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Abstract
Machine learning has achieved great successes in the area of computer vision,
especially in object recognition or classification. One of the core factors
of the successes is the availability of massive labeled image or video data
for training, collected manually by human. Labeling source training data,
however, can be expensive and time consuming. Furthermore, a large amount
of labeled source data may not always guarantee traditional machine learning
techniques to generalize well; there is a potential bias or mismatch in the
data, i.e., the training data do not represent the target environment.

To mitigate the above dataset bias/mismatch, one can consider domain
adaptation: utilizing labeled training data and unlabeled target data to de-
velop a well-performing classifier on the target environment. In some cases,
however, the unlabeled target data are nonexistent, but multiple labeled
sources of data exist. Such situations can be addressed by domain general-
ization: using multiple source training sets to produce a classifier that gen-
eralizes on the unseen target domain. Although several domain adaptation
and generalization approaches have been proposed, the domain mismatch in
object recognition remains a challenging, open problem – the model perfor-
mance has yet reached to a satisfactory level in real world applications.

The overall goal of this thesis is to progress towards solving dataset bias
in visual object recognition through representation learning in the context
of domain adaptation and domain generalization. Representation learning is
concerned with finding proper data representations or features via learning
rather than via engineering by human experts. This thesis proposes several
representation learning solutions based on deep learning and kernel methods.

This thesis introduces a robust-to-noise deep neural network for hand-
written digit classification trained on “clean” images only, which we name



Deep Hybrid Network (DHN). DHNs are based on a particular combination
of sparse autoencoders and restricted Boltzmann machines. The results show
that DHN performs better than the standard deep neural network in recog-
nizing digits with Gaussian and impulse noise, block and border occlusions.

This thesis proposes the Domain Adaptive Neural Network (DaNN), a
neural network based domain adaptation algorithm that minimizes the clas-
sification error and the domain discrepancy between the source and target
data representations. The experiments show the competitiveness of DaNN
against several state-of-the-art methods on a benchmark object dataset.

This thesis develops the Multi-task Autoencoder (MTAE), a domain gen-
eralization algorithm based on autoencoders trained via multi-task learning.
MTAE learns to transform the original image into its analogs in multiple
related domains simultaneously. The results show that the MTAE’s rep-
resentations provide better classification performance than some alternative
autoencoder-based models as well as the current state-of-the-art domain gen-
eralization algorithms.

This thesis proposes a fast kernel-based representation learning algorithm
for both domain adaptation and domain generalization, Scatter Component
Analysis (SCA). SCA finds a data representation that trades between maxi-
mizing the separability of classes, minimizing the mismatch between domains,
and maximizing the separability of the whole data points. The results show
that SCA performs much faster than some competitive algorithms, while
providing state-of-the-art accuracy in both domain adaptation and domain
generalization.

Finally, this thesis presents the Deep Reconstruction-Classification Net-
work (DRCN), a deep convolutional network for domain adaptation. DRCN
learns to classify labeled source data and also to reconstruct unlabeled tar-
get data via a shared encoding representation. The results show that DRCN
provides competitive or better performance than the prior state-of-the-art
model on several cross-domain object datasets.
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1
Introduction

This chapter introduces the thesis. It consists of the problem statement, the
motivations, the research goals and objectives, the major contributions and
the organization of the thesis.

1.1 Problem Statement

Supervised learning is perhaps the most popular task in machine learning
and has recently achieved dramatic successes in many applications such as
object recognition [118, 198], object detection [77], speech recognition [50],
and machine translation [207]. These successes derive in large part from the
availability of massive labeled datasets such as PASCAL VOC2007 [62] and
ImageNet [117]. Unfortunately, manually obtaining labels is often a time
consuming and costly task that requires human experts. A shortage of labels
may prevent the standard supervised learning algorithms from reaching their
true potential. Furthermore, collecting more labeled samples does not neces-
sarily lead to a better generalization ability [215]. In object recognition, for
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example, training images may be collected under specific conditions involv-
ing camera viewpoints, backgrounds, human selection preference, and object
transformations that may be different from those of the target environment.
The fore-mentioned issues result in a problem that is commonly referred to
as domain shift or dataset bias [171, 215], i.e., a learning algorithm trained
on a particular dataset/domain generalizes poorly across datasets.

This thesis is about domain adaptation [26] and domain generaliza-
tion [25]; both are concerned with reducing dataset bias. In this context,
a domain represents a probability distribution from which the samples are
drawn and is often equated with a dataset. The domain is usually divided
into two different types: the source domain and the target domain, to dis-
tinguish between a domain with labeled samples and a domain without la-
beled samples. These two domains are related but different, which limits the
applicability of standard supervised learning models on the target domain.
Specifically, the basic assumption in standard supervised learning that train-
ing and test data come from the same distribution is violated. The goal
of both domain adaptation and domain generalization is to produce good
models on a target domain by training on labeled samples from the source
domain(s). The difference between domain adaptation and domain gener-
alization is the availability of the unlabeled samples from the target domain.
In domain generalization no samples of any kind are available for the target
domain.

It is widely believed that the success of supervised learning algorithms
strongly depends on data representation. A good representation should be
discriminative, i.e., one that is useful as an input to a supervised predictor.
In the context of classification, good representations can be interpreted as
ones that are linearly separable – if the representations form two sets of
points in a high dimensional space, there exists a hyperplane that separates
those sets. A traditional procedure to obtain such a representation is by
feature engineering, i.e., manually handcrafting features by means of human
expertise in the domain of interest. Examples of handcrafted features in
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computer vision applications are such as LBP [161], SIFT [136], and HoG [51].
It would be highly desirable in practice if a discriminative representation can
be learned from data as an alternative to manual feature engineering. The
latter approach is referred to as representation learning [19].

This thesis focuses on applying representation learning to develop good
domain adaptation and domain generalization models for visual object recog-
nition problems. Although several representation learning approaches have
been proposed, dataset bias remains essentially unsolved since model recog-
nition accuracy has yet to reach a level that is satisfactory for real-world
applications. Therefore, a learning algorithm that can produce a discrim-
inative representation and also can highly reduce dataset bias is required.
This thesis studies the effectiveness of neural networks and kernel feature ex-
traction methods, which are considered as non-linear representation learning
approaches, to deal with dataset bias. They have been successfully applied
to a wide range of applications, but their potential for solving the dataset
bias problem has not been fully investigated.

1.2 Motivations

This section first elaborates the importance of the main problem addressed
in this thesis: dataset bias in visual object recognition. It is then followed by
the rationale of using neural networks and kernel methods as the approaches
to solving the problem.

1.2.1 Challenges of Dataset Bias

Domain shift or dataset bias in object recognition is a challenging problem
to solve. The visual world is so complex that any finite set of images ends
up describing only specific aspects of it. Thus, any standard supervised
learning that learns from these labeled images is not likely to generalize well
on another domain. An ideal learning algorithm should be able to capture
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a “general concept” of the visual world from finite samples so that the bias
towards a domain could be avoided. Human is remarkably capable of learning
a concept after experience with only a small number of samples [65].

To progress towards a methodology to extract the “general concept”, one
may reduce the problem into overcoming domain shift or dataset bias between
domains. Suppose that a learning algorithm is initially provided with a set
of finite labeled samples, which we refer to as a source domain. The learned
model is expected to perform well on a target domain, which is different from
but related to the source domain. Using only the (labeled) source samples as
the training set might not be sufficient to provide good generalization on the
target domain. It is thus natural to seek information other than the source
domain as auxiliary knowledge that might bridge the gap between the source
and target domain.

The auxiliary information can possibly come from the target domain it-
self. This is where domain adaptation plays a role. Domain adaptation
algorithms aim to mitigate dataset bias by learning from labeled source sam-
ples and leveraging some knowledge from the target domain. We can utilize
either of at least two types of information: i) human knowledge or ii) unla-
beled samples. An example of using human knowledge is as follows. Consider
a problem of handwritten digit recognition where the source images is in the
form of “clean” digits with a particular style. We desire a model learned
from only the “clean” source images that can recognize “noisy” digits. In this
case, the noise acts as the human knowledge, which guides us in designing
an algorithm to cancel out the damage caused by the noise.

Another form of the auxiliary information is the unlabeled samples from
the target domain, which is relatively easy to obtain. This approach is the
standard way performed by existing domain adaptation algorithms. The
challenge is how to properly utilize the unlabeled target samples during
training such that the generalization onto the target domain can be max-
imized. An improper use of unlabeled target samples may even reduce the
generalization ability.
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If the target domain is completely unknown or the unlabeled target sam-
ples even cannot be accessed, domain adaptation is not suitable. One may
seek other related domains as additional sources with the hope that the al-
gorithm would still generalize well on the target domain. Such a learning
setting is referred to as domain generalization: learning a good model on
the target domain from (labeled) source domains. The task is how to extract
commonalities among those source domains used to generalize a model to the
target domain. An ad-hoc strategy of using the additional source domains,
that is, treating them as just extra training samples for supervised learning
may not maximize or even hurts the generalization.

1.2.2 Why Neural Networks and Kernel Methods

Neural networks and kernel methods have long been known as being among
the most powerful families of machine learning algorithms. Both are equipped
with a nonlinear transform to provide useful data representations. In a
classification task, for example, training an algorithm from real-world data
such as images and video is often problematic. Such data is usually complex,
redundant, and highly variable. Neural networks and kernel methods are
more capable of extracting discriminative representations of complex data
than other (linear) representation learning algorithms.

Both neural networks and kernel methods have appealing properties on
their own. Neural networks are able to learn deep hierarchical layers, which
can lead to more abstract representations. These representations are gen-
erally invariant to most local changes of the input. In addition, learning
a deep network architecture, which is currently known as deep learning, is
highly scalable since it runs in linear time, can handle streaming data, and
can be parallelized on GPUs. Such abstract representations and scalability
has led deep neural networks to achieve some breakthroughs in visual object
recognition [42,93,97,118].

On the other hand, kernel feature extraction aims to produce useful rep-
resentations in a slightly different way. It maps inputs into high dimensional
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(possibly infinite) representations that facilitates linear separation. In classi-
fication, linear separation can be interpreted as follows. Suppose that there
are two sets of high dimensional points. The points should establish a con-
figuration such that those two sets can be easily separated by a single hyper-
plane; each set represents a class of points. Several members of kernel feature
extraction are kernel principal component analysis [192], kernel discriminant
analysis [146], and kernel independent component analysis [9].1 The most ap-
pealing properties of kernel feature extraction relate to computation. Firstly,
kernel feature extraction does not explicitly compute the high dimensional
representations, but it uses the so-called kernel trick by simply computing
the inner products between the images of all pairs of data in the represen-
tation space. Secondly, kernel algorithms are theoretically well founded and
mostly based on convex optimization or eigenproblems that admit an exact
solution.

This thesis extends the capability of neural networks and kernel feature
extraction in the context of domain adaptation and/or domain generaliza-
tion. Although several domain adaptation/generalization algorithms based
on those methods exists, more powerful algorithms to reduce dataset bias are
still highly required in practice.

1.3 Research Goals

The overall goal of this thesis is to progress towards solving domain shift /
dataset bias in visual object recognition through representation learning in
the context of domain adaptation and domain generalization. This thesis
proposes several representation learning algorithms based on deep learning
and kernel methods. To achieve the overall goal, we establish the following
research objectives.

1. Develop a new deep learning-based algorithm to deal with a cross-
domain handwritten digit recognition problem, where the source do-

1In general, any algorithms based on the inner products can be kernerlized.
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main contains “clean” digit images and the target domain contains
“noisy” digit images. The algorithm is expected to be robust to the
following types of noise appearing in the target domain: border, block,
Gaussian, impulse noise, and background noise, and provide better ac-
curacy than the standard deep neural networks, particularly on small
training sets.

Traditionally, a common approach to improve generalization over noisy
observations is by adding some noisy examples in the training set. This
study investigates a strategy from a different perspective, i.e., design-
ing a robust-to-noise algorithm that learns from clean examples only.
Standard learning algorithms, including deep neural networks, will suf-
fer from dataset bias under such settings since the training and test
examples are always assumed to be drawn from a same domain. A
domain adaptation strategy to tackle the clean-noisy problem above,
which is a particular form of dataset bias, is thus required.

2. Develop a new regularization technique for the supervised neural net-
work training to establish a good domain adaptation model. The al-
gorithm is expected to reduce the distribution difference between the
source and target data representations, and to perform well on cross-
domain object recognition tasks.

A standard approach to developing neural network-based domain adap-
tation methods is by unsupervised pretraining on all unlabeled source
and target data and then supervised fine-tuning on labeled source
data [38,41,79]. While the unsupervised pretraining is effective in some
cases, it is unclear whether it indeed reduces the distribution mismatch
between the source and target domains during training. An explicit
set up to reduce the distribution mismatch by means of a particular
criterion is worthwhile. We seek a single-step supervised label training
in which the unlabeled target samples can be also considered as a regu-
larization. The regularization criterion associated with the distribution
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difference minimization needs to be explicitly specified in the learning
objective.

3. Develop a novel multi-task representation learning algorithm that pro-
vides good shared representations for domain generalization. The al-
gorithm is expected to learn multiple image reconstruction tasks over
many domains and to approximate the underlying “transformation”
among the domains. This strategy results in discriminative represen-
tations useful for an unseen target domain.

In many circumstances, there exists labeled samples coming from many
(source) domains that can be used to train a classifier. However, the
classifier may operate on another different but related domain, which
is unseen during training. A possible approach to overcoming dataset
bias induced by such a setting is by learning the commonality among
the source domains with the hope that it can help generalize the model
on the target domain. Multi-task learning (MTL) [35] is a well suited
approach to doing so. While MTL usually performs the discriminative
tasks, i.e., using labels as the output signals, our proposed algorithm
looks into a different perspective, that is, performing multiple image
reconstruction tasks, where the output signals are the unlabeled images.

4. Develop a fast, simple, and theoretically motivated representation learn-
ing algorithm based on the kernel trick for both domain adaptation
and domain generalization. The proposed algorithm is supposed to
run much faster than the prior state-of-the-art algorithms on several
benchmark image datasets and to provide competitive performance in
accuracy.

Typical state-of-the-art domain adaptation and domain generalization
algorithms for object recognition result in optimization problems that
are inefficient to solve [133, 134, 195, 236]. In addition, while domain
adaptation and domain generalization are closely related settings, the
approaches are generally not compatible to each other – domain adap-
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tation approaches cannot be directly applied to domain generalization
or vice versa. A fast algorithm equipped with domain adaptation-
generalization compatibility is highly preferable in practice.

5. Develop a new algorithm to train deep convolutional networks for do-
main adaptation that approximates the true correspondence between
the source and target domains. The model is expected to provide the
state-of-the-art performance on several cross-domain object recognition
tasks and also be scalable to the growth of the training data.

Deep convolutional networks are considered to be the best object recog-
nition models to date [93]. They have also been applied to domain
adaptation problems that provide significant accuracy improvements
[56,73,132]. However, the performance of prior state-of-the-art models
in the context of domain adaptation has not reached a level that is
satisfactory for real-world applications. This objective will further im-
prove the domain adaptation performance of deep convolutional neural
networks by designing a new multi-task algorithm, where the tasks are
the classification and the image reconstruction trained simultaneously.
It will also investigate whether the proposed algorithm can indeed seek
the between-domain correspondence by observing the reconstruction
behavior.

1.4 Major Contributions

This section summarizes the major contributions of this thesis. Each contri-
bution below is presented in detail in a chapter, from Chapters 3 to 7.

1. The thesis proposes Deep Hybrid Networks (DHN) that are robust to
recognize “noisy" handwritten digits given only “clean" digits as the
training images. This networks are based on a particular combination
of an autoencoder with sparse regularization on the activation (SAE)
and restricted Boltzmann machines (RBMs). SAE is used to extract
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sparse features, which are expected to be noise-invariant in the obser-
vations. The stacked RBMs then observe the sparse features as inputs
to learn the top hierarchical features. The use of RBMs is motivated by
the fact that the stacked RBMs typically provide good generalization
for deep architectures [97]. To improve the robustness against local
block noise, a variant of DHN is proposed by imposing sparse connec-
tions in addition to the sparse activation in the auto-encoder layer.
The experiments show that the proposed deep networks provide good
performance in both the in-domain and cross-domain tasks, especially
when trained from a small sample set.

Part of this contribution has been published in:

Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang. “Sparse Rep-
resentations in Deep Learning for Noise-Robust Digit Classification”.
Proceedings of International Conference on Image and Vision Comput-
ing New Zealand (IVCNZ). Wellington, New Zealand, November 27-29,
2013. pp. 340-345.

Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang. “Deep Hy-
brid Networks with Good Out-of-sample Object Recognition”. Pro-
ceedings of 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). Florence, Italy, May 4-0, 2014. pp.
5437-5441.

2. The thesis proposes a neural network that utilizes Maximum Mean Dis-
crepancy (MMD) [28] as a regularization embedded in the supervised
back-propagation training. We refer to this model as Domain Adaptive
Neural networks (DaNN). To the best of our knowledge, this contribu-
tion is the first study of utilizing MMD in the context of neural net-
works. MMD empirically measures the distribution mismatch between
the source and target domains in the latent space, which is minimized
during neural network training. The experiments demonstrate that the
MMD regularization is an effective technique to establish a neural net-
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work as a good domain adaptation model on the Office dataset [187].
Furthermore, DaNN preceded by denoising autoencoder training [225]
achieves better performance than recent benchmark models on the same
dataset.

Part of this contribution has been published in:

Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, “Domain
Adaptive Neural Networks for Object Recognition”. Proceedings of
13th Pacific Rim International Conference on Artificial Intelligence
(PRICAI). Gold Coast, Australia, December 1-5, 2014. pp. 898-904.

3. The thesis proposes a novel representation learning algorithm, Multi-
task Autoencoder (MTAE), that provides good domain generalization
performance for object recognition. MTAE extends the standard de-
noising autoencoder framework by substituting artificially induced cor-
ruption with naturally occurring inter-domain variability in the ap-
pearance of objects. Instead of reconstructing images from noisy ver-
sions, MTAE learns to transform the original image into its analogs
in multiple related domains. It thereby learns features that are robust
to variations across domains. The algorithm was evaluated on sev-
eral benchmark image recognition datasets, where the task is to learn
feature from multiple datasets and to then predict image label from
unseen datasets. We found that (denoising) MTAE outperforms alter-
native autoencoder-based models as well as the current state-of-the-art
algorithms for domain generalization.

Part of this contribution has been published in:

Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, David Bal-
duzzi. “Domain Generalization for Object Recognition with Multi-task
Autoencoders”. Proceedings of IEEE International Conference on Com-
puter Vision (ICCV). Santiago, Chile, December 11-18, 2015.

4. The thesis proposes a fast kernel-based representation learning algo-
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rithm referred to as Scatter Component Analysis (SCA), which can be
applied to both domain adaptation and domain generalization. SCA
is based on a simple geometrical measure, i.e., scatter, which operates
on reproducing kernel Hilbert space. SCA finds a representation that
trades between maximizing the separability of classes, minimizing the
mismatch between domains, and maximizing the separability of data;
each of which is quantified through scatter. The optimization prob-
lem of SCA can be reduced to a generalized eigenvalue problem, which
results in a fast and exact solution. Comprehensive experiments on
benchmark cross-domain object recognition datasets verify that SCA
performs much faster than several state-of-the-art algorithms, while
provides competitive classification accuracy in both domain adapta-
tion and domain generalization. We also show that domain scatter, a
simple consequence when taking two domains into scatter, can be used
to establish a theoretical generalization bound in the case of domain
adaptation.

Part of this contribution has been submitted to:

Muhammad Ghifary, David Balduzzi, W. Bastiaan Kleijn, Mengjie
Zhang. “Scatter Component Analysis: A Unified Framework for Do-
main Adaptation and Domain Generalization”. IEEE Transaction on
Pattern Analysis and Machine Intelligence (TPAMI).

5. The thesis proposes Deep Reconstruction-Classification Network
(DRCN), a novel deep convolutional network that provides state-of-
the-art domain adaptation performance in object recognition. DRCN
jointly learns two tasks through the standard back-propagation: i) su-
pervised classification of labeled source data and ii) unsupervised recon-
struction of unlabeled target data. This strategy aims to approximate
the true correspondence between the source and target domains, which
is encoded through a shared representation. Such a representation en-
dows the model with a label prediction pipeline that generalizes onto
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the target domain. The DRCN’s performance is evaluated on a series
of cross-domain object recognition tasks, where DRCN provides higher
accuracy than prior state-of-the-art model in almost all cases. An inter-
esting observation is that DRCN’s reconstruction pipeline transforms
images from the source domain into images whose appearance resem-
bles those from the target domain. We also theoretically demonstrate
that the learning objective of DRCN is approximately equivalent to
solving a semi-supervised learning problem on the target domain.

Part of this contribution has been submitted to:

Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, David Bal-
duzzi. “Deep Reconstruction-Classification Networks for Unsuper-
vised Domain Adaptation”. European Conference on Computer Vision
(ECCV). 2016.

1.5 Organization of The Thesis

This remainder of the thesis is organized as follows. Chapter 2 presents
the background and review of related work. Chapters 3-7 presents the main
contributions of the thesis, each of which addresses one of the research objec-
tive. Figure 1.1 depicts the structure of the thesis contributions, which can
be classified into two groups: domain adaptation and domain generalization.
Chapter 8 summarizes the thesis.

Chapter 2 presents essential background and basic concepts of machine
learning, learning theory, deep learning, and kernel-based feature learning.
It then reviews existing work in domain adaptation and domain generaliza-
tion that focuses on the application to visual object recognition. Finally, it
discusses open questions and current challenges that form the motivations of
this thesis.

Chapter 3 presents the first contribution of this thesis: Deep Hybrid Net-
work (DHN), a deep learning model based on a particular combination of
sparse autoencoders and stacked restricted Boltzmann machines for robust-
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Figure 1.1: Overall structure of the thesis contributions.

to-noise handwritten digit recognition. This model addresses a specific do-
main adaptation setting, where the source domain contains the “clean” digits
and the target domain contains the “noisy” digits. The chapter evaluates
DHN’s performance accuracy against traditional deep learning methods over
various types of noise applied in the target domain, i.e., border, block, Gaus-
sian, impulse, and background noise. The results are then presented and
analyzed.

Chapter 4 presents Domain Adaptive Neural Networks (DaNN), models
trained using back-propagation with a regularization that aims to minimize
the distribution difference in the hidden/latent space. Maximum Mean Dis-
crepancy (MMD) is used as the distribution difference measure embedded
in the DaNN’s learning objective. DaNN is examined and compared with
standard multi-layer perceptrons, SVMs, and recent domain adaptation al-
gorithms. The effect of using denoising autoencoder pretraining in DaNN is
also analyzed. The evaluation results in accuracy on the Office dataset are
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then presented.

Chapter 5 presents Multi-task Autoencoders (MTAE), a novel multi-task
representation learning algorithm for domain generalization. The tasks are
in the form of self-domain or between-domain image reconstructions. The
chapter compares MTAE with standard autoencoder-based models and also
with recent domain generalization algorithms on several modern benchmark
object datasets. The evaluation results in performance accuracy of MTAE are
then presented. Analyses of MTAE’s effectiveness by observing the weight
visualization and also the local dimensionality of the manifold in the feature
space are also established.

Chapter 6 presents Scatter Component Analysis (SCA), a fast kernel-
based representation learning algorithm for both domain adaptation and
domain generalization. It discusses the SCA’s capability to seek a repre-
sentation that satisfies four criteria: i) the source and target domains are
similar, ii) elements with the same label are similar, iii) elements with differ-
ent labels are separated, and iv) the variance of the whole data is maximized.
The optimization problem of SCA can be reduced to a generalized eigenvalue
problem that admits a fast and exact solution. The chapter evaluates the
SCA’s cross-domain object recognition performance in both domain adap-
tation and domain generalization settings in comparison to prior state-of-
the-art algorithms. This chapter also establishes a theoretical generalization
bound of SCA in the context of domain adaptation.

Chapter 7 presents the final contribution of this thesis: Deep Reconstruction-
Classification Networks (DRCN), domain adaptation models based on con-
volutional neural networks equipped endowed with classification and recon-
struction pipelines. The chapter discusses the DRCN algorithm: jointly
learning the (supervised) classification on the source images and the (unsu-
pervised) reconstruction on the target images to produce a domain adaptive
shared representation. The cross-domain recognition performance of DRCN
is evaluated on several large-scale object datasets in comparison to the stan-
dard and also state-of-the-art deep convolutional networks. A property of
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DRCN in relation to learning the correspondence between the source and
target domain is also investigated in this chapter.

Chapter 8 summaries the thesis and draws overall conclusions. Several
possible future research directions, especially in domain adaptation and do-
main generalization, are also discussed.

1.6 Benchmark Datasets

The proposed representation learning algorithms in this thesis were evaluated
on a number of benchmark visual object datasets. Table 1.1 lists the datasets
with their original configuration ranging over handwritten digits, objects in
the office environment, and general objects in nature.

Unlike the standard machine learning setting, the actual task performed
on these datasets is the cross-dataset classification for evaluating the per-
formance of domain adaptation or domain generalization algorithms. For
example, an algorithm is trained on the (labeled) MNIST training set and
is then applied to recognize the USPS test digits. Furthermore, the configu-
ration of the datasets is often customized to fit the designated cross-domain
recognition task. In details, the modified cross-dataset settings and configu-
rations can be found in the experiment sections of the contribution chapters
(Ch. 3 - 7).
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Table 1.1: The summary of benchmark datasets. The ’*’ indicates the sub-
datasets/domains contained in the Office dataset [187].

Dataset Type Dimension #Instances #Classes Chapter

MNIST [125] Grayscale Digits 28× 28

70, 000 (60, 000
for training and
validation, 10, 000
for test)

10 3, 5, 6, 7

USPS [106] Grayscale Digits 16× 16
9, 298 (7, 291 for
training, 2, 007
for test)

10 6, 7

SVHN [156] RGB Digits 32× 32
99, 289 (73, 257
for training,
26, 032 for test)

10 7

CIFAR-10 [117] RGB Objects 32× 32
60, 000 (50, 000
for training,
10, 000 for test)

10 7

STL-10 [44] RGB Objects 96× 96
13, 000 (5, 000 for
training, 8, 000
for test)

10 7

MSRC [235] RGB Objects 480× 640 4, 323 21 6
VOC 2007 [62] RGB Objects diverse 12, 608 20 5, 6

LabelMe [186] RGB Objects diverse
30, 369 images
with 111, 490
annotations

183 5, 6

Caltech-101 [88] RGB Objects ∼ 300× 200 9, 146 images 101 5, 6
SUN09 [40] RGB Objects diverse > 152, 000 > 200 5, 6
Amazon* RGB Objects 300× 300 958

31 5, 6Webcam* RGB Objects diverse 295
Dslr* RGB Objects ∼ 1000× 1000 157

IXMAS [229] Action Videos 64× 48 1, 148 sequences 11 6
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2
Background and Literature

Review

This chapter presents comprehensive backgrounds this thesis including PAC-
learning theory, representation learning, deep learning, and kernel methods.
It is followed by literature review on the topic of domain adaptation and
domain generalization.

2.1 Introduction to Machine Learning

Machine learning is a branch of computer science that studies how computer
can learn from data without being explicitly programmed [189]. The long-
term goal of machine learning is to mimic the learning ability of human and
apply it to computers. It is strongly related to statistics when using proba-
bilistic or statistical tools to do the analysis. The underlying formal theory
behind machine learning is mainly discussed in computational learning or
statistical learning theory. Machine learning is inherently multidisciplinary
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involving many fields such as artificial intelligence, optimization, information
theory, philosophy, psychology, and neurobiology [149]. It has been applied
to an enormous range of applications, such as data mining, computer vision,
natural language processing, and speech recognition . Some prominent ap-
proaches are k-nearest neighbor (k-NN), decision tree, neural networks, evo-
lutionary computation (including genetic algorithm, genetic programming,
particle swarm optimization, etc), probabilistic graphical models, and kernel
methods (e.g., support vector machines).

Mitchell [149] formally describes machine learning by such a definition
that consists of three main components: 1) experience, 2) task, and 3) per-
formance measure, as follows.

Definition 1. A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P , if its perfor-
mance at tasks in T , as measured by P , improves with experience E.

To place the definition into an illustrative context, let us consider a prob-
lem of object detection. In this case, the task T is to detect objects of interest
given an image. The experience E may be obtained by detecting objects in
a set of training data; the training set can be provided by human. The per-
formance measure P may be the detection rate, i.e., the ratio of the number
of correctly detected objects over the total number of detection.

A simple learning task can be explained by a notion referred to as concept
learning task [149]. More specifically, let x ∈ X be an input data point where
X is the input space. Here we only consider the case of classification. Let
f : X → {−1, 1} be any binary-valued function called the target concept,1

which is a concept or function to be learned. Thus, the target concept f(·)
is unknown. Let h ∈ H be the model or hypothesis where H is the set of all
possible hypotheses. Here a hypothesis h can be viewed as one of the possible
solutions for estimating f . Hence, it naturally has the same mapping scenario

1As in [149], the concept learning task is represented by binary-valued problem. How-
ever, we can easily extend this formulation into multivalued function. Here we consider
only the case of binary-valued for the sake of notation simplicity.
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as the target function, i.e., h : X → {0, 1}. The concept learning task is to
find a hypothesis ĥ given a training set D = {(x1, f(x1)), . . . , (xN , f(xn))}
such that ĥ(xi) ≈ f(xi),∀i = 1, ..., n. The process of obtaining ĥ is referred to
as the training phase. After the training is completed, it can then determine
the target of unseen instances, which are said to comprise a test set. The
ability to determine a target correctly for each unseen instance is known as
generalization, which is the central issue in machine learning both from a
theoretical or a practical perspective.

In much of the literature (e.g., [3,24,149], machine learning problems are
divided into these following categories : i) supervised learning, ii) unsuper-
vised learning, iii) semi-supervised learning, and iv) reinforcement learning.
Supervised learning is the case when the training data consists of the input
vectors along with their corresponding target vectors. This type of data is
typically known as labeled data. The tasks that can be included in supervised
learning are classification and regression. Classification is a task of mapping
each input vector into one of a finite number of discrete classes, whereas re-
gression maps an input vector into a continuous value. The concept learning
discussed in the previous paragraph can be considered as binary classification.
Unsupervised learning is the case when we do not have the corresponding
target values over the input vectors (unlabeled data). An example of unsu-
pervised learning is the discovery of groups of similar examples within the
data, which we refer to as clustering. Semi-supervised learning combines both
labeled and unlabeled data to produce an appropriate model. Reinforcement
learning is concerned with how the models or agents, can learn and act in a
particular environment based on reward and punishment. Recently, a new
type of learning has been defined, which is referred to as inductive transfer,
knowledge transfer, or transfer learning [14,54,172,204]. It focuses on lever-
aging knowledge obtained while solving a particular task and then applying
it to a different but related problem. Pan et al. [167] categorized transfer
learning into several settings; one of them is called domain adaptation, which
is the subject of interest in this thesis.
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Another important task is to discover representations or features of data
that are informative to solve machine learning tasks. In real-world situa-
tions, raw data such as images, video, and speech signals is complex, noisy,
and highly variable, which makes the supervised learning process difficult.
A possible solution is feature engineering, i.e, manually designing a process-
ing pipeline to extract the desired features. However, feature engineering is
often labor intensive and relies on knowledge of expert. It is highly desir-
able to have learning algorithms that can automate such a process without
requiring much expert knowledge. This task is studied under the name of
representation learning or feature learning [19].

2.2 PAC Learning Theory

To establish machine learning as science rather than art, a formal theory is
needed. In more detail, one wants to seek the answers of some fundamental
questions: How many examples are needed to achieve successful learning?
How poorly does a learning algorithm perform relative to the true target?
Are all functions learnable? What can be learned efficiently?

This section presents a theoretical framework proposed by Valiant [218].
The framework is now referred to as the Probably Approximately Cor-
rect (PAC) learning [5, 92], a tool that can formalize and address the fore-
mentioned issues under the supervised learning setting. The theoretical con-
tributions in Chapter 6 draws on results from the PAC framework.

As is discussed in the previous section, machine learning deals with ap-
proximating an unknown concept or function with another function, that is,
a hypothesis, taken from a known family. The PAC framework is concerned
with the worst case analysis of the hypothesis in terms of sample complex-
ity, i.e., the number of samples needed to achieve an approximate solution
with high probability in reasonable time. While it provides a certain level of
guarantee, it may not be experimentally useful since we are more interested
in the average or best case analysis in practice [169].
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We first define prior notations and terminologies used to describe the PAC
framework. Let X be the input space, the set of all possible examples or data
points and Y be its corresponding label space. Without loss of generality,
we focus on the binary classification problem, where Y = {0, 1}. A concept
c : X → Y is a true, unknown mapping from X to Y , which is the target to
learn. We denote by A an algorithm to learn c, and C the set of concepts
called concept class, where c ∈ C. Let h : X → Y be a hypothesis, which is a
possible candidate solution taken from a set of hypotheses H that may not
coincide with C.

The core task of A is to learn the concept from finite data. Suppose
that S = {x1, . . . , xn} is an independently and identically distributed (i.i.d.)
sample drawn from a fixed unknown distribution D, where {c(x1), . . . , c(xn)}
is its corresponding labels. The learning task corresponds to selecting a
hypothesis hS from H such that hS is the best approximate for c.

We naturally need a measure that quantifies how well h approximates c.
A possible way is to measure the error produced by h(x) with respect to c(x)

known as risk [221].

Definition 2 (Risk). Given a hypothesis h ∈ H, a concept c ∈ C, and a
probability distribution D from where some samples are drawn, the risk or
generalization error of h is define by

R(h) = E
x∼D

[1h(x)6=c(x)], (2.1)

where 1ω is an indicator function of event ω. Given an i.i.d. labeled sample
of n data S = {x1, . . . , xn} ∼ D, the expected risk can be estimated by the
empirical risk defined by

R̂(h) =
1

n

n∑
i=1

[1h(xi)6=c(xi)]. (2.2)

Ideally, one should use the true risk R(h) as a measure for choosing the
hypothesis. In practice, however, we can only use the empirical risk R̂(h)
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calculated from the finite sample S, since the data-generating distribution D
is unknown. Note that E

S∼Dn
[R̂(h)] = R(h) in the case of an i.i.d. sample S.

Recall that hS := arg min
h
R(h). Our quantity of interest is R(hS): how

bad R(hS) is with respect to the sample size n for all possible samples S ∼
Dn. PAC-learning provides to answer the question in a probabilistic manner,
i.e., n relates to the probability of R(hS) not exceeding a certain value.

The following presents the formal definition of the PAC-learning frame-
work. We follow the definition introduced by Haussler [92], which incorpo-
rates both the approximation uncertainty and the computational complexity.
Denote by O(d) an upper bound on the cost of the computational represen-
tation of any element x ∈ X .

Definition 3 (PAC-learning). A concept class C is said to be PAC-learnable
if there exists an algorithm A such that for any ε > 0 and δ > 0, for all dis-
tributions D on X and ∀c ∈ C, the following inequality holds:

P
S∼Dn

[R(hS) ≤ ε] ≥ 1− δ (2.3)

for any sample size n ≥ poly(1
ε
, 1
δ
, d), where poly(·, ·, ·, ·) is a polynomial

function. The algorithm A is referred to as a PAC-learning algorithm for C
if it exists. Furthermore, if A runs in a polynomial time, the class C is said
to be efficiently PAC-learnable.

The notion R(hs) ≤ ε is known as the generalization bound and n ≥
poly(1

ε
, 1
δ
, d) is the sample complexity bound. We can see from the definition

that there are two conditions for a concept class to be PAC-learnable. First,
the hypothesis returned by the algorithm is approximately correct with a low
error of, at most, ε and a high probability of, at least, 1 − δ. Second, the
sample complexity must be polynomial in 1

ε
, 1
δ
, and d if the full sample is

received by the algorithm.
Note that the PAC-learning framework is a distribution-free framework:

no particular assumption is specified for the distribution D from which sam-
ples are drawn. However, it relies on the assumption that the training and
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test samples are drawn from the same distribution, which is necessary for
generalization to be possible in most cases.

Next we highlight several standard generalization bounds based on PAC-
learning. Mohri et al. [151] divides the cases of the bounds into two with
respect to the hypothesis set H: i) finite H and ii) infinite H. The following
two subsections summarize some parts of chapter 2 and 3 in [151].

2.2.1 Bounds for Finite Hypothesis Set

A finite hypothesis set H is the one whose cardinality |H| is finite, i.e., |H|
is bounded by a certain positive integer. The following first presents the
generalization bound for a finite hypothesis set H, in the case where there
exist consistent hypotheses in H [27,154,222]. A hypothesis h ∈ H is said to
be consistent iff R̂(h) = 0.

Theorem 1 (Learning bounds for finite, consistent H). Let H = {h :

X → Y} be a finite hypothesis set and A be an algorithm that returns a
consistent hypothesis hS, i.e., R̂(hS) = 0, for any target concept c ∈ C
and i.i.d. sample S of size n. For any ε > 0 and δ > 0, the inequality
PS∼Dn [R(hS) ≤ ε] ≥ 1− δ holds if the sample complexity is of the form

n ≥ 1

ε

(
log
|H|
δ

)
. (2.4)

Consequently, the following equivalent statement as a generalization bound
also holds: for any ε > 0 and δ > 0, with probability at least 1− δ,

R(hS) ≤ 1

n

(
log
|H|
δ

)
. (2.5)

Proof. Recall that the algorithm A returns a consistent hypothesis hS ∈ H.
There may be several consistent hypotheses in A and we do not know which
one is selected by A. One can provide a general bound that holds for all
consistent hypotheses, which is referred to as a uniform convergence bound.
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Denote by Hc = {∃h ∈ H : R̂(h) = 0 ∩ R(h) > ε} a set of consistent
hypotheses with risk more than a fixed ε > 0. The following probability
holds:

P[Hc] ≤(a)
∑
h∈H

P[R̂(h) = 0 ∩R(h) > ε]

≤(b)
∑
h∈H

P[R̂(h) = 0|R(h) > ε], (2.6)

where (a) follows the union bound and (b) is from the definition of conditional
probability. Take a hypothesis h from H. The following inequality holds:

P[R̂(h) = 0|R(h) > ε] ≤ (1− ε)n, (2.7)

which implies that∑
h∈H

P[R̂(h) = 0|R(h) > ε] ≤ |H|(1− ε)n. (2.8)

Setting |H|(1 − ε)n ≤ δ, we can derive the sample complexity bound as
follows:

|H|(1− ε)n ≤(a) |H| exp(−nε) ≤ δ

⇒ log |H| − nε ≤ log δ

⇒ n ≥ 1
ε
(log |H|

δ
),

where (a) follows the identity (1 − x) ≤ exp(−x). Substituting ε in the
inequality (2.3) with the above last inequality, the generalization bound (2.5)
holds, which concludes the proof.

Theorem 1 suggests that we can obtain lower generalization error by increas-
ing the sample size n and/or decreasing the cardinality |H|.

In more general cases, the hypothesis set H may not contain consistent
hypotheses so that the hypothesis hS, which is selected by the algorithm A
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is not consistent, i.e., R̂(hS) > 0. The question of interest is now whether
R̂(hS) is sufficient close to R(hS) given a finite sample S. To derive the
generalization bound for this situation, we need to quantify |R̂(h) − R(h)|,
which is given by the Hoeffding’s inequality [99].

Lemma 2 (Hoeffding’s Inequality of Risk). Let S denote an i.i.d. sam-
ple of size n and fix ε > 0. Then, for any hypothesis h : X → 0, 1, the
following inequalities hold:

P
S∼Dn

[R̂(h)−R(h) ≥ ε] ≤ exp(−2nε2),

P
S∼Dn

[R̂(h)−R(h) ≤ −ε] ≤ exp(−2nε2).

By the union bound, the following two-sided inequality holds:

P
S∼Dn

[|R̂(h)−R(h) ≥ ε|] ≤ 2 exp(−2nε2). (2.9)

Proof. This lemma is the special case of the original Hoeffding’s inequality
proved in [99] in which the evaluation of the loss function 1h(xi)6=yi acts as
the random variable.

The left term of (2.9) tells us the probability of a “bad situation” hap-
pened. The right term represents the upper bound of the probability, which
can become smaller if n increases. It suggests that having more samples can
minimize the occurrence of the bad situation.

Next we derive the generalization bound for inconsistent hypotheses,
which is obtained by generalizing Hoeffding’s inequality for multiple hypothe-
ses as follows.

Theorem 3 (Learning bounds for finite, inconsistent H). Let H be a
finite hypothesis set. For any ε > 0 and δ > 0, the inequality PS∼Dn [R(hS) ≤
ε] ≥ 1− δ holds with sample complexity bound of the form

n ≥ 1

2ε2
log

2|H|
δ

. (2.10)
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Consequently, with probability at least 1−δ, the following generalization bound
holds:

∀h ∈ H, R(h) ≤ R̂(h) +

√
log 2|H|

δ

2n
(2.11)

Proof. Let h1, . . . , h|H| ∈ H. By the union bound and Lemma 2 to each
hypothesis,

P[∃h ∈ H : |R̂(h)−R(h)| > ε]

=

|H|⋃
i=1

P[|R̂(hi)−R(hi)| > ε|]

≤
|H|∑
i=1

P[|R̂(hi)−R(hi)| > ε|]

≤ 2|H| exp(−2nε2)

Setting the last term to be equal to δ and then solving for n and ε conclude
the proof.

It is instructive to compare Theorem 3 with Theorem 1. They are similar
in the sense that the generalization error can be reduced by increasing the
sample size n. In the inconsistent case, however, we need to quadratically in-
crease the sample size to retain the same guarantee as in the consistent case.
Another remark is that the bound suggests finding a trade-off between reduc-
ing R̂(h) versus controlling the size of the hypothesis set: a larger cardinality
|H| is penalized by the second term but could help reduce R̂(h).

Although Theorem 3 is sufficiently general, it is uninformative when deal-
ing with infinite hypothesis sets. The next subsection presents the learning
bounds in the case when the hypothesis set is infinite, which is likely to
happen in more general settings.

2.2.2 Bounds for Infinite Hypothesis

A general idea to derive sample complexity bounds or generalization bounds
for infinite hypotheses is to reduce the infinite case to the analysis of finite



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 29

sets of hypotheses. For doing so, we need a quantity, in the form of the
complexity for the family of hypotheses, that can replace the role of the
cardinality H. In other words, the quantity should produce a generalization
bound independent from the infiniteness of the hypothesis set.

An example of such complexity notions is the Rademacher complexity
[12], named after Hans Rademacher. It captures the richness of a family of
functions by measuring the degree to which a hypothesis set can fit random
noise. The Rademacher complexity is defined as follows:

Definition 4 (Rademacher Complexity [12]). Let G be a family of func-
tions mapping from X × Y to [a, b] and S = {z1, ..., zn} ⊆ X × Y be a fixed
sample of size n. The empirical Rademacher complexity of G with respect to
the sample S is

R̂S(G) = E
ν

[
sup
g∈G

1

n

n∑
i=1

νig(zi)

]
, (2.12)

where ν = (ν1, . . . , νn)> are Rademacher variables, with νis independent uni-
form random variables taking values in {−1,+1}. The Rademacher com-
plexity over all samples of size n is

Rn(G) = E
S∼Dn

[
R̂S(G)

]
. (2.13)

It is worth emphasizing that the function class G does not directly rep-
resent the hypothesis set H. That is, for any h ∈ H, G contains functions
that evaluate a tuple (x, h(x)) into a real value. Examples of such functions
are loss functions.

Here we present the standard generalization bound using the Rademacher
complexity with the focus on the classification problem. Before doing so,
it is desirable to establish the relationship between the empirical and true
Rademacher complexities, since we can only calculate the empirical measure
in practice. We first need a concentration measure bound referred to as
McDiarmid’s inequality [143].
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Lemma 4 (McDiarmid’s Inequality [143]). Let X1, ..., Xn be independent
random variables taking values in the set X under a distribution P. Further,
let f : X n → R be a function of X1, .., Xn that satisfies

sup
x1...xn,x′i∈X

∣∣∣f(x1 . . . xi . . . xn)− f(x1 . . . x
′
i . . . xn)

∣∣∣ ≤ ci,

where xi 6= x′i and 1 ≤ i ≤ n. The following inequality holds for all ε > 0

P
{∣∣∣E[f ]− f

∣∣∣ ≥ ε
}
≤ 2 exp

(
−2ε2∑n
i=1 c

2
i

)
.

Using PAC-learning and McDiarmid’s inequality, we can bound |R̂S(G)−
Rn(G)| given by the following theorem.

Theorem 5. Let G be a family of functions mapping from X × Y to [0, 1]

and a fixed sample S = {z1, . . . , zn} ⊆ X × Y. With probability 1 − δ, the
following inequality holds:

Rn(G) ≤ R̂S(G) +

√
log 2

δ

2n

Proof. Let S and S ′ be two samples differing by exactly one point, e.g.,
zj ∈ S and z′j ∈ S ′. Using Definition 4,

R̂S(G)− R̂S′(G) ≤ E
ν

[
sup
g∈G

vj(g(zj)− g(z′j))

n

]
≤ 1

n
.

Similarly, we can obtain R̂S′(G)− R̂S(G) ≤ 1
n
, which implies that |R̂S′(G)−

R̂S(G)| ≤ 1
n
. By Lemma 4, the following inequality holds:

P[|Rn(G)− R̂S(G)| ≥ ε] ≤ 2 exp
(
−2ε2n

)
We conclude the proof by applying Definition 3.

Note that, up to Theorem 5, the Rademacher complexity is defined on a
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family of functions G, which is not a hypothesis set. For deriving a bound
in terms of generalization error/risk, we need to get the Rademacher com-
plexity operating on the hypothesis set H. The following lemma relates the
empirical Rademacher complexity of the family of loss functions G to that
of the hypothesis set H in the case of zero-one loss.

