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Abstract 
Each gravity observation technique has different parameters and contributes to different pieces of 

the gravity spectrum. This means that no one gravity dataset is able to model the Earth’s gravity field 

completely and the best gravity map is one derived from many sources. Therefore, one of the 

challenges in gravity field modelling is combining multiple types of heterogeneous gravity datasets. 

The aim of this study is to determine the optimal method to produce a single gravity map of the 

Canterbury case study area, for the purposes of use in geoid modelling. 

This objective is realised through the identification and application of a four-step integration 

process: purpose, data, combination and assessment. This includes the evaluation of three 

integration methods: natural neighbour, ordinary kriging and least squares collocation. 

As geoid modelling requires the combination of gravity datasets collected at various altitudes, it is 

beneficial to be able to combine the dataset using an integration method which operates in a three-

dimensional space. Of the three integration methods assessed, least squares collocation is the only 

integration method which is able to perform this type of reduction.  

The resulting product is a Bouguer anomaly map of the Canterbury case study area, which combines 

satellite altimetry, terrestrial, ship-borne, airborne, and satellite gravimetry using least squares 

collocation. 
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1. INTRODUCTION 
 

1.1. Background 
Within the Earth sciences, the problem of having to combine complementary heterogeneous 

datasets in order to derive a seamless model is not uncommon. For example, the International 

Terrestrial Reference Frame (ITRF) is primarily determined using five observation techniques (Wang 

et al, 2009), while natural hazard monitoring benefits from combining observation methods from 

multiple disciplines (examples such as: Custodio et al, 2007 and Serra et al, 2013). 

In geoid modelling the requirement to combine disparate datasets occurs at the gravity field 

mapping stage. Each gravity observation technique has different parameters, and contributes to 

different pieces of the gravity signal spectrum. This means that no one gravity dataset is able to 

adequately represent the gravity field at the national scale, cover the full gravity signal spectrum and 

provide the spatial resolution required for geoid modelling. Therefore, the best gravity map is one 

that is derived using datasets from multiple sources.  

During the time of the computation of the current New Zealand geoid (NZGeoid2009; LINZ, 2009), 

the gravity datasets observed on the Earth’s surface were artificially separated, abutting at the 

natural barrier of the coastlines (Claessens et al, 2009). This was a reasonable approach, as there 

were no data available from an observation technique which traversed this boundary at a suitable 

scale. 

In 2012 a trial airborne gravity dataset was collected over the Canterbury region (Winefield et al, 

2014). This technique is unique as it is the only method which is able to seamlessly capture 

observations across the transition between land and sea, at a resolution for geoid modelling 

(Forsberg et al, 2000). This means that the approach of combining datasets by using the coastline to 

delineate a dataset’s zone of influence is no longer valid.  

It is the intention of this study to combine the 2012 airborne gravity dataset with existing satellite 

altimetry, terrestrial, ship-borne and satellite gravimetry datasets, to form a single gravity map over 

the Canterbury region.  

Consideration will be given to ensuring how the spectral characteristics of each gravity dataset can 

be integrated. Finally, an optimal integration method for the combination of multiple gravity 

datasets will be recommended. 

 

1.2. Motivation 
Within geodesy the collection and interpretation of gravity data is of particular importance to height 

determination.  

Unlike horizontal coordinates (latitude and longitude), which are generally understood by the 

layperson, the concept of ‘height’ can be significantly more complex. It is generally accepted that 

‘elevation’ is the distance from a point to a reference surface, while that the term ‘height’ is used 

exclusively to describe the distance between the top and bottom of an entity (Warf, 2006). However, 
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the Geodetic Glossary (NGS, 1986) defines ‘height’ as: the distance, measured along a perpendicular, 

between a point and a reference surface. Therefore, within this text two terms are used 

interchangeably. The only exception to this when referencing flights, were ‘altitude’ is the distance 

between the aircraft and the geoid, and ‘height’ is the distance between the aircraft and ground 

level (Warf, 2006). 

A vertical datum is the reference surface defined for precise height measurements. Vertical datums 

are required in areas such as surveying, civil works, construction, hydrology, agriculture and land 

management, to ensure consistency when comparing and exchanging elevation information. 

However, heights are also able to be expressed in less formal, and often more ambiguous terms 

when precision is not critical. Some examples of these arbitrary reference surfaces are: the height of 

a balloon above the ground, or snow fall to a height above sea level.  

Traditionally, heights in New Zealand have been determined in terms of an averaged sea level 

reading at a local tide gauge. This has resulted in at least 13 Local Vertical Datums (LVD) determined 

across the country. These local heights were then transferred via linear networks of benchmarks, 

using methods such as precise and trig levelling. While often referred to as orthometric heights, 

gravity observations were not measured as part of the survey. Rather, the levelling observations 

were reduced using the Geodetic Reference System 1967 (GRS67) normal-orthometric correction 

(DoSLI, 1989). Therefore, the LVD heights in New Zealand are normal-orthometric.  

The twentieth century has seen an increasing prevalence in the use of GNSS (Global Navigation 

Satellite System) observations. However, GNSS observations are provided as ellipsoidal heights i.e. in 

terms of an idealised geometric shape, rather than as traditional orthometric or normal-orthometric 

heights, which are related to sea level. While ellipsoidal heights have practical uses, such as 

monitoring long term changes, they are less intuitive than gravity based heights. Most notably, as 

ellipsoidal heights are not based on gravity, they are unsuitable for use in predicting fluid flow for 

local engineering purposes. 

On the other hand, deformation and other geophysical phenomena such as changes in sea level, 

make the continued use of the 13 LVD and other datums based on tide gauges inconvenient and 

costly. 

The contemporary solution for this situation is for a country to provide a national geoid. This allows 

the transformation of ellipsoidal heights to orthometric heights, in terms of a national datum. This 

can currently be seen in New Zealand with New Zealand Vertical Datum 2009 (NZVD2009; LINZ, 

2009) and in Canada with Canadian Geodetic Vertical Datum 2013 (CGVD2013; NRCan, 2014).  

The geoid is an equipotential surface which would coincide with mean sea level, if the sea was 

allowed to extend through the continents. While global geoid models exist, they are tailored to 

provide a global fit of the data and their maximum resolution is restricted to that of the regions with 

the sparsest gravity coverage (Huang & Véronneau, 2015). These grids are often too coarse for use in 

surveying or engineering applications. For this reason a number of countries are finding that a 

national geoid will soon become a necessity (for example: Wonnacott & Merry, 2011 and Othman et 

al, 2014). The local geoid model is computed by augmenting a global model with locally collected 

gravity data, providing a higher resolution model, with a better fit across the area of interest.  
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NZGeoid2009 was computed using data available at the time, namely the Earth Gravitational Model 

2008 (EGM2008), which was regionally enhanced with terrestrial gravity, altimetry-derived marine 

gravity anomalies and a digital elevation model (Claessens et al, 2009). However, much of these 

regional datasets are historic, and are heavily spatially biased, resulting in greater distribution in 

areas of scientific or economic interest. Rather than being collected for the purposes of national-

scale geoid modelling, for which well distributed and uniform sampling is required. For example the 

terrestrial methods of gravity data collection tend to limit observations to easy-to-access areas, such 

as along roadways and coastlines, and few in areas which are difficult to access or with steep terrain 

(Amos & Featherstone, 2004). This can result in aliasing as the sample points are restricted to areas 

of like features.  

In early 2011 Land Information New Zealand (LINZ) began investigating methods to improve the 

vertical datum. The favoured approach was to improve the national geoid by incorporating a 

national airborne gravity dataset in the geoid computations. One of the major advantages of the 

airborne gravity technique is its uniform data collection method (LINZ, 2011). 

In 2012 LINZ completed a trial airborne gravity survey over Canterbury (Winefield et al, 2014). This 

provided the opportunity to improve the regional gravity data maps in Canterbury, and provide 

recommendations as to the optimal process for the integration of airborne gravity data with existing 

gravity datasets.  

 

1.3. Significance of Study 
Combining more than two gravity datasets, collected over different spectral ranges, using multiple 

technologies and with individual error characteristics has been identified as one of the challenges in 

gravity field modelling (Kern et al, 2003). As their different error characteristics and the integration 

method chosen impact on the final solution. Each of the data types must be combined in a way that 

the datasets yet to be integrated will not be biased by the effects of previous integrations. Sjöberg 

(2011) continues this line of research providing a theoretical study combining satellite, airborne and 

terrestrial gravity, confirming that such multispectral integration is best achieved by a weighted 

approach. 

Previously in New Zealand the coastline has been exploited during the gravity integration process, as 

it provides a natural buffer between the land and sea datasets (Amos, 2007; Claessens et al, 2009). 

In the case where two sea-based datasets were considered, the ship-borne observations were first 

integrated with the satellite altimetry derived datasets to form a single sea-gravity dataset, prior to 

combination with the land-gravity dataset.  

The significance of this study is that the final data integration approach may be required to deviate 

from the approaches of Amos (2007) and Claessens et al (2009). This is primarily because the 

airborne gravity dataset traverses the gap between the land and sea, precluding the use of the 

coastline as a division.  

This study will use gravity data collected from the Canterbury region of New Zealand to determine 

an optimal integration process, using physical datasets.  
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1.4. Objectives of Study 
The principal aim of this research is to identify the best method for the combination of satellite 

altimetry, airborne, ship-borne, terrestrial and satellite gravity collected in Canterbury, to form a 

single dataset for use in geoid determination. 

There are four sub-objectives: 

- To determine the characteristics of each of the gravity datasets available over the 

Canterbury region, their limitations and contributions to defining the gravity field.  

- To identify data integration techniques that can be used when combining more than two 

gravity datasets. 

- To evaluate each of the integration techniques on its ability to best preserve the strengths of 

each gravity dataset. 

- To recommend an optimal integration process, and create a gravity map of the Canterbury 

region using this process. 

 

1.5. Outline of Thesis 
This thesis is divided in to five chapters. Chapter One is an introductory section which provides a 

brief description of the relevance of this project and its outcomes. This chapter introduces the 

difficulties associated with the integrating of more than two datasets and provides an overview as to 

the role of gravity in the geoid determination process.  

Chapter Two is an introduction to gravity. This chapter includes brief descriptions of the gravity data 

collection methods and the considerations and corrections applied during the reduction process.  

Chapter Three describes the four steps of the Integration Process: understanding the purpose of the 

model, the data being used, and the integration methods available, combining the data and finally 

assessing the model to ensure that the requirements have been met.  

Chapter Four is a case study, where the Canterbury test area is defined and gravity datasets which 

cover the Canterbury region are identified and critiqued. The four-step integration process is applied 

and an optimal gravity map of the Canterbury test area is presented.  

Chapter Five is the conclusion and provides a summary of this research. This includes 

recommendations and findings which could be applied to future research.  
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2. GRAVITY 
 

2.1. Introduction 
Gravity is the universal force of attraction between all objects which have mass. The Earth’s gravity 

keeps the Moon in orbit and the Sun’s gravity keeps the Earth in orbit. In short, gravity is the force 

that causes everything on the surface of the Earth to either fall to the ground or remain in place.  

While commonly misunderstood by the layperson, acceleration due to gravity is not constant across 

the entire Earth’s surface (i.e. 𝑔 ≈ 9.81 ms-2). This over-simplification can be attributed to, and is 

perpetuated by, commonly using the Earth’s average radius (𝑟 = 6,371 km) in Equation 2.1, when 

solving for gravity acceleration (𝑔) on the surface of the Earth.  

𝑔 = 𝐺
𝑀

𝑟2
 

Equation 2.1 
 
 

where: 
𝐺 is the gravitational constant (6.67408 × 10-11 m3 kg-1 s-2),  
𝑀 is the mass of the Earth (5.98 x 1024 kg), and  
𝑟 is the distance from the Earth’s centre.  

 

However, it is important to note that the Earth is not a perfect sphere, for example it bulges at the 

equator (equatorial radius ~6,378 km) and flattens at the poles (polar radius ~6,357 km; Tarbuck et 

al, 2002). 

In fact, the value of 𝑔 varies with respect to latitude, distance from the centre of the Earth and the 

irregular distribution of mass within the Earth. It is also subject to temporal changes which are able 

to redistribute mass through processes such as precipitation, ice formation, tides and ocean 

currents/temperature. 

Because of the units reported by the gravity meters providing the raw data, throughout this study 

gravity units will be represented in Gals (also referred to as a Galileo) using the CGS (centimetre–

gram–second) system of units for acceleration. A Gal is defined as 1 centimetre per second squared 

or in SI (International System) units 1 Gal = 0.01m/s2 (Cardarelli, 2006). However, differences in 𝑔, 

which can be attributed to variations within the Earth’s crust, including the effects of the solid Earth 

tide, are typically represented in milliGals (mGal). Where 1 mGal = 0.001 Gal = 10-5 m/s2. 

When mapping the Earth’s gravity field reference is made to the term ‘wavelength’ in the case of 

geoid modelling long wave-length (low-degree) variations signify global-scale anomalies, while 

conversely short wave-length (high-degree) variations signify local-scale mass anomalies (Matsuo & 

Otsubo, 2013). 

This Chapter reviews the two basic types of gravity meter and describes the various methods which 

are commonly used to collect gravity observations or determine the Earth’s gravity field. Including a 
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discussion on two of the complexities faced when combining gravity data: which stage of the data 

reduction process the observations should be combined at, and the problem of downward 

continuation. This chapter concludes with a reduction, demonstrating how raw gravity observations 

are reduced to provide gravity anomalies.  

 

2.2. Gravity Instruments 
Gravity is measured using an instrument known as a gravity meter, or gravimeter. More specifically 

they are a type of accelerometer that observes the constant downward acceleration of gravity.  

The types of gravity meter used on the surface of the Earth can be divided into two basic categories 

based on how the gravity field is being measured: absolute meters measure the gravity field directly. 

In contrast, relative meters observe the difference in gravity between points (Niebauer, 2007). 

Most types of gravity meter are designed to remain static. Either providing long term continuous 

observations at a single station, or are able to be moved to a place for a time (Herring, 2007). 

However, certain gravity meters have been designed to operate from a moving platform, such as a 

ship or airplane. In this study these types of movable meters will be referred to as ‘dynamic gravity 

meters’. 

Space-borne gravity missions use a different approach in order to determine the Earth’s gravity field. 

They use either satellite-to-satellite tracking or satellite gravity gradiometry to determine the 

satellite’s orbit, and then second derivatives of the gravity potential are used to approximate the 

gravity field (Rummel, 1986).  

 

2.2.1. Absolute Gravity Meters 

Absolute gravity meters directly determine the value of the gravity field. They are ideally suited for 

use in establishing and monitoring a reference gravity network, or as control points to monitor long 

term changes in gravitational mass, such as Earth Tides (Herring, 2007).  

There are two main absolute gravity observation methods: 

 the pendulum method, which is no longer in use (Niebauer, 2007), but remains of interest 

to this study as this was the method used to provide the first control for the New Zealand 

terrestrial gravity network (Robertson & Garrick, 1960), and 

 the free-fall method, also known as interferometry. 

 

2.2.1.1.  The Pendulum method 

The pendulum method is based on the measurement of the period and length of a freely swinging 

pendulum. The concept behind the pendulum method is expressed by Equation 2.2.  

𝑇 = 2𝜋√
𝐿

𝑔
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Equation 2.2 

where: 
𝑇 is the time period to complete an observation, 
𝐿 is the length of the pendulum, and 
𝑔 is the local gravity acceleration 

 

The pendulum gravimeter was the principal method of observing absolute gravity from 1818, 

starting with the development of the Kater pendulum (Kater, 1818). The expected accuracy of the 

various pendulum methods are between 2-40 mGal (Marson, 2012). For all practical purposes free-

fall meters have superseded the use of pendulum devices since the 1950s (Torge & Müller, 2012). 

The first absolute gravity observations conducted in New Zealand were made in Auckland, in 1882, 

using the Kater three-pendulum method. However, it was not until 1947 that a framework of 19 

absolute gravity reference stations was established across the country (Robertson & Garrick, 1960), 

using the Cambridge Pendulum Apparatus. This is a method which uses two pendulums swung in 

anti-phase (Jackson, 1961).  

 

2.2.1.2.  Free-fall method 

The free-fall method determines 𝑔 by dropping a known mass, over a known distance, in a vacuum 

chamber. A laser interferometer is used to determine the position of the mass, as a function of time 

during its fall. This concept is based on the motion of a body falling freely from rest, Equation 2.3 

𝑑 =  
𝑔 𝑡2

2
 

Equation 2.3 

where: 
𝑑 is the falling distance, and 
𝑡 is the time to fall under gravity 

 

The most accurate commercially available absolute gravity meter is the Micro-g LaCoste FG5 (Micro-

g Solutions, 1999). At a quiet site, a single FG5 it able to observe a repeatability of 3 μGal, while 

different machines at the same site are able to agree to within 1-2 μGal (Niebauer et al, 1995). In 

2015, the New Zealand absolute gravity reference network was re-established using an FG5, 

observing three South Island and five North Island gravity stations (Stagpoole et al, 2015). 

While not yet commercially available, recent advancements in absolute gravity have seen the 

introduction of cold atom gravimeters, including the development of a portable devise (Merlet et al, 

2010). Cold atom gravimeters use atomic interferometry, a method much the same as laser 

interferometry, as it involves the measurement of a free-falling mass. However, in this case the test 

masses are atoms, which have been cooled to micro-kelvin temperatures before being released. It is 

the free-fall time of these frozen atoms which is being measured. A 24 hour occupation from this 

portable meter is able to provide an accuracy of a few μGal (Merlet et al, 2010).  
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2.2.2. Relative Gravity Meters 

Rather than observing the gravity field (𝑔) directly, relative gravity meters observe the difference in 

gravity between two locations. This means that the change in gravity between stations A and B can 

be determined by Equation 2.4 

𝑔𝐵 −  𝑔𝐴 = 𝑘(𝑑𝑟𝐵 −  𝑑𝑟𝐴) 

Equation 2.4 

where: 
𝑘 is the calibration factor of the gravimeter, and  
𝑑𝑟 is the dial reading at the station. 

