
Aspects of Computable Analysis

by

Michelle Helen Porter

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the requirements for the degree of

Master of Science in Mathematics.

Victoria University of Wellington

2016

2

Abstract

Computable analysis has been well studied ever since Turing famously

formalised the computable reals and computable real-valued function in

1936. However, analysis is a broad subject, and there still exist areas

that have yet to be explored. For instance, Sierpiński proved that every

real-valued function f : R → R is the limit of a sequence of Darboux

functions. This is an intriguing result, and the complexity of these se-

quences has been largely unstudied. Similarly, the Blaschke Selection

Theorem, closely related to the Bolzano-Weierstrass Theorem, has great

practical importance, but has not been considered from a computability

theoretic perspective. The two main contributions of this thesis are: to

provide some new, simple proofs of fundamental classical results (high-

lighting the role of Π0
1 classes), and to use tools from effective topology to

analyse the Darboux property, particularly a result by Sierpiński, and the

Blaschke Selection Theorem. This thesis focuses on classical computable

analysis. It does not make use of effective measure theory.

3

Acknowledgements

I have been extremely privileged to have had both Adam Day and Rod

Downey as my supervisors. I have benefited from their helpful comments,

clear explanations, kindness and especially, patience and perseverance.

They have both been exceptionally generous with their time and knowl-

edge, and I could not have asked for better guidance.

I would like to thank those who I have corresponded with via email,

particularly Steffen Lempp and Anil Nerode.

I give my thanks to my family, especially my parents and grandparents,

for their emotional and financial support. Your contribution was invalu-

able.

And lastly, to my partner Alex Sandilands, who managed to encourage,

comfort and spur me on to the finish line. There is no question that there

would be no thesis without him.

5

Contents

Introduction 11

1 Prerequisites and Notation 15

2 First Attempts and Definitions 19

2.1 Defining a computable real 19

2.1.1 Preliminary results and computable reals 22

2.1.2 Computable metric space and computable sequence 24

2.2 Defining a computable real-valued function 25

2.2.1 A computable function f : Rc → Rc 26

2.2.2 A computable function f : R→ R 34

3 The Distance Function 41

4 The Darboux Property 55

4.1 Introduction . 55

4.2 Approximating real-valued functions 58

7

8 CONTENTS

4.2.1 The closure of the class D is all functions 58

4.2.2 The complexity of canonical Darboux functions . 60

4.2.3 Computational power of canonical Darboux functions 65

4.3 The Darboux property on Q 71

4.3.1 The closure of the class RD is all rational functions 72

4.3.2 The complexity of canonical rational Darboux func-

tions . 74

4.4 Uniform limits of Darboux functions 77

4.4.1 Preliminaries . 77

4.4.2 The uniform closure of D 78

4.4.3 Examples . 79

5 Singular Points and Polynomials 81

5.1 Introduction . 81

5.2 Computing singular points 84

5.2.1 Building a set of potential singular points S . . . 84

5.2.2 Refining S, the set of potential singular points . . 86

5.3 Examples . 88

6 The Blaschke Selection Theorem 93

6.1 Introduction . 93

6.2 The Blaschke Selection Theorem 94

6.3 Subsequence and limit complexity 99

6.3.1 Restricting to the unit interval 100

6.3.2 Extending to higher dimensions 101

6.3.3 Back to the unit interval; 0′ is not sufficient . . . 106

6.4 Discussions on convexity 108

Further Questions 113

Bibliography 122

9

Introduction

In the late 19th century, mathematical logic was facing something of a cri-

sis. Early attempts to clarify the foundations of mathematics were result-

ing in inconsistencies and contradictions. In a bid to solve this problem,

David Hilbert conjectured in 1900 that mathematics was complete; he

believed that every question in the language of number theory should be

decidable. It was in the early 1930s that the concept of ‘by finite means’

arose and Austrian Kurt Gödel disproved this conjecture [26]. An in-

tuitive understanding of computability actually existed well before the

1930s, however, the proofs given during this time were mostly construc-

tive. Phrases such as ‘by finite means’ or ‘by constructive measures’ were

relatively standard, but lacked any precise definition. It was Alan Tur-

ing who famously formalised these concepts in his 1936 paper ‘On Com-

putable Numbers, with an Application to the Entscheidungsproblem’[60].

Turing defined a primitive machine, now known as the Turing machine,

and used it not only to solve the Entscheidungsproblem, but also to de-

fine the computable reals. Turing called a real x computable if arbitrarily

precise approximations of x could be computed by a machine. Or in other

words, if there existed a computable Cauchy sequence of rationals with

limit x.

His paper was influential for many reasons, particularly because before

this time the foundations of computability were built upon the natural

numbers (or finite strings), known as Type I objects. These objects are

finitely describable, and therefore straightforward to work with. Real

numbers, on the other hand are infinite objects, and so are not nearly as

11

easy to conceptualise. Because real numbers form the basis of analysis,

by providing a neat and natural definition of the computable reals, Turing

laid the foundation for a new branch of mathematics, known today as

computable analysis.

Computable analysis would be extended and explored by many math-

ematicians in the following years, notably G. Ceitin [16], O. Demuth

[22], R. Goodstein [27], S. Kleene [37], [38], G. Kreisel, D. Lacombe and

J. Shoenfield [40], B. Kushner [43], A. Markov [49], [50], V. Orevkov

[52], H. Rice [55], E. Specker [58], [59] and I. Zaslavsky [66],[67].1 By

around 1975, the development of computable analysis was largely com-

plete. Texts summarising the area, including those by M. Pour-El and

J. Richards [53] and O. Aberth [1] and [2], emerged.

In this thesis, we take a fresh look at some of the original results of

computable analysis. We aim to provide a new take on some of those

early proofs, highlighting the role of Π0
1 classes. As well as this, we focus

on two important results in classical analysis: a property closely tied to

the Intermediate value Theorem, known as the Darboux property, and

a generalisation of the Bolzano-Weierstrass Theorem, referred to as the

Blaschke Selection Theorem.

A function f has the Darboux property on an interval if, for every a

and b in this interval where a < b, and every y between f(a) and f(b),

there exists an x in [a, b] such that f(x) = y [19]. Unfortunately, once

it has been established that every computable real-valued function is

continuous, the Darboux property on its own becomes less interesting.

What is interesting is a result by Sierpiński that states that every real-

valued function f : R→ R is the pointwise limit of a sequence of Darboux

functions [56]. This result is unusual and surprising, and we dedicate a

large portion of this thesis to discussing how difficult it is to compute such

a sequence of functions. While the Intermediate value Theorem has been

analysed, see for example Pour-El and Richards [53], and Aberth [1], the

1This list is a sample, and by no means exhaustive. For further contributions, see
reference list.

12

Darboux property, particularly the Sierpiński result, has not before been

considered in this context.

The Blaschke Selection Theorem asserts that every infinite collection of

closed, convex subsets in a bounded portion of Rn contains an infinite

subsequence that converges to a closed, convex, nonempty subset of this

bounded portion of Rn [5]. The Blaschke Selection Theorem is signif-

icant because it is related to one of the central theorems of classical

analysis; that every bounded sequence of points in Rn has a convergent

subsequence [7]. Largely unstudied from a computability theoretic per-

spective, in this thesis we explore how difficult it is to find Blaschke’s

convergent subsequences. We are also interested in how difficult it is to

determine if a set is not convex.

We now give a brief outline of this thesis. The first chapter lists some

prerequisites and notation that is relevant. Some knowledge of basic

computability theory is assumed.

Chapter 2 introduces the relevant computable objects. The first sec-

tion covers the computable reals while the second covers the computable

real-valued function. We discuss some of the different definitions that

are available to us, including Markov, Borel and Type II computabil-

ity, and justify our choices. Chapter 3 introduces a computable subset

of Rn, utilising a particular type of distance function. We give a proof

that the graph of a Type II computable function is computable on any

interval, while the graph of a Markov computable function is upper semi-

computable, but not necessarily computable, on any given interval.

Chapter 4 is dedicated to the Darboux property, specifically the Sierpiński

result. We consider how complex particular Darboux functions are, and

the consequences this has on the complexity of the approximating Dar-

boux sequences. Complexity is discussed in terms of effective Baire

classes 1 and 2. We show that any Baire class 2 function is the limit

of a sequence of Baire class 2 Darboux functions. We are also interested

in the effect that restricting the domain and range of the function has

on the complexity of the approximating Darboux sequences. So we ex-

13

plore the Darboux property defined only on rational-valued functions. It

turns out that any computable rational function is a limit of a sequence

of computable rational Darboux functions. The last section of Chapter

4 briefly looks at the consequences of requiring a sequence of Darboux

function to uniformly, rather than pointwise, approximate a function.

The Bruckner, Ceder and Weiss paper [14] mostly inspire this section.

Chapter 5 introduces the singular point, and explores how hard it is to

find these points for polynomials with computable real coefficients. This

section has some connection with the Darboux property, but was mostly

included for interest. Lastly, Chapter 6 is dedicated to the Blaschke

Selection Theorem. We begin by giving a proof of the Theorem, and

then analyse this proof to show that 0′′ is sufficient to find a convergent

subsequence of any appropriate collection of closed convex sets, and to

compute its limit. We also prove that 0′ is insufficient in the place of 0′′.

Lastly, the final section of the chapter briefly looks into the complexity

of convexity. We prove that 0′ is not sufficient to deicide convexity in

Rn, but that the set of indices of closed convex sets is co-computably

enumerable over 0′.

At the beginning of each chapter or section we will clearly identify all

original results.

14

Chapter 1

Prerequisites and Notation

We assume that the reader has some background in computability theory,

but for those who are less familiar, we state some relevant definitions and

results. For a brief introduction to computability, see [23].

Let ϕ1, ϕ2, . . . be a standard enumeration of the partial computable func-

tions.

We will use N and ω interchangeably. Cantor space is the collection of

infinite binary sequences, 2ω. Baire space is the collection of infinite ω

sequences, ωω. The most important difference between these two spaces

is that Cantor space is compact, while Baire space is not.

We call natural numbers, or equivalently finite (binary) strings, Type I

objects. We call real numbers, or equivalently infinite (binary) strings,

Type II objects.1 In general, Type n objects are sets of Type (n − 1)

objects.

We define the notations Π0
1, Σ0

1 and ∆0
1 as follows. A set A ⊆ N is Π0

1 if

there is a computable relation R(x, y) such that y ∈ A if and only if

∀xR(x, y).

1Both equivalences follow by well-known isomorphisms.

15

16 CHAPTER 1. PREREQUISITES AND NOTATION

A set A is Σ0
1 if there is a computable relation R(x, y) such that y ∈ A if

and only if

∃xR(x, y).

A set A is ∆0
1 is it is both Π0

1 and Σ0
1.

We note that a set A is computably enumerable (c.e.) if and only if A is

Σ0
1.

One of the difficulties of computable analysis is dealing with Type II,

rather than Type I, objects. Type I objects can be expressed finitely,

and therefore, collections of Type I objects form sets. Type II objects, on

the other hand, are infinite, and therefore, collections of Type II objects

form classes. For this reason we also need to define Π0
1, Σ0

1 classes. We

do this now.

A tree is a subset of 2<ω that is closed under initial segments. We call

an infinite sequence P ∈ 2ω a path through a tree T if for all σ ≺ P we

have σ ∈ P . The collection of all paths in T is denoted [T].

For every string σ ∈ 2<ω (the collection of finite strings) we define a basic

open class to be

JσK = {x : x ∈ 2ω and σ ≺ x}.

The open classes of Cantor space are unions of basic open classes. A class

A ⊆ 2ω is effectively open if A = JAK for some computable set A ⊂ 2<ω.

A class A is Σ0
1 if there is a computable relation R such that

A = {x : ∃nR(x � n)}.

A set A is effectively open if and only if A is Σ0
1.

A class C ⊆ 2ω is Π0
1 if there is a computable relation R such that

C = {x : ∀nR(x � n)}.

Or equivalently, a subset of 2ω is a Π0
1 class if it is equal to [T] for

17

some computable tree T . An example of a Π0
1 class is any collection of

separating sets {X : A ⊆ X and X∩B = ∅}, where A and B are disjoint

c.e. sets.

C is effectively closed if and only if C is Π0
1. A class C is closed if its

complement is open. A class C is effectively closed if its complement is

effectively open.

We define a computable metric space to be a separable, complete metric

space (Polish metric space) X = (X, d, Y) with metric d and countable

dense subset Y such that, given ε and x, y ∈ Y in our space, there exists

an algorithm that computes d(x, y) to within ε. That is, there exists a

computable function f(x, y, ε) that outputs a value to within ε of d(x, y).

We call a point x in a metric space M an accumulation point of A ⊂M

if every neighbourhood of x has a point in A other than x.

Note that a neighbourhood of x is simply any set that contains an open

set that contains x. That is, N is a neighbourhood of x if there exists an

open set O such that x ∈ O ⊆ N .

Let X ⊂ Rn. Then X is the closure of X.

Unless otherwise mentioned, we consider B(x, ε) to be the open ball in

the appropriate space, with center x and radius ε.

For two sets X, A ⊂ Rn, let X\A = {x : x ∈ X and x /∈ A}.

Lastly, as convergent functions will play a significant role in this thesis, we

emphasise the distinction between pointwise and uniform convergence.

A sequence of functions f1, f2, . . . (each sharing the same domain and

co-domain) is said to converge pointwise to a function f if and only if

(∀x ∈ dom(f)) lim
n→∞

fn(x) = f(x).

Pointwise convergence is probably the most natural way to define con-

18 CHAPTER 1. PREREQUISITES AND NOTATION

vergence, but it is not always as well behaved as you might expect. It

does not need to preserve, for example, boundedness, continuity or dif-

ferentiability.

For example, consider the sequence of functions fn : [0, 1]→ R defined by

fn(x) = xn. This sequence converges pointwise to the following function.

f(x) =

1 if x = 1

0 otherwise

Notice that, while each function fn is continuous on [0, 1], their pointwise

limit f is not.

Uniform convergence is a stronger condition and forces much better be-

haviour. For instance, it preserves continuity.

A sequence of functions f1, f2, . . . (each sharing the same domain and

co-domain) is said to uniformly converge to a function f if, for all ε > 0

there exists N such that n > N implies

(∀x ∈ dom(f)) |f(x)− fn(x)| < ε.

The important point here is that N depends only on ε and not on x. In

a pointwise convergent sequence, N may depend on both ε and x. The

example we gave above does not uniformly converge; when 0 ≤ x < 1 and

0 < ε < 1 we have |fn(x)− f(x)| = xn < ε if and only if 0 ≤ x < ε
1
n . But

ε
1
n < 1 for all n. And so, for all N there exists a y such that ε

1
N < y < 1,

therefore |fm(y)− f(y)| = ym > ε, for m > N . That is, N must depend

on both ε and x.

Chapter 2

First Attempts and

Definitions

In this chapter we will shed some historical light on the definitions used

in this thesis. We begin with the computable real numbers. We give a

new direct proof of Theorem 2.2.3, a result due to Kreisel, Lacombe and

Shoenfield [40]. We also construct an original Markov computable func-

tion that cannot be extended to any continuous function on R (Example

2.2.7).

2.1 Defining a computable real

The concept of a real number has existed for centuries, but was for-

malised only around 150 years ago. In the early 19th century the French

mathematician Augustin-Louis Cauchy defined a Cauchy sequence to be

a sequence of rationals x1, x2, . . . such that, for all ε > 0 there exists an

n such that, if m > n, then |xn−xm| < ε. It was then in 1871 that Georg

Cantor took this construction and used it to formalise the notion of the

real number.1 Cantor defined a number x to be real if it was the limit

1In this year Richard Dedekind also developed Dedekind cuts, an equivalent defi-
nition.

19

20 CHAPTER 2. FIRST ATTEMPTS AND DEFINITIONS

of a Cauchy sequence of rationals. It was in effectivising this definition

that computable analysis was born.

Armed with this definition, it would now seem natural to us that a com-

putable real should involve a Cauchy sequence converging in some al-

gorithmic manner. Unfortunately, at this time there existed no formal

notion of computation. However, at the turn of the 20th century there

was certainly an intuitive sense of what an algorithmic method was. For

example, see the works of Dehn [20], Hermann [32], Kronecker [41], and

von Mises [63].2

One notable paper that demonstrated this was by Borel in 1912 (coinci-

dentally the year of Alan Turing’s birth). In his paper Borel claims that

a real x is ‘computable’ if, given any natural number n, we can obtain

a rational q within 1
n

of x [10].3 What Borel means by ‘computable’

is uncertain, particularly since it would be another 20 years before any

formal notion of computation emerged. We also hesitate to speculate

what Borel intended when he spoke of ‘obtaining’ a rational close to x.

However, in a footnote Borel writes;

I intentionally leave aside the practical length of operations, which

can be shorter or longer; the essential point is that each opera-

tion can be executed in finite time with a safe method that is

unambiguous.

While some students of history disagree about Borel’s intention, if our

understanding is correct, his intuition, at least, seems reasonable; a real

should be computable if we can, in finite time, give an approximation of

it with arbitrary accuracy.

It was not until 1936 that Turing tackled the definition in his paper

‘On computable numbers’ [60]. While Church, Kleene and Post were

2For English translation of [20], see [21]. For an English translation of [32], see
[33]. For an English translation of [41], see [42]. For an English translation of [63],
see [64].

3Quotes and comments from Borel’s paper [10] are based on a translation (French
to English) by Avigad and Brattka [3].

2.1. DEFINING A COMPUTABLE REAL 21

all looking into this area around this time, Turing’s paper is accepted

as the most intuitively clear.4 Turing begins by stating that a real x is

computable if its decimal expansion can be output by finite means.5 He

then goes on to define the computing machine, and that ‘by finite means’

refers to a machine that can output a sequence of symbols given some

fixed amount of information.

Noting that Turing called a machine that writes only a finite number of

symbols circular, he finally states;

A sequence is computable if a circular-free machine can compute

it. A number is computable if it differs by an integer from the

number calculated by a circular-free machine.

Simply put, a real x is considered computable if there exists a Turing

machine that, given no input, outputs a binary decimal expansion of x.

There is, however, a problem with this definition, as Turing later noted

in his correction [61]. He believed that if we can compute a rational qi for

all i such that |x−qi| < 2−i (which he called the ‘intuitive requirement’),

then x should also be considered computable in the context of his original

definition, and vice versa.

We immediately have one direction; if we have a binary expansion of

a real x, then the truncated binary expansion will provide a sufficient

rational in the sense of the second definition. It is in the other direction

that Turing noted a disparity. For example, suppose we have a sequence

of rational numbers (qi)i that approach x as above, and q1 = 1
2
, q2 =

1
2
, q3 = 1

2
, Then we have no way of knowing what the first binary

point of x should be, because our sequence may move above or below 1
2

at any stage.

To correct this non-uniformity, Turing goes on to modify the way he as-

sociates computable numbers with computable sequences. His solution

4See any historical discussion about Turing, for example, [23]
5It is quite remarkable that Turing based his notion of computability on a subset

of R rather than the integers.

22 CHAPTER 2. FIRST ATTEMPTS AND DEFINITIONS

is a formula that incorporate both concepts. The details, which we do

not give here, can be found in [61]. Being a rather cumbersome way

to consider a real number, this thesis will bypass any separation of the

computable reals and computable sequence definitions. Instead, we will

consider a real x to be computable if we can computably produce a ratio-

nal approximation as close to x as we would like. As a consequence, every

rational is computable, where we output a rational in some appropriate

way, for example by giving its Gödel number.

And so we finally give the definition that we will be using;

Definition 2.1.1. A Cauchy name for a real x is a sequence (xi)i of

rationals that converge rapidly to x. That is, for every k and j ≥ k,

|xj − x| < 2−k.

Definition 2.1.2. A real number x is computable if it has a computable

(rapidly converging) Cauchy name.

We call the collection of all computable real numbers Rc. In general, if

x is a computable real we will write a computable Cauchy name as (xi)i.

2.1.1 Preliminary results and computable reals

Before moving on, we take a moment to give some initial thoughts about

the computable reals.

We first note that the definition we have given of a computable real

could be replaced with a number of equivalent definitions. For example,

we could have called a real x is computable if there exists a computable

sequence of shrinking intervals uniquely enclosing x. That is, there exist

two computable rational sequences (ui)i and (vi)i such that u1 < u2 <

. . . < un < . . . x . . . < vn < . . . < v2 < v1. Brattka, Hertling and

Weihrauch give this and some other alternate definitions in [11]. However,

the one we have chosen is the most intuitive and appropriate in the

context of this thesis.

2.1. DEFINING A COMPUTABLE REAL 23

Irrespective of the chosen definition, it very quickly becomes apparent

that a computable real is not as nice to work with as we would perhaps

like. Deciding whether two real numbers are the same is a natural and

seemingly simple question. Maybe we would not expect to be able to

decide this for any two real numbers, but perhaps for at least two com-

putable reals. It is one of the great tragedies of computable analysis that

this is not the case.

The difficulty arises because we are dealing with Type II objects. It is

easy to decide whether two natural or rational numbers are equal, how-

ever, while two Cauchy names may seem to be very close for a long time,

always at some later stage we may observe divergence. Consequently, if

two computable reals a and b are not equal, we will see at some point

that a < b or b < a. However, if a = b, this can never effectively be

concluded.

Theorem 2.1.3. (Folklore, implicit in Turing [60]) The following rela-

tions cannot be computably decided: x = y, x ≤ y.

Proof: Suppose to the contrary. Fix e. Define a computable sequence

of rationals (xi)i such that xi represents the state of the eth machine at

stage i on input e. That is, x0 = 0 and we let xi = xi−1 + 0.

i−1︷ ︸︸ ︷
00 . . . 00 1 if

ϕe(e)[i] ↓ and xi = xi−1 + 0.

i−1︷ ︸︸ ︷
00 . . . 00 0 otherwise. (xi)i is a computable

sequence of rationals, and we let x be the limit to this sequence. We then

ask whether x = 0? If yes, then we know ϕe(e) does not halt, and if no

it does. Contradiction. x ≤ y follows similarly. �

Notice that the complexity of equality is at worst 0′; to decide if x =

y, given respective Cauchy names (xi)i and (yi)i, simply ask whether

(∀n)|xn − yn| < 2−(n−1).