Lemma 6. Let H be a hypothesis set taking values in {−1,+1} and G

be the family of loss functions associated to H for the zero-one loss: G =

{(x, y) 7→ 1h(x)6=y}. For any sample S = {(x1, y1), . . . , (xn, yn)}, denote by
SX = {x1, . . . , xn} the projection of S over X . Then, the following equality
holds:

R̂S(G) =
1

2
R̂SX (H)

Proof. By definition of R̂S(G),

R̂S(G) = E
ν

[
sup
h∈H

1

n

n∑
i=1

νi1h(xi)6=yi

]

=(a) E
ν

[
sup
h∈H

1

n

n∑
i=1

νi
1− yih(xi)

2

]

=
1

2
E
ν

[
sup
h∈H

1

n

n∑
i=1

−νiyih(xi)

]

=(b) 1

2
E
ν

[
sup
h∈H

1

n

n∑
i=1

νih(xi)

]
=

1

2
R̂SX (H),

where (a) follows 1h(xi)6=yi = 1−yih(xi)
2

and (b) follows the fact that for a fixed
yi ∈ {−1,+1}, −νiyi and νi are distributed in the same way.

The above lemma also implies that Rn(G) = 1
2
Rn(H). We are now ready

to derive generalization bounds for an infinite hypothesis set H in the case
of binary classification using the Rademacher complexity.

Theorem 7 (Learning bounds for infinite, inconsistent H). Let H be a
hypothesis set taking values in {−1,+1} and G be the family of loss functions
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associated to H for the zero-one loss: G = {(x, y) 7→ 1h(x)6=y}. For any δ > 0,
with probability at least 1 − δ over a sample S = {x1, . . . , xn} drawn from a
distribution D over the input space X , the following inequalities hold for any
h ∈ H:

R(h) ≤ R̂(h) + Rn(H) +

√
log 1

δ

2n
(2.14)

and

R(h) ≤ R̂(h) + R̂S(H) + 3

√
log 2

δ

2n
(2.15)

Proof. Define a function Ω(S) = sup
h∈H

R(h)− R̂S(h). Let S and S ′ be two

samples differing by exactly one point, e.g., xj ∈ S and x′j ∈ S ′. Applying
McDiarmid’s inequality on Ω(S), we get

Ω(S) ≤ E
S

[Ω(S)] +

√
log 2

δ

2n
. (2.16)

We expand the term ES[Ω(S)] as follows:

E
S

[Ω(S)] = E
S

[sup
h∈H

R(h)− R̂S(h)]

= E
S

[
sup
h∈H

E
S′

[R̂S′(h)− R̂S(h)]

]
≤(a) E

S,S′

[
sup
h∈H

R̂S′(h)− R̂S(h)

]
= E

S,S′

[
sup
h∈H

1

n

n∑
i=1

1h(x′i)6=y′i −
1

n

n∑
i=1

1h(xi)6=yi

]

= E
ν,S,S′

[
sup
h∈H

1

n

n∑
i=1

νi1h(x′i)6=y′i −
1

n

n∑
i=1

νi1h(xi) 6=yi

]

≤(b) E
ν,S′

[
sup
h∈H

1

n

n∑
i=1

νi1h(x′i)6=y′i

]
+ E

ν,S

[
sup
h∈H

1

n

n∑
i=1

−νi1h(xi)6=yi

]
= 2Rn(G) =(c) Rn(H) (2.17)



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 33

where (a) holds by Jensen’s inequality, (b) follows the identity sup(A+B) ≤
sup(A) + sup(B), and (c) holds by Lemma 6. Combining (2.17) and (2.16)
produces Equation (2.14). Finally, substituting Rn(H) in (2.14) with the
inequality in Theorem 5 yields (2.15), which concludes the proof.

2.3 Representation Learning

Representation learning or feature learning is the basic instrument used in
this thesis to solve the dataset bias or domain shift problem. It is concerned
with learning representations of data that provide useful information when
building classifiers or other predictors [19].

Representation learning is motivated by the fact that supervised learning
tasks require input representations or features that are mathematically and
computationally convenient to process [55]. However, real world data such
as images, video, audio signals are highly complex, inconvenient to process.
The standard solution to this problem is to manually develop preprocessing
pipelines and data transformations, which extract representations or features
that are more useful than the original data [51, 66, 136]. Such feature engi-
neering, however, usually requires intensive human labor, relies on expert
knowledge, and often do not generalize well. Therefore, it is highly desirable
to learn useful representations that can automate and generalize this process.

It is natural to ask and quantify the meaning of “useful representations”.
There are, at least, two key notions of the usefulness: i) local invariance and
ii) the disentanglement of explanatory factors of data [19]. Local invariance
means that the data representations should be insensitive to local changes
that are uninformative to the task at hand. In image classification, for ex-
ample, the noise appearing in a raw image should not alter its representation
compared to the noiseless one. A more ambitious goal is to recover factors of
variation of the data. For example, we want to disentangle the pose, shape,
illumination, morphology, and expression, which are the factors to form face
images, given only the raw images. This notion is more general than in-
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variance in the sense that it does not try to discard information. Building
invariant features reduces sensitivity in the direction of invariance. The risk
of building invariance is of determining the set of features and variations
relevant to the task at hand, which is often difficult to do.

In general, representation learning algorithms can be classified into two
groups: i) supervised representation learning and ii) unsupervised represen-
tation learning. Examples of supervised representation learning are neural
networks/deep learning and supervised dictionary learning [137]. Examples
of unsupervised representation learning, which are more dominant, are K-
means clustering, a family of linear models: principal component analysis
(PCA) [103], independent component analysis (ICA) [108], Fisher’s linear
discriminant analysis (LDA) [69], and locally linear embedding (LLE) [181],
and a class of non-linear models used in deep learning: restricted Boltzmann
machines (RBMs) [1,200] and autoencoders [21,30]. Some of aforementioned
linear models can be also generalized to non-linear settings by kernel meth-
ods [193].

The next two sections (2.4 and 2.5) discuss the representation learning
approaches used in this thesis: deep learning and feature extraction via ker-
nels. Deep learning is concerned with building hierarchical abstractions of
representations (more abstract concepts are constructed from less abstract
ones), while kernel feature extraction transforms data into easier-to-classify
high dimensional representations without explicitly computing the transfor-
mation by virtue of a similarity function called kernel.

2.4 Deep Learning

Deep learning refers to a family of representation learning algorithms con-
cerned with learning a hierarchy of representations that model high-level
abstractions in data [17, 53]. The hierarchy allows the computer to learn
complicated concepts or functions composed from simpler ones. It is theoret-
ically justified that “deep” architectures, which is a hierarchical composition
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of several non-linearities, can learn the kind of complicated functions more
efficiently than “shallow” architectures [22].

While the term “deep learning” itself is relative new, the field can be
traced back to 1940s (see a comprehensive historical survey in [191]) and
has been rebranded many times. Bengio et al. [20] mention three waves of
development of deep learning: i) deep learning known as cybernetics in the
1940s-1960s, ii) deep learning known as connectionism in the 1980s-1990s,
and iii) the current resurgence under the name of deep learning since the
beginning of 2006.

The names of the fore-mentioned waves of development also reflect the
goal and perspective of the field. In early development in this field, deep
learning algorithms were intended to be computational models of biological
learning – researchers were generally concerned about how learning could
happen in the brain. At that time, some of the names that deep learning was
recognized are the perceptron [180] and artificial neural networks (ANNs).
In the 1980s, the field tended to go beyond the neuroscientific perspective
in that people considered neural networks for solving engineering problems
thanks to the backpropagation algorithm [183]. The modern wave of deep
learning, started around the mid 2000 period, is identified by breakthroughs
in some challenging real-world applications [43,52,97,118,150,202,207,208].
This is also driven by the availability of massive labeled datasets [80,185,186]
and the advancement of computational power, which could not be acquired
during the first and second waves of development.

This section will describe all necessary aspects of deep learning linked to
the main contributions of this thesis. It covers the description of McCulloch-
Pitts neuron and the perceptron, feed forward neural networks and backprop-
agation, greedy-layer wise unsupervised training, and several useful ingredi-
ents related to the training and regularization such as optimization, weight
initialization, data augmentation, and dropout regularization.
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2.4.1 McCulloch-Pitts Neuron and The Perceptron

The McCulloch-Pitts neuron or artificial neuron can be considered as the
earliest model of brain function [142]. This model is basically a mathematical
function that receives one or more inputs (representing dendrites) and returns
an output (representing an axon) in the form of a linear combination of the
inputs and their weight values. The output sum is then passed through a
non-linear function known as an activation function.

The mathematical description of the McCulloch-Pitts neuron is as follows.
Let us define d+ 1 input signals x0, . . . , xd and weights w0, . . . , wd, where x0

is usually set to +1 and w0 is the bias. An artificial neuron h is modeled by
a function f : Rd+1 → R given by

h = f(x0, . . . , xd) = σ

(
d∑

k=0

wkxk

)
, (2.18)

where σ : R→ R is the activation function. In the context of neural networks,
several popular choices for the activation function to date are

1. Linear/Identity : σ(z) = z;

2. Logistic Sigmoid : σ(z) = 1
1+exp(−z) ;

3. Hyperbolic Tangent : σ(z) = tanh(z);

4. Rectified Linear Unit (ReLU): σ(z) = max(z, 0).

As of 2015, the last activation function, ReLU, is the most commonly used
activation function [123], see Section 2.4.6 for a more detailed explanation.

It is sometimes more convenient to denote the input signals by a vector
x ∈ Rd+1, and the weights and bias by a vector w ∈ Rd+1. The function
2.18 can thus be written as f(x) = σ(〈w,x〉), where 〈·, ·〉 denotes the dot
product. Figure 2.1 depicts an illustration of the McCulloch-Pitts neuron.

The McCulloch-Pitts neuron originally was not associated with the notion
of learning. To mimic a particular kind of function, the weights and bias of
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Figure 2.1: McCulloch-Pitts neuron.

the neuron must be predetermined. In 1958, Frank Rosenblatt came up with
the perceptron [180], the first supervised learning algorithm to train artifi-
cial neurons. The perceptron is considered a binary classification algorithm,
where the function f(·) returns a single binary value

f(x) =

1 if 〈w,x〉 > 0

0 otherwise.

The above function can be interpreted as an artificial neuron (2.18), where
the activation function σ(·) is in the form of a linear threshold function.

Given a single labeled example (x, y) ∈ Rd+1 × {0, 1}, the perceptron
learning corresponds to seeking the optimal weights and bias such that f(x) ≈
y. This can be achieved by the following update rule, which is allowed to run
until convergence, for the weights and bias, respectively.

wtk ← wt−1
k + α(y − f(x))xk,∀k = 0, . . . , d,

bt ← bt−1 + αy,

where α > 0 is the step size or learning rate. Note that the above update
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rule is online, that is, it only looks at one example at a time.
A fundamental limitation of the perceptron is that it only works for lin-

early separable data – there exists some hyperplane that puts all the positive
examples on one side and all the negative examples on the other side. A
famous example of non-linear problems in which the perceptron cannot work
is the XOR problem [148]. To deal with more complex problems, we need
alternatives that can generate solutions with non-linear decision boundaries.
One approach is to combine multiple perceptrons in a single model:multilayer
perceptrons or feedforward neural metworks.

2.4.2 Feedforward Neural Networks and Backpropaga-

tion

A feedforward neural network is a generalized form of McCulloch-Pitts neu-
rons with multiple intermediate layers, i.e., hidden layers, between the input
layer and the output layer. Neurons between two adjacent layers are con-
nected, while neurons within a layer are not connected. Figure 2.2 shows the
architecture of feedforward neural nets.

Formal description. Mathematically, a feedforward neural net model is
a composition of McCulloch-Pitts neurons (2.18). We consider a feedforward
neural net with one input layer, L hidden layers, and one output layer. De-
note the j-th neuron in the l-th layer by h

(l)
j . The l-th layer can thus be

written as a vector h(l) ∈ Rkl+1, with h(0) := x represents the input layer and
h(l), l = 1 . . . L represent the hidden layers. Finally, we denote the output
layer by o ∈ Rm.2

Since the model has kl neurons in each hidden layer, it implies that there
exists kl sets of weights; each corresponds to the connections between h(l)

j and
h(l−1). We denote the connection weights and bias between h

(l)
j and h(l−1)

by w
(l)
j = [w

(l)
0j , w

(l)
1j , . . . , w

(l)
kl−1j

]>,∀j = 1, . . . , kl. To simplify the notation of

2Here we focus on the classification problem, where there are multiple output neurons
represented by a single vector.
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Figure 2.2: Illustration of feedforward neural networks.

the weights and biases in a particular hidden layer, one can express them as
a matrix

W(l) =

 | | · · · |
w

(l)
1 w

(l)
2 · · · w

(l)
kl

| | · · · |

 ∈ R(kl−1+1)×kl ,∀l = 1, . . . , L. (2.19)

An analogous notation can be applied for the output layer, denoted by
Wout ∈ RkL×m.

Define a feedforward mapping between two adjacent layers gW(l) : Rkl−1+1 →
Rkl such that

gW(l)(h(l−1)) = s(W(l)>h(l−1)) =: h(l),∀l = 1, . . . , L, (2.20)

where s(z) = [σ(z1) . . . σ(zkl)]
> is the element-wise operation of the acti-

vation function σ(·). For the output layer, the mapping can be defined as
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gWout(h(L)) =: o.

Now we can conveniently define a feedforward neural net fΘ : Rd+1 → Rm

parameterized by Θ = {W(1), . . . ,W(L),Wout}, i.e., the set of all connection
weights and biases – recall that Rd+1 represents the input space. Specifically,
fΘ is a composition of feedforward mappings such that

fΘ(x) = (gWout ◦ gW(L) ◦ · · · ◦ gW(1))(x), (2.21)

where ◦ denotes the function composition operation. Similarly to that of
the perceptron, the learning problem in feedforward neural nets is to find an
optimal set of parameters Θ̂ such that fΘ̂ approximates a particular function.

Backpropagation (BP). Now we discuss a well known algorithm to train
feedforwad neural nets referred to as backpropagation (BP). In short, this
algorithm is the application of gradient descent [37] and the chain rule in
a single framework. The early development of BP dates back to the 1960s,
which was applied in non-neural network contexts [4,58]. BP was then explic-
itly used to minimize cost functions by adapting control parameters [59,231].
The first specific application of BP in the neural net context was found in
1981 [232]. Rumelhart et al. [183] experimentally demonstrated the emer-
gence of useful internal representations in neural nets via BP, which brought
a significant contribution to the popularization of BP. That version of BP,
as of this thesis, is still the dominant approach to training neural networks,
since it is scalable and can be parallelized on GPUs.

We describe the detailed BP algorithm to train a feedforward neural net
fΘ(·). in the context ofmulti-class classification problems, where the outputs
are the binary vectors in {0, 1}m, with all 0s except for a 1 at a particular
index. The index of the element 1 corresponds to the class label.

Given a labeled instance (x,y) ∈ Rd+1×{0, 1}, we define a cross-entropy
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loss ` : {0, 1}m × {0, 1}m as follows:

`(y, fΘ(x)) = −
m∑
k=1

yk[log fΘ(x)]k. (2.22)

Recall that fΘ(x) is a composition of feedforward mappings (2.21). Here the
output mapping gWout uses the softmax function as the activation function.
Given a vector z ∈ Rm, the softmax function on the j-th element is defined
by

σ(zj) =
exp(zj)∑m
k=1 exp(zk)

. (2.23)

Suppose that the model can learn from n labeled data {(x1,y1), . . . , (xn,yn)}.
The BP algorithm solves the following optimization problem:

Θ̂ := arg min
Θ

n∑
i=1

`(yi, fΘ(xi)). (2.24)

Since BP is based on gradient descent, it naturally requires the gradient
∇Θ`(y, fΘ(x)) that provides a direction towards the optimal solution. In
particular, we are interested in computing the error gradient with respect to
the individual weight or bias ∂`

∂wij
, which can be divided into two cases:

1. The error gradient for the output layer ∂`(·,·)
∂wout

ij
.

Let o := fΘ(x). By the chain rule,

∆wout
ij :=

∂`(y,o)

∂wout
ij

=
m∑
t=1

∂`(y,o)

∂ot

∂ot
∂zout

j︸ ︷︷ ︸
∂`(y,o)

∂zout
j

∂zout
j

∂wout
ij

, (2.25)

where zout
j =

∑
iw

out
ij h

(L)
i is the net output of the j-th neuron such that

oj = σ(zout
j ) – recall that the output neuron uses the softmax function
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for σ(·). The detailed derivation of (2.25) is as follows:

∂`(y,o)

∂oj
= −yj

oj
,

∂oj
∂zout

k

=

oj(1− oj) if j = k

−ojok otherwise
.

Using the above two equations, we can calculate that

∂`(·, ·)
∂zout

j

=
m∑
t=1

∂`(y,o)

∂ot

∂ot
∂zout

j

= oj − yj. (2.26)

Given the fact that ∂zj
∂wout

ij
= h

(L)
i , it is now straightforward to see that

∆wout
ij = (oj − yj)h(L)

i .

2. The error gradient for the hidden layers ∂`(·,·)
∂w

(l)
ij

.

For l = L, . . . , 1, by the chain rule we get

∆w
(l)
ij :=

∂`(y,o)

∂w
(l)
ij

=

k(l+1)∑
t=1

∂`(y,o)

∂z
(l+1)
t

∂z
(l+1)
t

∂h
(l)
j

∂h
(l)
j

∂z
(l)
j︸ ︷︷ ︸

∂`(y,o)

∂z
(l)
j

∂z
(l)
j

∂w
(l)
ij

. (2.27)

Consider the case of l = L, which implies that the index (l + 1) corre-
sponds to the output layer. The quantity ∂`(y,o)

∂z
(L)
j

is thus

∂`(y,o)

∂z
(L)
j

=
m∑
t=1

(ot − yt)wout
jt

∂h
(L)
j

∂z
(L)
j

(2.28)

Note that (ot− yt) is taken from (2.26), the term of which is backprop-

agated, and that ∂h
(L)
j

∂z
(L)
j

depends on the choice of the activation function
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σ(·), e.g., ∂h
(L)
j

∂z
(L)
j

= h
(L)
j (1 − h

(L)
j ) if σ(·) is the sigmoid function. The

error gradient for l = L is therefore given by

∆w
(L)
ij =

m∑
t=1

(ot − yt)wout
jt

∂h
(L)
j

∂z
(L)
j

h
(L−1)
i . (2.29)

In conclusion, to calculate ∆w
(l)
ij for l = L, . . . , 1, we simply calculate

∂`(y,o)

∂z
(l)
j

recursively, and then multiply by h(l−1)
i .

Algorithm 1 summarizes the BP algorithm to train feedforward neural
nets with an online / stochastic setting. That is, the parameter update is
calculated for each training example. One can also perform the offline /
batch backpropagation that calculates the average of the error gradient by
considering the entire training set, see e.g. [126] for a detailed comparison
between the online and offline settings. Another variation of BP is the mini-
batch setting, i.e., taking the average of the error gradient over each subset
of the training set, which is often more desirable in practice.

Remark. Feedforward neural nets with backpropagation have led the sec-
ond wave of deep learning development in 1980s and 1990s. However, it fell
out of favour due to several failed cases on training deep architectures and
the rise of other learning algorithms such as kernel machines [29, 48, 192]
and graphical models [112]. Those algorithms are theoretically well founded
and, at that time, provided better performance and faster computation. In
2006, researches found a new strategy to help BP train deep architectures:
greedy layer-wise unsupervised training. The next three sections describe this
strategy in detail.

2.4.3 Greedy Layer-Wise Unsupervised Training

Greedy Layer-Wise Unsupervised Training [21,97] enables (deep) neural nets
to model the data generating distribution. It trains deep neural nets from
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Algorithm 1 The online backpropagation (BP) algorithm.
Input:
• Labeled training examples: S = {(xi,yi)}ni=1 ∈ Rd × {0, 1}m
• Set of weights and biases : Θ = {W(1), . . . ,W(L),W(L+1)} of a feedforward
neural net fΘ(·), where W(L+1) := Wout

• Learning rate: α > 0

1: Initialize the weights, e.g., w(l)
ij ∼ U [−p, p],∀i 6= 0 and the biases w(l)

0j = 0;
2: while not at end of epoch do
3: for all (x,y) ∈ S do
4: for l = (L+ 1), L, . . . , 1 do
5: Calculate ∆w

(l)
ij based on (2.25) or (2.27);

6: Update the weights and the biases, ∀i = 0, . . . , k(l−1), j = 1, . . . , kl:

w
(l)
ij ← w

(l)
ij − α∆w

(l)
ij ;

7: end for
8: end for
9: end while
Output:
• Learned weights and biases: Θ̂

a set of unlabeled examples {xi}ni=1, one layer at a time starting from the
bottom layer. This algorithm can be considered as a “clever" way to initialize
the network weights and biases, namely, pretraining. The general procedure
of pretraining is summarized in Algorithm 2.

The most important step in Algorithm 2 is Step 2: finding an optimal
set of parameters at layer l. There exists two common approaches to doing
so: i) restricted Boltzmann machines (RBMs) and ii) autoencoders (AEs),
which will be discussed in Sections 2.4.4 and 2.4.5. The overall pretraining
procedure can be viewed as stacking either RBMs or AEs into a single model.

2.4.4 Restricted Boltzmann Machines

A possible model as a building block for greedy layer-wise unsupervised train-
ing, i.e., Step 2 in Algorithm 2 is the restricted Boltzmann Machine (RBM).
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Algorithm 2 Greedy Layer-Wise Unsupervised Training (Pretraining).
Input:
• Unlabeled training examples: S = {(xi)}ni=1 ∈ Rd

• Set of weights and biases : Θ = {W(1), . . . ,W(L)} of a neural net
fΘ(·)
1: for l = 1, . . . L do
2: Given the unlabeled sample S, find the optimal weights and biases at

the layer l: Ŵ(l);
3: Compute the layer activation: h

(l)
i := gŴ(l)(xi), ∀i = 1, . . . , n;

4: Set h
(l)
i as the new inputs to train the next layer: xi ← h

(l)
i

5: end for
Output:
• Learned weights and biases: Θ̂

An RBM is an energy-based stochastic model or Markov Random Field with
a bipartite graph. That is, the model consists of a visible layer and a hidden
layer with undirected inter-layer connections; each element in the layers is a
(binary) random variable. This model was originally introduced under the
name of Harmonium in 1986 [200]. The fully connected flavor of RBMs,
which also has intra-layer connections, is the one that we refer to as the
Boltzmann Machine [1].

Now we describe RBMs more formally. We generally follow the notations
used for describing feedforward neural nets in Section 2.4.2. Define a (binary)
RBM with a visible layer with d nodes, x ∈ {0, 1}d, and a hidden layer with
k nodes, h ∈ {0, 1}k.3 Denote by W ∈ Rd×k the matrix that contains the
connection weights, see (2.19) – we ignore the bias terms to simplify the
notation.

An RBM has a scalar value associated with each state configuration of
the model, which we refer to as the energy. This scalar value is represented
as an output of the so-called energy function. This function has a property
that when the nodes are randomly chosen to update, the energy value will
either lower or stay the same. Furthermore, under iterative updating the

3In general, RBMs can have real valued random variables, see e.g., Cho et al. [39].
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machine will eventually converge to a state that is a local minimum in the
energy function. The energy function of a binary RBM is given by

E(x,h; W) = −x>Wh. (2.30)

The RBM performs sampling: repeatedly choosing a unit and setting
its state according to a joint probability distribution, which is referred to
as Boltzmann distribution (also called the Gibbs distribution) [76, 121]. The
distribution is given by

PW(x,h) =
exp(−E(x,h; W))

Z
, (2.31)

where Z =
∑

x,h exp(−E(x,h; W)) is the normalizing constant (also called
the partition function). A configuration of the RBM has thus a high proba-
bility when the energy E is low. In the sampling process, the global state of
the RBM will eventually follow PW at thermal equilibrium regardless of the
distribution of the initial state.

Using (2.31), one can derive the data likelihood and the conditional dis-
tributions over the visible and/or hidden nodes as follows:

PW(x) =

∑
x exp(−E(x,h))

Z
(2.32)

PW(hj = 1|x) = σ(W>x) (2.33)

PW(xi = 1|h) = σ(Wh), (2.34)

where σ(z) = 1
1+exp(−z) is the logistic function.

The training objective of the RBM is to learn the data generating dis-
tribution from an empirical observation of x. The following is the RBM
learning in the sense of maximum likelihood estimation (MLE). Define a
likelihood function L(W|x) = PW(x). The learning objective of the RBM is
to maximize the data log-likelihood parameterized by W from a finite sample
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{x1, . . . ,xn} such that

Ŵ = arg max
W

n∑
i=1

logL(W|xi). (2.35)

Consider the online setting, i.e., n = 1. Notice that

logL(W|x) = log
∑

h

exp(−E(x,h; W))︸ ︷︷ ︸
φ+

− logZ(W)︸ ︷︷ ︸
φ−

(2.36)

From now on, we refer φ+ and φ− as the positive phase and the negative
phase, respectively.

To solve the optimization problem (2.35), one can compute the gradient
of (2.36) with respect to the parameter W given by

∂ logL(W|x)

∂W
=

∂φ+

∂W
− ∂φ−

∂W
. (2.37)

If the optimal Ŵ is successfully found such that it maximizes the log-
likelihood (2.36) and the model of RBM is assumed to be well-matched to the
observed sample, the RBM should be expected to generate data that appear
to be similar to the sample, i.e., x̂ ∼ PŴ(x) .

We can further look at (2.37) in more detail, that is, the gradient of the
phases with respect to an individual weight wij. Observe that

∂φ+

∂wij
= −

∑
h

P (h|x)
∂E(x,h; W)

∂wij
=
∑

h

P (h|x)xihj

= P (hj = 1|x)xi (2.38)
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and

∂φ−

∂wij
= −

∑
x,h

P (x,h)
∂E(x,h; W)

∂wij
=
∑
x,h

P (x,h)xihj

=
∑

x

P (x)P (hj = 1|x)xi. (2.39)

Computing ∂φ+

∂wij
is straightforward as P (hj = 1|x), since can be calculated

using (2.33). However, computing ∂φ−

∂Wij
is computationally intractable for a

large number of nodes due to the need to sum the joint or marginal distri-
bution over all possible configurations. For the case of using the marginal
distribution P (x), the complexity is exponential in the size of x, i.e., the sum
runs over 2d for all possible binary combinations of x. This fact naturally
leads to the use of approximation methods to compute (2.37).

Gibbs sampling in RBM. An example of the approximation that can
be used is the Metropolis-Hasting algorithm [91], which is a Markov Chain
Monte Carlo (MCMC) method for sampling from probability distributions
based on constructing a Markov chain.4 One can use a class of the Metropolis-
Hasting algorithm referred to asGibbs sampling [74]. This algorithm provides
an approach to obtaining samples that are approximated from a specified
joint probability distribution of two or more random variables when the di-
rect sampling is difficult. It is applicable when computing the conditional
distribution of each variable is easier than computing the joint distribution.
Hence, Gibbs sampling is well-adapted to sampling from the joint distribution
of an RBM using a sequence of samples from the conditional distribution.
This can be achieved by running the Markov chain until convergence to the
stationary/equilibrium distribution.

More specifically, given a set of training example S = {x1, ...,xn}, the

4A Markov chain refers to a time discrete stochastic process for which the Markov
property holds. See a detailed explanation about Markov chain and MCMC, for example,
in [33] as it is beyond our scope here.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 49

data log-likelihood gradient over wij can be rewritten as follows

1

n

∑
x∈S

∂ logL(W|x)

∂wij
=

1

n

∑
x∈S

[
∂φ+

∂wij
− ∂φ−

∂wij
]

=
1

n

∑
x∈S

[ E
P (h|x)

[xihj]− E
P (x,h)

[xihj]],

∑
x∈S

∂ logL(W|x)

∂wij
∝ 〈xihj〉data − 〈xihj〉model (2.40)

where 〈xihj〉data and 〈xihj〉model are referred to as data statistics and model
statistics, respectively.

Using the sampling-based approach, the state hj in data statistics can
be drawn by samples from P (hj = 1|x), which is easy to compute, and xi

is taken from the observed data. However, the states xi and hj in model
statistics need to be drawn by samples from the model joint distribution
that cannot computed exactly. To illustrate the Gibbs sampling running in
an RBM, let {x(0)

i , h(0)
j } be the initial states of the RBM assigned in the data

statistics, and {x(∞)
i , h(∞)

j } be the stationary states of the RBM assigned
in the model statistics. Assigning the state of i-th observed data to x0

i , the
other variable states can be obtained by alternating sampling as follows

h
(0)
j ∼ P (hj = 1|x(0))

x
(1)
i ∼ P (xi = 1|h(0))

h
(1)
j ∼ P (hj = 1|x(1))

...

x
(∞)
i ∼ P (xi = 1|h(∞))

h
(∞)
j ∼ P (hj = 1|x(∞)). (2.41)

Note that the conditional probability over x or h can be considered as
the transition probability in terms of the Markov chain. Since the transition
probability is never zero as the result of the logistic function, it is a suffi-
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cient condition that guarantees that the Markov chain will converge to the
stationary distribution. Therefore, x∞i and h∞j obtained by (2.41) are equal
to samples from P (x,h).

However, the complexity of letting the chain converge to the stationary
distribution is high. Hinton [96] proposed contrastive divergence learning,
which is an efficient approach to learning RBM based on Gibbs sampling, as
described in the following subsection.

Contrastive divergence. Contrastive divergence (CD) learning [96] refers
to a Gibbs sampling-based stochastic approximation for RBM learning. It
provides a biased estimate for the data log-likelihood gradient described in
(2.40). The estimates are obtained by running the Markov chain to obtain
the model statistics for only a few full steps instead of until convergence.
Each full step consists of updating h given x then updating x given h. Let
k be the number of full steps specified for running the chain, the CD with k
steps is denoted by k-CD. Using k = 1 is sometimes sufficient in practice to
get correct gradient estimate [96].

The following is a reason why k-CD is considered as a biased estimate
of the data log-likelihood gradient. Considering a single datapoint x and
setting x(0) := x, the k-CD algorithm computes

CD(W,x(0), k) = −
∑

h

P (h|x(0))
∂E(x(0),h)

∂W

+
∑

h

P (h|x(k))
∂E(x(k),h)

∂W
. (2.42)

It is instructive to compare the above equation with (2.37). Note that the
Gibbs chain is not guaranteed to converge to a stationary distribution if k
is finite. This means that k-CD is the biased estimate of the data likelihood
gradient, CD(W,x, k) ≈ ∂ logL(W|x)

∂W
; the bias will vanish if we set k →∞.
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2.4.5 Autoencoders
Another alternative to RBMs that can be used as the pretraining building
blocks for deep neural nets is the autoencoder (AE) [21]. It is an unsupervised
model similar to RBM but with a fundamentally different learning procedure.
That is, AE is a single layer feedforward neural net, where its output signals
are the data itself instead of the labels. The objective of the AE is to learn
useful codes or vectorial representations, usually with lower dimensionality
than the input dimensionality, that provide good data reconstructions. AE
was initially considered as a compression algorithm, where the codes act
as the compressed representations of the data [30]. According to learning
theory [131, 221], the compressed representation is also sufficient to obtain
good generalization.

Let f ae
Θ (·) be an autoencoder parameterized by Θ = {W(1),W(2)}, which

is composed by two functions: 1) the encoder function gW(1) : Rd → Rk and
2) the decoder gW(2) : Rk → Rd – all the notations are analogous those for
feedforward neural nets as in (2.20) and (2.21). The matrices W(1) ∈ Rd×k

and W(2) ∈ Rk×d denote the connection weights for the hidden layer and
the output layer, respectively – again the biases are ignored in the notation
for the sake of simplicity. Given a single datapoint x ∈ Rd, the autoencoder
f ae

Θ (·) can be formulated as

h = gW(1)(x) = s(W(1)>x)

x̂ = gW(2)(h) = s(W(2)>h) = f ae
Θ (x), (2.43)

where s(z) = [σ(z1), ..., senc(zdh)]> is the function operating element-wise
activation. Note that we can set the AE weights to be tied, i.e., W(2) =

W(1)>, which reduces the number of free parameters.

AE seeks an optimal solution for Θ given a finite set of unlabeled data
{xi}ni=1. The objective of the AE learning is as follows:

Θ̂ := arg min
Θ

n∑
i=1

` (f ae
Θ (xi),xi) . (2.44)
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where `(·, ·) is the loss function. Typical choices for the loss function are
least-square loss `(y, z) = ‖y − z‖2

2 or cross-entropy loss (2.22). Since an
AE is basically a feedforward neural net, it can naturally be trained using
backpropagation, see Algorithm 1. If we apply autoencoders to raw pixels
of visual object images, the weights W(1) usually form visually meaningful
“filters” that can be interpreted qualitatively.

For discriminative tasks, we are interested in obtaining useful data rep-
resentations from the learned autoencoder. To do so, let us consider a single
datapoint x′, which might not be from the training set. The representation
of interest is obtained by gŴ(1)(x′) =: h′ and can be then fed to any classifier.

Several flavors of AEs exist that aim to provide “better” features in the
sense of discriminative tasks such as, sparse autoencoders (SAEs) [175], de-
noising autoencoders (DAEs) [225], contractive autoencoder (CAEs) [178],
and saturating autoencoders (SATAEs) [85]. Next we discuss some of them
in more detail.

Sparse Autoencoders (SAEs). As is discussed, the low-dimensional rep-
resentation h induced by the standard AE learning 5.2 is expected to retain
sufficient information about the input x and also to obtain good generaliza-
tion. However, the choice of the appropriate dimensionality for h can differ
depending on the domain of interest [17]. This is why, for instance, an image
compression algorithm normally uses a different number of bits for different
images, even if all inputs have the same dimensions. It is therefore more
desirable to map each input to a variable-length representation.

One way to allow a flexible dimensionality of h is to first set a maximum
possible value for the dimensionality high enough (normally higher than the
input dimensionality). We then let a learning algorithm figure out the appro-
priate number of non-zero codes on its own. Using the standard AE learning
to do so, it may suffer from learning an identity function that is unlikely to
provide a more useful representation than the input. A possible approach
to dealing with this issue is to encourage sparse representations, i.e., the
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representation h contains elements with a few non-zero values.

A sparse autoencoder (SAE) [157, 175] aims to obtain sparse representa-
tions via a regularization. It is inspired from sparse coding [31, 61, 138, 238]
that mimics certain properties of biological brain in visual area V1 [162].
Compared to traditional sparse coding approaches, SAEs enjoy the advan-
tage of using the backpropagation algorithm that is highly scalable to the
increasing size of the data. Furthermore, sparse coding typically requires a
longer procedure to extract sparse representations at test time, which is not
the case in SAEs.

The objective of SAE is similar to that of AE, with an additional term
S(h) to (5.2) such that

Θ̂ := arg min
Θ

n∑
i=1

` (f ae
Θ (xi),xi) + ηS (h) , (2.45)

where S(·) is a sparsity-inducing function. An ideal choice for S(·) is the
`0-norm ‖ · ‖0, which induces the sparsest solution. However, computing the
`0-norm is an NP-hard problem [155]. One often relaxes the sparsity term
into ‖ · ‖1, which can also induces the sparsest solution for most large under-
determined systems [57] – in our context, the dimensionality of h is much
larger than that of x. Sparsity-inducing functions for S(·) other than the
two norms above can also be used [122,174,175,243].

Denoising autoencoders (DAEs). Good features should be invariant
to local changes of the inputs. Denoising autoencoders (DAEs) attempt to
improve feature invariance by learning to denoise the corrupted inputs [225].
Specifically, the objective is to reconstruct a clean input x given its corrupted
counterpart x̃ ∼ Q(X̃|X), where Q(·|·) is any noise distribution. This leads
to a slightly different optimization problem. That is, given a finite sample
of n data {xi}ni=1 and the corrupted pairs {x̃i}ni=1 generated from Q(·|·), AE
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minimizes the following objective:

Θ̂ := arg min
Θ

n∑
i=1

` (f ae
Θ (x̃i),xi) . (2.46)

Commonly used types of corruption are zero-masking, Gaussian, and salt-
and-pepper noise. Features extracted by DAE have been proven to be more
discriminative than those extracted by AE [225].

2.4.6 Other Aspects in Deep Learning: ReLU, Dropout,

Data Augmentation

In this section, we discuss some other aspects in deep learning that are es-
sential to improve the generalization of neural nets: the Rectified Linear
Unit (ReLU) activation function [153], dropout regularization [98], and data
augmentation. A (full or partial) combination of these aspects has played
an important role to provide state-of-the-art deep learning models to date.
Such aspects also slightly change the direction of the deep learning devel-
opment (around 2011-2012) in the sense of the use of the unsupervised pre-
training [123]. That is, researchers have begun to omit the unsupervised
pretraining, see Section 2.4.3, when there exists a massively labeled training
set in the discriminative task perspective. The aspects explained below have
been capable of providing good performing models comparable to or even
better than those with pretraining.

Rectified Linear Unit (ReLU) activation. As was described in Section
2.4.1, ReLU is the ramp function, i.e., σ(z) = max(z, 0) and the most popular
choice for the activation function to date. It was claimed to be more biological
plausible than the logistic sigmoid function and provides much faster training
for very deep neural networks [78]. The rise of ReLU is perhaps the first sign
that the use of unsupervised pretraining in deep neural nets is not necessary
anymore for discriminative tasks [109].



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 55

The fast computation of ReLU is due to the following reasons. Firstly,
it does not involve any exponential computation such as those required in
logistic sigmoid and tanh. Secondly, the computation of the ReLU’s first
derivative is cheap, that is,

∂max(0, z)

∂z
=

1 if z > 0

0 otherwise.
(2.47)

This also implies that only the weights associated with active neurons are
updated during training. Krizhevsky et al. reported that ReLU produces
∼ 6× faster BP training over existing activation functions [118].

Dropout regularization. Dropout was first introduced by Hinton et al.
[98] as a new regularization to reduce overfitting in deep neural nets, espe-
cially when learning from a small sized dataset. It aims to prevent complex
co-adaptations on the training data. Co-adaptations can be described as fol-
lows. We think of a neuron as a particular feature detector. Since a neuron
receives the error signals from other neurons during training, neurons may
adapt in a way that they fix up the “mistakes” of the other neurons. Hence, a
collection of feature detectors may just explain the training data only, which
makes it somewhat useless for the test data.

The dropout procedure is simple, that is, randomly dropping some num-
ber of neurons (along with their connections) according to a fixed proba-
bility p during training. At test time, the neurons are always present and
the weights are multiplied by p. Dropout requires an additional step in the
feedforward mapping, see also (2.20), as follows:

h̃(l) = m ∗ h(l),

h(l+1) = gW(l+1)(h̃(l)), (2.48)

where m is a masking vector; each element is sampled from a Bernoulli
distribution with probability p, i.e., mj ∼ Bernoulli(p)
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Dropout has significantly improved the performance of neural nets in
a wide range of applications such as computer vision, speech recognition,
document classification, and computational biology [202]. When training on
large-scale labeled data, the use of dropout helps to provide state-of-the-
art models without using pretraining. One of the most notable result is of
the ImageNet classification task, where dropout plays a significant role to
produce the best convolutional neural net [118].

Data augmentation. Data augmentation is a method of simply adding
extra data into the training set. The augmented data are artificially created
from the original data under certain types of transformations that preserve
the class labels. In image recognition tasks, the transformations can be in the
form of, e.g., object translation, flipping, deformation, random perturbation,
color alteration, and reflection, see e.g. [42, 197]. This very simple method
has been proven to be useful in many situations. Note that, however, the
choice of the transformations is usually data-dependent.

In practice, data implementation can be implemented in many ways. In
the case of using the mini-batched version of backpropagation (BP), a com-
mon approach is to perform data augmentation during the batch processing.
That is, several instances in a particular batch are transformed before com-
puting the weight update. More specifically, the data augmentation step is
done just after Step 3 in Algorithm 1. Such an approach does not require an
additional disk storage for the augmented data [118].

2.4.7 Convolutional Neural Networks

Convolutional neural networks (ConvNets) are a special kind of feedforward
neural net for processing data having a grid-like topology [20]. Examples
of such data are audio data and image data, which can be considered as a
1D grid of signal samples and 2D grid of pixels, respectively. There are four
main ideas of ConvNets that take advantage of the properties of natural data:
local connections, shared weights, pooling, and the use of many hierarchical
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layers [123]. Like the standard feedforward neural nets, ConvNets can be
trained using the back-propagation algorithm.

ConvNets were biologically-inspired by the classic notions of simple cells
and complex cells in visual neuroscience [105]. The development of the Con-
vNet’s computation model can be dated back to Neocognitron [71], the model
of which has a similar architecture to modern ConvNets, but does not have
an end-to-end supervised learning algorithm. The first successful ConvNet
model was the so-called LeNet designed for handwritten and machine-printed
character recognition [124,125]. ConvNets are the most successful deep learn-
ing models to date in the area of computer vision thanks to large-scale data
and abundant computational resources [77,118,198,208].

This section describes the architecture of ConvNets, focused on image
data as inputs. It is then followed by the types of the ConvNet’s layers
including their elements and operations.

Architectures ConvNets typically consist of the following types of layers
in an ordered fashion (from bottom to top): convolutional layer (CONV),
pooling layer (POOL), and fully-connected layer (FC). The FC layers are
those exactly found in the feedforward neural networks. Non-linear activation
functions are applied on the CONV and FC layers, but not applied on the
POOL layers.

Shallow ConvNets can have an architecture of CONV → POOL → FC.
To construct deep ConvNets, the following arrangement is a typical: CONV
→ POOL → . . . → CONV → POOL → FC → . . . → FC. That is, any
CONV layer is usually followed by a POOL layer, and all FCs compose the
top layers, including the output layer. Figure 2.3 illustrates the architecture
of a ConvNet.

Convolutional layer. Now we describe the elements of the CONV layers
in details. In short, there are four important elements: i) feature map, ii)
local connectivity, iii) weight sharing, and iv) convolution operation.
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Figure 2.3: Illustration of the ConvNet architecture.

A feature map H ∈ RF×F is a 2D grid that contains real-valued neurons
– H is assumed to be a squared matrix for simplicity. A CONV layer can
have D features maps Hk,∀k = 1, . . . , D. Every neuron in a feature map is
connected to only neurons in a local region of the previous layer, i.e., local
connectivity. These local connections has weights, referred to as the receptive
field of the neuron, which are shared across neurons within a feature map.
Such a weight sharing reduces the number of free parameters in the network.
It is worth emphasizing that the biases are not shared.

We now describe the convolution operation applied in the CONV layers.
Without loss of generality, suppose that X ∈ RI×I is a 2D input grid and
Wk ∈ RR×R is the shared receptive field associated with the k-th feature
map; both are assumed to be squared matrices. Let Hk be the k-th feature
map in the first CONV layer. Every element in Hk, hkij, is equipped with the
following operation:

hkij = σ((Wk ∗X)ij + bk), (2.49)

where ∗ denotes the (discrete) 2D convolution operation, σ(·) is the activation
function, and bk is the bias. In words, the above convolution is a sliding
window operation, i.e., we slide the receptive field W across the width and
height of the input X and compute the matrix dot-product between W and
the local region of X.

In practice, there are two additional hyper-parameters: i) stride and ii)
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zero-padding, which are useful when working on 2D inputs. Stride (S) con-
trols the pixel steps between two consecutive convolution operations, which
usually uses to speed up the computation if the input size is large. Zero-
padding (P ) refers to additional dark pixels around the image boundary;
P = 1 allows the full convolution. All above ingredients, including the con-
volution operation, are best explained in 1D, as shown in Figure 2.4.

Note that the size of feature map, F × F , is a dependent parameter.
Recall that I× I is the input size, R×R is the receptive field size, S denotes
the stride, and P denotes the zero-padding. One of the axes of the feature
map size, F , can be calculated as

F =
I −R + 2P

S
+ 1. (2.50)

The above equation is useful to decide a valid configuration for ConvNets in
the implementation, that is, when (2.50) produces an integer. For example,
if I = 227, R = 11, P = 0, and S = 4 as specified in [118], then F = 55,
which is a valid configuration.

Figure 2.4: Example of the convolution operation in 1D with zero-padding of
P = 1 and a linear activation function. Colors of the connection lines indicate
the shared values. The left figure illustrates the CONV layer operation with
stride of S = 1, while the right figure illustrates that with S = 2.

Pooling layer. The POOL layer has the down-sampling or pooling opera-
tion that yields a single value given neurons in a local region of the previous
CONV layer. It basically reduces the spatial size of the CONV representa-
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tion, which implies the reduction of the amount of parameters and overfit-
ting. From the object recognition perspective, the pooling operation ensures
to achieve a certain level of translation-invariance.

Figure 2.5 illustrates two common types of pooling operations: i) average
pooling : taking the averaged value over a local region, and ii) max pooling :
taking the maximum value over a local region. The latter is now commonly
used, following a recent work that shows that the max poling operation is
superior compared to the average pooling for capturing invariances in image
data [190].

(a) Average Pooling (b) Max Pooling

Figure 2.5: Example of non-overlapping pooling operations with filter size of
2× 2.

In general, the pooling operation can also be interpreted as a sliding
window operation as in the CONV layers. For example, think of the max
pooling as a “filter” of size 2 × 2. The filter is slid across the feature map
of size F × F from the top-left to the bottom-right of the map with S = 2

(stride / step) and computes the maximum value of the map’s local region.
The resulting map is then of size F/2 × F/2, see Figure 2.5(b). Note that
S < 2 results in an overlapping pooling in this case.

2.4.8 Recap

In a nutshell, deep learning is a powerful class of representation learning
that has brought some significant advancements in solving real-world prob-
lems, especially the computer vision applications. It is arguably the best
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method to date in harnessing the benefit of large-scale data and computa-
tional resources. Deep learning has a long history of development (since
the 1940s) under many different names such as cybernetics, connectionism,
and artificial neural networks. In the recent wave of the development, the
fundamental ideas surprisingly do not change much since 1980s – backpropa-
gation and convolutional networks are still the core elements. Rather, recent
successes are mainly driven by the scalability nature of backpropagation in
processing a massive amount of labeled data using GPUs and some “small re-
finements”, e.g., the use of unsupervised pretraining, dropout regularization,
ReLU activation, and data augmentation.

