interpreted and trusted is often neglected in the
existing literature. Further, rules evolved with only the standard GP
constraints of closure are often semantically incorrect.

One approach to creating dispatching rules with greater interpretabi-
lity and semantic validity is to limit the allowable interaction be-
tween functions and terminals using STGP. STGP works by directly
specifying which children each non-terminal can have; which is done
indirectly in STGP by specifying the data types of each argument of
each function as well as the data types returned by each terminal and
function [85].

The following sub-objectives will be investigated:

(a) Develop terminal types and grammar(s) to specify the allow-
able interactions between these types which can be enforced
with the use of STGP.

(b) Investigate how the level of interpretability and performance
compares between rules evolved using STGP, those evolved by
the traditional GP based generation of dispatching rules, and
manually designed rules from the literature.
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(c) Evaluate whether the use of STGP can be justified (if perfor-
mance is worse) as an acceptable compromise for improvement
in interpretability.

(d) Investigate what insight can be gained into how a measure mi-
ght be developed to evaluate and compare interpretability of
automatically evolved rules.

4. Investigate how multiobjective GP can be used to discover dispatching rules
for dynamic JSS which are effective in terms of scheduling objectives and are
also more easily understood by human operators.

The aim of this objective is not the development of a new GP algo-
rithm, but analysis of how we can better use GP for automatic gener-
ation of DRs. Scheduling is inherently a multiobjective problem, for
example, there is a trade-off between the size of the planning hori-
zon and the computational cost of creating the schedule, or between
training time and robustness. This is a well identified issue.

We believe that DR performance is also multiobjective; performance
in terms of the scheduling objectives is important but so is the int-
erpretability of DRs and the trust that practitioners are able to place
in DRs. In particular we investigate the trade-off between the size of
the GP trees (compactness of heuristics/solutions) and understand-
ability/interpretability of heuristics/solutions, and specifically we
will:

(a) Investigate whether interpretability can be improved by the in-
clusion of objectives relating to the size of the DR.

(b) Determine which of the two MO algorithms, NSGA-II [32] and
SPEA2 [146] performs better for GP to evolve interpretable ru-
les.

5. Investigate using the knowledge implicitly discovered through GP to per-
form feature manipulation to improve dispatching rule performance.
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Attribute/feature selection is an important part of developing an ef-
fective GP based approach for the automatic discovery of dispatch-
ing rules. While it has been acknowledged that a scheduling rule it-
self is often not as important as the interrelationships of the attributes
in the rule, and the relevance of these attributes to the problem struc-
ture [42], the study of the attributes used, and in what combinations,
is generally neglected in the scheduling community. The knowledge
automatically discovered by GP through the terminals selected can
be viewed as feature selection and can be used to alter the terminal
set. Feature manipulation using GP has not been investigated in the
JSS literature.

Analysis of the best-of-run evolved dispatching rules, searching for
commonly occurring fragments of terminals and functions, can di-
rect us to perform feature construction. Common fragments will be
used as “higher-level constructed features”. Using this additional in-
formation from the results of GP runs will enable us to reduce the use
of terminals which are redundant or less useful and reduce the size
of the search space. Including additional higher-level features may
improve the learning performance, and as each higher-level feature
will be interpreted before being included in the terminal set, this has
the potential to improve the interpretability of the output.

Specific sub-objectives that will be investigated are:

(a) Investigate whether the restriction of the search space through
STGP reveals good components or combinations of components
that we can use to further restrict or alter the terminals included
in the terminal set.

(b) Investigate whether feature manipulation guided by GP can im-
prove interpretability.
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Table 1.1: Mapping of contributions (Contrib) to research objectives (RO).

Contrib 1 Contrib 2 Contrib 3 Contrib 4
RO1 ×
RO2 ×
RO3 × ×
RO4 ×
RO5 ×

1.4 Major Contributions

This thesis makes the following major contributions. The mapping of con-
tributions to research objectives is shown in Table 1.1.

1. This thesis presents an investigation into evolving dispatching rules
for the static two-machine job shop with makespan objective func-
tion. This is the first time that GP has been used to evolve dis-
patching rules that are optimal for this problem. This was proved
by showing that the evolved rule scheduled queued jobs in such a
way that the makespan is always equal to the makespan attained by
using the optimal scheduling algorithm, Jackson’s algorithm. This
work validates both the genetic programming based approach for
generating dispatching rules for the JSS problem, and the represen-
tation used.

Part of this contribution has been published in:

Hunt, R., Johnston, M. and Zhang, M. “Evolving machine-specific
dispatching rules for a two-machine job shop using genetic program-
ming”. In Proceedings of the IEEE Congress on Evolutionary Computa-
tion (2014), pp. 618–625.

2. This thesis presents an approach to developing “less-myopic” dis-
patching rules through the inclusion of additional terminals in the
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feature set and the use of local search to provide additional feed-
back on the fitness of dispatching rules during evolution. The results
show that inclusion of less-myopic terminals improves the mean per-
formance, and decreases the standard deviation of performance of
the best evolved rules, and that the inclusion of local search in eval-
uation leads to the evolution of dispatching rules which make better
decisions over the local time horizon, and attain lower total weigh-
ted tardiness.

Parts of this contribution have been published in:

Hunt, R., Johnston, M. and Zhang, M. “Evolving “less-myopic” sche-
duling rules for dynamic job shop scheduling using genetic progra-
mming”. In Proceedings of the Genetic and Evolutionary Computation
Conference (2014), pp. 927–934.

Hunt, R., Johnston, M. and Zhang, M. “Using local search to evalu-
ate dispatching rules in dynamic job shop scheduling”. In Proceed-
ings of Evolutionary Computation in Combinatorial Optimization (2015),
pp. 222–233.

3. This thesis proposes the first use of strongly typed GP for the au-
tomatic discovery of dispatching rules with better interpretability.
This work explores the ease of interpretation of a dispatching rule
evolved by GP in depth and considers the ease of interpretation as
an important trait of an effective dispatching rule. The results show
that the performance of the dispatching rules evolved in the semanti-
cally constrained search space is not as good (on average) as the per-
formance on the unconstrained search space. However, there were
still effective rules evolved under STGP, and the interpretability of
evolved rules is substantially improved. The results also show that
there is a real trade-off between total weighted tardiness and inter-
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pretability. Introducing conditional operators with predetermined
conditions makes the rules easier to interpret, due to the condition
tested being known, however performance is not as good as with the
traditional conditional operator. The interpretability of dispatching
rules is an essential aspect to be explored if rules that are automat-
ically discovered by evolutionary computation techniques are ever
to be employed in real world job shop scheduling environments, as
managers and human operators must have a level of trust in and
understanding of how the rule is working.

Part of this contribution has been submitted to Evolutionary Com-
putation Journal.

Hunt, R., Johnston, M. and Zhang, M. “Evolving dispatching ru-
les with greater understandability for dynamic job shop scheduling”
(2015), 36pp. (under second review).

4. This thesis presents a multiobjective genetic programming approach
with objectives of total weighted tardiness, dispatching rule size,
and the number of distinct terminals appearing in the genetic pro-
gramming tree. This approach aims to evolve dispatching rules with
greater interpretability while also revealing more information about
important features of the search space and scheduling environment.
The results show that the inclusion of higher-level constructed ter-
minals and specialised conditionals improves the scheduling perfor-
mance. Including the dispatching rule size as an objective leads to
dispatching rules with similar performance but smaller size and bet-
ter interpretability. Including the number of distinct terminal nodes
as an objective highlights redundancies in the terminal set, reveal-
ing that some features are more useful as part of a larger constructed
feature. This is the first work that considers multiple objectives of
dispatching rules in terms of the trade-off between scheduling be-
haviour and interpretability in an automatically generated dispatch-
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GP for Automatic DR Generation

Optimal DRs Less-Myopic DRs Interpretable DRs Feature Manipulation in JSS

Chapter 3 Chapter 4 Chapter 5 Chapter 6

Conclusions
 (Chapter 7)

Figure 1.1: Overall structure of the thesis contribution chapters.

ing rule. Not only must dispatching rules evolved by genetic pro-
gramming be competitive with those from the literature in terms of,
e.g., the total weighted tardiness obtained, but they must also be able
to be trusted. People are more likely to choose something they un-
derstand (and can explain) over something that works better.

Part of this contribution has been submitted to IEEE Transactions on
Cybernetics.

Hunt, R., Johnston, M. and Zhang, M. “Multiobjective genetic pro-
gramming for feature selection and dispatching rule generation in
job shop scheduling” (2015), 14pp. (under review).

1.5 Organisation of Thesis

The remainder of this thesis is organised as follows. Chapter 2 presents a
literature review of related works. Chapters 3–6 present the main contri-
butions of the thesis, which can be seen in Figure 1.1. Chapter 7 concludes
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the thesis.

Chapter 2 presents descriptions of the job shop scheduling problem
and genetic programming methodology used for this research. The ba-
sic concepts of genetic programming, heuristics, hyper-heuristics for au-
tomatic generation of heuristics and grammar guided genetic program-
ming are presented. This chapter gives a review of current research using
genetic programming for the automatic generation of new dispatching ru-
les.

Chapter 3 proposes a GP system to evolve dispatching rules for the
static two-machine job shop scheduling problem with the makespan objec-
tive function. Jackson’s algorithm, which is known to give optimal solu-
tions, is described, followed by how it can be represented as a dispatching
rule. Modifications to the feature set are investigated and evolved dis-
patching rules are analysed. Chapter 3 also compares two representations
for scheduling in the dynamic two-machine job shop: one dispatching rule
used at both machines or two rules evolved simultaneously, one for each
machine.

Chapter 4 investigates how GP can be used to discover dispatching
rules which are “less-myopic”. An extended terminal set is proposed, in-
cluding more information about the state of the wider shop system at the
point that scheduling decisions are made. Further, a new fitness evalua-
tion scheme is proposed, where local search is used to evaluate dispatch-
ing rule performance over an extended decision horizon.

Chapter 5 proposes the use of strongly typed genetic programming to
enforce semantic constraints and enable the automatic discovery of seman-
tically correct dispatching rules with greater interpretability. Incremental
grammars exploring additional types, terminals and functions are investi-
gated.

Chapter 6 builds on the work of Chapter 5 proposing the use of addi-
tional objectives to encourage greater interpretability of evolved dispatch-
ing rules. This approach is combined with feature construction and se-
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lection, based on analysis of results, to discover useful components and
relationships between features, improving the effectiveness of the search.

Chapter 7 summarises the main findings of the thesis and draws over-
all conclusions. The thesis concludes with further research opportunities
based on the results attained in this thesis.
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Chapter 2

Literature Review

This chapter begins by providing an introduction to the basic concepts wh-
ich are essential to this thesis: scheduling, heuristics and hyper-heuristics,
and evolutionary computation. Then job shop scheduling is described in
greater depth, introducing job properties, notation, and performance mea-
sures used widely in the literature. Next, a review of scheduling methods
in static and dynamic job shop environments, from optimal algorithms to
heuristic rules is presented. This chapter then presents genetic program-
ming, focusing on the key elements of representation, evolutionary opera-
tors and the basic algorithm. An introduction to the local search heuristic
and feature manipulation is given. The final section of this chapter pro-
vides a summary of the literature on using hyper-heuristics to generate
heuristics, in particular genetic programming based generation of heuris-
tics for scheduling.

2.1 Introduction

The purpose of this section is to provide an introduction to the basic con-
cepts of scheduling problems, heuristics and hyper-heuristics and evolu-
tionary computation.

23
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2.1.1 Scheduling

Whenever there is a choice in the order in which a number of tasks can be
performed, we have a scheduling (sequencing) problem [28]. These prob-
lems occur commonly, daily, and everywhere. Scheduling is a decision-
making process [110] which aims to assign tasks to scarce resources over
time, subject to constraints, optimising some measures of customer satis-
faction or delivery speed [48, 75]. Such problems are combinatorial op-
timisation problems, with very large search spaces for even a relatively
small number of tasks.

Scheduling, and closely related problems, are found not only in manu-
facturing, but also in transportation and distribution, communication and
service provision [28], as well in information processing environments
[110].

Scheduling combines both allocation of tasks to resources, sequencing
of tasks, and determining when the tasks are to be performed [6]. Prob-
lems are categorized by the nature of the tasks and the configuration of the
resources available to process them [6]. The resources can vary in num-
ber and in layout, occurring in sequence or in parallel. Task availability
splits problems into static and dynamic problems: in static systems the set
of available jobs does not change with time whereas in dynamic systems
tasks appear over time and there is no knowledge of them prior to their
arrival [6]. Systems are also classified as either deterministic or stochas-
tic dependent on whether conditions are known with certainty, or follow
probability distributions [110]. In stochastic scheduling systems, decisions
also have to be made with limited information available [110].

The majority of scheduling problems are NP-hard [75], which are am-
ong the most difficult problems to solve [62]. The commonness of schedu-
ling problems has lead to an extensive body of research, beginning in the
early 1950s [75, 116]. Research began with the development of algorithms,
arising from computational analysis, and progressed to enumerative sea-
rch techniques such as branch-and-bound [72], mathematical program-
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ming approaches including Lagrangian relaxation [49], heuristic approac-
hes such as local search [1] and meta-heuristic approaches.

2.1.2 Heuristics, Meta-heuristics and Hyper-heuristics

Heuristics. Heuristics are “rules of thumb” which seek good solutions
at reasonable computational cost but do not guarantee optimality [131].
The need for heuristics arises from real-world problems which are diffi-
cult to solve. Michalewicz and Fogel [81] give five reasons why real-world
problems are so difficult to solve: large search spaces, complicated prob-
lems which can only be modelled in severely simplified forms, noise of
time-dependent evaluation functions, heavily constrained search spaces,
and inadequately prepared human problem solvers. Solving these com-
putational problems using exact methods is often impractical due to these
challenges, and due also to the computational resources or time required.

Meta-heuristics. Meta-heuristics are problem independent (provided the
right encoding) strategies which “guide” the search process in order to
find optimal, or near-optimal solutions [13] to hard optimisation prob-
lems. Meta-heuristics use a variety of techniques, including random moves
and penalties, to escape local optima. Meta-heuristic methods include
simulated annealing [68], Tabu search [45], and artificial intelligence tech-
niques.

Hyper-heuristics. Hyper-heuristics have been defined as heuristics wh-
ich choose or generate heuristics [29, 21]. More formally, hyper-heuristics
are search methods for choosing or generating heuristics (or components
of heuristics) to solve a range of optimisation problems [21]. Chakhlevitch
and Cowling [23] define a hyper-heuristic as being a higher level heuristic
which manages a set of lower level heuristics, searches for a good met-
hod to solve the problem rather than a direct solution, and uses limited
problem-specific information.
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The manual development of heuristics is time consuming, requires do-
main knowledge, and generally leads to a heuristic for a specific problem
instance. Although heuristic methods have been successfully applied to
real-world problems, they often do not generalise well to new or similar
problems to what they were created for [20]. Hyper-heuristics have arisen
from the desire to counter these issues of manual development and au-
tomate the process of designing and adapting heuristics for complicated
computational search problems [18] with greater generality [21]. The first
uses of what would now be classified as hyper-heuristic approaches were
in the early 1960s [18]; interestingly these approaches were applied to job
shop scheduling. Hyper-heuristic approaches can be separated into two
categories:

Heuristic selection aims to develop hyper-heuristic frameworks to adap-
tively select suitable existing heuristics based on the current state of
the problem which is being solved and the history of the problem
solving process [20].

Heuristic generation builds new heuristics by combining various small
components such as common statistics or operators used in existing
heuristics. Heuristic generation makes it feasible to design heuris-
tics for individual problem instances, which could even outperform
manually designed heuristics, due to the process being less time and
resource intensive [20].

Many meta-heuristics have been used as hyper-heuristic frameworks, in-
cluding ant colony optimisation [19], genetic algorithms [29] and genetic
programming [21]. The study of meta-heuristics, machine learning and
operations research converge with the study of hyper-heuristics, combin-
ing new methods with existing problem domain knowledge [20]. There is
great potential for these methods with greater generalisation to find im-
proved solutions to difficult real-world combinatorial optimisation prob-
lems [20].
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2.1.3 Evolutionary Computation

Evolutionary computation (EC) is the field of study within computational
intelligence which takes its inspiration from biological evolution. EC met-
hods simulate evolution, most often on a computer [3]. Methods are popu-
lation-based, and feature four processes which form evolution in this pop-
ulation: reproduction, random variation, competition and selection [3].
The evolutionary process is an optimisation process. A population of hun-
dreds or thousands of individuals is evolving, rather than a single indi-
vidual [70]. There are two main areas of evolutionary computation: evo-
lutionary algorithms and swarm intelligence.

Evolutionary Algorithms

Evolutionary algorithms (EAs) are a subset of evolutionary computation
based on Darwinian evolutionary theory. EA methods take a population
of individuals which is evolved through selection, mutation, reproduction
and crossover [3]. Individuals which have greater fitness are more likely
to survive and reproduce, hence contributing to the future population [3].
Four popular EAs, genetic algorithms, genetic programming, evolution-
ary strategies and evolutionary programming are briefly introduced here,
in the form they originated in.

Genetic Algorithms (GAs) [51]. GAs were developed in the 1970s, and
were the first form of EA to be widely accepted [136]. In GAs each in-
dividual, often known as a chromosome, is typically represented as
a fixed length array. The array can be integers, real numbers, or bits.
Selection in GAs, is based on genotype. The genotype is the “un-
derlying genetic coding” [37]; in a GA this genetic coding is found
in the chromosomes. In most forms of GAs recombination is more
important than mutation [136].

Genetic Programming (GP) [70]. GP extends genetic algorithms through
representing individuals as variable length executable computer pr-



28 CHAPTER 2. LITERATURE REVIEW

ograms. The most common program structure is a tree-based repre-
sentation. The reproduction operators used in GP are elitism, cross-
over and mutation. GP is a “search-based automatic programming”
technique [114]. GP is explained in detail in Section 2.3.

Evolutionary Strategies (ES) [8]. ES individuals have an object parame-
ter set and objective function value which represents its fitness, and
also a set of evolvable strategy parameters. The strategy parameters
are specific to ESs, are subject to mutation (this is known as self-
adaptation), and control the mutation operator which is applied to
the individual’s object parameters. Often ESs use only mutation (i.e.
there is no recombination). Selection in ES is a deterministic process
which ensures that only the best individuals (based on fitness values)
are selected for the next generation.

Evolutionary Programming (EP) [39]. EP evolves finite state machines (F-
SMs). FSMs take a set of input symbols and predict output symbols
for the input symbols. Individual fitness is based on how well it is
able to predict the next symbol in a known sequence [38], given all
symbols observed thus far. Selection in EP is based on phenotypic
behaviour (“the manner of response contained in the behaviour, phys-
iology, and morphology of the organism” [37]) rather than on the
genotype [38].

De Jong’s “unified” model of EC [30] argues that these are all based on a
“Darwinian notion of an evolutionary system”, each having a population
of individuals, measure of fitness, birth and death cycle based on fitness,
and the idea of inheritance. Under this model, the various forms of EC are
differentiated by their representations, and choices based on the represen-
tation to suit the problem being addressed.
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Swarm Intelligence

Swarm intelligence (SI) is an area of evolutionary computation which uses
the social behaviour of swarming or flocking creatures. There are five basic
principles of swarm intelligence: proximity, quality, diverse response, sta-
bility and adaptability. A swarm is a “population of interacting elements
that is able to optimise some global objective through collaborative search
of a space” [65]. The two most popular forms of SI are particle swarm
optimisation and ant colony optimisation.

Particle Swarm Optimisation (PSO) [64]. PSO is a simple algorithm ba-
sed on simulating the social behaviour of a flock of birds or a school
of fish. Each particle (solution) in the swarm knows its position in
n dimensional solution space, and the fitness of the position. Parti-
cles remember the best position they have found, and know the best
position that has been found globally by the swarm. The positions
of particles are updated by moving towards the best positions. This
aims to direct the swarm towards the best solution in the solution
space.

Ant Colony Optimisation (ACO) [34]. ACO is inspired by the foraging
behaviour of ants, who seek the shortest path between their colonies
and a food source. ACO uses a population of ants (solutions) who
store information on searched paths for food as pheromone trails.
The pheromone on better solutions becomes stronger, and more at-
tractive to ants. The best solution is thus the path with the most
pheromone.

2.2 Job Shop Scheduling

Flow shop scheduling requires the construction of a schedule to processN
jobs through a series of M machines. Each job is processed by every ma-
chine and all jobs follow the same route through the machines [110]. Job
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shop scheduling is the task of creating a production schedule for a set of
N jobs to be processed through the M machines in the shop, so as to op-
timise a measure of delivery speed or customer satisfaction. In a job shop
the number of machines a job visits can vary, and each job has its own
predetermined route [110]. Shop scheduling environments are able to be
succinctly described using α |β |γ notation [110]. The machine environ-
ment is described in the α field: Jm denotes a job shop environment with
m machines and Fm denotes a flow shop with m machines. The β field
provides characteristics of the processing and any constraints. This field
can be left blank, or even contain multiple entries. If jobs have a release
date which they cannot begin processing before, this field contains the en-
try rj representing “release dates”. The final field, γ, denotes the objective
function which is to be optimised [110]. In a job shop, each job is made up
of a sequence of operations, where each operation must be processed on a
particular machine for a specified processing time, in a predefined order
[12].

Job shop scheduling problems can be categorised as either static or dy-
namic [42], depending on the availability of information about imminent
job arrivals. In static job shop scheduling, all job properties are known at
the beginning of the scheduling period. In dynamic job shop scheduling,
jobs arrive at the shop according to a stochastic process. Prior to a job’s
arrival in the shop there is no knowledge of the job. Dynamic scheduling
is of more commercial interest than static scheduling. It is rare to know all
details of a scheduling problem at the start, including when the scheduling
task will end [48]. Developing schedules for dynamic job shop scheduling
problems is difficult, as due to the dynamic nature of the task, reschedul-
ing must be done whenever the shop situation changes significantly, e.g.,
due to the arrival of new jobs into the shop system [48]. The benefit of gen-
erating dispatching rules rather than schedules is that they cope well with
dynamic problems, as scheduling decisions are made only at the points
when machines become available, and hence consider all jobs currently
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waiting at that machine, whether they have been waiting since the be-
ginning or only just joined the queue [16]. Generating dispatching rules
also gives the potential for transferability and reusability [16], as dispatch-
ing rules which are discovered can be used in other job shop scheduling
problems, for example, into shops of larger size, with different processing
distributions and behaviours, or with different objective functions.

2.2.1 The Job Shop Model

Once a job arrives into the shop, it joins the queue at the machine which is
required to process its first operation. Upon completion of an operation it
moves to the next machine required, or exits the shop if its final operation
has been completed.

Parameters. The following job parameters are fixed at the point in time
of a job’s arrival into the shop system.

• Nj : The number of operations of job j.

• Oj = {σj,1, σj,2 · · · , σj,Nj
}: Set of operations of job j.

• p(σj,i): Processing time of operation i of job j.

• m(σj,i): Machine required to process operation i of job j.

• wj : The importance weighting of job j.

• dj : The assigned due date of job j.

• rj : The release date of job j into the shop.

Variables. Further job properties change dependent on the scheduling
decisions made as the job moves through the shop.
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• r(σ): The ready time of operation σ. This is rj for the job’s first op-
eration, and the completion time of the previous operation for all
subsequent operations.

• Rm: The time machine m becomes idle.

• Cj : The completion time of job j.

• fj : The flowtime of job j, where fj = Cj − rj .

• Tj : The tardiness of job j, where Tj = max{0, Cj − dj}.

Constraints. There are many constraints which schedule construction
and job dispatch must take into account [110].

• Operation σj,i must be completed before operation σj,i+1 can begin
processing.

• No job can be in process on more than one machine at any given
time.

• Only one job can be processed by a machine at any given time.

• No job can begin processing before its arrival into the shop.

• Job routing is fixed with no alternative routing allowed.

Objective Functions. The following performance measures are comm-
only used in job shop scheduling. In each case the notation for the γ field
and the defining formula (to be minimised) are given [110].

• Makespan (maximum completion time): Cmax = maxj Cj .

• Maximum lateness: Lmax = maxj(Cj − dj).

• Total weighted completion time:
∑

j wjCj .

• Total weighted tardiness (TWT):
∑

j wjTj .
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• Mean tardiness: 1
N

∑
j Tj , where N is the number of jobs.

• Weighted number of tardy jobs:
∑

j wjUj , where

Uj =

{
1 if Tj > 0

0 if Tj = 0

These objective functions have been used frequently in job shop schedu-
ling research.

Simplifications to the Job Shop Model. Common assumptions made in
job shop scheduling models used in research investigating dispatching ru-
les include:

• Pre-emption, when an operation currently being processed is able to
be interrupted and removed from the machine before the operation
is completed [28], is not allowed.

• Re-circulation, when a job is allowed to visit a machine more than
once [110], is not allowed.

• There are no machine breakdowns, i.e., all machines are continu-
ously available to process jobs.

• Sequence-dependent set-up times, the time taken to set up the ma-
chine for job k following job j, are assumed to be zero, or included
in the processing time.

Types of Schedules. Given any schedule for processing jobs, idle time
can be added in infinitely many ways. Therefore there are infinitely many
possible schedules for any job shop scheduling problem [28]. A schedule
is called:
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Active if it is not pre-emptive and it is not possible to make another
schedule where at least one operation finishes earlier than the origi-
nal schedule, and no operation finishes later than the original sched-
ule [110]. That is, it is not possible to modify the schedule so an
operation finishes earlier without making another operation finish
later.

Semi-active if it is not pre-emptive and it is not possible to make an op-
eration complete processing earlier without changing the processing
order of operations on any of the machines [110].

Non-delay if a machine cannot be idle when there is an operation waiting
to be processed [110]. That is, a machine is only permitted to be
idle when there are no queued operations waiting in the machine’s
queue.

2.2.2 Scheduling Algorithms for Static JSS

In this section scheduling methods are presented based on the environ-
ment they are used in; first static and then dynamic. There are a number
of very different techniques for scheduling in job shops, including disjunc-
tive programming, shifting bottleneck, constraint programming and local
search techniques [110].

An optimal schedule for a static JSS problem instance can be found by
implicit enumeration (e.g. branch-and-bound), however with a large num-
ber of jobs this will be impractical [110]. Early contributions to JSS prob-
lems were in the form of combinatorial analysis to develop algorithms.
There are algorithms for finding optimal solutions to special cases of static
JSS problems, for example Jackson’s algorithm [55] for the two-machine
job shop with makespan objective function (J2 | |Cmax).

Jackson’s Algorithm. The most basic environment of all job shop sche-
duling environments is the static two-machine job shop. In the case where
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Algorithm 1 Johnson’s algorithm for two-machine flowshop (X → Y )
[60].

1: while any jobs are not yet scheduled do
2: Find the smallest processing time p(oj,n) of unscheduled jobs
3: if m(oj,n) = X then
4: Schedule job j immediately following jobs already scheduled at the

front of the schedule
5: else
6: Schedule job j immediately preceding jobs already scheduled at

the back of the schedule
7: end if
8: end while

the objective of interest is to minimise the makespan (J2 | |Cmax) the op-
timal solution can be found using Jackson’s algorithm (Algorithm 2) [55].
Jackson’s algorithm uses Johnson’s algorithm (Algorithm 1) [60] as a sub-
routine. Johnson’s algorithm is used to solve the static two-machine flow
shop problem with makespan objective function (F2 | |Cmax). In a flow
shop every job follows the same route through the machines [110].

Let the two machines of the job shop be called A and B. For Jackson’s
algorithm, jobs are split into four categories:

1. A-only jobs that visit only machine A;

2. B-only jobs that visit only machine B;

3. A→ B jobs that start at machine A and move to machine B; and

4. B→ A jobs that start at machine B and move to machine A.

Jobs that visit only one machine are ordered arbitrarily, and Johnson’s al-
gorithm (Algorithm 1) is used to order the A→ B and to order the B → A

jobs.
For example, consider the J2 | |Cmax problem instance with 20 jobs pre-

sented in Table 2.1, where aj is the processing time required on machine
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Algorithm 2 Jackson’s algorithm for two-machine jobshop [55].

1: Put the jobs with an operation on MachineA only in an arbitrary order:
SA.

2: Put the jobs with an operation on MachineB only in an arbitrary order:
SB.

3: Use Johnson’s algorithm to order the jobs to be processed A→B: SA→B.
4: Use Johnson’s algorithm to order the jobs to be processed B→A: SB→A.
5: Order jobs on Machine A as follows: (SA→B, SA, SB→A).
6: Order jobs on Machine B as follows: (SB→A, SB, SA→B).

A and bj is the processing time required on machine B. For jobs with two
operations, the order in which machines must be visited is denoted by •
in the table.

Placing A-only jobs in arbitrary order we have SA = (5, 6, 15, 17), and
placing machine B-only jobs in arbitrary order we have SB = (2, 12, 20).
Applying Johnson’s algorithm to the A → B jobs gives processing or-
der SA→B = (1, 11, 16, 10, 7, 19, 9) and applying Johnson’s algorithm to the
B → A jobs finds the sequence SB→A = (8, 4, 13, 18, 3, 14). Hence the opti-
mal sequences for processing jobs at each machine are:

(SA→B, SA, SB→A) = (1, 11, 16, 10, 7, 19, 9, 5, 6, 15, 17, 8, 4, 13, 18, 3, 14)

for machine A and

(SB→A, SB, SA→B) = (8, 4, 13, 18, 3, 14, 2, 12, 20, 1, 11, 16, 10, 7, 19, 9)

for machine B. This is illustrated in the Gantt chart in Figure 2.1.

Branch-and-Bound. Branch-and-bound [72] is an enumerative search al-
gorithm which is guaranteed to find the optimal solution to a combinato-
rial optimisation problem. Branch-and-bound uses a branching rule wh-
ich partitions the set of solutions into subsets, and a lower bounding rule
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Table 2.1: Processing times and paths of 20 jobs for J2 | |Cmax.

Job 1 2 3 4 5 6 7 8 9 10
aj 1 3 7 3 3 5 6 4 7
bj 10 5 7 3 4 2 3 6
A→ B • • • •
B → A • • •

Job 11 12 13 14 15 16 17 18 19 20
aj 3 8 1 5 5 2 7 6
bj 5 2 7 3 6 8 3 4
A→ B • • •
B → A • • •

0 10 20 30 40 50 60 70

B 

A 1 11 16 10 7 19 9 5 6 15 17 8 4 13 18 3 14

8 4 13 18 3 14 2 12 20 1 11 16 10 7 19 9

Figure 2.1: Gantt Chart showing optimal processing schedules at machines
A and B for the example static two-machine job shop problem instance in
Table 2.1.



38 CHAPTER 2. LITERATURE REVIEW

which computes a lower bound on the cost of any solution in the solu-
tion subset being considered [116]. Branch-and-bound was first applied to
scheduling problems in the 1960s [116].

Lagrangian Relaxation. Lagrangian relaxation [49] is a strategy for find-
ing an approximate solution to difficult optimisation problems by solving
a related optimisation problem. Lagrangian relaxation removes specific
integer-valued constraints and instead penalises violation of the constraint
in the objective function. Like branch-and-bound, Lagrangian relaxation is
computationally expensive for large scheduling problems [62]. Lagrang-
ian relaxation is often combined with branch-and-bound.

Meta-heuristic Scheduling Methods. Local search based methods such
as simulated annealing [128] and Tabu search [104] are improvement heur-
istics. They begin with a complete schedule and try to improve the sched-
ule through manipulation. These methods require a schedule representa-
tion, neighbourhood design, neighbourhood search operator and accept-
ance-rejection criterion. The neighbourhood structure required for a com-
plex scheduling environment, where, e.g., preemption is allowable, often
needs to be more complex. The simulated annealing approach proposed
by Laarhoven et al. [128] improved the makespan on static JSS problems
compared to benchmark methods. However, the computational cost was
very large. The Tabu search approach proposed by Nowicki and Smut-
nicki [104] was used only on very small static JSS problem instances.

Local search based approaches are able to be used in static JSS envi-
ronments. However, in dynamic environments the available jobs are con-
stantly changing with new (and unknown) arrivals from outside the shop
system. This means that the local search solution will quickly become
out of date. Local search methods are computationally intensive and to
be rescheduling repeatedly would have very large computational conse-
quences.

Artificial intelligence and evolutionary computation methods have been
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used extensively for scheduling problems. Gene expression programming
[36] has been used for scheduling, including the single machine problem
[103], dynamic job shop scheduling [102] and flexible dynamic job shop
scheduling [101]. Eguchi et al. [35] trained a neural network as a priority
rule for dynamic job shop scheduling. The neural network outperformed
dispatching rules from the literature on scheduling instances with a vari-
ety of utilisation levels and due date tightness parameters. Weckman et al.
[134] also investigated training a multi-layer perceptron neural network as
a job shop scheduler. A GA was used to generate multiple optimal sched-
ules to small problem instances which the neural network was trained on.
The trained neural network performed comparably with a GA scheduler
on test instances with six machines and six jobs. The neural network also
performed “satisfactorily” on larger test instances up to 20 machines and
20 jobs.

GAs have been one of the most popular meta-heuristic methods for
scheduling, with a variety of hybridisation approaches [24]. Gao et al. [40]
proposed a hybrid GA and variable neighbourhood search method for the
multiobjective flexible job shop scheduling problem. The flexible job shop
has a number of work centres, each of which has a set of identical ma-
chines. A job has a specified route through the work centres, but any ma-
chine within the work centre can be used [110]. The GA chromosome has
two parts, a machine assignment vector and an operation sequence vector.
Variable neighbourhood search is used to improve the convergence speed
of the GA. Variable neighbourhood search [47] is a meta-heuristic which
makes systematic changes to a neighbourhood through a descent phase
and perturbation phase. The results showed that the proposed method
equaled or outperformed existing methods on 157 out of 181 benchmark
problems. Zhou et al. [145] also create a hybrid GA with neighbourhood
search. Existing scheduling rules which are known to be effective for min-
imising the makespan are used for scheduling successive operations after
the GA has scheduled the initial operation of each machine. Wang and
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Zheng [132] combined GAs with simulated annealing in a hybrid opti-
misation framework for job shop scheduling problems. This framework
keeps the generality of GAs and simulated annealing and is easily imple-
mented.

PSO has also been used for job shop scheduling. Sha and Hsu [122]
developed a hybridisation of PSO and Tabu search for job shop schedu-
ling. Two particle position representations were compared: priority-based
representation and the new preference list-based representation. The re-
sults showed that hybrid PSO attained better solutions than other meth-
ods. Zhang et al. [142] also developed a hybridisation of PSO and Tabu
search. In this work the scheduling environment was the multiobjective
flexible job shop. The results showed the hybrid approach to be effective
and efficient on tested instances, the largest of which had 15 jobs and 10
machines. Xia and Wu [138] developed a hybridisation of PSO and simu-
lated annealing, also applied to the multiobjective flexible job shop. PSO
is used to assign operations to machines, and simulated annealing sched-
ules operations on each machine in the shop. The conflicting objectives
were makespan, total workload and critical machine workload. The re-
sults showed this approach to be effective, providing good solutions in
comparison to three other algorithms from the literature on problems up
to 20 machines and 20 jobs.

2.2.3 Scheduling Methods in Dynamic Environments

Dispatching Rules. A dispatching rule (DR) is a scheduling heuristic, so
it is not guaranteed to find an optimal solution, but should be capable of
finding a reasonable solution in a short period of time [110]. Job shop sche-
duling has been studied extensively for more than 50 years [116, 48], and
DRs have been studied for several decades [110]. This has led to the ex-
istence of a large number of dispatching rules for dynamic job shop sche-
duling. DRs are able to cope with dynamic JSS as scheduling decisions are
made the instant that a machine becomes available.
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A dispatching rule is used to select which of the jobs currently waiting
in the queue at a particular machine will be processed next using various
properties of the job, machine and shop. Whenever a machine becomes
available, and there are jobs waiting in its job queue, a dispatching rule is
used to select the job that will be processed next on that machine. The dis-
patching rule assigns a priority value to each queued job, and the job with
the highest priority value is selected. When a job’s operation σ finishes
its specified processing time p(σ) on machine m(σ), the job moves to the
next machine on its route, or if the job has now completed all of its oper-
ations then the job exits the shop (at completion time Cj) and is delivered
to the customer. Dispatching rules are able to provide good solutions in
real-time [62].

Pinedo [110] classifies DRs as either static or dynamic, and as either
local or global. Static rules are not time dependent whereas dynamic rules
are time dependent. Hence, when a dynamic rule is used the priorities
assigned to a queue of waiting jobs may change through time, whereas
when a static rule is used the priorities will remain constant. Local rules
use information from only the queued jobs at the machine. Global rules
can use the same information as local rules, as well as information from
other machines.

Composite DRs combine a number of basic rules. Each basic rule con-
tributes to the overall ranking given to a queued job by a scale factor,
which can be fixed or variable [110]. Dispatching rules are constructive
heuristics, as they gradually construct a schedule, one job at a time.

There are many dispatching rules in the literature. No dispatching rule
is known to outperform others across all objective functions and shop en-
vironments. Some of the simplest and most commonly used rules, which
will be used as benchmarks throughout this thesis, are listed below.

First-come-first-served (FCFS) also called first-in-first-out (FIFO) is the tr-
aditional queuing model, the job with the smallest r(σj,i) is sched-
uled next.
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Shortest processing time (SPT) schedules the job with the shortest pro-
cessing time, p(σj,i), next.

Weighted shortest processing time (WSPT) is the weighted counterpart
of SPT, and orders jobs by increasing weighted processing time at the
machine [42], i.e., the job that has the maximum weighted shortest
processing time, wj/p(σj,i), is processed next.

Earliest due date (EDD) schedules the job with the smallest dj next.

Minimum slack (MS) The minimum slack of job j is defined by

MSj = dj −
Nj∑
l=h

p(σj,l)− t

where t is the ready time Rm of the machine, i.e., the time that the
scheduling decision must be made and the job with the smallestMSj

is dispatched next.

Slack per remaining processing time (S/RPT) assigns job j the priority

dj − t∑Nj

h=i p(σj,h)
(2.1)

and schedules the job with the smallest S/RPT next.

SPT and WSPT are components of the Apparent Tardiness Cost (ATC)
[130] and the weighted version of COVERT (Cost over Time) [130] dis-
patching rules, which have good performance for dynamic job shops with
the TWT objective.

Apparent tardiness cost (ATC) assigns job j the priority

wj

p(σj,i)
exp

(
−

[
dj − t− p(σj,i)−

∑Nj

q=i+1(Wji + p(σj,q))

kpavg

]+)
(2.2)

where t is the current time, Wji is the waiting time at operation i wh-
ich is estimated by Wji = bp(σji) [28, 130], and pavg is the average
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processing time of the waiting jobs at the machine. Leadtime estima-
tion parameter b is fixed at 2.0 and lookahead parameter k is set to
3.0 as in [130]. The [A]+ notation takes the maximum of A and 0.

WCOVERT assigns priority values as the expected tardiness cost per unit
of imminent processing time:

wj

p(σji)

[
1−

(dj − t−
∑Nj

q=i p(σjq))
+

k
∑Nj

q=1Wji

]+
(2.3)

where the lookahead parameter k = 2. WCOVERT assigns priority
0 if the slack “exceeds some generous ‘worst case’ estimate of the
waiting time” [130].

For an extensive summary and comparison of dispatching rules see [105,
121, 59, 117, 53, 50].

2.3 Genetic Programming

Genetic programming (GP) [70] is an evolutionary computation technique
which “aspires to induce a population of computer programs that improve
automatically as they experience the data on which they are trained” [7]. A
randomly generated population of computer programs is evolved through
the application of genetic operators, so that subsequent generations are
hopefully fitter (better) than their predecessors.

