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Abstract
Matroids have a wide variety of distinct, cryptomorphic axiom systems that
are capable of defining them. A common feature of these is that they are able
to be efficiently tested, certifying whether a given input complies with such
an axiom system in polynomial time. Joseph Bonin and Anna de Mier, re-
discovering a theorem first proved by Julie Sims, developed an axiom system
for matroids in terms of their cyclic flats and the ranks of those cyclic flats.
As with other matroid axiom systems, this is able to be tested in polynomial
time. Distinct, non-isomorphic matroids may each have the same lattice of
cyclic flats, and so matroids cannot be defined solely in terms of their cyclic
flats. We do not have a clean characterisation of families of sets that are
cyclic flats of matroids. However, it may be possible to tell in polynomial
time whether there is any matroid that has a given lattice of subsets as its
cyclic flats. We use Bonin and de Mier’s cyclic flat axioms to reduce the
problem to a linear program, and show that determining whether a given
lattice is the lattice of cyclic flats of any matroid corresponds to finding in-
tegral points in the solution space of this program, these points representing
the possible ranks that may be assigned to the cyclic flats. We distinguish
several classes of lattice for which solutions may be efficiently found, based
upon the nature of the matrix of coefficients of the linear program, and of
the polyhedron it defines, and then identify families of lattice that belong
to those classes. We define operations and transformations on lattices of
sets by examining matroid operations, and examine how these operations
affect membership in the aforementioned classes. We conjecture that it is
always possible to determine, in polynomial time, whether a given collection
of subsets makes up the lattice of cyclic flats of any matroid.
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Chapter 1

Introduction

1.1 Independent sets, bases, and circuits of matroids
A matroid is a kind of discrete geometric structure able to be represented
in a number of different ways. Many such representations are in the form
of a set of elements E called the ground set of a matroid, and a collection
of distinguished subsets of E. Matroids are commonly described in terms of
their independent sets, a collection I of subsets of the ground set.

Definition 1. A matroid M is a pair (E, I), where E is a finite set and I ⊆ 2E

is the collection of independent sets of M , and I satisfies:

1. I is nonempty.

2. If X ∈ I and Y ⊆ X, then Y ∈ I.

3. If X, Y ∈ I and |X| > |Y |, then there exists some x ∈ X \Y such that
Y ∪ {x} ∈ I.

A basis of a matroid is a maximal independent set, a set B ⊆ E that is
independent such that every proper superset of B is dependent. It follows
from the independent set axioms that all bases of a matroid M must have
the same cardinality. It is easy to see that the independent sets of a matroid
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1.1. RANKS CHAPTER 1. INTRODUCTION

can be trivially derived from its bases, simply by taking all subsets of those
bases.

Another kind of distinguished set in a matroid is a circuit. A circuit of a
matroid is a subset of E that is minimally dependent, i.e., a set C ⊆ E such
that C is not independent, but every proper subset of C is independent.

1.2 Ranks, closures, and flats

A matroid M has a rank function r that takes subsets of E to nonnegative
integers. If X ⊆ E, then r (X) is simply the size of the largest independent
subset contained in X. For example, if X is an independent set itself, then
r (X) = |X|. The rank of the ground set E is the cardinality of a basis B of
M , and is said to be the rank of the matroid.

The closure of a set X ⊆ E is the largest superset Y ⊆ E of X such that
Y has the same rank as X. For example, the closure of any basis B clearly
must be the ground set E.

A flat of a matroid is a subset F ⊆ E such that the closure of F is equal
to F . The closure of E obviously will be E, therefore the ground set E is a
flat of M .

1.3 Duals, loops, and coloops

The dual of a matroid M is a matroid M∗ that has the same ground set as
M , but which has as its bases the complements of the bases of M , i.e., if M
has ground set E, and B is a basis of M , then E \B is a basis of M∗.

A loop in a matroid M is an element that has a rank of 0 in M . A loop
is therefore not contained in any independent set of M .

A coloop or isthmus of a matroid M is an element that has a corank of
0, a rank of 0 in the dual of M . If x is a coloop of M and B is a basis of M ,
then x ∈ B.
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CHAPTER 1. INTRODUCTION 1.4. VISUALISING MATROIDS

1.4 Visualising matroids

Matroids have an elegant geometric representation that is able to aid in
understanding many concepts in matroid theory.

Given a matroid M with ground set E and rank r, the elements of E are
distributed in a space of dimension r− 1 (so a rank-3 matroid is represented
by points on a plane, for example), where points may be placed at the same
location (usually depicted as separate yet adjacent points), and connected
by some lines. In this representation, a set of two points is dependent if
they have the same location; a set of three points is dependent if they are
colinear; a set of four points is dependent if they are coplanar; and so on.
Loops (dependent sets of size one) are represented by points set off to the
side and enclosed in a box, separate from all other elements.

It is easy to see many aspects of a matroid by looking at such a represen-
tation. For example, in Figure 1.4.1 on page 4, each set of points lying on a
line is a flat, as is the set of three points all drawn touching, as well as the
set of all points in the diagram. All points are drawn in the same plane, so
there is no independent set of size 4; it is a rank-3 matroid. There are many
visible circuits: any pair of the three points that are touching each other
form a circuit, as does any set of three points in a line, provided that no two
of them belong to the set of the three adjacent points (that is, provided the
set of three points contains no smaller circuit). Dependent sets of points are
those that contain circuits.

1.5 Cryptomorphisms and certification of matroids

In Section 1.1, matroids were defined in terms of their independent sets.
There are many equivalent descriptions of matroids, which are said to be
cryptomorphic to one another. There are matroid axioms for bases, circuits,
rank functions, closures, and flats.

For example, matroids are characterised in terms of their circuits with
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1.5. CRYPTOMORPHISMS CHAPTER 1. INTRODUCTION
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Figure 1.4.1: A matroid

the following axioms.

Theorem 2. Given a finite set E and a collection C ⊆ 2E of subsets of E,
there exists a matroid M on E that has C as its collection of circuits if and
only if C satisfies:

1. ∅ /∈ C;

2. if C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2;

3. if C1 and C2 are distinct sets in C and e ∈ C1 ∩ C2, then there exists
some C3 ∈ C such that C3 ⊆ (C1 ∪ C2) \ {e}.

They can also be characterised in terms of bases.

Theorem 3. Given a finite set E and a collection B ⊆ 2E of subsets of E,
there exists a matroid M on E that has C as its collection of bases if and
only if B satisfies:

1. B ̸= ∅;

2. if B1, B2 ∈ B, then, for any x ∈ B1 \B2, there exists some y ∈ B2 \B1

such that (B1 \ {x}) ∪ {y} is a member of B.

For each of these matroid axiom systems, there exists a polynomial-time
algorithm to certify whether a given input describes a matroid according to
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CHAPTER 1. INTRODUCTION 1.5. CRYPTOMORPHISMS

that axiom system, where the input is considered to be a list of sets. Note
that it is possible for these collections of subsets of the ground set to be
exponential in |E|. For example, for any finite set E, there is a matroid that
has the power set of E as its independent sets.

Example 4. Let E be a finite set and I ⊆ 2E. Then an algorithm for de-
termining whether there is a matroid on E that has I as its collection of
independent sets would consist of:

1. checking that I is nonempty;

2. for all sets X ∈ I, checking that removing any element from X returns
another set in I; and

3. for all pairs of sets X,Y ∈ I, checking whether one is larger than the
other, and, if so, checking whether any of the elements of the larger set
can be added to the smaller to return a set in I.

All of these will be polynomial-time operations in |I|.

Example 5. Let E be a finite set and C ⊆ 2E. Then an algorithm for deter-
mining whether there is a matroid on E that has C as its collection of circuits
would consist of:

1. checking that the empty set is not a member of C;

2. for any C1 ∈ C, checking that there is no C2 ∈ C such that C1 ̸= C2

and C1 ⊆ C2; and

3. for all pairs of distinct sets C1, C2 ∈ C, checking that, for every e ∈
C1 ∩ C2, there is some C3 ∈ C such that C3 ⊆ (C1 ∪ C2) \ {e}.

All of these will be polynomial-time operations in |C|.

Example 6. Let E be a finite set and B ⊆ 2E. Then an algorithm for deter-
mining whether there is a matroid on E that has B as its collection of bases
would consist of:
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Figure 1.6.1: A rank-three matroid

1. checking that B is nonempty;

2. for all pairs B1, B2 ∈ B, checking that, for every x ∈ B1 \ B2, there is
some y ∈ B2 \B1 such that (B1 \ {x}) ∪ {y} is a member of B.

All of these will be polynomial-time operations in |B|.

1.6 Cyclic flats
A cyclic flat of a matroid is a (possibly empty) flat that is a union of circuits.
For example, the cyclic flats of the matroid in Figure 1.6.1 on page 6 are
∅, {0, 1, 2} , {0, 3, 4} , {0, 1, 2, 3, 4, 5}.

Theorem 7. Given a matroid M , the cyclic flats Z (M) of M form a lattice
under inclusion.

In this lattice, the join of two cyclic flats X and Y will be the closure in
M of X ∪ Y , and their meet will be the intersection of X and Y , with every
element that is not in a circuit of M contained in X ∩ Y removed. Every
finite lattice Z has a least element that shall be denoted here by 0Z . Bonin
and de Mier (in a rediscovery of a theorem first proved by Julie Sims in [6])
established a set of axioms that characterise when a collection of subsets Z
of a ground set E (Z), and a rank function r : Z → Z≥0 are the ranked cyclic
flats of a matroid [1].
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Figure 1.6.2: Two matroids with identical sets of cyclic flats.

Theorem 8. Given a collection Z of subsets of some ground set E and a
function r : Z → Z≥0, there is a matroid M on E that has Z as its lattice of
cyclic flats, and r the ranks of those cyclic flats, if and only if

(Z0) Z is a lattice under inclusion;

(Z1) r (0Z) = 0;

(Z2) 0 < r (Y )− r (X) < |Y −X| for all X, Y ∈ Z with X ( Y ; and

(Z3) for all X, Y ∈ Z,

r (X) + r (Y ) ≥ r (X ∧ Y ) + r (X ∨ Y ) + |(X ∩ Y )− (X ∧ Y )| .

The binary operations ∧ and ∨ here are the meet and join operations on
elements of a lattice (elaborated upon in Chapter 2).

If a rank function r complies with these axioms, we say that it is ma-
troidal. Note that if X ⊆ Y , then, as X∩Y = X∧Y = X and X∨Y = Y , the
fourth axiom is simply the trivial statement that r (X)+r (Y ) ≥ r (X)+r (Y ).

A collection of subsets itself does not define a matroid, as there may be
multiple rank functions that comply with this axiom system. For example,
the matroids in Figure 1.6.2 on page 7 have the same cyclic flats, but with
different ranks assigned to them.

It is also possible for a collection of sets not to give rise to any matroidal
rank functions:

Example 9. Let Z = {∅, {1}}. For a matroidal rank function r, the second
cyclic flat axiom requires that r (∅) = 0. Then by (Z2), 0 < r ({1}) < 1,
which is impossible, as r takes integer values.

7



1.6. CYCLIC FLATS CHAPTER 1. INTRODUCTION

Example 10. Let

Z = {∅, {1, 2} , {1, 2, 3, 4} , {5, 6} {1, 2, 3, 4, 5, 6}} .

For a matroidal rank function r, the third cyclic flat axiom requires that
r ({1, 2}) = 1, r ({1, 2, 3, 4}) = 2, r ({5, 6}) = 1, and r ({1, 2, 3, 4, 5, 6}) = 3.
But this contradicts the fourth axiom, as

r ({1, 2}) + r ({5, 6}) = 2 < 3 = r (∅) + r ({1, 2, 3, 4, 5, 6}) .

As with the other axiom schemes, there exists a polynomial-time algo-
rithm that will certify whether a triple (E,Z, r) describes a matroid in ac-
cordance with the cyclic flat axioms.

Lemma 11. Given a partially ordered set P = (P,≤), there exists an algo-
rithm that is polynomial in |P | to show whether P is a lattice.

Proof. Let X, Y ∈ P . Construct the set PX,Y = {A ∈ P : A ≤ X,A ≤ Y }.
For all Z ∈ PX,Y , find if there exists some W ∈ PX,Y such that W � Z. If
so, then Z is not the greatest lower bound of X and Y . If there exists no
greatest lower bound, then P is not a lattice. Use a similar process to find
a least upper bound. Repeat over all pairs X,Y ∈ P . This is quartic in
|P |.

Lemma 12. Given a finite set E, a collection of subsets Z ⊆ 2E, and a
function r : Z → Z≥0, there exists an algorithm that is polynomial in |Z| to
show whether there exists a matroid M on E that has Z as its cyclic flats,
and r as the rank function of M on those cyclic flats.

Proof. Whether Z is a lattice can be tested in polynomial time, by Lemma
11 above. Note that this involves finding the join and meet of every pair in
Z.

For every pair Z1, Z2 ∈ Z, check if Z1 ( Z2, and if so, check that 0 <

r (Z2)− r (Z1) < |Z2| − |Z1|.
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For every pair Z1, Z2 ∈ Z, find Z1 ∨ Z2 and Z1 ∧ Z2, calculate |Z1 ∩ Z2|
and |Z1 ∧ Z2|, and check that

r (Z1) + r (Z2) ≥ r (Z1 ∨ Z2) + r (Z1 ∧ Z2) + |Z1 ∩ Z2| − |Z1 ∧ Z2| .

All of these operations are polynomial in |Z|.

This then gives rise to the central question of this thesis.

Problem 13. Given a finite set E and a collection of subsets Z ⊆ 2E, is it
possible to determine whether there exists any matroid on E that has Z as
its collection of cyclic flats?

