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I 

 

ABSTRACT 

 

Individuals often display a wide variety of phenotypic responses to drug treatment, in terms 

of both efficacy and side effects. Part of this variation appears to have an individual genetic 

basis which is not well understood. It is well established in the literature that most traits, 

including drug response, are not controlled by a single gene, but rather arise from multiple loci 

known as quantitative trait loci (QTL). This thesis investigated the genetic basis of individual 

variability of response to two antifungal agents whose targets are known—namely benomyl 

(an industrial fungicide) and ketoconazole (a medicinal fungicide). A collection of 33 

Saccharomyces cerevisiae yeast strains, sourced from the Saccharomyces Genome 

Resequencing Project (SGRP, Sanger Institute) was used to model individuals as these strains 

carry natural variation in terms of single nucleotide polymorphisms (SNPs) akin to human 

individuals. 

 

Drug response measurements using serial spot dilution and high-throughput 384-colony 

robotic pinning screens were used to select four SGRP strains on the basis of drug resistance 

or sensitivity relative to the laboratory strain BY. These were L-1374 that was sensitive to 

benomyl compared to BY; UWOPS87-2421 that was resistant to benomyl compared to BY; 

Y12 that was sensitive to ketoconazole compared to BY; DBVPG6044 that was resistant 

ketoconazole compared to BY. The four strains described were crossed individually with the 

BY laboratory strain and the resultant diploids were sporulated to obtain meiotic recombinant 

offspring. Spores were then subjected ten cycles of intercrossing in order to obtain advanced 

intercross lines (AILs); these contain reduced linkage disequilibrium between marker and trait 

genomic position and act to refine the localising potential of the QTL.  The segregant offspring 
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produced following the setup of AIL were subjected to studies to investigate the heritability of 

drug response to intermediate and high dose of benomyl or ketoconazole. It was concluded that 

in each of the crosses trialled, the drug response was a multigenic trait. Furthermore, the broad 

sense heritability estimates were high (L-1374×BY: H2 = 0.91 and 0.92 for response to 75 µM 

and 137.5 µM benomyl respectively; UWOPS87-2421×BY: H2 = 0.75 and 0.87 for response 

to 150 µM and 250 µM benomyl; Y12×BY: H2 = 0.9 and 0.88 for response to 60 µM and 100 

µM ketoconazole). This indicates that most of the variance seen in drug response arises due to 

genetic variance. Additionally, the relative drug sensitivity in each of the crosses trialled was 

found to be either a dominant trait (either partially or fully so). 

 

Finally QTL mapping through next generation sequencing bulk segregant analysis (NGS-BSA) 

confirmed the multigenic nature of the drug response in the selected strains. The effect of 

intermediate versus high dose drug treatment revealed that the QTL network is largely 

conserved between treatment regimens (L-1374×BY cross: three and five QTL upon treatment 

with 30 µM and 50 µM benomyl respectively; UWOPS87-2421×BY cross: nine and 18 QTL 

upon treatment with 45 µM and 80 µM of benomyl; Y12×BY cross: 41 and 56 QTL for 

response to 11.5 µM and 15 µM of ketoconazole; DBVPG6044×BY cross: 12 and 10 QTL for 

the response to 25 µM and 65 µM ketoconazole). In order to investigate the contribution of 

individual variation to drug response, the QTL network of the sensitive and the resistant strain 

for each drug were compared. It was revealed that although there is a conserved core of QTL 

for response to benomyl and ketoconazole respectively, the individual strains possess a 

considerable number of strain-specific QTL. This suggested that individual variation may 

indeed play a significant role in drug response. Analysis of the top-ranking QTL (in terms of 

LOD score) for each of the four strains revealed that each of them harboured genes that have 

literature-supported relationships to their relevant drug.  



III 

 

 

This thesis presents a significant contribution to existing literature in terms of elucidating 

the QTL network underlying individual response to benomyl and ketoconazole. The findings 

from this study have practical potential to provide improved insight into factors that can 

produce antifungal resistance (a growing and significant clinical problem). Furthermore, it 

provides insight into better therapeutic regimens that can improve medicinal treatment for 

individuals. 
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Chapter 1: General Introduction 

 

1.1. Drug response—variation amongst individuals and the need for a 

new study paradigm 

Individuals often undergo a wide variety of responses to drug treatment. Drugs belonging 

to different therapeutic classes have been shown to vary extensively in their efficacy rates 

(Davidson et al., 1997; Spear et al., 2001). In addition to efficacy, individuals vary in terms of 

adverse reactions to drugs (Edwards & Aronson, 2000), which poses a significant healthcare 

problem (Lu, 1998; Pirmohamed & Park, 2001; Spear et al., 2001; Wilke et al., 2007). In the 

US (with similar statistics in other parts of the world), serious drug adverse reactions account 

for over 6% of hospitalisations, with over 100, 000 cases of fatal drug reactions (Lazarou et al., 

1998; Wilke et al., 2007). A large portion of this differential response has a genetic basis, as 

evidenced by twin heritability studies (Vesell, 1989),   and drug responses correlating with 

various mutations and polymorphisms in genes encoding drug targets and related processes 

(Meyer, 2000; Shastry, 2005; Spear et al., 2001; Wilke et al., 2007). Drug response is known 

to vary between individuals on a genetic level and the study of it through genetic means 

underpins the field of pharmacogenetics/genomics (Antman et al., 2012; Meyer, 2004; Nebert 

& Menon, 2001). While adverse reactions can be related to the mechanism of action of the 

drug, a smaller but significant portion of these are idiosyncratic, and difficult to predict based 

on previous knowledge but can have grave health consequences and higher mortality than the 

majority of adverse drug reactions (Pirmohamed et al., 2001; Wilke et al., 2007). An example 

is drug-induced liver injury that arises with a wide range of drug classes (from antibiotics to 

anti-inflammatories  (Wilke et al., 2007)). This suggests that the field of individual drug 
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response warrants further study in order to identify risk factors that can lead to adverse drug 

reactions and achieve optimal treatment for patients  

 

Traditional drug development programs are very costly (bringing a drug to market is 

estimated to cost more than US$1.8 billion (Paul et al., 2010)) and typically focus on developing 

drugs against a single target. However such drug development programs are not only costly  but 

are plagued by high attrition rates due to inadequate efficacy or intolerable side-effects  

suggesting that such single target approaches may not be enough for development of safe and 

effective drugs (Hopkins, 2008; Schadt et al., 2009). Analysis of the mode of action of salicylate 

is a prime example of a successful drug showing that assumption of a single target for a drug 

may not be justified as it acts on a network of targets (Figure 1.1). 
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Many highly-effective drugs on the market today are known to exert their action through 

several cellular targets—so-called “network pharmacology” or “polypharmacology” (Hopkins, 

2008; Imming et al., 2006; Keiser et al., 2009; Overington et al., 2006).  Like many phenotypes, 

drug responses are resistant to environmental perturbation. Such phenotypic stability is 

explained by underlying genetic interaction networks where disruption of a network node can 

be compensated by functional interaction by other member genes (Figure 1.2) (Huang, 2002, 

2004). 

 

  

Pathway Indirect effects on inflammation

Figure 1.1: Network pharmacology of the non-steroidal anti-inflammatory agent salicylate. While 

salycyclate is known as a “COX-2 inhibitor”, it also mediates its anti-inflammatory and analgesic 

effects through interactions with multiple pathways, such as NF-κB and MAPK. From (Huang, 

2002). 
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While the study of genetics was pioneered by Mendel’s idea of a single gene for a single 

trait, it has been shown since then that heredity is more complex than a matter of “either/or”.  It 

is well established that most inherited traits—for example sporulation efficiency in yeast 

(Deutschbauer & Davis, 2005) or height in humans (Lango Allen et al., 2010)—are quantitative, 

meaning they display and are controlled by multiple genetic loci. Even traits that have been 

traditionally been considered “single gene traits” often turn out to be modified by additional 

loci (Cutting, 2010; Nadeau, 2001) and the same principle of modifier loci may therefore apply 

to individual drug response, even when a drug is presumed to act through a single major target. 

However, mapping these multiple loci (which are known as quantitative trait loci or QTL) 

presents significant challenges—it cannot be done by the genetic analysis of single-genes 

Figure 1.2: A genetic interaction diagram of the hub genes ARP2, ARP40, BBC1, BIM1, BNI1, RAD27 

and SGS1, showing the network of compensatory genes. From (Boone et al., 2007). 
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strategies. Other approaches using prior knowledge to study  “candidate genes”   have not been 

effective for this purpose (Mackay et al., 2009) and do not account for traits that are mostly 

polygenic. Therefore, a study to map the DNA sequence basis of individual drug response will 

require a means to survey the whole genome in an unbiased manner. 

 

1.2. The genetics of quantitative traits 

 

Quantitative traits display a non-discrete, continuous phenotype (Figure 1.3) and are not 

fundamentally different from single gene traits (also known as Mendelian traits)—rather, the 

QTL follow Mendelian principles of inheritance (Burns, 1980; Falconer & Mackay, 1996a). 

However, a combination of factors such as multiple allelic combination of heterogeneous loci 

giving rise to the same phenotype, epistasis (interaction between genetic loci), environmental 

variance, and the variable and often small contribution of each locus leads to lack of distinction 

between phenotypic classes, thus producing the continuous phenotype characteristic of 

quantitative traits. A common assumption is that if the QTL underlying a phenotype act in an 

additive manner, the distribution of the phenotype will approach a normal distribution 

(depending on the number of underlying QTL) (Kruglyak & Lander, 1995). QTL can influence 

either the phenotype mean, phenotype variance, or a combination of both (Mackay et al., 2009). 
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Figure 1.3: A theoretical example of a quantitative trait. 
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The field of quantitative genetics was established by Ronald Fisher in 1918 (Nelson et al., 

2013), but the relative lag in development of molecular biology meant that there was a lack of 

tools for studying the molecular mechanisms of such traits until the 1980s (Mackay et al., 2009; 

Nelson et al., 2013). However since then the field has developed immensely. Quantitative 

genetic ideas have been instrumental in agriculture and selective breeding programmes in order 

to maximise traits of interest (Georges et al., 1995)  and they have provided invaluable insight 

for medicine to study the genetics of disease susceptibility (Manolio et al., 2009). Such ideas 

have answered questions about the fundamentals of what makes us who we are, from height 

and weight to intelligence levels (Lango Allen et al., 2010; Posthuma et al., 2005; Rankinen et 

al., 2006). A particular boon of quantitative genetic studies has been the fact that they often 

uncover causative loci that had no previously known relationship to the phenotype under 

investigation and thus greatly expand our knowledge of the molecular mechanisms of the 

organism (Mackay et al., 2009). Furthermore, variants in non-coding parts of the genome can 

make significant trait contribution (Glazier et al., 2002) adding emphasis to the need for  taking 

an unbiased genomic approach to understanding the molecular basis of trait variation. However 

despite its broad utility, the quantitative genetics field still has shortcomings in that few traits 

have been dissected fully in terms of finding all or even most of the QTL that account for a 

trait of interest. In addition, progressing from a locus (which may span hundreds of genes 

including the causal gene) to a causative genetic variant has been a persistent challenge in QTL 

studies (Flint & Mott, 2001). 
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1.2.1. Architecture of a phenotype 

Fisher proposed that the continuous phenotype variance of quantitative traits arises as a 

result of an infinitesimal model, where a very large number of loci each make a miniscule 

contribution towards the phenotype (Nelson et al., 2013). However, actual dissection of 

quantitative traits has shown this to be inaccurate: while multiple loci are indeed involved, their 

numbers are limited and their contribution to the overall phenotype is variable (Barton & 

Keightley, 2002; Mackay, 2001; Nelson et al., 2013).. Generally, there tend to be few loci of 

large effect and a large number of loci with small effect  

 

Is it genetic? 

Natural traits are not solely produced by genetics—they are the result of genes, environment, 

sex, and any possible interaction between those. Therefore, when looking at a variant 

phenotype, it first has to be determined how much of that variance has a genetic basis—that is, 

how much of the variance is heritable (Visscher et al., 2008; Wray & Visscher, 2008). The total 

variance of a phenotype can be described as: 

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒

= 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

+ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 

 

 

In a controlled experiment, the environment is kept constant and any variance caused by 

interaction between genotype and environment is cancelled out. In such cases, the broad sense 

heritability (H2; the total genetic contribution to the phenotype) can be defined: 
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𝐻2 =  
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒
 

 

Broad sense heritability includes all contributing genetic effects—the additive effects of 

individual alleles (which is often the point of interest) as well as any dominance or epistatic 

effects. Therefore, to tease apart only the contribution of additive effects to the variance of the 

phenotype, narrow sense heritability (h2) can be defined: 

 

ℎ2 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒
 

 

Heritability estimates range from zero to one. Heritability can only be estimated, because it 

is impossible to directly measure the amount of phenotypic variance due to either environment 

or genotype—it is only possible to measure the phenotype itself. Such estimates can thus be 

performed by controlling or eliminating one of the variables in the phenotype variance 

equation. For example, by having all study subjects in an identical environment, variance due 

to environment becomes zero.   Heritability can be estimated from relatedness, which can be 

assessed from identity-by-descent between siblings (Ritland, 2000; Visscher et al., 2006) or 

inferred from genetic marker-and phenotype similarities in groups of apparently unrelated 

individuals (Barton et al., 2002) . A number of ways exist of calculating heritability, such as 

through breeding response or through phenotype regression calculations between individuals 

of known relation such as parent-offspring pairs, full or half siblings or correlation between 

identical and fraternal twins (Visscher et al., 2008). Producing an estimate of heritability is 

usually the first step in a quantitative trait study as it determines whether the phenotype of 

interest can be studied by genetic means and if it can, what should be the scale of the study in 

order to investigate its genetic basis. 
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Methods for finding QTL 

Owing to the inherent nature of QTL no single locus alone contributes to the total phenotype 

i.e. no single locus has complete penetrance. An allele achieves complete “penetrance” when 

100% of individuals in a population have the allele displaying the phenotype. Classical 

methods used to map genes responsible for Mendelian traits (such as mutagenesis screens or 

positional cloning) are inadequate for pinning down the genetic basis of quantitative traits (Flint 

et al., 2001). Therefore, rigorous approaches for finding QTL demand that all QTL contributing 

to a phenotype of interest are identified simultaneously. Such approaches  rely on finding a 

statistically significant association between phenotype and genotype within a genetically 

heterogeneous population, known as the mapping population, that shows variance in the 

phenotype of interest (Falconer et al., 1996a; Mackay et al., 2009). It is not feasible to fully 

sequence the genomes of all the individuals in a mapping population, which can be several 

hundred to tens of thousands of individuals, in order to genotype them. Therefore, genotypic 

linkage studies are chiefly done by identifying genetic markers that are distributed evenly 

throughout the genome thence finding with which markers the phenotype of interest segregates 

with them. These days such genetic markers are usually single nucleotide polymorphisms 

(SNPs), but can also be insertion or deletion polymorphisms (indels), simple sequence repeats 

(microsatellites), or restriction fragment length polymorphisms (RFLPs) which are readily 

identifiable by PCR or gel sizing methodologies. The principle underlying QTL mapping is 

that upon meiotic recombination (either through generating crosses between inbred lines, or 

through historical recombination; described below), the markers of known position in the 

genome, will not associate with the QTL phenotypes (of unknown position) unless the markers 

are close to the genomic position of  the QTL. An underlying assumption of detecting such 

linkage is that the relevant marker and the QTL are in linkage disequilibrium (LD) i.e. do not 
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segregate away from each other in multiple meiotic generations. The location and phenotypic 

contribution of the QTL can therefore be deduced by testing which markers exhibit a significant 

association with the phenotype under study. As this methodology can only resolve regions of 

the genome that contain a QTL (which may extend over hundreds of kilobases, and contain 

hundreds of genes), further fine-scale mapping is necessary. This may lead to resolving the 

QTL to the level of a causal quantitative trait nucleotide (QTN), giving a better understanding 

of the genetic basis of the phenotype (as discussed below) (Abiola et al., 2003; Flint et al., 

2001; Mackay et al., 2009). 

 

Linkage-based mapping of QTL 

Linkage-based mapping is a highly effective method for identifying causal loci for a 

phenotype. It relies on crossings between two parental populations, genetically and 

phenotypically different from each other, each of which carries polymorphic genetic markers 

distributed throughout the genome (Broman, 2001; Mackay et al., 2009; Miles & Wayne, 

2008). If the parents come from inbred lines subsequent genetic analysis is simpler because 

each marker site will have alleles homozygous to parent 1 or parent 2 (note that in the context 

of genetic markers, the term “allele” just denotes any genetic difference, such as an SNP; the 

marker alleles do not have to lie within a gene or have any phenotypic consequence).   While 

classical linkage-based QTL studies use organisms in which controlled crosses can be made, 

such investigation may also be made in humans (or other organisms not amenable to such 

manipulation) through the use of pedigree information. When controlled crosses are used,   

intercrosses (F2 genotypes) or backcrosses (BC1 genotypes) may be applied where each 

strategy has its own set of advantages and becomes part of different experimental designs.  
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A number of statistical methods can be used to establish significant marker-trait linkage 

(Broman, 2001; Doerge, 2002). The simplest is a single-marker test (t-test or ANOVA), 

performed independently at each marker. The shortcoming of this is that while it detects 

significant linkage, it fails to distinguish whether that is due to a closely-associated QTL or a 

more distant QTL with a greater effect and thus cannot localise a QTL sufficiently. To 

overcome this, interval mapping methods have been developed (Lander & Botstein, 1989). 

Simple interval mapping tests calculates potential marker-trait association at set recombination 

fractions from markers (usually every 0.1 centiMorgans; (cM)) between two markers (Balding, 

2006) to maximise the estimate of the genetic effect of an allele of interest.  Such mapping 

plots the output as a logarithm of odds (LOD) score along the tested genomic positions 

determining both the magnitude of the effect of the QTL and its position. A LOD score is a 

logarithmic ratio of the odds that the given marker-trait data occurs given a QTL is present (at 

the putative position) to the odds that the same data occurs given that there is no QTL present 

there (LOD=𝑙𝑜𝑔10
𝑃(𝑑𝑎𝑡𝑎 | 𝑄𝑇𝐿 𝑝𝑟𝑒𝑠𝑒𝑛𝑡)

𝑃 (𝑑𝑎𝑡𝑎 | 𝑛𝑜 𝑄𝑇𝐿)
). The LOD score is used to select a detection 

significance threshold, either based on a generic cut-off (3 is often used for these purposes, 

corresponding to a significance level of p < 0.001 of a QTL being present at the position being 

tested) or tailored to the particular experiment using permutation testing. A QTL is considered 

to lie within a certain confidence interval surrounding a peak on the LOD plot. However, simple 

interval mapping assumes the presence of a single QTL between markers and is deficient at 

resolving broad QTL peaks. An extension of this method is composite interval mapping, which 

includes information about surrounding QTL and is better suited for resolving linked or 

interacting QTL. 
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The basic concept of a linkage-based QTL mapping experiment, illustrated using an 

intercross between two inbred lines, is described in Figure 1.4. 

 

 

 

  

1. Cross parental inbred lines (usually divergent in the phenotype of interest). A genetic 

map of the markers must be present for positional mapping. 

Phenotype Genotype 

Genetic markers, 
allelic between parents. 

POSITION KNOWN. 

QTL contributing to 
increased body weight. 
POSITION UNKNOWN. 

M1 

P1 P2 

M1 M2 M3 M4 M2 M3 M4 
Body weight 

Parental 
population 1 (P1) 

Parental 
population 2 (P2) 

2. Produce F1 hybrid of intermediate phenotype. 

Body weight 

Hybrid offspring 

F1 

M1 M2 M3 M4 
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3. Create either intercrosses between F1 individuals (F2), or backcrosses to either one 

of the parents (BC1 or BC2). This cross results in offspring containing a mixture of 

recombinant genomic portions from P1 and P2. Example shown for generation of 

F2. 

Body weight 

Intercross offspring 

F2 

M1 M2 M3 M4 

Individual 1 
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Ind. 
2 

M1 M2 M3 M4 

Ind. 
3 

M1 M2 M3 M4 

Ind. 
5 

Ind. 
6 

M1 M2 M3 M4 

Ind. 
4 

M1 M2 M3 M4 

Note: F2 individuals inherit either two, one, or no alleles of the QTL contributing to body weight 

increased variance in phenotype distribution compared to P1 and P2 individuals. 

4. Genotype each marker, to determine parent of origin of that genomic region. Sort the 

mapping population by genotype at each marker and record phenotypes of each 

individual. Carry out statistical tests, to determine whether there is statistically 

significant association between a particular genotype, and the phenotype in 

question—i.e. find loci where the phenotype segregates with the genotype. The 

phenotype difference between marker genotypes should increase the nearer a marker 

lies to the true QTL (but is also affected by the magnitude of the QTL 
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Association mapping for QTL 

Another technique for identifying QTL is association mapping. Association mapping also 

relies on genotyping of markers distributed throughout the genome, but unlike linkage-based 

studies, association mapping studies do not rely on inbred lines but rather use natural outbred 

populations, which have undergone many generations of historical recombination  minimising 

linkage disequilibrium as for example between a QTL and genetic markers (Mackay et al., 

2009). Association mapping is therefore of great use particularly in organisms that are not 

amenable to genetic manipulation, such as inbred lines, or in humans, or when no pedigree 

information is available. The principle of association mapping relies on finding a statistically 

significant association between a causative genetic locus (or more commonly a genetic marker 

linked to the allele of the locus that contributes to the phenotype) and a phenotype difference 

between two groups—one displaying the phenotype of interest (“cases”) and  a group without 

the phenotype (“controls”). These studies range from highly focused candidate polymorphisms 

5. Plot statistical significance of linkage of marker to phenotype (denoted here as “LOD 

score”; explained below) along the genetic map to determine the QTL map position. 

Such significance of linkage can be determined through single marker analysis 

(black diamonds), simple interval mapping (blue line) or composite interval mapping 

(green line).  

(Doerge, 2002) 

Threshold of significance 
for detecting QTL 

 

Figure 1.4: Overview of the premise of linkage-based QTL mapping. (Broman, 2001; Doerge, 2002; Mackay 

et al., 2009) 
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or genes studies  which may or may not be turn out to be involved in a phenotype, to the all-

encompassing genome-wide association studies (GWAS), which expand the search to the 

whole genome in an unbiased manner (Balding, 2006). In each case, the magnitude of the effect 

of the locus allele on the trait is estimated through an odds ratio—the ratio of the odds that the 

trait is present in individuals that carry that allele to the odds of the trait being present in 

individuals without that allele at any particular point in the genome (Clarke et al., 2011). The 

premise of an association study is illustrated in Figure 1.5. 
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Figure 1.5: Overview of the premise of association studies for detecting QTL for type I diabetes. Adapted 

from (Mackay et al., 2009) 

 

Association mapping depends on the idea of common disease-common variant (Gibson & 

Muse, 2009).  An association will only be detected if the causative allele is present at a 

relatively high frequency in the case group; rare alleles (i.e. ones with a frequency of less than 
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5% in the population) are unlikely to be detected (Balding, 2006). The premise behind this is 

that widespread diseases (or other common, non-disease phenotypes, such as height) are caused 

by numerous causative alleles, which all act in an additive manner to contribute to the 

phenotype. Because these alleles often  each add only small contributions, such studies  require 

very high numbers of individuals—in the order of a minimum of 500, to thousands—in order 

to have enough statistical power to detect causative loci (Gibson et al., 2009; Lewis & Knight, 

2012). Additionally, association studies can be hampered by a variety of issues that can either 

lead to true associations going undetected, or spurious false associations appearing as 

significant. Missing genotypes, genotyping error (such as through deficiencies on SNP 

microarray chips, the major method for genotyping individuals today), or insufficient 

distinction in phenotype between case and control groups can lead to false negatives. On the 

other end of the spectrum, underlying population stratification (i.e. different allele frequencies 

between the two groups, which do not actually contribute to the phenotype) which can occur if 

the case and control populations have not been matched genetically, can lead to false positives.  

 

 

1.2.2. Methods for genotyping 

Until the major molecular biology advances in the 1970s and 1980s allowed DNA-level 

genotyping, the study of quantitative traits was largely limited to those that had linkage to some 

visible or measurable phenotype (Chial, 2008). However, since the 1980s a number of 

techniques have been developed—such as RFLP analysis (Lander et al., 1989) or high-

resolution DNA melting analysis (Reed et al., 2007)—that allowed precise molecular 

genotyping and allowed a vast expansion of the study of quantitative genetics. A particularly 

valuable development was that of genotyping microarrays, which allowed easy and high-

throughput genotyping of individuals—although the major limitation with these is that 
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genotyping was largely restricted to the particular SNPs represented on commercially available 

arrays (Gresham et al., 2008). While array-based genotyping is still widely used, the recent 

advances in next-generation sequencing (NGS) have made considerable contribution to the 

field of genotyping. Methods such as genotyping-by-sequencing (GBS) or restriction site-

associated DNA sequencing (RAD-Seq) have allowed direct and tailorable genotyping 

(Jamann et al., 2015). Furthermore, the falling costs of NGS (van Dijk et al., 2014) now make 

whole-genome sequencing possible even for small laboratories and have greatly enhanced the 

ability to find high-density high-quality genomic markers. Genotyping using NGS is discussed 

in greater detail in Chapter 5.  

 

Making sense of the QTL—narrowing down to causative variants 

Owing to limitations in terms of genotyping and obtainable sample numbers, an initial “first 

pass” scan of the genome will produce candidate QTL—however, these QTL may not be 

informative in themselves as they may cover a large area 10 cM or around 2 000 average sized 

genes in the case of humans. This may be because of insufficient segregating progeny to narrow 

down the QTL peak or an insufficiently dense marker map (Abiola et al., 2003; Flint et al., 

2001; Glazier et al., 2002). Therefore, further work usually needs to be done to narrow down 

the QTL in order to identify a quantitative trait gene (QTG) or better, a quantitative trait 

nucleotide (QTN). The first step in such refinement is additional fine scale mapping using an 

increased number of progeny and markers.  Refined analysis becomes feasible at this point, as 

only the narrowed-down candidate region is examined instead of the entire genome in order to 

achieve a more manageable QTL region of around 1 cM or where it becomes practicable to test 

each gene or genetic variant individually. Selection of candidate genes based on function or 

association between trait and polymorphisms in coding/regulatory regions becomes more 

justifiable. Additional evidence can be gathered based on mRNA or protein expression levels 
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(Mackay et al., 2009). However, the best formal proof of a causal QTG or QTN is through 

allelic exchange or introgression of the locus into another strain and observation of a change in 

phenotype. To this end, methods such as reciprocal hemizygocity analysis have been developed 

to test the contribution of candidate gene alleles to the phenotype (Liti & Louis, 2012; 

Steinmetz et al., 2002).   

 

 

1.2.3. Addressing limitations in QTL mapping 

There are a number of limitations of a QTL study. First are factors that kerb the power of a 

study (“power” in this context means the chance of detecting a QTL). This is usually directly 

related to the size of the mapping population—greater populations have greater power, as QTL 

of moderate to small effect have a greater chance of being detected. However, the genotyping 

costs associated with increased population size eventually become prohibitive. Therefore, as a 

trade-off between the two factors, mapping populations of several hundred individuals or 

greater are generally considered acceptable, as while being reasonably economical, this size 

also allows detection of QTL that only contribute 5% to the phenotype (Broman, 2001). One 

promising alternative to such limitations is bulk segregant analysis (BSA). BSA (described in 

greater detail in Chapter 5) depends on grouping individuals based on whether they express the 

phenotype of interest or not and then genotyping them en masse allowing for vastly increased 

numbers of individuals to be assayed. In BSA, the presumption is that any marker that is 

significantly associated with the phenotype will be over-represented in the “phenotype 

positive” pool compared to the control pool (Schlotterer et al., 2014). 

 

While linkage disequilibrium between markers and QTL position is advantageous when it 

comes to coarse mapping, that is not the case when one is performing fine mapping.   High LD   



General Introduction 
 

20 

 

usually seen in inbred lines used for QTL studies makes it impossible to narrow the candidate 

region. LD may be reduced by increasing the number of recombination events sampled such 

as through creation of advanced intercross lines (AILs) between parental inbred strains through 

repeated rounds of random intercrossing (Darvasi & Soller, 1995). This has been shown to be 

highly effective for narrowing the confidence interval of the putative QTL and improving 

resolution of its location (Parts et al., 2011). AIL approaches are used in this dissertation and 

are discussed further in Chapter 4. 

 

QTL structure also presents a potential issue for detection. A repeated finding is the 

occurrence of linked QTL (Figure 1.6). Occasionally, QTL of similar effect on the trait are 

found grouped together into a “super-QTL” on the chromosome; this is not so much of a 

problem because fine mapping can resolve them into distinct loci. What does pose a problem 

is the linkage of QTL of opposite effect—if marker density is sparse, these will group as a 

single QTL and the likelihood of detecting them will be reduced or non-existent. Possible 

solutions to this would be either genotyping more markers or decreasing the amount of LD, 

such as through creation of AILs. This is also discussed in greater detail in Chapter 4.  

 

Figure 1.6: Confounding effects of linked QTL. Genotyping an insufficient number of markers (black tick 

marks) could lead to (A) linked small-effect QTL acting in the same direction being detected as a single 

large-effect QTL or (B) linked QTL acting in opposite directions going undetected. Additional markers 

(red tick marks) would be required to resolve these effects. 

 

Which QTL are able to be found is limited by the starting genetic variation in the founder 

strains. For instance, if a locus isn’t polymorphic between the parental strains in a cross, 

naturally it will never get detected—even if it can contribute to the phenotype. Therefore, one 

A B 
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must be careful when drawing conclusions based on studies with limited starting genetic 

diversity, or ones that use a single parental cross. Studies in yeast have illustrated genetic 

heterogeneity—a QTN found responsible for a trait in one set of parents did not have the same 

effect in other genetic backgrounds (Deutschbauer et al., 2005; Gerke et al., 2006; Sinha et al., 

2006; Steinmetz et al., 2002). Furthermore, examining multiple parental strains when studying 

a phenotype has reaped a significantly higher number of QTL than in any single cross (Cubillos 

et al., 2011; Ehrenreich et al., 2012) and multiparental mating strategies have highlighted a 

similar advantage from incorporating information from multiple strains into a single 

experiment (Cubillos et al., 2013; Treusch et al., 2015). Another factor that may affect variable 

QTL detection between strains is due to the masking effect from major-effect loci that may be 

present in some strains but not others; it has been shown that eliminating or controlling for the 

presence of major-effect QTL can aid detection of minor-effect QTL (Kim & Fay, 2009; Sinha 

et al., 2008). 

 

1.3. Saccharomyces cerevisiae and the power of yeast genetics 

1.3.1. Yeast as a model organism 

The budding yeast Saccharomyces cerevisiae has long been a genetic model organism of 

choice not only thanks to its close association with humans throughout history, but also owing 

to several appealing aspects of its biology. Yeast is an experimentally tractable, non-hazardous 

organism with simple survival requirements and a mere 90 minute doubling time making it 

ideal for laboratory work. It has been a leading genetic model organism for over 70 years 

(Barnett, 2007). It was the first eukaryote to undergo transformation with plasmids (Hinnen et 

al., 1978), to have its genome sequenced (Goffeau et al., 1996) and have a genome-wide 

deletion mutant array (DMA) constructed (Giaever et al., 2002; Winzeler et al., 1999). It is 

likely to remain an excelent model system for several reasons. Its amenability to homologous 
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recombination has led to the development of PCR-mediated gene disruption, which dispensed 

with the requirement to clone genes and improved the ability to study genes of unknown 

function (Baudin et al., 1993; Lorenz et al., 1995). Yeast can exist as either a haploid 

(possessing either the MATa or the MATα mating type) or a diploid (where cells of opposite 

mating type fuse to give MATa/α cells) (Figure 1.7 A). Most natural isolate strains are 

homothallic due to the presence of the HO locus, which encodes a site-specific endonuclease 

that allows mating type switching in haploid cells (mechanism illustrated in Figure 1.7.B). As 

a model organism, presence of the HO locus  precludes  stable haploid lines because during 

mitotic proliferation the mother cell switches mating and mates with its progeny to reconstitute 

a MATa/α diploid (Herskowitz, 1988). However, inactivation of the HO locus (such as through 

a null mutation, as is the case with most laboratory strains) eliminates this phenomenon, and 

makes cells heterothallic. This allows for controlled intercrosses and the option to study genes 

either in haploids (so that effects of recessive mutations can be examined) or diploids (where 

dominance effects or interactions in a hybrid background or complementation may be studied). 

Furthermore, yeast has a small (~12Mb) and exon-rich yeast genome  with genes representing 

over 70% of genomic material (Sherman, 2002). These properties facilitate genomic 

approaches, such as whole-genome sequencing analysis or the construction of genomic 

resources (like the DMA, which consists of individual null deletions of ~80% of the genome, 

each replaced by an antibiotic resistance marker) (Botstein & Fink, 2011; Duina et al., 2014). 

It is the best characterised eukaryotic genome to date and has a world-wide active scientific 

community and has centralised analytical resources (Saccharomyces Genome Database, SGD 

(Cherry et al., 2012)).  
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Figure 1.7: Life cycle and mating type switching in Saccharomyces cerevisiae.  

A. Life cycle of Saccharomyces cerevisiae. Heterothallic haploid cells can propagate as stable lines through 

mitotic division. Proximity of a haploid of the opposite mating type can lead to a mating event and formation 

of a MATa/α diploid, which likewise can grow asexually. Encountering carbon or nitrogen limiting 

conditions triggers sporulation—the meiotic conversion of a diploid cell to four haploid spores enclosed in 

an ascus (sporulation sac). Spores exist in a vegetative state until favourable conditions arise, when they 

germinate and resume growth. Diagram from (Duina et al., 2014). 

B. Mating type switching in homothallic yeast. Mating type is determined by the cassette expressed at the 

MAT locus on chromosome three (green). Additionally, yeast carry silent mating type cassettes at the HML 

(α genes) and HMR (a genes). The Ho endonuclease creates a double strand break at the MAT locus. This 

is followed by a gene conversion event which puts the sequence of the opposite mating type in the MAT 

locus. Illustrated is the conversion of MATa to MATα. 

 

 

Yeast serves as an attractive model of a general eukaryotic cell, as 30% of its genes are 

homologous to human disease-related genes (Foury, 1997), and its essential cellular 

mechanisms show good conservation to other systems. Information gained in yeast allows 

formulation of specific hypotheses seeking similar mechanisms in mammalian cells serving as 

a filter for these more costly and genetically less tractable systems. This approach has been 

successful for multiple yeast-based studies, whose findings have provided information on 

disease progression and treatment in humans (Couplan et al., 2011; Fishel et al., 1993; 

Munkacsi et al., 2011; Parsons et al., 2006; Pearce et al., 1999). Furthermore, natural isolate 

yeast strains have been reported to contain similar levels of genetic variation to human 

individuals (Dowell et al., 2010), and can thus be used as a proxy for human individuals in 

studies of drug response, a key point in this dissertation. 

A 

HMR (a) MATa HML (α) Chrm 3 

HML (α) HMR (a) 

HO 

HMR (a) MATα HML (α) 

B 
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1.3.2. Natural genetic variation in Saccharomyces cerevisiae 

Saccharomyces cerevisiae is abundant all over the world and is found in a wide variety of 

niches, ranging from strains domesticated for brewing and baking purposes to wild isolates 

(Fay & Benavides, 2005; Liti et al., 2009; Schacherer et al., 2009). Despite this, a vast bulk of 

yeast research has been carried out in the laboratory strain S288C—a progenitor of the EM93 

strain isolated from Californian rotting figs by Emil Mrak in 1938 (Mortimer & Johnston, 

1986). The establishment of S288C as a pioneer in yeast research is due to its natural 

heterothallism, lack of flocculence in liquid growth and simple nutritional requirements. Its 

ubiquity led to further developments in this background, such as the introduction of 

auxotrophic markers and antibiotic resistance cassettes generating the widely used BY 

laboratory strains (Brachmann et al., 1998; Winston et al., 1995) also genome sequencing and 

creation of the DMA, which established S288C as the “reference strain” in the literature. 

However, findings based on a single genetic background carry limitations. S288C carries 

mitochondrial defects due to a mutation in HAP1 (Sherman, 2002) and has an extremely high 

rate of petite colony formation that are produced by cells which have lost their mitochondrial 

genome  (Dimitrov et al., 2009). It also has a low sporulation rate (Deutschbauer et al., 2005) 

which is a drawback and high transposon content (Liti et al., 2009) compared to most other 

yeast strains. Moreover, population genomic studies have shown S288C to be a genetic and 

phenotypic outlier compared to the majority of other yeast strains (Strope et al., 2015; 

Warringer et al., 2011). This places in question how applicable findings solely from this strain 

are to general biology.  

 

Starting from 2005, there has been an increased drive to study natural genomic variation in 

diverse populations of Saccharomyces cerevisiae. In particular, the development of next-
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generation sequencing (NGS) techniques and dropping costs of sequencing have greatly aided 

genomic exploration (Metzker, 2010). Whole-genome sequencing of non-S288C strains 

uncovered the presence of multiple inversions, translocations, copy number variants (CNVs) 

and non-reference open reading frames (ORFs)—for example, 34 new genes in EC1118 (the 

most widely used wine strain worldwide) involved in metabolism and sugar and nitrogen 

transport, which may contribute to its fermentative abilities (Engel & Cherry, 2013). There 

have also been a number of population genetic studies to describe diversity between different 

strains (Aa et al., 2006; Ayoub et al., 2006; Ben-Ari et al., 2005; Fay et al., 2005). The first 

attempt to capture species-wide variation involved microarray scanning of the genomes of a 

compendium of diverse strains against S288C and detected almost two million SNPs and 

almost 4000 deletions (Schacherer et al., 2007; Schacherer et al., 2009). These findings support 

the need to expand beyond the reference strain and to encapsulate a greater degree of yeast 

population genomic resources in order to paint a more representative picture of phenotypes. 
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1.3.3. Saccharomyces Genome Resequencing Project (SGRP) 

A major insight into species-wide genomic variation was provided by the Saccharomyces 

Genome Resequencing Project (SGRP) which aimed to characterise the extent of genomic 

variation in S. cerevisiae in order to identify genetic lineages and to ascertain the influence of 

human activity on the population structure of yeast species (Liti et al., 2009). The 33 S. 

cerevisiae strains examined in this work came from sources ranging from lab strains, clinical 

isolates, food and fermentation applications as well as natural isolates from a wide range of 

geographical locations (Figure 1.8). 

 

 

Most of these strains have been modified through the introduction of an Δho null deletion 

to make them heterothallic and thus amenable to genetic studies (Cubillos et al., 2009). The 

characteristics of this collection are described in greater detail in Chapter 3. 

  

Figure 1.8: Phylogenetic tree of S. cerevisiae isolates 

used in SGRP. Adapted from (Liti et al., 2009) 
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1.3.4. Investigation of quantitative traits in yeast 

Saccharomyces cerevisiae has been at the forefront of studies of the genetic basis of 

quantitative traits. The first single study to go from the initial QTL screen to causative genes 

was one investigating the genetic basis of differential heat tolerance between a yeast lab strain 

(S96) and a clinical isolate strain  YJM789  (Steinmetz et al., 2002). Yeast have also been 

amenable to fine-scale dissections of QTL down to causative nucleotides or quantitative trait 

nucleotides (QTN), on a level that’s unparalleled in other species (Ben-Ari et al., 2006; 

Deutschbauer et al., 2005; Diezmann & Dietrich, 2011; Steinmetz et al., 2002). Expression 

QTL (eQTL) and protein QTL (pQTL) have been described, which are QTL that underlie 

heritable variation in gene transcript and protein levels respectively (Albert et al., 2014; Brem 

& Kruglyak, 2005; Brem et al., 2002; Foss et al., 2007).  Importantly, Ehrenreich et al. 

developed the idea of extreme QTL (X-QTL)—a form of bulk segregant analysis (BSA) which 

takes advantage of yeast high-throughput culturing and phenotyping techniques in order to 

work with extremely large numbers of meiotic segregants,  on the order of 107 individuals  

(Ehrenreich et al., 2010). This and other BSA approaches have proven fruitful because of their 

economical genotyping and increased power through the use of pooled populations (Ehrenreich 

et al., 2012; Ehrenreich et al., 2010; Segrè et al., 2006; Swinnen, Schaerlaekens, et al., 2012; 

Wenger et al., 2010).  
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1.4. Studying drug response as a quantitative trait 

A range of studies has explored individual drug response in a genome-wide manner in a 

variety of systems (Avsaroglu et al., 2007; Brown et al., 2014; Martinelli-Boneschi et al., 

2013). The current study will only summarise what has been done in that respect in yeast using 

different genetic backgrounds in lieu of individual variation. 