This thesis investigates the problem of dataset bias, which may not be
solved by simply applying the off-the-shelf deep learning approaches. Some
novel deep learning-based algorithms are presented in Chapters 3, 5, and 7
as solutions to some dataset bias problems in object recognition.

2.5 Kernel Methods for Representation Learn-

ing

This section presents kernel methods for representation learning, which is
the basic framework for our contribution in Chapter 6. Kernel methods form
a class of algorithms for pattern analysis that enable any inner product-
based linear models to work in non-linear settings efficiently. The use of
kernel for pattern analysis was described as early as the 1960s, along with
the invention of the kernel perceptron [2]. The best known kernel-based
algorithm is the support vector machine (SVM) [29]. Other popular linear
algorithms that can be kernelized include principal component analysis [192],
Fisher’s linear discriminant [146], independent component analysis [9], and
canonical correlation analysis [120].

From the perspective of representation learning, it is desirable to have
a non-linear representation mapping, which converts representations of data
into vectorized representations that are almost always linearly separable. Fig-
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ure 2.6 illustrates the effect of such a mapping, where the representations in
the higher-dimensional space are linearly separable. It is naturally easier for
any supervised algorithm to classify datapoints in Figure 2.6(a) than those in
Figure 2.6(b). However, this mapping to high-dimensional space may result
in a serious computational drawback. An intriguing property of kernel meth-
ods is that the non-linear representation mapping can be computed almost
for free. The strategy is known as the kernel trick by utilizing a function
called kernel as a replacement for the dot product between two datapoints.

(a) Nonlinearly separable (2D) (b) Linearly separable (3D)

Figure 2.6: Comparison between a set of two-grouped datapoints in 2D and
their transformed representations in 3D. No straight line that can separate
the datapoints in (a), but there exist hyperplanes that can separate the repre-
sentations in (b). The figures are adopted from http://www.cg.cs.tu-bs.
de/static/teaching/seminars/ss13/CG/webpages/SoerenPetersen/.

In this section, we first introduce kernel functions (or just kernels) in-
cluding their properties. We then provide an example of extending principal
component analysis into a non-linear setting via kernels.

http://www.cg.cs.tu-bs.de/static/teaching/seminars/ss13/CG/webpages/SoerenPetersen/
http://www.cg.cs.tu-bs.de/static/teaching/seminars/ss13/CG/webpages/SoerenPetersen/
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2.5.1 Kernels

To guarantee a certain level of linear separability, one can use some non-
linear functions φ : X → H that map the original data to a high-dimensional
Hilbert space H 5 called a feature space [29, 48]. An example for the case
where X is a two-dimensional vector space is φ([x1, x2]>) = [x2

1, x
2
2, 2x1x2]>,

the second order polynomial. We can obtain even “better” linear separa-
bility if the feature space has higher (possibly infinite) dimensionality than
that of the second order polynomial. However, this results in an expensive
computation of φ(·).

Kernel methods allow us to compute φ(·) in a more efficient way, which
is referred to as the kernel trick. The fundamental tool for kernel methods is
a kind of function referred to as the kernel or kernel function. This function
can be thought as a similarity function between two data points in X .

Definition 5 (Kernel). Let X be a compact set. A function κ : X ×X → R
is called a kernel over X .

The basic idea is to define a kernel κ such that for any two points x, x′ ∈
X , κ(x, x′) be equal to an inner product of vectors φ(x) and φ(x′):

∀x, x′ ∈ X , κ(x, x′) = 〈φ(x), φ(x′)〉H (2.51)

for some non-linear mappings φ : X → H. This means that we can compute
the inner product in H using κ only, without going directly to H via φ(·).
This can bring a significant impact if one can find such kernels: any linear
algorithm that only relies on the inner product can be generalized into a
non-linear setting efficiently.

Fortunately, the type of kernel expressed in (2.51) exists iff it has the
so-called reproducing property. The kernel equipped with such a property is
referred to as the reproducing kernel, which was first introduced by Stanislaw

5The mathematical definition of Hilbert space can be found in any standard textbook
on function analysis, such as [116] and [176].
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Zaremba in the 1907 [240]. The associated Hilbert space H is then called the
reproducing kernel Hilbert space (RKHS).

Definition 6 (Reproducing Kernel Hilbert Space). Let X be a compact set
and H be a Hilbert space of real-valued functions on X . H is said to be a
reproducing kernel Hilbert space (RKHS) if the evaluation functionals, Lx :

f 7→ f(x),∀f(x), are bounded, i.e., for all x ∈ X , there exists some Λx > 0

such that
Lx[f ] := f(x) ≤ Λx‖f‖H (2.52)

The above definition of the RKHS is not trivial. For example, the square
integrable functions L2[a, b] can have arbitrarily large values on finite point
sets. In this case, no choice of Λx will provide the appropriate bound on
L2[a, b] on those point sets [179]. However, it is sufficiently general in the
sense that it is the weakest condition that ensures the existence of an inner
product. Furthermore, it also ensures the ability to evaluate each function
in H at every point in the domain.

As is mentioned before, the kernel endowed in RKHS has a reproducing
property, which can be proved by using the definition 6 and Riesz represen-
tation theorem [70,177].

Lemma 8 (Reproducing Property). If H is an RKHS, then for each x ∈ X
there exists a function κ(x, ·) ∈ H, referred to as the representer of x, with
the reproducing property

Lx[f ] = 〈κ(x, ·), f〉H = f(x). (2.53)

This lemma tells us that the evaluation functional can be represented by
taking the inner product with an element of H.

Write φ(x) := κ(x, ·). For any x′ ∈ X , one can write

κ(x, x′) = 〈κ(x, ·), κ(x′, ·)〉H = 〈φ(x), φ(x′)〉H, (2.54)

which we define as the reproducing kernel, see also (2.51). Furthermore, it
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is straightforward to see that the reproducing kernel satisfies both symmetry
and positive definiteness (SPD), since for any ci, cj ∈ R,

n∑
i=i,j=1

cicjκ(xi, xj) =
n∑

i=i,j=1

cicj〈κ(xi, ·), κ(xj, ·)〉H

= ‖
n∑
j=1

cjκ(xj, ·)‖2
H ≥ 0. (2.55)

The following definition provides another view of the positive definiteness
of the reproducing kernel, which is more practically useful in the computa-
tional viewpoint.

Definition 7 (Symmetric positive definite kernels). A kernel κ : X ×X → R
is said to be symmetric positive definite (SPD) if for any S = {x1, . . . , xn} ∈
X , the matrix K = [κ(xi, xj)]ij ∈ Rn×n is symmetric positive semi-definite
(SPSD).

K is referred to as the Gram matrix or kernel matrix associated to κ and the
sample S. Note that K is SPSD if it is symmetric and one of the following
two equivalent conditions holds, which is the interpretation of the Mercer’s
theorem [144]:

• for any vector a ∈ Rn,

a>Ka =
n∑

i,j=1

aiajκ(xi, xj) ≥ 0;

• the eigenvalues of K are non-negative.

Below are some examples of SPD kernels. For any x,x′ ∈ Rd,

1. Linear kernel:
κ(x,x′) = 〈x,x′〉. (2.56)
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2. Polynomial kernel:

κ(x,x′) = (〈x,x′〉+ c)r, (2.57)

for any c > 0 and r is the degree of the polynomial;

3. Gaussian kernel or radial basis function (RBF) [2]:

κ(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
, (2.58)

for any σ > 0;

4. Sigmoid kernel:

κ(x,x′) = tanh(a〈x,x′〉+ b), (2.59)

for any a, b ≥ 0.

In short, our previous explanations state that there exists an SPD kernel
in an RKHS. It is natural to ask whether the converse is true: does every SPD
kernel define a unique RKHS? This is important in practice when choosing
or designing a “valid” kernel – we only need to check that the kernel is sym-
metric and positive definite. N. Aronszajn provided a theorem, although he
attributes it to E. H. Moore, that validates the statement [8]. The theorem
is referred to as Moore-Aronszajn theorem,

Theorem 9 (Moore-Aronszajn theorem). Let κ : X × X → R be an SPD
kernel. Then, there exists a unique Hilbert space H and a canonical feature
map φ : X → H for which κ is a reproducing kernel.

Proof. Define φ(x) = κ(x, ·) for all x ∈ X . Let H0 = span{φ(x) : x ∈ X}
be a Hilbert space. Let v =

∑n
i=1 αiφ(xi) and w =

∑m
j=1 βjφ(xj), where
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v,w ∈ H0. Define an inner product on H0, that is, for any αi, βj ∈ R,

〈v,w〉H0 =

〈
n∑
i=1

αiφ(xi),
m∑
j=1

βjφ(xj)

〉
H0

=

〈
n∑
i=1

αiκ(xi, ·),
m∑
j=1

βjκ(xj, ·)

〉
H0

=:

n,m∑
i,j=1

αiβjκ(xi, xj).

Note that the above inner product is valid, i.e., symmetric and non-degenerative,
following from the symmetry and positive definiteness of κ. Let H be the
completion of H0, which implies that H consists of functions of the form

f(x) =
∞∑
i=1

ciκ(x, xi).

The following expression shows the reproducing property of κ, which vali-
dates that H is an RKHS:

〈f, κ(x, ·)〉H =

〈
∞∑
i=1

ciκ(·, xi), κ(x, ·)

〉
H

= f(x).

To prove that H is unique, suppose thatM is another RKHS for which κ is
a reproducing kernel. For any x, x′ ∈ X ,

〈κ(x, ·), κ(x′, ·)〉M = κ(x, x′) = 〈κ(x, ·), κ(x′, ·)〉H, (2.60)

which implies thatM = H, i.e., no other RKHS than H that is defined by
the kernel κ.

The next subsection provides an example of kernelizing a linear model
of the form z = W>x, where x ∈ Rd is the original data, z ∈ Rk is the
low-dimensional representation of x (k < d), and W ∈ Rd×k is a collection of
coefficients forming a linear transformation. The idea is to alter z = W>φ(x)

into a kernelized formulation.



2.5. KERNEL METHODS FOR REPRESENTATION LEARNING 68

2.5.2 Kernel PCA

Principal Component Analysis (PCA) seeks a linear projection to a sub-
space where the variance of the projected data points onto that subspace is
maximized. It is perhaps the oldest and best known dimensionality reduc-
tion techniques introduced by Pearson [170] and developed independently by
Hotelling [103]. PCA is an unsupervised method, since it does not use the
label information.

Suppose that x1, . . . ,xn ∈ Rd are the original data points, which can be
written as a matrix X ∈ Rn×d; each data point is a row-vector of X. In PCA,
we are interested in finding a linear, orthogonal mapping W : Rd → Rk, i.e.,
Z = XW, where Z ∈ Rn×k are the projected data with maximum variance
and k < d. The column-vectors in matrix W can be interpreted as the bases
that span the subspace Rk.

Define the empirical covariance Cov(·). If we assume that 1
n

∑n
i=1 xi = 0,

then Cov(X) = 1
n
X>X. The objective of PCA is thus

Ŵ := arg max
W

Tr Cov(XW)︸ ︷︷ ︸
Cov(Z)

s.t. W>W = I. (2.61)

The Lagrangian of the above objective is

J(W) =
1

n
Tr(W>X>XW)− Tr(Λ(W>W − I)), (2.62)

where Λ contains the Lagrange multipliers. By evaluating ∂J(W)
∂W

= 0, the
following eigenvalue problem is obtained:

1

n
X>XW = ΛW, (2.63)

where Λ = diag(Λ1, . . . ,Λd) are the eigenvalues of Cov(X) and the columns
of W are the corresponding eigenvectors. Therefore, the PCA objective can
be solved by performing the eigendecomposition of the covariance matrix
Cov(X). Given a data point x′ ∈ Rd, the corresponding projected data
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point is calculated by z′ = Ŵ>x′; each element of z′ ∈ Rk is the principal
component of x′.

The original data points may not be linearly separable, which is trou-
blesome in the perspective of classification tasks. Note that the standard
PCA does not change the non-linear separability of the data points due to
its linear nature. One can consider a non-linear model so that the projected
data points that are linearly separable can be achieved.

We can generalize PCA to a non-linear setting without changing the opti-
mization procedure, i.e., solving the eigenvalue problem. That is, we operate
the PCA algorithm on a high-dimensional, possibly infinite space H in which
the linear separability is almost always guaranteed. The nonlinearity is car-
ried out by the feature map φ : Rd → H, which maps the finite original data
points onto H, i.e., φ(x1), . . . , φ(xn) ∈ H.

Denote by Φ a feature matrix, whose rows are the high-dimensional fea-
tures explained before. In this setting, PCA now aims to find a linear pro-
jection W : H → Rk by solving the following eigenvalue problem:

1

n
Φ>ΦW = ΛW. (2.64)

Note that the above formulation is obtained by simply substituting X with Φ

in (2.63). However, solving the eigenvalue problem (2.64) is computationally
expensive or even undoable, since it involves a direct computation of φ(·).

If H is an RKHS endowed with a kernel κ : Rd × Rd → R, the direct
computation of φ(·) can be avoided by virtue of the kernel trick. This im-
plies that ΦΦ> = K forms a Gram matrix, where Kij = [κ(xi,xj)] – the
construction of the Gram matrix does not involve an explicit computation
of the feature matrix Φ. Therefore, we need to change the formulation of
(2.64) such that it only involves the Gram matrix.

To do so, we first note that all eigenvectors in W lie in the span of
φ(x1), . . . , φ(xn), that is, for all j = 1, . . . , k there exist coefficients b1j, . . . , bnj
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such that

wj =
n∑
i=1

bijφ(xi).

In terms of a matrix notation, it can be written as W = Φ>B. Substituting
W and X in the Lagrangian (2.62), we get

J(B) =
1

n
Tr(B>K2B)− Tr(Λ(B>KB− I)) (2.65)

This leads to the following eigenvalue problem as a result of calculating
∂J(B)
∂B

= 0:

K2B = nΛKB

⇒ KB = ΓB, (2.66)

where Γ = diag(γ1, . . . , γn) are the eigenvalues of K and the columns of
B̂ = [b1, . . . ,bk] ∈ Rn×k are the corresponding eigenvectors. Note that now
the dimensionality of the linear subspace k < n is not necessarily less than
the dimensionality of the original space d. Since K is symmetric, B must be
orthogonal, i.e., B>B = I.

Recall that PCA requires W to be orthogonal rather than B. Since the
computation of (2.66) results in the orthogonality of B, one should normalize
B such that Bnew = BΓ

1
2 . Such a normalization follows from the expression

below:

W>W = B>KB = BΓB = BΓ
1
2 Γ

1
2 B.

Finally, given an original data point x′ ∈ Rd the projection onto the space
Rk can be done by calculating z′ = W>φ(x′). Again, the kernel trick can be
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used to avoid the explicit computation of φ(·) – observe that

z′ = B>Φφ(x′)z′ = B>


κ(x1,x

′)
...

κ(xn,x
′)

 .
The overall procedure of this nonlinear PCA algorithm is known as kernel
Principal Component Analysis (KPCA) [192].

To summarize, KPCA has two intriguing properties that makes it practi-
cable. Firstly, KPCA extends the standard PCA into a nonlinear model that
allows the extraction of linearly separable representations over non-linearly
separable data. Secondly, such a nonlinearity can be achieved by the same
optimization procedure as that of linear PCA, i.e., solving the eigendecompo-
sition of a matrix that results in an exact solution. However, a computational
issue of KPCA appears when dealing with a large number of data points –
the size of K depends on the number of data points. Solving the eigende-
composition of a large Gram matrix K is computationally prohibitive.

2.6 Domain Adaptation and Domain General-

ization

This section presents the task of domain adaptation and domain generaliza-
tion. It begins with a formal definition of domain, domain adaptation, and
domain generalization. It is then followed by a review of existing work in do-
main adaptation and domain generalization with the main focus on computer
vision applications.

2.6.1 Definitions

A domain is a probability distribution PXY on X × Y , where X and Y are
the input and label spaces respectively. For the sake of simplicity, we equate
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PXY with P. The terms domain and distribution are used interchangeably
throughout the paper. Let S = {xi, yi}ni=1 ∼ P be an i.i.d. sample from a
domain. It is convenient to use the notation P̂ for the corresponding empirical
distribution P̂(x, y) = 1

n

∑n
i=1 δ(xi,yi)(x, y), where δ is the Dirac delta.

We define domain adaptation and domain generalization as follows.

Definition 8 (Domain Adaptation). Let Ps and Pt be a source and target
domain respectively, where Ps 6= Pt. Denote by Ss = {xsi , ysi }ns

i=1 ∼ Ps a
labeled sample from the source domain and Stu = {xti}nt

i=1 ∼ PtX an unlabeled
sample from the target domain. The task of domain adaptation is to learn a
good labeling function fPt : X → Y given Ss and Stu as the training examples.

Definition 9 (Domain Generalization). Let ∆ = {P1, . . . ,Pm} be a set
of m source domains and Pt /∈ ∆ be a target domain. Denote by Sd =

{xdi , ydi }
nd
i=1 ∼ Pd samples drawn from m source domains. The task of domain

generalization is to learn a labeling function fPt : X → Y given Sd,∀d =

1, ...,m as the training examples.

It is instructive to compare these two related definitions. The main differ-
ence between domain adaptation and domain generalization is on the avail-
ability of the unlabeled target samples. Both have the same goal: learning
a labeling function f : X → Y that performs well on the target domain.
In practice, domain generalization requires m > 1 to work well although
m = 1 might not violate Definition 9. Note that domain generalization can
be exactly reduced to domain adaptation if m = 2 and PtX ∈ ∆.

2.6.2 Domain Adaptation

Earlier studies on domain adaptation focused on natural language processing,
see, e.g., [110] and references therein. A notable algorithm in this area is the
structural correspondence learning (SCL) [26]. SCL uses unlabeled data from
both source and target domains to model correspondences among features
with pivot features, that is, those that occur frequently and behave similarly
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in both domains. The pivot features are then used to learn a mapping from
the original feature space to a shared, transformed feature space in which the
domain difference is reduced.

Recently, domain adaptation has received increasing attention in com-
puter vision [67, 83, 100, 135, 187, 214]. Readers are encouraged to consult
the recent survey in visual domain adaptation [168] for a more comprehen-
sive review. We classify domain adaptation algorithms into three categories:
i) the classifier adaptation approach, ii) the selection/reweighting approach,
and iii) the feature transformation-based approach.

The classifier adaptation approach aims to learn a good, adaptive
classifier on a target domain by leveraging knowledge from source or auxiliary
domains. Adaptive Support Vector Machines (A-SVMs) [237] utilize auxil-
iary classifiers to adapt a primary classifier that performs well on a target
domain, where the optimization criterion is similar to standard SVMs. The
Domain Adaptation Machine (DAM) [60] employs both a Laplacian manifold
regularization (to make use of unlabeled target data) and a sparsity regu-
larization in Least-Squares SVMs [220]. A-SVMs and DAM are examples of
successful applications in video concept detection.

The reweighting/selection approach reduces sample bias by reweight-
ing or selecting source instances that are ‘close’ to target instances – Selection
can be considered as the ‘hard’ version of reweighting. The basic idea has
been studied under the name of covariate shift [196]. Gong et al. [81] ap-
plied a convex optimization strategy to select some source images that are
maximally similar to the target images according to Maximum Mean Dis-
crepancy [86] – referred to as landmarks. The landmarks are then used to
construct multiple auxiliary tasks as a basis for composing domain-invariant
features. Transfer Joint Matching (TJM) [134] uses a reweighting strategy
as part of the algorithm in the form of `2,1-norm structured sparsity regular-
ization on the source subspace bases.

The feature transformation-based approach is perhaps the most
popular approach in domain adaptation. Here the notion of transforma-
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tion has a broad meaning: feature projection, alignment, augmentation,
etc. Some metric learning-based methods have been proposed, which can
be considered as early work on the Office dataset [119, 187]. A kernelized
projection-based algorithm, Transfer Component Analysis (TCA) and its
semi-supervised version SSTCA [166], utilizes Maximum Mean Discrepancy
(MMD) [86] to extract domain-invariant features for WiFi localization and
text classification.

The idea of extracting “intermediate features” to minimize dataset bias
by projecting data onto multiple intermediate subspaces was also considered.
Sampling Geodesic Flow (SGF) [84] and Geodesic Flow Kernel (GFK) [83]
generate multiple subspaces via an interpolation between the source and
the target subspace on a Grassmann manifold – a point on the manifold
is a subspace. Sampling Spline Flow (SSF) [36] follows the similar idea by
utilizing the spline curve computed via rolling maps [107] as the interpolation
path.

Subspace Alignment (SA) [67] transforms a source PCA subspace into
a new subspace that is well-aligned to a target PCA subspace without re-
quiring intermediate subspaces. More recently, adaptive features can also be
extracted by aligning the source and target covariance matrices [205]. Other
subspace learning-based methods such as Transfer Sparse Coding (TSC) [133]
and Domain Invariant Projection (DIP) [10] make use of MMD, following
TCA, to match the source and target distributions in the feature space. One
of the methods proposed in [11] follows a similar intuition by using Hellinger
distance as an alternative to MMD.

Algorithms based on learning hierarchical non-linear feature or deep learn-
ing have recently played a major role in the advancement of domain adap-
tation [41, 56, 79, 101, 132, 158]. An early attempt addressed large-scale sen-
timent classification [79], where the concatenated features from fully con-
nected layers of stacked denoising autoencoders (SDA)have been found to
be domain-adaptive [225]. Tang and Eliasmith [209] proposed the sparsely-
connected Deep Belief Network (sDBN) that addresses a similar problem to
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domain adaptation. That is, sDBN reduces the impact of noise in the target
domain that is unseen during training. Since it was designed to be noise-
specific, sDBN may still suffer from dataset bias when observing objects with
different types of noise. Furthermore, sDBN involves a Gibbs sampling-based
denoising procedure that adds the complexity at test time.

It is widely known that deep convolutional networks (ConvNets) [125]
are a more natural choice for visual recognition tasks and have achieved sig-
nificant successes [77, 118, 198]. More recently, ConvNets pretrained on a
large-scale dataset, ImageNet, have been shown to be reasonably effective
for domain adaptation [118]. They provide significantly better performances
than the SURF-based features on the Office dataset [56, 102]. An earlier
approach on using a convolutional architecture without pretraining on Im-
ageNet, DLID, has also been explored [41] and performs better than the
SURF-based features. However, DLID cannot match the performance of
pretrained deep networks.

To further improve the domain adaptation performance, the pretrained
ConvNets can be fine-tuned under a particular constraint related to minimiz-
ing a domain discrepancy measure [72,132,216,217]. Deep Domain Confusion
(DDC) [217] utilizes the maximum mean discrepancy (MMD) measure [28]
as an additional loss function for the fine-tuning to adapt the last fully con-
nected layer. Deep Adaptation Network (DAN) [132] fine-tunes not only the
last fully connected layer, but also some convolutional and fully connected
layers underneath, and outperforms DDC. Recently, the deep model pro-
posed in [216] extends the idea of DDC by adding a criterion to guarantee
the class alignment between different domains. However, it is limited only to
the semi-supervised adaptation setting, where a small number of target labels
can be acquired. The algorithm proposed in [72], which we refer to as Re-
verseGrad, handles the domain invariance as a binary classification problem.
It thus optimizes two contradictory objectives: i) minimizing label prediction
loss and ii) maximizing domain classification loss via a simple gradient rever-
sal strategy. ReverseGrad can be effectively applied both in the pretrained
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and randomly initialized deep networks. The randomly initialized model is
also shown to perform well on cross-domain recognition tasks other than the
Office benchmark, i.e., large-scale handwritten digit recognition tasks.

Some theoretical studies in domain adaptation have also been proposed.
Ben-David et al. [16] presented an early theoretical analysis of domain adap-
tation, a VC-dimension based generalization bound in classification tasks
based on the dA-distance [114]. Mansour et al. [140] extended this work in
several ways built on Rademacher complexity [12] and the discrepancy dis-
tance, as an alternative to dA-distance. Jiang et al. [111] provides a formal
analysis of feature learning algorithms in which the second moments of source
domain and target domain distributions of the features should be similar.

2.6.3 Domain Generalization

The task of domain generalization attempts to mitigate the dataset bias
problem similarly to that of domain adaptation. As is previously mentioned,
a fundamental difference between domain generalization and domain adap-
tation problems is that the unlabeled samples are not available in domain
generalization. It has recently attracted attention in classification problems,
including automatic gating of flow cytometry data [25,152] and object recog-
nition [64,113,236]. Therefore, domain adaptation algorithms, which include
unlabeled samples, are generally not applicable to the domain generalization
problem.

The problem of domain generalization was formally introduced by Blan-
chard et al. [25]. The authors proposed a theoretically guaranteed kernel-
based classifier that operates on multiple related domains inspired from
multi-task learning. The proposed algorithm is effective for solving auto-
matic gating of flow cytometry. Muandet et al. [152] proposed a kernel-based
feature learning algorithm, Domain-Invariant Component Analysis (DICA).
DICA extends Kernel PCA that learns an invariant transformation across
domains by minimizing the difference among multiple source domains and
preserving a functional relationship between the features and their labels.
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Now we review several works related to computer vision applications.
Khosla et al. [113] proposed a multi-task max-margin classifier, which we
refer to as Undo-Bias, that explicitly encodes dataset-specific biases in fea-
ture space. These biases are used to push the dataset-specific weights to
be similar to the global weights. Fang et al. [64] developed Unbiased Met-
ric Learning (UML) based on learning to rank framework. Validated on
weakly-labeled web images, UML produces a less biased distance metric that
provides good object recognition performance. Xu et al. [236] extended an
exemplar-SVM [139] to domain generalization by adding a nuclear norm-
based regularizer that captures the likelihoods of all positive samples. The
proposed model is denoted by LRE-SVM. Finally, Niu et al. [159] presented
a weekly supervised classifier based on multi-instance learning that addresses
two issues: i) dealing with noisy labels of web images/videos in the source
domain, and ii) reducing dataset bias of the learned classifier.

2.6.4 Connection with Transfer Learning

A problem that is closely related to domain adaptation and domain general-
ization is transfer learning. It is concerned with reusing knowledge learned
previously to solve new different but related problems [167]. It has gained
great interest under some different names: learning to learn, inductive trans-
fer, life-long learning, knowledge consolidation, and context-sensitive learn-
ing [212]

Pan and Yang [167] classify transfer learning into several subsettings
based on two notions: i) “domain” (see the definition in Section 2.6.1) and
ii) “task". The task is defined as a tuple of an output space and a label
predictor T = {Y , f(·)}. Suppose that PS and TS be the source domain and
task, and PT and TT be the target domain and task. The following are three
subsettings of transfer learning:

1. Inductive transfer learning : TS 6= TT ; both are predictive tasks;

2. Transductive transfer learning : TS = TT , but PS 6= PT ;
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3. Unsupervised transfer learning : TS 6= TT ; but both are not predictive
tasks, i.e., no labeled data are available in both source and target
domains.

Recalling the definitions in Section 2.6.1, domain adaptation and domain
generalization can therefore be included in transductive transfer learning. In
other words, transfer learning covers wider aspects than domain adaptation
and domain generalization, where the task performed on the target domain
is not necessarily the same as the source task. Table 2.1 briefly compares the
differences or similarities between domain adaptation, domain generalization,
and transfer learning.

Table 2.1: Summary of a comparison between domain adaptation, domain
generalization, and transfer learning.

Factors Standard ML Domain Adaptation Domain Generalization Transfer Learning
Domain Mismatch × X X X
Multiple Sources × × X Xor ×
Target Domain × X × X
Same source-target task? X X X Xor ×

2.7 Related Work

Sections 2.6.2 and 2.6.3 briefly discuss existing work in domain adaptation
and domain generalization. This section presents the details of some domain
adaptation or domain generalization algorithms that belong to either feature
transformation-based approach or classifier adaptation approach. Specifically,
we discuss transfer component analysis (TCA) [166], transfer joint matching
(TJM) [135], domain-invariant component analysis (DICA) [152], and low-
rank exemplar svms (LRE-SVMs) [236].

2.7.1 Transfer Component Analysis

Transfer component analysis (TCA) is a feature learning algorithm that
learns a domain-invariant representation in a reproducing kernel Hilbert
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space (RKHS) in the setting of domain adaptation [166]. The basic idea is
similar to kernel PCA, that is, finding a projection onto a subspace spanned
by some components in RKHS, see Section 2.5.2. TCA, however, requires
that the projection should be able to produce a representation in which
the difference between the source and target distributions is minimized, i.e.,
feature-distribution matching.

Denote by X a compact input space, H a reproducing kernel Hilbert space
equipped with kernel κ : X × X → R, and φ : X → H a feature map. Let
Ss = {xs1, . . . , xsns

} ∼ Ps be the source dataset, St = {xt1, . . . , xtnt
} ∼ Pt be

the target dataset, and S = Ss∪St be the concatenated dataset. To produce
a domain-invariant representation, TCA utilizes a probability distribution
difference measure known as the maximum mean discrepancy (MMD) [28].
We define the empirical MMD as

MMD(P̂s, P̂t) =

∥∥∥∥∥ 1

ns

ns∑
i=1

φ(xsi )−
1

nt

nt∑
i=1

φ(xti)

∥∥∥∥∥
H

(2.67)

In TCA, the above MMD is operated in a subspace spanned by several
basis vectors or components w1, . . . ,wk ∈ H. Define a linear transformation
W : H → Rk composed by the fore-mentioned components, with k � ns+nt.
The (squared) MMD with respect to the linear transformation W can be
expressed as

MMD2
W(P̂s, P̂t) =

∥∥∥∥∥ 1

ns

ns∑
i=1

W>φ(xsi )−
1

nt

nt∑
i=1

W>φ(xti)

∥∥∥∥∥
2

H

(2.68)

The expansion of equation (2.68) leads to the following expression:

MMD2
W(P̂s, P̂t) =

1

n2
s

ns∑
i=1,j=1

〈
W>φ(xsi ),W

>φ(xtj)
〉

+
1

n2
t

nt∑
i=1,j=1

〈
W>φ(xti),W

>φ(xtj)
〉

− 2

nsnt

ns∑
i=1

nt∑
j=1

〈
W>φ(xsi ),W

>φ(xtj)
〉

(2.69)
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By virtue of the representer theorem, each vector in W can be expressed as a
linear combination of {φ(xi)}, that is, wj =

∑
i bijφ(xi). Denote by Φ a feature

matrix, where φ(x1)>, . . . , φ(xn)> are the row-vectors (n = ns+nt), and B ∈ Rn×k

a transformation matrix in which bij are the elements. Substituting W = Φ>B

(the representer theorem in matrix notation) into equation (2.69) yields

MMD2
W(P̂s, P̂t) =

1

n2
s

ns∑
i=1,j=1

〈
B>Φφ(xsi ),B

>Φφ(xtj)
〉

+
1

n2
t

nt∑
i=1,j=1

〈
B>Φφ(xti),B

>Φφ(xtj)
〉

− 2

nsnt

ns∑
i=1

nt∑
j=1

〈
B>Φφ(xsi ),B

>Φφ(xtj)
〉

=
1

n2
s

tr(K>s BB>Ks) +
1

n2
t

tr(K>t BB>Kt)−
2

nsnt
tr(K>s BB>Kt)

= tr(B>KLKB) =: MMD2
B(P̂s, P̂t), (2.70)

where K = [Ks|Kt] ∈ Rn×n is the kernel matrix and L = [Lij ] is a coefficient
matrix with Lij = 1

n2
s
if i, j ∈ I(s); Lij = 1

n2
t
if i, j ∈ I(t); and Lij = − 1

nsnt
if

i ∈ I(s) and j ∈ I(t). Note that I(s) and I(t) are the set of indices of the source
dataset and target dataset, respectively.

The goal of TCA is to find a transformation matrix B such that the squared
MMD of the embedded feature is minimized. In doing so, a regularization term
(tr)(B>B) is usually needed to control the complexity of B. The optimization
problem of TCA then reduces to

min
B∈Rn×k

tr(B>KLKB)︸ ︷︷ ︸
MMD2

B(P̂s,P̂t)

+βtr(B>B)

subject to B>KHKB = Ik, (2.71)

where β is a trade-off parameter, Ik ∈ Rk×k is an identify matrix, and H is the
centering matrix. The above optimization problem can be solved by generalized
eigendecomposition of the form

(KLK + βIn)B = KHKBΛ, (2.72)
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where Λ ∈ Rk×k is a diagonal matrix containing the eigenvalues λ1 ≥ . . . ≥ λk.

In [166], TCA is modified such that it can include labels from the source domain.
The extended version is referred to as semi-supervised TCA (SSTCA).

2.7.2 Transfer Joint Matching

Transfer Joint Matching (TJM) is a domain adaptation algorithm that combines
two ideas: i) feature-distribution matching and ii) instance reweighting [135]. The
way to achieve the feature-distribution matching is similar to that in TCA, that
is, minimizing the squared MMD of the representation (2.70). Since the MMD
minimization is sometimes not sufficient to achieve a good domain adaptation per-
formance for complex cases, performing instance reweighting in the feature space,
i.e., reducing the importance of source instances that are not relevant to the target
domain, might be helpful to further improve the performance.

The instance reweighting in TJM is achieved by imposing the `2,1-norm struc-
tured sparsity regularization, that is, ‖A‖2,1 =

∑
i

√∑
j A

2
ij , on the transformation

matrix. Specifically, the `2,1-norm regularization can induce row-sparsity, which
corresponds to eliminating features. To see this, suppose that Bs ∈ Rns×k and
Bt ∈ Rnt×k are the transformation matrices associated with the source data and

the target data, respectively, i.e., B =

[
Bs

Bt

]
∈ Rn×k. The `2,1-norm is imposed

only on Bs, that is, ‖Bs‖2,1 and considered as a regularization in the following
optimization problem:

min
B∈Rn×k

tr(B>KLKB) + β
(
‖Bs‖2,1 + ‖Bt‖2F

)
subject to B>KHKB = Ik. (2.73)

Note that ‖Bs‖2,1 is non-differentiable at zero, which is problematic if a gradient-
based solution is used to solve the problem 2.73. To resolve this issue, TJM utilizes
subgradient methods. Suppose that {bi}ni=1 are the row elements of B. The sub-

gradient is computed by ∂(‖Bs‖2,1+‖Bt‖2F )
∂B = 2GB, where G = diag(g11, . . . , gnn) is
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a diagonal sub-gradient of the form

gii =


1

2‖bi‖ , xi ∈ Ss,bi 6= 0

0, xi ∈ Ss,bi = 0

1, xi ∈ St.

Since both B and G are unknown beforehand, TJM establishes an alternating
optimization strategy, where one variable is alternately updated with keeping the
other one fixed, see Algorithm 1 in [135].

2.7.3 Domain Invariant Component Analysis (DICA)

Domain Invariant Component Analysis (DICA) is perhaps the first feature learning
algorithm that deals with the problem of domain generalization. Similar to KPCA
and TCA, DICA seeks a linear transformation to a subspace in a reproducing
kernel Hilbert space (RKHS) – feature are represented by projected datapoints
onto the subspace. DICA features should satisfy two criteria: i) the distance
between empirical distributions of the features is minimized and ii) the functional
relationship between inputs and outputs is preserved.

Denote by PXY a joint distribution or domain on X × Y, from which labeled
data are drawn, with PX and PY |X are the marginal and conditional distribu-
tion, respectively. Let BXY = {P(1)

XY , . . . ,P
(D)
XY } be the set of D domains, where

the domains are assume to be drawn frame from a single distribution P, and
S(i) = {(xj , yj)}ni

j=1 ∼ P(i)
XY , i = 1, . . . , D are the corresponding samples. Since in

general P(i)
XY 6= P(j)

XY ,∀i 6= j = 1, . . . , D, getting good generalization using standard
machine learning methods is problematic. That is, a model trained on S(i) does
not guarantee to perform well on S(j).

DICA aims to extract features that are robust to changes in the marginal distri-
bution PX , while assuming that PY |X is stable or varies smoothly. The robustness
is reflected by the two criteria mentioned before. The strategy to achieve each
criterion will be discussed in more details below.

Distribution minimization. To minimize the distance between distributions
{P(i)

X }Di=1 (from now on P , PX), DICA utilizes a measure operating in RKHS
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H that is referred to as the distributional variance VH({P(1), . . . ,P(D)}︸ ︷︷ ︸
BX

). Before

formulating VH, denote by µP a mean map defined as follows:

µ : BX → H : P→ E
x∼P

[φ(x)] =: µP, (2.74)

where φ : X → H is a canonical feature map. Let µP̄ = 1
D

∑D
i=1 P(i) be the average

over the domains, the distributional variance is defined as follows:

VH(BX ) =
1

D

D∑
i=1

‖µP(i) − µP̄‖
2
H . (2.75)

The practical problem of the above equation is that VH(BX ) cannot be com-
puted directly. However, we can compute its empirical measure given D finite
samples {S(i)}Di=1, that is,

V̂H({S(1), . . . , S(D)}) =
1

D

D∑
i=1

∥∥∥µP̂(i) − µˆ̄P

∥∥∥2

H
, (2.76)

where µP̂(i) = 1
ni

∑ni
j=1 φ(xj). Let n = n1 + . . .+nD be the total number of samples

over all domains. By performing a tedious computation and using the kernel trick,
we can express equation (2.80) into a matrix form as follows:

V̂H({S(1), . . . , S(D)}) = tr (KD) (2.77)

with a kernel matrix K ∈ Rntimesn and a coefficient matrix D ∈ Rn×n of the form

K =


K1,1 . . . K1,D

...
. . .

...
KD,1 . . . KD,D,

 (2.78)

D =


D1,1 . . . D1,D

...
. . .

...
DD,1 . . . DD,D,

 (2.79)

where Di,j ∈ Rni×nj equal to (D−1)
(D2n2

i )
if i = j, and −1

D2ninj
otherwise. Notice that
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the empirical distributional variance V̂H can be viewed as a generalized form of
the squared empirical MMD (2.69).

As in TCA, the distributional variance is utilized to measure the distribution
difference in the feature space rather than in the input space. Given a transforma-
tion matrix B ∈ Rn×k, by the representer theorem we can verify that

V̂B◦H({S(1), . . . , S(D)}) = tr(B>KDKB). (2.80)

DICA attempts to find B such that the latter measure is minimized.

Label preservation. In addition to minimizing the distribution difference,
DICA also encourages the extracted features preserving the functional relationship
between X and Y by means of a notion called the central subspace. Denote by
W a central subspace, which is the minimal subspace that captures the functional
relationship between X and Y , i.e., Y⊥X|W (X). Computing the central subspace
therefore requires (source) label information. DICA uses the inverse regression
framework [130] operating in an RKHS F to find the central subspace, which is
adopted from covariance operator inverse regression (COIR) [115].

The most important term of such framework is the so-called covariance of in-
verse regressor denoted by Σy|x. Let Σxx,Σyy,Σxy,Σyx be the covariance operators
in and between the RKHSes H and F . It is proven that the bases W ∈ Rd×k of
the central subspace coincide with k largest eigenvectors of Σ−1

xxΣy|xΣxx. In other
words, W can be found by solving the eigendecomposition problem associated with
the following optimization:

max
W∈Rd×k

tr(W>Σ−1
xxΣy|xΣxxW)

tr(W>W)
(2.81)

Kim and Pavlovic [115] states that, under a mild assumption, Σy|x can be
expressed in terms of the covariance operators

Σy|x = ΣxyΣ
−1
yy Σyx, (2.82)

for all f ∈ H and there exists g ∈ F such that E[f(X)|y] = g(y) for almost
every y ∈ Y. Σy|x can be approximated by its empirical term Σ̂y|x given the finite
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sets of samples {S(i)}Di=1. Denote by Φx = [φ(x1), . . . , φ(xn)] an input feature
matrix and Φy = [ϕ(y1), . . . , ϕ(yn)] an output feature matrix, where φ : X → H
and ϕ : Y → F are the feature maps on X and Y respectively. The empirical
covariance of inverse regressor is expressed as

Σ̂y|x = Σ̂xyΣ̂
−1
yy Σ̂yx, (2.83)

where Σ̂xx = 1
nΦ>x Φx, Σ̂xy = 1

nΦ>x Φy, Σ̂yx = 1
nΦ>y Φx, and Σ̂yy = 1

nΦ>y Φy, assuming
that the mapped instances {φ(xi)}i and {ϕ(yi)}i are already centered. Again, by
virtue of the kernel trick, the optimization (2.81) can be rewritten as finding a
linear transformation B ∈ Rn×k such that

max
B∈Rn×k

tr(B>Ky(Ky + nεIn)−1K2B)

tr(B>B)
, (2.84)

where K = ΦxΦ
>
x and Ky = ΦyΦ

>
y .

DICA optimization. Now we arrive at the overall optimization problem of
DICA. DICA seeks a linear transformation B ∈ Rn×k that minimizes the distribu-
tion difference and maximize the inverse regression:

max
B∈Rn×k

1
ntr(B>Ky(Ky + nεIn)−1K2B)

tr(B>KDKB + B>KB)
(2.85)

Rewriting (2.85) as a constrained optimization results in Lagrangian

L =
1

n
tr(B>Ky(Ky + nεIn)−1K2B)− tr((B>KDKB + B>KB− Ik)Λ).

Setting ∂L
∂B = 0, the following generalized eigenvalue problem is derived:

1

n
B>Ky(Ky + nεIn)−1K2B = (KDK + K)BΛ,

where B = [b1, . . . ,bk] are the k leading eigenvectors with eigenvalues Λ =

diag(λ1, . . . , λk). At prediction time, a new sample t ∈ Rd is mapped to a fea-
ture space by computing z = B>κ(·, t).
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2.7.4 Low-Rank Exemplar-SVMs (LRE-SVMs)

Low-Rank Exemplar-SVMs (LRE-SVMs) [236] is a classifier built from exemplar-
SVMs [139] that can be applied to domain generalization. Exemplar-SVMs are
based on training a separate linear SVM classifier for every exemplar in the training
set – an exemplar is defined as a set that consists of one positive instance and
many negative instances. At prediction time, an ensemble of the trained exemplar-
SVMs is used and surprisingly provides good generalization on the PASCAL VOC
detection task. This method can be easily parallelized in a way that each exemplar-
SVM is trained on a separate machine.

Consider a two-class classification problem in which we have n positive instances
(x+

1 , y
+
1 ), . . . , (x+

n , y
+
n ) andm negative instances (x−1 , y

−
1 ), . . . , (x−m, y

−
m) ∈ Rd×R in

the training set, where y+ = 1 and y− = −1. If a standard SVM is used to build a
detector based on the fore-mentioned training set, it uses all the instances at once.
Exemplar-SVMs cut up the learning problem into n easy-to-solve subproblems with
each subproblem containing a single positive instance. Suppose that fwi : Rd → R
is the i-th exemplar SVM parameterized by a weight wi ∈ Rd (the bias is ignored
for notational convenience). Denote by l : R×R→ R an SVM loss. We define the
cost function of the i-th exemplar SVM as

J(wi) = ‖wi‖22 + c1l
(
fwi(x

+
i ), y+

i

)
+ c2

m∑
j=1

l
(
fwi(xj), y

−
j

)
. (2.86)

Xu et al. [236] utilize the logistic loss for l : R× R→ R define by

l (fw(x), y) = log (1 + exp(−yfw(x))) = log
(

1 + exp(−yw>x)
)
. (2.87)

Next we describe the formulation of LRE-SVMs as an extension of (2.86). LRE-
SVMs attempt to discover wi that provides a robust prediction fwi(x) regardless
of the change of domains from which x is drawn. Suppose that x+ and z+ are
the positive samples coming from different domains captured under similar condi-
tions (e.g., frontal-view poses). Intuitive, fwi(x

+) and fwi(z
−), ∀i = 1, . . . , n are

expected to be similar to each other.
Formally, denote by G(W) = [fwi(xj)]ij ∈ Rn×n a likelihood matrix, where

W = [w1, . . . ,wn] ∈ Rd×n. LRE-SVMs assume that a good domain generalization
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can be achieved by imposing G(W) to be low-rank. In doing so, LRE-SVMs adds
a regularization term into the cost function (2.86) such that it ends up with the
following optimization problem:

min
w1,...,wn

n∑
i=1

J(wi) + λ‖G(W)‖∗, (2.88)

where ‖ · · · ‖∗ is the nuclear norm to approximate the rank of G(W). Solving the
optimization (2.88), however, is nontrivial due to the use of the nuclear norm on
G(W) and the fact that G(W) is a non-linear term w.r.t. W. To resolve this
issue, an intermediate matrix F ∈ Rn×n is introduced to model the true G(W).
That is, the term ‖G(W)‖∗ in (2.88) is decomposed into two parts: i) imposing
W to be low rank and ii) encouraging G(W) to be close to F. Hence, we relax the
optimization (2.88) into the following:

min
w1,...,wn

n∑
i=1

J(wi) + λ1‖F‖∗ + λ2‖G(W)− F‖, (2.89)

which can be solved by alternately updating W and F, see Algorithm 1 in [236].

For prediction purposes, LRE-SVMs use a function fŴ(·), which is an average
of learned exemplar-SVMs. Given a test datapoint t, the ensemble function fŴ(·)
is defined by

fŴ(t) =
1

n

n∑
i=1

fŵi
(t). (2.90)

In practice, it is beneficial to fuse only a subset of {fwi}ni=1 that provides the top
K prediction scores [236]. Let T (t) be the index set of the top K exemplar-SVMs
w.r.t. t. The prediction on the test sample t can be obtained as

fŴ(t) =
1

K

∑
i∈T (t)

fŵi
(t). (2.91)

Note that the LRE-SVM algorithm described above is only applicable to two-
class classification problems (e.g., object detection). One can easily extend the
algorithm in dealing with multi-class classification problems. To do so, we train C
sets of exemplar-SVMs, where C indicates the number of classes. Hence, there will
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be C learned ensemble functions fŴ(k)(·), ∀k = 1, . . . , C; each corresponds to the
class. Given t as the test sample, the prediction can be done by simply taking the
maximum over the ensemble predictions as follows:

ŷ = max
(
fŴ(1)(t), . . . , fŴ(C)(t)

)
. (2.92)

2.8 Summary

Sections 2.1 - 2.5 present some basic concepts or theories relevant to this thesis.
Meanwhile, Section 2.6 reviews existing work in the area of domain adaptation and
domain generalization for object recognition.

