Generalizing the Algebra of

Throws to Rank-3 Matroids

Jasmine Hall

VICTORIA UNIVERSITY OF WELLINGTON
 Te Whare Wānanga o te Ūpoko o te Ika a Māui

School of Mathematics and Statistics Te Kura Mātai Tatauranga, Rangahau Pūnaha

A thesis
submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of

Master of Science
in Mathematics.
Victoria University of Wellington
2016

Abstract

The algebra of throws is a geometric construction which reveals the underlying algebraic operations of addition and multiplication in a projective plane. In Desarguesian projective planes, the algebra of throws is a well-defined, commutative and associative binary operation. However, when we consider an analogous operation in a more general point-line configuration that comes from rank-3 matroids, none of these properties are guaranteed. We construct lists of forbidden configurations which give polynomial time checks for certain properties. Using these forbidden configurations, we can check whether a configuration has a group structure under this analogous operation. We look at the properties of configurations with such a group structure, and discuss their connection to the jointless Dowling geometries.

Acknowledgements

I dedicate this thesis to the memory of my beloved grandma, Sesa Kaulamatoa. Her love, support and prayers were invaluable and I cannot express how thankful I am for her influence. Toka ā 'i hēvani 'i he nonga 'a e Eiki' siéku āngelo talavou. Firstly, I would like to thank my wonderful supervisor, Geoff Whittle. I am hugely grateful for his understanding, guidance and generous support. Without the help of his grant I would not have been able to undertake this thesis!

Thanks to my officemates and fellow students for their support and (often welcome) distraction - particularly Susan Jowett, Giovanna Le Gros, Matt Grice, Will Critchlow, Sam Harvey, Jayden Mudge, Deloshan Nawarajan, Alex VanBrundt, Ben Clark and Michael Welsh (resident LATEX-monkey).

Thanks to the Te Rōpū Āwhina whānau, especially Liz Richardson, for their support throughout my studies.

Finally, I owe my deepest gratitude to my family, especially my parents, Michael and Vala, and my siblings, Rachael and Jeremy. Thank you for your continued support and for putting up with me throughout my studies!

Contents

1 Introduction 1
1.1 The algebra of throws 1
1.2 Overview of chapters 7
2 Generalizing the algebra of throws 9
$2.1 \quad$ 3-line configurations 9
2.2 Complexity 13
2.3 Basic configurations 14
2.4 Forbidden configurations for binary operations 23
2.5 Strong and weak binary operations 47
3 Connections with the projective plane 49
3.1 Coordinatizing the projective plane 49
3.2 Projective planes over fields 57
4 Commutativity and associativity 65
4.1 Commutativity 66
4.2 Associativity 78
5 Group configurations 121
5.1 Strong binary operation 126
5.2 Weak binary operation 141
6 Biased graphs and their matroids 155
6.1 Biased matroids 157
7 Open questions 165
8 Bibliography 169

List of Figures

1.1 Addition of points of A 2
1.2 Addition of points of A 3
1.3 Addition of points of A 3
1.4 Multiplication of points of A 4
1.5 Multiplication of points of A 5
1.6 Multiplication of points of A 5
1.7 Addition and multiplication can geometrically be regarded as equiv-alent operations.6
2.1 An e-based 3-line configuration 10
2.2 The necessary triangles (coloured blue) of the pair (x, y) with re-spect to the e-triangle $e b_{1} c_{2}$ (coloured green).12
2.3 The necessary triangles and the relation triangle (coloured red) of
(x, y) with respect to the e-triangle $e b_{1} c_{2}$. For this particular case,we have $z \notin\{x, y\}$.12
$2.4 \quad R_{1}$ basic relation configuration. 15
$2.5 \quad R_{2}$ basic relation configuration. 15
$2.6 \quad R_{3}$ basic relation configuration. 16
$2.7 \quad R_{4}$ basic relation configuration. 16
$2.8 \quad R_{5}$ basic relation configuration. 17
$2.9 \quad R_{6}$ basic relation configuration. 17
$2.10 R_{7}$ basic relation configuration. 18
$2.11 N R_{1}$ basic non-relation configuration. 20
$2.12 N R_{2}$ basic non-relation configuration. 20
$2.13 N R_{3}$ basic non-relation configuration. 21
$2.14 N R_{4}$ basic non-relation configuration. 21
$2.15 N R_{5}$ basic non-relation configuration. 22
$2.16 W_{1}$ forbidden configuration 24
$2.17 W_{2}$ forbidden configuration 24
$2.18 \quad W_{3}$ forbidden configuration 25
2.19 W_{4} forbidden configuration 25
$2.20 \quad W_{5}$ forbidden configuration 25
$2.21 W_{6}$ forbidden configuration 26
$2.22 W_{7}$ forbidden configuration 26
$2.23 W_{8}$ forbidden configuration 26
2.24 27
2.25 28
2.26 The configuration forced by defining $x \circ y$ on the e-triangle $e b_{3} c_{2}$,
with the necessary triangles $x b_{3} c_{3}$ and $y b_{4} c_{2}$. 28