 

1.4.1. Individual basis of drug response—studies in yeast 

A large contribution to pharmacogenomics in yeast has been gained from the BY×RM cross 

(between the RM11 wine strain and the BY laboratory strain) (Ehrenreich et al., 2009). 

Perlstein et al. used this cross to uncover 124 QTL to a library of 100 chemically diverse 

compounds (Perlstein et al., 2007) while the increased detection power of large mapping 

populations was illustrated by Bloom et al. and Ehrenreich et al. using similarly diverse panels 

of small molecules (using a 46 and 17 member chemical library respectively) (Bloom et al., 

2013; Ehrenreich et al., 2010). Using diverse genetic backgrounds in order to sample from a 

broader range of genetic loci proved fruitful as it revealed a wide range of novel QTL, even to 

previously-investigated compounds (Cubillos et al., 2011; Ehrenreich et al., 2012; Kim & Fay, 

2007; Kim et al., 2009). 

 

In order to study drug response as a quantitative trait, the current dissertation sought to 

investigate the genetic basis of natural drug response from the yeast of the SGRP collection of 

wild type yeast. To this end, two antifungal agents—benomyl and ketoconazole—were selected 

on the basis of two criteria. Firstly both have known, well-characterised targets, which allowed 

to characterise the response of the SGRP strains as a target-derived or as an off-target effect. 

Secondly, both drugs are medically or economically significant. The benzimidazoles (of which 
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benomyl is a member) play a significant role both as agricultural fungicides, anthelmintics and 

anti-cancer treatments and the azoles are the most widely used clinical antifungals. 

 

1.4.2. Mechanism of action of drugs used in this study 

Benomyl 

Benomyl belongs to the benzimidazole class of compounds. It was released by DuPont and has 

been used from 1968 to 2001 as an agricultural fungicide (Amos, 2011; WHO). However, it 

was removed from the market due to concerns regarding its toxicological effects on humans 

(including developmental, reproductive and carcinogenic effects) (US Environmental 

Protection Agency (EPA)). In aqueous conditions benomyl hydrolyses to its active metabolite 

carbendazim which is thought to confer most of its antifungal activity. It is also an 

anthelminthic (Figure 1.9)  (Actor et al., 1967).  Its primary mode of action is as a microtubule 

depolymerizing agent. It binds to β-tubulin and interferes with the dynamic behaviour of 

microtubules.  

 

Figure 1.9: Chemical structure of benomyl (A) and its main metabolite carbendazim (B). 

 

Microtubules are highly conserved structures in all eukaryotes and consist of α and β 

subunits, which dimerize 1:1 in a particular orientation and form the tubule’s cylindrical 

structure, with a plus end carrying β subunits (bound to hydrolysable GTP) and a minus end 

that has the α subunits exposed (Jordan & Wilson, 2004). Saccharomyces cerevisiae only has 

A B 
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a single β-tubulin gene (TUB2) and two α-tubulins (namely the paralogs TUB1 and TUB3, 

which have 90% homology and interchangeable functionality) (Winsor & Schiebel, 1997). The 

correct functioning of microtubules is critically dependent on their highly dynamic 

behaviour—they need to be able to rapidly grow and shorten over a distance of micrometres in 

order to carry out their role in probing for chromosomes, lining them up along the equatorial 

plane during metaphase and separating them in anaphase. Microtubule depolymerizing agents 

such as benomyl (but also the clinically used anti-gout drug colchicine and the anti-cancer class 

of Vinca alkaloids) inhibit microtubule polymerization behaviour and dynamics, but can cause 

a change in microtubule mass when used in high concentrations (through the action of the loss 

of microtubule subunits and depolymerisation of the structure). Their primary anti-mitotic 

action is thought to occur at the lower doses, at which they inhibit the dynamic behaviour of 

microtubules prior to a corresponding change in polymer mass occurring. The inhibition of 

dynamicity obliterates the function of microtubules (Jordan et al., 2004; Singh et al., 2008). 

 

Yeast microtubules are involved in the nuclear aspects of cell division and the ensuing 

movement of chromosomes by nuclear microtubules in the formation of mitotic spindles and 

the nuclear envelope controlled by cytoplasmic microtubules (Stearns, 1990; Winsor et al., 

1997). Benomyl can interfere at a number of steps where microtubules are involved. Nuclear 

microtubules are needed for correct mitotic spindle formation and its attachment to 

chromosomes through the kinetochore. The correct attachment and appropriate chromosome 

(or chromatid) segregation are assessed by the spindle checkpoint and cell cycle progression 

checkpoints. Mutations in a number of genes involved in these processes leads to benomyl 

sensitivity (Hardwick & Murray, 1995; Kawashima et al., 2011; Pan & Chen, 2004; Poddar et 

al., 1999; Wysocka et al., 2004). Furthermore, impaired nuclear migration also leads to 

benomyl sensitivity (Berlin et al., 1990; Fujiwara et al., 1999; Schwartz et al., 1997). Growth 
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inhibition is usually caused by a mitotic block, aberrant exit from mitosis and eventual 

apoptotic destruction (Davidse, 1986; Thomas et al., 1985) (Jordan et al., 2004; Rathinasamy 

& Panda, 2006). 

Ketoconazole 

Fungal infections are estimated to affect up to 25% of the human population and cause 

significant morbidity and mortality (Brown et al., 2012). There is an estimated mortality of 1.5-

2 million deaths per annum, yet few new drugs are coming onto the market (Denning & 

Bromley, 2015). There is also an increasing incidence of antifungal resistance. The azoles are 

a class of antifungals that constitute one of the frontline treatments for clinical mycoses and 

ketoconazole is one of those important front-line drugs. Their primary mechanism of action is 

through inhibition of 14 α-demethylation of lanosterol in the ergosterol biosynthesis pathway 

(Kathiravan et al., 2012; Lupetti et al., 2002; 2003). Azoles fall into two general classes based 

on the structure of the azole ring (Figure 1.10).  

 

Figure 1.10: Examples of azoles of the imidazole (A) and triazole (B) classes. The active azole moiety is 

circled.  

 

The older imidazole class was first developed in the 1980s and includes ketoconazole—the 

first broad spectrum azole on the market. The imidazole class was followed by the triazole 

class, which includes fluconazole and other structurally related molecules. 

A B 

Ketoconazole Fluconazole 



General Introduction 
 

32 

 

 

The primary target of azoles is cytochrome P450 lanosterol 14 α-demethylase whose activity 

they inhibit (also known as Erg11p or Cyp51p). This enzyme normally acts in the ergosterol 

biosynthesis pathway by oxidatively removing the 14 α-methyl moiety of lanosterol (Figure 

1.11).  

Figure 1.11: 14α-demethylation of lanosterol activity that is specifically inhibited by azoles (three sequential 

monooxidations by cytochrome P450 lanosterol 14 α-demethylase). Structures from http://www.ymdb.ca/ 

 

Erg11p contains an iron protoporphyrin at its active site, which azoles bind to via orientation 

of the nitrogen atom on the azole ring to the iron atom of Erg11p. The rest of the azole molecule 

binds to the surroundings of the Erg11p active site, with the binding orientation being specific 

to different azoles. There may also be additional interactions between the aromatic rings of the 

azole and the aromatic groups of phenylalanine on Cyp51p (Phe 233 or 235 in Candida 

albicans Cyp51p) (Lamb et al., 1999; Odds et al., 2003). 

 

The growth-inhibitory activity of azoles results from depletion of the ergosterol end product 

and build-up of ergosterol pathway intermediates. This leads to changes in membrane 

properties, including a loss in integrity and fluidity, and disruption of membrane-associated 

proteins. Specifically, the inhibition of C14α demethylase leads to the built up squalene 

precursor being converted to the toxic 14α-methyl-3,6-diol  through the action of sterol Δ5,6-

desaturase (encoded by ERG3).  (Kathiravan et al., 2012; Lamb et al., 1999; Lupetti et al., 

2002). Studies of clinical isolates of fluconazole-resistant C. albicans, and azole-resistant S. 

Lanosterol 14α-demethylase 

Lanosterol 4,4-dimethyl-5α-cholesta-8,14,24-trien-3β-ol 
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cerevisiae strains have indicated that the build-up of 14α-methyl-3,6-diol is growth inhibitory 

due to its disruption of membrane phospholipids by virtue of its extra hydroxide group (Figure 

1.12). The additional build-up of 14α-methylated sterol intermediates also leads to inhibition 

of 14α-demethylation of lanosterol. Finally, azole treatment leads to accumulation of toxic 

ketosteroids (Marichal et al., 1999).  

 

Figure 1.12: Depiction of normal ergosterol-membrane interaction (A) and disruption of membrane 

interaction caused by 14α-methyl-3,6-diol (B). The sterols are depicted in blue. Adapted from (Lamb et al., 

1999). 

 

Further mechanisms that can contribute to off-target effects of both benomyl and 

ketoconazole are discussed in greater detail in Chapter 5. 

 

1.5. Study aim and research design 

 

1.5.1. Study aim 

This study aimed to investigate the genetic basis of individual variation in drug response 

using natural strains of Saccharomyces cerevisiae as a model for individuals, with an emphasis 

on looking for causes of off-target effects. To achieve this, the set of 33 strains from the 

Saccharomyces Genome Resequencing Project (henceforth referred to as the SGRP strains) 

was used and tested their growth response to two well-known antifungals with characterised 

cellular targets: benomyl and ketoconazole. The strains show a continuous range of drug 
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response phenotypes in terms of either resistance or sensitivity to each of the drugs.  The 

hypothesis of this dissertation is that multiple genetic loci, that are not the target of the drug, 

underlie drug sensitivity or drug resistance either qualitatively or quantitatively. Since the 

strains show variability of response to the drugs it must be one or the other.  Identifying these 

loci should provide understanding of what factors can lead to off-target effects of drugs. The 

investigation was split up into three main objectives, as follows: 

 

1. Phenotype test selected Saccharomyces Genome Resequencing Project (SGRP) strains 

for resistance or sensitivity against the two drugs in this study (benomyl and 

ketoconazole) by dose-response assay. Explore the potential role of “obvious 

candidates” (such as the primary drug target) and factors that could contribute to general 

drug response (such as members of the pleiotropic drug resistance system). Select one 

sensitive and one resistant strain to benomyl and ketoconazole each for further in-depth 

study.  

 

2. Determine the heritability of the drug response phenotypes in the selected strains of 

interest using information from meiotic segregant offspring from intercrosses between 

strains of interest and the control laboratory strain. In order to create the intercrosses of 

interest, the two parental strains were subjected to ten rounds of random mating and 

sporulation to create advanced intercross lines (AILs). The aim of creating AILs is to 

reduce linkage disequilibrium between the two parental strains in order to refine the 

QTL interval for the final aim.  

 

3. Create a high-density genetic map and use linkage-based mapping to identify 

quantitative trait loci (QTL) that segregate with the resistance or sensitivity phenotypes. 

The identification of QTL will be performed using next-generation sequencing bulk 

segregant analysis (NGS-BSA). 

 

The following two pages show a graphical representation of the dissertation experimental 

design.  
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1.5.2. Research design 

 

 

 

Continued on next page. 

 

 

Ketoconazole Benomyl 

Dose response testing against benomyl and ketoconazole 

Based on each set of 33 dose responses from each drug, select strains for further study that 

display the most extreme phenotype (in terms of either resistance or sensitivity) 

SGRP4 

SGRP1 

SGRP3 

SGRP5 

SGRP2 

SGRP collection—33 strains 

BY (control) 

… 

AIM 1: Phenotype the SGRP collection in terms of resistance or sensitivity to benomyl and ketoconazole 

relative to the BY control strain. Based on these, select four strains (one resistant and one sensitive to 

benomyl and ketoconazole each) for further study. 
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AIM 2: Study the heritability of the drug response phenotypes in the four selected strains of interest. The 

particular aspects of heritability to be studied are estimates of broad sense heritability, estimates of the 

number of loci responsible for the respective drug response phenotype of each strain, a measure of 

transgressive segregation and finally an estimate of whether drug response was dominant or recessive. 

BY (control) SGRP1 (drug 
resistant strain) 

x 

Determine whether drug response phenotype is heritable.  

Drug resistance 

10 rounds of random mating and sporulation to 
create advanced intercross lines (AILs) 

Haploid recombinant F10 progeny 

AIM 3: Map the QTL responsible for the drug response phenotype of interest in each respective strain 

using next-generation sequencing bulk segregant analysis (NGS BSA). This method relies on using drug 

response as a selectable phenotype for phenotypic enrichment. As “drug sensitivity” cannot be selected, 

the QTL underlying the phenotype of the two sensitive strain were mapped by using the relative 

resistance of the BY control strain as the selected trait. 

Create drug resistant and 
control populations 

Extract gDNA 
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Perform whole-genome Illumina sequencing; map reads to reference genome and derive allelic 
frequencies at each marker position between parental strains 

After determining markers (SNPs) between parental strains, genotype a pooled 

population of segregant offspring through NGS-BSA; identify QTL that underlie the drug 

response phenotype 
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Chapter 2: Materials and Methods 

 

2.1. Sourcing information 

All reagents, consumables and equipment used in this study are listed in this Section. All 

sourcing information is listed in this Section instead of being described in the body of the text. 

 

2.1.1. Reagents used 

All reagents and their respective sourcing information are listed in Table 2.1. 

Table 2.1: Reagents used in this study. 

1kb Plus DNA Ladder  Life Technologies, Auckland, NZ 

Acid-washed glass beads  (0.45-

0.52mm) 
dnature Ltd, Gisbourne, NZ 

Agar 
Life Technologies, Auckland, NZ or Formedium, 

Norfolk, UK 

Agarose, low electroendosmosis 

(LE) 
medi'Ray, Auckland, NZ 

Amino acid powder stocks 
Sigma Aldrich, Auckland, NZ or Formedium, Norfolk, 

UK 

Ampicillin AppliChem, Darmstadt, Germany 

Benomyl Sigma Aldrich New Zealand Ltd, Auckland, NZ  

Boric acid 
Thermo Fisher Scientific New Zealand Ltd, North 

Shore City, NZ 

Bromophenol blue Sigma Aldrich New Zealand Ltd, Auckland, NZ 

Chloroform Sigma Aldrich New Zealand Ltd, Auckland, NZ 

Dithiothreitol, DTT Sigma Aldrich New Zealand Ltd, Auckland, NZ 

DMSO Sigma Aldrich New Zealand Ltd, Auckland, NZ 

Deoxynucleotide (dNTP) mix 
Thermo Fisher Scientific New Zealand Ltd, North 

Shore City, NZ or TaKaRa Bio Inc., Kusatsu, Japan 

Ethanol, absolute Pure Science Ltd., Porirua, NZ 

Ethidium bromide 
Thermo Fisher Scientific New Zealand Ltd, North 

Shore City, NZ 

Ethylenediaminetetraacetic acid, 

EDTA 
AppliChem, Darmstadt, Germany 

Extaq Polymerase TaKaRa Bio Inc., Kusatsu, Japan 

GeneaidTM High-Speed Plasmid 

Mini Kit 
dnature Ltd, Gisbourne, NZ 
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Geneticin, G418 Ngaio Diagnostics Ltd, Nelson, NZ 

Glucose Sigma Aldrich, Auckland, NZ 

Glycerol 
Thermo Fisher Scientific New Zealand Ltd, North 

Shore City, NZ 

HEPES 
Thermo Fisher Scientific New Zealand Ltd, North 

Shore City, NZ 

Hotstar Taq Polymerase Qiagen, Venlo, Netherlands 

Hygromycin B, HygB Invivogen, San Diego, California 

Isoamyl alcohol 
Thermo Fisher Scientific New Zealand Ltd, North 

Shore City, NZ 

Ketoconazole 

Santa Cruz Biotechnology, Inc, Santa Cruz, California, 

USA, or Jinlan Pharm-Drugs Technology Co. Ltd, 

Hangzhou, China 

Lithium acetate Sigma Aldrich New Zealand Ltd, Auckland, NZ 

Methylene blue Sigma Aldrich New Zealand Ltd, Auckland, NZ 

Monosodium glutamate salt (MSG) Sigma Aldrich New Zealand Ltd, Auckland, NZ 

New England BioLabs restriction 

enzymes 
New England BioLabs Inc., Ipswich, MA, USA 

Nitrogen base 
Formedium, Norfolk, UK or Fort Richard, Auckland, 

NZ 

Nourseothricin, clonNAT Werner BioAgents, Jena, Germany 

Peptone 
Formedium, Norfolk, UK or Fort Richard, Auckland, 

NZ 

Phenol Sigma Aldrich New Zealand Ltd, Auckland, NZ 

Polyethylene glycol (PEG) 3350 Sigma Aldrich New Zealand Ltd, Auckland, NZ 

Potassium acetate Sigma Aldrich New Zealand Ltd, Auckland, NZ 

RNAse A Sigma Aldrich New Zealand Ltd, Auckland, NZ 

Salmon sperm DNA Sigma Aldrich New Zealand Ltd, Auckland, NZ 

Sodium acetate Sigma Aldrich New Zealand Ltd, Auckland, NZ 

Sodium chloride, NaCl Sigma Aldrich New Zealand Ltd, Auckland, NZ 

Sodium dihydrogen phosphate, 

NaH2PO4 
VWR Global Science, Auckland, NZ 

Sodium dodecyl sulfate, SDS Life Technologies, Auckland, NZ 

Sodium hydroxide, NaOH VWR Global Science, Auckland, NZ 

Sorbitol Sigma Aldrich New Zealand Ltd, Auckland, NZ 

Tris(hydroxymethyl)aminomethane 

(Tris) base 
Formedium, Norfolk, UK 

Triton X-100 VWR Global Science, Auckland, NZ 

Tryptone Acumedia, Lansing, Michigan, USA 

Yeast extract 
Formedium, Norfolk, UK or Fort Richard, Auckland, 

NZ 

Zymolyase 20T AMS Biotechnology (Europe) Ltd, Abingdon, UK 
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2.1.2. Consumables used 

All consumables discussed in this work and their respective sourcing information are listed 

in Table 2.2. 

Table 2.2: Consumables used in this study. 

96-well tissue culture plate Interlab, Wellington, NZ 

Centrifuge tube, 15 mL Interlab, Wellington, NZ 

Centrifuge tube, 50 mL Interlab, Wellington, NZ 

Cryotubes, 1.5 mL Interlab, Wellington, NZ 

Microcentrifuge tubes 1.5 mL Interlab, Wellington, NZ 

PCR tubes 0.2 mL Interlab, Wellington, NZ 

Polyester sealing film  Interlab, Wellington, NZ 

Polyethersulfone (PES) membrane 

filter 0.22 µm  
Interlab, Wellington, NZ 

Singer plates Singer Instrument Co. Ltd, Somerset, UK 

 

2.1.3. Equipment used 

All equipment and its respective sourcing information is listed in Table 2.3. 

Table 2.3: Equipment used in this study. 

Alpha Imager mini transilluminator Alphatech Systems, Auckland, NZ 

Canon EOS 600D camera Canon NZ Ltd, Wellington, NZ 

Electrophoresis gel tank Gentaur, Paris, France 

EnVision 2102 Multilabel Plate 

Reader  
Perkin Elmer, Waltham, MA, USA 

NanoDrop 2000 UV 
Thermo Fisher Scientific NZ Ltd, North Shore City, 

NZ 

Singer MSM 400 Automated 

Dissection Microscope 
Singer Instrument Co. Ltd, Somerset, UK 

Singer RoToR HDA  Singer Instrument Co. Ltd, Somerset, UK 

Talboys standard vortex mixer Bio-strategy Ltd, Auckland, NZ 

Transonic T460 Sonicating water 

bath  
VWR Global Science, Auckland, NZ 

UNICAM 8625 UV/VIS 

spectrometer 

Thermo Fisher Scientific NZ Ltd, North Shore City, 

NZ 
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2.2. Yeast strains 

2.2.1. Saccharomyces Genome Resequencing Project (SGRP) collection 

The SGRP strains originated from two sources. The original collection included all the 

strains (Table 2.4) and was a kindly gifted by Prof Richard Gardner (University of Auckland). 

The original collection did not carry any genetic modifications; a corollary of this is that all the 

member strains could not exist as stable haploids, due to the presence of the HO locus (Chapter 

1, Section 1.3.1). The HO locus normally encodes an endonuclease that allows mating type 

switching to occur in yeast cells by gene conversion at the MAT locus (Herskowitz, 1988). 

This, along with the lack of selectable genetic markers in this collection makes it impossible to 

mate the strains in a controlled manner. Therefore the second SGRP strain collection was 

purchased from the National Collection of Yeast Cultures (NCYC) (Table 2.4) (Cubillos et al., 

2009; The National Collection of Yeast Cultures).  

 

Table 2.4: SGRP strains used in this study. Strains in cells shaded in grey were not represented or were 

inviable in the commercially ordered NCYC collection. 

Genetic 

background 

(name) 

Origin NCYC commercially-ordered collection 

Location Source a/α a α 

273614N 
RVI, 

Newcastle, UK 

Clinical 

(faecal) 
NCYC 3558 NCYC 3585 NCYC 3611 

322134S 
RVI, 

Newcastle, UK 

Clinical 

(throat 

sputum) 

   

378604X 
RVI, 

Newcastle, UK 

Clinical 

(sputum) 
  NCYC 3610 

BC187 
Napa Valley, 

USA 

Barrel 

fermentation 
NCYC 3564 NCYC 3591 NCYC 3616 

DBVPG 1106 Australia Grapes NCYC 3569 NCYC 3596 NCYC 3621 

DBVPG 1373 Netherlands Soil NCYC 3568 NCYC 3595 NCYC 3620 

DBVPG 1788 Finland Soil NCYC 3571   

DBVPG 1853 Ethiopia White Teff NCYC 3563   

DBVPG 6040 Netherlands 
Fermenting 

fruit juice 
NCYC 3557   

DBVPG 6044 West Africa 
Bili wine 

from 
NCYC 3574 NCYC 3600 NCYC 3625 
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Osbeckia 

grandiflora 

DBVPG 6765 Unknown Unknown NCYC 3570 NCYC 3597 NCYC 3622 

K11 Japan Shochu sake    

L-1374 Chile 

Fermentation 

from must, 

Pais 

NCYC 3572 NCYC 3598 NCYC 3623 

L-1528 Chile 

Fermentation 

from must, 

Cabernet 

NCYC 3573 NCYC 3599 NCYC 3624 

NCYC 110 West Africa 

Ginger beer 

from Zingiber 

officinale 

NCYC 3575 NCYC 3601 NCYC 3626 

SK1 USA Soil NCYC 3562 NCYC 3590 NCYC 3615 

UWOPS03-461.4 Malaysia 
Nectar, 

Bertram palm 
NCYC 3576 NCYC 3602 NCYC 3627 

UWOPS05-217.3 Malaysia 
Nectar, 

Bertram palm 
NCYC 3577 NCYC 3603 NCYC 3628 

UWOPS05-227.2 Malaysia 

Trigona spp 

collected near 

Bertram palm 

NCYC 3578 NCYC 3604 NCYC 3629 

UWOPS83-787.3 Bahamas 
Fruit, Opuntia 

stricata 
NCYC 3561 NCYC 3589 NCYC 3614 

UWOPS87-2421 Hawaii 

Cladode, 

Opuntia 

megacantha 

NCYC 3556 NCYC 3582 NCYC 3609 

W303 Unknown NA  NCYC 3583  

Y12 Africa Palm wine NCYC 3579 NCYC 3605 NCYC 3630 

Y55 France Grape NCYC 3560 NCYC 3588 NCYC 3613 

Y9 Japan Ragi    

YIIc17_E5 
Sauternes, 

France 
Wine NCYC 3559 NCYC 3586 NCYC 3612 

YJM975 Bergamo, Italy 

Clinical 

isolate, 

vaginal 

NCYC 3567 NCYC 3594 NCYC 3619 

YJM978 Bergamo, Italy 

Clinical 

isolate, 

vaginal 

NCYC 3565 NCYC 3592 NCYC 3617 

YJM981 Bergamo, Italy 

Clinical 

isolate, 

vaginal 

NCYC 3566 NCYC 3593 NCYC 3618 

YPS128 
Pennsylvania, 

USA 

Soil beneath 

Quercus alba 
NCYC 3581 NCYC 3607 NCYC 3632 

YPS606 
Pennsylvania, 

USA 

Quercus 

rubra bark 
NCYC 3580 NCYC 3606 NCYC 3631 

YS4 Netherlands Baking    

YS9 Singapore Baking  NCYC 3584  
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The strains in the NCYC collection were converted to stable haploids by the deletion of the 

HO locus. Selection of these strains was made possible through the presence of two selectable 

markers namely; the hygromycin B antibiotic resistance cassette in place of the HO ORF 

(hoΔ::HphMX4; the HphMX cassette provides resistance to the aminoglycoside antibiotic 

through expression of the Klebstella pneumontae hygromycin B phosphotransferase (Goldstein 

& McCusker, 1999)) and the geneticin antibiotic resistance cassette in place of the URA3 ORF, 

which confers resistance to the aminoglycoside geneticin (ura3Δ::KanMX4; KanMX encodes 

aminoglycoside phosphotransferase gene from Escherichia coli) (Wach et al., 1994). 

Information about MX4 cassettes is provided in Section 2.13. Furthermore, the SGRP strains 

in the NCYC collection also carried unique restriction site barcodes at the URA3 locus to allow 

for independent verification of strain identity. Genotype information of the SGRP collection is 

summarised in Table 2.5. 

 

Table 2.5: Genotype information of SGRP strains. 

SGRP collection name Genotype 

Original SGRP collection MATa/α No genetic modification 

NCYC SGRP collection MATa/α ura3Δ::KanMX4-barcode/ura3Δ::KanMX4-    

barcode 

MATa    hoΔ::HphMX4 ura3Δ::KanMX4-barcode 

MATα    hoΔ::HphMX4 ura3Δ::KanMX4-barcode 
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2.2.2. Laboratory strains 

The non-SGRP collection laboratory strains used in this study are described in Table 2.6. 

All laboratory strains are derived from the genetic background S288C. The NatMX4 cassette 

listed below gives resistance to the aminoglycoside nourseothricin, isolated from Streptomyces 

nourset (Goldstein et al., 1999).   

 

Table 2.6: Laboratory strains used in this study. 

Strain name Genotype 

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 

BY4743 MATa/MATα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 

BY4741 Δho MATa hoΔ::NatMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

BY4742 Δho MATα hoΔ::NatMX4 his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 

BY4743 

Δho/Δho 

MATa/MATα hoΔ::KanMX4/ hoΔ::NatMX4 his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 

LYS2/lys2Δ0 met15Δ0/MET15 ura3Δ0/ ura3Δ0 

 

2.3. Growth media 

All strains were cultured in the laboratory using the specific media needed for the specific 

experimental purpose. The media was sterilised by autoclaving at 121˚C for 15min before 

being cooled in a 65˚C water bath prior to the addition of glucose (to a final concentration of 

2% weight to volume (w/v)) and any relevant antibiotics or other compounds. If solid media 

was required, agar was added. The contents of the specific media is outlined in detail in Table 

2.7, where the percentage value represents w/v. 
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Table 2.7: Media components. 

Enriched sporulation medium  

Potassium acetate 1% 

Yeast extract 0.1% 

Glucose 0.05% 

Sporulation amino acid mix (histidine, leucine, lysine, uracil) 0.01% 

Agar (if applicable) 2% 

  

Luria-Bertani (LB) medium 

Yeast extract 0.5% 

Tryptone 1% 

Sodium chloride 0.5% 

Agar (if applicable) 2% 

  

Synthetic complete (SC) medium  

Nitrogen base (without amino acids or ammonium sulphate) 0.17% 

Monosodium glutamate salt 0.1% 

SC amino acid mix * 0.2% 

Glucose (added after autoclaving) 2% 

Agar (if applicable; autoclaved separately) 2% 

 

* SC amino acid mix contains:  

3 g adenine, 2 g uracil, 2 g inositol, 0.2 g para-aminobenzoic acid, 2 g alanine, 2 g arginine, 

2 g asparagine, 2 g aspartic acid, 2 g cysteine, 2 g glutamic acid, 2 g glutamine, 2 g glycine, 

2 g histidine, 2 g isoleucine, 10 g leucine, 2 g lysine, 2 g methionine, 2 g phenylalanine, 

2 g proline, 2 g serine, 2 g threonine, 2 g tyrosine, 2 g tryptophan, and 2 g valine (55.2 g 

total).  

 

Yeast peptone dextrose (YPD) medium  

Yeast extract 1% 

Peptone 2% 

Adenine 0.012% 

Glucose (added after autoclaving) 2% 

Agar (if applicable) 2% 

 

2.3.1. Antibiotic supplements 

All antibiotics were made up in dH2O, filter-sterilised through a 0.22 µm polyethersulfone 

(PES) membrane filter and stored as 800 µL aliquots at -20˚C. These are described in Table 

2.8.  
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Table 2.8: Antibiotics used in this study. 

Antibiotic Stock concentration Working concentration 

Ampicillin (Amp) 100 mg/mL 100 µg/mL 

Geneticin (G418) 200 mg/mL 200 µg/mL 

Hygromycin B (HygB) 100 mg/mL 400 µg/mL 

Nourseothricin (clonNAT) 100 mg/mL 100 µg/mL 

 

2.4. Agarose gel electrophoresis 

Agarose gels were prepared at a 1% w/v concentration using low electroendosmosis (LE) 

agarose and TBE buffer (89 mM Tris (hydroxymethyl) aminomethane (Tris), 89 mM Boric 

acid, 2 mM Ethylenediaminetetraacetic acid (EDTA); pH 8). Agarose was melted by 

microwaving until the mixture appeared homogenous and there was no visible signs of the 

unmelted agarose. Ethidium bromide was added to the gel to a concentration of 0.5 µg/mL to 

allow nucleic acid visualisation before it poured into a cast. The nucleic acid sample (4 µL) 

was mixed with 1 µL of 5X loading dye (glycerol 30% v/v, bromophenol blue 0.25% w/v) and 

loaded into the gel wells. For size comparison, 5 µL of 1 kb+ DNA Ladder mixture (10% v/v 

1 kb+ DNA Ladder, 20% v/v loading dye, 70% v/v dH2O) was also loaded into the well. The 

electrophoresis was run in a horizontal gel tank containing TBE buffer with ethidium bromide 

at 100 V for 35 mins. The gel was visualised and imaged using an Alpha Imager mini 

transilluminator at 302 nm excitation wavelength. 

 

2.5. Genomic DNA (gDNA) isolation 

2.5.1. Standard gDNA extraction 

Yeast culture (2 mL) was grown in YPD at 30˚ C for 24 h in a sterile 15 mL centrifuge tube. 

The cells were pelleted by centrifugation at 2000 g for 5 min and the supernatant was discarded. 

In order to wash the cells, the cell pellet was re-suspended in 0.5 mL of dH2O and was 

transferred to a sterile 1.5 mL micro centrifuge tube. The tube containing the suspension was 
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centrifuged at 13 200 g for 30 secs and the supernatant was removed. The cell pellet was re-

suspended in 0.2 mL of lysis buffer (2% v/v Triton X-100, 1% sodium dodecyl sulphate (SDS), 

100 mM sodium chloride (NaCl), 10 mM Tris pH 8 and 1 mM EDTA pH 8). 

 

To lyse the cells and extract the nucleic acid, an equal volume of phenol-chloroform-isoamyl 

alcohol (25:24:1 mixture) and approximately 300 µg of 0.45-0.52 mm acid-washed glass beads 

were added to the cell-lysis buffer suspension and the mixture was vortexed on a low (30% of 

maximal) setting for 10 mins on a multi-Eppendorf vortex rack on a Talboys standard vortex 

mixer. In order to separate the organic and aqueous phases, 0.2 mL of TE (10 mM Tris, 1 mM 

EDTA, pH 8) was added and the tube was vortexed briefly before being centrifuged at 13 200g 

for 10 mins. The upper aqueous phase was transferred to a new micro centrifuge tube.  

 

The nucleic acid was precipitated by adding 2.5 volumes of cold 100% v/v ethanol (EtOH) 

and 1/10 volume of 3 M sodium acetate pH 5.3 to the aqueous phase and the contents were 

mixed by gentle inversion. To encourage the precipitation further, the tube was incubated at -

20°C for additional 25 mins. The nucleic acid was pelleted by centrifugation at 13 200 g at 4˚C 

for 10 mins. The ethanol was removed by carefully pipetting, and the pellet was air dried and 

then re-suspended in 395 µL TE pH 8. To improve the dissolution of the nucleic acid in TE 

buffer, the suspension was incubated 65˚C for 15 mins. To remove any traces of RNA, RNAse 

A (final concentration of 125 µg/mL) was added to the nucleic acid solution and mixed by 

inversion. The tube was incubated at 37˚C for 30 min to allow for RNA digestion. 

 

To prevent the interference of RNAse A with subsequent steps, an additional phenol-

chloroform extraction was carried out to further purify the gDNA. An equal volume of 

phenol:chloroform:isoamyl alcohol was added to the tube and the mixture was vortexed before 
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being centrifuged at 13 200 g for 10 mins. The upper aqueous phase was transferred to a new 

tube for a subsequent chloroform extraction to remove any traces of phenol. One volume of 

chloroform was added to the tube and mixed by vortexing. The phases were separated by 

centrifugation at 13 200 g for 10 mins. The upper aqueous phase was again transferred to a new 

tube and the DNA was precipitated using EtOH as described above. The precipitated gDNA 

was washed using 70% (v/v) EtOH before being pelleted by centrifugation at 13 200 g at 4˚C 

for 5mins. The supernatant was removed and the pellet was air-dried. The gDNA was dissolved 

by adding 50 µL of TE pH 8 and incubating at 65°C for 15 mins. The tubes were briefly 

centrifuged and stored at 4˚C. The extracted gDNA was visualised by gel electrophoresis to 

verify the success of the extraction, to check for any degradation, and to estimate the quantity 

of material. The sample was also examined using the NanoDrop UV spectrophotometer in 

order to ascertain the quality of the extraction and to check for the presence of any potential 

contamination from phenol or protein. 

 

2.5.2. Large scale gDNA extraction for whole-genome sequencing 

For the purposes of genomic sequencing, a large volume of starting material was required 

than what could be extracted by standard methodology (for example Macrogen Ltd. had a 

requirement of 100 ng of gDNA for a Truseq Nano 350bp insert library). Therefore, the 

standard protocol was scaled up in order to increase yield. For large scale gDNA extraction, all 

methodology was followed as stated in (2.5.1) with the following modifications; the starting 

culture volume was increased from 2 mL to 15 mL, and was grown in a 250 mL conical flask 

in a 30˚C shaking incubator. The volume of lysis buffer used during the initial cell lysis stage 

was increased to 0.5mL. In addition, the RNAse A treatment was carried out in a final volume 

of 1500 µL TE containing 125 µg/mL RNAse A. To accommodate the larger volume of 

extraction, following the RNAse A treatment the total 1.5mL reaction volume was separated 
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into two sterile 1.5 mL cryotubes. The phenol-chloroform and the chloroform extractions were 

carried out as described previously (2.5.1). The ethanol precipitation procedure was modified 

by using 1 mL of 100% EtOH instead of 2.5 volumes. The final extracted gDNA was 

resuspended in 75 µL of TE. After suspension of gDNA, the two samples gDNA were 

combined in a single tube to give a final volume of 150 µL. 

 

Post-extraction quality determination and gDNA quantitation was undertaken as described 

in Section 2.5.1. In addition, NanoDrop UV Spectrophotometer data was used to verify that 

gDNA conformed to the quality requirements of the selected sequencing centre (i.e. absorbance 

ratio 260 nm/280 nm ≥1.7; no contamination with phenol or protein).  

 

2.6. Primers used 

All primers were suspended in dH2O to a final concentration of 100 µM and stored at -20˚C. 

Primer names and sequences are provided in Table 2.9. Primers were designed based on 

sequence information obtained from SGD (SGD Project). 

 

Table 2.9: Primers used in this study. 

Primer 

number 
Primer name Sequence 

3 5' NatMX internal R TACGAGACGACCACGAAGC 

30 3' NatMX internal F TGGCTGGAGGTCACCAACGTC 

351 5' PDR1-NatMX deletion F 

CATCTCAGCCAAGAATATACAGAAAAGA

ATCCAAGAAACTGGAAGACATGGAGGCC

CAGAATACCCT 

352 3' PDR1-NatMX deletion R 

AGGAAGGAAGTTTTTGAGAACTTTTATC

TATACAAACGTATACGTCAGTATAGCGA

CCAGCATTCAC 

353 5' PDR3-UraMX deletion F 

ACTGCATCAGCAGTTTTATTAATTTTTTC

TTATTGCGTGACCGCAACATGGAGGCCC

AGAATACCCT 
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354 3' PDR3-UraMX deletion R 

CCATTTACTATGGTTATGCTCTGCTTCCC

TATTTCTTTTGCGTTTCAGTATAGCGACC

AGCATTCAC 

365 5' PDR1 confirmation F GCAGGACCATAGCGGCCA 

366 3' PDR1 confirmation R CGCCTTTACTGGTGGGCC 

368 3' UraMX internal F GACACCTGGAGTTGGATT 

369 3' PDR3 confirmation R TTATGAACACGCACAGGC 

370 5' UraMX internal R AATTCAACGCGTCTGTGAGG 

371 5' PDR3 confirmation F TACCGCCTAGGTAACCAT 

410 5' HO external F TACAGGTCTTAACGTAGGTTT 

411 3' HO external R AGGTGCTATCTTGACCGGCCA 

 

2.7. Polymerase chain reaction (PCR) conditions 

2.7.1. General PCR 

All PCR reactions were prepared in a 0.2 mL thin wall PCR tube in 25 µL final volume 

containing 1X PCR buffer, 200µM of each deoxynucleotide (dNTP), 2 µM each of forward 

and reverse primers, a minimum of 4 ng/µL of template DNA in a 2.5 µL volume (substituted 

by an equivalent volume of dH2O in negative control reactions) and either HotStar Taq 

polymerase (0.625 units) or ExTaq Polymerase (0.625 units). The final reaction volume was 

reached by the addition of dH2O. The PCR cycle consisted of an initial denaturation step in 

which the samples were heated to 95˚C for 5 min followed by 36 cycles of 94 ̊ C (denaturation) 

for 45 sec, 58 ˚C (annealing) for 45 sec, 72 ˚C (extension) for 2 min and a further 72 ˚C (final 

extension) for 10 mins before being held at 10 ˚C. All cycles were preceded by heating the 

PCR machine lid to 105˚C. The success of the PCR reaction was verified by agarose gel 

electrophoresis as described in Section 2.5. 

 

2.7.2. Long-range PCR 

Long range PCR cycle was undertaken to include a longer extension time in order to allow 

for amplification of longer fragments (2-5 kb). All the reaction mixtures and conditions were 

identical except for the extension ad the final extension steps. The extension step time was 
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increased from 2 min to 5 min whereas the final extension step was increased from 10 min to 

15 min. 

 

 

2.7.3. Confirmation PCR 

Confirmation PCR was used to check that the desired transformation occurred at the correct 

location. Two sets of primers were used; one primer of each set was homologous to the 

appropriate inserted cassette while the other had homology to the flanking region of the locus 

that should have been transformed. The PCR mixture and conditions used were the same as 

those used for the general PCR (Section 2.7.1). The success of the transformation at the correct 

location was indicated by the production of two PCR products—one “front” product, formed 

between the 5’ flanking region forward primer and the resistance cassette-specific reverse 

primer and one “back” product, created from the resistance cassette-specific forward primer 

and the 3’ flanking region reverse primer. However, due to the high specificity required to 

produce either product, the presence of only the front or the back product alone was considered 

sufficient to deem a transformation successfully confirmed. The principle of the confirmation 

PCR is illustrated in Figure 2.1. 

 

 

Figure 2.1: Production of front and back products during confirmation PCR. FR denotes “flanking region”. 