Finally, it is worth emphasizing some gaps of existing domain adaptation and
domain generalization work with respect to the goal and objectives of this thesis:

• Tang and Eliasmith [209] addresses a domain adaptation problem of recog-
nizing noisy handwritten digits by a deep network, namely sparsely-connected
Deep Belief Nets (sDBN), trained on clean digit examples. This thesis in-
vestigates the same problem addressed by sDBN but considers aspects that
are not studied in [210] such as the effect of sparse feature regularization and
the problem of learning on a small sized dataset.

• Since the emergence of the Office dataset [187], many domain adaptation
algorithms in object recognition have been proposed [83,84,119,133]. To our
knowledge, however, there have yet been studies involving neural networks
that exist in literature at that time. This thesis establishes an early study of
a neural network-based domain adaptation algorithm for object recognition.

• Domain generalization is a relatively new research area and still awaiting
more powerful algorithms to bridge the performance gap to practically useful
applications [25, 215]. This thesis develops an autoencoder-based represen-
tation learning algorithm that provides state-of-the-art domain generation
performance in object recognition. The proposed algorithm is also the first
study of utilizing autoencoders for domain generalization problems.

• Many state-of-the-art domain generalization algorithms deal with an opti-
mization problem that is complex to solve [64,113,236]. Moreover, although
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domain generalization and domain adaptation are closely related settings, a
domain generalization algorithm is typically not applicable to domain adap-
tation and vice versa. This thesis establishes a simple, fast algorithm that can
be applied to both domain adaptation and domain generalization problems
and provides competitive or better performance compared to state-of-the-art
methods.

• The problem of domain adaptation remains essentially unsolved since the
current methods are still far from mature for practical applications. Fur-
thermore, many domain adaptation algorithms are optimized, for examples,
by quadratic programming [34, 81] or eigen-analysis [67, 135, 166]. This the-
sis introduces a deep convolutional network-based domain adaptation model
that is highly scalable and provides state-of-the-art object recognition per-
formance.
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3
Domain Adaptation on Noisy

Objects with Deep Hybrid
Networks

This chapter presents the first contribution of this thesis. We develop a domain
adaptation model by taking advantage of human knowledge as the auxiliary infor-
mation. The proposed model, which we refer to as Deep Hybrid Network (DHN),
deals with dataset bias or domain shift in handwritten digit recognition, where the
actual environment contains noisy digits that are unseen during training.

3.1 Introduction

A common strategy to develop an object recognition model is by learning a classifier
from labeled image samples. One of the most effective models to do so is the Deep
Neural Network (DNN) [97], which has become a breakthrough in handwritten
digit recognition. In practice, the model may perform a recognition task in a noisy
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environment, but without observing the noise information during training. This is
a specific example of dataset bias where a learning model may not generalize well.
Therefore, it is necessary to develop a domain adaptation algorithm that learns
from “clean” images only (source domain) and then generalizes on “noisy” objects
(target domain).

3.1.1 Chapter Goals

The overall goal of this chapter is to develop a deep learning algorithm that
can overcome dataset bias caused by noisy target objects. We refer to the pro-
posed model as Deep Hybrid Network (DHN), which uses a particular combina-
tion of auto-encoder training and RBM training. An additional regularization
is performed during auto-encoder training that induces sparse hidden layer activa-
tions/representations. We also propose an extension of DHN by setting local/sparse
weight connections in the first hidden layer of the network, which we denote by
Sparsely-connected Deep Hybrid Network (sDHN).

3.1.2 Chapter Organization

The remainder of this chapter is organized as follows. The proposed algorithms,
DHN and sDHN, are described in Section 3.2. Sections 3.3 and 3.4 present the
experiment results and discussions. Finally, Section 3.5 provides a summary of
this chapter.

3.2 The Algorithms

This section starts with the notation and terminology including the formal de-
scription of the problem. It then describes the proposed algorithms to solve the
problem.

3.2.1 Notation and Terminology

We introduce our notation and terminology used throughout this chapter. We use
the same notation as defined in Section 2.4.3 to describe a deep neural network
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in terms of a set of visible and hidden layer vectors {v,h(1), ...,h(L)}, where each
element in all vectors has a real value in the range of [0, 1]. Let v be a noiseless
visible vector and ṽ be a noisy visible vector obatined by adding some noise to
v, i.e., ṽ = v + Ψ, where Ψ is an arbitrary unit-length noise vector. We define a
notion of a representation noise invariance in terms of ε-invariance. Let us denote
the j-th node activation of the first hidden layer given v by h

(1)
j and the same

node activation given ṽ by h̃
(1)
j . The representation h(1) ∈ Rnh(1) is said to be

ε-invariant if it satisfies the following condition

∀j = 1, ..., nh(1) , d(h
(1)
j , h̃

(1)
j ) ≤ ηε

subject to ‖Ψ‖ ≤ η, (3.1)

where d(·, ·) is any distance measure, η is an upper bound for the noise magnitude,
and ε is a small error constant. We suggest that a deep neural network is likely to be
robust to noise with a certain bound in the limit that η → 0 if it has representations
that satisfy (3.1) for a particular choice of ε.

In this context, the domain adaptation problem is simulated by specifying the
source domain DS as a distribution of clean images and the target domain DT
as a distribution of noisy images, i.e., v ∼ DS and ṽ ∼ DT . Hence, we have
a sufficient collection of labeled instances drawn from DS , but few or no labeled
instances drawn from DT . We propose an algorithm that is robust to dealing with
this problem.

3.2.2 Deep Hybrid Networks

The main motivation of this chapter is to reduce the change between h(1)
j and h̃(1)

j

as stated in (3.1). We introduce a deep network that we refer to as Deep Hybrid
Network (DHN), which consists of a sparse autoencoder (SAE) on the bottom layer
and stacked restricted Boltzmann machines (RBMs) on the top of the first hidden
layer as the pretraining models, see Fig. 3.1(a).

The aim of combining SAE and DHNs is to achieve the following properties:
1) to preserve invariant representations over global noise achieved by sparsifying
h(1), and 2) to retain good generalization achieved by training stacked RBMs. It is
known that stacked RBMs can provide good performance for in-domain recognition
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(a) DHN (b) sparsely-connected DHN
(sDHN)

Figure 3.1: The architecture of Deep Hybrid Networks (DHN) and sparsely-
connected DHN (sDHN). A sparse autoencoder is used as the pretraining
model for the first layer, while restricted Boltzmann machines are used as
the pretraining models for the higher layers. Each node in the first layer of
sDHN is connected only with a local region in the input.

problem – in fact, they achieved a breakthrough in handwritten digit recognition
[97]. Thus, we encourage the bottom RBM to observe the denoised feature h(1)

rather than to observe the raw data directly.

The sparse representation h(1) is induced by the unsupervised autoencoder
learning defined in Section 2.4.5 with an additional sparsity-inducing term. The
autoencoder learning objective with a sparse regularization is given by

Θ̂ = arg min
Θ

N∑
l=1

1

2
‖v(l) − f(v(l); Θ)‖+ βφ(h(1)(l)) (3.2)

where Θ is the set of all parameters and N is the number of training examples.

We choose the sparsity-inducing function φ(·) in the form of a generalized
Kullback-Leibler (KL) divergence variant used in the differentiable sparse coding
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[31] given by

KL(h(1)‖γ) =

n
h(1)∑
j=1

h
(1)
j log

h
(1)
j

γj
− h(1)

j + γj , (3.3)

where γ is a uniform vector representing the sparsity target, i.e., γj = c,∀j =

[1, . . . , nh(1) ] with c ∈ [0, 1] is a small real-valued constant. Here we always use the
sigmoid function hj = 1

1+exp(−z) as the activation function so that the above KL
divergence is a valid measure.

The generalized KL divergence in (3.3) has some beneficial properties. The first
is that it is infinitely differentiable at any point, which leads to the possibility of
using a simple gradient-based optimization algorithm to minimize (3.2). That is, it
does not require any special step to impose the sparsity. Another property is that it
approximates the `1-norm of h(1) if c→ 0, i.e., KL(h(1)‖γ) ≈ ‖h(1)‖1. In contrast,
it approximates the `2-norm, KL(h(1)‖γ) ≈ ‖h(1)‖2 i.e., if c → ∞. Finally, the
generalized KL divergence does not require us to assume that ‖h(1)‖1 = 1 and
‖γ‖1 = 1 so that it is convenient in the sense of eliminating the normalization
process.

Note that encouraging sparse features induces a filter or dictionary, i.e., the
set of learned weights, that is visually interpretable associated with the visual area
V1. In this case, the learned weights appear to be localized, oriented, and edge
detector-like [163]. Coates and Ng [45] suggests that this property may retain good
generalization even when the model is trained from a small set of labeled images.
We confirm that DHN is also equipped with such a property in the experiment
section.

As is typical in deep neural networks, the DHN training has two stages: 1) pre-
training and 2) fine-tuning. In the pre-training stage, we train the bottom layer
using autoencoder learning with respect to the objective (3.2). Backpropagation
with L-BFGS optimization [160] is used to optimize the autoencoder. We then
train the stacked RBMs above the bottom layer using the contrastive divergence,
see Section 2.4.4, by taking the vector h(1) as the first input. Here the input vector
h

(1)
j is a binary-valued vector sampled from P (h

(1)
j = 1|v). The complete summary

of DHN pre-training is described in Algorithm 3.

After the unsupervised pre-training is completed, DHN is fine-tuned using the
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labeled source images. Backpropagation with Conjugate Gradient [95] is employed
for the fine-tuning.

Algorithm 3 The Deep Hybrid Network Pre-training Algorithm
Input:;
• L is the number of layers in the deep hybrid network.
•W(i) is the weight matrix for level i, ∀i = 1, ..., L.
• b(i) is the bias vector for level i, ∀i = 0, ..., L.
• v is the input data vector.
• h(i) is the hidden nodes vector for layer i, ∀i = 0, ..., L, h(0): observed data
1: Initialize W(1), ...,W(L) with random values;
2: b(0), ...,b(L) ←− 0;
3: h(0) ←− v;
4: Update W(1), b(0) and b(1) using sparse autoencoder learning algorithm

with respect to the objective (3.2);
5: Assign P (h(1)|v)←− σ(W(1)>v + b(1));
6: for l = 2 to L do
7: Update W(l), b(l−1), and b(l) using RBM learning algorithm;
8: Sample h(l)

j ∼ P (hj = 1|h(l−1)), ∀j = 1, ..., nh(l) ;
9: end for

It is natural to ask the reason for using the autoencoder as the model in the
first layer, since sparse features can be also encouraged by using the RBM-based
method, e.g., sparse RBM [128]. In this work, the only reason is for the sake
of simplicity of obtaining the optimal hyper-parameters. Note that we employ
back-propagation with L-BFGS optimization as the autoencoder learning, which
does not require the learning rate. We found that getting good hyper-parameters
associated with a visually interpretable dictionary is relatively simple and works
for small sized datasets by doing so – the only hyper-parameter we care about is
the sparsity parameter c. It is not the case when using sparse RBM – we need
to tune many hyper-parameters such as learning rate, sparsity penalty, and other
complementary strategies (e.g., momentum and batch size) for the RBM training.
In addition, we failed to obtain an interpretable dictionary of sparse RBM when
learning from only 1,000 training images after an extensive hyper-parameter search.
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3.2.3 Sparsely-connected Deep Hybrid Network

Although sparse features in DHNs are expected to be at best ε-invariant, the fully-
connected weights specified in the autoencoder may still cause the features h(1) to
be sensitive to a locally occluded image. As suggested by Tang and Eliasmith [209],
sparse weights between v and h(1) can reduce the effect of occlusions on local
regions. To incorporate both properties of sparse features and sparse weights, we
propose a variant of the DHN that we refer to as the sparsely-connected Deep
Hybrid Network (sDHN).

Let us denote a binary mask by M ∈ {0, 1}nv×nh(1) . Each column of M rep-
resents a connection between each node in h(1) to an s× s sub-image in v, where
Mij = 1 denotes that a connection between vi and h

(1)
j exists. The choice of the

s×s sub-image for each node h(1)
j is random, but constrained such that every node

in v is guaranteed to have a particular connection with a node in h(1). We then
compute the sparse weights W

(1)
M by a masking operation

W
(1)
M = W(1) �M, (3.4)

where � is the element-wise multiplication. A possible configuration induced by
(3.4) is best described in Fig. 3.1(b).

Tang and Eliasmith [209] also used the sparse weight connection in the bottom
layer of a deep network referred to as sparse Deep Belief Network (sDBN). However,
sDBN does not induce sparse representations of h(1). If W

(1)
M is visualized, the

difference between W
(1)
M learned by sDBN and sDHN can be seen in Fig. 3.3(c)-

3.3(d). The results will be discussed in detail in Section 3.3.4.

Note that we do not employ a special technique referred to as probabilistic
denoising used in sDBN [209] at test time. This technique may further increase the
robustness of the model, but it will also increase the test time complexity, which
is less desirable in practice. In this contribution, we only focus on the network
architecture and sparsity with respect to the robustness to noise, while keeping the
time complexity low.
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3.3 Experiment 1: “Clean” vs “Noisy” Object

Recognition

We evaluated the robustness of our proposed algorithms (DHN and sDHN) on
recognizing handwritten digits under the following domain adaptation setting: the
source domain contains clean images and the target domain contains noisy images.
A range of noise types were investigated in this experiment, see the subsection
below.

3.3.1 Data Preparation

We used the MNIST dataset [125] that consists of 10-class handwritten digit images
of size 28 × 28, see Table 1.1 for a detailed configuration. We normalized the
image pixels into [0, 1] values. From this dataset, we created several new test sets
by cluttering the original MNIST test set with noise. The types of noise used
in this experiment are 2-pixel border, block occlusion with random position and
size (block) in each sample, impulse noise with ratio of 40% (impulse-04 ), and
background image taken randomly from three natural scene patches (back-im).
Figure 3.2 depicts the digit samples with respect to the fore-mentioned types of
noise.

Figure 3.2: The MNIST digit images with various types of noise: clean,
2-pixel border, block, impulse-04, back-im

3.3.2 Baselines

We compared the recognition performance of DHN and sDHN with three common
deep networks: (i) Deep Belief Network (DBN) [97], (ii) sparsely-connected Deep
Belief Network (sDBN) [209], and (iii) sparse auto-encoder (SAE). SAE uses the
same sparse regularization strategy as our algorithms, i.e., that of the unnormalized
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KL divergence (3.3). Note that SAE imposes the sparse feature regularization in
all layers during pre-training, which is different from our algorithms. DHN and
sDHN apply the sparse feature regularization only in the bottom layer.

3.3.3 Training Setup

Each network has the same architecture with three hidden layers of size 500, 500,
2000 nodes and a target layer with 10 nodes, following the network of Hinton and
Osindero [97]. For the sparsely-connected networks, The binary mask M were
specified such that the connection between each node in h(1) and the visible layer
was of size 7× 7.

All networks were trained by the unsupervised greedy layer-wise pre-training
and followed by the supervised back-propagation fine-tuning [97]. In every RBM
training, we ran 50 epochs of mini-batched learning with learning rate α = 0.1,
weight decay λ = 10−5, and 25-CD.1 In the auto-encoder training, we used L-BFGS
back-propagation as the optimizer with sparsity target γ = 0.1 and regularization
constant β = 3 [122]. Each network was fine-tuned by Conjugate Gradient back-
propagation [188]. We ran ten independent experiments for each model to obtain
the statistical significance result.

3.3.4 Effect of Sparsity

It is useful to study the behavior of the first layer bases after pre-training using
the MNIST training set. We visualize the basis vectors (the columns of W(1)) as
shown in Fig. 3.3. We can see that the sparse regularized models (DHN and sDHN)
have more interpretable weights, which look like digit brush-stroke patterns. This
suggest that the feature sparsification somehow strengthens the salient information
of digits and, in the same time, “cleans up” the less correlated information.

In sDBN and sDHN, the weights visually look like the subregions of those in
their fully-connected counterparts (DBN and DHN). One can interpret this as that
the weights W(1) acts as a local filter to map an image patch to a real value – what
happened to an image patch only affects a bit of information in the first hidden

1For a fair comparison, we used the same number of k for the k-CD specified in [209].
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(a) RBM, the basis for DBN (b) SAE, the basis for DHN

(c) RBM, the basis for sDBN (d) SAE, the basis for sDHN

Figure 3.3: The visualization of the first 36 basis vectors of W(1) after training
using 60,000 MNIST images.

layer. For instance, if a 7 × 7 patch is contaminated by noise, it will disturb only
one node in h(1). Furthermore, sDHN is also expected to obtain more invariant
node h(1)

j associated with a particular patch than sDBN, since sDHN produces an
interpretable dictionary.

On the other hand, sDBN and sDHN might lose capacity in terms of the number
of distinct samples that can be captured. It is based on the claim that the informa-
tion capacity is proportional to the number of connections in the network [68]. As
the connections are more sparse, sDBN and sDHN may fail to store a large number
of distinct samples as well as the fully connected networks. In general, it can be
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expected that the best robustness that a network can achieve decreases with the
utilization of its capacity. Here we did not further investigate the model robustness
in terms of the capacity, since this is beyond the scope of this contribution chapter.

3.3.5 Results on In-domain Recognition

We compared the in-domain recognition performance of each network on the MNIST
data set. The in-domain recognition refers to the standard task in which the orig-
inal MNIST test set is used. Table 3.1 summarizes the in-domain performance
accuracy in terms of the accuracy rate (%). We can see that the DBN has the
best performance in the case of learning by using all the training examples (60,000
images), while the DHN and sDHN perform slightly worse than the DBN. Fur-
thermore, the SAE, which has sparse features in every layer, performs worst. This
suggests that neither sparse weights nor sparse features do improve the perfor-
mance of recognizing the in-domain test digits when sufficient training examples
are available.

In the case of using a small training set, i.e., only 1,000 images (100 for each
class) taken from the MNIST training set are used, the sparse features increases
the recognition performance as the SAE, DHN, and sDHN perform better than the
DBN. This is consistent with the suggestion that the model with an interpretable
dictionary may obtain better generalization when only a few labeled training ex-
amples are used [45]. In addition, our proposed models (DHN and sDHN) perform
slightly better than the SAE. This may be due to the property of stacked RBMs
used in both DHN and sDHN in terms of retaining good model generalization, as
we have expected in Section 3.2.

Data set
(#training)

DBN sDBN SAE DHN sDHN

MNIST
(60,000)

99.04 ± 0.01 98.89 ± 0.01 98.60 ± 0.07 98.87 ± 0.09 98.77 ± 0.01

MNIST
(1,000)

89.06 ± 0.95 90.78 ± 0.34 91.35 ± 0.21 91.81 ± 0.37 92.04 ± 0.00

Table 3.1: Baseline accuracy rates (%); each deep network was trained and
tested using the full set of MNIST. The best score (a few have overlapping
confidence intervals) for each setting are written in bold.
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3.3.6 Results on Cross-domain Recognition

We evaluated the cross-domain recognition performance of the algorithms, which
is the main results of this chapter. The algorithms were trained from the original
MNIST training set and tested on the artificial corrupted MNIST test sets. The
types of noise used to contaminate the original test set have been described in
Section 3.3.1. We investigate two settings with respect to the number of training
examples used: (i) using the complete 60,000 images, and (ii) using only randomly
selected 1,000 images. All accuracy rates are shown in Tables 3.2 and 3.3.

It is clear that DBN is unable to retain good recognition performance for any
case with noisy input. The sDBN performs best in the case of block noise but
is less robust when dealing with non-local noise (2-pixel border, impulse-04, and
back-im noise). In contrast, the DHN and sDHN can cope with non-local noise
better than the sDBN, as shown in the results of recognizing digits with impulse
and background noise. Both also performs reasonably well when training from the
small set with only 1,000 images.

In the recognition of digits with block occlusion, one unexpected result is that
our sDHN does not perform, at least, as well as the sDBN in the recognition of
digits with block occlusion although it still performs better than DHN. This result
slightly contradicts our expectation that sDHN may incorporate both properties of
sparse features and sparse weights. It means that our sDHN should have the best
recognition performance on digits with both local and non-local noise. However,
the fact is that it only slightly improves on DHN. Thus, sparse features may not
be helpful for sparsely-connected networks when dealing with images with block
occlusion. This performance is likely the result that sparsifying the bottom hidden
layer of sparsely-connected networks may remove some salient features needed to
recognize block-noisy images.

3.4 Experiment 2: Cross-domain digit recogni-

tion (MNIST vs USPS)

For completeness, it is useful to investigate the robustness of DHN and sDHN
against a broader notion of noise, that is, the noise may be that of object shape,
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Noise DBN sDBN SAE DHN sDHN
2-pixel border 10.64 ± 0.02 97.45 ± 0.02 96.25 ± 0.30 97.83 ± 0.05 98.30 ± 0.02
block 50.17 ± 0.07 73.87 ± 0.20 58.17 ± 0.38 58.33 ± 0.02 62.20 ± 0.09
impulse-04 11.70 ± 0.02 38.08 ± 0.53 62.41 ± 1.12 67.93 ± 0.41 63.78 ± 0.19
back-im 51.23 ± 0.07 76.22 ± 0.20 92.14 ± 0.50 94.62 ± 0.20 92.54 ± 0.05

Table 3.2: Accuracy rates (%) on the MNIST test set with various types
of noise. Each deep network was trained using 60,000 clean MNIST train-
ing examples. Bold-red and bold-black indicate the best and second best
performance.

Noise DBN sDBN SAE DHN sDHN
2-pixel border 10.49 ± 1.36 88.42 ± 0.08 90.58 ± 0.16 91.43 ± 0.42 91.87 ± 0.00
block 32.96 ± 4.34 71.60 ± 0.80 56.08 ± 0.50 60.64 ± 0.30 61.81 ± 0.00
impulse-04 12.74 ± 4.22 43.04 ± 4.72 64.79 ± 0.67 73.37 ± 1.02 71.82 ± 0.56
back-im 36.41 ± 8.91 68.62 ± 3.03 85.65 ± 0.22 88.94 ± 0.90 88.37 ± 0.00

Table 3.3: Accuracy rates (%) on the MNIST test set with various types
of noise. Each deep network was trained using 1,000 clean MNIST training
examples.

size, or style. This can be simulated by evaluating the algorithms on the target
domain represented by a different dataset from one used as the source domain. In
particular, we performed the handwritten digit recognition task across two different
datasets: the MNIST and the USPS [106].

The USPS consists of 7,291 training images and 2,007 test images of size 16×16.
Compared to the MNIST, the USPS can be considered as a small data set and
has somewhat different variation in the shape, size, and stroke style of digit, see
Fig. 3.4 and 3.5 for a comparison. We compared the performance of four deep
neural networks including our proposed models: DBN, sDBN, sDHN, and DHN,
see Section 3.3 for a detailed explanation of each network.

3.4.1 Evaluation Setting

The setting of this experiment is taking the MNIST images as the training examples
and the USPS images as the test examples or vice versa. Let us denote MNIST by
m and USPS by u. We can thus have two possible cross-domain cases: m→ u and
u→ m.

We evaluate the algorithms under two different domain adaptation protocols
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(a) MNIST training (b) MNIST test

Figure 3.4: Examples of MNIST digit images.

(a) USPS training (b) USPS test

Figure 3.5: Examples of USPS digit images.

in terms of the label incorporation during training.

1. Using training source labels (S).
This protocol only allows to use labels from the source domain as the training
information. This means that our algorithms conduct the full training using
only the labeled source data.

2. Using both training source and target labels (ST).
This protocol allows to use labels from the target domain in addition to those
from the source domain. In particular, our algorithms use labeled instances
from both source and target training sets as the training examples.
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3.4.2 Training Setup

We used the same training setup as described in Section 3.3.3 in terms of the
network architecture, the unsupervised pre-training, and most of the learning pa-
rameters. The only difference is on the sparse regularization hyper-parameter for
training the sDBN, DHN, and sDHN from the USPS data set, i.e., γ = 0.15,
β = 1.0.

For the supervised discriminative learning, however, we used the ordinary su-
pervision instead of the fine-tuning, i.e., the node activation vectors in the last
hidden layer are used as inputs to a classifier. The classifier used for the ordinary
supervision was the linear SVM. LIBLINEAR [63], a C/C++ SVM library that
can be executed through MATLAB, is used to run the linear SVM.

3.4.3 Results and Discussion

The complete evaluation results in terms of performance accuracy (%) are summa-
rized in Table 3.4. We report the performance across a range of network depth,
from one to three hidden layers. The in-domain recognition performances are also
included as baselines. The bar plot representation of the results is also provided in
Figure 3.6 for completeness and ease of observing the trend.

In general, the results tend to be consistent with the results from the previous
experiment, i.e., the DBN has the best in-domain recognition performance (m→ m

and u → u), while either DHN or sDHN has the best cross-domain recognition
performance. This indicates that the DHN and sDHN are effective not only for
recognizing images with noise of the form artificial corruption (as shown in the
previous section), but also for recognizing images with different shape, size, and
stroke style.

Note that there is an intriguing behavior regarding to the network depth:
adding the depth of the models does not always end up with a superior cross-
domain performance. Depth is only important when the task is the in-domain
object recognition and the training set is large enough. Specifically, deeper net-
works always provide better performance only on the in-domain MNIST recogni-
tion tasks. This outcome could be attributed to the trade-off between the model
complexity and the amount of training data.
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Finally, we observe that the mixture of sparsity, i.e., the combination between
sparse features and sparse weight connections, plays an important role to provide
better cross-domain recognition performance, unlike the case in the first experi-
ment. This is indicated by the best performance produced by sDHN in both m→ u

and u→ m cases, while sDBN and SHN have comparable performance. This sug-
gests that the combination of sparse features and sparse weight connections in
the bottom layer is an effective strategy for cross-domain handwritten recognition
tasks with respect to the shape, size, and stroke style difference.
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Table 3.4: Performance accuracy (%) on MNIST (m) vs USPS (u) recognition tasks provided by DBN, sDBN,
DHN, and sDHN according to a linear SVM classifier. m→ m and u→ u refer to the in-domain recognition
cases. The remaining cases are the cross-domain recognition tasks. Bold-red and bold-black indicate the best
and second best performance over the methods and HL stands for “Hidden Layer”.

Methods HL m→ m u→ u m→ u (S) m→ u (ST) u→ m (S) u→ m (ST)

DBN
1 98.18 ± 0.16 95.02 ± 0.25 9.28 ± 0.23 42.35 ± 0.27 37.96 ± 0.16 55.59 ± 0.12
2 98.24 ± 0.13 94.97 ± 0.22 26.36 ± 0.28 51.61 ± 0.24 31.14 ± 0.13 69.23 ± 0.15
3 98.50 ± 0.12 94.82 ± 0.23 14.35 ± 0.25 49.83 ± 0.22 48.89 ± 0.12 72.25 ± 0.10

sDBN
1 96.11 ± 0.14 94.77 ± 0.22 34.18 ± 0.23 70.85 ± 0.24 43.82 ± 0.14 67.91 ± 0.08
2 96.11 ± 0.14 94.77 ± 0.22 51.37 ± 0.27 61.88 ± 0.18 39.00 ± 0.15 73.93 ± 0.09
3 98.19 ± 0.15 95.31 ± 0.20 53.81 ± 0.22 75.14 ± 0.19 47.67 ± 0.13 79.70 ± 0.05

DHN
1 97.81 ± 0.12 94.82 ± 0.23 61.84 ± 0.18 68.61 ± 0.21 42.42 ± 0.11 60.97 ± 0.07
2 97.93 ± 0.13 94.27 ± 0.21 58.54 ± 0.20 65.47 ± 0.23 39.63 ± 0.14 68.07 ± 0.05
3 98.00 ± 0.11 94.47 ± 0.19 56.45 ± 0.24 74.08 ± 0.17 47.47 ± 0.14 84.12 ± 0.10

sDHN
1 97.57 ± 0.11 94.62 ± 0.20 50.92 ± 0.21 71.75 ± 0.25 49.42 ± 0.10 72.40 ± 0.09
2 97.57 ± 0.11 94.12 ± 0.22 65.62 ± 0.24 72.05 ± 0.19 50.78 ± 0.11 74.49 ± 0.11
3 97.79 ± 0.12 94.62 ± 0.20 65.37 ± 0.25 78.20 ± 0.17 54.64 ± 0.09 80.43 ± 0.08
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(a) m→ m (b) u→ u (c) m→ u (S)

(d) m→ u (ST) (e) u→ m (S) (f) u→ m (ST)

Figure 3.6: Performance accuracy (%) of MNIST vs USPS cross-recognition tasks in bar plots, see Table 3.4.
Each bar color indicates the level of hidden layers in a deep network (1: red, 2: green, 3: blue).
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3.5 Chapter Summary

In this chapter, the goal was to develop a domain adaptation algorithm based on
deep neural networks that can recognize visual objects under dataset bias caused by
noise. Specifically, the algorithm performs the following cross-domain recognition
task: learning from clean source objects and recognizing noisy target objects over
a range of noise types such as impulse noise, square-block occlusion, pixel border
addition, and background image noise. Our algorithm, which we refer to as Deep
Hybrid Network (DHN), is based on a particular combination of an autoencoder
(AE) and restricted Boltzmann machines (RBMs). The autoencoder is equipped
with a sparse feature regularization, which plays a role to undo the global noise
occurring in the input images.

We also propose a variant of DHN, which imposes sparse, locally connected
weights in the bottom layer in addition to the sparse feature regularization. The
model is referred to as sparsely-connected Deep Hybrid Network (sDHN). This
variant is expected to extend the ability of DHN in dealing with local noise, i.e.,
block occlusion occurred in the local regions of the images. From experiments, the
general outcome is that our algorithms provide better cross-domain handwritten
digit recognition performance than the standard deep learning models, while retain
good in-domain performance.

This chapter shows that DHN provides better cross-domain performance than
the standard deep learning model, i.e., Deep Belief Network (DBN). This means
that the autoencoder learning with sparse regularization in the bottom layer can
indeed reduce the impact of noise occurred in the target domain. Furthermore,
DHN is still able to retain a good in-domain performance, comparable to DBN.
In fact, the performance of DHN is even better than that of DBN in the case of
learning from a small training set size.

More specifically, this chapter shows that DHN performs best in recognizing
objects with impulse noise and background image noise, which are considered as
global noise. This performance is consistent in both large (60, 000 images) and
small (1, 000 images) MNIST training set cases. However, DHN still underperforms
sDBN [209] in the case of local noise: square-block and 2-pixel border.

This chapter also shows that a variant of DHN, i.e., sparsely-connected DHN
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(sDHN), can compromise between the global and local noise. In particular, sDHN
provides lower error rate than DHN on square-block noise and 2-pixel border noise
cases, while still retain a competitive performance on impulse noise and background
image noise. sDHN does not outperform sDBN in the case of square-block noise,
which suggests that the mixture of sparse features and sparse weight connection is
not helpful for this case – the use of sparse weight connection only is sufficient.

sDHN provides the best performance on cross-domain MNIST vs USPS tasks,
i.e., taking MNIST images as the training examples and USPS images as the test
examples or vice versa. These tasks simulate the clean-noisy object recognition
with more general notion of noise: the noise is in the form of object shape, size,
or style. In this case, the mixture of sparse features and sparse weight connections
is indeed helpful to provide good generalization – DHN and sDBN do not provide
competitive performance.

Another interesting outcome in this chapter is that the sparse autoencoder
(SAE), the model that encourages sparse features in every layer during the greedy
layer-wise autoencoder training, does not perform better than DHN on either in-
domain or cross-domain recognition task. Recall that DHN involves only a single
sparse feature regularization in the bottom layer. This indicates that the combi-
nation of (sparse) autoencoder and (non-sparse) RBM pretraining is beneficial to
provide better generalization than using only a single learning algorithm to train
deep networks.

The domain adaptation solution proposed in this chapter is an example of tak-
ing advantage of human knowledge as the auxiliary information to develop robust-
to-noise algorithms. In this context, the knowledge is in the form of noise occurred
in the target domain. The design strategy of the algorithm is thus established
such that a denoising process should be performed during test time. However, this
approach may not be suitable in a situation where human experts do not have
sufficient knowledge about the target domain. This issue could be overcome by
utilizing unlabeled target examples as the auxiliary information. The next chapter
will develop a neural network-based approach that takes advantage of unlabeled
target examples during training, which reduces the distribution discrepancy in the
latent space and also minimizes the classification loss.
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4
Domain Adaptive Neural

Networks for Object Recognition

This chapter presents the second contribution of this thesis. We propose a domain
adaptation model based on neural networks that leverages unlabeled target samples
as the auxiliary information. The model uses a distribution distance measure, Max-
imum Mean Discrepancy (MMD), to regularize the neural network training such
that the representation distribution difference in the hidden layer is minimized. We
refer to this model as Domain Adaptive Neural Network (DaNN).

4.1 Introduction

In domain adaptation, domains are usually equated with probability distributions.
A general domain adaptation algorithm is thus designed such that the training-test
data distribution difference is minimized. There exist several strategies to do so;
one of them is to extract data representations that satisfy this property.

In the context of representation learning, training neural networks is equivalent
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to finding discriminative hidden layer activations, that is, representations, of the
observed data. However, a neural net trained on a particular domain may suffer
from dataset bias if it is applied to another different but related domain. For
example in image recognition, the hidden layer activations of a particular object
from the target domain may be different from those of another object of the same
category from the source domain. Therefore, it is necessary to establish an explicit
setup such that the representation distribution difference between the source and
target domain is minimized during training.

4.1.1 Chapter Goals

The goal of this chapter is to develop a simple variant of neural nets with good
domain adaptation performance to object recognition, which we refer to as a Do-
main Adaptive Neural Network (DaNN). The model ensures that the hidden node
distribution is similar for source data and target data, while learning to predict
labels from the source data. Such a distribution matching is obtained by utilizing
a distribution distance measure, i.e., Maximum Mean Discrepancy (MMD) [28], as
a regularization embedded in the supervised backpropagation training.

MMD has been used in many existing domain adaptation algorithms [60, 82,
134, 165]. Despite its effectiveness, to the best of our knowledge, the use of MMD
in the context of neural networks has not been investigated. This work is therefore
the first study of the use of MMD in neural networks. Specifically, this chapter
will investigate:

• Whether the MMD regularization can indeed improve the object recogni-
tion performance of neural networks under two domain adaptation settings:
unsupervised domain adaptation and semi-supervised domain adaptation;

• Whether DaNN can perform well on both raw image pixels and SURF-based
extracted features as inputs;

• Whether the use of denoising autoencoder (DAE) pretraining helps to im-
prove the domain adaptation performance of DaNN on raw pixels.
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4.1.2 Chapter Organization

The remainder of this chapter is organized as follows. The proposed model, DaNN,
is described in Section 4.2. The experiment results are discussed and analyzed in
Section 4.3. Section 4.4 summarizes this chapter.

4.2 The Algorithm

This section describes the proposed neural net that incorporates Maximum Mean
Discrepancy (MMD) as a regularization embedded in the supervised training. Be-
fore describing the main algorithm, we introduce the notation and terminology.

4.2.1 Notation and Terminology

We denote the data space by X ⊆ Rd and the label space by Y ⊆ {0, 1}c. The label
space is constrained such that it consists of all 0s except for a 1 at a particular
element. A domain is represented by a probability distribution on X . Let Ps and
Pt be the source distribution and target distribution respectively, where Ps 6= Pt.
We denote by P̂s and P̂t the empirical source and target distributions.

4.2.2 Domain Adaptive Neural Networks

The proposed model, DaNN, is basically a standard feedforward neural network
(NN) trained with a regularized backpropagation by means of Maximum Mean Dis-
crepancy (MMD), see the detailed explanation of NN in Section 2.4.2. Specifically,
MMD is used to control the distribution difference between the source and target
data hidden layer activations during training. Such a regularization encourages the
hidden layer activations to be invariant across different domains.

Let us denote the labeled source samples by {xsi ,ysi }
ns
i=1 ∼ Ps and the unlabeled

target samples by {xti}
nt
i=1 ∼ PtX . Without losing generality, consider a single

hidden layer neural net fΘ : X → Y, where Θ = {W,Wout} is a set of weights
and biases – the construction of matrices W,Wout can be seen in (2.19). Since
our concern is the multi-class classification, we can use the cross-entropy (2.22) as
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the loss function for the neural net, `(y, fΘ(x)). The objective function of DaNNs
is given by

JDaNN(Θ) =

ns∑
i=1

`(ysi , fΘ(xsi )) + γMMD2
F [P̂s, P̂t], (4.1)

where MMD2
F [P̂s, P̂t] is the squared empirical MMD and γ is a constant controlling

the contribution of MMD. Training a DaNN corresponds to finding a set of param-
eters Θ̂ such that JDaNN(Θ) is minimized in which the backpropagation algorithm
can be used, see Section 2.4.2.

Now we explain the term MMDF [P̂s, P̂t] in more detail. Note that P̂s and P̂t

refer to the empirical source and target distributions, respectively. This means that
MMD requires unlabeled data from both the source and target domains as inputs,
{{xsi}

ns
i=1 ∪ {xti}

nt
i=1}. Specifically, the inputs to the MMD are the linear output

values of the hidden layer, l(x) = W>x ∈ Rk, as given by

MMDF [P̂s, P̂t] = sup
f∈F

(
1

ns

ns∑
i=1

f (l(xsi ))−
1

nt

nt∑
i=1

f
(
l(xti)

))
. (4.2)

Let qs := l(xs) and qt := l(xt). If the function class F is chosen such that
F ⊆ H, where H is a reproducing kernel Hilbert space endowed with a kernel
κ : Rk × Rk → R, then the squared form of (4.2) can be represented in terms of a
kernel as

MMD2
F [P̂s, P̂t] =

1

ns(ns − 1)

ns∑
i,j=1,i 6=j

κ(qsi ,q
s
j)

+
1

nt(nt − 1)

nt∑
i,j=1,i 6=j

κ(qti,q
t
j)−

2

nsnt

ns∑
i=1

nt∑
j=1

κ(qsi ,q
t
j). (4.3)

See Lemma 6 in Gretton et al. [87] for a detailed derivation of the above equation.

To apply backpropagation on DaNN, we need to compute the gradient of
JDaNN. While computing the gradient ∂JNN

∂Θ is trivial, computing the gradient of
MMD2

F [P̂s, P̂t] depends on the choice of the kernel function. We choose the Gaus-
sian RBF kernel as the kernel function of the form κG(x,y) = exp

(
−‖x−y‖2

2σ2

)
,
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where σ is the standard deviation. The main reason for choosing the Gaussian
kernel κG is that it has been well studied and proven to make MMD useful in
practice [87]. In addition, the κG is a universal kernel [145], i.e., any feature map
representation of κG can approximate any continuous function arbitrarily close.

For completeness, we elaborate the calculation of ∂MMD2
F [P̂s,P̂t]

∂W . Firstly, rewrite
the MMD2

F [P̂s, P̂t] function in terms of the Gaussian kernel κG by a matrix-vector
form, which is given by the following equation:

MMD2
F [P̂s, P̂t] =

1

ns(ns − 1)

ns∑
i,j=1

exp

(
−

(xsi − xsj)
>WW>(xsi − xsj)

2σ2

)

+
1

nt(nt − 1)

nt∑
i,j=1

exp

(
−

(xti − xtj)
>WW>(xti − xtj)

2σ2

)

− 2

nsnt

ns,nt∑
i,j=1

exp

(
−

(xsi − xtj)
>WW>(xsi − xtj)

2σ2

)
. (4.4)

Let G••(i, j) be the gradient of κG(q•i ,q
•
j ) with respect to W, where the symbol

• denotes either the source symbol s or the target symbol t – recall that q• =

W>x•. Then, G••(i, j) takes the form

G••(i, j) = − 1

σ2
κG(x•i ,x

•
j )(x

•
i − x•j )(x

•
i − x•j )

>W. (4.5)

Using the above notation, the gradient of MMDl
F [P̂s, P̂t] is given by

∂MMD2
F [P̂s, P̂t]

∂W
=

1

ns(ns − 1)

ns∑
i,j=1,i 6=j

Gss(i, j) +

1

nt(nt − 1)

nt∑
i,j=1,i 6=j

Gtt(i, j)−

2

nsnt

ns∑
i=1

nt∑
j=1

Gst(i, j). (4.6)

Recall that here MMD is applied to the (linear) net outputs, see (4.3), before the
non-linear activation function. This means that MMD provides a biased estimate
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with respect to the actual distribution discrepancy of the hidden representations.
In practice, we use Rectified Linear Unit (ReLU) [153], σ(z) = max(z, 0), as the
activation function for the hidden layers. Since ReLU is close to linear, we expect
that MMD would be able to provide a good approximation to the true distribution
discrepancy.

We now describe the detailed implementation of the DaNN algorithm. The
optimization process is divided into two steps: i) minimizing JNN and ii) mini-
mizing MMDl

F [P̂s, P̂t]. JNN is minimized using a mini-batched stochastic gradient
descent with respect to W update. The mini-batched setting has become a stan-
dard practice in neural network training to establish a compromise between speed
and accuracy. MMDl

F [P̂s, P̂t] is then minimized by re-updating W with respect
to the gradient (4.6). The latter step is accomplished by a full-batched gradient
descent. The detailed procedure is summarized in Algorithm 4.

Algorithm 4 The DaNN learning algorithm.
Input:
• Labeled source data: {xsi ,ysi} ∼ Ps
• Unlabeled target data: {xti} ∼ PtX
• Hidden and output layer weight matrices: W ∈ Rd×k and Wout ∈ Rk×c

• Learning rate: α > 0
• MMD regularization constant : γ > 0

1: Initialize all elements in W and Wout with small random real values
2: while not at end-of-epoch do
3: Update Θ = {W,Wout} using a mini-batched gradient descent by the

standard rule as follows:

Θ← Θ− α∂`(y, fΘ(x))

∂Θ

4: Update W by a full-batched gradient descent as follows:

W←W − αγ∂MMD2
F [P̂s, P̂t]

∂W

5: end while
Output:
• Learned weights : W∗, W∗out
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Figure 4.1: The Office data set [187] samples from amazon and dslr domains.

4.3 Experiments and Analysis

This section presents the performance evaluation of DaNN on a range of cross-
domain object recognition tasks. The goal is to investigate the DaNN’s performance
accuracy on both SURF-based features and raw pixels of the Office images [187].
The section starts with the description of the dataset and the experimental setting.
It is then followed by the detailed evaluation results and discussions.

4.3.1 Settings

Data setup. The Office dataset contains images of 31 object classes from three
different domains: amazon, webcam, and dslr. In amazon, the images contain a sin-
gle centered object, while for the others the images were acquired in unconstrained
settings with some variations such as lighting and background changes. Here we
only used 10 object classes following the protocol designed by [83], which leads to
a total of 1410 instances. The number of images for amazon (A), webcam (W),
and dslr (D), respectively, are 958, 295, and 157. Webcam and dslr are known to
be more similar to each other based on the Rank of Domain (ROD) measure [83].
Examples of the Office images can be seen in Figure 4.1.

Model’s hyper-parameter setting. The DaNN model used in this ex-
periment has only one hidden layer, i.e., a shallow network of 256 hidden
nodes. The number of 256 was selected by grid-searching from a set of values
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Table 4.1: Parameter setting of DaNN

Learning rate (α) 0.02
Iterations 900
Momentum 0.05
L2 weight regularization 0.003
Dropout fraction 0.5

{64, 128, 256, 300, 512}. The input layer of the DaNN can be either raw pixels
or SURF features. The output layer contains 10 nodes, the same number as the
number of classes.

In all our experiments, we used the parameter setting for the DaNN’s learning
algorithm specified in Table 4.1. Note that we employed the dropout regularization
[98], which randomly omits a hidden node for each training case under a certain
probability. It has been proven to produce better performance in the sense of
reducing the overfitting if a neural network is trained from a small training set.

For the MMD regularization, the standard deviation σ of the Gaussian kernel
was set analytically to the median distance among all datapoints [87],

σ = median ‖a− b‖,∀a,b ∈ {{xsi}ns
i=1 ∪ {x

t
i}nt
i=1}

Furthermore, the MMD regularization constant γ was set to be sufficiently large
to accommodate small values of (4.6) compared to ∂JNN

∂W for each iteration. Specifi-
cally, we grid-search γ to choose the best γ value from {102, 103, 104, 105} according
to the validation performance on source data.

We conducted six cross-domain tasks based on the three domains of the Office
dataset (A → W , W → A, A → D, D → A, W → D, and D → W ). The
evaluation was divided into two settings: 1) unsupervised domain adaptation, and
2) semi-supervised domain adaptation. The unsupervised domain adaptation refers
to a setting where we can only access the unlabeled target images as the auxiliary
information to the labeled source images as the training samples. Meanwhile, the
semi-supervised domain adaptation still allows a few labeled target images as the
additional training samples – first three images per object category from the target
domain were selected. Differently from the standard protocol [187], we used all
labeled images from the source domain instead of randomly sampled from it.
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Baselines. Our model performance was compared to SVM-based baselines, two
existing domain adaptation methods, and a single layer feedforward neural net.

• L-SVM: an SVM [48] model with a linear kernel that was applied to the
original features.1

• L-SVM + PCA: the same model as the L-SVM but preceded by PCA to
reduce feature dimensionality.

• GFK [83]: the Geodesic Flow Kernel approach by considering an infinite
number of intermediate subspaces between the source and target domains
followed by k-NN classification. Here we used the subspaces constructed by
PCA only.

• TSC [133]: the Transfer Sparse Coding technique based on the combination
of the graph regularized sparse coding, the MMD regularization, and logistic
regression.2

• NN: a single layer feedforward neural net with the same structure and pa-
rameter setting used for DaNN, see Table 4.1.