2.27 The configuration forced by defining $x \circ y$ on the e-triangle $e b_{3} c_{2}$,

2.28 . 29
2.29 The configuration forced by defining $x \circ y$ on the e-triangle $e b_{2} c_{4}$,
with the necessary triangles $x b_{2} c_{3}$ and $y b_{3} c_{4}30$
2.30 The configuration forced by defining $x \circ y$ on the e-triangle $e b_{2} c_{4}$,

2.31 . 31
2.32 The configuration forced by defining $x \circ y$ on the e-triangle $e b_{3} c_{3}$, with the necessary triangles $x b_{3} c_{4}$ and $y b_{1} c_{3}31$
2.33 The configuration forced by defining $x \circ y$ on the e-triangle $e b_{3} c_{3}$, with the necessary triangles $x b_{3} c_{4}$ and $y b_{4} c_{3}32$
2.34 The configuration forced by defining $x \circ y$ on the e-triangle $e b_{3} c_{3}$, with the necessary triangles $x b_{3} c_{1}$ and $y b_{1} c_{3}$. 32
$2.35 \mathrm{~W}_{9}$ forbidden configuration . 33
$2.36 W_{10}$ forbidden configuration . 33
$2.37 W_{11}$ forbidden configuration . 34
2.38 . 35
2.39 . 35
2.40 Not a matroid . 36
2.41 The configuration forced by defining $x \circ x$ on the e-triangle $e b_{2} X_{C}$, with the necessary triangles $x b_{2} c_{2}$ and $x b_{1} X_{C}$. 36
2.42 . 37
2.43 The configuration forced by defining $x \circ x$ on the e-triangle $e X_{B} c_{3}$,
with the necessary triangles $x X_{B} c_{1}$ and $x b_{2} c_{3}$.37
2.44 38
2.45 The configuration forced by defining $x \circ x$ on the e-triangle $e b_{3} c_{4}$,with the necessary triangles $x b_{3} c_{5}$ and $x b_{4} c_{4} . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ 38 ~ 8 ~$
$2.46 W_{12}$ forbidden configuration 39
2.47 40
2.48 The configuration forced by defining $x \circ x$ on the e-triangle $e b_{2} c_{2}$,
with the necessary triangles $x b_{2} c_{3}$ and $x b_{3} c_{2}$. 40
$2.49 W_{13}$ forbidden configuration 41
$2.50 \quad W_{14}$ forbidden configuration 41
$2.51 W_{15}$ forbidden configuration 42
$2.52 W_{16}$ forbidden configuration 42
2.53 43
2.54 The configuration forced by defining $x \circ y=e$ on the e-triangle$e b_{2} c_{2}$, with the necessary triangles $x b_{2} c_{1}$ and $y b_{3} c_{2} . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ 44 ~$
2.55 The configuration forced by defining $x \circ y=e$ on the e-triangle$e b_{2} c_{2}$, with the necessary triangles $x b_{2} c_{3}$ and $y b_{1} c_{2}$.44
2.56 The configuration forced by defining $x \circ y=e$ on the e-triangle$e b_{2} c_{2}$, with the necessary triangles $x b_{2} c_{3}$ and $y b_{3} c_{2}$.45
2.57 The configuration forced by defining $x \circ y=e$ on the e-triangle$e Y X$, with the necessary triangles $x Y c_{2}$ and $y b_{2} X$. 45
3.150