The optimal length of a solution or function is not always known. One
benefit of GP is the variable length of individual programs in the GP pop-
ulation [21]. This allows a far greater number of potential programs to be
discovered than fixed length representations such as genetic algorithms.

The most popular representation of GP is tree-based GP [70]. Other
representations include linear GP [14], Cartesian GP [82], graph-based GP
(e.g. parallel distributed GP [113]) and grammar-based GP [80].

The remainder of this section will describe the key elements of tree-
based GP, as this is the form used throughout this thesis. We also introduce
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grammar-based GP and multiobjective GP as they are incorporated in this
thesis.

2.3.1 Representation

In genetic programming the structures undergoing adaptation through the
process of evolution form a population that are most frequently repre-
sented as syntax trees. They are hierarchical structures, unlike the one-
dimensional fixed length linear strings used in genetic algorithms [70].

The search space of genetic programming is the space of all possible
rooted trees with ordered branches, where internal nodes are labelled with
functions from the function set, and external (leaf) nodes are labelled with
terminals from the terminal set. An example of a GP individual is shown
in Figure 2.2: this tree represents the expression ((2 ∗ (x + 1)) − y). Here
+, − and ∗ are all elements of the function set. Functions take a speci-
fied number of arguments (with minimum of one argument) and cannot
be in leaf nodes. Here 1, 2, x and y are all elements of the terminal set,
and can only be located as leaf nodes. This search space is equivalent to
the search space of all possible LISP S-expressions created by recursively
selecting compositions of the available functions and terminals. The LISP
S-expression [79] for the GP tree in Figure 2.2 is (− (∗ 2 (+ x 1)) y).

The available functions and terminals are determined based on the
problem domain. The GP function and terminal set should satisfy clo-
sure and sufficiency. The closure property requires every function be able
to accept any value or data type that can be returned by any function in
the function set or terminal in the terminal set [70]. The sufficiency prop-
erty requires that some combination of functions in the function set and
terminals in the terminal set is capable of giving a solution to the problem.
[70].
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* y

2 +

x 1

Figure 2.2: GP syntax tree of ((2 ∗ (x+ 1))− y).

2.3.2 Population Initialisation

The initial population of genetic programs is generated randomly. The
most commonly used approach to generating tree is called the ramped-half-
and-half method, combining two of the simplest tree generation approac-
hes grow and full with equal probability. The full method generates trees
in which all leaf nodes have the same depth; nodes are selected from the
function set until the maximum depth is reached, and after that nodes are
chosen from the terminal set to complete the tree. The grow method gen-
erates trees with more variety in shape and size; nodes are selected from
the combined set of functions and terminals until the maximum depth is
reached, when as for the full method only terminals may be chosen.

The ramped-half-and-half method [70] generates 50% of trees using the
full method and 50% of trees using the grow method. Both methods are
used with a range of maximum depth limits from two to the maximum
depth. This is so that the initial population consists of trees with a variety
of shapes and sizes [114]. Figure 2.3 shows three possible tree shapes gen-
erated under ramped-half-and-half with a maximum depth of four; Figure
2.3(a) is generated using grow, and Figures 2.3(b) and (c) are both gener-
ated using the full method.



46 CHAPTER 2. LITERATURE REVIEW

(a) Grow. (b) Full. (c) Full.

Figure 2.3: GP tree initialisation methods, under the ramped-half-and-half
method trees of these shapes are able to be generated for any maximum
depth greater than three.

2.3.3 Evaluation

Fitness is the “driving force of Darwinian natural selection” [70], and hence
of genetic programming. The fitness of an individual in a population in na-
ture is the probability that it survives to reproductive age and reproduces
[70], therefore contributing to the future generation. In genetic program-
ming the fitness is a measure used in evolution of “how well a program
has learnt to predict the output(s) from the input(s) - that is, the features of
the learning domain” [7]. Fitness is measured by a fitness function, which
can be either implicit or explicit, and this is used in determining which in-
dividuals are selected for the evolutionary operators. The fitness function
used will vary depending on the problem domain.

Each GP run will run until a termination criteria is met. This is nor-
mally either a predefined number of generations or level of fitness. Once
this criteria is met, the best-of-run individual is tested on unseen instances.
In multiobjective problems the front of non-dominated individuals (see
Section 2.3.7, page 51) is tested on unseen instances. The result of the GP
run is this individual or set of individuals, and the results that they are
able to attain.
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Figure 2.4: GP subtree mutation.

2.3.4 Selection

As in Darwinian evolutionary theory, where individuals with greater fit-
ness are more likely to contribute to the gene pool in future generations,
genetic programming individuals are selected probabilistically for genetic
operators based on their fitness. Tournament selection and fitness pro-
portionate selection are the most commonly used selection methods [114].
Tournament selection is based on competition within a population subset
[7]. With tournament size n, n individuals are randomly chosen from the
population. The n individuals ‘compete’ against each other, and the in-
dividual with the best fitness is chosen to be the parent [114]. Mutation
requires a single parent individual, so one tournament is used. Crossover
requires two parent individuals so two tournaments are used, one to find
each of the parents. In fitness proportionate selection, an individual i has
probability proportional to its fitness fi of contributing to the next genera-
tion. This probability is given by

pi =
fi∑
j fj

. (2.4)

2.3.5 Genetic Operators

There are four main genetic operators used in genetic programming: mu-
tation, crossover, reproduction and elitism. Variation is important in bi-
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ological populations, since if all individuals are genetically identical then
they are all predisposed to the same weaknesses, and the whole popula-
tion can be at risk. In genetic programming, variation is important to en-
sure that throughout evolution child populations are not identical to their
parents. There are two main genetic operators causing variation in nature
which have been taken into genetic programming [7]: mutation of genes
within an individual, and the recombination of genes through sexual re-
production. The three operators, described below, are used with specified
probabilities to create the child population from the current parent gener-
ation.

Mutation occurs in nature when errors are made copying genes [73].
In genetic programming the most common form of mutation is subtree
mutation [114], in which a mutation point is randomly chosen, and the
subtree routed at that point is replaced with a randomly generated subtree
to create the child individual. Figure 2.4 gives an example of mutation: the
parent individual, with subtree routed at the mutation point highlighted
by the shaded grey box, is shown in Figure 2.4(a), and in Figure 2.4(b) the
child individual is shown, with the mutated subtree shaded in grey.

Crossover is the process in which genes of two parent individuals are
selected, manipulated and recombined to produce a new set of genes for
the child individual [73]. Within genetic programming the most comm-
only used crossover operation is subtree crossover [114]. This is illus-
trated in Figure 2.5. Subtree crossover randomly chooses a crossover point
(node) in each of two parent individuals. Figures 2.5(a) and 2.5(b) show
the subtrees routed at the crossover point highlighted by a shaded grey
box. New child individuals are produced by swapping the subtree routed
at the selected node of Parent 1 with the subtree routed at the selected
node of Parent 2. This gives the two children shown in Figures 2.5(c) and
2.5(d).

Reproduction is when an individual is copied into the next generation.
As for mutation and crossover, the selection mechanism is used to select
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Figure 2.5: GP subtree crossover.

an individual from the population.

Elitism, like reproduction, copies individuals from the parent popula-
tion into the population of the next generation. However, elitism selects
only the fittest individuals of the parent population up to the prescribed
proportion. This ensures that the fittest individuals will not be lost to the
evolution process.

2.3.6 Basic GP Algorithm

A basic genetic programming algorithm with minimisation objective func-
tion is given in Algorithm 3. This algorithm will return the best perform-
ing individual program found through the evolutionary process. This al-
gorithm uses the stages of initialisation, evaluation, selection and genetic
operations discussed above. First, the initial population is randomly gen-
erated, up to the size specified,N . The evolutionary process then proceeds
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Algorithm 3 Basic Genetic Programming Algorithm [114].

Initialisation. Randomly generate an initial population P of N indi-
viduals using the available functions and terminals.

1: P ← {p1, . . . , pN}
2: Set p∗ ← null

3: Set fitness(p∗)← +∞
4: generation← 0

5: while generations < maxGenerations do
Evaluation. Run and evaluate the fitness value of all individuals.

6: for all individuals pi ∈ P do
7: if fitness(pi) < fitness(p∗) then
8: p∗ ← pi

9: fitness(p∗)← fitness(pi)

10: end if
11: end for

Generation of next generation’s population P+.
Selection. Select one individual (mutation) or two individuals (cross-
over) from the population with fitness dependent probability for ge-
netic operators.
Genetic Operations. Apply genetic operators (with specified probabil-
ities), creating new individuals.

12: P+ ← ∅
13: while |P+| < N do
14: obtain p+ by applying genetic operators to individuals selected

from P .
15: P+ ← P+ ∪ p+

16: end while
17: P ← P+

18: generations← generations+ 1

19: end while
20: Return the best individual found, p∗.
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until the stopping criterion, maximum number of generations, is met. At
each generation, every individual pi in the population P is evaluated ac-
cording to the defined fitness function. If the individual has better fitness
than the currently recorded best, the best is updated. Once fitness is deter-
mined for all individuals, the next generation is developed through the ap-
plication of mutation, crossover and elitism to individuals selected using
the selection mechanism. The algorithm ends when the maximum number
of generations is attained, and the best individual found is returned.

2.3.7 Multiobjective Genetic Programming

Multiobjective GP (MOGP) has been actively studied over the past 18
years [114]. Multiobjective optimisation deals with problems which have
multiple conflicting objectives; many real-world problems fall into this cat-
egory. The aim of multiobjective optimisation is to find solutions which
are acceptable for all of the conflicting objectives at the same time [114].

The first approach to multiobjective optimisation combines multiple
objectives into a single fitness function. One commonly used form of this
aggregate scalar fitness function [114] is a weighted linear combination
f =

∑
iwifi, where wi and fi are the weight and measured fitness of ob-

jective i respectively. This approach is easy to implement within standard
GP. The disadvantage of this approach is that the relative importance of
each objective must be specified a priori. One GP individual is the result of
each GP replication.

The second approach keeps the multiple objectives separate, using the
idea of Pareto dominance. Pareto dominance seeks the set of individuals
which are not dominated by any other individuals. This is known as the
non-dominated front. A GP individual is non-dominated if it weakly domi-
nates all other genetic programs in the current population. An individual,
x, weakly dominates another genetic program, y, if for all i, xi ≤ yi and
there exists a j such that xj < yj for i, j in objectives (all objectives to
be minimised) [76]. One individual dominates another if it is better on at
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least one objective, and not worse on the remaining objectives. The result
of a single replication of MOGP is a Pareto front of non-dominated GP
individuals. Two commonly used MOGP algorithms will be used in this
thesis.

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [32] is a para-
meterless elitist strategy. The parent and offspring populations are
combined before non-dominated sorting is performed, followed by
crowding distance assignment. Non-dominated sorting requires the
dominance count, np (how many solutions dominate the solution
p), and the set of solutions which are dominated by the solution p.
Hence, a non-dominated solution with have np = 0. The dominance
count of each individual which is in the set of solutions dominated
by p is reduced by one. If this reduces the dominance count of a so-
lution to zero then this is placed in the next non-dominated front.
This process repeats until all solutions have been placed in a front.
Crowding distance is calculated by calculating the average distance
of the two points either side of the solution in its front. The best
solutions (by fitness and spread) are selected (using tournament se-
lection) for the genetic operators to create the next generation’s pop-
ulation.

Strength Pareto Evolutionary Algorithm 2 (SPEA2) [146] is also an elit-
ist method, and has a separate fixed size archive population. The
archive population is updated at each generation with non-domin-
ated individuals. A truncation method is used when the non-domin-
ated front exceeds the fixed size. The fitness of individuals consists
of a strength value, which is the number of solutions in the archive
and current population dominated by the individual, and density in-
formation, which uses the inverse of the distance to the k-th nearest
neighbour.

There are other MO tools in the literature, such as MOEA/D [144], ε-
MOEA [31], and NSGA-III [84], which are not to be used in this thesis.
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2.3.8 Semantic Constraint in GP

Tree-based GP allows unrestricted composition of available functions and
terminals, subject only to the tree-depth restriction, which is sufficient for
many problem domains, but there is also a history of constraining the sea-
rch space of GP. Koza [70] introduced the use of “constrained syntactic
structures” where programs were restricted by special “problem-specific
syntactic rules of construction”. The constrained syntactic structures were
used, e.g., for symbolic multiple regression where programs were restr-
icted to having a LIST2 node at the top of the GP tree, to return a fixed
number of component values instead of just a single value. The imple-
mentation of this required the initial population of programs to have the
required syntactic structure, and, further, all of the genetic operators used
in evolution were constrained so that the constrained syntactic structure
of the program was preserved. The fitness evaluation method may also
need to be modified to take into account the structure of the programs.

Keijzer and Babovic [63] developed a system called dimensionally aw-
are GP which uses the domain knowledge that is contained in units of
measurement, in order to enhance the search efficiency and the interpre-
tability of resulting output. The introduction of dimensionality to GP was
expected to improve search efficiency. This is implemented by making GP
nodes maintain knowledge of the units of the measurement it uses. The
variable and constant terminals have exponents in their units of measure-
ment. In their experiments, dimensions of length, time and mass were
used, with GP tasked with finding the formula of scientific laws from wh-
ich data was generated. The results show that this form of GP which adds
a semantic component is useful, producing output formulations that are
“closer-to-correct and easier-to-interpret”.

Another way of limiting the allowable expressions within an evolved
dispatching rule is to use grammar-based GP [80]. A grammar is used to
describe the restrictions on expressions that can be used. A context-free
grammar is given by (S,N,Σ, P ) notation, where S is the start symbol,
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N is a set of non-terminals, Σ is the set of terminals, and P is the set of
production rules of the grammar [135]. Grammar-based GP first appeared
in the mid-1990s [80, 135]. A major benefit of using a grammar to define
program structure in GP is that it is a relatively easy means of restricting
the search space and encoding knowledge of the problem [80]. We can use
the grammar to generate a population of programs defined by a language
and ensure that the programs in the population continue to follow the
rules of the language throughout evolution [135].

Montana [85] introduced strongly typed genetic programming (STGP)
as an enhanced version of GP. Standard GP is designed for a single data
type. Under the closure assumption of GP (see page 44), any function
should be able to take as an argument any value returned from a terminal
or other function. Strong typing enforces data type constraints, only gen-
erating trees which satisfy the constraints. STGP is one form of grammar-
guided GP. In STGP the grammar is used to prescribe the type system.
STGP does not have all the benefits of other forms of grammar-guided GP;
online grammar adaption is not possible in STGP. Basic STGP is equiva-
lent to Koza’s constrained syntactic structures [70], except that rather than
defining syntax by directly specifying which children each non-terminal
can have, this is done indirectly in STGP by specifying the data types of
each argument of each function as well as the data types returned by each
terminal and function [85]. Montana [85] describes this difference as “rel-
atively minor”.

Whigham [135] used a context-free grammar to “define the structure of
the language manipulated by a genetic program”. The grammar was used
in the generation of the program population and to ensure closure was
still satisfied with the genetic operators. Crossover was restricted so it can
only occur when non-terminals of the same type are selected as crossover
points. Mutation replaces a non-terminal with a new sub-tree generated
by the grammar with the non-terminal as root node of the sub-tree. In both
cases the program is restricted by the maximum depth parameter.
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2.4 Local Search

Local search is an improvement heuristic which provides a “robust ap-
proach to obtain high-quality solutions to problems of a realistic size in a
reasonable time” [1]. Local search uses the idea that making small changes
to a given solution may improve it [127]. Local search methods start with
an initial solution and try to find better solutions by searching neighbour-
hoods.

Many local search algorithms for job shop scheduling have been devel-
oped [127]. Four elements that must be defined to consider local search of
a schedule are: the representation of the schedule, the neighbourhood, the
search process within the neighbourhood, and the search criterion [110].

Some basic neighbourhood definitions for local search that can be ap-
plied to schedules are transposition, insertion and swap [1]. Let n be the
number of jobs in the queue of the machine. Transpose swaps two adja-
cent jobs in the queue (neighbourhood has size O(n)). Insert moves one
job from one position to another and Swap swaps two jobs that can be any-
where in the queue (both have neighbourhood size O(n2)).

Choi and Choi [26] combine a local search scheme with mixed integer
programming to consider static job shop scheduling environments with
sequence dependent set-up times and alternative operation sequences. Go-
nzález-Rodrı́guez et al. [46] use local search methods for static job shop
scheduling with uncertain processing time durations.

With dynamic scheduling problems, the jobs available to be scheduled
are frequently changing with the arrival of jobs from outside the shop sys-
tem and from other machines. This makes the application of local search
difficult, as we do not know when another job will arrive, or any of its
properties, therefore an optimised queue order is unlikely to still be opti-
mal when more jobs arrive, or when we consider the final objective value
function.
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2.5 Feature Manipulation

Feature manipulation is the process of altering the input space of a (mach-
ine learning) task to improve the performance and (learning) quality [91].
Two forms of feature manipulation are feature selection and feature con-
struction. Feature selection is a combinatorial optimisation problem which
aims to find a subset of the original features which is as small as possible
but still sufficiently describes the problem space [67]. There is often re-
dundancy amongst features in a data set with a large number of features.
When the feature set size is reduced, the size of the search space is re-
duced (and hence the learning performance can potentially be improved).
Feature selection methods can be split into wrapper and filter approac-
hes. Wrapper approaches use a learning algorithm to explore the search
space; this makes evaluating individual solutions expensive as a classi-
fier must be trained and tested. Filter approaches are independent of any
learning algorithm [69], and instead use more computationally efficient
heuristics. Filter approaches are more general and less computationally
expensive than wrapper approaches [139]. Feature construction [77, 92] is
another form of feature manipulation; existing features are combined to
make new high-level features.

2.5.1 GP based Feature Manipulation

GP has been used for feature selection in many areas. Muni et al. [86] de-
veloped an online feature selection approach for classification using GP.
This was a wrapper based approach. Neshatian and Zhang [90] used
GP in a filter approach to feature selection for binary classification tasks.
Their approach explores sets of features, using a multiobjective approach
with objectives of maximising the relevance of the feature subset and min-
imising the size of the feature subset. The results showed this approach
improved the classification performance of classifiers and decreased their
complexity. Neshatian and Zhang [89] also developed a GP filter approach
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to feature selection for discovering relevant subsets of features in classi-
fication tasks with multi-modal class distributions. The proposed system
was effective at ranking subsets and performing feature selection. Ramirez
and Puiggros [119] used GP for feature selection and classifier training for
classifying the cognitive state of a person based on magnetic resonance
imaging data. Chien and Yang [25] used a rough set and GP based met-
hod to select significant features and classify numerical data.

GP has also been used for feature construction. Bishop et al. [11] pro-
posed a method for automatically exploring features for classifying im-
ages. The results showed improvement on existing manually designed
features. Smith and Bull [125] used GP to construct new features for use
in the C4.5 decision tree algorithm. Across the 10 data sets used this ap-
proach led to an improvement. Krawiec [71] uses GP for feature construc-
tion from a set of original attributes in a learning-from-examples paradigm,
which also preserves useful features discovered through the evolutionary
process. Neshatian et al. [93] developed a new approach using GP for
construction of multiple high-level features. The constructed high-level
features were then used for classification by decision trees.

2.5.2 Feature Manipulation for Scheduling

Feature manipulation has been used for scheduling problems in several
instances. Shiue et al. [124] developed a wrapper feature selection ap-
proach using an ensemble of GA based classifiers for real time scheduling.
The results show that the method outperformed three machine learning
based real time scheduling systems. Piramuthu et al. [112] investigated
constructing features for use in scheduling in a flexible flow system. Flex-
ible flow systems are similar to flexible flow shops, except that jobs are
able to skip an intermediate operation. The results of constructing boolean
features from primitive features were promising, and the proposed frame-
work led to improved representation through the compact size of the de-
cision trees and the smaller set of relevant features.
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It has been acknowledged that one challenge of hyper-heuristic appr-
oaches to automatically discover dispatching rules is to identify a suitable
set of attributes [17]. This is because there are so many possible attributes
in scheduling environments, and it is “important to include all relevant
characteristics of the problem environment” [17]. However, the larger the
number of attributes used in the terminal set, the larger the search space.

2.6 GP for Generating Heuristics for JSS

Hyper-heuristics are “automated methodologies for selecting or generat-
ing heuristics to solve hard computational search problems” [18]. Hyper-
heuristics search the search space of heuristics (rather than searching the
solution space directly), with an aim to increase the robustness of search
methods [21].

Many evolutionary computation methods have been used as hyper-
heuristics. Hyper-heuristic methodologies have been applied to many ap-
plication domains [20], including examination timetabling using grammar-
based GP [4, 109], bin packing using GP [22], workforce scheduling using
reduced neighbourhood search [120], sports scheduling using reinforce-
ment learning heuristic selection [44], quay crane scheduling using GP
[97] and vehicle routing using a hybrid heuristic selection approach [41].

Hyper-heuristic approaches can be classified as either heuristic gen-
eration or heuristic selection. Heuristic selection develops frameworks to
adaptively choose between appropriate existing heuristics dependent on
the current state of the shop [20]. This thesis focuses on heuristic generation,
in which new heuristics are created. The new heuristics are created from
small component building blocks, such as common statistics and opera-
tors used in existing heuristics [20].
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2.6.1 Genetic Programming for Automatic Generation of

DRs

GP based hyper-heuristics (GPHH) are very useful in dynamic JSS envi-
ronments, and in large scale static JSS environments. In smaller scale static
JSS problems optimal solutions are able to be found using optimisation
methods.

Single Machine Scheduling

Jakobović and Budin [56] used a GP based hyper-heuristic approach to
create priority functions for the static and dynamic single machine shop
and for the static job shop. Their GP approach “scheduling with adap-
tive heuristic” used three trees: a decision tree to determine which heuris-
tic should be used at a given time, and two scheduling heuristics which
were used dependent on the value returned by the decision tree. Results
showed that for given problems the heuristics evolved performed better
than existing scheduling methods. Dimopoulos and Zalzala [33] used GP
to investigate the one machine scheduling problem with total tardiness
objective function. A number of the evolved rules generalised well, and
performed comparably with human designed rules. Yin et al. [140] inves-
tigated the one machine problem with stochastic machine breakdowns. In
this case both tardiness and schedule stability were objectives. They pro-
posed a tree structure with two subtrees; one for assigning the priority
value and the other for calculating the idle time to be inserted before pro-
cessing which acted as a buffer against disruptions. The results showed
this performed better than known heuristics.

Geiger et al. [42] proposed a GP based approach to automatically learn
effective DRs for several single-machine environments. In the static and
dynamic single machine environments three different objectives were con-
sidered (total completion time, maximum lateness and total tardiness).
The system evolved rules that were equivalent to known optimal DRs in
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the situations where there are known optimal DRs, and where no known
optimal solutions the system evolves rules that perform no worse than the
best known DRs from the literature.

Flow Shop Scheduling

Geiger et al. [42] also investigated the static balanced two-machine flow
shop (all jobs follow the same path through the machines) with makespan
objective (F2 | |Cmax). A flow shop is balanced when the average pro-
cessing times of operations is the same on all machines. Two approaches
were suggested: using a single dispatching rule for both machines, and
using a separate dispatching rule for each machine. Johnson’s algorithm
[60] is known to provide an optimal solution. The best evolved individ-
uals were quite competitive with Johnson’s algorithm. However it is not
clear if any of the evolved rules will schedule jobs so as to obtain the op-
timal makespan, and thus be equivalent to Johnson’s algorithm. The two-
machine job shop is more complicated than the two-machine flow shop,
as there are jobs with different paths through the machines and some jobs
with only one operation.

Vázquez Rodrı́guez and Ochoa [129] proposed a GPHH approach to
finding variants of the Nawaz, Enscore and Ham (NEH) heuristic [87].
The NEH heuristic is for the permutation flow shop (the flow shop where
queues are assumed to use the FIFO rule [110]) with all jobs available at
the same time and makespan objective function. It ranks and sorts jobs
according to a certain criterion dependent on job parameters and uses this
ranking to build a schedule. The aim was to find a variant of the origi-
nal algorithm that is more effective on problems with extra constraints or
different objective functions that are “more in line with real world require-
ments.” Five objective functions were considered independently. Results
showed that the evolved variant, NEHGP , outperformed original NEH on
the cases tested. NEHGP was also shown to scale well with problem size.
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Job Shop Scheduling

Jakobović et al. [57] investigated a GP based approach for the develop-
ment of priority dispatching rules for the parallel machine environment,
with between 3 and 20 machines (and 12–100 jobs). The parallel machine
environment has m machines in parallel, each with a specific speed (si)
at which it processes operations. This means the time taken to process
a job’s operation is different from machine to machine, given by p(σ)/si.
For the simple static case, GP achieved the best result for tests with TWT.
However, for weighted flowtime and makespan test objectives, existing
rules were better. When sequence dependent set-up times were included,
GP obtained very good performance over more criteria than existing ru-
les. In the dynamic job shop environment, experiments were again con-
ducted with and without sequence dependent set-up times, using two ob-
jective functions: TWT and makespan. “Inserted idleness with arbitrary
priority” was used, so that waiting for jobs that have not yet arrived were
allowed but the priority function was required to take this time into ac-
count. Results showed that GP could “easily outperform other heuristics
for arbitrary scheduling criteria.” However it is noted that a single heuris-
tic is unlikely to perform well over multiple criteria; however to obtain
good performance for a specific objective, GP evolved heuristics provide
a “good choice”. As for the static case with sequence dependent setup
times, in the dynamic case the evolved rules easily outperformed existing
heuristics.

Complex Scheduling Environments

Pickardt et al. [107, 108] developed a two-stage (GP and GA) approach for
evolving work centre-specific rules for semi-conductor manufacturing. A
work centre is a set of 1 to m identical machines, and the shop contains 36
machines in 31 work centres. The method uses GP to generate composite
dispatching rules and a GA, where each gene is a specific work centre, to
search for a good combination of work centre specific rules to minimise the
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mean weighted tardiness. The two-stage method is dependent on the com-
posite rules evolved at the GP stage. The two-stage method was shown to
be superior to benchmark rules, although only 20 independent runs were
completed which is usually not enough for statistical significance testing.
Further the two-stage method was shown to be more effective than apply-
ing GP or EA separately and selecting the better rule set.

Myopic Nature of Dispatching Rules

The majority of scheduling rules evolved by most GP based approaches
lack a global perspective, as the features of the jobs, machines and the shop
used are mainly limited to the current state of the current machine and its
queue [42, 2]. This means that decisions are made independently based on
current and local conditions, without consideration of how movement of
jobs amongst machines or the state of the wider shop may be affected [17].
In real-world scheduling situations there is interaction between schedu-
ling decisions, and these interactions must be investigated [94]. A sched-
ule is non-delay if a machine cannot be idle while there is an operation
awaiting processing [110]. Dispatching rules generally create non-delay
schedules.

This lack of global perspective has been noted as a major disadvantage
of dispatching rules [17, 108]. The “limited horizon” of dispatching rules
may also be why no single rule has been found which is able to outper-
form all other rules across all shop scheduling environments [108]. The
challenge is to design “local, decentralised rules which result in a good
global performance of a given complex manufacturing system” [15].

Several works [43, 98, 50] incorporate “look-ahead” in which a machine
is notified that a job will be arriving once it is finished its current operation.
When the jobs in the queue at the machine are evaluated, if the job which
has not yet arrived has the highest priority then the machine is able to
enforce idle time, and wait for the job to arrive.

Gere [43] proposed several heuristics which were used in conjunction
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with priority rules. One heuristic, the “look-ahead” heuristic, checks if
there is a critical job due to reach the machine at a future time, but before
the scheduled job is finished processing. If there is such a critical job this
can replace the scheduled job. Results showed that combining look-ahead
heuristics which consider the future state of the shop with dispatching
rules improved schedules significantly.

Nguyen et al. [98] developed a GP method to learn iterative dispatch-
ing rules (IDRs) for the static JSS problem. IDRs are functions of not only
the properties of a machine and the job queued there, but also of the
recorded properties of a schedule obtained previously. This allows the IDR
to potentially correct mistakes that have been made in previous iterations.
The evolved IDRs perform better than benchmark DRs. Evaluation may
take longer in the proposed GP method than existing GP. A look-ahead
strategy component was also investigated, and results showed it to “play
a very important role to enhance the performance of IDRs and the pro-
posed method can effectively evolve suitable look-ahead strategies to deal
with specific JSS problems.” Look-ahead allows consideration of active or
hybrid schedules, not only non-delay schedules.

Hildebrant et al. [50] developed dispatching rules for the dynamic ten-
machine job shop, with the minimise mean flowtime objective. They used
two “less-myopic” terminals in their GP terminal set. These were the pro-
cessing time of the next operation in the job, and work in next queue
(WINQ). WINQ estimates the waiting time before the job could begin pro-
cessing on the next machine using the sum of the processing times of jobs
waiting in the queue already. They compared the approach of changing
the problem instances used for the simulations at each generation through-
out evolution with using the same problem instances at every generation
throughout evolution. Their results suggested that changing the problem
instances at every generation gives the most improved performance. The
results with look-ahead incorporated had a high variance. In some runs
only “rather bad” solutions were found, yet the best performing rule out-
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performed the best found without using look-ahead. The authors note that
if look-ahead is not used properly, in situations with high utilisation rates
the system could end up with utilisation greater than one, in which case a
queue will build up.

Interpretability of GPHH evolved Dispatching Rules

The interpretability of evolved dispatching rules is important, as the better
a dispatching rule is able to be interpreted, the more trust can be placed in
its performance. Individual dispatching rules can be examined and mod-
ified, but this is a time consuming process requiring trial and error and
human domain knowledge.

There is very little work which considers the interpretability of dis-
patching rules evolved by GP. However it has been noted that the rules
discovered by GP are not generally semantically correct [58]. Jakobović
and Marasović [58], in their work evolving priority functions through GP
within a meta-algorithm to form a scheduling heuristic, noted that “GP so-
lutions are not ‘analytically correct’ ”, further commenting that this is often
true for all GP applications. This is due to how standard tree-based GP
allows the unrestricted composition of available functions and features,
subject only to the tree-depth restriction. The authors suggest that solu-
tions could be restricted so that only semantically correct expressions re-
main (e.g. not allowing processing time minus the number of unscheduled
jobs). The authors state that preliminary results showed no statistically
significant differences compared to standard tree-based GP. However it is
not stated whether comparisons were made only in terms of performance
on test cases or also included consideration of the interpretability, relia-
bility and generalisation ability (robustness) of the evolved rules, which
we believe are important aspects that must be taken into account when
considering how ‘good’ a DR is.

Means of improving the interpretability of genetic programs previ-
ously employed include online rule simplification techniques [66, 143],
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analysis and visualisation of priority indices [15], and identifying weak-
nesses in decision logic of a given dispatching rule [17].

One means of forcing dispatching rules to be analytically correct would
be to use one of the forms of semantic constraint in GP discussed in Section
2.3.8 (see page 53). There is very little work using grammar-based GP
approaches for the JSS problem.

Nguyen et al. [95] investigated three GP representations for JSS. One
representation, R1, uses a grammar to “make the rules more readable and
explainable”. The grammar aims to “provide the adaptive dispatching ru-
les the ability to apply different simple dispatching rules based on mach-
ine attributes.” The two other GP representations used were an arithmetic
representation, R2, and a “mixed representation”, R3, combining the arith-
metic and grammar based approaches. Experimental results showed that
the evolved rules performed competitively with hybrid GAs from the lit-
erature, and performed effectively in dynamic environments [95]. Further,
the evolved rules provided better interpretability of how the decisions on
sequencing jobs should be made than conventional meta-heuristic approa-
ches. Representation R3 produced rules with better fitness (total weighted
tardiness) than representations R1 and R2 [95].

The two works already mentioned, Jakobović and Marasović [58] and
Nguyen et al. [95], do not compare the interpretability of the DRs evolved
with those evolved without semantic constraint. Tree-based GP is the ideal
representation for discovery of dispatching rules. However, existing DRs
discovered using GP are generally not semantically correct. The few works
which have used semantically constrained GP have not shown a detailed
performance comparison, let alone any analysis of whether the interpreta-
bility is improved. In using GP to discover new DRs, GP is rediscovering
domain knowledge. DRs which have greater interpretability will reveal
more about the important interactions within job shop environments than
DRs that we are unable to understand.

Another factor in the interpretability of evolved DRs is their size. The
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allowable tree depth for most approaches using GP allows DRs which are
much bigger than most DRs from the literature. The maximum tree depths
used include eight [96], 10 [83], 14 [58], and 17 [57, 50, 108, 126]. A rela-
tively full tree of depth 17 would be very hard to interpret. The increased
size allows more complex DRs, which may be able to discover more of the
relationships and interactions amongst shop properties and therefore im-
prove performance. However, the larger the DR, the more difficult it is to
understand how it works and compare how a change in, e.g., processing
time, would alter the priority of a given job, and the more likely it is to be
overfitting to training instances.

Grammar-based GP has been successfully used as a hyper-heuristic for
the automatic generation of timetabling heuristics for the exam timetabl-
ing problem [4]. The grammar used in the system was based on effective
graph colouring heuristics for timetable construction, and slot allocation
heuristics. The developed framework was tested on widely used bench-
marks and shown to be competitive with other construction techniques,
and on many occasions outperformed other hyper-heuristic frameworks.

Existing GP approaches to discovering new dispatching rules for the
JSS problem do not include domain knowledge beyond the use of prop-
erties of the jobs, machines and system as a whole. The use of grammar-
based GP methods offers the benefits of including the domain knowledge
of the types of properties that exist, e.g., counts and times. Further, the
search space at the heuristic level which GP operates in is very large, and
the restriction of using a grammar-based approach will reduce the search
space. These benefits have the potential to improve human understand-
ing of the evolved rules. For the JSS problem we want to better under-
stand what makes a DR perform well, and of almost equal importance,
what makes a rule perform badly. The aim of using a grammar-based or
strongly typed GP system is to evolve rules which are more interpretable.
It is desirable to know why a rule works – not just whether it does – as this
will help us to learn about the shop system and whether the rule would
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transfer to another shop environment.

Coping with Multiple Objectives

When there are multiple objectives of interest, single objective GP should
be used if the objectives are not conflicting and MOGP should be used
if the objectives do conflict. There have been a large number of works
using MOGP for various problems [9, 10], including a small number of
works which use multiple objectives within GP for automatic generation
of DRs. Some combine objectives using a weighted average, relying on the
assumption that the relative weighting of importance of each objective is
known in advance. Further, this approach does not enable the discovery of
more information about the properties of jobs and machines in JSS prob-
lems that are useful when different objectives are of interest. Miyashita
[83] compared three approaches to automated generation of dispatching
rules for static JSS: a homogeneous agent model, where every machine
uses the same rule evolved by a single GP process; a distinct agent model,
where every machine learns a distinct rule; and a mixed agent model,
where a bottleneck agent and a non-bottleneck agent learn rules. The bi-
ased combination of weighted tardiness and work in progress (WIP) was
the objective to minimise. Tay and Ho [126] used the weighted mean of
makespan, mean tardiness and mean flowtime in their work using GP to
evolve composite dispatching rules for the dynamic multiobjective flexible
job shop problem. They aimed to evolve rules which are robust and effec-
tive and outperform existing DRs from the literature. The results showed
that the composite rules evolved by GP were robust and outperformed the
single DRs and composite DRs from the literature on five datasets.

One significant work by Nguyen et al. [100] develops four new multi-
objective GPHH (MO-GPHH) methods for automatic design of scheduling
policies. Each scheduling policy consists of a DR and a due date assign-
ment rule (DDAR). Two commonly used MO algorithms are used: non-
dominated sorting genetic algorithm II (NSGA-II) [32] and strength Pareto
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evolutionary algorithm 2 (SPEA2) [146] (refer to Section 2.3.7 on page 51),
as well as a harmonic distance based multiobjective evolutionary algo-
rithm (HaDMOEA) [133]. The harmonic average distance of an individ-
ual to its k nearest neighbours is the number of neighbours divided by the
sum over all neighbours of the inverse distances. The first approach inves-
tigated represents the DR and DDAR components as subtrees of a GP tree.
NSGA-II, SPEA2 and HaDMOEA are used to explore the Pareto front of
non-dominated scheduling policies. In addition, a new approach, diver-
sified multiobjective cooperative evolution (DMOCC), uses coevolution
[115] to evolve a dispatching rule in one sub-population and a due date
assignment rule in a second sub-population, and selects individuals from
the sub-populations for genetic operators based on the crowding distance
and non-dominated rank. Binary tournament selection is used to select in-
dividuals for collaboration between the sub-populations. The objectives of
to be minimised were makespan, total weighted tardiness and the mean
absolute percentage error of the rules performance to a known solution.
Makespan and total weighted tardiness are conflicting objectives. It is eas-
iest to see this by looking at a single machine with a queue of jobs. When
the queue is processed (without any further arrivals) the makespan will be
the same no matter how the jobs are ordered, whereas the total weighted
tardiness will vary dependent on queue order, as it compares each job’s
completion time (which is dependent on the job’s position in the queue)
to its due date. Results showed that the evolved scheduling policies out-
performed existing scheduling policies formed by combining popular DRs
and dynamic DDARs, and that DMOCC evolved Pareto fronts were better
than NSGA-II and SPEA2.

Nguyen et al. [96] investigate a MOGP based hyper-heuristic approach
for dynamic job shop scheduling. The MOGP approach aims to minimise
five objectives: mean flowtime, maximum flowtime, percentage of tardy
jobs, mean tardiness, and maximum tardiness. A front of non-dominated
dispatching rules is evolved, which was shown to include very effective,
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robust rules. Flowtime and tardiness are conflicting objectives. Flowtime,
how long a job is in the shop system, is not dependent on a job’s due
date, whereas tardiness is how late a job is completed after its due date.
Therefore minimising mean flowtime will not necessarily minimise mean
tardiness.

Nguyen et al. [99] developed a two stage learning and optimisation
system to solve the multiobjective order acceptance and scheduling prob-
lem. This problem not only has to schedule jobs, but must first choose wh-
ich jobs arriving in the system will be accepted. The objectives of interest
are to maximise the total revenue and minimise the mean absolute error.
The system first uses MOGP to evolve a set of non-dominated scheduling
rules. The second stage is applied when order acceptance and schedu-
ling decisions need to be made. Each rule constructs a solution, which are
turned into a population of solutions for an evolutionary multiobjective
method (EMO). The EMO method searches the solutions and outputs a
non-dominated front. This method is shown to be competitive with other
optimisation methods.

2.6.2 Other Evolutionary Computation Based Methods for

Scheduling

Section 2.2.2 (see page 38) mentioned several works where PSO and GA
have been used for scheduling.

Ingimundardotti and Runarsson [54] developed a supervised learn-
ing approach using logistic regression to find JSS schedules with optimal
makespan. The model used a simple linear combination of features found
using a linear classifier based on optimal schedules (the optimal sequence
of jobs at each machine is known). The effectiveness of the approach is
shown by improving on existing dispatching rules for JSS. Results show
that the evolved rules are not robust towards different data distributions
in some cases, but that they outperformed the three conventional single
priority based DRs tested from the literature: SPT, MWRM (most work
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remaining) and LWRM (least work remaining) [28].

Chryssolouris and Subramaniam [27] proposed a GA based schedule
permutation approach to scheduling. Mean job tardiness and mean job
cost are the objectives in a dynamic job shop with alternate routings and
unreliable machines. The results showed that the proposed method was
significantly superior to common dispatching rules.

Shen and Yao [123] used a multiobjective evolutionary algorithm (MO-
EA) to solve dynamic flexible JSS problems. They used a measure of sched-
ule stability during rescheduling and maximal machine workload as ob-
jectives alongside makespan and tardiness. The MOEA approach is very
different from using GP to develop DRs for dynamic scheduling. The EA
uses an operation sequence vector and machine assignment vector to con-
struct a schedule of jobs to be processed at each rescheduling point. In
other words, an initial schedule is created and then rescheduling is trig-
gered each time an urgent job arrives or a machine breakdown occurs.