YFR denotes “your favourite gene”. 
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2.8. Yeast transformation 

Transformation was carried out on the basis of the Gietz and Schiestl 2007 high-efficiency 

transformation protocol (Gietz & Schiest, 2007). A single colony of the strain to be transformed 

was inoculated into 2 mL liquid YPD medium overnight in a rotating drum at 30°C. The OD600 

of the culture was measured using a UNICAM 8625 UV/VIS spectrometer, and a total of 

2.5×108 cells were added to 50 mL of liquid YPD in a conical flask and grown on a shaking 

incubator set at 200 rpm at 30°C, until the culture reached an OD600 of 1 (~1×107 cells/mL). 

The cell culture was transferred to a 50 mL centrifuge tube and centrifuged at 3166 g for 5 min 

to pellet the cells. The supernatant was removed and the pellet was re-suspended in 25 mL 

dH2O and centrifuged again. The supernatant was removed, the cells were re-suspended in 1 

mL dH2O and the solution transferred to a 1.5 mL microcentrifuge tube and centrifuged at 13 

200 g for 30 sec before discarding the supernatant. The cells were re-suspended in 1 mL dH2O 

and from this suspension two 100 μL aliquots set up. The transformation mix was made 

consisting of 33.3% w/v polyethylene glycol molecular weight 3350 (PEG 3350), 100 µM 

lithium acetate (LiAc), 27.8 mg/mL denatured salmon sperm DNA and 2.78 µg/mL 

transformant DNA and made up to a final volume of 360 µL using dH2O. The negative control 

transformation mix was made in the same manner, except the transformant DNA was 

substituted with dH2O. The 100 μL cell aliquots that were set up previously were centrifuged 

at 13 200 g for 30 sec, the supernatant removed and the cells resuspended in the transformation 

mix by gentle pipetting. The tubes were placed in a 42°C water bath for 40 min for heat shock, 

centrifuged at 13 200 g for 30 sec, and the cells then re-suspended in 1 mL YPD, and left at 

room temperature overnight, to allow for expression of the resistance cassette encoded on the 

transformant DNA. Finally, the transformation mixture was plated out on a selective media and 

incubated at 30°C for 2 days to get growth of transformed colonies. 
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2.9. Preparation of template for colony PCR 

Colony PCR was used as a rapid alternative to genomic DNA extraction to provide template 

material for confirmation PCR (Section 2.7.4). Half a colony of the putative transformant was 

scraped from the selection plate and resuspended in 50 μL of 1 mg/mL zymolyase 20T solution 

(dissolved in dH2O) and incubated for 30 min at 30°C in order to induce enzymatic digestion 

of the cell wall, and liberate the template DNA. This zymolyase digest was then used directly 

in the PCR reaction as a template, as described in Section 2.7.1. 

 

2.10. Yeast stock preservation 

Any strain that required long-term storage was grown overnight to saturation 

(approximately 2×108 cells/mL) in 1.5 mL of liquid YPD. The cells were pelleted by 

centrifugation at 3166 g for 1 min and resuspended in 750 µL of YPD and 750 µL of 50% v/v 

glycerol (to a final glycerol concentration of 25% v/v). The suspension was transferred to a 1.5 

mL sterile cryotube, vortexed and stored for further use at -80˚C. 

 

2.11. Plasmids used 

All plasmids were maintained in Escherichia coli (E. coli) stored as 25% v/v glycerol stocks. 

All plasmids contained an ampicillin resistance cassette as a selectable marker, which permits 

the host E. coli strain to grow on the beta-lactam antibiotic (Sutcliffe, 1978). Information 

regarding plasmids used is provided in Table 2.10. 

Table 2.10: Plasmids used in this study 

Plasmid name E. coli strain name Description Source 

p4339 TOP10F NatMX4 (Tong & Boone, 2005) 

pAG60 DH5α UraMX4 (Goldstein et al., 1999) 
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2.12. Plasmid mini-prep 

Prior to isolation, E. coli were streaked from frozen stock on solid agar LB plates containing 

100 µg/mL ampicillin and grown overnight at 37°C. A single colony was inoculated in 3 mL 

of liquid LB medium with ampicillin and grown overnight in a 37°C shaking incubator. The 

plasmid was purified using the GeneaidTM High-Speed Plasmid Mini Kit (cat. Number PD100) 

according to the manufacturer’s instructions. The presence of purified plasmid was confirmed 

by agarose gel electrophoresis. The plasmid was also quantified using the NanoDrop UV 

spectrophotometer.  

  

2.13. Restriction digest 

New England BioLabs (NEB) reagents were used for restriction digests. The reaction was 

set up to contain 33.3 ng/mL of DNA, 10 units of desired restriction enzyme, 1X of matching 

NEBuffer and 1X bovine serum albumin (included as part of restriction digest kit), made up to 

a total volume of 30 µL with dH2O. The reaction was incubated at 37°C for 4 h to allow for 

digestion to occur. The digest was stopped by incubation at 65°C for 20 min. The success of 

the restriction digest was confirmed by agarose gel electrophoresis. 

 

2.14. Marker switching 

The marker switch procedure allows for simple interchange of different antibiotic resistance 

cassettes without requiring de novo PCR amplification and integration at a locus. All the 

antibiotic resistance cassettes used in this study belong to the MX4 series—in which the 

resistance gene is flanked by the same TEF promoter and terminator sequences, derived from 

the filamentous fungus Ashbya gossypii. The presence of these identical sequences allows the 

resistance genes to be swapped over by homologous recombination (Goldstein et al., 1999; 

Tong et al., 2005; Wach et al., 1994). An illustration of the method is shown in Figure 2.2. 
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Figure 2.2: Overview of antibiotic resistance cassette marker switch method. This example illustrates a 

switch from a kanamycin-resistance cassette to a nourseothricin-resistance cassette Adapted from (Tong et 

al., 2005), reprinted with permission. 

 

 

Marker switching was used in this study to switch from kanamycin resistance to 

nourseothricin resistance. The nourseothricin-resistance cassette (NatMX4) was obtained from 

the p4339 plasmid (a kind gift from Charles Boone, University of Toronto) and isolated by 

plasmid mini-prep, as described in Section 2.12. The plasmid was then subjected to a restriction 

digest with EcoRI (Section 2.13) to isolate the NatMX4 cassette from the plasmid backbone 

and produce sticky ends that increase transformation efficiency. This product was transformed 

into the desired strain using standard transformation procedure (Section 2.8). 

 

2.15. Dose-response testing 

The growth of all diploid SGRP strains were compared to a lab BY4743 control. The growth 

of haploid MATa and MATα SGRP strains were compared to the equivalent BY4741 or 

BY4742 control respectively. 
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2.15.1. Primary serial spot dilution assay 

Yeast from single colonies were inoculated in a 96-well tissue culture plate containing SC 

media using the Singer RoToR HDA. The plate was sealed with polyester sealing film and 

placed inside a Ziploc bag to minimise evaporation. Cultures were grown to saturation 

(approximately 2×108 cells/mL) at 30°C in a shaking incubator set to 200 rpm for 48 h. The 

strains were serially diluted 1:10 in dH2O four times using fresh 96-well tissue culture plates. 

The Singer RoToR was used to “spot” the serially-diluted cultures using 96 long-pin repads 

onto SC agar Singer plates containing increasing concentrations of the treatment compound of 

interest (Singer plates are rectangular 8 cm × 12 cm polystyrene dishes that are compatible with 

the Singer RoToR HDA (Singer Instruments)). Each strain was represented on the plate twice 

and the experiment was repeated independently two times. A representative plate illustrating 

the strain arrangement is shown in Figure 2.3. The plates were grown at 30˚C for 72 h and 

photographed using a Canon EOS 600D camera. 

 

 

Figure 2.3: A representative Singer plate in the primary serial spot dilution assay, showing the arrangement 

of strains. Each strain is outlined in red. The horizontal spots for each strain are ten-fold dilutions of the 

cells. Plate shown contains 50µM benomyl. 
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The growth score for each serial spot dilution in the assay was recorded using the system 

described in Table 2.11. 

 represents maximal to half-maximal growth;  represents minimal to half-maximal growth. 

107  

cells/mL 
106  

cells/mL 
105 

 cells/mL 
104  

cells/mL 
Score 

    8 

    7 

    6 

    5 

    4 

    3 

    2 

    1 

    0 

 

Residual growth was calculated by dividing the average score of the strain upon treatment 

by the average score of the strain in solvent only. This was done to eliminate the effect of 

differential growth rates between the strains. The mean average residual growth and standard 

deviation was calculated for each strain from its two replicates in the assay. The minimal 

inhibitory concentration (MIC; defined as the treatment concentration above which there is no 

further significant reduction in growth) was determined for each strain. In instances where the 

residual growth of the strain did not fall below 0.5, or where an end “plateau” was not reached 

(plateau is reached when two or more points do not show a significant difference), the MIC 

was classed as “not determined” (ND). “Resistant” strains were defined as those whose MIC 

was higher than that of the control; “susceptible” strains were those whose MIC was lower than 

that of the control. 

 

Table 2.11: Scoring system for growth in initial serial spot dilution assay screen. 
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2.15.2. Secondary serial spot dilution assay (confirmation of primary serial 

spot dilution assay results) 

Yeast were inoculated in 100 µL SC medium in a 96-well tissue culture plate, sealed with 

polyester sealing film and placed inside a Ziploc bag and grown overnight in a 30°C shaking 

incubator at 200 rpm. OD590 was measured on an EnVision 2102 Multilabel plate reader. 

Cultures were diluted to an OD590 of 0.1 in dH2O in a fresh 96-well tissue culture plate, and 

serially diluted 1:10 in dH2O six times. Three µL of culture was transferred using a 

multichannel pipette to SC agar plates containing increasing concentrations of the desired 

treatment compound. The plates were incubated at 30°C for 72 h and photographed. The 

experiment was independently repeated twice. 

 

Analysis 

The growth score for each strain in the secondary serial spot dilution assay was recorded 

using the system described in Table 2.12. 

 

Table 2.12: Scoring system for determining growth in secondary serial spot dilution assays. 

 represents maximal to half-maximal growth;  represents minimal to half-maximal growth. 

107  

cells/mL 
106  

cells/mL 
105 

 cells/mL 
104  

cells/mL 
103 

 cells/mL 
102 

 cells/mL 
Score 

      7 

      6 

      5 

      4 

      3 

      2 

      1 

      0 
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Analysis of growth was carried as described for serial spot dilution assays in the primary 

screen, with MIC being determined for each strain. “Resistant” and “sensitive” strains were 

determined as described in Section 2.15.1. 

 

2.15.3. Pinning assay in 384 colony format 

Yeast were inoculated in 100 μL of liquid SC medium in a 96-well tissue culture plate and 

grown overnight as described in Section 2.15.2. A buffer border of alternating BY and S288C 

controls was arranged to control for edge effects in colony size (  colonies at the edge grow 

more due to increased nutrient availability (Tong & Boone, 2007)).   Appropriate BY controls 

were also incorporated within the plate and these were used to determine the sensitivity or 

resistance of the SGRP strains tested. An exemplar plate is shown in Figure 2.4. The strains 

were arrayed to 384 colony format on SC agar using the Singer RoToR, and then grown at 

30°C for two days. This source plate was then pinned onto increasing concentrations of the 

compound of interest, using 15% source pinning pressure and 5% target pinning pressure. The 

pinning pressure was reduced from the default pressure of 32% in order to reduce the number 

of cells in the initial inoculum, as it was previously observed that too many cells led to 

decreased responsiveness to drug. The cells were then grown at 30°C for 72 h and 

photographed. The experiment was repeated independently three times. 
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Figure 2.4: A representative Singer plate in the 384 colony format pinning assay, showing the arrangement 

of strains. Each strain is outlined in red (quadrant of four repeated colonies). Plate shown contains 50µM 

benomyl. 

 

 

Analysis 

Colony size was measured using Gitter image recognition software (Wagih & Parts, 2014). 

The residual growth of each replicate on the plate (a quadrant of four colonies) was calculated 

by dividing the average colony size in treated plates by the average colony size in the solvent 

control plates, thus normalising for differences in growth rate, as described previously. This 

normalisation also helped to abolish differences in growth due to different positions on the 

plate (as caused by edge effects or by being positioned next to smaller colonies). The mean 

average of each pinning replicate was calculated for each wild type strain and the control strain. 

The MIC was determined for each strain as described in Section 2.15.1. 
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2.15.4. Determination of sensitivity or resistance 

 Sensitivity or resistance was quantified using the system described in Table 2.13. 

Table 2.13: Quantification system for SGRP strain sensitivity or resistance (relative to BY control strain). 

- or + Slight sensitivity or resistance (MIC less than two-fold that of the control). 

- - or + + Moderate sensitivity or resistance (MIC at least two-fold that of the control). 

- - -  or + + + High sensitivity or resistance (MIC three or more fold that of the control, or 

not determined). 

 

2.16. Tetrad dissection 

In order to obtain meiotic segregants from a cross between two strains of interest, standard 

mating and sporulation procedures were carried out (Amberg et al., 2005). Briefly—the two 

strains of interest were selected/engineered to contain different antibiotic resistance cassettes 

at the same locus that could be used for selection. The strains were mated on YPD agar in a 

chevron shape (see Figure 2.5), and grown at 30°C overnight. The checking of the appropriate 

growth of each parental strain, and selection of diploids was done by replica-plating the 

chevron onto YPD agar containing either selective antibiotic on its own or a combination of 

both antibiotics respectively. These plates were grown at 30°C overnight. 



Materials and Methods 

61 

 

 

Figure 2.5: Graphical representation of the mating, sporulation and tetrad dissection steps to obtain meiotic 

segregants between two strains of interest—one carrying a clonNAT resistance cassette and the other an 

HygB resistance cassette. 

 

The selected diploids were induced to undergo sporulation by inoculation at a density of 

approximately 2×107 cells/mL) in 2 mL of enriched sporulation medium which simulates 

conditions of carbon and nitrogen starvation, which induces meiosis and spore formation in 

yeast (Amberg et al., 2005). Sporulation cultures were incubated on a rotating drum at room 

temperature for a minimum of five days. Sporulation efficiency was estimated by counting 

four-tetrad spores under a microscope.  

To isolate individual segregants, tetrad dissection was performed. A 200 μL of sporulation 

culture was pelleted, re-suspended in 50 μL of 0.25 mg/mL zymolyase 20T in 1 M sorbitol, 

and incubated at 30°C for 30 min. This zymolyase treatment induces the digestion of the hardy 

ascus sac that holds spores together, thus allowing their separation. The zymolyase digest was 

halted by adding 150 μL of dH2O and storing on ice. A 15 μL sample of zymolyase-digested 

sporulation culture was placed in a streak on a thin YPD agar plate. A Singer MSM 400 

YPD + HygB/clonNAT 

Strain 1 Strain 2 

YPD 

YPD + clonNAT 

YPD + HygB 

Sporulation  
culture 

Tetrad 
dissection 

YPD 

YPD + 
clonNAT 

YPD + HygB 

Tetrad 
genotyping 
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Automated Dissection Microscope was used to dissect tetrads as per manufacturer’s protocol 

(Singer Instruments) and isolated spores were grown at 30°C for two days. As tetrad dissection 

depends solely on visual recognition, they must be genotyped to confirm that they are true 

tetrads. This was done by identifying the 2:2 segregation of the two antibiotic markers used 

during the selection process. Therefore, the tetrads dissected on YPD were replica-plated onto 

YPD plates containing either one or the other antibiotic, grown overnight at 30°C, and growth 

on each plate was scored. Spores from true, fully-viable (i.e. four spore) tetrads were selected 

for further analysis. 

 

2.17. Construction of advanced intercross lines (AILs) 

Advanced intercross lines (AILs) were constructed between the strains selected for further 

QTL analysis. Briefly, this involved   repeated rounds of random mating and sporulation from 

resultant diploids   to break up linkage disequilibrium between closely associated genetic loci 

and to increase the number of recombination events in refinement of genetic maps. The first 

matings, diploid selection and sporulation steps were carried out as described in Section 2.16. 

In order to repeat the process the sporulation culture was subjected to treatment with zymolyase 

and dithiothreitol (DTT) to induce spheroblast formation, sonication and heat shock in order to 

selectively kill vegetative cells, leaving spores available for a new round of mating (Pais et al., 

2014; Siddiqi, 1971; Spencer et al., 1989). The protocol was adapted from one kindly provided 

by Prof Richard Gardner (University of Auckland). 

 

Following sporulation in liquid medium for five days, the number of spores in the culture 

was counted using a haemocytometer and a volume of culture was selected that contained a 

total of 2.5×108 tetrads. The cells were collected by centrifugation in a 1.5 mL microcentrifuge 

tube, the pellet was washed with 1 mL of dH2O and centrifuged at 13 200 g for 1 min before 
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the supernatant was discarded. The pellet was resuspended in 1mL of 100 mM Tris-Cl (pH 9.4) 

and 10 mM DTT and incubated in a 30˚C water bath for 10 mins. The tube was spun at 13 200 

g for 1 min, the supernatant was discarded, the cell pellet was resuspended in 1 mL of solution 

consisting of 0.5 mg zymolyase, 2.1 M sorbitol and 10 mM sodium dihydrogen phosphate 

(NaH2PO4) (pH 7.2) and the suspension was incubated in a 30˚C water bath for five hours to 

induce lysis of vegetative cells and ascus digestion. Upon completion of this period, a sample 

of the suspension was inspected microscopically with an equal volume of 0.1% w/v methylene 

blue to confirm that spores were still viable and vegetative cells were destroyed.  To ensure 

further killing of vegetative cells, the cells were pelleted, the supernatant was removed, the 

pellet was resuspended in 0.4% w/v SDS, 1 mM DTT and dH2O and the cells were subjected 

to sonication treatment. For this, cells were incubated in a Transonic T460 Sonicating water 

bath for 30 sec four times and incubated on ice for 1 min between each sonication. Following 

sonication, additional SDS was added to a final concentration of 1% and the cells were 

incubated at 37˚C for 1 h. As a final stress step to kill vegetative cells, the suspension was 

incubated in a 55˚C water bath for 10 mins. Following this, the suspension was vortexed and 

again inspected microscopically with methylene blue to ensure spores were viable and 

dispersed. The number of spores was counted using a haemocytometer to estimate how many 

spores were taken through to the next round of intercrossing. The cells were pelleted by 

centrifugation and the pellet washed with dH2O. The cells were pelleted again, the supernatant 

removed and the cells were resuspended in 1mL of YPD. The pellet was resuspended by 

vortexing and pipetting. This total volume of cells was delivered to a YPD agar plate and spread 

using a sterile L-shaped glass rod. Once the liquid was fully absorbed the plate was incubated 

at 30˚C for two days for the subsequent round of random mating between spores. Following 

mating, the YPD plate was replica-plated onto a YPD agar plate containing clonNAT and HygB 

for diploid selection and incubated at 30˚C for two days. Afterwards, a minimum of 2×107 
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diploids/mL were inoculated in 7.5 mL of sporulation medium and incubated on a rotating 

drum at room temperature for 5 days. The described process was repeated for a total of ten 

rounds of matings and sporulation. 

 

2.18. Construction and long-term storage of segregant progeny pools. 

Following the last (10th) round of vegetative cell killing, the total number of cells in the 

culture was counted using a haemocytometer before being subjected to the final round of 

mating and diploid selection (as described in Section 2.17). The cells were collected from the 

diploid selection plate by pipetting 1 mL of liquid SC medium on the surface of the agar, 

suspending the cells in liquid by gently scraping the surface with a sterile L-shaped glass rod 

and then collecting the cell suspension by pipette and transferring it to a sterile 15 mL 

centrifuge tube. This process was repeated two to three times until no cells remained on the 

agar. The total volume in the tube was then made up to 10 mL with liquid SC. The selected 

diploids were counted again, and the total number of cells in each collected cell suspension 

was calculated. Glycerol stocks were made for long-term storage by mixing 750 µL of the cell 

suspension with an equivalent volume of 50% v/v glycerol in a sterile 1.5 mL cryotube and 

storing at -80˚C. 

 

2.19. Drug treatment of pooled segregant progeny 

2.19.1. Optimisation of drug treatment in pooled format on agar (lawn 

concentration-response assay) 

Previous drug treatment formats discussed in this chapter have relied on isolation of single 

cells prior to inoculation on drug-containing agar plates and are not practicable for treating a 

large number of cells (on the order of 105) with drugs simultaneously. Therefore, a new 

treatment format was optimised to circumvent this problem. A “lawn” approach was selected, 
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in which a mixed cell population is cultured that is then spread over the surface of an agar plate 

containing the drug. The cells then grow as a lawn over the surface and can be quantified by 

scraping and counting, akin to the method described in Section 2.18. 

 

A concentration-response assay was performed in the above format with each AIL as well 

as its original parental strains (in diploid form). Strains were inoculated in 20 mL of SC and 

grown overnight at 30˚C in a shaking incubator set at 200 rpm. Following the outgrowth, cells 

were counted by haemocytometer and diluted to a concentration of 1×105 cells/mL using dH2O. 

SC agar plates were made containing increasing concentrations of the compound of interest. 

Following thorough vortexing, 1 mL of the cell suspension was spread over the surface using 

a sterile L-shaped glass rod. After the cell suspension had fully absorbed into the agar, the 

plates were incubated at 30˚C for 72 h. After photographing the plates, the cells were collected 

the same way as described in Section 2.18. Growth was quantified by cell counting. The 

concentration-response was carried out in triplicate for each compound of interest. 

 

2.19.2. Drug treatment format and gDNA extraction of pooled segregant 

progeny 

AIL segregant progeny pools were inoculated into 20 mL of SC and grown overnight at 

30˚C in a shaking incubator set at 200 rpm. Following cell counting, cultures were diluted to 

1×105 cells/mL using dH2O, and the diluted cells were spread onto SC agar plates containing 

the desired drug concentration using the method described in Section 2.19.1. Plates were 

incubated, and cells were collected as described in Section 2.18. Following cell collection, 

gDNA was extracted as described in Section 2.5.2. A single sample was created for each AIL 

under each drug treatment condition. 
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2.20. Single gene sequence alignment 

All sequence alignments for single genes and their translation products were performed 

using the Geneious 8.0.5 software package (www.geneious.com; (Kearse et al., 2012)). 

Multiple alignments were carried out using the MUSCLE iterative alignment algorithm using 

default settings. The percentage of pairwise identity in each set of alignments was calculated 

by Geneious, using the following formula: 

 

% 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 =  
# 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 × 100

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑙𝑖𝑔𝑛𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛
 

 

In order to predict effects of polymorphisms that occur within ORFs, the coding region was 

translated with the appropriate Geneious tool, again using default settings, and the putative 

effect was derived, based on the predicted amino acid changes. 

 

2.21. Illumina whole genome sequencing 

All Illumina sequencing was performed at Macrogen Inc., Seoul, South Korea. Library 

preparation, sequencing, base calling and generation of FASTQ raw data files were completed 

at Macrogen. All subsequent bioinformatic analysis was carried out at VUW as part of this 

thesis. 

 

2.21.1. Parental strain genome sequencing 

A minimum of 100 ng of gDNA from the strain of interest was isolated as described in 

Section 2.5.2. A one gigabase package offered by Macrogen was selected for sequencing the 

parental strains of interest. This is estimated to produce ~88X coverage of an average S. 

cerevisiae genome, based on a genome size of ~12 Mb (SGD Project). Actual coverage per 
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sample is reported in Chapter 5. Truseq Nano 350 bp insert libraries of each sample were 

prepared at Macrogen. All samples were sequenced simultaneously in a single lane of a 

HiSeq2000 using 101 bp paired-end (PE) sequencing. Base calling was performed using the 

Illumina Pipeline (CASAVA) v1.8.2. The raw data was provided in FASTQ format with 

Sanger quality encoding (Phred Quality Value + 33). 

 

2.21.2. Segregant population sequencing 

Genomic DNA extraction and library preparation were performed as described in Sections 

2.5.2 and 2.21.1. All samples were sequenced simultaneously in a single lane of a HiSeq2500 

using 125 bp paired-end (PE) sequencing. Based on a sequencing output of 60 Gigabases per 

lane and 12 samples, each sample was estimated to have ~400X coverage, assuming equal 

coverage. Actual coverage per sample is reported in Chapter 5. Raw image processing was 

carried out using HiSeq Control Software v2.2.38. Base calling was completed by Real Time 

Analysis v1.18.61.0. The conversion of the base call file to FASTQ format was done by 

bcl2fastq v1.8.4. The raw data were provided in FASTQ format with Sanger quality encoding 

(Phred Quality Value + 33). 

 

2.22. Alignment of genomic Illumina read data to a reference genome 

An overview of the general workflow used to achieve the final pileup format used for 

downstream applications is given in Figure 2.6. The workflow is based on recommendations 

provided by Genome Analysis Tool Kit (GATK) (Broad Institute) and SAMtools (SAMtools). 
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Figure 2.6: Overview of Illumina genomic sequence data workflow. File formats of input and output files 

for each step are indicated. 

 

 

2.22.1. Quality assessment and trimming of Illumina raw read data 

To assess the quality of the raw data and to detect any possible anomalies, FastQC v0.11.3 

(Andrews, Andrews 2015) was used. FastQC assesses input data based on a number of 

modules, including average quality score, GC content and its distribution per read and the 

presence of any over-represented sequences and k-mers. The FastQC report was used to 
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determine if data required any trimming or manipulation prior to downstream analysis. Figure 

2.7 provides an example of “good” data that did not require much manipulation and “bad” data 

that required trimming. 

 

 

A. 
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Figure 2.7: Example of FastQC output modules, showing examples of “good” and “bad” data. 

A. Output of “per base sequence quality” module. The average Phred quality scores of all the reads 

are displayed as box plots. Red line represents median quality score; blue line represents mean 

score. Top graph: high quality data. Bottom graph: poor quality data, as evidenced by declining 

quality scores towards the 3’ end of the read. 

B. Output of “overrepresented sequences module” Top: example of clean data. Bottom: example of 

data showing contamination with Illumina primer sequence. 

 

If Illumina adapter sequences were detected, Trimmomatic v0.33 (Bolger et al., 2014) was 

used to eliminate them. The ILLUMINACLIP module of this software takes the universal 

Illumina primer and adapter sequences as input and trims the FASTQC files to remove all or 

part of these input sequences (or their complementary sequences). The input Illumina 

sequences used were as provided in the TruSeq2-PE.fa in Trimmomatic.  

All sequence data were also trimmed according to the Phred sequence quality score to 

eliminate low-quality data that may confound read mapping or variant calling. The 

SLIDINGWINDOW module of Trimmomatic was applied for this purpose with trimming 

options of 4 bp window size, Q30 required Phred quality (per window) and a minimum length 

of 20 bp for output reads. 

Additional trimming was done using the CROP and HEADCROP modules of Trimmomatic 

as the individual data sets required (for example, to trim out areas of imbalance in GC content 

at the beginning or ends of reads). This is discussed in more detail in Chapter 5. 

  

B 
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2.22.2. Alignment of reads to a reference genome 

Reference genome acquisition 

The S. cerevisiae S288C reference genome was downloaded from SGD on 9 Aug 2015 

(Engel et al., 2014; SGD Project). The selected release was the genome version R64-1-1 

(corresponding to the University of California Santa Cruz (UCSC) Genome Browser name 

sacCer2), originally released 3 Feb 2011. 

 

Read alignment/mapping to reference genome 

The BWA-MEM  v0.7.12 algorithm (Li, 2013) was used to align the raw read data to the 

aforementioned reference genome. BWA-MEM is the most recent alignment algorithm of the 

general BWA Burrows Wheeler Alignment (BWA) software (Li & Durbin, 2009). Prior to 

alignment, the reference genome was indexed in BWA using default parameters. BWA-MEM 

was then run in paired-end format using the options -M (marks split reads as secondary, for 

compatibility with downstream software) and -R (inserts read group names into the output 

SAM file). 

Following alignment, the output SAM file was further processes using SAMtools v1.2 (Li, 

Handsaker, et al., 2009). The “view –bS” command was used to convert the file to the binary 

BAM format. The “fixmate” command was used to fill in missing information about 

coordinates, insert size and mate-related flags for paired end reads. Finally the “sort” command 

was used to sort reads in the BAM file by chromosomal coordinate. 

 

2.22.3. Removal of PCR and optical duplicates 

During Illumina sequencing of the samples in this study, PCR was used both during library 

preparation to amplify the amount of starting material, and during cluster generation prior to 

the sequencing reaction, to create a sufficient amount of template to generate a sufficient optical 
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signal during sequencing-by-synthesis. However, such amplifications are prone to introduce 

artefacts within the aligned data where certain sequences are falsely overrepresented. 

Furthermore, incorrect cluster positioning on the Illumina flow cell can also lead to artificial 

sequence duplication. Such artefacts are referred to as PCR duplicates or optical duplicates and 

can interfere with downstream analysis (see Figure 2.8 for a description of how such duplicates 

arise). Therefore, the removal of these sequence duplicates is recommended (Altmann et al., 

2012; Schlotterer et al., 2014). The MarkDuplicates module of Picard Tools v1.138 (Broad 

Institute) was used to mark and remove PCR and optical duplicates. 

 

Figure 2.8: Generation of PCR (A) and optical (B) duplicates. 

A. PCR duplicates occur due to preferential amplification of a certain sequence over others. They can 

be identified post-alignment by virtue of their sequence identity (barring sequencing errors) as 

well as identical mapping coordinates (with PE data, identical insert size also gives weight to the 

sequence being a PCR duplicate). As an example, PCR-duplicated reads are shown in red. 

B. Optical duplicates form when a sequencing cluster is split between tiles on a flow cell (as exhibited 

by Cluster 1). The sequence from a single cluster is henceforth reported as two independent 

sequences. Optical duplicates are recognised on the basis of sequence identity (barring sequencing 

errors) and their adjacent coordinates on the flow cell. 

 

 

2.22.4. Local realignment of indels 

As short read mapping algorithms such as BWA align each read independently of others, 

they often fail to correctly map indels, which may only be detected by considering the 

alignment patterns of multiple reads at once (see Figure 2.9 for an illustration) (Altmann et al., 

2012; DePristo et al., 2011).  
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Figure 2.9: Improved alignment accuracy following local realignment around indels. 

A. Failure to map indels may lead to spurious variants being detected (sequence “ATC” in the reads 

would be erroneously considered to be SNPs relative to the reference). 

B. Local realignment around indels improves overall alignment accuracy and lowers the occurrence 

of false “variants”. 

 

Local realignment of indels was performed using GATK v3.4-46 (DePristo et al., 2011). 

Prior to indel realignment, the reference genome was indexed using SAMtools and a dictionary 

was created using Picard Tools, as per GATK requirements. For indel realignment, firstly the 

target regions for local realignment were detected using the RealignerTargetCreator module. 

This module requires a list of indels that are known to occur in S. cerevisiae. This list was 

compiled manually from sequence data downloaded from SGD on 9 Aug 2015 (Saccharomyces 

Genome Database). The list of strains whose indel data were included is found in Appendix 

7.1. Following creation of target regions, the indels were realigned using the IndelRealigner 

module. 

 

2.22.5. Base quality score recalibration 

The automated base-calling software used by Illumina is known to lack accuracy when 

reporting Phred base quality scores (Brockman et al., 2008; Li, Li, et al., 2009; Nielsen et al., 

2011). One source or error arises from cycle effect, in which sequencing accuracy decreases 

towards the 3’ end of the read due to accumulation of errors in the sequencing-by-synthesis 

reaction (such as occurrence of signal dephasing within sequencing clusters) (Dohm et al., 

2008; Metzker, 2010). Another error source is the dinucleotide context (i.e. the base in question 
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and the previous base) which can influence whether the quality score is over- or under-

estimated (DePristo et al., 2011). Thus, raw base quality scores as reported by Illumina need to 

be recalibrated to make them closer to the true empirical base quality. The effect of base quality 

score recalibration is illustrated in Figure 2.10. 

 

Figure 2.10: Effect of base quality score recalibration on improving score accuracy. Adapted from 

(DePristo et al., 2011). 

 

 

The GATK BaseRecalibrator module was used to establish empirical base quality scores. In 

addition to adjusting the quality score based on position in read and dinucleotide context, 

BaseRecalibrator treats each mismatch between the aligned data and the reference as a 

mismatch and lowers the quality score accordingly. Clearly, true variants must not be counted 

as mismatches and this is addressed by inputting a list of known variant sites in S. cerevisiae. 

Such known variants were compiled from three sources. The list of known indels described in 

Section 2.22.3 formed one of the inputs. Additionally, a list of SNPs was compiled from the 

same source (SGD). Finally, a list of S. cerevisiae SNPs was obtained from Ensembl on 9 Aug 

2015 (Cunningham et al., 2015). SGD and Ensembl lists comprise different strains and were 

therefore combined together to maximise the number of variants available.  The list of strains 

whose SNP and indel data were included during base quality score recalibration is found in 

Appendix 7.1. The output of BaseRecalibrator comprised an information table for base quality 
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score recalibration. This information table was used as input for the GATK PrintReads module 

run with the BQSR option in order to create a new BAM file that contained the appropriately 

adjusted base quality scores. 

 

2.22.6. Removal of reads that fail to map, do not map uniquely or map with 

inadequate quality 

The SAMtools “view” command was used to filter the BAM file to eliminate unmapped, 

non-unique or poorly mapped reads. The “-q 30” option removed any reads with a mapping 

quality score of less than 30. This also eliminated any reads that have two or more alignments 

to the reference, as any such read would have a maximum mapping quality score of 3. The “-f 

0x0.0002” option was used to only retain reads that were in proper pairs. Finally, the “-F 

0x0004” and “-F 0x0008” options eliminated any reads in which the read itself or its mate 

failed to map to the reference at all. Finally SAMtools was used to index the final processed 

BAM file. 
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2.23. Genomic variant calling 

An overview of the variant calling pipeline is provided below in Figure 2.11. 

 

Figure 2.1: Overview of the genomic variant calling data workflow. 

 

The “mpileup” command of SAMtools was used with the “-u” (uncompressed output) and 

“-f” (reference genome in FASTA format) options to convert the BAM file created in Section 

2.22.6 to BCF format containing all the genomic positions. This global BCF file was then 

reduced to only the variant positions between the alignment and the reference genome using 

BCFtools v1.2-74-g6ccecd1+. The “call” command using options “-c” (specifies the original 

BCFtools calling method) “-g” (outputs a genomic VCF) and “-v” (limits the output to only 

the variant sites). The resultant VCF file was filtered to only retain variants that had a minimum 

depth coverage of 15X and a minimum variant quality score of 30 by virtue of the BCFtools 

“view” command in combination with the “-i 'MIN(DP)>=15 && MIN(QUAL)>=30' ” option. 
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2.24. Next generation sequencing-bulk segregant analysis (NGS-BSA)—

allele frequency calling 

An overview of the allele frequency calling pipeline is provided in Figure 2.12. Further 

description of specialised file formats used exclusively for allele frequency calling (such as 

sync files and count files) are described in the text. 

 

 

Figure 2.2: Overview of the allele frequency calling data workflow. 
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2.24.1. Creation of pileup file 

The “mpileup” command of SAMtools was used with the “-f” option to convert the BAM 

file created in Section 2.22.6 to pileup format. While the pileup file contains the basic 

information about allele frequencies at each genomic position, two modifications were required 

before it could be used in downstream analysis: 

 

a.) The pileup had to be converted into a “count file” in order to be compatible with 

downstream analysis software. The count file is a text file consisting of three columns. 

The first column denotes the position of each variant site. The second and third columns 

represent the counts of either the first or the second parent’s allele at that position. Each 

chromosome must have a separate count file. An example of the count file format is 

provided in Figure 2.13. 

 

b.) The count file must be edited to contain only allele counts at positions of known variant 

sites between the two parents. These variant positions were determined as described in 

Section 2.23. Only SNPs were included in this analysis. 

 

 

Figure 2.3: Example of count file format. 

File only contain positions that were confirmed as SNPs between Parents 1 and 2, which were established 

through a prior whole genome sequencing analysis. 

 

  



Materials and Methods 

79 

 

2.24.2. Creation of count file 

Popoolation2 v1201 (Kofler et al., 2011) was used to convert the information contained in 

the pileup file to a format containing numerical counts of  nucleotides at each position in the 

genome. The mpileup2sync Perl script of Popoolation2 was used to create an output format 

known as a sync file. A sync file contains genomic positional information, the identity of the 

reference allele and counts, as well as the identity of nucleotides at that position. An example 

of a sync file layout is illustrated in Figure 2.14. 

 

Figure 2.24: Example of sync file format. File contains counts of every nucleotide at every genomic position.  

 

The sync file was manually edited to get it into the format of the count file. The resulting 

count file was further edited to only contain positions that were established to contain true 

variants (as determined in Section 2.23) and partitioned by chromosome.  

 

2.24.3. Editing of count file for MULTIPOOL compatibility 

MULTIPOOL (Edwards & Gifford, 2012) was used for the final analysis of allele 

frequency. MULTIPOOL is a software tailored for analysis of pooled NGS data in order to 

model allele frequencies and determine areas of association between allele frequency and 

phenotype along the genome. It uses the information for every SNP marker (as input by the 
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count file) to calculate maximum likelihood estimates (MLE) of allele frequencies within 

equal-sized bins along the genome (default bin size being 100 bp). Calculation of MLE 

provides a more clear view of allele frequencies than would be gained from looking at raw 

allele frequencies, due to the inherent noise of NGS data. A comparison of MLE-calculated 

allele frequencies versus raw allele frequencies is provided in Figure 2.15 to illustrate this 

point. In addition, it reports logarithm of odds (LOD) scores that are a measure of association 

between genotype and phenotype. In the “contrast” mode of MULTIPOOL (as was used in this 

study) the LOD score denotes regions of significant allele frequency differences between a case 

(or in this case, drug-treated) and a control population. 

 

Figure 2.35: Exemplar output of allele frequencies as provided by MULTIPOOL. 

Green markers denote raw allele frequencies at each SNP position, as calculated from count files. Blue line 

denotes MLE calculations of allele frequencies calculated by MULTIPOOL. 

 

Prior to MULTIPOOL analysis, several amendments had to be made to the count file to 

ensure optimal results. First, SNPs were filtered by distance using VCFtools (Danecek et al., 

2011) to ensure they come from independent reads. For this, the “--thin” command was used 
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to eliminate SNPs that were less than 125 bp apart (based on the read length used during 

segregant population sequencing, Section 2.21.2). Previous publications have reported that 

MULTIPOOL produces false positive LOD peaks when SNPs are fixed for one of the parental 

alleles (Albert et al., 2014; Clowers et al., 2015). Therefore, as per recommendation in the 

Albert and Clowers publications, positions in which the allele of either parent was <0.1 or >0.9 

were eliminated. Furthermore, SNP positions that were covered by fewer than 15 reads were 

also removed to prevent low-coverage sites skewing the final results. Finally, the resultant 

count files for the control segregant population and the drug-treated population were edited to 

contain matching SNP sites. 

 

2.24.4. Use of MULTIPOOL to determine genomic regions associated with 

drug response 

MULTIPOOL was run in “contrast” mode in order to determine genomic regions that 

showed significant differences in allele frequency between the control segregant population 

and the drug-treated segregant population. The number of base pairs per centiMorgan (as 

defined by the “-c” parameter) was reduced from the default 3300 bp to 1500 bp to account for 

the increased recombination introduced during the establishment of AILs. This value was 

estimated based on measurement of “base pairs per centiMorgans” as used by Parts et al. during 

their construction of F12 AILs (Parts et al., 2011). The pool size (defined by the “-n” parameter) 

was set to 10,000. The ten-fold reduction from the actual estimated pool size in the segregant 

population was introduced to account for the fact that not all segregants may be represented in 

the final population. This makes the LOD score from MULTIPOOL a conservative estimate of 

the true association between genotype and phenotype. This is in line with the approach taken 

by other studies that employed this software (Albert et al., 2014; Clowers et al., 2015; Edwards 

et al., 2012). 
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2.25. Determination of quantitative trait loci (QTL) associated with drug 

response 

The LOD score output for each sample (as determined in Section 2.24.4) was used for all 

QTL analysis. The details of the samples (yeast cross and drug dosage used) are reported in 

more detail in Chapter 5. 