 
By observing a station with an absolute gravity value as part of the observation network, the 

absolute gravity value can then be transferred relatively, to the connecting sites. Often relative 

gravity meters are portable and readings can usually be determined within a matter of minutes. 

Therefore a network of relative gravity observations can be observed in a day.  

 

2.2.2.1.  Spring-based method 

The most common relative gravity meters are spring based. They work on the principle of 

monitoring the changes in spring length, such as the LaCoste and Romberg zero-length spring shown 

schematically in Figure 2.1. The changes in gravity are measured by suspending a known mass from a 

spring. The spring will then stretch and contract as the gravity field varies. 

 

Figure 2.1: Schematic diagram of a LaCoste and Romberg zero-length spring (LaCoste & Romberg, 1998) 

 

In practice, the spring moves to restore the beam to an optimally sensitive position for each site. The 

change in the gravity field can be determined by measuring the elongation of the spring and by 

applying the concept shown in Equation 2.5.  
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𝑚𝑔 − 𝑘𝑆𝑃𝑅𝐼𝑁𝐺(𝑙𝐵 − 𝑙𝐴) = 0 

Equation 2.5 

where: 
𝑚 is the known mass at the end of the spring, 
𝑘SPRING is the spring constant, and  
𝑙 is the length of the spring  
 

Portable relative gravity meters such as the North American AGI (Hunt, 1970), Worden (Reynolds, 

2011) and LaCoste and Romberg G-meter (Seigel, 1995), have observation resolutions in the order of 

0.01 mGal.  

 

2.2.2.2.  Superconducting method  

The superconducting gravity meter is a type of spring type gravimeter. However, in this case the 

superconducting magnetic field produces a non-mechanical spring, which is used to suspend the 

mass (Goodkind, 1999). The operational mechanism is made up of three main parts: the mass, the 

field coils and magnetic plates, as illustrated by the diagram in Figure 2.2. The position of the 

suspended sphere moves relative to the coils in response to variations in the gravity field (Goodkind, 

1999). The superconducting gravity meter is able to monitor the Earth tides at the level of 1 nanoGal 

(Hinderer et al, 2007). 

 

Figure 2.2: Diagram of the basic operation of a superconducting gravity meter (Harms, 2015) 

 
The entire instrument is cooled to 4 kelvin using liquid helium, producing a uniform gravity field 

which could not otherwise be maintained at room temperature (Niebauer, 2007). 

Superconducting gravity meters are best suited as continuous observation stations, as they are 

prone to large tares in the observations if moved. As such they are used in tidal modelling, seismic 

studies and monitoring atmospheric effects (Goodkind, 1999).  



 

Chapter 2 - Gravity Page 10 
 

However, portable superconducting gravity meters do exist (Wilson et al, 2012), such as the iGrav: 

developed by GWR Instruments in 2011 (http://www.gwrinstruments.com/index.html). 

 

2.2.3. Dynamic Gravity Meters 

Certain models of relative gravity meters are considered to be ‘dynamic’. That is to say that they are 

able to make observations on a moving platform, such as a ship or airplane. Sea and airborne 

gravimetry generally employs a type of modified land gravity meter, such as the Lacoste and 

Romberg model "S" meter, shown in Figure 2.3.  

 

 
Figure 2.3: Photo of Lacoste and Romberg model "S" air-sea dynamic gravity meter (LaCoste & Romberg, 1998) 

 
Observing gravity in a dynamic environment introduces additional complexities such as vibrations, 

and kinematic (non-gravity) accelerations caused by the movement of the vehicle, contaminating the 

gravity signal. For this reason, the meter consists of a highly damped, spring type gravity sensor 

mounted on a mechanically stabilised frame, eliminating (as far as possible) the effect of tilt, pitch 

and roll by using gyros and accelerometers in a feedback loop (Alberts, 2009). 

When observing from a moving platform the Eötvös Effect must also be considered. The Eötvös 

Effect occurs due to the vertical component of the Coriolis Effect. It is observed through a decrease 

in gravity when moving from west to east, and likewise, an increase when moving east to west 

(Allaby & Allaby, 2008). The Coriolis Effect is dependent on latitude: it is zero at the poles and 

increases with distance towards the equator. 

The Eötvös (ε) correction (Equation 2.6) restores the free-air gravity measurements to what they 

would have been, had the platform not been moving at the time the observations were made 

(Dehlinger, 1978). 

ε =  14.585ν cos𝜙sinα +  0.01569ν2 mGal 

Equation 2.6 

http://www.gwrinstruments.com/index.html
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where: 

ϕis the latitude 
α is the heading, and 
𝑣 is the ground velocity in m/s 

 

2.2.4. Satellite Gravimetry 

In essence a satellite in orbit can be considered as a test mass, it is in free fall in the Earth’s 

gravitation field. Therefore, through the motion of the satellite the Earth’s gravity field can be 

deduced (Rummel et al, 2002). However, this theory is limited by two factors: the ability for the 

satellite to be continuously tracked (in all three dimensions), and the effects of non-gravitational 

forces on the satellite’s orbit.  

As such, recent space-based gravity missions have relied on satellite-to-satellite tracking, where the 

gravity satellite is monitored to cm-level precision through uninterrupted GNSS observations 

(Rummel et al, 2002). While, the measurement or compensation for the effect of non-gravitation 

forces has been determined via one of three techniques: 

a) Satellite-to-Satellite tracking in high-low mode (SST-hl): Shown conceptually in Figure 2.4, a 

low Earth orbiter is tracked by the higher orbiting GNSS satellites (Rummel et al, 2002). The 

non-gravitational forces on the orbiter are measured by a three-axis accelerometer placed at 

the orbiter’s centre of mass (Schwintzer et al, 2000). 

 

Figure 2.4: Concept of satellite-to-satellite tracking in high-low mode (Albertella et al, 2002) 

The SST-hl method was first used by the German mission CHAllenging Mini-satellite Payload 

(CHAMP). Launched 15 July, 2000, this was a small satellite mission for geo-scientific and 

atmospheric research. The CHAMP mission included collecting observations for the recovery of the 

global long-to medium-wavelength, static and temporal gravity field of the Earth (Reigber et al, 

2002). 
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b) Satellite-to-Satellite tracking in low-low mode (SST-ll) combined with SST-hl mode: Shown 

conceptually in Figure 2.5, two low orbiters are set-up following each other on the same 

orbit, but a few hundred kilometres apart. In addition, both satellites are connected to SST-

hl mode. While the relative motion, acceleration and altitude data, between the two 

satellites is measured by a high precision inter-satellite link (Rummel et al, 2002).  

 

Figure 2.5: Concept of satellite-to-satellite tracking in low-low mode, combined with SST-hl mode (Albertella et al, 2002) 

 
The first experiment to use the SST-ll method was the US-German mission the Gravity Recovery And 

Climate Experiment (GRACE). Launched 17 March 2002 (and still in orbit today), GRACE provides 

global coverage of the Earth’s gravity field every 30 days, allowing the study of the time variable 

gravity effects (Tapley et al, 2004). 

The GRACE mission consists of twin satellites, separated by 240 km along track. As the lead satellite 

detects a variation in the Earth’s gravity field, such as an increase in gravitational pull, it will ‘speed-

up’, increasing the distance from the tailing satellite. The distance between the satellites is 

determined by the time a microwave pulse takes to travel from one satellite to the other and back 

(GRACE, 1998). 

 
c) Satellite gradiometry combined with SST-hl mode: Shown conceptually in Figure 2.6, 

satellite gradiometry is the measurement of acceleration in all three spatial directions, from 

a collection of accelerometers inside a single satellite. The measured signal corresponds to 

the second derivation of the gravitation potential and the non-gravitational accelerations 

drop out when taking the differences (Rummel et al, 2002). 
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Figure 2.6: Concept of satellite gradiometry combined with SST-hl mode (Albertella et al, 2002) 

The satellite gradiometry method was first used by the European Space Agency (ESA) on the Gravity 

field and steady-state Ocean Circulation Explorer (GOCE) mission. Launched 17 March 2009, the 

purpose of the GOCE mission was to provide gravity information to support steady-state ocean 

circulation and physics of Earth's interior (Drinkwater et al, 2003).  

 

2.3. Data Collection Methods 
The various methods of gravity observation are usually identified by their observing environment or 

platform. For example, this study considers: terrestrial, ship-borne, airborne, and satellite 

observation methods. Each dataset provides solutions to different parts of the gravity spectrum, 

each having individual strengths and limitations. 

Notably, each dataset is observing a different part of the spectral range. Long wavelength features 

(greater than 110 km) can only be recovered from satellite gravity datasets. Medium wavelength 

features (110 - 25 km) are recovered from satellite altimetry and airborne datasets. While the short 

wavelength features (shorter than 25 km) are recovered from terrestrial and ship-borne datasets 

(Szűcs et al, 2014).  

This section provides additional detail on each of the gravity dataset collection methods and their 

features.  

 

2.3.1. Terrestrial Gravimetry 

The New Zealand terrestrial gravity database (maintained by GNS Science: www.gns.cri.nz) contains 

40,667 records of terrestrial gravity data within mainland New Zealand, and 70 within the Chatham 

Islands group. The locations of these observations are shown in Figure 2.7. 

http://www.gns.cri.nz/
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Figure 2.7: Observations from the New Zealand terrestrial gravity database (Amos, 2007) 
where each observation is represented by a black dot, the darker the shading the higher the density of observations 

The primary purpose for the collection of the New Zealand terrestrial gravity network was to support 

regional geological mapping. To enable geological features in excess of 20 km to be resolvable, the 

gravity observations are required to be at a spacing of 5-10 km (Seigel, 1995).  

The average spacing of terrestrial gravity marks across New Zealand is in the order of 7.5 km. 

However, their distribution favours roadways and areas of scientific interest, with gaps in regions 

where access is difficult. This has resulted in unknown uncertainties when interpolating terrestrial 

gravity data over areas which contain rough terrain and steep slopes (Dumrongchai et al, 2012).  

Most of the data are observations by the Geophysics Division, the Department of Scientific and 

Industrial Research, (now GNS Science ) using Lacoste and Romberg D- and G-model relative gravity 

meters. The majority of the observations are collected between 1949 and 1991. The expected 

accuracy of the readings from these types of meters is shown in Table 2.1. 

 

Model Resolution 
mGal 

Range  
mGal 

Accuracy  
mGal 

Lacoste and 
Romberg G-meter 

0.01 7,000 0.015 

Lacoste and 
Romberg D-meter 

0.001 200 0.005 

Table 2.1: Expected accuracy of Lacoste and Romberg D- and G-model gravity meters 
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The associated uncertainties of these measurements depend on how the observations were 

positioned. Reilly (1972), states that the expected accuracy of the anomalies in the New Zealand 

terrestrial gravity database is in the order of 1-2 mGal, though may reach 5-10 mGal in mountainous 

areas. However, Stagpoole (2012) advises that there are significant discrepancies in the database. In 

general, the associated uncertainties are directly dependant on how the observations were 

positioned. 

The accuracy of the resulting gravity anomalies is dependent on both the north-south co-ordinate 

and the elevation of an observation. For example, a positional uncertainty of ±5 m in the north-south 

direction results in an uncertainty of ±0.004 mGal at the mid-latitudes, and less elsewhere. Given 

that the majority of the horizontal coordinates have been scaled off 1:63,000 (mile) regional 

geological maps. We should expect that in these cases the positional uncertainties will approach 

±100 m, or ±0.4 mGal at mid-latitudes. 

More significantly, ±1 m of uncertainty in the elevation results in an uncertainty of ±0.3 mGal in the 

gravity anomalies. The method of obtaining heights for gravity surveys has changed significantly over 

the last two decades. Since the late 1990s GNSS heights with an uncertainty of ±10 cm (±0.03 mGal), 

have been able to be obtained in any location with open sky (and visibility of more than four 

satellites). However, prior to the advent of GNSS, elevations were determined using either: 

a) Sprit levelling (from the tide gauge to the observation point), with an uncertainty of ±2 cm 

(±0.006 mGal). This method is expensive, and limited to areas easy to access, or 

b) Barometric levelling, which in rough terrain has an uncertainty of ±10 m at best (±2 mGal), 

when weather patterns remain stable (Amos, 2007). 

Table 2.2 provides a summary as to the prevalence of each height type in the New Zealand 

terrestrial gravity dataset. As seen in this table the majority of heights have been determined using 

barometric levelling. Therefore, the determination of elevation is expected to be the limiting factor 

as to the reliability of the gravity anomaly values produced from this dataset. 

Height Type Number of 
Observations 

Percentage 

Benchmark, Survey point, DGPS 6,519 16% 

Spot height, GPS 5,277 13% 

Estimated from barometric levelling 2,8871 71% 
Table 2.2: The prevalence of height types in the New Zealand terrestrial gravity database 

 

2.3.2. Ship-borne Gravimetry 

Ship-borne gravimetry provides the most direct approach of measuring marine gravity. 

Unfortunately, ship-borne gravity data does not provide uniform global coverage. This is particularly 

problematic in the Southern Hemisphere where ship-borne gravity data is predicted to have half the 

density of that collected in the Northern Hemisphere (Wessel & Chandler, 2011). 

Satellite altimetry observations (c.f. Chapter 2.3.4) are unable to be collected in the shallow waters 

near the coast, and cannot be used to resolve short wavelength features <25 km. Therefore, ship-

borne gravity observations still serve a practical purpose in geoid modelling, especially through the 



 

Chapter 2 - Gravity Page 16 
 

contribution of wavelengths of >200 m and observations in ports, harbours and the near coast 

(Sandwell et al, 2001). 

The New Zealand ship-borne gravity database contains over 3 million observations, equating to at 

least 900,000 line kilometres of ship-tracks. Figure 2.8 shows the survey lines contained in the New 

Zealand ship-borne gravity database, illustrating the non-uniform and variable density, nature of the 

dataset.  

 

Figure 2.8: Ship-track observations from the New Zealand ship-borne gravity database 

The New Zealand ship-borne gravity database is made up of numerous ship-borne surveys, which 

have taken place since the 1960s. The observations have been collected by various agencies, for 

various purposes and over varying time periods (Amos et al, 2005). As reported by Wessel & Watts 

(1988) and Yale et al (1998), the database is expected to be of a varying quality. The common 

sources of error in ship-track surveys are shown in Table 2.3.  
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Navigation 
 

o Uncertainties in Position 
o Incorrect Eötvös calculations 

Instrument 
 

o Cross-coupling 
o Off Levelling 
o Instrument drift  

Other 
 

o Inconsistent use of gravity formula 
o Inconsistent datum 
o Sea conditions 
o Control ties 

Table 2.3: Common sources of error in ship-borne gravity surveys (Wessel & Watts, 1988) 

However, the most significant contributions to uncertainties in the database are due to two sources: 

inter-cruise offsets, and navigational positioning error (Brett, 2004). Therefore only these two 

methods will be discussed below. 

As ship-borne observations are made using a dynamic gravity meter (c.f. Chapter 2.2.3), the meter 

should be calibrated at a known site immediately prior and following a campaign. However, in some 

cases this has not occurred or has not been recorded. This leads to uncertainties when comparing 

data between campaigns, and limits the opportunity to identify tares (jumps) in the data (Brett, 

2004). 

The largest single source of error in the ship-borne gravity database is due to uncertainties in the 

positioning of the observations, particularly the latitude component. Latitude impacts the gravity 

derivations twice, as the radius of the earth changes with latitude and the Eötvös corrections are 

dependent on the distance from the equator.  

Continuing improvements of gravity instrumentation and ship navigational accuracy suggests that 

the quality of ship-track gravity measurements should improve over time (Wessel & Watts, 1988). 

For example observations improve when positioned using GNSS and for newer surveys the expected 

gravity values are accurate to 1 mGal (LaCoste & Romberg, 1998). 

However, much of the database was collected prior to GNSS positioning and ship-borne gravity data 

collected using celestial navigation or other methods can be of a highly variable accuracy (Wessel & 

Watts, 1988). For example, comparisons between the New Zealand ship-track database and satellite 

altimetry would show significant variations, such as standard deviations of approximately 2 mGal 

between two campaigns (Amos et al, 2005).  

In order to improve the consistency of the ship-borne gravity data, the dataset was crossover-

adjusted in 2003 (Brent, 2004). During this exercise the more recent observations were assumed to 

be correct, and the values of earlier observations adjusted to reflect the expected value at their 

recorded position. This resulted in a final standard deviation of 0.3 mGal, between the New Zealand 

ship-track database and satellite altimetry observations (Amos et al, 2005). 

 

2.3.3. Airborne Gravimetry 

The concept of observing gravity from an airborne platform is not new. For example, both Hannah 

(2001) and Thompson & LaCoste (1960) refer to airborne geophysical exploration activities which 
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occurred in the 1960s and one of the first large-scale airborne gravity surveys took place over 

Greenland 1991-92 (Brozena, 1992).  

However, until the availability of GNSS observations, the practical application of this approach has 

been limited by the ability to model the non-gravitational noise signal from the airborne platform. As 

seen in Figure 2.9, the total acceleration signal observed from an airborne platform is many times 

(x104) the accelerations as a result of variations in the gravity field. The recovered gravity signal is 

shown in Figure 2.10. 

 

Figure 2.9: Recorded acceleration from a gravity flight (McCubbine, 2016) 

 

Figure 2.10: Recovered gravity signal  
Same flight as shown in Figure 2.9 (McCubbine, 2016) 

 
For localised surveys, aircraft positions were able to be observed via radio signals, the lengths of 

flight lines being restricted to areas within direct radio contact (Jekeli & Kwon, 1999). However, the 

time/economic advantage of airborne surveying is gained from the ability to survey large regions in a 

uniform manner. Without an accurate method of determining the kinematic acceleration of the 

aircraft throughout the flight, the ability to extract the recovered gravity signal has been limited. 

Not until the advent of GNSS, namely the 24 hour availability of GPS (Global Positioning System), has 

the concept of an airborne gravity survey at a national or regional scale become feasible, as the 

accelerations of the aircraft are now able to be obtained throughout the flight, allowing the gravity 

signals to be readily separated from the kinematic acceleration signals (Olesen, 2002). The process 

to separate the aircraft accelerations form the gravity signal is described in McCubbine (2016) 

Section 6.3 Gravity Reduction. 