2.7 Chapter Summary

This chapter has reviewed the necessary key concepts of genetic program-
ming, job shop scheduling, hyper-heuristics, multiobjective optimisation,
feature manipulation and local search. A review of related work in the
area of automatic discovery of dispatching rules has also been presented,
showing the automatic discovery of new, more effective dispatching ru-
les for job shop scheduling problem through genetic programming is an
interesting and promising direction for continued exploration. The ideal
nature of GP representation for the evolution of dispatching rules has been
discussed, as has other benefits, leading to the wide body of work explor-
ing the automatic generation of dispatching rules in this way rather than
the time consuming and human knowledge based traditional approach of
manual development. There are some identified limitations of the existing
body of work, which motivate the work of this thesis.
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• The job shop model has many simplifications that are usually as-
sumed in GP based approaches to evolving DRs. One of the com-
mon simplifications is the assumption that one DR is sufficient for
scheduling at all machines in a job shop, even when they are un-
balanced (i.e. the average processing time is not the same across all
machines). In simple static shop scheduling environments, there are
known optimal approaches. The work of Geiger et al. [42] inves-
tigated the static two-machine flow shop with makespan objective
function evolved a rule for each machine. The best evolved rules
were characteristic of Johnson’s algorithm, which always provides
the optimal solution, in that the order of jobs was determined at the
first machine, and processed as first-in-first-out at the second mach-
ine. The best evolved rules were “quite competitive” with Johnson’s
algorithm, but are not verified to be equivalent. The two-machine
job shop is more complex than the two-machine flow shop, but GP
evolved DRs are good at scheduling in the flow shop, we want to see
whether GP is capable of evolving optimal DRs in this environment.
There is also investigation to be done to see whether in unbalanced
job shops one rule is sufficient.

• It has been widely acknowledged in the literature that one limitation
of dispatching rules evolved using evolutionary computation tech-
niques is their lack of a global perspective. A variety of look-ahead
approaches have been proposed. However, the job shop environ-
ment has a large number of potential attributes that can be used in
the terminal set for GP approaches. There are more complex, wider-
looking, properties that can be investigated in comparison to simple
properties. Although local search has been used to solve schedu-
ling problems, its use has mainly been limited to static scheduling
problems. It is difficult to apply local search in dynamic JSS environ-
ments.

• The interpretability of the evolved rules is an interesting issue that
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has been noted in existing work using GP for the automatic discov-
ery of dispatching rules for job shop scheduling environments. In
scheduling problems, particularly in real-world problems, it is im-
portant for the human operators involved on the shop floor to be
able to understand why a scheduling method is scheduling well (or
why it is not) and to be able to trust the rule’s performance. This will
be of particular importance if rules are to be used in environments
which requires generalisation to different processing distributions,
number of machines or utilisation levels.

• Job shop scheduling environments have a very large number of po-
tential properties that can be used as terminals for a GP based ap-
proach. There are properties of jobs, machines, and the shop as a
whole, before even considering more complex terminals. This large
number of potential terminals makes JSS an environment in which
feature manipulation could be very beneficial to the quality of re-
sults obtained. Feature construction for JSS has not previously been
explored with GP. Particularly as we seek to evolve DRs with better
interpretability, feature manipulation could be very useful in helping
to meet this aim.

The following chapters will address how GP can be used to address
these issues. Chapter 3 will develop a GP system to investigate the static
and dynamic two-machine job shops. Chapter 4 will investigate how GP
can be used to discover dispatching rules which take into account the
wider state of the job shop and make better decisions over the local and
extended decision horizons. Chapter 5 proposes the use of strongly typed
genetic programming to enforce semantic constraint and encourage the
evolution of semantically correct dispatching rules with greater interpre-
tability. Chapter 6 will continue to investigate evolving DRs with greater
understandability using GP, and will explore how the results from GP can
be used to perform feature selection and feature construction.



Chapter 3

Dispatching Rules for
Two-Machine Job Shop
Scheduling

3.1 Introduction

The purpose of this chapter is to explore the capability of GP to automati-
cally discover dispatching rules for some of the simplest job shop environ-
ments: the static and dynamic two-machine job shops. Although these are
the simplest JSS environments, they provide a test ground for GP methods
with lower computational cost than in larger m-machine job shops.

The first focus of this chapter is to determine whether GP can automati-
cally discover DRs which are competitive with known optimal approaches
on static JSS problems. The static two-machine job shop with a makespan
objective function can be solved exactly by using Jackson’s algorithm [55]
(Algorithm 2, see page 36).

The dynamic two-machine job shop environment is more complex than
the static two-machine job shop problem but is the simplest dynamic job
shop environment. Assuming that the representation of GP is valid for
discovering optimal dispatching rules in the static case, the dynamic case

73
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is then considered.
The second focus of this chapter is to investigate the trade-offs between

simplifications of dynamic job shop models and the difficulty/efficiency of
evolving dispatching rules for solving these simplified models with a lim-
ited amount of computational resources. One common assumption made
is that machines in a job shop should be treated identically. The typical
approach is to use the same dispatching rule to dispatch jobs at every ma-
chines in the shop, regardless of whether the machines expect to see the
same volume of jobs, or if the machines see jobs (operations) with simi-
lar properties. The simplification of the job shop model is that only one
dispatching rule is used.

3.1.1 Chapter Organisation

The remainder of this chapter is organised as follows. Section 3.2 deter-
mines whether Jackson’s algorithm for the static two-machine job shop
is able to be represented as a dispatching rule. Section 3.3 investigates
whether GP is able to evolve dispatching rules which are competitive with
Jackson’s algorithm on the static two-machine problem. Sections 3.4 ex-
plores the dynamic two-machine job shop. Section 3.5 concludes with the
findings of this chapter.

3.2 Optimal Dispatching Rule Representation

for Static JSS

This section focusses on the simplest job shop scheduling environment:
the static two-machine job shop. The static two-machine job shop with
a makespan objective function, J2||Cmax, can be solved exactly by using
Jackson’s algorithm [55] (see page 36) in O(n log n) time, where n is the
number of jobs. There are a very large number of attributes of jobs, ma-
chines and the job shop system as a whole that can be used as features
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in the GP terminal set. Some of these attributes may not be necessary
or useful as components of a dispatching rule. In Johnson’s algorithm
for the two-machine flow shop F2 | |Cmax (see page 35) the only proper-
ties that are needed are the processing times of the job’s two operations.
In Jackson’s algorithm for the two-machine job shop J2 | |Cmax (see page
36), again the processing times of each job’s operation or operations are
required and the machine sequence (A→B, B→A, A-only or B-only); no
wider shop or machine properties are needed. The notation used in this
section is given in Table 3.1; for descriptions of the attributes of jobs and
operations see Section 2.2 (see page 31).

The traditional way of finding an optimal schedule for a static schedu-
ling problem is to examine all the jobs and construct an entire production
schedule before processing begins. Using a dispatching rule to schedule
jobs in the static environment is very different. The dispatching rule is
called to make a scheduling decision each time a machine becomes avail-
able, choosing from amongst the jobs already available at the given mach-
ine.

Considering optimal scheduling at a particular machine with a queue
of jobs using a dispatching rule in the J2 | |Cmax environment, jobs with
two operations remaining must be assigned a higher priority than jobs
which have only one operation remaining (regardless of whether it is their
only operation or if their first operation has been completed and only their
second operation remains). However the jobs with only one operation re-
maining can be scheduled arbitrarily, as the order of their completion does
not affect the total processing time, therefore the makespan remains the
same for all orderings.

The optimal processing order at Machine A can be simplified to:

(S(A→B)@A, TA∪((B→A)@A)),

and the optimal processing order at machine B can be simplified to:

(S(B→A)@B, TB∪((A→B)@B)).
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Table 3.1: GP terminal set for static two-machine JSS problem with
makespan objective GP system.

Notation Description Value
PR Processing time of current operation p(σj,h)

RT Remaining processing time of job
∑Nj

l=h p(σj,l)

LV Arbitrarily large constant integer value

Here S(A→B)@A is the schedule of A→ B jobs which are currently at mach-
ine A, sequenced according to Johnson’s algorithm (Algorithm 1, page 35).
TA∪((B→A)@A) is the set of jobs which only visit machine A, and B → A jobs
which have already visited machine B, which can be ordered arbitrarily.

A job with two remaining operations will have a longer total remaining
processing time than current operation processing time, i.e., RT>PR.

All jobs with two operations remaining that the DR sees must have
the current machine for their first operation (otherwise they would be
at the other machine). Hence, these jobs need to be ordered according
to Johnson’s algorithm (Algorithm 1, see page 35). Assuming arbitrarily
that the machine in question is machine A, jobs with a shorter process-
ing time on machine A than on machine B will have PR < RT− PR, that
is, PR− (RT− PR) < 0 and these jobs must have decreasing priority value
as PR increases. Jobs with equal or longer processing time on machine A
than machine B will have PR− (RT− PR) ≥ 0, and these jobs must have
decreasing priority value as RT−PR decreases, but these jobs must all have
lower priority than the jobs with shorter processing time on machine A.

This leads to the following expression, shown as a tree in Figure 3.1,
which is an optimal dispatching rule:

(if>0 (- PR (- RT PR)) (- RT PR)(- LV PR)).

The if>0 function takes three arguments; if the first argument is greater
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if>0

- - -

PR -

RT PR

RT PR LV PR

Figure 3.1: An optimal dispatching rule for the static two-machine job
shop with makespan objective, represented using tree-based GP.

than 0 then it returns the second argument, else the third argument is re-
turned.

Assume the machine that has just become available is machine A. In
the dispatching rule shown above, if there is only one operation remaining
on the job then (- RT PR) = 0 and so (- PR (- RT PR)) = PR > 0.
For all such, jobs the priority value returned is (- RT PR) which is 0. If
(- PR (- RT PR)) > 0 then the processing time of the first operation is
longer than the second, the priority given is the processing time of the next
operation, (- RT PR). This gives these jobs decreasing priority, ordered
by decreasing processing time at the next machine. As (- RT PR)> 0

these jobs will have higher priority than the jobs which are on their last
operation. Otherwise, if (- PR (- RT PR)) < 0, the priority given is
(- LV PR), i.e., jobs with shorter PR at this machine are given higher
priority. Therefore this dispatching rule creates an ordering which gives
the same makespan as Jackson’s algorithm, although the ordering of jobs
it gives may be different.

To illustrate how this optimal dispatching rule works, we will revisit
the J2 | |Cmax problem instance with 20 jobs presented in Table 2.1 (see
page 37). At time 0, the jobs available at machine A are J1, J5, J6, J7, J9,
J10, J11, J15, J16, J17 and J19. The remaining jobs, J2, J3, J4, J8,J12, J13, J14,
J18 and J20, available at machine B at time 0. The working for evaluating
each job’s priority is given in Table 3.2. We have split the jobs by which
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Table 3.2: Evaluation of priorities of jobs J1 to J20 using the dispatch-
ing rule in Figure 3.1. T indicates (- PR (- RT PR)) is greater than
0 (i.e. (- PR (- RT PR))> 0 is true) and F indicates that (- PR (-

RT PR)) is less than or equal to 0.

Job PR RT (- PR (- RT PR)) > 0 (- RT PR) (- LV PR) Priority

Jobs at Machine A

J1 1 11 −9 F – LV−3 LV−1
J5 3 3 3 T 0 – 0

J6 3 3 3 T 0 – 0

J7 5 9 1 T 4 – 4

J9 4 7 1 T 3 – 3

J10 7 13 1 T 6 – 6

J11 3 8 −2 F – LV−3 LV−3
J15 5 5 5 T 0 – 0

J16 5 11 −1 F – LV−5 LV−5
J17 2 2 2 T 0 – 0

J19 6 9 3 T 3 – 3

Jobs at Machine B

J2 5 5 5 T 0 – 0

J3 7 10 4 T 3 – 3

J4 3 10 −4 F – LV−3 LV−3
J8 2 8 −4 F – LV−2 LV−2
J12 2 2 2 T 0 – 0

J13 7 15 −1 F – LV−7 LV−7
J14 3 4 2 T 1 – 1

J18 8 15 1 T 7 – 7

J20 4 4 4 T 0 – 0
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machine they are at at time 0.

We will first look at the queue of jobs waiting at machine A. There
are four jobs which have only one operation, J5, J6, J15 and J17. We see
in Table 3.2 that the for all these jobs (- PR (- RT PR)) = PR > 0. Fol-
lowing across each job’s row of the table, we see that the priority value is
assigned by (- RT PR) which is 0. The three jobs which have a longer
processing time at machine B than machine B are J1, J11 and J16. These jobs
have (- PR (- RT PR)) ≤ 0, hence priority is assigned by (- LV PR)

giving priorities of (- LV 1), (- LV 3) and (- LV 5) for J1, J11 and
J16 respectively. These priorities are clearly higher than the priority of 0
given to J5, J6, J15 and J17. The remaining jobs, J7, J9, J10 and J19, all have
two operations and longer processing time at machine A (PR) than mach-
ine B (RT−PR). These jobs have (- PR (- RT PR)) > 0, and priority is
assigned by (- RT PR). This gives priorities of 4, 3, 6 and 3 for jobs J7,
J9, J10 and J19 respectively. These priorities are greater than 0, but always
less than the priorities assigned by (- LV PR). The job with the highest
priority is J1 with priority LV−1. J1 will be dispatched at time 0 to process
for one unit of time, then it will move to machine B.

Similarly, the priority values of all jobs which begin at machine B are
found in the final column of Table 3.2. The job with the highest priority is
J8 with priority LV−2. J8 will be dispatched at time 0 to process for two
units of time, then it will move to machine A.

Note that this dispatching rule assigns priority that is independent of
time, the priority value assigned to a job does not change while it is in the
queue of a specific machine. The priority only needs to be recalculated
when the job arrives at a new machine. Therefore we can easily look at the
next decision point in this example, at time 1 when J1 finishes processing
on machine A. J8 has not arrived from machine B yet, so the waiting job
with the highest priority is J11 with priority LV−3, which is dispatched for
processing for three units of time. At time 2, when machine B becomes
available, J1 has joined the queue at machine B. J1 has priority 0 as it has
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(- RT PR)= 0. Therefore, J4 has the highest priority at machine B and
is dispatching for processing for three units of time. Following through
this example will give the same makespan as obtained using Jackson’s
algorithm, however, due to arbitrary choices when jobs have equal priority
the order in which jobs are processed will differ from that given in the
Gantt chart of Figure 2.1.

3.3 Can GP Evolve Optimal DRs for Static JSS?

It has been shown in Section 3.2 that it is possible to create a dispatch-
ing rule that will always dispatch jobs in such a way as to minimise the
makespan. The next step is to investigate the effectiveness of the GP ap-
proach in evolving such a rule given that the required functions and termi-
nals are included in the GP system (i.e. optimal rules exist within the de-
fined search space of GP). The aim of this section is to determine whether
GP can automatically discover DRs which are competitive with this known
optimal approach on the static two-machine JSS problem, J2||Cmax. In this
section we outline the GP algorithm, parameter settings and the function
and terminal sets necessary.

3.3.1 GP System for Static Two-Machine JSS

The GP system used to evolve dispatching rules for the static two-machine
job shop is as follows, using the GP algorithm as described in Chapter 2
(see page 50). We use ECJ20 [78] to implement this system. The GP sys-
tem randomly initialises the population, where each individual represents
a dispatching rule using the ramped-half-and-half method. At each gener-
ation, each individual will be applied to the set of training instances. The
average makespan value across these instances is assigned as the individ-
ual’s fitness. After each individual has been evaluated, the genetic op-
erators (crossover, mutation and reproduction (elitism)) are applied to the
individuals of the current generation to create new individuals for the next
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generation. The evolutionary process repeats until the maximum number
of generations is reached. At the end of evolution, the individual in the
final population with the highest fitness is returned as the best-of-run in-
dividual. This individual is evaluated in the testing phase.

Scheduling Algorithm

A simple scheduling algorithm is implemented. While there are unsched-
uled operations to be processed on the machines, every time a machine
becomes available to begin processing an operation, the GP tree is used to
calculate the priority of all the available operations waiting at that mach-
ine. The operation with the highest priority is scheduled, and the job shop
system is updated. Ties are broken using the SPT rule (see page 41). Only
jobs that are currently waiting in the queue are able to be scheduled.

Function and Terminal Sets

The terminal set is {PR, RT, LV} as defined in Table 3.1. The function set is
{+,−, ∗, %, if>0}. The arithmetic operators take two arguments. The first
three arithmetic operators, +, −, ∗, have their usual meanings. The % is as
usual division except when dividing by zero where the value returned is
zero. The if>0 function is as described earlier.

Parameter Settings

The ramped-half-and-half method [70] is used to generate the initial pop-
ulation with minimum depth of two and maximum depth of four. The
population size is 1024 and evolution is for 50 generations. This is a rea-
sonably large population size which has been used in the literature [83, 95],
and 50 generations has also been used in the literature [108, 95] although
larger numbers of generations have also been used [50, 126, 56]. This pop-
ulation size and number of generations keeps the time of the evolutionary
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process reasonable. The maximum tree depth is restricted to four, which
is deep enough for the DR discussed in Section 3.2.

The rates of genetic operators crossover, mutation and elitism are 40%,
55% and 5% respectively, and individuals are selected for these genetic op-
erators using tournament selection with a tournament size of four. These
parameters are different to those usually used in GP, as we are trying to
see if it is possible for GP to discover optimal rules.

Training Scenarios

In training, problem instances consisting of exactly 10 jobs were randomly
generated so that the job shop is unbalanced. A shop is unbalanced when
the expected processing times of jobs is not equal across all machines. The
proportions of job types follow 12 configurations given in Table 3.3. The
proportions were chosen so that there are problem instances where it is
important for jobs with two operations to be scheduled ahead of jobs with
only one operation, as well as instances where it is important to select jobs
with longer processing times for their second operation ahead of those
where the first operation has longer processing time, etc.

The average makespan is found from applying the dispatching rule to
eight problem instances of each of the 12 configurations, giving a total of
96 problem instances.

A GP system would not normally have access to the optimal makespan
value, so this is a normal GP set up and we are testing whether it can find
optimal DRs.

The processing times of operations follow discrete uniform distribu-
tions: operations at machine A follow Uniform(100,110) distribution, and
operations at machine B follow a Uniform(200,220) distribution.

This work compares using the same problem instances for the entire
evolutionary process with changing the problem instances every 10 gen-
erations, so the set of problem instances for generations 1–10 is distinct to
the set of problem instances used for generations 11–20, etc. This follows
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Table 3.3: Configurations of proportions of job types for static two-
machine training problem instances.

Job Types Job Types

A only B only A→B B→A A only B only A→B B→A

P1 0.40 0.40 0.15 0.05 P7 0.45 0.05 0.45 0.05

P2 0.50 0.30 0.10 0.10 P8 0.35 0.05 0.55 0.05

P3 0.30 0.50 0.10 0.10 P9 0.25 0.05 0.65 0.05

P4 0.60 0.10 0.25 0.05 P10 0.00 0.00 1.00 0.00

P5 0.50 0.20 0.25 0.05 P11 0.00 0.00 0.10 0.90

P6 0.10 0.60 0.10 0.10 P12 0.10 0.10 0.45 0.35

the work of Hildebrant et al. [50].

Testing Best-of-Run Dispatching Rules

The traditional testing phase was replaced by a set of simple test cases to
filter out rules that are certainly not optimal. This testing phase leaves us
with DRs that made the correct scheduling decisions with all test cases.
However it is possible that a DR could correctly make all these decisions,
and still not be guaranteed to always return the optimal makespan, hence
human checking is the final step.

3.3.2 Initial Experimental Results on Static Problems

100 GP replications with distinct pseudo-random number generator seeds
were performed with the same problem instances through all generations
and 100 GP replications with the same set of distinct seeds were performed
with changing problem instances every 10 generations, and the best-of-run
individual of each was put through the test cases. This is relatively high
number of GP replications because we expect GP to find optimal DRs rela-
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tively infrequently. The pseudo-random number generator seeds are used
to set the seed of the psuedo-random number generator which provides
the stream of random numbers needed for the evolutionary process. The
first random numbers from this stream are used to build the initial pop-
ulation of GP individuals. Therefore, GP replications that use the same
pseudo-random number generator seed will have the same initial GP pop-
ulation.

Using the same training instances, no GP individuals passed the testing
phase. Using changing problem instances, of the 100 best-of-run individu-
als, five GP individuals which passed the testing were manually inspected
and shown to be optimal. These five GP individuals are all different vari-
ations of the DR proposed in Figure 3.1. Although an unusually high mu-
tation rate is used in obtaining these results, we want to show that it is
possible for GP to evolve an optimal DR, not necessarily that it is easy for
GP to do so. This shows the difference that parameter settings make to GP,
which is one of the known disadvantages of GP.

3.3.3 Improvements through Parameter Settings

The rates of genetic operators crossover, mutation and elitism are now al-
tered to 85%, 10% and 5% respectively, and individuals are now selected
for these genetic operators using tournament selection with a tournament
size of seven. These are more commonly used rates of these genetic op-
erators [95]. With these rates, 100 GP runs with the same set of distinct
seeds as the initial experiments were performed with the same problem
instances, and 100 GP runs were performed with changing problem in-
stances.

With the same training instances, once again no GP individuals passed
the testing phase. Of the DRs evolved with changing problem instances, of
the 100 best-of-run individuals, 14 passed the testing phase. Manual (hu-
man) inspection revealed that 11 of these 14 individuals will always give
the optimal makespan. There are nine distinct GP individuals evolved,
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if>0

- NPR -

PR NPR LV PR

Figure 3.2: An optimal dispatching rule for the static two-machine job
shop, using the NPR terminal.

and they are all different variations of the DR proposed in Figure 3.1.
This shows that there are many possible dispatching rules within the sea-
rch space which can guarantee the optimal makespan for any static two-
machine job shop scheduling problem. This has almost doubled the num-
ber of optimal dispatching rules found.

When the new genetic operator rates were used and the tournament
selection size remained at four, no DRs were found that passed the testing
phase. This suggests that the high mutation rate was countering the lower
tournament size.

3.3.4 Improvements in Representation

We now investigate whether the representation can be improved, through
the addition of one more terminal. The terminal NPR is the processing time
of the job’s next operation. If the job is on its second (and final) operation
then the job does not have a next operation and NPR returns 0. This sim-
plifies how the optimal dispatching rule of Figure 3.1 can be written, as
shown in Figure 3.2.

We performed 100 independent GP runs with the augmented terminal
set {PR, RT, NPR, LV}, and the rates of genetic operators crossover, mu-
tation and elitism as 85%, 10% and 5% respectively and tournament size
of seven. This yielded 25 best-of-run evolved DRs which passed the test
phase. Upon manual (human) inspection 12 of these 25 are definitely op-
timal. This is a large increase in the number which pass the testing phase,
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* if

LV NPR RT NPR LV

- if *

PR NPR NPR LV RT NPR PR

Figure 3.3: An optimal dispatching rule for the static two-machine job
shop evolved by GP.

and also an increase in the number which are truly optimal.

The evolved rules which will schedule jobs in such a way that the
makespan is always optimal can look very different to the rules shown
in Figures 3.1 and 3.2. One such rule is shown in Figure 3.3. To see that
this rule schedules the jobs to achieve the optimal makespan, first consider
the case that NPR = 0, i.e., the job has only one operation remaining. Then

this rule returns
LV ∗ NPR + NPR

RT
= 0. This leaves two cases with NPR> 0

where the rule will return values from different formulae: PR>NPR and
PR≤NPR. When PR>NPR, the rule simplifies to

(1 + LV) ∗ NPR
LV

≈ NPR and
it ranks jobs in the same order as NPR as LV is a very large value. The value
returned from this is always greater than 0, so these jobs will have a higher
priority than those jobs that are on their final operation. Further, jobs with
a larger NPR value have higher priority than jobs with a smaller NPR value.

When PR≤NPR, the rule simplifies to
(1 + LV) ∗ NPR

PR ∗ NPR
=

(1 + LV)

PR
≈ LV

PR
.

The value returned by this is always positive, and as LV is a positive con-
stant, the value will be greater than NPR. Further, jobs with smaller PR
have higher priority than jobs with larger PR. Hence this rule schedules
jobs in the same way as described above, and the resulting schedule will
minimise the value of the makespan.

The question being addressed in this section was whether GP can dis-
cover a dispatching rule which is equivalent to Jackson’s algorithm. It was
shown that a dispatching rule representation equivalent to Jackson’s algo-
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rithm existed. This showed that GP could in theory discover such a DR,
but not that it will. The second aspect therefore addressed whether GP ac-
tually does discover any such DRs. Several representations and parameter
settings were investigated, to show that we cannot guarantee that GP will
discover an optimal solution, the importance of parameter settings and the
impact of the choice of features included in the terminal set. The terminal
NPR is still a ‘simple’ feature, as it is directly a job’s property.

3.4 Machine Specific Dispatching Rules for

Dynamic Job Shop Problems

The aim of this section is to investigate whether the simplification to the
job shop model of using the same dispatching rule at all machines in an
unbalanced job shop (where the mean processing time of jobs is not equal
across all machines) is sufficient, compared to using machine specific dis-
patching rules. There is a trade-off between simplifying job shop mod-
els and the difficulty of evolving dispatching rules which perform well
in these simplified models with a limited amount of computational re-
sources. The typical approach is to use the same dispatching rule to dis-
patch jobs at every machine in the shop, regardless of whether the ma-
chines expect to see the same volume of jobs and jobs (operations) with
similar properties.

Here, the question is: in an unbalanced job shop, should dispatching
rules be specialised to each machine or should one dispatching rule be ap-
plied to all machines separately? The objective of interest is to minimise
the total weighted tardiness, TWT =

∑
wjTj .

The objectives of this section are, within the dynamic two-machine job
shop:

1. investigate the performance of GP systems with different represen-
tations of rules to machines;
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2. compare the performance of evolved rules from all representations
with well known dispatching rules; and

3. analyse some of the evolved rules.

The remainder of this section is organised as follows. Section 3.4.1 in-
troduces the two representations. Section 3.4.2 presents the experimental
settings and the experimental results are shown in Section 3.4.3. Section
3.4.4 analyses some of the individuals evolved by GP.

3.4.1 Representation of GP Individuals for Machine Spe-

cific DRs

Two representations of scheduling rules are considered. The first repre-
sentation, R1, treats each machine the same; each GP individual consists
of one tree, representing a scheduling rule which is used to schedule jobs
at both machines independently. The second representation,R2, treats ma-
chines differently; each GP individual now consists of two trees in which
operations on machineA are scheduled by the first tree, and operations on
machine B are scheduled by the second tree. Figure 3.4 illustrates the two
representations.

3.4.2 GP System for Dynamic JSS

In this section the GP system is developed in detail. First the system for
evolving DRs is detailed, followed by the fitness evaluation, training and
testing scenarios, and GP parameter settings.

GP System

The GP based system for evolving dispatching rules for the dynamic two-
machine job shop is as follows. The GP system randomly initialises the
population, where each individual represents a dispatching rule. At each
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(a) Example of R1 Individual for the dynamic two-machine job shop GP system.

This individual consists of one tree which is used to evaluate the queued jobs at

both machines.

(b) Example of R2 Individual for the dynamic two-machine job shop GP system.

This individual consists of two trees; the left tree is used to evaluate the queued

jobs at machine A and the right tree is used to evaluate the queued jobs at mach-

ine B.

Figure 3.4: Representations of tree-based GP dispatching rules for the dy-
namic two-machine GP system.

generation, each individual will be applied to the set of training instances.
After each individual has been evaluated, the genetic operators (crossover,
mutation and reproduction (elitism)) are applied to the current generation
of individuals to create new individuals for the next generation. In R2,
the crossover operator is restricted so that crossover occurs only between
trees that schedule jobs on the same machine. The evolutionary process
repeats until the maximum number of generations is reached. At the end
of evolution the individual in the final population with the highest fitness
is returned as the best-of-run individual. This individual is evaluated in
the testing phase. A more in depth description of the elements of the GP
system is provided in Section 2.3 (see page 43).
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Fitness Evaluation

The fitness of a DR is evaluated by a discrete-event simulation model [74]
of the job shop, which implements a simple scheduling algorithm. While
there are unscheduled operations to be processed on the machines, every
time a machine becomes available to begin processing, the individual’s ap-
propriate tree (machine independent in R1 or machine dependent in R2) is
used to evaluate the priority of all the available operations waiting at that
machine. The operation with the highest priority is scheduled, and the
job shop system is updated. Ties are broken using the SPT rule (see page
41). Only jobs that are currently waiting in the queue are able to be sched-
uled. The average total weighted tardiness, TWT =

∑
wjTj , value across

a number of problem instances is assigned as the individual’s fitness.

Training and Testing Problem Instances

In each problem instance, jobs arrive stochastically according to a Poisson
process with rate λ. This is standard in queueing systems and fits real-
world queues well [88]. The processing times for machine A and machine
B are generated according to an Exponential distribution with mean µA

and a Uniform(0.2µB, 1.8µB) distribution respectively. Different process-
ing time distributions are used to further differentiate between the two
machines. The expected utilisation (the proportion of time a machine is
busy), ρ, of machine M is calculated as

ρ =
(λ× pM)

(1/µM)
, (3.1)

where pM is the proportion of jobs that need to be processed at machine
M.

We randomly create problem instances so that the shop is unbalanced.
If the job shop was balanced then the same DR is likely to work well, there-
fore we look at unbalanced job shop problems to see whether there are
scenarios where machine-specific DRs may work better. We use the term
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scenario to describe the combination of properties defining the shop, and
problem instance for an instantiation of the problem scenario with a par-
ticular psuedo-random number generator seed. Therefore for one prob-
lem scenario there can be many problem instances. Only one problem
instance is used from each scenario for both training and testing. This is
because each instance requires lots of scheduling decisions to be made.
Four different training configurations (scenarios TC1 to TC4, shown in Ta-
ble 3.4) of proportions of job types, arrival rate, mean processing times and
utilisation rates are specified. Scenarios TC1 and TC3 are relatively more
balanced, TC2 has 95% of jobs visiting machine A and only 70% visiting
machine B, and TC4 is even more unbalanced with 90% of jobs visiting
machine A and only 30% of jobs visiting machine B. These configurations
are designed to ensure the job shop is unbalanced, i.e., the machines see
different proportions of jobs, and have different utilisation levels, because
it is in this situation that machine-specific DRs are likely to be more useful
than a symmetric job shop where each machine is expected to have the
same utilisation. Fourteen different configurations (scenarios C1 to C14,
shown in Table 3.4) are used in testing. The test scenarios include the train-
ing scenarios, and additional scenarios with a greater range of utilisation
levels.

Due dates are set using Equation (3.2) [5],

dj = rj + h×
Nj∑
l=1

p(σj,l), (3.2)

where h = 1.3 is a due date tightness parameter. Jobs are given weight 1,
2 or 4, with probability (0.2, 0.6, 0.2) [111]. This is based on the premise of
the 20/60/20 rule, that is 20% of jobs are of low importance, 60% of jobs
are of average importance, and 20% of jobs are of high importance. The
objective being minimised is TWT. The training fitness of an individual is
the mean TWT from four simulation runs, one with each of TC1–TC4. A
warm up period of 1000 jobs is used, and we collect data from the next
5000 jobs to arrive (N = 5000), however new jobs keep arriving in the
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Table 3.4: Configurations of proportions of job types for training scenarios
(TC1–TC4) and testing scenarios (C1–C14) for dynamic two-machine job
shop problem instances.

Job Types Utilisation

λ 1/µA 1/µB A only B only A→B B→A Mach. A Mach. B

TC1=C1 0.80 0.80 0.50 0.40 0.05 0.50 0.05 0.95 0.96

TC2=C2 0.80 1.20 0.60 0.30 0.05 0.60 0.05 0.63 0.93

TC3=C3 0.70 0.65 0.40 0.45 0.10 0.30 0.15 0.97 0.96

TC4=C4 0.65 0.60 0.20 0.70 0.10 0.10 0.10 0.98 0.98

C5 0.80 0.50 0.80 0.05 0.40 0.05 0.50 0.96 0.95

C6 0.80 0.60 1.20 0.05 0.30 0.05 0.60 0.93 0.63

C7 0.70 0.40 0.65 0.10 0.45 0.15 0.30 0.96 0.97

C8 0.65 0.20 0.60 0.10 0.70 0.10 0.10 0.98 0.98

C9 0.70 0.60 0.40 0.45 0.15 0.20 0.20 0.99 0.96

C10 0.70 0.60 0.50 0.45 0.15 0.20 0.20 0.99 0.77

C11 0.90 0.80 0.50 0.45 0.15 0.20 0.20 0.96 0.99

C12 0.70 1.00 0.50 0.30 0.10 0.30 0.30 0.63 0.98

C13 0.40 0.30 0.30 0.25 0.25 0.25 0.25 1.00 1.00

C14 0.10 0.70 0.40 0.10 0.20 0.35 0.35 0.11 0.23

system until the 6000th job is completed. In testing, the TWT of a single
simulation run using each of the fourteen test scenarios, C1 to C14, given
in Table 3.4 are recorded.

We also investigate using the same problem instances at every gen-
eration against regenerating the set of training problem instances at ev-
ery tenth generation, following the work of Hildebrant et al. [50]. In the
changing problem instances method, the problem instances used at each
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Table 3.5: GP terminal set for dynamic two-machine GP system.

Notation Description Value
PR Processing time of current operation p(σj,h)

RT Remaining processing time of job
∑Nj

l=h p(σj,l)

RO Remaining number of operations Nj − h+ 1

RJ Operation ready time r(σj,h)

W Job weight wj

DD Job due date dj

RM Machine ready time Rm

NQ Number of operations in the queue

generation will still be the same for all GP individuals, but the problem in-
stances for the first 10 generations are distinct from the problem instances
for the next ten, and so on. Our initial results in Section 3.2 showed that
changing the problem instances greatly improved the quality of the dis-
patching rules found by GP for the static two-machine JSS problem.

Function and Terminal Sets

The terminal set is given in Table 3.5. This is a larger set than used in the
static JSS experiments, which only included PR and RT from this table. A
description of the attributes of jobs and operations is found in Section 2.2
(page 29). The dynamic JSS problem is more complex than the static JSS
problem, and as the weighted tardiness objective requires knowledge of
the due date and importance weighting these are included in the terminal
set.

The function set is {+,−, ∗, %, if>0, max, min, abs}. The abs function
takes one argument and returns the absolute value. The max and min

functions take two arguments and return the maximum and minimum of
their arguments respectively. These additional non-arithmetic operators
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help for calculating time differences between the current time and due
dates, and whether jobs are tardy, etc. This is a function set which has
been used in the literature [108].

Parameter Settings

The population size is 1024, and the initial population is generated using
the ramped-half-and-half method [70] with an initial depth of six. GP in-
dividuals have a maximum depth of six. Evolution is for 50 generations.
Tournament selection with a tournament size of four is used to select GP
individuals from the population for genetic operators, as for the initial ex-
periments of Section 3.3. This is larger than a tournament size of three
which is used in some works [56, 57] but still less than the standard size
of seven. The genetic operators crossover, mutation and elitism are used
with rates of 85%, 10% and 5% respectively.

3.4.3 Dynamic Two-Machine JSS Experimental Results

Here we present the test results of each combination of representations R1
and R2, and the same problem instances at every generation (S) versus
changing problem instances every ten generations (C), for the dynamic
two-machine JSS problem. This gives four methods: R1S uses represen-
tation R1 with the same problem instances at every generation, R1C uses
representation R1 with problem instances changing every ten generations,
R2S uses representation R2 with the same problem instances at every gen-
eration, and R2C uses representation R2 with problem instances changing
every ten generations.

For each we perform 40 GP evolutionary runs, using 40 common inde-
pendent seeds.

The boxplots in Figure 3.5 show that the relative performance of the
four GP based methods depend on the configuration. Table 3.6 gives the
order of performance, from worst to best, of the four methods for each of
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Figure 3.5: Boxplots showing results (lower TWT is better) of methods
R1S, R1C, R2S and R2C across the 14 configurations for dynamic two-
machine job shop (vertical scales differ between subfigures).
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the 14 scenarios. The orders are established by performing pairwise com-
parisons between GP runs with the same initial population of GP individ-
uals for each combination of methods used. We examined the ratio of the
two rules over these combinations for each of the 40 initial populations
to see if rules evolved by one method were consistently better than an-
other. Table 3.6 shows that although there is no consistent order, there are
some patterns that can be observed. Over the four scenarios with largest
imbalance in expected utilisation (C2, C6, C10, C12) the C methods out-
perform the S methods. Interestingly this is also the case for C13, which
is symmetric (machines have the same arrival rate, mean processing time
and expected utilisation) and therefore a balanced shop. For the other sce-
narios where the expected utilisations are within 0.02 and the shop is not
symmetric, the S methods outperform the C methods. When the perfor-
mance of two methods is similar, the C methods are inseparable, and the
S methods are inseparable. However we cannot say conclusively that any
method is better than any other.

Table 3.7 gives the mean performance (TWT) of three benchmark dis-
patching rules (WSPT, FCFS, MS) across the 14 test scenarios, and the
mean ± standard deviation of the average performance of each of the
40 GP runs for R1S, R1C, R2S and R2C. The standard deviation of per-
formance is much smaller for the R2 methods both with the same and
changing problem instances. Table 3.7 also gives the mean and standard
deviation of the evolution time in minutes and the total testing time (for
all 14 test configurations) in milliseconds. The R2 methods have the lowest
mean evolution time and smaller standard deviations than the R1 meth-
ods. The testing time is lower with changing problem instances than us-
ing the same problem instances and the standard deviation is also smaller.
Further, R2S has lower mean and smaller standard deviation for testing
than R1S, and likewise R2C has lower mean and smaller standard devi-
ation than R1C. R2C has the quickest mean test time (approximately 0.4
seconds) and the smallest standard deviation.
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Table 3.6: Approximate order of performance of methods on each scenario
of dynamic two-machine job shop.

Scenario Worst→ Best

C1 R1S→ {R1C,R2S, R2C}

C2 {R1S,R2S} → {R1C, R2C}

C3 {R1C, R2C} → {R1S,R2S}

C4 {R1C,R2S, R2C} → R1S

C5 {R1C, R2C} → R1S→R2S

C6 {R1S,R2S} → R2C→ R1C

C7 {R1C, R2C} →R2S→ R1S

C8 R2C→ R1C→R2S→ R1S

C9 R2S→ R1S→ {R1C, R2C}

C10 {R1S,R2S} → {R1C, R2C}

C11 {R1S,R2S} → {R1C, R2C}

C12 {R1S,R2S} → {R1C, R2C}

C13 {R1S,R2S} → {R1C, R2C}

C14 R2C→ R1C→ R1S→R2S

Comparison of results from the best-of-run individuals evolved by GP
and existing dispatching rules from the literature (WSPT, FCFS, MS) in the
table shows that GP is able to evolve rules that are significantly better than
these rules.

Due to the way in which the GP crossover operator is restricted in R2
so that crossover occurs only between trees that schedule jobs on the same
machine, only one of the GP individual’s trees is affected by crossover at
each generation. This means that the R2 GP runs could be run for twice as
many generations as R1 GP runs [70] (or do twice as many crossover oper-
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Table 3.7: Comparison of mean performance, mean±standard deviation
of training/evolution and testing times of the four GP methods over 40
runs and three benchmark dispatching rules for dynamic two-machine job
shop.