 

2.25.1. Setting of significance threshold for QTL analysis 

For each sample, the LOD scores over the entire genome were compiled into a single list to 

determine the genome-wide significance threshold for that sample. LOD scores were converted 

to p-values using the calculation provided by Nyholt 2000 (Nyholt, 2000). A Benjamini and 

Hochberg False Discovery Rate (FDR) was determined at a significance level of 0.0001 (which 

would normally correspond to a LOD score of approximately 3). The number of trials was set 

as the number of bins tested by MULTIPOOL. The adjusted p-value from this calculation was 

converted to a LOD score and this was used as a significance threshold for that sample. 

 

2.25.2. Identification of QTL 

LOD scores were plotted against genomic position as a scatter plot. Following the 

establishment of the significance threshold, any region with a LOD score that fell above the 

threshold was considered a putative QTL. The centre of the QTL was deemed to be the 

inflexion point of the LOD graph (i.e. the peak). Furthermore, the interval of the QTL (that is, 

what portion of the genome is captured within the QTL) was determined to be the region that 

lies within 3.0 LOD scores of the QTL peak (Cubillos et al., 2013). An illustration of how a 

QTL was determined is provided in Figure 2.16. When comparing between samples, a QTL 
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was deemed to be the same if the two QTL intervals under comparison fell within 10 kb of 

each other (Cubillos et al., 2013). 

 

Figure 2.46: Determination of QTL based on LOD chart. The QTL peak was defined as any inflection point 

that fell above the significance threshold. The QTL interval was the genomic interval that was captured 

within three LOD scores of the QTL peak. 
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Chapter 3: Drug response testing for SGRP collection; 

selecting candidate strain for further study 

 

3.1. Introduction 

3.1.1. The SGRP collection as a source of individual strains 

This Chapter furthered the aim of investigating the genetic basis of individual variation in 

drug response using natural strains of S. cerevisiae in the set of 33 strains from the 

Saccharomyces Genome Resequencing Project (henceforth referred to as the SGRP strains). 

The Chapter describes testing growth response to two antifungal agents with characterised 

cellular targets: benomyl and ketoconazole. The strains in the SGRP collection were originally 

selected to represent the greatest range of genetic backgrounds possible in order to capture the 

diversity present in Saccharomyces cerevisiae as a species (Liti et al., 2009).  The majority of 

the SGRP strains have now been re-sequenced by SGRP to a high coverage using Illumina 

sequencing (Bergström et al., 2014; Skelly et al., 2013; Song et al., 2015; Strope et al., 2015). 

Phylogenetic analysis of these strains indicated that the S. cerevisiae population falls into five 

“clean” lineages (Malaysian, West African, Sake, North American and Wine/European) which 

have uniform SNP diversity along the length of the genome, with most SNPs private to each 

lineage (refer to Fig. 1.8). The rest of the strains are mosaic recombinants between the clean 

lineages as well as other lineages not sampled in the study (Liti et al., 2009). Most of these 

studies have indicated that the SGRP set has a low levels of divergence between each other 

(ranging from 0.5% to 0.8%) and contains a total of 80-88 non-reference (non-S288C) ORFs 

as determined by BLAST-based grouping of novel sequences. (Bergström et al., 2014; Song et 

al., 2015; Strope et al., 2015).   
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A number of phenotypic screens have been performed with members of the SGRP collection 

(Cubillos et al., 2011; Cubillos et al., 2013; Franco-Duarte et al., 2014; Liti et al., 2009; Shapira 

et al., 2014; Skelly et al., 2013; Spor et al., 2014; Tomar et al., 2013; Treusch et al., 2015; 

Warringer et al., 2011; Wimalasena et al., 2014; Zorgo et al., 2012) with some including drug 

response. However, the underlying genetics involved in drug response have not been 

investigated extensively within this collection and most of the inhibitors studied do not have 

application outside the laboratory. In terms of the drugs used in the current study, only 

ketoconazole had been examined using 11 of the SGRP strains as well as 89 other strains 

(Strope et al., 2015). A PDR5 introgressed from S. paradoxus was found to be associated with 

resistance to 10 mM ketoconazole (although none of the 11 SGRP strains carried this 

introgression), while resistance to 20 mM ketoconazole was found to be associated with a 

marker near LST4. However, the small number of individuals (100) used for this association 

study makes it   underpowered for maximising discovery of possible loci to   for ketoconazole 

resistance within the SGRP collection. 

 

3.1.2. The pleiotropic drug response (PDR) system 

Yeast cells have developed an efficient efflux system to eliminate environmental chemicals 

that are taken up known as the pleiotropic drug resistance (PDR) system. The PDR system 

comprises a collection of ATP-binding cassette (ABC) proteins that are plasma membrane or 

vacuole-associated xenobiotic pumps belonging to the major facilitator superfamily (MFS) 

proteins (Gulshan & Moye-Rowley, 2007; Jungwirth & Kuchler, 2006; Kolaczkowska & 

Goffeau, 1999). Upregulation of this system confers a multidrug resistance phenotype to a wide 

range of structurally unrelated xenobiotic substrates. The entire network is chiefly regulated by 

the transcription factors Pdr1p and Pdr3p. These binuclear Zn(II)2Cys6 zinc finger regulators 



Drug response testing of SGRP collection 
 

87 

 

are homologs of each other and produce their action by binding as homo- or heterodimers to 

the PDR element (PDRE) sequence in target genes. The two master regulators have different 

activity levels and different (but partially overlapping) preference for different target genes. 

While Pdr1p and Pdr3p form the main input, the PDR network has additional modulation from 

other stress-regulated transcription factors, such as Yap1p (associated with oxidative stress). 

An overview of the entire system is illustrated in Figure 3.1 and relevant aspects to this thesis 

are discussed in greater detail later in this chapter.  

 

 

Figure 3.1: Overview of the PDR system in S. cerevisiae. Arrows represent upregulation while red blocked 

lines denote inhibition. Adapted from (Jungwirth et al., 2006; Kolaczkowska et al., 1999). 

 

3.1.3 How to measure a drug response 

 

A yeast drug response can be measured using a number of growth assay formats. Serial spot 

dilution assays are a standard agar-based method of comparing a strain to different drugs. It 

can be made semi-quantitative by arbitrary growth scoring. An alternate agar-based growth 

assay (and one that is more amenable to high-throughput screening) is the use of arraying robots 

such as the Singer Rotor HDA, which can replicate colonies in 96, 384, 768 or 1536 colony 
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format. The output is quantitated by measuring colony size with image-recognition software 

(Alamgir et al., 2010; Bloom et al., 2013; Dilworth & Nelson, 2015). 

 

3.1.3. Chapter aim 

The aim of the experiments in this section was to identify candidate strains from the SGRP 

collection that show the most extreme response phenotype (either resistance or sensitivity) to 

benomyl and ketoconazole. These candidate strains were then used to study genetic factors that 

affect drug response. It was desirable for the drug response phenotype to be consistent. 

Therefore, several drug response formats were used for testing and drug responses were 

carefully documented in diploids and haploids of both mating types to ensure robustness of 

phenotype. It would be of greater interest to investigate strains whose drug response phenotype 

is not caused by obvious factors, such alterations in the primary target of the drug in question 

or due to general up- or down-regulation of the PDR system. To this end, the target sequence 

was examined to look for correlations between any polymorphisms and general drug response. 

To eliminate strains whose phenotype could be caused by general hyper/hypoactivation of the 

PDR system, the strains of interest were examined for drug cross resistance or cross sensitivity. 

Additionally the candidate strains selected had to be able to produce fertile offspring when 

mated to the control BY strain as further experiments described in later chapters relied on 

intercross mating. 
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3.2.  Methods and Materials 

 

3.2.1. Dose-response testing of SGRP collection against benomyl and 

ketoconazole 

Benomyl was dissolved in DMSO at a stock concentration of 17.2 mM. Ketoconazole was 

dissolved in DMSO at a stock concentration of 9.4 mM. All drug stocks were stored at -20°C. 

Appropriate volumes of DMSO were used as the control for all dose-response experiments.  

 

Synthetic complete (SC) media was used for all dose-response experiments (media recipes 

are found in Chapter 2). This media was selected when working with drugs over yeast peptide 

dextrose (YPD) media based on the fact that it consists of defined components; conversely, 

YPD media consists of yeast extract, which contains autolysed yeast and their free cellular 

components. Therefore, findings derived from experiments using YPD media could potentially 

be due to drug-media interactions, rather than a reflection of the true effect of the drug within 

the cell. Benomyl was found to be more active at a higher media pH. Therefore, all experiments 

with benomyl were carried out in SC buffered with 25 mM of HEPES.  

 

An initial drug response screen was carried out on the unmodified diploid SGRP collection. 

The initial screening method chosen was a serial dilution spot assay because of its amenability 

to high-throughput screening by robotics and its established reliability. The resistance or 

susceptibility of each strain was determined relative to a BY4743 (MATa/α diploid) control. 

All dose-responses were carried out to a 72-hour end point, as this period was found to provide 

the optimal growth difference in response to drug between the control and SGRP strains. 
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The drug concentrations selected for the initial serial dilution spot assay screen were: 0 µM 

to 500 µM benomyl and 0 µM to 200 µM ketoconazole. The source plate used for pinning onto 

drug plates contained two replicates of each SGRP strain and a total of eight replicates of the 

control BY4743 strain (over a total of four source plates). The experiment was repeated twice. 

Using this procedure the phenotype of the SGRP strains, defined as either resistant or sensitive 

in the initial round of dose-response determinations. Confirmation was done through an 

additional round of serial dilution spot assays using more stringent conditions. At this point, 

the haploid derivatives of the wild type SGRP strains were purchased from the UK National 

Collection of Yeast Cultures (NCYC) and used for all subsequent experiments (these are 

described in Section 2.2). All confirmations were thus done using this haploid collection. 

BY4741 and BY4742 were used as controls for MATa and MATα, respectively. 

 

The drug concentrations selected for the secondary confirmation round of serial dilution 

spot assays were 0 μM to 500 μM benomyl and 0 μM to 160 μM ketoconazole. Two replicates 

were carried out for each SGRP strain. 

 

Because subsequent experiments were carried out in 384-colony format to allow for high-

throughput scanning, the dose-response screen using the entire SGRP haploid strain collection 

was also performed in this format to ensure that the drug response phenotype held up in this 

different format since lab acumen has shown that different formats for screening can give 

different results.   Subsequent experiments used an isogenic, but nevertheless different, control 

from the previous dose-response experiments   being the hoΔ::NatMX4 strain derived from the 

Open Biosystems deletion collection. Thus the hoΔ strain was included in this next round of 

dose-response testing to ensure that it behaved the same way as the BY controls used 

previously. The reasons for the use of this strain are discussed in Chapter 4. 
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The drug concentrations used for the 384-colony format pinning assay were 0 μM to 500 

μM benomyl and 0 μM to 330 μM ketoconazole. The experiment was repeated independently 

three times. 

 

3.2.2. Sequence comparison analysis of the primary drug targets of benomyl 

and ketoconazole 

To determine whether the resistance or sensitivity of selected SGRP strains to benomyl and 

ketoconazole could be attributed to alteration in the coding region of the primary target of each 

drug, a phenotype-genotype association appraisal was carried out. Genomic sequence and 

annotation data for all the SGRP strains was downloaded from the Saccharomyces Genome 

Resequencing Project (SGD Project). The sequence of the ORF of each primary drug target, as 

well as the region directly 1 kb upstream was extracted from the genome and multiple sequence 

alignment was performed as per Section 2.19.  
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3.2.3. Creation and drug response testing of Δpdr1Δpdr3 SGRP strains 

For drug testing of a select few cross-resistant and cross-sensitive strains, Δpdr1Δpdr3 

double deletion mutants were created. The PDR1 ORF was replaced with a nourseothricin 

resistance cassette (NatMX4) and the PDR3 ORF was replaced with a uracil prototrophy 

cassette (UraMX4) to produce pdr1Δ::NatMX4 pdr3Δ::UraMX4 null double mutants in the 

genetic backgrounds of NCYC110, W303 and Y55. The NatMX4 cassette was obtained from 

plasmid p4339 and the UraMX4 cassette came from plasmid pAG60. The source plasmids of 

the cassettes are described in Section 2.11 and were treated and isolated as described in Section 

2.12. For each ORF replacement, a PCR product was created that contained the desired cassette 

flanked by 55 bp regions of homology to the desired genomic target. The PCR was performed 

using conditions described in Section 2.7.1 using primers 351 and 352 (Section 2.6) with the 

p4339 plasmid to create the pdr1Δ::NatMX4 product for transformation. Meanwhile, primers 

353 and 354 were used in conjunction with pAG60 to create the pdr3Δ::UraMX4 product. 

Products were transformed into the desired yeast strain sequentially as described in Section 

2.8. Following each transformation, the correct integration of the ORF replacement construct 

was confirmed through confirmation PCR as described on Section 2.7.4. To confirm the 

pdr1Δ::NatMX4 ORF replacement, primers 365 and 3 were used to produce the front 

confirmation product and primer pair 30 and 366 were used to generate the back product. The 

primer pairs 371 and 370 (front product) and 368 and 369 (back product) were used for the 

analogous confirmation of the pdr3Δ::UraMX4 ORF replacement. 

 

Drug response testing was carried out by serial spot dilution assay, as described in Section 

2.15.2, but was performed independently three times, not twice. The strains tested were the 

three SGRP strains described above, the BY4741 control and the isogenic pdr1Δ pdr3Δ 

derivatives of each. The drug concentrations for testing cross-resistant strains (NCYC110 and 
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Y55) and their pdr1Δ pdr3Δ derivatives were 0 μM to 150 μM benomyl and 0 μM to 75 μM 

ketoconazole. The drug concentrations for testing the cross-sensitive strain (W303) were 0 μM 

to 50 μM. 

 

Testing of oxidative stress tolerance was carried out by pinning the diploid SGRP collection 

onto agar containing increasing concentrations of hydrogen peroxide (H2O2) as described in 

Section 2.15.3. The concentrations of H2O2 used ranged from 0 mM to 316 mM. 

 

3.2.4. Determination of SGRP strain fertility in crosses with BY 

Tetrad dissection was performed as described in Section 2.15 using SGRP strains of interest 

and the control BY strain. Complete absence of viable spores upon dissection or a reduction in 

spores to less than 50% was interpreted as infertility with BY. 

 

3.3.  Results 

 

3.3.1. Dose-response testing of SGRP collection against benomyl and 

ketoconazole 

Only summarised results and raw dose-response data for selected strains of interest are 

presented within this chapter. However, all dose-response graphs can be found in Appendix 

7.2. 

Note: The SGRP collection was also screened against the sterol synthesis inhibitor 

atorvastatin. However, the screening did not produce any candidate strains to take through to 

further analysis. It is considered that this was due to a problem with atorvastatin’s solubility in 

SC media; however, there was inadequate time to rectify it within the scope of this thesis. The 

summary of the atorvastatin screening results is provided in Appendix 7.3. 
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Benomyl 

The initial serial spot dilution assay using the diploid SGRP strain collection showed that 

two strains were sensitive to benomyl while 27 strains were resistant to it. The serial spot 

dilution confirmation showed five strains to be sensitive to benomyl; while, 18 strains were 

resistant.   A number of strains did not maintain their phenotype from the original serial spot 

dilution assay—BC187 MATa, YIIc17_E5 MATa and YS9 MATa switched from being 

benomyl-resistant to benomyl-sensitive. The strains 378604X MATα, BC187 MATα, 

DBVPG1373 and DBVPG6765 though benomyl-resistant in the original assay did not display 

any difference from the BY control. A number of strains also displayed mating type-specific 

differences in terms of benomyl response, including the BY control strain itself. A clear mating 

type-dependent response difference occurred with YIIc17_E5 in which the MATa was highly 

sensitive to benomyl; whereas, the MATα was resistant. There was good correspondence 

between the original serial spot dilution with diploids and the confirmatory serial spot dilution 

with haploids out of 26 of the strains tested in both assays maintained their benomyl response 

phenotype in both mating types.   

 

Using the 384-colony pinning format for drug testing the entire haploid SGRP showed 10 

strains were found to be sensitive to benomyl while 13 strains were resistant. Mating type-

specific response differences were also observed in this assay. Eight of the strains 

(DBVPG6765, L-1528, SK1, UWOPS03-461.4, Y12, YJM981, YPS128 and YPS606) only 

displayed a responsive phenotype (either sensitivity or resistance) in one mating type while the 

other mating type did not differ significantly from the BY control. As in the confirmation serial 

spot dilution assay, YIIc17_E5 MATa displayed extreme benomyl sensitivity, while the MATα 

was benomyl resistant. In contrast to the confirmation serial spot dilution assay, the BY MATa 
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and MATα controls displayed the same MIC in the 384-colony pinning format. Overall, there 

was a poor correlation between the results of the serial spot dilution assay and the 384-colony 

format pinning assay with only nine strains out of 26 that maintained the same benomyl 

response phenotype. An additional five strains displayed a consistent phenotype between the 

two assay formats, but only in a single mating type. Additionally, YJM975 only displayed a 

sensitivity response   in the 384-colony format pinning assay. The assay-dependent differences 

in MIC in drug effect probably reflected differences in initial cell numbers placed onto the 

drug-containing agar. Unfortunately, there was insufficient time to perform an optimisation of 

the starting cell number required to eliminate such differences. 

 

Ultimately, seven strains—DBVPG6044, NCYC110, UWOPS05-217.3, UWOPS05-227.2, 

UWOPS83-787.3, UWOPS87-2421 and Y55—showed a consistent resistant phenotype to 

benomyl in all the three dose-response assays. Two strains, L-1374 and W303, maintained a 

consistently sensitive phenotype to benomyl. These results are presented in Table 3.1, and a 

full list of growth curves is provided in Appendix 7.2.  
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Table 3.1: Overall summary of dose-response testing of the set of SGRP strains against benomyl in different 

testing formats. 

The scoring system of response intensity is as follows:  

-/+ slight susceptibility/resistance (MIC less than two-fold that of the control);  

- -/+ + moderate susceptibility/resistance (MIC at least two-fold that of the control);  

- - -/+ + + high susceptibility/resistance (MIC three or more fold that of the control, or not determined). 

“nil” means the strain response was the same as the BY control 

Strains in red boxes were selected as possible strains of interest for further study, as they maintained a 

consistent drug response phenotype in all three assay formats. Grey boxes denote that no further testing of 

the strain was carried out, either due to lack of drug response phenotype, or due to unavailability of a 

haploid derivative of that strain. 
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273614N + + + + nil 273614N + + + nil 

BC187 + - - BC187 + nil - 

DBVPG1106 + + + nil DBVPG1106 + + nil 

DBVPG1373 + nil nil DBVPG1373 + nil nil 

DBVPG6044 + + + + + + + DBVPG6044 + + + + + + + 

DBVPG6765 + nil nil DBVPG6765 + nil - 

L-1374 - - - L-1374 - - - - 

L-1528 + + + + + + L-1528 + + + +  +* 

NCYC110 + + + + + + + + + NCYC110 + + + + + + + + + 

SK1 + + + + nil SK1 + + +  nil 

UWOPS03-461.4 + + + + UWOPS03-461.4 + + + + nil 

UWOPS05-217.3 + + + + + + UWOPS05-217.3 + + + + + + 

UWOPS05-227.2 + + +  + UWOPS05-227.2 + + + + + 

UWOPS83-787.3 + + + + + UWOPS83-787.3 + + + + + + 

UWOPS87-2421 + + + + + + + + UWOPS87-2421 + + + + + + + + 

Y12 + + nil Y12 + + - 

Y55 + + + + + Y55 + + + + + 

YIIc17_E5 + + - - - - - YIIc17_E5 + + +  + 

YJM975 nil  - YJM975 nil  - 

YJM978 + + nil YJM978 + + nil 

YJM981 + + nil YJM981 + + + - 

YPS128 + + + + + + + YPS128 + + + + + + nil 

YPS606 + + + + + + + YPS606 + + + + + + nil 

W303 - - - - - - - 378604X + nil - 

YS9 + - -  

Represented as diploids only 
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322134S + + +  

DBVPG1788 nil 

DBVPG1853 + + 

DBVPG6040 nil 

K11 + + 

Y9 + 

YS4 nil 

 

Ketoconazole 

The initial serial spot dilution assay with diploids revealed 20 strains sensitive to 

ketoconazole and 11 resistant to this drug. The serial spot dilution confirmation assay with 

haploids narrowed this panel of strains to 14 strains that were ketoconazole sensitive and eight 

that were ketoconazole resistant. Out of the 14 strains that tested as sensitive in both serial 

dilution assays, 11 retained the phenotype in both mating types and one strain retained the 

sensitivity phenotype in one mating type. 273614N MATα and DBVPG1373 MATa switched 

their phenotype in the confirmation assays to being ketoconazole resistant.  Out of the eight 

strains that tested resistant in both assays, only five were confirmed as resistant in both mating 

types.    

 

The 384-colony format pinning assay of the entire haploid SGRP collection identified 18 

strains that were sensitive to ketoconazole and 10 that were resistant. Comparison of the initial 

serial spot dilution testing of the diploid SGRP collection with the 384-colony format pinning 

of the SGRP haploid collection indicated a fairly good agreement in the ketoconazole 

responses, unlike what was found for benomyl. Out of the 26 strains tested in both formats, 15 

showed the same ketoconazole response phenotype in both assays with some differences in the 

magnitude of the response: BC187 (both mating types), YJM981 MATα and YS9 MATa were 

only ketoconazole-responsive in the 384-colony pinning format. YIIc17_E5, YJM975 were 

both classified as highly ketoconazole-resistant in the initial serial spot dilution assay; however, 
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in the 384-colony pinning format assay, only the MATa of both these strains was resistant, 

while the MATα was sensitive. This is likely to indicate some sort of mating type-specific 

effect. A mating type-specific response was also observed in the 384-colony pinning format 

for the BY control strain, in which the MATα displayed a higher MIC than MATa (200 µM 

compared to 160 µM). This multiple level analysis of strain phenotype with ketoconazole, as 

with benomyl described above, eliminated many strains from further consideration due to 

unreliable drug response phenotype.  

 

Ultimately, two strains—DBVPG6044 and NCYC110—showed a consistently resistant 

phenotype to ketoconazole in all three dose-response assays (i.e. in the spot serial dilution 

initial screen, the spot dilution confirmation screen and the 384-colony plate assay). Eight 

strains, 378604X, UWOPS03-461.4, UWOPS05-217.3, UWOPS05-227.2, UWOPS83-787.3, 

UWOPS87-2421, Y12 and W303, were classified as sensitive to ketoconazole, based on the 

outcome of all three assays. 
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Table 3.2: Overall summary of dose-response testing of the set of SRP strains against ketoconazole in 

different testing formats. The scoring system of response intensity is as described in Table 3.1 
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273614N - + - 273614N - - - - - 

BC187 nil  - BC187 nil  - 

DBVPG1106 - nil - DBVPG1106 - - - 

DBVPG1373 - - + + DBVPG1373 - - nil + 

DBVPG6044 + + + + + + + + + DBVPG6044 + + + + + + + + + 

DBVPG6765 + + + + nil DBVPG6765 + + + + - 

L-1374 + + + nil + L-1374 + + + nil + 

L-1528 + + + + + + nil L-1528 + + + + + + nil 

NCYC110 + + + + + + + NCYC110 + + + + + + + + + 

SK1 - - - - + SK1 - - - - - nil 

UWOPS03-461.4 - - - - - - - UWOPS03-461.4 - - - - - - - - 

UWOPS05-217.3 - - - - - - - UWOPS05-217.3 - - - - - - - - 

UWOPS05-227.2 - - - - - - - - UWOPS05-227.2 - - - - - - - - 

UWOPS83-787.3 - - - - - UWOPS83-787.3 - - - - - - - 

UWOPS87-2421 - - - - UWOPS87-2421 - - - 

Y12 - - - - - Y12 - - - - - - - 

Y55 + + + Y55 + + + nil 

YIIc17_E5 + + + nil + + + YIIc17_E5 + + + + - 

YJM975 + + + + + + + YJM975 + + + nil - 

YJM978 + + + nil + YJM978 + + + nil nil 

YJM981 nil  nil YJM981 nil  - 

YPS128 - - - nil YPS128 - - - 

YPS606 - - - - nil YPS606 - - - - 

W303 - - - - - - 378604X - - - - - 

YS9 nil  -  

Represented as diploids only 

322134S + + +  

DBVPG1788 + + + 

DBVPG1853 - - 

DBVPG6040 - - 

K11 - - 

Y9 - - 

YS4 - 
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The strains that showed a consistent drug response phenotype, outlined in red as described 

above, made up the list of candidate strains that could be used for further study of the genetic 

determinants of drug response as described in subsequent chapters. 

 

3.3.2. Sequence comparison analysis of primary drug target of benomyl and 

ketoconazole 

To determine whether resistance or sensitivity response to benomyl and ketoconazole could 

be attributed to alterations in the primary target of each drug, a comparison was made between 

variants in the ORF and its upstream region (1 kb directly upstream) of the gene encoding each 

drug target and the response exhibited to that drug by the SGRP collection. 

 

The benomyl target TUB2 harboured 12 variants in the various SGRP strains in the upstream 

region and 18 in the coding region. Only one of the 18 coding region SNPs was predicted to 

cause any amino acid change, with the remaining 16 being synonymous substitutions. Position 

282 harboured a single base deletion in Y9 and Y12, predicted to cause a frameshift for almost 

90% of the ORF. This is surprising, as TUB2 is an essential gene and such a large modification 

would be expected to have catastrophic consequences. It is not clear whether there is a 

compensating suppressor mutation that partially restores the function of TUB2. Furthermore, a 

BLAST search of the SGRP sequence information does not reveal a redundant copy of TUB2. 

It is therefore not clear how the cell may compensate for such a large alteration and mistakes 

in the source sequencing data cannot be ruled out. Also, some strains display a glutamine to 

arginine substitution at position 446 of the ORF. However, this is present at the very end of the 

ORF, only 11 residues from the end. Overall, the whole region was highly similar between all 

strains, showing 99.8% pairwise identity. The alignment results (stripped to only present 

variant regions) are displayed in Table 3.3. 



Drug response testing of SGRP collection 
 

101 

 

Table 3.3: Nucleotide variants within TUB2 ORF and 1kb upstream. Aligned using MUSCLE iterative 

multiple alignment, as output by Geneious. “.” symbol denotes that nucleotide is identical to consensus 

sequence. Strains arranged by alignment similarity. 
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-959 C . T T T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-856 A . G G G . . . G G . . . . . . . . . G G G . . . . . . . . . . . . . 
-742 M A C C C A A A C C C C C C A C C C C C C C A A A C A A A A A A A A A 
-637 G . A A A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-472 G . . . . . . . A A . . . . . . . . . . A . . . . . . . . . . . . . . 
-460 G A . . . . . . . . . . . . . . . . . . . . A A A . . . . . . . . . . 
-260 G . . . . A A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-219 A - . . . . . . . . . . . . - . . . . . . . . . - . - - - - - - - . . 
-209 G . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . 
-149 A . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . 
-42 G A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-38 T . . . . C C . C C C C C C . . . . . C . . . . . . . . . . . . . . . 
+27 A G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+33 G A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+57 A G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+81 G A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+123 T C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+162 A G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+198 C . . . . . . . . . G G G G . . . . . . . . . . . . . . . . . . . . . 
+255 T C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+282 A G . . . . . . . . . . . . . . . - - . . . . . . . . . . . . . . . . 
+297 C T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+321 A T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+345 C T T T T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+519 A . . . . . . . G G . . . . . . . . . . . . . . . . . . . . . . . . . 
+804 C . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . 
+912 T . C C C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+930 C . T T T . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+1125 A . . . . . . . . . . . . . . . . . . . . . . . . . G . . . . . . . . 
+1337 A G . . . . . . . . . . . . . . . . . . . . G G G G G G G G G G G G G 

 

Strain colour key:  

 Completely resistant (resistant phenotype in every assay trialled) 

 Mostly resistant (resistant phenotype in every assay, but "nil" or "R*" phenotype in one assay) 

 Completely sensitive (sensitive phenotype in every assay trialled) 

 Mostly sensitive (sensitive phenotype in every assay, but "nil" phenotype in one assay) 

 

Strains with ambiguous drug response phenotypes are left uncoloured. 

Nucleotide colouration corresponds to polymorphism effect. Colour key: 

 Synonymous substitution 

 Nonsynonymous substitution; similar amino acid 

 Nonsynonymous substitution; divergent amino acid 

 Frameshift 
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The target of ketoconazole ERG11 harboured 44 variants in the SGRP strains —only 14 of 

those within the coding region of the gene. Only two of the 14 coding variants were 

nonsynonymous and there were no indels in the coding region. The first nonsynonymous 

substitution was at position 1299 in the ERG11 ORF (just over 80% through the ORF) and 

altered a phenylalanine to a valine in the resultant protein. The second substitution occurred at 

position 1325 and produced a change from threonine to alanine in the resultant protein. There 

was 99.7% pairwise identity between all the sequences. 

  



Drug response testing of SGRP collection 
 

103 

 

Table 3.4: Nucleotide variants within ERG11 ORF and 1kb upstream. Italicised positions lie within the 

neighbouring ORF YHR007C-A. Symbols, colour keys and strain arrangement as described in Table 3.3. 
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-999 T C C C C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-996 C . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . 
-980 T . . . . . . . . . . . . . . C C C . . . C C . C C C C C C . . . . . 
-959 - T T T T T T T T T T T T T T . . . T T T . . . . . . . . . . . . . . 
-958 - T T T T T T T T T T T T T T . . . T T T . . . . . . . . . . . . . . 
-957 C T T T T T T T T T T T T T T . . . T T T . . . . . . . . . . . . . . 
-794 T . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-776 A . . . . . . . . . . G . . . . . . . . . . . . . . . . . . . . . . . 
-735 G . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . 
-730 A . . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . 
-670 A . . . . . . . . . . . . . . . . . G G . . . . . . . . . . G G G G . 
-638 A . . . . . . G G G G . . . . G . . . . . . . . . . . . . . . . . . . 
-515 C . . . . . . . . . . . G G G . . . . . . . . . . . . . . . . . . . . 
-511 - A A A A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-510 - A A A A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-509 - A A A A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-508 - C C C C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-507 - G G G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-371 A G G G G G G G G G G G G G G G G G . . . . . . . . . . . . . . . . . 
-332 A . . . . . . . . . . . . . . . . . . . . . G G G G G G G G . . . . . 
-305 A G G G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-209 C . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . 
-195 C G G G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-191 T A A A A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-145 A G G G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-105 T C C C C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-83 T . . . . . . . . . . . A A A . . . . . . . . . . . . . . . . . . . . 
-63 A T T T T T T T T T T . . . . T T T . . . . . . . . . . . . . . . . . 
-56 T . . . . . . . . . . . . . . . . . A A . . . . . . . . . . A A A A . 
-53 T . . . . . . . . . . . . . . . - . . . . . . . . . . . . . . . . . . 
+66 C T T T T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+207 T A A A A A A A A A A . . . . A . . . . . . . . . . . . . . . . . . . 
+369 G A A A A A A A A A A A A A A A A A . . . . . . . . . . . . . . . . . 
+654 A . . . . G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+738 A . . . . . . G G G G . . . . . . . . . . . . . . . . . . . . . . . . 
+1197 C . . . . . . . . A A . . . . . . . . . . . . . . . . . . . . . . . . 
+1203 A . . . . . . . . . . . T T T . . . . . . . . . . . . . . . . . . . . 
+1239 T C C C C C C C C C C . C C C . . . C C C . . . . . . . . . . . . . . 
+1299 C . . . . . . . . . . . . . . . A A . . . A A A A A A A A A . . . . . 
+1320 C T T T T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+1325 G . . . . . . . A A A . . . . . . . . . . . . . . . . . . . . . . . . 
+1437 G A A A A A A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
+1458 T C C C C C C C C C C . C C C . . . C C C . . . . . . . . . . . . . . 
+1500 C T T T T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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3.3.3. Involvement of the PDR system in drug response of SGRP collection 

Atorvastatin (whose results are reported in Appendix 7.3), benomyl and ketoconazole are 

all substrates of the PDR efflux system. Therefore, it was presumed that if strains did not show 

resistance across all three dose-response testing formats (or sensitivity across all three testing 

formats) to all the three drugs, it was unlikely that their drug response arose as a result of a 

universal upregulation (or downregulation) of that system. This was the case for all the SGRP 

strains except for four: DBVPG6044, NCYC110, Y55 (which showed some level of resistance 

to both drugs) and W303 (which was hypersensitive to both). To investigate the role of PDR 

in these strains, a double deletion of PDR1 and PDR3 was attempted in each, with the intention 

of re-testing them against all three drugs. While the construction of the double deletion mutant 

was successful in NCYC110, Y55 and W303, it unfortunately was not achieved in 

DBVPG6044. The results for the testing of resistant across the strains are displayed in Figure 

3. 2.  
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Figure 3.2: Testing the involvement of the general PDR system in the drug resistance of Y55 and NCYC110. 

Strain arrangement is the same in all images, so is only indicated for the first image. All three replicates 

tested were similar to the results displayed above. 

 

The Y55 Δpdr1Δpdr3 double mutant appeared to have increased sensitivity to benomyl 

compared to its PDR-proficient counterpart. It was thus concluded that the PDR system appears 

to play a role in the benomyl resistance of Y55. However, this did not appear to be the case 

with NCYC110. In terms of ketoconazole response, neither the Y55 Δpdr1Δpdr3 double 

mutant nor the NCYC110 Δpdr1Δpdr3 double mutant appeared to have a growth defect 

compared to their wild type controls and indeed appeared to show a slight resistance. It is not 

known why such a resistance may arise. Overall   the PDR system did not appear to be involved 

in the resistance NCYC110 and Y55 display towards ketoconazole. 

 

0 µM 37.5 µM 75 µM 112.5 µM 150 µM 

Benomyl 

0 µM 12.5 µM 25 µM 50 µM 75 µM 

Ketoconazole 

a b c d e f 

a BY 

b BY Δpdr1,3 

c Y55 

d Y55 Δpdr1,3 

e NCYC110 

f NCYC110 Δpdr1,3 

Strain names: 
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A representative serial spot assay dilution is shown in Figure 3.3 for testing the involvement 

of the PDR system in the cross-sensitive drug phenotype of W303. 

 

Figure 3.3: Testing the involvement of the general PDR system in the drug sensitivity of W303. 

Strain arrangement is the same in all images, so is only indicated for the first image. All three replicates 

tested were similar to the results displayed above. Results for ketoconazole showed the same pattern of 

response and thus are not displayed. 

 

 

The W303 Δpdr1Δpdr3 double mutant displays a clear growth defect compared to its 

unaltered counterpart. If the cross-sensitivity of W303 was caused by a general down-

regulation of the PDR system, it would be expected that its wild type would bear a closer 

resembalance to the PDR-deficient mutant, but this does not appear to be the case. Therefore, 

the general down-regulation of the PDR system was not deemed to have a role in the drug 

sensitivity of W303. 

 

Additionally, the three   strains showing resistance and the single sensitive strain were tested 

for their ability to withstand oxidative stress by testing their response against H2O2. Three of 

the strains (DBVPG6044, NCYC110 and W303) displayed H2O2 sensitivity compared to the 

control BY strain, while Y55 appeared to match BY in its anti-oxidative potential (Figure 3.4). 

Therefore, while the drug sensitivity of W303 may be due to its decreased ability to handle 

0 µM 12.5 µM 37.5 µM 25 µM 50 µM 
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oxidative stress, the analogous conclusion cannot be drawn for DBVPG6044, NCYC110 and 

Y55 (that is, their cross-resistance to all three drugs does not correlate with increased potential 

to handle oxidative stress).  

 
 

  

Figure 3.4: 384-colony format pinning of DBVPG6044, NCYC110, W303 and Y55 on increasing 

concentrations of H2O2. Data are represented as mean ± SD. 

 

3.3.4. SGRP strains discontinued from further testing 

During the course of the investigation, a number of strains were found to be problematic in 

a variety of ways (data not shown). The following strains were found to be partially or fully 

inviable when crossed with the control BY strain, which precluded their use in further analysis: 

UWOPS03.-461.4 

UWOPS05-217.3 

UWOPS05-227.2 

UWOPS83-787.3 

YIIc17_E5 
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Apart from these, two other strains were discontinued. NCYC110 had overall low viability 

and displayed unusual growth characteristics, in that it formed colonies of highly variable size. 

It was therefore discarded, as later experiments relied on creating crosses between two parental 

strains with approximately equal growth rates; having one parent with a clear disadvantage 

would likely create a bias against that parent in terms of its genetic contribution to the offspring 

(see Chapter 5 for further details). Meanwhile, although all the commercially ordered strains 

were supposed to have the hoΔ::HphMX4 construct, W303 failed to grow on hygromycin B 

selection media. This likely indicated some deficiency with that construct in this particular 

strain. Unfortunately, as the hoΔ::HphMX4 was used in later experiments for diploid selection 

between parents, this meant that W303 could not be used as a parental strain. 

 

3.3.5 SGRP strains selected for further investigation. 

After eliminating the problematic strains discussed in Section 3.3.4, there were three 

candidate strains left (DBVPG6044, UWOPS87-2421 and Y55) that could be used to study 

benomyl resistance. From these, UWOPS87-2421 was selected as it showed the greatest extent 

of resistance. L-1374 was selected for investigating benomyl sensitivity by virtue of being the 

only option. In a similar fashion, DBVPG6044 was selected for investigating ketoconazole 

resistance. 378604X, UWOPS87-2421 and Y12 remained available for looking at ketoconazole 

resistance. 378604X was only represented in the collection as MATα and thus it could not be 

discounted that it would be consistently ketoconazole sensitive in both mating types. Out of 

the two remaining strains, Y12 was selected due to it greater sensitivity. 

 

Representations of the strains selected for further study are presented in Figures 3.5 and 3.6. 
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A 

 
 

 MIC (BY4741) = 300 µM 

MIC (UWOPS87-2421 MATa) = ND 

MIC (BY4742) = 300 µM 

MIC (UWOPS87-2421 MATα) = ND 

B 

  

 MIC (BY4741) = 300 µM 

MIC (L-1374 MATa) = 200 µM 

MIC (BY4742) = 300 µM 

MIC (L-1374 MATα) = 150 µM 

Figure 3.5: 384-colony format pinning of the strains selected or studying resistance (A) and sensitivity (B) 

to benomyl. Data are represented as mean ± SD. 
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A 

  

 MIC (BY4741) = 160 µM 

MIC (DBVPG6044 MATa) = ND 

MIC (BY4742) = 200 µM 

MIC (DBVPG6044 MATα) = ND 

B 

  

 MIC (BY4741) = 160 µM 

MIC (Y12 MATa) = 100 

MIC (BY4742) = 200 µM 

MIC (Y12 MATα) = 100 

Figure 3.6: 384-colony format pinning of the strains selected or studying resistance (A) and sensitivity (B) 

to ketoconazole. Data are represented as mean ± SD 

 

3.4. Discussion 

The goal of this part of the study was to narrow down the available SGRP collection of 33 

strains to a more practical number in order to carry those through for further study of the genetic 

underpinning of drug response phenotypes (one resistant and one sensitive strain for each 

drug). There was an attempt to avoid strains whose drug response was due to “trivial” factors. 

These were eliminated because it was deemed that they would not be informative for the 

purposes of answering what cellular-level or off-target pathways might control drug response. 
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Ultimately UWOPS87-2421 and L-1374 were selected for investigating benomyl response 

while DBVPG6044 and Y12 were selected for studying response to ketoconazole.  

 

The first experiment tested the entire SGRP collection against benomyl and ketoconazole in 

two agar-based dose-response formats (those being serial spot dilution assays and 384 format 

colony pinning). Agar-based methods for testing drug response were chosen over liquid-based 

approaches as they were considered more suitable for this particular study. Liquid-based 

culturing methods may be prone to spontaneous drug-resistant mutants overtaking the culture 

and giving rise to incorrect results (Wilkening et al., 2014); this may be of particular concern 

due to the prolonged drug treatment period (72 hours) chosen for this study. However, a more 

pertinent problem was that the natural flocculence exhibited by many strains in this collection 

made them refractory to correct optical density-based measurements. The variance in drug 

response phenotype between the two testing formats highlighted the importance of using 

different measures in order to get more robust data. Such robustness was confirmed by the 

study of Strope et al, who subsampled the SGRP collection—seven of the nine strains 

(273614N, DBVPG1853, NCYC110, UWOPS87-2421, Y12, Y55 and YPS606) grown in 20 

mM ketoconazole displayed the same pattern of response phenotype as was found in the current 

study (Strope et al., 2015). It is not clear why mating-type specific responses arise, although 

mating type was shown to influence MAPK-mediated traits (Treusch et al., 2015). 