The benefits of airborne gravity are that it is fast, economic and provides a uniform and seamless 

coverage of the survey areas. This includes any high/inaccessible mountains, where existing data are 

typically sparse (Hwang et al, 2014). It is also the only technique that can fill the transition between 

land & sea (Alberts, 2009), including the littoral and shallow coastal zones.  
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In addition, by being flown at altitude, airborne gravity is the only method that fills the spectral gap 

between land and space-based approaches (Abbasi et al, 2007), observing wavelengths shorter than 

100 km. 

 

2.3.4. Satellite Altimetry 

In contrast to the gravity observation methods discussed in the sections above, satellite altimetry 

does not directly measure gravity, but uses a satellite-borne radar altimeter (altitude meter) to 

directly measure the height and slope of the sea surface. The principle of satellite altimetry is shown 

in Figure 2.11. 

 

 

Figure 2.11: Satellite altimetry principle (NOAA, 2010) 

The altimeter transmits pulses in the vertical direction towards the ocean surface and measures the 

time interval for the radar pulse to be reflected off the sea surface and travel back to the satellite 

(Deng et al, 2002). The time taken is then converted to a height above the instantaneous sea surface 

and the anomaly value (𝑁) is approximated by (Equation 2.7). 

𝑁 = ℎ𝑠
∗ − ℎ𝑠 

Equation 2.7 

where: 
ℎ∗ is the expected distance from the satellite to the geoid, and  
ℎ is the observed distance from the sea surface to the satellite. 
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Also seen in Figure 2.11, is the icon of a radio antenna, referring to the Ground Control segment. The 

satellite’s three-dimensional position is determined by control, such as GNSS or retro-reflectors for 

use with Satellite Laser Ranging (SLR). Newer satellites are also capable of determining their orbit 

using satellite-to-satellite tracking.  

Incidentally, the height of the ocean surface is a first approximation of the gravitational potential at 

that point. Gravity anomalies are the vertical derivative of gravitational potential and potential 

values can be recovered through Laplace’s equation (Garcia et al, 2014).  

To enable the satellite altimetry data to be combined with other gravity datasets, the height and/or 

sea slope observations need to be converted to a gravity anomaly. In order to do this transformation 

a grid of east η and north ξ vertical deflections should be constructed from a dense network of 

satellite altimetry measurements. The grid is Fourier transformed (see Sandwell et al, 2013) and 

then Equation 2.8 (Haxby et al, 1983) is used to compute the gravity anomaly.  

 

∆𝑔(𝐟) =
𝑖𝑔

|𝐟|
[𝑓𝑥𝜂(𝐟) + 𝑓𝑦𝜉(𝐟) ] 

Equation 2.8  

where: 

the Fourier wave-vector is define as: |𝐟| =  √𝑓𝑥2 + 𝑓𝑦2   and 𝐟 =  (𝑓𝑥, 𝑓𝑦 ) , and 

 
with wave numbers (λ is wavelength, in radians) 𝑓𝑥 = 2𝜋/𝜆𝑥 and 𝑓𝑦 = 2𝜋/𝜆𝑦 

 
The observations from satellite altimetry datasets are able to provide medium wavelengths (50-100 

km; Andersen et al, 2005) for use in geoid determination. Satellite altimeter derived gravity is about 

two times more accurate than ship-track data at medium wavelengths, over the open ocean, but 

degrades closer to the coast. 

Satellite altimetry has been monitoring the open ocean for several decades. Data from the original 

missions such as GEOS-3 (Geodynamics Experimental Ocean Satellite 3), and GeoSat (GEOdetic 

SATellite), suffered significant degradation close to the coast (Andersen et al, 2010), when compared 

with the newer missions such as CyroSat-2, Envisat (Environmental Satellite) and Jason-1. 

This improvement has been achieved through the introduction of various measurement modes. For 

example CryoSat-2 has three measurement modes. These switch automatically as the satellite 

moves though a ‘mode mask’ (Wingham et al, 2006), such as the transition between land and sea or 

sea and ice. However, Anderson et al (2005) demonstrate that the accuracy of the altimetry-derived 

gravity field close to the coast is still half that of the open ocean. Coastal observations continue to be 

a major source of error in satellite altimetry observations. 

There are many different mean surface models, derived for different purposes or areas of interest 

(Andersen & Knudsen, 2009). High-resolution Mean Sea Surface (MSS) models are derived by 

merging several years of repeated observations across multiple satellite altimetry campaigns 

(Andersen & Knudsen, 2009). This means that all modern gravity fields are comparably accurate over 

the open oceans between 82°N and 82°S (Andersen et al, 2010). 
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One important point of difference is that MSS models provide the average height of the Oceans. In 

contrast, Mean Dynamic Topography (MDT) models provide the temporal mean of the oceans’ 

dynamic topography i.e. these are models related to a specific time period (Kundsen et al, 2011).  

The determination of Sea Surface Height (SSH) is approaching the goal of 1 mGal accuracy across the 

global marine gravity field. However, Sandwell et al (2013) identify four features that influence the 

accuracy of the gravity field: 

a) spatial track density, 

b) altimeter range precision, 

c) track orientation, and 

d) accuracy of coastal models. 

The high latitude areas (beyond 82°N and 82°S) are the most difficult regions to model due to fewer 

satellites covering this area (Andersen & Knudsen, 2009). This means that quality, spatial and 

temporal coverage of these areas decreases. In addition, these regions are subject to seasonal ice 

coverage requiring different observational modes during different times of the year. 

In regards to satellite orientation, errors in the east-west component can be up to 3.5 times as large 

as the errors in the north-south component, as missions tend to run north-south. In addition, 

adjacent slope estimates are less accurate than along track estimates, as the environmental and 

orbit errors are not entirely corrected with crossover adjustments (Sandwell et al, 2001). 

The coastal regions have noisier returns (Deng et al, 2002) due to coastal sea states (waves) and 

footprint returns from land. This often prevents information from coastal regions being included in 

the satellite altimetry models. Shum et al (1997) states it was common practice to exclude all SSH 

data in water shallower than 200 m, while Deng et al (2002) hypothesizes that the SSH range should 

be interpreted with some caution for distances less than 22 km from the coast and should be 

discarded completely for distances less than 4 km. More recent studies such as Tseng (2014), use re-

tracking and trimming of the footprint size to extend the reliability of data coverage to 1-7 km 

offshore.  

 

2.3.5. Global Geopotential Models  

A Global Geopotential Model (GGM) comprises a set of spherical harmonic coefficients that describe 

the long-wavelength characteristics of the Earth’s gravity field. Numerous GGM models exist and 

have been computed by various organisations around the world. A list of models can be found on 

the International Centre for Global Earth Models website: http://icgem.gfz-potsdam.de/ICGEM/ 

GGMs which are created using only satellite data are known as Satellite Only GGMs. While GGMs 

which use additional gravity data, such as terrestrial or ship-borne, in their realisation are referred to 

as Combined GGMs (Featherstone, 2010). Because of the attenuation of signal with altitude, satellite 

only GGMs are always only long wavelength models. 

A GGM is used to describe the Earth’s gravity potential (geopotential) in terms of an infinite series of 

spherical harmonics, outside of the Earth’s attracting masses. The geopotential is given as a 

truncated set of harmonic coefficients (Omar et al, 2005), up to a specified degree and order. As 

http://icgem.gfz-potsdam.de/ICGEM/
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shown in Equation 2.9, minimum wavelength (λ) is approximately half the planet’s circumference, 

divided by the degree (n). This means that the higher the value of the degree, the better the spatial 

resolution and finer the results (Ellmann, 2011). 

 

𝜆 =  (2𝜋
𝑟

𝑛
) 𝑐𝑜𝑠𝜙 

Equation 2.9 

where: 
r is the mean Earth radius (i.e. 6,371 km), and 
ϕ is the latitude. 
 

EGM2008 is a GGM released by the National Geospatial-Intelligence Agency (NGA; Pavlis, 2012). 

EGM2008 is a combined geopotential model, based on a GRACE derived dataset, augmented with 

terrestrial gravity data (Andersen et al, 2008). EGM2008 was computed from a global 5 arc-minute 

grid of gravity anomalies developed up to degree/order 2160 (c.f. table 2.3), with some additional 

terms up to degree/order 2190 (Pavlis et al, 2012). EGM2008 does not incorporate any 

GPS/Levelling. Over areas covered with high quality gravity data, the discrepancies between 

EGM2008 geoid undulations and independent GPS/Levelling values are on the order of ±5 to ±10 cm 

(Pavlis et al, 2012). 

In regions with insufficient terrestrial data (for example where data are protected by military or 

commercial purposes), the shorter wavelengths were reconstructed using Shuttle Radar Topographic 

Mission (SRTM) Bouguer anomalies (Featherstone, 2010). 

SRTM was an 11 day 2004 mission, using a single-pass radar interferometer to produce a Digital 

Elevation Model (DEM) of the Earth’s land surface between 60°N and 56°S (Farr & Kobrick, 2000).  

Table 2.4 shows the approximate spatial wavelengths for each of the gravity satellite missions 

(discussed in Chapter 2.2.4) at a latitude of 45°, for their maximum degree and order (nMAX). An 

example satellite only GGM is provided for each mission, along with its Root Mean Squared (RMS) 

when compared to the 40,667 GPS/Levelling marks across New Zealand (McCubbine, 2016). This is 

then compared to the combined GGM EGM2008. 

 

Mission 
Example model 

Degree and 
Order (nmax) 

Wavelength (km) 
𝝓 = 45° 

RMS (meteres) 
(Comparison with 
GPS/Levelling) 

CHAMP 
EIGEN-CHAMP05S 

120 175.2 
29.4 

GRACE 
Tongji-GRACE01 

160 131.4 
38.9 

GOCE 
JYY GOCE04S 

240 87.6 
38.0 

EGM2008 2160 9.7 17.9 
Table 2.4: Comparison of selected satellite only GGMs and EGM2008 
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For GGMs which use GOCE data, there are three different approaches which may be applied, the 

Direct approach (DIR), Time Wise approach (TIM) and Space Wise approach (SPW).  

There are two distinguishing differences between these three methods. First, the DIR and TIM 

approaches are solved using normal equation systems. However, while DIR starts with an a priori 

gravity field model and adds GOCE information to improve it, the TIM approach is based solely on 

GOCE data. In contrast SPW works predominately in the space domain, applying Least Squares 

Collocation and extrapolating the spatial correlation of the gravity field (Pail et al, 2011). 

Secondly, all three methods have different models for the stochastic behaviour of the gradiometer. 

DIR uses a moving average method (Klees et al, 2003) within the measurement bandwidth (5 and 

100 mHz). TIM also uses a moving average method, but over the entire observation spectrum. Again 

SPW uses a collocation approach (Pail et al, 2011). 

Pail et al (2011), Knudsen et al (2011) and McCubbine (2016) test these three approaches. All three 

authors find that the DIR outperforms the TIM and SPW approaches. Knudsen et al (2011) stated 

that the DIR approach yields the largest resolution with the least noise. This is expected to be due to 

the direct approach using a combined gravity field as background and a priori model.  

 

2.4. Gravity Anomalies and Reductions 
A gravity anomaly is the difference between the gravity fields observed and the value predicted by a 

model. Models are susceptible to over simplification, presenting a featureless Earth’s surface which 

is more uniform than it is in reality (Lyatsky & Pana, 2003). 

Gravity measurements provide information about mass distribution within the earth. A deviation 

from a global model can be the result of a physical change in the distribution of mass. For example 

the mass of a large mountain range may provide a positive gravity anomaly. In contrast an ocean 

trench, an area where the expected mass is missing, will cause a negative gravity anomaly. 

Observations which differ from the theoretical value can be investigated, refined and finally 

combined with additional geodetic and geophysical data to make inferences about the earth’s true 

structure. Gravity reductions are always made with heights in terms of the geoid (Hackney & 

Featherstone, 2003). 

Gravity anomalies play an important role in both geophysics and geodesy. However, the application 

can differ slightly between the disciplines. For example, in geodesy gravity anomalies are to be 

preserved as they are used to define the geoid and derive heights. However, in geophysics gravity 

anomalies are removed, in order to infer variation in sub-surface structure which would have 

otherwise been masked by the effects of the anomalies (Hackney & Featherstone, 2003).  

The global gravity formulas (discussed later in this section) are theoretically straightforward, largely 

based on the magnitude of the Earth’s mass and the distances from it. However, things soon become 

more complex as we find that the Earth is not a perfect sphere, nor can it be perfectly modelled by 

any other geometric shape such as an ellipsoid. This is because the Earth’s masses are not uniformly 

distributed, its surface is undulating, and the mass distribution is not static. 
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Sharma (1997) describes the process for reducing raw gravity measurements to interpretable 

anomalies as follows: Latitude correction; which accounts for Earth's elliptical shape and rotation, 

Free-air correction; which accounts for gravity variations caused by elevation, Bouguer slab 

correction; which accounts for excess mass about the observation station and Terrain correction; 

which accounts for detailed variations in the terrain about the observation station. The application 

of all these corrections results in a Bouguer anomaly. This section describes these corrections by 

modelling the differences. 

 

2.4.1. Relative Gravity Observations 

Observed gravity (gobs ) values are the reduced gravity readings (on the topographic surface), 

corrected for earth tides (Longman, 1959) and instrument drift (Reynolds, 2011). 

First, most relative gravity instruments are sensitive enough to observe the effects caused by the 

positions of the sun and the moon (a range of ± 0.3 mGal). These variations are dependent on 

latitude and time. Corrections can be calculated by making repeat measurements at known stations 

(over short time intervals), or using computer software which computes global earth tide models.  

Second, the measurements recorded by a stationary gravity meter changes (drifts) over time. 

Initially, the instrument will drift as it comes to temperature and therefore should be allowed to 

stabilise prior to survey. However, all meters will drift as the internal spring, or other inner workings 

fatigue. Fatigue drift is assumed to be linear, smooth, slow and independent of location. Frequent 

readings at a calibration point, along with readings at the same point at the start and end of the 

survey will allow the drift pattern to be characterised. Drift can be correct for through the use of 

Equation 2.10. 

𝑔𝑜𝑏𝑠 = 𝑔 − (𝑔𝑑  × 𝑡) 

Equation 2.10 

where: 
 𝑔 is the raw gravity reading, 
 𝑔d is the instrument drift rate, and 
 𝑡 is the time elapsed.  
 

If the meter is jarred, a tare in the record may occur. This is a systematic error which needs to be 

identified and removed. However, usually a tare in a terrestrial gravity dataset will require a 

resurvey of the section of measurements in question. 

 

2.4.2. Normal Gravity Model 

The normal gravity (or latitude) model (𝑔𝜙) provides values that would be observed if the Earth was 

a perfect ellipsoid, with a regularly distributed mass. The normal gravity model applied through the 

use of Somigliana’s closed formula (Moritz, 1980) is shown by Equation 2.11  
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𝑔𝜙 = 𝛾𝑎

1 + 𝐾 𝑠𝑖𝑛2𝜙

√1 − 𝑒2𝑠𝑖𝑛2𝜙
 

Equation 2.11  

 

where:  

the Geodetic Reference System 1980 (GRS80) constants from Moritz (1980) are shown in 

Table 2.5. 

 

Constant Description Value 

K Normal gravity constant 0.001 931 851353 

γa Normal gravity at the equator 9.780 326 771 5 m s-2 

e2 Square of the first eccentricity 0.006 694 380 022 90 

𝜙 Geodetic latitude   Observed Latitude 
Table 2.5: Constants used in GRS80 gravity reductions 

 

2.4.3. Free-Air Model 

The free-air model (gF), shown in Equation 2.12, is used to account for gravity variations caused by 

elevation at the observation location (Heiskanen & Moritz, 1981). It is analogous to taking a 

measurement while in flight, hence the term free-air (Reynolds, 2011). 

𝑔𝐹 =  𝑔𝜙 − 0.3086𝐻 

Equation 2.12  

 
where:  

H is the elevation (in metres above the geoid). 
 

The constant (0.3086 mGal/m) is the approximate rate of the change in gravity for elevation, 

excluding the effects of density or topography.  

 

2.4.4. Bouguer Slab Model 

The Bouguer slab model, Equation 2.13, accounts for the effect of mass exerted by the rock slab 

between the observation station and the geoid.  

𝑔𝑆𝐿𝐴𝐵 =  𝑔𝜙 − 0.3086𝐻 + 2 𝜋𝐺𝜌𝐻 

Equation 2.13 

where: 
G is the gravitational constant  

(6.67 x 10-11 Nm2/kg2 and therefore 2πG ≈ 4.191 × 10−5 mGal m2 kg−1),  
H is the elevation (in metres above the geoid), and  
ρ is the average density (g/cm−3) between the observation station and the geoid.  
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An average rock density of 2.67 g/cm−3 is generally assumed for the density (ρ) of the included mass 
in regional gravity survey (Hinze, 2003). 
 

This model assumes flat topography. As shown in Figure 2.12 undulations in the terrain are 

completely ignored in the slab model, resulting in areas of over and under corrected terrain 

(Hammer, 1939). It is effectively an infinite slab with a continuous thickness (H), the distance from 

geoid to the gravity station (A).  

 
Figure 2.12: Illustration of the Bouguer slab model (McCubbine, 2016) 

where H is the distance from the geoid to the gravity station A 

 
However, there are alternative approaches to this model, such as the Bouguer spherical cap model, 
shown in Equation 2.14. The Bouguer spherical cap model uses the height (h) modelling a simple 
mass from the ellipsoid to the station height (Holom & Oldow, 2007). 
 

𝑔𝑆𝐶 = 2𝜋𝐺𝜌(𝜇ℎ − Λ𝑅) 
Equation 2.14 

where: 
 μ and Λ are dimensionless coefficients (LaFehr, 1991), 

ℎ is the height of the gravity station above the ellipsoid (km), and  
R is the combined height of the gravity station and average radius of Earth (km). 