R1S R1C R2S R2C

TWT 159560±8201 140335±3188 161937±3117 139372±1216

Train (min) 117±31 118±27 80±16 90±21

Test (ms) 613±349 469±153 500±245 392±103

WSPT FCFS MS

TWT 382778 554842 534326

Test (ms) 250.0 290.0 202.0

ations per generation) for the trees to have the same number of crossover
operations to see if this makes a difference. However, this is increasing the
computational time involved considerably.

3.4.4 Analysis of Evolved Programs

To analyse why the dispatching rules work well, we choose some of the
best evolved rules to look at more closely.

The two GP individuals from method R1C in Figure 3.6 performed
identically. The dispatching rule in Figure 3.6(a) simplifies to

W ∗ RJ
PR ∗ RM

As RM will be the same for all jobs in the queue, this can be further sim-
plified to (W/PR) ∗ RJ. This is very similar to the WSPT rule weighted by
the ready time of the operation. Jobs with earlier ready times (smaller RJ)
have lower priority, all else being equal. Interestingly the due date does
not appear in this individual, although DD is related to RJ, since both in-
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Figure 3.6: Best evolved R1C individuals for dynamic two-machine job
shop.

crease throughout simulation time. The dispatching rule of Figure 3.6(b)
will generally simplify to be the same as the the dispatching rule of Fig-
ure 3.6(a) because in general DD>W, and RM>W∗W/PR. It is interesting to
note that both trees do not contain the DD terminal in their simplified form,
which we would expect to appear as it is used in calculating the tardiness
of jobs for the objective function.

A similar structure is found in the machine B tree of the R2C individual
shown in Figure 3.7(b). Once a few jobs have been processed, the ready
time of the machine will be greater than the weights of the job (under our
settings at least), and from then on the third branch of the if>0 branch
will always be scheduling the jobs. As all job weights are positive this
branch simplifies to

(W/PR) ∗ DD

as the number of jobs in the queue will be the same for all jobs evaluated at
a given time. This rule may work well because of the randomly generated
data sets. As this is only a two-machine job shop, and jobs have either one
or two operations, there is not as much difference in total processing time
(and hence due date as it is based on a total processing time multiplied by
factor 1.3) as in a larger job shop. Using this rule to schedule all jobs in
the shop at both machines gives an average TWT of 132229 across the 14
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scenarios, compared to an average TWT of 137270 across the 14 scenarios
when the machine specific dispatching rules are used. This is an unex-
pected result; we would expect this DR to not be as effective at the other
machine in the shop. If the training scenarios had been of more similar
form, e.g., machine A always has high utilisation and machine B always
has lower utilisation, this result may not occur. Although there is no sig-
nificant performance difference between the R2 and R1 methods overall,
the evolved rules of R2 are evolved for the particular task of scheduling
at a specific machine. Not all DRs evolved by R2 will be effective, and we
should not expect that those that are effective on their specific task will be
effective on a second task (i.e. scheduling at the other machine).

The machine A tree of the GP individual in Figure 3.7(a) is harder to
analyse. The middle branch will always be used, and simplifies to

W + DD− RT−max{RO, (W/PR) ∗ (RM + RJ)}.

This rule takes the latest time that processing of a job would need to start
for the job to not be tardy, adds the weight (jobs with greater weight there-
fore have higher priority) and subtracts a measure of waiting and process-
ing time. Using this rule to schedule all jobs in the shop at both machines
gives an average TWT of 2423119 across the 14 configurations, which is
considerably worse than the performance of the machine B tree.

Further, all terminals and functions appear in at least one of these
“best” evolved trees; however NQ does not contribute to the priority value
in the trees it appears in.

3.5 Chapter Summary

This work is the first time that GP has been used to evolve dispatch-
ing rules that are optimal for the static two-machine JSS problem with
the makespan objective function. This was proven by showing that the
evolved rule was equivalent to an optimal scheduling algorithm, Jackson’s



102 CHAPTER 3. DRS FOR TWO-MACHINE JSS

algorithm. From 100 GP runs with the initial parameter settings, five best-
of-run rules were found that are optimal, i.e., will always schedule jobs
to give the minimum possible makespan. When the GP parameters were
changed 11 out of 100 best-of-run rules were found to be optimal. This
validates both the GPHH approach for generating dispatching rules for
the JSS problem, and the representation used. Further, including the ad-
ditional terminal NPR in the feature set was shown to improve the results,
increasing the number of rules found which will always give the minimum
possible makespan to 12 out of 100. This has highlighted that even in the
simplest JSS environment, the selection of properties from the jobs has a
large impact on how well the GP system works, and therefore as the JSS
environments studied get increasingly more complex, with a larger num-
ber of machines, the selection of appropriate features is likely to have an
even more significant impact on the results that GP is able to attain.

Static JSS problems are simpler than their dynamic counterparts, and
most real-world scheduling environments are dynamic. These initial ex-
periments are very different to the later experiments. Here we know that
an optimal solution exists and that it can be represented as a DR. Hence we
know what terminal and function sets are sufficient and what tree depth
is sufficient. In later experiments with dynamic job shop and total weigh-
ted tardiness objective, there is no optimal solution, so the tree depth and
terminals required to represent the best possible solution are not known.
Here in this situation we can explore the differences to search efficiency
by increasing the maximum tree depth beyond what we know is sufficient
to find an optimal solution, and to include additional terminals and func-
tions which are not necessary to find the optimal solution. This makes the
search space larger, so GP might find it harder to find effective solutions —
because GP is a heuristic, it is not guaranteed to find the best possible DRs
and fitness evaluation is only an estimate through a discrete-event simula-
tion. With the validation of the genetic programming based approach for
generating dispatching rules proven in the simpler static environment, the
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following chapters will focus on more complex dynamic JSS problems.

This chapter has also investigated the combined effects of changing
the problem instances throughout evolution, and using one scheduling
rule versus machine specific scheduling rules in non-symmetric dynamic
two-machine job shops. Results show that R1 methods do not consistently
outperform R2 methods in terms of TWT, neither do the C methods out-
perform the S methods. However, the mean performance of R2 methods
do have a smaller standard deviation than their R1 counterparts. As we
cannot separate which methods are best, we cannot assume that one rule
for all machines is sufficient on all possible configurations. When we con-
sider run times, the R2 methods have shorter mean evolution times with
smaller standard deviations than their R1 counterparts. C methods have
longer mean evolution times but smaller standard deviations than the S
methods. Further the R2 methods have shorter mean testing times with
smaller standard deviations than their R1 counterparts and C methods
have shorter mean evolution times and smaller standard deviations than
the S methods.

The two-machine dynamic job shop is the simplest of dynamic job shop
environments. Following from this initial experimentation of dynamic
job shop scheduling, the following chapters will move on to use the ten-
machine dynamic job shop. This is a more realistic size of job shop for
manufacturing environments, and results obtained in this larger job shop
are expected to generalise better across different sized job shops than ru-
les developed in the two-machine job shop. Other measures of the current
state of job queues will also begin to be incorporated.

The idea of evolving GP individuals consisting of multiple dispatching
rules for use in different situations may be of more use in larger job shops;
however, the difficulty lies in determining when each dispatching rule is
to be used. There are many different properties which could be used to
differentiate between machine states, and being able to dynamically de-
termine which dispatching rule to use is a difficult challenge.
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The next chapter begins by investigating how GP can be used to de-
velop dispatching rules which are “less-myopic”. This is increasingly im-
portant as the size of the job shop increases, and each job has the potential
for more operations.



Chapter 4

Automatic Discovery of
“Less-Myopic” Dispatching Rules

4.1 Introduction

A major disadvantage of dispatching rules is their lack of a global perspec-
tive of the current and potential future state of the shop [17]. The majority
of current research into JSS lies at two extremes: a global approach through
optimisation methods where an entire schedule is constructed and, at the
other extreme, local approaches using dispatching rules.

An approach to developing “less-myopic” dispatching rules could fo-
cus on several different dimensions: it could be “less-myopic in space”,
taking into account the current state of more than just the queue of the ma-
chine in question or it could be “less-myopic in time”, taking into account
more than just the current state of the job, e.g., including an approximation
of the priority value that would be assigned in future at the next machine
the job visits for its next operation. Based on the conclusions of Chapter 3
we will now always use the same DR at every machine.

105
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4.1.1 Chapter Goals

The purpose of this chapter is to investigate how to develop less-myopic,
i.e., less shortsighted, DRs for scheduling in dynamic JSS environments.
Two methods of developing less-myopic DRs will be investigated. The
first is to explore whether modifications to the feature set enable the evo-
lution of less-myopic DRs. The objectives of this method are:

1. Determine which possible attributes of jobs, machines and the shop
system as a whole are useful to improve DR performance.

2. If performance is improved, to examine which aspects improved
with the inclusion of less-myopic terminals.

The second method is to include local search as an additional means of
providing feedback on how fit a given dispatching rule is throughout evo-
lution. The specific objectives of this method are:

1. Investigate whether the inclusion of local search to provide addi-
tional feedback on a DR’s performance leads to more effective DRs.

2. Investigate which simple local search operator provides the best per-
formance.

3. Determine whether the increase in computational time is a worth-
while trade-off for any improvement in performance.

4. Collect data on the state of queues in the job shops and investigate
what the best use computational time is, e.g., whether it is more im-
portant to schedule well when queues are long or when they are
short.

5. Determine whether a local search based fitness feedback can im-
prove tie breaking.
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4.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Section 4.2 presents
the approach using a larger feature set including properties from the wider
shop. Section 4.3 presents the approach using local search to provide ad-
ditional feedback on the fitness of a dispatching rule. Section 4.4 uses the
local search based feedback approach to investigate tie breaking. Section
4.5 summarises the key findings of the chapter and provides directions for
future work.

4.2 Less-Myopic Feature Sets

The challenge being addressed is to find “local, decentralised rules wh-
ich result in a good global performance of a given complex manufacturing
system” [17]. This section considers using a genetic programming based
approach to automatically discovering less-myopic scheduling rules. In
a ten-machine job shop, features from the wider shop system will be in-
corporated to investigate whether the rules evolved that are less-myopic
give improved performance. The aim is to find robust DRs which perform
well in job shops where jobs have different properties so we will compare
training with problem instances where all jobs have four operations, and
training with problem instances where all jobs have eight operations to see
whether the size of jobs affects their generalisation.

4.2.1 Terminal and Function Sets

We will consider GP using two different feature sets. All terminals used
are shown in Table 4.1. The first, “normal GP” (NGP) consists of the ter-
minals listed under job properties and machine properties only in Table
4.1. The second, “less-myopic GP” (LMGP), uses a feature set consisting
of all the features in Table 4.1. RJ is the release time of the job, or the time
its last completed operation finished. The wider looking properties, NPR,
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Table 4.1: Terminal set used in GP system for dynamic ten-machine job
shop.

Feature Symbol
Job Properties

Processing time of operation PR

Remaining processing time of job RT

Remaining number of operations RO

Ready time of job’s current operation RJ

Due date of job DD

Weight of job W

Machine Properties
Ready time of machine RM

Number of jobs in queue NQ

Average wait time of last five jobs processed QW

Current time CT

Wider Looking Properties
Next operation’s processing time NPR

Number of jobs in queue at the next machine
NNQ

job visits
Average wait time of last five jobs processed

NQW
at the next machine job visits
Average wait time of last five jobs processed

AQW
across all machines in the shop

NNQ and NQW all return zero if the job does not have an operation after the
current operation. If fewer than five jobs have visited a machine, then NQW,
and AQW return the average wait time of the jobs which have visited. By
including NNQ and NQW, the DR has access to the same information about
the next machine the job visits (if there is one) as it does for the machine
it is currently at By including AQW, a rule is able to approximate the total
time a job has remaining in the system. There are many possible attributes
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of the next machine that jobs visit which could be used as terminals in our
less-myopic approach. The terminals NNQ and NQW give the rules the same
machine knowledge about the next machine as about the current mach-
ine. There are many possible terminals that could be used to estimate how
busy a machine is, e.g., work in the current queue (WIQ) and work in the
next queue (WINQ), but this is a question for future research. The value
of the WIQ can be approximated by existing terminals in the terminal set,
using NQ∗PR. The potential benefit of including the less myopic terminals
is to allow the possibility of a DR which can dispatch a job to begin pro-
cessing which will go on to visit a machine which is currently idle rather
than dispatching a job which will go on to a machine which is processing
a job already or has a large queue of waiting jobs. These values could also
be used to determine which of two similar jobs has, on average, a larger
expected waiting time at the next machine and therefore may need to have
a higher priority to be processed by (or close to) its due date. The termi-
nal AQW gives the DRs the ability to better estimate the time until the job
finishes, and compare this with its due date. This should be a better ap-
proximation than using the average waiting time at the current machine.

The function set is {+, −, ∗, %, if>0, max, min}, following Chapter
3. The arithmetic operators take two arguments. The first three arith-
metic operators, +, − and ∗, have their usual meanings. The % operator is
protected division, returning zero if dividing by zero. The if>0 function
takes three arguments; if the first argument is greater than 0 then it returns
the second, else the third is returned. The max and min functions take two
arguments and return the maximum and minimum of their arguments re-
spectively.
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4.2.2 GP System Setup

Fitness Evaluation

We implement a heuristic generation approach with a GP system using
ECJ20 [78] for evolving DRs. This is using GP as a hyper-heuristic (see
Section 2.1.2 on page 25). The fitness of a DR (individual) in the current
GP population is evaluated using discrete-event simulations of problem
scenarios of a job shop. The objective of interest to be minimised, TWT,
is calculated for each problem instance, and the average over all problem
instances used is the fitness of the DR. The best DR evolved is then tested
on independent test problem scenarios.

Problem Instances

We randomly create problem instances with ten machines. The processing
times for machines follow a discrete uniform distribution with mean µ.
In each problem instance, jobs arrive stochastically according to a Poisson
process with rate λ. Equation (4.1) is used to set λ so that the machines
have a desired expected utilisation (the proportion of time a machine is
busy), ρ,

λ =
ρ

(µ× pM)
, (4.1)

where pM is the proportion of jobs that need to be processed at machine
M . For example, in a ten-machine job shop, if each job has two operations,
λ = ρ/(µ× (2/10)). Due dates are set using Equation (4.2) [5],

dj = rj + h×
Nj∑
l=1

p(σj,l), (4.2)

where h is a due date tightness parameter, randomly chosen from the
choices available for each job. Jobs are given weight 1, 2 or 4, with prob-
ability (0.2, 0.6, 0.2) [111]. This is based on the premise of the 20/60/20
rule, that is 20% of jobs are of low importance, 60% of jobs are of average
importance, and 20% of jobs are of high importance. A warm up period
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Table 4.2: Configurations for training and testing scenarios (mean of pro-
cessing time distribution, expected utilisation and due date tightness) for
dynamic ten-machine job shop problem instances.

µ ρ h

Training T1 25 0.85 {3,5,7}
T2 25 0.95 {3,5,7}

Testing P1 25 0.90 {2,4,6}
P2 50 0.90 {2,4,6}
P3 25 0.97 {2,4,6}
P4 50 0.97 {2,4,6}

of 500 jobs is used, and we collect data from the next 2000 jobs to arrive
(N = 2000), however new jobs keep arriving in the system until the 2500th
job is completed. The warm up period of 500 jobs has been shown to be
sufficient for the shop to reach steady state [52]. The two configurations
used for training, and the four used for testing are shown in Table 4.2.
Only one problem instance is used from each scenario for both training
and testing. This is because each instance requires lots of scheduling de-
cisions to be made. In training we use either four operations in every job
(4op training), or eight operations in every job (8op training). Two training
scenarios are used for evaluation at each generation of evolution, T1 and
T2. The average TWT from these is used as the fitness for the individual.

In testing we also vary the number of operations in each job, using each
configuration for a scenario where the number of operations is fixed at 4,
6, 8 or 10, and where the number of operations in each job varies randomly
between 2 and 10 (with equal probability). Using testing scenarios P1 to
P4 with each of these differing number of operations per job gives 20 test
scenarios. In this chapter we are again interested in minimising the total
weighted tardiness,

TWT =
∑

wjTj. (4.3)
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GP System Parameters

The initial population is generated using the ramped-half-and-half meth-
od [70] with minimum depth of two and maximum depth of six, and with
function and terminal sets as described above. The population size is 1024
and evolution is for 50 generations. This population size has been previ-
ously used [83, 95] as has the number of generations [95, 108]. GP trees
have a maximum depth of eight. For the genetic operators crossover, mu-
tation and elitism, we use rates of 85%, 10% and 5% respectively. Tourna-
ment selection with a tournament size of seven is used to select individuals
for genetic operators. This is a common setting that has been previously
used [50, 95]. The results of Chapter 3 showed that the larger tournament
size had better results than a tournament size of four.

4.2.3 Experimental Results

Here we present the results of using NGP and LMGP. We also compare
training in a job shop where every job has four operations (NGP-4op and
LMGP-4op), with training in one where every job has eight operations
(NGP-8op and LMGP-8op). There are many ways that the amount of in-
formation that is used in training DRs can be increased. One way of doing
this is increasing the number of jobs used in the simulation. DRs which
are trained on the training instances which use four operations per job are
performing only half the scheduling decisions that the DRs trained on the
training instances with eight operations per job. This is one way of inves-
tigating the gain that increasing the number of scheduling decisions are
made in training leads to in final performance. For each we performed 100
GP evolutionary replications, using 100 common psuedo-random number
generator seeds.
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Performance on Test Scenarios

Figure 4.1 shows the results on the 20 test scenarios by the 100 best-of-
run evolved DRs from both NGP and LMGP, trained with four and eight
operations in every job respectively. Each graph presents the results for
one test scenario, with a violin plot showing the distribution of TWT at-
tained for each method; additionally the individual TWT values attained
are overlaid in black. Table 4.3 gives the corresponding mean and stan-
dard deviation of TWT.

Figure 4.1 shows that on the P1 and P2 test scenarios, with the lower
expected utilisation, NGP evolves better performing DRs, as there are a
greater number of DRs with low values of TWT. However we performed
Mann-Whitney U tests, which showed that the difference in means be-
tween NGP and LMGP is not statistically significant at the 5% level.

On the other hand, if we consider the P3 and P4 test scenarios with
higher expected utilisation (except for 2-10ops P3), LMGP now evolves
more DRs that attain low TWT values, and fewer DRs with very high TWT.
The difference in means is statistically significant at the 5% significance
level. These have a higher utilisation rate than P1 and P2, so it seems
logical that it would be more important to take into consideration shop
features that look further than the current machine, as there are likely to
be longer queues at machines. From Table 4.3 we observe that on these test
scenarios the standard deviation is always smaller using LMGP. Further
LMGP-8op has smaller standard deviation than LMGP-4op on all but two
problem instances.

The methods with four operations in every job through evolution, NGP-
4op and LMGP-4op, outperform their eight operation counterparts, NGP-
8op and LMGP-8op respectively, on all the P1 and P2 scenarios as well as
P3 and P4 2–10ops scenarios. On scenarios P3 and P4 (except 2–10ops)
there is not a statistically significant difference in performance between
NGP-4op and NGP-8op, or between LMGP-4op and LMGP-8op. In train-
ing the 4-op methods are expected to see fewer operations than 8-op meth-
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4op, LMGP-4op, NGP-8op and LMGP-8op on ten-machine dynamic job
shop. Note that the vertical axis scales are different in each subfigure.
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ods, yet this does not seem to hinder the performance of the evolved DRs,
but may be one reason for the smaller standard deviation in TWT per-
formance of LMGP-8op compared to LMGP-4op. Also note that the best
(lowest) values for the worst performance (highest TWT) are achieved by
either LMGP-4op (7/20) or LMGP-8op (9/20) on the majority of the test
scenarios.

Table 4.4 shows the average of both the mean and standard deviation
of the number of jobs waiting in machine queues for each of the 20 scenar-
ios and methods. LMGP-8op gives the lowest mean value of both mean
and standard deviation on almost all of the scenarios. LMGP-4op also im-
proves on the values of NGP-4op and NGP-8op although it is not as good
as LMGP-8op. We see through these results that the improvements offered
by using LMGP can be partly attributed to reducing the expected number
of jobs in queues, and evening out the queue lengths at the different ma-
chines in the shop. The results of 2-10ops show a trend of increasing TWT
in the order NGP-4op, LMGP-4op, NGP-8op, LMGP-8op. DRs evolved by
LMGP-4op achieved the lowest TWT of the runs from the four methods on
11 of the 20 test scenarios, rules evolved by NGP-4op achieved the lowest
TWT on seven of the test scenarios, and NGP-8op rules attained the lowest
TWT on the remaining two test scenarios.

Table 4.5 gives the mean and standard deviation of the evolution time,
in minutes, and the total testing time (for all twenty test scenarios), in
milliseconds. The evolution time is lowest for LMGP-4op, followed by
NGP-4op and LMGP-8op. The LMGP methods have smaller standard de-
viations. NGP-8op has the longest average evolution time and the largest
standard deviation. Table 4.5 shows that the time taken for testing is less
with LMGP-4op than NGP-4op and less with LMGP-8op than NGP-8op,
and that the standard deviation is smaller for LMGP methods. LMGP-8op
has the quickest mean test time of approximately five seconds.
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8op
P3

4985465.41
799423.44

4489386.19
531549.37

4835644.40
512518.79

4225090.75
229864.51

8op
P4

2901411.77
417352.74

2698279.34
339414.06

2929491.13
360604.34

2695113.12
210071.04

10op
P1

365720.34
157117.61

390159.65
141723.68

481175.06
156292.44

505239.36
100390.26

10op
P2

176482.48
128037.25

215141.90
123886.37

298849.21
139751.64

342768.70
93774.30

10op
P3

4342695.89
809956.98

4074597.13
637837.34

4237180.37
540592.44

3723260.75
287245.04

10op
P4

1804118.93
403840.85

1686780.92
260363.49

1905379.46
334249.28

1793891.66
182499.29

2-10op
P1

64913.32
37814.58

79528.10
39059.80

106499.75
42883.45

130122.19
33225.58

2-10op
P2

40063.65
31117.71

52725.28
31207.22

76804.04
36061.47

96762.79
27640.52

2-10op
P3

388413.32
132586.12

432380.14
120921.98

508117.19
132659.56

593566.38
114601.87

2-10op
P4

502883.51
164893.81

495076.13
118384.28

644351.87
151670.52

652134.71
105591.85
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Table 4.5: Mean and standard deviation of training and testing times for
dynamic ten-machine job shop.

NGP-4op LMGP-4op NGP-8op LMGP-8op
Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Evolution 1283.9 826.2 1172.2 694.5 1715.0 826.2 1134.0 734.4
time (min)
Test time 4596.6 3040.3 4060.3 2520.2 5957.7 3463.6 3792.7 2800.3
(ms)

%

% max

+ %

- QW

RT NQ

min W

AQW PR

% max

+ %

min QW

CT max

* min

NPR NNQ AQW PR

RT -

DD CT

* +

NPR NNQ min QW

NPR %

min W

AQW PR

Figure 4.2: One of the best performing LMGP-4op DRs on the test scenar-
ios.

4.2.4 Analysis of Evolved DRs

To analyse why the evolved DRs work well, we choose some of the best
performing evolved rules and present them as trees. We have simplified
the DRs shown in Figures 4.2, 4.3 and 4.4 slightly, though more simplifica-
tion is likely possible.

Figure 4.2 shows a dispatching rule evolved using LMGP-4op repre-
sented as a tree. The shaded boxes highlight the additional terminals in-
troduced to incorporate features of the wider shop. This rule achieved the
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minimum TWT on ten of the 20 test scenarios (4 ops P1–P4, 6 ops P1–P2, 8
ops P3–P4 and 2-10 ops P3–P4). A useful fragment appearing in this DR is
DD−CT which will be greater than 0 if the job is not overdue, and further
this appears in the DR as RT/(DD − CT), which is a ratio of the remaining
time to the time until due.

In Figure 4.3 one of the best performing rules from LMGP-8op is pre-
sented as a tree. It is interesting to note the appearance of the inverse of
the WSPT rule in the two places in the rule, both times in the left branch
of a min operator. It occurs as (((AQW%W)%CT) ∗ PR). It is interesting to
observe that if there are no operations after the current operation this DR
will return 0.

In Figure 4.4 we note a similar fragment to that observed in the DR
of Figure 4.2, RT/(DD − RM). In the DR of Figure 4.4 we also observe the
presence of the WSPT rule (W/PR) in left-most branch.

It is interesting that all of the DRs presented are smaller than what they
could potentially be (maximum depth of eight), hence it may be promising
to restrict the depth to seven, or less, and compare the behaviour of the
DRs evolved under that constraint.

In the evolved DRs (trees) we frequently see a count (e.g. RO, NQ or
NNQ) compared to a length of time (e.g. PR) or an absolute time (e.g. DD).
The comparisons between counts and local measures using + and−make
little sense as we try to interpret the DR, however comparisons using ∗
and % are more meaningful.

Partial fragments of the DRs, as identified above, are interpretable,
however, as whole DRs these are also difficult to interpret and understand
why they are, or are not, effective at dispatching jobs.

4.2.5 Feature Set Conclusions

The goal of this section was to develop a GP based approach to evolve
less-myopic scheduling rules for the dynamic ten-machine job shop envi-
ronment. To achieve this we introduced four additional terminals to the
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terminal set, which captured more information about the current state of
the job shop beyond the current machine.

Results have shown that the inclusion of these less-myopic terminals
led to the evolution of better DRs in terms of total weighted tardiness
across the test scenarios with high utilisation. On these scenarios the dif-
ference was statistically significant at the 5% significance level, with the
LMGP evolved DRs having lower means and smaller standard deviations,
as well as shorter evolution and test times. Increasing the terminal set
leads to a great increase in the size of the search space of possible GP trees;
despite the larger search space, LMGP outperformed NGP.

Across all twenty test scenarios, LMGP-4op and LMGP-8op decreased
the average queue length in comparison to NGP-4op and NGP-8op. In
terms of mean queue length, LMGP-8op< LMGP-4op≤NGP-8op≤NGP-
4op. The mean standard deviation of queue length was generally less un-
der LMGP methods than NGP methods. Further the time for testing was
less with LMGP-8op than NGP-8op. On 18/20 test scenarios, the four op-
eration methods outperformed their eight operation counterparts.

4.3 Using Local Search to Evaluate Dispatching

Rules in Dynamic JSS

Dispatching rules are often short-sighted as they make one instantaneous
decision at each decision point. In this section we incorporate local sea-
rch into the evaluation of dispatching rules to investigate including local
search to provide additional feedback on the quality of decisions made by
dispatching rules. We want to see whether this encourages the dispatching
rules to make good local decisions for effective overall performance.

In Section 4.2 we encouraged the evolution of “less-myopic” DRs thro-
ugh the inclusion of properties from the wider shop, and showed that the
inclusion of additional “less-myopic” terminals improves the performance
of DRs on scenarios with high utilisation, and reduced the expected queue
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length at machines. This section investigates “less-myopic” in a different
way, by including an assessment of how well a DR makes local decisions
over an extended decision horizon in its fitness evaluation.

Local search algorithms try to improve on an initial solution by search-
ing over a defined neighbourhood of the initial solution [1]. In static job
shop scheduling environments, a dispatching rule can be used to create
a schedule for processing the jobs, and local search can be applied to im-
prove the schedule. This is not how we are using local search in this sec-
tion. The main goal of this section is to modify the GP based system for
automatic generation of dispatching rules from Section 4.2 to incorporate a
local search element into the fitness evaluation stage to provide more feed-
back to DRs on their scheduling performance, so as to encourage a more
global perspective in the evolved rules. Here local search is used only to
evaluate the fitness of dispatching rules, not to change the order in which
jobs are dispatched.

The decision horizon is extended to include not only the queue of the
current machine but also the queue of jobs at the next machines that jobs
in the current queue visit next. When a machine becomes available, a DR
builds an initial schedule of jobs at the current machine. This is evaluated
over an extended decision horizon of the current machine and the next mach-
ine of each job. Local search is used to attempt to improve that sequence,
and information on the possible improvement contributes to the fitness of
the DR.

We want to find DRs that make good decisions, which we can do by
looking at the wider local effect when dispatch decisions are made. We
investigate whether this can encourage the evolution of DRs which are
less-myopic, better at scheduling jobs in an order which is better beyond
just the first job in the queue, and have better generalisation performance
on unseen problem instances.

In the remainder of this section we will first describe how local search
is incorporated into the GP system, followed by the experiment design.
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Then we will discuss the results and present conclusions.

4.3.1 Local Search based Evaluation

Here we describe our new method, which uses local search as an addi-
tional evaluation of the fitness of a given DR, across an extended decision
horizon. We use local search to evaluate potential queue orders, and com-
pare these to the priority sorted queue. We are interested to see if the
increase in computational time is a reasonable trade-off for better evolved
DRs.

Neighbourhood Search Operators

Local search methods start with an initial solution and try to find better
solutions by searching neighbourhoods. The initial solution will be found
by using the GP individual (DR) to create a queue ordering through pri-
ority assignment. Three simple neighbourhood search operators will be
used.

SwapFront swaps the job at the front with each other job in the queue.

MoveFront inserts each job at the front of the queue.

Transpose swaps two adjacent jobs in the queue.

These operators have been chosen as they are simple, and have small
neighbourhood size, (n−1) for n jobs in the machine queue, and therefore
low computational cost. These three operators are illustrated in Figure 4.5
with an example queue of four jobs, J1–J4.

Evaluation Process

At each scheduling decision point, neighbourhoods will be compared by
calculating the expected contribution to total weighted tardiness (TWT) of
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Local Search Operators

0 2 4 6 8 10 12 14 16 18 20

Transpose 3 & 4

Transpose 2 & 3

Transpose 1 & 2

Move 4 to front

Move 3 to front

Move 2 to front

Swap 1 & 4

Swap 1 & 3

Swap 1 & 2

Original J1 J2 J3 J4

SwapFront
J2 J1 J3 J4

J3 J2 J1 J4

J4 J2 J3 J1

MoveFront
J2 J1 J3 J4

J3 J1 J2 J4

J4 J1 J2 J3

Transpose
J2 J1 J3 J4

J1 J3 J2 J4

J1 J2 J4 J3

Figure 4.5: Diagram of evaluation process when a machine becomes avail-
able to process a job.

the jobs currently queued at the given machine. This is calculated by tak-
ing the expected completion time of each job, given its current position in
the queue (at the current machine) and where it would fit in the queue of
jobs at the next machine the job visits (assuming the current state of the job
shop as static, with no new arrivals except those moving from the current
queue).

For each job j in the queue, this is calculated as

E(Cj) = CT+QCj +PRj +QNj +NPRj +QRj + (RTj −PRj −NPRj) (4.4)

For a given job dj , CT, PR, NPR, RT are constants as in Table 4.1. QCj is the
time remaining waiting (queuing) of job j at the current machine (MC), i.e.,
the sum of the processing times of jobs ahead of job j in the queue under
the current ordering of jobs. QNj is the time spent waiting (queuing) of



126 CHAPTER 4. AUTOMATIC DISCOVERY OF “LESS-MYOPIC” DRS

job j at the next machine on the job’s route, (MN ). This is determined by
treating the next machine’s queue as a one machine problem with arrivals
only from the current machine and using the DR to dispatch jobs until all
jobs that join this machine from the current machine have been dispatched.
This gives us a lower bound on the length of time each job from machine
MC that next visits MN is expected to be in the queue at MN , as in the
full simulation jobs may arrive into the shop and from the other machines.
QRj is the sum of the average expected waiting times at each remaining
machine on job j’s route after machines MC and MN . If a job does not
have operations remaining after the current or next machine thenQNj and
QRj will have value 0. Further we are only interested in changing the
order of jobs at the first machine, and calculating the predicted time in the
next queue, therefore for each job QRj is also a constant. As our objective
is to minimise the total weighted tardiness, we are seeking to minimise
Equation (4.5) across the neighbourhood being searched.

Total =
J∑

j=1

wj ×max{0, E(Cj)− dj}. (4.5)

Each time the DR is applied to select the next job, the expected contri-
bution of the original queue order, Total0, is calculated. If Total0 = 0 then
we cannot improve on the current queue ordering, so we do not apply
local search. For each neighbouring solution, Total is calculated, and the
minimum Total across all neighbours is Totalmin. If at least one of the new
job queue orders has an improved (smaller) expected contribution to TWT
than the original, we calculate the difference penalty = Total0 − Totalmin,
i.e.,

penalty = max{0, T otal0 − Totalmin} (4.6)

so if no queue order improves the expected contribution to TWT, then
there is no penalty. We sum all the penalties incurred during the discrete
event simulation, and average over the number of times the local search
was applied; this gives penaltymean.
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Time

0 2 4 6 8 10 12 14 16 18 20

M10
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J12

J13

Figure 4.6: Example showing a full ten-machine job shop at a particular
scheduling point (time= 0).

Example of Local Search Based Queue Evaluation

Consider the decision point shown in Figure 4.6. A job completes at ma-
chine M3, and there are four jobs currently in the queue (arranged in FCFS
order for arguments sake). The four jobs waiting at M3 and their relevant
properties are shown in Table 4.6. In this example, we are interested in
the queue of jobs at machine M3, and the queues at other machines are as-
sumed to not have any more arrivals from outside the system or machines
that are not M3.

First, the DR is applied to order the jobs. Figure 4.7(a) shows what
happen when the DR is the SPT rule. The next operation of jobs J7, J8 and
J12 are shown in lighter colour, where they would be scheduled (by the
SPT rule) after the completion of their current operation and joining the
next machine queue. Job J3 has no further operations.

Job J3 has the highest priority, is completed at time 3 then exits the
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Table 4.6: Properties of queued jobs at machine M3 in the example of Fig-
ure 4.6.

Job PR NPR (RT−PR−NPR) W DD QR
J3 3 0 0 2 10 0
J7 7 4 3 4 25 6
J8 5 7 0 2 20 0
J12 4 3 11 1 30 5
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Figure 4.7: Example showing next machines visited by jobs at machine M3
under different ordering of jobs at machine M3.
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shop. Job J12 is next up, and upon completion at time 12 joins the queue
at M1. The queue at M1 is treated as a single machine problem from time
0, and SPT is used to dispatch jobs. J12 therefore starts processing im-
mediately at time 12 just as J13 finishes. Continuing in this manner, the
expected completion times are calculated using Equation (4.4) for the four
jobs given this current order are:

E(C3) = 0 +0 + 3 +0 + 0 +0 + 0 = 3

E(C12) = 0 +3 + 4 +5 + 3 +5 + 11 = 31

E(C8) = 0 +7 + 5 +0 + 7 +0 + 0 = 19

E(C7) = 0 +12 + 7 +0 + 4 +6 + 3 = 32

This gives expected contribution to TWT, calculated using Equation (4.5),
of

Total0 =
∑

j∈{3,12,8,7}

wj ×max{0, E(Cj)− dj}

= 2×max{0, 3− 10}+ 1×max{0, 31− 30}

+ 2×max{0, 19− 20}+ 4×max{0, 32− 25}

= 29

This is the expected contribution of the original queue order, Total0. Since
Total0 > 0, there may be another queue ordering which improves on this
expected contribution to TWT.

With the local search operator SwapFront there are three neighbouring
solutions to evaluate. The first (see Figure 4.7(b)) is swapping the jobs in
positions 1 and 2, J3 and J12, giving order J12, J3, J8, J7. J12 is completed
on M3 at time 4, and joins the queue at M1. When M1 finishes processing
J4, the DR is used to choose between J12, which has arrived from M3, and
J13, which was already waiting in the queue at M1 at time 0. SPT chooses
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J12 ahead of J4. As we follow through the simulation, we get

E(C12) = 0 +0 + 4 +1 + 3 +5 + 11 = 24

E(C3) = 0 +4 + 3 +0 + 0 +0 + 0 = 7

E(C8) = 0 +7 + 5 +0 + 7 +0 + 0 = 19

E(C7) = 0 +12 + 7 +0 + 4 +6 + 3 = 32

Total1,2 = 1×max{0, 24− 30}+ 2×max{0, 7− 10}

+ 2×max{0, 19− 20}+ 4×max{0, 32− 25}

= 28

This order improves on the expected contribution to TWT.
Swapping jobs in positions 1 and 3 (see Figure 4.7(c)) gives:

Total1,3 = 2×max{0, 12− 20}+ 1×max{0, 31− 30}

+ 2×max{0, 12− 10}+ 4×max{0, 32− 25}

= 36

which does not improve on Total0.
Swapping jobs in positions 1 and 4 (see Figure 4.7(d)) gives

Total1,4 = 4×max{0, 20− 25}+ 1×max{0, 31− 30}

+ 2×max{0, 23− 20}+ 2×max{0, 19− 10}

= 25

Swapping queued jobs in positions 1 and 2, or positions 1 and 4 both
improve on Total0. The minimum attained is Totalmin = 25. Therefore
penalty = 29 − 25 = 4. This process is repeated whenever a machine be-
comes available to process a job and there is a queue of waiting jobs.

4.3.2 Initial Experiment

Due to the computational cost of applying local search at every decision
point throughout evolution, we begin with a small scale experiment to
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compare two methods using local search to evaluate the fitness of DRs
over the extended decision horizon, and only use local search at every
20th decision point. Initially we use only the SwapFront neighbourhood
search operator.

Methods and Fitness. The fitness of a DR (individual) in the current GP
population is evaluated using discrete-event simulations of problem in-
stances of a job shop. In each method, the fitness values, TWT and penalty,
are calculated on four training problem instances, and the mean of the fit-
ness values across these problem instances used is the fitness of the DR.

Benchmark GP (BM). In the benchmark GP method, the objective of in-
terest to be minimised, TWT, is normalised by the expected utilisa-
tion and this is used as the fitness value.

Local Search Single Objective (LS-SO). We use local search to evaluate
the job queue every 20th time the DR is called to select a job for dis-
patch. The overall fitness of a DR for a problem instance is the sum
of TWT and the penalty, TWT + penaltymean. TWT and penalty are
on the same scale of weighted time.

Local Search Multi Objective (LS-MO). We use local search to evaluate
the job queue every 20th time the DR is called to select a job for dis-
patch. This is a multi-objective method based on LS-SO, using the
NSGA-II algorithm [32] (see Section 2.3.7, page 51). The penalty is
used as a distinct second objective. The first objective is TWT and
the second objective is penaltymean.

GP System Setup. GP individuals are DRs. The properties of jobs, ma-
chines and the job shop that are used as terminals of the GP system is the
LMGP set of terminals, using all terminals given in Table 4.1 (see page
108). The function set is also the same set used earlier: {+, −, ×, %, if>0,
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max, min}. The initial population is generated using the ramped-half-and-
half method [70] with an initial maximum depth of six. The population
size is 50 to constrain the computational time due to the incorporation of
local search, and evolution is for 50 generations, a standard setting. GP
trees have a maximum depth of six. Genetic operators crossover, muta-
tion and elitism, use rates of 85%, 10% and 5% respectively. Tournament
selection with a tournament size of seven is used to select individuals for
genetic operators. This is a common setting that has been previously used
[95].

Training and Testing. The configuration of training and testing scenar-
ios is given in Table 4.7. Four training scenarios are used. The processing
times at each machine follow a discrete uniform distribution with mean
µ, i.e., U(1, 2µ − 1). A warm up period of 100 jobs is used, and we collect
data from the next 200 jobs to arrive (N = 200), however new jobs keep
arriving in the system until the 300th job is completed. This is a very low
number of jobs due to the increase in computational time required by lo-
cal search. Jobs are given weight 1, 2 or 4, with probability (0.2, 0.6, 0.2)

[111]. The four scenarios give two utilisation levels, 90% and 95%, and ei-
ther “full” (one operation at each machine, giving ten operations per job)
or “variable” operations (the number of operations per job is uniformly
distributed on {2, . . . , 10}). In testing, we increase the warm up period
to 500 jobs and the number of jobs we collect data to N = 1000. In ex-
treme testing, XT1, the processing times follow a geometric distribution
with mean µ = 25 (parameter p = 0.04), and utilisation is 0.95. We also
change the weights given to jobs, including an additional weight for very
important jobs; jobs are now given weight 1, 2, 4 or 8, with probability
(0.2, 0.5, 0.2, 0.1). Due date tightness is equally likely from {2, 2.5, 3}; these
are the same or tighter than in training. The aim of the extreme testing in-
stance is to see how well evolved DRs generalise to a problem scenario
which is tougher (tighter due dates) and different (processing time distri-
bution) to what they were trained on.
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Table 4.7: Configuration of training, testing and extreme testing scenarios
for local search based evaluation experiments (mean of processing time
distribution, expected utilisation, due date tightness and operation set-
ting).