Bonin has conjectured (in personal communication) that there is no finite
set of axioms that would characterise sets with matroidal rank functions. We
make this formal.

Conjecture 14. There is no finite set of axioms in a formal logical language
using

• the subset relation ⊆;

• set intersection ∩ and set union ∪;

• set cardinality |·|;

• the usual order relation ≤ on Z;

• arithmetic addition and multiplication;

• logical negation ¬;

• logical conjunction ∧;

• logical implication →

• the universal and existential quantifiers ∀ and ∃

that characterises collections of sets that form the cyclic flats of some matroid.

9
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However, there is another possible method of approaching the problem.
Clearly, if there exists some matroidal r : Z → Z≥0, then there is a

matroid that has Z as its cyclic flats.
The cyclic flat axioms (Z1), (Z2), and (Z3) in Theorem 8 are able to

be encoded in a system of linear inequalities Ax ≤ b that define a bounded
solution space embedded in RZ that contains all matroidal values of r.

This is done by representing each set in Z in a collection of subsets by a
column in the matrix, and by noting that, as r must be restricted to integral
functions, the following inequalities are implied by the cyclic flat axioms:

r (0Z) ≤ 0

−r (0Z) ≤ 0

r (Y )− r (X) ≤ |Y | − |X| − 1

r (X)− r (Y ) ≤ −1

r (W ∨ Z) + r (W ∧ Z)− r (W )− r (Z) ≤ |W ∧ Z| − |W ∩ Z|

for all X, Y ∈ Z where X ( Y , and for all W,Z ∈ Z. A system Ax ≤ b is
constructed by letting the vector x be the (indeterminate) vector of ranks,
and by letting each of the above inequalities be a row, where 1 or −1 is
placed in the column V of A depending on the sign of r (V ) in the relevant
inequality, and where the entry in b in that row is simply the right-hand
side of that inequality. There is also some simplification of the system by
identification of redundancies, as will be explained in Chapter 2.

We label the solution space that arises P (Z), and we call the matrix A

of coefficients of this system the constraint matrix of Z, and denote it by
C (Z). A face of P (Z) is a subset of P (Z) where one or more of the rows of
the system Ax ≤ b are exact equalities. A minimal face is a face that does
not contain any other face, and in a bounded solution space, every minimal
face consists of a single point and is called a vertex. Polyhedra are explained
in greater detail in Chapter 2.

A matroid’s rank function has only integer outputs, and therefore the
matroidal rank functions are only those integral points contained within

10
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b

b

b

Figure 1.6.3: A lattice Z1

P (Z). To determine the existence of such a rank function on a lattice Z
therefore means determining the existence of an integral point within the
solution space. As shown in Chapter 2, the general form of this problem is
NP-complete.

However, a subclass of the problem subject to specific constraints may
be able to be solved efficiently. For example, there are classes of matrices
such that, if a matrix A belongs to such a class, a linear system Ax ≤ b

is guaranteed to have integral vertices. Two such classes are the class of
totally unimodular matrices, which are matrices in which every nonsingular
submatrix has determinant ±1, and unimodular matrices, which are m × n

matrices in which every nonsingular m×m submatrix has determinant ±1.

By examination of the nature of the matrix of coefficients C (Z), or the
nature of the solution space P (Z), then, we distinguish five classes into which
we sort lattices of sets. These five classes are:

Definition 15. A lattice of sets Z belongs to class I if the constraint matrix
C (Z) is totally unimodular.

Example 16. The lattice Z1 in Figure 1.6.3 on page 11 has the constraint

11
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b

bb b

b

Figure 1.6.4: A lattice Z2

matrix

C (Z1) =



1 0 0

−1 0 0

1 −1 0

−1 1 0

0 1 −1

0 −1 1



which is totally unimodular.

Definition 17. A lattice of sets Z belongs to class II if C (Z)T is unimodular.

Example 18. The lattice Z2 in Figure 1.6.4 on page 12 has the constraint

12
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matrix

C (Z2) =



1 0 0 0 0

−1 0 0 0 0

1 −1 0 0 0

−1 1 0 0 0

1 0 −1 0 0

−1 0 1 0 0

1 0 0 −1 0

−1 0 0 1 0

0 1 0 0 −1

0 −1 0 0 1

0 0 1 0 −1

0 0 −1 0 1

0 0 0 1 −1

0 0 0 −1 1

1 −1 −1 0 1

1 −1 0 −1 1

1 0 −1 −1 1


and C (Z2)

T is unimodular.

Definition 19. A lattice of sets Z belongs to class III if either every vertex of
P (Z) is integral or P (Z) is empty.

Example 20. The lattice Z3 in Figure 1.6.5 on page 14 has all integral vertices

Definition 21. A lattice of sets Z belongs to class IV if either P (Z) has at
least one integral vertex, or is empty.

Example 22. The lattice Z4 in Figure 1.6.6 on page 14 generates the polyhe-
dron P (Z4) which has 11 vertices, 8 of which are integral.

Definition 23. A lattice of sets Z belongs to class V if P (Z) either contains
an integral point, or is empty.

13
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∅

{1, 2} {3, 4} {5, 6} {7, 8}

{1, 2, 3, 4, 5, 6, 7, 8}

Figure 1.6.5: A lattice Z3 of sets

∅

{0,7,8,9,10} {1,2,6,7,10}{3,4,5,7}{2,5,6,8,9}

{0,1,2,3,4,5,6,7,8,9,10}

Figure 1.6.6: A lattice Z4 of sets
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Lemma 24. Class I is properly contained in class II

Proof. A lattice of sets Z is in class I if it has a totally unimodular constraint
matrix; total unimodularity implies unimodularity, therefore every class I
lattice belongs to class II. The lattice Z2 in Figure 1.6.4 on page 12 is a
lattice that is in class II, but C (Z2) contains the submatrix (visible in the
final three rows)  −1 −1 0

−1 0 −1

0 −1 −1


which has determinant −2, therefore C (Z2) is not totally unimodular. Hence
Z2 is not class I, and therefore class I is properly contained in class II.

Lemma 25. Class II is properly contained in class III.

Proof. By Cramer’s rule (see Chapter 2), if the matrix of coefficients in a
system of linear inequalities is unimodular, then all vertices in the solution
space are integral, therefore all class II lattices belong to class III. The lattice
Z3 in Figure 1.6.5 on page 14 is a lattice that is in class III, but it has the
6× 6 submatrix 

−1 1 0 0 0 0

1 0 −1 −1 0 1

1 0 −1 0 −1 1

1 0 0 −1 −1 1

0 −1 0 0 0 1

1 0 0 0 0 0


which has determinant −2, therefore C (Z3) is not unimodular. Hence Z3 is
not in class II, and therefore class II is properly contained in class III.

Lemma 26. Class III is properly contained in class IV.

Proof. Trivially, if every vertex of P (Z) is integral, then at least one is
integral, so class III is contained in class IV. The lattice Z4 in Figure 1.6.6
on page 14 has 8 integral vertices and 3 non-integral vertices, therefore it

15



1.6. CYCLIC FLATS CHAPTER 1. INTRODUCTION

belongs to class IV, but not to class III. So class III is properly contained in
class IV.

Lemma 27. Class IV is contained in class V.

Proof. If P (Z) has at least one integral vertex, then it has at least one
integral point, therefore class IV is contained in class V.

Experimental trials have returned a number of lattices in which the so-
lution space has at least one non-integral vertex, but in every such case, all
vertices have been half-integral. As a result, we conjecture that this is true
of all lattices.

Conjecture 28. Given a lattice of sets Z, if P (Z) is nonempty, then every
entry in a vertex of P (Z) belongs to

{
z
2
: z ∈ Z

}
.

Experimentation has not to date produced any examples of lattices that
belong to class V, but not to class IV. As such, we make the following con-
jecture.

Conjecture 29. Every lattice of sets belongs to class IV.

If this is the case, then, given that it is possible, in polynomial time, to
both construct the system of inequalities and test the resulting polyhedron
for nonemptiness, it would mean that for any lattice of sets Z, there exists
an algorithm that is polynomial in the size of Z that can determine whether
there is any matroid that has Z as its lattice of cyclic flats.

16



Chapter 2

Preliminaries

2.1 Matroid minors
Definition 30. If M is a matroid on ground set E, then, given some D ⊆ E,
M \D is the matroid on E \D, called the deletion of D from M , where J is
an independent set of M \D if and only if J ⊆ E \D is an independent set
of M .

Definition 31. If M is a matroid on ground set E, then, given some D ⊆ E,
M/D is the matroid on E \D, called the contraction of M onto E \D, given
by (M∗ \D)∗.

Definition 32. If M is a matroid, then a minor of M is a matroid of the form
M \D1/D2, where D1 and D2 are disjoint subsets of E (M).

2.2 Lattices
Definition 33. A partial order is a relation ≤ on a set R that satisfies the
conditions of:

• reflexivity: x ≤ x for all x ∈ R;

• transitivity: if x ≤ y and y ≤ z, then x ≤ z, for all x, y, z ∈ R; and

17



2.2. LATTICES CHAPTER 2. PRELIMINARIES

• antisymmetry: if x ≤ y and y ≤ x, then x = y, for all x, y ∈ R.

A set with a partial order is called a poset.
Given a set R partially ordered by ≤, we write x < y if x ≤ y and x ̸= y.

If, for all x, y ∈ R, either x ≤ y or y ≤ x, then R is totally ordered by ≤. A
totally ordered set, or a totally ordered subset of a poset, is called a chain.

Definition 34. In a poset (R,≤), y covers x if x < y and there exists no z ∈ R

such that x < z < y.

Definition 35. A poset Z is a lattice if, for every x, y ∈ Z, x and y have a
unique greatest lower bound (called the meet of x and y, and written x ∧ y)
and least upper bound (called the join of x and y, written x ∨ y). That is,
for every x and y in Z:

• there exists some z ∈ Z such that z ≤ x and z ≤ y, and if w ≤ x and
w ≤ y for any w ∈ Z, then w ≤ z; and

• there exists some p ∈ Z such that x ≤ p and y ≤ p, and if x ≤ q and
y ≤ q for any q ∈ Z, then p ≤ q.

A consequence of this is that a finite lattice Z has a least element 0Z and
a greatest element 1Z , i.e., for every x ∈ Z, 0Z ≤ x ≤ 1Z .

Definition 36. A complete lattice is a lattice (Z,≤) such that every K ⊆ Z
has a join

∨
K and a meet

∧
K.

Every finite lattice is complete [3].

Definition 37. If R and S are disjoint posets, the linear sum R ⊕ S is the
poset on R ∪ S where x ≤R⊕S y if and only if x ≤R y, x ≤S y, or x ∈ R and
y ∈ S.

Definition 38. If R and S are posets, the Cartesian product R×S is the poset
on {(x, y) : x ∈ R, y ∈ S} where (x, y) ≤R×S (z, w) if and only if x ≤R z and
y ≤S w.

18



CHAPTER 2. PRELIMINARIES 2.2. INTEGER PROGRAMMING

The linear sum of two lattices is a lattice. The Cartesian product of two
lattices is a lattice [3].

In this work, lattice shall be taken to mean a lattice of subsets of a ground
set E, ordered by set inclusion, unless otherwise specified.

2.3 Linear and integer programming

Definition 39. A set P ∈ Rn is called a polyhedron if P = {x : Ax ≤ b} for
some m× n matrix A and vector b.

A polyhedron P is bounded if there exists some M ∈ N such that, for all
z ∈ P , |z| ≤ M . A bounded polyhedron is called a polytope.

Definition 40. A face of a polyhedron P is a subset F ⊆ P where F ={
x : Ax ≤ b, A

′
x = b

′}, where A
′ is a ℓ × n submatrix of A, and b

′ is the
vector consisting of the corresponding rows from b. If A

′ is a nonsingular
n× n matrix, then R is a single point and is called a vertex of P .

Linear programming refers to the problem of optimising a linear func-
tional over a polyhedron. That is, given a cost vector c and a polyhedron
P = {x : Ax ≤ b}, maximise (or minimise) cx while x ∈ P .

Integer programming is linear programming with the additional con-
straint that x is integral, i.e., x ∈ Zn.

Lemma 41 (Cramer’s rule). Given a linear system of equalities Ax = b, where
A is a nonsingular square matrix, the entries in the solution x are given by

xi =
det (Ai)

det (A)

where Ai is obtained by replacing the ith column of A with b [5].

Proposition 42. The problem of determining whether an integral solution to
Ax ≤ b exists is NP-complete.
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Proof. If A is an m×n matrix, then to verify a candidate solution z, simply
perform the matrix multiplication Az, which involves mn arithmetic opera-
tions, and compare this result to the vector b to check that Az ≤ b. Therefore
the problem is in NP.

That the problem is NP-complete can then be shown by reduction from
the Boolean 3-satisfiability problem. Given a Boolean expression X in con-
junctive normal form with n variables x1, . . . , xn and m clauses, where every
clause has at most three literals, construct an (m+ 2n) × n matrix A. For
1 ≤ i ≤ m, in the ith row of A, let the jth entry be 1 if xj is in the ith
clause of X, −1 if ¬xj is in the ith clause of X, and 0 otherwise. Then for
1 ≤ k ≤ n, let the (m+ 2k − 1)th row have 1 in the kth column, and the
(m+ 2k)th row have −1 in the kth column.

Then construct a column vector b by letting the ith row of b be 1 − ℓ,
where ℓ is the number of negative literals in the ith clause of X, for all
1 ≤ i ≤ m, and by letting the (m+ 2k − 1)th row be 1 and the (m+ 2k)th
row be 0 for all 1 ≤ k ≤ n.