Theorem 2.1.4. (Folklore) The following operations are computable: x+

y, x− y, xy, if y 6= 0 then x÷ y, if x > 0 then exp(x) and log(x), sin(x),

cos(x), tan−1(x), max(x, y), min(x, y) and
√
x as long as x ≥ 0.

24 CHAPTER 2. FIRST ATTEMPTS AND DEFINITIONS

In each case, given the Cauchy names of x and y, apply an appropriate

uniform procedure to each Type II object. For example x1+y1, x2+y2 . . .

is the computable Cauchy name of x+y. Later in the thesis we will (often

implicitly) use these computable operations.

Lastly, we list a few facts to keep in mind:

1. Because there are only countably many computable functions, there

are countably many computable reals and hence uncountably many

noncomputable reals.

2. Rc is dense in R and forms a real closed field [55].

3. It is not enough that a real has a Cauchy name, this sequence must

be computable for a real x to be considered computable.

4. There are infinitely many distinct Cauchy names for any com-

putable real, and no computable listing of every computable Cauchy

name. If there were, we could diagonalize and arrive at a contra-

diction.

5. While we cannot list every computable Cauchy name, we can build

a computable tree in Baire space whose paths represent Cauchy

names. We represent the rationals with Gödel numbers, and the nth

element in a branch represents the nth term in a potential Cauchy

sequence. We ‘kill’ a branch at stage/height n if the next element

to be added is further than 2−m away from element m for all m < n.

Note that, while the tree may be computable, the paths need not

be. We will use the fact that the Cauchy names form a Π0
1 class

later on.

2.1.2 Computable metric space and computable se-

quence

Recall that we defined a computable metric space to be a separable com-

plete metric space (polish metric space) X = (X, d, Y) with metric d and

2.2. DEFINING A COMPUTABLE REAL-VALUED FUNCTION 25

countable dense subset Y such that, given ε and x, y ∈ Y in our space,

there exists an algorithm that computes d(x, y) to within ε. Notice that

(R, d,Rc) is a computable metric space; in the separable complete metric

space (R, d), with the usual metric d, Rc is a countable dense subset, and

by Theorem 2.1.4, for any x, y ∈ Rc we can compute d(x, y) = |x− y| to

within ε. This is the space we will usually be working in, however, we

note in passing that the concept of a ‘computable real’ can be generalised

to other computable metric spaces. Consider the following example.

Example 2.1.5. Let X be the collection of all real-valued functions f :

[0, 1]→ R. Define a metric dX(f, g) = sup{|g(x)−f(x)| : x ∈ [0, 1], f, g ∈
X}. Then the collection Y of all polynomials p : [0, 1]→ R is a countable

dense subset of X. For any two polynomials p1, p1, we can compute

dX(p1, p2) to within ε, hence (X, dX , Y) is a computable metric space.

We can then define a function f ∈ X to be ‘computable’ in this space if

it is the limit of a fast converging sequence of polynomials in Y .

Note that many of the results to follow can be generalised to computable

metric spaces.

Lastly, we define a computable sequence of real numbers.

Definition 2.1.6. We call a sequence of real numbers (ri)i computable

if there exists a computable sequence of rationals (qi,k)i,k such that for

all i, (qi,k)k is a computable Cauchy name for ri.

2.2 Defining a computable real-valued func-

tion

Defining the computable real-valued function again highlights the diffi-

culties of working with Type II, rather than Type I, objects. Computable

Type I functions simply take finitely describable objects to other finitely

describable objects. How do we extend this concept to the infinitely

describable reals?

26 CHAPTER 2. FIRST ATTEMPTS AND DEFINITIONS

One reasonable approach could be to consider a function f computable

if there exists an algorithm that, by observing the first n terms of a

Cauchy name for x, outputs the first n terms of the Cauchy name of

f(x). However, if we used this definition, every computable function

would necessarily be Lipschitz.6 Unfortunately this would exclude some

functions that we would like to consider computable, for instance, f(x) =

x2.7 These kinds of functions have been studied, and while they have

relevance in computable randomness (for example see [23]), we would

like to give our computable functions more freedom. Ideally, we would

still like some finite number of terms of a Cauchy name for x to provide

sufficient information to compute the nth term in the Cauchy name of

f(x). However, we do not want to put restrictions on how large this

number may be.

A natural place to start is by applying this concept to functions with

domains restricted to the computable reals. Turing also started here, in

1936.

2.2.1 A computable function f : Rc → Rc

Defining the computable real and computable real-valued function is a

similar process. So it does not come as a surprise that before the 1930s

there existed an intuitive understanding of how a computable real-valued

function should behave, even if there did not exist a widely accepted

formal classification. For example, in the same paper that Borel wrote

about his ‘computable real’, he also provided some insight into how he

viewed a computable real-valued function [10]. Borel believed that a

function f should be called computable if, given a ‘computable number’

6A function f is Lipschitz if for all a, b ∈ dom(f), |f(a)− f(b)| ≤ L|a− b| for some
constant L. For more information see [31].

7Consider a real x and Cauchy name with initial term 3
2 . The real x could be

anything in the interval [1, 2], which means the image of x under f could be anything in
the interval [1, 4]. There is no rational we can output as the first term in a new Cauchy
name that could satisfy all values in [1, 4]. Therefore, we need more information about
the Cauchy name of x before we can give the first term in the Cauchy name of f(x)
(for example the second term should be sufficient).

2.2. DEFINING A COMPUTABLE REAL-VALUED FUNCTION 27

α, you can compute f(α) to within 1
n
, for any n.

Borel does not specify what he intends by ‘method’, nor is he clear

whether he expects a computable function to be that which takes a

method to compute a real to another method to compute a real, or in-

stead, an approximation to an approximation. Regardless of his moti-

vation, he seems to give a reasonable suggestion for a computable real-

valued function. Indeed, he goes on to assert that a function cannot be

computable unless it is continuous at every computable value of a given

variable, which will become a necessary property in every definition we

will go on to discuss.

Of course, it was Turing who would formalise a widely accepted notion

of the computable real-valued function. Like Borel, Turing initially re-

stricted his focus to only those functions defined on Rc. He declared that

computable functions cannot be defined on all real values because there

is no general way to describe all real numbers. We will soon see that this

is not the case, and in fact, Turing’s own position would change in later

years when he formalised the oracle Turing machine. However, for now,

we will continue to follow his original approach.

If x is a computable real, then by definition, there must exist a primitive

machine ϕe that corresponds to a Cauchy name for x. Logically extending

this idea, Turing defined a function f : Rc → Rc to be computable if

there exists a total computable function ψ such that ψ(e) is the index of

a primitive machine that corresponds to the Cauchy name of f(x). For

a more formal classification, see Turing’s original paper [60]. Turing’s

function essentially takes a method to compute x to a method to compute

f(x). The Russian school later adopted and further developed this idea,

and today Turing’s computable function is more commonly known as

Markov computable.

Markov’s version of a computable function f : Rc → Rc follows [49].

Let ϕ1, ϕ2 . . . be a standard enumeration of the partial computable func-

tions. We call e ∈ N an index name of x ∈ Rc if e is the index of the

28 CHAPTER 2. FIRST ATTEMPTS AND DEFINITIONS

partial machine that computes a rational Cauchy name of x.

Definition 2.2.1. We call a function f : Rc → Rc Markov computable

if there exists a partial computable function ν : N→ N such that, given

any index name e of x ∈ Rc, v(e) exists, and is an index name of f(x)

We call the function ν : N→ N the index function of f .

It turns out that the Turing-Markov definition (which we will now refer to

as ‘Markov’) is not the only interpretation of the computable function f :

Rc → Rc. Borel computability, which in contrast takes approximations

(rather than methods) to approximations, is also a reasonable definition

worth considering. In the introduction to this section, we mentioned the

idea of using a finite number of bits of the Cauchy name of real x to give

some approximation of f(x). Borel computability formalises this notion.8

Definition 2.2.2. Let (xi)i be a Cauchy name of x. We call a function

f : Rc → Rc Borel computable if there exists an oracle Turing Machine

Φ such that, for all x ∈ Rc and n ∈ N, Φ(xi)i(n) = q, where q is rational

and |q − f(x)| < 2−n.

This definition is nice, especially in a modern context. Fortunately, we

do not need to spend time agonising over which notion of computability

is more appropriate, because it turns out that Markov and Borel com-

putability are equivalent! This greatly simplifies things for us later on, as

we will be able to use whichever notion is more contextually convenient.

The following theorem was originally proved by Kreisel, Lacombe and

Shoenfield in 1959 [40], and later by Cěitin [16] in 1967. We give a new

direct proof of this result that shows that Markov computable functions

have a particular effective continuous property.

Theorem 2.2.3. (Kreisel, Lacombe, Shoenfield [40]) A function f is

Markov computable if and only if it is Borel computable.

8This definition is not really attributed to Borel, however, as these types of func-
tions are classically referred to as ‘Borel computable’ we will stick with this notation
to avoid confusion.

2.2. DEFINING A COMPUTABLE REAL-VALUED FUNCTION 29

Proof: (⇐) Let f : Rc → Rc be a Borel computable function and e the

index name of a computable real x. The function f is Borel computable,

so given the Cauchy name of x we have access to a Cauchy name (f(x)i)i

of f(x). Using the Recursion Theorem we can find the index name e′ of

f(x).9 Define a function ν : N → N such that ν(e) = e′. Then ν is a

partial computable index function and so f is Markov computable.

(⇒) This direction is not as straightforward. Initially, you may think to

approach it in a similar manner to the backwards direction. However, if x

is a computable real, but we do not have access to a computable Cauchy

sequence converging to x, then there is no machine, and therefore no

index, that outputs this particular approximation of x. This means we

cannot find the index name of f(x) using ν.

We will prove that a Markov computable function f is Borel computable

in a few steps. First we show that if a Markov computable function f is

effectively continuous on Rc then f is Borel computable. We then prove

that there exists a unique c.e. set of open balls that ensures that every

Markov computable function is effectively continuous. First, let us define

what we mean by ‘effectively continuous’.

Definition 2.2.4. Let f : Rc → Rc be a function defined on an interval

I ⊆ Rc. The function f is effectively continuous on I if there exists a

computable function d(ε, a) such that, for all x, a ∈ I and ε > 0,

|x− a| < d(ε, a) =⇒ |f(x)− f(a)| < ε.

Claim 1: If a Markov computable function f : Rc → Rc is effectively

continuous on Rc then f is Borel computable.

Proof of claim 1: Let f be an effectively continuous Markov computable

9Define a function φ(m,n) = f(x)n, where f(x)n is the nth term in f(x)′s
Cauchy name. By the S-m-n Theorem we can find a total computable function g
such that φ(m,n) = ϕg(m)(n) for all n ∈ N. By the Recursion Theorem g has
a fixed point. That is, there exists an e′ such that ϕg(e′)(n) = ϕe′(n). Then
φ(m,n) = φ(e′, n) = ϕg(e′)(n) = ϕ′e(n), and so e′ is the index of the Cauchy name of
f(x), and is computable from g.

30 CHAPTER 2. FIRST ATTEMPTS AND DEFINITIONS

function. To prove our claim, we must show that, for any computable real

x ∈ Rc and n ∈ N, we can compute a nth approximation, and therefore

Cauchy name, of f(x).

Fix an arbitrary computable real a with (possibly noncomputable) Cauchy

name (ai)i. All we need to do is find b ∈ Rc such that |f(b) − f(a)| <
2−(n+1) and take the (n + 1)th approximation of f(b). If we call f(b)n+1

the (n + 1)th approximation of f(b), then f(b)n+1 will be within 2−n of

f(a), and so will act as a sufficient approximation of f(a). More precisely,

|f(b)n+1−f(a)| ≤ |f(b)n+1−f(b)|+|f(b)−f(a)| < 2−(n+1)+2−(n+1) = 2−n.

We can find such a b ∈ Rc as follows: Letm be least such that d(2−(n+1), a) ≥
2−m. Wait for a q ∈ Q such that |q − am+1| < 2−(m+1) and consider the

corresponding constant Cauchy name q, q, q, q, . . . with index name e.

Then

|q − a| ≤ |q − qm+1|+ |qm+1 − am+1|+ |am+1 − a|
< 0 + 2−(m+1) + 2−(m+1)

= 2−m

Because |q − a| < 2−m ≤ d(2−(n+1), a), we have that |f(q) − f(a)| <
2−(n+1). Setting q = b, we are done.10 �

We now need to prove that a Markov computable function is in fact

effectively continuous on Rc. We do this by showing that there exists a

c.e. set W with the following properties.

Fix a Markov computable function f : Rc → Rc and let W be a c.e. set

of pairs of open balls such that:

1. If the pair of open balls (b1, b2) ∈ W , then for all computable real

10In detail; we now take the partial function with index e and input it into the
index function ν of f . Then ν(n) is the index of the partial function that outputs a
Cauchy name for f(b). We take the (n+ 1)th approximation of f(b) and are done.

2.2. DEFINING A COMPUTABLE REAL-VALUED FUNCTION 31

numbers x contained in b1, f(x) is contained in b2.

2. If e is an index name of x ∈ Rc and ν is the index function of f , then

for all k there exists a k′ such that (B(xk′ , 2
−k′), B(f(x)k, 2

−k)) ∈
W . The rational f(x)k is a computable kth approximation of f(x),

whose index name is ν(e) (and similarly for xk).

Then if such a set W exists, f must be effectively continuous on Rc. This

fact follows directly from the definition of W . However, the details are

given below for completeness.

Suppose we had such a set W with Properties 1 and 2 above. We need to

define a computable function d(2−m, x) for all x ∈ Rc and m ∈ N as given

above. Fix a ∈ Rc (we are given an index name of a, and hence have

access to a computable Cauchy name of a) and n ∈ N. Let a1, a2, . . .

and f(a)1, f(a)2, . . . be Cauchy names of a and f(a) respectively.

To define d(2−n, a), we wait for a particular pair (b1, b2) to be enumer-

ated into W . We know that there exist Cauchy names a1, a2, . . . and

f(a)1, f(a)2, . . . of a and f(a) respectively such that (b1, b2) ∈ W where

b2 = B(f(a)n+3, 2
−(n+3)) and b1 = B(ak, 2

−k) for some k by Property 2

of W .

When we observe such a pair, set d(2−n, a) = 2−(k+1).

Justification: if d(2−n, a) = 2−(k+1) then |x− a| < d(2−n, a) if and only if

x ∈ B(a, 2−(k+1)). But by Property 1 of W , if x ∈ b1 = B(ak, 2
−k) ∩ Rc

then f(x) ∈ b2 = B(f(a)n+3, 2−(n+3)) ⊂ B(f(a), 2−n). Hence, if |x−a| <
d(2−n, a) then |f(x)− f(a)| < 2−n, and so f is effectively continuous.

Finally, we need only show W exists.

Claim 2: We can enumerate a c.e. set W as described above for any

Markov computable function f .

Proof of claim 2: Note that the Recursion Theorem is used implicitly

during this proof (and thesis). In general we omit these details for sim-

32 CHAPTER 2. FIRST ATTEMPTS AND DEFINITIONS

plicity. Let e1, e2, . . . be a computable listing of indices corresponding to

all possibly partial Cauchy sequences. That is, for any index i, the ma-

chine with index ei copies the sequence output by ϕi until a stage where

the sequence no longer looks Cauchy. If we observe a machine ei out-

putting some rational that is too far away from the previously observed

term in the sequence, we halt ei on the last viable output forever. So

every index in our list must correspond to a sequence that looks Cauchy

at every stage, although some may be partial.

We now refine this list. Let ν : N→ N be the index function of Markov

computable function f . Recall that if e is the index of a partial machine

that outputs a Cauchy name for real x, then ν(e) is the index of a partial

machine that outputs a Cauchy name for real f(x). Build a new list of

indices as follows; let e(i, k) represent the index of the machine that copies

machine ei on all outputs until a stage s is reached where the machine

with index ν(e(i, k)) halts and outputs a viable kth approximation to

some rational (hopefully the image under f of whatever ei represents).

More precisely, copy ϕei on all outputs until we reach a stage s where

ϕν(e(i,k))(k)[s] = rk ∈ Q, and in preceding stages has output r1, . . . , rk−1,

where (∀j)(∀i)j < i < k, |ri − rj| < 2−j. If this is observed, machine

e(i, k) pauses. This machine will restart at a later stage if W does not

meet the conditions given. Recall that, by stage s machine e(i, k) has

output some finite sequence of rationals q1, . . . , qk′ that appear to be

Cauchy. We now enumerate the ball (B(qk′ , 2
−k′), B(rk, 2

−k)) into W .

We claim that W is as defined above. Suppose that Property 1 does not

hold. That is, there exists a pair (b1, b2) = (B(qk′ , 2
−k′), B(rk, 2

−k)) ∈ W
such that there is some a ∈ b1 ∩ Rc, yet f(a) /∈ b2. At some point we

will enumerate a pair (b3, b4) into W such that b3 ∈ b1 but b2 ∩ b4 = ∅
(because a is a computable real). Suppose this occurs at stage s, and

let e(i, k) and e(j, l) be the indices of machines that were responsible for

(b1, b2) and (b3, b4)’s enumeration into W respectively. Let ϕej be total,

and output a Cauchy name of a. This means e(j, l) will be copying a

true Cauchy name (see note on this later).

2.2. DEFINING A COMPUTABLE REAL-VALUED FUNCTION 33

We now instruct the machine e(i, k) to copy the Cauchy name currently

being copied by machine e(j, l). This is allowed because b3 ∈ b1, and so

e(i, k) will still output a viable Cauchy name. That is, suppose by this

stage e(j, l) has copied rationals a1, . . . am in a Cauchy name of a. Assum-

ing m > k′, we instruct e(i, k) to copy the machine ϕej from this point on-

wards (if m < k′ just wait until we have seen the k′th term in the Cauchy

name of a and copy after that point). Then r1, r2, . . . rk′ , am, am+1 . . . is

a Cauchy name of a and ϕν(e(i,k))(k)[s] = rk (by the Use Principle), but

f(a) /∈ B(rk, 2
−k).11 Since ν is an index function, we have a contradic-

tion.

Note that we assume e(j, l) is copying a true Cauchy name of a. We

cannot, of course, computably know whether the machine ϕej is total,

but we know that such a machine exists, and that is sufficient.

And so 1 holds. 2 follows easily; every computable real has a Cauchy

name represented by some index in our list, and hence the desired balls

must be enumerated into W at some stage.

Therefore the c.e. set W exists as claimed, and this proves both the claim

and the result. �

We will now use Borel and Markov computability interchangeably.

Finally, we give one last definition.

Definition 2.2.5. We call a function f : Rc → Rc Banach-Mazur com-

putable (also known as sequentially computable) if f maps any given

computable sequence (ri)i of real numbers into a computable sequence

of real numbers (f(ri))i.

Banach and Mazur developed this type of computability in the 1930s

[4]. It does not seem very natural in our opinion and is known to be

11The use of a converging oracle computation ΦA(n) is z + 1 for the largest z such
that A(z) is queried during the computation. Let the use function be Use: N → N.
That is, Use(ΦA(n)) = z + 1 from above. The Use Principle is as follows; let ΦA

be a converging oracle computation and B a set such that B � Use(ΦA(n)) = A �
Use(ΦA(n)). For more details see, for example, [23] Section 2.

34 CHAPTER 2. FIRST ATTEMPTS AND DEFINITIONS

different to those given above. A function that is Markov computable

must be Banach-Mazur computable, and while the converse holds in some

cases, it is not true in general. See [35] for Hertling’s construction of a

Banach-Mazur computable but not Markov computable function on Rc.12

Banach-Mazur computability is too general for our purposes because it

characterises functions as computable even if they may not be computed

in the typical sense; by a Turing Machine. This type of computability is

not widely studied and does not play a large role in this thesis.

Notice that all of these types of computability require the function in

question to be continuous on its domain. This fact is unsurprising when

you think about it, and will remain a requirement when we look at com-

putable function defined on all of R. However, we will soon see that

not every Markov/Borel computable function can be extended to even a

continuous function on R, much less a computable one. And with this in

mind, we move on to defining the computable real-valued function.

2.2.2 A computable function f : R→ R

We now reconsider the definition of a computable real-valued function.

In the previous section, we restricted our attention to only the com-

putable reals. However, as all real values are Type II objects, it could

be argued that it is more natural to consider a computable process as

taking one Type II object to another (rather than just those that hap-

pen to be computable). Kleene first investigated this notion in 1952 [37].

He considered a ‘computable real-valued function’ to involve an effective

procedure that takes Type II objects to Type II objects on the whole

space. Let us consider what that means.

Given an effectively converging Cauchy sequence in Baire space, we would

like to map this sequence is some uniform way to another effectively

converging Cauchy sequence. We give Kleene’s solution below.

12Hertling has also written other papers about Banach-Mazur computability, no-
tably ‘Banach-Mazur computable functions on metric Spaces’ [34].

2.2. DEFINING A COMPUTABLE REAL-VALUED FUNCTION 35

Definition 2.2.6. Let (xi)i be a Cauchy name of x. We call a function

f : R → R Type II computable if there exists an oracle Turing Machine

Φ such that, for all x ∈ R and n ∈ N, we have Φ(xi)i(n) = q, where q is

rational and |q − f(x)| < 2−n.

Notice that this definition is simply an extension of Borel computability.

The only difference is that we now allow x to take any real value, rather

that restricting x to Rc. We sometimes drop the ‘Type II’ and just call

these functions computable.

There are a number of equivalent definitions scattered throughout the

literature that we could have used in the place of Definition 2.2.6. For

example, those provided by Lacombe [46],[45] and Grzegorczyk [30], who

were also interested in the computable real-valued function around the

same time as Kleene. Grzegorczyk and Lacombe wanted a definition

that was as closely linked with classical analysis as possible. In 1955,

they (independently) gave the following definition of a computable real-

valued function; a function f : R→ R should be considered computable

if it is both sequentially computable (f maps every computable sequence

of points into a computable sequence of points - recall Banach-Mazur

computable functions!) and effectively uniformly continuous (there is a

computable function h : N → N such that, for all x, y and all N , if we

have |x− y| < 1
h(N)

then |f(x)− f(y)| < 2−n).

From the analytical standpoint, this is a natural definition, due to the

fact that knowledge of a real-valued function on a dense set of points and

continuity is sufficient to determine it. Grzegorczyk and Lacombe simply

effectivise these two conditions [53].