4.3.2 Results on SURF-BoW Features

We first investigated the performance of our model on the standard image features
provided by Gong et al. [83]. The image features were acquired by first utilizing the
SURF descriptor on resized and grayscaled images to detect local scale-invariant
interest points. This was then followed by encoding the data points into 800-bin
histograms using a codebook trained from a subset of amazon images [187]. The
final features, which we refer to as SURF-BoW, were then normalized and z-scored
to have zero mean and unit variance. We conducted the unsupervised domain
adaptation setting evaluation with the results shown in Table 4.2.

1http://www.csie.ntu.edu.tw/~cjlin/liblinear
2http://learn.tsinghua.edu.cn:8080/2011310560/long.html

http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://learn.tsinghua.edu.cn:8080/2011310560/long.html
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We found that DaNN and TSC have better performance than the other ap-
proaches on these standard features. More specifically, DaNN performs well when
there is the amazon set in a particular domain pairs. In the case of webcam-dslr
shifts, TSC, which has not been tested on the Office dataset in the previous work,
is the best model. Despite its effectiveness, TSC has a longer feature extraction
time than our method so that it is less efficient in a real world situation.

We also noted that the GFK, which incorporates multiple intermediate sub-
spaces, fails to surpass the baselines in a few shift cases. This indicates that the
projection onto the subspaces generated by GFK is insufficient to reduce the do-
main mismatch.

Table 4.2: Unsupervised domain adaptation performance accuracy (%) on
the Office data set (A : amazon, W : webcam, D : dslr) on SURF-BoW
features provided by Gong et al. [83] as inputs. Bold-red and bold-black
indicate the best and second best performance.

Methods A→ W W → A A→ D D → A W → D D → W

L-SVM 24.1± 0.0 35.8± 0.0 28.0± 0.0 32.7± 0.0 77.7± 0.0 78.0± 0.0
PCA + L-SVM 34.9± 0.0 34.8± 0.0 35.0± 0.0 32.2± 0.0 63.7± 0.0 65.4± 0.0

GFK [83] 39.0± 0.0 29.8± 0.0 36.3± 0.0 31.8± 0.0 80.3± 0.0 75.6± 0.0
TSC [133] 47.4± 1.7 39.1± 0.4 46.2± 1.4 41.6± 0.8 93.6± 0.5 93.5± 0.6

NN 44.4± 0.6 37.3± 0.1 46.8± 0.9 34.8± 0.2 81.5± 0.0 78.9± 0.0
DaNN 45.4± 0.8 38.7± 0.2 49.0± 0.7 38.1± 0.3 83.4± 0.0 81.0± 0.0

4.3.3 Results on Raw Pixels

Next we conducted the cross-domain recognition performance evaluation on raw
pixels of the Office images. Previous works on the Office image set were mostly
done using the SURF-based features. It is worth investigating the performance
on the Office raw pixels directly since good models on raw pixels are preferable in
the sense of reducing the need for manual feature extraction processes. We first
converted the pixels of the Office images in 2D RGB values into grayscaled pixels
and resized them into a dimension of 28 × 28. They were then z-scored to have
zero mean and unit variance.
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Cross-domain recognition. In this experiment, we ran both the unsuper-
vised domain adaptation and semi-supervised domain adaptation setting for all
domain pairs. In addition, we also investigated the effect of denoising autoencoder
(DAE) pretraining that precedes the NN and DaNN supervised training with re-
spect to the performance. The use of DAE pretraining will slightly change Step 1
of Algorithm 4. We denoted these models as DAE + NN and DAE + DaNN.
Examples of the pretrained weights are depicted in Figure 4.2. The complete accu-
racy rates on the Office raw pixels for all domain pairs are presented in Table 4.3.

(a) amazon-webcam (b) amazon-dslr (c) webcam-dslr

Figure 4.2: The 2D visualization of 100 randomly chosen weights after the
DAE pretraining for each domain pairs from the Office image set. The white,
gray, and black pixels in each box indicate the high-positive, close-to-zero or
zero, and high-negative values of a particular connection weight. The type
of noise used here is the zero-masking noise with 30% destruction.

It is clear that our DaNN always provides accuracy improvements in all do-
main pairs compared to the SVM-based baselines and the NN model. In other
words, the MMD regularization indeed improves the performance of neural net-
works. Compared to TSC that also employs the MMD regularization in the unsu-
pervised training stage, our DaNN performs better in most cases. However, TSC
can match the DaNN performance on webcam-dslr pairs, which has lower level
mismatch than the other pairs. This indicates that the utilization of the MMD
regularization in the supervised training might gain more adaptation ability than
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Table 4.3: The performance on the Office dataset (A : amazon, W : webcam,
D : dslr) using the raw pixels as inputs.

Methods A→ W W → A A→ D D → A W → D D → W

Unsupervised Setting
L-SVM 14.9± 0.0 14.7± 0.0 19.1± 0.0 13.7± 0.0 36.0± 0.0 40.3± 0.0

PCA + L-SVM 20.3± 0.0 18.1± 0.0 16.9± 0.0 17.4± 0.0 40.4± 0.0 37.0± 0.0
GFK [83] 21.4± 0.0 15.0± 0.0 30.2± 0.0 13.8± 0.0 69.1± 0.0 65.0± 0.0
TSC [133] 22.3± 1.0 15.7± 1.1 25.6± 1.6 19.6± 0.7 74.1± 1.9 67.5± 1.5

NN 29.2± 0.6 17.0± 0.3 32.5± 0.7 15.0± 0.3 63.7± 0.0 57.3± 0.0
DAE + NN 32.5± 0.2 18.7± 0.0 37.8± 0.2 17.4± 0.0 72.1± 0.0 65.9± 0.0
DaNN 34.1± 0.3 21.2± 0.2 34.0± 0.8 20.1± 0.5 64.4± 0.0 62.0± 0.0

DAE + DaNN 35.0± 0.2 23.1± 0.0 39.4± 0.3 22.5± 0.0 74.3± 0.0 70.5± 0.0
Semi-supervised Setting

L-SVM 18.9± 0.0 29.0± 0.0 25.2± 0.0 35.2± 0.0 45.7± 0.0 52.5± 0.0
PCA + L-SVM 20.8± 0.0 31.0± 0.0 25.6± 0.0 35.1± 0.0 50.4± 0.0 50.2± 0.0

GFK [83] 47.9± 0.0 33.1± 0.0 52.0± 0.0 31.8± 0.0 80.3± 0.0 74.7± 0.0
TSC [133] 42.4± 2.1 34.1± 0.8 49.3± 2.2 36.4± 0.9 76.3± 1.4 71.1± 1.1

NN 48.7± 0.3 34.5± 0.3 52.8± 0.6 36.2± 0.4 75.6± 0.1 67.2± 0.0
DAE + NN 52.8± 0.1 36.8± 0.0 57.5± 0.1 36.5± 0.0 83.5± 0.0 69.4± 0.0
DaNN 51.3± 0.5 36.6± 0.4 55.9± 0.3 37.9± 0.3 78.0± 0.2 70.2± 0.0

DAE + DaNN 53.6± 0.2 37.3± 0.0 59.9± 0.1 38.2± 0.0 83.5± 0.0 71.2± 0.0

that in the unsupervised training for pairs with higher mismatch.

The DAE pretraining applied to NN and DaNN indeed improves the perfor-
mance for all pairs of domains. The improvements are quite significant for several
cases, especially for webcam-dslr pairs. In general, the DAE pretraining also pro-
duces more stable models in the sense of resulting in lower standard deviations over
30 independent runs. Furthermore, the combination of DAE pretraining and DaNN
performs best among other methods in these experiments in almost all cases. In the
sense of qualitative analysis, as can be seen in Figure 4.2, the DAE pretraining cap-
tures more distinctive “filters” from local blob detectors to object parts detectors,
especially when the amazon images are included. This effect is somewhat similar
to what was found in the initial DAE work [225], which might be the reason of the
performance gain.

In the semi-supervised setting, the performance trend is somewhat similar to
the unsupervised setting. However, the performance discrepancies between NN and
DaNN here becomes smaller than those in the unsupervised setting. This outcome
also holds for the case of the DAE pretraining. This suggests that both the MMD
regularization and DAE pretraining might be less impactful when some labeled
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images from the target domain can be acquired.

In-domain recognition. One may ask whether the domain adaptation results
shown in Table 4.3 are reasonable compared to the standard learning setting. We
refer this standard setting to as the in-domain setting, where the training and
test samples come from the same domain. The in-domain performance can be
considered as the upper bound that indicates whether it is worthwhile to build
better domain adaptation models for a particular application.

To demonstrate this, we investigated the in-domain performance of non-domain
adaptive models described in Section 4.3.1, i.e., L-SVM, PCA+L-SVM, and NN
on raw pixels of the Office images. For each domain, we conducted 10-fold cross
validation where the data set is divided into ten subsets of size n/10, nine subsets
as the training set and one as the test set. The evaluation is then repeated 10 times
for each different configuration of training and test sets. The complete in-domain
results in terms of the mean and standard deviation are shown in Table 4.4.

Table 4.4: In-domain performance on the Office data set using 10-fold cross
validation on each domain.

Methods amazon webcam dslr
Training Test Training Test Training Test

L-SVM 99.0 ± 0.3 52.0 ± 4.6 100.0 ± 0.0 57.7 ± 13.9 100.0 ± 0.0 51.0 ± 14.1
PCA+L-SVM 64.4 ± 0.8 60.6 ± 6.4 72.0 ± 1.5 62.8 ± 8.7 75.6 ± 2.1 55.2 ± 13.1

NN 99.3 ± 0.1 74.2 ± 3.2 100.0 ± 0.0 87.2 ± 5.4 100.0 ± 0.0 77.9 ± 8.8

In general, we can see that the best in-domain model is the NN model on both
training and test images. PCA+L-SVM performs better than L-SVM on test sets,
but worse on training sets. We also note that the standard deviations of the test
accuracies are relatively high for all methods, which might indicate that the image
variation within a particular domain in the Office set is high.

The most interesting outcome here is that the best in-domain accuracies are,
in general, still higher than the best performance with the domain mismatch when
the amazon or webcam are used as the target sets (see the highest accuracy rates in
column D → A and D → W on Table 4.3). However, this is not case for W → D

pair. This means that we might not need a better domain adaptation model any
more for W → D pair since the upper bound has been surpassed.



4.4. CHAPTER SUMMARY 124

4.4 Chapter Summary

This chapter presents a neural network-based domain adaptation algorithm that
minimizes the distribution difference between the source and target data repre-
sentations in the hidden layer space. The distribution difference minimization is
established by incorporating the Maximum Mean Discrepancy (MMD) measure
that acts as a regularization in the label training. The resulting model is referred
to as Domain Adaptive Neural Network (DaNN). The model performance was
evaluated on six cross-domain recognition tasks taken from the Office dataset [187]
and compared with that of several baselines.

Firstly, we show that DaNN performs well on SURF-BoW features, which are
the handcrafted features taken from a particular combination of SURF and code-
book training algorithms, comparable to Transfer Sparse Coding (TSC) [133], a
prior state-of-the-art domain adaptation algorithm. Specifically, DaNN provides
the best performance on three cross-domain recognition tasks: A → W , W → A,
and A → D, while TSC provides best on the other three tasks. Note that TSC
requires a much longer training time than DaNN.

We then show that DaNN also performs well on raw image pixels under both
the unsupervised domain adaptation and semi-supervised domain adaptation set-
tings. In this case, the DaNN’s performance is higher than the TSC’s performance
with a considerable gap in almost all cross-domain tasks. Furthermore, the DaNN

preceded by the denoising autoencoder (DAE) training, i.e., DAE+DaNN, provides
the best cross-domain recognition performance.

Despite the effectiveness of the MMD regularization in the supervised back-
propagation training, there are still many aspects that can be further improved.
We have seen that the performance on raw pixels, which is a main concern in rep-
resentation learning approach, is still not as good as that on SURF-BoW features.
We note that good models that perform well without any preceding handcrafted
feature extractors are more desirable to reduce complexity. We might achieve a
better model on raw pixels by using deeper neural network layers with a similar
strategy since deep architectures have brought some successes in many applications
in recent years [18]. Our initial work using deep architectures with the DAE pre-
training, which is not shown here, suggested that deeper representations do not
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always improve the performance against the domain mismatch.
In addition, a study on the kernel choice for computing MMD regarding to

the domain adaptation problem might be a potential direction. We assumed that
the universal Gaussian kernel function can detect any underlying distribution mis-
matches in the Office data set, which might be not true. A better understanding
about the relationship between a kernel function and a real-world image mismatch,
e.g., background, lighting, affine transformation changes, would have a great im-
pact in this field of research.

The next contribution chapter will address the problem of domain generaliza-
tion: learning a robust model from one or multiple source domains with no access
to target domains. This is different from domain adaptation in which we can still
utilize unlabeled target data; we do not have both labeled and unlabeled data in
domain generalization. Our solution to the problem is a multi-task feature learn-
ing algorithm based on autoencoders that we refer to as Multi-task Autoencoders
(MTAE).



4.4. CHAPTER SUMMARY 126



CHAPTER 5. DOMAIN GENERALIZATION WITH MULTI-TASK AUTOENCODERS 127

5
Domain Generalization with

Multi-task Autoencoders

This chapter presents the third contribution of this thesis. We develop a state-
of-the-art multi-task representation learning algorithm for domain generalization
referred to as Multi-task Autoencoders (MTAE). MTAE learns to transform the
original image into analogs in multiple related domains. It thereby learns features
used as inputs to a classifier, which are robust to variations across domains.

5.1 Introduction

In object recognition, the “visual worl” can be considered as decomposing into
views (e.g. perspectives or lighting conditions) corresponding to domains. For
example, frontal-views and 45◦ rotated-views correspond to two different domains.
Alternatively, we can associate views or domains with standard image datasets
such as PASCAL VOC2007 [62], and Office [187]. The dataset bias problem arises
where a model learned from one view attempts to recognize objects from another
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view. The challenge is thus to build a system that recognizes objects in previously
unseen datasets, given one or multiple training datasets, which is referred to as
domain generalization [25, 152].

5.1.1 Chapter Goals

The goal of this chapter is to learn features using an autoencoder method that
improve generalization performance across views/domains. Autoencoders were in-
troduced to address the problem of “backpropagation without a teacher” by using
inputs as labels – and learning to reconstruct them with minimal distortion [21,182].
Denoising autoencoders in particular are a powerful basic circuit for unsupervised
representation learning [224]. Intuitively, corrupting inputs forces autoencoders to
learn representations that are robust to noise.

This chapter proposes a broader view: autoencoders are generic circuits for
learning invariant features. The main contribution is a new training strategy based
on naturally occurring transformations such as: rotations in viewing angle, dilations
in apparent object size, and shifts in lighting conditions. The resulting model,
Multi-task Autoencoder (MTAE), learns features that are robust to real-world
image variability, and therefore generalize well across domains.

To achieve the above goal, we establish the following specific objectives:

• Whether MTAE produces more discriminative features than commonly used
autoencoder-based models in the context of domain generalization;

• Whether the MTAE’s learned weights associated with the extracted features
form a visually interpretable “filter” indicating that it captures the common-
ality, e.g., object transformation, among views / domains;

• Whether MTAE provides better cross-domain recognition performance than
prior state-of-the-art domain generalization models on modern benchmark
datasets.

5.1.2 Chapter Organization

The remainder of this chapter is organized as follows. The proposed algorithm,
Multi-task Autoencoder (MTAE), is described in Section 5.2. Section 5.3 presents
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the evaluation on MNIST and ETH-80 datasets. It investigates the behaviour of
MTAE in comparison to standard single-task autoencoder models on raw pixels as
proof-of-principle. Section 5.4 evaluates the performance of MTAE against several
state-of-the-art algorithms on modern object datasets such as the Office [187],
Caltech [88], PASCAL VOC2007 [62], LabelMe [186], and SUN09 [40]. Section 5.5
summarizes the chapter.

5.2 The Algorithm

Our goal is to learn features that provide good domain generalization. To do so,
we extend the autoencoder [30] into a model that jointly learns multiple data-
reconstruction tasks taken from related domains. Our strategy is motivated by
prior work demonstrating that learning from multiple related tasks can improve
performance on a novel, yet related, task – relative to methods trained on a single-
task [7, 14, 35,211].

5.2.1 Autoencoders

Autoencoders (AE) have become established as a pretraining model for deep learn-
ing [21]. The autoencoder training consists of two stages: 1) encoding and 2)
decoding. Given an unlabeled input x ∈ Rdx , a single hidden layer autoencoder
fΘ(x) : Rdx → Rdx can be formulated as

h = σenc(W
>x)

x̂ = σdec(V
>h) = fΘ(x), (5.1)

where W ∈ Rdx×dy , V ∈ Rdy×dx are input-to-hidden and hidden-to-output con-
nection weights1 respectively, h ∈ Rdh is the hidden node vector, and σenc(·) =

[senc(z1), ..., senc(zdh)]>, σdec(·) = [sdec(z1), ..., sdec(zdx)]> are element-wise non-
linear activation functions, and senc and sdec are not necessarily identical. Popular
choices for the activation function s(·) are, e.g., the sigmoid s(a) = (1+exp(−a))−1

1While the bias terms are incorporated in our experiments, they are intentionally omit-
ted from equations for the sake of simplicity.
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and the rectified linear (ReLU) s(a) = max(0, a).

Let Θ = {W,V} be the autoencoder parameters and {xi}Ni=1 be a set of N
input data. Learning corresponds to minimizing the following objective

Θ̂ := arg min
Θ

N∑
i=1

L (fΘ(xi),xi) + ηR (Θ) , (5.2)

where L(·, ·) is the loss function, usually in the form of least square or cross-
entropy loss, and R(·) is a regularization term used to avoid overfitting. The
objective (5.2) can be optimized by the backpropagation algorithm [184]. If we
apply autoencoders to raw pixels of visual object images, the weights W usually
form visually meaningful “filters" that can be interpreted qualitatively.

To create a discriminative model using the learned autoencoder model, either
of the following options can be considered: 1) the feature map φ(x) := σenc(Ŵ

>x)

is extracted and used as an input to supervised learning algorithms while keeping
the weight matrix Ŵ fixed; 2) the learned weight matrix Ŵ is used to initialize a
neural network model and is updated during the supervised neural network training
(fine-tuning).

Recently, several variants such as denoising autoencoders (DAE) [225] and con-
tractive autoencoders (CAE) [178] have been proposed to extract features that are
more robust to small changes of the input. In DAEs, the objective is to reconstruct
a clean input x given its corrupted counterpart x̃ ∼ Q(x̃|x). Commonly used types
of corruption are zero-masking, Gaussian, and salt-and-pepper noise. Features ex-
tracted by DAE have been proven to be more discriminative than ones extracted
by AE [225].

5.2.2 Multi-task Autoencoders

We refer to our proposed domain generalization algorithm as Multi-task Autoen-
coder (MTAE). From an architectural viewpoint, MTAE is an autoencoder with
multiple output layers, see Fig. 5.1. The input-hidden weights represent shared
parameters and the hidden-output weights represent domain-specific parameters.
The architecture is similar to the supervised multi-task neural networks proposed
by Caruana [35]. The main difference is that the output layers of MTAE correspond
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to different domains instead of different class labels.

Figure 5.1: The single-layer Multi-task Autoencoder (MTAE) architecture,
which consists of three layers with multiple separated outputs; each output
corresponds to one task/domain.

The most important component of MTAE is the training strategy, which con-
structs a generalized denoising autoencoder that learns invariances to naturally
occurring transformations. Denoising autoencoders focus on the special case where
the transformation is simply noise. In contrast, MTAE training treats a specific
perspective on an object as the “corrupted” counterpart of another perspective
(e.g., a rotated digit 6 is the noisy pair of the original digit). The autoencoder
objective is then reformulated along the lines of multi-task learning: the model
aims to jointly achieve good reconstruction of all source views given a particular
view. For example, applying the strategy to handwritten digit images with several
views, MTAE learns representations that are invariant across the source views, see
Section 5.3.

Two types of reconstruction tasks are performed during MTAE training: 1)
self-domain reconstruction and 2) between-domain reconstruction. Given M

source domains, there are M × M reconstruction tasks, of which M tasks are
self-domain reconstructions and the remaining M × (M − 1) tasks are between-
domain reconstructions. Note that the self-domain reconstruction is identical to
the standard autoencoder reconstruction (5.1).
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Formal description. Let {xli}
nl
i=1, be a set of dx-dimensional data points in

the lth domain, where l ∈ {1, ...,M}. Each domain’s data points are combined into
a matrix Xl ∈ Rnl×dx , where xl>i is its ith row, such that (x1

i ,x
2
i , . . .x

M
i ) form a

category-level correspondence. This configuration enforces the number of samples
in a category to be the same in every domain. Note that such a configuration is
necessary to ensure that the between-domain reconstruction works (we will discuss
how to handle the case with unbalanced samples in Section 5.2.3). The input and
output pairs used to train MTAE can then be written as concatenated matrices

X̄ = [X1; X2; ...; XM ],

X̄l = [Xl; Xl; ...; Xl] (5.3)

where X̄, X̄l ∈ RN×dx and N =
∑M

l=1 nl. In words, X̄ is the matrix of data points
taken from all domains and X̄l is the matrix of replicated data sets taken from the
lth domain. The replication imposed in X̄l constructs input-output pairs for the
autoencoder learning algorithm. In practice, the algorithm can be implemented
efficiently – without replicating the matrix in memory.

We now describe MTAE more formally. Let x̄>i and x̄l>i be the ith row of
matrices X̄ and X̄l, respectively, the feedforward MTAE reconstruction is

hi = σenc(W
>x̄i),

fΘ(l)(x̄i) = σdec(V
(l)>hi), (5.4)

where Θ(l) = {W,V(l)} contains the matrices of shared and individual weights,
respectively.

The MTAE training is achieved as follows. Let us define the loss function
summed over the datapoints

J(Θ(l)) =
N∑
i=1

L
(
fΘ(l)(x̄i), x̄

l
i

)
. (5.5)

Given M domains, training MTAE corresponds to minimizing the objective

Θ̂
(l)

:= arg min
Θ(l)

M∑
l=1

J(Θ(l)) + ηR(Θ(l)), (5.6)
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where R(Θ(l)) is a regularization term. In this work, we use the standard l2-
norm weight penalty R(Θ(l)) = ‖W‖22 + ‖V(l)‖22. Stochastic gradient descent is
applied on each reconstruction task to achieve the objective (5.6). Once training
is completed, the optimal shared weights Ŵ are obtained. The stopping criterion
is empirically determined by monitoring the average loss over all reconstruction
tasks during training – the process is stopped when the average loss stabilizes. The
detailed steps of the MTAE training is summarized in Algorithm 5.

Algorithm 5 The MTAE feature learning algorithm.
Input:
• Data matrices based on (5.3): X̄ and X̄l,∀l ∈ {1, ...,M};
• Source labels: {yli}

nl
i=1,∀l ∈ {1, ...,M};

• The learning rate: α;
1: Initialize W ∈ Rdx×dh and V(l) ∈ Rdh×dx , ∀l ∈ {1, ...,M} with small

random real values;
2: while not end of epoch do
3: Do rand-sel as described in Section 5.2.3 to balance the number of

samples per categories in X̄ and X̄l;
4: for l = 1 to M do
5: for all row of X̃ do
6: Do a forward pass based on (5.4);
7: Update W and V(l) to achieve the objective (5.6) with respect to

the following rules

V
(l)
ij ← V

(l)
ij − α

∂J({W,V(l)})
∂V

(l)
ij

,

Wij ← Wij − α
∂J({W,V(l)})

∂Wij
;

8: end for
9: end for
10: end while
Output:
• MTAE learned weights: Ŵ ∀l ∈ {1, ...,M};

The training protocol can be supplemented with a denoising criterion as in [225]
to induce more robust-to-noise features. To do so, we simply replace x̄i in (5.4)
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with its corrupted counterpart ˜̄xi ∼ Q(˜̄xi|x̄i). We name the MTAE model after
applying the denoising criterion the Denoising Multi-task Autoencoder (D-MTAE).

5.2.3 Handling unbalanced samples per category

MTAE requires that every instance in a particular domain has a category-level cor-
responding pair in every other domain. MTAE’s apparent applicability is therefore
limited to situations where the number of source samples per category is the same
in every domain. However, unbalanced samples per category occur frequently in
applications. To overcome this issue, we propose a simple random selection proce-
dure applied in the between-domain reconstructions, denoted by rand-sel, which
is simply balancing the samples per category while keeping their category-level
correspondence.

In detail, the rand-sel strategy is as follows. Letmc be the number of subsam-
ples in the c-th category, where mc = min(n1c, n2c, . . . , nMc) and nlc is the number
of samples in the c-th category of domain l ∈ {1, . . . ,M}. For each category c and
each domain l, select mc samples randomly such that nlc = n2c = . . . nMc = mc.
This procedure is executed in every iteration of the MTAE algorithm, see Line 3
of Algorithm 5.

Although one can argue that this procedure might reduce the optimality of the
multi-task strategy because of the random selection, this is perhaps the simplest
way to ensure the applicability of MTAE on the unbalanced sample situation. In
the experiments, we will show that this strategy works well on some cross-dataset
evaluations, see Section 5.4.

5.3 Experiment 1: Cross-domain Recognition

on MNIST and ETH-80

We conducted experiments on several real world object datasets to evaluate the
domain generalization ability of our proposed system. In Section 5.3, we investigate
the behaviour of MTAE in comparison to standard single-task autoencoder models
on raw pixels as proof-of-principle. In Section 5.4, we evaluate the performance
of MTAE against several state-of-the-art algorithms on modern object datasets
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such as the Office [187], Caltech [88], PASCAL VOC2007 [62], LabelMe [186], and
SUN09 [40].

In this part, we aim to understand MTAE’s behavior when learning from mul-
tiple domains that form physically reasonable object transformations such as roll,
pitch rotation, and dilation. The task is to categorize objects in views (domains)
that were not presented during training. We evaluate MTAE against several au-
toencoder models. To perform the evaluation, a variety of object views were con-
structed from the MNIST handwritten digit [125] and the ETH-80 object [129]
datasets.

5.3.1 Data Setup

We created four new datasets from MNIST and ETH-80 images: 1) MNIST-r, 2)
MNIST-s, 3) ETH80-p, and 4) ETH80-y. These new sets contain multiple domains
so that every instance in one domain has a pair in another domain. The detailed
setting for each dataset is as follows.

MNIST-r contains six domains, each corresponding to a degree of roll rotation.
We randomly chose 1000 digit images of ten classes from the original MNIST
training set to represent the basic view, i.e., 0 degree of rotation;2 each class has
100 images. Each image was subsampled to a 16 × 16 representation to simplify
the computation. This subset of 1000 images is denoted by M . We then created
5 rotated views from M with 15◦ difference in counterclockwise direction, denoted
by M15◦ , M30◦ . M45◦ , M60◦ , and M75◦ . The MNIST-s is the counterpart of
MNIST-r, where each domain corresponds to a dilation/scaling factor. The views
are denoted by M , M∗0.9, M∗0.8, M∗0.7, and M∗0.6, where the subscripts represent
the dilation factors with respect to the original view M .

The ETH80-p consists of eight object classes with 10 subcategories for each
class. In each subcategory, there are 41 different views with respect to pose angles.
We took five views from each class denoted by Ep0◦ , Ep22◦ , Ep45◦ , Ep68◦ , and Ep90◦ ,
which represent the horizontal poses, i.e., pitch-rotated views starting from the top
view to the side view. This makes the number of instances only 80 for each view. We
then greyscaled and subsampled the images to 28 × 28. The ETH80-y contains

2Note that the rotation angle of the basic view is not perfectly 0◦ since the original
MNIST images have varying appearances.
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five views of the ETH-80 representing the vertical poses, i.e., yaw-rotated views
starting from the right-side view to the left-side view denoted by E+y90◦ , E+y45◦ ,
Ey0◦ , E−y45◦ , and E−y90◦ . Other settings such as the image dimensionality and
preprocessing stage are similar to ETH80-p. Examples of the resulting views are
depicted in Figure 5.2.

(a) M (b) M15◦ (c) M30◦ (d) M45◦ (e) M60◦ (f) M75◦

(g) M (h) M∗0.9 (i) M∗0.8 (j) M∗0.7 (k) M∗0.6

(l) Ep0◦ (m) Ep22◦ (n) Ep45◦ (o) Ep68◦ (p) Ep90◦

Figure 5.2: Some image examples from the MNIST-r, MNIST-s, and ETH80-
p. A domain is represented by a particular view.

5.3.2 Algorithms for Comparison and Parameter Set-

tings

We compared the classification performance of our models with several single-
task autoencoder models: Descriptions of the methods and their hyperparameter
settings are provided below.

• AE [21]: the standard autoencoder model trained by stochastic gradient
descent, where all object views were concatenated as one set of inputs. The
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number of hidden nodes was fixed at 500 on the MNIST dataset and at
1000 on the ETH-80 dataset. The learning rate, weight decay penalty, and
number of iterations were empirically determined at 0.1, 3× 10−4, and 100,
respectively.

• DAE [225]: the denoising autoencoder with zero-masking noise, where all
object views were concatenated as one set of input data. The corruption level
was fixed at 30% for all cases. Other hyper-parameter values were identical
to AE.

• CAE [178]: the autoencoder model with the Jacobian matrix norm reg-
ularization referred to as the contractive autoencoder. The corresponding
regularization constant λ was set at 0.1.

• uDICA: the unsupervised Domain-Invariant Component Analysis [152], a
kernel feature projection algorithm . The tunable hyper-parameters are
the kernel width σ for the Gaussian RBF kernel and the number of sub-
space bases s. We grid-search σ ∈ {10−3, 10−2, . . . , 102, 103} and s ∈
{50, 100, 150, . . . , 500} according the validation performance on source do-
mains.

• MTAE: our proposed multi-task autoencoder with identical learning set-
tings as AE, except for the learning rate set at 0.03, which was also chosen
empirically. This value provides a lower reconstruction error for each task
and visually clearer first layer weights.

• D-MTAE: MTAE with a denoising criterion. The learning rate was set the
same as MTAE; other hyper-parameters followed DAE.

We also did experiments using DICA, the supervised variant of uDICA, where
the Dirac kernel is used as the label similarity function. Surprisingly, the peak
performance of uDICA is consistently higher than DICA. A possible explanation
is that the Dirac kernel function measuring the label similarity is less appropriate
in this task. So we only include uDICA in our comparisons.

We normalized the raw pixels to a range of [0, 1] for autoencoder-based models
and l2-unit ball for uDICA. We evaluated the classification accuracies of the learned
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features using multi-class SVM with linear kernel (L-SVM) [49]. Using a linear
kernel keeps the classifier simple – since our main focus is on the feature extraction
process. The LIBLINEAR package [63] was used to run the L-SVM.

5.3.3 Cross-domain Recognition Results

We evaluated the object classification accuracies of each algorithm by leave-one-
domain-out test, i.e., taking one domain as the test set and the remaining domains
as the training set. For all autoencoder-based algorithms, we repeated the ex-
periments on each leave-one-domain-out case 30 times and reported the average
accuracies. The standard deviations are not reported since they are small (±0.1),
and also for presentation convenience.

The detailed results on the MNIST-r and MNIST-s can be seen in Table 5.1.
On average, MTAE has the second best classification accuracies, and in particular
outperforms single-task autoencoder models. This indicates that the multi-task
feature learning strategy can provide better discriminative features than the single-
task feature learning with respect to unseen views. The algorithm with the best
performance is on these datasets is D-MTAE. Specifically, D-MTAE performs best
on average and also on 9 out of 11 individual cross-domain cases of the MNIST-r and
MNIST-s. The closest single-task feature learning competitor to D-MTAE is CAE.
This suggests that the denoising criterion strongly benefits domain generalization.
The denoising criterion is also useful for single-task feature learning although it
does not yield competitive accuracies, see AE and DAE performance.

Observe that there is an anomaly in the MNIST-r dataset: the performance
on M45◦ is worse than its neighbors (M30◦ ,M60◦). This anomaly appears to be
related to the geometry of the MNIST-r digits. We found that the most frequently
misclassified digits are 4, 6, and 9 onM45◦ , which rarely occurs on other MNIST-r’s
domains – typically 4 as 9, 6 as 4, and 9 as 8. The same phenomenon applies to
L-SVM.

We also obtain a consistent trend on the ETH80-p and ETH80-y datasets, i.e.,
D-MTAE and MTAE are the best and second best models on average. Table 5.2
summarizes the complete evaluation results on those datasets. The perfect accuracy
is obtained on recognizing E−y45, which indicates that dataset bias is non-existence
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in that case. Note that D-MTAE does not provide good performance on Ep90, which
can be attributed to overfitting – the model may be too complex compared to the
number of ETH80 training samples.
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Table 5.1: The leave-one-domain-out classification accuracies % on the MNIST-r and MNIST-s. Bold-red
and bold-black indicate the best and second best performance.

Source Target Raw AE DAE CAE uDICA MTAE D-MTAE
MNIST-r leave-one-roll-rotation-out

M15◦ , M30◦ ,
M45◦ , M60◦ ,
M75◦

M 52.40± 0.00 74.20± 0.02 76.90± 0.02 72.10± 0.04 67.20± 0.00 77.90± 0.05 82.50± 0.09

M , M30◦ ,
M45◦ , M60◦ ,
M75◦

M15◦ 74.10± 0.00 93.20± 0.05 93.20± 0.03 95.30± 0.09 87.80± 0.00 95.70± 0.06 96.30± 0.01

M , M15◦ ,
M45◦ , M60◦ ,
M75◦

M30◦ 71.40± 0.00 89.90± 0.10 91.30± 0.07 92.60± 0.03 88.80± 0.00 91.20± 0.10 93.40± 0.02

M , M15◦ ,
M30◦ , M60◦ ,
M75◦

M45◦ 61.40± 0.00 82.20± 0.05 81.10± 0.10 81.50± 0.07 77.80± 0.00 77.30± 0.09 78.60± 0.03

M , M15◦ ,
M30◦ , M45◦ ,
M75◦

M60◦ 67.40± 0.00 90.00± 0.09 92.80± 0.04 92.70± 0.10 84.20± 0.00 92.40± 0.05 94.20± 0.03

M , M15◦ ,
M30◦ , M45◦ ,
M60◦

M75◦ 55.40± 0.00 73.80± 0.09 76.50± 0.06 79.30± 0.10 69.50± 0.00 79.90± 0.06 80.50± 0.10

Average 63.68± 0.00 83.88± 0.07 85.30± 0.05 85.58± 0.07 79.22± 0.00 85.73± 0.07 87.58± 0.05

MNIST-s leave-one-dilation-out
M∗0.9, M∗0.8,
M∗0.7, M∗0.6

M 54.00± 0.00 67.50± 0.05 71.80± 0.02 75.80± 0.01 75.80± 0.01 74.50± 0.02 76.00± 0.01

M , M∗0.8,
M∗0.7, M∗0.6

M∗0.9 80.40± 0.00 95.10± 0.04 94.00± 0.01 94.90± 0.03 88.60± 0.00 97.80± 0.03 98.00± 0.08

M , M∗0.9,
M∗0.7, M∗0.6

M∗0.8 82.60± 0.00 94.60± 0.07 92.90± 0.10 94.90± 0.10 86.60± 0.00 96.30± 0.05 96.40± 0.02

M , M∗0.9,
M∗0.8, M∗0.6

M∗0.7 78.20± 0.00 93.70± 0.05 91.60± 0.10 92.50± 0.04 87.40± 0.00 95.80± 0.06 94.90± 0.05

M , M∗0.9,
M∗0.8, M∗0.7

M∗0.6 64.70± 0.00 74.80± 0.03 76.10± 0.08 77.50± 0.07 75.30± 0.00 78.00± 0.04 78.30± 0.06

Average 71.98± 0.00 85.14± 0.05 85.28± 0.06 87.12± 0.05 82.74± 0.00 88.48± 0.04 88.72± 0.04
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Table 5.2: The leave-one-domain-out classification accuracies % on the ETH80-p and ETH80-y.

Source Target AE DAE CAE MTAE D-MTAE
ETH80-p leave-one-pitch-out

Ep22, Ep45, Ep68, Ep90 Ep0 70.00± 0.07 73.73± 0.08 74.50± 0.00 73.76± 0.05 77.50± 0.00
Ep0, Ep45, Ep68, Ep90 Ep22 86.25± 0.00 88.74± 0.05 88.50± 0.00 92.50± 0.00 92.50± 0.00
Ep0, Ep22, Ep68, Ep90 Ep45 92.51± 0.05 93.77± 0.06 93.49± 0.05 97.51± 0.08 97.53± 0.10
Ep0, Ep22, Ep45, Ep90 Ep68 95.01± 0.05 98.74± 0.05 99.00± 0.00 98.78± 0.08 98.78± 0.09
Ep0, Ep22, Ep45, Ep68 Ep90 75.00± 0.00 75.02± 0.06 74.49± 0.08 75.03± 0.10 72.78± 0.09

Average 83.75± 0.03 86.00± 0.06 86.00± 0.03 87.51± 0.06 87.82± 0.05

ETH80-y leave-one-yaw-out
E+y45, Ey0, E−y45, E−y90 E+y90 84.98± 0.06 94.97± 0.09 91.20± 0.01 91.26± 0.08 92.50± 0.00
E+y90, Ey0, E−y45, E−y90 E+y45 98.75± 0.00 98.75± 0.00 98.75± 0.00 98.75± 0.00 98.75± 0.00
E+y90, E+y45, E−y45, E−y90 Ey0 92.48± 0.06 93.73± 0.08 94.72± 0.09 96.25± 0.00 97.50± 0.00
E+y90, E+y45, Ey0, E−y90 E−y45 97.49± 0.05 98.75± 0.00 98.75± 0.00 100.00± 0.00 100.00± 0.00
E+y90, E+y45, Ey0, E−y45 E−y90 91.23± 0.06 94.96± 0.09 93.80± 0.10 96.25± 0.00 96.25± 0.00

Average 92.99± 0.05 96.23± 0.05 95.44± 0.06 96.50± 0.02 97.00± 0.00
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5.3.4 Weight Visualization

Useful insight is obtained from considering the qualitative outcome of the MTAE
training by visualizing the first layer weights. Figures 5.3-5.5 depict the learned
weights of the autoencoder-based models on the MNIST-r, MNIST-s, and ETH80-p
datasets, respectively. From these figures, we can conclude that both MTAE and
D-MTAE’s weights form a filter that seem to capture the underlying transformation
across the views. On the contrary, the AE’s and DAE’s weights only explain the
contents of the objects such as, in the MNIST-r and MNIST-s cases, local blob
detectors and stroke detectors [225]. This may be a reason that MTAE and D-
MTAE features can provide better domain generalization than AE and DAE, since
they implicitly capture the relationship among the source domains.

Next we discuss the difference between MTAE and D-MTAE filters. The D-
MTAE filters not only capture the object transformation, but also produce features
that describe the object contents more distinctively. These filters basically combine
both properties of the DAE and MTAE filters that might further benefit the domain
generalization.

5.3.5 Invariance Analysis

A possible explanation for the effectiveness of MTAE relates to the dimensionality
of the manifold in feature space where samples concentrate. We hypothesize that
if features concentrate near a low-dimensional submanifold, then the algorithm has
found simple invariant features and will generalize well.

To test the hypothesis, we examine the singular value spectrum of the Jaco-
bian matrix Jx(z) =

[
∂zi
∂xj

]
ij
, where x and z are the input and feature vectors

respectively [178]. The spectrum describes the local dimensionality of the mani-
fold around which samples concentrate. If the spectrum decays rapidly, then the
manifold is locally of low dimension.

Figure 5.6 depicts the average singular value spectrum on test samples from
MNIST-r and MNIST-s. The spectrum of D-MTAE decays the most rapidly, fol-
lowed by MTAE and then DAE (with similar rates), and AE decaying the slowest.
The ranking of decay rates of the four algorithms matches their ranking in terms of
empirical performance in Table 5.1. Figure 5.6 thus provides partial confirmation
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(a) AE (b) DAE

(c) MTAE (d) D-MTAE

Figure 5.3: The 2D visualization of 100 randomly chosen weights after pre-
training on the MNIST-r dataset. Each patch corresponds to a row of the
learned weight matrix W that represents a “filter”.

for our hypothesis. However, a more detailed analysis is necessary before drawing
strong conclusions.
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(a) AE (b) DAE

(c) MTAE (d) D-MTAE

Figure 5.4: The 2D visualization of 100 randomly chosen weights after pre-
training on the MNIST-s dataset.

5.4 Experiment 2: Cross-domain Recognition

on Modern Benchmarks

In the second set of experiments, we evaluated the cross-recognition performance
of the proposed algorithms on modern object datasets. The aim is to show that
MTAE and D-MTAE are applicable and competitive in the more general setting.
We used the Office, Caltech, PASCAL VOC2007, LabelMe, and SUN09 datasets
from which we formed two cross-domain datasets. Our general strategy is to extend
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(a) AE (b) DAE

(c) MTAE (d) D-MTAE

Figure 5.5: The 2D visualization of 100 randomly chosen weights after pre-
training on the ETH80-p dataset.

the generalization of features extracted from the current best deep convolutional
neural network [118].

5.4.1 Data Setup

The first cross-domain dataset consists of images from PASCAL VOC2007 (V),
LabelMe (L), Caltech-101 (C), and SUN09 (S) datasets, each of which represents
one domain. C is an object-centric dataset, while V, L, and S are scene-centric.
This dataset, which we abbreviate as VLCS, shares five object categories: ‘bird’,
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Figure 5.6: The average singular value spectrum of the Jacobian matrix over
the MNIST-r and MNIST-s datasets.

‘car’, ‘chair’, ‘dog’, and ‘person’. Each domain in the VLCS dataset was divided
into a training set (70%) and a test set (30%) by random selection from the overall
dataset. The detailed training-test configuration for each domain is summarized
in Table 5.3. Instead of using the raw features directly, we employed the DeCAF6

features [56] as inputs to the algorithms. These features have dimensionality of
4,096 and are publicly available.3

The second cross-domain dataset is referred to as theOffice+Caltech [83,187]
dataset that contains four domains: Amazon (A), Webcam (W), DSLR (D), and
Caltech-256 (C), which share ten common categories. This dataset has 8 to 151
instances per category per domain, and 2,533 instances in total. We also used the
DeCAF6 features extracted from this dataset, which are also publicly available.4

5.4.2 Training Protocol

On these datasets, we utilized the MTAE or D-MTAE learning as pretraining for
a fully-connected neural network with one hidden layer (1HNN). The number of

3http://www.cs.dartmouth.edu/~chenfang/proj_page/FXR_iccv13/index.php
4http://vc.sce.ntu.edu.sg/transfer_learning_domain_adaptation/

http://www.cs.dartmouth.edu/~chenfang/proj_page/FXR_iccv13/index.php
http://vc.sce.ntu.edu.sg/transfer_learning_domain_adaptation/
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Table 5.3: Number of training and test instances for each domain in the
VLCS dataset.

Domain VOC2007 LabelMe Caltech-101 SUN09
#training 2,363 1,859 991 2,297

#test 1,013 797 424 985

hidden nodes was set at 2,000, which is less than the input dimensionality. In
the pretraining stage, the number of output layers was the same as the number
of source domains – each corresponds to a particular source domain. The sigmoid
activation and linear activation functions were used for σenc(·) and σdec(·).

The MTAE pretraining was run with the learning rate at 5 × 10−4, the num-
ber of epochs at 500, and the batch size at 10, which were empirically determined
with respect to the smallest average reconstruction loss. D-MTAE has the same
hyper-parameter setting as MTAE except for the additional zero-masking corrup-
tion level at 20%. After the pretraining is completed, we then performed back-
propagation fine-tuning using 1HNN with softmax output, where the first layer
weights were initialized by either the MTAE or D-MTAE learned weights. The
supervised learning hyper-parameters were tuned using 10-fold cross validation
(10FCV) on source domains. We denote the overall models by MTAE+1HNN
and D-MTAE+1HNN.

5.4.3 Baselines

We compared our proposed models with six baselines:

• L-SVM: an SVM with linear kernel.

• 1HNN: a single hidden layer neural network without pretraining.

• DAE+1HNN: a two-layer neural network with denoising autoencoder pre-
training (DAE+1HNN).

• Undo-Bias [113]: a multi-task SVM-based algorithm for undoing dataset
bias. Three hyper-parameters (λ,C1, C2) require tuning by 10FCV.
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• UML [64]: a structural metric learning-based algorithm that aims to learn
a less biased distance metric for classification tasks. The initial tuning pro-
posal for this method was using a set of weakly-labeled data retrieved from
querying class labels to search engine. However, here we tuned the hyperpa-
rameters using the same strategy as others (10FCV) for a fair comparison.

• LRE-SVM [236]: a non-linear exemplar-SVMs model with a nuclear norm
regularization to impose a low-rank likelihood matrix. Four hyper-parameters
(λ1, λ2, C1, C2) were tuned using 10FCV.

The last three are the state-of-the-art domain generalization algorithms for object
recognition.

We report the performance in terms of the classification accuracy (%) follow-
ing Xu et al. [236]. For all algorithms that are optimized stochastically, we ran
independent training processes using the best performing hyper-parameters in 10
times and reported the average accuracies.

Table 5.4: The groundtruth L-SVM accuracies % on the standard training-
test evaluation. The left-most column indicates the training set, while the
upper-most row indicates the test set.

Training/Test VOC2007 LabelMe Caltech-101 SUN09
VOC2007 66.34 34.50 65.09 52.49
LabelMe 44.03 68.76 43.87 41.02

Caltech-101 52.81 32.37 95.99 39.29
SUN09 52.42 42.03 40.33 74.21

Table 5.5: The cross-recognition accuracy % on the VLCS dataset.