µ ρ h Operations
Training TR1 25 0.90 {2, 3, 4} full

TR2 25 0.95 {2, 3, 4} full
TR3 25 0.90 {2, 3, 4} variable
TR4 25 0.95 {2, 3, 4} variable

Testing T1 25 0.95 4 full
Extreme Testing XT1 25 0.95 {2, 2.5, 3} full

LS-SO and LS-MO Results. We performed 50 independent GP runs for
each method, with the same pseudo-random number generator seeds. From
these the best-of-run individual (LS-SO), or final non-dominated front (LS-
MO) are tested on test and extreme test instances. The aggregate non-
dominated front on each instance consists of the non-dominated DRs across
all evolved DRs from LS-MO.

Figures 4.8 and 4.9 present the test results, TWT and penalty, of the
evolved DRs on T1 and XT1. These methods are compared to the bench-
mark method (BM) which only used the local search penalty calculation
during testing. In particular the zoom-ins on the overall best front of DRs
in Figures 4.8(b) and 4.9(b) shows that the LS-MO method was able to find
a large number of DRs which attain lower TWT and penalty values on the
test instance and extreme test instance. All benchmark and LS-SO DRs are
outperformed by many LS-MO DRs. The lowest TWT attained by LS-MO
and LS-SO methods are lower than the lowest attained by the benchmark.
The mean evolution time for BM (316.94±50.81) and LS-SO (308.21±45.76)
was less than half that of LS-MO (786.61±100.20).

Including local search in the evaluation process has found DRs which
attain good performance. There are a large number of DRs from LS-MO
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and LS-SO that achieve lower penalty than the benchmark for similar TWT
values, particularly for the lower TWT values. This shows that including
local search has improved the local performance of DRs.

Due to the computational cost we have investigated small examples,
with a small GP population and short problem instances. This has signifi-
cantly reduced the number of scheduling decisions made in training, and
with the shorter warm up period, the system may not have reached steady
state.

4.3.3 Extended Experiments

Next we will increase the warm up period, reduce the frequency at which
local search is applied, and consider using the MoveFront and Transpose
neighbourhood search operators as well as SwapFront. We continue our
experiments using only LS-MO in comparison to the benchmark GP me-
thod, as on the problem instances in our initial investigation the evolved
DRs from LS-MO were shown to outperform the evolved DRs from LS-
SO in terms of both TWT and penalty. These experiments use the same
method as above, with additional testing instances.

Changes to Problem Instances. We randomly create problem instances
of job shops with ten machines. We now use 500 jobs for the warm up
period, as this has been shown to be a good number of jobs for the warm
up period to allow the job shop to reach steady state [52]. Performance
measures from the next 1000 jobs will be collected (N = 1000), new jobs
keep arriving in the system until the completion of the 1500th job. This is
the same for both training and testing.

The same four training scenarios are used. The processing times at each
machine follow a discrete uniform distribution with mean µ, i.e., U(1, 2µ−
1). In training and testing, jobs are given weight 1, 2 or 4, with probability
(0.2, 0.6, 0.2) [111]. Table 4.8 gives the settings for problem instances.
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We now use 24 problem instances for testing, one instance per config-
uration, and have an additional 24 problem instances for extreme testing,
one instance per configuration. The extreme testing uses a different pro-
cessing time distribution and priority assignment to see how well DRs
generalise to unfamiliar instances. In extreme testing problem scenarios,
the processing times follow a geometric distribution with mean µ = 25

(parameter p = 0.04). We also increase the number of possible weights
given to jobs, including an additional weight for very important jobs; jobs
are given weight 1, 2, 4 or 8, with probability (0.2, 0.5, 0.2, 0.1). Due date
tightness is equally likely from the available options which are the same
or tighter than in training.

Changes to GP Parameter Settings. Our initial experiments had a small
population size of 50, to restrain the computational time due to the in-
corporation of local search. We increase this to 100 in these experiments.
Evolution remains at 50 generations, a standard setting. All other GP pa-
rameter settings remain the same.

Investigation of Best Use of Computational Time with Local Search

Local search is computationally expensive, hence we have restricted the
use of local search for additional fitness evaluation to every 100 times a
machine is ready to dispatch a new operation. We will gather data, and in-
vestigate potential improvements on how to best use computational time
to apply local search. In the testing phase of each best-of-run DR from
SOGP and every DR in the non-dominated front from MOGP we gather
the following information:

• The queue length every time a dispatching decision is made. From
this we report the mean, standard deviation and maximum recorded
queue length of each problem instance.

• Every time a dispatching decision is made and local search is ap-
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Table 4.8: Configuration of training, testing and extreme testing scenar-
ios (processing time distribution, expected utilisation, due date tightness
and operation setting) for extended local search based fitness experiments.
Here “unif” is the discrete uniform(1,49) distribution, “geom” is the Ge-
ometric(0.04) distribution, F indicates “full” operations and V indicates
“variable” operations.

Dist ρ h Ops Dist ρ h Ops

Training

TR1 unif 0.90 {2,3,4} F TR3 unif 0.90 {2,3,4} V

TR2 unif 0.95 {2,3,4} F TR4 unif 0.95 {2,3,4} V

Testing Extreme Testing

T1 unif 0.80 4 F XT1 geom 0.80 {2,3,4} F

T2 unif 0.80 6 F XT2 geom 0.80 {2,3,6} F

T3 unif 0.80 8 F XT3 geom 0.80 {2,2.5,3} F

T4 unif 0.85 4 F XT4 geom 0.85 {2,3,4} F

T5 unif 0.85 6 F XT5 geom 0.85 {2,3,6} F

T6 unif 0.85 8 F XT6 geom 0.85 {2,2.5,3} F

T7 unif 0.90 4 F XT7 geom 0.90 {2,3,4} F

T8 unif 0.90 6 F XT8 geom 0.90 {2,3,6} F

T9 unif 0.90 8 F XT9 geom 0.90 {2,2.5,3} F

T10 unif 0.95 4 F XT10 geom 0.95 {2,3,4} F

T11 unif 0.95 6 F XT11 geom 0.95 {2,3,6} F

T12 unif 0.95 8 F XT12 geom 0.95 {2,2.5,3} F

T13 unif 0.80 4 V XT13 geom 0.80 {2,3,4} V

T14 unif 0.80 6 V XT14 geom 0.80 {2,3,6} V

T15 unif 0.80 8 V XT15 geom 0.80 {2,2.5,3} V

T16 unif 0.85 4 V XT16 geom 0.85 {2,3,4} V

T17 unif 0.85 6 V XT17 geom 0.85 {2,3,6} V

T18 unif 0.85 8 V XT18 geom 0.85 {2,2.5,3} V

T19 unif 0.90 4 V XT19 geom 0.90 {2,3,4} V

T20 unif 0.90 6 V XT20 geom 0.90 {2,3,6} V

T21 unif 0.90 8 V XT21 geom 0.90 {2,2.5,3} V

T22 unif 0.95 4 V XT22 geom 0.95 {2,3,4} V

T23 unif 0.95 6 V XT23 geom 0.95 {2,3,6} V

T24 unif 0.95 8 V XT24 geom 0.95 {2,2.5,3} V
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plied, we record the queue length when a positive penalty is as-
signed, as well as the penalty assigned. We also record the queue
length when no penalty is assigned. From this we report the mean,
standard deviation and maximum queue length for when positive
penalty and no penalty is assigned. We also report the mean and
standard deviation of penalty assigned for each queue length.

From this information we hope to be able to determine when the most
important decisions are being made, i.e., whether it is more important to
schedule a job correctly when there are few or many jobs in the queue.
This information can enable us to use the application of local search more
effectively, as it is such a time intensive process.

4.3.4 Experimental Results

To evaluate the three different local search operators, we performed 50
independent GP runs for each operator, with the same pseudo-random
number generator seed. The front of non-dominated individuals from the
final generation is tested on the test and extreme test instances. We also
perform 50 GP runs of benchmark single objective GP, using TWT as the
only objective. The best-of-run individuals are tested on the same test and
extreme test instances, and the penalty incurred using each of the three
local search operators is calculated during each simulation. Note that the
best-of-run TWT values obtained from the benchmark GP evolved DRs
are therefore the same for each LS operator, however the penalty values
are different. We present the results of benchmark (BM) and LS-MO me-
thods (MO) with MoveFront (MF), SwapFront (SW) and Transpose (TR)
operators, and this gives six methods.

Figures 4.10 and 4.11 present the results of the scenarios with the same
parameters as Figures 4.8 and 4.9 from the initial results. On these sce-
narios, it is still the case that the LS-MO methods achieve lower (better)
TWT values than the benchmark methods. We also note that the longer
warm up, greater number of jobs for which data is collected, and larger
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population size through training, has led to an aggregate non-dominated
front which attains lower TWT and lower penalty values than in the initial
experiments, which is as expected.

At a quick glance, as in the full picture of Figures 4.10(a) and 4.11(a),
all three operators have a similar aggregate non-dominated front, with
slight differences in the distribution of evolved DRs. In Figures 4.10(b)
and 4.11(b) we are able to see the differences between the local search
operators. On scenario T10, MOSW has the best non-dominated front,
with many DRs in the aggregate front having lower TWT values than both
MOMF and MOTR. However, on scenario XT12 it is harder to differentiate
between the three MO methods, and all three have DRs which attain lower
TWT than the minimum attained by the benchmark GP.

Figure 4.12 presents a plot showing the distribution of the normalised
TWT and normalised penalty values attained by the best-of-run DRs and
DRs from the non-dominated fronts. These values were attained as fol-
lows. The fitness of a DR on scenario i is normalised by

fnorm,i =
fi − fmin,i

fmax,i − fmin,i

(4.7)

where fmin,i is the minimum TWT value attained on scenario i across all
methods, and fmax,i is the maximum TWT value attained on scenario i

across all methods. This gives two summary fitness values:

ft = 1
24

∑i=24

i=1
fnorm,i fxt = 1

24

∑i=48

i=25
fnorm,i (4.8)

and one overall fitness value

fTWT = 1
2

(ft + fxt) (4.9)

Penalty values were normalised using the same method. Figure 4.12 shows
that the best overall TWT values were attained by DRs evolved by MOSW,
followed by MOTR; however the lowest penalty values were attained by
DRs evolved by MOTR. The plot also looks similar to the plots from T10
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Figure 4.12: Normalised TWT and penalty values across all test and ex-
treme test instances.

and XT12, suggesting that relative performance across all instances is sim-
ilar to T10 and XT12.

We want to identify the difference between SwapFront, Transpose and
MoveFront to see what reasons there may be for the better performance
of the DRs evolved by SwapFront. Better performance suggests that the
feedback provided by SwapFront is better than the feedback provided us-
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ing the other two operators, and therefore better identifies individual DRs
which are fitter over this extended decision horizon and hence are less-
myopic. SwapFront is likely to be considerably changing the expected
completion time of two jobs in the queue, MoveFront will be considerably
changing the value of one job in the queue, and Transpose only changes
the expected completion time of two jobs in the queue. As the penalty
value is assigned by penalty = Total0− Totalmin, it only takes one possible
queue order to have a better expected contribution to TWT for the penalty
to be assigned. As the penalty function is the overall mean, we are unable
to tell if a rule made several very bad (and high penalty) dispatching de-
cisions, or was consistently scheduling jobs in a way that could be slightly
improved across the extended decision horizon. If we had the compu-
tational time to be able to apply local search to select which job will be
dispatched then Transpose would only change the dispatched job in one
neighbourhood, whereas with both SwapFront and MoveFront each job
appears at the front of the queue in one neighbourhood.

Queue and Penalty Properties. Figures 4.13 and 4.14 shows violin plots
of the distribution of the mean queue length every time a dispatching deci-
sion is made beside the mean queue length when a positive penalty value
is assigned and when there is no penalty assigned for evolved DRs from
BMMF. There is one value for each evolved best-of-run DR and each DR in
the non-dominated front. As local search was only used every 100 times
the DR was called to make a dispatching decision, fewer values were used
to calculate the mean for when penalty was and was not assigned. Local
search is also not used when there is only one job in the queue, as there
is no other possible queue order in this case. The violin plots show that
for BMMF, on average the queues are longer when a penalty is assigned.
Similar trends were shown for all other methods. The standard deviation
on queue lengths are very large. In all figures, the Transpose method has
the lowest mean penalty per queued job, followed by the MoveFront and
SwapFront methods.
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Figure 4.14: Violin plot of mean queue length over all dispatch points,
mean queue length when local search is used and positive penalty is as-
signed, and mean queue length when local search is used and no penalty is
assigned with BMMF on extreme test instances.
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(b) Close up of LS-MO methods.
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(d) Close up of BM methods.

Figure 4.15: Mean penalty per queued job for all queue lengths on scenario
T10.
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Figure 4.15 shows the mean penalty for each queue length on test sce-
nario T10 for all evolved DRs from BM methods (Figures 4.15(c) and 4.15(d))
and LS-MO methods (Figures 4.15(a) and 4.15(b)). For the BM methods we
connect points from the same DR; for the LS-MO methods there are too
many to plot clearly. Figure 4.16 shows the mean penalty for each queue
length on extreme test scenario XT12 for all evolved DRs from BM meth-
ods (Figures 4.16(c) and 4.16(d)) and LS-MO methods (Figures 4.16(a) and
4.16(b)). The close up of both LS-MO and BM methods on both test sce-
nario T10 and extreme test XT12 show the trend that the mean penalty per
queued job increases from jobs 1 to 10, then plateaus. The plots also show
that queue lengths get very long, over 60 in at least one instance on both
scenarios.

Best Evolved Dispatching Rules. Figure 4.17 shows the best evolved DR
from all six methods. This DR was evolved by MOSW and has not been
simplified. This DR has 22 terminal nodes, of which 14 are wider look-
ing terminals. Although some of these less myopic terminals are in the
branches of the if>0 statements and therefore will not always be evalu-
ated in assigning priorities, the majority of the less myopic terminals will
be evaluated during priority assignment. This reinforces the conclusions
of Section 4.2 that these terminals improve TWT performance and are in-
deed “less-myopic”. Once again we also note the subtraction of values
that we do not consider to be semantically valid, e.g., the number of jobs
in the next queue is subtracted from the job’s importance weighting. Alth-
ough this DR is effective at dispatching jobs from the queue, it is difficult
to provide insight into why it is effective, partly due to the large number
of min, max and if>0 statements.

4.3.5 Local Search Conclusions

The goal of this section was to investigate the possible improvements to
training of DRs for the dynamic ten-machine job shop in GP through the
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Figure 4.16: Mean penalty per queued job for all queue lengths on scenario
XT12.
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use of local search. We implemented a local search based penalty, which
punished DRs which were not scheduling jobs in the best order based on
the current projected contribution to the TWT objective function. Initial
results show that the inclusion of the local search penalty in evaluation
has led to the evolution of DRs which have better local performance, and
achieve some better TWT values. Our more in-depth investigation sup-
ports the findings of the initial investigation and shows that the SwapFront
operator often leads to the non-dominated front of DRs which is closest to
the best out of the three neighbourhood search operators investigated.

Analysis of the lengths of queues when penalties were assigned, and
when there was no improvement to be made in terms of the contribution
to TWT, showed that there is a huge overlap in mean±standard devia-
tion. However the cluster of means shows that, as would be expected, the
mean queue length is longer when the expected contribution to the TWT
can be improved, than when it cannot. This suggests that in future work,
using local search to evaluate the dispatching performance when queue
lengths are longer could be more effective. This could be seen as treating
machines as “bottlenecks” when they have a large queue of work awaiting
processing.

4.4 Local Search to Investigate Tie Breaking

In this section, the local search based additional fitness evaluation de-
scribed in Section 4.3.1 is used to investigate how often a dispatching rule
assigns the same priority value to different jobs, and whether the default
tie break, of using the shortest processing time (SPT) rule, is selecting the
best job in those situations.

An effective DR should not assign the same priority to two jobs that do
not have the same properties. This motivates us to explore the possibili-
ties of encouraging the evolution of dispatching rules which do not often
assign the same priority to multiple queued jobs, by using local search
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to penalise dispatching rules which assign the same priority to jobs with
different properties.

The aim is to find out whether these methods can reduce the number
of ties in test cases, and whether the TWT performance is improved.

4.4.1 Local Search Fitness for Tie Breaking

This investigation uses local search among the sub-schedule of jobs which
have been assigned the same highest priority value in the queue. Sub-
schedules are compared based on their expected contribution to the objec-
tive function. In order to evaluate how well the default tie break is work-
ing, two discrete-event simulations are run for each problem instance. In
the first, we do not use local search, and ties are broken using SPT, which
gives TWT0. In the second, we use local search to alter which of the jobs
that are tied for top priority is dispatched, dispatching the job which leads
to the lowest expected contribution to TWT, and the resulting final value
of the objective function is TWTLS .

Local search is performed as described in Section 4.3.1, with local sea-
rch operator SwapFront. The expected contribution to TWT is given by
Equation (4.5). Due to computational restraints, we use local search only
every second time a tie occurs. Two methods are investigated.

Tie Breaking Single Objective (TB-SO). This variant uses single object-
ive GP, combining the TWT fitness with an added penalty if the per-
formance of the DR was better with local search, i.e., if TWTLS <

TWT0. The fitness of an individual for a problem instance is

TWT0 + max{TWT0 − TWTLS, 0}.

Tie Breaking Multiobjective (TB-MO). This variant uses a multiobject-
ive approach. The first fitness objective is TWT0, and the second fit-
ness objective is the penalty for possible improvement on the sched-
ule the DR produced, max{TWT0−TWTLS, 0}. We use the NSGA-II
algorithm [32].
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4.4.2 GP System Setup

We use the same GP system for evolving DRs, using ECJ20 [78], as for
the initial experiments of Section 4.3.1 investigating local search for local
decision making. This includes the use of the same terminal set as detailed
in Table 4.1 and the same function set, {+, −, ∗, %, if>0, max, min}.

Problem Instances

We randomly create problem instances of job shops with ten machines. We
use four problem instances for training (see Table 4.9). We present results
on two test and two extreme test scenarios. The extreme testing is to see
how well the rules generalise to a job shop with different distribution and
priority assignment.

We are dealing with dynamic JSS, so jobs arrive stochastically accord-
ing to a Poisson process with rate λ for all problem instances. The settings
for these are shown in Table 4.9. The desired expected utilisation of ma-
chines (ρ) is achieved by setting λ =

ρ

(µ× pM)
, where pM is the expected

number of machines a job will visit (i.e. the expected number of operations
in each job). Job due dates are set as in [5], dj = rj +h×

∑Nj

l=1 p(σj,l), where
h is a due date tightness parameter, randomly chosen with equal probabil-
ity from the choices available for each job. Jobs are given weight 1, 2 or 4,
with probability (0.2, 0.6, 0.2) [111].

Four training scenarios are used. The processing times at each machine
follow a discrete uniform distribution with mean µ, i.e., U(1, 2µ − 1). A
warm up period of 100 jobs is used, and we collect data from the next 200
jobs to arrive (N = 200), however new jobs keep arriving in the system
until the 300th job is completed. This is a very low number of jobs due to
the increase in computational time required by local search.

In testing, we increase the warm up period to 500 jobs and increase the
number of jobs we collect data from to N = 1000. In testing scenarios T1
and T2, all jobs have due date tightness of 4, and utilisation is 0.95, T1 has
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Table 4.9: Configuration of training and testing scenarios (mean of pro-
cessing time distribution, expected utilisation, due date tightness parame-
ter and operation setting) for local search based tie breaking.

µ ρ h Operations
Training TR1 25 0.90 {2,3,4} full

TR2 25 0.95 {2,3,4} full
TR3 25 0.90 {2,3,4} variable
TR4 25 0.95 {2,3,4} variable

Testing T1 25 0.95 4 full
T2 25 0.95 4 variable

Extreme Testing XT1 25 0.95 {2,2.5,3} full
XT2 25 0.95 {2,2.5,3} variable

“full” operations, i.e., each job has 10 operations, and T2 has “variable”
operations, i.e., the number of operations is between 2 and 10. In extreme
testing, XT1 and XT2, the processing times follow a geometric distribution
with mean µ = 25 (parameter p = 0.04), and utilisation is 0.95. We also
change the weights given to jobs, including an additional weight for very
important jobs; jobs are now given weight 1, 2, 4 or 8, with probability
(0.2, 0.5, 0.2, 0.1). Due date tightness is equally likely from {2,2.5,3}; these
are the same or tighter than in training. XT1 has “full” operations, i.e., each
job has 10 operations, and XT2 has “variable” operations, i.e., the number
of operations is between 2 and 10.

GP Parameters

The population size is 50, this small population size is a trade-off for the
extra computational time required for local search. The initial population
is generated using the ramped-half-and-half method [70] with initial min-
imum depth of two and maximum depth of six. This small population
size is to restrain the computational time due to the incorporation of lo-



154 CHAPTER 4. AUTOMATIC DISCOVERY OF “LESS-MYOPIC” DRS

cal search. Evolution is for 50 generations, a standard setting. GP trees
have a maximum depth of six. Genetic operators crossover, mutation and
elitism, use rates of 85%, 10% and 5% respectively. Tournament selection
with a tournament size of seven is used to select individuals for genetic
operators. This is a common setting that has been previously used [95].

4.4.3 Results

Figure 4.18 plots the mean penalty (penalty/(number of ties)) vs the num-
ber of ties for the test and the extreme test instances. These plots show
that some DRs with a low number of ties have a very high penalty. These
DRs encounter few ties, but when they do they frequently make a worse
decision in terms of the expected contribution to TWT, i.e., the default tie
break of SPT is not effective. There are also DRs with low mean penalty
values for a range of number of ties that occur. For these rules the default
tie break of SPT is effective. However, we must also consider how these
values relate to the attained TWT values.

The TB-SO method produced the DRs which attained the lowest TWT
value on three of the four scenarios. The exception is scenario T2, in which
TB-MO and the benchmark attain the equal best TWT performance, which
is clearly lower than the best TB-SO DR.

Most of the best evolved DRs have a penalty of 0; which supports our
hypothesis that classifiers which are better at separating jobs by assigning
distinct priorities are more effective. The spread of TWT and penalty re-
sults is similar across all four scenarios, which suggests that performing
tie breaking with local search does not offer enough improvement to justify
the additional computational cost incurred.

4.5 Chapter Summary

This chapter has explored the development of methods to automatically
discover dispatching rules which are less-myopic using genetic program-
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Figure 4.18: Plots of Mean Penalty for each Tie frequency across test and
extreme test instances.
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Figure 4.19: Aggregate non-dominated fronts from TB-MO, and best-of-
run individuals from TB-SO and Benchmark GP on scenario T1.
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Figure 4.20: Aggregate non-dominated fronts from TB-MO, and best-of-
run individuals from TB-SO and Benchmark GP on scenario T2.
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Figure 4.21: Aggregate non-dominated fronts from TB-MO, and best-of-
run individuals from TB-SO and Benchmark GP on scenario XT1.
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Figure 4.22: Aggregate non-dominated fronts from TB-MO, and best-of-
run individuals from TB-SO and Benchmark GP on scenario XT2.
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ming.
Results show that in the dynamic ten-machine job shop, incorporat-

ing features of the state of the wider shop, and the stage of a job’s jour-
ney through the shop, improves the mean performance, and decreases the
standard deviation of performance of the best evolved rules.

A direction for future work is to investigate whether the additional
less-myopic terminals continue to offer improved performance as the scale
of the job shop increases. Another suggestion is to investigate additional
terminals which capture further properties of the job shop’s current and
potential future states, and incorporate a look-ahead element.

Results show that the inclusion of local search in evaluation during
training led to the evolution of dispatching rules which make better de-
cisions over the local time horizon, and attain lower total weighted tardi-
ness. The advantages of using local search as a tie breaking mechanism
are not so pronounced.

Results from the work of this chapter has also raised the issue of inter-
pretability of evolved dispatching rules. In the next chapter this issue will
be explored through the use of strongly typed GP to constrain the search
space [80]. This will reduce the number of the comparisons which do not
make semantic sense and enable better understanding of what informa-
tion effective rules are capturing from the shop system.



Chapter 5

Evolving Dispatching Rules with
Greater Understandability

5.1 Introduction

A major issue with dispatching rules evolved automatically by genetic
programming is their interpretability. The interpretability of heuristics
evolved by genetic programming, and other optimisers, has been iden-
tified as a crucial aspect to gain the trust of operators or managers [16].
How well, or even whether, these people are able to understand and inter-
pret how and why the dispatching rule works is therefore important if the
dispatching rules evolved using evolutionary computation techniques are
to be used in real-world situations.

One particular limitation is that many of the comparisons made in
evolved dispatching rules cannot be readily interpreted in terms of units,
i.e., semantically most dispatching rules evolved using GP are incorrect.
Knowing how well a given rule will generalise across different distribu-
tions of arrivals and processing times, and different scales, is also neces-
sary if they are to be used in practice.

The aim is to improve the overall interpretability of evolved rules as a
whole, thus improving the trust that can be placed in their performance.

159
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Individual rules can be examined and modified manually, but this is a time
consuming process requiring trial and error. If the use of strongly typed
GP (STGP) [85] can, on average, improve the interpretability of evolved
dispatching rules and keep human intervention to a minimum, then GP
can be considered an effective tool for automatically generating dispatch-
ing rules.

Another factor in the interpretability of evolved dispatching rules is
their size. It is clear that small, simple dispatching rules are easier to in-
terpret. Likewise, it is intuitive that complex situations cannot be handled
by a simple rule. Job shop scheduling is just one environment where this
holds true. The allowable tree depth for most approaches using GP allows
dispatching rules which are much larger than most dispatching rules from
the literature. The increased size allows more complex dispatching rules,
which may be able to discover more of the relationships and interactions
amongst shop properties and therefore improve performance. However,
the larger the DR, the more difficult it is to understand how it works and
compare how a change, i.e., in processing time, would alter the priority of
a given job.

Results in Chapter 4 suggested that the best-of-run dispatching rules
evolved using standard GP are not easily interpretable. This is due partly
to the way that features are combined with mathematical operators, e.g.,
it makes more sense to multiply or divide by the job weight than to add it
to or subtract it from the current time.

Jakobović and Marasović [58], in their work evolving priority functions
through GP within a meta-algorithm to form a scheduling heuristic, noted
that “GP solutions are not ‘analytically correct’ ”, and that solutions could
be restricted so that only semantically correct expressions remain (e.g. not
allowing processing time minus the number of unscheduled jobs). The
authors state that preliminary results showed no statistically significant
differences compared to standard tree-based GP. However, it is not stated
whether comparisons were made only in terms of performance on test
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cases or also included consideration of the interpretability, reliability and
generalisation ability (robustness) of the evolved rules, which we believe
are important aspects that must be taken into account when considering
how ‘good’ a DR is.

Intuitively we expect that a very simple DR may be easy to interpret
but is likely to perform poorly in complex decision situations. However, it
is desirable that a well performing (effective) DR be interpretable at least
in commonly used components, and when these are selected (conditions).

In this chapter the job shop investigated is again the ten-machine dy-
namic job shop, with the objective of minimising the total weighted tar-
diness. The ATC and WCOVERT rules introduced in Section 2.2.3 (see
page 42) are very good, small, compact and interpretable dispatching ru-
les. These are major reasons that they are used in practice and are excel-
lent examples of the rules we are trying to find automatically. Grammar-
based GP has been used as a hyper-heuristic for the automatic genera-
tion of timetabling heuristics for the exam timetabling problem [4]. The
advantages of grammar-based approaches are that it restricts the search
space and encodes knowledge of the problem domain. STGP is one form
of grammar-based GP. In STGP the grammar is used to prescribe the type
system. STGP does not have all the benefits of other forms of grammar-
guided GP; online grammar adaption is not possible in STGP. However,
grammar-based GP approaches (including STGP) have not been used to
improve the interpretability of DRs in dynamic job shop scheduling.

5.1.1 Chapter Goals

The aim of this chapter is to use a grammar-based approach [80] imple-
mented through the STGP capabilities of ECJ20 [78] to evolve DRs for the
multi-machine dynamic job shop environment. By using STGP to imple-
ment restrictions described by a grammar we constrain the search space,
aiming to develop evolved rules with greater interpretability than stan-
dard GP, and therefore enabling better understanding of what information
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effective rules are capturing from the shop system. In particular we aim to
address the following research objectives.

1. Develop terminal types and grammar(s) to specify the allowable in-
teractions between these types which can be enforced with the use
of STGP.

2. Investigate how the level of interpretability and performance com-
pares between rules evolved using STGP, those evolved by the tr-
aditional GP based generation of dispatching rules, and manually
designed rules from the literature.

3. Evaluate whether the use of STGP can be justified (if performance is
worse) as an acceptable compromise for improvement in interpreta-
bility.

4. Investigate what insight can be gained towards developing a mea-
sure to evaluate and compare interpretability of automatically evolved
rules.

5. Investigate whether the restriction of the search space through STGP
can reveal good components or combinations of components that we
can use to further restrict or alter the terminals included in the ter-
minal set.

5.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Section 5.2 explains
the proposed approach. Sections 5.3 and 5.4 present the results and anal-
ysis. Section 5.5 further discusses the results. Section 5.6 summarises the
chapter.
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5.2 Method and Experimental Design

This section describes the GP system used for the evolution of DRs and
the JSS scenarios used for training and testing of the DRs.

5.2.1 GP System for Automatic Generation of DRs

The GP system is as described in Chapter 4 (see page 110). For each prob-
lem instance, the objective of interest, TWT, is calculated, and normalised
(by dividing by the average expected utilisation across all machines), and
the mean over all problem instances is set as the fitness of the DR. The
best-of-run DR is tested on independent test and extreme test problem in-
stances.

5.2.2 Job Shop Scenarios

Recall from Chapter 4 how we randomly generate scenarios using the
properties given in Table 5.1 to determine the arrival rate using Equation
(4.1) (see page 110). Note that Table 5.1 has different values in it from Table
4.8 (see page 137). Due dates are assigned using Equation (4.2) (see page
110).

A warm up period of 500 jobs is used ([52] finds this to be sufficient for
the system to reach steady state), and we collect data from the next 2000
jobs to arrive (N = 2000), however new jobs keep arriving in the system
until the 2500th job is completed.

Training

Four job shop problem instances are used for training the population of GP
individuals (DRs), one from each scenario in Table 5.1. At each generation,
each rule is used to dispatch jobs for the four scenarios. Each TWT value is
normalised by the expected utilisation rate, and the average of these four
normalised TWT values is used as the fitness for the GP individual. For
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Table 5.1: Configuration of training, testing and extreme testing scenarios
(processing time distribution, expected utilisation, due date tightness and
operation setting). Here “unif” is the discrete uniform(1,49) distribution,
“geom” is the Geometric(0.04) distribution, F indicates “full” operations
and V indicates “variable” operations.

Dist ρ h Ops Dist ρ h Ops

Training

TR1 unif 0.85 {3, 5, 7} F TR3 unif 0.85 {3, 5, 7} V

TR2 unif 0.95 {3, 5, 7} F TR4 unif 0.95 {3, 5, 7} V

Testing Extreme Testing

T1 unif 0.80 4 F XT1 geom 0.80 {4, 6, 8} F

T2 unif 0.80 6 F XT2 geom 0.80 {3, 5, 7} F

T3 unif 0.80 8 F XT3 geom 0.80 {3, 4, 5} F

T4 unif 0.85 4 F XT4 geom 0.85 {4, 6, 8} F

T5 unif 0.85 6 F XT5 geom 0.85 {3, 5, 7} F

T6 unif 0.85 8 F XT6 geom 0.85 {3, 4, 5} F

T7 unif 0.90 4 F XT7 geom 0.90 {4, 6, 8} F

T8 unif 0.90 6 F XT8 geom 0.90 {3, 5, 7} F

T9 unif 0.90 8 F XT9 geom 0.90 {3, 4, 5} F

T10 unif 0.95 4 F XT10 geom 0.95 {4, 6, 8} F

T11 unif 0.95 6 F XT11 geom 0.95 {3, 5, 7} F

T12 unif 0.95 8 F XT12 geom 0.95 {3, 4, 5} F

T13 unif 0.80 4 V XT13 geom 0.80 {4, 6, 8} V

T14 unif 0.80 6 V XT14 geom 0.80 {3, 5, 7} V

T15 unif 0.80 8 V XT15 geom 0.80 {3, 4, 5} V

T16 unif 0.85 4 V XT16 geom 0.85 {4, 6, 8} V

T17 unif 0.85 6 V XT17 geom 0.85 {3, 5, 7} V

T18 unif 0.85 8 V XT18 geom 0.85 {3, 4, 5} V

T19 unif 0.90 4 V XT19 geom 0.90 {4, 6, 8} V

T20 unif 0.90 6 V XT20 geom 0.90 {3, 5, 7} V

T21 unif 0.90 8 V XT21 geom 0.90 {3, 4, 5} V

T22 unif 0.95 4 V XT22 geom 0.95 {4, 6, 8} V

T23 unif 0.95 6 V XT23 geom 0.95 {3, 5, 7} V

T24 unif 0.95 8 V XT24 geom 0.95 {3, 4, 5} V
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all four scenarios, the processing times follow a Uniform(1, 49) distribution
(µ = 25). The four scenarios give two utilisation levels, 85% and 95%, and
either “full” (one operation at each machine, giving ten operations per job)
or “variable” operations (the number of operations per job is uniformly
distributed on {2, . . . , 10}). Jobs are given weight 1, 2 or 4, with probability
(0.2, 0.6, 0.2). This setting has been previously used [94] and originates
from research by Pinedo and Singer [111] that showed that approximately
20% of jobs are of low importance, 60% are of average importance and
the final 20% are very important, so weights of 1, 2 and 4 are assigned to
jobs following these probabilities. The due date tightness parameter, h, for
each job is chosen from {3, 5, 7}with equal probability.

Testing

We use the ten-machine job shop of [117] for testing. As in training, the
processing time distribution is Uniform(1, 49) and jobs are given weight
1, 2 or 4, with probability (0.2, 0.6, 0.2) [111]. There are three due date
tightness parameters (4, 6, and 8), four machine utilisations (80%, 85%,
90%, and 95%) and either “full” or “variable” operations. This gives a
total of 24 test scenarios which are given in Table 5.1.

Extreme Testing

In order to further test the generalisation ability of the best-of-run evolved
dispatching rules, we have an additional set of extreme test instances.
We change the distribution of processing times to a geometric distribu-
tion with mean µ = 25 (parameter p = 0.04). The geometric distribution
is chosen because it is a discrete distribution, different from the distribu-
tion which was used in training. We also change the weights given to
jobs, including an additional weight for extremely important jobs; jobs are
now given weight 1, 2, 4 or 8, with probability (0.2, 0.5, 0.2, 0.1). If jobs
with extremely high importance are not correctly scheduled, the penalty
is much higher, so this checks the ability of rules to take job weight into
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account. The due date tightness parameter is equally likely from {4, 6, 8},
{3, 5, 7}, or {3, 4, 5} depending on the scenario. This includes some tighter
due dates than in training, making the problem instances more difficult as
it will be even more important to schedule jobs efficiently. There are a total
of 24 extreme test scenarios which are given in Table 5.1.

Within each training simulation a GP individual (dispatching rule) is
used to evaluate queues and assign priorities many times, e.g., in a “full”
scenario, 2000 jobs × 10 machines = 20,000 selections (some from queues
of size one). The simulation process is time consuming, therefore a small
number of training problem instances is used. When it comes to test-
ing, we wish to see how well the evolved best-of-run dispatching rules
perform across a wide range of problem instances, including problem in-
stances with unseen distributions, thus testing the robustness of evolved
dispatching rules.

5.2.3 Function and Terminal Sets

The attributes of the jobs, machines and the shop that are used as terminals
in the GP system are the same as used by LMGP in Chapter 4 (see Table
4.1 on page 108).

The function set consists of a subset of the following functions {+, −,
∗, %, if>0, max, min, ifPS, ifOD, ifLO}, dependent on which grammar
is being used. The arithmetic operators take two arguments. The first
three arithmetic operators, +, − and ∗, have their usual meanings. The
% operator is protected division, returning one if dividing by zero. The
max and min functions take two arguments and return the maximum and
minimum of their arguments respectively. The if>0 function takes three
arguments; if the first argument is greater than 0 then it returns the second,
else the third is returned. The remaining three if operators are introduced
in Section 5.3.3 (see page 187).

We will consider using “standard” GP where there is no restriction on
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which terminals can be arguments for functions, and a version of GP wh-
ich is restricted by a grammar, implemented using the Strongly Typed GP
[85] capabilities of ECJ20 [78]. We refer to these methods as GP and STGP
respectively. Both methods use the same set of terminals (presented in
Table 4.1 on page 108) and functions.

This is the first investigation using a grammar to semantically constrain
the search space in DR generation at the level of basic properties (as op-
posed to the approach of [95] which uses simple existing DRs). We have
created different grammars based on partitioning the terminal set into four
different type categories. One type represents counts: NQ, RO, NNQ. The
second type consists of the job weight: W. The third type represents time
durations: PR, RT, QW, NPR, AQW, NQW. The final type represents absolute
(clock) times: DD, RM, RJ and CT.

The basis for creating these grammars has been to prohibit some inter-
actions, and to begin by restricting the types to those of the input terminals
only. This means that, e.g., there are no squared time units. We hope this
will reveal information about what useful elements are in effective DRs.
The allowable and restricted interactions are shown in Table 5.2. Black
table cells show that the interaction is not allowed, e.g., D∗D, and for inter-
actions that are allowed the resulting type is given, e.g., X∗D returns type
D. Some of the interactions we restrict include adding or subtracting ter-
minals that are a weight or a count to a time or a duration, which does
not make sense (or certainly does not make as much sense as multiplying
or dividing). We have been very harsh in limiting what time terminals can
be divided and multiplied by. The if>0 function can take any first argu-
ment, but the second and third arguments must be of the same type (and
this is the type returned).

5.2.4 GP Parameter Settings

The initial population is generated using the ramped-half-and-half met-
hod [70] and has an initial maximum depth of five. The population size is
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Table 5.2: Allowable interactions for each operator in
{∗,%,+,−,max,min} for Grammar 1. Where interaction is allowed
the type of the result is given, and the cell is coloured black if the
interaction is not allowed. Terminals are split into four different type
categories: C represents counts, X represents job weight (and other ratios),
D represents time durations and T represents absolute (clock) times.

∗ X C D T % X C D T

X X X D X X X

C X C D C X X

D D D D D D X X

T T X X

+ X C D T − X C D T

X X X X

C C

D D T D D T

T T T T D

min X C D T max X C D T

X X X X

C C C C

D D D D

T T T T
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1024 and evolution is for 50 generations. GP trees have a maximum tree
depth of six. This is a smaller maximum tree depth than is often used,
since with the increase in tree size interpretability is expected to decrease.
For the genetic operators crossover, mutation and elitism, we use rates of
85%, 10% and 5% respectively. Tournament selection with a tournament
size of seven is used to select individuals for genetic operators. These are
common parameter settings that have been previously used [95].