We finish with one final, alternate notion by Caldwell and Pour-El,, who

gave their classification in 1975. They defined a computable sequence of

polynomials to be a sequence defined by

pn = Σ
g(n)
i=1 rn,ix

i,

where g : N→ N is computable function and (rn,i)n,i a computable ratio-

36 CHAPTER 2. FIRST ATTEMPTS AND DEFINITIONS

nal (double) sequence. They then call a function f : R→ R computable

if there exists a computable sequence of rational polynomials (pi(x))i that

converges effectively to f . For full details see [15]. This definition was

proved equivalent to Grzegorczyk and Lacombe’s in [53].

We could have used either of these definitions, or many of the others

not stated here. However, in the effort to be as straight forward and

consistent as possible, we have opted to for Kleene’s Type II computable

functions.

We now note a few interesting points about computable functions. First,

the reader will notice that computable functions must be continuous over

R. Continuity is a result of the very nature of the computable function,

combined with the Use Principle. As a consequence, even simple func-

tions like the following should not be considered computable!

f(x) =

1 if x ∈ Q
0 if x /∈ Q

This seems reasonable, as how would we compute f(x) if the rationality

of x is not known (for example x = π + e)...

What about an even simpler discontinuous function, the sign function?

sgn(x) =

−1 if x < 0

0 if x = 0

1 if x > 0

For sgn(x) to be computable there would need to exist some algorithm to

decide whether x is greater than, less than, or equal to 0. But we already

know that, even if x is a computable real, we cannot decide whether or

not x = 0. The problem becomes even harder if x ∈ R\Rc. And so,

it is not unreasonable that a computable real-valued function must be

2.2. DEFINING A COMPUTABLE REAL-VALUED FUNCTION 37

continuous.

This last example raises an interesting question. What about extend-

ing Borel computable functions to computable functions? Is this always

possible?

Obviously, based purely on domain differences, Markov/Borel and (Type

II) computability are not the same. But what may not be as clear is

that, even if we compare them with restricted or extended domains, these

notions of computability remain (to some extent) distinct.

By a straightforward application of the Recursion Theorem, it is evident

that any computable function restricted to Rc must be Borel computable.

The converse is not true in general. We will give an example of a Borel

computable function that cannot be extended to a computable function.

In fact, we give an example of a Borel computable function that cannot

even be extended to any continuous function on R.

Example 2.2.7. We will build a function f : [0, 1] ∩ Rc → Rc that is

Borel computable, but cannot be extended to a continuous function on

R. Consider a standard enumeration of partial computable machines

ϕe1 , ϕe2 , . . . that appear Cauchy (recall we built such a sequence in the

proof of Theorem 2.2.3, Claim 2). Note that we are only interested

in computable reals in the unit intervals, so discard all machines that

approximate values outside of this. Call the mth term output by machine

ϕen (if such a term exists) qm,n. Notice that, partial or not, qm,n is a 2−m

rational approximation of some computable real. We now define f by

a sort of diagonalisation process. We essentially set f(x) = m for all

x ∈ (qm,m − 2−m, qm,m + 2−m) ∩ Rc not yet defined.

More formally, we construct f in stages. At stage n, let m be least such

that:

1. We have observed qm,m

2. There exists an x ∈ (qm,m − 2−m, qm,m + 2−m) ∩ Rc for which f(x)

has not yet been defined

38 CHAPTER 2. FIRST ATTEMPTS AND DEFINITIONS

Declare f(x) = m for all x that satisfy 2.

Clearly f is Markov/Borel computable. The function f must be defined

at every computable real by construction, so to decide f(x), simply wait

until the Cauchy name of x is entirely contained in an interval f is defined

on.

There is a section of the unit interval that f is not defined on at every

stage. This means, for all n there exists x ∈ [0, 1] ∩Rc such that f(x) =

n, i.e. on [0, 1] f attains arbitrarily large values. The Extreme value

Theorem asserts that if a function is continuous on a bounded interval,

it must attain a maximum and minimum on that interval [8].13 Hence

by the Extreme value Theorem, f cannot be extended to a continuous

function on R. Consequently, f cannot be extended to a computable

function. �

Note we could have given a similar example using Π0
1 classes with no

computable members.

Even though there exist Borel computable functions that are discontin-

uous almost everywhere on R, if we restrict our attention to Type II

computable functions we can (perhaps amazingly) compute their maxi-

mum and minimum on any interval.

The following result is an effectivisation of Bolzano’s Extreme value The-

orem. It can be found in [53]. We give our own proof of this result.

Theorem 2.2.8. (Bolzano [8])(Extreme value Theorem) If a function

f : R → R is continuous on a closed interval [a, b], then f has both a

maximum and minimum on [a, b].

Theorem 2.2.9. (Pour-El and Richards [53])14 Given a compact space

X and a Type II computable function f : X → R, maxx∈X f(x) is com-

putable.

13An English translation of this paper can be found in [9].
14It may be that this result appeared earlier that in the text given.

2.2. DEFINING A COMPUTABLE REAL-VALUED FUNCTION 39

Proof: We give a proof for intervals, which can be generalised to arbitrary

compact space. Let X = [a, b], a, b ∈ Q. We know maxx∈[a,b] f(x) :=

m exits by the original Extreme value Theorem, so to show that m is

computable we need find a Cauchy name. It is sufficient to approximate

m from above and below with two computable functions g : N→ Q and

h : N → Q. We will define our functions by induction. Assume g(x)

and h(x) are defined for all x < n. There exists a finite cover of of [a, b]

by Compactness. Also by Compactness, there exists a finite cover of Γf

(the graph of f) of open balls of radius 2−n. We want a special cover of

[a, b] such that the image of the cover of [a, b] covers the graph Γf with

open balls of radius at most 2−n. This can be done computably by the

Use Principle and is illustrated in Figure 2.1.15

f(x)

a b

q

h(n)

g(n)

Figure 2.1: The open ball cover correspondence.

Once achieved, check the rational center point of every ball in the image

of the cover of [a, b]. Find the one with the greatest y-coordinate and let

the y-coordinate of this point be q.

Define g(n) = q − 2−n if g(n) ≥ g(n− 1), otherwise g(n) = g(n− 1).

Define h(n) = q + 2−n if h(n) ≤ h(n− 1), otherwise h(n) = h(n− 1).

15The function f is Type II computable, so there exists an oracle machine Φx
e that

outputs a Cauchy name for f(x). If Φx
e reads the first m terms in a Cauchy name of

x, and outputs a nth approximation of f(x), then by the Use Principle, this is also a
sufficient nth approximation of f(y) for any real y ∈ (xm− 2−m, xm + 2−m). That is,
the interval (xm−2−m, xm +2−m) maps into the interval (f(x)n−2−n, f(x)n +2−n).

40 CHAPTER 2. FIRST ATTEMPTS AND DEFINITIONS

By the construction, h and g are both computable functions approaching

m from above and below respectively, hence m has a computable Cauchy

name. �

We note that, although we can compute the maximum value f attains

on a compact space, the point (or points) at which this maximum occurs

may not be computable. Kreisel [39], Lacombe [47], and Specker [59]

have all given examples of computable functions that do not reach a

maximum at any computable real value.

Figure 2.2 summarises the relationship between the different types of

computability we have covered in this chapter (see [3]).

f : Rc → Rc Borel computable

f : Rc → Rc Markov computable

f : Rc → Rc Banach-Mazur computable

f : Rc → Rc continuous

f : R → R Type II computable

f : R → R continuous

by restriction

not always extendible. Ex. by
Aberth and Pour-El Richards

Theorem of Mazur

by restriction

not always extendible

Ex. by
Hertling

Theorem
of Cěitin
and Kreisel,
Lacombe,
Shoenfield

Figure 2.2: Function relationship summary.

Chapter 3

The Distance Function

So far we have considered computable reals and computable real-valued

functions. We now ask what it means for a subset of Rn to be computable.

We will define a new function, called the distance function, and call a

compact set X computable if it has a computable distance function.1 In

this section, we focus on the computability of the distance functions of

the graphs of Type II and Markov computable functions. We will then

return to this notion in the final chapter when we discuss the Blaschke

Selection Theorem. Note that Theorem 3.0.13 and Corollary 3.0.14 are

new. The proof of Lemma 3.0.10 is original.

Recall that the graph of a function f : D ⊂ Rk → Rl is the set Γf =

{(x, f(x))|x ∈ D} ⊂ Rk+l.

Now that we are working with sets (rather than numbers or functions)

we point out that it is sometimes useful to consider closed sets as Π0
1

classes (and open sets as Σ0
1 classes). Doing so allows us to utilise some

of the tools of classical computability to prove our results. For example,

we can prove that the graph of a Type II computable function f : R→ R
is a Π0

1 class in Baire space.2

1As with the computable real and computable real-valued function, there exist
other classifications of a computable subset of Rn. See, for example, the Braverman
and Yampolsky book [12].

2We emphasise that our result is for Baire rather than Cantor space. This does

41

42 CHAPTER 3. THE DISTANCE FUNCTION

Lemma 3.0.10. If f is a computable function, then Γf is a Π0
1 class in

Baire space.

Proof: We will build a computable tree T is Baire space and define a

string σ (which depends on (a, b)) such that (a, b) ∈ Γf ⇐⇒ (∀n)

σ � n ∈ T .

Let Φx be the oracle Turing machine that computes f(x). We would like

to build T so that the only paths in T are alternating rational Cauchy

names for some x and f(x). That is, if P is a path in T then there

must exist a real a with Cauchy name (ai)i such that P (2n) = an and

P (2n+ 1) = f(a)n (if (f(a)i)i is the Cauchy name of f(a) given by Φa).

So we want P = a0f(a)0a1f(a)1a2f(a)2

To ensure this, we begin by enumerating all possible rational sequences

into T . At stage s we check all finite branches in Ts (T at stage s). Let

τs ∈ Ts and |τs| = m. Without loss of generality assume m is even. We

kill this branch at stage s only if it satisfies one of two conditions:

1. The odd rationals in this string do not look Cauchy. That is, the

sequence τ(1), τ(3), . . . , τ(m − 1) does not look like a Cauchy se-

quence.

2. There exists some even n ≤ m
2

such that Φ(τ(1),τ(3),...,τ(m−1))(n) = q

and |q − τ(n)| > 2.2−
n
2 .

If 1. holds then the odd terms do not represent a Cauchy name of any real,

so we kill the branch. If 2. holds then the even terms do not constitute

a potential Cauchy name for some f(x). Note we emphasise ‘potential’

because at some later stage the odd terms may fail to be Cauchy. Also

notice that if Φx1,x2,...xn halts and outputs a rational q, this q must be

a reasonable approximation of f(x) by the Use Principle. Lastly, every

not have any effect in this thesis but is worth bearing in mind as our Π0
1 classes are

not computably bounded. As a result, classical theorems (for example the Low Basis
Theorem) would not apply here.

43

pair of viable Cauchy names for the function f will be accepted as paths

in the computable tree T .

Given a pair of Cauchy names (ai)i and (bi)i for a, b ∈ R, define a string

σ ∈ ωω by letting σ(2n) = an and σ(2n+1) = bn. Then (a, b) ∈ Γf ⇐⇒
(∀n) σ � n ∈ T . Hence Γf is a Baire space Π0

1 class as required. �

We now define the distance function for a compact set C. Let

dC(X) = inf
y∈C
|x− y| = min

y∈C
|x− y|,

where the second equality follows by compactness.

Definition 3.0.11. We say that a compact set C is computable if its

distance function dC is a Type II computable function.

For example, in [0, 1]2 the set C = [0, 1]×{0} is computable. Simply set

d[0,1]((x, y)) = y.

Sometimes the term located is used in the place of computable when

describing these sets. Brouwer was the first to introduce this notion in a

constructive setting [13]. He originally called these set “Katalogisiert”,

which means ‘catalogued’.

We will now show that the graph of a Type II computable function on a

bounded interval is located.

Theorem 3.0.12. (Folklore) If f : R → R is a Type II computable

function on a bounded interval then dΓf
: R × R → R is a Type II

computable function.

Proof: To prove that dΓf
is computable, we show that the spaces above

and below Γf are Σ0
1 classes. Enumerating these connected components

allows us to generate the sets of points strictly greater than, and less

than, any fixed rational distance q from Γf . These sets can then be used

to compute dΓf

44 CHAPTER 3. THE DISTANCE FUNCTION

We first show that the connected components above and below Γf are

Σ0
1 classes. Note that we know these components are distinct because f

is Type II computable, so continuous, and hence has a connected graph.

Let (a, b) be any fixed point in our space. If (a, b) /∈ Γf , then at some

point open balls of decreasing radius, centred around some term in the

pairs of Cauchy sequences (ai)i, (bi)i and (ai)i, (f(a)i)i, become perma-

nently separated. That is, there exists an n such that the open balls

B((an, bn), 2−(n−1)) and B((an, f(b)n), 2−(n−1)) do not intersect.3 Should

we observe this, we know for sure that the corresponding point cannot

be a member of Γf . Then we need only compare the two rational centres

to determine whether the ball centred at (an, bn) lies above or below Γf .

More formally, the point (a, b) lies below Γf ⇐⇒ there exists an n such

that B((an, f(a)n), 2−(n−1)) ∩ B((an, bn), 2−(n−1)) = ∅ and bn < f(a)n.

This is a Σ0
1 condition. Similarly for any point above Γf .

Now we know that:

1. dΓf
((x, y)) < q, for q ∈ Q, if and only if B((x, y), q) intersects the

class of points both above and below Γf .

2. dΓf
((x, y)) > q if and only if B((x, y), q) is entirely contained in the

complement of Γf .

Using these two facts, and the enumeration of the collection of points

above and below Γf , for any q ∈ Q we can enumerate the collections of

points {(x, y) : dΓf
((x, y)) < q} and {(x, y) : dΓf

((x, y)) > q}; for every

point (x, y), wait for an M that is far enough along in the respective

Cauchy sequences (xi)i, (yi)i, such that n,m > M implies both |xn −
xm| < q

2
and |yn − ym| < q

2
. We now enumerate the sequence of open

balls B((xn, yn), q) for all n > M , and the space above and below Γf . If

there exists an n such that points in B((xn, yn), q) appear in both spaces,

then dΓf
((x, y)) < q. Similarly, if an open ball containing B((xn, yn), q),

for some n > M , is enumerated into the space above or below Γf , we

3We can not just take the open balls B((an, bn), 2−(n)) and B((an, f(a)n), 2−(n))
here because the point (a, b) and (a, f(a)) may actually fall outside of these balls.

45

know that dΓf
((x, y)) > q. In this way we can enumerate the sets of

points strictly greater than, and less than, any fixed rational distance q

from Γf

Finally, we can now show that dΓf
((x, y)) is Type II computable. We

provide a summary of the method, then follow with the precise details.

Guess a distance q, and generate the two sets of points strictly greater

than, and less than, q from Γf . Recall (a, b) is any fixed point in our

space. We will use it here to demonstrate we can compute dΓf
((a, b)).

Our given point (a, b) must occur in one of these sets eventually. If the

distance between Γf and (a, b) is greater than q, repeat for q + r for

some appropriate rational r. If the distance is smaller than q, repeat

instead for q − r. Choosing our distances sensibly, we will eventually

bounce between two rationals q1 and q2. These rationals we can refine

until |q1 − q2| < 2−n, for any desired n. Then the computable function

g(n) = q1+q2
2

would sufficiently approximate dΓf
((a, b)) to within 2−n.

The precise details follow.

Suppose we want to approximate dΓf
((a, b)) to within 2−n. We build a

functional Φ with oracle ((x, y)i)i∈N = (xi+1, yi+1)i∈N, a Cauchy name of

(x, y), to compute this approximation. On input n, find rationals q1, q2,

and terms in the given rapidly converging Cauchy sequences xm, ym, such

that:

1. |q1 − q2| < 2−(n+1)

2. dΓf
((xm, ym)) < q2

3. dΓf
((xm, ym)) > q1

4. |(x, y)− (xm, ym)| < 2−(n+2)

So, we have q1 − 2−(n+2) < dΓf
((x, y)) < q2 + 2−(n+2).

46 CHAPTER 3. THE DISTANCE FUNCTION

Let Φ(x,y)(n) := q1+q2
2

. Then,

|dΓf
((x, y))− Φ(x,y)(n)| = |dΓf

((x, y))− q1 + q2

2
|

< |q2 + 2−(n+2) − q1 + q2

2
|

= |2q2 + 2−(n+1) − (q1 + q2)|
= |q2 − q1 + 2−(n+1)|
≤ |q2 − q1|+ |2−(n+1)|
< 2−(n+1) + 2−(n+1)

= 2−n

Setting (x, y) = (a, b) allows us to compute dΓf
((a, b)). Therefore, dΓf

((x, y))

is Type II computable. �

Notice that the effective Extreme value Theorem (Theorem 2.2.9 from

the previous section) is now an easy Corollary of this result.

We now ask what happens if we instead consider a Markov computable

function defined on the computable reals. Is the distance function of Γf

also computable? It turns out that this is not the case.

Theorem 3.0.13. A Markov computable function f : Rc → Rc on a

bounded interval has an upper semi-computable, but not necessarily Type

II computable, distance function dΓf
.

The proof will follow in two parts. Part one will show that dΓf
((x, y)) is

upper semi-computable, and part two that dΓf
((x, y)) is not computable.

Recall by Theorem 2.2.3 we know that Borel and Markov computability

are equivalent so we can use these two notions interchangeably.

Proof Part 1: First recall that a partial function f : Rc → R is upper

semi-computable (which means it can be approximated from above) if

there exists a computable function of two variables φ(x, k) : Rc×N→ Rc
where x is the desired parameter for f(x) and k the level of approximation

47

such that:

1. limk→∞ φ(x, k) = f(x)

2. ∀k ∈ N : φ(x, k + 1) ≤ φ(x, k)

Fix (a, b) ∈ R2
c . Recall that we consider the distance function dΓf

(x, y)

computable if we can computably give a computable Cauchy name for

every pair of points (x, y). We are not trying to show that dΓf
is com-

putable, but rather upper semi-computable. So instead of computably

giving a Cauchy name for every input, we want to build a computable

function g(n, k) that approximates (from above) every term in the Cauchy

name of fixed (a, b). Then, if we call dΓf
(n, (a, b)) an approximation

to the true distance between (a, b) and Γf with an accuracy of 2−n,

limk→∞ g(n, k) = dΓf
(n, (a, b)). Taking both k and n to infinity then

achieves the desired result; limn,k→∞ g(n, k) = dΓf
((a, b)). Note we em-

phasise that a different g(n, k) must be constructed for every pair of

points (a, b) ∈ R2
c .

We will show by induction how to define g(n, k) for fixed (a, b) ∈ R2
c .

Let the function g(m, k) be defined for all m < n. Call dΓf ,n((a, b)) the

upper bound of the nth approximation of dΓf
((a, b)) (note that this exists

by the inductive hypothesis). We will define a sequence (g(n, k))k that

approaches dΓf ,n((a, b)) from above. This is done by finding the distance

between an appropriately close approximation of (x, f(x)) and (a, b) for

every computable real x (which depends on n), and defining g(n, s) to

be the least of these distances at each stage. This will ensure (g(n, k))k

approaches dn,Γf
((a, b)) from above, and ultimately limn,k→∞ g(n, k) =

dΓf
((a, b)). The precise details of the construction follow;

Initially we wait for terms f(a)n+2 and bn+2 in the respective Cauchy

names of f(a) and b such that |f(a)n+2−f(a)| < 2−(n+2) and |bn+2−b| <
2−(n+2). Set g(n, 0) = |f(a)n+2 − bn+2|+ 2−(n+1).4

4Note that dΓf ,n((a, b)) ≤ |f(x)n+2 − yn+2|+ 2−(n+1) = g(n, 0).

48 CHAPTER 3. THE DISTANCE FUNCTION

Let e1, e2 . . . be a listing of all partial machine indices. Assume we are at

stage s, n is fixed, and Φx is the oracle Turing machine that approximates

the Markov computable function f . We assume (again, by induction)

that g(n, t) has been defined, and will now define g(n, t + 1). Call an

index ‘active’ if it was not ‘killed’ at an earlier stage. For least active ei,

we ask whether or not ϕei has output a finite Cauchy name q1, . . . , qm

after being run for s stages. If this is not the case, discard this index for

all future stages, and check the next active index. If on the other hand

q1, . . . , qm does appear to be Cauchy, first note that q1, . . . , qm looks like

the initial terms of the Cauchy names of a range of computable reals

(specifically, any q ∈ (qm− 2−m, qm− 2−m)). We assume, without loss of

generality, m > n + 3 (if not we can wait until a later stage where this

is the case and the sequence looks Cauchy). We then ask whether this

sequence, used as an oracle in Φ, is sufficient to compute what looks like

a Cauchy approximation of f(q), to within 2−(n+3). This means we run

Φq1,...,qm for s stages and, if Φq1,...,qm outputs a sequence r1, . . . , rn+3 that

looks Cauchy, we have a success!

If we do not have success, repeat steps above for stage s + 1. If we do

have a success, we now have an approximation (qm, rn+3) which is within

2−(n+3) of some computable real (q, f(q)) (in fact a range of such pairs).

Note that we are confident of this because we assumed m > n+ 3.

Next, calculate the distance D between (an+3, bn+3) and (qm, rn+3). This

is summarised in Figure 3.1. Recall that, by the inductive assumption,

we have defined g at this point up to g(n, t). If D+ 2−(n+1) ≤ g(n, t), set

g(n, t+ 1) = D+ 2−(n+1). If not, set g(n, t+ 1) = g(n, t). Notice that we

need to add 2−(n+1) to D to ensure that we approach the 2−n distance

approximation from above. We now ‘kill’ the index ei for this particular

fixed n and go to stage s + 1. We emphasise that stage s + 1 is still

operating with the same fixed n, and will defined g(n, t + 2). When we

change n (which involves a completely separate construction) we must

then reset all indices.

This construction will give us a sequence (g(n, k))k that approaches

49

(an+3, bn+3)

(qm, rn+3)

2−(n+2)

2−(n+2)

D

D − 2−(n+1) < d((a, b), (q, f(q))) < D + 2−(n+1)

(a, b)

(q, f(q))

Figure 3.1: The distance D.

dn,Γf
((a, b)) from above. We also run this construction for other n, build-

ing next, for example, the sequence (g(n + 1, k))k. As mentioned, all

indices must be reset every time n is updated.