Algorithms L,C,S → V V,C,S → L V,L,S → C V,L,C → S Avg.
L-SVM 58.86± 0.00 52.49± 0.00 77.67± 0.00 49.09± 0.00 59.93± 0.00
1HNN 59.10± 0.09 58.20± 0.04 86.87± 0.12 57.86± 0.15 65.46± 0.10

DAE+1HNN 62.00± 0.11 59.23± 0.00 87.50± 0.09 54.12± 0.08 65.75± 0.07
Undo-Bias 54.29± 0.00 58.09± 0.00 87.50± 0.00 54.21± 0.00 63.52± 0.00

UML 56.26± 0.00 58.50± 0.00 91.13± 0.00 58.49± 0.00 65.85± 0.00
LRE-SVM 60.58± 0.00 59.74± 0.00 88.11± 0.00 54.88± 0.00 65.83± 0.00

MTAE+1HNN 61.09± 0.02 59.24± 0.00 90.17± 0.08 60.20± 0.06 67.81± 0.04
D-MTAE+1HNN 63.90± 0.07 60.13± 0.00 89.05± 0.06 61.33± 0.08 68.60± 0.05
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5.4.4 Results on the VLCS Dataset

We first conducted the standard training-test evaluation using L-SVM, i.e., learning
the model on a training set from one domain and testing it on a test set from
another domain, to check the groundtruth performance and also to identify the
existence of the dataset bias. The performance is summarized in Table 5.4. We
can see that the bias indeed exists in every domain despite the use of DeCAF6, the
sixth layer features of the state-of-the-art deep convolutional neural network. The
performance gap between the best cross-domain performance and the groundtruth
is large, with ≥ 14% difference.

We then evaluated the domain generalization performance of each algorithm.
We conducted leave-one-domain-out evaluation, which induces four cross-domain
cases. Table 5.5 summarizes the algorithms’ accuracy. In general, the dataset
bias can be reduced by all algorithms after learning from multiple source domains
(compare, e.g., the minimum accuracy over L,C,S → V tasks in Table 5.5 with the
maximum cross-recognition accuracy over the VOC2007’s column in Table 5.4).
Caltech-101, which is object-centric, appears to be the easiest dataset to recognize,
consistent with an investigation in [215]: scene-centric datasets tend to generalize
well over object-centric datasets. Note that the performance of 1HNN has already
achieved competitive accuracy compared to more complicated state-of-the-art al-
gorithms, Undo-Bias, UML, and LRE-SVM. This suggests that it is not neces-
sary anymore to apply complex domain generalization algorithms if operating on
DeCAF6 features. Furthermore, D-MTAE outperforms other algorithms on three
out of four cross-domain cases and on average, while MTAE has the second best
performance on average.

5.4.5 Results on the Office+Caltech Dataset

We report the experiment results on the Office+Caltech dataset. Table 7.6 sum-
marizes the recognition accuracies of each algorithm over four cross-domain cases.
D-MTAE+1HNN has the best performance on two out of four cross-domain cases
and ranks second for the remaining cases. On average, D-MTAE+1HNN has better
performance than the prior state-of-the-art on this dataset, LRE-SVM [236].
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Table 5.6: The cross-recognition accuracy % on the Office+Caltech dataset.

Algorithms A,C → D,W D,W → A,C C,D,W → A A,W,D → C Avg.
L-SVM 82.08± 0.00 76.12± 0.00 90.61± 0.00 84.51± 0.00 83.33± 0.00
1HNN 83.41± 0.15 76.49± 0.11 92.13± 0.08 85.89± 0.03 84.48± 0.09

DAE+1HNN 82.05± 0.19 79.04± 0.09 92.02± 0.07 85.17± 0.04 84.57± 0.10
Undo-Bias 80.49± 0.00 69.98± 0.00 90.98± 0.00 85.95± 0.00 81.85± 0.00

UML 82.29± 0.00 79.54± 0.00 91.02± 0.00 84.59± 0.00 84.36± 0.00
LRE-SVM 84.59± 0.00 81.17± 0.00 91.87± 0.00 86.38± 0.00 86.00± 0.00

MTAE+1HNN 84.23± 0.11 79.30± 0.10 92.20± 0.04 85.98± 0.09 85.43± 0.09
D-MTAE+1HNN 85.35± 0.20 80.52± 0.15 93.13± 0.05 86.15± 0.08 86.29± 0.12

5.5 Chapter Summary

This chapter presents a new approach to multi-task representation learning that
reduces dataset bias in visual object recognition. The main idea is to extract
features shared across domains via a training protocol that, given an image from one
domain, learns to reconstruct analogs of that image for all domains. The strategy
yields two variants: the Multi-task Autoencoder (MTAE) and the Denoising MTAE
(D-MTAE) which incorporates a denoising criterion using zero-masking noise. The
algorithms were evaluated comprehensively over a wide range of cross-domain tasks.

Both MTAE and D-MTAE provides better domain generalization performance
than existing single-task autoencoder-based models (AE, DAE, and CAE), espe-
cially on raw pixels of the transformed MNIST and ETH-80 images. This shows
that the new algorithms successfully learn view-invariant features on those datasets.
An observation of the visualization of the learned weights indicates that MTAE
captures the underlying object transformation among the MNIST and ETH-80
domains. The learned weights of AE, DAE, or CAE appear to be different from
that of MTAE, which only highlight either local or global contents of the objects.
Furthermore, the learned weights of D-MTAE seem to combine both properties of
DAE and MTAE.

A spectral analysis of the Jacobian matrix of the features with respect to the
inputs shows that MTAE and D-MTAE do a better job of characterizing a low-
dimensional submanifold near which samples concentrate. This is indicated by a
few large singular values of MTAE and D-MTAE encoder’s Jacobian compared to
that of AE and DAE. Such an outcome suggests that our algorithms have found
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simple invariant features and will then provide good generalization.
On the VLCS and Office+Caltech datasets, MTAE and D-MTAE, which act as

pretraining models for a neural network, provides competitive performance com-
pared to prior state-of-the-art algorithms. In particular, D-MTAE achieves the best
average accuracies on both datasets. MTAE performs second best on the VLCS
and comes third on the Office+Caltech with a small performance gap compared to
the second best model, LRE-SVM.

Our results suggest several directions for further study. Firstly, it is worth
investigating whether stacking MTAEs improves performance. Secondly, more ef-
fective procedures for handling unbalanced samples are required, since these occur
frequently in practice. Thirdly, the effectiveness of MTAE and D-MTAE for visual
object recognition may be improved by incorporating a convolutional architec-
ture [141]. Finally, a natural application of MTAEs is to streaming data such as
video, where the appearance of objects transforms in real-time.

The problem of dataset bias remains far from solved: the best model on the
VLCS dataset achieved accuracies less than 70% on average. A partial explanation
for the poor performance compared to supervised learning is insufficient training
data: the class-overlap across datasets is quite small (only 5 classes are shared
across VLCS). Further progress in domain generalization requires larger datasets.

The next contribution chapter will present Scatter Component Analysis (SCA),
a unified kernel-based feature learning algorithm for both domain adaptation and
domain generalization. SCA is fundamentally different from MTAE, which finds
a domain-invariant representation via a linear projection by solving a generalized
eigenproblem.
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6
Scatter Component Analysis: A
Unified Framework for Domain

Adaptation and Domain
Generalization

This chapter presents the fourth contribution of this thesis. We develop a fast,
unified algorithm to reduce dataset bias that is compatible to both domain adap-
tation and domain generalization, Scatter Component Analysis (SCA). The al-
gorithm finds a representation that trades between maximizing the separability of
classes, minimizing the mismatch between domains, and maximizing the separabil-
ity of data; each of which can be quantified through a single measure. We performed
extensive experiments to evaluate the performance of SCA against a large suite of
alternatives. We found that SCA performs considerably faster than the prior state-
of-the-art across a range of visual object cross-domain recognition, with competitive
or better accuracy.
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6.1 Introduction

As discussed in Section 2.6.1, domain adaptation and domain generalization are two
almost similar learning settings with only one difference: the presence of the unla-
beled target samples during training. If the unlabeled target samples are available,
one can utilize domain adaptation algorithms to deal with dataset bias; otherwise,
domain generalization algorithms should be used. However, typical existing domain
adaptation and domain generalization algorithms are generally not compatible to
each other – domain adaptation methods cannot be directly applied to domain
generalization or vice versa.

Another important issue is that prior state-of-the-art domain adaptation and
domain generalization algorithms for object recognition result in optimization prob-
lems that are inefficient to solve [133, 134, 195, 236]. They may not be suitable in
situations that require a real-time learning stage. Therefore, it is highly desirable
to develop algorithms that can be computed more efficiently, are compatible with
both domain adaptation and domain generalization, and provide state-of-the-art
performance.

6.1.1 Chapter Goals

The overall goal of this chapter is to develop a fast representation learning algo-
rithm to reduce dataset bias that can be applied to both domain adaptation and
domain generalization settings. The learned representations should incorporate
four requirements: (i) separate points with different labels and (ii) separate the
data as a whole (high variance), whilst (iii) not separating points sharing a label
and (iv) not separating the two or more domains.

To achieve the overall goal, this chapter establishes several specific objectives
as follows:

• Whether the above requirements needed to learn the domain-invariant rep-
resentations can be quantified using a single measure;

• Whether the new algorithm can produce a linearly separable representation
and can be computed through an optimization that admits a fast and exact
solution;
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• Whether the new algorithm can provide the state-of-the-art performance in
terms of accuracy on both domain adaptation and domain generalization
tasks;

• Whether the candidate solution of the algorithm is theoretically guaranteed
in the context of domain adaptation, i.e., the target generalization error of
the hypothesis is bounded.

6.1.2 Chapter Organization

This chapter is organized as follows. Section 6.2 presents a formal description of
scatter, a measure that can quantify all requirements needed in the proposed rep-
resentation learning algorithm. Section 6.3 describes the corresponding algorithm,
which we refer to as Scatter Component Analysis (SCA). The theoretical domain
adaptation bound for SCA is presented in Section 6.4. Comprehensive evaluation
results and analyses are provided in Sections 6.5 and 6.6. Finally, Section 6.7
concludes the chapter.

6.2 Scatter

The algorithm proposed in this chapter operates on a feature space referred to as
a reproducing kernel Hilbert space (RKHS) H, see Section 2.5.1 for the theoretical
background of the RKHS. The main motivation is to transform original inputs
onto H, which is a high or possibly infinite dimensional space, with the hope that
the new features are linearly separable. The most important property of RKHS
is perhaps to allow a computationally feasible transformation onto H by virtue of
the kernel trick.

Before introducing scatter, it is convenient to first represent domains as points
in RKHS using the mean map [199]:

Definition 10 (Mean map). Suppose that X is equipped with a kernel, and that
H is the corresponding RKHS with feature map φ : X → H. Let ∆X denote the
set of probability distributions on X . The mean map takes distributions on X to
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points in H:
µ : ∆X → H : P 7→ E

x∼P

[
φ(x)

]
=: µP.

Geometrically, the mean map is the centroid of the image of the distribution
under φ. We define scatter as the variance of points in the image around its
centroid:

Definition 11 (Scatter). The scatter of distribution P on X relative to φ is

Ψφ(P) := E
x∼P

[∥∥∥µP − φ(x)
∥∥∥2

H

]
where ‖ · ‖H is the norm on H.

The scatter of a domain cannot be computed directly; instead it is estimated
from observations. The scatter of a finite set of observations {x1, . . . , xn} is com-
puted with respect to the empirical distribution

P̂(x) :=
1

n

n∑
i=1

δxi(x) where δxi(x) =

1 if xi = x

0 else.

We provide a theorem that shows how the difference between the true scatter
and a finite sample estimate decreases with the sample size. To do so, we need a
concentration of measure bound referred to as McDiarmid’s inequality [143].

Theorem 10 (McDiarmid’s Inequality). Let X1, ..., Xn be independent random
variables taking values in the set X under a distribution P. Further, let f : X n → R
be a function of X1, .., Xn that satisfies

sup
x1...xn,x′i∈X

∣∣∣f(x1 . . . xi . . . xn)− f(x1 . . . x
′
i . . . xn)

∣∣∣ ≤ ci,
where xi 6= x′i and 1 ≤ i ≤ n. The following inequality holds for all ε > 0

P
{∣∣∣E[f ]− f

∣∣∣ ≥ ε} ≤ 2 exp

(
−2ε2∑n
i=1 c

2
i

)
.

Now it is convenient to bound the difference between the empirical scatter and
the true scatter given by the following theorem:
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Theorem 11 (Scatter Bound). Suppose P is a true distribution over all samples
of size n and P̂ is its empirical distribution. Further suppose that ‖φ(x)‖2 ≤M for
all x ∈ X . Then, with probability ≥ 1− δ,

∣∣∣Ψφ(P)−Ψφ(P̂)
∣∣∣ ≤M

√
2 log(2

δ )

n
.

Proof. Let S = {x1, . . . , xi−1, xi, xi+1, . . . , xn} and S̃ =

{x1, . . . , xi−1, x̃i, xi+1, . . . , xn} be two samples with one point difference only.
Using Triangle Inequality and the fact that ‖φ(x)‖2H ≤M , the following statement
holds

sup
x1...xn,x̃i∈X

|Ψφ(S)−Ψφ(S′)| ≤ sup
x1...xn,x̃i∈X

|Ψφ(S)|+ |Ψφ(S′)|

= sup
x̃i∈X

1

n
‖µP̂ − φ(xi)‖2H +

1

n
‖µP̂ − φ(x̃i)‖2H ≤

2M

n
.

By McDiarmid’s inequality, for all ε > 0 and ci = 2M
n

P
{∣∣∣Ψφ(P)−Ψφ(P̂)

∣∣∣ > ε
}
≤ 2 exp

(
−ε

2 · n
2M2

)
.

Setting δ = 2 exp
(
− ε2·n

2M2

)
, the results follows directly.

We provide an example for later use. If the input space is a vector space and
φ is the identity then it follows immediately that

Lemma 12 (Total variance as scatter). The scatter of the set of d-dimensional
points (in a matrix form) X = [x1, . . . ,xn]> ∈ Rn×d relative to the identity map
φ : Rd → Rd, i.e., φ(x) := x, is the total variance:

Ψ(X) = Tr(X− X̄)>(X− X̄) = Tr Cov(X),

where Tr(·) denotes the trace operation and X̄ = [x̄, . . . , x̄]> with x̄ =
∑n

i=1 xi.

We utilize scatter to formulate a feature learning algorithm referred to as Scat-
ter Component Analysis (SCA). Specifically, scatter quantifies requirements needed
in SCA to develop an effective solution for both domain adaptation and general-
ization, which will be described in the next section.
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6.3 Scatter Component Analysis (SCA)

SCA aims to convert the observations into a configuration of points in feature space
such that the domain mismatch is reduced. SCA then finds a representation of the
problem (that is, a linear transformation of feature space) for which (i) the source
and target domains are similar and (ii) elements with the same label are similar;
whereas (iii) elements with different labels are well separated and (iv) the variance
of the whole data is maximized. Each requirement can be quantified through scatter
that leads to four consequences: (i) domain scatter, (ii) between-class scatter, (iii)
within-class scatter, and (iv) total scatter.

The remainder of the subsection defines the above four scatter quantities in
more detail (along the way relating the terms to principal component analysis, the
maximum mean discrepancy, and Fisher’s linear discriminant) and describes the
SCA’s learning algorithm. We will also see that SCA can be easily switched to
either domain adaptation or domain generalization by modifying the configuration
of the input domains.

6.3.1 Total Scatter

Given m domains P1
X , . . . ,PmX on X , we define the total scatter as the average over

the domains P̄X = 1
m

∑m
d=1 PdX . The total scatter is then defined by

total scatter = Ψφ

(
P̄X
)
. (6.1)

It is worth emphasizing that this definition is general in the sense that it covers
both domain adaptation (m = 2 and one of them is the target domain) and domain
generalization (m > 2).

Total scatter is estimated from data as follows. Let X = [x1, ...,xn]> ∈ Rn×p

be the matrix of unlabeled samples from all m domains (n =
∑m

d=1 nd, where nd
is the number of examples in the d-th domain). Given a feature map φ : Rp → H
corresponding to kernel κ, define a set of functions arranged in a column vector
Φ = [φ(x1), ..., φ(xn)]>. After centering {φ(xi)}ni=1 by subtracting the mean, the
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covariance matrix is Cov(Φ) = Φ>Φ. By Lemma 12,

Ψφ

(
ˆ̄PX
)

= Tr Cov(Φ). (6.2)

We are interested in performing dimensionality reduction on the input data to
select only relevant information, that is, by applying a linear transform W to a
finite subspace Rk. In this context, the transformed data or features should have
a property that the total scatter is maximized. Suppose that the inputs are first
mapped to a reproducing kernel Hilbert space H to encourage linear separability.
To avoid the direct computation of φ : X → H, which could be expensive or
undoable, we use the kernel trick. Let Z = ΦW ∈ Rn×k be the n transformed
feature vectors and [K]ij = [ΦΦ>]ij = [κ(xi,xj)]. After fixing B ∈ Rn×k such that
W = Φ>B, the total transformed scatter is

ΨB◦φ

(
ˆ̄PX
)

= Tr(B>KKB︸ ︷︷ ︸
Cov(Z)

). (6.3)

We remark that, in our notation, Kernel Principal Component Analysis
(KPCA) [192] corresponds to the optimization problem

max ΨB◦φ

(
ˆ̄PX
)
s.t. B>KB = I. (6.4)

6.3.2 Domain Scatter

Suppose we are given m domains P1
X , . . . ,PmX on X . We can think of the set

{µP1
X
, . . . , µPm

X
} ⊂ H as a sample from some latent distribution on domains. Equip-

ping the sample with the empirical distribution and computing scatter relative to
the identity map on H yields domain scatter :

Ψ
(
{µP1

X
, . . . , µPm

X
}
)

=
1

m

m∑
i=1

∥∥∥µ̄− µPi

∥∥∥2
, (6.5)

where µ̄ = 1
m

∑m
i=1 µPi . Note that domain scatter coincides with the distribu-

tional variance introduced in [152]. Domain scatter is also essentially equivalent
to the Maximum Mean Discrepancy (MMD), used in some domain adaptation
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algorithms [104,135,166].

Definition 12. Let F be a set of functions f : X → R. The maximum mean
discrepancy between domains P and Q is

MMDF [P,Q] := sup
f∈F

(
E
P

[f(x)]− E
Q

[f(x)]

)
.

The MMD measures the extent to which two domains resemble one another
from the perspective of function class F . The following theorem relates domain
scatter to MMD given two domains, where the case of interest is bounded linear
functions on the feature space:

Theorem 13 (Scatter recovers MMD). The scatter of domains P and Q on X
is their (squared) maximum mean discrepancy:

Ψ({µP, µQ}) =
1

4
MMD2

F [P,Q],

where F = {f : X → R | f is linear and ‖f‖F ≤ 1}.
In particular, if φ is induced by a characteristic kernel on X then Ψ({µP, µQ}) =

0 if and only if P = Q.

Proof. Note that the theorem involves two levels of probability distributions: (i)
the domains P and Q on X , and (ii) the empirical distribution on F that assigns
probability p = 1

2 to the points µP and µQ, and p = 0 to everything else. Let
µ̄ = 1

2(µP + µQ). Using (6.7),

Ψ({µP, µQ}) =
1

2
‖µ̄− µP‖2F +

1

2
‖µ̄− µQ‖2F =

1

4
‖µP − µQ‖2F .

The result follows from Theorem 2.2 of [28].

Theorem 13 also tells us that the domain scatter is a valid metric if the kernel
on X is characteristic, that is, the mean map (see Definition 10) associated with
the kernel is injective [201]. We also remark that MMD can be estimated from
observed data with bound provided in [87], which is analogous to Theorem 11.

Domain scatter in a transformed feature space in Rk is estimated as follows.
Suppose we have m samples Sdu = {xdi }

nd
i=1 ∼ PdX . Recall that Z = ΦW =
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K>B, where Z = [z1, . . . , zn]> contains projected samples from all domains: zi =

W>φ(xi) and

K =


K11 · · · K1m

...
. . .

...
Km1 · · · Kmm

 ∈ Rn×n (6.6)

is the corresponding kernel matrix, where [Kkl]ij = κ(xki ,x
l
j). By some algebra,

the domain scatter is

ΨB

(
{µP̂d

X
}md=1

)
= Tr(B>KLKB), (6.7)

where L is a coefficient matrix

L =


L11 · · · L1m

...
. . .

...
Lm1 · · · Lmm

 ∈ Rn×n

with [Lkl]ij = m−1
m2n2

k
if k = l, and − 1

m2nknl
otherwise.

6.3.3 Class Scatter

For each class k ∈ {1, . . . , C}, let PlX|k denote the conditional distribution on X
induced by the total labeled domain PlXY = 1

q

∑q
j=1 P

j
XY when Y = k (the number

of labeled domains q does not necessarily equal to the number of source domains
m). We define the within-class scatter and between-class scatter as

Ψφ(PlX|k)︸ ︷︷ ︸
within-class-k scatter

and Ψ
(
{µPl

X|k=1
, . . . , µPl

X|k=C
}
)

︸ ︷︷ ︸
between-class scatter

. (6.8)

The class scatters are estimated as follows. Let Swk =
(
φ(xj)

)
xj∈k

denote the

nk-tuple of source samples in class k. The centroid of Swk is µk = 1
nk

∑
xi∈k φ(xi).

Furthermore, let Sb = (µ1, . . . ,µ|C|) denote the n-tuple of all class centroids where
centroid k appears nk times in Sb. The centroid of Sb is then the centroid of the
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source domain: µ̄s = 1
n

∑|C|
k=1 nkµk. It follows that the within-class scatter is

Ψφ

(
P̂lX|k

)
= Tr

 nk∑
j=1

(φ(xjk)− µk) (φ(xjk)− µk)
>


and the between-class scatter is

Ψ

({
µP̂l

X|k

}C
k=1

)
= Tr

(
nk(µk − µ̄)(µk − µ̄)>

)
.

The right-hand sides of the above equations are the classical definitions of within-
and between- class scatter [69]. The classical linear discriminant is thus a ratio of
scatters

Fisher’s linear discriminant =

Ψ

({
µP̂l

X|k

}C
k=1

)
∑C

k=1 Ψφ

(
P̂lX|k

) .
Maximizing Fisher’s linear discriminant increases the separation of the data points
with respect to the class clusters.

Given a linear transformation W : H → Rk, it follows from Lemma 12 that the
class scatters in the projected feature space H̃ are

ΨB

({
µP̂l

X|k

}C
k=1

)
= Tr(W>Cov(Sb)W)

= Tr(B>PsB), (6.9)
C∑
k=1

ΨB◦φ

(
P̂sX|k

)
=

C∑
k=1

Tr(W>Cov(Swk )W)

= Tr(B>QsB), (6.10)

where

Ps =
C∑
k=1

nk(mk − m̄)(mk − m̄)>, (6.11)

Qs =

C∑
k=1

KkHkK
>
k , (6.12)
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with mk = 1
nk

∑nk
j=1 κ(·,xjk), m̄ = 1

n

∑n
j=1 κ(·,xj), [Kk]ij = [κ(xik,xjk)], and the

centering matrix Hk = Ink
− 1
nk

1nk
1>nk

, where Ink
denotes a nk×nk identity matrix

and 1nk
∈ Rnk denotes a vector of ones.

6.3.4 The Algorithm

Here we formulate the SCA’s learning algorithm by incorporating the above four
quantities. The objective of SCA is to seek a representation by solving an opti-
mization problem in the form of the following expression

sup
{total scatter}+ {between-class scatter}
{domain scatter} + {within-class scatter}

. (6.13)

Using (6.3), (6.7), (6.9), and (6.10), the above expression can then be specified
in more detail:

argmax
B

ΨB◦φ

(
ˆ̄PX
)

+ ΨB

({
µP̂l

X|k

}C
k=1

)
ΨB

({
µP̂d

X
}md=1

)
+
∑C

k=1 ΨB◦φ

(
P̂lX|k

) . (6.14)

Maximizing the numerator encourages SCA to preserve the total variability of the
data and the separability of classes. Minimizing the denominator encourages SCA
to find a representation for which the source and target domains are similar, and
source samples sharing a label are similar.

Objective function. We reformulate (6.14) in three ways. First, we express
it in terms of linear algebra. Second, we insert hyper-parameters that control
the trade-off between scatters as one scatter quantity could be more important
than others in a particular case. Third, we impose the constraint that W>W =

B>KB = I to control the scale of the solution.

Explicitly, SCA finds a projection matrix B = [b1,b2, ...,bk] that solves the
constrained optimization

argmax
B∈Rn×k

Tr
(
B>((1− β)KK + βP)B

)
Tr
(
B>(δKLK + Q)B

) s.t. B>KB = I, (6.15)
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where

P =

[
Ps 0ns×nt

0nt×ns 0nt×nt

]
,Q =

[
Qs 0ns×nt

0nt×ns 0nt×nt

]
,

and β, δ > 0 are the trade-off parameters controlling the total and between-class
scatter, and domain scatter respectively.

Observe that the above optimization is invariant to rescaling B 7→ αB. There-
fore, optimization (6.15) can be rewritten as

argmax
B∈Rn×k

Tr
(
B>(

(1− β)

n
KK + βP)B

)
(6.16)

s.t. Tr
(
B>(δKLK + Q + K)B

)
= 1,

which results in Lagrangian

J(B) = Tr(B>(
(1− β)

n
KK + βP)B)− (6.17)

Tr((B>(δKLK + Q + K)B− Ik)Λ)

with Λ ∈ Rk×k is a symmetric matrix. To solve (6.15), set the first derivative
∂J(B)
∂B = 0, inducing the generalized eigenproblem

(
(1− β)

n
KK + βP)B∗ = (δKLK + K + Q)B∗Λ, (6.18)

where Λ = diag(λ1, ..., λk) are the k leading eigenvalues and B = [b1, ...,bk] con-
tains the corresponding eigenvectors. 1 Algorithm 6 provides a complete summary
of SCA.

6.3.5 Relation to other methods

SCA is closely related to a number of feature learning and domain adaptation
methods. Setting the hyper-parameters β = δ = 0 and Q = 0 recovers KPCA.
Setting β = 1 and δ = 0 recovers the Kernel Fisher Discriminant method [146].

1In the implementation, a numerically more stable variant is obtained by using (6.18)
using δKLK + K + Q + εI, where ε > 0 is a fixed small constant.
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Algorithm 6 Scatter Component Analysis
Input:
• Sets of training datapoints Sdu = {xdi }

nd
i=1, ∀d = 1, . . . ,m and their corre-

sponding matrices X =
[
X1; . . . ; Xm

]
∈ Rn×p, where Xd = [xd1, . . . ,x

d
nd

]>;
• Training labels yl = [y1

1, . . . , y
1
n1
, . . . , yq1, . . . , y

q
nq

]> ∈ Rn;
• Hyper-parameters β, δ > 0; kernel bandwidth σ;
• Number of subspace bases k;
1: Construct kernel matrix K from X, matrices L, P and Q based on (6.6),

(6.11), (6.12), and (6.15), and apply the centering operation K ← K −
1nK−K1n + 1nK1n, where n =

∑m
d=1 nd and [1n]ij := 1

n
;

2: Obtain the transformation B∗ and its corresponding eigenvalues Λ by
solving the generalized eigendecomposition problem in Eq. (6.18) and
selecting the k leading eigenvectors;

3: Target feature extraction: Let Su =
⋃m
d=1 S

d
u be the total training sample

and Stu be a target sample (for domain adaptation, Stu ⊂ Su). Construct
a kernel matrix [Kt]ij = κ(xi, tj),∀xi ∈ Su, tj ∈ Stu. The extracted
features are given by Zt = Kt>B∗Λ−

1
2

Output:
• Optimal transformation matrix B∗ ∈ Rn×k;
• Feature matrix Zt ∈ Rnt×k.

KFD with linear kernel is equivalent to Fisher’s linear discriminant, which is the
basis of a domain adaptation method for object detection proposed in [206].

Setting β = 0 and Q = 0 (that is, ignoring class separation) yields a new
algorithm: unsupervised Scatter Component Analysis (uSCA), which is closely re-
lated to TCA. The difference between the two algorithms is that TCA constrains
the total variance and regularizes the transform, whereas uSCA trades-off the to-
tal variance and constrains the transform (recall that B>KB = I) motivated by
Theorem 11. Eliminating the orthogonality constraint in (6.15) from uSCA yields
TCA [166]. It turns out that uSCA consistently outperforms TCA in the case of
domain adaptation, see Section 6.5.

In addition, the semi-supervised extension SSTCA of TCA differs markedly
from SCA. Instead of incorporating within- and between- class scatter into the
objective function, SSTCA incorporates a term derived from the Hilbert-Schmidt
Independence Criterion that maximizes the dependence of the embedding on labels.
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uSCA is closely related to unsupervised Domain Invariant Component Analysis
(uDICA) in the case where there are two domains [152]. However, as for SSTCA,
supervised DICA incorporates label-information differently from SCA – via the
notion of a central subspace. In particular, supervised DICA requires that all data
points are labeled, and so it cannot be applied in our experiments.

6.3.6 Computational Complexity

Here we analyze the computation complexity of the SCA algorithm. Suppose that
we have m domains with n1, . . . , nm are the number of samples for each domain
(m > 2 covers the domain generalization case). Denote the total number of samples
by n = n1 + . . .+nm and the number of leading eigenvectors by k � n. Computing
the matrices K, L, P, and Q takes O(n2) (Line 1 at Algorithm 6). Hence, the
total complexity of SCA after solving the eigendecomposition problem (Line 2)
takes O(kn2), or quadratic in n. This complexity is similar to that of KPCA and
Transfer Component Analysis [166].

In comparison to Transfer Joint Matching (TJM) [135], the prior state-of-the-
art domain adaptation algorithm for object recognition, TJM uses an alternating
eigendecomposition procedure in which T iterations are needed. Using our nota-
tion, the complexity of TJM is O(Tkn2), i.e., TJM is T times slower than SCA.

6.3.7 Hyper-parameter Settings

Before reporting the detailed evaluation results, it is important to first explain
how SCA hyper-parameters were tuned. The formulation of SCA described in
Section 6.3 has four hyper-parameters: 1) the choice of the kernel, 2) the number
of subspace bases k, 3) the between-class and total scatters trade-off β, and 4) the
domain scatter δ. Tuning all those hyper-parameters using a standard strategy,
e.g., a grid-search, might be impractical due to two reasons. The first is of the
computational complexity. The second, which is crucial, is that cross-validating
a large number of hyper-parameters may worsen the generalization on the target
domain, since labeled samples from the target domain are not available.

Our strategy to deal with the issue is to reduce the number of tun-
able hyper-parameters. For the kernel selection, we chose the RBF kernel
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exp(
−‖a−b‖22

σ2 ), ∀a,b ∈ X , where the kernel bandwidth σ was set analytically to
the median distance between samples in the aggregate domain following [87],

σ = median(‖a− b‖22), ∀a,b ∈ Ss ∪ St. (6.19)

For domain adaptation, δ was fixed at 1. Thus, only two hyper-parameters re-
main tunable: k and β. For domain generalization, β was set at 1, i.e., the total
scatter was eliminated, and δ was allowed to be tuned – the number of tunable
hyper-parameters remains unchanged. The configuration is based on an empirical
observation that setting 0 < β < 1 is no better (if not worse) than β = 1 in terms
of both the cross-validation and test performance for domain generalization cases.
In all evaluations, we used 5-fold cross validation using source labeled data to find
the optimal k and β. We found that this strategy is sufficient to produce good
SCA models for both domain adaptation and generalization cases.

6.4 Analysis of Adaptation Performance

We derive a bound for domain adapation that shows how the MMD controls gen-
eralization performance in the case of the squared loss `(y, y′) = (y− y′)2. Despite
the widespread use of the MMD for domain adaptation [60,75,133,134,166], to the
best of our knowledge, this is the first generalization bound. The main idea is to in-
corporate the MMD (that is, domain scatter) into the adaptation bound proven for
the discrepancy distance [140]. A generalization bound for domain generalization
in terms of domain scatter is given in [152], see remark 1.

Let Hyp := {h : X → Y} denote a hypothesis class of functions from X to
Y where X is a compact set. Given a loss function defined over pairs of labels
` : Y ×Y → R+ and a distribution D over X , let LD

(
h, h′

)
= Ex∼D[`(h(x), h′(x))]

denote the expected loss for any two hypotheses h, h′ ∈ Hyp. We consider the case
where the hypothesis set Hyp is a subset of an RKHS H.

We first introduce discrepancy distance, discHyp(P,Q), which measures the dif-
ference between two distributions P and Q.

Definition 13 (Discrepancy Distance [140]). Let Hyp ⊂ {f : X → Y} be a
set of functions mapping from X to Y. The discrepancy distance between two
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distributions P and Q over X is defined by

disc(P,Q) = sup
h,h′∈Hyp

∣∣∣LP(h, h′)− LQ(h, h′)
∣∣∣ (6.20)

The discrepancy is symmetric and satisfies the triangle inequality, but it does
not define a distance in general: ∃P 6= Q such that discHyp(P,Q) = 0 [140]. How-
ever, it is a valid distance if Hyp = {f : ‖f‖H < k} ⊂ H for some k > 0, where H
is an RKHS endowed with a universal kernel [203], and ` is the squared loss [47].

The first step of the proof is to find a relationship between domain scatter
and the discrepancy distance in RKHS. To do so, we introduce the multiplication
operator :

Definition 14 (Multiplication Operator). Let C(X ) be the space of continuous
functions on the compact set X equipped with the supremum norm ‖ · ‖∞. Given
g ∈ C(X ), define the multiplication operator as the bounded linear operator Mg :

C(X )→ C(X ) given by
Mg(h)(x) = g(x)h(x).

Note that a general RKHS is not closed under the multiplication operator [90].
However, if the kernel is a universal kernel [145], i.e. satisfies H = C(X ) as topo-
logical spaces, then H is closed under multiplication since the space of continuous
functions C(X ) is closed under multiplication. The most important example of
a universal kernel is the Gaussian RBF kernel, which is the kernel used in the
experiments below.

The following Lemma provides the upper bound for norm of multiplication
operator, which will be useful to prove our main theorem.

Lemma 14. Given g, h ∈ H, where H is equipped with a universal kernel, it holds
that ‖Mg(h)‖H = ‖g · h‖H ≤ ‖g‖∞ · ‖f‖H.

Proof. Straightforward calculation. The Lemma requires a universal kernel since
‖g · h‖H is only defined if g · h ∈ H.

We now provide a theorem that shows that domain scatter of two distributions
provides an upper bound for discrepancy distance.
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Theorem 15 (Domain scatter bounds discrepancy). Let H be an RKHS with
a universal kernel. Suppose that `(y, y′) = (y−y′)2 is the square loss, and consider
the hypothesis set

Hyp = {f ∈ H : ‖f‖H ≤ 1 and ‖f‖∞ ≤ r},

where r > 0 is a constant Let P and Q be two domains over X . Then the following
inequality holds:

disc`(P,Q)︸ ︷︷ ︸
discrepancy

≤ 8r
√

Ψφ({µP, µQ})︸ ︷︷ ︸
domain scatter

. (6.21)

Proof. Let h, h′ ∈ Hyp. Observe that

disc`(P,Q) = sup
h,h′∈Hyp

∣∣∣∣ Ex∼P [(h(x)− h′(x))2
]
− E

x∼Q

[
(h(x)− h′(x))2

]∣∣∣∣
= sup

h,h′∈Hyp

∣∣∣ E
x∼P

[h(x)h(x)− 2h(x)h′(x) + h′(x)h′(x)]

− E
x∼Q

[h(x)h(x)− 2h(x)h′(x) + h′(x)h′(x)]
∣∣∣

= sup
h,h′∈Hyp

∣∣∣ E
x∼P

[〈
Mhh− 2Mh′h+ Mh′h

′, φ(x)
〉
H

]
− E

x∼Q

[〈
Mhh− 2Mh′h+ Mh′h

′, φ(x)
〉
H

] ∣∣∣
= sup

h,h′∈Hyp

∣∣∣〈Mhh− 2Mh′h+ Mh′h
′, µP − µQ

〉
H

∣∣∣
≤ ‖Mhh− 2Mh′h+ Mh′h

′‖H · ‖µP − µQ‖H

≤
(
‖Mhh‖H + 2‖Mh′h‖H + ‖Mh′h

′‖H
)
MMDHyp[P,Q]

≤
(
‖h‖∞‖h‖H + 2‖h′‖∞‖h‖H + ‖h′‖∞‖h′‖H

)
MMDHyp[P,Q]

≤ 4r ·MMDHyp[P,Q],

where the second-to-last inequality follows from Lemma 14. The result then follows
after observing that disc(P,Q) = suph,h′∈Hyp

∣∣∣LP(h, h′) − LQ(h, h′)
∣∣∣ and applying

Theorem 13.

Theorem 15 relates domain scatter to generalization bounds for domain adap-
tation proven in [140]. Before stating the bounds, we introduce Rademacher com-
plexity [12], which measures the degree to which a class of functions can fit random
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noise. This measure is the basis of bounding the empirical loss and expected loss.

Definition 15 (Rademacher Complexity). Let G be a family of functions map-
ping from X × Y to [a, b] and S = (z1, ..., zn) ∈ X × Y be a fixed sample of size n.
The empirical Rademacher complexity of G with respect to the sample S is

R̂S(G) = E
σ

[
sup
g∈G

1

n

n∑
i=1

σig(zi)

]
, (6.22)

where σ = (σ1, . . . , σn)> are Rademacher variables, with σis independent uniform
random variables taking values in {−1,+1}. The Rademacher complexity over
all samples of size n is

Rn(G) = E
S

[
R̂S(G)

]
. (6.23)

Note that the family of functions G can be associated with a bounded loss
function ` : Y × Y → [0, B] and the hypothesis set Hyp, that is, G contains
mappings from (x, y) 7→ `(h(x), y), where h ∈ Hyp. The following theorem bounds
the difference between the empirical loss and the true loss by means of measuring
complexity on Hyp.

Theorem 16 (Rademacher Bound). Let ` : Y×Y → [0, B] be a q-Lipschitz loss
function, i.e., for all a, b ∈ Y × Y, |`(a) − `(b)| = q|a − b|. Then, for any δ > 0,
with probability at least 1 − δ over all i.i.d. samples SX = (x1, . . . , xn) of size n,
each of the following holds for any h ∈ Hyp:

LD(h, f) ≤ LD̂(h, f) + 2qR̂SX (Hyp) + 3B

√
log 2

δ

2n
(6.24)

Proof. This theorem follows from the standard generalization bound using Defini-
tion 15 (see, for example, Theorem 3.1 in [151])

LD(h, f) ≤ LD̂(h, f) + 2R̂S(G) + 3B

√
log 2

δ

2n
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and Ledoux and Talagrand’s contraction principle [127]

R̂S(G) ≤ qR̂SX (Hyp). (6.25)

We now have all the ingredients to derive domain adaptation bounds in terms
of domain scatter. Let fP and fQ be the true labeling functions on domain P and Q
respectively, and h∗P := argminh∈Hyp LP(h, fP) and h∗Q := argminh∈Hyp LQ(h, fQ)

be the minimizers. For a successful domain adaptation, we shall assume that
LP(h∗P, h

∗
Q) is small. The following theorem provides a domain adaptation bound

in terms of scatter (recall that the MMD is a special case of scatter by Theorem 13).

Theorem 17 (Adaptation bounds with domain scatter). Let Hyp be a
family of functions mapping from X to R, SP

X = (xt1, . . . , x
t
ns

) ∼ P and SQ
X =

(xt1, . . . , x
t
nt

) ∼ Q be a source and target sample respectively. Let the rest of the
assumptions be as in Theorems 15 and 16. For any hypothesis h ∈ Hyp, with
probability at least 1− δ, the following adaptation bound holds:

regret on target domain︷ ︸︸ ︷
LQ(h, fQ)− LQ(h∗Q, fQ) ≤

empirical loss︷ ︸︸ ︷
LP̂(h, h∗P) +

Rademacher complexity︷ ︸︸ ︷
2qR̂SP

X
(Hyp)

+ 3B

√
log 2

δ

2nt︸ ︷︷ ︸
O(1/
√

sample size)

+ 8r
√

Ψφ({µQ, µP})︸ ︷︷ ︸
domain scatter

+ LP(h∗P, h
∗
Q)︸ ︷︷ ︸

deviation of optimal solns

(6.26)

Proof. Fix h ∈ Hyp. Since the square loss is symmetric and obeys the triangle
inequality, Theorem 8 in [140] implies that

LQ(h, fQ)− LQ(h∗Q, fQ) ≤ LP(h, h∗P) + disc`(Q,P)

+LP(h∗P, h
∗
Q). (6.27)

The result then follows by Theorem 15 combined with Theorem 16.

It is instructive to compare Theorem 17 above with Theorem 9 in [140], which
is the analog if we expand discl(Q,P) in (6.27) with its empirical measure. It is also
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straightforward to rewrite the bound in term of the empirical scatter Ψφ({µP̂, µQ̂})
by applying Theorem 11.

The significance of Theorem 17 is twofold. First, it highlights that the scatter
Ψφ({µP, µQ}) controls the generalization performance in domain adaptation. Sec-
ond, the bound shows a direct connection between scatter (also MMD) and the
domain adaptation theory proposed in [140]. Note that the bound might not be
useful for practical purposes, since it is loose and pessimistic as they hold for all
hypotheses and all possible data distributions.

Remark 1 (The role of scatter in domain generalization). Theorem 5 of
[152] shows that the domain scatter (or, alternatively, the distributional variance)
is one of the key terms arising in a generalization bound in the setting of domain
generalization.

6.5 Experiment 1 : Domain Adaptation

The first set of experiments evaluated the domain adaptation performance of SCA
on synthetic data and real-world object recognition tasks. The synthetic data was
designed to understand the behavior of the learned features compared to other
algorithms, whereas the real-world images were utilized to verify the performance
of SCA.

The experiments are divided into three parts. Section 6.5.1 visualizes per-
formance on synthetic data. Section 6.5.2 evaluates performance on a range of
cross-domain object recognition tasks with a standard yet realistic hyper-parameter
tuning. Section 6.5.3 reports some results with a tuning protocol established in the
literature for completeness.

6.5.1 Synthetic data

Figures 6.1 depicts synthetic data that consists of two dimensional data points un-
der three classes with six clusters. The data points in each cluster were generated
from a Gaussian distribution xci ∼ N (µc, σc), where µc and σc is the mean and
standard deviation of the c-th cluster. The RBF kernel k(a,b) = exp(−‖a−b‖22

σ2 )

was used for all algorithms. All tunable hyper-parameters were selected according
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(a) Raw (28%) (b) KPCA (28%) (c) SSTCA (36%)

(d) TJM (44%) (e) SCA (77%)

Figure 6.1: Projections of the synthetic data onto the first two leading eigen-
vectors. Numbers in brackets indicate the classification accuracy on the
target using 1-nearest neighbor (1NN). The top and bottom rows show the
domains and classes respectively.

to 1-nearest neighbor’s test accuracy. We compare features extracted from Ker-
nel Principal Component Analysis (KPCA), Semi-Supervised Transfer Component
Analysis (SSTCA) [166], Transfer Joint Matching (TJM) [135], and SCA.

The top row of Figures 6.1 illustrates how the features extracted from the
MMD-based algorithms (SSTCA, TJM, and SCA) reduce the domain mismatch.
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Red and blue colors indicate the source and target domains, respectively. Good
features for domain adaptation should have a configuration of which the red and
blue colors are mixed. This effect can be seen in features extracted from SSTCA,
TJM, and SCA, which indicates that the domain mismatch is successfully reduced
in the feature space. In classification, domain adaptive features should also have
a certain level of class separability. The bottom row highlights a major difference
between SCA and the other algorithms in terms of the class separability: the SCA
features are more clustered with respect to the classes, with more prominent gaps
among clusters. This suggests that it would be easier for a simple function to
correctly classify SCA features.

6.5.2 Real world object recognition

We summarize the complete domain adaptation results over a range of cross-
domain object recognition tasks. Several real-world image datasets were utilized
such as handwritten digits (MNIST [125] and USPS [106]) and general objects
(MSRC [235], VOC2007 [62], Caltech-256 [89], Office [187]). Three cross-domain
pairs were constructed from these datasets: USPS+MNIST, MSRC+VOC2007,
and Office+Caltech.

Data setup. The USPS+MNIST pair consists of raw images subsampled from
datasets of handwritten digits. MNIST contains 60,000 training images and 10,000
test images of size 28× 28. USPS has 7,291 training images and 2,007 test images
of size 16×16 [125] . The pair was constructed by randomly sampling 1,800 images
from USPS and 2,000 images from MNIST. Images were uniformly rescaled to size
16 × 16 and encoded into feature vectors representing the gray-scale pixel values.
Two source→ target classification tasks were constructed: usps→ mnist and
mnist → usps.

The MSRC+VOC2007 pair consist of 240-dimensional images that share 6 ob-
ject categories: “aeroplane”, “bicycle”,“bird”, “car”, “cow”, and “sheep” taken from
the MSRC and VOC2007 [62] datasets. The pair was constructed by selecting all
1,269 images in MSRC and 1,530 images in VOC2007. As in [133], features were ex-
tracted from the raw pixels as follows. First, images were uniformly rescaled to be
256 pixels in length. Second, 128-dimensional dense SIFT (DSIFT) features were
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extracted using the VLFeat open source package [223]. Finally, a 240-dimensional
codebook was created using K-means clustering to obtain the codewords.

The Office+Caltech consists of 2,533 images of ten categories (8 to 151 images
per category per domain), that forms four domains: (A) amazon, (D) dslr, (W )
webcam, and (C) caltech. amazon images were acquired in a controlled en-
vironment with studio lighting. dslr consists of high resolution images captured
by a digital SLR camera in a home environment under natural lighting. webcam

images were acquired in a similar environment to dslr, but with a low-resolution
webcam. Finally, caltech images were collected from Google Images [89]. Taking
all possible source-target combinations yields 12 cross-domain datasets denoted by
A→W,A→ D,A→ C, . . . , C → D. We used two types of extracted features from
these datasets that are publicly available: SURF-BoW2 [187] and DeCAF6

3 [56].
SURF-BoW features were extracted using SURF [15] and quantized into 800-bin
histograms with codebooks computed by K-means on a subset of amazon images.
The final histograms were standardized to have zero mean and unit standard devi-
ation in each dimension. Deep Convolutional Activation Features (DeCAF)
were constructed by [56] using the deep convolutional neural network architecture
in [118]. The model inputs are the mean-centered raw RGB pixel values that are
forward propagated through 5 convolutional layers and 3 fully-connected layers. We
used the outputs from the 6th layer as the features, leading to 4, 096 dimensional
DeCAF6 features.