 
As illustrated by Figure 2.13 the main difference between these models is that while the Bouguer 
slab model assumes a flat Earth, the Bouguer spherical cap model accounts for the curve of the 
earth. This means modelling a sphere of thickness ℎ, rather than a slab of thickness H. 
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Figure 2.13: Illustration of the Bouguer spherical cap model 

 
 

2.4.5. Terrain Models 

A DEM is a statistical representation of the terrain (height) in a digital form (Omar et al, 2005). DEMs 

are typically employed for use in three-dimensional visualisation and are commonly used in 

applications such as orthorectification of satellite imagery, geoid computations and hydrological, 

environmental, and climate modelling. Within geodesy the DEM is used to better account for terrain 

effects on the gravity field.  

 

The term DEM is often used synonymously with other terms such as Digital Terrain Model (DTM) or 

Digital Surface Model (DSM). However, these terms represent different products, with slight 

differences between them (Li et al, 2004). The DTM is a surface formed with respect to the bare 

Earth (without any objects like trees and buildings), while the DSM represents the Earth’s surface 

and all objects on top of it. Li et al (2004) defines the DEM as a special case of DTM, with elevations 

referenced as a height above a given level. 

 

A DEM is an auxiliary elevation model which is necessary for use in geoid determination, especially 

within New Zealand’s rugged mountains and other difficult to access terrain (Amos & Featherstone, 

2003). In fact, there is a direct relationship between the quality of a DEM and the precision of the 

geoid (Catalão & Sevilla, 2009). The purpose of “handling terrain” is to remove the irregularities from 

the dataset so that gravity anomalies are easier to reconstruct (Dahl & Forsberg, 1999). 

When making gravity observations on land it is convenient to conduct them in areas which are 

readily accessible (Featherstone & Kirby, 2000). This results in the majority of gravity observations 

located on routes accessible to vehicles: along road ways (cars), on mountain tops (helicopters) and 

along river valleys (boats). This approach causes the observations’ locations to be unrepresentative 

of the terrain as a whole i.e. the gravity signal has not been randomly sampled.  

Featherstone & Kirby (2000) likened this to “aliasing in signal processing”, when sampling a 

mathematical function. That is to say that if the sampling period is incorrect then the sample will not 

be able to replicate the entire function. While gravity samples appear to be irregular in nature, the 

consequence of this biased sampling method is similar: one is unable to reconstruct the entire 

gravity signal from a biased sample. 
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There are a number of benefits for using DEM heights for these transformations (Featherstone & 

Kirby, 2000). As the DEM was created for cartography purposes it is an independent height model 

which is less affected by unrepresentative sampling than gravity observations alone. The DEM is of a 

higher resolution than the sampled gravity data, also allowing the prediction of gravity values in 

voids (areas where direct observations have not been made; Forsberg & Tscherning, 1981) and 

creation of a uniform restored surface (Higgins et al, 1996). Therefore the DEM can be used to 

restore the terrain effects, reducing the impact of aliasing, once the gravity reductions have been 

completed. 

Gravity is usually measured on the Earth’s surface, for use in physical geology. For these uses the 

Bouguer reduction removes the effects of the topography from the sample observations 

(Featherstone & Kirby, 2000). However, in order to calculate the geoid using Stokes’ formula the 

gravity anomaly must be transferred onto the geoid surface (Omang & Forsberg, 2000).  

The Geographx (geographx.co.nz) New Zealand DEM version 2.1 covers New Zealand’s North Island, 

South Island and Rakiura/Stewart Island. It contains 115 tiles, at a cell resolution of 8 m. The 

objective of developing this DEM was to support cartographic visualisation and other purposes 

which require low resolution terrain data (such as terrain analysis, before the acquisition of high-

resolution data over an area of interest). 

The model is primarily derived from LINZ 20 m contour data (at a scale of 1:50 000), supplemented 

with 3-second SRTM data. The spatial accuracy is nominally the same as for the LINZ source data: 

90% of well-defined points are within ±22 m horizontally and within ±10 m vertically.  

 

2.4.5.1. Terrain Corrections  

The terrain correction accounts for the effects of variation in the elevation of the surrounding 

topography (mountains and valleys), removing the over approximation of the Bouguer slab model. 

The calculation of the terrain correction can be computed in a number of different ways, including 

Hammer charts, Fourier transformation and prism methods. 

 

Hammer charts 

Traditionally, terrain correction calculations are conducted in the field as part of the gravity 

measurement process. The estimated mean height of the surrounding topographic features are 

recorded and divided into specified annuli (or Hammer zones). The far field sectors are difficult to 

estimate by eye and so these zones may be derived using a topographic map. The accuracy of this 

method largely relies on how well the mean topographic height can be estimated and also the 

number of compartments in each Hammer zone (Nowell, 1999). Figure 2.14 provides a list of the 

Hammer zones; including their radii (in metres), the number of compartments in each zone and a 

diagram illustrating the geometry of the zones.  

file:///C:/Users/LINZGuest/Downloads/geographx.co.nz
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Figure 2.14: List of Hammer zones (left) and geometry of zones (right; Amos, 2007) 
 

However, using a DEM to provide an approximation of the topography, means that topographic 

heights can now mostly be computed in the office. As this process does not rely on field estimates of 

height, the number of compartments can be increased (up to the resolution of the DEM) resulting in 

an improved estimate of the mean topography. The only limitations to this method are in the near 

zones as these sectors are affected by the DEM resolution. For example, a DEM with a resolution of 

64 m will result in no topographic variability in zones A and B (out to around 32 m) and so the terrain 

correction for this range will be zero (McCubbine, 2016). In rough terrain this may result in errors in 

the near zone calculations up to several mGal (Kirby & Featherstone, 2002).  

 

Fourier Transformation 

The fastest method of terrain correction calculation (example: Sideris, 1985) is the fast Fourier 

transformation method (FFT), as it is able to exploit the gridded nature of a DEM to make efficiency 

gains. Such that a space-domain integration, given N data points would be required to perform 

O(NDATA 2) operations, whereas the FFT method only preforms O(NDATAlnNDATA) operations. In 

Australia this meant reduce computation time of a set of national terrain corrections from months, 

to a matter of days (Kirby & Featherstone, 1999). 

While use of the FFT method is preferred due to its speed, it should be employed with caution. As 

differences between the space domain and FFT methods are negligible in flat regions. However, in 

rugged terrain the differences can exceed tens of mGal. For example when terrain slopes are greater 

than 45°, the FFT becomes unstable, causing the series to fail to converge (Kirby & Featherstone, 

2001).  

In order to force the operation to converge, it is possible to smooth the DEM to small gradients. 

However, this requires compromise between the best representation of the topography and the 

application of the method (Gomez et al, 2013). 
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Prism Methods 

The Nagy prism method for making terrain corrections is performed by approximating the 

topography of a given DEM, with rectangular prisms. Figure 2.15 illustrates the Nagy prism concept 

(Nagy,1966) , where topography centred at the point xp ,yp can be approximated with a rectangular 

prism with an area of ∂x × ∂y and four corners in the x, y plane, (xp1, yp1), (xp2, yp1), (xp1, yp2) and (xp2, 

yp2). 

 

Figure 2.15: Illustration of the Nagy prism method (Nagy, 1966) 

where:  

𝑥𝑝1 =  𝑥𝑝 −  
𝛿𝑥

2
 𝑥𝑝2 =  𝑥𝑝 +  

𝛿𝑥

2
 

𝑦𝑝1 =  𝑦𝑝 −  
𝛿𝑦

2
 𝑦𝑝2 =  𝑦𝑝 +  

𝛿𝑦

2
 

 

Therefore, coordinates (xp, yp, zp) are with respect to an observation made at the origin and Nagy’s 

prism based terrain correction is calculated by the closed Equation 2.15. To obtain the terrain 

correction over some area, the gTC for all xp, yp are summed up. 
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Equation 2.15 

where: 
G is the gravitational constant  
ρ is the density, and 

  h = |zp − z0| with z0 the height at the origin.  
 
The equation for the prism method is compared to the Hammer prism method adapted from 

Hammer (1939), where the terrain correction for (xp, yp,hp) is given by Equation 2.16. 

 

𝑔𝑇𝐶 = 𝑓𝛿𝑔(𝑟𝑖, 𝑅𝑜, ℎ, 𝜌) 

Equation 2.16 
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where: 
δ is the resolution of the DEM, 
ri is the inner radius of the Hammer zone, 
ℎ is the height above the origin. 
Ro is the outer radius of the Hammer zone, and 
𝑓 is a factor which corresponds to the ratio between the area of terrain and the area of the 

Hammer zone, shown in Equation 2.17. 

𝑓 =
𝛿2

𝜋(𝑅𝑜
2 − 𝑟𝑖

2)
 

Equation 2.17 

 

The Hammer prism method concept is illustrated by Figure 2.16. Where the prism zone are 

approximated by the application of Hammer zones in a three dimensional space.  

 

 

Figure 2.16: Illustration of the Hammer prism method (McCubbine, 2016) 

As a consequence of its simpler formula, fewer computational steps are needed and the Hammer 

prism method is noted to return terrain corrections 10 times faster than the Nagy prism calculations 

(McCubbine, 2016). While, comparisons of the output terrain corrections show only negligible 

differences e.g. the difference in the near zone corrections had maximum difference of 0.014 mGal, 

while in the far zones the maximum difference was 0.023 mGal.  

Therefore, the Hammer prism method is the preferable solution for generating the terrain 

corrections. 

 

2.4.6. Complete Bouguer Model 

The complete Bouguer model (𝑔B) is given by Equation 2.18. Assuming these corrections have 

accurately accounted for the variations in gravitational acceleration they are intended to account 

for, any remaining variations in the gravitational acceleration associated with the terrain corrected 

Bouguer gravity can be assumed to be caused by geologic structure. 
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𝑔𝐵 =  𝑔𝜙 − 0.3086ℎ + 2 𝜋𝐺𝜌ℎ − 𝑔𝑇𝑐 

Equation 2.18 

where: 
𝑇c is the value of the computed terrain correction.  

 

2.5. Combination Considerations  
In an effort to ensure that only similar datasets are being combined this section will address two 

problems. The first being at which stage of the gravity data reduction process should the datasets be 

combined i.e. as raw observations, free-air anomalies or complete Bouguer anomies. The second 

being as to how to address the problem of downward continuation: the reduction of gravity 

observations observed above the Earth’s surface, to the surface of the Earth.  

 

2.5.1. Combination Data Type 

Before we are able to combine the data we should consider at which stage of the gravity reduction 

process (Chapter 2.4) we should optimally combine the datasets. There are three practical stages 

were the dataset could be rationally combined: gravity observations, free-air gravity anomalies or 

Bouguer gravity anomalies. The three options are illustrated with the Canterbury terrestrial gravity 

dataset (c.f. Chapter 4.4.3) shown by Figure 2.17, Figure 2.18 and Figure 2.19. 

 
The choice of data type to combine will be influenced by the requirement to combine the datasets 

on a homogenous surface.  

The gravity observations are at ‘observation elevation’, in the case of the terrestrial data this is on 

the topography. However, airborne datasets flown at altitude can be several kilometres above the 

topography. This means that the high frequency effects of the airborne data are smoothed-out. 

Therefore, the terrestrial and airborne data sets do not contain the same frequency content and 

should not be combined at the observations level. 

By definition the free-air correction adjusts the gravity observations to represent what the 

measurements would have been, had they been measured on the geoid. This means we are now 

comparing the datasets on the same surface. However, they are still under the influence of terrain. 

The free-air gravity anomalies contain high frequency effects of topography which can be aliased by 

sparse data sampling (Featherstone & Kirby, 2000).  
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Figure 2.17: Gravity observations 

 

 

 

 

 

 

 

 

 

Figure 2.18: Free-air gravity anomaly   

 

 

 

 

 

 

 

 

 

 

Figure 2.19: Bouguer gravity anomaly  
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For example, the New Zealand terrestrial gravity dataset, does not provide uniform coverage of the 

country, many of the observations are located along roadways, coastlines and along river valleys; the 

most accessible routes. However, since the topographic effect would be strongest where the 

topography is steepest, if only the readily accessible observations are used to compute the free-air 

signal, it would give the impression of significantly smoother topography. For this reason it is best to 

grid the Bouguer anomaly signal. 

A Bouguer anomaly model has the effects of the terrain removed. This allows the integration of the 

data in a consistent manner. The effects of topography can easily be restored at a later stage to the 

gridded Bouguer anomaly using the DEM. 

 

2.5.2. Downward Continuation 

Gravity observations are effected by elevation, as the high frequency signals diminish with distance 

from a mass i.e. as the distance from the body increases the gravity profile flattens out. This is 

demonstrated by Figure 2.20, which illustrates how the gravity anomaly profile of a buried sphere 

varies with elevation (h). 

 

Figure 2.20: Diagram of gravity anomaly profile of a buried sphere (McCubbine, 2016) 

 

The formulas for geoid determination require that the gravity anomalies are reduced to a common 

surface. Therefore, we must downward continue the airborne gravity data from flight altitude to the 

geoid (Wang, 1988), so that it is comparable to the other gravity datasets. Without a proper method 

of downward continuation data will contain false gravity signatures (Hsiao & Hwang, 2010). 

However, it is well documented that downward continuation of airborne data is not a trivial task 

(Wang et al, 2013; Hwang et al, 2014). This section identifies three methods which have been used 

for the downward continuation of gravity datasets.  
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2.5.2.1. Remove-Restore Technique 

The remove-restore technique is a proven method for combining of satellite data and a local gravity 

datasets (such as the terrestrial or airborne gravity data; Kern et al, 2003). The scenario is illustrated 

by Figure 2.21, where the local and satellite data are confined to their spectral range. 

 

 

Figure 2.21: Diagram of data prior to remove-restore process 

This is a three-step method documented in Rapp & Rummel (1975) and Forsberg & Tschering (1981). 

In the first step (Equation 2.19) the local gravity (AT) is reduced by satellite model (ATs) and the 

topographic and atmospheric effects AδVH are removed. The result (AT’) is the residual gravity.  

𝐴𝑇′ = 𝐴𝑇 − 𝐴𝑇𝑠 − 𝐴𝛿𝑉𝐻 

Equation 2.19 

 

In the second step the residual observable (AT’) is mapped to the output function (𝐵𝑇 ′̂).  

Finally, as shown in Equation 2.20, the removed components are restored (𝐵�̂�), by adding back the 

low frequency satellite data(𝐵𝑇𝑠) and the topographic and atmospheric effects 𝐵𝛿𝑉𝐻. 

 
𝐵�̂� =  𝐵�̂�′ + 𝐵𝑇𝑠 + 𝐵𝛿𝑉𝐻 

Equation 2.20 

This last step is illustrated in Figure 2.22, where the low order terms of the local data have now been 

enhanced with the satellite observations. 
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Figure 2.22: Diagram of data after the remove-restore process 

However, this method has a number of limitations. Firstly, the errors from the satellite or local data 

tend to ‘leak’ across bands and into the final solution. Secondly the remove-restore technique does 

not provide quality indicators. However, most importantly, while this solution works well with only 

two datasets, with multiple local gravity datasets an over-determined situation arises and this 

cannot be handled directly by the remove-restore technique (Kern et al, 2003). 

 

2.5.2.2. Inverse Poisson Method 

The basic downward continuation method is the inverse Poisson method (Wang et al, 2004). The 

Poisson method was designed for the upward continuation of harmonic quantities, such as gravity 

anomalies (Forsberg et al, 2007), and is an unstable operation and only applies if flight altitude (h) is 

constant. The gravity anomalies at altitude ( 𝐹(∆𝑔)) are modelled by Equation 2.21: 

𝐹(∆𝑔) =  ∆𝑔(𝑥, 𝑦)𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦, 

Equation 2.21 

while gravity at the geoid (𝐹(∆𝑔 ∗)) is modelled by Equation 2.22: 

𝐹(∆𝑔 ∗) = 𝑒𝑘ℎ𝐹(∆𝑔), 

Equation 2.22 

where: 

𝑘 = √𝑘𝑥
2+𝑘𝑦

2 and kx, ky are wave numbers (E,N) 

Downward continuation enhances high frequencies. Therefore upward continuation, a high pass 

filtering operation, is require to remove the high frequency signal prior to downward continuation. 

For example, Figure 2.23 and Figure 2.24 represent the original dataset on the top and the 

downward continued dataset on the bottom.  
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Figure 2.23: Original sample data 

  

 

 

 

 

 

 

 

 

Figure 2.24: Downward continued 
sample data 

 

 

 

 

The formula used for downward continuation is inherently unstable and requires low-pass filtering 

to obtain a stable solution (Kern et al, 2003). On the other hand, filtering can be equally as 

problematic as a significant part of the gravity signal is also filtered out (Bayoud & Sideris, 2003). The 

higher the continuation height and finer the data spacing the more severe the problem (Kern et al, 

2003). 

 

2.5.2.3. Least Squares Collocation 

Least squares collocation is an integration method which will be considered in Chapter 3.4.3. One of 

the features of least squares collection is that with the correct choice of a co-variance function, it 

allows input variables to be estimated anywhere in a three-dimensional space and therefore is able 

to complete the downward continuation as part of the integration process (Barzaghi et al, 2009). 

This means that when using the least squares collocation integration method that prior downward 

continuation is not required. 
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The general procedure to downward continue the gravity data using least squares collocation is 

describe in McCubbine (2016), in seven steps:  

1. Compute the Bouguer anomaly, 

2. Calculate the long wavelength gravity anomaly for each observation, 

 3. Subtract the long wavelength signal from the Bouguer anomaly data, 

4. Calculate the covariance of the residual gravity observations and the best fitting analytic 

logarithmic covariance model parameters, 

5. Calculate the covariance matrix, 

6. Calculate the desired signal, and  

 7. Restore the long wavelength gravity model. 
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2.6. Summary 
Gravitation acceleration (𝑔) on the surface of the Earth varies due to the non-uniform distribution of 

the Earth’s mass. Due to the shape of the Earth, these variations are largely dependent on latitude. 

As one moves from the Equator to the poles the distance from the centre of the Earth decreases and 

accelerations due to the Coriolis Effect becomes less.  

While the global gravity field is able to modelled, these models are often coarse. The variation 

between the observed and modelled gravity values are known as anomalies.  

The gravity field can be observed by one of two basic methods: directly, using an absolute gravity 

meter or by using a relative meter to observe apparent changes between sites. Most absolute 

gravity meters use a type of interferometry, measuring acceleration with time and distance. In 

contrast relative meters are frequently dependant on observing the veritable length of a spring.  