This construction gives us a computable sequence
⋃
n,k(g(n, k))k such

that for all n and k:

g(n, k) ≥ dn,Γf
((a, b)),

g(n, k) ≥ g(n, k + 1)

and

limn,k→∞ g(n, k) = dΓf
((a, b)).

Therefore dΓf
((a, b)) is upper semicomputable. �

Proof Part 2: For the second part of the theorem we will show that, for

any noncomputable right c.e. real α, there exists a Markov computable

function f such that dΓf
((0, 0)) = α. The origin is chosen for simplicity,

but the proof works just as well for any (p, q) ∈ R2
c .

Recall that a right c.e. real is a real x ∈ R and c.e. sequence (xi)i such

that limi xi = x and (∀i)(xi ≤ xi−1 and xi > x).

Let q1, q2, . . . be a noncomputable c.e. sequence converging to α from

above and assume, without loss of generality, α < 1. We will define the

50 CHAPTER 3. THE DISTANCE FUNCTION

Markov computable function f in stages. At each stage n we define f

for at least all values x > v (which v chosen at each stage is specified in

the construction). Informally, we would like to define f(qi) = 0 for all i,

and almost everywhere else have f(x) > 0. In particular, we will allow

f(x) = 0 only if x ≥ qi some qi in (qi)i. This will help to ensure that

dΓf
((0, 0)) = α. The function f also needs to be Markov computable,

which means for any u ∈ Rc we need to be able to evaluate f(u) (given

an approximation of u we can find an approximation of f(u)). By Claim

2 in Theorem 2.2.3 (existence of c.e. set W) this means that, given an

open ball B 3 u of any radius, we need to map B under f into another

open ball B′ such that: B′ contains f(u), and for all x ∈ B ∩Rc we have

f(x) ∈ B′.

We ensure this by doing the following; if an open ball B containing u

falls into a range of values already defined at the current stage, we simply

evaluate B at f and refine its radius to achieve the desired approximation

of f(u). If B falls outside the defined values, we essentially set f(x) = 1

for all x ∈ B, and incorporate this into our construction at some later

stage. Whenever we define f on an interval [a, b], we always ensure that

f(a) = f(b) = 1 (if this is instead an open interval then we simply have

f(x) tending to 1 as x tends to a from the right, and b from the left).

This is done in a consistent manner to ensure f is continuous.

The formal construction follows.

Stage 0: Observe the first term q0 in the rational noncomputable c.e.

sequence converging to α from above. For simplicity assume q0 ≤ 1.

Stage 1: Wait for next term q1 in the sequence. q0 and q1 are rationals,

so let |q0− q1| = b1 ∈ Q+ and b0 = 1. Define f to vary linearly from 1 to

0 from [q1 + b1
2
, q0], and 0 to 1 from [q0, q0 + b0]. Call v1 := q1 + b1

2
.5

Stage n: Wait for the next term qn in the sequence. Let vn−1 be the

least rational f has been defined at such that, for all x > vn−1, the

value f(x) is defined at this stage. Check d(qn−1, vn−1), and d(qi, qi−1)

5If we were asked to evaluate u at this stage, defer to Stage 2.

51

for all i ≤ n, and let the least of these distances be D. Choose a k such

that 2−k < D
4

. We do this to ensure that if we need to evaluate f(u)

for u ∈ Rc, B(uk, 2
−k) contains at most one element from the observed

sequence q1, . . . , qn tending to α

Step 1: If we do not need to evaluate f(u) at this stage, go to Step 2.

Otherwise, we want to evaluate f(u) at this stage, u ∈ Rc, with

Cauchy name (ui)i. There are three sub-cases to consider. They

occur as combinations of two conditions.

Condition (a) For all x ∈ B(uk, 2
−k), f(x) has not yet been defined.

Condition (b) There exist r1, r1 ∈ Q+ such that for all x, r1 < x <

uk − 2−k and uk + 2−k < x < r2, f(x) has not yet been

defined.

I If both (a) and (b), set f(x) = 1 for all x ∈ B(uk, 2
−k) and go

to Step 2.

II If (a) but not (b), wait for k′ > k such that (b) holds, then

set f(x) = 1 for all x ∈ B(u′k, 2
−k′) and go to Step 2.

III If not (a), then f(x) defined on some points in B(uk, 2
−k)

already. Wait for k′ > k such that (a) applies to B(uk′ , 2
−k′)

OR ∀x ∈ B(u′k, 2
−k′) f(x) has already been defined. In the

first case set f(x) = 1 for all x ∈ B(uk′ , 2
−k′) and go to Step

2. In the second, do nothing, go to Step 2.

We allow at most one such calculation at each stage.

Step 2: Observe qn. Either at some earlier stage we were asked to evaluate

w ∈ Rc, and consequently defined for some m all x ∈ B(wm, 2
−m)

including qn ∈ B(wm, 2
−m), or not. (We can decide this com-

putably as we have been asked to evaluate only finitely many com-

putable reals at this stage).

IF NO: Recall that vn−1 is the least rational f was defined at such

that ∀x > vn−1, f(x) has been defined.

52 CHAPTER 3. THE DISTANCE FUNCTION

I If there exists some x such that qn < x < vn−1, and f(x)

has already been defined, let c be greatest such that if

qn < x < c, f(x) has not yet been defined. Let b =

qn + 3 c−qn
4

and a = qn + c−qn
2

. Then set f(x) = 1 for all

x > c not yet defined. Let f(x) vary linearly from 1 to 0

on [a, b] and from 0 to 1 on [b, c]. f(x) is now defined for

at least all x > a. This process is summarised in Figure

3.2.

1

Stage
n-1

Stage
n

f(x)

a b cqn vn−1

Figure 3.2: The construction of f if ‘No : I’.

II Otherwise, do as in I, but let c = qn + 3vn−1−qn
4

, b =

qn + vn−1−qn
2

and a = qn + vn−1−qn
4

.

IF YES: First, for all x > wm−2−m not yet defined, let f(x) = 1 (note

that this preserves continuity). Find smallest rational d such

that d > 0 and for all x, d < x < wm − 2−m, f(x) has not

yet been defined. Such a d must exist by Step 1, Condition

(b). Choose some rational γ such that d < γ < wm − 2−m.

Let f(γ) =
√
q2
n − γ2 and f(x) to vary linearly from 1 to f(γ)

on [d + γ−d
2
, γ], and from f(γ) to 1 on [γ, wm − 2−m]. f(x)

is now defined for at least all x > d + γ−d
2

. This process is

summarised in Figure 3.3.

53

1

Stage
n-1

Stage
n

f(x)

d+ γ−d
2

γ wm − 2−md vn−1
qn

qn

0

f(γ)

Figure 3.3: The construction of f if ‘Yes’.

Justification:

We first note that f is continuous. Whenever we defined f on an interval

[a, b], we ensured f(a) = f(b) = 1. Each consecutive stage then essen-

tially involved connecting some these intervals, and extending f to be

defined at every point above some rational vs. Continuity was preserved

for all values above vs, for each s, and every time we defined f below the

current vs, we ensured sufficient undefined space to ensure continuity at

all later stages.

Claim: f is Markov computable.

Proof of claim: Suppose at stage n we wish to evaluate f(u) for some

u ∈ Rc. Find B(uk, 2
−k) as specified in construction. Then we either

define f(x) = 1 for all x ∈ B(uk, 2
−k), in which case f(u) = 1, or

else there exists a k′ such that f at all x ∈ B(u′k, 2
−k′) has already

been defined. In this case we can refine k′ until we achieve the desired

approximation of f(u).

So f is a Markov computable function, and

lim
n→∞

dΓf
((0, 0)) = lim

n→∞
(qi)i∈N = α.

Hence, dΓf
is not computable. �

54 CHAPTER 3. THE DISTANCE FUNCTION

Notice that (0, 0) is a computable point, and we have shown dΓf
((0, 0)) /∈

Rc. This means dΓf
cannot be Markov computable either.

Corollary 3.0.14. A Markov computable function f : Rc → Rc on a

bounded interval does not necessarily have a Markov computable distance

function dΓf
.

Chapter 4

The Darboux Property

4.1 Introduction

The Intermediate value Theorem states that a continuous function f :

[a, b]→ R takes every value between f(a) and f(b) [7].1 By isolating this

property, we define a new class of functions that are called Darboux.

Definition 4.1.1. A function f defined on an interval I has the Darboux

property if for all a < b, a, b ∈ I and all y ∈ [f(a), f(b)] there exists a

x ∈ [a, b] such that f(x) = y.

Sometimes the Darboux property is instead called the intermediate value

property. We call the class of functions with the Darboux property D,

and the class of continuous functions C. This chapter will be dedicated

to exploring some of the characteristics of D.

Before the late 19th century, the intermediate value property (as it was

known at the time) was given as part of the definition of a continuous

function. In fact, many mathematicians assumed that this property and

continuity were equivalent. It was not until 1875 that the French math-

ematician Jean Gaston Darboux gave a proof that every derivative has

1An English translation of this paper can be found in [9].

55

56 CHAPTER 4. THE DARBOUX PROPERTY

the Darboux property, and as not every derivative is continuous, sep-

arated the two classes D and C [19]. Why does this interest us? The

Darboux property defines a strange class of functions, so this fact alone

makes its complexity worth investigating. However, it turns out that ev-

ery real-valued function is the limit of a sequence of Darboux functions

(Sierpiński [56]). We are interested in how complicated these sequences

are, and their relationship with computable real-valued functions.

Before we begin discussing Sierpiński’s result, we first take a moment

to further discuss the Darboux property. We give a proof that every

derivative has the Darboux property. The following is a common version

of this proof, and can be found in [62].

Theorem 4.1.2. (Darboux [19]) Let I be an interval. If f : I → R
is differentiable on I then f ′ (the first derivative of f) has the Darboux

property.

Proof: Let f be a differentiable function. We will show that f ′ has the

Darboux property. Let a, b ∈ I, where a < b, and r ∈ R, where r is

between f ′(a) and f ′(b). Without loss of generality, assume f ′(a) < r <

f ′(b). We now define a function g : [a, b]→ R. Let

g(x) = f(x)− rx for x ∈ [a, b].

By a well known result in calculus, if f(x) is differentiable then it is con-

tinuous. rx is trivially continuous, and as the difference of two continuous

functions is continuous (another classic result, see any standard calculus

textbook), g(x) must also be continuous. By the Extreme value Theo-

rem, there must exist a point c ∈ [a, b] such that g(c) is a maximum on

[a, b]. By properties of derivatives, this means g′(c) = 0. Differentiating

both sides of g(x) = f(x)− rx and substituting c for x gives

g′(c) = f ′(c)− r
f ′(c) = r

4.1. INTRODUCTION 57

The result follows. �

Consequently, continuity is not a necessary condition for membership

of D. A basic example of a function f : R → R with a discontinuous

derivative is

f(x) =

x2 sin(1
x
) if x 6= 0

0 x = 0
,

with the derivative

f ′(x) =

2x sin(1
x
)− cos(1

x
) if x 6= 0

0 x = 0
.

f ′ must have the Darboux property, but is discontinuous at a single point;

x = 0.

In turns out that even those functions that are discontinuous at some

point on every interval can belong to D. We will give examples of these

kinds of functions in the sections that follow. It is the fact that these

types of functions are Darboux that allows us to easily approximate every

real-valued function. Investigating how complicated these sequences are

is the focus of a large part of this chapter, but we also look at how the

complexity of these Darboux sequences changes as we restrict the domain

and range of the principal function (the function we are interested in

approximating).

In section 4.2 we discuss how to approximate a real-valued function with

a sequence of Darboux functions. We then comment on the complexity

and computational power of particular types of Darboux functions that

take every real value on every interval. In section 4.3 we explore the

Darboux property when restricted to Q, and the effect this has on the

complexity of approximating sequences. Lastly, in section 4.4 we discuss

uniformly convergent sequences of Darboux functions (in contrast to the

58 CHAPTER 4. THE DARBOUX PROPERTY

usual pointwise convergence applied in earlier sections) and give exam-

ples of real-valued functions that cannot be uniformly approximated by

Darboux functions.

4.2 Approximating real-valued functions

In 1953, Sierpiński proved that every real-valued function f : R → R is

the limit of a sequence of Darboux functions [56]. We will first sketch

a proof of this result, and then investigate how hard it is to construct

such a sequence for any given function. We would also like to apply

our result to Type II computable functions. However, notice that every

Type II function is continuous, and so is the limit of a trivial sequence

of Darboux functions (namely, itself). So instead, we will mention how

hard is it to construct a non-trivial Darboux sequence for any Type II

computable function. Theorems 4.2.10, 4.2.11, 4.2.17, 4.2.18, Corollaries

4.2.12 and Lemmas 4.2.14, 4.2.15 are original.

4.2.1 The closure of the class D is all functions

In order to sketch a proof of Sierpiński’s result, it is first helpful to

construct a function that maps every interval to all of R. This is a

(strong) example of a Darboux function that is discontinuous on every

interval, and a similar function will be used in the proof to follow. We

will call these types of functions canonical Darboux functions.

Definition 4.2.1. A function f : I → I (where I is any interval, in-

cluding the entire real line) is a canonical Darboux function if for every

interval J ⊆ I, f(J) = I.

There are a number of examples of this kind, and many of them can

be adapted to prove Sierpiński’s result. For example, Conway con-

structed an extreme base 13 function which takes every real value on

4.2. APPROXIMATING REAL-VALUED FUNCTIONS 59

every nonempty open interval.2 Radcliffe also gave a similar result in

[54] using the function f(x) = tan(nπx). The following example can be

found in [62].

We construct a canonical Darboux function f : [0, 1]→ [0, 1].

Example 4.2.2. Let D be the set of all rational numbers in the unit

interval with finite decimal expansion. That is, D := {m10−n : m ∈
Z, n ∈ N, n ≥ m}. If t ∈ [0, 1] has the expansion t = 0.t1t2t3 . . . ,

ti ∈ N where tk = 0 for all sufficiently large k, if t ∈ D then define

t∗ = 0.t1t1t2t1t2t3 This means t∗ takes t and outputs the first decimal

point in t, followed by the first and second, and so on. We can think of

each of these repeating ‘blocks’ as initial segments of t, increasing by one

bit every time a new block is added.

Notice that if t, s ∈ [0, 1] are distinct, it follows that t∗− s∗ /∈ D because

t∗ and s∗ will differ at infinitely many places. In addition, for every

x ∈ [0, 1] there exists at most one t ∈ [0, 1] such that x− t∗ ∈ D.

We can now define our function.

f(x) =

t if t ∈ [0, 1] and x− t∗ ∈ D
0 otherwise

To verify that f is a canonical Darboux function, let I = [a, b] be any

subinterval of the unit interval. For any t ∈ [0, 1], there exists an x ∈ I
such that x − t∗ ∈ D (enumerate something in the given interval until

a stage where any real extending this enumeration must be contained in

the interval, and from this stage onwards copy t∗). Hence, for all t ∈ [0, 1]

there exists an x ∈ I such that f(x) = t. It follows immediately that f

must have the Darboux property.

The following proof can be found in [62]. We repeat it here and later

analyse the complexity of this result.

2He formed this example while preparing for lectures [18].

60 CHAPTER 4. THE DARBOUX PROPERTY

Theorem 4.2.3. (Sierpiński [56]) Every real-valued function f : R→ R
is the limit of a sequence of functions with the Darboux property.

Proof sketch: The proof of this theorem follows by constructing a function

very similar to the previous one. Let D and t∗ be as above. Define a

set V := {m5−n : m ∈ Z, n ∈ N}, and collection of sets Vi := V + 2−i.

V1, V2, . . . are pairwise disjoint subsets of D (because 2−i is an unique

infinite repeating sequence when expressed in base 5). ∀x ∈ [0, 1] there

exists at most one t ∈ [0, 1] such that x− t∗ ∈ Vi.

We then define a sequence of functions f1, f2, · · · : [0, 1]→ [0, 1].

fi(x) =

t if t ∈ [0, 1] and x− t∗ ∈ Vi
f(x) otherwise

Every fi has the Darboux property, and limi→∞ fi = f . �

In the next subsection, we discuss the complexity of these kinds of

sequences. As far as we know, every proof in the literature of the

Sierpiński’s result involved the construction of not just a sequence whose

terms had the Darboux property, but in fact, the canonical Darboux

property. This property is stronger than strictly necessary, and these

functions are, as a consequence, quite complex. It remains open whether

every real-valued function is the limit of a sequence of non-canonical

Darboux functions.

4.2.2 The complexity of canonical Darboux func-

tions

In this subsection, we discuss the complexity of the canonical Darboux

function. We want to decide how much computational power is suffi-

cient (or insufficient) to compute certain Darboux functions. To avoid

confusion, we will first explain exactly what is intended by ‘sufficient

4.2. APPROXIMATING REAL-VALUED FUNCTIONS 61

computational power’. Recall that x′ = {e : φxe(e) ↓}. We define a

function that will in some sense correspond to the ‘jump’ relative to R.

Definition 4.2.4. Let J : R→ R denote a function that uniformly maps

x 7→ x′. Call this function the jump operator and refer to it as J .

We can generalise this definition and call the function J (2) : R→ R that

uniformly maps x 7→ x′′ the double jump operator and refer to it as J (2)

(and so on for nth jump operator J (n)).

In the work to follow, when dealing with the complexity of Type II

functions, we consider the jump operator as a Type II functional. We

will measure the computational strength sufficient to compute particular

functions in terms of J (n). Later, when we address Markov computable

and classically computable functions, it is enough to consider the ’jump’

in the usual sense; as a set.

In this subsection, we will prove that J is insufficient to compute any

canonical Darboux function. It then follows that J is insufficient to

compute the terms in the sequences of canonical Darboux functions we

constructed earlier to approximate any real-valued function. We will first

classify a particular class of functions and give some necessary definitions.

A function f : R → R is Baire class 0 if it is a continuous function. A

function f is Baire class 1 if f is the (pointwise) limit of a sequence of

continuous functions (fi)i. In general, a function f is Baire class n if f

is the (pointwise) limit of a sequence of Baire class n− 1 functions (fi)i.

We now adapt these definitions to a computable setting.

Definition 4.2.5. A function f : R → R is effective Baire class 1 if

f(x) ≤T J(x) uniformly in x.

More generally,

Definition 4.2.6. A function f : R → R is effective Baire class n if

f(x) ≤T J (n)(x) uniformly in x.

62 CHAPTER 4. THE DARBOUX PROPERTY

The detail given here regarding the Baire classes is sufficient for the

purpose of this thesis, but for more information see [28] and [44].

Lastly, we define what it means for a real number x to be 1-generic.

Recall the definition of a 1-generic element x ∈ 2ω. Let W ⊆ 2<ω. We

say that x meets W if there is an initial segment σ of x such that σ ∈ W .

x avoids a set W if there exists an n such that, for all τ extending x � n,

τ /∈ W .

Definition 4.2.7. An element x ∈ 2ω is 1-generic if it meets or avoids

every c.e. set W .

Theorem 4.2.8. An irrational x ∈ [0, 1] is 1-generic if and only if its

unique binary expansion is 1-generic in 2ω.

A proof of this result can be found in [44]. Assume a real x ∈ [0, 1] is

expressed as its unique binary expansion from this point onward. For

rationals, this refers to their dyadic expansion (if such a representation

exists), although notice that rationals cannot be 1-generic, so uniqueness

is not a problem.

Now that we have introduced the relevant concepts, we want to prove

that J is insufficient to compute any canonical Darboux function. Or

in other words, no canonical Darboux function is effective Baire class 1.

This result is a corollary of the following theorem.

Theorem 4.2.9. (Folklore) If x is a 1-generic real, and f is effective

Baire class 1, then f is continuous at x.

Proof: Suppose that f(x) ≤T J . That is, ∃e ∀x Φx′
e = f(x). Let x be

a 1-generic real. Notice that there is a continuous mapping between x

and x′ (by which we mean the set {e : ϕxe(e) ↓}). This is because initial

(although not necessarily computable) segments of 1-generic x determine

initial segments of x′, a unique property of 1-generics. There is also a

continuous mapping between x′ and f(x) by assumption (simply map

the Use (f(x) � n) 7−→ f(x) � n), hence a continuous mapping from x to

f(x). �

4.2. APPROXIMATING REAL-VALUED FUNCTIONS 63

Our result is now a consequence of this theorem.

Theorem 4.2.10. Let f : [0, 1] → R be a canonical Darboux function.

Then f is not effective Baire class 1.

Proof: This result follows directly from the theorem above. Specifically,

if f is a canonical Darboux function then it is discontinuous everywhere,

and therefore cannot be continuous at 1-generic reals. �

As a result, the jump function is not strong enough to carry out the

construction of Theorem 4.2.3. To do so, we need more computational

power. However, it turns out that J (2) is sufficient to compute at least

some canonical Darboux functions. Example 4.2.2 is such a function.

Theorem 4.2.11. There exists a canonical Darboux function f : [0, 1]→
R that is also effective Baire class 2.

Proof: We reconstruct the function from Example 4.2.2 to illustrate this.

Usually, the argument would begin by assuming we have a Cauchy name

for some real x ∈ [0, 1], however, the construction of this function is easier

if we instead have a binary approximation of x. These notions are not

usually equivalent (as noted by Turing in his correction [61]), however

the double jump function can build a binary sequence that sufficiently

approximates a Cauchy name of x. We will do this first.

Let x1, x2, . . . be a Cauchy name for x ∈ [0, 1]. When we build our binary

approximation of x, we also need to ensure we avoid creating duplicates.

That is, we must make sure that f maps any two Cauchy sequences that

are converging to x, to the same value. We will express x finitely in

binary, if possible, to ensure this.

Given Cauchy name x1, x2, . . . , the double jump function can decide

whether x is a dyadic rational. If x is not a dyadic rational, then for all n

and m ≤ n, we can decide in finite time whether x ∈ (m2−n, (m+1)2−n).

We build a binary expansion 0.b1b2b3 . . . of x as follows. We begin by

asking if x ∈ (0, 1
2
). If x 6= 1

2
then at some stage we will see the Cauchy

64 CHAPTER 4. THE DARBOUX PROPERTY

name of x fall entirely inside, or outside, of this interval. If the former,

we set b1, the first binary point of x, to be 0. If the latter, set b1 = 1.