For example, if the Boolean expression is

X = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x4 ∨ x5)

then the system of inequalities constructed by this method shall be
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1 −1 −1 0 0

0 1 −1 1 0

−1 0 0 1 1

1 0 0 0 0

−1 0 0 0 0

0 1 0 0 0

0 −1 0 0 0

0 0 1 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 −1 0

0 0 0 0 1

0 0 0 0 −1




x1

x2

x3

x4

x5

 ≤



−1

0

0

1

0

1

0

1

0

1

0

1

0



.

To understand this construction, note that, if the Boolean values of True
and False are interpreted as being numerically 1 and 0, respectively, the
following equivalences hold:

x1 ∨ x2 ∨ x3 ⇔ x1 + x2 + x3 ≥ 1

x1 ∨ x2 ∨ ¬x3 ⇔ x1 + x2 + (1− x3) ≥ 1

x1 ∨ ¬x2 ∨ x3 ⇔ x1 + (1− x2) + x3 ≥ 1

x1 ∨ ¬x2 ∨ ¬x3 ⇔ x1 + (1− x2) + (1− x3) ≥ 1

¬x1 ∨ x2 ∨ x3 ⇔ (1− x1) + x2 + x3 ≥ 1

¬x1 ∨ x2 ∨ ¬x3 ⇔ (1− x1) + x2 + (1− x3) ≥ 1

¬x1 ∨ ¬x2 ∨ x3 ⇔ (1− x1) + (1− x2) + x3 ≥ 1

¬x1 ∨ ¬x2 ∨ ¬x3 ⇔ (1− x1) + (1− x2) + (1− x3) ≥ 1.

Therefore, a vector z that solves Az ≥ b (or, equivalently, −Az ≤ −b)
that has only 0 and 1 as entries will also give an assignment of values to
the Boolean variables that satisfies the expression X. Rows m + 1 through
m + 2n restrict each variable to being between 0 and 1, and so requiring
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that solutions be integral gives such a satisfying assignment. So solving this
integer programming problem would solve 3-satisfiability, therefore integer
programming is NP-hard, and therefore it is NP-complete.

The proof of NP-completeness is adapted from [4].

2.4 Matrices
Definition 43. A matrix A is totally unimodular if every nonsingular square
submatrix of A has determinant ±1.

Proposition 44. A matrix A is totally unimodular if and only if for every
subset {Y1, Y2, . . . , Yt} of columns of A, there exists some sequence (ϵj)j≤t,
where ϵj = ±1 for all 1 ≤ j ≤ t, such that the vector

∑t
i=1 ϵiYi has all entries

in {−1, 0, 1} (i.e., it is a totally unimodular vector) [5].

Definition 45. An m × n matrix A with m < n is unimodular if every non-
singular m×m submatrix of A has determinant ±1.

Definition 46. A basis of a matrix A of rank m is a submatrix of A made up
of m linearly independent columns of A.

Proposition 47. A matrix A is unimodular if and only if there exists some
basis B of A such that B is unimodular and the unique matrix C satisfying
BC = A is totally unimodular [5].

2.5 Cyclic flat axioms as a system of inequalities
Proposition 48. Given a lattice of sets Z, the cyclic flat axioms (Z1) , (Z2) , (Z3)
can be represented as a system of inequalities Ax ≤ b.

Proof. Construct the matrix A and vector b as follows:

1. Let each of the n elements of the lattice be represented by a column of
the matrix.
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2. Add a row:

(a) with 1 in the column 0Z and 0 in all other columns, and let that
row of b be 0; and a row

(b) with −1 in the column 0Z and 0 in all other columns, and let that
row of b be 0.

3. For all X,Y ∈ Z with X ( Y ,

(a) add a row with 1 in the column Y , −1 in the column X, and 0 in
all other columns, and let that row of b be |Y −X| − 1; and

(b) add a row with −1 in the column Y , 1 in the column X, and 0 in
all other columns, and let that row of b be −1.

4. For all X,Y ∈ Z where X and Y are incomparable, add a row with −1

in the columns X and Y , 1 in the columns X ∧ Y and X ∨ Y , and 0 in
all other columns, and let that row of b be − |(X ∩ Y )− (X ∧ Y )|.

As this is a system of linear inequalities, there is a polyhedron P (Z) ⊆ RZ

that it defines. Note that the rank of 0Z is fixed at 0, the rank of 1Z is at
most |1Z | − 1, and the rank of every other element must fall between these
two. Therefore P (Z) is bounded.

The polyhedron P (Z) consists of all points in RZ satisfying Ax ≤ b.
Therefore each point in P (Z) satisfies the cyclic flat axioms (Z1), (Z2), and
(Z3). As matroid rank functions must be integral, then only those integral
points in P (Z) are valid rank functions on Z. So then to find a matroidal
rank function for Z is an integer programming problem. However, as has
been shown, integer programming is NP-complete, so finding solutions may
not be computationally feasible.

To approach the problem, first note that the matrix A is highly redundant.
In particular, if X ( Y ( Z, then there are rows specifying:
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{4} = 0Z1

{4, 5, 6, 7} = bZ1aZ1 = {1, 2, 3, 4, 5}

{1, 2, 3, 4, 5, 6, 7, 8, 9} = 1Z1

Figure 2.5.1: A lattice Z1

1. that r (Y ) − r (X) ≥ 1, r (Z) − r (Y ) ≥ 1, and r (Z) − r (X) ≥ 1, the
third of which is implied by the first two; and

2. that r (Y ) − r (X) < |Y −X|, r (Z) − r (Y ) < |Z − Y |, and r (Z) −
r (X) < |Z −X| = |Z − Y | + |Y −X|, the third of which is again
implied by the first two.

So if a point p ∈ RZ satisfies the first two inequalities in either case above, it
must also satisfy the third. So then all such redundancies can be removed if
all rows added in step 3 above are removed except where Y covers X. Call
this irredundant matrix C (Z). As only those rows were removed which were
logically implied by the remaining rows, C (Z) x ≤ b has the same solution
space as Ax ≤ b.

Example 49. Consider the lattice Z1 in Figure 2.5.1 on page 24. The system
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of inequalities constructed from this will be



0Z1 aZ1 bZ1 1Z1

1 0 0 0

−1 0 0 0

−1 1 0 0

1 −1 0 0

−1 0 1 0

1 0 −1 0

0 −1 0 1

0 1 0 −1

0 0 −1 1

0 0 1 −1

1 −1 −1 1




r1

r2

r3

r4

 ≤



b

0

0

3

−1

2

−1

3

−1

4

−1

−1


A constraint matrix C (Z) constructed in this manner will always contain

exactly 2 rows of weight 1 (rows having a single nonzero entry), which specify
that the rank of the least element is 0; a number of rows of weight 2 (rows
having two nonzero entries), corresponding to cover relations in Z; and a
number of rows of weight 4 (rows having four nonzero entries), corresponding
to incomparable pairs in Z.

The integer programming problem reduces to a linear programming prob-
lem if the convex hull of all integral solutions to C (Z)x ≤ b is equal to the
entire set of solutions, i.e., if the polyhedron P = {x ∈ Rn : C (Z)x ≤ b} has
integral vertices.

There are certain special cases where it can be proven that this is the
case. The vertices of the polyhedron correspond to full-rank submatrices of
C, i.e., a vertex of P is the unique solution x to C

′
x = b

′ for some nonsingular
n× n submatrix C

′ of C. By Cramer’s rule, the elements of x are

xi =
det
(
C

′
i

)
det (C ′)

.

Clearly, if all nonsingular, square submatrices of C had determinant ±1

(i.e., C is totally unimodular), then x would be integral, and hence all vertices
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of P would be integral. Indeed, it is only required that nonsingular n × n

submatrices have determinant ±1 (i.e., that CT be unimodular).
This is the basis for the five classes described in Chapter 1.

2.6 Elementary results concerning cyclic flats
Lemma 50. The circuits of M \ e are the circuits of M that do not contain e.

Proof. If X is independent in M \ e, then X is independent in M . If C is
dependent in M \e, then C is dependent in M , and, furthermore, e /∈ C.

Lemma 51. If F is a cyclic flat of M \ e, then exactly one of F and F ∪ {e}
is a cyclic flat of M .

Proof. Let F be a cyclic flat of M \ e. If F is not a flat of M , then F ̸=
clM (F ), and hence there exists some x such that x ∈ clM (F )−F . Therefore,
there exists some circuit C such that x ∈ C ⊆ F ∪ {x}. Suppose that x ̸= e;
then, as x ∈ clM (F ), r (F ) = r (F ∪ {x}), hence F is not a flat of M \ e.
This is a contradiction. Therefore, x = e, meaning that clM (F ) = F ∪ {e}.
So, if F is not a flat of M , then F ∪ {e} is.

By Lemma 50, if F is a union of circuits of M \ e, then F is a union of
circuits of M . If F is not a flat of M , then the flat F ∪ {e} of M contains a
circuit C such that e ∈ C ⊆ F ∪ {e}. So either F or F ∪ {e} is a cyclic flat
of M .

Lemma 52. Let Z be a lattice of sets and C (Z) its constraint matrix. Then
every row basis of C (Z) contains a row of weight 1.

Proof. Suppose otherwise. Then there is some collection X = {X1, X2, . . . , Xn}
of rows of C (Z) such that

a1X1 + a2X2 + · · ·+ anXn =
[
1 0 · · · 0

]
and where X does not contain either of the rows of weight 1.
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The entries of this vector obviously must sum to 1. But the sum of the
entries in each individual vector Xi sums to 0. By the commutativity of
addition, this is a contradiction. Therefore every row basis of C (Z) contains
a row of weight 1.
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Chapter 3

Special classes of lattices

3.1 Loops and coloops
Lemma 53. If Z is a matroidal lattice of sets with ground set E (Z), then, if
we let x be an element not in E (Z),

Z ′
= {X ∪ {x} : X ∈ Z}

is a matroidal lattice.

Proof. Let M be a matroid on E (Z) that has Z as its lattice of cyclic
flats. Clearly, Z ′ is isomorphic to the lattice of cyclic flats of M ⊕ U0,1, the
matroid M extended by a loop element, and rM⊕U0,1 (X ∪ {x}) = rM (X) for
all X ∈ Z.

Lemma 54. If Z is a matroidal lattice of sets with ground set E (Z) and
x ∈ 0Z , then

Z ′
= {X \ {x} : X ∈ Z}

is a matroidal lattice.

Proof. Let M be a matroid on E (Z) that has Z as its lattice of cyclic flats.
0Z contains x, therefore rM ({x}) = 0. So x is a loop in M . Clearly, Z ′

is the lattice of cyclic flats of M \ x, and rM\x (X \ {x}) = rM (X) for all
X ∈ Z.
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Lemma 55. If Z is a matroidal lattice of sets with ground set E (Z), then Z
is also the lattice of cyclic flats of a matroid with ground set E (Z) ∪ {x},
where x /∈ E (Z).

Proof. As none of the cyclic flat axioms make reference to the ground set of
the lattice Z, this follows directly from the fact that Z is matroidal. It is
trivial to see that if Z is the lattice of cyclic flats of a matroid M on E (Z),
then Z is also the lattice of cyclic flats of the matroid M ⊕U1,1, the matroid
M extended by a coloop, and that rM⊕U1,1 (X) = rM (X) for all X ∈ Z.

Lemma 56. If Z is a matroidal lattice of sets with ground set E (Z), and
x ∈ E (Z) \ 1Z , then Z is also the lattice of cyclic flats of a matroid with
ground set E (Z) \ {x}.

Proof. As in Lemma 55, (Z, E (Z) \ {x}) is matroidal by virtue of the fact
that (Z, E (Z)) is, the cyclic flat axioms not referring to the ground set.
Furthermore, if M is a matroid on E (Z) with lattice of cyclic flats Z, then
x is a coloop in M , and Z is clearly also the lattice of cyclic flats of the
matroid M \ x, where rM\x (X) = rM (X) for all X ∈ Z.

Definition 57. By analogy with matroids, as shown in Lemmas 53-56, given
a lattice of sets Z with ground set E (Z), call an element x a loop if x ∈ 0Z

and a coloop if x ∈ E (Z) \ 1Z .

The purpose of this definition is to simplify the following work. Having
shown that loops and coloops can be freely added to or removed from a lattice
of sets without changing the ranks of the cyclic flats, it shall be assumed for
simplicity that the least element 0Z is the empty set, and the greatest element
1Z is the ground set E (Z) of the lattice of sets.

3.2 Lattices of height 3

Definition 58. The height of a lattice Z is the size of the largest chain in Z.
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Lemma 59. Let Z be a lattice of sets where every maximal chain has 3

elements. If the polyhedron P (Z) is nonempty, then it has an integral vertex.

Proof. Every pair of elements in Z aside from 0Z and 1Z will be incompara-
ble.

Let X and Y be incomparable sets in Z. Note that, necessarily, Y ̸=
E (Z). By the cyclic flat axioms, a matroidal rank function r must satisfy

r (X) + r (Y ) ≥ r (X ∨ Y ) + r (X ∧ Y ) + |(X ∩ Y ) \ (X ∧ Y )|

= r (E (Z)) + r (∅) + |X ∩ Y |

= r (E (Z)) + |X ∩ Y | ,

so
r (X) ≥ |X ∩ Y |+ r (E)− r (Y )

≥ |X ∩ Y |+ 1.

Therefore, in a lattice with such a structure that has a matroidal rank func-
tion, the rank of any set X (other than 0Z and 1Z) is strictly greater than
the size of the intersection of X with any incomparable set.

The rank of 1Z must be strictly greater than the rank of any X ∈ Z \ 1Z .
Therefore

r (1Z) ≥ max {|X ∩ Y | : X, Y ∈ Z, X ̸= Y, 0 < |X| , |Y | < |1Z |}+ 2.