LIST OF FIGURES

3.2 51
3.3 52
3.4 The blue triangles $a b_{1}(\alpha)$ and $b b^{\prime} c_{1}$ are the necessary triangles of
$a \circ b$ with respect to the green e-triangle $e b_{1} c_{1}$. 54
3.5 The red triangle $(a \oplus b) b^{\prime}(\alpha)$ is the relation triangle of $a \circ b$. 55
3.6 The blue triangles $a b_{1}(\alpha)$ and $b b^{\prime} c_{1}$ are the necessary triangles of$a \circ b$ with respect to the green e-triangle $e b_{1} c_{1}$.56
3.7 The red triangle $(a \otimes b) b^{\prime}(\alpha)$ is the relation triangle of $a \circ b$. 57
3.8 58
3.9 61
4.1 A Pappus configuration 67
$4.2 \quad C_{1}$ forbidden configuration. 68
$4.3 \quad R_{1}$ basic relation configuration. Note that the labelling is slightlydifferent to that in Chapter 2. 69
4.4 69
4.5 The commutative configuration of the pair (x, y), denoted Com $_{x, y}$. 70
$4.6 \quad C_{2}$ forbidden configuration. 72
$4.7 \quad C_{3}$ forbidden configuration. 72
$4.8 \quad C_{4}$ forbidden configuration. 73
$4.9 \quad C_{5}$ forbidden configuration. 73
4.10 74
4.11 75
4.12 75
4.13 76
4.14 77
$4.15 A_{1}$ forbidden configuration 80
$4.16 A_{2}$ forbidden configuration 80
4.17 82
$4.18 A_{3}$ forbidden configuration 83
$4.19 A_{4}$ forbidden configuration 83
$4.20 A_{5}$ forbidden configuration 84
$4.21 A_{6}$ forbidden configuration 84
$4.22 A_{7}$ forbidden configuration 85
$4.23 A_{8}$ forbidden configuration 85
4.24 86
4.25 86
$4.26 \quad A_{9}$ forbidden configuration 87
$4.27 A_{10}$ forbidden configuration 88
$4.28 A_{11}$ forbidden configuration 88
$4.29 A_{12}$ forbidden configuration 89
$4.30 A_{13}$ forbidden configuration 89
$4.31 A_{14}$ forbidden configuration 90
4.32 A_{15} forbidden configuration 90
$4.33 A_{16}$ forbidden configuration 91