We then repeat this process; if, (for example), b1 = 0 and x 6= 1
4
, we

ask whether x ∈ (0, 1
4
). If yes, set b2 = 0, if no, then x ∈ (1

4
, 1

2
) set

b2 = 1, and so on. In this way, we obtain an accurate binary expansion

of x = 0.b1b2b3 A problem of course could occur if x = 1
2
, or indeed

x = a
2b

for any natural a and b. It follows that the above process is

not computable if and only if x is a dyadic rational. And so we ask

whether the Cauchy name of x is always ‘close’ to some dyadic rational,

(∃n)(∃m < n)(∀k)(|m2−n − xk| < 2−k). Note that xk is the kth rational

in x′s Cauchy name. If no, complete the binary expansion construction

above. If yes, check every n and m ≤ n until we find the pair n,m

that satisfies the above sentence (which can be done with a Π0
1 question).

Then x = m
2−n , which can be computably and finitely expressed in binary.

In both cases we obtain a binary expansion x = 0.b1b2b3 . . . which we

will use to construct f .

Recall that we would like

f(x) =

t if t ∈ [0, 1] and x− t∗ ∈ D
0 otherwise

,

where t ∈ [0, 1] and t∗, D is defined as in Example 4.2.2.

We begin by defining a pairing function 〈n,m〉 as follows.

〈n,m〉 =

Σn−1
i=1 i+m if m ≤ n

−1 otherwise

This pairing function is meant to represent ‘blocks’ like those seen in

the t∗ function. We call a block a consecutive sequence of binary points

that have been seen before in order, and one at the end that hasn’t. i.e.

t∗ = 0.t1t1t2t1t2t3 . . . , and so t1 is the first block, t1t2 the second block,

4.2. APPROXIMATING REAL-VALUED FUNCTIONS 65

t1t2 . . . tk the kth block, etc. 〈n,m〉 gives the position of tm in the nth

block of t∗, assuming that m > n (if this is not the case then we send

the pairing function to −1 for completeness).

To define f we need to decide if at some stage x mimics t∗ for some

t ∈ [0, 1]. For simplicity assume the sth stage is when we observe bs,

the sth binary point in the approximation of x. We ask if there exists a

stage s, and natural M , such that for all m > M , and n ≤ m, we have

bs+〈m,n〉 = bs+〈m+1,n〉. If no, then there is no t such that x− t∗ ∈ D, and

so set f(x) = 0. If yes, we want to set f(x) = t = 0.t1t2t3 To define

the kth binary point of t ask (∃s)(∃M ≥ k)(∀m > M)(bs+〈m,k〉 = 0). If

yes, set tk = 0, otherwise tk = 1. Lastly, computably convert binary

expression 0.t1t2t3 . . . into a Cauchy name for t. And so f(x) outputs

the Cauchy name for desired t (if t exists), and can be computed by J (2).

�

We have now shown that J (2) is sufficient to compute at least one canon-

ical Darboux function. Applying a very similar argument to the con-

struction in Theorem 4.2.3 now gives the following result.

Corollary 4.2.12. If f is effective Barie class 2 then there exists a se-

quence of effective Baire class 2 functions (fi)i with the Darboux property

such that ∀xf(x) = limi fi(x).

4.2.3 Computational power of canonical Darboux

functions

How can we discuss a real-valued function’s Turing degree? If a function

is continuous, this is not a problem; a function is continuous if and only if

it is computable relative to some oracle.3 However, what if the function

in question is not continuous? This is an important issue to address,

as canonical Darboux functions are by definition discontinuous, and we

would like some way to discuss their complexity. Some work in this area

3Folklore or any early text in recursive analysis.

66 CHAPTER 4. THE DARBOUX PROPERTY

has been done, for example, see Scott ideals [51]. These fall outside of the

scope of this thesis, and so we propose a different strategy. As every real

is the limit of a sequence of rationals, we believe it is natural to discuss

a function’s complexity based on how it acts on the computable reals. If

we take this approach, discussing the computational power of a function

in some sense accesses the ‘Markov computability’ of that function. If

nothing else, this notion ties back to the early chapters nicely, and so

we relativise the Markov computability definition in order to discuss the

computational power of a function f .

Definition 4.2.13. We call a function f : Rc → Rc Markov computable

in z if z can compute the index function of f .

Notice that because we refer to Rc, rather than to R relative to z, this is a

partial relativisation of Markov computability. If a function f is Markov

computable in z, and z computes y, we will sometimes informally refer

to this situation as “f computes y”.

Keeping this tentative definition in mind, we give a simple application.

Define a simple discontinuous function g : Rc → Rc as follows.

g(x) =

1 if x < 0

0 if x ≥ 0

Lemma 4.2.14. If the function g (defined above) is Markov computable

in z, then z is sufficient to compute 0′.

Proof: Fix e and suppose we want to know whether ϕe(e) halts. We can

decide this by building a computable real y which we will input into g

such that g(y) = 1 if an only if ϕe(e) halts.

We will built a computable Cauchy name y1, y2, . . . for our computable

real y. At stage n, observe ϕe(e) with use n at stage n. That is, ask

does ϕe(e)[n] ↓? If yes, for all m ≥ n set ym = −2−(n+1). We have now

determined y. If no, set yn = 0 and check ϕe(e) with use n + 1 at stage

n+ 1.

4.2. APPROXIMATING REAL-VALUED FUNCTIONS 67

If ϕe(e) halts then we have built the Cauchy name of y such that y < 0,

and so g(y) = 1. If, on the other hand, ϕe(e) never halts, then yn = 0

for all n, hence g(y) = 0. �

The argument above can be applied to any discontinuous function, and

leads us to conclude that every discontinuous function f(x) can compute

0′. Or more formally,

Lemma 4.2.15. If a discontinuous function f : Rc → Rc is Markov

computable in z, then z can compute 0′.

This result follows by generalising the argument given above. Given x

(non-uniformly) at a discontinuity in f , the question becomes how to

compute a sequence of computable reals approaching x that all map

sufficiently far away from f(x) to ensure discontinuity. We can apply

the same argument as above once such a sequence has been found. The

issue here is that, while we can observe an index that appears to output

a computable real whose image is sufficiently far away from f(x), it may

turn out that this function is partial. We can avoid this by using the

same trick as in Theorem 2.2.3.

Corollary 4.2.16. At least 0′ is required to compute every discontinuous

function f : R→ R.

We can now turn to the computational power of some of the earlier

examples. Recall the function defined previously.

f(x) =

t if t ∈ [0, 1] and x− t∗ ∈ D
0 otherwise

By restricting the domain and range of f to Rc, we claim that, in the

sense of definition 4.2.13, f can compute 0′′.

It is easier first to prove something similar to Lemma 4.2.14 explicitly for

this function, and then extend the argument to achieve our result.

68 CHAPTER 4. THE DARBOUX PROPERTY

Theorem 4.2.17. If the function f (defined above) is Markov com-

putable in z, then z can compute 0′.

Proof: This result follows by a relatively straightforward construction.

Fix e. We will show that ‘f can decide’ whether or not ϕe(e) halts. Then

if z computes the index function of f , z must also compute 0′. To do

this, we construct a computable real y such that f(y) = 0 if and only if

ϕe(e) ↑.

Consider the computable real γ = 0.112123123412345 Notice γ = t∗

if t = 0.12345678 . . . (t∗ as defined Example 4.2.2). Recall the definition

of a ‘block’ given previously. We say the real x has entered a block cycle

if after some stage it exactly mimics γ, i.e. every new term in x’s Cauchy

name differs from the former by an appropriate block. The y we want

to build is almost γ, with a few changes according to the behaviour of

ϕe(e) at each stage.

Essentially, the function f can tell if at some point a real we input enters

a block cycle. We want our real y to enter this block cycle if and only if

ϕe(e) ↓.

To do this we observe ϕe(e) at each stage. If ϕe(e) ↑ [n], we need to

ensure the block cycle is broken in the nth term of y′s Cauchy name,

yn. It is easiest to consider γ as the Cauchy sequence γ0 = 0, γ1 = 0.1,

γ2 = 0.112, γ3 = 0.112123, γn = 0.112123 . . . 123 . . . n. A new ‘block’ has

been added to each consecutive term in this sequence, and limi γi = γ.

Similarly, at each stage we also add a block to the new term in the Cauchy

name of y, except we add either 123 . . . n or 023 . . . n depending on the

behaviour of ϕe(e)[n].

Suppose we observe ϕe(e) ↑ [n]. We then consider the last term yn−1 in

the sequence we are building. Does yn−1 = 0. . . .

final block︷ ︸︸ ︷
123 . . . (n− 1) or yn−1 =

0. . . .

final block︷ ︸︸ ︷
023 . . . (n− 1)? We need to ensure we break the (potential) block

cycle. So, if the former, add 023 . . . n to yn, i.e. yn = 0. . . .123 . . . (n −

4.2. APPROXIMATING REAL-VALUED FUNCTIONS 69

1)

new block︷ ︸︸ ︷
023 . . . n. If the latter, add 123 . . . n, i.e. yn = 0. . . .

new block︷ ︸︸ ︷
123 . . . n.

In this way, if for all n we have ϕe(e) ↑, the starting digit of each new

block added to yn will cycle between 0 and 1. This will build y so that

there exists no t ∈ [0, 1] such that y − t∗ ∈ D. Hence f(y) = 0.

If on the other hand there exists an n such that ϕe(e) ↓ [n], then from the

stage that this becomes apparent we copy γ’s Cauchy name exactly. In

this case the block cycle has begun, and f(y) = t (where t = 0.12345 · · · ∈
[0, 1] and because y − t∗ ∈ D).

We have shown that f can decide whether or not e ∈ 0′. By extending

this argument, for example following a similar pattern but altering every

i between 0 and i to decide i ∈ 0′, we can conclude that f computes 0′.

Or more precisely, if z computes the index function of f , then z computes

0′. �

This argument can be adapted to show that ‘f computes 0′′’. We will

illustrate this now. For simplicity, we switch to using quantified predi-

cates, rather than partial functions, in our argument.

Theorem 4.2.18. If the function f (defined above) is Markov com-

putable in z, then z can compute 0′′.

Proof: Let P (x1, x2, x3) be a computable predicate, x1, x2, x3 ∈ N. We

will show that the function f defined above can decide, for fixed e, the

formula ∃x2∀x3P (e, x2, x3). This is done by again building a computable

real y. We use an almost identical argument to that above, except we

now require y to enter a block cycle if and only if ∃x2∀x3P (e, x2, x3). At

stage 〈b, c〉 we check P (e, b, c). The pairing function is explained in the

construction.

Stage 〈1, 1〉: Check P (e, 1, 1). If it returns true, set y1 = 0.1. Then check

P (e, 1, 2). If P (e, 1, 1) returns false, set y1 = 0.0 and check P (e, 2, 1)

(that is, go to stage 〈2, 1〉.

70 CHAPTER 4. THE DARBOUX PROPERTY

Generally, if P (e, 1, 1) returns true it is possible that (∀x3)P (e, 1, x3),

therefore ∃x2∀x3P (e, b, c) is true. To confirm this, we continue checking

P (e, 1, x3) until we observe a failure. If we never find a failure, it must be

true that ∃x2∀x3P (e, x2, x3). On the other hand, if at any stage that we

do observe a failure, we begin checking (∀x3)P (e, 2, x3). A failure is not

enough to confirm that ∃x2∀x3P (e, x2, x3) is false. Only infinitely many

failures would imply this. We need to build y to reflect this.

Stage n = 〈b, c〉: Suppose P (e, b, x3) retuned true for all x3 < c and

yn−1 = 0.1 . . . qm. Technically, m =
∑n−1

i=1 i, and we assume here that

we have observed n − 1 stages so far. Consider x3 = c. If P (e, b, c)

returns true, add the block 123 . . . n on to the end of yn−1 to form yn.

So yn =

yn−1︷ ︸︸ ︷
0.1 . . . (n− 1) 123 . . . n. Now go to stage 〈b, n + 1〉 (i.e. check

P (e, b, n+ 1)).

If P (e, 1, n) returns false, let the current block in our new term yn be

different in the first digit to the last block in yn−1. Hence, if yn−1 =

0.1 . . .

final block︷ ︸︸ ︷
123 . . . (n− 1), add the block 023 . . . n on to the end of yn−1 to

form yn. That is, yn =

yn−1︷ ︸︸ ︷
0.1 . . . (n− 1)

new block︷ ︸︸ ︷
023 . . . n. Similarly, if yn−1 =

0.1 . . .

final block︷ ︸︸ ︷
023 . . . (n− 1) then yn =

yn−1︷ ︸︸ ︷
0.1 . . . (n− 1)

new block︷ ︸︸ ︷
123 . . . n. Now go to stage

〈b+ 1, 1〉 (i.e. check P (e, b+ 1, 1)).

If there exists a b such that (∀c) P (e, b, c) returns true, then we will

allow 1’s in every block of y from some stage onwards, thereby achieving

the block cycle. However, if no such b exists we can always find two

consecutive blocks in y that begin with different digits, therefore never

achieving a block cycle.

Just like above, f(y) = 0 if and only if e /∈ 0′′. By extending this

argument to include all e, the result follows. �

The results of this subsection apply to only a single example of a canonical

Darboux function. It remains open whether or not this idea can be

4.3. THE DARBOUX PROPERTY ON Q 71

extended somehow to all canonical Darboux functions.

4.3 The Darboux property on Q

In this section, we shift our focus to a more classical version of com-

putability. We could have included a discussion concerning functions

defined on Rc, however, because Markov computable functions are con-

tinuous on this domain, they have the Darboux property on Rc trivially.

So we abandon Rc and instead focused on Q. Perhaps we will be able

to salvage some relationship between ‘rational Darboux functions’ and

other notions of computability. In this section, we shake off the shackles

of real computability (Type II and Markov) and allow our functions to

be once again computable in the classical sense. We define the Darboux

property on Q and discuss the difficulty of approximating a computable

function f : Q → Q using these rational Darboux functions. In this

section, unless otherwise stated, all results are original.

In this section only (unless otherwise stated) we will refer to a computable

function f : Q → Q under a standard coding of Q. We also use regular

jump notation (0′, 0′′, etc.) with standard interpretation rather than the

jump operator here.

Definition 4.3.1. We say a function f : R→ R has the rational Darboux

property if f is defined on Q and has the Darboux property when re-

stricted to Q. Namely, for all a < b, a, b ∈ Q, and all y ∈ [f(a), f(b)]∩Q,

we have f(a), f(b) ∈ Q, and there exists x ∈ [a, b]∩Q such that f(x) = y.

Call the class of rational functions with the rational Darboux property

RD.

We will restrict our discussion to explicit rational functions f : Q → Q,

but the arguments following could be extended to functions defined on all

of R. Notice that the rational Darboux property does not imply the real

Darboux property (as given in Definition 4.1.1), nor does Definition 4.1.1

72 CHAPTER 4. THE DARBOUX PROPERTY

imply the rational Darboux property. These are two distinct notions.

4.3.1 The closure of the class RD is all rational func-

tions

Our aim is to prove that, for any computable function f : Q → Q,

there exists a computable sequence of functions (fi)i such that for all i,

fi : Q→ Q has the rational Darboux property and limi fi = f .4 We take

a similar approach to the last section, first defining a canonical rational

function, proving the principal result, and then effectivising it.

We define a rational canonical Darboux function and then give an exam-

ple of such a function.

Definition 4.3.2. A function f : Q→ Q is a canonical rational Darboux

function (C.R.D function) if for every interval I ⊂ Q, f(I) = Q.

Example 4.3.3. 5 Let D be the set of dyadic numbers. Define a set of

equivalence classes A = {[x] : x ∈ Q} where [x] = {y ∈ Q : x − y ∈ D}
(i.e. x ∼ y ⇐⇒ x− y ∈ D).

D is dense in R (and Q), therefore [x] = x+ D = {x+ d : d ∈ D}.

Claim: |A| = |Q|.

Proof of claim: Clearly |A| ≤ |Q|. In the other direction, suppose |A| �
|Q|. Then A is finite, and we can list its members [x1], [x2], . . . , [xn].

The unique sequence each of its members must repeat after some stage

determines each equivalence class. That is, for every member x ∈ [xi],

there exists a m ∈ N, such that after x � m, x repeats some fixed

finite sequence. In doing so, we are identifying the dyadic rational that

defines the equivalence class. But if we take one copy of each of the

finite sequences corresponding to each of the classes in A, placing them

4‘Computable’ is intended again in the classical sense here.
5This example is similar to an example of a real-valued canonical Darboux function

given in [6].

4.3. THE DARBOUX PROPERTY ON Q 73

together in any order, then we will obtain a new finite repeating sequence

(i.e. dyadic rational) that is not represented in A, a contradiction. �

And so |A| = |Q|. Hence there exists a bijection g : A → Q. Define a

new function f(x) = g([x]).

Because D is dense in Q, and dense in any rational open interval (a, b)∩Q,

each equivalence class must have at least one element in (a, b). Therefore

f((a, b)) = g([a, b]) = g([A]) = Q. �

In the previous section, we gave a proof that every real-valued function

is the limit of a sequence of Darboux functions. In parallel, we now prove

that a similar result holds when we restrict our attention to Q.

Theorem 4.3.4. Every rational function f : Q → Q is the limit of a

sequence of functions with the rational Darboux property.

Proof: Let f : Q→ Q be the function we are interested in approximating

and let the equivalence class A be as defined above. Let h : Q → A be

a bijection.

We want to split A up into countably many disjoint subsets. Define this

partition as follows:

A1 = h([0, 1))

A2 = h([−1, 0))

A3 = h([1, 2))

. . .

Ak = h([−k
2
, −k

2
+ 1)), k even

Ak+1 = h([k
2
, k

2
+ 1))

Notice |Ai| = |Q| for all i; |Ai| ≤ |A| = |Q| and |Ai| = |h[a, b)| =

|[a, b) ∩Q| ≥ |(a, b) ∩Q| = |Q|.

74 CHAPTER 4. THE DARBOUX PROPERTY

Therefore, there exists a bijection mi : Q→ Ai for all i.

Define a sequence of functions as follows.

fi(x) =

r if x ∈ mi(r)

f(x) otherwise

We partitioned A so that, for all i, j, we have Ai∩Aj = ∅ and
⋃
iAi = A.

Hence any x ∈ Q belongs to a unique class in A, and so must belong to

a unique class in exactly one Ai.

Therefore, limi fi(x) = f(x) for all x ∈ Q.

All that remains is to show that each fi has the rational Darboux prop-

erty.

Consider any interval I ⊂ Q. Each equivalence class is dense in Q,

which means I ∩ mi(r) 6= ∅ for all r ∈ Q and i ∈ N. Therefore, there

exists an x ∈ I such that x ∈ mi(r) ∩ I, i.e. fi(x) = r. This means

r ∈ fi(I ∩mi(r)) ⊂ fi(I) for every r ∈ Q, hence fi(I) = Q. �

4.3.2 The complexity of canonical rational Darboux

functions

Using Theorem 4.3.4 and Example 4.3.3 we now discuss the complexity

of finding such a sequence for a given rational function f : Q → Q. We

first address the complexity of C.R.D. functions.

Lemma 4.3.5. There exists a computable C.R.D. function f : Q→ Q.

Proof: Example 4.3.3 is such a function.

Notice that we can computably decide whether two rationals x and y are

in the same equivalence class. Assume that we are given two rationals

q1 = a1
b1

and q2 = a2
b2

in reduced form. Without loss of generality, assume

4.3. THE DARBOUX PROPERTY ON Q 75

q1 > q2. Subtraction is a computable operation, so compute q1 − q2 =

q3 = a3
b3

. We ask whether or not q3 is dyadic. That is, for every n < b3

we ask if b3 = 2n. If no, then q1 and q2 belong to different equivalence

classes. If yes, then q1 and q2 differ by a dyadic, and so belong to the

same class.

Now build a bijection h : Q → A in stages as follows. Enumerate Q
and A. We computably enumerate A by enumerating Q, and for each

rational qn we observe, we check if it is in any of the classes that exist at

this stage. There are only finitely many classes to check at any stage, so

this process it computable. If qn belongs to one of the classes that exist

at the given stage, add qn to that class. If not, define a new class [qn].

Suppose we observe qs at stage s. Define h(qs) to be the ‘oldest’ equiv-

alence class that has not yet been mapped to. If no classes are available

at this stage, we wait until a new unseen class is enumerated into A, and

set h(qs) equal to this class.

It is clear that h is computable, and a bijection. Taking g = h−1 gives

us the bijection of Example 4.3.3 �

Finally, we have the tools to give the main result of this section.

Theorem 4.3.6. Every computable function f : Q→ Q is the limit of a

computable sequence of computable functions with the rational Darboux

property.

Proof: We need to prove that the function defined in Theorem 4.3.4, i.e.

fi(x) =

r if x ∈ mi(r)

f(x) otherwise
,

is computable for each i.

Take computable bijection h : Q → A given in Lemma 4.3.5 to be that

used in Theorem 4.3.4.

76 CHAPTER 4. THE DARBOUX PROPERTY

We can computably find the partition of A any given equivalence class,

[q], is contained in. This is done by enumerating h on each of the unit

intervals and waiting for [q] to appear. We can detect this computably

because deciding whether two rationals are in the same equivalence class

is computable (see Lemma 4.3.5).

In this manner, each Ai is enumerable, and hence there exists a com-

putable bijection mi between Q and Ai. The explicit construction is

similar to that given in Lemma 4.3.5.

For any rational q, there exists exactly one i ∈ N and r ∈ Q such that

q ∈ mi(r). Given i we cannot tell computably if there exists an r such

that q ∈ mi(r), however we do know that such r and i exist.

To computably define the sequence we are interested in, we do not define

functions individually, but rather we define all functions at once on a

particular rational input. Suppose we are given q ∈ Q. We define fi(q)

for all i as follows.

Enumerate Aj for all j ∈ N. At each stage ask if q is a member of any

of the equivalence classes enumerated into each Aj. The rational q is a

member of some equivalence class, and so we will eventually find a class

that contains it. Suppose [q] ∈ Ak. We can computably find r such that

mk(r) = [q] (again, enumeration). Set fk(q) = r and fi(q) = f(q) for all

i ∈ N\{k}. �

We can now deduce that the complexity of a rational function f : Q→ Q
entirely determines the complexity of its corresponding rational Darboux

sequence.