So construct a rank function r on Z where

r (0Z) = 0

r (1Z) = max {|X ∩ Y | : X,Y ∈ Z, X ̸= Y, 0 < |X| , |Y | < |1Z |}+ 2.

Let p be the rank of 1Z . Then for all U ∈ Z \ {0Z , 1Z}, let:

r (U) =

p− 1, if |U | ≥ p, or |U ∩ Y | = p− 2 for some Y ∈ Z

|U | − 1, otherwise.

As Z is a lattice by definition and r (0Z) = 0 by construction, if this is
not a matroidal assignment of ranks, either the third or the fourth axiom
must be violated.
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As p ≥ 2, it is clear that r (U) ≥ 1 for any U ∈ Z \ {0Z}, unless |U | = 1.
In that case, r (U) ≤ 0, but |U | > |0Z |, meaning that r (U) ≥ r (0Z) + 1 = 1,
which is a contradiction. There is no solution to these inequalities, meaning
that the polyhedron P (Z) is empty.

Note that r (1Z) > r (U) for all U ∈ Z by construction. Then suppose
that there is some pair X, Y ∈ Z such that Y covers X and

r (Y )− r (X) ≥ |Y | − |X| .

By the structure of Z, either Y = 1Z or X = 0Z . If Y = 1Z and r (X) = p−1,
then |Y | − |X| = 1; in this case, as the cyclic flat axioms would require that
r (Y )− r (X) ≤ 0 and r (Y )− r (X) ≥ 1, the polyhedron P (Z) is empty. If
Y = 1Z and r (X) = |X| − 1, then, as the rank of 1Z cannot be decreased
and the rank of X cannot be increased without violating one of the cyclic
flat axioms, there is no solution to the system of inequalities established by
the cyclic flat axioms, and so P (Z) is empty.. If X = 0Z , then r (Y ) < |Y |
explicitly by construction. So, if r violates the third cyclic flat axiom, P (Z)

is empty.
So suppose the fourth axiom is violated. Then there is some pair X, Y ∈

Z such that

r (X)+r (Y ) < r (X ∨ Y )+r (X ∧ Y )+|(X ∩ Y ) \ (X ∧ Y )| = r (E)+|X ∩ Y | .

Clearly, X and Y must be incomparable, as if they were comparable, their
join would be the larger of the two, and the meet and intersection would both
be the lesser, which would make the inequality trivially true.

Now suppose that r (X) = p− 1. Then

p− 1 + r (Y ) < r (E) + |X ∩ Y | = p+ |X ∩ Y | ,

so
r (Y ) < |X ∩ Y |+ 1,

which contradicts the fact that r (Y ) must be strictly greater than its in-
tersection with any incomparable cyclic flat, as demonstrated earlier. So if
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r (X) = p−1 and the fourth axiom is violated, there is no point that satisfies
the cyclic flat axioms, and so P (Z) is empty.

Then suppose that r (X) , r (Y ) < p − 1. Then r (X) = |X| − 1 and
r (Y ) = |Y | − 1. So neither X nor Y may be assigned a greater rank by any
possible point in P (Z). But, as E has the least possible rank that may be
assigned by any point in P (Z), the polyhedron must be empty.

So, given such a lattice, the construction above returns a matroidal rank
function r, if P (Z) is nonempty. As p is an integer, and |U | is an integer for
all U ∈ Z, r is an integral function.

As r is constructed solely by setting inequalities in the system C (Z) x ≤ b

to be equalities, it is a vertex of P (Z).

3.3 Certain types of lattice of width at most 2

Definition 60. The width of a lattice Z is the size of the largest antichain in
Z.

Lemma 61. If a lattice of sets Z is a chain, then C (Z) is totally unimodular.

Proof. A chain has no incomparable pairs. Therefore, every row in C (Z) is
either a row defining the rank of the least element, or a row corresponding to
a cover relation in Z. Therefore, every row has at most two non-zero entries
(+1 and −1), and, in each row, the sum of any subset of rows will be 0, 1,
or −1.

Therefore, by Proposition 44, C (Z) is totally unimodular.

Lemma 62. If Z is a lattice of sets, and X,Y ∈ Z such that X ( Y and
|Y | = |X|+ 1, then P (Z) is empty.

Proof. Let r be a point in P (Z). Then r (Y ) and r (X) obey the inequalities
1 ≥ r (Y )− r (X) ≤ |Y | − |X| − 1 = 0. Clearly, this is impossible. Therefore
no such point can exist.
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Theorem 63. Let Z be a lattice of sets of width 2 where if X and Y are
incomparable, then X and Y are disjoint, and X ∨ Y = 1Z . Then Z belongs
to class IV.

Proof. Recursively construct a rank function r : Z → Z≥0 by:

r (X) =



0, if X = 0Z ;

|X| − 1, if X covers 0Z ;

r (Y ) + 1, if X covers Y ̸= 0Z and X ̸= 1Z ;

max {r (Y ) : Y ≤ X}+ 1, if X = 1Z .

We will show that either r is a vertex of P (Z), or P (Z) is empty.
If X covers Y , then if r (X)− r (Y ) = 1 or r (X)− r (Y ) = |X| − |Y | − 1,

there is an inequality that is exact at r. As all non-zero ranks are assigned
in one of those two ways, r is exact at n − 1 inequalities other than those
defining the rank of 0Z , therefore, if r ∈ P (Z), r is a vertex.

Suppose that r /∈ P (Z). Then one of the cyclic flat axioms must be
violated.

1. (Z1) holds by construction, as r (0Z) = 0.

2. Suppose that (Z2) does not hold. By construction, r (X) < r (Y )

if X ( Y , so there exists some X ( Y such that r (Y ) − r (X) ≥
|Y | − |X|. As explained in Section 2.5 the inequalities arising from
the cover relations imply the inequalities arising from comparable pairs
more generally, so any violation of the latter implies a violation of the
former. Therefore, it may be assumed that Y covers X. Then either:

(a) r (Y ) − r (X) = 1. Therefore |Y | − |X| = 1. Then, by Lemma
62, there exists no matroidal rank function, and hence P (Z) is
empty.

(b) X = 0Z . But, by construction,

r (Y ) = |Y | − 1 < |Y | − |0Z | = |Y | − 0 = |Y | .
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This is a contradiction, therefore (Z2) is not violated.
(c) Y = 1Z and r (X) < r (Y ) − 1. Let Z ̸= X be covered by Y .

Then Z is disjoint from Y , and X ∪ Z ⊆ Y . It then follows from
r (Y )−r (X) ≥ |Y |−|X| ≥ |Z| that r (Y ) ≥ |Z|+r (X). Therefore
r (Y ) > |Z|. However, the rank of Y is given by r (Y ) = r (Z)+1,
and so then it follows from r (Z) ≤ |Z| − 1 that r (Y ) ≤ |Z|. This
is a contradiction, therefore (Z2) is not violated.

3. Suppose that (Z3) does not hold. Then there exists some X, Y ∈ Z
such that

r (X) + r (Y ) < r (X ∨ Y ) + r (X ∧ Y ) + |X ∩ Y | − |X ∧ Y | .

Select a minimal such pair, i.e., a pair such that for any Z ( X,

r (Z) + r (Y ) ≥ r (Z ∨ Y ) + r (Z ∧ Y ) + |Z ∩ Y | − |Z ∧ Y |

and likewise for any Z ( Y .
If X ⊆ Y , axiom (Z2) is trivially satisfied, therefore, for it to be
violated, X and Y must be incomparable. So, noting that X ∧Y = 0Z ,
r (0Z) = 0, and X ∩ Y = ∅, this reduces to r (X) + r (Y ) < r (1Z).
Suppose that there exists some Z ∈ Z such that 0Z ( Z and (without
loss of generality) Z ( X. Then Z and Y are incomparable. But then
Z ∨Y = 1Z and Z ∧Y = 0Z , and, since, r (Z) < r (X), r (Z)+ r (Y ) <

1Z . But this contradicts the minimality of the pair X,Y . Therefore
there is no such Z. Therefore X and Y each cover 0Z . A rank function
that did not violate (Z3) must either assign larger ranks to at least
one of X and Y , or a smaller rank to 1Z . But X and Y each have the
largest permitted rank, by construction, and likewise the rank of 1Z

cannot be reduced without making the rank of at least one of X and
Y smaller by the same amount, which does not alter the inequality.
Therefore P (Z) must be empty.

Therefore, if P (Z) is nonempty, it has an integral vertex. Therefore Z
belongs to class IV.
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Chapter 4

Sums and products of lattices

4.1 Direct sums
Definition 64. If M1 and M2 are matroids on disjoint ground sets, then the
direct sum M1 ⊕ M2 is the matroid on E (M1) ∪ E (M2) where a set X is
independent in M1 ⊕M2 if and only if X = I1 ∪ I2 for some I1 ∈ I (M1) and
I2 ∈ I (M2).

Proposition 65. Given two matroids M1,M2 on disjoint ground sets, with
cyclic flats Z (M1) ,Z (M2), the set

{X1 ∪X2 : X1 ∈ Z (M1) , X2 ∈ Z (M2)}

is the lattice of cyclic flats of the matroid M1 ⊕ M2, the direct sum of M1

and M2.

Proof. A set F ⊆ E (M1 ⊕M2) is a flat of M1⊕M2 if and only if F ∩E (M1)

is a flat of M1 and F ∩ E (M2) is a flat of M2. Therefore F (M1 ⊕M2) =

{F1 ∪ F2 : F1 ∈ F (M1) , F2 ∈ F (M2)}. A set C ⊆ E (M1 ⊕M2) is a circuit
of M1 ⊕M2 if and only if it is a circuit in either M1 or M2. So a flat F of
M1 ⊕M2 is cyclic if and only if F ∩E (M1) and F ∩E (M2) are both cyclic.
Therefore F ∈ Z (M1 ⊕M2) is equivalent to both of F ∩ E (M1) ∈ Z (M1)

and F ∩ E (M2) ∈ Z (M2) being simultaneously true.

37



4.1. DIRECT SUMS CHAPTER 4. SUMS

b b b

b b b

b

b

b p0 = ∅

p1 = {0, 1, 2}

p2 = {0, 1, 2, 3, 4, 5}
r (p2) = 3

r (p1) = 2

r (p0) = 0

Figure 4.1.1: The matroid P6 and its cyclic flats

The direct sum operation on matroids then gives rise to an operation on
lattices of sets, that we shall refer to using the same name and notation.

Definition 66. If Z1 and Z2 are lattices of sets on disjoint ground sets, their
direct sum Z1 ⊕Z2 is the set

Z1 ⊕Z2 = {Z1 ∪ Z2 : Z1 ∈ Z1, Z2 ∈ Z2} .

There is an obvious lattice isomorphism between Z1 ⊕Z2 and the Carte-
sian product Z1×Z2, but in the context of matroids it is the elements of the
sets that are important, and not merely the lattice structure. There is also
an unfortunate overloading of the ⊕ operator, which is used for the linear
sum of posets. The ⊕ symbol shall only be used in this thesis for the direct
sum operation defined here.

Lemma 67. If Y and Z are matroidal lattices, then Y ⊕ Z is a matroidal
lattice.

Proof. This follows directly from the fact that, if M1 and M1 are matroids,
Z (M1 ⊕M2) = Z (M1)⊕Z (M2).

This means that class V is closed under the direct sum operation.
As we believe that all lattices belong to class IV, we therefore also expect

class IV to be closed under the direct sum operation.

Lemma 68. Classes I, II, and III are not closed under the direct sum opera-
tion.
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b b b

b b b

b

b

b

b

s0 = ∅

s1 = {6, 7, 8} s2 = {9, 10, 11}

s3 = {6, 7, 8, 9, 10, 11}

r (s0) = 0

r (s1) = 2 r (s2) = 2

r (s3) = 3

Figure 4.1.2: The matroid R6 and its cyclic flats

Proof. The P6 matroid, shown in Figure 4.1.1 on page 38, is a matroid on 6

elements. The lattice of cyclic flats of P6 is a single chain (Figure 4.1.1), and
so the constraint matrix is totally unimodular by Lemma 61.

The R6 matroid, shown in Figure 4.1.2, is a matroid on 6 elements. The
lattice of cyclic flats of R6 has width two and height three, and therefore the
constraint matrix of its lattice of cyclic flats is also totally unimodular, as
will be shown in Chapter 6.

As both lattices are those of actual matroids, their polyhedra are clearly
nonempty. Further, as the matrices are totally unimodular, the lattices be-
long to class I (and therefore also classes II and III). However, their direct
sum, ZP6 ⊕ ZR6 , has a polyhedron with half-integral vertices. For instance,
the point

x =

(
0, 2,

7

2
, 2,

7

2
, 5, 2,

7

2
, 5, 4, 5, 6

)
is a half-integral vertex. To see this, first look at the lattice of cyclic flats
(Figure 4.1.3 on page 41).

A linearly independent set of inequalities on the ranks of these sets, de-
rived from the cyclic flat inequalities, is:
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r (x1)− r (x0) ≤ 2 = 2− 0

r (x3)− r (x0) ≤ 2 = 2− 0

r (x6)− r (x0) ≤ 2 = 6− 0

r (x10)− r (x9) ≥ 1 = 5− 4

r (x11)− r (x5) ≥ 1 = 6− 5

r (x11)− r (x8) ≥ 1 = 6− 5

r (x11)− r (x10) ≥ 1 = 6− 5

r (x2) + r (x4)− r (x1)− r (x5) ≥ 0 =
7

2
+

7

2
− 2− 5

r (x2) + r (x7)− r (x1)− r (x8) ≥ 0 =
7

2
+

7

2
− 2− 5

r (x3) + r (x6)− r (x0)− r (x9) ≥ 0 = 2 + 2− 0− 4

r (x4) + r (x7)− r (x1)− r (x10) ≥ 0 =
7

2
+

7

2
− 2− 5

r (x0) ≥ 0 = 0

As can be seen by the substitutions on the right-hand side above, these
inequalities are exact at the point x. To demonstrate that this is a feasible
point is a trivial exercise and, therefore, this shows that x is a vertex, despite
not being integral. Therefore, the lattice ZP6 ⊕ZR6 is not a class-III lattice.
Therefore, none of classes I, II, and III are closed under direct sums.