Baselines and protocol. We evaluated the following algorithms: 1) a classi-
fier on raw features (Raw), 2) KPCA, 3) Transfer Component Analysis (TCA) [166],
4) SSTCA, 5) Geodesic Flow Kernel (GFK) [83], 6) Transfer Sparse Coding
(TSC) [133], 7) Subspace Alignment (SA) [67], 8) TJM [135], 9) unsupervised
Scatter Component Analysis, and 10) SCA. For a realistic setting, the tunable
hyper-parameters were optimized according to labels from source domains only.

The above feature learning algorithms were evaluated on three different classi-
fiers: 1) 1-nearest neighbor (1NN), 2) support vector machines with linear kernel (L-
SVM) [29], and 3) domain adaptation machines (DAM) [60]. 1NN and L-SVM are

2http://www-scf.usc.edu/~boqinggo/da.html
3http://vc.sce.ntu.edu.sg/transfer_learning_domain_adaptation/domain_

adaptation_home.html

http://www-scf.usc.edu/~boqinggo/da.html
http://vc.sce.ntu.edu.sg/transfer_learning_domain_adaptation/domain_adaptation_home.html
http://vc.sce.ntu.edu.sg/transfer_learning_domain_adaptation/domain_adaptation_home.html
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the standard off-the-shelf classifiers, while DAM is specifically designed for domain
adaptation. DAM is an extension of SVM that incorporates a domain-dependent
regularization to encourage the target classifier sharing similar prediction values
with the source classifiers. We also utilize the linear kernel for DAM.

Classification accuracy with 1-nearest neighbor. Table 6.1 summarizes
the classification accuracy on the USPS+MNIST and MSRC+VOC2007 pairs. We
can see that SCA is the best model on average, while the prior state-of-the-art TJM
is the second best. Other domain adaptation algorithms (TCA, SSTCA, GFK,
and TSC) do not perform well, even worse than one without adaptation strategy:
KPCA. Surprisingly, the unsupervised version of our algorithm, uSCA, has the
highest accuracy on two MSRC+VOC2007 cases. This indicates that the label
incorporation does not help improve domain adaptation on the MSRC+VOC2007,
while it clearly does on the USPS+MNIST. Furthermore, SCA and uSCA always
provide improvement over the raw features, while other algorithms, including TJM,
fail to do so in mnist→ usps case.

Surprisingly, SSTCA, which also incorporates label information during train-
ing, does not perform competitively. The first possible explanation is that SCA
directly improves class separability, whereas SSTCA maximizes a dependence crite-
rion that relates indirectly to separability. The second is that SSTCA incorporates
the manifold regularization that requires a similarity graph, i.e., affinity matrix.
This graph is parameterized by k-nearest neighbor with l2 distance, which might
not be suitable in these cases.

The results on the Office+Caltech pair are summarized in Table 6.2 (SURF-
BoW) and Table 6.3 (DeCAF6). In general, DeCAF6 induces stronger discrimi-
native performance than SURF-BoW features, since DeCAF6 with 1NN only has
already provided significantly better performance. SCA consistently has the best
average performance on both features, slightly better than the prior state-of-the-
art, TJM. On SURF-BoW, SCA is the best model on 3 out of 12 cases and the
second best on other 4 cases. The trend on DeCAF6 is better – SCA has the
best performance on 5 out of 12 cases, while comes second on other 6 cases. Al-
though the closest competitor, TJM, has the highest number of individual best
cross-domain performance, it requires higher computational complexity than SCA,
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see the next paragraph on runtime performance analysis.

Table 6.1: Accuracy % on the USPS+MNIST and MSRC+VOC2007
datasets. Bold-red and bold-black indicate the best and second best per-
formance.

Dataset Raw KPCA TCA SSTCA GFK TSC SA TJM uSCA SCA
usps → mnist 34.80 42.55 41.75 40.07 43.50 40.95 41.50 52.65 44.86 48.00
mnist → usps 63.06 62.61 59.44 60.13 61.22 59.56 63.95 62.00 64.67 65.11
msrc → voc 28.63 29.35 31.70 30.95 30.63 28.80 30.90 32.48 33.14 32.75
voc → msrc 41.06 47.12 45.78 46.06 44.47 40.58 46.88 46.34 49.80 48.94

Avg. 41.89 45.51 44.67 44.30 44.96 42.47 45.81 48.37 48.12 48.70

Table 6.2: Accuracy % on the Office+Caltech images with SURF-BoW fea-
tures. 1NN was used as the base classifier.

Dataset Raw KPCA GFK TCA SSTCA SA TJM uSCA SCA
A→ W 29.83 31.86 39.32 25.08 28.15 37.63 33.56 32.88 33.90
A→ D 25.48 33.76 28.66 31.21 32.25 34.49 35.67 33.85 34.21
A→ C 26.00 37.04 39.27 33.93 32.48 37.80 37.58 37.13 38.29
W → A 22.96 29.44 34.03 22.86 25.56 34.34 29.85 30.41 30.48
W → D 59.24 89.81 84.71 65.61 80.81 80.89 86.62 89.81 92.36
W → C 19.86 27.60 28.76 23.06 25.39 28.76 29.72 28.52 30.63
D → A 28.50 31.00 32.25 30.17 29.16 34.24 30.06 31.00 33.72
D → W 63.39 84.41 80.34 64.75 78.90 82.37 90.85 84.41 88.81
D → C 26.27 27.78 29.12 28.05 28.05 31.17 30.72 27.78 32.32
C → A 23.70 40.40 41.75 41.02 40.67 41.34 45.41 40.40 43.74
C → W 25.76 31.53 36.61 23.39 26.62 32.20 33.90 29.15 33.56
C → D 25.48 40.76 40.13 34.49 36.45 42.86 40.31 42.04 39.49

Avg. 31.37 42.12 42.91 35.29 38.17 43.21 43.67 42.28 44.29

Classification accuracy with L-SVM and DAM. Next we report the
results with L-SVM and DAM as the base classifiers for the feature learning algo-
rithms. For succinctness, we compare the performance of five algorithms: KPCA,
SSTCA, SA, TJM, and SCA, presented in Figure 6.2. The bar chart shows the
average accuracies relative to the performance on Raw features (indicated by line
y = 0 in red); the numbers alongside the bars indicate the absolute accuracies.
Table 6.4 summarizes the absolute accuracies on Raw features.
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(a) MNIST+USPS, MSRC+VOC

(b) Office+Caltech (SURF-BoW)

(c) Office+Caltech (DeCAF6)

Figure 6.2: L-SVM and DAM average performance accuracy (%) relative to
the performance on Raw features. The numbers on the top or bottom of the
bars show the absolute accuracy. The red line indicates the Raw baseline
performance, see Table 6.4 for the exact numbers.
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Table 6.3: Accuracy % on the Office+Caltech images with DeCAF6 features.
1NN was used as the base classifier.

Dataset Raw KPCA GFK TCA SSTCA SA TJM uSCA SCA
A→ W 57.29 67.80 68.47 71.86 70.73 68.81 72.54 73.22 75.93
A→ D 64.97 80.89 79.62 78.34 80.13 78.34 85.99 79.43 85.35
A→ C 70.35 74.53 76.85 74.18 72.25 80.05 78.45 74.62 78.81
W → A 62.53 69.42 75.26 79.96 75.65 77.77 82.46 79.52 86.12
W → D 98.73 100 100 100 100 100 100 100 100
W → C 60.37 65.72 74.80 72.57 69.30 74.89 79.61 72.81 74.80
D → A 62.73 80.06 85.80 88.20 87.30 82.67 91.34 88.71 89.98
D → W 89.15 98.31 98.64 97.29 97.56 99.32 98.31 98.31 98.64
D → C 52.09 75.16 74.09 73.46 74.45 75.69 80.77 74.98 78.09
C → A 85.70 88.73 88.41 89.25 88.90 89.46 89.67 88.52 89.46
C → W 66.10 77.29 80.68 80.00 81.22 75.93 80.68 76.27 85.42
C → D 74.52 86.62 86.62 83.44 84.56 83.44 87.26 86.62 87.90

Avg. 70.38 80.38 82.44 82.38 81.84 82.20 85.59 82.75 85.88

Table 6.4: Average accuracy (%) on Raw features.

Dataset 1-NN L-SVM DAM
MNIST+USPS, MSRC+VOC 41.89 38.23 40.45
Office+Caltech (SURF-BoW) 31.37 43.98 47.42
Office+Caltech (DeCAF6) 70.38 82.66 85.72

In general, all feature learning algorithms rectify the domain adaptation per-
formances over Raw features, except in two cases: SA on the Office+Caltech with
SURF-BoW features and KPCA on the Office+Caltech with DeCAF6 features.
Considering the absolute accuracies, we find that the best average performances
on each dataset are still provided by SCA, a similar trend as in the 1NN results.
This confirms the effectiveness of SCA regardless of the classifier choice, at least,
among 1NN, L-SVM, and DAM.

Let us now compare the absolute average performance of L-SVM and DAM
with the performance of 1NN. L-SVM and DAM evidently provide a considerable
performance improvement only on the Office+Caltech dataset. Their performances
on less powerful features, that is, the features extracted from the MNIST+USPS
and MSRC+VOC, are even worse than 1NN. A useful lesson from this finding is
that one should make use better features to take the real benefit of more advanced
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classifiers in the context of domain adaptation.

Finally, we seek to investigate the performance impact induced by DAM in
comparison to L-SVM. DAM is expected to provide a better performance, since
it is specifically designed for domain adaptation. From Table 6.4 we can see that
DAM outperforms L-SVM when operating on Raw features. Surprisingly, that is
not always the case when a feature learning algorithm is applied. Moreover, L-SVM
always produces higher performance gain relative to Raw features.than DAM. This
could be attributed to overfitting considering that DAM has more hyper-parameters
than L-SVM. That is, combining DAM with a feature learning algorithm compli-
cates the whole processs – recall that the hyper-parameter selection is based on a
validation on source data.

Runtime performance. Table 6.5 compares the average runtime performance
of SCA over all cross-domain cases in a particular domain pair with some other
algorithms: KPCA, TCA, TSC, and TJM. All algorithms were executed with
MATLAB R2014b by a machine with Intel Core i5-240 CPU, Arch Linux 64-
bit OS, and 4GB RAM. Note that KPCA, TCA, and SCA basically utilizes the
same optimization procedure: a single iteration of the eigenvalue decomposition.
TJM requires several iterations of the eigenvalue decomposition with an additional
gradient update in each iteration, while TSC solves the dictionary learning and
sparse coding problem with an iterative procedure.

In general, SCA is significantly faster than TJM and TSC, while it is slightly
slower than KPCA and TCA. Specifically, SCA is 3 to 6× faster than TJM, and
> 50× faster than TSC. SCA performs at most 3× slower than TCA on relatively
small datasets (MSRC+VOC and Office+Caltech), but at about the same level
on larger datasets (MNIST+USPS). Considering the accuracy gap between SCA
and TCA shown in the previous section, this runtime gap is non-issue. The main
point of this observation is that SCA, an algorithm optimized with a simpler, less
complex-in-time procedure than that of the recent proposals, can already achieve
the state-of-the-art performance.
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Table 6.5: Average runtime (seconds) over all cross-domain tasks in each
domain pair.

Dataset KPCA TCA TJM TSC SCA
MNIST+USPS 9.83 41.55 269.44 3072.25 42.74
MSRC+VOC 3.23 20.92 127.35 2051.05 36.86
Office+Caltech 0.84 3.03 29.65 1070.98 8.82

6.5.3 Results with Parameter Tuning on Target

Finally, we report results obtained using a protocol for hyper-parameter tuning,
which we refer to as valt, where the optimal hyper-parameters were selected ac-
cording using the target labels [133, 134, 236]. Since the protocol makes use of
target labels to tune parameters, it is not valid as an unsupervised domain adap-
tation algorithm (that is, an algorithm for which target labels are unavailable).
Nevertheless, it is established in the literature, and some of the best results were
obtained under this protocol [133,134,236]. We therefore evaluate SCA under valt
for completeness.

Our algorithm was evaluated on the USPS+MNIST, MSRC+VOC2007, and
Office+Caltech, similarly to that used in Section 6.5.2: experiments with tuning
on source labels. We investigated the use of two different base classifiers on the
top of feature learning-based algorithms: 1-nearest neighbor (1NN) and Logistic
Regression (LR).4 The following algorithms were compared: 1) a classifier on raw
features, 2) TCA, 3) SSTCA, 4) GFK, 5) TSC, 6) TJM, 7) Domain Adaptation
Machine (DAM) [60], 8) uSCA, and 9) SCA. Note that DAM is not a feature
learning algorithm, but a classifier based on adapting SVM classifiers.

Tables 6.6 and 6.7 summarize the classification accuracy with 1NN and LR
on the USPS+MNIST and MSRC+VOC2007, respectively. In general, LR yields
better performance than 1NN on MSRC+VOC2007 cases, while 1NN is a better
classifier on USPS+MNIST. SCA consistently has the average best performance
on both classifiers. Lastly, we investigated the classification performance on the
Office+Caltech dataset with DeCAF6 features. Table 6.8 reports the results using

4The logistic regression we used was according to LIBLINEAR [63] library,
with one hyper-parameter controlling the loss penalty, c. We grid-search c from
{10−4, 10−3, 10−2, 0.1, 1, 10, 102, 103, 104}
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Table 6.6: Accuracy % on the USPS+MNIST and MSRC+VOC2007
datasets. 1NN was used as the base classifier. The model hyper-parameters
were tuned according to valt (validation on target).

Dataset 1NN TCA SSTCA GFK TSC TJM uSCA SCA
usps → mnist 34.80 44.15 44.30 46.45 48.56 52.25 43.65 53.60
mnist → usps 63.06 58.78 60.44 61.22 59.51 63.28 65.39 67.33
msrc → voc 28.63 37.12 36.67 34.18 37.84 32.75 36.67 37.06
voc → msrc 41.06 45.86 45.86 44.47 47.54 49.41 45.95 55.67

Avg. 41.89 46.48 46.82 46.58 48.36 49.42 47.92 53.42

Table 6.7: Accuracy % on the USPS+MNIST and MSRC+VOC2007
datasets. Logistic Regression (LR) was used as the base classifier for TCA,
TSC, TJM, and SCA. The model hyper-parameters were tuned according to
valt (validation on target).

Dataset LR TCA TSC DAM TJM SCA
usps → mnist 32.75 49.10 57.77 31.35 51.25 53.40
mnist → usps 55.39 55.22 60.83 60.44 59.61 63.06
msrc → voc 30.46 36.99 36.47 36.08 38.69 39.54
voc → msrc 60.20 62.25 56.74 60.76 63.28 63.67

Avg. 44.70 50.89 52.95 47.79 53.21 54.92

LR as the base classifier. In this dataset, 1NN classifier underperforms LR in all
cross-domain cases. Thus, we do not include 1NN results here. SCA achieves
the highest average accuracy over 12 cross-domain cases at lower computational
cost than its closest competitor TJM, with 8 best and 2 second best cross-domain
performance.

6.6 Experiment 2 : Domain Generalization

In the second set of experiments, we show that our proposed algorithm is also
applicable for domain generalization and achieves state-of-the-art performance on
visual object recognition and action recognition tasks. We evaluated our algorithms
on three cross-domain datasets: the VLCS, Office+Caltech, and IXMAS [229].
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Table 6.8: Accuracy % on the Office+Caltech images withDeCAF6 features.
Logistic Regression (LR) was used as the base classifier. The model hyper-
parameters were selected using valt (validation on target).

Dataset LR TCA DAM TJM uSCA SCA
C → A 92.28 92.17 92.38 93.53 93.00 93.11
C → W 81.02 83.39 86.10 89.15 83.05 85.42
C → D 89.17 87.26 89.81 89.81 89.17 89.81
A→ C 85.75 86.46 86.38 86.82 92.00 92.00
A→ W 77.29 85.76 82.71 89.49 81.02 86.10
A→ D 87.90 87.26 85.35 88.54 88.40 89.17
W → C 73.91 82.37 76.49 82.64 81.74 84.42
W → A 77.14 90.40 79.65 89.46 88.94 89.24
W → D 100 100 98.09 98.73 100 100
D → C 79.52 82.99 81.21 82.73 85.75 86.02
D → A 86.95 90.50 88.94 90.19 91.54 91.75
D → W 98.98 98.98 98.64 97.63 99.66 99.66

Avg. 85.83 88.96 87.15 89.89 89.52 90.56

6.6.1 Data setup

The first cross-domain dataset, which we refer to as the VLCS consists of images
from PASCAL VOC2007 (V) [62], LabelMe (L) [186], Caltech-101 (C) [89], and
SUN09 (S) [40] datasets, each of which represents one domain. This dataset shares
five object categories: bird, car, chair, dog, and person. Each domain in the VLCS
dataset was divided into a training set (70%) and a test set (30%) by random
selection from the overall dataset. Readers can look back to Table 5.3 for the
detailed VLCS training-test configuration. We employed the DeCAF6 features [56]
with dimensionality of 4,096 as inputs to the algorithms. These features are publicly
available.5

The second cross-domain dataset is the Office+Caltech dataset, see Section
6.5.2 for a detailed explanation about this dataset. We also used DeCAF6 features
extracted from this dataset.6 The third dataset is the IXMAS dataset [229] that
contains videos of the 11 actions, recorded with different actors, cameras, and view-

5http://www.cs.dartmouth.edu/~chenfang/proj_page/FXR_iccv13/index.php
6http://vc.sce.ntu.edu.sg/transfer_learning_domain_adaptation/

http://www.cs.dartmouth.edu/~chenfang/proj_page/FXR_iccv13/index.php
http://vc.sce.ntu.edu.sg/transfer_learning_domain_adaptation/
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points. This dataset has been used as a benchmark for evaluating human action
recognition models. To simulate the domain generalization problem, we followed
the setup proposed in [236]: only frames from five actions were utilized (check
watch, cross arms, scratch head, sit down, and get up) with domains represented
represented by camera viewpoints (Cam 0, Cam 1, ..., Cam 4). The task is to learn
actions from particular camera viewpoints and classify actions on unseen view-
points. In the experiment, we used the dense trajectories features [228] extracted
from the raw frames and applied K-means clustering to build a codebook with
1,000 clusters for each of the five descriptors, i.e., dense trajectory, HOG, HOF,
MBHx, and MBHy. The bag-of-words features were then concatenated forming a
5,000 dimensional features for each frame.

6.6.2 Baselines and Protocol

We compared our algorithms, uSCA and SCA, with the following baselines:

1. Raw: a classifier is applied directly on the raw features.

2. KPCA [192]: Kernel Principal Component Analysis.

3. Undo-Bias [113]: a multi-task SVM-based algorithm for undoing dataset
bias. Three hyper-parameters (λ,C1, C2) require tuning. Since the original
formulation was designed for binary classification, we performed the following
setup for multi-class classification purposes. We trained C individual Undo-
Bias classifiers fubk : Rd → {−1, 1},∀k = 1, . . . , C, where C is the number
of classes. At the prediction stage, given a test instance (x̂, ŷ) we computed
Ŷ := {k|∀k = 1, . . . , C : fubk = 1}. Finally, we verified whether ŷ ∈ Ŷ .

4. UML [64]: a structural metric learning-based algorithm that aims to learn
a less biased distance metric for classification tasks. The initial tuning pro-
posal for this method was using a set of weakly-labeled data retrieved from
querying class labels to search engine. However, here we tuned the hyper-
parameters using the same k-fold cross-validation strategy as others for a fair
comparison.

5. DICA [152]: a kernel feature extraction method for domain generalization.
DICA has three tunable hyper-parameters.
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6. LRE-SVM [236]: a non-linear exemplar-SVMs model with a nuclear norm
regularization to impose a low-rank likelihood matrix. LRE-SVM has four
hyper-parameters (λ1, λ2, C1, C2) that require tuning.

Undo-Bias, UML, and LRE-SVM are the prior state-of-the-art domain generaliza-
tion algorithms for object recognition tasks. We used 1-nearest neighbor (1NN) as
the base classifier for all feature learning-based algorithms: Raw, KPCA, DICA,
uSCA/uDICA, and SCA. The tunable hyper-parameters were selected according
to labels from source domains. For all kernel-based methods, the kernel function is
the RBF kernel, k(a,b) = exp(−‖a−b‖2

σ2 ), with a kernel bandwidth σ computed by
median heuristic. Note that the unsupervised DICA (uDICA) is almost identical
to uSCA in this case. The only difference is that uSCA has a control parameter
δ > 0 for the domain scatter/distributional variance term.

6.6.3 Results on the VLCS Dataset

On this dataset, we first conducted the standard training-test evaluation using 1-
nearest neighbor (1NN), i.e., learning the model on a training set from one domain
and testing it on a test set from another domain, to check the groundtruth per-
formance and also to identify the existence of the dataset bias. The groundtruth
evaluation results are summarized in Table 6.9. In general, the dataset bias in-
deed exists despite the use of the state-of-the-art deep convolution neural network
features DeCAF6 For example, the average cross-domain performance, i.e., "Mean
others", is 56.63%, which is 25% drop from the corresponding in-domain perfor-
mance: 75.96%. In particular, Caltech-101 has the highest bias, while LabelMe is
the least biased dataset indicated by the largest and smallest performance drop,
respectively.

We then evaluated the domain generalization performance over seven cross-
domain recognition tasks. The complete results are summarized in Table 6.10.
We can see that SCA is the best model on 5 out of 7 tasks, outperforms the prior
state-of-the-art, LRE-SVM. It almost always has better performance than the ‘raw’
baseline, except when Caltech-101 is the target domain. On average, SCA is about
2% better than its closest competitor on this dataset, Undo-Bias. The VLCS cross-
domain recognition is a hard task in general, since the best model (SCA) only
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Table 6.9: The groundtruth 1NN accuracy % of five-class classification when
training on one dataset (the left-most column) and testing on another (the
upper-most row). The bold black numbers indicate in-domain performance,
while the plain black indicate cross-domain performance. “Self” refers to
training and testing on the same dataset, same as the bold black numbers
and “mean others” refers to the average performance over all cross-domain
cases. Dividing “self” and “mean others” results in the (percent) performance
drop indicated by the red color.

Training/Test VOC2007 LabelMe Caltech-101 SUN09 Self Mean others Percent drop
VOC2007 72.46 52.45 89.17 60.00 72.46 67.20 ∼ 7%
LabelMe 54.99 63.74 79.72 46.90 63.74 60.54 ∼ 5%

Caltech-101 53.70 44.79 99.53 44.87 99.53 47.49 ∼ 52%
SUN09 51.63 50.69 50.71 68.12 68.12 51.01 ∼ 25%

Mean others 53.44 49.31 73.19 50.59 75.96 56.63 ∼ 25%

provides < 4% average improvement over the raw baseline. Furthermore, three
algorithms, two of which are the domain generalization-based methods (uSCA,
DICA), cannot achieve even better performance than the raw baseline.

Table 6.10: The domain generalization performance accuracy (%) on the
VLCS dataset with DeCAF6 features as inputs. The accuracy of all feature
learning-based algorithms: Raw, KPCA, uSCA, DICA, SCA is according to
1-nearest neighbor (1NN) classifier. Bold red and bold black indicate the
best and the second best performance, respectively.

Source Target Raw KPCA Undo-Bias UML LRE-SVM uSCA DICA SCA
L,C,S V 57.26 60.22 54.29 56.26 60.58 58.54 59.62 64.36
V,C,S L 52.45 51.94 58.09 58.50 59.74 54.08 51.82 59.60
V,L,S C 90.57 90.09 87.50 91.13 88.11 85.14 78.30 88.92
V,L,C S 56.95 55.03 54.21 58.49 54.88 55.63 55.33 59.29
C,S V,L 55.08 55.64 59.28 56.47 55.04 53.98 50.90 59.50
C,L V,S 52.60 50.70 55.80 54.72 52.87 49.05 55.47 55.96
V,C L,S 56.62 54.66 62.35 55.49 58.84 55.89 58.08 60.77

Avg. 60.22 59.47 61.65 61.58 61.44 58.90 58.50 64.06

6.6.4 Results on the Office+Caltech Dataset

We evaluated our algorithms on several cross-domain cases constructed from the
Office+Caltech dataset. The detailed evaluation results on four cases with DeCAF6
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are reported in Table 6.11. We do not report other cross-domain cases that are
possibly constructed from this dataset, such as A,D,C → W and A,W,C → D,
since the simple 1NN on raw features is extremely accurate (> 95% accuracy) and
there is little room for improvement.

The closest competitor to SCA is LRE-SVM. Although LRE-SVM performs
best on average, SCA has the best performance on three out of four cross-domain
cases and comes second on average. The only case when SCA underperforms LRE-
SVM is that of D,W → A,C. Note that the LRE-SVM algorithm is more complex
than SCA both in the optimization procedure and in the number of tunable hyper-
parameters.

However, the unsupervised version of our algorithm, uSCA, which is the same
as uDICA [152] in the domain generalization case, cannot compete with the state-
of-the-art models. It is only slightly better than KPCA on average. This suggests
that incorporating labeled information from source domains during feature learning
does improve domain generalization on the Office+Caltech cases.

Table 6.11: The domain generalization performance accuracy (%) on the
Office+Caltech dataset with DeCAF6 features as inputs.

Methods W,D,C → A A,W,D→C A,C→D,W D,W→A,C Average
Raw 85.39 73.73 67.92 67.09 72.28
KPCA 89.14 75.87 78.99 68.84 77.71
Undo-Bias 90.98 85.95 80.49 69.98 81.85
UML 91.02 84.59 82.29 79.54 84.36
LRE-SVM 91.87 86.38 84.59 81.17 86.00
uSCA 89.46 77.15 78.10 71.74 79.11
DICA 90.40 84.33 79.65 69.73 81.02
SCA 92.38 86.73 85.84 75.54 85.12

6.6.5 Results on the IXMAS dataset

Table 6.12 summarizes the classification accuracies on the IXMAS dataset over
three cross-domain cases. We can see that the standard baselines (Raw, KPCA)
cannot match other algorithms with domain generalization strategies. In this
dataset, SCA has the best performance on two out of three cases and on aver-
age. In particular, SCA is significantly better than others on Cam 2,3,4 → Cam
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0,1 case. LRE-SVM remains the closest competitor of SCA – it has the second
best average performance with one best cross-domain case.

Table 6.12: The domain generalization performance accuracy (%) on the
IXMAS dataset with dense trajectory-based features.

Methods Cam 0,1 → 2,3,4 Cam 2,3,4 → 0,1 Cam 0,1,2,3 → Cam 4 Average
Raw 58.24 20.33 39.56 39.38
KPCA 67.77 41.21 59.34 56.10
Undo-Bias 69.03 60.56 56.84 62.14
UML 74.14 63.79 60.73 66.10
LRE-SVM 79.96 80.15 74.97 78.36
uSCA 66.67 51.09 61.54 59.77
DICA 65.93 78.02 62.64 68.86
SCA 80.59 85.16 70.33 78.69

6.6.6 Runtime Performance

Next we report the average (training) runtime performance over all cross-domain
recognition tasks in each dataset. All algorithms were executed using the same
software and machine as described in Section 6.5.2. From Table 6.13, we can see
that the runtime of SCA is on par with KPCA and DICA, which is expected
since they utilize the same optimization procedure: a single run with a generalized
eigenvalue decomposition. In the previous subsections, we have shown that SCA
provides better performance accuracy than KPCA and DICA.

SCA is significantly faster than some prior state-of-the-art domain general-
ization methods (Undo-Bias, UML, and LRE-SVM). For example, on the VLCS
dataset, Undo-Bias, UML, and LRE-SVM require ∼ 30 minutes, while SCA only
needs ∼ 5 minutes average training time. An analogous trend can also be seen in
the case of Office+Caltech and IXMAS datasets. This outcome indicates that SCA
is better suited for domain generalization tasks than the competing algorithms if
a training stage in real time is required.

6.7 Chapter Summary

This chapter presents a fast representation learning algorithm that is compatible
with both domain adaptation and domain generalization settings. The algorithm is
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Table 6.13: Average domain generalization runtime (seconds) over all cross-
domain recognition tasks in each dataset.

Dataset KPCA Undo-Bias DICA UML LRE-SVM SCA
VLCS 201.99 1, 925.54 336.92 1, 652.67 2, 161.60 300.94

Office+Caltech 6.53 589.50 17.90 413.25 695.31 18.49
IXMAS 0.50 49.14 0.79 57.67 65.47 0.96

built upon a simple geometrical measure, scatter, which is a variance that operates
on reproducing kernel Hilbert space (RKHS). We refer to the resulting algorithm
as Scatter Component Analysis (SCA). SCA uses variances between subsets of the
data to construct a linear transformation on RKHS that dampens unimportant
distinctions (within labels and between domains) and amplifies useful distinctions
(between labels and overall variability). The scatter-based objective function in
SCA is, to our best knowledge, the simplest way to encode the relevant structure
of the domain adaptation and domain generalization problems, and also admits a
fast, exact solution.

SCA is a natural extension of Kernel PCA, Kernel Fisher Discriminant and
TCA. In contrast, many domain adaptation methods use objective functions that
combine the total variance and MMD with quantities that are fundamentally dif-
ferent in kind such as the graph Laplacian [133], sparsity constraints [133,135], the
Hilbert-Schmidt independence criterion [166] or the central subspace [152].

Our theoretical analysis shows that the scatter with two input domains, i.e.,
domain scatter, controls the generalization performance in the setting of domain
adaptation. Specifically, if scatter is endowed with a characteristic kernel [145],
which implies that the RKHS is close under the multiplication operator, it provides
an upper bound for discrepancy distance [140] (recall Theorem 15). Scatter with
more than two input domains coincides with distributional variance [152], which
provides a generalization bound in the setting of domain generalization.

From extensive experiments on performing cross-domain object recognition and
action recognition tasks, we found that SCA is generally much faster than com-
peting algorithms and provides the state-of-the-art performance on both domain
adaptation and domain generalization cases. In particular, SCA runs 3 to 6 times
faster than TJM and > 50 times faster than TSC, and also provides better domain
adaptation performance in terms of accuracy. In the case of domain generaliza-
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tion, SCA is also much faster than the prior state-of-the-art model, LRE-SVM.
The performance accuracy of SCA is considerably higher on the VLCS dataset and
competitive on the Office+Caltech and IXMAS datasets than that of LRE-SVM.

SCA can naturally be extended to semi-supervised domain adaptation without
any significant changes to the algorithm, that is, only by incorporating target labels
into the class scatters. Finally, we remark that it should be possible to further speed
up SCA for large-scale problems using random features [173,234].

In general, the domain adaptation and domain generalization problem, that is,
dataset bias, in object recognition is a hard problem. Our feature learning algo-
rithm can obtain the actual good performance in some cases after taking advantage
of other powerful features such as DeCAF6 (for images) and dense trajectory-based
features (for videos). None of the comparing algorithms can significantly reduce
dataset bias when applied on raw data or less powerful features. Thus, more funda-
mental algorithms that can generalize well in all environments given a few related
domains only are crucial.

The next chapter will present a novel domain adaptation algorithm based
on deep convolutional networks, which we refer to as Deep Reconstruction-
Classification Networks (DRCN). DRCN attempts to find domain correspondences
between two domains via a joint backpropagation training of classification (on
source data) and reconstruction (on target data) tasks, which is substantially dif-
ferent from SCA. A possible advantage of DRCN over SCA is the scalability: DRCN
is more suitable for large-scale problems.
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7
Deep

Reconstruction-Classification
Networks for Domain Adaptation

This chapter presents the final contribution of this thesis. We propose a new un-
supervised domain adaptation algorithm based on a deep convolutional architec-
ture for object recognition. The model, which we refer to as Deep Reconstruction-
Classification Network (DRCN), jointly learns two tasks through the standard back-
propagation: i) supervised classification of labeled source data and ii) unsupevised
reconstruction of unlabeled target data. The tasks use a shared encoding represen-
tation which endows the model with a label prediction pipeline that generalizes onto
the target domain. The performance of DRCN is evaluated on a series of cross-
domain object recognition tasks, where DRCN provides higher accuracy than the
prior state-of-the-art model in almost all cases. An interesting observation is that
the DRCN’s reconstruction pipeline transforms images from the source domain into
images whose appearance resembles the target dataset. This suggests that DRCN’s
performance is due to constructing a single composite representation that encodes
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information about both the structure of target images and the classification of source
images. Finally, we provide a theoretical analysis to justify the algorithm’s objective
in domain adaptation context.

7.1 Introduction

Deep convolutional networks (ConvNets) have been long known as powerful models
for object recognition [118,125,198]. Recently, ConvNets have established successes
in other computer vision problems such as object detection [77], image captioning
[226], and visual sentiment analysis [239]. The success of ConvNets mainly derives
from two factors: i) a large amount of (labeled) training data and ii) the scalability
of the ConvNet’s training algorithm (that is, backpropagation).

Despite the effectiveness of ConvNets, dataset bias may still occur in partic-
ular circumstances, e.g., the situation in which the target environment does not
come from the same distribution/domain as that of the training data. To deal
with dataset bias, the ConvNet’s training should be beyond the standard machine
learning strategy, which assumes that the training and target data are drawn from
the same distribution. One can augment the ConvNet training algorithm such
that it turns into a domain adaptation algorithm that can reduce dataset bias
by leveraging knowledge from unlabeled target data. Domain adaptive ConvNets
will be much more desirable than existing domain adaptation algorithms for large
scale problems due to the scalability of backpropagation. The existing domain
adaptation algorithms generally require either quadratic programming [34, 81] or
eigen-analysis [67, 135, 166] that do not scale well as the size of training dataset
increases.

Some ConvNet-based algorithms for visual domain adaptation have been pro-
posed. DLID [41] creates an “interpolating path" between the source domain and
target domain by training several convolutional feature extractors; each corre-
sponds to a particular combination of source and target images. The outputs of all
feature extractors are then concatenated to form a single representation as an in-
put to a classifier. Another work shows that a ConvNet trained on ImageNet [185],
i.e., AlexNet, can be reused to extract features of other images, referred to as
DeCAF [56], which provides significantly better accuracy than SURF-based fea-
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tures [15] on the Office dataset [187]. However, the core problem, i.e., dataset bias,
remains essentially unsolved since model accuracy has yet to reach a level that is
satisfactory for real-world applications.

7.1.1 Chapter Goals

Motivated by the above issues, the goal of this chapter is to develop a new deep
learning model that provides the state-of-the-art performance for unsupervised
domain adaptation. Our deep model, which we refer to as Deep Reconstruction-
Classification Network (DRCN), has a convolutional architecture that jointly learns
two tasks: i) supervised source label prediction and ii) unsupervised target data
reconstruction. The tasks use a shared encoding representation. DRCN can thus be
viewed as a particular form of multitask learning [6,35]. It also can be viewed as an
extension of the standard unsupervised pretraining-supervised finetuning strategy
[97]; learning in DRCN alternates between unsupervised and supervised training.

Intuitively, a useful approach to domain adaptation algorithm should uncover
true correspondences between instances from different domains – which we refer to
as domain correspondence. This is in the same spirit as in [26,227]. The problem in
unsupervised domain adaptation is that there appears to be insufficient information
to construct a domain correspondence, since target labels are not available.

To achieve the overall goal of this chapter, we establish several objectives as
follows:

• Whether DRCN indeed provides good domain adaptation performance on
benchmark visual object datasets, better than the prior ConvNet-based do-
main adaptation model;

• Whether the effectiveness of DRCN relates to a property that of uncovering
the intrinsic domain correspondence between the source and target domains;

• Whether the multitask learning strategy equipped in DRCN can be explained
with a theoretically well founded framework.
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7.1.2 Chapter Organization

This chapter is organized as follows. Section 7.2 explains the DRCN algorithm
in detail. Section 7.3 presents the evaluation results of DRCN in comparison to
several competing algorithms on benchmark object datasets. Section 7.4 analyzes
the DRCN algorithm theoretically and shows that it is equivalent to solving semi-
supervised learning problem on the target domain. Section 7.5 summarizes the
chapter.

7.2 Deep Reconstruction-Classification Net-

works

This section presents the detailed description of the DRCN algorithm. It consists
of the description of the architecture, the learning algorithm, and other useful
aspects. We define a domain as a probability distribution PXY (or just P) on
X × Y, where X is the input space and Y is the output space. Denote the source
domain by Ps and the target domain by Pt, where Ps 6= Pt. Our concern is the
unsupervised domain adaptation setting: given a labeled i.i.d. sample from a source
domain Ss = {(xsi , ysi )}

ns
i=1 ∼ Ps and an unlabeled sample from a target domain

Stu = {(xti)}
nt
i=1 ∼ PtX , find a good labeling function f : X → Y on Stu.

Model architecture. Ideally, a discriminative representation should model
both the label and the structure of the data. Based on that intuition, we hypoth-
esize that a domain-adaptive representation should satisfy two criteria: i) classify
well the source domain labeled data and ii) reconstruct well the target domain
unlabeled data, which can be viewed as an approximate of the ideal discriminative
representation.

Our model is based on a convolutional architecture that has two pipelines with
a shared encoding representation. The first pipeline is a standard convolutional
network for source label prediction [125], while the second one is a convolutional
autoencoder for target data reconstruction [141, 241]. Convolutional architectures
are a natural choice for object recognition to capture spatial correlation of images.
The model is optimized through multitask learning [35], that is, jointly learns the
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(supervised) source label prediction and the (unsupervised) target data reconstruc-
tion1 tasks. The aim is that the encoding shared representation should learn the
commonality between those tasks that provides useful information for cross-domain
object recognition. Figure 7.1 illustrates the architecture of our proposed model,
which we refer to as Deep Reconstruction-Classification Networks (DRCN).

Figure 7.1: Illustration of the DRCN’s architecture. It consists of two
pipelines: i) label prediction and ii) data reconstruction pipelines. The shared
parameters between those two pipelines are indicated by the red color.

Formal description. We now describe DRCN more formally. Let fc : X →
Rm be the (supervised) label prediction pipeline and fr : X → X be the (unsuper-
vised) data reconstruction pipeline of DRCN. Let us define three additional func-
tions: 1) an encoder / feature mapping genc : X → F , 2) a decoder gdec : F → X ,
and 3) a feature labeling glab : F → Y. Given an input x ∈ X , one can decompose
fc and fr such that

fc(x) = (glab ◦ genc)(x), (7.1)

fr(x) = (gdec ◦ genc)(x). (7.2)

The goal is to seek a single feature mapping genc model that supports both fc and
fr.

1The unsupervised convolutional autoencoder is not trained via the greedy layer-wise
fashion, but only with the standard back-propagation over the whole pipeline.
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Let Θc = {Θenc,Θlab} and Θr = {Θenc,Θdec} denote the parameters of the
supervised and unsupervised model. Θenc are shared parameters for the feature
mapping genc. Note that Θenc,Θdec,Θlab may encode parameters of multiple or
deep layers.

Learning algorithm. Suppose the inputs lie in X ⊆ Rd and their labels lie
in Y ⊆ Rm. Let `c : Y × Y → R and `r : X × X → R be the classification and
reconstruction loss respectively. Given labeled source sample Ss = {(xsi ,ysi )}

ns
i=1 ∼

P, where yi ∈ {0, 1}m is a one-hot vector, and unlabeled target sample Stu =

{(xtj)}
nt
j=1 ∼ Q, we define the empirical losses as:

Lns
c ({Θenc,Θlab}) :=

ns∑
i=1

`c (fc(x
s
i ; {Θenc,Θlab}),ysi ) , (7.3)

Lnt
r ({Θenc,Θdec}) :=

nt∑
j=1

`r
(
fr(x

t
j ; {Θenc,Θdec}),xtj)

)
. (7.4)

Typically, `c is of the form cross-entropy loss
m∑
k=1

yk log[fc(x)]k (recall that fc(x)

is the softmax output) and `r is of the form mean-squared loss
nt∑
j=1

∥∥xtj − fr(xtj)∥∥2

2
.

Our aim is to solve the following objective:

minλLns
c ({Θenc,Θlab}) + (1− λ)Lnt

r ({Θenc,Θdec}), (7.5)

where 0 ≤ λ ≤ 1 is a hyper-parameter controlling the trade-off between classifica-
tion and reconstruction. The objective is a convex combination of supervised and
unsupervised loss functions. We justify the approach in Section 7.4.

Objective (7.5) can be achieved by alternately minimizing Lns
c and Lnt

r using
stochastic gradient descent (SGD). In the implementation, we used RMSprop [213],
the variant of SGD with a gradient normalization – the current gradient is divided
by a moving average over the previous root mean squared gradients. We utilize
dropout regularization [202] during Lns

c minimization, which is effective to reduce
overfitting. Note that dropout regularization is applied in the fully connected layers
only, see Figure 7.1.
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The stopping criterion for the algorithm is determined by monitoring the av-
erage reconstruction loss of the unsupervised model during training – the process
is stopped when the average reconstruction loss stabilizes. Once the training is
completed, the optimal parameters Θ̂enc and Θ̂lab are used to form a classification
model fc(xt; {Θ̂enc, Θ̂lab}) that is expected to perform well on the target domain.
The DRCN learning algorithm is summarized in Algorithm 7 and implemented
using Theano [13].

Algorithm 7 The Deep Reconstruction-Classification Network (DRCN)
learning algorithm.
Input:
• Labeled source data: Ss = {(xsi , ysi )}ns

i=1;
• Unlabeled target data: Stu = {xtj}nt

i=j;
• Learning rates: αc and αr;
1: Initialize parameters Θenc,Θdec,Θlab

2: while not stop do
3: for all source batch of size ms do
4: Do a forward pass according to (7.1);
5: Let Θc = {Θenc,Θlab}. Update Θc:

Θc ← Θc − αcλ∇ΘcLms
c (Θc);

6: end for
7: for all target batch of size mt do
8: Do a forward pass according to (7.2);
9: Let Θr = {Θenc,Θdec}. Update Θr:

Θr ← Θr − αr(1− λ)∇ΘrLmt
r (Θr).

10: end for
11: end while
Output:
• DRCN learnt parameters: Θ̂ = {Θ̂enc, Θ̂dec, Θ̂lab};

Data augmentation and denoising. We use two well-known tricks to im-
prove DRCN’s performance: data augmentation and denoising. Data augmentation
generates additional training data during the supervised training with respect to
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some plausible transformations over the original data, which improves generaliza-
tion, see e.g. [197]. Denoising involves reconstructing clean inputs given their noisy
counterparts. It is used to improve the feature invariance of denoising autoencoders
(DAE) [225]. Generalization and feature invariance are two properties needed to
improve domain adaptation. Since DRCN has both classification and reconstruc-
tion aspects, we can naturally apply these two tricks simultaneously in the training
stage.

Let QX̃|X denote the noise distribution given the original data from which the
noisy data are sampled from. The classification pipeline of DRCN fc thus actually
observes additional pairs {(x̃si , ysi )}

ns
i=1 and the reconstruction pipeline fr observes

{(x̃ti,xti)}
nt
i=1. The noise distribution QX̃|X is typically of the form some geometric

transformations (translation, rotation, skewing, and scaling) in data augmentation,
while it is either zero-masked noise or Gaussian noise in the denoising strategy. In
this work, we combine all the fore-mentioned types of noise for denoising and use
only the geometric transformations for data augmentation.

7.3 Experiments and Results

This section reports the evaluation results of DRCN. It is divided into two parts.
The first part focuses on the evaluation on large-scale datasets popular with deep
learning methods, while the second part summarizes the results on the Office
dataset [187].

7.3.1 Experiment I: SVHN, MNIST, USPS, CIFAR,

and STL

The first set of experiments investigates the empirical performance of DRCN on five
widely used benchmarks: MNIST [125], USPS [106], Street View House Numbers
(SVHN) [156], CIFAR [117], and STL [44], see 7.1 a detailed summary. The task
is to perform cross-domain recognition: taking the training set from one dataset
as the source domain and the test set from another dataset as the target domain.
We evaluate our algorithm’s recognition accuracy over three cross-domain pairs:
1) MNIST vs USPS, 2) SVHN vs MNIST, and 3) CIFAR vs STL.
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Table 7.1: Summary of five benchmark datasets.

Dataset Type #train #test Dimension
MNIST Digit (grayscale) 50, 000 10, 000 28× 28
USPS Digit (grayscale) 7, 291 2, 007 16× 16
SVHN Digit (RGB) 73, 257 26, 032 32× 32

CIFAR-10 Object (RGB) 50, 000 10, 000 32× 32
STL-10 Object (RGB) 5, 000 8, 000 96× 96

Data setup: MNIST (mn) vs USPS (us) contains 2D grayscale handwritten
digit images of 10 classes. We preprocessed them as follows. USPS images were
rescaled into 28 × 28 and pixels were normalized to [0, 1] values. From this pair,
two cross-domain recognition tasks were performed: mn → us and us → mn.

In SVHN (sv) vs MNIST (mn) pair, MNIST images were rescaled to 32 × 32

and SVHN images were grayscaled. The [0, 1] normalization was then applied to
all images. Note that we did not preprocess SVHN images using local contrast
normalization as in [194]. We evaluated our algorithm on sv → mn and mn → sv

cross-domain recognition tasks.

STL (st) vs CIFAR (ci) consists of RGB images that share eight object classes:
airplane, bird, cat, deer, dog, horse, ship, and truck, which forms 4, 000 (train) and
6, 400 (test) images for STL, and 40, 000 (train) and 8, 000 (test) images for CIFAR.
STL images were rescaled to 32× 32 and pixels were standardized into zero-mean
and unit-variance. Our algorithm was evaluated on two cross-domain tasks, that
is, st → ci and ci → st.