Corollary 4.3.7. If f : Q → Q and f(x) ≤T 0(n) then there exists a

sequence of rational Darboux functions (fi(x))i such that f is the limit

of (fi(x))i and (∀x ∈ Q)(∀i)(fi(x) ≤T 0(n)).

4.4. UNIFORM LIMITS OF DARBOUX FUNCTIONS 77

4.4 Uniform limits of Darboux functions

In the previous sections, we explored real and rational valued functions

and concluded that each could be approximated by a sequence of their

respective (canonical) Darboux functions. Besides implicitly assuming a

pointwise limit, we did not place any restrictions on the rate that these

sequences approximated f . We now spend a moment discussing what

happens if we require our Darboux sequences to uniformly approximate

a function. In this section, we will restrict our attention to real-valued

functions and the classical Darboux definition given earlier in the chapter.

The Bruckner, Ceder and Weiss paper mostly inspired this section [14].

Excluding the Examples 4.4.5 and 4.4.6, all work in this section is theirs.

4.4.1 Preliminaries

Sierpiński mentioned in [56] that, while every function is the limit of

some sequence of Darboux functions, not every real-valued function is

the uniform limit of such a sequence. He proved that the class of these

functions was not trivial, and that there exist functions that are such

limits and do not satisfy the Darboux property themselves. Bruckner,

Ceder and Weiss classify this class of functions in [14]. We outline some

of their argument here.

Recall a sequence of functions f1, f2, . . . is said to uniformly converge to

a function f if, for all ε > 0 there exists N such that n > N implies

(∀x ∈ dom(f)) |f(x)− fn(x)| < ε.

Definition 4.4.1. A function f : I → I is a member of the class U if,

for every interval [a, b] ⊂ I and every set A of cardinality less that c, the

set f([a, b]\A) is dense in the interval [f(a), f(b)].

Recall that if A and B are sets we say that A is dense in B if every open

interval that intersects B also has nonempty intersection with A. We

78 CHAPTER 4. THE DARBOUX PROPERTY

say a set A is c-dense in B is every open interval that intersects B also

contains c points of A.

In turns out that U is the uniform closure of the class of Darboux func-

tions [14]. We give an outline of this result in the following subsection.

4.4.2 The uniform closure of D

Before we sketch a proof of the theorem, note the following two results.

Theorem 4.4.2. (Bruckner, Ceder, Weiss [14]) Let f ∈ U and ε >

0. Then there exists a function g ∈ U such that g is not constant on

any subinterval of its domain, the range of g is countable and (∀x ∈
dom(f))|f(x)− g(x)| < ε.

Theorem 4.4.3. (Bruckner, Ceder, Weiss [14]) Let f ∈ U such that f

is not constant on any subinterval of its domain and the range of f is

countable. Then f is the uniform limit of a sequence of Darboux func-

tions.

We now state their main result.

Theorem 4.4.4. (Bruckner, Ceder, Weiss [14]) f ∈ U if and only if f

is the uniform limit of a sequence of Darboux functions.

Proof: The forwards direction follows by applying Theorems 4.4.2 and

4.4.3. In the other direction, let f : I → I, [a, b] be a closed subinterval

of I and A a set with cardinality less that c. If we can prove that

f([a, b]\A) is dense in [f(a), f(b)] then we are done. Let U be any open

interval whose closure is contained in (f(a), f(b)). We will show that

f([a, b]\A) ∩ U 6= ∅.

Let U = (y− ε, y + ε) and assume without loss of generality that f(a) <

f(b). There exists an n such that (∀x ∈ [a, b])|fn(x)−f(x)| < ε
4

and such

that fn(a) < y−ε and y+ε < fn(b). Then because fn is Darboux it takes

4.4. UNIFORM LIMITS OF DARBOUX FUNCTIONS 79

every value in (y−ε, y+ε) over [a, b], hence there must exist a x0 ∈ [a, b]\A
such that y − ε

2
< fn(x0) < y + ε

2
. Therefore, f([a, b]\A) ∩ U 6= ∅, and

the result follows. �

4.4.3 Examples

We now give examples of functions that are not the uniform limit of

any sequence of Darboux functions. Theorem 4.4.4 is a useful tool when

constructing these.

First, notice that every Darboux function is, of course, a member of U .

We now give an effective Baire class 2 function that is not a member of

U .

Example 4.4.5. Define a function f : R→ R,

f(x) =

1 if x ∈ D
0 otherwise

.

The function f(x) is computable in J (2) (we ask if x is dyadic, which

we can decide with J (2) - for details see Theorem 4.2.11, construction of

an interval function that can be computed in J (2)). We can remove a

countable set of points A in the interval [0, 1
3
], namely all dyadic points,

and f([0, 1
3
]\A) is not dense in [f(0), f(1

3
)] = [1, 0]. Therefore f /∈ U ,

and hence by Theorem 4.4.4 is not the uniform limit of any sequence of

Darboux functions.

We can, in fact, modify this example to give an even simpler function

f /∈ U , where this time f is effective Baire class 1.

Example 4.4.6. Define a function f : R→ R,

f(x) =

1 if x = 0

0 otherwise
.

80 CHAPTER 4. THE DARBOUX PROPERTY

The function f(x) is computable in J (to decide x = 0, given the Cauchy

name x1, x2, . . . of x, we ask ∀n |xn − 0| < 2−n). We can remove a

countable set of points A in the interval [0, 1
3
], namely the point 0, and

f([0, 1
3
]\{0}) = 0 is not dense in [f(0), f(1

3
)] = [1, 0]. Therefore f /∈ U ,

and hence by Theorem 4.4.4 is not the uniform limit of any sequence of

Darboux functions.

Chapter 5

Singular Points and

Polynomials

5.1 Introduction

In this chapter, we decide how difficult it is to identify a set of special

points, called singular points, for a polynomial of two variables. A sin-

gular point of a function F (x, y) is a y-plane (by which we mean the

collection of points {(x, y) : y = y0 ∈ R} for some fixed y0) that the

function oscillates about in at least one direction. The formal definition

is to follow, but we first provide some motivation for including this ma-

terial. This chapter was largely inspired by the Bruckner, Ceder, and

Weiss paper [14]. It turns out that continuous functions in the plane

with a finite number of singular points have ties with the class U , defined

in the previous chapter. We state the relevant theorem here for interest.

Theorem 5.1.1. (Bruckner, Ceder, Weiss [14]) Let F (x, y) be contin-

uous in the entire plane and have at most finitely many singular points.

Then, if f ∈ U and g is continuous, the function h defined by h(x) =

F (f(x), g(x)) is in U .

Discussing this result in detail falls outside of the scope of this thesis,

81

82 CHAPTER 5. SINGULAR POINTS AND POLYNOMIALS

but the functions themselves are interesting enough to investigate fur-

ther. We would like to decide how difficult it is to determine the set of

singular points for a simple continuous function F (x, y); the polynomial.

It turns out that identifying these points is not as easy task. We also

give constructive examples of functions with particular singular points.

A similar strategy to the one used in this chapter could be used to deter-

mine how hard it is to find other characterised points for polynomials.

This section covers some of the discussions and results of [48], with ap-

plication to a result in [14]. The proofs given for Lemmas 5.1.5, 5.2.21,

5.2.4, Corollary 5.2.3, and Examples 5.3.1, 5.3.2 and 5.3.3, are our own.

We give a non-standard definition of a singular point.

Definition 5.1.2. Let F (x, y) be a function continuous on the entire

plane. We call a point y0 singular if one of the following does not exist.2

lim
y→y0
x→∞

F (x, y) or lim
y→y0
x→−∞

F (x, y)

Example 5.1.3. The function xy has a singular point at 0, while x + y,

max(x, y) and min(x, y) have no singular points.

We can think of a singular point y0 as a line in the plane that F (x, y) os-

cillates about it in at least one direction. For those familiar with analysis

and differential equations, note that our definition of a singular point is

distinct from the standard definitions given in those courses. To begin

with, when we talk about a singular ‘point’ here, we actually mean a line

in the plane, where the standard definition truly refers to a point on the

plane. It might seem strange to discuss an obscure ‘point’, but it turns

out that the difficulty of calculating these points is linked to the problem

of finding the roots of a polynomial. This is also an interesting question,

and discussing singular points allows us to address both.

The following theorem can be found in [14]. We will revisit this result

1The proof is our own, but this result is probably due to folklore.
2Note that if lim y→y0

±x→∞
F (x, y) = ±∞, the limit exists.

5.1. INTRODUCTION 83

later on.

Theorem 5.1.4. (Bruckner, Ceder, Weiss [14]) A polynomial P (x, y)

has at most a finite number of singular points.

Proof: Let

P (x, y) =
n∑
k=0

pk(y)xk,

where pk(y) is a sub-polynomial in y and pn(y) 6= 0. We prove by in-

duction on n that if pn(y0) 6= 0, then y0 cannot be a singular point and

lim y→y0
x→±∞

P (x, y) 6= 0. If n = 0, every point y0 is non-singular. Suppose

the hypothesis holds for n− 1, and let pn(y0) 6= 0. Then

P (x, y) = p0(y) + x
n∑
k=1

pk(y)xk−1.

By hypothesis,

lim
y→y0
x→±∞

n∑
k=1

pk(y)xk−1

exists (as y0 is not a singular point of
∑n

k=1 pk(y)xk−1), and is not equal

to 0. Therefore, P (x, y) tends to an infinite limit as y tends to y0 and x

to +∞ and −∞. As both limits given in the definition above exist, y0

cannot be singular. Therefore, if y0 is a singular point of P (x, y) it must

be a root of pn(y). �

Extending the above argument, we can conclude the following.

Lemma 5.1.5. If y0 is a singular point of a polynomial P (x, y) =
∑n

k=0 pk(y)xk

then pj(y0) = 0 for all 0 < j ≤ n.

Proof: We prove by induction on n that, for 0 ≤ m < n, if pn−m(y0) 6= 0

then y0 is not singular and lim y→y0
x→±∞

P (x, y) 6= 0. If n = 0, then every

point y0 is non-singular. Suppose the hypothesis holds for n− 1, and let

pn−m(y0) 6= 0. Then

P (x, y) = p0(y) + x
n∑
k=1

pk(y)xk−1.

84 CHAPTER 5. SINGULAR POINTS AND POLYNOMIALS

By hypothesis,

lim
y→y0
x→±∞

n∑
k=1

pk(y)xk−1

exists and is not equal to 0.

More explicitly,
∑n

k=1 pk(y)xk−1 = p1(y)+p2(y0)x+· · ·+pn−m(y)xn−(m+1)+

· · · + pn(y)nn−1. By the inductive hypothesis, if the sub-polynomial

pi(y0)xn−(m+1) 6= 0 then y0 cannot be singular. We assumed pn−m(y0) 6=
0, hence y0 is not a singular point of

∑n
k=1 pk(y)xk−1. This, and the

inductive hypothesis, then imply lim y→y0
x→±∞

∑n
k=1 pk(y0)xk−1 6= 0. The

result now follows by the same argument given in the theorem above. �

5.2 Computing singular points

5.2.1 Building a set of potential singular points S

Let a polynomial P (x, y) =
∑n

k=0 pk(y)xk, where for all 0 < k ≤ n,

pk(y) 6= 0 is a polynomial with computable real coefficients. As above,

we call pk(y) a sub-polynomial of P (x, y). In this subsection, we would

like to identify P (x, y)’s set of singular points. It turns out that we can

at least computably construct a finite set S of potential singular points

of P (x, y). The true singular points will be a subset of this set, and will

be harder to identify.

First note, as a consequence of Theorem 5.1.4, that y0 is a singular point

of P (x, y) only if pn(y0) = 0 (we do not have the backwards implication

here). Lemma 5.1.5 then extends this notion, and concludes y0 is a

singular point of P (x, y) only if pn(y0) = 0 for all n (expect perhaps

n = 0). Therefore, if we can compute the real roots of each of the n

sub-polynomials (excluding p0(y)) and take their intersection, we must

obtain a set S that contains, at least, every singular point of P (x, y).

Since the set of roots of any polynomial is finite, S must also be finite.

5.2. COMPUTING SINGULAR POINTS 85

The set S can, in fact, be constructed computably, providing that each

sub-polynomial pi(y) is monic, and the coefficients of each sub-polynomial

are members of Rc. This result was originally presented by Pour-El

and Richards in [53], reproved constructively by Chambers in [17], and

published later in [48].

Theorem 5.2.1. (Pour-El and Richards [53]) The real roots of a monic

polynomial with computable real coefficients are computable.

Pour-El and Richards gave a non-constructive proof that the exact roots

of these types of polynomials are computable.3 Unfortunately, their proof

relies on the assumption that we can determine rationality and multiplic-

ity. Chambers later gave a constructive proof of this result, which was

published in [48]. It outlines an explicit algorithm to find these com-

putable roots. We will not give the details here.

Consequently, the Chambers’ algorithm almost gives us a computable set

of potential singular points S. There is a caveat. Notice that Theorem

5.2.1 only claims its result for monic polynomials. It is easy to disregard

this, as any polynomial can usually be expressed as a monic by dividing

through by its leading coefficient. However, life is not so simple when

we are concerned about computability! Our computable coefficients are

given as rational Cauchy sequences, and while we can approximate each

of them with arbitrary precision, we cannot computably decide whether

what appears to be the leading coefficient is equal to 0, or not. This

poses a problem if we need to divide by it.

Lemma 5.2.2. If a polynomial P with computable real coefficients is not

monic, then P ’s roots are not necessarily computable.

Proof: Suppose there was a uniform procedure ψ taking every polynomial

P to its roots. Consider the non-monic polynomial P = 1− bx for some

b ∈ Rc\{0}. Let b1, b2, . . . be the Cauchy name of b. The root of P is 1
b
,

and ψ outputs a Cauchy sequence ri that converges rapidly to 1
b
. Suppose

3Theorems 8 and 9, pp 41-44.

86 CHAPTER 5. SINGULAR POINTS AND POLYNOMIALS

the use of the mth rational approximation of root 1
b

(i.e. rm) is the nth

term in the approximating sequence for b, and suppose it looks like it

could have b = 2−(n+1) (which means |bn− 2−(n+1)| < 2−n). For example,

let the Cauchy name of b have bi = 2−(n+1) for all i ≤ n. Now to beat the

machine. When ψ has committed rm ≥ 3
4

(because 1
b

= 1
2−(n+1) ≥ 4), we

now claim b = −2−(n+2). We have not broken the approximation of b, the

root of our polynomial is now negative, and ψ no longer outputs a Cauchy

sequence that converges to the root of P = 1 + 2−(n+2)x. Contradiction.

�

Of course, if we do not know that the relevant sub-polynomials are

monic, we can decide this with the Π0
1 question. Given the Cauchy name

q1, q2, . . . of each leading coefficient, simply ask (∀n)|qn − 0| < 2−n? Di-

vision is a computable operation, and, therefore, Theorem 5.2.1 allows

us to conclude the following.

Corollary 5.2.3. If P (x, y) =
∑n

k=0 pk(y)xk is a polynomial with com-

putable real coefficients then 0′ is sufficient to determine a finite set which

contains a subset of all singular points of P (x, y).

If, on the other hand, we do know that every sub-polynomial pk(y)xk

(excluding possibly p0(y)) is monic, then we can computably find a finite

set of potential singular points for a polynomial P (x, y) =
∑n

k=0 pk(y)xk.

Lemma 5.2.4. If P (x, y) =
∑n

k=0 pk(y)xk is a polynomial, pk(y)xk for

all 0 < k ≤ n is monic, and each has computable real coefficients, then

we can computably determine a finite set S which contains a subset of all

singular points of P (x, y).

5.2.2 Refining S, the set of potential singular points

Refining this set poses a greater challenge. Recall that S is the intersec-

tion of roots for a polynomial P (x, y), and let S ′ ⊆ S be the true subset

of singular points. If we want to identify S ′, then for every member y0

5.2. COMPUTING SINGULAR POINTS 87

of S we need to ask whether or not the limits

lim
y→y0
x→±∞

P (x, y)

exist. If a limit in one direction fails to exist, then y0 is singular. However,

this is a nontrivial question! For every L ∈ R we need to determine

(∃ε > 0)(∀δ, n)(∃x, y ∈ R)(y ∈ B(y0, δ) ∧ (x > n)→ |P (x, y)− L| > ε)

(5.1)

If the answer is ‘yes’ for all L ∈ R, then y0 is a singular point. Of course,

we have some major complexity problems here, particularly that we are

quantifying over all reals.

While we cannot easily construct our subset S ′ of singular points, we are

able to refine S. Consider (1) for a particular limit L, taking values x, y

over Q rather that R,

(∃ε > 0)(∀δ, n)(∃x, y ∈ Q)(y ∈ B(y0, δ) ∧ (x > n)→ |P (x, y)− L| > ε)

(5.2)

Then if (2) is true, we know (1) must also be true (although no im-

plication exists in the opposite direction of course). Therefore, we can

potentially identify some members of S that are singular, although even

then we need to use a relatively complex predicate.

This is as close as we get to identifying the actual set of singular points

of a polynomial P (x, y) with computable real coefficients. If every sub-

polynomial (excluding p0(y)) of P (x, y) is monic, we can computably

determine a finite set S of potential singular points. Therefore, in this

case, we can computably determine the upper bound of singular points

of P . If every sub-polynomial is not monic, then 0′ is sufficient to rewrite

the relevant sub-polynomials as monics, and a similar argument follows.

In both cases, we may be able to further refine S, although even this is

a much more complicated question, as we have just seen above.

88 CHAPTER 5. SINGULAR POINTS AND POLYNOMIALS

5.3 Examples

We finish this chapter by giving a few constructive examples of different

functions and singular points.

Example 5.3.1. A continuous rational function that has a singular point

at 0.

Let Q(x1, x2, x3) be a Π0
3 predicate. We will build a rational function

f : Q2 → Q such that:

1. if Q is false, then lim y→0
x→±∞

f(x, y) = 0.

2. if Q is true, then 0 is a singular point.

This is a very similar argument to that given in Theorem 4.2.18

Let Q(x1, x2, x3) = ∃x1∀x2∃x3R(x1, x2, x3), where R is a computable

relation. Recall predicate (2) from above.

We now build a function f that will have a singular point at 0 if and

only if Q is true. If Q is not true, we want f(x, y) to approach 0 as

y approaches 0 and x approaches ±∞. Let 〈a, b, c〉 represent the stage

where we assess P (a, b, c).

We begin giving the construction for x1 at 1.

Stage 〈1, 1, 1〉: Check R(1, 1, 1). The relation R(1, 1, 1) is either true or

false.

If R(1, 1, 1) is true: choose large u0, v0 ∈ Q such that v0 ∈ B(0, 2−1) and

u0 > 1. Set f(u0, v0) = 1. We also enumerate two rationals q1, q2, and

if f(q1, q2) has not been defined, set it equal to 0. We will see later that

setting f(u0, v0) = 1 breaks our continuity. So whenever this happens,

we vary f in a cone like manner to avoid this: (u0, v0, 1) is the cone point

coordinate (i.e. f(u0, v0) = 1), the points at the rim of the cone take the

value f(x, y) = 0, and all of the points in-between vary appropriately

5.3. EXAMPLES 89

between 0 and 1. Choose a small radius for this cone that avoids the

point (q1, q2). Now go to stage 〈1, 2, 1〉.

If R(1, 1, 1) is false: choose the same u0, v0 ∈ Q and set f(u0, v0) = 0.

Enumerate two rationals q1, q2, and if f(q1, q2) has not been defined, set

it equal to 0. Now go to stage 〈1, 1, 2〉.

Notice that if R(1, 1, 1) is true, it could be that ∀x2∃x3R(1, x2, x3).

Therefore, we move to stage 〈1, 2, 1〉, and try our luck with R(1, 2, 1).

On the other hand, if R(1, 1, 1) is false, there still could exist some x3

such that R(1, 1, x3) is true, and so we check R(1, 1, 2).

Stage 〈1, b, c〉: Assume for all x2 < b, we have found some x3 such that

R(1, x2, x3) is true (this must be case if we have reached this stage). We

now check R(1, b, c).

If R(1, b, c) is true: choose u, v ∈ Q such that v ∈ B(0, 2−b), the rational

u > max(b, largest absolute value rational defined so far), and f(u, v)

has not yet been defined. Notice this will always be possible as Q is

dense. Set f(u, v) = 1. Enumerate two more rationals into our list

q1, q2, . . . , and if f(qi, qj), for all i, j ≤ n has not yet been defined, let

f(qi, qj) = 0. Lastly, we need to ensure we maintain continuity. As in

the first stage, we vary f in a cone like manner: (u, v) is the cone point

coordinate, f(u, v) = 1, the points at the rim of the cone take the value

f(x, y) = 0, and all of the points in-between vary appropriately between

0 and 1. As only finitely many points have been defined at this stage it

is easy to avoid them. Choose a small distance d that does not interfere

with any pre-defined points, and let f(u ± k, v ± k), k < d vary from 0

to 1 and 1 to 0 in a cone like manner. Go to stage 〈1, b+ 1, 1〉.

If R(1, b, c) is false: choose the same u, v, but set f(u, v) = 0. Also

enumerate two more rationals into our list q1, q2, . . . , and if f(qi, qj), for

all i, j ≤ n has not yet been defined, let f(qi, qj) = 0. Go to stage

〈1, b, c+ 1〉.

This construction almost works. However, notice that we also need to

90 CHAPTER 5. SINGULAR POINTS AND POLYNOMIALS

vary x1; we want 0 to be a singular point if ∃x1∀x2∃x3R(x1, x2, x3). If we

only ran the construction for x1 = 1, it could return false, even though,

for example, ∀x2∃x3R(2, x2, x3) is true. To ensure our construction works

we will also dovetail over x1. This means we will run one step for x1 fixed

at 1, i.e. 〈1, x2, x3〉. We then run two appropriate steps for x1 set equal

to 1 and 2, and three for x1 set equal to 1, 2 and 3 and so on. In this way,

if Q is false, after some point the function will be constant. However, if

Q is true, then there are infinitely many stages where f is set not equal

to 0, and this forces the function to oscillate (and therefore never attain

a limit).