5.3 Experimental Results

Here we present the results of using GP and STGP, working through iter-
ations of additions to the function and terminal sets. We begin in Stage 1
with a base grammar, using only arithmetic functions. In Stage 2 we mod-
ify the base grammar to include if>0, max and min in the function set.
In the third stage we remove if>0 from the function set, replacing it with
three specialised conditional statements based on analysis of the evolved
rules from Stage 2. These modifications will be explained further in Sec-
tions 5.3.2 and 5.3.3. Additionally at each stage we investigate multiple
grammars, introducing additional types to see if performance improves.

For all methods we perform 50 independent evolutionary runs, using
50 common pseudo-random number generator seeds, in order that we can
perform statistical testing. Tables 5.5, 5.6, 5.9, 5.10, 5.11 and 5.12 give the
mean and standard deviation of TWT for one problem instance per sce-
nario. We use only one problem instance for each scenario as within a
single problem instance a DR is called many times. When a method is sta-
tistically significantly better than all other methods the value is shown in
bold in the tables. If two methods are not statistically significantly differ-
ent from each other but both are statistically significantly better than the
remaining methods, both values are shown in bold. For example, on prob-
lem scenario T15, WCOVERT attained a TWT value of 0.8 and GP1 (stan-
dard GP with a reduced function set of only four terminals, introduced
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at Stage 1) and GP2 (standard GP with if>0, max and min added to the
function set of GP1, introduced at Stage 2) were not statistically different
to each other, with mean performance across the 50 GP runs of 78.9±209.7
(from Table 5.5 see page 177) and 78.9±173.2 (from Table 5.9 see page 185)
respectively.

The performance of the 50 best-of-run evolved DRs of each method is
shown using violin plots. Each scenario’s graph consists of a violin plot
for each method, with individual values attained overlaid. The vertical
axis is the TWT in 1000s, and the scale of the axis is different for each
scenario’s plot. These violin plots show us the distribution of TWT attained
by evolved DRs from each method; this includes more information than
can be gained by looking at the means and standard deviations in Tables
5.5, 5.6, 5.9, 5.10, 5.11 and 5.12.

We are interested in quantifying any performance loss by the use of
STGP. To do this we obtain the average normalised TWT fitness value
across the test and extreme test scenarios of each best-of-run dispatching
rule (as we do to obtain a single fitness value in training). We then average
across all best-of-run rules from each method, obtaining values mGP1 for
method GP1, mST1 for method ST1 (STGP with a reduced function set of
only four terminals, and initial grammar introduced at Stage 1), etc. We
then calculate values comparing each GP method to its STGP counterparts:

mGP,ST =
mST −mGP

mGP

.

5.3.1 Stage One: Arithmetic GP and STGP

First we use the grammar in Table 5.3 to restrict STGP. This uses a reduced
function set of only the four arithmetic operators {+,−, ∗,%}. We compare
rules evolved under this grammar to GP with the same arithmetic function
set. We will call these two methods GP1 and ST1. We start with this arith-
metic function set as DRs with these operators are most straightforward to
understand. This grammar expresses the allowable interactions presented
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Table 5.3: Grammar 1 for STGP. This is the grammar based representation
of the allowable interactions for the arithmetic operators and four basic
types presented in Table 5.2. The four types representing the initial termi-
nal set, X, C, D and T are used. Any interaction which returns type I is not
allowable in this basic grammar.

S = <A>

N = {A, X, C, T, D}

Σ = {∗, %, −, +, PR, RT, RO, RJ, DD, W, RM, NQ,

QW, CT, NPR, NNQ, AQW, NQW}

P = {<A> ::= <X> | <C> | <D> | <T>

<X> ::= (W) | (+ <X> <X>) | (− <X> <X>)

| (∗ <X> <X>) | (% <X> <X>)

| (% <C> <C>) | (% <C> <X>)

| (% <X> <C>)| (∗ <C> <X>)

| (∗ < X > <C>) | (% <D> <D>)

| (% <T> <D>) | (% <T> <T>)

| (% <D> <T>)

<C> ::= (RO) | (NQ) | (NNQ) | (∗ <C> <C>)

<D> ::= (PR) | (RT) | (QW) | (NPR) | (NQW) | (AQW)

| (+ <D> <D>) | (− <D> <D>)

| (− <T> <T>)

| (∗ <D> <X>) | (∗ <X> <D>)

| (∗ <C> <D>) | (∗ <D> <C>)

| (% <D> <C>) | (% <D> <X>)

<T> ::= (DD) | (CT) | (RJ) | (RM)

| (+ <D> <T>) | (+ <T> <D>)

| (− <T> <D>) | (− <D> <T>) }
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earlier in Table 5.2. This grammar is a basic grammar, restricting interac-
tions that definitely do not make sense, as well as those that only make du-
bious sense. There are many other grammars that could be defined, with
varying degrees of harshness of restriction; the time taken to explore these
would be extensive. Therefore this is a basic starting point for exploring
what are useful elements within a semantically correct search space.

Initial results of GP1 and ST1 are shown in the first two violin plots:
Figure 5.1 (test scenarios T1 to T24) and Figure 5.2 (extreme test scenarios
XT1 to XT24). Tables 5.5 and 5.6 show that DRs evolved under ST1 do
not perform as well as those evolved under GP1. We performed a paired
Mann Whitney U Test which showed that the difference of mean TWT is
statistically significant (GP1 with lower mean TWT at the 5% significance
level) on 35/48 test and extreme test scenarios. We do not expect ST1 to
attain the same level of performance as it is searching a heavily restricted
search space. In general the results in Figures 5.1 and 5.2 show approxi-
mately the same shape for lower TWT values, but ST1 has a much longer
tail (worse TWT performance) particularly on extreme test scenarios. We
wonder if this could be due to the grammar not allowing interactions wh-
ich give inverse durations, e.g., 1/PR or W/PR, and squared durations,
e.g., RT × PR.

Inclusion of Inverse-Duration Type

To investigate this premise we introduce a fifth type, I, to represent inverse-
durations. The allowable interactions are shown in Table 5.4. Due to the
implementation of strong typing in ECJ, to allow this additional type we
need to define a terminal of type I. Firstly we add in a new terminal “in-
vPR” which is 1/PR (we know PR is always > 0), and call this ST1A.
Secondly, to the original terminal set we add in a new terminal “W/PR”,
which returns W/PR, since this, by itself, is a common rule, and is also a
component of many of the successful dispatching rules from the literature
for the dynamic JSS problem with TWT objective, in particular ATC and
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Table 5.4: Allowable interactions for each operator in
{∗,%,+,−,max,min} for Grammar 1A. Where interaction is allowed
the type of the result is given, and the cell is coloured black if the interac-
tion is not allowed. Terminals are split into five different type categories:
C, X, D, T, and new type I which represents inverse time durations.

∗ X C D T I % X C D T I

X X X D I X X X I D

C X C D I C X X I D

D D D X D D D X X

T X T X X

I I I X X I I I X

+ X C D T I − X C D T I

X X X X

C C

D D T D D T

T T T T D

I I I I

min X C D T I max X C D T I

X X X X

C C C C

D D D D

T T T T

I I I I
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WCOVERT described in Section 2.2.3 (see page 42). We call this ST1B. Of
ST1, ST1A and ST1B, the best results are given by ST1A with statistically
significantly lower means than ST1 on 3/24 test instances and 6/24 ex-
treme test instances. GP1 has statistically significantly lower means than
ST1A on 25/48, only two less than compared to ST1. There was no sta-
tistically significant difference of means at 5% between ST1 and ST1A, or
between ST1 and ST1B. The performance of these two methods in com-
parison to ST1 did not convince us that it made a difference either in im-
proving or hindering the ability of GP to find effective dispatching rules.
Table 5.5 shows that the mean performance of GP1, ST1, ST1A and ST1B
all have large standard deviations.

The performance decrease using the measure described above, gives
values of mGP1,ST1 = 0.4967, mGP1,ST1A = 0.5371, and mGP1,ST1B = 0.5891.
These values show that the three ST methods (ST1, ST1A and ST1B) all
have approximately 50% greater TWT than GP1.

Inclusion of Square-Duration Type

The performance of the ST methods still do not quite match the perfor-
mance of GP. To investigate this premise we introduce a sixth type, S, to
represent squared-durations. The allowable interactions are shown in Ta-
ble 5.7. Again, due to the implementation of strong typing in ECJ, we need
to define a terminal of type S. We add in a new terminal “sqPR” which is
[PR ∗ PR] (we know PR is always > 0), and call this ST1S.

Figure 5.1 shows that ST1S often has a shorter tail of worse TWT values
than the ST1A and ST1B methods, and is more similar in distribution to
ST1. Figure 5.2, on extreme test scenarios, shows less difference in the
distribution of attained TWT.
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Figure 5.1: Violin plots presenting results (TWT in 1000s) of test scenarios
for Stage 1 GP and STGP methods. Note that the vertical axis scales are
different in each subfigure. These figures shows the distribution of TWT
values attained from the 50 independent GP runs of each method.
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Figure 5.2: Violin plots presenting results (TWT in 1000s) of extreme test
scenarios for Stage 1 GP and STGP methods. Note that the vertical axis
scales are different in each subfigure. These figures shows the distribution
of TWT values attained from the 50 independent GP runs of each method.
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Inclusion of Inverse-Square-Duration Type

The final type we introduce is inverse square durations, type F, and we call
this ST1F. We add new terminal [1/[PR ∗ PR]]. The allowable interactions
are shown in Table 5.8. Table 5.5 shows that ST1F has lower means than
the other ST methods on XT13 to XT21, but similar on the other scenarios.

The performance decrease using the measure described above, gives
values of mGP1,ST1S = 0.5716 and mGP1,ST1F = 0.4901. This shows that
the best performance of STGP relative to GP is from ST1F, followed by
ST1 and then ST1A. This is interesting that the difference between ST1F
and ST1 is small (0.0036 difference in performance measures) despite the
addition of two additional types. It is also interesting that the grammars in
between (ST1A, ST1B and ST1S) are not as effective. Based on the ordering
generated by the performance measure the best of the Stage 1 grammars
that we recommend to use are ST1 and ST1F.

5.3.2 Stage Two: Inclusion of If, Max and Min

We introduce if>0, max and min into the function set of the second gram-
mar. The allowable interactions are shown in Table 5.2. The first argument,
the condition, of the if>0 function can potentially be a large or complex
expression for which it is difficult to understand why different behaviour
should happen based on the outcome of the given expression. Again we
compare this to standard GP with the same function set. We will call these
two methods GP2 and ST2. Following Stage 1, the additional types I, S
and F are also added incrementally, giving us ST2A, ST2S and ST2F re-
spectively.

Results from the best-of-run DRs from GP2 and ST2 are shown in the
violin plots of Figures 5.3 and 5.4 and in Tables 5.9 and 5.10. These show
that DRs evolved under ST2 do not perform as well as those evolved under
GP2, with a greater number of DRs attaining high TWT values.

In the evolved best-of-run DRs from GP2 there are 81 if>0 statements
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Table 5.7: Allowable interactions for each operator in
{×,%,+,−,max,min} for Grammar 1S. Where interaction is allowed
the type of the result is given, and the cell is coloured black if the interac-
tion is not allowed. Terminals are split into six different type categories:
C, X, D, T, I, and new type S which represents squared time durations.

× X C D T I S % X C D T I S

X X X D I S X X X I D

C X C D I S C X X I D

D D D S X D D D X X S I

T X T X X I

I I I X X D I I I X

S S S D S S S D D X

+ X C D T I S − X C D T I S

X X X X

C C C C

D D T D D T

T T T T T D

I I I I

S S S S

min X C D T I S max X C D T I S

X X X X

C C C C

D D D D

T T T T

I I I I

S S S S
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Table 5.8: Allowable interactions for each operator in
{×,%,+,−,max,min} for Grammar 1F. Where interaction is allowed
the type of the result is given, and the cell is coloured black if the interac-
tion is not allowed. Terminals are split into seven different type categories:
C, X, D, T, I, S and new type F which represents inverse-square-durations.

× X C D T I S F % X C D T I S F

X X X D I S F X X X I D F S

C X C D I S F C X X I D F S

D D D S X I D D D X X S I

T X I T X X I

I I I X X F D I I I F F X D

S F F D X S F F D D X

F F F I I X F F F I X

+ X C D T I F F − X C D T I F F

X X X X

C C C C

D D T D D T

T T T T T D

I I I I

S F S F

F F F F

min X C D T I F F max X C D T I F F

X X X X

C C C C

D D D D

T T T T

I I I I

S F S F

F F F F
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Figure 5.3: Violin plots presenting results (TWT in 1000s) of test scenarios
for Stage 2 GP and STGP methods. Note that the vertical axis scales are
different in each subfigure. These figures shows the distribution of TWT
values attained from the 50 independent GP runs of each method.
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in the 50 best-of-run evolved DRs (see Table 5.14 on page 194). The evolved
conditions (i.e. the first argument) of GP2 are frequently long, difficult to
interpret, and/or it does not make sense to branch behaviour dependent
on the condition value. Of the 81, 52 remain after simplification: 10 have
complex first arguments, 21 have NQW, NPR or NNQ, 11 have QW or AQW
(only very rarely equal to zero, and never negative), five NQ−NNQ, and
five which are comparisons between the current time and the due date.
This is a very high proportion of if>0 statements which are not playing
an active part in the DR, and only 34/50 of the best-of-run evolved DRs
contain if>0 statements. This caused us to question how useful the three
argument if>0 is as a function, and whether it could be better replaced
by several if statements with predetermined conditions.

When we compare GP2 and ST2, there is a statistically significant dif-
ference of means at a significance level of 5% in favour of GP2 in 35/48
test instances. This decreased to 32/48 when we compared GP2 to ST2A
(with the fifth inverse-duration type, and terminal 1/PR), and when com-
paring ST2 to ST2A, the mean TWT was improved by ST2A on 13 test
instances. In this case the inclusion of the inverse-duration type seems
to improve mean performance more than it did with arithmetic operators
only. Figures 5.3 and 5.4 show that the shape of all Stage 2 STGP methods
are reasonably similar, although the height of the tail end (higher TWT
values) often increases from ST2A to ST2S to ST2F.

At Stage 2 the performance decreases aremGP2,ST2 = 1.0247,mGP2,ST2A =

0.5765, mGP2,ST2S = 0.7337 and mGP2,ST2F = 0.2165. This shows that ST2A
has much better performance relative to GP2 than ST2. ST2 is twice as bad
as GP2. The performance decrease from ST2 and ST2A to GP2 is worse
than in our Stage 1 results. The best performance clearly from ST2F, which
has TWT only 20% greater than GP2. However the performance decrease
from GP2 to ST2F is the again the least, and there is less of a decrease in
performance than at Stage 1.
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5.3.3 Stage Three: Specialised Conditionals

The third grammar uses the arithmetic operators, the max and min op-
erators and three new conditional operators: ifPS, ifOD and ifLO. The
new conditional operators each have a fixed condition, and take two ar-
guments. The ifPS operator returns the first argument if the slack is non-
negative, i.e., it is possible for the job to be completed on or before its due
date (DD−CT−RT ≥ 0) and returns the second argument otherwise. The
ifOD operator tests whether the job is already overdue; if the job is over-
due (DD ≤ CT) the first argument is returned, else the second argument is
returned. The final new conditional operator, ifLO, returns the first argu-
ment if it is the last operation of the job, or the second argument if it is not.
These methods will be referred to as GP3 and ST3.

We observe that GP3 and ST3 best-of-run DRs have much longer tails of
high TWT than GP1/ST1 and GP2/ST2. Figures 5.5 and 5.6 show that on a
number of test scenarios the ST3 violin plot shows lower TWT is achieved
than under GP3. The lower best values of ST3 are particularly obvious on,
e.g., T7 and T13, and occurs less on extreme test instances.

Figures 5.5 and 5.6 show that the relative performance of ST3A, ST3S
and ST3F compared to ST3 is very different across test instances and ex-
treme test instances. Across the test instances, as shown in Figure 5.5,
ST3A, ST3S and ST3F have worse performance, shown by the violin plot
having most of its bulk higher than that of GP3 and ST3. However, on test
instances T10, T22, T23 and the extreme test instances, the opposite is true,
with these three methods generally outperforming both GP3 and ST3, as
well as results being much more concentrated. The distribution of TWT
from best-of-run classifiers of ST3A, ST3S and ST3F are very similar.

Figures 5.5 and 5.6 show that the overall shape of the violin plots are
similar for GP and STGP methods with the same function set. This shows
that we are achieving a similar distribution of TWT from the best-of-run
DRs with grammars restricting the allowable interactions. From Tables 5.5,
5.6, 5.9, 5.10, 5.11 and 5.12 it is clear that all methods have large standard
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Figure 5.5: Violin plots presenting results (TWT in 1000s) of test scenarios
for Stage 3 GP and STGP methods. Note that the vertical axis scales are
different in each subfigure. These figures shows the distribution of TWT
values attained from the 50 independent GP runs of each method.
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deviations relative to the means, and that ST3A, ST3S and ST3F are the
best methods on a number of extreme test instances.

The performance decrease value is mGP3,ST3 = 0.4881, mGP3,ST3A =

−0.4552,mGP3,ST3S = −0.4482 andmGP3,ST3F = −0.4562. The performance
decrease between between GP3 and ST3 is very similar to the performance
decrease between ST1 and GP1. It is interesting that ST3A, ST3S and ST3F
improve on the performance of GP3. This is shown by the negative perfor-
mance measure values. These three methods attain TWT which is approx-
imately 60% of the TWT attained by GP3. This is a considerable improve-
ment. These are the only three STGP methods which improve on their
corresponding GP method. Although GP1 has a lower mean than GP3 on
many scenarios, GP3 outperforms GP1 and GP2 using this performance
measure. This shows that the performance of individual DRs evolved by
GP3 is more consistent than the performance of individual DRs evolved
by both GP1 and GP2.

5.4 Analysis of Evolved Rules

Tables 5.13, 5.14 and 5.15 show the number of occurrences of the terminals
and functions in the 50 best-of-run DRs, as well as the number of DRs
the terminal/function appears in, for GP and STGP. This is constructed
from unsimplified DRs. If we were to manually simplify the rules then the
values in this table would change, as there are often fragments which are
redundant or cancel out. However, simplification is sometimes subjective
and is beyond the scope of this chapter.

The most frequently used terminals across all methods are PR, DD, CT
and NNQ. The calculation of TWT requires both the job’s weight and due
date, so we expect both W and DD to appear in DRs for this objective func-
tion for effective performance. The least used terminals are NQW and NPR,
i.e., the expected queue wait at the next machine the job visits and the pro-
cessing time at that machine. RJ is also one of the least frequently used
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terminals; often CT will be approximately equal.

The introduction of three if statements with predetermined condi-
tions has given an increase in the overall number of conditional statements
used (see Table 5.15 on page 196). Further, the most useful of the three, ba-
sed upon overall frequency and number of rules it appears in, is ifPS,
where the condition is the slack of the job. Every best-of-run rule (50/50)
in GP3 uses the ifPS function, which is far more often than the if>0

function is used in GP2 (34/50 rules). With the introduction of the spe-
cialised conditionals, the number of rules where the arithmetic operators
are present has decreased. Also, although the terminal DD appears less fre-
quently, in only 29 GP3 rules and 42 ST3 rules, it is present in the condition
of ifPS.

5.4.1 Fragment Analysis

We have also analysed which are the most common two-level fragments,
i.e., one function with terminals as all its arguments. The occurrences of
terminals and fragments reveal what knowledge GP and STGP are dis-
covering, e.g., (− DD CT) which could be included in future terminal sets.
These also give us insight into potential grammars, by looking at the most
popular fragments, and the type interactions within them.

The top 10 most common for each method are shown in Tables 5.16,
5.17 and 5.18. The most common fragments in GP1, ST1, ST1S, GP2, ST2A,
ST2S and ST3 are (− CT DD) or (− DD CT), the time left until the job is
overdue. The most common fragment in ST1A, ST1B, ST1F, ST2 and ST2S
is similar, (− RM DD) which is also comparing the time to the due date.
It is interesting that the top nine most common fragments in GP2 are all
allowable under the introduced grammar. Two of the top ten fragments
under GP1 are not allowable: adding two counts and multiplying dura-
tions of time. It is interesting to compare the number of occurrences of
these fragments in total to the number of rules the fragment appears in.
For example, the fragments (− CT DD) or (− DD CT) occur 36 times
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but in only 23 distinct rules under GP1.

The most common fragments of GP3, ST3A, ST3S and ST3F are the
most different from the other methods. Here the most frequent is the
WSPT rule for both ST3A and ST3S, and WSPT multiplied by PR for ST3F.
The most common across all methods are differences between the current
time or machine ready time and the job due date. Ratios of current time
or machine ready time to job processing time appear in the top 10 of GP1,
GP2 and GP3, yet not in the top 10 of any STGP methods (even though
allowed).

5.4.2 Best Evolved DRs

We have selected some of the best evolved DRs from each method, ba-
sed on comparing their performance across test and extreme test instances
with the performance of ATC and WCOVERT. The DRs shown have not
been simplified. The DRs evolved by STGP methods are shorter and easier
to interpret.

Stage One

Figures 5.7 and 5.8 show one of the best rules evolved under GP1 and ST1
respectively. In Figure 5.7, the function nodes which take argument pairs
that would not be allowed under the grammar are shaded. This affects
nodes higher up the tree. This DR cannot easily be interpreted, but we can
see that a fragment that occurs twice in the tree is PR

RT(DD− CT). This is the
ratio of the processing time of the current operation to the total remaining
time, multiplied by the time until the job is due.

The DR of Figure 5.8 performed similarly to the DR of Figure 5.7 in
terms of performance relative to ATC and WCOVERT, and also contains
the fragment PR

RT(DD− CT). The presence of this fragment in two DRs with
very good performance suggests that this could make a useful higher-level
terminal.
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Figure 5.7: An evolved rule from GP1 which outperformed ATC on 34/48
test instances and WCOVERT on 36/48 test instances.
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Figure 5.8: An evolved rule from ST1 which outperformed ATC on 33/48
test instances and WCOVERT on 39/48 test instances.

Figures 5.9 and 5.10 show one of the best rules evolved under ST1A and
ST1B respectively. The DR of Figure 5.9 shows that wherever the terminal
1/PR appeared, it was multiplied by W. This is one reason W/PR was used
as the only I type terminal for ST1B. With some simplification this rule
becomes

PR

RT
(RM− DD)

(
RO/W + 1

RO ∗ RJ

)
Note that this has a very similar fragment to that mentioned above, with
(RM − DD) instead of (DD − CT). The ready machine time will often be
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W 1/PR
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RO RT RM DD

Figure 5.9: An evolved rule from ST1A which outperformed ATC on 25/48
test instances and WCOVERT on 32/48 test instances.

%

% %

RO %

DD PR

* -

RO RT RM DD

Figure 5.10: An evolved rule from ST1B which outperformed ATC on
34/48 test instances and WCOVERT on 38/48 test instances.

the same as the current time, unless the machine has been idle and mul-
tiple jobs arrive at the machine queue at the same time. If the machine
has a queue of jobs waiting, the scheduling decision is made at the time
the machine becomes available, which is the current time, hence in this
situation CT=RM. However, if when an operation finishes there is not a
waiting job, the machine becomes idle until a job arrives and it is imme-
diately dispatched (there is no need to use the DR when there is only one
job to choose from). Hence the only time that RM and CT will take different
values in the DR when priority values are assigned is when multiple jobs
arrive at an idle machine at exactly the same time. The DR of Figure 5.10
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Figure 5.11: An evolved rule from ST1S which outperformed ATC on
26/48 test instances and WCOVERT on 34/48 test instances.
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- -

RM +

QW RT

DD QW

Figure 5.12: An evolved rule from ST1F which outperformed ATC on
25/48 test instances and WCOVERT on 37/48 test instances.

simplifies to an expression similar to that of Figure 5.9:

PR

RT

(RM− DD)

DD

Figures 5.11 and 5.12 show one of the best rules evolved under ST1S
and ST1F respectively. The DR of Figure 5.11 simplifies to

2PR

RT
(CT− DD)(RJ + NPR).

Interestingly, the job weight does not appear in the simplified rule, how-
ever there is the comparison of the current time to the job’s due date. The
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Figure 5.13: An evolved rule from GP2, and in simplified form below, wh-
ich outperformed ATC on 44/48 test instances and WCOVERT on 47/48
test instances.

DR of Figure 5.12 simplifies to

2 ∗ PR ∗ AQW ∗ QW ∗ CT ∗ (RM− RT− DD)

RT ∗ DD ∗ (DD− NPR)
.

Once again, the job weight does not appear in the simplified rule.

Stage Two

Figures 5.13 and 5.14 show one of the best rules evolved under GP2 and
ST2 respectively. This GP2 rule simplifies to the DR in the lower figure in
Figure 5.13. This DR outperformed or equalled WCOVERT on 47/48 test



5.4. ANALYSIS OF EVOLVED RULES 205

%
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- DD

min RT

CT DD

if>0 AQW

DD DD RJ

% %

DD min

CT DD

RT PR

Figure 5.14: An evolved rule from ST2 which outperformed ATC on 35/48
test instances and WCOVERT on 43/48 test instances.

and extreme test instances and equalled or outperformed ATC on 44/48
test and extreme test instances. However, the shaded nodes show that this
rule has an expression NNQ + W − RT − RM + DD which adds or subtracts
a weight, a count, a time duration and fixed points in time, i.e., the very
interactions we are trying to prevent.

The DR from ST2 shown in Figure 5.14, shows an example of how the
if>0 operator can have a first argument that is always positive, namely
if>0 DD, since DD is always positive. This rule assigns priority

−PR
DD + AQW

if the job is overdue, and(
−PR

DD + AQW

)(
CT ∗ (DD− CT + RT)

DD ∗ RT

)
if the job is not overdue.

Figure 5.15 shows one of the best performing DRs evolved by ST2A. It
simplifies to

(min{RM,max{DD,CT} − RT} −max{DD,CT})PR
RT

which is relatively easy to interpret, and allows us to understand why it
performs so well. There are three different cases: (1) if the job is overdue
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+ +
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1/PR 1/PR

Figure 5.15: An evolved rule from ST2A which outperformed ATC on
39/48 test instances and WCOVERT on 43/48 test instances.

and has been waiting in the queue for the machine to become available,
then the job is assigned priority 0; (2) if the job is not overdue but cannot
complete on time (DD−RT<RM), then the job is assigned priority propor-
tional to (−PR), which is always negative as processing time is always
positive; and (3) if the job is not overdue (DD>CT) and has positive slack
(DD−RT>CT), then (DD−RT>RM) and the job is assigned priority propor-
tional to (

DD− RT
RT

)
∗ (−PR) .

This is the priority of situation (2) multiplied by the ratio of remaining
time until overdue to remaining processing time, which, as we know the
job has positive slack, must be greater than 1. The priority assigned in this
case is also always negative, therefore for two jobs with the same PR, a job
which had positive slack will be assigned a lower priority than one which
does not have positive slack.

Figures 5.16 and 5.17 show one of the best rules evolved under ST2S
and ST2F respectively. Figure 5.16 can be rewritten as

(CT− DD) ∗ (RJ/RT) ∗max{NQ,NNQ} ∗ ((DD− RT)/(DD− AQW))

NQ ∗min{[1/PR] ∗ W,[1/PR]}
.

Once again, this rule has comparisons between the current time and the



5.4. ANALYSIS OF EVOLVED RULES 207

%

- *

CT DD % %

min *

NQ max

NQ NNQ

max %

NQ NNQ RJ RT

min %

* %
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Figure 5.16: An evolved rule from ST2S which outperformed ATC on
23/48 test instances and WCOVERT on 33/48 test instances.

*

% min
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QW PR AQW RJ DD

- min

max +

RJ DD DD RT

- -

max max

RJ DD RJ DD

CT max

RJ DD

Figure 5.17: An evolved rule from ST2F which outperformed ATC on
29/48 test instances and WCOVERT on 38/48 test instances.

job’s due date, as does the rule in Figure 5.17. It is interesting that this
rule takes the maximum between RJ, the ready time of the job’s current
operation, and DD, the job’s due date. This means the rule schedules jobs
that were already overdue when the current operation became available
differently from those that were not already overdue.
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Figure 5.18: An evolved rule from GP3 which outperformed ATC on 22/48
test instances and WCOVERT on 34/48 test instances.
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Figure 5.19: An evolved rule from ST3 which outperformed ATC on 36/48
test instances and WCOVERT on 38/48 test instances.

Stage Three

Figures 5.18 and 5.19 show one of the best rules evolved under GP3 and
ST3 respectively. The shaded nodes in the DR in Figure 5.18 show that this
rule has a fragment which subtracts RJ (a clock time) and NNQ (a count).
The DR from GP3 shown in Figure 5.18 has each of the new conditional
operators in it, however the arguments returned are almost always of dif-
ferent return types. Therefore even though the branching condition makes
sense, the different outcomes dependent on the condition do not make so
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much sense. With so many conditional operators with these arguments, it
is difficult to understand what the DR is doing. One feature of the gram-
mar used is that all count terminals are of the same type, allowing frag-
ments like max{NNQ,RO}, which will occur in this DR if the job is overdue.
Taking the maximum of the number of jobs in the queue and the number
of remaining operations in the job is not the most sensible, this could be an
area of potential future refinement in the grammar. There is a great differ-
ence in performance, in favour of ST3, compared to benchmark ATC and
WCOVERT rules of the DRs in Figures 5.18 and 5.19, the biggest difference
observed between methods with the same function and terminal sets.

Figure 5.20 shows one of the best evolved DRs under ST3A. This DR
has five max and min statements, as well as one ifPS statement. This
means that depending on the values of the given job, priority may be as-
signed using different functions, and it is difficult to simplify. Figure 5.21
shows one of the best evolved DRs under ST3S. This DR uses the ifPS ter-
minal, but also compares the job due date to the earliest time the job can
complete in the min statement in the leftmost branch. This DR is better
than the best from ST2S and ST1S in terms of how frequently it outper-
formed ATC and WCOVERT. Figure 5.22 shows one of the best evolved
DRs by ST3F. This rule outperformed ATC and WCOVERT the least num-
ber of times of all DRs shown in Figures 5.7–5.22. This is also a rather large
DR, in terms of the number of nodes, compared to many of the other best
of method DRs.

5.5 Further Discussions

Here we present further discussions of our results, examining the impact
of tree depth, how performance of the best evolved rules compare on test
and extreme test scenarios, and how the evolution and training time com-
pares across all methods.
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Figure 5.21: An evolved rule from ST3S which outperformed ATC on
33/48 test instances and WCOVERT on 42/48 test instances.

5.5.1 DR Size

In general, the larger a DR is, the more difficult it is to interpret; intu-
itively larger dispatching rules are more complex, and therefore expected
to be harder to interpret. This is evident when looking at existing DRs in
the literature. The SPT and EDD rules are clearly interpretable, and they
are small in size. The ATC and WCOVERT rules are much larger, and re-
quire much more complicated calculation to determine the priority value
of waiting jobs; they are still interpretable but it is more difficult to work
out from the formula the clear interpretation which the name implies. As
quantifying interpretability is an extremely difficult task, it is also difficult
to illustrate how the difficulty of interpretation increases with DR size.

There is a clear trend that the best-of-run rules evolved under a gram-
mar are smaller than their standard GP counterparts, and they also gener-
ally have smaller standard deviations. The mean number of nodes in DRs
from GP1 is 32.8 compared to 25.3 from ST1, 26.3 from ST1A and 23.4 from
ST1B. The difference between GP1 and the strongly typed ST1, ST1A and
ST1B are all statistically significant at the 5% significance level. ST1S has
mean number of nodes 25.1 and ST1F has mean 23.0. GP2 has mean num-
ber of nodes 44.2 compared to 30.96 from ST2, which is statistically signif-
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icant at 5%, and GP3 has mean number of nodes 31.3 and ST3 has 30.5,
and this difference is not statistically significant. ST2A has mean number
of nodes 31.0, ST2S has 34.1 and ST2F has 31.8. ST3A has a mean of 25.3,
ST3S has 23.4 and ST3F has a mean of 26.4. These are smaller than those
evolved at Stage 2, and very similar to those evolved at Stage 1. The maxi-
mum number of nodes that a DR can evolve with a maximum depth of six
is 63 (without if>0 operator which takes three arguments), so the num-
ber of nodes in evolved rules is clearly smaller than the potential largest
size.

We have also performed a second set of 50 GP runs under GP2 and
ST2 with a maximum depth of eight. Increasing the maximum depth from
six to eight increases the maximum number of nodes to 255, a huge in-
crease in the size of the search space. Although the mean TWT attained
on each test and extreme test instance was decreased (improved), it was
not a statistically significant difference at the 5% significance level. The
average size of the best-of-run DR increased to 71 nodes, twice the size
of those evolved with a maximum depth of six. Examining rules evolved
with this increase in maximum depth shows the ease of interpretability
is definitely decreased. This is not to say that six is the optimal depth for
DRs, especially as for the ATC and WCOVERT rules to be expressed in this
form greater depth would be needed. However, perhaps this shows that
including the size of DRs as an objective to be minimised alongside a more
traditional measure of shop performance is a sensible direction to pursue.
Parsimony pressure [141] is one frequently used method of constraining
the size of GP individuals to prevent bloat.

STGP by nature may need a deeper maximum depth to compensate for
the restriction imposed by the strong typing, since for the same maximum
depth STGP is searching a much smaller search space. However, smaller
DR size makes the DRs easier to analyse and understand.
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Figure 5.23: Number of instances DRs in Figures 5.7 to 5.22 that outper-
form WCOVERT (left) and ATC (right) on 50 problem instances from each
test and extreme test scenario.

5.5.2 Comparison of Performance in Testing vs Extreme Test-

ing

We evaluated the best-of-method rules shown in Figures 5.7 to 5.22 across
50 additional instances for each of the 24 test and 24 extreme test prob-
lem scenarios. Figure 5.23 shows how the rules performed in comparison
to WCOVERT and ATC respectively, by plotting how many times the DR
outperformed the benchmark rule out of 1200 (= 50 × 24) possible test
instances against how many times the DR outperformed the benchmark
rule out of 1200 possible extreme test instances. Better performance is to-
wards the top right corner of the plot. Figure 5.23 shows that the best
DRs from GP2 and ST3S have the best performance, followed by ST2 and
ST2A, then ST2F and all Stage 1 methods, the remaining Stage 3 ST meth-
ods, and lastly ST2S and GP3. It is interesting that the performance of the
corresponding ST methods is worse for GP1, similar for GP2, and much
better for GP3. The best performing rules are the ones evolved by GP2



5.5. FURTHER DISCUSSIONS 215

−10

−5

0

5

10

−10 0 10

Test Scenarios

E
x
tr

e
m

e
 T

e
s
t 

S
c
e

n
a

ri
o

s

Method

GP1

GP2

GP3

ST1

ST1A

ST1B

ST1F

ST1S

ST2

ST2A

ST2F

ST2S

ST3

ST3A

ST3F

ST3S

Figure 5.24: Mean Z-score of DRs in Figures 5.7 to 5.22 across 50 problem
instances from each test and extreme test scenario.

and ST3S (Figures 5.13 and 5.21 respectively).

Further, we calculate Z-scores, actual−mean
standard deviation

, where actual is the per-
formance of the given rule on a particular problem scenario, andmean and
standard deviation are from all rules on the particular problem scenario, to
measure the relative performance of each rule across all solutions for the
50 problem instances. We average these Z-scores across the 48 problem
scenarios, and plot these values for test instances vs extreme test instances
in Figure 5.24. Better performance is now lower Z-score values, i.e., to-
wards the bottom left corner of the plots. Figure 5.24 is less linear than
those in Figure 5.23, and GP2 and ST3S are still clearly better performers.
However, the results of GP1, ST1, ST1A and ST1B appear more similar to
those of GP3 and ST3 than in the comparisons of these rules with ATC and
WCOVERT. The best rules from ST1F, ST1, ST1B, ST1S and ST3 have bet-
ter mean Z-scores on both test and extreme test scenarios than GP1, ST1A
and GP3. The worstZ-scores are attained by the best performing DRs from
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ST2S, ST3F and ST3A. The Z-scores have separated out the performance of
the best rules more than the comparisons with ATC and WCOVERT. We
can see that although GP1 and GP3 attain the same performance on the
extreme testing scenarios, GP3 is much worse than GP1 on test scenarios.

5.5.3 Training and Testing Times

Table 5.19 shows the mean±standard deviation of evolution time (in min-
utes) and testing and extreme testing time (in milliseconds) for each met-
hod. Table 5.19 shows that ST1, ST1A, ST1B, ST1S and ST1F methods have
approximately half the mean evolution time and between three and four
times shorter mean testing time than GP1, as well as much shorter evo-
lution time. Table 5.19 shows that ST2 and ST2A methods have shorter
mean evolution time and longer mean testing time than GP2. ST2S and
ST2F have very similar testing and extreme testing time to GP2. ST3 has
shorter mean evolution and mean testing times than GP3 as well as smaller
standard deviations. However, ST3A, ST3S and ST3F have much longer
evolution time, but shorter testing times. This may be due to the introduc-
tion of the specialised conditional operators, which lead to nearly triple
number of conditional statements appearing in dispatching rules.

5.5.4 Exploration of Performance Decrease in STGP

To further explore the difference in performance between STGP and GP
methods, we compare randomly generated trees, using the same compar-
ison measure as used in Section 5.3. We obtain the average normalised
TWT fitness value across the test and extreme test scenarios of each of
1024 randomly generated trees. We then average across all randomly gen-
erated trees from each method, obtaining values rGP1 for GP1, rST1 for
ST1, etc. We then calculate values comparing each GP method to its STGP
counterparts:

rGP,ST =
rST − rGP

rGP
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Table 5.19: Mean and standard deviation of evolution time and test time
for GP and STGP.

Mean±Stdev Mean±Stdev Mean±Stdev
GP1 ST1 ST1A

Evolution (min) 2195.1 ± 1413.4 754.4 ± 398.4 588.0 ± 103.9
Testing (ms) 17753.5 ± 45558.3 7169.8 ± 3774.9 5515.5 ± 350.6
Extreme testing (ms) 12446.0 ± 8837.3 7595.46 ± 3875.9 5855.26 ± 382.3

ST1B ST1S ST1F
Evolution (min) 692.8 ± 465.0 564.3 ± 176.1 501.7 ± 94.5
Testing (ms) 7010.1 ± 2884.3 5903.62± 1106.0 5970.8 ± 670.9
Extreme testing (ms) 7361.9 ± 3119.7 6395.4 ± 1483.7 6360.08 ± 675.1

GP2 ST2 ST2A
Evolution (min) 1170.8 ± 46.5 842.8 ± 550.5 719.1 ± 409.6
Testing (ms) 5522.3 ± 344.6 8418.2 ± 3864.9 7143.6 ± 3305.8
Extreme testing (ms) 5866.0 ± 347.2 9018.42 ± 4181.2 7685.48 ± 3649.2

ST2S ST2F
Evolution (min) 553.7 ± 97.1 526.84 ± 83.1
Testing (ms) 5725.2 ± 577.8 5662.4 ± 497.5
Extreme testing (ms) 6126.5 ± 586.1 6118.22 ± 492.2

GP3 ST3 ST3A
Evolution (min) 1408.8 ± 768.2 675.3 ± 280.6 9038.4 ± 1749.1
Testing (ms) 7206.6 ± 3513.3 5747.4 ± 2175.7 5183.2 ± 366.2
Extreme testing (ms) 7503.7 ± 3583.0 6284.2 ± 2341.1 5815.3 ± 1290.0

ST3S ST3F
Evolution (min) 9354.0 ± 2311.3 7134.3 ± 2937.9
Testing (ms) 5421.9 ± 525.9 6154.22 ± 1914.8
Extreme testing (ms) 6120.7 ± 590.7 6625.9 ± 1970.8

This gives us the following values, rGP1,ST1 = 0.0051, rGP1,ST1A = 0.0428,
rGP1,ST1B = 0.0388, rGP1,ST1S = 0.2495, rGP1,ST1F = 0.0708. At Stage 2,
rGP2,ST2 = −0.0279, rGP2,ST2A = −0.0699, rGP2,ST2S = 0.2374 and rGP2,ST2F =

0.2060. At Stage 3, rGP3,ST3 = 0.0694, rGP3,ST3A = 0.0211, rGP3,ST3S = 0.3457

and rGP3,ST3F = 0.2019. This shows that the initial populations are reason-
ably similar in terms of TWT performance across the test and extreme test
scenarios. It also shows the validity of constraining the search space to se-
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Figure 5.25: Mean best-of-generation fitness (mean normalised TWT)
across all methods through 50 generations of evolution.

mantic correctness in that the randomly generated trees have very similar
performance, and potentially the difficulty lies in the evolutionary process.