4.2 Free products
The free product M1 @ M2 of two matroids on disjoint ground sets is a non-
commutative operation defined by Crapo and Schmitt in 2005 [2]. Bonin and
de Mier showed that the cyclic flats provided a conceptually simple way of
understanding the free product [1]. We use their definition here.

Definition 69. If M1 and M2 are matroids on disjoint ground sets, then the
free product M1 @ M2 is the matroid that has ground set E (M1) ∪ E (M2)
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b

b b b

bbbb

b b b

b x0=p0∪s0

x6=p0∪s1 x3=p0∪s2 x1=p1∪s0

x9=p0∪s3 x4=p1∪s2 x7=p1∪s1 x2=p2∪s0

x10=p1∪s3 x8=p2∪s1 x5=p2∪s2

x11=p2∪s3

Figure 4.1.3: Lattice of cyclic flats of R6 ⊕ P6

with cyclic flats

Z (M1 @ M2) = (Z (M1) \ {E (M1)}) ∪ Z† (M2) ∪Q

where
Z† (M2) = {Z ∪ E (M1) : Z ∈ Z (M2)}

and

Q =

{E (M1)} , M1 has no coloops and M2 has no loops

∅, otherwise

and where the ranks of those cyclic flats are given by rM1@M2 (X) = rM1 (X) if
X ⊆ E (M1), and rM1@M2 (E (M1) ∪ Y ) = rM1 (E (M1)) + rM2 (Y ) otherwise.

We use this as a basis for a definition of the free product operation on
lattices of sets.

Definition 70. If Z1 and Z2 are lattices of sets on disjoint ground sets, then
the free product Z1 @ Z2 is the lattice given by

Z1 @ Z2 = {X : X ∈ Z1, X ̸= E (Z1)} ∪ {E (Z1) ∪ Y : Y ∈ Z2, Y ̸= ∅} ∪Q
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where

Q =

{E (Z1)} , 1Z(M1) = E (M1) and 0Z(M2) = ∅

∅, otherwise.

It can easily be seen that the lattice structure arising from this operation is
isomorphic to either the linear sum of the two separate lattices, or the lattice
arising from the identification of the greatest element of Z1 and the least
element of Z2, depending on whether Z1 contains coloops and Z2 contains
loops.

Proposition 71. If Y and Z are matroidal lattices, then Y @Z is a matroidal
lattice.

Proof. This follows directly from the fact that Z (M1 @ M2) = Z (M1) @
Z (M2).

This means that class V is closed under the free product operation.

Theorem 72. Let Y ,Z be class-I lattices of sets. Then Y @ Z is a class-I
lattice.

Proof. Let the constraint matrices for Y and Z have the forms

C (Y) = [P |1Z ]

C (Z)

 1 0

−1 0

0
′
Z Q


where 1Y refers to the rightmost column of C (Y) and 0

′
Z to the leftmost

column of C (Z), excluding the first two rows (those that set the rank of the
0Z element).

Construct the constraint matrix for Y@Z. It can have one of two possible
forms, depending on whether Y contains coloops and whether Z contains
loops.

In the first form, it will have the structure
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C (Y @ Z) =


P 1Y 0 0

0 1 −1 0

0 −1 1 0

0 0 0
′
Z Q


So take some subset X of columns of C (Y @ Z). There is a clear corre-

spondence between columns of C (Y @ Z) and columns of C (Y) and C (Z),
where a column of C (Y @ Z) is simply either a column of C (Y) with ad-
ditional elements appended, or a column of C (Z) with additional elements
prepended. Then say that X = Y ∪ Z, where Y is a subset of columns of
C (Y @ Z) that have this correspondence with some subset Y

′ of columns of
C (Y), and Z is a subset of columns of C (Y @ Z) that have this correspon-
dence with some subset Z

′ of C (Z). Examining the columns of C (Y @ Z),
it is clear that Proposition 44 applies equally well to Y and to Z as it does
to Y

′ and Z
′ , and so let (ϵj)j≤|Y | , (ζk)k≤|Z| be appropriate sequences such

that ϵj = ±1, ζk = ±1, and
∑

ϵiYi and
∑

ζiZi are both totally unimodular
vectors. Clearly, if

∑
ζiZi is totally unimodular, then −

∑
ζiZi is as well,

therefore (−ζk) is also an appropriate sequence for Proposition 44. So, if the
central two columns of C (Y @ Z) are both in X and have indices m and n in
Y and Z, respectively, choose a sequence (ζk) such that ϵm = ζn. Then, by
examination of the structure of C (Y @ Z), it is clear that

∑
ϵiYi +

∑
ζiZi

is a totally unimodular vector, and so there exists a sequence (ηl)l≤|X| such
that ηl = ±1 and

∑
ηiXi is a totally unimodular vector. Therefore, by

Proposition 44, C (Y @ Z) is totally unimodular.
In the second possible form, the constraint matrix of Y @Z will have the

structure

C (Y @ Z) =

(
P 1Y 0

0 0
′
Z Q

)
where the 1Y and 0Z are mapped to the same column in C (Y @ Z).

Then given a subset X of columns of C (Y @ Z), take Y and Z where
X = Y ∪ Z, in the same manner as in the previous case, except that now
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Y and Z may share a single element (the central column of C (Y @ Z) is
both a column of C (Y) with elements appended and a column of C (Z) with
elements prepended). Say that the labels 1Y and 0Z both refer to the central
column of C (Y @ Z). So Y and Z are disjoint unless 1Y = 0Z ∈ X, in which
case Y ∩ Z = {1Y}. Choose sequences (ϵj)j≤|Y | , (ζk)k≤|Z| in accordance with
Proposition 44 such that, if 1Y = 0Z ∈ X, then that column has index m

in both Y and Z, and ϵm = ζm. Then construct the sequence (ηl)l≤|X| by
letting ηj = ϵj for all 1 ≤ j ≤ |Y | and ηk+|Y | = ζk for all 1 ≤ k ≤ |Z| where
k ̸= m, and assign indices to the elements of X such that Xj = Yj for all
j, and X|Y |+k = Zk for all k ̸= m. Again, by inspection of the structure of
C (Y @ Z), it is easily seen that

∑
ηiXi is totally unimodular. Hence, again

by Proposition 44, Y @ Z has a totally unimodular constraint matrix.

Theorem 73. Let Y ,Z be class-II lattices of sets (i.e., have unimodular con-
straint matrices). Then Y @ Z is a class-II lattice.

Proof. By Proposition 47, the transpose of the constraint matrix C (Y @ Z)T

is unimodular if and only if there exists a unimodular basis B of C (Y @ Z)T

such that the unique matrix D satisfying BD = C (Y @ Z)T is totally uni-
modular.

As in Theorem 72, A can have one of two forms. In the first form

C (Y @ Z) =


P 1Y 0 0

0 1 −1 0

0 −1 1 0

0 0 0
′
Z Q


As C (Y) and C (Z) are unimodular, there exist unimodular bases BY , BZ

of the transpose of each such that the matrices DY , DZ satisfying BYDY =

C (Y)T and BZDZ = C (Z)T are totally unimodular. The rows defining the
rank of the zero element of Z are not present in C (Y @ Z), and, as shown
in Lemma 52, one of these rows (which are columns in the transpose matrix)
must be present in every basis of C (Z)T . Let B

′
Z be BZ with that row

(column) removed. By inspection, it can be seen that the rows (columns) of
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BY and B
′
Z , plus one of the central two rows (columns) of C (Y @ Z) make

up a basis of C (Y @ Z)T . So choose that central row which has the same sign
in the 0

′
Z column as the row removed from BZ has. Call this row (column)

a. Then B = BY ∪B
′
Z ∪ {a} is a basis of C (Y @ Z)T .

As B is a basis and therefore nonsingular, to show that B is unimodular, it
suffices to show that |B| = ±1. There are two elementary column operations
that change the sign of the determinant of a matrix, but not its magnitude:
interchanging two columns, and adding a multiple of one column to another.
So then B is unimodular if and only if the identity matrix can be obtained
solely through these operations.

As BY is unimodular, the identity matrix I|Y| can be obtained in the top
left corner of B through these elementary column operations. Then it is easy
to see that adding a multiple of the |Y|th column to the |Y| + 1th column
will give the matrix (

I|Y| 0

0 BZ

)

and it is clear that, since BZ is unimodular, the specified elementary column
operations will allow this matrix to be transformed into the identity matrix.
Therefore B is unimodular.

The matrix given by

DT =

(
[DY ]

T 0

0 [DZ ]
T

)

constructed in the same way as the C (Y @ Z), as an overlapping block ma-
trix, satisfies BD = C (Y @ Z). Furthermore, by Theorem 72, it is totally
unimodular.

So there exists a unimodular basis B of C (Y @ Z)T such that the unique
matrix D satisfying BD = C (Y @ Z) is totally unimodular. Therefore
C (Y @ Z) is a unimodular matrix.

Then suppose that the matrix C (Y @ Z) has the second form.
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C (Y @ Z) =

(
P 1Y 0

0 0
′
Z Q

)
Then, by similar reasoning as used above, it can be seen that B = BY∪B

′
Z

is a basis for C (Y @ Z)T . Following the same steps as above, using the
specified elementary column operations to reduce the matrix, it is possible
to obtain (

I|Y| 0

0 B
′
Z

)
and by multiplication of the |Y|th column by ±1, this can be transformed
into (

I|Y|−1 0

0 BZ

)
which can then clearly be reduced to the identity matrix. Therefore B is
unimodular.

Letting D
′
Z by the matrix obtained by removing the initial row from DZ ,

then the matrix given by

DT =

(
[DY ]

T 0

0
[
D

′
Z
]T
)

satisfies BD = C (Z), and, since the total unimodularity of DZ implies the
total unimodularity of D

′
Z , it again is totally unimodular. Therefore, by

similar reasoning as in the first case above, C (Y @ Z) is totally unimodular.
Therefore Y @ Z is a class II lattice.

It is not known whether class III is closed under the free product opera-
tion.

Problem 74. If Y and Z are lattices belong to class III, does Y @ Z belong
to class III?

Although it is clear that, for vertices v and u of P (Y ) and P (Z), respec-
tively, the concatenation of v and u + x (where x is an integer, the value
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of which depends on the nature of the lattice Y @ Z) will be a vertex of
P (Y @ Z), there may be additional vertices of P (Y @ Z) that are not of this
form.

The belief that all lattices belong to class IV (Conjecture 29) implies the
following.

Conjecture 75. Class IV is closed under the free product operation.
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Chapter 5

Duals

5.1 Lattice duals
Definition 76. The order dual of a partial order P = (P,≤) is an order
P∗ = (P,≤∗), where a ≤∗ b in P∗ if and only if b ≤ a in P.

Lemma 77. Let M be a matroid with ground set E. A flat F of M is cyclic
if and only if the complement of F is a coflat of M .

Proof. Let F be a flat of M , and E the ground set of M . If e ∈ F , then e

is contained in a circuit in F if and only if e is not in a cocircuit contained
in (E − F ) ∪ {e}. Therefore e is in a circuit in F if and only if F is disjoint
from the coclosure of E − F .

Corollary 78. A set Z ⊆ E is a cyclic flat of M if and only if E \Z is a cyclic
flat of the dual matroid M∗.

Proof. This follows directly from Lemma 77.

Corollary 79. If Z is a lattice of subsets of a ground set E, then Z∗ =

{E \ Z : Z ∈ Z} is a lattice of subsets of E.

Proof. If X ∈ Z, then X ∈ Z∗, where X is the complement of X in E.
Clearly, if X ⊆ Y for some X, Y ∈ Z, then Y ⊆ X. It is obvious that Z∗
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is isomorphic to the order dual of Z, and the order dual of a lattice is a
lattice.

We call Z∗ the dual lattice of Z, by analogy with the dual operation on
matroids. The lattice structure of Z∗ is simply that of Z, flipped upside
down.

Lemma 80. Classes I and II are closed under duality.

Proof. The constraint matrix depends entirely on the lattice structure. If Y
covers X in Z, then X covers Y in Z∗, and therefore the rows

( 0Z · · · X · · · Y · · · 1Z

0 · · · 1 · · · −1 · · · 0

0 · · · −1 · · · 1 · · · 0

)
would be replaced by

( 0Z · · · X · · · Y · · · 1Z

0 · · · −1 · · · 1 · · · 0

0 · · · 1 · · · −1 · · · 0

)
while for an incomparable pair X,Y ∈ Z, X and Y are also incomparable,
and so the row

( 0Z · · · X ∧ Y · · · X · · · Y · · · X ∨ Y · · · 1Z

0 · · · 1 · · · −1 · · · −1 · · · 1 · · · 0
)

would be replaced by

( 0Z · · · X ∧ Y · · · X · · · Y · · · X ∨ Y · · · 1Z

0 · · · 1 · · · −1 · · · −1 · · · 1 · · · 0
)

Both of these replacements clearly do not alter the constraint matrix in
a significant way. The only meaningful difference, then, between C (Z) and
C (Z∗) is that the rows

( 0Z · · · 1Z

1 · · · 0

−1 · · · 0

)
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are replaced by

( 0Z · · · 1Z

0 · · · 1

0 · · · −1

)
Total unimodularity and unimodularity are both preserved by adding (or

removing) rows with at most one nonzero entry, that entry being 1 or −1.
Therefore C (Z∗) must be unimodular if C (Z) is unimodular, and totally
unimodular if C (Z) is totally unimodular.