 

Genotype-phenotype analysis of the entire SGRP collection between the sequence of the 

primary drug target and response to that drug did not identify any variants exclusive to any of 

the drug response phenotypes. Ideally this would suggest that the variance in drug response of 

the SGRP collection to both drugs trialled is likely to be an off-target effect. However, since 

some strains harbour substitution mutations, such a statement cannot be made conclusively. 
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Other investigations into drug response on a cellular level have found multiple QTL, many of 

them outside the primary drug target under investigation and not related to the primary 

mechanism of the drug or the PDR system, and these details for benomyl and ketoconazole are 

discussed in greater detail in Chapter 5. 

 

It was determined that a general up- or downregulation of the PDR system is not likely to 

be the main contributor to drug response for most of the strains due to lack of cross-resistance 

or cross-sensitivity to all three drugs that were trialled in this thesis. The limitation remains that 

benomyl and ketoconazole (the agents selected for further analysis) have preferential affinities 

for different efflux pumps—ketoconazole is exported by Pdr5p while benomyl is handled by 

Snq2p (Fowler et al., 2011; Rogers et al., 2001). this work did not examine possible variations 

in single pumps that may have affected response to only one of the drugs. Nevertheless, the 

role of the PDR system was directly tested in strains that displayed cross-resistance and cross-

sensitivity to both drugs by creating Δpdr1Δpdr3 mutants. Interestingly, while PDR appears to 

play a role in the resistance of Y55 to benomyl, this effect is not observed for ketoconazole, 

despite both drugs being PDR substrates. It is unfortunate that the DBVPG6044 Δpdr1Δpdr3 

mutant was not derived in the scope of this thesis, due to a lack of successful pdr1Δ::NatMX4 

pdr3Δ::HphMX4 transformants. However, such a mutant may be expected to display a similar 

PDR phenotype as NCYC110 and Y55, which are related to it (see Figure 1.8).  

 

The role of oxidative stress response was briefly examined as well, based on the cross-talk 

between the PDR and the oxidative stress system through Yap1p (as is discussed in the 

introduction of this chapter). However, there did not appear to be any correlation between 

response to oxidative stress (as tested through resistance to H2O2) and cross-resistance (or 

cross-sensitivity) to the drugs trialled in this study. All four strains trialled (those being 
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DBVPG6044, NCYC110, W303 and Y55) showed varying degrees of sensitivity to H2O2. It is 

not clear why this sensitivity to oxidative stress was present. However, this finding is supported 

by a previous study that examined response of the same four strains to paraquat (which 

generates superoxide anions) (Warringer et al., 2011). Specifically, it was found that the four 

strains have a reduced growth efficiency and rate in the presence of 250 µg/mL and 400 µg/mL 

paraquat. 

 

Finally, the lack of fertility shown by certain strains in the SGRP collection has been 

reported by others. Cubillos et al. found that UWOPS03-461.4 was infertile when crossed to 

any of the other four strains representing the major lineages in the SGRP collection, although 

it shows full intra-lineage fertility (eliminating the possibility of a tetrad formation defect) 

(Cubillos et al., 2011). This is in agreement with this and other strains of the Malaysian lineage 

being infertile when crossed with the reference strain (Naumov et al., 2006). Tetrad analysis 

by Strope et al. also recapitulated other dramatically reduced fertilities between SGRP strains 

and S288C—UWOPS83-787.3 (50.5% viable spores), UWOPS05-227.2 (5.5% viable spores) 

and YIIc17_E5 (56.8% viable spores) (Strope et al., 2015). It is not yet clear what the 

underlying reason for this reduced fertility is, as these strains do not appear to drastically differ 

in terms of sequence divergence and a chromosomal rearrangement has so far not been found. 

However, presumably they harbour some yet-undiscovered genetic incompatibility that 

interferes with meiotic recombination. It is also not clear what caused the reduced viability of 

NCYC110. It has been discovered to be aneuploid for chromosome VII (Strope et al., 2015), 

which may interfere with viability. It is also known that the West African S. cerevisiae strains 

are phenotypically divergent from many of the other strains and carry a series of growth 

deficiencies and temperature sensitivity characteristics (Warringer et al., 2011); however, 

DBVPG6044 (the other closely-related West African strain in the collection) appeared to show 
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relatively normal growth compared to NCYC110, so lineage alone may not explain the 

observed growth defects. 

 

In conclusion, the series of screens performed in this chapter were successful in selecting 

strains for further investigation of benomyl and ketoconazole response—UWOPS87-2421 for 

benomyl resistance, L-1374 for benomyl sensitivity, DBVPG6044 for ketoconazole resistance 

and Y12 for ketoconazole sensitivity. The rigorous screening process helped to ensure that the 

selected strains maintain the same drug response phenotype under multiple testing conditions 

and that this response can be confidently used to find  novel loci that contribute to drug 

responses that may not have been described in the literature. 
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Chapter 4: Creation of Advanced Intercross Lines (AILs) 

and Heritability Studies in SGRP Strains of Interest 

 

4.1. Introduction 

The aim of this chapter was to further elucidate the genetic basis of the drug response 

phenotypes exhibited by the four SGRP strains selected in the previous chapter for further study 

(these were UWOPS87-2421 that was resistant to benomyl; L-1374 that was sensitive to 

benomyl; DBVPG6044 that was resistant ketoconazole; and Y12 that was sensitive to 

ketoconazole. All the drug response classifications were made relative to the BY control strain). 

The first question we asked was what proportion of the phenotype could be predicted by genetic 

factors. This can be estimated by measures of heritability, as described in Chapter 1 (Section 

1.2.1). Various calculation methods for heritability have been published (Tenesa & Haley, 

2013; Visscher et al., 2008).   Estimation of broad sense heritability (H2) is fairly straight 

forward if there are phenotype data available for parental strains (as is the case for the four 

strains of interest crossed to the control BY strain) and their segregant progeny (Marullo et al., 

2006). The segregant progeny would encapsulate the total phenotypic variance since their 

phenotype includes both variance due to genotype and variance due to environment. 

Meanwhile, the phenotypic variance displayed by each parental strain would only reflect 

variance due to environment (since clonal replicates of the same parental strain are assumed to 

be genetically identical). Natural traits can display a wide range of heritabilities—for instance, 

life history traits  (viability, fecundity, survival, development rate) in Drosophila tend to have 

low values (<0.2) (Roff & Mousseau, 1987), while traits like human height or cadmium 

chloride tolerance in S. cerevisiae are much higher (0.8 and 0.96, respectively) (Bloom et al., 



Heritability studies of SGRP strains 
 

116 

 

2013; Visscher et al., 2008).  A high heritability estimate means that the trait in question could 

be viably studied by genetic means (Mackay, 2001). 

 

 If the drug response phenotypes in the four strains of interest were confirmed to be 

genetically determined, the next question to be asked is how many genetic loci underpin the 

trait. This can be estimated by crossing two parental strains, obtaining segregant offspring and 

calculating the fraction of that offspring that displays a parental drug response phenotype. A 

logical assumption is that the number of loci responsible for the phenotype, such as resistance 

to a drug, would be inversely related to the fraction of offspring that display the parental 

resistant phenotype. This principle is illustrated in Figure 4.1. 

 

 

Figure 4.1: Inverse relationship between the number of loci responsible for a parental phenotype (for 

example drug resistance) and fraction of offspring that display that phenotype. The number of loci 

responsible can be related to the fraction of parental-like segregants through the equation 1/2n. 
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This type of estimate has been a hallmark in many QTL mapping studies, which use it to 

establish whether a trait has mono- or multigenic inheritance (Deutschbauer et al., 2005; Gerke 

et al., 2006; Steinmetz et al., 2002; Wilkening et al., 2014). Information gained about the 

number of loci underlying a trait can be used to determine the most appropriate mapping 

strategy to reveal those genetic determinants. 

 

Upon construction of crosses between the SGRP strain of interest and the BY control strain, 

further information can be obtained from the proportion of transgressive segregation that is 

exhibited by the offspring of each cross. Transgressive segregation is defined as the production 

of segregant offspring that display a more extreme phenotype than that exhibited by their 

parents—for example, when looking at drug resistance, transgressive segregants would be 

more drug resistant than the resistant parent. Although the natural presumption is that the 

superior (drug resistant) parent in a cross should contain all/most of the superior alleles (and 

vice versa for the inferior (drug sensitive) parent), this is not always the case. Multiple yeast-

based investigations have demonstrated the presence of strains that harbour QTL opposite to 

their overall phenotype, leading to the occurrence of transgressive segregation due to the 

meiotic reshuffling of parental alleles into new combinations (Ben-Ari et al., 2006; Brem et al., 

2002; Cubillos et al., 2011; Diezmann et al., 2011; Nogami et al., 2007; Perlstein et al., 2007; 

Rieseberg et al., 2003; Steinmetz et al., 2002).  

 

In addition to strains containing alleles that have an antagonistic effect, another recurrent 

theme uncovered by yeast QTL studies is that QTL that affect a phenotype tend to be linked. 

Fine-scale dissection of a QTL has sometimes revealed it to consist of several linked loci, each 

having an individual contribution (sometimes with opposite effect to overall parental 

phenotype) (Ben-Ari et al., 2006; Steinmetz et al., 2002; Swinnen, Schaerlaekens, et al., 2012). 
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In light of this, an approach to reduce this type of linkage and isolate the QTL may lead to a 

more accurate insight into their heritability. One way of doing this is through the creation of 

advanced intercross lines (AILs) (Darvasi et al., 1995; Gonzales & Palmer, 2014; Parts et al., 

2011). AILs are derived from repeated intercrossing of two parental strains—typically up to 

ten rounds of such (performing more than ten rounds only leads to negligible narrowing of the 

QTL interval and is thus not considered beneficial (Darvasi et al., 1995)). This leads to a 

breakdown of the linkage disequilibrium (LD) present in the parental strains and concomitant 

dissociation of linked QTLs. Furthermore, AILs offer an advantage for QTL mapping by 

refining the resolution and localisation power and expanding the genetic map owing to 

increased numbers of meioses. This will be discussed in greater detail in Chapter 5. 

 

The relative dominance or recessiveness of a drug response in each cross may also provide 

useful insights into the architecture of the phenotype. Judging the underlying genetic factors 

behind dominance/resistance in multigenic traits is not straightforward, as they arise from 

multiple Mendelian loci acting together and can be further complicated by epistasis (Falconer 

& Mackay, 1996b; Mackay, 2014). Nevertheless, estimates of dominance or recessiveness may 

provide interesting clues regarding underlying trait structure and the relationship between 

parental alleles (Zorgo et al., 2012). 

 

Finally, it could be interesting to explore whether cells respond differently under increasing 

amount of stress enacted by the drug treatment. Previous studies have indicated that additional 

loci can come into play upon raised cellular stress (Swinnen, Schaerlaekens, et al., 2012) or 

that different QTL networks may be prominent under different drug treatment dosages (Wang 

& Kruglyak, 2014). Therefore, it could be of interest to explore how such factors change upon 

increasing dose treatment with benomyl or ketoconazole. 
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4.1.1. Chapter aim 

The aim of this chapter was to elucidate the heritability of the drug response phenotype of 

the four SGRP strains selected in Chapter 3. These were UWOPS87-2421 that was resistant to 

benomyl compared to the BY control strain; L-1374 that was sensitive to benomyl compared 

to BY; DBVPG6044 that was resistant ketoconazole compared to BY; Y12 that was sensitive 

to ketoconazole compared to BY. The aspects of heritability that were examined were: 

 Estimates of broad sense heritability of the drug response phenotype of each of the four 

strains. 

 Estimates of the number of genetic loci that were responsible for the drug response 

phenotype in each of the four strains.  

 A measure of transgressive segregation displayed when each of the four strains was 

crossed to the BY control. 

 A measure of whether the drug response phenotype was a dominant or a recessive trait. 

 

4.2. Methods and Materials 

4.2.1. Creation of advanced intercross lines (AILs) 

A total of four AILs were created—one for each strain as described in Section 3.3.5. Each 

AIL was formed through intercrossing the MATa parent of the selected SGRP strain to the 

MATα control BY strain parent followed by repeated sporulation and random mating of 

offspring. To do this, both parental strains involved in the cross must carry selectable markers 

at the same locus. The HO locus was selected for this purpose—each SGRP strain carried the 

hoΔ::HphMX4 construct, while a BY parent with an analogous hoΔ::KanMX4 mutation was 

obtained from the Open Biosystems deletion collection. However, it has been previously 

discovered that hygromycin (HygB) and geneticin (G418) selection antibiotics cannot be used 

in conjunction with each other in the same plate because the presence of G418 inactivates HygB 

(Kiew, 2010). Therefore, a marker-switch procedure was applied to replace the G418 resistance 
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marker (KanMX4) cassette with another antibiotic marker (NatMX4) using nourseothricin 

(clonNAT) resistance for selection. The marker-switch was performed as described in Section 

2.14. The correct insertion of the NatMX4 marker was verified by confirmation PCR as 

described in Section 2.7.4 using the primers #410 and #3 to create the front PCR product and 

primers #30 and #411 to create the back PCR product (primers described in Section 2.6). 

Following the construction of the BY parent, AILs were created as described in Section 2.17.  

 

4.2.2. Creation of source plate for 384-colony format pinning drug response assay 

Upon the last (10th) round of sporulation during the construction of the AILs, tetrads were 

dissected from the liquid sporulation culture and spores isolated, as described in Section 2.16. 

Selection on HygB and clonNAT was used in order to identify four-spore tetrads that displayed 

2:2 segregation of resistance to either antibiotic. A total of 308 spores were inoculated in a 

randomised order in a 384-well microplate containing 75 µL of liquid SC per well. The 76-

well border of the plate were inoculated with control strains. These control strains comprised 

both the haploid and the diploid versions of each parent used to produce the AIL segregant 

progeny, an F1 diploid hybrid between the SGRP parent and the BY parent and an F10 diploid 

hybrid between the SGRP parent and the BY parent. The last strain was acquired from the last 

(10th) diploid selection round during AIL construction (Section 2.17). The layout of an 

exemplar 384-well microplate showing arrangement and identity of all the strains is presented 

in Figure 4.2. 

 

A total of three replicate segregant progeny source plates were created for each AIL. In 

order to create a new replicate plate, the same spores were inoculated in identical conditions, 

but in a newly randomised order. The plate was then sealed with polyester sealing film, placed 

inside a Ziploc bag to minimise evaporation and was incubated at 30˚C for 48 hours.  
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Following this outgrowth, 75 µL of 50% v/v glycerol was added to each well and the plate 

shaken at 2000 rpm for 15 sec to thoroughly mix the components. The plate was sealed with 

an aluminium sealing foil and stored at -80˚C. 

 

Figure 4.2: Layout of 384-well microplate used for testing drug responses of recombinant AIL progeny in 

addition to the parental strains used to produce those AILs. 

The plate consists of a total of 308 AIL segregants positioned in the middle of the plate, surrounded by six 

control strains arranged in 12 repeating blocks. The colour key for the identity of the control strains is 

listed below: 

 
Haploid SGRP parental 

strain  
Diploid SGRP/BY hybrid, 

F10 

 Haploid BY parental strain  Diploid SGRP strain 

 
Diploid SGRP/BY hybrid, 

F1  Diploid BY strain 

    

Image of 384-well microplate modified from (Bio-Rad Laboratories Inc.). Used with permission. 
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4.2.3. 384-colony format pinning assay for testing drug response of segregant 

progeny parental strains and hybrid strains 

The 384-well source plate was fully thawed, then shaken at 2000 rpm for 1 min to mix the 

contents. The RoToR HDA was used to transfer the strains to an SC agar plate (see Figure 2.4 

for an example) using 384 format long pin repads. After the inoculum was allowed to fully 

absorb into the agar, the plates were incubated at 30˚C for 48 hours. After 24 hours, the plate 

was examined for any colonies that failed to pin, and these were filled in manually. 

 

To test drug response, the segregants were pinned from the SC agar plate onto SC agar 

containing increasing concentrations of the selected drug. The drug concentrations were 

selected in order to test response at an “intermediate” drug dosage (a point that corresponds to 

the maximal growth difference between the parental strains) and a “high” drug dosage (where 

the resistant strain is still growing, while the sensitive strain is completely inhibited). The 

rationale for selecting the intermediate and high drug dosages is illustrated in Figure 4.3.  

 

Figure 4.3: Illustration of position on the dose-response curve of the parental strains which constituted 

“intermediate” and “high” drug dosage. Pictured are the parental strains used for investigating benomyl 

sensitivity. N = 3. Data are presented as mean ± SD. 
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The desired drug concentrations were selected based on the outcome of the 384-colony 

format pinning assay, as described in Chapter 3. The drug concentrations used for each AIL 

are described in Table 4.1. 

Table 4.1: Drug concentrations used for “intermediate” and “high” drug dosage treatments to test the 

response of segregant progeny and parental strains. 

AIL identity 

Drug response 

phenotype of SGRP 

parent 

Drug dosage used 

UWOPS87-2421 × BY Benomyl resistant 
Intermediate 150 µM benomyl 

High 250 µM benomyl 

L-1374 × BY Benomyl sensitive 
Intermediate 75 µM benomyl 

High 137.5 µM benomyl 

DBVPG6044 × BY Ketoconazole resistant 
Intermediate 150 µM ketoconazole 

High 200 µM ketoconazole 

Y12 × BY Ketoconazole sensitive 
Intermediate 60 µM ketoconazole 

High 100 µM ketoconazole 

 

The inoculation of the drug plate via pinning, incubation and colony size measurements 

were performed as described in Section 2.15.3. Residual growth was obtained for each 

segregant and its control strain by calculating the ratio of its growth under treatment to its 

growth in the solvent control plates. 

 

4.2.4. Analysis of AIL segregant progeny drug response and estimating the number 

of responsible loci 

The mean average residual growth was calculated for each segregant and for the haploid 

parents that produced the AILs. As each replicate plate had 12 representatives of each parent, 

only one of the 12 was selected randomly from each replicate. The growth range of the 

segregant progeny was plotted as a scatter plot. The fraction of segregants that displayed a 

parental drug response phenotype (of either the superior or the inferior parent) was calculated. 

A segregant was defined as having a parental phenotype if its mean growth fell within one 
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standard deviation of the mean growth of either the superior or the inferior parent, and also if 

it was more extreme than either parent. The method for defining a segregant as having a 

“parental phenotype” is illustrated in Figure 4.4. 

 

Figure 4.4: Hypothetical growth plot of segregant progeny (individual segregants represented by green 

dots) at a given drug concentration. The superior (i.e. drug resistant) and inferior (i.e. drug sensitive) 

parents are also marked. The blue and red boxes demarcate which segregants would be considered to have 

the drug response phenotype of the inferior and superior parents, respectively. 

 

 

The fraction of segregants that displayed the parental drug response phenotype was related 

to the number of genetic loci that underlie that phenotype through the following equation: 

 

 𝑆𝑒𝑔𝑟𝑒𝑔𝑎𝑛𝑡𝑠 𝑃𝑎𝑟𝑒𝑛𝑡𝑎𝑙 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒
𝑆𝑒𝑔𝑟𝑒𝑔𝑎𝑛𝑡𝑠 𝑇𝑜𝑡𝑎𝑙

⁄ =  1
2 𝑛⁄  

 

where “n” is the number of genetic loci.  
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4.2.5. Calculation of % transgressive segregation and broad sense heritability 

Both the calculation of the percent of segregants that displayed transgressive segregation 

and that of broad sense heritability were carried out as described by Marullo et al.  (Marullo et 

al., 2006). Segregants that displayed transgressive segregation were defined as those whose 

mean growth was two standard deviations higher than that of the superior parents or two 

standard deviations lower than that of the inferior parent (using the standard deviation of the 

parent strains). Broad sense heritability (H2) was calculated from the following formula: 

 

𝐻2 =  
𝜎𝑃

2 −  𝜎𝐸
2

𝜎𝑃
2  

𝜎𝑃
2 denotes total phenotypic variance. This is the sum of genetic variance and environmental 

variance and was estimated by calculating the phenotypic variance of the segregant progeny. 

𝜎𝐸
2  refers to the environmental variance and was estimated from the average phenotypic 

variance of each haploid parental strain (from 12 replicate colonies inoculated on the test plate, 

as indicated in Figure 4.1). To get overall environmental variance, the phenotypic variance of 

the two parents was averaged. An independent estimate of H2 was obtained for each of the 

three replicate plates. The overall estimate of H2 was obtained by calculating a mean average 

of the three replicates. 

 

4.2.6. Analysis of parental and hybrid strains—dominance of drug response 

The mean average residual growth was calculated for each of the diploid parental strains 

and the F1 and F10 hybrid strains in each replicate plate. This average growth of each strain per 

replicate plate was further averaged across all three replicates. Furthermore, the three replicates 

were used to calculate the standard deviation of the mean. An unpaired one-tail Student’s t-test 

was used to determine the significance of growth differences between the strains. 
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4.3. Results 

For unknown reasons, the ketoconazole-resistant phenotype of DBVPG6044 relative to BY 

could not be replicated from the studies in Chapter 3, despite this strain displaying consistent 

ketoconazole resistance in previous drug response testing. Possible reasons for this are included 

in the Discussion section of this chapter (Section 4.4). Results from the DBVPG6044 × BY 

cross are therefore omitted from this chapter. 

 

4.3.1. Number of genes and heritability of drug response 

The drug response of haploid segregant progeny was compared to that of their parental 

strains (also haploid) in order to investigate the heritability patterns of the drug response 

phenotype of the candidate strains that were selected in Chapter 3. The segregant progeny used 

here were F10 AIL progeny and therefore possessed reduced linkage disequilibrium and better 

separated antagonistically-acting determinants of drug response compared to F1 progeny.  As 

a result of the AIL strategy the estimates of the number of loci underlying the phenotype are 

more likely to represent the true number of resistance or sensitivity-determining loci.  

 

A summary of the results for the heritability of benomyl resistance in the strain UWOPS87-

2421 (relative to the BY control strain) is presented in Figure 4.5 and Table 4.2.  
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Figure 4.5: Distribution of UWOPS87-2421 × BY AIL segregants in terms of response to 150 µM and 250 

µM benomyl. The growth of the haploid parental strains used to produce the AILs are indicated by arrows. 

Segregants marked in yellow represent transgressive segregants. Data are presented as the mean. N = 3. 

Error bars have been omitted in the interest of clarity except in the case of the haploid parents. 

 

Table 4.2: Heritability characteristics of UWOPS87-2421 × BY AIL segregants. Orange text represents 

UWOPS87-2421 × BY AIL segregants treated with 150 µM benomyl; green text represents the same set of 

segregants treated with 250 µM benomyl. “% transgressive” refers to the fraction of transgressive 

segregants. “H2” refers to broad sense heritability. 

 
Fraction with 

parental phenotype 
# loci % transgressive H2 

BY phenotype 

(benomyl sensitive) 
103/299 105/296 1.5 1.5 19.7% 12.2% 

0.75 0.87 UWOPS87-2421 

phenotype (benomyl 

resistant) 

150/299 170/296 1.0 0.8 19.7% 23.3% 

 

Both with the intermediate (150 µM) and the high (250 µM) dosages of benomyl, segregants 

ranked in order of growth appeared to display a relatively continual distribution, suggesting 
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that multiple genetic determinants to the benomyl response segregate in the UWOPS87-2421 

× BY cross. For comparison, a representative segregant growth curve is provided in Appendix 

7.4 that shows the expected curve shape in the case of a single-locus trait (resistance to 

clonNAT). This single-trait curve exhibits a sharp distinction between high growth and low 

growth segregants, suggesting that the segregants tend to fall into two distinct categories of 

growth. The fact that such a bi-category separation is not seen in the UWOPS87-2421 × BY 

cross suggests the contribution of multiple loci. Despite this continual distribution, estimates 

based on the fraction of segregants displaying the phenotype of either parent revealed that only 

0.8-1.5 loci contribute to the phenotype. The possible reasons for this disparity are discussed 

in Section 4.4 of this chapter. Another feature of the UWOPS87-2421 × BY cross is the 

relatively high percentage of segregants that displayed a transgressive phenotype compared to 

either parent. With the intermediate dosage, just fewer than 40% of segregants displayed such 

transgressive segregation, showing an even distribution at the sensitive and resistant end of the 

curve. High-dose treatment produced slightly fewer transgressive segregants—35%—but these 

displayed a slight skew, with a greater proportion lying on the resistant end of the curve. 

Estimates of broad sense heritability revealed that in this cross, the benomyl response was 

largely determined by genetic factors—with the intermediate-dose treatment, H2 was estimated 

at 0.75, which rose to 0.87 at the high-dose treatment.  

 

On the opposite end of the phenotype continuum, L-1374 was selected as the benomyl 

sensitive strain compared to the BY control. When studying a sensitive strain, because “drug 

sensitivity” is not a selectable phenotype, what was examined instead were the factors that 

contribute to the relative resistance of the control (BY) strain. The outcomes of the heritability 

study from the L-1374 × BY cross are presented in Figure 4.6 and Table 4.3. 
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As with the previous cross, both the intermediate (75 µM) and the high (137.5 µM) dose 

treatments produced smooth relatively normal-shaped distributions of segregants. However, 

conversely to the UWOPS87-2421 × BY cross, the locus number estimation clearly revealed a 

multigenic trait, with between 2.3 to 7.3 contributing loci. Interestingly, the distribution of loci 

contributing to the benomyl response was not symmetrical. Under both treatment conditions, 

the L-1374 parent fell much closer to the sensitive end of the growth curve than the BY parent. 

Thus, apparently there were 4.9 or 7.3 loci that accounted for the phenotype of L-1374, 

depending on whether the benomyl treatment was intermediate or high dose. On the other hand, 

the fraction of BY-like segregants was much bigger; this caused the estimate of the number of 

loci responsible for the BY-like benomyl resistant phenotype to go down to only 2-3 loci. 

Another difference from the UWOPS87-2421 × BY cross was that the L-1374 × BY cross 

exhibited a negligible amount of transgressive segregation. Nevertheless, as with the previous 

cross, the benomyl response phenotype in L-1374 × BY displayed a high heritability of 0.91-

0.92.  
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Figure 4.6: Distribution of L-1374 × BY AIL segregants in terms of response to 75 µM and 137.5 µM 

benomyl. Data represented the same way as described for Figure 4.3. 

 

Table 4.3: Heritability characteristics of L-1374 × BY AIL segregants. Orange text represents L-1374 × BY 

AIL segregants treated with 75 µM benomyl; green text represents the same set of segregants treated with 

137.5 µM benomyl. Table categories are the same as described in Table 4.2. 

 
Fraction with 

parental phenotype 
# loci % transgressive H2 

L-1374 phenotype 

(benomyl sensitive) 
10/308 2/308 4.9 7.3 0% 0.3% 

0.91 0.92 
BY phenotype 

(benomyl resistant) 
45/308 62/308 2.8 2.3 0.3% 1.0% 

 

Although it did not prove possible to examine the heritability patterns within the 

DBVPG6044 × BY cross, the Y12 × BY cross nevertheless provided some valuable insight 

into the genetics of the ketoconazole response. The results of this cross are summarised in 

Figure 4.7 and Table 4.4. The growth distribution of segregants in this cross did not produce 

as smooth a curve as was seen with the other crosses. There appears to be a slight over-

representation of low-growth segregants with a smaller fraction of high growth segregants, 

producing a “kink” in the curve (circled in the figure). Possible reasons for this are presented 

in the chapter discussion in Section 4.4. This effect becomes more pronounced in the high dose 

(100 µM) treatment compared to the medium dose (60 µM). This situation may reflect a 

possible change in the genetic architecture of QTL responsible for growth at a high dose of 

ketoconazole—such as an increased contribution by a single (or a very limited number) of loci.  
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Figure 4.7: Distribution of Y12 × BY AIL segregants in terms of response to 60 µM and 100 µM 

ketoconazole. Data are presented as described in Figure 4.3. Encircled are the “kinks” in the growth curve 

that are further discussed in the text. 

 

Table 4.4: Heritability characteristics of Y12 × BY AIL segregants. Orange text represents Y12 × BY AIL 

segregants treated with 60 µM ketoconazole; green text represents the same set of segregants treated with 

100 µM ketoconazole. Table categories are as described in Table 4.2. 

 

Fraction with 

parental 

phenotype 

# loci % transgressive H2 

Y12 phenotype 

(ketoconazole 

sensitive) 

5/305 2/301 5.9 7.2 0.3% 0.3% 

0.90 0.88 
BY phenotype 

(ketoconazole 

resistant) 

84/305 62/301 1.9 2.3 9.8% 13.3% 
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The Y12 × BY cross exhibited the same curious pattern in terms of asymmetrical 

distribution of segregant growth as did the L-1374 × BY cross. From the fraction of segregants 

that displayed a Y12-like sensitivity to ketoconazole, about 5.9 and 7.2 loci are responsible for 

the phenotype upon intermediate and high dose treatment, respectively. However, based on the 

fraction of BY-like segregants, only around two loci are expected to be involved in the 

ketoconazole resistance of that parent relative to its Y12 partner. The pattern of transgressive 

segregation showed a similar anomaly. While the amount of transgressive segregants on the 

sensitive end of the curve was negligible (0.3%), on the resistant end of the curve, 9.8-13.3% 

of segregants displayed a transgressive phenotype relative to the BY parent. As with all the 

tested drug response phenotypes, the heritability was high—0.90 with intermediate-dose 

treatment and 0.88 upon high-dose treatment.  

 

4.3.2. Dominance/recessiveness of drug response in diploids 

The dominance (or recessiveness) of drug response in each cross was tested by comparing 

the growth of the F1 diploid hybrid of the two parents to the growth of the parental strains (in 

diploid form). Additionally, the F10 diploid hybrid derived during AIL construction was 

included to determine if the breakup of linkage disequilibrium (which, as stated earlier, may 

separate antagonistically-acting alleles) produced any alteration in terms of dominance 

patterns. 

 

The relative dominance of the benomyl response in the UWOPS87-2421 × BY cross is 

presented in Figure 4.8. 
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Figure 4.8: Dominance/recessiveness characteristics of BY, UWOPS87-2421 and their hybrids (F1 and F10) 

in terms of response to benomyl. Data are presented as the mean ± SD. N = 3. * denotes that growth 

difference is significant at p < 0.05; ** p < 0.01; *** p < 0.001. 

 

Both the F1 and the F10 hybrids displayed an intermediate level of growth compared to the 

parental UWOPS87-2421 and BY strains. Under an intermediate treatment dosage of benomyl 

(150 µM), the hybrids only displayed a significant growth difference to the sensitive parent in 

the cross (BY). However, in this particular case the UWOPS87-2421 benomyl resistant parent 

displayed an unusually high level of growth variability compared to other growth 

measurements in this experiment; thus, the growth difference between the hybrids and the 

UWOPS87-2421 parents may be biologically meaningful, despite not reaching statistical 

significance. Under a high dose treatment of benomyl (250 µM), the growth difference between 

the hybrid strains and the two parental strains were either significant or highly significant. 

However, comparison of the mean growth of each strain revealed that with both intermediate 

and high dose benomyl treatment, the phenotype of the two hybrids lay closer to that of the 

sensitive BY parent. This suggests that in the UWOPS87-2421 × BY cross, benomyl sensitivity 

is partially dominant.  
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The results of a similar analysis for the sensitive end of the benomyl response spectrum—

those coming from the L-1374 × BY cross—are shown in Figure 4.9. 

 

Figure 4.9: Dominance/recessiveness characteristics of BY, L-1374 and their hybrids (F1 and F10) in terms 

of response to benomyl. Data are presented as the mean ± SD. N = 3. * denotes that growth difference is 

significant at p < 0.05; ** p < 0.01; *** p < 0.001. 

 

With intermediate-dose benomyl treatment (75 µM) both the F1 and F10 hybrids showed a 

similar intermediary phenotype. The growth of the F1 hybrid more closely resembled that of 

the resistant BY parent, while the growth of the F10 hybrid was more akin to that of the 

sensitive L-1374 parent. However, this growth difference between the F1 and F10 hybrids 

never reached a level of statistical significance. With this treatment regime, it remained difficult 

to conclude whether any dominance effects exist between the parental strains, but it could be 

said there was partial dominance towards the resistant BY strain, although it wasn’t significant. 

The picture was very different, however, with the high-dose benomyl treatment (137.5 µM). 

The F1 hybrid showed no significant difference compared to the sensitive L-1374 parent. The 

F10 hybrid was significantly different from the same parent; however, the overall variation in 

growth between the two strains was small and was dwarfed by the difference between the 

hybrid and the BY parent. Therefore, in these conditions, the relative benomyl sensitivity in 

the L-1374 × BY cross was almost completely dominant. 
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The examination of the dominance of the ketoconazole response in the Y12 × BY cross is 

shown in Figure 4.10. 

 

Figure 4.10: Dominance/recessiveness characteristics of BY, Y12 and their hybrids (F1 and F10) in terms 

of response to ketoconazole. Data are presented as the mean ± SD. N = 3. * denotes that growth difference 

is significant at p < 0.05; ** p < 0.01; *** p < 0.001. 

 

The F1 and F10 hybrids presented an intermediate phenotype with both the intermediate 

dose (60 µM) and the high dose (100 µM) treatment regimes. Nevertheless, in both treatments 

their phenotypes lay considerably closer to that of the ketoconazole sensitive parent (Y12), 

suggesting that ketoconazole sensitivity is partially dominant. This dominance became more 

pronounced in the high dose treatment. However, the growth levels of all strains tested were 

significantly different from each other. Moreover, in this cross the growth difference between 

the F1 and the F10 hybrids was much more pronounced than in the other crosses, with the F10 

hybrid being more ketoconazole resistant. This suggests that in this strain combination, alleles 

that act in an antagonistic manner to each other but whose effect may be cancelled out due to 

them being in linkage disequilibrium with each other may play a more prominent role than in 

other crosses and treatment regimens examined in this chapter. 
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4.4. Discussion 

This chapter explored the patterns of heritability that underpinned response to benomyl or 

ketoconazole in the four SGRP strains selected for further study in Chapter 3 (those being 

UWOPS87-2421, L-1374, DBVPG6044 and Y12). However, prior to the heritability 

investigation four AILs were created—one each for all four strains intercrossed with BY 

control strain. The advantage of AILs is that they reduce the linkage disequilibrium (LD) 

present in the original parental lines through recombination introduced through repeated rounds 

of random intercrossing. This can genetically separate nearby loci that have antagonistic effects 

on the phenotype in question and thus increase the accuracy of heritability studies—for 

example, by allowing more accurate estimates of the number of genetic loci underlying a trait. 

The increased recombination present in AILs also leads to an expansion of the genetic map and 

is greatly helpful for improving the localising power of genetic mapping studies when one 

wants to map such genetic loci—this is described more in Chapter 5. During the creation of 

AILs, ten rounds of random intercrosses were made to break up LD. This is based on estimates 

from the study that pioneered AILs, which concluded that after ten intercrosses, the advantages 

gained in terms of breaking up LD and improving the genetic mapping accuracy of the AILs 

were negligible (Darvasi et al., 1995). The size of the breeding population (i.e. the effective 

population used during the intercrossing) was also kept large (over 107 individuals) in order to 

avoid any limitations to mapping accuracy that may arise from small population sizes (Darvasi 

et al., 1995) and to reduce the chance of losing parental SNP markers through genetic drift 

(Cubillos et al., 2013). One possible limitation with the use of AILs is the fact that because the 

strains go through an extended period of growth during their construction, there is a potential 

that random mutations will be introduced into the AIL population. Previous studies have 

discovered that a small number of loci (less than ten) that provide an advantage in mating and 

sporulation undergo selection during the construction of AILs (Cubillos et al., 2013; Parts et 
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al., 2011). Furthermore, Cubillos et al. discovered approximately 100 new SNPs that arose 

during their construction of four-parent AILs (those being single AILs which incorporate 

information from four founding parents). However, considering that the current study only used 

two-parent AILs and that the minimum number of total SNPs in any cross combination used in 

the current study is over 35 000 (described in Chapter 5), this would represent less than a 0.15% 

change in total genomic differences between the strains. This, in conjunction with the fact that 

the selections used during AIL construction are not clearly related to the final phenotype of 

interest (i.e. drug response) could suggest that any mutations and polymorphisms that arise 

during AIL construction are not likely to affect the   outcome of this study. 

 

It is unfortunate that the ketoconazole resistant phenotype of DBVPG6044 could not be 

replicated in this chapter. It remains unclear why this occurred, as the conditions used in the 

384-colony pinning assay used were the same as those that successfully produced the resistance 

phenotype in Chapter 3. By way of possible explanation, DBVPG6044 had the smallest growth 

difference relative to the control BY strain compared to the other three SGRP strains and the 

MATα version of BY (as used in the crosses in this chapter) had a considerably higher drug 

MIC than its MATa counterpart. This likely contributed to the abolishment of the apparent 

ketoconazole resistance of DBVPG6044 compared to BY. Nevertheless, as DBVPG6044 

showed ketoconazole resistance when tested in serial spot dilution assay format (Chapter 3) as 

well as in the lawn dose response format (Chapter 5), its apparent lack of ketoconazole 

resistance in this chapter was probably an artefact of the drug testing format used. 

 

Following the creation of AILs, a number of aspects of the heritability of drug response 

were examined. The first of those was an estimate of the number of loci that underpinned this 

phenotype in each of the three SGRP strains that were examined, which is described in Section 



Heritability studies of SGRP strains 
 

138 

 

4.2.4. However, a major limitation of this estimate is that it presumes relatively equal 

contribution of all loci involved (Wilkening et al., 2014). Yet numerous QTL studies have 

demonstrated that a typical multigenic trait typically contains variable contribution by different 

loci (Mackay, 2001). The presence of a major-effect QTL may mask the contribution of 

smaller-effect QTL to the phenotype (Kim et al., 2009; Sinha et al., 2008) and by corollary, the 

presence of such a major-effect QTL may result in this assay underestimating the true number 

of loci involved. This would potentially explain why in the UWOPS87-2421 × BY cross only 

one locus was estimated to be involved in benomyl response although the segregant progeny 

produced by that cross displayed a bell-shaped distribution in terms of benomyl response, 

which is usually a mark of a multigenic trait (Falconer et al., 1996b). Taking this into account, 

it may be reasonably concluded that every drug response phenotype examined in this chapter 

was a multigenic trait, although the exact number of responsible loci cannot be established 

conclusively from this assay alone. 

 

The segregant progeny assay that allowed any such estimate of locus number allowed 

another estimate to be calculated—the proportion of progeny that showed transgressive 

segregation compared to the parents. The considerable level of transgressive segregation found 

within the UWOPS87-2421 × BY cross (35-40%) when testing benomyl resistance strongly 

suggested that both strains harboured alleles that were contrary to their overall phenotype. 

Interestingly, the L-1374 × BY cross, which explored the opposite end of the benomyl response 

phenotype, showed almost no transgressive segregation  suggesting that in this cross the 

parental strains contained the expected drug response alleles. Meanwhile, the Y12 × BY cross 

that was used to explore ketoconazole response showed a curious pattern of asymmetry. There 

was effectively no transgressive segregation relative to the sensitive Y12 parent in the cross, 

suggesting this parental strain already contained all the alleles that would cause its relative 
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sensitivity. However, there was a considerable level of transgressive segregation relative to the 

resistant BY parent. It is not immediately obvious why this occurs. However, one possible 

explanation is epistasis. It may be that certain QTL that lead to a phenotype (for instance, 

ketoconazole resistance in this cross) may only do so upon interaction with other QTL within 

a certain genetic background, whereas neither of those loci would affect the phenotype in 

isolation from each other. This phenomenon of background-specific QTL has been well 

described (Cubillos et al., 2011; Deutschbauer et al., 2005; Sinha et al., 2006). Further evidence 

of epistatic effects in the Y12 × BY cross can be gathered by observing the distribution of 

segregant progeny growth upon ketoconazole treatment, as displayed in Figure 4.7. Converting 

those data to a histogram form (Figure 4.11 below) reveals that instead of the bell-shaped curve 

that may be expected with multigenic traits, the segregants display more of an “L-shape” 

distribution. Such a distribution shape has been previously described by Marullo et al. for 

certain fermentative traits following crossing of parental strains derived from the wine strains 

VL1 and Bo213, those authors then confirming the influence of epistatic interactions within 

these traits (Marullo et al., 2006). 