Figure 5.25 shows the mean best-of-generation fitness across all runs
of each method, through the 50 generations of evolution. This shows that
ST3A, ST3S and ST3F start with the lowest (best) mean fitness at genera-
tion 1, clearly lower than all other methods. However, around generation
12 GP1 overtakes, and then maintains the lowest mean fitness until the
end of the evolutionary process at generation 50. The performance of all
methods apart from GP1 form a band ranging from 60,000 to 100,000 at
generation 50. It would be of interest to investigate why the performance
of the ST3A, ST3S and ST3F methods plateaus so early compared to the
other methods.

5.6 Chapter Summary

The goal of this chapter has been to use a grammar-based GP approach,
using strongly typed GP, to semantically constrain the search space of pos-
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sible heuristic dispatching rules, to evolve DRs with greater interpretabi-
lity. This is the first work using GP for the automatic discovery of DRs
that has explored the interpretability to this level. We investigated using
three different function sets, and compared the best-of-run DRs evolved
with and without semantic constraint.

The mean performance of DRs that were evolved under the type con-
straints of STGP was (as expected) not as good as the mean performance
of DRs evolved without semantic constraint. However, there were still
effective rules evolved under STGP. In fact, from the best performing ru-
les of each method, the most effective DRs were evolved under semantic
constraint. This highlights the need for multiple GP runs to establish per-
formance of methods.

Our investigations led us to introduce new terminals, 1/PR and W/PR,
expanding the grammar for STGP to include a fifth type, I, and new func-
tions ifOD, ifPS and ifLO. The use of conditional operators with prede-
termined conditions made the rules easier to interpret, due to the con-
dition being tested being known. The conditions evolved, particularly
without the use of a grammar, are often very long and are unable to be
interpreted easily, if at all. Of these three new conditionals ifPS was the
most frequently used. However, the performance of evolved DRs was not
as good as that of DRs evolved with the if>0 function in the function set.
This is another trade-off between interpretability and TWT performance.
We then introduce new terminals, [PR*PR] and [1/[PR*PR]], expand-
ing the grammar for STGP to include sixth and seventh types, S and F
respectively.

We have found the interpretability of DRs evolved under STGP, and
particularly the most effective one from the 50 best-of-run DRs, to be more
easily understandable. Several of the rules are able to be understood as
they break available jobs into categories based on if the job is overdue or
not, and then different priority assignments are made based on this.

Interpretability is a difficult concept to quantify. The best we are able



220 CHAPTER 5. GREATER UNDERSTANDABILITY

to do is manually inspect rules and see if, as human operators, we are able
to explain a rule’s effective or ineffective performance. Despite the small
deterioration of mean TWT performance when the search space was se-
mantically constrained, the best performing rules were better able to be
understood. We believe that this improvement justifies the use of STGP to
semantically constrain the evolved DRs, even at the cost of the observed
slightly poorer (on average) performance (loss of effectiveness) from in-
sisting on semantically valid models.

Further analysis of fragments appearing in the best-of-run rules re-
vealed that the most common fragments are acceptable semantically even
without semantic constraint. However, most of the evolved DRs contained
at least one interaction which was not allowed under the corresponding
grammar. This is an example of how GP is able to discover which termi-
nals are more useful than others, and discover new useful terminals and
combinations of terminals that could improve future work. A larger study
with more independent GP runs will be made in Chapter 6 to discover
building blocks that are usable as higher-level terminals.

The use of a grammar decreases the mean program size, as well as the
standard deviation of evolved program size. The disadvantage of the use
of a grammar is that there is a larger number of best-of-run DRs which
have a poor performance in terms of TWT.

This chapter has provided greater insight into the interpretability of
DRs, and what factors could potentially be used as part of a measure to
quantify interpretability, allowing better comparison between evolved ru-
les. A key component is the size of the evolved DRs, which could be mea-
sured in terms of depth, or in terms of the number of nodes. Further, the
useful fragments that we observed appearing in multiple rules could sug-
gest that a count of such useful fragments which do not violate a given
grammar could also be a potentially useful measure. Although defining a
function based on DR size and counting fragments or interactions would
be a step closer to quantifying interpretability, actually defining a widely
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acceptable measure of interpretability remains a very big challenge.
Experimental results show that the dispatching rules evolved in the

semantically constrained search space do not have (on average) perfor-
mance that is as good as unconstrained. However, the interpretability of
evolved rules is substantially improved. This is the first work using GP for
the automatic discovery of dispatching rules that has explored their inter-
pretability in depth and considered it as an important trait of an effective
dispatching rule.

This chapter has been a first step investigation towards the long term
goal of quantifying interpretability. The grammars used can be further
expanded and refined, which may improve the effectiveness of evolved
rules. In Chapter 6 we will use the insights from fragment analysis to add
popular fragments as higher-level terminals and investigate a multiobject-
ive approach, with objectives effectiveness of the DR, compactness of the
DR and the number of distinct terminals featuring in the DR.
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Chapter 6

Multiobjective Genetic
Programming for Feature
Selection and Dispatching Rule
Generation in Job Shop
Scheduling

6.1 Introduction

A difficulty in the automatic generation of DRs through GP is that the
evolved DRs can be difficult for humans to interpret. Typically GP based
approaches to discovering DRs have focused on the effectiveness of DRs
developed in this way. However, we believe it is important to also focus on
the interpretability of the DRs evolved, particularly if DRs discovered by
GP are ever to be implemented in real manufacturing environments. Fo-
cusing on both the effectiveness of scheduling performance and interpre-
tability of the DR turns the search for effective DRs into a multiobjective
problem.

Chapter 5, showed the use of strongly typed GP [85] to enforce a gram-

223
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mar (restricting the allowable interactions within the DR) to be a useful
means of constraining the search space, allowing the development of rules
with greater interpretability, and enabling better understanding of what
information effective rules are capturing from the shop system. Evolved
DRs were competitive with those evolved without semantic constraint
and, of equal importance, were much easier to interpret and understand.

Another factor affecting the interpretability of a DR is size; a smaller
rule is generally much easier to understand than a larger rule. It is also
known that simple rules are often not effective enough, thus GP is often
used to generate more sophisticated rules. In this chapter we investigate
the benefits of incorporating the size of the DR into the fitness of the DR.

One of the challenges of using a GP based approach is deciding what
information from the domain should feed into the GP system through the
terminal set. In JSS environments, there are many features of jobs, ma-
chines and the shop as a whole that could be useful as elements of the DR.
However, we cannot put everything into the terminal set. Further, combi-
nations of features may be more useful than a single feature by itself. This
is an issue of how much domain knowledge we want to give the GP sys-
tem. The size of the DR is also a factor in how quickly it is able to assign
priority values.

A benefit of GP is that it may be able to discover domain knowledge.
Geiger et al. [42] noted that the performance of scheduling rules can be
of secondary importance to the “interrelationships of the attributes within
the rule, and their relevance to the problem structure”. This information
can be exploited in future rule design.

Although GP has been used for feature manipulation [77, 91, 92] across
a wide variety of machine learning applications, GP has not previously
been used for feature manipulation for job shop scheduling. Often within
a feature set, there are a very large number of available features, creating a
very large search space, or some features are made redundant by the pref-
erence for other features. Reducing the feature set size, through feature
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selection, reduces the search space (and potentially improves the learning
performance), and can potentially make the evolved DRs easier to inter-
pret.

In this investigation the number of distinct terminals appearing in a
DR is also considered as a third objective to be minimised. Minimising the
number of distinct terminals which appear in the rule is a form of implicit
feature selection.

Feature construction [77, 92] will be performed by using the evolved
DRs discovered by GP to propose new higher-level terminals, which will
be added into the feature set.

This is not an investigation into the development of a new GP algo-
rithm, but analysis of how we can better use GP for automatic generation
of DRs. While scheduling is clearly a multiobjective problem, we believe
that DR performance is also multiobjective; performance in terms of the
scheduling objectives is important but so is the interpretability of DRs and
the trust that practitioners are able to place in DRs. Further, the knowledge
discovered by GP through the terminals selected can be viewed as feature
selection and can potentially be used to alter the terminal set.

6.1.1 Chapter Goals

This chapter aims to use multiobjective genetic programming (MOGP)
[114] to investigate how the ability to discover interpretable DRs can be
improved by the inclusion of objectives relating to the size of the DR and
through feature manipulation guided by GP. We want to study the trade-
offs in performance and interpretability of DRs evolved using MOGP. We
expect them to be more interpretable due to their smaller size, and closer
to manually designed rules from the literature in terms of ease of interpre-
tation. The objectives for this chapter are:

1. Develop an MOGP method encouraging the evolution of more un-
derstandable DRs for the dynamic job shop environment.
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2. Investigate whether interpretability can be improved by the inclu-
sion of objectives relating to the size of the DR.

3. Explore which of the two MO algorithms, NSGA-II [32] and SPEA2
[146], performs better for GP to evolve interpretable rules, compared
with those evolved with single objective GP, and existing DRs from
the literature.

4. Investigate whether the restriction of the search space through STGP
reveals good components or combinations of components that we
can use to further restrict or alter the terminals included in our ter-
minal set.

5. Investigate how feature manipulation guided by GP can improve
interpretability.

6.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. The proposed MO-
GP approach and parameter settings are described in Section 6.2. Section
6.3 presents the first stage of this chapter using an initial terminal set. Sec-
tion 6.4 presents the second stage of our investigation where the terminal
and function sets will be extended to include higher-level constructed ter-
minals. Section 6.5 presents the third stage of our investigation where
three specialised conditional operators will be added to the function set,
following Chapter 5. Section 6.6 presents the final stage where the results
of the second and third stages will be used to perform feature reduction to
see whether the performance of GP may be be further improved by remov-
ing infrequently used terminals from the terminal set. Frequency analysis
is performed on the evolved DRs of the first two stages to determine wh-
ich terminals are less useful. Further analysis and comparison of results is
performed in Section 6.7. Section 6.8 draws conclusions.
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6.2 MOGP for Evolving Interpretable DRs

This section describes the proposed multiobjective genetic programming
method for evolving dispatching rules for the dynamic job shop environ-
ment. First the implementation of STGP to semantically constrain DRs for
interpretability will be described, with the function and terminal sets and
grammar of allowable interactions. Then the job shop simulation model
used for training and testing dispatching rules will be described.

6.2.1 Representation of Semantically Constrained DRs

In this chapter we are using a multiobjective approach, seeking to find a
front of non-dominated DRs across the objectives used. In each problem
instance the objectives of interest are calculated, as described below. At
the final generation of evolution, the Pareto front of non-dominated DRs
is taken and then tested on independent test problem instances.

Function Set

The GP function set contains four arithmetic operators, +, −, ∗ and %,
which each take two arguments, and if>0, max, min. These functions are
as defined in Section 4.2.1 (see page 107).

Terminal Set

The GP terminal set is shown in Table 6.1, following from Chapter 4 see
Table 4.1 (on page 108). The terminals are split into features of the particu-
lar job being considered, the machine at which the scheduling decision is
being made, and features of the wider shop system. RJ is the release time
of the job, or the time its last completed operation finished. NPR, NNQ and
NQW will return zero if the job is on its final operation. If fewer than five
jobs have visited a machine, then NQW and AQW return the average wait
time of the jobs which have been visited.
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Table 6.1: Terminal set used in the GP system with type.

Feature Symbol Type
Job Properties

Processing time of operation PR D
Remaining processing time of job RT D
Remaining number of operations RO C
Ready time of job RJ T
Due date of job DD T
Weight of job W X
Inverse processing time of operation [1/PR] I
Next operation’s processing time NPR D
Number of jobs in queue at the next machine

NNQ C
job visits

Machine Properties
Ready time of machine RM T
Number of jobs in queue NQ C
Average wait time of last five jobs processed

NQW D
at the next machine job visits
Average wait time of last five jobs processed QW D

Shop Properties
Current time CT T
Average wait time of last five jobs processed

AQW D
across all machines in the shop

Strongly Typed Genetic Programming

One key focus of this work is to evolve dispatching rules that are more in-
terpretable to human operators. The allowable interactions of terminals in
GP individuals are defined using the strongly typed functions of ECJ. The
grammar shown in Table 5.3 (see page 171) will be used. Recapping from
Section 5.2.3 (see page 166), this grammar is based on splitting the termi-
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nal set into five different type categories as in Table 6.1; counts, weights (or
ratios), time durations, absolute (clock) times, and inverse time durations.
Recall that due to the limitations of the STGP implementation of ECJ20
[78], the inclusion of a terminal of this type is required, hence [1/PR] is
part of the terminal set shown in Table 6.1 as well as PR. This grammar
has been implemented to prohibit interactions which do not make sense
semantically, e.g., adding or subtracting a count terminal to a time termi-
nal (or certainly does not make as much sense as multiplying or dividing).
The allowable interactions of arithmetic operators for this grammar were
shown in Table 5.4 (see page 173).

6.2.2 Multiobjective Fitness

Throughout the evolutionary process, the multiobjective fitness of a DR
consists of one value for each of the following three objectives.

TWT: the average of the objective function, TWT, normalised by expected
utilisation, over all problem scenarios used.

NumNodes: the size of the DR, calculated as the number of nodes in the
DR.

NumDistinct: the number of distinct terminal nodes appearing in the DR.

With the complex terminals, we count each function and terminal within
the complex terminal, e.g., [1/PR] counts as three nodes. Both NumNo-
des and NumDistinct do not rely on discrete-event simulation, but can be
calculated (counted) directly from the DR.

6.2.3 Job Shop Simulation Model

In this section, we randomly create problem instances of a ten-machine
job shop, using the method described in Section 4.2.2, (see page 110). Each
job has equal probability of being processed at each machine in the shop,
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leading to each machine having the same expected utilisation (on average
throughout the simulation). This means that the job shop is symmetrical.
We randomly generate scenarios using the properties given in Table 5.1
(see page 164) to determine the arrival rate using Equation (4.1) (see page
110). Due dates are assigned using Equation (4.2) (see page 110).

Training

In training, job operation processing times follow a discrete Uniform(1,49)
distribution (with mean 25). Jobs are given weight 1, 2 or 4, with proba-
bility (0.2, 0.6, 0.2) following [111]. Jobs are assigned a due date tightness
parameter randomly chosen from {3, 5, 7}. Jobs also have either “full” or
“variable” operations. With “full” operations, each job has an operation at
every machine in the shop; with the “variable” setting the number of op-
erations per job is a random integer between two and ten. These settings
are summarised in Table 5.1 (see page 164). A warm up period of 500 jobs
is used, and we collect data from the next 2000 jobs to arrive (N = 2000).
New jobs continue to enter the system until the completion of the 2500th
job.

Testing

The Pareto front of non-dominated DRs at the end of the evolutionary pro-
cess is tested on ten-machine job shop scenarios with the parameter set-
tings of Rajendran and Holthaus [117]. Operations have processing times
which are randomly drawn from the discrete Uniform(1,49) distribution.
Jobs are assigned an importance weighting of 1, 2 or 4, with probabilities
of 0.2, 0.6 and 0.2 respectively [111]. There are three levels of due date
tightness parameter, 4, 6 and 8, which are used for every job in the given
scenario. There are four levels of machine utilisation, 80%, 85%, 90% and
95%. Jobs have either “full” or “variable” operations as in training. There
are therefore 24 combinations of due date tightness, machine utilisation
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and operation type, the resulting 24 scenarios which are given in Table 5.1
(see page 164).

Extreme Testing

As in Chapter 5 we use an additional set of extreme test instances to test
the generalisation ability of the Pareto front of non-dominated DRs. Once
again this uses a geometric distribution with mean µ = 25, job weights
of 1, 2, 4 or 8 with probability (0.2, 0.5, 0.2, 0.1), and the due date tightness
parameter is equally likely from {4,6,8}, {3,5,7}, or {3,4,5}. The 24 extreme
test scenarios are given in Table 5.1 (see page 164).

Result Normalisation

In order to summarise the performance of the Pareto front of non-domina-
ted DRs across all 48 test and extreme test scenarios, for ease of presen-
tation, we normalise each and take the average of test scenarios and the
average of extreme test scenarios. The fitness of a DR on scenario i is nor-
malised by

fnorm,i =
fi − fmin,i

fmax,i − fmin,i

(6.1)

where fmin,i is the minimum TWT value attained on scenario i across all
methods, and fmax,i is the maximum TWT value attained on scenario i

across all methods. This gives two summary fitness values:

ft = 1
24

∑i=24

i=1
fnorm,i fxt = 1

24

∑i=48

i=25
fnorm,i (6.2)

and one overall fitness value

fTWT = 1
2

(ft + fxt) (6.3)

These normalised values will help us to compare the performance of
the non-dominated fronts from MOGP with NSGA-II to those from MOGP
with SPEA2 at each stage of experiments as feature manipulation is per-
formed, and compare the MOGP results to those attained under SOGP.
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GP System Parameters

The initial population is generated using the ramped-half-and-half met-
hod [70] with a minimum depth of two and maximum depth of six. The
population size for NSGA-II is 200, and for SPEA2 is 300 with an elitist
archive of size 100 following the ECJ20 guidelines, as the implementation
of NSGA-II builds the archive separately whereas SPEA2 uses the spec-
ified portion of its population as the archive. Evolution is for 50 gener-
ations. GP trees have a maximum depth of six. Two genetic operators
are used, namely crossover and mutation with rates 90% and 10% respec-
tively. These rates have been previously used [100].

6.2.4 Benchmark Methods for Comparison

Single objective GP (SOGP) is used as a benchmark method to compare
and examine the benefit of using the multiobjective approach. The fitness
function used is mean TWT (the first objective of the multiobjective ap-
proach). SOGP uses the genetic operators crossover, mutation and elitism,
with rates of 85%, 10% and 5% respectively. Tournament selection with
a tournament size of seven is used to select individuals for genetic oper-
ators. This is a common setting that has been previously used [95]. At
the end of the evolutionary process we are able to calculate the value of
NumNodes and NumDistinct directly from the best-of-run DR, counting
the number of nodes and the number of distinct terminal nodes. We can
then compare the results of both MOGP approaches to the best-of-run DRs
of the benchmark method, across all three objectives.

We will also compare the results obtained to the results obtained with
DRs from the literature. The benchmark DRs are those discussed in Sec-
tion 2.2.3 (see page 40): FCFS, EDD, MS, WSPT, ATC and WCOVERT.
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6.3 Stage One: Initial Investigation

The first stage of this chapter will use the terminal set described above. We
will refer to these methods as MOGP1,N when NSGA-II is used, MOGP1,S

when SPEA2 is used, and SOGP1 for the benchmark SOGP method with
this terminal set.

In this section the results of the experiments are presented. Here, 500
independent runs of each MOGP method are performed, and the evolved
Pareto fronts of non-dominated DRs obtained are recorded for each. We
also perform 500 independent runs of the benchmark SOGP methods. Us-
ually 30 or 50 GP runs would be sufficient when comparing average per-
formances between methods, but as we are counting occurrences of nodes
in the evolved trees, many more runs are needed to compare the counts
between methods.

Figure 6.1 gives plots of each pair of the objectives TWT, NumNodes
and NumDistinct on the test and extreme test instances, and Figure 6.2
plots ft vs fxt for each evolved DR, using NumNodes as the plotting sym-
bol on the test and extreme test instances. Immediate observations are
that the DRs with the best TWT performance have between five and eight
distinct terminals, and have between 15 and 40 nodes. Almost all of the
DRs evolved with MOGP have less than 50 nodes, and most have less
than 30 nodes. In comparison SOGP evolved several DRs with over 100
nodes and there are many with more than 50 nodes. In the plot of TWT
vs NumNodes, it is clear that for similar TWT values, there are a large
number of MOGP evolved DRs that have smaller size than DRs evolved
by SOGP. Note also that the MOGP methods produce DRs with only one
distinct terminal, whereas the minimum NumDistinct for SOGP1 is three.
The mean NumNodes of DRs which attain TWT<0.01 is 39.9, 24.3 and 22.7
for SOGP1, MOGP1,N and MOGP1,S , although SOGP1 had more DRs at-
taining this level of TWT performance (24 compared to 19 from MOGP1,N

and 6 from MOGP1,S). This shows that the MO approach is leading to
smaller sized DRs, which is likely to mean more easily interpretable DRs.
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Figure 6.1: Paired plot of Stage 1 results. This plot contains the Pareto
fronts of 500 runs for all methods, 5188 DRs (2495 distinct DRs) from
MOGP1,N , 4640 DRs (1982 distinct DRs) from MOGP1,S and 500 DRs from
SOGP1.
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Figure 6.2: Plot of normalised TWT over test instances vs extreme test
instances. The bottom plot zooms in on the area of best test and extreme
test instances.

From Figure 6.2 we can see that the DR with the lowest TWT was evolved
by SOGP1, and there are a number of rules with performance similar to
that of WCOVERT. However, FCFS is outperformed by the majority of
evolved DRs. MS, EDD and WSPT have better performance, and interest-
ingly WSPT performs better on the extreme test instances than on the test
instances, whereas MS and EDD perform better on the test instances than
on the extreme test instances.
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The average± standard deviation front size of GP runs using MOGP1,N

is 10.4±4.2, and using MOGP1,S is 9.3±3.8. This is calculated after dupli-
cate rules have been removed from the Pareto front.

6.4 Stage Two: Higher-level Constructed Termi-

nals

In the second stage of our investigation, we extend the terminal and func-
tion sets to include higher-level constructed terminals. This involves feat-
ure construction, reliant on fragment analysis to find the most frequently
occurring two level fragments in the DRs that make up the Pareto front of
non-dominated individuals from the 500 GP runs of both MOGP1,N and
MOGP1,S . These terminals will incorporate domain knowledge as discov-
ered by GP. Increasing the size of the terminal set will increase the size of
the search space. These methods will be referred to as MOGP2,N , MOGP2,S

and SOGP2.
In this stage we perform feature construction, based on the results of

Section 6.3. The most frequently occurring fragments in the evolved Pareto
fronts of DRs for MOGP1,N and MOGP1,S and the evolved DRs for SOGP1

are shown in Table 6.2. This table combines both possible orders of the
arguments of functions, i.e., ∗{W,NNQ} includes both (∗ W NNQ) and (∗ NNQ
W). However, fragments that are essentially the same, e.g. (∗ W [1/PR])
and (% W PR), have not been combined.

From Table 6.2 we observe that the same five fragments take up the
top five places. Further, the fragments which take the difference between
RM or CT and DD are producing very similar results, as most scheduling
decisions are made when the machine becomes available, hence RM=CT

(for this to not be true, multiple jobs must arrive at the same time at a
machine which is currently idle). Therefore we choose just one of these
two to be one of our higher-level constructed terminals. We also note
that (∗ W [1/PR]) gives the very popular weighted shortest processing
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Table 6.2: Stage 1. Top six most frequently appearing fragments in Pareto-
fronts of MOGP1,N and MOGP1,N , and top six most frequently appearing
fragments in best-of-run DRs of SOGP1 at Stage 1. The number of times
the fragment appears and the number of rules the fragment appears in are
given for each.

MOGP1,N

Fragment Frequency Rules
% {W,NNQ} 1355 1242
% {NNQ,[1/PR]} 1051 938
− {DD,RM} 518 490
∗ {W,[1/PR]} 518 456
− {DD,CT} 465 414
% {NQ,[1/PR]} 215 163
Total DRs 5188

MOGP1,S

Fragment Frequency Rules
% {W,NNQ} 1190 1070
% {NNQ,[1/PR]} 856 755
− {DD,CT} 495 451
∗ {W,[1/PR]} 467 416
− {DD,RM} 431 402
+ {[1/PR],[1/PR]} 122 115
Total DRs 5188

SOGP1

Fragment Frequency Rules
∗ {W,[1/PR]} 188 127
% {NNQ,[1/PR]} 110 79
% {W,NNQ} 89 64
− {DD,CT} 83 63
− {DD,RM} 81 59
% {NQ,[1/PR]} 78 54
Total DRs 500
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Table 6.3: Higher-level constructed terminals introduced at Stage 2.

Feature Symbol Type Number of Nodes
(% W NNQ) [W/NNQ] X 3
Weighted number of jobs at next machine
(− DD CT) [DD−CT] D 3
Time until due date
(% NNQ [1/PR]) [NNQ∗PR] D 3
Estimate of work in next queue
(∗ W [1/PR]) [W/PR] I 3
Weighted processing time
(∗ (% W NNQ) [1/PR]) [W/[PR*NNQ]] I 5
Weighted estimate of work in next queue

time (WSPT) dispatching rule (see page 41). We also searched for frag-
ments containing three terminals, i.e., three level fragments where one ar-
gument of the top level function is a terminal. Amongst these fragments
the most commonly occurring fragment gives us the fifth higher-level ter-
minal, [W/[PR*NNQ]]. When the various ways this fragment could be
formed were combined, this fragment appeared over 500 times in MOGP1,N .
It is interesting to note that three of the other higher-level terminals, [W/PR],
[NNQ*PR] and [W/NNQ], are contained in this fragment. If we think of the
fragment [NNQ*PR] as an estimate of the work in the next queue the job
visits, then [W/[PR*NNQ]] is the weighted estimate of work in the next
queue.

The terminal set was augmented with the five new higher-level con-
structed terminals shown in Table 6.3. Note that of the constructed termi-
nals (see Table 6.3), the first four are deemed to contribute three nodes to
the NumNodes and [W/[PR*NNQ]] is deemed to contribute five nodes.
This ensures the validity of comparisons of NumNodes with Stage 1.

Figure 6.3 presents a plot of each pair of the objectives TWT, NumNo-
des and NumDistinct. Note that the colours of the legends are intention-
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ally changed from Figure 6.1.
Immediate observations from Figure 6.3 are that the DRs with the best

TWT performance have between four and seven distinct terminals, and
have size between 10 and 40 nodes. Almost all of the DRs evolved with
MOGP have less than 60 nodes, and most have less than 40 nodes. In
comparison one SOGP evolved DR has over 140 nodes and a fifth have
more than 50 nodes. Once again the minimum NumDistinct from SOGP
is three.

Figure 6.4 plots ft vs fxt for the best performing DRs at Stage 2. Here,
14 DRs attain values of ft and fxt that are less than 0.05, five of these are
evolved by SOGP2, three by MOGP2,S and the rest by MOGP2,N . The DRs
evolved by SOGP2 are, on average, twice the size of those evolved by
MOGP. In Figure 6.4 we can see that there are more DRs which are out-
performing WCOVERT (by normalised value) on test instances, including
DRs evolved by all three methods. There are several rules evolved by
SOGP2 which outperform WCOVERT on both ft and fxt.

The average ± standard deviation Pareto front size of GP runs (calcu-
lated after duplicate rules have been removed from the Pareto front) using
MOGP2,N is 12.6±5.1, and using MOGP2,S is 13.2±6.1. In both cases this is
a larger average front size than their Stage 1 counterparts. The increase in
mean front size is greater from MOGP1,S to MOGP2,S than from MOGP1,N

to MOGP2,N .

6.5 Stage Three: Specialised Conditional Opera-

tors

In this section we include three specific conditionals: ifOD, ifPS and
ifLO. These were introduced in Chapter 5 (see page 187) because the con-
ditions evolved for the if>0 operator, especially without semantic con-
straint, were frequently observed to be very long and unable to be easily
interpreted. The use of the specialised conditional operators with prede-
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Figure 6.3: Paired plot of Stage 2 results. This plot contains the Pareto
fronts of 500 runs for all methods, 6299 DRs (2885 distinct DRs) from
MOGP2,N , 6585 DRs (2268 distinct DRs) from MOGP2,S and 500 DRs from
SOGP2.
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Figure 6.4: Plot of normalised TWT over test instances vs extreme test
instances. The bottom plot zooms in on the area of best test and extreme
test instances.

termined conditions made the rules easier to interpret; however perfor-
mance of the evolved DRs was not as good as that of DRs evolved with
the if>0. This highlights the trade-off between interpretability and TWT
performance of DRs evolved using GP. These methods will be referred to
as MOGP3,N , MOGP3,S and SOGP3.

Each of the specialised conditional operators has a fixed condition, and
take two arguments. The ifOD operator returns the first argument if the
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job is overdue (DD ≤ CT), else the second argument is returned. This ter-
minal contributes four to the NumNodes. The ifPS operator returns the
first argument if the job has non-negative slack and it is possible for the job
to be completed before its due date, i.e., DD−CT−RT ≥ 0, and returns the
second argument otherwise. This terminal contributes six to the NumNo-
des. The final new conditional operator, ifLO, returns the first argument
if it is the last operation of the job, or the second argument if it is not. This
terminal contributes four to the NumNodes.

For Stage 3 results, Figure 6.5 present a plot of each pair of objectives.
From Figure 6.5 we can observe that the DR with the best TWT perfor-
mance is evolved by SOGP3. The top 15 evolved DRs across all methods
at Stage 3 have mean normalised TWT under 0.005. Four of these were
evolved by SOGP3, three by MOGPS,3 and six by MOGPN,3. The largest
DR has 67 nodes and 8 distinct terminals, the other top DRs have between
4 and 6 distinct terminals and between 15 and 44 nodes (with mean 27.31).

All of the DRs evolved with MOGP have less than 30 nodes, and most
have less than 20 nodes. There are many SOGP evolved DRs with between
30 and 50 nodes. In the TWT vs NumNodes plot it is clear that for similar
TWT values, there are a large number of MOGP evolved DRs that have
smaller size than SOGP DRs, except for the best performing SOGP DR.

Figure 6.6 plots ft vs fxt for Stage 3. We can see that the DRs which
attain the lowest ft and fxt are evolved by SOGP3. However of DRs with
0.0 < ft, fxt < 0.005 the MOGP methods have mean size half that of those
of SOGP3. We note that there are even more DRs with better ft values than
WCOVERT than in Stage 2, however ATC is still the clear best performer
overall.

The average ± standard deviation Pareto front size, after duplicate ru-
les have been removed from the Pareto front, of GP runs with MOGP3,N

is 17.1±6.0, and with MOGP3,S is 14.8±5.8. Once again these show an in-
crease in average front size from the previous stage of experiments.
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Figure 6.5: Paired plot of Stage 3 results. This plot contains the Pareto
fronts of 500 runs for all methods, 8535 DRs (3159 distinct DRs) from
MOGP3,N , 7376 DRs (2280 distinct DRs) from MOGP3,S and 500 DRs from
SOGP3.
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Figure 6.6: Plots of normalised TWT over test instances vs extreme test
instances for Stage 3. The bottom plot zooms in on the area of best test
and extreme test instances.

6.6 Stage Four: Feature Reduction

This section presents the final stage of our experiments in this chapter. We
will use frequency analysis of the evolved DRs of the second and third
stages to perform feature reduction. Features which are used infrequently
are removed from the terminal set. This reduces the size of the search
space and may improve the search, and hence the performance of GP can
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be improved. The methods with the reduced feature sets in this stage will
be referred to as MOGP4,N , MOGP4,S and SOGP4.

Table 6.4 presents the frequency of functions and terminals in Stages
1 to 3 (and Stage 4 for comparison). For each method, the percentage of
times the given function is used out of all function occurrences is given,
together with the percentage of times the given terminal is used out of the
total number of terminal occurrences. Based on these results we further
adjust the terminal set, removing the terminals which appear infrequently
across all experiments. The inclusion of the NumDistinct objective (to be
minimised) means that if two DRs attain the same TWT performance, the
DR with fewer distinct terminals will dominate, encouraging terminals
which are not as useful to appear less frequently in the non-dominated
Pareto front. AQW and NQW never appear as more than 2% of the termi-
nals. Even NPR does not appear very often. We initially introduced these
terminals to help decrease the “myopic” nature of dispatching rules (see
Chapter 4). This frequency analysis however shows that the NNQ termi-
nal, which gives the number of waiting jobs at the next machine the job
visits, is very popular. It also occurs very frequently via the terminal
[W/[PR∗NNQ]], which is an approximation of the work in the queue at
the next machine, suggesting that this may be a more useful measure of the
availability of the next machine than the average waiting time there. Also,
[NNQ*PR] doesn’t appear very frequently, which suggests that although
it is a frequently appearing two level fragment in Stage 1 experiments, it
is more useful as part of [W/[PR*NNQ]] than on its own.

The observations made above lead us to remove terminals that do not
reach more than 3% usage (on average) across Stages 1 to 3. This gives
the following terminal set for our fourth and final set of experiments: {PR,
RO, RM, DD, W, NQ, QW, CT, NNQ, [1/PR], [W/PR], [W/NNQ], [DD-CT],
[W/[PR*NNQ]]}. We also remove the if>0 and max functions. This
aims to see if removing the functions and terminals which seem to be “less
useful” can improve the efficiency and effectiveness of the DRs evolved
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Table 6.4: Occurrence of each function as a percentage of all function occur-
rences in DRs evolved by each method, and occurrence of each terminal as
a percentage of all terminal occurrences in DRs evolved by each method.

M1,N M1,S S1 M2,N M2,S S2 M3,N M3,S S3 M4,N M4,S S4

+ 9.0 8.5 10.3 17.0 38.9 10.9 14.6 25.4 8.0 13.8 26.9 9.3
− 21.0 19.3 15.2 25.0 18.0 20.0 4.7 4.0 6.0 9.0 6.2 9.3

* 25.0 25.4 25.3 24.7 18.9 22.6 33.5 27.8 25 29.7 24.4 25.3
% 34.7 36.6 20.0 18.8 13.7 16.9 13.2 10.0 13.2 16.9 13.1 17.3
max 3.7 3.1 8.7 3.8 2.4 9.5 1.9 1.3 6.6 – – –
min 3.8 3.9 9.4 4.5 3.3 9.0 3.7 2.8 7.1 4.1 3.3 8.0
if>0 2.8 3.3 11.1 6.2 4.7 11.0 1.1 1.1 6.2 – – –
ifPS – – – – – – 21.9 22.0 14.9 18.8 19.1 15.4
ifOD – – – – – – 3.4 3.8 5.7 4.6 4.5 6.9
ifLO – – – – – – 2.1 1.7 7.1 3.1 2.4 8.5
PR 15.9 16.1 16.8 13.4 15.8 12.6 17.7 17.8 18.1 17.5 18.8 16.6
RT 1.6 1.2 2.9 1.2 0.7 2.4 0.5 0.2 0.9 – – –
RO 1.2 1.3 4.3 1.4 0.5 3.1 0.9 0.7 3.0 1.3 0.9 4.2
RJ 1.5 1.0 1.9 0.6 0.4 1.7 0.2 0.2 1.2 – – –
DD 7.2 7.0 5.1 6.7 4.0 7.2 1.7 0.9 2.3 2.7 1.5 5.4
W 12.1 12.6 12.0 14.5 16.8 12.7 20.5 21.3 18.3 20.2 20.8 19.4
RM 4.8 4.2 3.8 2.1 1.4 2.7 1.1 0.7 1.5 1.6 1.0 2.1
NQ 18.0 18.4 17.4 16.4 18 15.4 18.4 19.2 16.2 17.9 18.6 15.3
QW 2.8 2.7 5.4 1.8 1.0 3.7 1.0 0.6 2.1 1.2 0.8 2.2
CT 4.9 4.8 3.7 7.2 4.2 7.9 1.7 1.2 2.7 3.3 1.7 5.0
NPR 1.0 1.0 2.2 0.5 0.3 1.2 0.2 0.2 0.4 – – –
NNQ 15.0 15.4 9.5 13.9 16.5 10.4 13.4 15.2 10.9 13.8 15.0 10.2
NQW 0.6 0.5 1.5 0.3 0.2 0.8 0.1 0.1 0.4 – – –
AQW 1.3 1.2 1.9 0.8 0.4 1.5 0.5 0.3 0.8 – – –
[1/PR] 12.2 12.4 11.7 1.3 0.9 2.7 4.1 2.7 5.6 2.6 2.0 4.9
[W/PR] – – – 1.6 0.8 2.4 4.9 4.0 5.9 4.5 4.2 5.0
[NNQ*PR] – – – 2.0 1.3 1.9 0.4 0.3 0.8 – – –
[W/NNQ] – – – 2.4 1.9 2.4 4.2 3.7 3.1 3.1 2.3 3.3
[DD-CT] – – – 4.8 2.9 4.7 0.8 0.5 1.0 1.6 0.8 2.5
[W/[PR*NNQ]] – – – 7.1 11.9 2.5 7.6 10.4 4.6 8.7 11.4 4.0



6.7. FURTHER ANALYSIS 247

through GP.
Figure 6.7 presents pairs plots of the objectives TWT, NumDistinct and

NumNodes for Stage 4 results. All of the DRs evolved with MOGP have
fewer than 100 nodes, and most have fewer than 60 nodes. There are many
SOGP evolved DRs with between 60 and 130 nodes.

Figure 6.8 plots ft vs fxt for Stage 4. We can see that the DRs which
attain the lowest ft and fxt are evolved by SOGP4. However of DRs with
0.0 < ft, fxt < 0.005 the two evolved by MOGP4,N methods have mean
size considerably smaller than of those of SOGP4. We also note that there
are fewer DRs attaining this level of performance compared to Stage 3.
However these results in terms of ft and fxt are still better than the initial
results prior to feature manipulation in Stage 1.

The average Pareto front size, after removing duplicate DRs, of GP runs
with MOGP4,N is 16.8±6.6; this is the largest average front size of all me-
thods, and is nearly double the mean front size in MOGP1,N runs. The
average Pareto front size with MOGP4,S is 15.3±6.0, which nearly doubles
the mean Pareto front size of MOGP1,S runs.

6.7 Further Analysis

This section presents a comparison of results through the various stages
of feature manipulation. We also obtain the aggregate Pareto front of non-
dominated DRs from all evolved DRs for each method, and examine and
compare some of the best performing DRs. Further analysis also includes
an examination of the trade-offs between pairs of objectives and explo-
ration of useful subsets of features.

6.7.1 Comparison of Results by Stages

In this subsection we are interested in exploring whether the effectiveness
of the GP search has been improved by the inclusion of higher-level func-
tions and terminals, and the reduction of the terminal set.
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Figure 6.7: Paired plot of Stage 4 results. This plot contains the Pareto
fronts of 500 runs for all methods, 9610 DRs (3401 distinct DRs) from
MOGP4,N , 7894 DRs (2343 distinct DRs) from MOGP4,S and 500 DRs from
SOGP4.
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Figure 6.8: Plot of normalised TWT over test instances vs extreme test
instances for Stage 4. The bottom plot zooms in on the area of best test
and extreme test instances.