5.2 Polyhedra of dual lattices
Theorem 81. Let Z be a lattice of sets on ground set E, and P (Z) the
polyhedron generated from it. Let r ∈ P (Z). Then r∗ ∈ P (Z∗), where r∗ is
defined by

r∗ (X) = |X| − r (M) + r
(
X
)

for all X ∈ Z∗, and
r (M) = r (1Z) + |E \ 1Z | .

Proof. First, we show that r∗ (0Z∗) = 0. The complement of 0Z∗ is 1Z , and
|0Z∗ | = |E \ 1Z |. Therefore

r∗ (0Z∗) = |E \ 1Z | − (r (1Z) + |E \ 1Z |) + r (1Z) = 0.

Suppose that X ( Y for some X,Y ∈ Z∗. Note then that Y ( X. Then

r
(
X
)
− r

(
Y
)
≤
∣∣X∣∣− ∣∣Y ∣∣− 1,

which can be rearranged to give

r
(
X
)
−
∣∣X∣∣+ 1 ≤ r

(
Y
)
−
∣∣Y ∣∣

and, through the addition of |E| − r (M), it can be seen that

|E| −
∣∣X∣∣− r (M) + r

(
X
)
+ 1 ≤ |E| −

∣∣Y ∣∣− r (M) + r
(
Y
)
,
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meaning that

|X| − r (M) + r
(
X
)
+ 1 ≤ |Y | − r (M) + r

(
Y
)

and therefore
r∗ (X) + 1 ≤ r∗ (Y ) .

By a similar process, it is easy to see that

r
(
Y
)
+ 1 ≤ r

(
X
)

⇒ |Y | − r (M) + r
(
Y
)
− |Y |+ 1 ≤ |X| − r (M) + r

(
X
)
− |X|

⇒ r∗ (Y )− |Y |+ 1 ≤ r∗ (X)− |X|

⇒ r∗ (Y )− r∗ (X) ≤ |Y | − |X| − 1.

Therefore r∗ complies with (Z2).
Finally, for some X,Y ∈ Z∗ (and complementary X,Y ∈ Z), using ∧∗

and ∨∗ to refer to the meet and join operations on Z∗,

r
(
X
)
+ r

(
Y
)
≥ r

(
X ∨ Y

)
+ r

(
X ∧ Y

)
+
∣∣X ∩ Y

∣∣− ∣∣X ∧ Y
∣∣ ,

which, using the facts that
∣∣X ∩ Y

∣∣ = ∣∣X ∪ Y
∣∣ and

∣∣X ∧ Y
∣∣ = ∣∣X ∨∗ Y

∣∣,
gives

r
(
X
)
+ r

(
Y
)
≥ r

(
X ∨ Y

)
+ r

(
X ∧ Y

)
+ |X ∨∗ Y | − |X ∪ Y | .

Then, as |X ∪ Y | = |X|+ |Y | − |X ∩ Y |,

r
(
X
)
+ r

(
Y
)
+ |X|+ |Y | ≥ r

(
X ∨ Y

)
+ r

(
X ∧ Y

)
+ |X ∨∗ Y |+ |X ∩ Y | ,

giving

r
(
X
)
+ r
(
Y
)
+ |X|+ |Y | ≥ r

(
X ∧∗ Y

)
+ r
(
X ∨∗ Y

)
+ |X ∨∗ Y |+ |X ∩ Y | ,

meaning that

|X|+ r
(
X
)
+ |Y |+ r

(
Y
)
≥

|X ∨∗ Y |+ r
(
X ∨∗ Y

)
+ |X ∧∗ Y |+ r

(
X ∧∗ Y

)
+ |X ∩ Y | − |X ∧∗ Y |
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and therefore

r∗ (X) + r∗ (Y ) ≥ r∗ (X ∨∗ Y ) + r∗ (X ∧∗ Y ) + |X ∩ Y | − |X ∧∗ Y | .

Therefore r∗ complies with (Z3). Therefore r∗ ∈ P (Z∗).

Lemma 82. The operation r 7→ r∗ is an involution between P (Z) and P (Z∗).

Proof. Given r ∈ P (Z), consider r∗∗. For some X ∈ Z∗, and complementary
X ∈ Z, we first find an expression for r∗ (1Z). By definition, it is

r∗ (1Z∗) = |1Z∗| − r (M) + r (E \ 1Z∗)

which, through the use of obvious substitions, gives

r∗ (1Z∗) = |E \ 0Z | − r (1Z)− |E \ 1Z |+ r (0Z)

which can then be simplified to

r∗ (1Z∗) = |1Z | − |0Z | − r (1Z) .

Since
r∗ (X) = |X| − r (M) + r

(
X
)

and r (M) = r (1Z) + |E \ 1Z |, then

r∗ (X) = |X| − r (1Z)− |E \ 1Z |+ r
(
X
)
.

Finally, we take the definition for r∗∗
(
X
)
,

r∗∗
(
X
)
=
∣∣X∣∣− r∗ (M∗) + r∗ (X) ,

replace r∗ (M∗) with r∗ (1Z∗) + |E \ 1Z∗ |,

r∗∗
(
X
)
=
∣∣X∣∣− r∗ (1Z∗)− |E \ 1Z∗|+ r∗ (X) ,

and substitute out r∗ (1Z∗) for the expression obtained earlier to give

r∗∗
(
X
)
=
∣∣X∣∣− |1Z |+ |0Z |+ r (1Z)− |0Z |+ |X| − r (1Z)− |E \ 1Z |+ r

(
X
)
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which can be simplified to

r∗∗
(
X
)
= |E| − |1Z | − |E \ 1Z |+ r

(
X
)

which then obviously shows that

r∗∗
(
X
)
= r

(
X
)
.

Therefore the operation r 7→ r∗ is self-inverse.

Lemma 83. The operation r 7→ r∗ maps vertices of P (Z) to vertices of
P (Z∗).

Proof. Suppose that r ∈ P (Z) is a vertex of P (Z). Then there exist n rows
of the system C (Z) x ≤ b (Z) where the inequalities are exact at r.

If X1, X2 be sets in Z such that X2 covers X1, and r (X2) − r (X1) = 1,
then X1, X2 are sets in Z∗ where X1 covers X2. Then

r (X1) + 1 = r (X2)

can be transformed, by the subtraction of r (M) from both sides, and by the
addition of

∣∣X1

∣∣ − ∣∣X1

∣∣ to the left-hand side and
∣∣X2

∣∣ − ∣∣X2

∣∣ to the right
side, into∣∣X1

∣∣− r (M) + r (X1)−
∣∣X1

∣∣+ 1 =
∣∣X2

∣∣− r (M) + r (X2)−
∣∣X2

∣∣
which is equal to

r∗
(
X1

)
−
∣∣X1

∣∣+ 1 = r∗
(
X2

)
−
∣∣X2

∣∣
which can then be rearranged to give

r∗
(
X1

)
− r∗

(
X2

)
=
∣∣X1

∣∣− ∣∣X2

∣∣− 1.

This then corresponds to an equality in the system C (Z∗) x ≤ b (Z∗).
If Y1, Y2 are sets in Z such that Y2 covers Y1, and

r (Y2)− r (Y1) = |Y2| − |Y1| − 1
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then Y 1, Y 2 are sets in Z∗ where Y 1 covers Y 2. So

r (Y2)− r (Y1) = |Y2| − |Y1| − 1

can be rearranged to give

r (Y2)− |Y2|+ 1 = r (Y1)− |Y1| ,

and the addition of |E| − r (M) then gives

|E| − |Y2| − r (M) + r (Y2) + 1 = |E| − |Y1| − r (M) + r (Y1)

therefore ∣∣Y 2

∣∣− r (M) + r (Y2) + 1 =
∣∣Y 1

∣∣− r (M) + r (Y1) ,

where the expressions for r∗
(
Y 2

)
and r∗

(
Y 1

)
can clearly be seen, meaning

that
r∗
(
Y 2

)
+ 1 = r∗

(
Y 1

)
.

This then corresponds to an equality in the system C (Z∗) x ≤ b (Z∗).
If Z1, Z2 are incomparable sets in Z such that

r (Z1) + r (Z2) = r (Z1 ∨ Z2) + r (Z1 ∧ Z2) + |Z1 ∩ Z2| − |Z1 ∧ Z2|

then Z1, Z2 are incomparable sets in Z∗, and

r (Z1) + r (Z2) = r (Z1 ∨ Z2) + r (Z1 ∧ Z2) + |Z1 ∩ Z2| − |Z1 ∧ Z2|

implies that

r (Z1) + r (Z2) = r (Z1 ∨ Z2) + r (Z1 ∧ Z2) +
∣∣Z1 ∨∗ Z2

∣∣− ∣∣Z1 ∪ Z2

∣∣ ,
and adding

∣∣Z1

∣∣+ ∣∣Z1

∣∣ to both sides then gives

r (Z1)+r (Z2)+
∣∣Z1

∣∣+∣∣Z2

∣∣ = r (Z1 ∨ Z2)+r (Z1 ∧ Z2)+
∣∣Z1 ∨∗ Z2

∣∣+∣∣Z1 ∩ Z2

∣∣ .
Then

r (Z1)+r (Z2)+
∣∣Z1

∣∣+∣∣Z2

∣∣ = r
(
Z1 ∧∗ Z2

)
+r
(
Z1 ∨∗ Z2

)
+
∣∣Z1 ∨∗ Z2

∣∣+∣∣Z1 ∩ Z2

∣∣
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which in turn implies that∣∣Z1

∣∣+ r (Z1) +
∣∣Z2

∣∣+ r (Z2) =∣∣Z1 ∨∗ Z2

∣∣+ r
(
Z1 ∨∗ Z2

)
+
∣∣Z1 ∧∗ Z2

∣∣+ r
(
Z1 ∧∗ Z2

)
+
∣∣Z1 ∩ Z2

∣∣− ∣∣Z1 ∧∗ Z2

∣∣
therefore

r∗
(
Z1

)
+ r∗

(
Z2

)
= r∗

(
Z1 ∨∗ Z2

)
+ r∗

(
Z1 ∧∗ Z2

)
+
∣∣Z1 ∩ Z2

∣∣− ∣∣Z1 ∧∗ Z2

∣∣ .
This then corresponds to an equality in the system C (Z∗) x ≤ b (Z∗).
The rows restricting 0Z to a rank of no more than (and no less than)

zero will be equalities in C (Z)x ≤ b (Z). Similarly, the rows restricting
0Z∗ to a rank of no more than (and no less than) zero will be equalities in
C (Z∗) x ≤ b (Z∗).

Therefore, for every distinct equality in the system C (Z) x ≤ b (Z) at the
point r, there is a corresponding, unique equality in the system C (Z∗) x ≤
b (Z∗) at the point r∗. A set of rows in C (Z∗) is linearly independent if
and only if the corresponding rows in C (Z) are linearly independent, so, as
r∗ ∈ P (Z∗), then r∗ is a vertex of P (Z∗).

Corollary 84. Classes III, IV, and V are closed under duality.

Proof. This follows directly from Theorem 81 and from Lemmas 82 and 83.
The rank function is a bijection between the two polyhedra, where integral
vertices are mapped to integral vertices, and nonintegral vertices to nonin-
tegral vertices, and, trivially, integral points are mapped to integral points.
Therefore if any lattice Z belongs to any of classes III, IV, or V, its dual
must also belong to that class.
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Chapter 6

Lattice minors

6.1 Defining lattice minors

In this chapter, we construct a definition of lattice minors inspired by matroid
minors, and characterise class-I lattices in terms of their minors.

Unlike the free product or direct sum operations on matroids, when given
a lattice of sets Z, there is no well-defined transformation that will occur
when taking a minor of a matroid that has Z as its lattice of cyclic flats. This
is because the lattice of cyclic flats can change in different ways depending
on the ranks assigned.

For example, consider the matroids in Figure 6.1.1 on page 58 and Figure
6.1.2 on page 58. Each has the same lattice of cyclic flats (Figure 6.1.3). But
the matroids obtained by deleting the element e from each have different
lattices of cyclic flats (compare Figures 6.1.4 and 6.1.5).

However, we know from Lemma 51 that, for any matroid M and element
e of E (M), that if Z is a cyclic flat of M \ e, then exactly one of Z and
Z ∪ {e} is a cyclic flat of M . Then clearly there is an order-preserving
injection from Z (M \ e) to Z (M). As contraction is the dual operation of
deletion in minors, and the dual of a lattice of sets possesses the same lattice
structure with order relations reversed, contraction of matroid elements must
then affect the lattice of cyclic flats in a fundamentally similar way. This is
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bb b b ba
b

c d e

Figure 6.1.1: M1

b
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b b
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de

Figure 6.1.2: M2

b
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∅

{a, b}

{a, b, c, d, e}

Figure 6.1.3: Cyclic
flats of both M1 and
M2

b

b

b

∅

{a, b}

{a, b, c, d}

Figure 6.1.4: Cyclic
flats of M1 \ e

b

b

∅

{a, b}

Figure 6.1.5: Cyclic
flats of M2 \ e
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b

b b b

b

b

b ∅

F1

F2 F3 F4

F5

F6

Figure 6.1.6: A lattice of sets

b

b b b

b ∅

F2 \D F3 \D F4 \D

F6 \D

Figure 6.1.7: A lattice minor of the
lattice in Figure 6.1.6

the inspiration for the following definitions.