 

Figure 4.11: Histogram view of Y12 × BY AIL segregants in terms of response to 60 µM and 100 µM 

ketoconazole. The red bar represents the growth bin that contains the ketoconazole-sensitive Y12 parent 

while the blue bar is the bin that contains the resistant BY parent. 
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The heritability of drug response was also investigated. A previous study that investigated 

response to drugs and general stresses found wide variation in terms of heritability estimates 

(broad sense: 0.4-0.96) (Bloom et al., 2013). A follow up study focusing on haloperidol 

response indicated consistently high H2 heritability (>0.75), akin to those found in the current 

study. Mammalian cell and human studies have also indicated a substantial variation in 

heritability ranging from 0.25 to 0.73 depending on drug class (McGeachie et al., 2013; Roden 

et al., 2011; Shuldiner et al., 2009). This suggests a wide variety of possible genetic architecture 

that can underlie drug response with this study representing the higher end of the spectrum. As 

broad sense heritability incorporates both additive and epistatic genetic interactions, it would 

be interesting to perform follow up studies to dissect narrow sense heritability (additive genetic 

factors only) in these strains and contrast that to the proportion of phenotype described by 

epistatic interactions (Bloom et al., 2013). 

 

Another aspect of the drug response phenotype that was explored in the present study was 

whether the overall phenotype tended to be dominant or recessive. In two of the three crosses, 

the phenotype was intermediate. This would be expected considering that the hybrid phenotype 

is the result of multiple loci, all with independent and different dominance characteristics. 

Nevertheless it could be argued that in five of the six conditions examined (with the exception 

being the intermediate-dose benomyl treatment of the L-1374 × BY cross), the relative drug 

sensitivity tended to be partially (or in one case) completely dominant. Without testing the drug 

response QTL individually for relative dominance/recessiveness, it is hard to make conclusions 

about what this means. The population history of these strains should be considered, as their 

drug response phenotype may not have arisen as a result of direct selection but rather as a result 

of hitchhiking on another selected trait in their evolutionary history (Liti et al., 2012) or through 

genetic drift (Dujon, 2010). Furthermore, given the tendency of loss-of-function alleles to be 
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recessive (Bourguet, 1999) and the known prevalence of loss-of-function alleles in yeast 

populations (Zorgo et al., 2012), it may be that loss-of-function alleles may play some role in 

drug response in the strains tested here. This would need to be confirmed by further study. 

 

The effects of intermediate versus high drug treatment dosages were considered. It was of 

interest whether the two treatment regimens relied on the same underlying QTL network, or 

whether different genetic factors may come into play as drug dosage is increased. Overall, the 

heritability patterns between the two treatment dosages tended to resemble each other—the 

segregant progeny showed similar patterns of growth distribution and the dominance testing 

showed similar trends (as would be expected). The high dose treatment tended to produce more 

extreme results in terms of greater number of loci estimated to be responsible for the trait, more 

pronounced differences in strain growth and dominance effects. Based on this, it seems likely 

that the overall QTL network architecture is conserved between the intermediate dose treatment 

and high dose treatment—although it is still possible that additional genetic factors come into 

play as drug treatment dose increases. 

 

Overall, the investigations described in this chapter provided considerable insight into the 

genetic underpinnings of the drug response phenotype. The finding that in each of the tested 

cases the varaiance of the phenotype is largely due to genetic variance  and that multiple genetic 

loci appear to be responsible logically sets up the concept that a QTL mapping approach would 

be fruitful in uncovering the identity of these genetic determinants. Furthermore, the AILs 

described in this chapter not only likely provided an improved insight into the heritability 

patterns of the  selected SGRP strains but also form a valuable resource for the optimal way of 

doing QTL mapping. 
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Chapter 5: The Quantitative Trait Loci (QTL) of Benomyl and 

Ketoconazole Response 

 

5.1. Introduction 

As drug response to benomyl and ketoconazole in the selected SGRP strains of interest was 

confirmed to be a multigenic trait, and the variance of the phenotype was largely explained by 

genetic factors, the natural next step was to determine which loci contribute to this response. 

This was the aim in this chapter, with next-generation sequencing bulk segregant analysis 

(NGS-BSA) being applied for this purpose. 

 

5.1.1. Off-target factors contributing to benomyl and ketoconazole response 

Although benomyl and ketoconazole act via well-characterised primary targets, many off-

target modifiers of their effect have been characterised. As benomyl primarily targets 

microtubules, changes in genes whose functions are dependent on microtubules often result in 

altered benomyl responses. Genes involved in cell cycle progression and the spindle checkpoint 

are known to modify the benomyl response (Chen et al., 1999; Hoyt et al., 1991; Pan et al., 

2004). Moreover, factors are also involved that enable correct attachment of chromosomes to 

the spindle (such as kinetochore components and nucleosomal histones), mediate correct 

chromosomal segregation and ensure chromosome and DNA integrity (Hoyt et al., 1997; 

Kawashima et al., 2011; Stearns, 1990; Wysocka et al., 2004). Finally, elements that affect 

microtubule formation and integrity also contribute to benomyl responses (Stearns, 1990; 

Voloshin et al., 2010). 
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There are off-target factors that alter ketoconazole response such as altered cellular sterol 

composition (particularly build-up of the toxic intermediate 14α-methyl-3,6-diol) and 

alteration in the ergosterol synthesis pathway  (Lamb et al., 1999; Lupetti et al., 2002).  A 

number of other processes are also involved in off-target effects including mitochondrial 

function  known to affect azole susceptibility (Lupetti et al., 2002; Traven et al., 2001),  cell 

wall integrity (Barker et al., 2003; Chung et al., 2014; Singh et al., 2012), disruption of vacuolar 

function (perhaps related to the regulation of vacuolar H+-ATPase activity by ergosterol), and 

endosomal trafficking in terms redistributing the toxic ketosteroid intermediates produced upon 

azole treatment (Luna-Tapia et al., 2015; Zhang, Gamarra, et al., 2010; Zhang & Rao, 2010). 

It is an aim of this chapter to investigate the genes underlying the effects of benomyl and 

ketoconazole by comparing resistant and susceptible pairs of strains. 

 

5.1.2. Bulk segregant analysis (BSA) 

BSA was first proposed as an economical method for genotyping a mapping population to 

determine loci associated with a trait (Michelmore et al., 1991). Individuals within the mapping 

population are sorted into “bulks” based on whether they possess the trait of interest or not, and 

the total DNA from each population is extracted and genotyped en masse. Such a technique 

allows much larger mapping populations to be genotyped for the same (or lesser) cost than 

would be achievable when genotyping individual segregants. BSA relies on individuals in the 

initial mapping population having a high degree of heterozygocity. It is therefore assumed that 

any locus with no contribution to the trait will maintain such initial heterozygocity, but any 

locus that is linked to the trait will be over-represented in the trait-positive population compared 

to the control population. See Figure 5.1 for an illustration of the principle of BSA. 
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Figure 5.1: Description of the principle of BSA. 

 

BSA was initially developed for studying plant traits, but in recent times has also been 

successfully applied to investigate a wide variety of yeast traits (Segrè et al., 2006), including 

industrial traits such as xylose utilisation (Wenger et al., 2010), ethanol tolerance (Swinnen, 

Schaerlaekens, et al., 2012),  wine characteristics (Roncoroni et al., 2011) and response to 

chemical and general stresses (Cubillos et al., 2013; Ehrenreich et al., 2010; Parts et al., 2011). 

A particularly valuable adaptation has been the application of next generation sequencing 

(NGS) for the genotyping step of BSA (Ehrenreich et al., 2010). Here, instead of genotyping 

each marker site, the DNA extracted from each bulk is put through a whole genome sequencing 

reaction. As the DNA is derived from a population, the reads therefore represent a sampling of 

the sequence from different individuals. The read data are mapped against a reference genome 

and the relative allele frequency of parental alleles at each marker site is determined. Generally, 

large bulks and high sequencing coverage are required to achieve optimal detection power and 

accuracy (Ehrenreich et al., 2010; Magwene et al., 2011; Schlotterer et al., 2014). The benefit 

of this method is that all available marker sites are genotyped simultaneously, providing direct 

sequence information about the loci, without the need for follow up sequence analysis. Such 
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high-resolution genotyping, combined with the large mapping populations made feasible by 

BSA typically leads to NGS-BSA successfully uncovering a greatly increased number of QTL 

than would be possible using classical linkage disequilibrium mapping methodology (Cubillos 

et al., 2013; Parts et al., 2011). 

 

5.1.3. AILs for increased mapping resolution 

A persistent problem with QTL studies is that pervasive linkage disequilibrium often results 

in detection of large QTL intervals that require further fine-mapping in order to achieve more 

practicable intervals for identifying candidate genes. Advance intercross lines (AILs) help to 

overcome this limitation by breaking down linkage disequilibrium through repeated rounds of 

random intermating among segregants. Moreover, as well as breaking up linked QTL, AIL 

expand the genetic map of the segregants because of the increased recombination introduced 

with each cross (Darvasi et al., 1995). This greatly improves the resolution of QTL studies as 

it provides a finer QTL interval and improved ability to localise causative loci (Darvasi, 1998; 

Wang et al., 2003). The combination of AILs with NGS-BSA by Parts et al. (illustrated in 

Figure 5.2) has proved particularly powerful for detecting a large number of QTL with a good 

level of localisation (Parts et al., 2011). 

 

Figure 5.2: illustration of creation of AILs and the NGS-BSA (next generation sequencing-bulk segregant 

analysis) method used by Parts et al. to investigate the genetic basis of heat tolerance between 

phenotypically divergent yeast strains. WA stands for “West African” and NA represents “North 

American”—the two lineages used in the study. From (Parts et al., 2011). 

 



QTL of benomyl and ketoconazole response 

147 

 

5.1.4. Chapter aims 

The aims of this chapter were: 

 To establish genomic markers that can be used for QTL mapping. These comprise high-

quality SNPs between the parental strains used in each of the four AILs, as determined 

by whole genome sequencing. 

 To select an intermediate and high treatment dose in a new drug treatment format (lawn 

format on agar) 

 To treat AIL segregants with benomyl and ketoconazole in appropriately sized bulks. 

Bulks were selected to include a minimum of 105 segregants (prior to clonal 

amplification that occurs during subsequent growth), as such sizes are considered 

necessary for optimal QTL detection (Ehrenreich et al., 2010). 

 Perform NGS-BSA to establish QTL contributing to drug response phenotypes in each 

of the four strains of interest. The primary aim was to investigate off-target genetic loci 

which may contribute to variation in terms of individual drug response in an unbiased 

genomic manner. 

 

5.2. Methods and Materials 

5.2.1. Establishment of genomic markers in parental strains 

Genomic markers for subsequent QTL mapping were determined by whole genome 

sequencing. For this purpose, SNPs were identified between each pair of parental strains for 

each of the four AILs. To achieve this, sequencing data were mapped to the S288C reference 

genome (source described in Chapter 2), and variants were called relative to that genome. 

S288C is the genetic background of the BY strain that was used as a parent in each of the four 

AILs. Slight deviations exist between the BY and S288C genome; therefore, variant sites 

between the BY and the SGRP parent in each AIL were established by calling variants between 

the SGRP parent and the S288C reference and then subtracting any of these variants that were 

also called between the S288C reference and the BY parent.  
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Illumina genome raw sequence data were obtained either through whole genome sequencing 

(as described in Sections 2.5.2 and 2.21.1) or by downloading from published sources. The 

sourcing information of sequence data for each of the five strains is provided in Table 5.1. 

Table 5.1: Sourcing information for Illumina genome raw sequence data used in this thesis. Sequence read 

archive (SRA) number refers to the unique identifier for the raw data from NCBI (National Center for 

Biotechnology Information). 

Strain name Data source SRA number 

BY This thesis NA 

UWOPS87-2421 (Bergström et al., 2014) ERR049930 

L-1374 This thesis NA 

DBVPG6044 (Song et al., 2015) SRR1568151 

Y12 (Strope et al., 2015)  SRR800842 

 

Alignment to the S288C reference genome and variant calling were performed as described 

in Sections 2.22 and 2.23.  

 

5.2.2. Drug treatment of AIL segregant progeny in lawn format on agar 

Optimisation of the lawn drug treatment format was carried out as described in Section 

2.19.1. The intermediate and high drug treatment dosages were selected based on the criteria 

described in Section 4.2.3.  

 

 

 

Based on these outputs, the following treatment regimens were selected for intermediate and 

high dose treatment of each AIL: 

  Intermediate dose High dose 

Benomyl 
UWOPS872421×BY 45 µM 80 µM 

L-1374×BY 30 µM 50 µM 

Ketoconazole 
DBVPG6044×BY 25 µM 65 µM 

Y12×BY 11.5 µM 15 µM 
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Each of the four AILs was treated with the intermediate dose, high dose or vehicle only 

(DMSO), totalling 12 samples. For each AIL, each treatment contained an equal amount of 

DMSO. Drug treatment of AIL progeny and subsequent gDNA extraction was carried out as 

described in Section 2.19.2. 

 

5.2.3. NGS-BSA for determining QTL that contribute to benomyl and 

ketoconazole response 

The sequencing of the pooled AIL progeny gDNA, allele frequency analysis and QTL 

calling were carried out as described in Sections 2.21.2, 2.24 and 2.25. In order to identify 

ORFs within QTL intervals, the genome features format (GFF) file of the S288C reference 

genome was used. 

 

5.3. Results 

5.3.1. Sequencing outputs 

The amount of raw sequence data obtained for the parental strains and the corresponding 

coverage (based on a 12 Mb genome) are displayed in Table 5.2. 

 

Table 5.2: Sequencing output information of parental strains used for establishing AIL. G denotes 

gigabases. 

Strain name Number of bases Fold coverage (approximate) 

BY 1.2 G 100× 

UWOPS87-2421 10 G 833× 

L-1374 1.2 G 100× 

DBVPG6044 2.1 G 175× 

Y12 4.1 G 342× 

 

The raw sequence output for the AIL segregant population and the corresponding coverage 

within each sample are described in Table 5.3. 
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Table 5.3: Sequencing output information of pooled AIL segregant populations. G denotes gigabases. 

Sample name Number of bases Fold coverage (approximate) 

UWOPS87-2421×BY AIL 
High dose treatment 

3.6 G 300× 

UWOPS87-2421×BY AIL 
Intermediate dose treatment 

4.9 G 408× 

UWOPS87-2421×BY AIL 
Untreated 

5.2 G 433× 

L-1374×BY AIL 
High dose treatment 

5.0 G 417× 

L-1374×BY AIL 
Intermediate dose treatment 

4.9 G 408× 

L-1374×BY AIL 
Untreated 

4.8 G 400× 

DBVPG6044×BY AIL 
High dose treatment 

4.3 G 358× 

DBVPG6044×BY AIL 
Intermediate dose treatment 

3.9 G 325× 

DBVPG6044×BY AIL 
Untreated 

4.7 G 392× 

Y12×BY AIL 
High dose treatment 

5.5 G 458× 

Y12×BY AIL 
Intermediate dose treatment 

5.4 G 450× 

Y12×BY AIL 
Untreated 

5.5 G 458× 

 

5.3.2. Genomic markers 

Variant calling revealed candidate sites that could be used as suitable markers to demarcate 

genomic locations. Such analysis revealed a relatively high level of genetic divergence between 

BY and each of the four SGRP parents—the lowest level of divergence was 0.3%, displayed 

between BY and L-1374, while the most highly divergent pair was BY and DBVPG6044 at 

0.7%. The total number of variants found between BY and each of the four SGRP strains is 

described in Table 5.4. 

Table 5.4: List of total variants between BY and each of the four SGRP strains 

SGRP parent Total SNPs Total Indels Sequence divergence (to BY) 

UWOPS87-2421 68 863 2 388 0.6% 

L-1374 35 213 2 361 0.3% 

DBVPG6044 76 819 4 569 0.7% 

Y12 63 760 4 286 0.6% 
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Following filtration of the variant positions in order to ensure compatibility with 

MULTIPOOL (as described in Sections 2.24.2 and 2.24.3), the number of SNP markers was 

considerably reduced. The markers had approximately even distribution throughout the 

genome. The actual marker distribution is presented in Appendix 7.6. The final quantity of 

variant markers found between BY and each SGRP strain is presented in Table 5.5. 

Table 5.5: Final number and frequency of markers used for QTL mapping in each sample. 

Sample name Number of markers Marker frequency 

UWOPS87-2421×BY AIL 
Intermediate dose treatment 

30 044 1 per 400 bp 

UWOPS87-2421×BY AIL 
High dose treatment 

31 482 1 per 380 bp 

L-1374×BY AIL 
Intermediate dose treatment 

17 601 1 per 680 bp 

L-1374×BY AIL 
High dose treatment 

17 590 1 per 680 bp 

DBVPG6044×BY AIL 
Intermediate dose treatment 

33 689 1 per 360 bp 

DBVPG6044×BY AIL 
High dose treatment 

33 731 1 per 360 bp 

Y12×BY AIL 
Intermediate dose treatment 

29 928 1 per 400 bp 

Y12×BY AIL 
High dose treatment 

29 969 1 per 400 bp 

 

5.3.3. Drug treatment of AIL segregant progeny in lawn format on agar 

The output of the optimisation of the lawn drug treatment format (described in Section 5.2.2) 

is displayed in Figure 5.3. 
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Figure 5.3: Dose-response to benomyl and ketoconazole in lawn testing format. Dashed red lines denotes 

the selected dose for intermediate treatment and high dose treatment. N=3. Data are presented as means. 

Error bars omitted for clarity. 

 

5.3.4. QTL outputs governing response to benomyl and ketoconazole 

Following derivation of allele frequencies from the sequencing data of the AIL progeny 

populations selected on either intermediate dose, high dose or no drug, QTL were determined 

for each treated sample using MULTIPOOL. The output of these analyses are displayed in 

Figures 5.4-5.11. Note that in these diagrams, the different colour lines represent the 16 

chromosomes of S. cerevisiae. The numbers above the peaks denote QTL (the number before 
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the period denotes chromosome number; the number following the period refers to QTL found 

on that chromosome). The red line in each graph is the significance threshold, as calculated 

through a Benjamini and Hochberg FDR correction at a significance level of 0.0001. The 

numerical description of QTL intervals is provided in Appendix 7.5.  
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In order to detect QTL that contribute to benomyl resistance, the UWOPS87-2421×BY cross 

was tested. In cells that survived an intermediate dose treatment with benomyl (45 µM), a total 

of nine QTL were detected between BY and UWOPS87-2421 (Figure 5.4). 

 

Figure 5.4: Benomyl response QTL detected between UWOPS87-2421 and BY following intermediate dose 

treatment of AIL segregants with benomyl. 

 

When the benomyl treatment was increased to 80 µM, the number of detected QTL in the 

surviving cells increased to 18 (Figure 5.5). 
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Figure 5.5: Benomyl response QTL detected between UWOPS87-2421 and BY following high dose 

treatment of AIL segregants with benomyl. 

 

On the other end of the benomyl response phenotype spectrum, the L-1374×BY cross was 

tested in order to detect loci that segregated to give BY its relative resistance (which should 

conversely be responsible for the benomyl sensitivity of L-1374). Upon intermediate dose 

treatment (30 µM benomyl), three QTL were detected in the surviving cells (Figure 5.6). 

 

 

  



QTL of benomyl and ketoconazole response 

156 

 

 

Figure 5.6: Benomyl response QTL detected between L-1374 and BY following intermediate dose treatment 

of AIL segregants with benomyl. 

 

When the benomyl dosage was increased to 50 µM (high dose), another two QTL became 

significant, to give a total of five QTL (Figure 5.7). 

 

Figure 5.7: Benomyl response QTL detected between L-1374 and BY following high dose treatment of AIL 

segregants with benomyl. 
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In order to identify loci that mediate resistance to ketoconazole, the DBVPG6044×BY cross 

was examined. Intermediate dosage treatment with 25 µM ketoconazole revealed that the 

surviving cells harboured 12 QTL that contribute to this phenotype (Figure 5.8). 

 

Figure 5.8: Ketoconazole response QTL detected between DBVPG6044 and BY following intermediate dose 

treatment of AIL segregants with ketoconazole. 

 

In contrast to the benomyl findings, increasing the ketoconazole dose to 65 µM (high dose) 

produced fewer QTL—10 in total (Figure 5.9). Two of the QTL detected with the intermediate 

dose ketoconazole treatment (2.1 and 4.1) each split into two subpeaks. 
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Figure 5.9: Ketoconazole response QTL detected between DBVPG6044 and BY following high dose 

treatment of AIL segregants with ketoconazole. 

 

Examination of the Y12×BY cross to detect QTL responsible for ketoconazole sensitivity 

revealed a surprisingly high number of loci. Intermediate dose treatment uncovered a total of 

41 QTL underpinning the ketoconazole response in this cross (Figure 5.10). 
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Figure 5.10: Ketoconazole response QTL detected between Y12 and BY following intermediate dose 

treatment of AIL segregants with ketoconazole. 

 

Increasing the ketoconazole treatment to a high dosage (15 µM) increased the corresponding 

number of underlying QTL to 56 (Figure 5.11) 
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Figure 5.11: Ketoconazole response QTL detected between Y12 and BY following intermediate dose 

treatment of AIL segregants with ketoconazole. In some regions QTL are grouped together for the sake of 

clarity. 

 

 

5.3.5. Effects of varying drug treatment dosage on the underlying drug 

response QTL network 

Comparing the set of QTL that come up under different treatment regimens with the same 

drug and in the same cross served to reveal whether similar or different QTL networks were 

required to deal with the increasing levels of cellular stress produced by the drug. It should be 

noted that a common and confounding finding was that the same QTL peaks were sometimes 

evident under different forms of treatment, but these failed to reach the significance threshold 

in one treatment sample. This created difficulty in conclusively stating which QTL were shared 

between regimens. Therefore, the following analysis of QTL network conservation presents 

both the strict estimates of the number of shared QTL (i.e. where QTL reached significance in 

both samples being compared) and the more liberal estimates of the same (i.e. the QTL was 
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only significant in one of the two samples). A comparison between intermediate and high dose 

drug treatments is presented in Figure 5.12. 

 

Figure 5.12: Comparison of shared vs unique QTL between the intermediate and high treatment dose.  

Black numbers in the middle of the diagram represent the number of QTL shared between treatment types 

when the QTL were significant in both treatment regimens. The bracketed number represents the more 

liberal estimate of the total number of shared QTL—loci that only achieved significance under one 

treatment type. Meanwhile, completely unique loci are represented on the non-overlapping areas of the 

diagrams. 

 

In each cross, the majority of QTL were shared between the different drug treatment 

regimens. Nevertheless, in the case of benomyl resistance (tested by the UWOPS87-2421×BY 

cross) and ketoconazole sensitivity (tested in the Y12×BY cross), the high treatment dose led 

to more unique QTL arising (representing 26% and 24% of the total QTL in each cross, 

respectively). Conversely, in the case of ketoconazole resistance (tested in the 
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DBVPG6044×BY cross), there were more unique QTL under the intermediate treatment dose 

than under high concentration drug treatment.  

 

In addition to comparing the numbers of QTL between the “shared” (between intermediate 

and high dose treatment) and the “unique” groups, the average LOD scores of those groups 

were also compared. This could be informative as it can denote whether any of the groups in 

question harbour a greater proportion of minor QTL. This would be reflected in lower overall 

QTL scores and it could be argued that the QTL of that group are likely to have a weaker 

association or have less effect on the phenotype. This comparison is presented in Figure 5.13. 

 

Figure 5.13: Box and whisker representation of the average LOD scores of the QTL that were shared 

between drug treatment regimens versus the QTL that were unique to either one or the other regimen. 

“Benomyl R” represents the UWOPS87-2421×BY cross that tested benomyl resistance. “Ketoconazole R” 

describes the DBVPG6044×BY cross. “Ketoconazole S” denotes the Y12×BY cross. The L-1374×BY cross 

is not displayed as all its QTL were shared between treatments. Whiskers represent the 5th and 95th 

percentile. The top LOD score value is omitted from the “Ketoconazole S Unique” group (that of QTL 2.2 

high dose treatment; LOD 299) for the sake of clarity. Only QTL that fulfil the strict definition of “shared” 

(i.e. are detected as significant in both intermediate and high dose treatment) are presented in the graph. 
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Both the median average and the maximum scores tended to be higher in the “shared” group 

compared to the analogous “unique” group for the same cross. One exception to this was QTL 

2.2 from the high dose ketoconazole treatment in the Y12×BY cross, which had a LOD score 

of 299 (the highest score output by MULTIPOOL) and did not have a match in the intermediate 

dose treatment in the same cross. Nevertheless, because the QTL that were shared between 

treatment types had higher LOD scores and there was a greater number of QTL in that group, 

it was concluded that the majority of the QTL network remains conserved upon increasing 

doses of drug. 

 

5.3.6. Conservation of drug response QTL networks between individual 

strains 

A major question of this study was not only which QTL contribute to the variant drug 

response in individuals, but also whether those QTL networks are the same or different between 

individuals. In order to evaluate this, I compared the QTL networks that govern the two 

extremes of response to benomyl and ketoconazole. A comparison of the numbers of QTL that 

were either shared between the phenotypic extremes or were unique to one or the other extreme 

are presented in Figure 15.14. 
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Figure 5.14: Comparison of the number of shared vs unique QTL between the phenotypic extremes of drug 

response. The description of the numbering system is the same as described for Figure 15.12. 

 

There was a considerable amount of overlap between the resistant and sensitive end of the 

response both for benomyl and ketoconazole. For benomyl, at least 25% of QTL (or 40% if 

one uses the more liberal estimate of the number of shared QTL) were shared between the 

UWOPS87-2421×BY and the L-1374×BY crosses. For ketoconazole, at least 39% of QTL (or 

65% using the more liberal estimate) were shared between the DBVPG6044×BY cross and the 

Y12×BY cross. Nevertheless, substantial variation was evident in some crosses. The 

UWOPS87-2421×BY cross included all the QTL found in the L-1374×BY cross and also 

displayed an additional 12 QTL that were distinct to the L-1374×BY cross. Similarly, all but 

one of the QTL found to segregate in the DBVPG6044×BY cross were also present in the 

Y12×BY cross. However, the latter cross also contained 21 QTL for ketoconazole response 

that were unique to it. 
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In order to establish the importance of these cross-specific QTL, the average LOD scores 

between the “shared” QTL (i.e. QTL that were common to both drug responses for benomyl or 

ketoconazole) and the cross-specific QTL were compared. This is shown in Figure 5.15. 

 

Figure 5.15: Box and whisker representation of the average LOD scores of the QTL that were shared 

between the phenotypic extremes of drug response versus QTL that were unique to one of the phenotypic 

extremes. “Benomyl QTL: general” denotes QTL shared between the UWOPS87-2421×BY cross and the 

L-1374×BY cross. “Benomyl QTL: cross-specific” describes the extra UWOPS87-2421×BY set of unique 

QTL. “Ket. QTL: general” signifies QTL shared between the DBVPG6044×BY cross and the Y12×BY 

cross. “Ket. QTL: cross-specific” includes the single DBVPG6044×BY-specific QTL and the 21 Y12×BY-

specific QTL. Whiskers represent the 5th and 95th percentile. One LOD value (Y12×BY QTL 2.2 high dose 

treatment; LOD 299) is omitted for the sake of clarity. Only QTL that fulfil the strict definition of “shared” 

(i.e. were significant in both samples examined) are presented in the graph. 

 

Unlike with the drug-dose LOD score comparison, there was no clear-cut distinction 

between the “shared” QTL and the “cross-specific” QTL. In the benomyl response the shared 

QTL group had the higher median average and upper quartile limit showing that this group had 
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a greater portion of major-effect QTL that contribute to the benomyl response. Nevertheless, 

the cross-specific group possessed a higher maximal score. Meanwhile the ketoconazole 

response QTL displayed a different pattern. The “shared” QTL group had lower LOD statistics 

compared to the “cross-specific” group—in terms of median average, upper quartile limit and 

maximal score. This showed that most minor effect QTL were in   the “shared” group and the 

QTL of greater effect segregated with the different genetic backgrounds. 

 

Overall, there was a large number of cross-specific QTL that arose for both benomyl and 

ketoconazole response. There was no clear-cut pattern of LOD score differences between the 

general drug response QTL versus cross-specific QTL that applied to both drugs indicating 

differences in major and minor QTL contributions. It is concluded that individuals on opposite 

ends of the drug response phenotype (both for benomyl and for ketoconazole) have partially 

overlapping QTL networks that contribute to their respective phenotypes, but individual 

variation contributes to a considerable, if not the major portion of phenotypic variation. 

 

5.3.7. Potential causative genes within top-ranking QTL 

The final point of interest in this study was to explore potential causative genes within the 

five highest ranked QTL in each of the eight samples. It should be noted that this was not an 

unbiased search, as it is impossible to verify which genetic variants actually contributed to the 

phenotype without undertaking further experiments, such as allele swapping or hemizygocity 

analysis (Swinnen, Thevelein, et al., 2012). Therefore this analysis relies on previous 

knowledge to identify potential causes for the QTL. Nevertheless, an exploration of genomic 

annotations that fall within a QTL interval of interest can provide useful insight into the genetic 

underpinnings of a drug response phenotype and give leads for further exploration. 
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The QTL discussed in this section are summarised in Tables 5.6 and 5.7. QTL that are shared 

between samples are colour coded accordingly. 

Table 5.6: The top five benomyl QTL from each sample, ranked by LOD score. Cells sharing a colour 

denote that the QTL is the same between samples. 

Benomyl 

UWOPS87-2421×BY (Resistance) L-1374×BY (Sensitivity) 

Intermediate dose High dose Intermediate dose High dose 

QTL Max LOD QTL Max LOD QTL Max LOD QTL Max LOD 

15.2 31.28 15.2 67.97 5.1 47.36 5.1 60.08 

14.1 29.03 15.1 35.14 1.1 14.18 15.1 18.95 

15.1 19.12 12.1 25.63 15.1 7.86 1.1 15.66 

15.3 13.91 14.1 19.29   5.2 11.85 

1.1 8.59 15.3 18.29   14.1 9.47 

 

Table 5.7: The top five ketoconazole QTL from each sample, ranked by LOD score. Cells sharing a colour 

denote that the QTL is the same between samples. 

Ketoconazole 

DBVPG6044×BY (Resistance) Y12×BY (Sensitivity) 

Intermediate dose High dose Intermediate dose High dose 

QTL Max LOD QTL Max LOD QTL Max LOD QTL Max LOD 

2.2 29.86 2.2 25.21 5.1 76.49 2.2 299 

7.1 18.96 15.2 18.75 15.2 61.99 15.4 103.74 

13.1 17.9 4.1.b 8.16 2.3 50.04 5.1 93.1 

4.3 14.41 10.1 7.94 15.1 48.87 9.1 65.37 

4.1 12.53 12.1 7.64 2.2 41.72 16.3 58.23 

 

SGD annotations were used to assign likely candidate genes within each QTL interval. The 

candidate genes for the benomyl response are listed in Table 5.8, and an analogous list is 

provided for the ketoconazole response in Table 5.9. The genes whose mutation corresponded 

to a “benomyl resistance: decreased” or “benomyl resistance: increased” category on SGD 

were selected as candidate genes for benomyl response. Similarly, genes whose mutant 

phenotype corresponded to “triazole resistance: decreased/increased”, “fluconazole resistance: 

decreased/increased” or “miconazole resistance: decreased/increased” were selected as 

candidate genes underpinning ketoconazole response (SGD did not have a category for 
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“ketoconazole response”). Cells coloured dark blue were described by SGD as having 

involvement with the relevant drug. Cells in lighter blue are candidate genes not listed on SGD 

but that are proposed to be involved in drug response based on their function (as described in 

the introduction of this chapter). What is presented is not an exhaustive list of every gene within 

the selected QTL, but only potential causative genes based on their literature-based association 

to the mechanism of action of benomyl or ketoconazole. The overall functionality of the 

candidate genes and potential drawbacks of the selection approach of these genes is described 

in more detail in the discussion section of this chapter. 

Table 5.8: Candidate genes within the top-ranking QTL that may contribute to the benomyl response. 

Genes in dark blue are described on SGD as being linked to the benomyl response. Processes/functions that 

are represented more than once are denoted in the right hand column. Genes in light blue are proposed to 

be related to the benomyl response based on their function. 

QTL name 
ORF 

name 

Gene 

name 
Description Process/function 

UWOPS87-

2421×BY  

Intermediate 15.2 

YOR162C YRR1 Yeast Reveromycin-A Resistant Export pump 

YOR172W YRM1 
Yeast Reveromycin resistance 

Modulator 
Export pump 

UWOPS87-

2421×BY 

Intermediate 14.1 

YNL172W APC1 
Anaphase Promoting Complex 

subunit 
Cell division 

YNL175C NOP13 NucleOlar Protein rRNA 

YNL177C MRPL22 
Mitochondrial Ribosomal Protein, 

Large subunit 
rRNA 

YNL180C RHO5 Ras HOmolog  

YNL182C IPI3 Involved in Processing ITS2 Cell division 

YNL188W KAR1 KARyogamy 
Nuclear 

migration 

YNL197C WHI3 WHIskey Cell division 

UWOPS87-

2421×BY 

Intermediate 15.1 
YOL041C NOP12 NucleOlar Protein rRNA 

UWOPS87-

2421×BY 

Intermediate 15.3 

YOR233W KIN4 KINase Cell division 

YOR234C RPL33B 
Ribosomal Protein of the Large 

subunit 
rRNA 

YOR244W ESA1   
Chromosome 

segregation 

YOR249C APC5 Anaphase Promoting Complex Cell division 

YOR256C TRE2 Transferrrin REceptor like  

YOR257W CDC31 Cell Division Cycle Cell division 

YOR265W RBL2 Rescues Beta-tubulin Lethality Tubulin 

YAL020C ATS1 Alpha Tubulin Suppressor Tubulin 
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UWOPS87-

2421×BY 

Intermediate 1.1 

YAL026C DRS2 Deficiency of Ribosomal Subunits rRNA 

YAL040C CLN3 CycLiN Cell division 

YAL046C AIM1 
Altered Inheritance of 

Mitochondria 
 

YAL047C SPC72 Spindle Pole Component Cell division 

UWOPS87-

2421×BY High 

12.1 

YLR102C APC9 Anaphase Promoting Complex Cell division 

YLR103C CDC45 Cell Division Cycle Cell division 

L-1374×BY 

Intermediate 5.1 
YER007W PAC2 Perish in the Absence of Cin8p Tubulin 

L-1374×BY 

High 5.2 

YER095W RAD51 RADiation sensitive Cell division 

YER106W MAM1 
Monopolar microtubule 

Attachment during Meiosis I 
Cell division 

YER110C KAP123 KAryoPherin 

Chromosome 

segregation or 

rRNA 

Table 5.9: Candidate genes within the top-ranking QT that may contribute to the ketoconazole response. 

Genes in dark blue are described on SGD as being linked to the benomyl response. Processes/functions that 

are represented more than once are denoted in the right hand column. Genes in light blue are proposed to 

be related to the benomyl response based on their function. 

QTL name 
ORF 

name 

Gene 

name 
Description Process/function 

DBVPG6044×BY 

Intermediate 2.2 

YBR147W RTC2 Restriction of Telomere Capping 
Vacuole/ 

endosome 

YBR159W IFA38  Lipid 

DBVPG6044×BY 

Intermediate 7.1 
YGL173C XRN1 eXoRiboNuclease  

DBVPG6044×BY 

Intermediate 13.1 

YML071C COG8 
Conserved Oligomeric Golgi 

complex 

Vacuole/ 

endosome 

YML072C TCB3 
Three Calcium and lipid Binding 

domains (TriCalBins) 
 

YML075C HMG1 
3-Hydroxy-3-MethylGlutaryl-

coenzyme a reductase 
Lipid 

YML078

W 
CPR3 

Cyclosporin-sensitive Proline 

Rotamase 
 

DBVPG6044×BY 

Intermediate 4.3 

YDR484W VPS52 Vacuolar Protein Sorting 
Vacuole/ 

endosome 

YDR487C RIB3 RIBoflavin biosynthesis Mitochondria 

YDR490C PKH1 Pkb-activating Kinase Homolog  

YDR493W MZM1 Mitochondrial Zinc Maintenance Mitochondria 

YDR495C VPS3 Vacuolar Protein Sorting 
Vacuole/ 

endosome 

YDR496C PUF6 
PUmilio-homology domain 

Family 
 

DBVPG6044×BY 

Intermediate 4.1 

YDL004W ATP16 ATP synthase Mitochondria 

YDR007W TRP1 TRyPtophan  

YDR011W SNQ2 
Sensitivity to 4-NitroQuinoline-N-

oxide 
Export pump 
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YDR020C DAS2 Dst1-delta 6-Azauracil Sensitivity  

YDR031W MIX14 
Mitochondrial Intermembrane 

space CX(n)C motif protein 
Mitochondria 

DBVPG6044×BY 

High 15.2 

YOR231W MKK1 
Mitogen-activated protein Kinase-

Kinase 
Cell wall 

YOR232W MGE1 Mitochondrial GrpE Mitochondria 

DBVPG6044×BY 

High 10.1 

YJL066C MPM1 
Mitochondrial Peculiar Membrane 

protein 
Mitochondria 

YJL063C MRPL8 
Mitochondrial Ribosomal Protein, 

Large subunit 
Mitochondria 

YJL062W-

A 
COA3 Cytochrome Oxidase Assembly Mitochondria 

YJL062W LAS21 Local Anestheticum Sensitive Cell wall 

YJL054W TIM54 
Translocase of the Inner 

Mitochondrial membrane 
Mitochondria 

DBVPG6044×BY 

High 12.1 

YLR154W

-C 
TAR1 

Transcript Antisense to Ribosomal 

RNA 
 

YLR164W SHH4 SDH4 Homolog  

YLR170C APS1 
clathrin Associated Protein 

complex Small subunit 

Vacuole/ 

endosome 

Y12×BY 

Intermediate 5.1 

YEL013W VAC8 VACuole related 
Vacuole/ 

endosome 

YEL012W UBC8 UBiquitin-Conjugating  

YEL003W GIM4 
Gene Involved in Microtubule 

biogenesis 
 

Y12×BY 

Intermediate 15.2 

YOR043W WHI2 WHIskey  

YOR049C RSB1 
Resistance to Sphingoid long-

chain Base 
Lipid 

Y12×BY 

Intermediate 15.1 

YOL023W IFM1 Initiation Factor of Mitochondria Mitochondria 

YOL018C TLG2 
T-snare affecting a Late Golgi 

compartment 

Vacuole/ 

endosome 

Y12×BY 

Intermediate 2.2 

YBR037C SCO1 
Suppressor of Cytochrome 

Oxidase deficiency 
Mitochondria 

YBR039W ATP3 ATP synthase Mitochondria 

YBR041W FAT1 FATty acid transporter Lipid 

Y12×BY 

High 2.2 

YBL005W PDR3 Pleiotropic Drug Resistance 

transcription 

factor for 

export pumps  

YBR003W COQ1 COenzyme Q Mitochondria 

YBR006W UGA2 Utilization of GAba  

YBR008C FLR1 FLuconazole Resistance Export pump 

Y12×BY 

High 9.1 

YIL112W HOS4 Hda One Similar  

YIL111W COX5B Cytochrome c OXidase Mitochondria 

Y12×BY 

High 16.3 

YPL002C SNF8 Sucrose NonFermenting  

YPR002W PDH1 prpD Homolog Mitochondria 

YPR004C AIM45 
Altered Inheritance rate of 

Mitochondria 
Mitochondria 
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YPR009W SUT2 Sterol UpTake Lipid 

 

5.4 Discussion 

 

This chapter identified the QTL that gave rise to the drug response phenotypes of the four 

SGRP strains of interest—those being UWOPS87-2421 which exhibited benomyl resistance, 

L-1374 which was benomyl sensitive, DBVPG6044 which displayed resistance to 

ketoconazole and Y12 which was sensitive to ketoconazole. The application of NGS-BSA as 

a QTL mapping technique proved to be highly successful to this end. However, prior to QTL 

mapping it was necessary to create a molecular marker map of the parental strains used in each 

cross.  Hybridising microarrays are often used for this end but they suffer from shortcomings 

such as being limited to the set of probes represented on the array (both in terms of identity and 

number) and not being able to identify variants directly (Gresham et al., 2008; Winzeler et al., 

1998). NGS provides a superior alternative for marker discovery as it can overcome such 

limitations (Davey et al., 2011; Schneeberger, 2014; Swinnen, Thevelein, et al., 2012). Whole 

genome sequencing can theoretically uncover the maximum number of variants present 

between strains and  this can be particularly advantageous when QTL mapping is combined 

with the use of AILs, due to the reduced LD present (Gonzales et al., 2014). 