If Q really is true, we will observe infinitely many successes for some x1,

and so by the construction there will exist an x as large as we like and a y

as close to 0 as we like such that f(x, y) = 1, i.e. lim y→0
x→∞

f(x, y) = 0 does

not exist. If, on the other hand, Q is false, for every x1 after some stage we

never observe another success. The construction then ensures that there

exists an n such that, if x, y > n, f(x, y) = 0, i.e. lim y→0
x→∞

f(x, y) = 0

exists. At each stage we maintained continuity, and so the function is

well defined.

Example 5.3.2. A continuous function where every rational point is sin-

gular.

We build a new function f : Q2 → Q that has a singular point at every

rational by adapting the argument above. Let Q be a Π0
3 predicate.

This time f is constructed such that:

1. if Q is false, then for all q ∈ Q, lim y→q
x→±∞

f(x, y) = 0.

2. if Q is true, then ∀q ∈ Q, q is a singular point.

Let 〈x, y, z〉 be a pairing function as above. The argument is very similar

to that above, so we omit some details. Let |q| be the largest rational at

stage 〈a, b, c〉 such that ∀r > q, f(r, r) has not yet been defined.

If at stage 〈a, b, c〉 the relation R(a, b, c) is true, choose u, v such that

5.3. EXAMPLES 91

v > u > r. Set (∀y)f(u, y) = 1 and (∀y)f(v, y) = 0. Vary f(x, y) contin-

uously (i.e. saddle/linearly) between the line f(u, y) = 1 and f(v, y) = 0

on all values of y. We also need to ensure the function we are building

is continuous. At stage (n − 1) the relation R returned either true or

false. In either case, there exists a greatest q such that (∀y)f(q, y) = 0 or

(∀y)f(q, y) = 1 (true and false respectively). Vary f(x, y) continuously

between f(q, y) = i and f(u, y) = 1 as appropriate to ensure continuity,

i ∈ {0, 1}.

If at stage 〈a, b, c〉 the relation R(a, b, c) is false, choose v such that v > r

and set (∀y)f(v, y) = 0. Ensure continuity of function as in the case

above.

The result follows.

Example 5.3.3. A real-valued function where every real point is singular.

An example would be a canonical Darboux function. Although, in-

evitably, we lose continuity.

Chapter 6

The Blaschke Selection

Theorem

6.1 Introduction

The Blaschke Selection Theorem was originally proved by Blaschke, an

Austrian differential and integral geometer, in 1916.1 Recall that a set

X ⊆ Rn is said to be convex if for any two points x1, x2 ∈ X, all points

of the form ax1 + bx2, where a, b ≥ 0 and a + b = 1, also belong to

X. The Blaschke Selection Theorem asserts that every infinite collec-

tion of closed convex sets of a bounded portion of Rn contains a subse-

quence that converges to a nonempty closed convex subset [5]. In some

sense, the Blaschke Selection Theorem is a generalisation of the Bolzano-

Weierstrass Theorem, a fundamental result from classical analysis. The

Bolzano-Weierstrass Theorem states that any infinite collection of points

in a bounded portion of Rn contains a convergent subsequence. Proved

in 1817 by Bolzano, the Bolzano-Weierstrass theorem was originally a

lemma for a proof of the Intermediate value Theorem [7].2 It was later

1The paper cited here, ‘Kreis und Kugel’, is written in German and has not been
translated into English. A number of secondary sources confirmed this reference, for
example [36] and [29].

2An English translation of this paper can be found in [9].

93

94 CHAPTER 6. THE BLASCHKE SELECTION THEOREM

re-proved by Weierstrass and recognised as significant in its own right.3

Similar to the Bolzano-Weierstrass Theorem, the Blaschke Selection The-

orem has great practical importance, and so it is a useful theorem to

effectivise. Also, as far as we know, the Blaschke Selection Theorem has

not yet been considered from a computability theoretic perspective. In

this chapter, we give a proof of the theorem, followed by a discussion of

its complexity. We would like to establish how difficult it is to find, and

compute the limit of, a convergent subsequence of an infinite collection

of computable closed convex sets in a bounded portion of Rn.

The main result of this chapter is as follows.

Theorem 6.3.8 Every infinite computable collection of closed convex

sets of a bounded portion of Rn has a convergent subsequence with a 0′′

computable limit.

We also give a proof that 0′′ in Theorem 6.3.7 cannot be replaced by 0′.

Because convexity is an important property, we finish the chapter by

looking into the complexity of convexity. We prove that 0′ is not suf-

ficient to decide the convexity of a closed set in R (a result which can

be generalised to Rn), but that the set of indices of closed convex sets

is co-c.e. over 0′. Theorems 6.3.7-9, 6.4.1-3, Lemmas 6.3.2, 6.3.6, and

Example 6.3.1 are new. The proof of Theorem 6.2.5 is original (although

the result is attributed to Blaschke [5]).

6.2 The Blaschke Selection Theorem

Let us begin by defining the metric we will be working in. Let B be a

bounded portion of Rn and C be the collection of closed sets contained

in B. Recall, the distance from set a A ⊂ Rn to a point x is dA(x) =

inf{|x− y| : y ∈ A}.
3Weierstrass published relatively little in his lifetime, but some of his original works

can be found in [65]. See [25] for historical information.

6.2. THE BLASCHKE SELECTION THEOREM 95

Definition 6.2.1. Let X be a closed set in Rn and take δ > 0. Define

B(X, δ) to be {x : dX(x) < δ}.

We define a metric in C.4 Let X1, X2 ∈ C, and let δ1 be the infimum

of the collection of distances δ such that X2 ⊂ B(X1, δ), and δ2 be the

infimum of the collection δ′ such that X1 ⊂ B(X2, δ
′). We define the

distance between X1 and X2 to be

∆(X1, X2) = δ1 + δ2.

∆ is a metric. The proof is trivial, although we mention that two sets

X1, X2 need to be closed in order for ∆(X1, X2) = 0 to imply X1 = X2.

Definition 6.2.2. A sequence of closed sets (Xi) converges to limit X

if limi ∆(Xi, X) = 0 and X ∈ C.

We will use the following results in our proof of the Blaschke Selection

Theorem. The first can be found in [24].

Lemma 6.2.3. (Eggleston [24]) Let (Xi) be a convergent subsequence of

elements of C with limit X. If every member of (Xi) is convex then X is

also convex.

Proof: Suppose that X is not convex. Then there exist two members x1

and x2 of X such that the line segment connecting x1 and x2 contains a

point x0 and x0 /∈ X. But X is closed, and so there must exist a δ > 0

such that B(x0, δ) ∩X = ∅.

The sequence (Xi) converges to X, therefore there exists an i such that

∆(Xi, X) < 1
4
δ. Notice this means X ⊂ B(Xi,

1
4
δ) and Xi ⊂ B(X, 1

4
δ)

and allows us to find u ∈ Xi such that |x0 − u| < 1
4
δ. We do this by

choosing members u1 and u2 of Xi within 1
4
δ of x1 and x2 respectively.

There must exist a point on the line segment connecting u1 and u2 that

4Metric sourced from [24].

96 CHAPTER 6. THE BLASCHKE SELECTION THEOREM

is within 1
4
δ of x0, and this point must be a member of Xi by convexity.

By the same argument, there exists a v ∈ X such that |u− v| < 1
4
δ.

This implies that there exists a point v ∈ X such that |x0 − v| < 1
2
δ, a

contradiction. �

Lemma 6.2.4. Let (Xi) be a nested decreasing sequence of closed sets

in C. Then
⋂
iXi = X is the limit of this sequence.

Proof: Suppose this is not the case. Then there exists a δ such that for

infinitely many i, ∆(Xi, X) > δ. Take an element xi from each Xi such

that dX(xi) > δ, and form a sequence (xi)i.
5 Let x be an accumulation

point of this sequence. x /∈ X by assumption, but because each set Xi

is closed, and our sequence is nested, x must be a member of each Xi,

hence x ∈ X. Contradiction! �

We now prove the Blaschke Selection Theorem. Our intention is to give a

proof that is easy to analyse from a computability theoretic perspective.

Theorem 6.2.5. (Blaschke [5]) (The Blaschke Selection Theorem) Ev-

ery infinite collection of closed convex subsets of a bounded portion of

Rn contains an infinite subsequence that converges to a closed nonempty

convex subset of this bounded portion of Rn.

Proof: Let B be a bounded portion of R3 that contains an infinite collec-

tion A of closed convex subsets. By compactness, we can finitely cover

B with open balls of radius ε > 0.

We will first explain the construction for this fixed cover.

In the construction, we want to define a collection Mi of closed refine-

ments of B, and Ni infinite refinements of A. At the end of stage 1 we

will obtain two new sets, B1 =
⋂
iMi and A1 =

⋂
iNi. We will then

choose a set from A1 and begin forming our convergent subsequence.

5Notice we are using two different metrics here. Recall that d was defined earlier;
dX(xi) = infx∈X |x− xi|.

6.2. THE BLASCHKE SELECTION THEOREM 97

Let the fixed cover of B require n balls of radius ε. We first explain how

to construct the collections M1, . . . ,Mn and N1, . . . ,Nn.

Initially, take an open ball b1 in our cover and ask whether infinitely

many sets in A fail to intersect b1 (asking whether there are infinitely

many sets in A that are contained in B\b1 would be the same question

phrased slightly differently).

If this is the case, define a new set M1 = B\b1 and new subset of closed

convex sets N1, where N1 is all closed convex sets from the original

collection A that do not intersect b1; N1 = {X : X ∈ A and X∩b1 = ∅}.

If not, let M1 = B and N1 = A.

Notice that N1 remains an infinite collection of closed convex subsets of

our space in both cases and M1 is a closed bounded (and compact) subset

of B.

Take another open ball in our cover b2 and ask whether infinitely many

sets that remain in N1 are members of M1\b2. If yes, define M2 = M1\b2

and the new subset of closed convex setsN2 = {X : X ∈ N1 and X∩b2 =

∅}. If no, let M2 = M1 and N2 = N1.

Assuming we have just defined Mi and Ni, take the open ball bi+1 in

our cover and ask whether infinitely many sets that remain in Ni are

members of Mi\bi+1. If yes, define Mi+1 = Mi\bi+1 and the new subset

of closed convex sets Ni+1 = {X : X ∈ Ni and X ∩ bi+1 = ∅}. If no, let

Mi+1 = Mi and Ni+1 = Ni.

Once this algorithm has been completed for each bi in our cover, we

have formed two collections M1, . . . ,Mn and N1, . . . ,Nn. Notice that

each collection is nested, and if X ∈ Ni then X ⊂ Mi. In addition, the

construction has also ensured that if bj and bk are two balls in our cover

such that bj ∩Mn 6= ∅ and bk ∩Mn 6= ∅ (i.e. neither ball was explicitly

removed in the construction), then finitely many closed convex sets in Nn
do not intersect both bj and bk. This follows because bj was not removed

from Mj−1 to form Mj, which means only finitely many closed convex

98 CHAPTER 6. THE BLASCHKE SELECTION THEOREM

sets in the refined collection Nj−1 did not intersect bj (if we had removed

bj we would have left only finitely many closed convex sets in the new

collection Nj, something we want to avoid). Similarly for bk.

This condition applies to every pair of balls that were not removed in

the construction. Therefore, it follows that we can eliminate finitely

many closed convex sets from Nn to form a new set Nn+1 such that,

if X ∈ Nn+1, then it intersects every ball in the cover that was not

explicitly removed in the construction.

Finally, we let B1 =
⋂n
i Mi and A1 =

⋂n+1
i Ni. Choose any set that

remains in A1, call it C1. This will be the first term in our convergent

subsequence.

Before moving on, we note the following facts:

1. B1 is a closed subset of B because M1 ⊃ · · · ⊃ Mn and each Mi

was a closed subset of B.

2. A1 is an infinite subset of the original collection of closed convex

sets A because Ni ⊃ · · · ⊃ Nn+1 and each Ni was an infinite subset

of A.

3. If X ∈ A1 then X ⊆ B1. By contrapositive, if X ∈ A and X * B1

then there exists a least i such that X * Mi, but X ⊆ Mi−1.

By construction there is a ball from the cover bi such that Mi =

Mi−1\bi, hence X ∩ bi+1 6= ∅. But also by construction, Ni = {X :

X ∈ Ni−1 and X ∩ bi+1 = ∅}. Therefore, X /∈ Ni and so X /∈ A1.

4. If X ∈ A1 then ∆(X,B1) < 2ε. This follows because if X ∈ A1,

then X intersects every open ball in the cover that also intersects

B1 (i.e. those that were not removed). Therefore, as X ⊂ B1 and

B ⊂ B(X, 2ε), we have that ∆(X,B1) < 2ε.

5. If X1, X2 ∈ A1 then ∆(X1, X2) < 4ε. This follows by the triangle

inequality. ∆(X1, X2) ≤ ∆(X1, B1) + ∆(X2, B1) < 2ε+ 2ε.

6.3. SUBSEQUENCE AND LIMIT COMPLEXITY 99

Now repeat with a cover of open balls of radius ε
2
, beginning with the

bounded space B1 and infinite collection of closed convex sets A1.

Continuing this construction, we obtain a sequence of closed convex sets

C1, C2, . . . and a decreasing sequence of closed sets B1 ⊃ B2 ⊃ Let

C =
⋂
iBi.

Claim: limiCi = C

Proof: Again, we begin by listing a number of facts:

a. C 6= ∅ because it is a nested intersection of nonempty compact sets

(recall that each Bi is compact).

b. ∀n, Cn ⊆ Bn and m > n implies Cm ⊆ Bn. This is because

Cn, Cn+1, · · · ∈ An, and if X ∈ An then X ⊆ Bn.

c. ∀δ ∃i such that if X1, X2 ∈ Ai then ∆(X1, X2) < δ. Take the cover

ε = δ
4
. The result then follows by an extension of Fact 4 above.

d. In addition, by Facts 4 and c if X ∈ Ai then ∆(X,Bi) < δ.

e. ∀δ ∃k ∀j > k such that ∆(Bj, C) < δ by Lemma 6.2.4.

The result now follows because for all δ, there exists an i such that for all

j > i we have ∆(Cj, Bj) < δ. By Lemma 6.2.4 limiBi = C, so it follows

that limiCi = C.

We have now constructed a convergent subsequence (Ci) of A such that

limiCi = C. C is closed and nonempty as it is the infinite decreasing

intersection of closed compact sets. Finally, C is convex by Lemma 6.2.3.

�

6.3 Subsequence and limit complexity

In the previous section, we gave a proof of the Blaschke Selection Theo-

rem. Given a collection of sets, we will now discuss how difficult it is to

100 CHAPTER 6. THE BLASCHKE SELECTION THEOREM

identify a convergent subsequence and compute its limit. We begin by

restricting our attention to sequences of points in the unit interval, and

then extend our argument to Rn.

6.3.1 Restricting to the unit interval

Naturally, we begin by asking whether every computable subsequence

of a collection of convex sets needs to converge to a computable limit?

Unsurprisingly, this turns out to be false. We give an example in the unit

interval.

Example 6.3.1. We define a halting sequence (in binary) as follows. Let

the ith term in the sequence have a 1 in the ith binary point if and only

if ϕj(j)[i] ↓. Otherwise, let this binary point be a 0. Each term in

this sequence is computable, and the sequence converges to a limit x.

However, if x was computable we could compute the halting problem. �

Setting our sights lower, and still considering only the unit interval, we

can show is that 0′′ is sufficient to find and compute the limit of a sub-

sequence of any infinite collection of points.6 In the following lemma, we

effectivise the Bolzano-Weierstrass Theorem.

Lemma 6.3.2. Given a computable infinite bounded sequence in R, 0′′ is

sufficient to compute a fast convergent subsequence, and hence compute

its limit.

Proof: Without loss of generality, assume the sequence (xi)i is contained

in the unit interval. We know that at least one of the following sets

contains infinitely many elements.

{xi : 0 ≤ xi <
1

2
}, {xi :

1

2
< xi ≤ 1}, {xi : xi =

1

2
}

We can decide, for example, if the first set X = {xi : 0 ≤ xi <
1
2
} is

infinite by asking if (∀n)(∃m > n)(∃s)(xn,s ∈ [2−s, 1
2
−2−s)), where xn,s is

6The jump is considered as a set here again.

6.3. SUBSEQUENCE AND LIMIT COMPLEXITY 101

the sth term in the Cauchy name of xn.7 Similarly for the other two sets.

Once we have identified one of the infinite sets, we extract an arbitrary

element from it. Call this element y1. If y1 = 1
2

we are done. Otherwise,

without loss of generality, assume y1 ∈ {xi : 0 ≤ xi <
1
2
}. Now repeat

the process for the three sets:

{xi : 0 ≤ xi <
1

4
}, {xi :

1

4
< xi ≤

1

2
}, {xi : xi =

1

4
}.

Again, one of which must contain infinitely many elements.

Continuing in this manner, we obtain a subsequence y1, y2, By con-

struction, this sequence is Cauchy and therefore, converges to a point in

the unit interval. �

To determine whether this result also holds in general we must discuss

how we need to adapt our argument to work in higher dimensions.

6.3.2 Extending to higher dimensions

To give a generalised version of Lemma 6.3.2, we need to recall what

we mean by a ‘computable collection of sets’. In an earlier section we

defined a closed set X to be computable if it had a computable distance

function dX . We will call a collection of closed sets (Xi) computable if

there exists an algorithm that uniformly gives the distance function of

term Xi for all i.

Also, Lemma 6.3.2 states that 0′′ is sufficient to approximate the limit of

a sequence of points, which means 0′′ can compute a Cauchy name for

this limit. In order to generalise this notion, we define what it means for

a collection of sets to approximate another.

Definition 6.3.3. A sequence of closed sets (Xi) approximates a set X

7Notice that xn is thought of as a real here, rather than a term in a Cauchy name
for a real x. This is one of the only notational exceptions of this type, and was made
for convenience.

102 CHAPTER 6. THE BLASCHKE SELECTION THEOREM

if ∀ε ∃i ∀j > i ∆(Xj, X) < ε.8

We can now relativise this definition and the definition of a computable

sequence of closed sets.

Definition 6.3.4. A sequence of closed sets (Xi) y-approximates a set

X if ∀ε ∃i ∀j > i ∆(Xj, X) < ε and y can compute such an i for any ε.

Definition 6.3.5. A collection of closed sets (Xi) is y-computable if there

exists an algorithm computable in y that uniformly gives the distance

function of set Xi for all i.

We give a lemma that will be useful later.

Lemma 6.3.6. If a sequence of closed sets (Xi) is y-computable, and

(Xi) y-approximates a set X, then X is y-computable.

Proof: We need to show that y is sufficient to compute the distance

function of X. That is, for any point x0, we will show y is sufficient to

give a suitable nth term in a Cauchy name of dX(x0). The sequence (Xi)

y-approximates the set X, so y is sufficient to compute an i such that

for all j > i, ∆(Xj, X) < 2−(n+1). Taking any j > i, y is sufficient to

compute the distance function of Xj, and hence can compute dXj
(x0) to

within 2−(n+1). Let this rational approximation be q.

Claim: q is a sufficient nth term in a Cauchy name of dX(x0).

The claim follows by two kinds of triangle inequality. However, as dX is

not actually a metric, this may not be immediately apparent. We first

show that

dX(x) ≤ dX(z) + dz(x) (6.1)

dx(z) ≤ dX(z) + dX(x) (6.2)

holds for all closed, bounded sets X and points x and z.

8This is just a more convenient reformulation of Definition 6.2.2.

6.3. SUBSEQUENCE AND LIMIT COMPLEXITY 103

Equation (6.1):

dX(z) + dz(x) = inf
t∈X
|t− z|+ inf

t∈y
|t− x|

= inf
t∈X
|t− z|+ |z − x|

= min
t∈X
|t− z|+ |z − x| as X compact

= |w − z|+ |z − x| for some w ∈ X
≥ |w − x| as || a metric

≥ inf
t∈X
|u− x|

= dX(x)

Equation (6.2):

dX(z) + dX(x) = inf
t∈X
|t− z|+ inf

t∈X
|t− x|

= min
t∈X
|t− z|+ min

t∈X
|t− x| as X compact

= |w1 − z|+ |w2 − x| for some w1, w2 ∈ X
≥ |w1 − z|+ |w1 − x| w.l.o.g. choosing w1

≥ |z − x| as distance is metric

= dx(z)

Proof of claim: q − 2−(n+1) < dXj
(x0) < q + 2−(n+1). Therefore, there

exists a point u ∈ Xj such that q−2−(n+1) < |u−x0| < q+2−(n+1). We are

non-uniformly provided with x0, so we can check every computable point

in Xj until we find one that satisfies q− 2−(n+1) < |u−x0| < q+ 2−(n+1).

In addition, ∆(Xj, X) < 2−(n+1), therefore every point x ∈ Xj is within

2−(n+1) of some point in X, i.e. dX(u) < 2−(n+1). These details are

summarised in Figure 6.1.

104 CHAPTER 6. THE BLASCHKE SELECTION THEOREM

X

Xj

x0
a ≤ dX(x0)

b < q + 2−(n+1)

a
b

c

c < 2−(n+1)

u

dX(x0)

Figure 6.1: Distances between x0, u,X, and Xj.

We now apply equation (6.1),

dX(x0) ≤ dX(u) + du(x0)

= dX(u) + |u− x0|
< 2−(n+1) + q + 2−(n+1)

< 2−n + q

and equation (6.2),

dX(x0) ≥ dx0(z)− dX(z)

> q − 2−(n+1) − 2−(n+1)

= q − 2−n

Hence, q is a sufficient nth approximation of dX(x0) and y is sufficient to

compute q. The result follows. �

6.3. SUBSEQUENCE AND LIMIT COMPLEXITY 105

We can finally prove that Lemma 6.3.2 holds in general. We give a

proof below using details from Theorem 6.2.5 (the Blaschke Selection

Theorem).

Theorem 6.3.7. Given a computable, infinite collection of computable

closed convex subsets of a bounded portion of Rn, 0′′ is sufficient to find

a convergent subsequence of this collection and approximate its limit.

Proof: This result follows by evaluating the complexity of the sequence

(Ci) constructed in Theorem 6.2.5, albeit making one small change. No-

tice that we cannot computably decide for a closed set X and an open set

Y whether X ∩ Y 6= ∅. So rather than asking at each stage whether the

open ball bi in a cover does not intersect infinitely many of our convex

sets (as in the original proof), we will instead use the closure of bi in the

open ball’s place. The original proof remains unchanged, but we can now

computably decide whether X ∩ bi 6= ∅, which will be useful below.