Definition 85. If Z is a lattice of sets on E, then X is a lattice minor of Z
if X is a nonempty lattice of sets, and there exist some W ⊆ Z and D ⊆ E

such that X = {W \D : W ∈ W} and there is a lattice isomorphism from
W to X .

Definition 86. If Z is a lattice of sets on E, and X is a lattice minor of
Z, then there exists some W ⊆ Z that is lattice-isomorphic to X , and
some D ⊆ E such that X = {W \D : W ∈ W}. Then given any W ∈ W ,
X = W \ D for some X ∈ X , and we call W the preimage of X in Z,
denoted ZX, and X the image of W in X , denoted WX . Given any S ⊆ Z,
call SX = {X ∈ X : ZX ∈ S} the image of S in X .

Example 87. Figure 6.1.7 on page 59 is a lattice minor of Figure 6.1.6.

Though it is not necessarily the case that every lattice minor of a ma-
troidal lattice will be matroidal, the lattice of cyclic flats of a matroid M \ e
or M/e will be a lattice minor of the lattice of cyclic flats of M .
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Figure 6.1.8: A matroid N

b

b

b b b

b

∅

{g, h, i}

{a, b}

{a, b, c, d} {a, b, e, f}

{a, b, c, d, e, f, g, h, i}

Figure 6.1.9: Lattice of cyclic flats
of N

Proposition 88. Let Z be a lattice of sets on E, and let S, T ⊆ Z such that∨
Z S ≤

∧
Z T . Let X be a lattice minor of Z. Then

∨
X SX ≤

∧
X TX .

Proof. Suppose there exist some Z, X , S and T as described above, where∨
X SX >

∧
X TX . Order relations are preserved when taking lattice minors

of lattices. Therefore, for any s ∈ SX and t ∈ TX , s ≤ t. So every t ∈ TX is
an upper bound for SX . Then, as

∨
X SX >

∧
X TX , there exists some t ∈ TX

such that
∨

X SX � t. Therefore t and
∨

X SX are incomparable upper bounds
for SX . This contradicts the fact that

∨
X SX is the least upper bound for

SX .

Definition 89. An embedding of a lattice X into a lattice Z is an injection
ϕ : X → Z such that

ϕ (X) ∨Z ϕ (Y ) = ϕ (X ∨X Y )

ϕ (X) ∧Z ϕ (Y ) = ϕ (X ∧X Y )

for all X, Y ∈ X .
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b

b

b

...

b

b

b

0Y

1Y

βn

β2

β1

α

Figure 6.2.1: The lattice Yn

Proposition 90. The preimage ZX of a lattice minor X of a lattice Z need
not be embeddable in Z.

Proof. Consider the matroid N in Figure 6.1.8 on page 60. Its lattice of
cyclic flats is shown in Figure 6.1.9. Then consider the matroid N \ a and
X = Z (N \ a). Examining how the cyclic flats change under this deletion,
it is clear that the cyclic flat {a, b} is removed from the lattice of cyclic
flats, while {a, b, c, d} and {a, b, e, f} are transformed to {b, c, d} and {b, e, f},
respectively. So the preimage of Z (N \ a) is Z(N)X = Z (N)\{{a, b}}. This
lattice is not embeddable in Z (N), as it contains {a, b, c, d} and {a, b, e, f},
yet their meet in Z (N) is {a, b}, which is not contained in Z(N)X .

6.2 Minor-closed classes of lattice

Lemma 91. A lattice of the form depicted in Figure 6.2.1 on page 61 belongs
to class I.
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Proof. By Proposition 44, a matrix is totally unimodular if and only if, given
any collection of columns {Y1, Y2, . . . , Yt} of the matrix, there exists a se-
quence (ϵj)j≤t, where ϵj = ±1 for all 1 ≤ j ≤ t, such that

∑t
i=1 ϵiYi is a

totally unimodular vector.
Let L be a lattice of the form depicted in Figure 6.2.1, and C the con-

straint matrix constructed from it. Given a collection Y = {Y1, Y2, . . . , Yt} of
columns of C, construct a sequence (ϵj)j≤t, where ϵj = ±1 for all 1 ≤ j ≤ t,
that adheres to the following rules:

1. If Yp covers Yq, then ϵp = ϵq.

2. If Ys = 0Y ∈ Y and Yr = 1Y ∈ Y , but there is no chain of cover
relations in Y connecting Ys and Yr, then ϵs = −ϵr.

3. If 0Y , 1Y , α ∈ Y , then ϵj = ϵl for all 1 ≤ j, l ≤ t.

4. If only one of 0Y and 1Y is in Y , then ϵj = ϵl for all 1 ≤ j, l ≤ t.

5. If Ym = α ∈ Y , but 0Y , 1Y /∈ Y , then ϵj ̸= ϵm for all j ̸= m.

We will show that, given such a sequence,
∑t

i=1 ϵiYi gives a totally unimod-
ular vector.

It is easy to see that these rules are noncontradictory, so it remains to
show that in every row the sum will be −1, 0, or 1.

Clearly, the rows of C (Yn) defining the rank of the 0 element will return
a sum of 0, 1, or −1 regardless of the choice of sequence, as there is only one
nonzero entry in each of these rows.

Then consider a cover relation row. There are two nonzero entries. Say
these are at locations p and q. If at most one of these columns is in Y , the
particular choice of sequence is irrelevant, and the sum is totally unimodular.
If both of these columns are in Y , then by rule 1 above, ϵp = ϵq, and so the
entries of this row sum to 0, meaning the choice of sequence is valid for this
row.

Consider a weight-4 row. Any incomparable pair must consist of α and
βk for some 1 ≤ k ≤ n, with meet and join 0Y and 1Y , respectively.
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If at most one of the nonzero columns is in Y , the choice of sequence is
trivially valid for this row.

Then suppose there are two nonzero columns in Y . If those two columns
are Ys = 0Y and Yr = 1Y , then α /∈ Y and βk /∈ Y for some 1 ≤ k ≤ n,
therefore there is no chain of cover relations connecting 0Y and 1Y ; therefore,
ϵs = −ϵr, meaning the value at one location is subtracted from the other
in the sum, and, as both entries are 1 in this row, the choice of sequence is
valid for this row. If those two columns are βk (where 1 ≤ k ≤ n) and 0Y ,
then, as only one of 0Y and 1Y is in Y , ϵj = ϵl for all j, l, meaning the βk and
0Y entries are added to each other; as the entries in the βk and 0Y columns
have opposite sign in this row, the sequence is valid for this row. Similar
reasoning applies if the two nonzero columns in Y are βk and 1Y , or α and
0Y , or α and 1Y . If the two columns are Ym = α and βk, then, as 0Y , 1Y /∈ Y ,
ϵj ̸= ϵm for all j ̸= m, meaning that one entry is subtracted from the other
in the sum; as α and βk have the same sign in this row, this will equal zero,
making the sequence valid for this row.

Then suppose there are three nonzero columns in Y . If those three are
0Y , α, βk or α, βk, 1Y , then all values of ϵj are the same, meaning they are all
added to one another; this sum will equal ±1, meaning the sequence is valid
for this row. If those three are 0Y , α, 1Y , then all values of ϵj are the same;
this sum will equal ±1. If those three are 0Y , βk, 1Y , then either there is a
chain of cover relations in Y connecting 0Y and 1Y or there is not; if there
is, then all values values of ϵj are the same, and that row sums to ±1, while
if there is not, then letting βk = Yu, ϵu is equal to exactly one of ϵs and ϵr,
meaning that the sum across that row is ±1, and so the choice of sequence
is valid for the row.

If all four nonzero columns are in Y , then values of ϵj are the same, and
this row is summed to 0, meaning that the choice of sequence is valid for this
row.

Theorem 92. A lattice Z belongs to class I if and only if Z has no lattice
minor isomorphic to the lattices in Figures 6.2.2 to 6.2.4.
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Figure 6.2.4:

Proof. Suppose Z has a lattice minor isomorphic to the lattice depicted in
Figure 6.2.2. Then Z has an antichain with 3 elements. Let Z1, Z2, and Z3

be mutually incomparable sets in Z. Then C (Z) has the following submatrix

Z1 Z2 Z3

1 1 0

1 0 1

0 1 1

which has determinant −2.
Suppose Z has a lattice minor isomorphic to the lattice depicted in Figure

6.2.3. Then there is some W ⊆ Z that is isomorphic to Figure 6.2.3. Select
some such W = {Z1, Z2, Z3, Z4, Z5, Z6}, where there is a lattice isomorphism
that maps Zi to bi, such that Z2 and Z3 cover Z1, and Z1 and Z6 are the
meet and join, respectively, of Z2 and Z3, as well as of Z4 and Z5. Then
C (Z) has the following submatrix

Z1 Z2 Z3 Z6

−1 1 0 0

−1 1 1 −1

−1 0 0 −1

−1 0 1 0
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which has determinant −2.
Suppose Z has a lattice minor of the form shown in Figure 6.2.4. Then

there is some W ⊆ Z that is isomorphic to Figure 6.2.4. Select some such
W = {Z1, Z2, Z3, Z4, Z5, Z6}, where there is a lattice isomorphism that maps
Zi to ci, such that Z4 covers both Z2 and Z3, and Z5 covers Z3. Then C (Z)

has the following submatrix

Z2 Z3 Z4 Z5

1 0 0 1

−1 0 1 0

0 −1 1 0

0 −1 0 1

which has determinant 2.
Suppose that Z has no lattice minor isomorphic to any of these cases.

Then it must have width no more than 2. If Z has width 1, it is a chain,
and C (Z) is totally unimodular, therefore Z belongs to class I.

So then suppose Z has width 2. Let S and T be distinct maximal chains
in Z, and let s1 and s2 be distinct elements of S ∩ T such that s1 < s2 and
there is no s3 ∈ S∩T where s1 < s3 < s2. Then there must exist some x ∈ S

or x ∈ T such that x covers s1 and s2 covers x, for, if there is not, then Z has
a subcollection W isomorphic to either Figure 6.2.3 or Figure 6.2.4, which
contradicts the assumption that neither of those is a lattice minor of Z.

Then Z must be a free product (linear sum) of chains and of lattices
of the form of Figure 6.2.1 on page 61. As shown in Theorem 72, the free
product operation preserves class I membership, therefore, since both such
families of lattice belong to class I (by Lemma 91), so too does Z.

Corollary 93. Class I is closed under taking lattice minors.

Proof. A class I lattice Z has no lattice minor isomorphic to the lattices
depicted in Figures 6.2.2 to 6.2.4. So there is no W ⊆ Z isomorphic to any
of these. Therefore no lattice minor of Z has a lattice minor isomorphic to
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Figures 6.2.2 to 6.2.4. Therefore every lattice minor of Z belongs to class
I.

Lemma 94. Class III is not closed under taking lattice minors.

Proof. Consider the lattice of sets Z1 shown in Figure 6.2.5 on page 67 (found
by a random computer search). The sets in this lattice are

d1 = {1, 3, 5, 6, 11, 12}

d2 = {0, 1, 5, 6, 9, 10, 13}

d3 = {0, 6, 7, 8, 10, 12, 13}

d4 = {1, 4, 6, 7, 8, 10, 13}

d5 = {0, 2, 3, 5, 7, 8, 9, 11, 13}

d6 = {1, 2, 3, 5, 6, 11, 12, 13}

E = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} .

This lattice is matroidal, and P (Z1) has two vertices:

r1 = (0, 5, 6, 6, 6, 6, 6, 7)

r2 = (0, 5, 5, 6, 6, 6, 6, 7)

therefore Z1 belongs to class III.
Consider the matroid M1 defined by the rank assignment r2. If the el-

ement 2 is deleted from this matroid, the resulting lattice of cyclic flats is
shown in Figure 6.2.6 on page 68. It is easy to see that Z ′

1 is a lattice minor
of Z1. The vertices of P

(
Z ′

1

)
are

r
′

1 = (0, 5, 5, 6, 6, 6, 7)

r12 = (0, 5, 6, 6, 6, 6, 7)

r
′

3 = (0, 4, 6, 6, 6, 6, 7)

r
′

4 = (0, 5, 6, 6, 6, 5, 7)

r
′

5 =

(
0,

9

2
,
11

2
, 6, 6,

11

2
, 7

)
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b

b b b b b b
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∅

d1 d2 d3 d4 d5 d6

E

Figure 6.2.5: A lattice Z1
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b

b b b b b

b

∅

d1 d2 d3 d4 d5 \ {2}

E \ {2}

Figure 6.2.6: A lattice minor Z ′
1 of Z1
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therefore Z ′
1 does not belong to class III. Therefore class III is not closed

under taking minors.
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Appendix A

Software

The Sage software package was used to analyse matroids and lattices of sets.
The following code implements the basic lattice operations meet and join,

and can determine if one set covers another in a given lattice of sets. This is
necessary for subsequent code.

1 def Join(Fone,Ftwo,L):
2 E = set()
3 for F in L:
4 E = E.union(F)
5 U = Fone.union(Ftwo)
6 Best = E
7 for F in L:
8 if U.issubset(F) and F.issubset(Best):
9 Best = F

10 return Best
11

12 def Meet(Fone,Ftwo,L):
13 I = Fone.intersection(Ftwo)
14 Best = set()
15 for F in L:
16 if F.issubset(I) and Best.issubset(F):
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17 Best = F
18 return Best
19

20 #returns True if Fone covers Ftwo, and False otherwise
21 def Cover(Fone,Ftwo,L):
22 Cov = True
23 if not Ftwo.issubset(Fone):
24 Cov = False
25 elif Fone == Ftwo:
26 Cov = False
27 else:
28 for F in L:
29 if F not in [Fone,Ftwo] and Ftwo.issubset(F) and F.issubset(Fone):
30 Cov = False
31 break
32 return Cov

The Poly function was used to generate a polyhedron from a list of cyclic
flats. Typically, this was done in order to examine the vertices of the poly-
hedron.