 

The use of AILs has been advantageous for enhancing the localisation power of QTL 

studies. Parts et al. have reported that F12 intercross segregants possessed a doubling of their 

genetic map size due to introduction of more recombination events, with a subsequent 2.5 fold 

reduction of observed QTL interval size (Parts et al., 2011). Cubillos et al. estimated that their 

four-parent AILs should have reduced the 3-LOD QTL interval size from 64 kb in F1 to 6 kb 

in F12 (Cubillos et al., 2013). However, the actual median QTL interval observed in their study 
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was 27.8 kb which was explained by possible linkage between QTL peaks resulting in a wider 

variance in the observed peak, or from non-uniform recombination. These factors are likely to 

apply to the current study as well where a 3-LOD QTL gave an estimated median interval of 

43 kb. The 3-LOD cut off may be an unnecessarily large an interval since others have suggested 

a 1.5-LOD estimate (Broman, 2001) which would narrow the numbers of genes subtending the 

QTL peak considerably.   It should also be noted that both the previous studies used a prolonged 

selection to achieve their phenotypes of interest. Such prolonged selection maximises the allele 

frequency differences between samples, which may contribute to better defined QTL peaks and 

thus a smaller QTL interval.  Also, sequencing individual segregants to directly assess the 

effect of additional crossings on the reduction of QTL interval within the particular crosses 

used here may have more refined QTL intervals, an option that was not available owing to time 

constraints for the studies in this thesis. Nevertheless, the 43 kb interval of the current study 

still presents a reduction of the predicted 64 kb F1 interval estimated by Cubillos et al. and 

indicates that the AIL procedure improved the QTL resolution. 

 

Comparison with the literature showed a reasonable overlap between this and other studies 

that performed QTL mapping for benomyl or ketoconazole response. Ehrenreich et al. 

investigated the effect of varying genetic backgrounds on QTL networks controlling benomyl 

response (Ehrenreich et al., 2012). They found a total of 26 QTL that contribute to benomyl 

response when comparing four genetic backgrounds. Of these, three (Chr. I position 74 787, 

Chr. XIV pos. 260 522 and Chr. XV pos. 640 639) were found within the UWOPS87-2421×BY 

cross in the current study. An additional five QTL (Chr. III pos. 529 546, Chr. IV 474 860, Chr. 

V pos. 322 550, Chr. XII pos. 312 033 and Chr. XV 215 694) lay near benomyl response QTL 

in this study (i.e. within 50 kb). These could potentially represent similar or overlapping QTL 

with the difference in position arising due to different analysis methodology between the 
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studies. In a different study Perlstein et al. reported a QTL for ketoconazole response in the 

vicinity of the gene SWH1 on Chr. I (Perlstein et al., 2007). This is likely to correspond to the 

Chr. I QTL (position 204 200-226 400) found for ketoconazole in the Y12×BY cross but this 

QTL is not reported directly in the current study as it is subtelomeric. Another study that 

examined genome-wide association to ketoconazole response in a panel of 100 yeast strains 

found a major contribution from an extraneously-acquired copy of PDR5 from S. paradoxus 

and a smaller contribution from a locus at the beginning of Chr. XI (position 115 888; (Strope 

et al., 2015). However, these loci were not found in the current study. Overall, the fact that at 

least a part of the QTL found in this study were supported by literature was a good validation 

of the methodology used. However, it is not unexpected that there was considerable variation 

found between studies because different genetic backgrounds have different genetic variants 

segregating between them and may uncover a different set of contributing loci to a phenotype 

in question. (Ehrenreich et al., 2012). Thus this study expands current knowledge, as it 

contributes additional information regarding the genetics of benomyl and ketoconazole 

response. The effect of genetic background on QTL detection is discussed in greater detail 

below. 

 

When the effect of increasing drug dosage on the underlying QTL network was studied it 

appeared that the majority of the network remained constant between treatment regimens, and 

the additional unique loci that arose tended to have lower LOD scores overall i.e. were 

relatively minor contributors. One extreme outlier to this pattern was Y12×BY QTL 2.2 was 

detected under high dose ketoconazole treatment with a LOD score of 299 but was not detected 

under intermediate dose treatment. In general, when loci unique to drug concentrations did 

appear, their numbers generally increased with increasing drug dosage. Swinnen et al. observed 

a similar pattern when examining the QTL required to tolerate varying levels of ethanol 
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(Swinnen, Schaerlaekens, et al., 2012). This could be explained by additional cellular 

mechanisms becoming important to help cope with the increased level of cellular stress. An 

independent study from our laboratory that examined the effect of increased protein misfolding 

stress in the endoplasmic reticulum (ER) upon the activation of the unfolded protein response 

(UPR) displayed findings to corroborate this hypothesis (Low, 2013). This study found that 

under increased ER stress, distinct and functionally different genetic interaction networks are 

required to ensure cell viability compared to those networks that are needed under basal 

(unstressed) conditions. It should be noted that in the case of the DBVPG6044×BY cross, a 

higher dose of ketoconazole led to fewer QTL being detected (a finding that was in contrast to 

the other three crosses examined). It can be observed that a number of peaks that reached 

significance upon intermediate-dose treatment with ketoconazole (specifically QTL 4.2, 7.1, 

7.2, 8.1, 12.1 and 16.1, Figure 5.8) failed to do so under high-dose treatment (although their 

peaks could still be observed under the threshold of significance). It is not clear why this 

phenomenon occurred, but may reflect different sets of cellular pathways playing a role in 

response to intermediate vs high drug dose. Further exploration into the unique QTL required 

following higher dose drug treatment is thus likely to be informative in further elucidating how 

the cell copes with therapeutic stress. 

 

It is concluded here that QTL networks of two individual strains that fall on the extreme 

ends of a single phenotype (e.g. benomyl response) partially overlap but that there are 

nevertheless strain-specific QTL that form important contributions to the phenotype. The latter  

may be context-dependent QTL  only  detectable in   particular cross and environment 

combinations arising from epistatic or gene-environment interactions (Mackay et al., 2009). 

An in-depth study that investigated   stress response in S. cerevisiae concluded that such QTL 

comprise most of the determinants of a phenotype, but tend to have lower LOD scores and 
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explain a smaller portion of phenotypic variance (Cubillos et al., 2011). Another study 

concluded that the phenotype being investigated is a better predictor of the QTL network than 

is the strain cross that is being used (Ehrenreich et al., 2012). By contrast, the current study 

may add additional information to this exploration of strain-specific phenotype contribution, 

in half of the strains tested, cross-specific QTL make up the majority of the QTL network. 

Furthermore, in the case of ketoconazole-response QTL, these cross-specific QTL also have 

higher overall LOD scores indicating that alleles specific to individual strains may have a 

considerable contribution to phenotype. A study of in-laboratory evolution lends support to this 

hypothesis, as it discovered alternate QTL networks can arise to deal with the same stressor 

(alkali stress) (Romano et al., 2010). When comparing the contribution of the alleles from 

multiple strains to a single phenotype other studies have shown that most cases of the 

contribution are made by alleles that are private to one strain (an occurrence called “allelic 

singletons”) (Cubillos et al., 2013; Ehrenreich et al., 2012). This notion is supported by findings 

in different human populations that appear to have evolved carrying rare and lineage-specific 

alleles that have a high level of functional phenotypic contribution (Abecasis et al., 2012; 

Keinan & Clark, 2012; Tennessen et al., 2012). 

 

The present study attempted to evaluate potential causative genes within a selection of the 

highest ranking QTL (in terms of LOD score). These putative causative genes were selected 

on the basis of known literature relationships to the mechanism of action of the drug in 

question. Such literature relationships were selected based on previous knowledge of the 

mechanisms involved in response to benomyl or ketoconazole, or by selecting genes whose 

mutation (usually null mutation) was reported to cause resistance or sensitivity to benomyl or 

azoles, as reported in SGD. It has to be appreciated that such an analysis is prone to 

confirmation bias in the sense that no novel mechanism can be derived for response to benomyl 
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or ketoconazole. Another potential limitation is that given the large number of total genes and 

ORFs considered (the top-ranked intervals considered in Section 5.3.6 contained a total of 

approximately 550 genes) and the fact that both benomyl and ketoconazole affect fundamental 

cellular processes (with multiple interacting processes described in literature), it may be 

expected that putative candidate genes may appear in the QTL intervals by chance. The 

presented lists of candidate genes are not intended as a definitive list of causative factors, but 

rather as a speculation of what those causative factors may be. It also cannot be established 

with certainty that the causative polymorphism underlying a QTL lies in a gene, but may be 

extragenic (such as in a promoter or terminator region). Other factors (such as how close a gene 

lies to the centre of the QTL interval) may provide information for likely causative genes 

(however, the reliability of such measures may be limited by the noise in the allele frequency 

data). Independent analysis (such as hemizygocity analysis) would be required to establish the 

causative factors underlying each QTL. 

In depth examination of the top QTL within each sample indicated that each QTL contained 

at least one or several genes that could be linked to modulating the activity of the drug. 

However, the following discussion regarding these genes is a speculative one of potential 

mechanisms involved, as without further validation it is impossible to definitively establish 

which genes are causative. The top QTL for the benomyl response contained YRM1 and YRR1 

(Cui et al., 1998; Lucau-Danila et al., 2003). These are paralogous transcription factors that 

control the expression of various PDR genes, including SNQ2—an export pump with 

specificity for benomyl (Rogers et al., 2001). This indicates that in the strains used for this 

study, altered drug export may be one basis for the cell to cope with benomyl stress. 

Additionally, the benomyl response QTL contained multiple genes involved in cell cycle 

progression and the spindle checkpoint—APC1, APC5, APC9, CDC31, CDC45, CLN3, KIN4 

and WHI3 (Chen & Madura, 2008; D'Aquino et al., 2005; Nash et al., 1988; Schladebeck & 
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Mosch, 2013; Tye, 1999; Zachariae & Nasmyth, 1999). These processes are well-linked to 

microtubule function within the literature. As described in Chapter 1 (Section 1.4.2), yeast 

microtubules play a central role in mediating chromosome and nuclear movement during 

meiosis and mitosis (Winsor et al., 1997). The interference of benomyl with microtubule 

function thus interrupts these processes and likely triggers cell death through apoptosis (Jordan 

et al., 2004). Genes involved in histone formation, chromosome and DNA stability, spindle 

pole body and microtubule attachment to chromosomes (ESA1, KAP123, MAM1, RAD51 and 

SPC72) were also represented (Clarke et al., 1999; Mosammaparast et al., 2002; Soues & 

Adams, 1998; Sung, 1994; Toth et al., 2000). As also described in Chapter 1, these components 

are generally related to the attachment and functioning of the mitotic spindle and the separation 

of chromosomes and chromatids. Incorrect functioning of these aspects leads to cell cycle block 

and eventual apoptosis, as described above. ATS1, PAC2 and RBL2, genes involved in tubulin 

formation and functionality, were also present in the QTL intervals (Archer et al., 1995; Hoyt 

et al., 1997; Kirkpatrick & Solomon, 1994). These are related to the primary target of benomyl. 

Finally DRS2, MRPL22, NOP12, NOP13 and RPL33B may add additional support to the link 

between rRNA/ribosome biogenesis and benomyl activity that was described in Section 5.1.1 

(Graack & Wittmann-Liebold, 1998; Planta & Mager, 1998; Ripmaster et al., 1993; Wu et al., 

2001). The functionality of this link is not clear (if it is confirmed), but could be a promising 

avenue for further study. 

 

The top ketoconazole response QTL included multiple candidate genes that were linked to 

ketoconazole activity including several export pumps, namely FLR1, and SNQ2 and one of the 

transcription factors that acts as a master regulator of these pumps (PDR3). The contribution 

of PDR3 and SNQ2 is debatable. PDR3 was only found on the very periphery of the Y12×BY 

high dose QTL 2.2 and may not be the causative gene in that locus and SNQ2 does not have 
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high specificity for ketoconazole observations in the current work and (Rogers et al., 2001). 

On the other hand, FLR1 may be involved in ketoconazole response, as it was positioned in the 

centre of its QTL and is well established to have a role in azole resistance (Alarco et al., 1997). 

Therefore, as with benomyl, if the causative genes are verified then variability in drug export 

may lead to individual strain variation. A number of genes with roles in synthesis and transport 

of ergosterol and other membrane lipid components (Basson et al., 1986; Beaudoin et al., 2002; 

Kihara & Igarashi, 2002; Ness et al., 2001; Zou et al., 2002) were also found associated with 

the QTL identified here. These were FAT1, HMG1, IFA38, RSB1 and SUT2. These could be 

related to the role azoles have in ergosterol synthesis, although a further discussion about other 

possible roles of some of these genes is provided in Chapter 6. Mitochondrial function genes 

(Ashby & Edwards, 1990; Atkinson et al., 2010; Boyer, 1997; Deloche & Georgopoulos, 1996; 

Gabriel et al., 2007; Garofalo et al., 2003; Geier et al., 1995; Graack et al., 1998; Inadome et 

al., 2001; Jin et al., 2003; Kerscher et al., 1997; Lopes et al., 2010; Ohlmeier et al., 2004; 

Schulze & Rodel, 1988) were also found—specifically AIM45, ATP3, ATP16, COA3, COQ1, 

COX5B, IFM1, MGE1, MIX14, MPM1, MRPL8, MZM1, PDH1, RIB3, SCO1 and TIM54. The 

presence of these genes in the QTL may suggest the previously described link between 

mitochondria function and azole toxicity, as described in Chapter 1. It is thought that 

mitochondrial function may be involved in the formation of toxic ketosteroids that form the 

main inhibitory effect of azoles (Kontoyiannis, 2000). The genes APS1, RTC2, TLG2, VAC8 

VPS3 and VPS52 suggests that vacuolar function or trafficking to the vacuole may play a role 

in ketoconazole response (Cowles et al., 1997; Holthuis et al., 1998; Jezegou et al., 2012; 

Raymond et al., 1990; Subramanian et al., 2006). This link is a fairly recent discovery; 

ergosterol is thought to modulate vacuolar function and influence the viability of the cell 

through vacuolar-mediated pH changes (Zhang & Rao, 2010). Finally, LAS21 and MKK1 

known to be involved in cell wall integrity (Benachour et al., 1999; Heinisch et al., 1999) could 
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also be contributors to the variable ketoconazole response in the strains investigated here. Links 

between cell wall integrity and azole function have been described earlier (see Introduction of 

this chapter). A relationship between the cell wall and the membrane may explain the synergy 

between echinocandins (cell wall targeting agents) and plasma membrane targeting agents 

which include azoles and polyenes (Chen et al., 2011). 

 

Overall, the finding that the discovered QTL subtended genes that were consistent with 

previous findings of off-target effects of benomyl and ketoconazole was another promising 

indication of the validity of this study.  However, further validation would be needed to confirm 

that genes within these processes that are discussed in this thesis are indeed the ones that 

underlie the QTL found in this study. Allelic exchange and hemizygocity analysis are 

demonstrated avenues for further validation as in previous yeast QTL studies (Steinmetz et al., 

2002; Swinnen, Thevelein, et al., 2012). As previously discussed in this chapter, independent 

of the actual genes that may comprise a QTL, QTL of strain-specific crosses make up the 

majority of the QTL networks defined here. Furthermore, in the case of ketoconazole-response 

QTL, these “cross-specific QTL” also have higher overall LOD scores showing that alleles 

specific to individual strains make a considerable contribution to phenotype. 
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Chapter 6: General Discussion 

 

This thesis aimed to investigate the genetic basis of individual variation in drug response in 

yeast. Individual variation was modelled by natural strains of Saccharomyces cerevisiae that 

originated from the Saccharomyces Genome Resequencing Project (the SGRP collection). The 

strains in the SGRP collection had slightly higher divergence (based on SNPs) than occurs 

between human individuals (0.5-0.8% divergence within the SGRP strains compared to 0.1% 

divergence between human individuals (Levy et al., 2007; Song et al., 2015; Strope et al., 2015; 

The 1000 Genomes Project Consortium, 2010; Wang et al., 2008)). Nevertheless, it was 

considered an appropriate approximation of individuality, as the SGRP strains are members of 

the same species, and the divergence between the yeast strains does not exceed the divergence 

between humans and their closest relatives, the chimpanzee (1.24% (Ebersberger et al., 2002)). 

The SGRP collection was first dose response tested against the two antifungal agents, benomyl 

and ketoconazole which both have well-characterised primary cellular targets. This revealed 

that different natural S. cerevisiae isolates display a continuous range of drug response 

phenotypes (that is, resistance or sensitivity to each agent tested, with resistance and sensitivity 

being defined as relative to the control BY genetic background). If the primary drug target was 

the main (or only) component to govern drug response a bimodal distribution of this phenotype 

would be expected, which was not observed. This indicated that drug response in this instance 

is a quantitative trait controlled by multiple quantitative trait loci (QTL). In-depth investigation 

using four strains of interest (one resistant and one sensitive strain to each of the two drugs) 

revealed that most of the variance in drug response was explained by genetic factors, with 

multiple QTL likely contributing. QTL mapping using next-generation sequencing bulk 

segregant analysis (NGS-BSA) revealed the identity of these QTL and confirmed the 
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hypothesis that the benomyl and ketoconazole responses represented quantitative traits in the 

strains of interest. Furthermore, individual genetic variation was compared in strains displaying 

opposite phenotypes to drugs revealing significant QTL in the comparisons. The approach and 

outcomes of this dissertation have potential implications not only to the development of 

improved antifungal agents but also in terms of general drug therapy, as discussed below. 

 

6.1. Relation of heritability estimates to the final QTL network 

Knowing the actual QTL network underlying drug response allowed for evaluation of the 

heritability measures performed in Chapter 4. The ramifications of this statement are further 

discussed below but to aid the discussion the main QTL comparisons performed in the current 

work are re-iterated here: Four SGRP strains were selected on the basis of drug resistance or 

sensitivity relative to the laboratory strain BY. These were L-1374 that was sensitive to 

benomyl compared to BY; UWOPS87-2421 that was resistant to benomyl compared to BY; 

Y12 that was sensitive to ketoconazole compared to BY; DBVPG6044 that was resistant 

ketoconazole compared to BY. The estimates of transgressive segregation were compared to 

actual allele frequencies generated during the analysis of the NGS-BSA experiment in Chapter 

5. Transgressive segregation is presumed to arise when a phenotypically inferior strain 

harbours alleles that contribute to the superior phenotype (or vice versa). The UWOPS87-

2421×BY cross had considerably higher levels of transgressive segregation compared to the L-

1374×BY or the Y12×BY crosses, suggesting that in the UWOPS87-2421×BY cross a 

substantial proportion of QTL alleles contributing to the benomyl response phenotype 

originated from the parent that showed the opposite overall phenotype (e.g. an allele granting 

benomyl resistance came from the benomyl-sensitive BY parent). This counter-intuitive 

conclusion was supported by the QTL mapping. Upon intermediate dose benomyl treatment, 

only three of the total nine QTL had the UWOPS87-2421 allele increasing in frequency relative 
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to the control pool. In addition, the loci at which the UWOPS87-2421 allele contributed to the 

benomyl resistance had a lower median LOD score than those loci where the BY allele 

contributed (4.7 for the former versus 12.7 for the latter). The same pattern was evident in that 

cross upon high dose benomyl treatment; only six of the total 18 QTL showed an UWOPS87-

2421 allele increase in abundance and those loci had a median LOD of 7.3 compared to the 

16.5 median LOD score of loci where the BY allele appeared to be contributing. The Y12×BY 

cross showed the next highest level of transgressive segregation (9.8-13.3%) in terms of 

ketoconazole response, but only on the resistant end.  As previously discussed, this pattern may 

be caused by an unequal distribution of epistatic interactions occurring within that cross. 

Evaluation of which parental allele contributes within each QTL indicated that under both 

intermediate and high dose treatment there was almost an equal distribution of parental alleles 

and LOD scores. However, the results of the L-1374×BY cross were confounding—the alleles 

of the QTL with the highest LOD that contributed to the relative benomyl resistance in that 

cross appeared to originate from the sensitive L-1374 parent. However, it has to be taken into 

consideration that the transgressive segregation estimates were done in haploids while the QTL 

mapping was performed in diploids. Diploid cells may contain additional dominance effects 

(which Chapter 4 established are also likely to be present in the crosses), making the relation 

between the portion of transgressive segregants and the actual QTL mapped less 

straightforward.  

 

It was also determined that the “estimation assay” for the number of loci responsible for the 

drug response phenotype was often inaccurate, probably due to being overly simplistic. This 

estimation was based on relating the fraction of segregants showing parental phenotype to the 

number of loci responsible (n) through the formula 1/2n. A comparison between this estimation 

and the actual number of loci found is presented below in Table 6.1. 
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Table 6.1: Comparison of estimated number of drug response loci to actual number found. The 

DBVPG×BY cross is not represented as no estimate of locus number was obtained for it. 

 Estimated # loci Actual # loci 

UWOPS87-2421×BY 
Intermediate dose treatment 

1-1.5 9 

UWOPS87-2421×BY 
High dose treatment 

0.8-1.5 18 

L-1374×BY 
Intermediate dose treatment 

2.8-4.9 3 

L-1374×BY 
High dose treatment 

2.3-7.3 5 

Y12×BY 
Intermediate dose treatment 

1.9-5.9 40 

Y12×BY 
High dose treatment 

2.3-7.2 59 

 

The number of loci for the L-1374×BY cross fell within the expected range; however for 

the UWOPS87-2421×BY and the Y12×BY crosses the estimates were grossly underestimated. 

One explanation may be that the 1/2n “estimation assay” assumes that the loci have 

approximately equal contribution to the phenotype, which may not be the case for the QTL in 

that study (Wilkening et al., 2014). Another limitation of the “estimation assay” in the current 

dissertation was only a maximum of 308 segregants were used to assess the phenotype fraction, 

while the actual QTL mapping was performed with 100 000 segregants. It is well known that 

the larger the population used, the greater the detection power of the assay (Bloom et al., 2013). 

Thus the “estimation assay” may simply be underpowered to produce an accurate estimation 

of the number of loci involved.   On the other hand, the QTL mapping results may contain false 

positives, thus over-estimating the actual number of QTL responsible (this is discussed in 

greater detail under limitations and future directions). Nevertheless, the 1/2n “estimation assay” 

has been successfully used to determine if a trait was multigenic or monogenic and has been 

instrumental in this study to establish drug response as a multigenic trait as it has in others 

(Deutschbauer et al., 2005; Gerke et al., 2006; Steinmetz et al., 2002; Wilkening et al., 2014). 
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6.2. Potential relation between QTL mapping and chemogenomic 

screening 

A comparison was made between the genes contained within the top-ranking QTL and those 

that were listed in SGD from results of chemogenomic screens (refer to Tables 5.8 and 5.9 for 

the list of genes encapsulated within QTL that were also found in those screens). In such 

screens, the deletion mutant array (DMA; refer to Section 1.3.1) is treated with a low dose of 

the drug of interest. The drug-treated DMA is then observed for hypersensitive or hyper 

resistant null deletion mutants. Drug sensitive mutants typically reveal synthetic enhancement 

interactions between the drug target and the gene product that would otherwise be produced by 

the null mutant. These interactions are thought to arise because the drug target and the other 

gene act in two “redundant” pathways that both contribute to an essential function. 

Alternatively, the gene product of the null mutant may be required to reduce the inhibitory 

effect of the drug (for example, by drug export). On the other hand, drug resistant mutants may 

indicate that their normal gene product is typically   required to enhance the action of the drug—

for instance, by import or activation (Boone et al., 2007; Dekker et al., 2013).  

 

The overlapping findings between QTL genes and genes found as hits in chemogenomic 

screens for benomyl response are shown in Table 6.2. 
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Table 6.2: Genes found within the top-ranking benomyl-response QTL that are reported in chemogenomic 

screens in the literature 

ORF name Gene name 
Benomyl resistance of 

null mutant 
Source 

YAL046C AIM1 Decreased (Brown et al., 2006) 

YOR257W CDC31 Decreased (van Pel et al., 2013) 

YOR244W ESA1 Decreased (van Pel et al., 2013) 

YER110C KAP123 

Decreased 

 

(Dudley et al., 2005; Ptak et al., 

2009) 

Increased (Brown et al., 2006) 

YNL175C NOP13 Decreased 
(Brown et al., 2006; Parsons et 

al., 2004) 

YER007C PAC2 Decreased (Hoyt et al., 1997) 

YOR265W RBL2 Decreased (Brown et al., 2006) 

YAL047C SPC72 Decreased (Parsons et al., 2004) 

YOR256C TRE2 Decreased (van Pel et al., 2013) 

YAL020C ATS1 Increased (Brown et al., 2006) 

YAL040C CLN3 Increased (Brown et al., 2006) 

YAL026C DRS2 Increased (Brown et al., 2006) 

YNL177C MRPL22 Increased (Brown et al., 2006) 

YOL041C NOP12 Increased (Brown et al., 2006) 

YER095W RAD51 Increased (Brown et al., 2006) 

YNL180C RHO5 Increased (Brown et al., 2006) 

YOR234C RPL33B Increased (Brown et al., 2006) 

 

Unfortunately, based on this table, it is difficult to make conclusions about the relationship 

the benomyl-response QTL have to the target of benomyl. The benomyl response QTL genes 

that fall into the processes described in Chapter 5 are more or less evenly distributed between 

the group in which deletion of the gene causes sensitivity (i.e. the potential “redundant 

pathway” genes) and the group in which gene deletion leads to resistance (i.e. genes that may 

mediate the cell inhibitory effects of benomyl). The fact that a large number of genes (804) are 

annotated on SGD as leading to benomyl resistance or sensitivity (upon deletion) may also 

limit this analysis—the fact that the QTL contain such “hits” from chemogenomic screens may 

be coincidental. An extended investigation into additional benomyl response QTL as well as 

further confirmation of causative genes within each QTL interval (discussed later in this 

chapter) could lead to a clearer picture. 
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The overlapping findings between genes within QTL responsible for ketoconazole response 

and genes found as hits in chemogenomic screens for azole response are shown in Table 6.3. 

 

Table 6.3: Genes found within the top-ranking ketoconazole-response QTL that are reported in azole 

response chemogenomic screens in the literature 

ORF name Gene name 
Azole resistance of null 

mutant 
Source 

YLR170C APS1 Decreased (triazoles) (Hoepfner et al., 2014) 

YBR003W COQ1 
Decreased (fluconazole 

and miconazole) 
(Hoepfner et al., 2014) 

YBR041W FAT1 Decreased (miconazole) (Vandenbosch et al., 2013) 

YBR008C FLR1 Decreased (fluconazole) (Broco et al., 1999) 

YML075C HMG1 Decreased (fluconazole) (Hoepfner et al., 2014) 

YJL062W LAS21 Decreased (miconazole) (Vandenbosch et al., 2013) 

YOR231W MKK1 Decreased (fluconazole) (Kapitzky et al., 2010) 

YDR490C PKH1 Decreased (fluconazole) (Kapitzky et al., 2010) 

YDR496C PUF6 Decreased (fluconazole) (Kapitzky et al., 2010) 

YPL002C SNF8 Decreased (miconazole) (Vandenbosch et al., 2013) 

YOL018C TLG2 Decreased (fluconazole) (Kapitzky et al., 2010) 

YDR007W TRP1 Decreased (miconazole) (Thevissen et al., 2007) 

YDR495C VPS3 Decreased (miconazole) (Vandenbosch et al., 2013) 

YDR484W VPS52 Decreased (fluconazole) (Parsons et al., 2004) 

YOR043W WHI2 

Decreased (fluconazole 

and miconazole) 
(Vandenbosch et al., 2013) 

YML071C COG8 Increased (fluconazole) (Kapitzky et al., 2010) 

YML078W CPR3 Increased (miconazole) (Vandenbosch et al., 2013) 

YDR020C DAS2 Increased (miconazole) (Vandenbosch et al., 2013) 

YEL003W GIM4 Increased (fluconazole) (Kapitzky et al., 2010) 

YIL112W HOS4 Increased (fluconazole) (Kapitzky et al., 2010) 

YDR493W MZM1 Increased (miconazole) (Vandenbosch et al., 2013) 

YBR147W RTC2 Increased (fluconazole) (Anderson et al., 2003) 

YML072C TCB3 Increased (fluconazole) (Kapitzky et al., 2010) 

YEL012W UBC8 Increased (fluconazole) (Kapitzky et al., 2010) 

YBR006W UGA2 Increased (miconazole) (Vandenbosch et al., 2013) 

YEL013W VAC8 Increased (fluconazole) (Kapitzky et al., 2010) 

YGL173C XRN1 Increased (fluconazole) (Kapitzky et al., 2010) 

 

Generally, the picture for ketoconazole was as incomplete as the one for benomyl and the 

same discussion points regarding additional analysis and functional confirmation apply. 

However, it is interesting that individual deletion of the two lipid synthesis and transport genes 
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(FAT1 and HMG1) both led to hypersensitivity to azoles. HMG1 is also a precursor in other 

pathways such as protein prenylation and haeme biosynthesis (Callegari et al., 2010) and this 

could have a compensatory function during azole inhibition. Interestingly, azoles and statins 

(which target HMG1 and its homolog HMG2) have synergistic activity on fungal cells when 

they are treated with them in combination (Galgoczy et al., 2011). Furthermore, the two genes 

involved in cell wall integrity (LAS21 and MKK1) have a potential “back up” role that can 

compensate for azole treatment, as their deletion causes azole sensitivity. It should be noted 

that a similar limitation applies here as did for benomyl response, in that a considerable number 

of genes are listed on SGD as being involved in azole response and therefore the occurrence of 

these genes within QTL may be coincidental. 

 

6.3 Limitations  

One finding that may seem initially contradictory was the fact that in spite of attempts to 

eliminate strains whose drug response phenotype was caused by “obvious candidates” (known 

drug targets or efflux pumps of the PDR system) in Chapter 3, several of the QTL uncovered 

harboured drug efflux genes. It should be noted that the elimination tactic used in Chapter 3 

was fairly limited in that it likely only eliminated strains with a global up- or down-regulation 

of the PDR system through Pdr1p and Pdr3p. In a similar fashion, despite efforts to eliminate 

strains whose response was due to drug target alterations, this was only partially successful. 

For example, QTL 8.2 in the Y12×BY cross (within both the intermediate dose and high dose 

sample) and QTL 8.1 in the DBVPG6044×BY cross (intermediate dose sample) contained 

ERG11, the primary target of ketoconazole. These findings may suggest that the PDR analysis 

or the genotype-phenotype correlation analysis performed in Chapter 3 were not sufficient to 

ensure the drug response phenotypes observed did not arise due to “obvious candidates” such 

as changes in the PDR system or the primary drug target. However, it is not possible to 
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definitively state that the factors described above were the causative ones within their QTL 

without performing further analysis.   

 

A major limitation of this study was that the fact that only a single replicate of the NGS-

BSA experiment was able to be performed (owing to financial considerations). Additional 

replicates would have been beneficial in firmly establishing high-confidence in the QTL. In 

their assessment of NGS-BSA Wilkening et al. determined that although for most phenotypes 

confirmation between replicates was high, some traits were prone to the segregant population 

being taken over by spontaneous mutants (Wilkening et al., 2014); such an occurrence was 

observed within 5-fluorouracil and cantharidin selection in that study. They suggested that their 

use of prolonged growth in drug during the BSA procedure may have contributed to this result.  

Of relevance to the current study the duration of drug treatment was less than half of that used 

by Wilkening et al. (72 h here compared to their 150 h) and furthermore Wilkening et al. used 

drug treatment assays in liquid format which can be susceptible to being overgrown by a single 

mutant. Although the same can occur in agar-based formats, these may be less vulnerable due 

to the fact that the cells are fixed in place and their growth is inhibited due to nutrient 

competition with neighbouring cells.   Performing a replication of the AILs would also have 

given more confidence that the detected QTL did not arise during the long construction 

procedure although that would not be overly expected, as there was no drug selection applied 

during the construction. In particular, replication of Y12×BY cross would have been 

informative because this cross displayed a considerably higher number of QTL than other 

crosses and also there were apparently no allele frequency changes along the entirety of 

chromosome VII under the intermediate-dose ketoconazole treatment. On another point of 

reliability, the very high LOD QTL 2.2 occurred during high-dose treatment but it was 

completely absent during intermediate-dose treatment and repeat determinations may have 



General Discussion 
 

190 

 

helped to explain this anomaly. Nevertheless the QTL found here are much more extensive 

than studies published to date and can be further verified through independent methods, thus 

eliminating potential false positives. 

 

6.3. Future directions 

The verification described in the previous section remains the obvious next step for this 

study. Not only would it serve to eliminate false positive QTL hits, but it is also necessary to 

narrow down possible causative genes from an entire QTL locus   to a causative nucleotide 

(quantitative trait nucleotide, QTN) which can be done (Deutschbauer et al., 2005).   

 

The median number of ORFs found within the top ranked set of QTL (as described in 

Section 5.3.6) is 17; theoretically, a QTN (or multiple QTN) could occur within any of those 

ORFs or within intergenic intervals such as in promoter or terminator regions. One step in 

reducing this QTL interval would be to search for variants that are likely to produce a functional 

outcome, such as ones that occur within an ORF or promoter/terminator or variants that may 

cause mutation (Swinnen, Thevelein, et al., 2012). Another approach would be to perform a 

scan of the QTL interval through experimental techniques such as allele swapping or 

hemizygocity analysis (Liti et al., 2012) (Figure 6.1). Allele swapping involves replacing the 

allele of one parent with that of the other and evaluating differences in phenotype.  However, 

allele swapping eliminates strain-specific epistatic interactions that may be required for the 

QTN to exhibit its effect (Sinha et al., 2006) and thus it may not be appropriate, particularly 

since the Y12×BY cross used in this study is likely to exhibit such interactions in its drug 

response. Reciprocal hemizygocity analysis resolves this problem as the functional scan is 

performed in a hybrid background. The basic premise involves making hemizygous deletions 

of either one or the other parental allele and looking for differences in phenotype between the 
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hemizygous hybrids. Potentially the two methods could be combined by performing allele 

swapping in a hybrid background. Once the QTL interval is narrowed down sufficiently, single 

QTN can be verified by site-directed mutagenesis. 

 

Figure 6.1: Methodology for narrowing down the QTL interval and functional verification of QTN. Adapted 

from (Liti et al., 2012).  

 

Another area that remained unexplored in the current study was that of subtelomeric 

variation. Subtelomeres (defined as the region within 30 kb of the end of the chromosome) 

were eliminated from examination due to their high rates of repetitive sequences and genetic 

variability leading to potential error in read mapping (Parts et al., 2011; Treangen & Salzberg, 

2012) in the interest of getting higher confidence QTL. Nevertheless they provide a fertile 

ground for exploration—they frequently harbour non-reference ORFs and copy number 

variants (CNVs), possess an over-representation of missense and frameshift mutations 

compared to the remainder of the genome and play a role in environment-specific gene 

expression and rapid environmental adaptation (Bergström et al., 2014; Brown et al., 2010; Liti 

& Louis, 2005; Liti & Schacherer, 2011; Smith et al., 2011). Furthermore, subtelomeric regions 

were found to have an enrichment of stress-response QTL (Cubillos et al., 2011). The current 

study found at least 19 subtelomeric QTL, which can be explored in greater detail at a later 

point. 
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Because NGS-BSA relied on aligning the segregant population read data to the reference 

S288C genome, there was potential to miss QTL in regions where the SGRP strain had 

structural variation relative to S288C. Previous de novo assembly showed that DBVPG6044, 

L-1374, UWOPS87-2421 and Y12   had 35, 10, 61 and 25 non-reference ORFs respectively in 

addition to various levels of CNVs (Bergström et al., 2014; Liti et al., 2009). One potential 

solution would be to use the de novo assembled genomes of the SGRP strain in each cross and 

repeat the mapping of the segregant population read data to see if any new QTL can be found 

within the non-reference areas. 

 

The identification of QTL regions by BSA could also be further investigated with regard to 

the contribution of the QTL to overall phenotype as well as epistatic interactions between loci. 

Isolating individual segregants from each cross, selectively genotyping them at QTL and 

dissecting the effect of marker genotype to phenotype would allow such an analysis, something 

that could not be done using pooled approaches (Bloom et al., 2013; Ehrenreich et al., 2010; 

Manolio et al., 2009; Wilkening et al., 2014). Estimates of QTL contribution to phenotype 

would provide an estimate of how much of the phenotypic variance can be explained by the 

detected QTL. This would give a reliable indication of whether most or all of the QTL 

responsible for the drug response phenotype in a particular cross have been detected or not. 

Assessment of epistatic interactions would also be fruitful, as the results of Chapter 4 suggested 

that at least the Y12×BY cross was likely to harbour epistatic interactions that contribute to its 

phenotype.  

 

Finally the search for possible candidate genes underlying the drug response phenotype for 

benomyl and ketoconazole (Section 5.3.6) suggested certain genes falling into distinct 
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functional categories—for instance, cell cycle and chromosome division genes contributing to 

benomyl response and mitochondrial function genes or cell wall components for ketoconazole 

response. Assuming such genes are validated in one of the ways described above, further 

functional assays could be undertaken to validate the involvement of those processes in 

response to the respective drugs. Such assays could consist of microscopy investigation with 

fluorescent markers or dyes to investigate the role of these functions in drug response (Hoch et 

al., 2005; Huh et al., 2003; Solaini et al., 2007; Zhang et al., 1997). 

 

6.4. Impact and prospective outcomes of this work 

The current study provides a novel contribution to the literature as the genetic backgrounds 

used here have not been used to study drug response in this level of detail. Y12 was included 

in the association study for ketoconazole response by Strope et al. described in Chapter 5; 

however, the current study has revealed a considerably greater number of QTL because of the 

greater number of segregants used in the current study, which translates to higher detection 

power. Studying additional haplotypes can paint a more complete picture of a phenotype, as it 

allows sampling of new loci that may not have segregated in previous QTL studies Previous 

studies that compared the contributions of genetic background to a phenotype primarily 

focused on selecting parental strains based on genetic diversity instead of phenotypic diversity, 

as was done with the current study (Cubillos et al., 2011; Ehrenreich et al., 2012). The fact that 

the current study found an additional 12 benomyl response QTL even compared to a similarly 

powerful NGS-BSA (Ehrenreich et al., 2012) study supports the fact that the phenotypic 

diversity driven approach is a good one in order to find a rich variety of QTL. Moreover, this 

is the first instance of ketoconazole being studied through such a high-powered technique as 

NGS-BSA. NGS-BSA has been a recent development (Ehrenreich et al., 2010). This means 

that the number of phenotypes explored by this powerful methodology is limited as of the time 
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of this study, although it is continuously increasing (Albert et al., 2014; Clowers et al., 2015; 

Cubillos et al., 2013; Ehrenreich et al., 2012; Parts et al., 2011; Treusch et al., 2015; Yang et 

al., 2013). The increased number of segregants that BSA allows compared to individual 

segregant mapping studies results in considerably more QTL being detected, including minor 

effect QTL (Cubillos et al., 2013; Parts et al., 2011). This is reflected in the fact that the number 

of QTL uncovered for ketoconazole response is much greater than in any previous QTL study 

reported in the literature. 