The archiceture and learning setup. The DRCN architecture used in the
experiments is adopted from [141]. The label prediction pipeline has three con-
volutional layers: 100 5x5 filters (conv1), 150 5x5 filters (conv2), and 200 3x3
filters (conv3) respectively, two max-pooling layers of size 2x2 after the first and
the second convolutional layers (pool1 and pool2), and three fully-connected
layers (fc4, fc5,and fc_out) – fc_out is the output layer. The number of
neurons in fc4 or fc5 was treated as a tunable hyper-parameter in the range
of [300, 350, ..., 1000], chosen according to the best performance on the (source)
validation set. The shared encoder genc has thus a configuration of conv1-pool1-
conv2-pool2-conv3-fc4-fc5. The configuration of the decoder gdec is the in-
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verse of that of genc.
We employ ReLU activations [153] in all hidden layers and linear activations

in the output layer of the reconstruction pipeline. Updates in both classification
and reconstruction tasks were computed via RMSprop with learning rate of 10−4

and moving average decay of 0.9. The control penalty λ was selected according to
accuracy on the source validation data – typically, the optimal value was in the
range [0.4, 0.7].

Benchmark algorithms. We compare DRCN with the following algorithms.

1. ConvNetsrc: a supervised convolutional network trained on the labeled
source domain only, with the same network configuration as that of DRCN’s
label prediction pipeline,

2. SCAE: ConvNet preceded by the layer-wise pretraining of stacked convolu-
tional autoencoders on all unlabeled data [141],

3. SCAEt: similar to SCAE, but only unlabeled data from the target domain
are used during pretraining,

4. SDAsh [79]: the deep network with three fully connected layers, which is a
successful domain adaptation model for sentiment classification,

5. Subspace Alignment (SA) [67],2 and

6. ReverseGrad [72]: a recently published domain adaptation model based on
deep convolutional networks that provides the state-of-the-art performance.

All deep learning based models above have the same architecture as DRCN for
the label predictor. For ReverseGrad, we also evaluated the “original architecture”
devised in [72] and chose whichever performed better of the original architecture or
our architecture. Finally, we applied the data augmentation to all models similarly
to DRCN. The ground-truth model is also evaluated, that is, a convolutional net-
work trained from and tested on images from the target domain only (ConvNettgt),
to measure the difference between the cross-domain performance and the ideal per-
formance.

2The setup follows one in [72]: the inputs to SA are the last hidden layer activation
values of ConvNetsrc.
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Table 7.2: Accuracy (mean ± std %) on six cross-domain recognition tasks
over ten independent runs. Bold-red and bold-black indicate the best and
second best domain adaptation performance. ConvNettgt denotes the ground-
truth model: training and testing on the target domain only.

Methods mn→ us us→ mn sv→ mn mn→ sv
ConvNetsrc 85.55 ± 0.12 65.77 ± 0.06 62.33 ± 0.09 25.95 ± 0.04
SDAsh [79] 43.14 ± 0.16 37.30 ± 0.12 55.15 ± 0.08 8.23 ± 0.11
SA [67] 85.89 ± 0.13 51.54 ± 0.06 63.17 ± 0.07 28.52 ± 0.10
SCAE [141] 85.78 ± 0.08 63.11 ± 0.04 60.02 ± 0.16 27.12 ± 0.08
SCAEt [141] 86.24 ± 0.11 65.37 ± 0.03 65.57± 0.09 27.57 ± 0.13
ReverseGrad [72] 91.11 ± 0.07 74.01 ± 0.05 73.91 ± 0.07 35.67 ± 0.04
DRCN 91.80 ± 0.09 73.67 ± 0.04 81.97 ± 0.16 40.05 ± 0.07
ConvNettgt 96.12± 0.07 98.67± 0.04 98.67± 0.04 91.52 ± 0.05

Classification accuracy. Tables 7.2 and 7.3 summarize the cross-domain
recognition accuracy (mean ± std) of all algorithms over ten independent runs.
DRCN performs best in all but one cross-domain tasks, better than the prior
state-of-the-art ReverseGrad. Notably on the sv → mn task, DRCN outperforms
ReverseGrad with ∼ 8% accuracy gap. DRCN also provides a considerable im-
provement over ReverseGrad (∼ 5%) on the reverse task, mn→ sv, but the gap to
the groundtruth is still large – this case was also mentioned in previous work as a
failed case [72]. In the case of ci→ st, the performance of DRCN almost matches
the performance of the target baseline.

DRCN also convincingly outperforms the greedy-layer pretraining-based algo-
rithms (SDAsh, SCAE, and SCAEt). This indicates the effectiveness of the simulta-
neous reconstruction-classification training strategy over the standard pretraining-
finetuning in the context of domain adaptation

ReverseGrad vs DRCN t-tests. For completeness, we perform a statistical
significance test to measure how significance the average accuracy difference be-
tween ReverseGrad and DRCN is. Welch’s t-test [230] is utilized to perform the
test, since we assume that the accuracy variances of ReverseGrad and DRCN are
unequal, Table 7.4 shows the significance test results for each cross-domain case.

Picking a significance level at 0.01 and observing the obtained P -values, we
reject the null hypothesis that the average accuracy scores between ReverseGrad
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Table 7.3: Accuracy (mean ± std %) on six cross-domain recognition tasks
– cont’d.

Methods st→ ci ci→ st
ConvNetsrc 54.17 ± 0.21 63.61 ± 0.17
SDAsh [79] 35.82 ± 0.07 42.27 ± 0.12
SA [67] 54.04 ± 0.19 62.88 ± 0.15
SCAE [141] 54.25 ± 0.13 62.18 ± 0.04
SCAEt [141] 54.68± 0.08 61.94± 0.06
ReverseGrad [72] 56.91 ± 0.05 66.12 ± 0.08
DRCN 58.86± 0.07 66.37± 0.10
ConvNettgt 78.81± 0.11 66.50± 0.07

Table 7.4: Welch’s t-test on the performance of ReverseGrad and DRCN.

Tasks t value d.f. P value
mn→ us −19.137 16.971 6.341× 10−13

us→ mn 16.791 17.173 4.305× 10−12

sv→ mn −145.944 12.324 2.493× 10−21

mn→ sv −171.798 14.311 3.970× 10−25

st→ ci −71.683 16.287 8.479× 10−22

ci→ st −6.173 17.173 9.763× 10−6

and DRCN are equal. In other words, we can safely conclude that DRCN performs
better than ReverseGrad at the 0.01 significance level.

Comparison of different DRCN flavors. Recall that DRCN uses only the
unlabeled target images for the unsupervised reconstruction training. To verify the
importance of this strategy, we further compare different flavors of DRCN: DRCNs
and DRCNst. Those algorithms are conceptually the same but different only in
utilizing the unlabeled images during the unsupervised training. DRCNs uses only
unlabeled source images, whereas DRCNst combines both unlabeled source and
target images.

The experimental results in Table 7.5 confirm that DRCN always performs
better than DRCNs and DRCNst. While DRCNst occasionally outperforms Re-
verseGrad, its overall performance does not compete with that of DRCN. The
only case where DRCNs and DRCNst flavors can closely match DRCN is on mn→
us. This suggests that the use of unlabeled source data during the reconstruction
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Table 7.5: Accuracy (%) of DRCNs and DRCNst. Bold indicates the best
performance.

Methods mn→ us us→ mn sv→ mn mn→ sv st→ ci ci→ st
DRCNs 89.92 ± 0.12 65.96 ± 0.07 73.66 ± 0.04 34.29 ± 0.09 55.12 ± 0.12 63.02 ± 0.06
DRCNst 91.15 ± 0.05 68.64 ± 0.05 75.88 ± 0.09 37.77 ± 0.06 55.26 ± 0.06 64.55 ± 0.13
DRCN 91.80 ± 0.09 73.67 ± 0.04 81.97 ± 0.16 40.05 ± 0.07 58.86± 0.07 66.37± 0.10

training do not contribute much to the cross-domain generalization, which verifies
the DRCN strategy in using the unlabeled target data only.

Data reconstruction. A useful insight was found when reconstructing source
images through the reconstruction pipeline of DRCN. Specifically, we observe
the visual appearance of fr(xs1), . . . , fr(x

s
m), where xs1, . . . , xsm are some images

from the source domain. Note that xs1, . . . , xsm are unseen during the unsupervised
reconstruction training in DRCN. We visualize such a reconstruction in the case
of sv →mn training in Figure 7.2. Figure 7.2(a) and 7.3(a) display the original
source (SVHN) and target (MNIST) images.

The main finding of this observation is depicted in Figure 7.3(c): the recon-
structed images produced by DRCN given some SVHN images as the source inputs.
We found that the reconstructed SVHN images resemble MNIST-like digit appear-
ances, with white stroke and black background, see Figure 7.3(a). Remarkably,
DRCN still can produce “correct" reconstructions of some noisy SVHN images.
For example, all SVHN digits 3 displayed in Figure 7.2(a) are clearly reconstructed
by DRCN, see the fourth row of Figure 7.3(c). DRCN seems to pick only the
digit in the middle and ignore the remaining digits. This may explain the supe-
rior cross-domain recognition performance of DRCN on this task. However, such
a cross-reconstruction appearance does not happen in the reverse task, mn → sv,
which may be an indicator for the low accuracy relative to the groundtruth per-
formance.

We also conduct such a diagnostic reconstruction on other algorithms that
have the reconstruction pipeline. Figure 7.3(d) depicts the reconstructions of the
SVHN images produced by ConvAE trained on the MNIST images only. They do
not appear to be digits, suggesting that ConvAE recognizes the SVHN images as
noise. Figure 7.3(e) shows the reconstructed SVHN images produced by DRCNst.
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(a) Source (SVHN) (b) Target (MNIST)

(c) DRCN (d) ConvAE

(e) DRCNst (f) ConvAE+ConvNet

Figure 7.2: Data reconstruction after training from SVHN → MNIST. Fig.
(a)-(b) show the original input pixels, and (c)-(f) depict the reconstructed
source images (SVHN). The reconstruction of DRCN appears to be MNIST-
like digits, see the main text for a detailed explanation.
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(a) Source (MNIST) (b) Target (USPS)

(c) DRCN (d) ConvAE

(e) DRCNst (f) ConvAE+ConvNetsrc

Figure 7.3: Data reconstruction after training from MNIST → USPS. Fig.
(a)-(b) show the original input pixels, and (c)-(f) depict the reconstructed
source images (MNIST). The reconstruction of DRCN appears to be USPS-
like digits.
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(a) Source (USPS) (b) Target (MNIST)

(c) DRCN (d) ConvAE

(e) DRCNst (f) ConvAE+ConvNetsrc

Figure 7.4: Data reconstruction after training from USPS → MNIST. Fig.
(a)-(b) show the original input pixels, and (c)-(f) depict the reconstructed
source images (USPS). The reconstruction of DRCN appears to be MNIST-
like digits.
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We can see that they look almost identical to the source images shown in Figure
7.2(a), which is not surprising since the source images are included during the
reconstruction training.

Finally, we evaluated the reconstruction induced by ConvNetsrc to observe
the difference with the reconstruction of DRCN. Specifically, we trained ConvAE
on the MNIST images in which the encoding parameters were initialized from
those of ConvNetsrc and not updated during training. We refer to the model as
ConvAE+ConvNetsrc. The reconstructed images are visualized in Figure 7.3(f).
Although they resemble the style of MNIST images as in the DRCN’s case, only a
few source images are correctly reconstructed.

To summarize, the results from this diagnostic data reconstruction correlate
with the cross-domain recognition performance. A similar trend of such outcome
can be found in the case of MNIST vs USPS, see Figures 7.3 and 7.4.

(a) SVHN → MNIST training (b) MNIST → USPS training

Figure 7.5: The source accuracy (blue lines) and target accuracy (red lines)
comparison between ConvNet and DRCN during training stage on SVHN→
MNIST cross-domain task. DRCN induces lower source accuracy, but higher
target accuracy than ConvNet.

Training progress. Recall that DRCN has two pipelines with shared param-
eters; each corresponds to the classification and reconstruction task, respectively.
One can consider that the unsupervised reconstruction learning acts as a regu-
larization for the supervised classification to reduce overfitting onto the source
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domain. Figure 7.5 compares the source and target accuracy of DRCN with that
of the standard ConvNet during training. The most prominent results indicating
the overfitting reduction can be seen in the SVHN → MNIST case, i.e., DRCN
produces higher target accuracy but with lower source accuracy, than ConvNet.
In the case of MNIST → USPS, the behavior is even ”better“ in the sense that
DRCN not only produces better performance on the target dataset, but also does
not degrade the performance on the source dataset.

t-SNE Visualization. For completeness, we also visualize the 2D point cloud
of the DRCN′s last hidden layer activations using t-SNE [219] and compare it with
that of the standard ConvNet. Figure 7.6 depicts the empirical feature distribu-
tion comparison between ConvNet (with no adaption) and DRCN in the cases of
MNIST → USPS and SVHN → MNIST. Red and gray point clouds indicate the
source and target feature clouds, respectively. A successful domain adaptation
should be indicated by a datapoint configuration that the source and target point
clouds should overlap each other. We can see that DRCN provides more apparent
overlapping point clouds than those of the standard ConvNet.

7.3.2 Experiments II: Office dataset

In the second experiment, we evaluated DRCN on the standard domain adaptation
benchmark for visual object recognition, Office [187], which consists of three
different domains: amazon (a), dslr (d), and webcam (w). Office has 2817
labeled images in total distributed across 31 object categories. The number of
images is thus relatively small compared to the previously used datasets.

We applied the DRCN algorithm to finetune AlexNet [118], as was done with
different methods in previous work [72, 132, 217].3 The fine-tuning was performed
only on the fully connected layers of AlexNet, fc6 and fc7, and the last convo-
lutional layer, conv5. Specifically, the label prediction pipeline of DRCN contains
conv4-conv5-fc6-fc7-label and the data reconstruction pipeline has conv4-conv5-
fc6-fc7-fc6′-conv5′-conv4′ (the ′ denotes the the inverse layer) – it thus does not
reconstruct the original input pixels. The learning rate was selected following the

3Recall that AlexNet consists of five convolutional layers: conv1, . . . , conv5 and three
fully connected layers: fc6, fc7, and fc8/output.
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(a) ConvNet (MNIST → USPS) (b) DRCN (MNIST → USPS)

(c) ConvNet (SVHN → MNIST) (d) DRCN (SVHN → MNIST)

Figure 7.6: t-SNE visualizations of the last layer’s activations. Red and gray
points indicate the source and target domain examples, respectively.

strategy devised in [132]: cross-validating the base learning rate between 10−5 and
10−2 with a multiplicative step-size 101/2. We also tried the fine-tuning strategy
proposed in [132] on DRCN: fixing conv1-conv3, fine-tuning conv4 and conv5,
learning fc6− fc8 from scratch. However, we dd not obtain a competitive perfor-
mance for DRCN in doing so.

We followed the standard unsupervised domain adaptation training protocol
used in previous work [41,81,132], that is, using all labeled source data and unla-
beled target data. Table 7.6 summarizes the performance accuracy of DRCN based
on that protocol in comparison to the state-of-the-art algorithms. We found that
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DRCN is competitive against DAN and ReverseGrad – the performance is either
the best or the second best except for one case. In particular, DRCN performs best
with a convincing gap in situations when the target domain has relatively many
data, i.e., amazon as the target dataset. We hypothesize that the performance
of DRCN could be further improved by providing a larger amount of unlabeled
images from, e.g., ImageNet, for data reconstruction training, which will be our
future work.

Table 7.6: Accuracy (mean ± std %) on the Office dataset with the standard
unsupervised domain adaptation protocol used in [41,81].

Method a → w w → a a → d d → a w → d d → w
DDC [217] 61.8 ± 0.4 52.2 ± 0.4 64.4 ± 0.3 52.1 ± 0.8 98.5 ± 0.4 95.0 ± 0.5
DAN [132] 68.5 ± 0.4 53.1 ± 0.3 67.0 ± 0.4 54.0 ± 0.4 99.0 ± 0.2 96.0 ± 0.3
ReverseGrad [72] 72.6 ± 0.3 52.7 ± 0.2 67.1 ± 0.3 54.5 ± 0.4 99.2 ± 0.3 96.4 ± 0.1
DRCN 68.7 ± 0.3 54.9 ± 0.5 66.8 ± 0.5 56.0 ± 0.5 99.0 ± 0.2 96.4 ± 0.3

7.4 Analysis

This section shows that, under certain assumptions, optimizing (7.5) in DRCN is
approximately equivalent to solving a semi-supervised learning problem on the tar-
get domain. The theoretical result also yields a consequence that the unsupervised
training using unlabeled target data only is sufficient – the unlabeled source data
might not help further improve domain adaptation.

Denote the labeled and unlabeled distributions as PXY =: P and PX respec-
tively. Let P θ(·) refer to a family of models, parameterized by θ ∈ Θ, that is
used to learn a maximum likelihood estimator. The DRCN’s learning algorithm
for domain adaptation tasks can be interpreted probabilistically by assuming that
P θ(x) is Gaussian and P θ(y|x) is a multinomial, fit by logistic regression.

The objective in Eq.(7.5) is then equivalent to the following (empirical) maxi-
mum likelihood estimate:

θ̂λ = argmax
θ

λ

ns∑
i=1

logP θY |X(ysi |xsi ) + (1− λ)

nt∑
j=1

logP θ
X|X̃(xtj |x̃tj), (7.6)

where x̃ is the noisy input generated from QX̃|X . The first term represents the mod-
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eled learned by the supervised convolutional network and the second term repre-
sents the model learned by the unsupervised convolutional autoencoder. Note that
the discriminative model only observes labeled data from the source distribution
PX in objectives (7.5) and (7.6).

We now consider a semi-supervised learning problem formulated in [46]. Sup-
pose that labeled and unlabeled samples are taken from the target domain with
probabilities λ and (1 − λ) respectively. By Theorem 5.1 in [46], the maximum
likelihood estimate θtλ is

θtλ = argmax
θ

λ E
Pt

[logP θ(x, y)] + (1− λ) E
Pt
X

[logP θX(x)] (7.7)

Unfortunately, θtλ cannot be computed since we do not have access to target labels.
As a proxy, we consider the maximum likelihood estimate in Eq. (7.6) that is
computed from a mixture of source and target samples.

Theorem 18 shows the two objectives are approximately equivalent. We make
the following assumptions:

(A1) Consistency: The model contains true distribution, so the MLE is
consistent.

(A2) Smoothness and measurability: [233]

(A3) Covariate shift: PsY |X = PtY |X [196].

(A4) Constant ratio: there is a constant α > 0 such that Pt
X(xs)

Ps
X(xs) ≈ α for all

source samples xs ∼ PsX .

Consistency and smoothness are standard assumptions used by Cohen and
Cozman [46] to prove their result. Covariate shift is a common assumption in
domain adaptation. It says, roughly, that only the distribution of data changes
across domains – i.e.the labels are chosen by a fixed unknown function of the input
data (which may be stochastic).

The constant ratio assumption, A4, is new and requires some elucidation. It
states that the same relative probability is assigned to source samples by the source
and target domains. Note that the assumption is consistent with the source domain
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assigning much more probability mass on every source sample than the mass placed
by the target domain.

Theorem 18 (reduction from domain adaptation → semi-supervised learning).
Under the assumptions above there exists a λ′, not necessarily equal to λ, such that
the source-target mixture in Eq. (7.6) approximates the purely target-based estimator
defined in Eq. (7.7):

θ̂λ′ ≈ θtλ for some λ′.

In experiments, the parameter λ′ is chosen by cross-validation with respect to
classification performance on the source domain.

Proof. If Ps and Pt satisfy covariate shift, A3, then we can switch from an expec-
tation over target samples to source samples:

E
Pt

[
logP θ(x, y)

]
= E

Ps

[
PtX(x)

PsX(x)
· logP θ(x, y)

]
.

It follows that θtλ can be empirically estimated as

θ̂tλ ≈ argmax
θ

λ

ns∑
i=1

PtX(xsi )

PsX(xsi )
logP θ(xsi , y

s
i ) + (1− λ)

nt∑
j=1

logP θX(xtj) (7.8)

It was shown in [23] that P θ
X|X̃(x|x̃) defines an ergodic Markov chain whose asymp-

totic marginal distribution of X converges to the data-generating distribution PX .
Thus, maxP θ

X|X̃(x|x̃) ≈ maxP θX(x).

Finally, assumption A4 allows to substitute a constant for the ratio Pt
X(x)

Ps
X(x) and

the result follows.

The above theorem can be used to explain the outcome that the unlabeled
samples from the source domain might not further contribute to domain adaptation
in our setting. The first term of (7.8) can be written as

λ

ns∑
i=1

PtX(xsi )

PsX(xsi )
logP θY |X(ysi |xsi ) + λ

ns∑
i=1

PtX(xsi )

PsX(xsi )
logP θX(xsi ).

Observe the second term above. As ns → ∞, P θX will converge to PsX . Hence,∫
x∼Ps

X

Pt
X(x)

Ps
X(x) logPsX(x) ≤

∫
x∼Ps

X
PtX(x), which means that adding more unlabeled
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source data will only result in a constant. This implies an optimization procedure
equivalent to (7.6), which justifies the uselessness of unlabeled source samples.

Note that the latter analysis does not necessarily imply that the incorporation of
unlabeled source data degrades the performance. The fact that DRCNst performs
worse than DRCN could be due to, e.g., the model capacity, which depends on the
choice of the architecture.

7.5 Chapter Summary

This chapter presents a new deep multitask learning algorithm with convolutional
architecture for unsupervised domain adaptation in visual object recognition. The
algorithm learns two different tasks simultaneously: i) supervised source label pre-
diction and ii) unsupervised target image reconstruction. The resulting deep model
is referred to as Deep Reconstruction-Classification Network (DRCN), which is
equipped with two pipelines with a shared encoding representation corresponding
to the above tasks. We show that DRCN performs better than the standard Con-
vNet with traditional unsupervised pretraining-supervised finetuning strategy and
provides the state-of-the-art performance on cross-domain object recognition tasks.

A useful insight into the effectiveness of DRCN can be found when observing the
visual characteristic of the DRCN’s data reconstruction. That is, the appearance
of DRCN’s reconstructed source images resemble that of the target images, which
indicates that DRCN learns the domain correspondence without knowing the target
labels. In the case of the SVHN → MNIST task, for example, the reconstructed
images of the SVHN images appear to be similar to the MNIST images in terms
of stroke style and background.

An observation of the performance of DRCN and the standard ConvNet over
the training iterations shows that the unsupervised reconstruction task may act
as a regularization for the supervised classification to reduce overfitting onto the
source domain. DRCN provides lower or similar training/source accuracy and
higher test/target accuracy than ConvNet.

This chapter also establishes the theoretical soundness of the DRCN’s algo-
rithm. We found that training DRCN is approximately equivalent to solving a
semi-supervised learning problem on the target domain. Furthermore, the theoret-
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ical outcome also yields a consequence that the use of unlabeled target data only
during the unsupervised reconstruction learning is sufficient – adding unlabeled
source data might not help to further improve domain adaptation.

One direction for future work is a rigorous analysis of the relationship between
multitask learning and uncovering domain correspondence. A further study about
the role of data augmentation and denoising is also a potential direction. Results
from the above directions would help design better domain adaptation algorithms
in the future.
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8
Conclusions and Future Work

This chapter concludes the thesis and discusses several possible directions for fu-
ture work. The overall goal of this thesis was to progress towards solving domain
shift / dataset bias in visual object recognition via representation learning in the
context of domain adaptation and domain generalization. This goal was success-
fully achieved by developing a number of state-of-the-art domain adaptation and
domain generalization algorithms based on deep learning and kernel methods. Our
proposed algorithms were evaluated over a wide range of cross-domain object recog-
nition tasks and provided either competitive or better performance accuracy than
prior state-of-the-art methods. We also presented theoretical analyses for two of
the proposed algorithms to justify the soundness of the algorithms.

The remainder of this chapter provides conclusions for each objective of this
thesis and highlights the main findings from each individual contribution chapter.
We then discuss some potential research directions for future work.

8.1 Achieved Objectives

The following research objectives have been achieved in this thesis:
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• Develop a new deep learning algorithm that can reduce dataset bias induced
by “clean” training images and “noisy” test images. The algorithm trains
deep neural nets with a (sparse) autoencoder (SAE) in the first layer and
restricted Boltzmann machines (RBMs) in the upper hidden layers on clean
images. SAE is utilized to extract sparse features from raw images, which
are expected to be noise-invariant over several types of corruption such as
Gaussian noise, impulse noise, pixel border, local block, and background.
The stacked RBMs then receive the sparse features as inputs to learn the
top hierarchical features. The use of RBMs is motivated by the fact that the
stacked RBMs generalize deep neural net in the standard evaluation setting,
i.e., “clean” training images and “clean” test images. We refer to the resulting
model as Deep Hybrid Network (DHN). The evaluation results show that a
DHN trained on clean handwritten digits is more robust in recognizing noisy
handwritten digits than a Deep Belief Network (DBN) trained on the same
examples. We also propose a flavor of DHN, referred to as sparse Deep
Hybrid Network (sDHN) that is equipped with sparse, local connections in
the first hidden layer. sDHN improves the robustness of DHN against local
block noise.

• Develop a domain adaptation model, referred to as Domain Adaptive Neu-
ral Network (DaNN), which is based on feedforward neural networks trained
using a regularized back-propagation algorithm. We propose a new regular-
ization technique that controls the distribution difference between the source
and target data hidden layer activations. The regularization is achieved by
utilizing Maximum Mean Discrepancy (MMD) as an additional term in the
DaNN’s objective function. MMD measures the distribution mismatch be-
tween the source and target data hidden activations, which is minimized
during the back-propagation training. From evaluations over a range of
cross-domain object recognition tasks using the Office dataset, DaNN per-
forms better than the standard feedforward neural nets and competitively
to the prior state-of-the-art, Transfer Sparse Coding (TSC) [133]. When
preceded by the denoising autoencoder pretraining, DaNN provides the best
performance on raw pixels.
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• Develop a novel multi-task representation learning algorithm for domain gen-
eralization, which we refer to as Multi-task Autoencoder (MTAE). MTAE
extends the standard denoising autoenoder algorithm by substituting arti-
ficially induced corruption with naturally occurring inter-domain variabil-
ity in the appearances of objects. Instead of reconstructing images from
noisy versions, MTAE learns to transform the original image into its analogs
in multiple related domains. It thereby learns features that are robust to
variations across domains. We evaluate the cross-domain object recogni-
tion performance of MTAE on a range of benchmark datasets: the MNIST,
USPS, Office, VOC, LabelMe, Caltech, and SUN09. We found that (de-
noising) MTAE outperforms alternative autoencoder-based models as well
as the current state-of-the-art algorithms for domain generalization in terms
of accuracy. From the visualization of the MTAE’s learned parameters, it
suggests that MTAE captures the underlying object transformation among
source domains, which might be the reason of its effectiveness.

• Develop a fast, simple, and theoretically well founded representation learn-
ing algorithm based on the kernel trick, which can be used for both domain
adaptation and domain generalization. SCA is built from a simple geometri-
cal measure operating on reproducing kernel Hilbert space, i.e., scatter. SCA
seeks a representation of data that satisfies four requirements: i) separate
datapoints with different labels and ii) separate the data as a whole, while
iii) not separating points sharing the same label and iv) not separating the
two or more domains. The optimization problem of SCA can be reduced to
a generalized eigenvalue problem, which results in a fast and exact solution.
Comprehensive experiments on benchmark cross-domain object recognition
datasets verify that SCA performs much faster than several state-of-the-art
algorithms, while provides competitive classification accuracy in both do-
main adaptation and domain generalization. We also show that scatter with
two domains as inputs relates to maximum mean discrepancy [28] and dis-
crepancy distance [140], which implies generalization bound for SCA in the
domain adaptation case.

• Develop a novel deep convolutional neural network for unsupervised domain
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adaptation trained by multi-task learning. That is, the proposed algorithm
simultaneously learns two tasks via a shared encoding representation: i)
source label classification and ii) target data reconstruction. The resulting
model is referred to as Deep Reconstruction-Classification Network (DRCN),
which is equipped with a label prediction pipeline and an data reconstruc-
tion pipeline corresponding to the above tasks. From evaluations on a se-
ries of cross-domain object recognition tasks, the DRCN’s label prediction
pipeline provides better performance accuracy than the prior state-of-the-art
Domain-Adversarial Neural Network (DANN) in almost all cases. An obser-
vation from the outputs of the DRCN’s reconstruction pipeline suggests that
DRCN successfully captures the domain correspondence – the reconstructed
source images appear to be similar to the original target images. We also
demonstrate that the DRCN’s learning objective is approximately equivalent
to solving a semi-supervised learning problem on the target domain.

8.2 Main Conclusions

Overall, this thesis finds that the representation learning approach based on deep
learning and kernel methods is effective to mitigate the dataset bias problem, which
improves the object recognition performance under domain adaptation or domain
generalization settings. Most of our proposed algorithms successfully provide better
object recognition performance than the prior state-of-the-art algorithms.

This section discusses the main conclusions for each research objective drawn
from the five contribution chapters (Chapters 3 to 7).

8.2.1 Sparse Features and Sparse Connections in Deep

Neural Networks for Domain Adaptation

Chapter 3 presents Deep Hybrid Network (DHN), our proposed algorithm based
on a particular combination of a sparse autoencoder (AE) and stacked restricted
Boltzmann machines (RBMs) as the pretraining models; the sparse AE trains the
first hidden layer, while the RBMs train the top remaining layers. It also presents
the sparsely-connected Deep Hybrid Network (sDHN), the variant of DHN with
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local sparse connections in the first hidden layer. We compared the performance of
the proposed algorithms with Deep Belief Network (DBN) [97], sparsely-connected
Deep Belief Network (sDBN) [209], and stacked sparse Autoencoders (SAE) [157].

Below we summarize our main findings in terms of two sparsity notions: i)
sparse features and i) sparse local weight connections.

Sparse Features

Chapter 3 finds that sparse hidden layer features induced by DHN or SAE can
significantly reduce dataset bias in the cross-domain object recognition tasks with
clean source images and noisy target images. This effect is more prominent when
the models are trained on a small sized dataset. DHN and SAE are particularly
robust against impulse noise, pixel border occlusion, and background noise, per-
forms significantly better than DBN. Furthermore, DHN does not perform much
worse than DBN in the standard in-domain setting: clean source images and clean
target images.

We observe that the sparse autoencoder-RBMs combination, i.e., the building
blocks of DHN, has a considerable potential to further improve the cross-domain
recognition performance. This is indicated by the superior performance of DHN
over that of SAE. Note that SAE trains every hidden layer using the sparse autoen-
coder training. There are two possible explanations about this outcome: i) using
RBMs on the top of the autoencoder indeed helps to generalize deep networks,
consistent with our prior hypothesis, and ii) encouraging sparse features in every
hidden layer (as in SAE) might be too strong so that deep networks loose useful
information rather than provide a better generalization.

Sparse Local Connections

Despite the effectiveness of sparse features as described above, there are two cases
where sparse features are not sufficient for reducing dataset bias: i) recognizing
handwritten digits with squared block occlusion and ii) handling different shapes
or styles of digits (simulated by the MNIST vs USPS recognition). We find that
sDBN and sDHN, which employs sparse local connections in the first hidden layer,
have a superior performance in those cases. sDBN is the best performing model on
recognizing digits with squared block occlusion, while sDHN comes second. This
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indicates that the sparse connections only are sufficient for producing good models
in this particular case. sDHN, however, is the best model in performing the MNIST
vs USPS cross-domain recognition, while DHN and sDBN come second and third,
respectively. The combination of sparse features and sparse connections are thus
helpful for this task.

8.2.2 Regularized Feedforward Neural Network Train-

ing using MMD

Chapter 4 proposes Domain Adaptive Neural Network (DaNN), a feedforward neu-
ral net that reduces the distribution mismatch between the source data and tar-
get data hidden layer activations. DaNN employs Maximum Mean Discrepancy
(MMD) as a regularization embedded in the back-propagation training. While
MMD has been widely used in domain adaptation, DaNN is, to the best of our
knowledge, the first neural network-based approach that uses MMD to deal with
dataset bias. It is found that the use of MMD can effectively improves the domain
adaptation performance of feedforward neural nets over six cross-domain object
recognition tasks on the Office dataset.

We highlight two main findings from our performance evaluation below.

Performance on SURF-BoW Features

Chapter 4 finds that DaNN performs better than a feedforward neural net (NN)
trained using the standard backpropagation on SURF-BoW features of the Of-
fice images. This indicates the effectiveness of our MMD regularization to pro-
vide domain-invariant representations for DaNN. Overall, DaNN has the second
best averaged accuracy over six cross-domain tasks, while the prior state-of-the-art
Transfer Sparse Coding (TSC) provides the best averaged accuracy. The superior
performance of TSC might be due to the sparse feature extraction, which requires
an extra iterative process at test time. The computational cost of DaNN at test
time is identical to NN, which is an advantage over TSC in a real time scenario.
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Performance on Raw Pixels and Effect of Autoencoder Pretraining

Using raw pixels directly as inputs, DaNN provides better averaged performance
than NN and TSC in both unsupervised and semi-supervised domain adaptation
settings. As in the SURF-BoW case, we can conclude that the MMD regulariza-
tion is effective in providing good domain adaptation performance on raw pixels.
Furthermore, we investigate the use of the denoising autoencoder (DAE) as the
pretraining model in both NN and DaNN. It is found that DAE significantly im-
proves the performance of NN and DaNN, where DaNN with the DAE pretraining
performs best. This strongly suggests that the DAE pretraining provides good
initial weight values such that it is easier for DaNN to find optimal weights in the
context of domain adaptation.

8.2.3 Multi-task Representation Learning for Domain

Generalization

Chapter 5 presents Multi-task Autoencoders (MTAE), a novel representation learn-
ing algorithm that provides domain-invariant representations useful for a range of
cross-domain object recognition tasks. Given an image from a particular source
domain, MTAE learns to reconstruct its analogs in other source domains via a
shared encoding representation. Chapter 5 also presents a variant of MTAE that
incorporates a denoising strategy [225] that we refer to as D-MTAE.

In the following, we highlight the main findings in Chapter 5.

Performance Accuracy on Transformed Raw Pixels

The proposed algorithms were evaluated on the modified MNIST and ETH-80
datasets and compared with existing single-task autoencoder-based models, i.e.,
autoendoer (AE), denoising autoencoder (DAE) [225], contractive autoencoder
(CAE) [178], and the prior state-of-the-art uDICA [152]. The MNIST and ETH-
80 images were transformed such that several domains from a particular dataset
were constructed. In short, such a construction results in four new datasets associ-
ated with a particular transformation: MNIST-r (roll rotation), MNIST-s (scaling),
ETH80-p (pitch rotation), and ETH80-y (yaw rotation) – each contains multiple
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domains corresponding to object viewpoints, see Section 5.3.

It is found that D-MTAE and MTAE provide the best and the second best
average accuracy according to linear SVMs over a range of leave-one-domain-out
recognition tasks. This indicates the effectiveness of representations extracted by
MTAE and D-MTAE over those extracted by existing autoencoder-based models
and uDICA in the domain generalization context.

Weight Visualization

It is found that the weights of the learned MTAE and D-MTAE have an interesting
visualization characteristic. That is, they form “filters” that capture the underlying
transformation among source domains. Such filters, which may help to undo the
unseen transformation appeared in the target domain, cannot be seen in the learned
AE, DAE, and CAE; the learned weights of AE, DAE, and CAE describe more on
the contents of the objects, e.g., edge, local blob, and stroke detectors. This is a
possible reason that MTAE and D-MTAE have a superior domain generalization
performance.

We also find a difference between the weights of MTAE and those of D-MTAE.
The D-MTAE’s filters clearly describe both the domain transformation and the
object contents. The object contents appear to be less prominent in the MTAE’s
weights. This effect implies a useful insight: good representations can be induced
by filters that capture both the underlying domain transformation and the object
contents.

Analysis of Invariance

It is found that the singular value spectrum of the D-MTAE’s Jacobian matrix of
the hidden layer representations with respect to the inputs decays most rapidly,
followed by MTAE and then DAE (with similar rates). The ranking of decay rates
of the comparing algorithms matches their ranking in terms of performance accu-
racy. This indicates that D-MTAE does a better job than other autoencoder based
models at representing the data variations near a lower-dimensional manifold where
samples concentrate, which implies a higher level of representation invariance.
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Performance Accuracy on Deep Convolutional Activation Features

Finally, Chapter 5 shows that the proposed algorithms provide competitive domain
generalization performance on modern image recognition benchmarks: the Office
and VLCS (VOC2007, Caltech, LabelMe, and SUN09) datasets, see Section 5.4. In
this case, the algorithms act as the pretraining models for a single layer feedforward
neural net. The inputs to the algorithms are in the form of Deep Convolutional
Activation Features (DeCAF6), which are extracted from the 6-th layer of AlexNet
[56,118].

Compared to the prior state-of-the-art methods such as Undo-Bias [113], UML
[64], and LRE-SVM [236], MTAE and D-MTAE provide better averaged perfor-
mance on the Office dataset. On the VLCS dataset, D-MTAE performs best,
followed by LRE-SVM and then MTAE. Note that the above prior state-of-the-
art methods require complicated optimization procedures, while the MTAE and
D-MTAE learning can be obtained by standard back-propagation.

8.2.4 Fast Kernel-Based Representation Learning for

Domain Adaptation and Domain Generalization

Chapter 6 presents Scatter Component Analysis (SCA), a fast representation learn-
ing algorithm that can be applied to both domain adaptation and domain gener-
alization. SCA is based on a measure referred to as scatter, a geometrical tool to
measure datapoint variance in the reproducing kernel Hilbert space (RKHS). SCA
seeks a representation that satisfies four requirements: i) separate datapoints with
different labels and ii) separate the data as a whole, while iii) not separating points
sharing the same label and iv) not separating the two or more domains.

We summarize the main findings in Chapter 6 as follows.

Algorithm Complexity and Runtime Performance

Recall that the optimization of SCA reduces to a generalized eigenvalue problem
that yields a fast and exact solution. The SCA’s algorithm complexity is thus simi-
lar to that of kernel PCA [192], i.e., O(kn2), where n is the number of samples and
k is the number of leading eigenvectors. This is much lower than the complexity of
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Transfer Joint Matching (TJM) [135], that is, O(Tkn2) – TJM uses an alternating
eigendecomposition in which T iterations are needed (typically, T = 50).

From a set of domain adaptation experiments on the MNIST, USPS, MSRC,
VOC, and Office datasets, it is found that SCA performs much faster than TJM
and Transfer Sparse Coding (TSC) [133] during training. SCA is 3 to 6× faster
than TJM, and > 50× faster than TSC. SCA also runs significantly faster than
prior state-of-the-art domain generalization algorithms. This outcomes indicate
that SCA is better suited than other competitive algorithms if a real time training
stage is required.

Object Recognition Performance

In general, we find that SCA provides either competitive or better recognition
performance accuracy compared to prior state-of-the-art algorithms for both do-
main adaptation and domain generalization. The evaluation results for all com-
peting algorithms were according to the optimal hyper-parameters obtained from
k-fold cross validation on the source domain. In SCA, only two out of four hyper-
parameters were tuned, see Section 6.3.7. Such a tuning strategy is sufficient to
produce the state-of-the-art results.

Theoretical Bound of SCA

It is found that the domain scatter with two input domains is equal to the squared
MMD operating on the unit ball in RKHS (Theorem 13). We also show that
the domain scatter provides an upper bound for the discrepancy distance [140]
if equipped with a universal kernel (Theorem 15). These outcomes result in a
consequence that the domain scatter can control the generalization of any function
in RKHS in the setting of domain adaptation (Theorem 17). We remark that the
domain scatter with multiple input domains is one of the key terms arising in a
bound in the setting of domain generalization (Remark 1).



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 225

8.2.5 Deep Multi-task Convolutional Networks for Do-

main Adaptation

Chapter 7 presents the Deep Reconstruction-Classification Network (DRCN), a
deep convolutional network that jointly learns (source) label classification and (tar-
get) data reconstruction tasks via a shared encoding representation. In terms of
the architecture, DRCN has two convolutional encoding-decoding pipelines with
a shared encoder: i) the label prediction pipeline and ii) the data reconstruction
pipeline, which correspond to the fore-mentioned tasks. In other words, DRCN
combines a convolutional neural net [125] and a convolutional autoencoder [141]
into one model.

We highlight the main findings of Chapter 7 below.

Object Recognition Accuracy

From a series of large scale cross-domain object recognition evaluations, it is found
that DRCN outperforms the prior state-of-the-art Domain-Adversarial Neural Net-
work (DANN) [73] in almost all cases. DRCN also performs better than a con-
volutional architecture pretrained by the greedy layer wise autoencoder learning
and finetuned by supervised backpropagation. This indicates that the simultane-
ous source classification-target reconstruction strategy equipped in DRCN is more
effective than the standard pretraining-finetuning strategy [97] for domain adapta-
tion.

Contribution of Unlabeled Source Data

Recall that DRCN only utilizes unlabeled data from the target domain for the
data reconstruction training. We find that it is not helpful to also include unla-
beled source data as additional reconstruction training examples in DRCN. This is
indicated by the empirical classification evaluation, where DRCN with additional
unlabeled source data always underperforms the original DRCN.
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Domain Correspondence

Learning domain correspondence is perhaps the core problem in domain adaptation.
By observing the outputs of the data reconstruction pipeline qualitatively, it is
found that DRCN successfully approximates the correspondence between the source
and target domains. More specifically, given an image from the source domain, its
reconstructed output produced by the data reconstruction pipeline resembles the
appearance of images from the target domain.

Theoretical Soundness

Under certain assumptions, we find that the learning objective of DRCN is ap-
proximately equivalent to solving a semi-supervised learning problem on the target
domain. This can be shown by interpreting the objective as a maximum likelihood
estimate (MLE), where the data reconstruction pipeline is modeled by a Gaussian
and the label predictor is a multinomial, fit by logistic regression. It is found that
such an MLE approximates that of a semi-supervised learning problem studied
in [46] (Theorem 18). The resulting theorem can be used to explain the uselessness
of unlabeled source data as additional reconstruction training examples of DRCN.

8.3 Future Work

This section highlights several possible research directions for future work.

8.3.1 Better Hyperparameter Tuning Strategy

Domain adaptation and domain generalization algorithms with some tunable
hyper-parameters suffer from a problem of choosing optimal hyper-parameters per-
formed on target domains. The easiest way to deal with this problem is using a
standard tuning strategy: grid-searching the hyper-parameters according to the
best validation performance on source domains. All algorithms proposed in this
thesis perform such a tuning strategy. However, the standard tuning strategy is not
theoretically well motivated in the perspective of domain adaptation/generalization
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and may worsen the dataset bias, since it is only approaching to the source distri-
bution.

Only few tuning strategies related to domain adaptation and transfer learning
exist in literature to date [34, 242]. To the best of our knowledge, none of them
have been used in computer vision tasks. More work towards finding best practical
hyper-parameter tuning strategies for domain adaptation or domain generalization
is needed.

8.3.2 Further Analyses on Domain Correspondence

Results from Chapter 7 indicate that learning domain correspondence without tar-
get labels may be the key to a successful domain adaptation. The proposed al-
gorithm that involves the joint reconstruction-classification learning is one of the
approaches to approximating the domain correspondence. However, we still do
not fully understand the actual root that induces the true domain correspondence.
Both empirical and theoretical investigations associated with the domain corre-
spondence are needed. This may lead to a better proposal of, e.g., distance measure
or a radically new algorithm, for solving dataset bias or domain shift that explic-
itly models the domain correspondence. We hypothesize that a better approach to
learning the domain correspondence implies better domain adaptation or domain
generalization models.

8.3.3 Beyond Object Recognition Tasks

Current domain adaptation or domain generalization research in the area of com-
puter vision, including this thesis, focuses on object recognition / classification and
detection. Other computer vision tasks such as segmentation, motion analysis /
tracking, and scene reconstruction, in which dataset bias or domain shift may exist,
are still waiting for domain adaptation or domain generalization solutions.

In object tracking, for example, a popular approach is Tracking-by-detection
[32] that relies on the performance of an object detector. One may encounter a
situation where a large labeled dataset is not available to train a good performing
object detector on a target domain. This is an example that domain adaptation
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or domain generalization may be applied to adapt an object detector trained on
different but related source domains.

8.3.4 Beyond Vectorial Representations

In machine learning, an input sample is commonly represented as a vector in Eu-
clidean space. When applying machine learning on computer vision problems, we
usually encourage the vectorization of the image representation although it may not
be a natural representation. Thus, a possible research direction is that of reducing
dataset bias or domain shift for structured / non-vectorial data representations.
One of our contributions, i.e., Chapter 7, has attempted to retain the 2D image
representations as inputs by virtue of convolutional neural nets. However, further
investigations on adapting other non-vectorial representations such as shapes and
contours, deformable and articulated 2D or 3D objects, graphs and random fields,
and intrinsic images, are desirable.

8.3.5 Learning from Visual Motion

Most current visual recognition algorithms, if not all, are unaware of visual motion.
They follow the standard statistical learning paradigm, where images or videos are
treated as “passive” instances drawn from an i.i.d. distribution. Some research
suggested that visual motion is essential in the development of biological visual
systems [94,147,164].

Held and Hein investigated the impact of visual motion by conducting an ex-
periment on neonatal kittens [94]. A pair of kittens, “active” and “passive” kittens,
were kept in a dark environment for eight weeks but one hour a day in a carousel.
During the time in the carousel, both followed the same trajectory, but the active
kitten could move his body freely on its own desire while the passive kittens could
not. This means that the active kitten received more exposure of object motion
than the passive kitten. Held and Hein showed that the visual system of the passive
kitten is far underdeveloped compared to that of the active kitten.

In the perspective of computational, however, the correct algorithms in lever-
aging useful knowledge from visual motion remain unknown. We hypothesize that
such algorithms would further help reduce dataset bias or domain mismatch.
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