33 def Poly(L):
34 f = len(L)
35 CM = []
36 for i in range(f):
37 for j in range(f):
38 if i != j:
39 Fone = L[i]
40 Ftwo = L[j]
41 if Cover(Fone,Ftwo,L):
42 # add that if a covers b, then r(a)-r(b)=>1
43 Constraint = [0 for k in range(f+1)]
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44 Constraint[i+1] = 1
45 Constraint[j+1] = -1
46 Constraint[0] = -1
47 CM.append(Constraint)
48 # add that if a covers b, then r(b)-r(a)=>|b|-|a|-1
49 Constraint = [0 for k in range(f+1)]
50 Constraint[i+1] = -1
51 Constraint[j+1] = 1
52 Constraint[0] = len(Fone)-len(Ftwo)-1
53 CM.append(Constraint)
54 # if a & b are incomparable, r(a)+r(b)-r(meet)-r(join)=>|a cap

b|-|meet|↪→

55 if (not Fone.issubset(Ftwo)) and (not Ftwo.issubset(Fone)):
56 Jo = Join(Fone,Ftwo,L)
57 Me = Meet(Fone,Ftwo,L)
58 Constraint = [0 for k in range(f+1)]
59 Constraint[i+1] = 1
60 Constraint[j+1] = 1
61 Constraint[L.index(Jo)+1] = -1
62 Constraint(L.index(Me)+1] = -1
63 Constraint[0] = -len(Fone.intersection(Ftwo)) + len(Me)
64 CM.append(Constraint)
65 for i in range(f):
66 Fone=L[i]
67 if all(Fone.issubset(F) for F in L):
68 # i is the index of the lattice zero element
69 zero = i
70 ZeroRow[0 for k in range(f+1)]
71 # add that zero element must have rank zero
72 ZeroRow[zero+1] = 1
73 P = Polyhedron(ieqs=CM, eqns=[ZeroRow])
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74 return P

A typical use case of the Poly function was

75 L = [set(),{1,2,3},{4,5,6},{6,7,1},{1,2,3,4,5,6,7}]
76 P = Poly(L)
77 list(P.vertex_generator())
78

79 ## [A vertex at (0, 2, 2, 2, 3)]

The Poly function was also adapted into the LMat function, used to
generate a matrix representing the system of inequalities, or, more commonly,
a reduced form of the constraint matrix alone, in which, if a pair of rows were
linearly dependent, one of them was removed.

80 # if full is set to True, the constants in the ’b’ row are included
81 # otherwise, they are discarded
82 # if short is set to True, linearly dependent rows of
83 # the constraint matrix are discarded
84 def LMat(L, full=False, short=False):
85 f = len(L)
86 CM = []
87 for i in range(f):
88 for j in range(f):
89 if i != j:
90 Fone = L[i]
91 Ftwo = L[j]
92 if Cover(Fone,Ftwo,L):
93 Constraint = [0 for k in range(f+1)]
94 Constraint[i+1] = 1
95 Constraint[j+1] = -1
96 Constraint[0] = -1
97 CM.append(Constraint)
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98 if not short:
99 Constraint = [0 for k in range(f+1)]

100 Constraint[i+1] = -1
101 Constraint[j+1] = 1
102 Constraint[0] = len(Fone)-len(Ftwo)-1
103 CM.append(Constraint)
104 if (not Fone.issubset(Ftwo)) and (not Ftwo.issubset(Fone)):
105 Jo = Join(Fone,Ftwo,L)
106 Me = Meet(Fone,Ftwo,L)
107 Constraint = [0 for k in range(f+1)]
108 Constraint[i+1] = 1
109 Constraint[j+1] = 1
110 Constraint[L.index(Jo)+1] = -1
111 Constraint(L.index(Me)+1] = -1
112 Constraint[0] = -len(Fone.intersection(Ftwo)) + len(Me)
113 CM.append(Constraint)
114 for i in range(f):
115 Fone=L[i]
116 if all(Fone.issubset(F) for F in L):
117 zero = i
118 ZeroRow[0 for k in range(f+1)]
119 ZeroRow[zero+1] = 1
120 CM.append(ZeroRow)
121 if not short:
122 CM.append([-p for p in ZeroRow])
123 if full:
124 return matrix(CM)
125 else:
126 return matrix(CM)[:,1:]

This was used principally to test whether constraint matrices were uni-
modular or totally unimodular.
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127 L = [set(),{1,2,3},{3,4,5},{5,6,1},{1,2,3,4,5,6,7}]
128 LM = LMat(L,short=True)
129 for i in xrange(1,LM.ncols()):
130 Rowsets = Subsets(range(LM.nrows()),i)
131 Colsets = Subsets(range(LM.ncols()),i)
132 for RS in Rowsets:
133 for CS in Colsets:
134 d = LM[list(RS),list(CS)].determinant()
135 if d not in {-1,0,1}:
136 print(d,RS,CS)
137

138 ## (2, {0, 4, 6}, {0, 1, 4})
139 ## (-2, {1, 2, 4}, {1, 2, 3})
140 ## (-2, {8, 1, 5}, {0, 3, 4})
141 ## (-2, {2, 3, 7}, {0, 2, 4})
142 ## (2, {1, 2, 4, 9}, {0, 1, 2, 3})

The CyclicFlats function finds the lattice of cyclic flats of an input ma-
troid, based on the fact that a flat is cyclic if and only if its complement is
a coflat. This was used to find known matroidal lattices of sets.

143 def CyclicFlats(M):
144 CF = []
145 for r in range(M.rank()+1):
146 for F in M.flats(r):
147 Fcomp = M.groundset().difference(F)
148 if Fcomp == M.coclosure(Fcomp):
149 CF.append(F)
150 return CF

The CFMatroid function generates a matroid when given a collection of
cyclic flats and their ranks. It uses the largest set in the collection as the
ground set of the matroid. It generates a matroid based on a characterisation
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of matroid circuits in terms of cyclic flats and their ranks: if M is a matroid
on E, then C ⊆ E is a circuit of M if and only if C is minimal in E with
regard to the property that there is a cyclic flat Z of M where C ⊆ Z and
|C| = r (Z) + 1 [1].

151 def CFMatroid(L,R):
152 MCircuits = []
153 for i in xrange(1,len(L[-1])):
154 SetsLengthi = Subsets(L[-1],i)
155 for candidate in SetsLengthi:
156 s_candidate = set(candidate)
157 for CycFlat in L:
158 if s_candidate.issubset(CycFlat):
159 if len(s_candidate) == R[L.index(CycFlat)]+1:
160 IsMinimal = True
161 for Circ in MCircuits:
162 if Circ.issubset(s_candidate):
163 IsMinimal = False
164 break
165 if IsMinimal:
166 MCircuits.append(s_candidate)
167 return Matroid(groundset=L[-1], circuits=MCircuits)

The LatticeProgram function generated a linear program object from a
lattice given as input.

168 def LatticeProgram(L):
169 Lat=true
170 f=len(L)
171 Prog=MixedIntegerLinearProgram(maximization=True)
172 Var=Prog.new_variable(nonnegative=True,name=”z”)
173 #Add the constraint that the zero of the lattice is assigned zero.
174 Prog.add_constraint(Var[0]==0)
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175 for P in Subsets(range(f),2):
176 #For every pair of sets in L, checks that they have a unique meet
177 L1=L[P[0]]
178 L2=L[P[1]]
179 if (not L1.issubset(L2)) and (not L2.issubset(L1)):
180 MinIndex=min(P[0],P[1])
181 MeetIndex=0
182 Found=False
183 for i in range(MinIndex-1,-1,-1):
184 if L[i].issubset(L1) and L[i].issubset(L2):
185 if not Found:
186 Found=True
187 MeetIndex=i
188 else:
189 if not L[i].issubset(L[MeetIndex]):
190 Lat=False
191 break
192 #Assuming the pair has a unique meet, this checks that they have a

unique join.↪→

193 if Lat:
194 MaxIndex=max(P[0],P[1])
195 JoinIndex=0
196 Found=False
197 for i in range(MaxIndex+1,f):
198 if L1.issubset(L[i]) and L2.issubset(L[i]):
199 if not Found:
200 Found=True
201 JoinIndex=i
202 else:
203 if not L[JoinIndex].issubset(L[i]):
204 Lat=False
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205 break
206 #Assuming that they have a unique meet and join, add the

submodular constraint for this pair to the program.↪→

207 if Lat:
208 Prog.add_constraint(Var[P[0]]+Var[P[1]] >= Var[JoinIndex] +

Var[MeetIndex] + len(L1.intersection(L2)) - len(L[MeetIndex]))↪→

209 else:
210 break
211 #Assuming that L is a lattice, this adds the two constraints arising from

each covering relation in the lattice.↪→

212 if Lat:
213 for i in range(f):
214 for j in range(f):
215 Li=L[i]
216 Lj=L[j]
217 if Cover(Li,Lj,L):
218 Prog.add_constraint(Var[i]-Var[j] >= 1)
219 Prog.add_constraint(Var[i]-Var[j] <= len(Li)-len(Lj)-1)
220 Prog.set_objective(Var[0])
221 return Prog
222 else:
223 return False

The following code was used to generate random collections of subsets,
test if they were lattices, and generate the vertices of their polyhedra if they
were. It allowed examination of a great many lattices to test their properties.

224 n=24
225 m=8
226 p=0.5
227 c = 5
228 E=set(range(n))
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229 loopcount=0
230 empty=0
231 while loopcount<c:
232 loopcount=loopcount+1
233 L=[set([])]
234 setcount=0
235 while setcount<m:
236 S=set([])
237 for i in E:
238 if random()<p:
239 S=S.union({i})
240 if len(S)>2:
241 L.append(S)
242 setcount=setcount+1
243 L.append(E)
244 test=LatticeProgram(L)
245 if test<>False:
246 Prog=test
247 try:
248 Prog.solve(objective_only=True)
249 print loopcount, L
250 P=Prog.polyhedron()
251 for v in list(P.vertex_generator()):
252 v
253 except:
254 print loopcount, ”empty”
255 else:
256 print loopcount, ”not a lattice”
257

258 ## 0.0
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259 ## 1 [set([]), set([1, 2, 3, 4, 8, 9, 10, 12, 13, 16, 17, 18, 21, 22]), set([0, 2, 3,
5, 7, 8, 10, 14, 17, 19, 20, 22, 23]), set([1, 4, 5, 9, 10, 12, 15, 17, 18, 20,
21, 22, 23]), set([0, 1, 3, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 21,
23]), set([0, 2, 3, 4, 6, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22]), set([1, 3,
4, 7, 8, 9, 11, 12, 14, 16, 17, 22]), set([0, 1, 3, 4, 6, 9, 10, 11, 12, 13, 14,
18, 19, 21, 23]), set([0, 1, 2, 4, 5, 7, 8, 12, 19]), set([0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])]

↪→

↪→

↪→

↪→

↪→

↪→

260 ## A vertex at (0, 12, 12, 14, 11, 13, 13, 11, 13, 8)
261 ## A vertex at (0, 13, 12, 14, 10, 13, 12, 11, 13, 8)
262 ## A vertex at (0, 13, 12, 14, 10, 13, 13, 11, 13, 8)
263 ## A vertex at (0, 13, 12, 14, 12, 13, 12, 11, 13, 8)
264 ## A vertex at (0, 13, 12, 14, 12, 13, 13, 11, 13, 8)
265 ## A vertex at (0, 12, 12, 14, 12, 13, 13, 11, 13, 8)
266 ## 2 empty
267 ## 3 empty
268 ## 4 empty
269 ## 0.0
270 ## 5 [set([]), set([0, 2, 3, 5, 6, 7, 8, 13, 14, 15, 17, 18, 22, 23]), set([2, 4, 7,

9, 11, 12, 13, 14, 15, 16, 20, 21, 23]), set([16, 1, 3, 17, 8, 23, 13, 14]),
set([1, 2, 6, 7, 9, 10, 12, 14, 16, 17, 18, 19, 20, 23]), set([0, 1, 2, 3, 6, 8,
9, 14, 15, 16, 21, 22, 23]), set([3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17,
18, 20]), set([4, 5, 22, 7, 9, 13, 14, 15]), set([2, 4, 6, 10, 11, 17, 18, 19,
20, 22]), set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23])]

↪→

↪→

↪→

↪→

↪→

↪→

271 ## A vertex at (0, 10, 10, 11, 7, 10, 10, 9, 7, 9)
272 ## A vertex at (0, 10, 10, 11, 7, 9, 10, 10, 7, 9)
273 ## A vertex at (0, 11, 11, 12, 7, 11, 11, 10, 7, 9)
274 ## A vertex at (0, 11, 11, 12, 7, 10, 11, 11, 7, 9)
275 ## A vertex at (0, 11, 11, 12, 7, 10, 11, 10, 7, 9)
276 ## A vertex at (0, 11, 11, 12, 7, 11, 11, 11, 7, 8)
277 ## A vertex at (0, 10, 10, 11, 7, 10, 10, 10, 7, 8)

83



APPENDIX A. SOFTWARE

278 ## A vertex at (0, 10, 10, 11, 7, 19/2, 10, 19/2, 7, 17/2)
279 ## A vertex at (0, 10, 10, 11, 7, 10, 10, 10, 7, 9)
280 ## A vertex at (0, 11, 11, 12, 7, 11, 11, 11, 7, 9)
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