The gravity field observation techniques mentioned in this study are commonly referred to by their 

observation platform. That is terrestrial, ship-borne, airborne and satellite. These methods are 

summarised in Table 2.6.  

 Terrestrial  Ship-Track Airborne Satellite 

Topography: 

 Land 

 Shallow Coast 

 Harbours 

 Open Ocean 

 

 
 

 

 

 

 
 

 

 
 
 
 

 

 

 

 

 

Typical Instrumentation 

 LaCoste and Romberg: 

 D or G meter 

 LaCoste and Romberg: 

 S meter 

 Gradiometry 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Density: 

 Uniform 

 Non-Uniform 

 

 
 

 

 
 

 

 

 

 
 

Elevation: 

 On Topography 

 Above Topography 

 

 

 

 
 

 

 

 

 

 

 

Spectral Range: 

 Long (>110 km) 

 Medium (25-110 km) 

 Short (<25 km) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Table 2.6: Summary of gravity dataset limitations 

Each of the gravity observation methods observes separate parts of the Earth’s gravity field at 

different resolutions. Ultimately, no one gravity dataset is able to provide a uniform, high resolution, 

mode which includes all of the wavebands alone.  

In order for the datasets to be combined, they are first reduced to a complete Bouguer model. The 

dataset are then required to be on the same surface, this can be achieved either using downward 

continuation or by using a three-dimensional integration method, such as least squares collocation.  
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3. INTEGRATION 
 

3.1. Introduction 
It is a common goal of the Earth Sciences to map the entire Earth, seamlessly and to a high 

resolution (Monahan, 2008). Seamlessly means combining data using consistent vertical and 

horizontal datums and filling in the spaces between observed data points (interpolation).  

Frequently this means integrating datasets which have a degree of disparity. For example they may 

have been collected at different resolutions, using different methodologies and/or over different 

scales or time periods. The method chosen to integrate these disparate datasets is largely 

dependent on the purpose of the final model and the properties of the data being combined.  

A number of studies have investigated the combination of satellite, terrestrial and/or airborne 

gravity data (examples include: van Loon & Kusche, 2007; Tscherning et al, 1998; and Featherstone 

et al, 1998). However, these studies only combine two data sources. Less attention has been given 

to the combination of more than two measurement types.  

This study identifies the integration process in four steps: 

1. Purpose: Determining the use of the model; which properties we wish our model to display. 

2. Data: Identify each dataset; understand the datasets characteristics, remove gross errors 

and estimate the remaining uncertainties. 

3. Combination: Identify the range of combination methodologies available, including their 

strengths, limitations and suitability in relation to the datasets.  

4. Assessment: ensuring that the final output model dataset has met the requirements. 

This section defines each of these steps in the integration process in relation to the combination of 

various gravity datasets.  

  

3.2. Step One: Purpose 
The purpose of this integration is to produce a single map of the gravity field, which could be used 

for geoid modelling. Modern geoid determination requires a map of the gravity field which covers 

the full gravity field spectrum (Triarahmadhana & Heliani, 2014). This includes combining three 

components: 

• Short Wavelength data, <25 km (DEM, terrestrial, ship-borne) 
• Medium wavelength 25-110 (airborne, satellite Altimetry) 
• Long wavelength, >110km (satellite gravity; GGM) 

 
One of the challenges when combining the different spatial resolutions, accuracies and altitudes, to 

form a single gravity grid, is that there are more data than required to reach a unique solution 

(Sacerdote & Sanso, 1984). However, as the multiple observation methods provide alternative 

information about the same parameters, the data are generally found to be inconsistent at some 

level, and some parametric information may not be in agreement (Schaffrin & Iz, 2002). 
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For example, in geodesy it is common to combine GNSS observations with precise levelling data: The 

horizontal components of survey grade (~1 cm) GNSS observation vectors are at least twice as 

accurate as the vertical component. In contrast, levelling observations provide a highly precise 

vertical observation (~ 1 mm), but the horizontal position is often scaled from a topographic map 

(~100 m; Schaffrin & Iz, 2002). This means that when combining these datasets more weight should 

be applied to the GNSS horizontal positions than the precise levelling horizontal position. However, 

the precise levelling heights should be weighted higher than the GNSS heights. 

A well-integrated gravity dataset should combine data from the entire spectral range to form a 

single gravity map. In doing so we encounter the over determined boundary value problem: the case 

were there is an over specification of data (Payne & Schaefer, 1989) i.e. when combining the 

different spatial resolutions, accuracies and altitudes, to form a single gravity grid, is that there is 

more data than required to reach a unique solution (Sacerdote & Sanso, 1984). However, as the 

multiple observation methods provide alternative information about the same parameters, the data 

are generally found to be inconsistent at some level, and so some parametric information may not 

be in agreement (Schaffrin & Iz, 2002). 

An optimal solution is expected to minimise the inconsistences between the datasets or otherwise 

address the over determined boundary value problem. 

 

3.3. Step Two: Data 
We are only able to combine datasets which are similar. Similar means having properties which are 

of the same feature, scale and related to the same reference surface. However, similar does not 

mean that we are unable to combine different types of the same data. For example it is possible to 

combine terrestrial distance and bearing observations with GNSS vector data as they are both types 

of distance measurements. 

In order to do this successfully we must first ensure that the data are similar. This involves assessing 

the accuracy and completeness of the metadata provided, performing transformations between 

datasets where required.  

Second, we must determine the expected accuracy of the dataset. This involves understanding how 

the data were collected. This allows us to determine the limitations of the equipment and 

methodologies used. Based on the expect accuracy, the database can be checked for outliers (gross 

errors). An outlier may indicate a peculiarity in the sample or may indicate a blunder. Outliers should 

be resolved or removed (Osborne & Overbay 2004) from the dataset as they can unduly and 

significantly influence surrounding data points. Once the outliers are removed we can then identify 

and attend to any systematic errors (Filmer et al, 2014). 

 
Finally, we use the results of this error analysis to compute a priori weights. This included the 

expected errors of the dataset. However, observations within a dataset can also be weighted.  

This weighting can be binary i.e. 1 if the observation is used, zero if it is to be rejected. It could be 
complex with every observation within the dataset being assigned a weighted value based on their 
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individual stochastic properties. Or it could be grouped, with observations collected using different 
methodologies assigned similar weightings.  
 
For example, when assessing a database with height observations, the expected accuracy may be 1 

cm. The GNSS observations could be assigned a weight of 1, while, the levelling observations may be 

assigned a weight such as: 10 (or a value higher than 1) reflecting that we have more certainty in the 

levelling height values. 

 

3.4. Step Three: Combination  
During step three of the integration process the data selection of integration methods are test and 

the dataset are combined. Each of the integration methods are then assessed including their 

strengths, limitations and suitability in relation to the datasets, as the favourable method will 

depend on the characteristics of the data being integrated. 

The result will be a set of models, one for each integration technique, supported with dialogue as to 

the pros and cons of each method. Finally one method will be identified as the optimal data 

combination technique for the integration of heterogeneous gravity datasets. This section will 

identify the integration methods which will be considered for this study. 

A number of integration methods have been identified in the literature (for example: Mortiz, 1978; 

Goovaerts, 1997; and Ligas & Kulczycki, 2010) as commonly used in the Earth Science to combine 

data, these are: Simple Gridding, Kriging and Least Squares. 

As will be seen, there are multiple variations of the Kriging and Least Squares methods and many 

software that are suited to these interpolation methods. Therefore, a short list of methods used by 

various authors is presented. However, only Ordinary Kriging and Least Squares Collocation are 

considered for comparison as they are the most relevant variations of these methods for use with 

gravity datasets. Data processing and analysis will be completed using Matlab V14.a 

(mathworks.com). 

 

3.4.1. Simple Gridding 

The purpose of integration is to create a continuous surface from a sample of point values. At its 

most basic level simple gridding divides the observation area into regular sized grids or ‘bins’. The 

observations which fall within each bin are then averaged to provide a value for a grid cell.  

This is demonstrated in Figure 3.1, where in Figure 3.1 a) the 31 observations are divided in to a 

regular 4x4 grid. The observation values for each bin are determined in Figure 3.1 b). The final grid 

cell mean values calculated are coloured in Figure 3.1 c). 

http://au.mathworks.com/
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a) Location of observations points b) Observation values, in each bin c) Averaged observation per bin 

Figure 3.1: A demonstration of the simple gridding technique 

Most GIS (Geographic Information Systems) software packages (such as ArcGIS; www.arcgis.com, 

and QGIS; http://www.qgis.org/) and other graphical tools such as GMT (Generic Mapping Tools; 

http://gmt.soest.hawaii.edu/) and Matlab (http://au.mathworks.com/products/matlab/) , have the 

ability to combine multiple files and interpolate all the data on to a single grid.  

Once divided, each of these programs may have several averaging techniques or interpolation 

methods to demine an average for the bin.  

For example, in GMT (Wessel et al, 2013) the arbitrarily located data point’s observations point are 

used to create a regularly gridded output file by using the block averaging tools: Where the output  

position is a either a mean (sum of all values in the grid, divided by the number of values in the grid): 

‘blockmean’, median (middle value of observations in the grid): ‘blockmedian’ or mode (most 

common value in the grid): ‘blockmode’. 

These regularly populated grids can then be transformed in to a surface using functions such as 

‘surface’ and ‘nearneighbor’. 

 ‘surface’ is a global method; this means that is able to interpolate data beyond the 

observation values. In this function the user is able to select modifiers such as tension and 

curvature to control the smoothness of the output surface. An example of the ‘surface’ 

method is shown in Figure 3.2  

 ‘nearneighbor ’ (or nearest neighbour) is a local method; this means that it is only able to 

interpolate values within the area of interest and only provided values for the bins were 

observations exist. Bin value is a weighted mean of the nearest points from inside search 

radius. An example of the ‘nearneighbor’ method is shown in Figure 3.3. 

  

http://www.arcgis.com/
http://www.qgis.org/
http://gmt.soest.hawaii.edu/
http://au.mathworks.com/products/matlab/
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Figure 3.2: Example of GMT ‘surface’ interpolation 
method  

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Example of GMT nearest neighbour 
‘nearneighbor’ interpolation method 

  

 

 

 

 

 

 

In Matlab the function ‘griddata’ is used, to derive the regularly spaced bins. ‘griddata’ interpolates a 

scattered sample of points to form a surface. The Matlab package includes five interpolations 

methods: Linear, Cubic interpolation, natural neighbour, nearest neighbour and bi-harmonic 

interpolation, where: 

 Linear Interpolation (‘linear’): Fits a linear polynomial between sets of three points for 

surfaces. See Figure 3.5 a). 

 Cubic Interpolation (‘cubic’): Fits a cubic polynomial between sets of three points for 

surfaces. This method can create extreme values along the edges of the dataset. Also, as this 
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method uses triangulation it is a local method, and creates null values outside of the dataset 

area. See Figure 3.5 b). 

 Natural Neighbour Interpolation (‘natural’): Sets a value based on a weighted method by a 

ratio of surrounding points. See Figure 3.5 c). 

 Nearest Neighbour Interpolation (‘nearest’): Sets the value of an interpolated point to the 

value of the nearest point. This method is better suited to non-continuous datasets. See 

Figure 3.5 d). 

 Matlab (Bi-harmonic) Interpolation (‘V4’): Sets the value of an interpolated point to the 

value of the nearest point. This is a computationally intensive method, as a full ‘NDATA xNDATA’ 

matrix is created for all of the sample points. See Figure 3.5 e). 

 

As the gravity datasets are continuous data and contain many thousands of observations over a 

large national/regional area. Natural neighbour is the most appropriate interpolation method for 

this investigation.  

 

3.4.1.1. Natural Neighbour Gridding 

The benefit of natural neighbour grids is that they are quick to determine than average value for a 

bin. The computation complexity is determined by the number of observations per bin and how to 

assign values to a bin with no observations (as seen in the bottom row of Figure 3.1 c). In Matlab 

these bins are assigned a NaN (Not a Number) value, which then must be defined by the user.  

The limitations of the natural neighbour gridding method are that it does not take in to account the 

stochastic properties of each of the datasets such as their varying spatial distributions and error 

factors. 

As illustrated in Figure 3.4, for example there may be many airborne observations (green dots) 

within a bin, but only a small number of terrestrial observations (purple dots). Thus using the simple 

gridding method, the average value of grid will be heavily influenced by the values of the airborne 

observations simply because there are more of them in the bin.  

 

Figure 3.4: Illustration of multiple datasets combined using the natural neighbour method  
Example airborne data (green) and terrestrial data (purple) 
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Figure 3.5: Examples of Matlab interpolation methods: 

a) Linear interpolation (top-left).  

b) Cubic interpolation (top-right)  

c) Natural neighbour interpolation (centre-left)  

d) Nearest neighbour interpolation (centre-right)  

e) Bi-harmonic interpolation (bottom-left) 
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In addition, the natural neighbour gridding method considers observations on a two-dimensional 

surface. This means that this method assumes that all the input data have been observed on, or 

reduced to a common, vertical reference surface.  

 

3.4.2. Kriging 

This method is used for the interpolation of observations (variables), which have a high degree of 

spatial correlation. The kriging approach requires a valid semi-variogram, a function which describes 

spatial correlation (dissimilarity between the points) model for the spatial process. The semi-

variogram is described by Figure 3.6. 

 

Figure 3.6: Illustration describing the components of the semi-variogram 

where: 
C0 is the Nugget. This section represents the measurement error, 
D is the range. This is the distance at which the semi-variance level off. The range represents 

the spatially correlated potion of the semi-variogram, and  
C0+C1 is the sill: The portion over which levelling of the data takes place.  

 

Kriging is exact interpolation method, meaning that the input data is preserved in the final model 

(Goovaerts, 1997), as long as the nugget value is zero. 

The goal of which is to form a semi-variogram with minimal variance. Hence Ilie (2014) states that 

modelling the semi-variogram as the most difficult stage in kriging technique. This is because one 

must first select the appropriate theoretical model that will describe the variability of the 

observations with distance.  

The outputs of the kriging method are the expected value and variance, computed for every point 

within a region. The variance provides an indication of the possible realisations which would agree 

with that data, based on the probabilistic behaviour of the field being observed. 
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Depending on the properties of the datasets being integrated, there are many different variations of 

the kriging method that can be used. For example, some common methods mentioned in literature 

(for example Ilie, 2014; Goovaerts, 1998; and Reguzzoni et al, 2005) are : 

- Simple Kriging – This is the most mathematically straightforward form of kriging. However, it 

relies on the user knowing the a priori errors of the field being determined. 

- Ordinary Kriging – forces primary data weights to a sum of ‘one’, which is an optimal 

predictor if the mean (over the entire area) is assumed constant. 

- Co-Kriging –This is a variant of ordinary kriging. It calculates estimates for a poorly sampled 

variable, by comparing it directly with a highly correlated well sampled variable. 

- General Kriging – Unification of least squares collocation and kriging, forcing a zero mean. 

Does not use point values, but rather values of linear functions of the unknown random 

field. 

The alternative variations of the kriging method are summarised in Table 3.1. Ordinary kriging will be 

chosen for this study as there is only one variable to evaluate, the a priori errors are unknown so it is 

desirable to use a force mean and our data are point values, not linear functions. In addition, 

ordinary kinging is the most robust method and best preserves in the input data, by using an, 

unknown but constant mean.  

 Simple Kriging Ordinary 
Kriging 

Co-Kriging General Kriging 

Forced Mean     

Single Variable      

Point Values     
Table 3.1: Comparison of Kriging methods 

3.4.2.1.  Ordinary Kriging 

Ordinary kriging is derived from geostatistics for surface modelling applications; as such it is the 

most commonly used variation of the kriging method (Webster & Oliver, 2007).  

 
Ordinary Kriging uses an estimation algorithm (Equation 3.1), to predicted value of location ‘P’, 

where no observations have been made.  

𝑍𝑝 =  ∑ 𝜆𝑖𝑍𝑖

𝑛

𝑖=1

 

Equation 3.1 

where: 

Zp is the predicted value at point P, 
Zi are known values from in certain spatial locations, and  
λi are the corresponding weights for Zi values.  

 

Figure 3.7 demonstrates how the values of the surrounding points are used to predict the value of 

‘P’.  
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Figure 3.7: Conceptual diagram of the ordinary kriging process 
Ordinary kriging uses an estimation algorithm to determine a value for Zp using the weights from the observation points 

(Z1 Z2 Z3 Z4…) 

The benefit of the ordinary kriging method is that it uses the spatial correlation or dissimilarity 

between the points in order to derive a value. This value is able to be weighted according to the 

measurement method. 

However, the limitation of the ordinary kriging method is that it preserves the values of the 

observation points. In addition, values are combined on a two-dimensional surface and this method 

is unable to be applied to observations which are at different reference elevations (Wackernagel 

2003).  

 

3.4.3. Least Squares  

The concept behind least squares is to minimise the sum of the squared residuals between the data 

values. One of the components of the adjustment is a covariance model which describes similarity 

between the points. As shown in Figure 3.8 the covariance model used by least squares is the 

opposite the semi-variogram model used by the kriging method.  

 

Figure 3.8: Illustration of the semi-variogram (kriging) and covariance (least squares) models  
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One of the features of the least squares method is that the modelled surface need not traverse all 

the sample points (kriging which must preserve the observation values or use the nugget values for 

the modelling of measurement errors, see Figure 3.6). However, this requires a balance between the 

interpolation accuracy and smoothness of the surface. 

 
Depending on the properties of the datasets being integrated, there are two major variations of the 

Least Squares method that can be used. These are: 

- Least Squares Collocation (Moritz, 1978; Krarup, 1969) - The method of least squares 

collocation may be used for the determination of approximations to the anomaly’s gravity 

potential, and associated parameters such as biases or tilts. The method was developed in 

the 1960s based on the theoretical advancements of Kraup and Moritz (Tscherning, 2015). 

- Least Squares Spectral Combination (Kern et al, 2003) - This is identified as an alternative 

method to classic least square collocation. This technique is applied in order to reduce long-

wavelength distortions which may result from the use of Stokes formula, when combining 

terrestrial and global gravity data.  