 

The findings of this thesis have practical application in the clinical setting as it provides 

insight into potential causes of antifungal resistance. Increasing resistance to existing 

antifungals is a growing problem, exacerbated by a lag in the development of novel agents 

(Denning et al., 2015; Kanafani & Perfect, 2008). As ketoconazole is used clinically, the 

findings from this study are directly applicable for development of new combination therapies, 

as described below. Meanwhile, although benomyl is an industrial fungicide whose use has 

been discontinued, the results gained from screening it may still be applicable to other 

antifungals that target microtubules, such as griseofulvin (Odds et al., 2003). Also, the findings 

from this study can be applicable if benomyl or a similar agent is developed further for clinical 

use (Clement et al., 2008; Yenjerla et al., 2009).The identification and confirmation of 

processes involved in off-target effects (for instance confirmation of the recently established 

azole-vacuole link) could lead to combination therapy to improve outcome in cases of drug-

resistant infections (Baddley & Pappas, 2005; Johnson & Perfect, 2007). The fact that the QTL 

mapping has been done in a diploid background makes the results more applicable to general 

eukaryotic cells (Parts et al., 2011) and the common pathogenic fungus Candida albicans 

(Jones et al., 2004). Finally, the more general findings of this thesis suggest that individual 

variation in terms of genetic background can have a significant effect on treatment outcome. 
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Therefore, single-target approaches to drug treatment may be inadequate to achieve optimal 

outcome and a network style treatment approach may present a better alternative (Hopkins, 

2008; Keith et al., 2005). Furthermore, this study indicates that similar genome-wide 

approaches in humans (such as the use of GWAS to elucidate factors that may contribute to 

individual-specific response to medicinal drugs) may be a worthwhile approach to improve 

drug therapy and expand the field of personalised medicine. The system used in the current 

study of yeast strains as models of individuals can furthermore be applied to any human 

therapeutic agents (as long as those agents produce a selectable phenotype in yeast. The yeast 

system can thus be used for simple hypothesis generation to identify QTL and QTN whose 

homologues (if present) can then be tested in human individuals for their contribution to drug 

response. 

 

In summary, this work provided an extensive insight into the factors that can contribute to 

individual strain drug response in S. cerevisiae. This was achieved through the use of the SGRP 

strain collection, which was constructed with the aim of capturing the genotypic diversity of 

the species. The extensive phenotyping studies have provided an in-depth characterisation of 

the variability of antifungal response across the species by drug testing the strains against 

benomyl and ketoconazole. Finally, the application of NGS-BSA concretely revealed the 

genetics of this response and the importance of individual genetic variation in terms of drug 

susceptibility. Overall, this study not only contributed a significant insight into the intellectual 

understanding of what controls phenotypes but also provides practical applications for making 

better medication and antifungal agents. 
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Appendices 

Appendix 7.1 Known variants list 

SGD indels SGD SNPs Ensembl 

BC187 Same as list of SGD indels, 

with the addition of Sigma 

1278b 

SGRP collection 

BY4741 

BY4742 

CEN.PK 

D273 

DBVPG6044 

FL100 

FY1679 

JK9 

K11 

L1528 

RM11_1A 

RedStar 

SEY6210 

SK1 

UWOPS05-217-3 

W303 

X2180 

Y55 

YJM339 

YPH499 

YPS128 

YPS163 

YS9 
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Appendix 7.2 Dose response curves 

Brown boxes are place holders for strains that were not represented in a particular mating 

type in haploid format. 

 

Benomyl initial screen—serial spot dilution; diploid MATa/α SGRP collection 

 

 BY4743 (control) 

 SGRP strain (as named) 
 

 

    
MIC (BY4743) = 125 µM 

MIC (273614N) = 350 µM 

MIC (BY4743) = 125 µM 

MIC (322134S) = ND 

MIC (BY4743) = 125 µM 

MIC (378604X) = 200 µM 

MIC (BY4743) = 125 µM 

MIC (BC187) = 200 µM 

    
MIC (BY4743) = 125 µM 

MIC (DBVPG1106) = 200 

µM 

MIC (BY4743) = 125 µM 

MIC (DBVPG1373) = 200 

µM 

MIC (BY4743) = 125 µM 

MIC (DBVPG1788) = 125 

µM 

MIC (BY4743) = 125 µM 

MIC (DBVPG1853) = 350 

µM 

 
  

 
MIC (BY4743) = 125 µM 

MIC (DBVPG6040) = 125 

µM 

MIC (BY4743) = 125 µM 

MIC (DBVPG6044) = ND 

MIC (BY4743) = 125 µM 

MIC (DBVPG6765) = 200 

µM 

MIC (BY4743) = 125 µM 

MIC (K11) = 350 µM 

 
   

MIC (BY4743) = 125 µM 

MIC (L-1374) = 87.5 µM 

MIC (BY4743) = 125 µM 

MIC (L-1528) = ND 

MIC (BY4743) = 125 µM 

MIC (NCYC110) = ND 

MIC (BY4743) = 125 µM 

MIC (SK1) = 350 µM 
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MIC (BY4743) = 125 µM 

MIC (UWOPS03-461.4) = 

350 µM 

MIC (BY4743) = 125 µM 

MIC (UWOPS05-217.3) = 

350 µM 

MIC (BY4743) = 125 µM 

MIC (UWOPS05-227.2) = 

350 µM 

MIC (BY4743) = 125 µM 

MIC (UWOPS83-787.3) = 

350 µM 

    

MIC (BY4743) = 125 µM 

MIC (UWOPS87-2421) = 

350 µM 

MIC (BY4743) = 125 µM 

MIC (W303) = 20 µM 

MIC (BY4743) = 125 µM 

MIC (Y9) = 200 µM 

MIC (BY4743) = 125 µM 

MIC (Y12) = 200 µM 

 
 

  

MIC (BY4743) = 125 µM 

MIC (Y55) = 350 µM 

MIC (BY4743) = 125 µM 

MIC (YIIc17_E5) = 350 µM 

MIC (BY4743) = 125 µM 

MIC (YJM975) = 125 µM 

MIC (BY4743) = 125 µM 

MIC (YJM978) = 200 µM 

    
MIC (BY4743) = 125 µM 

MIC (YJM981) = 200 µM 

MIC (BY4743) = 125 µM 

MIC (YPS128) = ND 

MIC (BY4743) = 125 µM 

MIC (YPS606) = ND 

MIC (BY4743) = 125 µM 

MIC (YS4) = 125 µM 

 

   

MIC (BY4743) = 125 µM 

MIC (YS9) = 200 µM 
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Benomyl confirmation screen—serial spot dilution assay; haploid SGRP collection 

 

 BY4741 or BY4742 (control) 

 SGRP strain (as named) 
 

MATa MATα MATa MATα 

  

 

 
MIC (BY4741) = 200 µM 

MIC (273614N) = 400 µM 

MIC (BY4742) = 200 µM 

MIC (273614N) = 300 µM 

 MIC (BY4742) = 200 µM 

MIC (378604X) = 200 µM 

    
MIC (BY4741) = 300 µM 

MIC (BC187) = 200 µM 

MIC (BY4742) = 300 µM 

MIC (BC187) = 300 µM 

MIC (BY4741) = 200 µM 

MIC (DBVPG1106) = 400 

µM 

MIC (BY4742) = 300 µM 

MIC (DBVPG1106) = 400 

µM 

    

MIC (BY4741) = 300 µM 

MIC (DBVPG1373) = 300 

µM 

MIC (BY4742) = 300 µM 

MIC (DBVPG1373) = 300 

µM 

MIC (BY4741) = 300 µM 

MIC (DBVPG6044) = ND 

MIC (BY4742) = 200 µM 

MIC (DBVPG6044) = ND 

    
MIC (BY4741) = 300 µM 
MIC (DBVPG6765) = 200 µM 

MIC (BY4742) = 300 µM 
MIC (DBVPG6765) = 300 µM 

MIC (BY4741) = 300 µM 
MIC (L-1374) = 200 µM 

MIC (BY4742) = 300 µM 
MIC (L-1374) = 200 µM 

 
 

  
MIC (BY4741) = 200 µM 
MIC (L-1528) = 400 µM 

MIC (BY4742) = 300 µM 
MIC (L-1528) = 400 µM 

MIC (BY4741) = 200 µM 
MIC (NCYC110) = ND 

MIC (BY4742) = 200 µM 
MIC (NCYC110) = ND 

  
  

MIC (BY4741) = 200 µM 

MIC (SK1) = 400 µM 

MIC (BY4742) = 300 µM 

MIC (SK1) = 400 µM 

MIC (BY4741) = 300 µM 

MIC (UWOPS03-461.4) = 400 

µM 

MIC (BY4742) = 200 µM 

MIC (UWOPS03-461.4) = 400 

µM 
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MIC (BY4741) = 300 µM 
MIC (UWOPS05-217.3) = ND 

MIC (BY4742) = 200 µM 
MIC (UWOPS05-217.3) = ND 

MIC (BY4741) = 300 µM 
MIC (UWOPS05-227.2) = 400 

µM 

MIC (BY4742) = 200 µM 
MIC (UWOPS05-227.2) = 400 

µM 

    
MIC (BY4741) = 200 µM 
MIC (UWOPS83-787.3) = 400 

µM 

MIC (BY4742) = 300 µM 
MIC (UWOPS83-787.3) = ND 

MIC (BY4741) = 300 µM 
MIC (UWOPS87-2421) = ND 

MIC (BY4742) = 200 µM 
MIC (UWOPS87-2421) = ND 

 

 

  
MIC (BY4741) = 300 µM 
MIC (W303) = 100 µM 

 MIC (BY4741) = 300 µM 
MIC (Y12) = 400 µM 

MIC (BY4742) = 300 µM 
MIC (Y12) = 400 µM 

    

MIC (BY4741) = 200 µM 

MIC (Y55) = 400 µM 

MIC (BY4742) = 200 µM 

MIC (Y55) = 400 µM 

MIC (BY4741) = 200 µM 

MIC (YIIc17_E5) = 100 µM 

MIC (BY4742) = 300 µM 

MIC (YIIc17_E5) = 400 µM 

    
MIC (BY4741) = 300 µM 

MIC (YJM978) = 400 µM 

MIC (BY4742) = 200 µM 

MIC (YJM978) = 300 µM 

MIC (BY4741) = 300 µM 

MIC (YJM981) = 400 µM 

MIC (BY4742) = 200 µM 

MIC (YJM981) = 400 µM 

    
MIC (BY4741) = 200 µM 

MIC (YPS128) = ND 

MIC (BY4742) = 300 µM 

MIC (YPS128) = ND 

MIC (BY4741) = 200 µM 

MIC (YPS606) = ND 

MIC (BY4742) = 300 µM 

MIC (YPS606) = ND 

 

   

MIC (BY4741) = 300 µM 

MIC (YS9) = 200 µM 
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Benomyl screen—pinning assay 384 colony format; haploid SGRP collection 

 BY4741 or BY4742 (control) 

 SGRP strain (as named) 

 

MATa MATα MATa MATα 

  

 

 
MIC (BY4741) = 300 µM 

MIC (273614N) = 300 µM 

MIC (BY4742) = 300 µM 

MIC (273614N) = 300 µM 

 MIC (BY4742) = 300 µM 

MIC (378604X) = 200 µM 

    
MIC (BY4741) = 300 µM 

MIC (BC187) = 200 µM 

MIC (BY4742) = 300 µM 

MIC (BC187) = 200 µM 

MIC (BY4741) = 300 µM 

MIC (DBVPG1106) = 300 

µM 

MIC (BY4742) = 300 µM 

MIC (DBVPG1106) = 300 

µM 

    
MIC (BY4741) = 300 µM 

MIC (DBVPG1373) = 300 

µM 

MIC (BY4742) = 300 µM 

MIC (DBVPG1373) = 300 

µM 

MIC (BY4741) = 300 µM 

MIC (DBVPG6044) = 400 

µM 

MIC (BY4742) = 300 µM 

MIC (DBVPG6044) = 400 

µM 

    
MIC (BY4741) = 300 µM 

MIC (DBVPG6765) = 300 

µM 

MIC (BY4742) = 300 µM 

MIC (DBVPG6765) = 250 

µM 

MIC (BY4741) = 300 µM 

MIC (L-1374) = 200 µM 

MIC (BY4742) = 300 µM 

MIC (L-1374) = 150 µM 

    
MIC (BY4741) = 300 µM 

MIC (L-1528) = 350 µM 

MIC (BY4742) = 300 µM 

MIC (L-1528) = 400 µM 

MIC (BY4741) = 300 µM 

MIC (NCYC110) = ND 

MIC (BY4742) = 300 µM 

MIC (NCYC110) = ND 

    
MIC (BY4741) = 300 µM 

MIC (SK1) = 350 µM 

MIC (BY4742) = 300 µM 

MIC (SK1) = 300 µM 

MIC (BY4741) = 300 µM 

MIC (UWOPS03-461.4) = 

400 µM 

MIC (BY4742) = 300 µM 

MIC (UWOPS03-461.4) = 

300 µM 



Appendices 
 

203 

 

    
MIC (BY4741) = 300 µM 

MIC (UWOPS05-217.3) = 

400 µM 

MIC (BY4742) = 300 µM 

MIC (UWOPS05-217.3) = 

400 µM 

MIC (BY4741) = 300 µM 

MIC (UWOPS05-227.2) = 

400 µM 

MIC (BY4742) = 300 µM 

MIC (UWOPS05-227.2) = 

400 µM 

    

MIC (BY4741) = 300 µM 

MIC (UWOPS83-787-.3) = 

400 µM 

MIC (BY4742) = 300 µM 

MIC (UWOPS83-787.3) = 

400 µM 

MIC (BY4741) = 300 µM 

MIC (UWOPS87-2421)= ND 

MIC (BY4742) = 300 µM 

MIC (UWOPS87-2421) = 

ND 

 

 

  
MIC (BY4741) = 300 µM 

MIC (W303) = 150 µM 

 MIC (BY4741) = 300 µM 

MIC (Y12) = 300 µM 

MIC (BY4742) = 300 µM 

MIC (Y12) = 250 µM 

    
MIC (BY4741) = 300 µM 

MIC (Y55) = 400 µM 

MIC (BY4742) = 300 µM 

MIC (Y55) = 350 µM 

MIC (BY4741) = 300 µM 

MIC (YIIc17_E5) = 75 µM 

MIC (BY4742) = 300 µM 

MIC (YIIc17_E5) = 400 µM 

    
MIC (BY4741) = 300 µM 

MIC (YJM975) = 250 µM 

MIC (BY4742) = 300 µM 

MIC (YJM975) = 200 µM 

MIC (BY4741) = 300 µM 

MIC (YJM978) = 300 µM 

MIC (BY4742) = 300 µM 

MIC (YJM978) = 300 µM 

    
MIC (BY4741) = 300 µM 

MIC (YJM981) = 300 µM 

MIC (BY4742) = 300 µM 

MIC (YJM981) = 250 µM 

MIC (BY4741) = 300 µM 

MIC (YPS128) = 400 µM 

MIC (BY4742) = 300 µM 

MIC (YPS128) = 300 µM 

   

 

MIC (BY4741) = 300 µM 

MIC (YPS606) = 400 µM 

MIC (BY4742) = 300 µM 

MIC (YPS606) = 300 µM 

MIC (BY4741) = 300 µM 

MIC (YS9) = 200 µM 
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Ketoconazole initial screen—serial spot dilution; diploid MATa/α SGRP collection 

 

 BY4743 (control) 

 SGRP strain (as named) 
 

 

 
   

MIC (BY4743) = 120 µM 

MIC (273614N) = 80 µM 

MIC (BY4743) = 120 µM 

MIC (322134S) = ND 

MIC (BY4743) = 120 µM 

MIC (378604X) = 55 µM 

MIC (BY4743) = 120 µM 

MIC (BC187) = 120 µM 

 
   

MIC (BY4743) = 120 µM 

MIC (DBVPG1106) = 80 µM 

MIC (BY4743) = 120 µM 

MIC (DBVPG1373) = 55 µM 

MIC (BY4743) = 120 µM 

MIC (DBVPG1788) = ND 

MIC (BY4743) = 120 µM 

MIC (DBVPG1853) = 55 

µM 

 
 

  
 

MIC (BY4743) = 120 µM 

MIC (DBVPG6040) = 55 µM 

MIC (BY4743) = 120 µM 

MIC (DBVPG6044) = ND 

MIC (BY4743) = 120 µM 

MIC (DBVPG6765) = 160 

µM 

MIC (BY4743) = 120 µM 

MIC (K11) = 55 µM 

 

  
 

MIC (BY4743) = 120 µM 

MIC (L-1374) = ND 

MIC (BY4743) = 120µM 

MIC (L-1528) = ND 

MIC (BY4743) = 120 µM 

MIC (NCYC110) = ND 

MIC (BY4743) = 120 µM 

MIC (SK1) = 55 µM 

    
MIC (BY4743) = 120 µM 

MIC (UWOPS03-461.4) = 55 

µM 

MIC (BY4743) = 120 µM 

MIC (UWOPS05-217.3) = 55 

µM 

MIC (BY4743) = 120 µM 

MIC (UWOPS05-227.2) = 

55 µM 

MIC (BY4743) = 120 µM 

MIC (UWOPS83-787.3) = 

80 µM 

  
 

 

MIC (BY4743) = 120 µM MIC (BY4743) = 120 µM 

MIC (W303) = 80 µM 

MIC (BY4743) = 120 µM 

MIC (Y9) = 55 µM 

MIC (BY4743) = 120 µM 

MIC (Y12) = 55 µM 
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MIC (UWOPS87-2421) = 80 

µM 

  
 

 

MIC (BY4743) = 120 µM 

MIC (Y55) = 120 µM 

MIC (BY4743) = 120 µM 

MIC (YIIc17_E5) = ND 

MIC (BY4743) = 120 µM 

MIC (YJM975) = ND 

MIC (BY4743) = 120 µM 

MIC (YJM978) = ND 

 
   

MIC (BY4743) = 120 µM 

MIC (YJM981) = 120 µM 

MIC (BY4743) = 120 µM 

MIC (YPS128) = 80 µM 

MIC (BY4743) = 120 µM 

MIC (YPS606) = 55 µM 

MIC (BY4743) = 120 µM 

MIC (YS4) = 80 µM 

 

   

MIC (BY4743) = 120 µM 

MIC (YS9) = 120 µM 
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Ketoconazole confirmation screen—serial spot dilution assay; haploid SGRP collection 

 BY4741 or BY4742 (control) 

 SGRP strain (as named) 

 

MATa MATα MATa MATα 

  

 

 

MIC (BY4741) = 80 µM 

MIC (273614N) = 100 µM 

MIC (BY4742) = 80 µM 

MIC (273614N) = 40 µM 

 MIC (BY4742) = 100 µM 

MIC (378604X) = 60 µM 

    
MIC (BY4741) = 60 µM 

MIC (DBVPG1106) = 60 µM 

MIC (BY4742) = 100 µM 

MIC (DBVPG1106) = 60 µM 

MIC (BY4741) = 60 µM 

MIC (DBVPG1373) = 80 µM 

MIC (BY4742) = 100 µM 

MIC (DBVPG1373) = 100 

µM 

    
MIC (BY4741) = 60 µM 

MIC (DBVPG6044) = 160 

µM 

MIC (BY4742) = 60 µM 

MIC (DBVPG6044) = 160 

µM 

MIC (BY4741) = 100 µM 

MIC (DBVPG6765) = ND 

MIC (BY4742) = 100 µM 

MIC (DBVPG6765) = ND 

 
 

  

MIC (BY4741) = 100 µM 

MIC (L-1374) = 100 µM 

MIC (BY4742) = 100 µM 

MIC (L-1374) = 100 µM 

MIC (BY4741) = 100 µM 

MIC (L-1528) = ND 

MIC (BY4742) = 100 µM 

MIC (L-1528) = ND 

  
 

 

MIC (BY4741) = 100 µM 

MIC (NCYC110) = 160 µM 

MIC (BY4742) = 100 µM 

MIC (NCYC110) = ND 

MIC (BY4741) = 100 µM 

MIC (SK1) = 40 µM 

MIC (BY4742) = 100 µM 

MIC (SK1) = 20 µM 

    
MIC (BY4741) = 80 µM 

MIC (UWOPS03-461.4) = 20 

µM 

MIC (BY4742) = 80 µM 

MIC (UWOPS03-461.4) = 20 

µM 

MIC (BY4741) = 80 µM 

MIC (UWOPS05-217.3) = 20 

µM 

MIC (BY4742) = 80 µM 

MIC (UWOPS05-217.3) = 20 

µM 
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MIC (BY4741) = 80 µM 

MIC (UWOPS05-227.2) = 20 

µM 

MIC (BY4742) = 80 µM 

MIC (UWOPS05-227.2) = 20 

µM 

MIC (BY4741) = 80 µM 

MIC (UWOPS83-787.3) = 20 

µM 

MIC (BY4742) = 80 µM 

MIC (UWOPS83-787.3) = 20 

µM 

   

 

MIC (BY4741) = 80 µM 

MIC (UWOPS87-2421) = 40 

µM 

MIC (BY4742) = 60 µM 

MIC (UWOPS87-2421) = 40 

µM 

MIC (BY4741) = ND 

MIC (W303) = 15 µM 

 

    
MIC (BY4741) = 80 µM 

MIC (Y12) = 40 µM 

MIC (BY4742) = 100 µM 

MIC (Y12) = 20 µM 

MIC (BY4741) = 60 µM 

MIC (Y55) = 100 µM 

MIC (BY4742) = 60 µM 

MIC (Y55) = 120 µM 

    
MIC (BY4741) = 120 µM 

MIC (YIIc17_E5) = 120 µM 

MIC (BY4742) = 120 µM 

MIC (YIIc17_E5) = 160 µM 

MIC (BY4741) = 60 µM 

MIC (YJM975) = ND 

MIC (BY4742) = 60 µM 

MIC (YJM975) = 60 µM 

    

MIC (BY4741) = 100 µM 

MIC (YJM978) = 20 µM 

MIC (BY4742) = 100 µM 

MIC (YJM978) = 20 µM 

MIC (BY4741) = 80 µM 

MIC (YPS128) = 40 µM 

MIC (BY4742) = 60 µM 

MIC (YPS128) = 40 µM 

  

  

MIC (BY4741) = 80 µM 

MIC (YPS606) = 40 M 

MIC (BY4742) = 60 µM 

MIC (YPS606) = 40 M 
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Ketoconazole screen— pinning assay 384 colony format; haploid SGRP collection 

 

 BY4741 or BY4742 (control) 

 SGRP strain (as named) 

 

MATa MATα MATa MATα 

  

 

 

MIC (BY4741) = 160 µM 

MIC (273614N) = 100 µM 

MIC (BY4742) = 200 µM 

MIC (273614N) = 100 µM 

 MIC (BY4742) = 200 µM 

MIC (378604X) = 100 µM 

    
MIC (BY4741) = 160  µM 

MIC (BC187) = 130 µM 

MIC (BY4742) = 200 µM 

MIC (BC187) = 130 µM 

MIC (BY4741) = 160 µM 

MIC (DBVPG1106) = 130 

µM 

MIC (BY4742) = 200 µM 

MIC (DBVPG1106) = 130 

µM 

 
   

MIC (BY4741) = 160 µM 

MIC (DBVPG1373) = 300 

µM 

MIC (BY4742) = 200 µM 

MIC (DBVPG1373) = 300 

µM 

MIC (BY4741) = 160 µM 

MIC (DBVPG6044) = ND 

MIC (BY4742) = 200 µM 

MIC (DBVPG6044) = ND 

    
MIC (BY4741) = 160 µM 

MIC (DBVPG6765) = 160 

µM 

MIC (BY4742) = 200 µM 

MIC (DBVPG6765) = 160 

µM 

MIC (BY4741) = 160 µM 

MIC (L-1374) = 230 µM 

MIC (BY4742) = 200 µM 

MIC (L-1374) = 230 µM 

    
MIC (BY4741) = 160 µM 

MIC (L-1528) = 200 µM 

MIC (BY4742) = 200 µM 

MIC (L-1528) = 200 µM 

MIC (BY4741) = 160 µM 

MIC (NCYC110) = ND 

MIC (BY4742) = 200 µM 

MIC (NCYC110) = ND 

    
MIC (BY4741) = 160 µM 

MIC (SK1) = 200 µM 

MIC (BY4742) = 200 µM 

MIC (SK1) = 200 µM 

MIC (BY4741) = 160 µM MIC (BY4742) = 200 µM 
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MIC (UWOPS03-461.4) = 80 

µM 

MIC (UWOPS03-461.4) = 80 

µM 

    

MIC (BY4741) = 160 µM 

MIC (UWOPS05-217.3) = 80 

µM 

MIC (BY4742) = 200 µM 

MIC (UWOPS05-217.3) = 80 

µM 

MIC (BY4741) = 160 µM 

MIC (UWOPS05-227.2) = 60 

µM 

MIC (BY4742) = 200 µM 

MIC (UWOPS05-227.2) = 60 

µM 

    

MIC (BY4741) = 160 µM 

MIC (UWOPS83-787-.3) = 

100 µM 

MIC (BY4742) = 200 µM 

MIC (UWOPS83-787.3) = 80 

µM 

MIC (BY4741) = 160 µM 

MIC (UWOPS87-2421)= 100 

µM 

MIC (BY4742) = 200 µM 

MIC (UWOPS87-2421) = 

130 µM 

 

 

  
MIC (BY4741) = 160 µM 

MIC (W303) = 80 µM 

 MIC (BY4741) = 160 µM 

MIC (Y12) = 100 µM 

MIC (BY4742) = 200 µM 

MIC (Y12) = 100 µM 

    
MIC (BY4741) = 160 µM 

MIC (Y55) = 200 µM 

MIC (BY4742) = 200 µM 

MIC (Y55) = 260 µM 

MIC (BY4741) = 160 µM 

MIC (YIIc17_E5) = ND 

MIC (BY4742) = 200 µM 

MIC (YIIc17_E5) = 130 µM 

    
MIC (BY4741) = 160 µM 

MIC (YJM975) = 260 µM 

MIC (BY4742) = 200 µM 

MIC (YJM975) = 160 µM 

MIC (BY4741) = 160 µM 

MIC (YJM978) = 200 µM 

MIC (BY4742) = 200 µM 

MIC (YJM978) = 200 µM 

    

MIC (BY4741) = 160 µM 

MIC (YJM981) = 160 µM 

MIC (BY4742) = 200 µM 

MIC (YJM981) = 160 µM 

MIC (BY4741) = 160 µM 

MIC (YPS128) = 160 µM 

MIC (BY4742) = 200 µM 

MIC (YPS128) = 130 µM 

   

 

MIC (BY4741) = 160 µM 

MIC (YPS606) = 160 µM 

MIC (BY4742) = 200 µM 

MIC (YPS606) = 160 µM 

MIC (BY4741) = 160 µM 

MIC (YS9) = 130 µM 
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Appendix 7.3 Summary results of atorvastatin response screening of 

SGRP collection 

Brown boxes are place holders for strains that were not represented in the testing (either 

because they were not represented in a particular mating type in haploid format in the SGRP 

collection or they were not tested in the specified round of dose responses due to not giving a 

phenotype in the previous round). 

MATa MATα 
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273614N + + + + + + - 273614N + + + + + +  + + + 

BC187 - + + + + BC187 - + + + + 

DBVPG1106 nil  + DBVPG1106 nil  + + + 

DBVPG1373 + + + + + + nil DBVPG1373 + + + + + + + + + 

DBVPG6044 + + + + + + + + + DBVPG6044 + + + + + + + + + 

DBVPG6765 + nil - DBVPG6765 + nil +* 

L-1374 + + + + + + - L-1374 + + + + + + + + + 

L-1528 + + + + + + +* L-1528 + + + + + + nil 

NCYC110 + + + + + + nil NCYC110 + + + + + + + 

SK1 + + + + + + +* SK1 + + + + + + +* 

UWOPS03-461.4 + + + + + + nil UWOPS03-461.4 + + + + + + + 

UWOPS05-217.3 + + + + + + nil UWOPS05-217.3 + + + + + + + 

UWOPS05-227.2 + + + + + + nil UWOPS05-227.2 + + + + + + + 

UWOPS83-787.3 + + + + + + +* UWOPS83-787.3 + + + + + + + 

UWOPS87-2421 + + + + + + +* UWOPS87-2421 + + + + + + nil 

Y12 +  - Y12 + + + + +* 

Y55 + + + + + + + + + Y55 + + + + + + + + + 

YIIc17_E5 + + + + + + + YIIc17_E5 + + + nil + + + 

YJM975 + + + nil +* YJM975 + + + + + + +* 

YJM978 + + + + + + +* YJM978 + + + + + + +* 
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YJM981 + + + + + + - YJM981 + + + + + + +* 

YPS128 + + + + + + nil YPS128 + + + + + + nil 

YPS606 + + + + + + - YPS606 + + + + + + + 

W303 - - - - 378604X + +  + - - - 

YS9 nil  - -  

Represented as diploids only 

322134S + + +  

DBVPG1788 + + + 

DBVPG1853 nil 

DBVPG6040 + + + 

K11 + + + 

Y9 + 

YS4 - 
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Appendix 7.4 AIL segregant pinning with a monogenic trait (clonNAT 

resistance) 
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Appendix 7.5 QTL intervals 

 

UWOPS87-2421×BY, Benomyl treatment intermediate dose (45 µM) 

 

 

 

 

 

 

 

 

 

 

 

UWOPS87-2421×BY, Benomyl treatment high dose (80 µM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Start End Max LOD 

QTL1.1 36,200 151,500 8.59 

QTL 4.1 500,100 549,400 7.33 

QTL 4.2 828,600 843,500 6.34 

QTL 5.1 364,800 405,200 7.43 

QTL 7.1 72,800 93,900 7.13 

QTL 14.1 259,800 298,500 29.03 

QTL 15.1 226,600 253,300 19.12 

QTL 15.2 631,000 659,800 31.28 

QTL 15.3 745,000 829,800 13.91 

 Start End Max LOD 

QTL1.1 35,300 74,700 7.62 

QTL2.1 38,600 62,900 4.27 

QTL2.2 109,900 178,500 4.23 

QTL2.3 520,400 527,900 3.82 

QTL 3.1 14,700 39,700 4.48 

QTL 4.1 503,300 550,900 12.70 

QTL 4.2 1,188,700 1,218,500 4.13 

QTL 5.1 348,200 389,600 10.74 

QTL 7.1 66,900 117,400 5.86 

QTL 10.1 344,900 373,900 4.28 

QTL 10.2 647,700 669,000 4.62 

QTL 12.1 343,100 370,400 25.63 

QTL 14.1 260,100 313,100 19.29 

QTL 15.1 231,800 253,500 35.14 

QTL 15.2 637,200 659,000 67.97 

QTL 15.3 765,200 823,200 18.29 

QTL 15.4 975,300 1,036,300 8.74 

QTL 16.1 876,900 907,400 4.84 
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L-1374×BY, Benomyl treatment intermediate dose (30 µM) 

 

 

 

 

 

L-1374×BY, Benomyl treatment high dose (50 µM) 

 

 

 

 

 

 

 

DBVPG6044×BY, Ketoconazole treatment intermediate dose (25 µM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Start End Max LOD 

QTL1.1 32,700 59,900 14.18 

QTL 5.1 156,100 172,400 47.36 

QTL 15.1 221,600 269,900 7.86 

 Start End Max LOD 

QTL1.1 34,600 60,300 15.66 

QTL 5.1 156,800 171,300 60.08 

QTL 5.2 342,500 388,700 11.85 

QTL 14.1 235,100 292,500 9.47 

QTL 15.1 224,700 260,900 18.95 

 Start End Max LOD 

QTL 2.1 282,700 374,700 10.68 

QTL 2.2 526,900 561,300 29.86 

QTL 4.1 457,600 535,900 12.53 

QTL 4.2 1,028,400 1,091,800 7.14 

QTL 4.3 1,417,800 1,453,500 14.41 

QTL 7.1 178,800 185,600 18.96 

QTL 7.2 287,200 361,600 9.40 

QTL 8.1 88,400 139,700 8.60 

QTL 13.1 104,600 141,700 17.90 

QTL 15.1 928,600 965,600 6.21 

QTL 16.1 636,400 683,900 7.58 
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DBVPG6044×BY, Ketoconazole treatment high dose (65 µM) 

 

 

 

 

 

 

 

 

 

 

 

Y12×BY, Ketoconazole treatment intermediate dose (11.5 µM) 

 

 Start End Max LOD 

QTL2.1.a 284,000 285,700 6.43 

QTL2.1.b 321,500 379,400 7.18 

QTL2.2 532,600 565,300 25.21 

QTL 4.1a 438,800 488,100 7.53 

QTL 4.1b 488,200 535,600 8.16 

QTL 4.2 1,422,400 1,454,900 7.35 

QTL 10.1 285,300 340,600 7.94 

QTL 12.1 422,600 504,700 7.64 

QTL 15.1 312,100 336,000 6.80 

QTL 15.2 773,400 780,200 18.75 
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 Start End Max LOD 

QTL1.1 33,600 54,000 15.17 

QTL1.2 102,400 150,400 4.28 

QTL2.1 28,700 78,500 25.94 

QTL2.2 217,900 275,600 299.00 

QTL2.3 501,100 533,000 48.70 

QTL 3.1 103,200 147,000 8.63 

QTL 3.2 262,900 294,700 17.75 

QTL 4.1 243,500 298,100 27.51 

QTL 4.2 400,400 522,300 13.21 

QTL 4.3 597,400 671,400 4.71 

QTL 4.4 879,600 1,004,800 4.74 

QTL 4.5 1,057,900 1,101,700 13.66 

QTL 4.6 1,201,700 1,244,500 26.46 

QTL 4.7 1,338,200 1,394,300 21.63 

QTL 5.1 130,300 153,400 93.10 

QTL 5.2 349,400 408,200 20.16 

QTL 6.1 32,800 96,200 22.03 

QTL 6.2 110,100 151,800 18.41 

QTL 6.3 192,500 220,500 11.98 

QTL 7.1 128,200 166,700 19.28 

QTL 7.2 220,600 295,000 9.97 

QTL 7.3 356,700 409,200 6.84 

QTL 7.4 502,100 527,100 3.36 

QTL 7.5 784,500 823,900 48.37 

QTL 7.6 946,600 990,300 11.04 

QTL 7.7 990,400 1,041,300 13.19 

QTL 8.1 116,400 138,500 41.43 

QTL 8.2 183,000 211,000 19.20 

QTL 8.3 343,400 400,300 17.61 

QTL 8.4 470,200 516,300 14.56 

QTL 9.1 148,600 175,600 65.37 

QTL 9.2 291,600 306,400 3.21 

QTL 10.1 176,000 208,700 16.32 

QTL 10.2 272,500 311,300 3.74 

QTL 10.3  389,400 460,500 13.22 

QTL 11.1 326,600 372,500 24.19 

QTL 11.2 532,900 569,600 12.54 
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Y12×BY, Ketoconazole treatment high dose (15 µM) 

 

QTL 12.1 114,300 197,700 5.24 

QTL 12.2 447,200 489,800 29.50 

QTL 12.3 545,100 601,300 21.13 

QTL 12.4 661,000 674,300 7.87 

QTL 12.5 820,000 889,400 21.26 

QTL 13.1 115,800 202,300 40.02 

QTL 13.2 401,000 446,100 20.62 

QTL 13.3 477,100 557,900 15.11 

QTL 13.4 789,900 814,900 12.18 

QTL 14.1 100,000 138,700 11.28 

QTL 14.2 224,500 372,400 15.54 

QTL 14.3 510,900 582,900 16.15 

QTL 14.4 715,200 740,200 30.97 

QTL 15.1 69,900 121,600 8.99 

QTL 15.2 164,800 211,900 4.40 

QTL 15.3 270,800 305,300 19.46 

QTL 15.4 409,800 431,200 103.74 

QTL 15.5 705,200 780,300 13.87 

QTL 15.6 936,800 1,045,000 54.92 

QTL 16.1 161,900 192,900 29.70 

QTL 16.2 324,400 381,700 12.76 

QTL 16.3 544,000 579,500 58.23 

QTL 16.4 684,700 714,200 4.47 
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 Start End Max LOD 

QTL1.1 42,700 52,800 31.29 

QTL 2.1 21,300 84,000 13.32 

QTL 2.2 302,600 325,500 41.72 

QTL 2.3 486,400 524,900 50.04 

QTL 3.1 273,800 300,200 25.49 

QTL 4.1 186,500 368,000 8.96 

QTL 4.2 615,600 665,500 7.67 

QTL 4.3 1,217,500 1,262,800 6.27 

QTL 4.4 1,267,300 1,466,700 13.38 

QTL 5.1 127,200 156,300 76.49 

QTL 5.2 335,000 407,800 20.58 

QTL 6.1 41,600 111,000 16.14 

QTL 8.1 117,800 145,500 30.49 

QTL 8.2 181,200 213,000 17.59 

QTL 8.3 358,700 453,700 16.13 

QTL 8.4 495,700 521,900 34.48 

QTL 9.1 124,400 177,000 24.62 

QTL 10.1 178,000 215,000 11.82 

QTL 10.2.a 352,100 423,000 9.94 

QTL 10.2.b 423,100 509,100 11.05 

QTL 11.1 154,800 238,300 9.45 

QTL 11.2 249,500 388,300 8.21 

QTL 11.3 535,300 563,500 16.03 

QTL 12.1 292,400 485,000 22.90 

QTL 12.2 569,000 605,100 21.39 

QTL 12.3 658,400 672,800 10.43 

QTL 12.4 871,300 1,013,700 12.09 

QTL 13.1 53,900 168,500 25.22 

QTL 13.2 793,500 813,200 17.61 

QTL 14.1 95,300 157,600 8.49 

QTL 14.2 518,900 621,700 7.96 

QTL 14.3 697,500 745,400 15.34 

QTL 15.1 276,500 297,400 48.87 
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QTL 15.2 401,500 423,000 61.99 

QTL 15.3 675,200 732,500 6.86 

QTL 15.4 844,800 932,300 9.12 

QTL 15.5 951,300 991,400 12.83 

QTL 16.1 175,000 207,200 28.75 

QTL 16.2 508,700 588,900 20.28 

QTL 16.3 680,700 699,900 15.71 
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Appendix 7.6 MULTIPOOL raw output—allele frequencies at individual 

markers and LOD scores 

 

Left-hand y-axis of each graph—relative allele frequency of markers used in NGS-BSA 

(blue crosses—control pool markers; red crosses—drug treated pool markers). The parent 

whose allele frequency is described on the axis is specified for each cross. The overall allele 

frequency of all the markers is given by the orange/green line on each graph. This frequency 

calculation is automatically generated by MULTIPOOL; however, because it makes no 

distinction between the control and the drug pools, it should be disregarded. 

 

Right-hand y-axis of each graph—LOD score calculated by MULTIPOOL based in the 

differential allele frequencies of markers at a given locus between the control and the drug-

treated pool. LOD score is described by the green lone on each graph. 

 

Grey regions denote the area of the QTL peak as determined by MULTIPOOL. These should 

be disregarded, as QTL calling was instead performed manually. This is due to the limitation 

imposed by MULTIPOOL in calling only a maximum of one QTL per chromosome. 
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UWOPS87-2421×BY intermediate-dose benomyl treatment (45 µM). 

“Allele frequency” refers to BY allele. 

ChrI ChrII 

  
ChrIII ChrIV 

  
ChrV ChrVI 

  
ChrVII ChrVIII 
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UWOPS87-2421×BY high-dose benomyl treatment (80 µM). 

“Allele frequency” refers to BY allele. 
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L-1374×BY intermediate-dose benomyl treatment (30 µM). 

“Allele frequency” refers to L-1374 allele. 
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L-1374×BY high-dose benomyl treatment (50 µM). 

“Allele frequency” refers to L-1374 allele. 
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DBVPG6044×BY intermediate-dose ketoconazole treatment (25 µM). 

“Allele frequency” refers to BY allele. 
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DBVPG6044×BY high-dose ketoconazole treatment (65 µM). 

“Allele frequency” refers to BY allele. 

ChrI ChrII 

  
ChrIII ChrIV 

  
ChrV ChrVI 

  
ChrVII ChrVIII 



Appendices  
 

238 

 

  
ChrIX ChrX 

  
ChrXI ChrXII 

  
ChrXIII ChrXIV 



Appendices 
 

239 

 

  
ChrXV ChrXVI 

  
 

  



Appendices  
 

240 

 

Y12×BY intermediate-dose ketoconazole treatment (11.5 µM). 

“Allele frequency” refers to Y12 allele. 
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Y12×BY high-dose ketoconazole treatment (15 µM). 

“Allele frequency” refers to Y12 allele. 
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