Figures 6.9(a)–(d) compare the results of MOGP with NSGA-II across
all four stages. Figure 6.9(d), which plots ft vs fxt, highlights the difference
in TWT performance across the four methods. As we want to minimise
TWT, this shows the best performing DRs. It is clear to see that there are
far more DRs from MOGP2,N , MOGP3,N and MOGP4,N than MOGP1,N that
attain this level of TWT performance. Further, MOGP2,N and MOGP3,N

attain even lower (better) TWT performance than MOGP4,N , observed by
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Figure 6.9: Paired plots of results and plots of normalised TWT over
test instances vs normalised TWT over extreme test instances using the
NumNodes as the plotting symbol for MOGP with NSGA-II (a)–(d),
MOGP with SPEA2 (e)–(h) and SOGP (i)–(l).
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the large number which attain 0 < ft, fxt < 0.004, which is not attained by
any DRs from MOGP1,N . This shows the benefits of including the higher-
level terminals. Also there are a greater number of MOGP3,N DRs (than
MOGP2,N ) in the region shown, which shows the benefit of including the
specialised conditionals. There is a greater number of MOGP4,N DRs than
MOGP2,N but less than those from MOGP3,N in this region.

Figures 6.9(e)–(h) and (i)–(l) compare the results of MOGP with SPEA2
and SOGP across all four stages respectively. We note the same trends with
both as for MOGP with NSGA-II, with better performing DRs evolved by
MOGP2,S , MOGP3,S and MOGP4,S , and the best DRs being evolved by
MOGP2,S and MOGP3,S .

Comparing Figures 6.9(a)–(d) with (e)–(h) we see that the best NSGA-
II DRs are better than the best SPEA2 DRs. Although there are more DRs
attaining 0 < ft, fxt < 0.004 using SOGP, the mean size of these DRs is over
twice that of the DRs from the MOGP methods. This result highlights the
combined worth of feature construction and multiobjective optimisation on
this problem. Looking at the TWT performance of the benchmark SOGP
methods throughout the four stages shows more clearly the impact of the
addition and removal of additional terminals and functions.

The mean TWT is smallest for SOGP3 followed by SOGP4, SOGP2 and
SOGP1. The difference of means between SOGP3 and both SOGP1 and
SOGP2 is statistically significant at the 5% significance level. This suggests
that the inclusion of higher-level constructed terminals and specialised
conditionals improves the effectiveness of DRs to dispatch jobs. Further,
the reduction of the terminal set at Stage 4 shows that some terminals,
although used rarely, can still be useful. However, the results of Stage 4
are still better than Stages 1 and 2, showing that more careful selection of
terminals which contain better domain knowledge can be beneficial. We
observe similar trends to these noted on the SOGP methods if we look
only at the DR with the lowest TWT from each Pareto front from MOGP
methods.
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Table 6.5: Table of mean ± standard deviation of evolution times in min-
utes for each method.

MOGPN MOGPS SOGP
Stage 1 186.9±101.7 232.6±177.4 74.2±30.5
Stage 2 157.6±33.8 192.3±68.3 79.6±32.7
Stage 3 173.7±66.9 198.3±91.0 79.9±34.5
Stage 4 178.4±81.6 206.0±86.5 81.2±46.1

Other trends are noticed for MOGP with both NSGA-II and SPEA2.
The TWT performance by NumDistinct improves, as expected, because
high-level terminals contain more domain knowledge. With DR size of 20
to 40 nodes, there is a noticeable improvement in mean TWT from Stage 3
and Stage 4.

Table 6.5 shows that the mean evolution time was shortest at Stage 2
for both MOGP methods, followed by Stages 3, 4 and then 1 for MOGP
methods and was shortest at Stage 1 followed by Stages 2, 3 and 4 for
SOGP methods. Standard deviations increase following the same trends
as the means.

6.7.2 Extremes

Here we examine the behaviour of DRs at the extreme lower end of the
three objectives: dispatching rules with the only one recurring terminal,
dispatching rules with a small number of nodes, and dispatching rules
with the best (lowest) attained TWT.

Dispatching rules with only one recurring terminal

Approximately one quarter of all DRs appearing in the non-dominated
front (or are a best-of-run solution of SOGP methods) have only one dis-
tinct terminal. However there are only just over 100 different rules am-
ongst these; the rest are duplicates as the same DR appears in multiple
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Pareto fronts of many methods, or as DRs which simplify to the same DR.
Stage 1 MOGP methods only give two such DRs: [1/PR], i.e., the shortest
processing time DR; and W. These DRs were evolved by both MOGP1,N and
MOGP1,S . At Stage 2 almost all of the DRs with one distinct terminal con-
tain [W/[PR*NNQ]], with a few having a single node of one of the other
terminals. There are many large DRs which contain only [W/[PR*NNQ]],
ranging in size up to 41 nodes. The DRs at Stage 2 attained better TWT
performance than those of Stage 1. At Stage 3, the size of DRs with only
one distinct terminal increased, ranging to over 60 nodes. These rules gen-
erally contained both [W/[PR*NNQ]] and either ifPS or ifOD. The most
frequently used conditional in the better performing of these DRs is ifPS,
although several DRs use both. These DRs obviously contain more do-
main knowledge than those of Stage 1 and Stage 2, and the improvement
in TWT performance attained is notable. This shows that effective DRs
can be constructed from a limited terminal set.

Calculating whether a job has positive slack uses the job’s remaining
processing time and due date, and the current time. This poses the ques-
tion of what is a realistic number of terminals for a dispatching rule? We expect
that with a TWT objective to be minimised, at least due date and weight
of the job are needed for a rule to be effective. The best performing of
all DRs with only one recurring terminal is from MOGP3,N , and attains
fTWT = 0.1454, which is far from the best obtained TWT performance.
This rule simplifies to

ifPS[W/PR](8 ∗ [W/PR]),

which contains CT, DD, RT in the ifPS statement, so this is a DR which
contains far more domain knowledge than a single terminal (e.g. W), how-
ever this DR simplifies to be very easily understood.

Dispatching rules with a small number of nodes

The DRs with the smallest number of nodes are the DRs which have one
node, and hence one distinct terminal, so are the same DRs discussed
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*
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RT [DD-CT]

* *

[1/PR] [W/NNQ] % +

RT max
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* *

[1/PR] W [1/PR] W

Figure 6.10: DR with the lowest mean normalised TWT on test and on
extreme test scenarios.

above. There are a number of DRs which have only three nodes; however
the performance of these (particularly for Stage 1 methods) is not good, al-
though they do improve on the TWT values achieved by single node DRs.
While these very small DRs are efficient in terms of computational time
and are easy to interpret, the trade-off at these very small sizes is perhaps
not worth it. Mean performance for NumNodes increases at around 10
nodes.

Dispatching rules with best TWT performance

Figure 6.10 shows the DR which attains the lowest mean normalised TWT
values across all methods and stages. This DR was evolved by SOGP3, has
35 nodes, and uses 5 distinct terminals. In comparison, Figures 6.11(a) and
6.11(b) show two DRs which also have good TWT performance, the first
evolved by MOGP2,N and the second by both MOGP3,N and MOGP3,S .
These DRs are obviously smaller in size than the DR of Figure 6.10. In
particular, the DR of Figure 6.11(b) has only 16 nodes, and four distinct
terminals from the terminal set. This rule is very easy to interpret, with the
priority assigned depending on whether the job has positive slack or not.
Jobs with non-positive slack are assigned WSPT priorities, and jobs with
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*

if>0 +

[DD-CT] % W

RT [DD-CT]

min %

[1/PR] [W/[PR*NNQ]] [1/PR] NQ

(a) DR with low mean normalised TWT and smaller size, evolved by MOGP2,N .

*

[1/PR] ifPS

% W

RT [DD-CT]

(b) DR with low mean normalised TWT and even smaller size, evolved by

MOGP3,N and MOGP3,S .

Figure 6.11: Two of the best DRs evolved by MOGP methods.

positive slack have priority RT
PR∗[DD−CT ]

. This is the ratio of time remaining
to be processed, to the remaining time until overdue, multiplied by the
SPT priority.

The top 25 DRs have mean normalised TWT less than 0.043. Of these
rules, none were evolved at Stage 1. Those that were evolved under SOGP
have size between 32 and 77, whereas those under MOGP have size 15–37
with NSGA-II and 13–29 with SPEA2. This is a clear improvement in size
of DR, for not too great a difference in effectiveness. Interpreting a DR
with 77 nodes is far more difficult than one with 20 nodes.

6.7.3 Aggregate Pareto Fronts

Figure 6.12 presents three rotated views of the aggregate Pareto fronts of
non-dominated DRs across 500 runs for each method. The number of
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points (the number of DRs) which are represented for each method are:
MOGP1,N has 14 (1466), MOGP1,S has 14 (1470), SOGP1 has 9 (9), MOGP2,N

has 21 (1580), MOGP2,S has 22 (1884), SOGP2 has 8 (8), MOGP3,N has 33
(1473), MOGP3,S has 37 (984), SOGP3 has 13 (15), MOGP4,N has 46 (1601),
MOGP4,S has 37 (1515), and SOGP4 has 14 (14). There is a clear trend of in-
creasing aggregate Pareto front size moving from Stage 1 through to Stage
4.

Figure 6.12 shows the clear trend amongst the aggregate Pareto fronts
of improving TWT as NumNodes increases and NumDistinct increases.
The fronts of methods from Stage 2 to Stage 4 are noticeably better than
those of Stage 1, and with larger front size trends are clearer. From Figure
6.12 it can be observed that the objective TWT conflicts with both NumNo-
des and NumDistinct. When tracing along the Pareto front to find DRs that
attain low TWT, the value of NumNodes and NumDistinct increases.

6.7.4 Trade-Offs between Pairs of Objectives

Here we will examine the trade-offs between each pair of the three objec-
tives, to see what trends we can identify and insight we can gain.

TWT and Size of DR

Figure 6.13 shows a graph of the mean ± standard deviation of mean nor-
malised TWT vs DR size for each method. The methods are offset from
each other for visibility. At Stages 1 and 2, across both SOGP and the two
MOGP methods, there is a clear trend of decreasing (i.e. improving) TWT
as NumNodes increases from 1 to 15. Once 15 nodes is reached, the TWT
plateaus. At Stages 3 and 4 a decreasing trend in TWT is again noted as
NumNodes increases from 1 to 19; the mean TWT is lower for these stages
in which the specialised conditional operators were introduced. As the
introduction of these is the only difference between Stage 2 and Stage 3,
we can attribute the difference to the inclusion of these functions. For each
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size of DR, similar trends can be noted amongst the methods. For an even
size of DR, the mean normalised TWT decreases from Stage 1 through to
Stage 4. For an odd number of nodes the performance is often more simi-
lar.

TWT and Number of Distinct Terminal Nodes

Figure 6.14 shows a graph of the mean ± standard deviation of mean nor-
malised TWT vs NumDistinct for each method. Again the methods are
offset for visibility. Note that 17 is the highest value of NumDistinct ap-
pearing in any DR evolved through SOGP or MOGP out of a possible 15,
20, 20 and 14 at Stages 1, 2, 3 and 4 respectively. This means that at Stages
2 and 3 no DR has been evolved which includes all of the available termi-
nals, suggesting that there is possibly a redundancy amongst the terminal
set in all stages. Note that a DR with an even number of nodes must con-
tain an odd number of if>0 statements, as these are the only functions
which take three arguments.

Above we noted the plateau in TWT performance occurred at a DR size
of 15 to 19 nodes, dependent on method. NumDistinct in DRs with size 19
ranges from 1 to 9, with a mean of 4.6. The graph in Figure 6.14 shows a
plateau occurring at three distinct terminals for DRs from Stages 3 and 4.
However, for those from Stage 1 and Stage 2, TWT performance continues
to improve as NumDistinct increases to six.

At this point we consider why using fewer distinct nodes might be ad-
vantageous. One reason is that there might be less computational time
required (perhaps) to obtain values from jobs and the shop and hence
quicker evaluation of jobs in the machine queues at each dispatch deci-
sion point. Dispatching rules with fewer distinct terminals are also likely
to have fewer “less-myopic” terminals which require calculating values
(not just a lookup of a job or shop property).
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Size of DR and the Number of Distinct Terminal Nodes

There is clearly a link between the size of DR and the number of dis-
tinct terminal nodes. As NumNodes increases, NumDistinct is able to
increase, as the relationship between NumDistinct and NumNodes is a
floor function: NumDistinct≤ 1

2
NumNodes. Consider DRs with 16 nodes;

of such DRs evolved by our methods, NumDistinct ranges between one
and seven. First we look at several of the best performing DRs (in terms of
TWT) with 16 nodes, e.g., the rule

ifPS

(
RT

PR(DD− CT)

)( W

PR

)
was evolved in Stage 3 by both MOGP3,S and MOGP3,N . This rule is one of
the overall best performing DRs in terms of TWT performance. The next
best 16 node rule,

ifOD
( W

PR

)( RT

PR(DD− CT)

)
is very similar, testing if a job is overdue rather than whether it has positive
slack. This rule was evolved by MOGP3,N . The third best 16 node rule is
again, very similar. This time the condition has been evolved using if>0

with first argument [DD-CT], however the rule simplifies to become

1

NQ

(
ifOD

( W

PR

)( RT

PR(DD− CT)

))
.

This rule was evolved by MOGP2,N . In comparison, of the DRs with 16
nodes, the best performing DR with only one distinct terminal simplifies
to

ifPS ([1/PR]) (2*[1/PR])

which attains normalised TWT eight times greater than the best attained
by the rules above. The best performing DR with size 16 and seven distinct
nodes is

(CT-DD)*(if>0 ([DD-CT]*[W/PR]) (PR/RT) W)
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and outperforms the best DR with one distinct terminal. However, of 16
node DRs, the average TWT performance of DRs with seven distinct nodes
(0.0405±0.0252) is worse than those with just a single distinct terminal
(0.0318±0.0099). We note that all these rules are similar in their structure
and terminals used, and further that each component of the if statements
used is able to be easily understood.

6.7.5 Attribute Sets

An interesting aspect of analysis which expands on the terminal frequency
analysis of Table 6.4 (see page 246) is to identify frequently appearing at-
tribute subsets amongst the evolved rules, and see which attributes are the
most useful as the subset size increases. It is clear that NumDistinct does
not correspond with the true number of distinct attributes of the job shop.
Therefore we have also evaluated the most frequently used subsets of dis-
tinct attributes. We will denote the most popular subsets as Sn where n
is the number of distinct attributes appearing in the rule. The increasing
sequence of sets is illustrated in Figure 6.15.

The most frequently used subset of two distinct attributes is

S2 = {W,NNQ},

with over 5000 rules appearing in the non-dominated fronts with this pair.
The next most popular subset of size two is {W, PR} with only 1030 rules.
This is a considerable drop in frequency.

Unsurprisingly the most common subset of attributes of size three con-
sists of the three attributes appearing in the most common subsets of size
two:

S3 = {W,PR,NNQ}.

There are nearly 15,000 evolved rules with this subset of attributes. All the
higher-level constructed terminals ([1/PR], [W/PR], [W/NNQ], [NNQ*PR]
and [W/[PR*NNQ]]) are made from this subset of attributes. Given that
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S9

S8

S7

S6

S5

S4

S3

S2

QW RM RO DDCTS3NQ PR WNNQ

Figure 6.15: Most frequently occurring attribute subsets of size two to nine.

these attributes make up the higher-level constructed terminals, it follows
that they are a useful subset and hence appear very frequently.

The attribute subset of size four builds upon S3, also including NQ:

S4 = {W,PR,NNQ,NQ}.

With 5806 rules using S4, this is far less than the number of rules using S3.
The second most popular subset of size four is

S4B = {W,PR,NNQ,RM}.

Increasing the subset size further,

S5 = {W,PR,NNQ,CT,DD}.

It is interesting that this does not build directly on S4, however it shows
that CT and DD together add value to the attribute subset. As RM, the time
the machine becomes available to dispatch the next job, is almost always
the same as CT (except when the machine has been idle and multiple jobs
arrive at the machine at the same time), S5 can be considered to build on
S4B. There are 1086 rules using only S5.

S6, consists of all attributes that have appeared so far,

S6 = {W,PR,NNQ,CT,DD,NQ}.
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Figure 6.15 shows that S7, S8 and S9 are made by adding RO, RM and QW

consecutively.

6.8 Chapter Summary

One advantage of manually designed dispatching rules over those auto-
matically designed by GP is their ease of interpretation. In this chapter we
have continued to address this issue, building on the material of Chapter
5, through the use of a MOGP approach to investigating whether the in-
clusion of additional objectives of dispatching rule size and the number
of distinct terminals can improve the interpretability of evolved dispatch-
ing rules. The original contributions of this chapter can be summarised as
follows.

Firstly, the inclusion of NumNodes and NumDistinct can improve the
interpretability of the evolved dispatching rules. The experimental results
from the first stage of our investigation showed that SOGP and MOGP
have a similar range of mean normalised TWT. However, for each SOGP
DR, there is a MOGP evolved DR with similar TWT performance with
smaller size and smaller subset of terminals used. When the best perform-
ing DRs were examined, those from MOGP methods were approximately
half the size of those from SOGP.

The second contribution is the investigation of feature selection and
feature construction using MOGP for dynamic JSS. Feature construction
occurred at Stage 2. Fragment analysis of evolved DRs from Stage 1 iden-
tified four two-level fragments and one three-level fragment which ap-
peared in a large number of DRs in both MOGP1,S and MOGP1,N . These
constructed higher-level terminals were added to the terminal set for Stage
2. Inclusion of these terminals, with greater domain knowledge, improved
the mean TWT performance of SOGP and of MOGP in the region of the
Pareto front with best TWT performance.

Three specialised conditional statements were introduced alongside
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the existing if>0. The inclusion of these terminals was also an improve-
ment on the results of Stage 1, and in all cases lead to a greater number of
DRs attaining a very high level of TWT performance.

The third contribution is at Stage 4, where the terminal set of Stage 3
was reduced by removing terminals which did not appear frequently. The
results of Stage 4 are better than those of Stage 1, with many more DRs
achieving low TWT performance, however fewer achieve this level of per-
formance than in Stages 2 and 3. This is an interesting result, suggesting
some terminals are more useful as part of larger constructions, as RT is in
ifPS.

The average evolution time is shorter for MOGP methods using NSGA-
II than those using SPEA2, and the best from NSGA-II is better than the
best from SPEA2. In general the performances from the two algorithms are
similar. Performance of evolved rules was competitive with WCOVERT
and many rules outperformed FCFS, MS, EDD and WSPT. ATC, although
outperformed on a number of test and extreme test instances, had the best
overall performance. This suggests that using TWT values obtained by
ATC as a comparison during evolution may be useful to try to improve
performance.

This work is an incorporation of automatic generation of DRs via MO-
GP and feature manipulation, which shows how combining the domain
knowledge rediscovered by GP to alter the input of GP has been able to
improve the performance and learning quality.

This chapter has investigated how MOGP can be used to encourage the
evolution of DRs which are more readily interpretable by human opera-
tors, by including the size of the DR and the number of distinct terminals
included in the DR. For future studies we suggest including further ob-
jectives that cover generalisation ability and ability to cope with changing
arrival processes throughout time.
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Chapter 7

Conclusions

This thesis has focused on using genetic programming for the automatic
discovery of new dispatching rules for job shop scheduling problems. The
overall goal was to develop genetic programming based hyper-heuristics
for the efficient evolution (automatic generation) of robust, reusable and
effective scheduling heuristics for job shop scheduling environments, with
greater interpretability. This goal was successfully achieved through stu-
dying the representations used, the incorporation of additional feedback
on dispatching rule performance through other heuristic methods and the
inclusion of additional objectives during the evolutionary process. The
evolved rules were compared to existing approaches and dispatching ru-
les from the literature.

The remainder of this chapter first reviews the objectives achieved, and
the conclusions of the main contribution chapters. Then suggestions for
future work to extend the work in this thesis are given.

7.1 Achieved Objectives

This thesis has fulfilled the following research objectives.

1. This thesis presented the first investigation into using GP to evolve
optimal dispatching rules for the J2 | |Cmax problem (Chapter 3). It

267
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was shown that Jackson’s algorithm is able to be represented as a
dispatching rule. A GP representation was developed and it was
shown that GP was capable of discovering a dispatching rule which
is equivalent to Jackson’s algorithm and will always dispatch jobs in
a way which attains the minimum makespan. In the dynamic two-
machine job shop, a representation involving two dispatching rules
simultaneously, one for each machine in the dynamic two-machine
job shop, was compared to the standard approach of using one dis-
patching rule to make scheduling decisions at all machines in the
shop. The results show that no method consistently outperformed
another. However, using machine-specific rules resulted in shorter
evolution and training times. It cannot be assumed that one rule is
sufficient for all machines.

2. This thesis investigated approaches to discover “less-myopic” dis-
patching rules (Chapter 4). It was shown that the inclusion of addi-
tional terminals in the feature set led to the evolution of DRs which
attain better mean performance on test instances with high utilisa-
tion levels, and decrease the mean queue length. A local search ba-
sed means of providing additional feedback on the fitness of DRs
over an extended decision horizon was proposed. The results show
that the inclusion of local search leads to the evolution of DRs which
make better decisions over the local time horizon and attain lower
total weighted tardiness. The use of local search as a tie break mech-
anism was investigated, and results show that there is not sufficient
benefit from this to justify the increase in computational time re-
quired.

3. This thesis investigated encouraging the interpretability of automat-
ically discovered dispatching rules through the use of strongly ty-
ped GP (Chapter 5 and Chapter 6). The allowable interactions be-
tween functions and terminals were described using a sequence of
grammars and implemented through strong typing. Although the
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mean performance of DRs evolved with STGP was (as expected) not
as good as the mean performance of DRs evolved without semantic
constraint, there were very effective rules evolved under STGP. The
use of a grammar decreased the mean program size. Results sug-
gested that the size of the evolved DRs, and useful fragments wh-
ich do not violate a given grammar, may be useful components of a
measure of interpretability. Defining a widely acceptable measure of
interpretability is still believed to be a very difficult task. However,
a function based on DR size and fragments or interactions would be
one step closer to truly quantifying interpretability.

4. This thesis has investigated how multiobjective GP can be used to
evolve dispatching rules for the dynamic JSS problem which are ef-
fective in terms of scheduling objectives and are also more easily
understood by human operators (Chapter 6). There is a trade-off be-
tween the size of the GP trees (compactness of heuristics) and the int-
erpretability of heuristics was considered. The results showed that
interpretability was improved by the inclusion of objectives relating
to the size of the DR, as for each DR evolved without the additional
objectives of minimising the number of nodes and distinct nodes in
the evolved DR, there was a MOGP evolved DR with similar TWT
performance with a smaller size and a smaller subset of terminals
used. This smaller size makes interpretability much greater, for little-
to-no decrease in TWT performance. In general, the performances
from the NSGA-II and SPEA2 were similar. The average evolution
time was quicker for MOGP methods using NSGA-II than those us-
ing SPEA2, and the best from NSGA-II are better than the best from
SPEA2.

5. This thesis explored the use of knowledge implicitly discovered thro-
ugh GP to perform feature manipulation to improve dispatching rule
performance (Chapter 6). Best-of-run evolved DRs were examined
and five commonly occurring fragments of terminals and functions
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were added to the terminal set as higher-level constructed termi-
nals. The inclusion of these terminals improved the region of the
non-dominated front with the best TWT performance. Three spe-
cialised conditional statements were also introduced, also causing
an improvement in the best TWT attained. Finally, feature selection
was performed by frequency analysis of used terminals. Results sug-
gested that some attributes are more useful as part of higher-level
terminals than as a base-level terminal. Results showed that the use
of higher-level constructed terminals, which have clear definitions in
the domain space, improves the interpretability of the evolved rules.

7.2 Main Conclusions

This thesis finds that GP is able to evolve dispatching rules which are less-
myopic, more interpretable than rules previously evolved with GP and
which perform competitively with existing methods. This section presents
the main conclusions from the five research objectives in the four major
contribution chapters (Chapter 3 to Chapter 6).

7.2.1 Optimal Dispatching Rules

Chapter 3 explored one of the simplest job shop scheduling environments:
the static and dynamic two-machine job shops. The static two-machine job
shop is known to have an optimal solution with the makespan objective
function. There are few job shop environments with simple algorithms
known to provide the optimal solution, so this provided a test ground
of concepts if the algorithm was able to be represented as a dispatching
rule. The dynamic two-machine job shop is one of the simplest of the
dynamic job shop scheduling environments, and allowed for exploration
of ideas of the trade-offs between simplification of the job shop model and
the computational cost of discovering and evaluating DRs.
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Representation of Jackson’s Algorithm as a DR

This thesis finds that there exists a dispatching rule which will generate
an ordering of jobs which always gives the same makespan as Jackson’s
algorithm. This dispatching rule can be represented very succinctly with
a tree-depth of four, and only 12 nodes. This dispatching rule will not
dispatch exactly the same sequence of jobs as the sequence that would be
constructed using Jackson’s algorithm. However it is able to work very
quickly as production is progressing without requiring the schedule to be
produced ahead of time.

Capability of GP to find Optimal DRs

This thesis finds that GP is sufficient in representation and search capa-
bility to discover DRs which are able to always dispatch waiting jobs to
obtain the minimum makespan. In other words, the makespan obtained
using these DRs will give the same value as the value of makespan ob-
tained by scheduling jobs using Jackson’s algorithm. It is the first time
that optimal DRs for the static two-machine job shop with makespan ob-
jective function have been evolved by GP. The search capability of GP was
improved by altering the terminal set to include an additional terminal.
Additionally, it was shown that changing the problem instances every 10
generations vastly improved the search, and optimal DRs were found with
greater ease.

Dynamic Two-Machine Job Shop

This thesis investigates the combined effects of using one scheduling rule
versus machine specific scheduling rules and changing the problem in-
stances throughout evolution in non-symmetric dynamic two-machine job
shops. The results show that methods with changing problem instances do
not consistently outperform methods with the same problem instances,
nor do individuals with machine specific rules consistently outperform
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individuals consisting of only one scheduling rule. The two-machine dy-
namic job shop is a small job shop environment, and we cannot assume
that one rule for all machines is sufficient for all job shop problems.

7.2.2 Less-Myopic Dispatching Rules

Chapter 4 explored two methods to encourage the evolution of DRs which
are less-myopic, and take into account more than just the current state of
the job shop at the current machine.

Less-myopic Attributes

The first instance where the inclusion of additional terminals which con-
sidered the future state of the shop was in Chapter 3, when the terminal
NPR, the processing time of the next operation in the job, was added to
the terminal set. The inclusion of the processing time of the next oper-
ation (NPR) as well as the total remaining processing time (RT) and the
processing time of the current operation (PR), improved the GP search,
and a greater number of DRs which passed the testing phase were found.

In Chapter 4, NPR and three further terminals, AQW, NQW and NNQ, were
added to the terminal set. These are just a few of many possible termi-
nals which consider properties from the shop that look further forward
(or backward) in time, or wider in space across the shop. The inclusion of
these less-myopic terminals was shown to lead to a statistically significant
improvement in performance in terms of TWT over DRs evolved with the
initial terminal set. This improvement in performance is due in part to
how the less-myopic DRs dispatched jobs so that the mean and standard
deviation of queue length was less, keeping the queues at machines more
even in length and preventing queues from getting too long. The less-
myopic DRs were also quicker to evaluate and dispatch jobs than their
normal counterparts.
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Local Search based Fitness Feedback

In Chapter 4, possible improvements to training DRs for the dynamic
ten-machine job shop in GP through the use of local search were inves-
tigated. The expected contribution to the total weighted tardiness over
an extended decision horizon was used to determine whether the order of
queued jobs could be improved. A penalty was assigned to DRs which did
not schedule queued jobs in the best order based on this expected contri-
bution. Initial results showed that the inclusion of the additional feedback
from local search led to the evolution of DRs which have better local per-
formance and achieve some better TWT values. This was supported by
our more in-depth investigation. Three local search operators were inves-
tigated: MoveFront, SwapFront and Transpose. SwapFront was shown
to often lead to the best front of non-dominated DRs. We have analysed
the mean queue length overall, the mean queue length when a positive
penalty was assigned, and the mean queue length when no penalty (no
improvement to the expected contribution to TWT was found) was as-
signed. This analysis showed that the mean queue length is longer when
a positive penalty is assigned; however there is a large overlap in mean ±
standard deviation of queue lengths.

Local Search based Tie-breaking

In Chapter 4, the use of local search to improve the tie-breaking behaviour
of DRs was investigated. This thesis finds that most of the best-of-run
evolved DRs have a tie-breaking penalty of 0. This supports the hypothe-
sis that dispatching rules which are better at separating jobs by assigning
distinct priorities are more effective. The spread of TWT and penalty re-
sults is similar across all four scenarios, which suggests that performing tie
breaking with local search does not offer enough improvement in its cur-
rent implementation to justify the additional computational cost which is
incurred.
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7.2.3 Interpretability of Evolved Dispatching Rules

Results in Chapter 4 suggest that the best-of-run dispatching rules evolved
using standard GP are not easily interpretable. It is important that rules
evolved using GP are able to be understood and trusted by the human
operators and managers of the real-world scheduling environments. If
they are not able to be trusted then they are unlikely to be used in practice.

There are many factors that affect the interpretability of evolved DRs.
One factor identified in Chapter 4 was the way that features were com-
bined with mathematical operators, e.g., it makes more sense to multiply
or divide by the job weight than to add it to or subtract it from the current
time.

This thesis has been the first work using GP to develop DRs which has
considered interpretability of evolved DRs to be of as much importance as
their performance.

Development of Grammars to Enforce Semantic Constraint

This thesis has developed new grammars to enforce semantic constraint
on DRs within the evolutionary process through the use of strongly typed
GP. In Chapter 5 terminals were initially partitioned into four basic types
(count, weight, time duration, and clock time), and the allowable inter-
actions of these four types were used to develop a new grammar. This
grammar was extended incrementally to include three additional types,
inverse time duration, squared time duration and inverse squared time
duration.

Comparative Interpretability and Performance

The mean performance of DRs that were evolved with semantic constr-
aints of STGP was not as good as the mean performance of DRs evolved
without semantic constraint. Effective rules were still evolved under STGP
from the best performing rules of each method, and the most effective
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DRs were evolved under semantic constraint. The DRs evolved by STGP
methods are shorter and easier to analyse and interpret. Interpretabi-
lity of evolved rules was also improved by the introduction of three spe-
cialised conditional operators. These conditional operators, ifPS, ifOD
and ifLO, tested whether the job has positive slack, whether the job was
overdue, and whether the job was on its last operation. These are not only
able to be understood more easily, but are using domain knowledge redis-
covered by GP.

Insight into a Measure of Interpretability

Chapter 5 has provided greater insight into the interpretability of DRs, and
what factors could potentially be used as part of a measure to quantify
interpretability, allowing better comparison between evolved rules. Key
components are the size of the evolved DRs, which could be measured in
terms of depth, or in terms of the number of nodes, and the useful frag-
ments, which could suggest that a count of such useful fragments which
do not violate a given grammar could also be a potentially useful mea-
sure. Although defining a function based on DR size and fragments or
interactions would be a step closer to quantifying interpretability, actually
defining a widely acceptable measure of interpretability remains a very big
challenge.

7.2.4 Multiobjective GP for Interpretable DRs

Job shop scheduling is inherently a multiobjective problem. DR perfor-
mance is also a multiobjective problem; performance in terms of the sched-
uling objectives is important, as is the interpretability of DRs and practi-
tioners being able to trust automatically generated DRs. The results of
Chapter 5 suggested that including the size of DRs as an objective to be
minimised alongside a more traditional measure of shop performance (e.g.
TWT) was a sensible direction to investigate.
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Interpretability Related Objectives

In Chapter 6, the evolution of dispatching rules with good scheduling per-
formance and improved interpretability was investigated for the first time
through the inclusion of two additional objectives. The fitness of a GP
individual was evaluated in terms of three objectives: the scheduling per-
formance in terms of TWT, the size of the individual in terms of the num-
ber of nodes, and the number of distinct terminals from the feature set
that appeared in the individual. The inclusion of the size means that the
smaller of two rules with identical performance is fitter, and it is likely to
be more interpretable due to this smaller size. The inclusion of the number
of distinct terminals as an objective was to encourage DRs to find smaller
subsets of the terminal set which are sufficient to attain good performance
and to enable feature manipulation. By comparison with single objective
GP, the experimental results showed that SOGP and MOGP have a similar
range of mean normalised TWT. However, for each DR evolved by SOGP,
there was a DR evolved by MOGP which attained similar TWT perfor-
mance with smaller size and a smaller subset of terminals used. The best
performing DRs from MOGP methods were approximately half the size of
the best performing DRs from SOGP.

MOGP Algorithms

The two MOGP algorithms used, NSGA-II [32] and SPEA2 [146], per-
formed, in general, very similarly. The main observable differences were
in the evolution time. The average evolution time is shorter for MOGP
methods using NSGA-II than using SPEA2. Results also showed that the
best evolved DRs from NSGA-II are better than the best evolved DRs from
SPEA2.
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7.2.5 Feature Manipulation in JSS using GP

The job shop scheduling problem has a very large number of potential ter-
minals (and functions) that can be given as parameters to the GP system
for the automatic discovery of dispatching rules. Therefore attribute/feat-
ure selection is an important part of developing an effective GP based ap-
proach for the automatic discover of dispatching rules. Feature manipula-
tion was investigated in Chapter 5 and Chapter 6.

Feature Construction

In Chapter 5 three specialised conditional operators were introduced, ba-
sed on analysis of the conditions that were found in best-of-run evolved
DRs. Many of the conditions were overly long and complicated, or were
always negative or always non-negative, hence the if>0 statement was
unnecessary. The remaining conditional statements lead us to introduce
ifPS, ifOD and ifLO, which tested whether the job has positive slack,
whether the job was overdue, and whether the job was on its last operation
respectively. These specialised conditional operators were not only able to
be understood more easily, but are using domain knowledge rediscovered
by GP, and can be considered as feature construction of a condition state-
ment.

Feature construction was also performed in Stage 2 of Chapter 6, where
the best-of-run evolved dispatching rules were searched for commonly oc-
curring fragments of terminals and functions. Four two-level fragments
and one three-level fragment were used as constructed higher-level termi-
nals that were added to the terminal set. Inclusion of these terminals with
greater domain knowledge improved the mean TWT performance of all
methods in the region of the Pareto front with the best TWT performance.
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Feature Selection

The process by which GP automatically discovers knowledge through the
terminals selected can be viewed as feature selection. At Stage 4 of Chapter
6, the terminal set of Stage 3 was reduced by removing terminals which
did not appear frequently. This led to an improvement over the original
terminal set used in Stage 1, with many more DRs achieving low TWT
performance. This result suggests that some terminals are more useful as
part of larger constructions, as RT is in ifPS.

Improving Interpretability

The introduction of higher-level terminals, each of which we were able to
interpret, meant that these terminals did not reduce the interpretability of
the evolved rules. The introduction of the three specialised terminals, and
the removal of the if>0 statement improved the interpretability of the
evolved rules at the cost of slightly worse TWT performance.

7.3 Future Work

There has been extensive exploration of GP for the automatic generation
of dispatching rules for JSS in this thesis. Although many of the limita-
tions have been discussed in this thesis, there are further improvements
that can be made to the state-of-the-art. This section highlights suggested
directions for future work that are motivated by the investigations in this
thesis.

Investigation of Less-Myopic Feature Sets. A direction for future work
is to investigate whether the additional less-myopic terminals con-
tinue to offer improved performance as the scale of the job shop in-
creases. It is also recommended to investigate additional terminals
which capture further properties of the job shop’s current and po-
tential future states, and incorporate a look-ahead element. It could
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also be interesting to investigate which is more important, improv-
ing performance to be less-myopic in space or to be less-myopic in
time. Further, do terminals which consider looking backward in time
aid performance as well as terminals which look forward in time? A
final suggestion in this direction would be to investigate estimators
vs actual measures of properties. For many properties of the job shop
there are different ways it could be measured, e.g., which is the best
way to measure how busy a machine is; is it the number of waiting
jobs, the utilisation, the work in the queue, or the average waiting
time? For the terminals which take the average of observed values,
how many values should be used for these? Five is an arbitrary num-
ber that we have used so far. Could GP be allowed to determine the
number of values it takes the average of dynamically?

Local Search Extensions. When the local search based additional feed-
back over the extended decision horizon was used, the performance
of evolved rules improved. We have investigated the queue lengths
at machines, and compared queue lengths when a positive penalty
was assigned and when no penalty was assigned. The next step in
this investigation would be to consider how this information can be
used to improve the performance of evolved DRs without increasing
the computational time as much. With an improved use of compu-
tational time, further consideration to alternative local search oper-
ators, and combinations of local search operators, could be consid-
ered.

Comparison of two dispatching rules in depth. It would be interesting to
develop a method to compare two dispatching rules, seeing how
they assign priority values to queued jobs in the same decision sit-
uations, and examining when one rule outperforms the other. It
would also be interesting to incorporate knowledge of the rate of
change of priority values that are assigned to jobs. Some jobs may
be re-evaluated multiple times at the same machine as other jobs are
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selected ahead of them; means of identifying jobs that are rapidly
increasing in priority value relative to other queued jobs could im-
prove the scheduling performance. It may be the case that selecting
a relatively high priority job with greater rate of change would be a
better decision than scheduling a higher priority job with lower rate
of change. Through pairwise comparisons of dispatching rules the
trade-offs in complexity and scheduling performance could be fur-
ther explored.

Defining a Measure to Quantify Interpretability. Measuring the interpr-
etability of dispatching rules is a difficult task, and requires manual
examination of evolved dispatching rules. Insight gained through
this thesis shows that the use of higher-level terminals, made of co-
mmonly used fragments, and encouraging smaller sized dispatching
rules improved interpretability. A direction for future work is to in-
vestigate combining these, and other, elements into a measure of int-
erpretability. Dispatching rules could be evolved without semantic
constraint and given a value of how much they are acceptable under
a grammar, and this value could then be combined with a measure
of size. We still believe that defining a widely acceptable measure
of interpretability remains a very difficult task, and a function based
on DR size and fragments or interactions would only be one step
closer to truly quantifying interpretability. Further investigations in
this direction need to be made.

Multiobjective GP for Scheduling. Scheduling is a multiobjective prob-
lem. In this thesis we investigated including objectives relating to
interpretability as well as the scheduling performance. For future
studies, further objectives could be included. One such objective
is the generalisation ability of the dispatching rule. One approach
to this may be to train across job shops with varying numbers of
machines and distributions as well as varying utilisation rates and
number of operations, and attain a measure of performance differ-
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ence relative to the state of the art. Another aspect of generalisation
could be the ability to cope with changing arrival processes through-
out time. This could include training on job shop scenarios in which
the arrival process is a non-homogeneous Poisson process, i.e., the
rate of arrival of jobs changes over time.

Feature Construction. Feature construction using GP could be improved,
and incorporated automatically into the evolutionary process. Au-
tomatically defined functions (ADFs) allow for sub-functions to be
called by a GP individual [78], however the ADFs are associated to
the specific individual rather than belonging to the population as a
whole. Modifying the structure so that sub-function trees are able
to be evolved and accessed by the whole population could be one
method of allowing dynamic feature construction.

Identifying Node Saliency. The use of frequency analysis on unsimpli-
fied rules is not the most reliable means of determining how salient
a specific terminal is relative to other terminals. Terminals may ap-
pear in the DR but never be executed. Manual simplification is time
consuming and impractical on a large scale. A possible alternative
that could be pursued is to analyse the execution paths and use the
proportion of time that the terminal is executed instead.

Uncertainty and Disruption. Job shops with disruption and uncertainty
are big issues in scheduling, and could be considered in future stud-
ies. In situations where scheduling methods need to cope with un-
certainty and disruption it will be even more important for the sche-
duling rules to be able to take into account the wider state of the
shop and to be trusted. Human operators need to be able to trust
that a rule will behave sensibly and not bring the shop to a stand-
still, but allow what can be processed to still be processed, and to
recover quickly from disruption.

In summary, there are many future research directions that arise as a result
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of the work described in this thesis.
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