The Stokes formula is used in geodesy for geoid computations. One of the limitations of use of the 

Stokes formula in this study, is that is requires knowledge of Δg at every point on the geoid 

(Hofmann-Wellenhof & Moritz, 2006) 

The advantage of least squares collocation is that it is able to combine observation data from a 

variety of sources. While, least squares spectral combination methods use the spherical harmonic 

part of the gravity field to provide, very accurate approximations for smooth solutions with relatively 

few degrees of freedom. The gravity datasets are observation based, therefore, least squares 

collocation will be chosen for this study. 

 

3.4.3.1.  Least Squares Collocation  

Least squares collocation is an interpolation method derived with in the geodetic sciences, for 

determining the Earth’s shape (including gravitational field). Least squares collocation is a data 

processing method which simultaneously performs regression (determining a trended surface), 

filtering and spatial prediction (Hofmann-Wellenhof & Moritz. 2006).  

The fundamental equation of least squares collocation is given in Equation 3.2. The signal 𝑠 ̂ is 

estimated by the three-dimensional position of the observations x. 

𝑠 ̂ =  𝐶𝑠𝑥(𝐶𝑥𝑥 + 𝑁𝑐𝑜)−1𝑥 

Equation 3.2 

where: 
 Csx is the covariance matrix of the signal s and observations x, 
 Cxx is the covariance matrix of the observations, and 
 NCO is the covariance matrix of the observation noise. 
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As shown in Figure 3.9, the least squares collocation method assumes that measurements consist of 

two components: a systematic component (trend surface) and a random component composed of 

signal (determined by local factors) and noise (caused by measurement errors). 

 

 

Figure 3.9: Graphical representation of the least squares collocation method (Ilie, 2014) 

The major advantage of least squares collocation is that surface points do not have to pass through 

the observation values. This means that input observations do not need to be on the same vertical 

reference surface.  

The principal drawback of least squares collocation is that in the observation spectra non-stationary 

noise leads to an approximate solution for the noise (Kern et al, 2003). 

 

3.5. Step Four: Assessment  
Once a favoured technique has been identified it will be assessed to ensure that it provides the 

outcomes identified in step one of this process. This means ensuring that the final model provides 

the best method to combine gravity data to create a single gravity map, which could be used for 

geoid modelling.  

The final model will be assessed using two methods. The first method is to compare the output 

model to existing gravity models and/or models created using the other two observation techniques. 

This demonstrates where there are changes between the datasets. These differences are then able 

to be evaluated and confirmed as either variations or errors in the final model.  

The second method is to test the fit of the final model i.e. that it is not biased by outlying data 

points. As the model uses all the available data in its computation, this will be tested using cross 

validation, a method were by a sample of the dataset is removed and the model recomputed – this 

process being repeated numerous times. The values of the missing points and those from the model 

are then compared to compute a residual for the final model.  

For example, cross validation method was used by Featherstone & Sproule (2006) in order to model 

the separation between the Australian Height Datum (AHD) and Geodetic Reference System 1980 

(GRS80) ellipsoid. Each point was individually removed from the model and the combined model was 

assessed. This was repeated for all 254 points in the dataset and provided useful error estimate of 

the data.  
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3.6. Summary 
This Chapter has introduced the four-step integration process: Purpose, Data, Combination and 

Assessment. Each of these steps is required to ensure that an optional integration method is 

selected. 

This study has identified three integration methods to be assessed: natural neighbour gridding, 

ordinary kriging and least squares collocation. A brief summary of these methods is illustrated by 

Table 3.2. 

 Natural Neighbour 
Gridding 

Ordinary Kriging Least Squares 
Collocation 

Multiple datasets    

a priori weights    

Exact interpolation 
method 

   

3-D observations    
Table 3.2: Summary of integration techniques 

Each of the three methods is able to be used to combine multiple datasets. 

Natural neighbour gridding is the least computationally intensive method, merging datasets on a 

two-dimensional surface, with little regard to error weights.  

The limitation here is that ordinary kriging points must then be represented on the same elevation 

surface. When combining airborne heights from flight altitude they must be first downward 

continued to a common surface.  

However, the other two techniques least squares collocation and ordinary kriging, are better suited 

and weighted datasets. Simply speaking, the difference between the two methods is that Kriging 

interpolation passes through all the points in the dataset, while the least squares collocation method 

does not have to. This results in the least squares collocation surface being smoother. 
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4. CASE STUDY: Canterbury, New Zealand 

4.1. Introduction 
In this Chapter the four-step integration process: Purpose, Data, Combination and Assessment 

(identified in Chapter 3), will be used to combine the gravity datasets across Canterbury, New 

Zealand.  

4.2. The Canterbury Test Area 

The Canterbury region was chosen for this case study due to the availability of existing gravity 

datasets, including a local airborne gravity dataset (Winefield et al, 2014). This will allow the 

examination of the integration process, using authentic gravity datasets.  

The Canterbury test area covers a region of approximately 30,000 km2, located in the central South 

Island of New Zealand and includes the city of Christchurch (New Zealand’s third largest city). The 

extent of the test area is defined in Table 4.1 and is represented by the area within the white box 

shown in Figure 4.1. 

Northing 5,090,000 m 5,260,000 m 

Easting 1,490,000 m 1,655,000 m 

Table 4.1: Extent of the Canterbury Test Area  
Projection: New Zealand Transverse Mercator 2000 (NZTM2000) 

 

 

Figure 4.1: Location of the Canterbury test area, New Zealand 
Indicated by area within the white box 
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This area contains a number of features of interest including the Canterbury Plains and foothills of 

the Southern Alps, Lake Ellesmere, the Banks Peninsular, shallow coastal areas and deeper areas 

offshore. The large part of the area (the Canterbury Plains), is formed by abandoned braided river 

and flood plains. This means it has vast resources of alluvial greywacke-aggregate, formed in the 

Southern Alps (Forsyth et al, 2008). 

While most of the area is low and flat (less than 100 m above sea-level), the Banks Peninsular is 

more mountainous. It was formed by two large over lapping extinct volcanoes (Akaroa and 

Lyttelton), creating two natural harbours. This area’s highest point is Mt Herbert (919 m) with 

several other peaks reaching higher than 800 m. 

Winefield et al (2014) explain that the selection of this region for the local airborne gravity survey 

was due to the dense coverage terrestrial gravity and GPS-levelling networks in this area. This would 

provide ground truthing for the airborne gravity survey, which then could be used to test the proof 

of concept prior to a national airborne gravity campaign. 

It is noted that the Canterbury region has been subject to a number of significant earthquakes since 

2010 (Bannister & Gledhill, 2012). In areas close to waterways, height changes in the order of 1 

metre have occurred, due to the effects of slumping and liquefaction. This means that the terrestrial 

gravity data; collected before the earthquakes and airborne gravity data; collected after the 

earthquakes are not measured in terms of the same ground surface. While acknowledged as a 

source of potential uncertainty, this study does not attempt to restore the terrestrial height for the 

earthquake effects. 

However, this study notes that the case study area covers a region which is far from typical in terms 

of the density of the existing terrestrial gravity infrastructure across New Zealand in general. Much 

of the country is covered in much sparser networks, particularly across Fiordland; in the south of the 

South Island, and other hard to access regions. Therefore the conclusions from this case study may 

not be considered an optimal scenario for a national airborne gravity campaign the remainder of the 

country. 

 

4.3. Integration Step One: Purpose 
Determining the use of the model; which properties we wish our model to display. 

As discussed in Chapter 2, there is no one gravity observation method which is able to capture the 

entire spectrum of the Earth’s gravity field, in a manner that is uniform and of a resolution high 

enough for the regional modelling of the geoid.  

For example, global gravity models provide a uniform long wavelength determination of the entire 

Earth’s gravity field. However, due to the attenuation of the gravity signal with altitude, short 

wavelength features are best resolved at surface level. This means that for geological features in 

excess of 20 km to be resolvable, terrestrial gravity observations would be required at a global 

spacing of 5-10 km (Seigel, 1995).  
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The practical limitations of creating a uniform global short wavelength gravity dataset are 

prohibitive. This is because, some countries do not maintain their own terrestrial gravity networks or 

their gravity data are protected by commercial or military purposes. There also remain large gaps in 

coastal or estuarial regions. 

Therefore, it is desirable to combine all the available datasets in order to obtain the best 

approximation of the entire gravity signal and form a map of the gravity field. However, as each of 

the gravity datasets possesses a degree of dissimilarity to the others, the simple combination of the 

datasets may not be straightforward. Therefore, this case study will evaluate integration methods, 

identified in Chapter 3, in order to determine an optimal method of integrating the heterogeneous 

gravity datasets.  

The final product will be a single combined Bouguer gravity map of the case study area, produced 

using the method identified as the best method to integrate the datasets. 

 

4.4. Integration Step Two: Data 
Understand the datasets characteristics, remove gross errors and estimate the remaining 

uncertainties. 

The data used in this case study includes five gravity datasets: terrestrial, ship-borne, airborne, 

satellite altimetry and a GGM. Plots of these datasets are available in Appendix A. This section 

describes each of these datasets, outlining their selection and measures taken to reduce and/or 

estimate their errors. This includes checking the metadata to ensure that the datasets are similar 

(i.e. are of the same scale and reference surface) and are therefore able to be combined. 

All data used in this case study are existing data sets, either freely-available or used under-licence; 

no additional data were collected.  

 

4.4.1. Terrestrial Gravity 

From the New Zealand terrestrial gravity database (Chapter 2.3.1) 2,574 of the stations are 

contained within the Canterbury test area. The locations of these stations are shown in Figure 4.2. 
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Figure 4.2: Location of terrestrial gravity stations within the Canterbury test area 

The metadata for this dataset are provided in Stagpoole (2012) and summarised in Table 4.2. 

However, as discussed in more detail below, the supplied latitude and longitude metadata have 

been recorded incorrectly and should read New Zealand Geodetic Datum 1949 (NZGD1949). 

Spreadsheet Metadata 

NZMG (X,Y) New Zealand Map Grid 

Latitude, Longitude (WGS84) in decimal degrees 

NZTM (E,N) New Zealand Transverse Mercator 
Table 4.2: Metadata for terrestrial gravity database, as supplied (Stagpoole, 2012) 

 

4.4.1.1.  Metadata Assessment - Horizontal  

On receipt of the terrestrial gravity database, the data were imported to a GIS, for visualisation. As 

an exercise, the data was imported for the two projections and one set of geodetic coordinates in 

terms of the WGS84 ellipsoid, listed in Table 4.2.  

Figure 4.3 shows the output coordinate position for terrestrial gravity Station 39/ Sheet 21, located 

in Riccarton, Christchurch. However, as illustrated there is an inconstancy with the coordinate 

information. The NZTM2000 and New Zealand Map Grid (NZMG) coordinates are coincident and are 

represented by the cyan circle, while the reportedly World Geodetic System 1984 (WGS84) 

coordinate, shown by the yellow circle, has been located approximately 200 m to the south.  
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Figure 4.3: Visualisation of the coordinates for the terrestrial gravity mark: Station 39/Sheet 21 
NZTM/NZMG: cyan circle and the incorrectly identified projection: yellow circle 

The WGS84 reference ellipsoid is essentially the same as the GRS80 ellipsoid used by NZGD2000. As 

shown in Table 4.3 the only variations between the two are due to a small difference between the 

flattening terms that is insignificant at the Earth's surface, and a different origin at the centre of the 

Earth’s mass.  This means that for most practical purposes (Grant et al, 1999) NZGD2000 and WGS84 

coordinates can be considered the same and no transformation is required. 

Ellipsoid Semi-major Axis (m) Inverse Flattening 

GRS80 6,378,137 298.257 222 101 

WGS84 6,378,137 298.257 223 563 

International 1924  6 378 388  297 
Table 4.3: Parameters of ellipsoids most commonly used in New Zealand 

 

However, NZGD1949 was based on the International 1924 ellipsoid. As seen in Table 4.3 the 

parameters of this ellipsoid are significantly different to those of GRS80. As a consequence the 

NZGD1949 latitudes and longitudes are offset approximately 200 m south from the equivalent 

NZGD2000 coordinates.  

It is concluded the latitude and longitude values contained in the terrestrial gravity database, are not 

WGS84, but NZGD1949 geodetic coordinates. Therefore Table 4.2 should be replace by Table 4.4 

below. 
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Spreadsheet Metadata 

NZMG (X,Y) New Zealand Map Grid 

Latitude, Longitude New Zealand Geodetic Datum 1949 

NZTM (E,N) New Zealand Transverse Mercator 2000 
Table 4.4: Metadata for terrestrial gravity database, corrected 

 

4.4.1.2.  Metadata Assessment - Vertical 

Terrestrial gravity heights have varying degrees of uncertainty and ambiguity. To begin, the 

metadata for the terrestrial gravity database provided heights, recorded in metres to the nearest 0.1 

m. However, the datum of these observations is not stated.  

The metadata provide limited information as to how the height was determined, and three 

measurement methods (shown in Table 4.5) have been distinguished. 

Database Code Height Type 

0 Benchmark, survey point, DGPS 

1 Spot height, GPS 

2 Barometric levelling 
Table 4.5: Terrestrial gravity database height determination methods 

 

On inspection of the data we find that, for example, Station 35/Sheet 27, positioned on the coastline 

has a recorded height of 0.6m (Database Code: 1 height). According to LINZ (2005), the coastline on 

a LINZ topo50 map represents the line of mean high water level (MHW). Contours represent the 

heights above mean sea level (MSL). 

The observation of 0.6 m is indicative that this observation is a spot height, and is orthometric (in 

teams of the local vertical datum). Therefore it is assumed that all heights in the database are 

orthometric. 

 

4.4.1.3.  Positional uncertainties 

One of the data integrity checks suggested by Stagpoole (2012) is to compare the recorded height of 

a gravity station in the database with the derived height of its coordinate computed from the DEM. 

Heights with a significant difference (plus or minus 10 m as this is the error margin of the vertical 

component of the DEM) indicate some level of uncertainty with the three-dimensional position of 

the observation. This analysis is unable to identify if these uncertainties are due to an error of 

station heighting, horizontal positioning or an incorrect height reading from the DEM. However, as 

an uncertainty in the vertical component of ~10 m, equates to an uncertainty in the gravity anomaly 

of ~3 mGal it is desirable to identify the stations beyond this limit. 

Figure 4.4 shows the results of comparison between the full terrestrial gravity database (40667 

observations) and DEM heights using a cumulative distribution function (CDF) plot. This plot 

demonstrates the dataset is leptokurtic beyond the 95% confidence intervals.  
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Figure 4.4: CDF plot of differences between terrestrial database and DEM heights 

 
Of the 2,574 stations in the Canterbury test area, the 66 gravity stations identified as being beyond 

the 95% confidence interval are now weighted to zero, (effectively removing them from the 

dataset). The locations of these stations are shown by a red ‘x’ in Figure 4.5. While the remaining 

2,508 observation from the Canterbury test area, have been assigned a weighting of one. The 

locations of these stations are shown by a blue ‘+’ in Figure 4.6.
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Figure 4.5: Terrestrial gravity stations identified within the 95% confidence interval 2508)  Figure 4.6: Terrestrial gravity stations identified beyond the 95% confidence interval (66) 
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While this method of weighting reduces the density of the dataset, for the purposes of geoid 

modelling we wish to retain a station distribution of marks of ~5km is adequate. Within the 

Canterbury test area there is a sufficient density of marks that stations with height uncertainness 

beyond the 95% confidence interval can be excluded from the dataset, without significantly 

degrading the desired distribution target. 

As a check, a surface constructed from the 95% terrestrial database was removed from a surface 

constructed from the airborne free air data. The resulting plot, Figure 4.7 identified three individual 

observations, listed in Table 4.6, which do not agree with the values of the surrounding stations.  

 

 

Figure 4.7: Plot showing the locations of the resulting three irregularities 
Terrestrial Bouguer anomaly surface subtracted from the Airborne Free-are anomaly surface 

 
It is assumed that observation 1029/60 has an incorrect sign (recorded as -28 mGal while the 

surrounding values are positive), while observations 397/21 and 88/21 disagree by a factor of 10 

when compared to neighbouring observations (suggesting decimal point may be missing). 

Station Map Sheet Assumed Error 

1029 60 incorrect sign 

397 21 disagree by a factor of 10 

88 21 disagree by a factor of 10 
Table 4.6: List of the resulting three irregularities 

Terrestrial Bouguer anomaly surface subtracted from the Airborne Free-air anomaly surface 
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However, in lack of any additional evidence to confirm, or otherwise, that the above assumption are 

correct, these three observations shown in Table 4.6 were weighed zero. This leaves 2,505 

observations in the terrestrial gravity dataset.  

 

4.4.1.4. Estimating Uncertainties 

In the sections above, a diagnostic test was used to identify outliers which were more than ±10 m 

vertically and/or where the coordinate of the mark was insufficiently accurate to plot the true 

position. Those within the 95% confidence interval were weighted, while those beyond the 

confidence level were weighted zero, for all practical purposes removing their effects from any 

integration. This means that the remaining data have an uncertainty of up to ±10 m vertically, 

equating to an uncertainty of 3 mGal in the gravity anomaly.  

As described in Chapter 2.3.1 the majority of the New Zealand terrestrial database was collected 

using LaCoste and Romberg instruments such as the G-meter, which has an expected accuracy of 

0.015 mGal. 

Based on these two factors and allowance for systematic error throughout the observation, all 

remaining observations have been assigned an uncertainty of ±3 mGal. 

 

4.4.2. Ship-borne Gravity 

There are 5,391 ship-track points contained within the Canterbury test area, as shown in Figure 4.8.  

 

Figure 4.8: Location plot of the Canterbury test area ship-borne data tracks 
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These data were crossover-adjusted in 2003 (Brent, 2004) and as discussed in Chapter 2.3.2, this has 

resulted in a consistent dataset. No additional processing of the raw observations will therefore be 

required by this study. 