We call the closed set Xi, at stage t, the set Xi,t (it is nice to think of

these sets in Baire space).9 Let (Xi) be an infinite, bounded, computable

collection of closed convex sets. Finding a finite cover of our bounded

portion of Rn is computable. We would now like to ask if there are

infinitely many setsXi in our current collectionNi (as defined in Theorem

6.2.5) that do not intersect bi - or equivalently do not intersect bi. That

is, (∀r)(∃s > r)(∃t)(Xs,r ∈ Ni,r and Xs,t ∩ bi = 0)?

Depending on the answer, we take the appropriate step as outlined in

the construction. Note that Ni is c.e. and so Ni,t (Ni at stage t) is

computable. The final question is asked when constructing Nn+1. For

each Xs ∈ Ni, we ask whether (∀i, t) ((bi in cover) ∧ (bi ∩Mi,t 6= ∅))
implies (bi ∩ Xs,t 6= ∅). If this is the case, enumerate X into Ni+1.

Otherwise, discard X. Note that the sequence (Ci) approximates its

limit by definition. The result follows. �

9If a closed set X has a computable distance function then it can be expressed as
a Π0

1 class in Baire space. Check dX(x). If the nth approximation of dX(x) is ever
greater than 2−n, kill the branch that extends however much of the Cauchy name of
x we have seen.

106 CHAPTER 6. THE BLASCHKE SELECTION THEOREM

Notice that, while proving both Lemma 6.3.2 and 6.3.7, the sequences we

constructed also happened to approximate their limits. As a consequence

of our construction, this is not always the case.

It now follows by this Theorem, and Lemma 6.3.6, that 0′′ is sufficient

to compute the distance function of the limit X given above, which ties

this result back to the original notion of a computable set (Chapter 4).

Theorem 6.3.8. Every computable, infinite collection of closed convex

subsets of a bounded portion of Rn, has a convergent subsequence with a

0′′ computable limit.

Finally, we note that Theorem 6.3.8 can, of course, be relativised. In

all likelihood our result is equivalent to arithmetic comprehension over

RCA0 [57]. Unfortunately there was insufficient time to confirm this.

6.3.3 Back to the unit interval; 0′ is not sufficient

While 0′′ is sufficient to find a convergent subsequence and approximate

its limit, we note that 0′ is not. We sketch the proof of this for a single

dimension.

Theorem 6.3.9. There exists a computable sequence (xi)i contained in

the unit interval such that no accumulation point of the sequence is com-

putable in 0′.

Sketch of Proof: We want to build a sequence of points x0, x1, . . . in

the unit interval such that no 0′ computable sequence converges to any

accumulation point in this sequence. We will first discuss how to build

such a sequence that avoids a single 0′ computable sequence, and then

generalise this notion to account for every 0′ computable sequence.

Let y0, y1, . . . be a 0′ computable sequence. This means we are not truly

‘given’ the terms in the sequence y0, y1, . . . but rather 0′ computable

6.3. SUBSEQUENCE AND LIMIT COMPLEXITY 107

Cauchy names converging to each of these terms. y0,0, y0,1, y0,2 . . . ‘con-

verging’ to, for example, y0 and so on. We do not know the rate at which

each of these ‘subsequences’ converges, only that eventually they must

settle on a value yi.

At stage 0, we observe y0,0, y1,0, y2,0 . . . and assume at this point that

y0, y1, . . . actually converges (of course, it may not, in which case we do

not need to worry about avoiding it anyway). We now split the unit

interval into two halves and consider y0,0. Whichever half y0,0 is in, we

choose the first term in our sequence to be a point from the other half

of [0, 1]. For example, if y0,0 = 5
8
, we could choose x0 = 1

4
. We now

observe y1,1. Whichever half y1,1 is in, we choose x1 to be in the other.

For example, perhaps y1,1 = 1
4
, then we could choose x1 = 3

4
(if y1,1

is not in the same half as x0, we simply set x1 = x0). Continuing this

process, we know that the sequence y0,n, y1,n, . . . must eventually get close

to yn. Therefore, if y0, y1, . . . actually converges, avoiding the sequence

y0,0, y1,1, y2,2, . . . , yn,n, . . . will be sufficient to avoid it too. If y0, y1, . . .

does not converge, then (xi)i may not be able to avoid it. But if the

sequence does not converge, then it cannot compute an accumulation

point anyway.

So we have built a sequence (xi)i that has no accumulation points com-

putable by the 0′ sequence y0, y1,

We will now extend this argument by describing how to, in addition to

the sequence above, avoid a second 0′ computable sequence w0, w1,

At stage 0 we now consider both y0,0 and w0,0. We can computably

decide whether y0,0 ∈ [0, 1
2
) or ∈ [1

2
, 1]. We then ask which quarter w0,0

is a member of: w0,0 ∈ [0, 1
4
), [1

4
, 1

2
), [1

2
, 3

4
) or [3

4
, 1]. Choose a point for x0

that avoids both the half and quarter which y0,0 and w0,0 are members of

respectively. Continuing on in this manner (next checking y1,1 and w1,1),

we can build a sequence (xi)i that avoids the sequences (yi)i and (wi)i if

they converge.

We can generalise this notion and build a sequence whose accumulation

points avoid every 0′ sequence. Take a computable listing of every 0′

108 CHAPTER 6. THE BLASCHKE SELECTION THEOREM

sequence, and extending the argument above, avoid certain terms in every

sequence appropriately. For example, at stage n we would address the

first n sequences on our list. Observe the nth approximation of each of

the nth terms in these n sequences, and avoid them by choosing a point

xn that avoids the half, quarter, eighth, . . . , 1
2−n th that the respective

terms fall in.

We can see by the construction that there will always be an interval ‘free’

at each stage, so we can always define a new xi. By dovetailing, our

sequence (xi)i will avoid the limit point (if it exists) of every 0′ sequence.

�

Because 0′ is not sufficient to compute any of (xi)i’s accumulation points,

it follows that no subsequence of (xi)i can converge to a 0′ computable

limit.

In general, this result holds in higher dimensions, as R embeds into Rn.

6.4 Discussions on convexity

We now take a moment to explore the notion of convexity, and how hard

it is to decide if a closed set A in Rn is convex. We first prove the

following result for closed sets in Cantor space (as Π0
1 classes).

Theorem 6.4.1. 0′ is not sufficient to decide the convexity of a closed

set A in Cantor space.

Proof: Suppose, to the contrary, that 0′ was sufficient to determine con-

vexity. Let A be a Π0
1 class in Cantor space that 0′ claims is convex. That

is, we begin enumerating A, and at stage s, observing As, 0′ declares that

A is convex. Call a branch in As active if it has not permanently halted

earlier in the enumeration. Otherwise, we say that this branched is dead

or was killed at an earlier stage.

Choose an appropriate active branch in As such that killing this branch

6.4. DISCUSSIONS ON CONVEXITY 109

Active
branch

Dead
branch

As

Figure 6.2: Tree at stage s.

will prevent A from being convex. It must be an active branch with at

least one active branch to the left and right of it. We then declare this

branch dead. We have now removed an open ball entirely contained in

As so that As+1 threatens to be non-convex (it has a hole!). Figure 6.2

shows A at stage s and Figure 6.3 A at stage s+ 1.

Active
branch

Dead
branch

As+1

Figure 6.3: Tree at stage s+ 1.

Now suppose that 0′ observes As+1, and states that A is now not convex.

We then choose an appropriate collection of branches to kill in order to

ensure that As+2 again looks convex. Figure 6.4 shows A at stage s+ 2.

0′ must now claim that A is convex.

Repeating this method builds a singleton {x} = A, but 0′ cannot deter-

110 CHAPTER 6. THE BLASCHKE SELECTION THEOREM

Active
branch

Dead
branch

As+2

Figure 6.4: Tree at stage s+ 2.

mine its convexity. Contradiction. �

Because closed sets in Cantor space embed into closed sets in R (they are

effectively homeomorphic), showing that 0′ is insufficient to decide the

convexity of a closed set in Cantor space is also a counterexample for R.

Therefore, we can conclude the following.

Theorem 6.4.2. 0′ is not sufficient to decide the convexity of a closed

set A in R.

We can generalise this notion to Rn by interpreting a Π0
1 class as a closed

set in Rn, and giving a similar argument.

The next thing we ask is how much more computational power is required

to determine complexity? It turns out not very much more.

In this proof we explicitly discuss effectively closed sets in Rn. Recall

that an effectively closed set in Rn can be thought of as follows; at stage

0 it begins as all of Rn, and at certain stages open balls of rational radius

drop of out of the set.

Theorem 6.4.3. The set of indices of effectively closed, convex sets of

Rn is co-c.e. over 0′.

Proof: Suppose A is an effectively closed subset of Rn. The set A fails to

6.4. DISCUSSIONS ON CONVEXITY 111

be convex when an open ball falls out of A, and there exist two points in A

such that the line segment connecting them has a non-empty intersection

with the open ball that was removed. See Figure 6.5.

Removed from A

In A

In A

Figure 6.5: If A not convex.

We claim that 0′ is sufficient to eventually determine if A is not convex.

Let B be an open ball with rational center point and radius such that

B ∩As−1 6= ∅, but B ∩As = ∅, where As is the set A at stage s. Finitely

cover the space As within s of the ball B with open balls whose center

points are rational, and of some appropriate small rational radius ε ∈ Q.

For each pair of balls Bi and Bj in this cover, ask if for all x ∈ Bi

and y ∈ Bj, the line segment connecting x and y intersects B. This is

decidable in 0′. See Figure 6.6. Enumerate every such pair of balls into

a set X.

s

B

Bi

Bj

Figure 6.6: Does B threaten A’s convexity?

112 CHAPTER 6. THE BLASCHKE SELECTION THEOREM

Notice that 0′ can also decide if any particular ball Bi in this cover at

some stage falls out of A. This is because Bi is closed, and has so itself

has a finite open cover (by compactness). The only way Bi has empty

intersection with A is if, at some stage t, every open ball in some cover

of Bi falls out of A. That is, Bi * A if and only if there exists a stage

t such that Bi * At. By the same principal, 0′ can also decide if any

particular pair of balls Bi, Bj both fall out of A. That is, we ask if there

exists a stage t such that Bi * At and Bj * At.

Now take a pair of balls Bi and Bj that were enumerated (as a pair) into

X. A fails to be convex if both Bi and Bj are truly subsets of A. So we

ask if there exists a stage t such that Bi * At and Bj * At. If no, then

A fails to be convex. If yes, we cannot conclude anything (as A may fail

to be convex for a different pair of balls, or different removed set B).

We repeat this construction for every open ball removed from A, and

dovetail (increasing s cover) to ensure that, if A is convex, at some point

we will come across a pair of balls that observe this. 0′ was sufficiently

complex to compute all of our questions, and the result follows. �

Further Questions

There are a number of further questions that time did not allow us to

answer. We list a few of them here.

1. Is it true that every real-valued function is the limit of a sequence

of strictly non-canonical Darboux functions? What is the maxi-

mum complexity of a canonical Darboux function? We have shown

that there at least exist canonical Darboux functions that are com-

putable via the double jump function.

2. Can rational functions with the Darboux property somehow ap-

proximate real-valued functions?

3. How complicated is the class U (the class of real-valued functions

that are the uniform limits of a sequence of Darboux functions)?

There is a result that states that any Baire class 1 function in U
satisfies the Darboux property [14]. How can we effectivise the

definition of U , and still have that any Baire class 1 function that

is a member of U also has the Darboux property?

4. Recalling the notation used in the definition of U (see Definition

4.4.1). If f is Baire class 1, how complex must the set A be so that

f /∈ U? How hard is it to find an interval [a, b] that the function

fails on.

5. Can we improve the complexity bound in the effective Blaschke

Selection Theorem (Theorem 6.3.7)?

113

List of Figures

2.1 The open ball cover correspondence. 39

2.2 Function relationship summary. 40

3.1 The distance D. 49

3.2 The construction of f if ‘No : I’. 52

3.3 The construction of f if ‘Yes’. 53

6.1 Distances between x0, u,X, and Xj. 104

6.2 Tree at stage s. 109

6.3 Tree at stage s+ 1. 109

6.4 Tree at stage s+ 2. 110

6.5 If A not convex. 111

6.6 Does B threaten A’s convexity? 111

115

Bibliography

[1] O. Aberth. Computable analysis. McGraw-Hill International Book

Company, 1980.

[2] O. Aberth. Computable calculus. Academic Press, 2001.

[3] J. Avigad and V. Brattka. Computability and analysis: the legacy

of Alan Turing. pages 1–46, 2012.

[4] S. Banach and S. Mazur. Sur les fonctions calculables. Ann. Soc.

Pol. de Math, 16:223, 1937.

[5] W. Blaschke. Kreis und Kugel. Veit, Berlin, 1916.

[6] B. Bogoel. Functions with the intermediate value property. Roma-

nian Mathematical Gazette Series A, 1-2, 2012.

[7] B. Bolzano. Rein analytischer beweis des Lehrsatzes, dass zwischen

je zwey werthen, die ein entgegengesetztes resultat gewähren, wenig-

stens eine reelle wurzel der gleichung liege. Gottlieb Haase Sohne

Publisher, Prague, reprint: 2 edition, 1817.

[8] B. Bolzano. Spisy Bernarda Bolzano - Bernard Bolzano’s Schriften

Vol. 1. In K. Rychlik, editor, Functionenlehre. Královská Ceská

Spolecnost Nauk, Prague, 1930.

[9] B. Bolzano and S. Russ (translator). Purely Analytic Proof of the

Theorem that between any two Values, which give Results of Oppo-

site Sign, there lies at least one real Root of the Equation. In The

117

118 BIBLIOGRAPHY

mathematical works of Bernard Bolzano. Oxford University Press,

Oxford, 2004.

[10] E. Borel. Le calcul des intégrales définies. Journal de Mathéatiques

pures et appliquées, 6(8):159–210, 1912.

[11] V. Brattka, P. Hertling, and K. Weihrauch. A tutorial on computable

analysis. New Comp. Parad., pages 425–491, 2008.

[12] M. Braverman and M. Yampolsky. Computability of Julia sets.

Springer-Verlag Berlin Heidelberg, 2009.

[13] L. Brouwer. Collected works, Vol I - Philosophy and foundations of

mathematics. American Elsevier Publishing Company, Amsterdam,

1975.

[14] A. Bruckner, J. Ceder, and M. Weiss. Uniform limits of Darboux

functions. Coll. Math., 15:65–77, 1966.

[15] J. Caldwell and M. Pour-El. On a simple definition of computable

function of a real variable-with applications to functions of a complex

variable. Z. Math. Logik Grundlagen Math., 21:1–19, 1975.

[16] G. Ceitin. Algorithmic operators in constructive metric spaces. Tr.

Math. Inst. Steklov, 67:295–361, 1962.

[17] S. Chambers. Constructing exact roots for polynomials: towards a

constructive solution of the computable eigenvalue problem. Masters

thesis, Manchester University, 1997.

[18] J. Conway. Explanation given at Canada/USA Mathcamp. 2013.

[19] G. Darboux. Mémoire sur les fonctions discontinues. Ann. Sci.

Scuola Norm, 4:57–122., 1875.

[20] M. Dehn. Transformation der Kurven auf zweiseitigen Flächen.

Math. Ann., 72(3):413–421, 1912.

[21] M. Dehn. J. Stillwell (translator). In Papers on group theory and

topology, pages 179–199. Springer-Verlag New York Inc., 1987.

BIBLIOGRAPHY 119

[22] O. Demuth. Necessary and sufficient conditions for Riemann integra-

bility of constructive functions. Dokl. Akad. Nauk SSSR, 176:757–

758, 1967.

[23] R. Downey, editor. Turing’s Legacy: Developments from Turing’s

ideas in logic. Cambridge University Press, 2014.

[24] H. Eggleston. Convexity. Cambridge University Press, Cambridge,

1977.

[25] Encyclopedia.com. Weierstrass, Karl Theodor Wilhelm., 2008.

[26] K. Gödel. On formally undecidable propositions of Principia Math-

ematica and related systems I (1931). In Collected Works, Vol.

1: Publications 19291936, pages 144–195. Oxford University Press,

New York and Oxford, 1986.

[27] R. Goodstein. Recursive analysis. Dover Publications (reprint 2010),

Amsterdam, 1961.

[28] R. Gordon. The integrals of Lebesgue, Denjoy, Perron, and Henstock

(vol. 4). Amer. Math. Soc., 1994.

[29] P. Gruber and J. Wills, editors. Handbook of convex geometry Vol-

ume A. Elsevier Science Publishers B.V., Amsterdam, 1993.

[30] A. Grzegorczyk. Computable functionals. Fund. Math., 42:168–202,

1955.

[31] J. Heinonen. Lectures on Lipschitz analysis. pages 1–77, Jyvskäyä

Summer School, 2004.

[32] G. Hermann. Die frage der endlich vielen schritte in der theorie der

polynomideale. Math. Ann., 95:736–788, 1926.

[33] G. Hermann. The question of finitely many steps in polynomial ideal

theory (translation). ACM SIGSAM Bulletin, 32(3):8–30, 1998.

[34] P. Hertling. Banach-Mazur computable functions on metric spaces.

In J. Blanck, V. Brattka, and P. Hertling, editors, Computability and

120 BIBLIOGRAPHY

Complexity in Analysis, volume 2064, pages 69–81. Springer Berlin

Heidelberg, 2001.

[35] P. Hertling. A Banach-Mazur computable but not Markov com-

putable function on the computable real numbers. Annals of Pure

and Applied Logic, 132(2-3):227–246, 2005.

[36] A. Ivanov. Blaschke selection theorem, 2014.

[37] S. Kleene. Introduction to metamathematics. Ishi Press (reprint

2009), 1952.

[38] S. Kleene. Countable functionals. North-Holland Publishing Com-

pany, Amsterdam, 1959.

[39] G. Kreisel. Review of ”Meschkowski - Zur rekursiven funktionen-

theorie, Acta Math., 95, 1956, 9-23”. Math. Reviews 19, 238, 1958.

[40] G. Kreisel, D. Lacombe, and J. Shoenfield. Partial recursive func-

tionals and effective operations. In A. Heyting, editor, Construc. in

Math., pages 290–297, Amsterdam, 1959. North-Holland Publishing

Company.

[41] L. Kronecker. Grundzüge einer arithmetischen theorie der algebrais-

chen grossen. J. Reine Angew. Math., 92:1–123, 1882.

[42] L. Kronecker, R. Dedekind, and J. Molk. Grundzuge einer arith-

metischen theorie der algebraischen grossen: a complete translation-

except only abstracts of the first four sections. California Institute

of Technology, Pasadena, Calif, 1900.

[43] B. Kushner. Lectures on constructive mathematical analysis, vol-

ume 60. American Mathematical Society, 1980.

[44] R. Kuyper and S. Terwijn. Effective genericity and differentiability.

Journal of Logic & Analysis, 6(4):1–14, 2014.

[45] D. Lacombe. Extension de la notion de fonction récursive aux fonc-

tions d’une ou plusieurs variables éelles II and III. C.R. Acad. Sci,

241:13–14, 151–153, 1955.

BIBLIOGRAPHY 121

[46] D. Lacombe. Extension de la notion de fonction récursive aux fonc-

tions d’une ou plusieurs variables réelles I. C.R. Acad. Sci, 240:2478–

2480, 1955.

[47] D. Lacombe. Les ensembles récursivement ouverts ou fermés, et

leurs applications á l’analyse récursive. C. R. Acad. Sci. Paris,

245(13):1040–1043, 1957.

[48] D. Lester, S. Chambers, and H. Lee Lu. A constructive algorithm

for finding the exact roots of polynomials with computable real co-

efficients. Theoretical Comp. Sci., 279(1-2):51–64, 2002.

[49] A. Markov. On the continuity of constructive functions. Uspehi Mat.

Nauk, 9:226–230, 1954.

[50] A. Markov. On constructive functions. Trudy Math. Inst. Steklov,

52:315–348, 1958.

[51] J. Miller. Degrees of unsolvability of continuous functions. Journal

of Sym. Logic, 69(2):555–584, 2004.

[52] V. Orevkov. A constructive map of the square into itself which moves

every constructive point. Dokl. Akad. Nauk SSSR, 152:55–58, 1963.

[53] M. Pour-El and J. Richards. Computability in analysis and physics.

Springer, Heidelberg, 1989.

[54] D. Radcliffe. A function that is surjective on every interval. Math.

Ass. of Amer., 123(1):1–2, 2016.

[55] H. Rice. Recursive real numbers. Proc. Amer. Math. Soc., 5:784–

791, 1954.

[56] W. Sierpinski. Sur une propriété de fonctions réelles quelconques

définie dans les espaces métriques. Le Matematiche (Catania), 8:73–

78, 1953.

[57] S. Simpson. Subsystems of second order arithmetic. Cambridge

University Press, New York, 2009.

122 BIBLIOGRAPHY

[58] E. Specker. Nicht konstruktiv beweisbare satze der analysis. Journal

of Sym. Logic, 14:145–158, 1949.

[59] E. Specker. Der satz vom maximum in der rekursiven analysis. Con-

struc. in Math., Proc. Coll:254–265, 1959.

[60] A. Turing. On computable numbers, with an application to the

Entsheidungsproblem. Proc. of the London Math. Sc., 42:230–265,

1936.

[61] A. Turing. On computable numbers, with an application to the

Entscheidungsproblem. A correction. Proc. of the London Math.

Sc., 43(2):544–546, 1937.

[62] A. Van Rooij and W. Schikhof. A second course on real functions.

Cambridge University Press, 1982.

[63] R. von Mises. Grundlagen der wahrscheinlichkeitsrechnung. Math.

Z., 5:52–99, 1919.

[64] R. von Mises. Richard von Mises, probability, statistics, and truth.

Dover Publications (reprint, original Springer: 1928), New York,

1957.

[65] K. Weierstrass. Original Works. Weierstrass’ writings were pub-

lished as Mathematische Werke. 7 vols. Berlin. 1894-1927.

[66] I. Zaslavsky. The refutation of some theorems of classical analysis

in constructive analysis. Uspehi Mat. Nauk, 10:209–210, 1955.

[67] I. Zaslavsky. Some properties of constructive real numbers and con-

structive functions. Trudy Math. Inst. Steklov, 67:385–457, 1962.