 

4.4.2.1. Estimating Uncertainties 

Ship-borne gravity data is prone to inconsistencies in positioning. In Chapter 2.3.2 it is identified that 

using a LaCoste and Romberg ‘S’ dynamic relativity gravity meter, and using GNSS positioning, that 

accuracies of ±1 mGal are obtainable. However, much of the gravity survey data were collected prior 

to the advent of GPS, so the accuracy of the ship’s positioning is harder to determine, as it is 

impacted by the measuring system and sea conditions. The most reliable technique for accessing the 

accuracy of the ship-borne data is by the analysis of the values at the crossover points (Wessel & 

Watts, 1998). As discussed, prior to the crossover adjustment, the standard deviation of the 

crossover error was ~2 mGal and this was reduced to ~0.3 mGal by the crossover adjustment.  

However, while the crossover adjustment improved the consistency of the dataset, the adjustment 

was poorly constrained and therefore standard deviation after the adjustment does not necessarily 

reflect the accuracy of the data. The ship-borne dataset has therefore been assigned an uncertainty 

of ±3 mGal to account for this. 

 

4.4.3. Airborne Gravity 

The Canterbury airborne gravity survey was completed over seven days, from 14-23 April 2012 

(Winefield et al, 2014). The extent of the survey area is shown in Figure 4.9. The survey included 

twelve 150 km flight-lines (10 kilometres apart). 

 
 

Figure 4.9: Extent of Canterbury airborne gravity survey, April 2012.  
12 flight lines and 3 cross-ties are shown in red and a north-south calibration line is shown in black.  

Projection: NZTM2000 
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To allow for the evaluation of the internal error estimate, two additional lines types were observed: 

three 100 km cross-ties and a north-south calibration line of 70 km. Figure 4.10 compares the free-

air anomalies for the four times that the north-south calibration line was flown.  

 

Figure 4.10: Comparison of north-south calibration lines  
Showing repeatability of 5 mGal with RTK GPS 

Using only the Real Time Kinematic (RTK) GPS data, a repeatability of ±5 mGal was achieved. This 

was improved to better than 3 mGal with the introduction of post-processed GPS data.  

The airborne gravity database is made up of 33,846 measurements. However, some observations 

were determined to have been taken prior to the stabilisation of the platform. Therefore, only 

33,627 observations are usable for this study.  

 

4.4.3.1.  Aircraft Positioning 

All flights within the Canterbury test area survey were flown using a Cessna 402B, Figure 4.11. 

 

Figure 4.11: Cessna 402B, used in airborne gravity survey 
(Provided under contract by New Zealand Aerial Mapping) 

 
Each flight was prescribed to be flown at an altitude of 3,600 feet (~1,100 m), at a ground speed of 

150 knots and to remain at a constant heading along each line. However, under normal operating 
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conditions these parameters are only approximate. Actual speed, altitude and direction of the 

aircraft vary due to wind gusts and flight movements: roll, pitch and yaw (demonstrated in Figure 

4.12). The gravity meter is set up in the centre of the aircraft in an attempt to minimise the effects of 

the aircraft movement on the survey observations. 

 

Figure 4.12: Aircraft rotations  
Roll, pitch and yaw (source: www.novatel.com) 

 

The aircraft altitude during the flight is established by using barometric pressure. The initial height is, 

therefore, only approximate and will be influenced as weather conditions change along the flight 

line. Throughout the flight the aircraft is subject to pitch, similar to the effect of waves on a ship, 

causing up to ±10 m variation in altitude. Down or up-drafts can also influence the flight altitude by 

±20 m. In addition, the Civil Aviation Authority (CAA) requested flights directly over the international 

airport be flown at 7200ft (~2200m). These flight and operational conditions result in different 

altitudes between observation points. 

The actual position and altitude of the aircraft is tracked by GNSS. These coordinates are post-

processed, using a method known as DGPS (Differential Global Positioning System) where the 

aircraft coordinates are reprocessed against known sites: the New Zealand CORS (Continuously 

Operating Reference Stations) PositioNZ stations (http://www.linz.govt.nz/data/geodetic-

services/positionz). Post-processing provides a recomputed the path of the aircraft during the flight, 

using carrier phase (C/A) data and expected accuracy of better than 1m.   

 

4.4.3.2.  Data Improvement  

It is not the intention of this study to reprocess the airborne gravity data. However, the purpose of 

this section is to evaluate the airborne gravity, and identify where the observation quality could be 

improved and remove any gross errors. 

Recovery of Bouguer Anomalies 

The database as supplied by GNS Science does not provide Bouguer Anomalies, so these are 

computed using the complete Bouguer model as described in Chapter 2.4.6. A DEM is used to 

provide heights for the terrain beneath the survey, so that terrain corrections can be calculated (see 

Chapter 2.4.5. However, unlike the terrestrial data (h ground) which is on the Earth’s surface and is 

http://www.novatel.com/
http://www.linz.govt.nz/data/geodetic-services/positionz
http://www.linz.govt.nz/data/geodetic-services/positionz
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influenced by the surrounding topography (which may be higher or lower than the gravity station), 

flight altitude is constantly above the topography (h air), see Figure 4.13. This means that the terrain 

correction can be calculated in one step, without the need to compute the Bouguer slab corrections 

separately (McCubbine, 2016). 

 

Figure 4.13: Flight altitude is constantly above the topography 

 

Dipole Events 

McCubbine (2016) identifies that at times during the national airborne gravity survey the meter is 

subjected to an acceleration which forces the spring to its maximum extent, and corrupts the signal 

as the meter over-compensates while it recovers. These events appear in the airborne Bouguer 

gravity signal as a dipole; the blue signal in Figure 4.14, as opposed to the smooth EGM2008 Bouguer 

gravity signal; shown in black .  

 

 

Figure 4.14: Example of a dipole in the airborne gravity signal 
Blue: airborne gravity signal, Black: EGM2008 gravity signal 

 
 

  



 

Chapter 4 – Case Study   68 
 

In the Bouguer gravity maps these are seen as gravity low, between two high spots (or vice versa). 

On the western extent of  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 we see a feature which is a potential dipole, with a high-low-high-low in the signal. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Airborne Bouguer anomaly map, with dipole event present 

If ‘repairing’ flight lines for use in geoid modelling, one could set up procedures to splice out sections 

of the suspect data and replace it with track from the GGM (McCubbine, 2016). However, as this 
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event influences just one flight (line one), the entire flight-line was removed from the airborne 

gravity dataset for analysis (Figure 4.16). 

 

 

Figure 4.16: Airborne Bouguer anomaly map, flight-line with dipole event removed 

 

Down-sampling the dataset  

Airborne gravity observations are observed every second. However, during the data processing 

(McCubbine, 2016) a 90 second filter is applied. This means that our observation points are over 

sampled and biased by the filtering. In addition the dataset is too large to manipulate easily. The 

practical solution is to down-sample the data (i.e. to only use every nth point in the dataset) this 

leaves one observation every 4 km. A 50 point sampling rate was considered to be appropriate for 

use on this dataset, a total of 440 observations in the dataset 

 

4.4.3.3.  Estimating Uncertainties 

The gravity meter used in this survey was a Lacoste and Romberg S-80 marine gravimeter which had 

recently been upgraded for use on an airborne platform. While this particular meter has been 

deployed on ship-borne campaigns for over 25 years e.g. Davy & Caldwell (1998), this trial airborne 

campaign required the instrument be installed on an aeroplane. Therefore its performance on an 

airborne platform was hitherto untested.  
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As the repeatability on the calibration line was approximately 3 mGal, the airborne dataset has been 

assigned an uncertainty of ±3 mGal. 

 

4.4.4. Satellite Altimetry  

The satellite altimetry model has been taken from Sandwell & Smith version 23.1, Figure 2.1) The 

v23.1 grid is based on data from two new satellites: CryoSat-2 and Jason-1, which were augmented 

with older data from (contributing over 70 months of data) which have been augmented with older 

altimeter data from Geosat and ERS-1. The altimeter derived gravity field is estimated to be accurate 

to around 2 mGal (Sandwell et al, 2014). 

 

 

Figure 4.17: Sandwell & Smith satellite altimetry model, Version 23.1 

 

 

Shun et al (1997) suggest that observations with depths less than 200 m should be masked. 

However, as shown by Figure 4.18, this would exclude most of the altimetry data in the test area, 

leaving only the bathymetry shown in red, deeper than 200m. 
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Figure 4.18: Bathymetry of the Canterbury test area 
Depths greater than 200 m shown in red. Projection is NZTM2000 

The Sandwell & Smith v23.1 satellite altimetry dataset provides a corresponding global error model, 

with their marine gravity model. An extract of the Canterbury test area from the global error model 

is shown in Figure 4.19. 

 

Figure 4.19: Expected errors from Sandwell & Smith satellite altimetry model v23.1 
Terrain shown in grey 
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The Sandwell & Smith v23.1 error model demonstrates that while there are significant uncertainties 

(up to more than 50 mGal) close to the coast, the dataset is much more reliable than predicted by 

Shum et al (1997).  

Therefore the satellite altimetry dataset was not masked, resulting in 5,487 observations within the 

Canterbury test area (Figure 4.20). The uncertainties for this dataset will be set with the values 

shown in the error model. 

  

Figure 4.20: Location of Sandwell & Smith v23.1 satellite altimetry data points within the Canterbury test area (5487) 

4.4.5. Global Gravity Model 

Since the 1960s global and regional models have relied on satellite gravity observations to provide 

accurate long wavelength measurements for the Earth’s gravity field (Featherstone, 2010). Satellite 

gravity recovers wavelengths greater than 100 km (Sandwell et al, 2001), but cannot recover the 

shorter wavelengths because of the survey altitude. As gravity is measured at satellite altitude, the 

noise from shorter wavelengths is amplified during the downward continuation process (see Chapter 

2.4.5). 

McCubbine (2016) finds that of the most recent seven satellite only models available on the 

International Centre for Global Earth Models website (http://icgem.gfz-potsdam.de/ICGEM/) the 

model GO_CONS_GCF_2_DIR_R5 (for now on referred to as: DIR_R5) fits best both the New Zealand 

levelling/GPS dataset and the terrestrial gravity data. Of the nine combined global gravity anomaly 

models, EGM2008 fits the terrestrial gravity the best and Eigen-6C4 fits the levelling and GPS derived 

geoid undulations the best. 

DIR_R5 is a satellite only model. It was produced using the direct approach and is calculated to a 

maximum degree of 300. It was computed using GOCE, half GRACE, and NASA’s Laser Geodynamic 

satellite 1 (LAGEO – 1) and the Italian Space Agency’s LAGEO -2. LAGEO – 1, launched 1976 and 

LAGEO -2, launched 1992, orbit at 5800 and 5600 km (compared with GOCEs altitude of 283.2 km at 

injection and 259.6 km at decommission), contribute to the very low degree coefficient of the gravity 

http://icgem.gfz-potsdam.de/ICGEM/
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field. More information regarding the processing details of DIR_05 can be found in Pail et al (2011) 

and Brunisma et al (2014). 

4.4.5.1.  DIR_R5 vs EGM2008 

EGM2008 is a commonly used GGM, for example, it was used in the realisation of NZVD2009 

(Claessens, 2009). For this study, however, a satellite only approach is preferred as it is less likely to 

result in computational biases caused by the same data point being introduced as an adjustment 

multiple times.  

 The global geoid height differences between DIR_R5 and EGM2008 are shown in Figure 4.21, with a 

spatial grid resolution of 0.75° x 0.75° and a maximum degree/order 240 (Brunisma et al, 2014).  

 

Figure 4.21: Global geoid height difference between EGM2008 and DIR-R5 (Brunisma et al, 2014) 

4.4.5.2.  Estimating Uncertainties 

As a demonstrative statistical comparison, the GOCE mission (the major component of DIR_5) is 

expected to provide a cumulated geoid accuracy of 1-2 cm at degree 200 (Pail et al, 2011). While 

Pavlis et al (2008) find that EGM2008 provides a cumulated geoid accuracy of 7 cm at degree 200. 

 

4.5. Integration Step Three: Combination 
Identify the range of combination methodologies available, including their strengths, limitations and 

suitability in relation to the datasets. 

Chapter 3.4 identified three interpolation methods: natural neighbour, ordinary kriging and least 

squares collocation. This step of the integration process uses each of these interpolation methods to 

assess: 

1. their ability to combine multiple datasets, 

2. the use of a priori weights, 

3. if they are an exact interpolation method, and 

4. their ability to combine data in a three-dimensional space. 
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This section evaluates each of these four tests, using the gravity data from the Canterbury test area. 

Finally, identifying which best combines these datasets.  

 

4.5.1. Test One – Combines Multiple Datasets 

This first test evaluates the ability of each of the integration methods to combine more than two 

gravity datasets. The data used for this trial are the Canterbury test area terrestrial, ship-borne and 

airborne Bouguer anomaly datasets. 

Test one is evaluated by combining the terrestrial, ship-borne and airborne Bouguer anomaly 

datasets from the Canterbury test area, to form a single grid.  

The result is three plots (one for each integration method) demonstrated by Figure 4.22, Figure 4.23 

and Figure 4.24. This confirms that all three interpolation methods (natural neighbour, ordinary 

kriging and least squares collocation) are able to combine multiple gravity datasets.
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Figure 4.22: Natural neighbour method - displaying 
terrestrial, airborne and ship-borne gravity datasets 

Figure 4.24: Least squares collocation method - displaying 
terrestrial, airborne and ship-borne gravity datasets 

Figure 4.23: Ordinary kriging method: displaying - terrestrial, 
airborne and ship-borne gravity datasets 
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4.5.2. Test Two – Uses a priori Weights 

The second test investigates the ability to apply a priori weights as part of the integration process. 

The data used for this trial are from the Canterbury test area terrestrial Bouguer anomaly dataset. 

For this test the terrestrial gravity dataset from the Canterbury test area is combined using each of 

the interpolation methods with a weighing of ‘zero’, to produce a plot of the area. This test is then 

repeated to produce a second plot of the area, with a weighting of ‘three’. The two plots are then 

presented on the same page to be compared. 

The results are that the natural neighbour method is unable to be weighted, so has not been 

provided as a plot. 

The ordinary kriging method is able to be weighted, and is shown by Figure 4.25 with a zero weight 

and Figure 4.26, with a weight of three.  

The least squares collocation method is able to be weighted, and is shown by Figure 4.27 with a zero 

weight and Figure 4.28, with a weight of three.  

These four plots demonstrate that change of weighting from zero to three suppressions of the low 

frequency gravity signal. 
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Figure 4.25: Ordinary kriging method, terrestrial dataset additional weight set to ‘zero’ Figure 4.26: Ordinary kriging method, terrestrial dataset additional weight set to ‘three’ 
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Figure 4.28: Least squares collocation method, terrestrial dataset additional weight set to ‘three’ 

 

Figure 4.27: Least squares collocation method, terrestrial dataset additional weight set to ‘zero’ 
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4.5.3. Test Three – Is an Exact Interpolation Method 

Test three checks if the interpolation method forces the modelled surface through the input 

observation points (exact interpolation method) or if the model fits the points with some degree of 

uncertainty. The data used for this trial are from the Canterbury test area terrestrial Bouguer 

anomaly dataset. 

This test is conducted by first determining the Bouguer anomaly value for each of the gravity 

stations within the Canterbury test area. The location of the gravity stations are shown in Figure 

4.29. 

 

Figure 4.29: Location of terrestrial gravity data points used in Test Three 

 
Each of the three interpolation methods (natural neighbour, ordinary kriging and least squares 

collocation) are used to produce a surface of Bouguer anomalies in the Canterbury test area.  

The Bouguer values from the gravity dataset are then compared to the modelled values at the same 

locations. The result is a CDF plot showing the difference between the observations and the three 

models.  

As shown for the natural neighbour (Figure 4.30) and ordinary kriging methods (Figure 4.31) the two 

CDF plot show a difference of zero (the long tails are a feature of the edge effects). This means that 

models were produced using an exact interpolation method. 

In contrast the least squares collocation method (Figure 4.32), produces an ‘S’ shaped curve, about a 

mean of zero. This Indicates that Least Squares Collocation is not an exact interpolation method. The 

standard deviation of this difference curve is ±3 mGal . This value reflects the ±3 mGal uncertainties 

value that has been applied to the terrestrial gravity dataset in the Canterbury Test area (c.f. Section 

4.4.3.3).
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Figure 4.31: Ordinary kriging method - CDF plot difference of 
terrestrial gravity values before and after integration 

Figure 4.30: Natural neighbour method - CDF plot difference 
of terrestrial gravity values before and after integration 

 

 

Figure 4.32: Least squares collocation method - CDF plot 
difference of terrestrial gravity values before and after 

integration  

Standard Deviation = 2.904 mGal 
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4.5.4. Test Four – Supports Three-Dimensional Interpolation 

This final test investigates the ability of each of the integration methods to combine datasets 

observed at different altitudes, with respected to the Earth’s surface. The data used for this trial are 

from the Canterbury test area terrestrial and airborne Bouguer anomaly datasets. These two 

datasets were chosen for use in this trail as these two datasets intersect (unlike the terrestrial and 

ship-borne/satellite altimetry datasets which abut) and are the most disparate, in terms of 

observation height overlap. 

When combining data it is desirable to maintain the data in a format which is as close to possible to 

its natural state. This means manipulating the data as little as possible, as transformations can result 

in data degradation, due to factors such as compounding rounding error or the use of unstable 

functions. Therefore, we wish to limit the use of functions such as the inverse Poisson method, used 

for downward continuation (as identified in Chapter 2.5.2), as it is inherently unstable and in effect it 

is a form of low pass filtering, removing the higher frequency signals.  

As such, it is desirable to combine our datasets without first downward continuing the airborne 

dataset to the terrain surface. Therefore, in Test Four A, the airborne and terrestrial gravity dataset 

are combined using each of the three integration methods. 

Subsequently, Test Four B, repeats the combination of the airborne and terrestrial gravity datasets 

using each of the three integration methods. However, in this trial the airborne gravity dataset has 

been downward continued by use of the inverse Poisson method prior to the integration. 

 

4.5.4.1.  Test Four A - Survey Altitude Airborne Dataset 

In this first test the airborne and terrestrial gravity datasets are combined at their observation 

attitude. A plot is created for each of the integration methods: natural neighbour, ordinary kriging 

and least squares collocation.  

Visible in the natural neighbour, Figure 4.34 and ordinary kriging, Figure 4.33 integration methods 

are the artefacts of the flight-line tracks (north-east/south-west striations)  

However these parallel lines are not evident in Figure 4.35, when the least squares collection 

integration method was used, resulting in a smooth transition between the airborne and terrestrial 

datasets. This provides evidence that the Least Squares Collocation method is the most suitable 

method to combine datasets at various altitudes. 

Further evidence can be found in Figure 4.36, Figure 4.37 and Figure 4.38, which display the 

differences between the models produced by the three methods. Significant differences are shown 

between Least Squares Collocation and both the Natural Neighbour and Ordinary Kriging models. 

While there are only slight difference between the Natural Neighbour and Ordinary Kriging models, 

indicating that these two models provide only a two-dimensional interpolation method.  

 
Therefore, least squares collocation is the only one of the three integration methods which is able to 

support three-dimensional interpolation. 
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Figure 4.34: Ordinary kriging method - combination of 
airborne and terrestrial datasets 

Figure 4.33: Natural neighbour method - combination of 
airborne and terrestrial datasets 

Figure 4.35: Least squares collocation method - combination of 
airborne and terrestrial datasets 
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Figure 4.36: Combination of airborne and terrestrial datasets, 
difference between least squares collocation and natural 

neighbour methods 

Figure 4.37: Combination of airborne and terrestrial 
datasets, difference between least squares collocation 
and ordinary kriging methods 

Figure 4.38: Combination of airborne and terrestrial 
datasets, difference between ordinary kriging and natural 

neighbour methods 
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4.5.4.2.  Test Four B - Downward Continued Airborne Dataset 

As the Natural Neighbour and Kriging methods require the input dataset to be on the same surface, 

in this second test the airborne dataset was first downward continued using the Inverse Poisson 

method. 

The downward continuation process requires that that data is first upward continued (to 5,000 m), 

in order to dampen the high frequency signals, and then reduced to surface elevation.  

The downward continuation process used in the study is limited as it evaluates a surface, rather than 

the observation points individually. As identified in Chapter 4.4.3, the altitude of the survey platform 

varies significantly (± 10 m or ~3 mGal) while in flight. In addition, the downward continuation 

process is sensitive to edge effects. This resulted in the application of a buffer at the extent of the 

surface, reducing the size of the observation area. Therefore, Test Two should be considered as an 

indicative assessment only of the inclusion of downward continued datasets to the integration 

process.  

In this test the terrestrial gravity datasets are combined with the downward continued airborne 

data. A plot is created for each of the integration methods: Natural Neighbour, Ordinary Kriging and 

Least Squares Collocation. The output model is then compared to the corresponding model from test 

Four B, to form a different map for each method.  

Figure 4.39 and Figure 4.40 show the test results for the natural neighbour interpolation method, 

while Figure 4.41 and Figure 4.42 show the test results for the ordinary kriging interpolation method. 

For both of these methods it is found that although the line artefacts from the airborne dataset have 

been slightly reduced, they still remain visible in the output models. This is largely expected as both 

of these methods are exact interpolation methods, and therefore there has been no allowance due 

to the uncertainties in the downward continued heights.  

Figure 4.43 and Figure 4.44 show the results of the least squares collocation method.  

In all three methods, we have seen the effects of the loss of the high frequency signals. This is 

particularly evident in the offshore regions where the airborne data is unconstrained by the effects 

of the terrestrial dataset.  

It is acknowledged that the downward continuation method used in this case study was coarse. With 

additional re-processing accounting for the variation of the airborne platform, it may be possible to 

improve the altitude issue. However, this is at the expense of the high frequency signals and possible 

degradation of the model from the downward continuation process.  

It is therefore suggested that the least squares collocation is the most optimal for the creation of a 

Bouguer gravity map, as it does not require prior downward continuation of the datasets to a 

constant elevation.  
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Figure 4.40: Natural neighbour method - combination of terrestrial and downward continued 
airborne datasets 

Figure 4.39: Natural neighbour method, difference map of integration result, without and with 
downward continued airborne data 
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Figure 4.42: Ordinary kriging method, difference map of integration result, without and with 
downward continued airborne data 

 

 

 

  

Figure 4.41: Ordinary kriging method, combination of terrestrial and downward continued 
airborne datasets 
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Figure 4.44: Least squares collocation method, combination of terrestrial and downward 
continued airborne datasets  

Figure 4.43: Least squares collocation method, difference map of integration result, without and 
with downward continued airborne data 
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4.6. Step Four: Assessment 
Ensure that the final output model dataset has met the requirements. 

In this final step we ensure that the integration model identified in step three: Least Squares 

Collocation is an optimal integration method for heterogeneous gravity datasets. At the assessment 

stage we wish to ensure that we have created a single well integrated gravity anomaly map. 

This assessment is completed in two stages:  

1. compare the output model to existing gravity models, and  

2. test the fit of the final model. 

 

4.6.1. Comparison of Models  

In the comparison of models assessment the final case study gravity map is compared to other 

gravity models of the area. It is acknowledged that the models will have been created using different 

datasets, different methods, different resolutions and at different periods. Therefore it is not 

expected that the models are identical. However, it is expected that the anomalies are of the same 

magnitude, and same general trends between models and that any differences between the models 

are justifiable.  

For this assessment the Case Study Bouguer anomaly map, Figure 4.45 , is compared to the 

EGM2008 derived Bouguer anomaly map of the Canterbury test area Figure 4.46. The differences 

between the two models are shown by Figure 4.47. 

The best agreement is found in terrestrial areas which are flat and well sampled by terrestrial 

observations.  

The largest variations occur in the coastal areas, particularly in the areas influence by the complex 

terrain of Lyttelton and Akaroa harbour. These differences are expected as they occur in a zone 

where satellite altimetry would be unable to acquire a reliable return signal due to the shallow 

waters and proximity of steep terrain, compounded with poorly sampled terrestrial measurements. 

Therefore, these areas would have been poorly modelled in EGM2008. In contrast, this area is well 

sampled by the airborne dataset in the Canterbury case study. This leads to a better approximation 

of the Bouguer anomaly in the Banks Peninsula area by the Case Study Bouguer anomaly map. 

When comparing these two models we find that they are in general agreement and the major 

differences are mostly high frequency or as expected.  
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Figure 4.45: Case study Bouguer anomaly map 

 

 

 

 

 

 

 

Figure 4.46: EGM2008 derived Bouguer anomaly map of the 
Canterbury test area 

 

 

 

 

 

 

 

 

 

Figure 4.47: Differences map between the case study 
and EGM2008 Bouguer anomalies 
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4.6.2. Test of Fit 

The second assessment is a test of the fit of the final model with the input data. This means ensuring 

that correctly integrated datasets and that the model produced accurately portrays the gravity field. 

As all available data has been used in the calculation of the final Bouguer anomaly map, this 

assessment will be completed using a method of cross-validation. The process of cross-validation 

involves: 

 computing a model, 

 removing an observation, 

 re-computing the model, 

 evaluating the modelled value at the removed point, and 

 returning the observation to the model. 
 

This process is completed multiple times, ideally until all the observations have been removed once. 

However, as the Least Square Collocation integration programme takes up to five minutes to 

determine a solution for the Canterbury test area, for this assessment only a subset, approximately 

five percent of the marks were tested. The observations chosen to be tested in this assessment 

where selected randomly by row number.  

 This process was completed for each of the terrestrial, airborne and ship-borne datasets. The GGM 

and satellite altimetry model are not assessed as they have been provided as gridded models and 

not observation points.  

The results of this second assessment are shown in Table 4.7. This indicates that the final model and 

input data are a good fit. 

Dataset Observations 
in Case Study 

Observations 
removed 

Mean Maximum Minimum Standard 
Deviation 

Terrestrial 2,505 150 -0.050 1.065 -0.954 0.240 

Airborne 440 25 0.322 2.505 -1.005 0.732 

Ship-borne 5,391 250 0.019 0.353 -0.076 0.048 
Table 4.7: Cross-validation result (mGal) 

 

The cumulative results of these two assessments suggest that the final Case Study Bouguer anomaly 

map is a single well integrated gravity anomaly map of the Canterbury Test area. 

 

4.7. Summary 
This case study used the four step integration process to identify a combination method to produce 

a single Bouguer anomaly map of the Canterbury test area, shown in Figure 4.48. 

The purpose of this investigation was to create a single gravity anomaly map which:  

1. combines data from the entire spectral range, 

2. uses an integration method which will minimise the inconsistences between the datasets, 

and 

3. is well-integrated. 
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This case study used five gravity datasets from the Canterbury test area: satellite, altimetry 

terrestrial, ship-borne, airborne and satellite gravimetry. In this chapter each of these datasets were 

defined, ensuring they would provide coverage of the spectral range and evaluated in order to 

determine the uncertainties in each of the datasets.  

 

The datasets were then used to assess each of the three integration techniques: Natural Neighbour, 

Ordinary Kriging and Least Squares Collocation, on their ability to combine multiple datasets, 

incorporate a priori weights, determine if they are an exact interpolation method and if they would 

support the three-dimensional integration of datasets.  

 

It was found that the Least Squares Collocation method is the only one of the threes methods which 

is able to integrate data collected at different altitudes. Therefore an additional test was used to 

establish the impact of combining a downward continued airborne gravity dataset using the three 

integration methods. However, as the Natural Neighbour and Ordinary Kriging methods are exact 

interpolation methods and the downward continuation process reduces the high frequency signal, 

the downward continued process did not provide an improved model.  

 

Finally the output model of the Canterbury case study region was assessed to ensure that it provided 

a good representation of the local Bouguer anomaly field and that it was a well-integrated model. 
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Figure 4.48: Final Bouguer anomaly map of the Canterbury case study region (Enlargement of Figure 4.45) 
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5. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1. Project Summary 
The principle aim of this study was to determine a method to produce a single gravity map of the 

Canterbury case study area, derived from multiple disparate gravity datasets and combined in an 

optimal manner for the purposes of geoid modelling.  

This aim was realised though the identification and application of a four step integration process: 

purpose, data, combination and assessment. The resulting product was a Bouguer anomaly field 

map of the Canterbury case study area, both on and offshore, combining satellite altimetry and 

terrestrial, ship-borne, airborne, and satellite gravimetry using least squares co-location. 

The Canterbury test area was chosen as the case study for this investigation as the area was unique 

to New Zealand in having five gravity datasets available, including recent airborne gravity data.  

 

5.1.1. Purpose 

Gravity is a force, which on the Earth’s surface is observed as acceleration towards centre of the 

Earth. In geodesy, gravity observations are used to define the geoid, an equipotential surface that 

would coincide with sea level, if sea level were able to flow through the continents. A practical 

application of the geoid is that it can be used as a transformation surface, allowing heights measured 

by GNSS; in terms of an ellipsoid, to be transformed to orthometric heights; in terms of sea level.  

One of the challenges in gravity field modelling is that each of the gravity observation methods: 

satellite altimetry and terrestrial, ship-borne, airborne, and satellite gravimetry, are suited to 

modelling different parts of the Earth’s gravity spectrum. For example, terrestrial gravity 

observations are non-uniform, limited to easy-to-access land areas and best contributes to the 

shortwave length gravity signals (i.e. less than 25 km). In contrast, satellite gravimetry provides 

uniform, global coverage of the Earth’s gravity field, but contributes the long wavelength gravity 

signals (i.e. more than 100 km).  

To derive a full map of the Earth’s gravity field it is necessary to combine, multiple heterogeneous 

datasets. However, the different error characteristics of the datasets and the combination method 

have an impact on the final solution. 

 It is for these reasons that the purpose of this investigation was determine the best method to 

determine a single, well integrated gravity map, suitable for use in the geoid modelling process.  

 

5.1.2. Data 

The second step of the integration process was to identify the data, determine the characteristics of 

each of the gravity datasets available, their limitations and contributions to defining the gravity field. 

This was done in two parts.  

First, Chapter 2 introduced the five gravity data collection methods: satellite altimetry and 

terrestrial, ship-borne, airborne, and satellite gravimetry. This chapter identified that while each of 
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the observation methods observe different parts of the gravity field and/or in different ways the 

data are best combined when as homogeneous as possible.  

This means reducing the gravity observations to Bouguer anomalies, using the complete Bouguer 

model (Chapter 2.4.6). This provides a smoothed surface, where the effects of the surround terrain 

and the mass between the observation station and geoid have been removed.  

At this point it was noted that while the other methods have been observed on the surface of the 

Earth, the airborne data is at flight altitude  i.e. observed on different surfaces and therefore this 

needs to be addressed either as part of the integration technique or as separate transformation 

prior to combination.  

The most appropriate method of downward continuation outside of the integration process uses an 

Inverse Poisson function. However this is known to be an inherently unstable function, which 

amplifies spurious high frequency noise. 

Secondly, Chapter 4.4 identified each of the datasets which were used for the case study. In 

particular, the terrestrial and airborne gravity data involved additional error analysis and metadata 

checks to ensure that they would be consistent, and in terms of the same scale and projection. This 

means ensuring that the coordinate reference frame, ellipsoid (datum) and projection are consistent 

between datasets. Finally, each case study dataset was evaluated and from the differences in the 

data uncertainties were assigned.  

 

5.1.3. Combination 

This study identified three methods that could be used to combine two or more gravity datasets. As 

detailed in Chapter 3.4, these methods are: natural neighbour, ordinary kriging and least squares 

collocation. Much like the datasets being combined, each of the methods has its own strengths and 

limitations. 

The natural neighbour method is quick to run, but requires the airborne dataset to be downward 

continued prior to integration. It is an exact interpolation method and does not take into account 

the uncertainties assigned to each dataset or observation.  

The ordinary kriging method is also an exact interpolation method and requires the airborne dataset 

to be downward continued prior to integration. However, it more robust than the natural neighbour 

method and the datasets can be weighed.  

Least squares collocation is not an exact interpolation method, it allows data weighting and is able to 

complete the downward reduction of the airborne dataset as part of the integration process. i.e. it 

allows the gravity signal to be estimated anywhere in a three dimensional space. 

As demonstrated in the three dimensional reduction tests, Chapter 4.5.4, completing the downward 

continuation process as part of the least squares collocation method preserves the high frequency 

signal from the airborne dataset and reduces the introduction of rounding and/or transformation 

errors. 
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Therefore least squares collation has been identified as the best integration method. As it combines 

data from the entire spectral range and uses an integration method which will minimise the 

inconsistences between the datasets. 

 

5.1.4. Assessment 

The final step of the integration process was to ensure that the integration method identified has 

resulted in a well-integrated gravity anomaly map. This was completed using two tests: a 

comparison of models and a test of fit.  

For the comparison of models check, the case study Bouguer anomaly map was compared to a 

Bouguer anomaly map derived from EGM2008. As the two models were at different resolutions (0.5 

km and 10 km respectively), and created using different datasets, this is a high level assessment to 

identify that those differences between the models are at expected locations. The assessment 

suggests a good agreement between the models as the differences are features such as the 

improved resolution of the volcanic craters on Banks Peninsular and the differences closer to the 

coast where the case study map includes airborne data and re-tracked satellite altimetry data which 

was not available in EGM2008. 

The second test assesses the fit of the final model to the datasets. Ideally there would be an 

independent dataset that could be used for this evaluation. However, all the available data went in 

to producing the case study Bouguer anomaly map. Therefore, a cross validation method was used, 

were an observation is removed from the least squares collocation integration and the values at that 

station before and after are compared. The assessment evaluated 5 percent of the data points from 

the terrestrial, airborne and ship-borne datasets, finding standard deviations of 0.24, 0.73 and 0.05 

mGal respectively. This indicates at that the case study Bouguer anomaly map provides a good fit to 

the underlying datasets. 

This final step in the integration process: Assessment concludes that the least squares collocation 

integration method should be used to produce a Bouguer anomaly map of the Canterbury case study 

area. 

 

5.2. Conclusions and Recommendations 
As geoid modelling requires the combination of heteronomous datasets, it is beneficial to be able to 

combine the dataset using an integration method which operates in a three-dimensional space. Of 

the three methods assessed in this study least squares collocation is the only integration method 

which is able to perform this type of reduction.  

It is therefore recommend that when combining airborne gravity with other gravity datasets that the 

least squares collocation method is used.  

 

5.3. Future Work 
The following are recommendations for future work: 
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1. Integration of data across other locations - The Canterbury case study area was chosen due 

to the availability of an airborne gravity dataset. However, the terrain of Canterbury area is 

generally smooth and contains a greater density of terrestrial gravity marks than other areas 

in New Zealand. Therefore, the results of this study may not reflect the fit of datasets from 

other regions of New Zealand.  

 

2. Increased airborne survey area –The airborne survey area should be greater than the study 

area. As processes such as downward continuation are susceptible to edge effects buffers 

and filters were used to ensure that these effects were negligible, but further limiting the 

area.  

 

3. Enhancement of the downward continuation process – The ability to downward continue 

the airborne gravity dataset using the inverse Poisson function was limited by the vertical 

positioning of aircraft. While an average altitude was used for the reduction, the variation in 

altitude throughout the flight due to pitch is in the order of ± 10 m (which equates to ± 3 

mGal).  

 

4. Further analysis of the airborne gravity dataset – There were a number of features of the 

airborne gravity dataset which were included for further investigation or remediation. This 

includes the analysis of the cross over points and along line error detection. It is 

recommended that such analysis should be conducted on future surveys to ensure the 

quality of the airborne data.  

 

5. Airborne survey to be completed at aa constant altitude – comparing and merging the 

airborne gravity data was complicated by the flight lines being flown at different altitudes. It 

is recommended that all flights in an airborne gravity survey be flown at the same altitude, 

whenever possible. 
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A. Appendix  

A.1. Gravity Datasets 
The following are the Bouguer anomaly maps over the Canterbury case study area, for each of the 

five gravity observation methods: terrestrial, ship-borne, airborne, satellite altimetry and satellite 

only GGM. The maps were modelled using the natural neighbour method. 

 

Figure A.1: Canterbury test area terrestrial gravity dataset 
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Figure A.2: Canterbury test area ship-borne gravity dataset 

 

Figure A.3 Canterbury test area airborne gravity dataset 
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Figure A.4: Canterbury test area satellite altimetry dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5: Canterbury test area satellite gravity data, GGM DIR_5 