LIST OF FIGURES

4.34 91
$4.35 A_{18}$ forbidden configuration 93
$4.36 A_{19}$ forbidden configuration 93
$4.37 A_{20}$ forbidden configuration 94
$4.38 A_{21}$ forbidden configuration 94
$4.39 A_{22}$ forbidden configuration 95
4.40 A_{23} forbidden configuration 95
$4.41 \quad A_{24}$ forbidden configuration 96
4.42 A_{25} forbidden configuration 96
4.43 97
4.44 A_{26} forbidden configuration 97
$4.45 \quad A_{27}$ forbidden configuration 98
$4.46 A_{28}$ forbidden configuration 99
$4.47 \quad A_{29}$ forbidden configuration 99
$4.48 A_{30}$ forbidden configuration 100
$4.49 A_{31}$ forbidden configuration 100
$4.50 A_{32}$ forbidden configuration 101
$4.51 A_{33}$ forbidden configuration 102
4.52 A_{34} forbidden configuration 103
$4.53 A_{35}$ forbidden configuration 103
$4.54 A_{36}$ forbidden configuration 104
$4.55 A_{36}$ forbidden configuration 104
$4.56 A_{38}$ forbidden configuration 105
4.57 105
4.58 106
$4.59 A_{39}$ forbidden configuration 107
$4.60 \quad A_{40}$ forbidden configuration 107
$4.61 A_{41}$ forbidden configuration 107
$4.62 A_{42}$ forbidden configuration 108
$4.63 A_{43}$ forbidden configuration 109
$4.64 A_{44}$ forbidden configuration 109
$4.65 A_{45}$ forbidden configuration 111
4.66 A_{46} forbidden configuration 112
4.67 A_{47} forbidden configuration 112
4.68 A_{48} forbidden configuration 113
4.69 A_{49} forbidden configuration 113
4.70 A_{50} forbidden configuration 114
4.71 A_{51} forbidden configuration 115
$4.72 A_{52}$ forbidden configuration 115
$4.73 A_{53}$ forbidden configuration 116
$4.74 A_{54}$ forbidden configuration 116
4.75 A_{1}^{\prime} maximal forbidden configuration 118
4.76 A_{2}^{\prime} maximal forbidden configuration 119
$5.1 \quad R_{1}$ basic relation configuration. Note that the blue and red triangles are the necessary and relation triangles respectively for $\quad e \circ_{x} z=y$. 122
5.2 The C_{2} configuration $\left(C_{2}, \circ_{e}\right)_{1}$. Note that for this configuration, o_{e} is a strong binary operation. 123
5.3124
$5.4\left(C_{2}, \circ_{e}\right)_{1}$ with an added blue triangle which is not e-relevant. Re-
call that a red point on a dashed line consisting of the points m, nmeans there exists no point p such that m, n, p are collinear. 126
5.5 The V_{4}-configuration denoted $\left(V_{4}, o_{e}\right)_{1}$ 129
5.6 135
5.7 135
5.8 136
5.9 137
5.10 137
5.11 A 2-partition group configuration of C_{2}. 142
5.12 The C_{3}-configuration denoted $\left(C_{3}\right)_{1}$ 144
5.13 The C_{3}-configuration denoted $\left(C_{3}\right)_{2}$ 144
5.14 148
5.15 The configuration $\left(C_{3}\right)_{1}$ with permuted distinguished lines withthe ordering $\{B, A, C\}$.152

Chapter 1

Introduction

The algebra of throws is a geometric construction which recovers the underlying algebraic structure of a projective plane. This thesis is motivated by the idea of applying an operation analogous to the algebra of throws in the more general setting of rank-3 matroids, in the hope of recovering the underlying algebraic structure of the matroid. To begin, we will overview the algebra of throws construction as described in [4].

1.1 The algebra of throws

Developed in 1857 by von Staudt [6], the algebra of throws is a classical geometric way of reconstructing the underlying algebraic structure of a projective plane. If the projective plane comes from a field \mathbb{F}, then the geometric methods of addition and multiplication of points on a line recover the addition and multiplication of \mathbb{F}. We will overview these two operations as described in [4], before applying them in the context of matroids.

1.1.1 Addition

We will describe von Staudt's addition of any pair of points on a line. Let A be a line, and let p_{0}, p_{∞} be two arbitrary, distinct fixed points on A called the fundamental points. In any plane through A, let B and C be any two lines through p_{∞}. We call the lines A, B, C the distinguished lines. Let l_{0} be any line through p_{0} meeting B and C at the points b_{0} and c_{0} respectively.

Figure 1.1: Addition of points of A

Let p_{x} and p_{y} be any two points of A. Let the lines $p_{x} b_{0}$ and $p_{y} c_{0}$ meet C and B at the points X and Y respectively.

Figure 1.2: Addition of points of A

The point p_{x+y}, in which the line $X Y$ meets A, is called the sum of the points p_{x} and p_{y} in A. The operation of obtaining the sum of two points is called addition.

Figure 1.3: Addition of points of A

It follows from [4] that the addition of points of A is independent of both our choice of the three distinguished lines A, B, C and of our choice of l_{0}. We prove
in Chapter 3 that if the points of A are the points of a field, then this addition of points corresponds to addition in the field. As one would expect, addition has the properties of commutativity and associativity.

1.1.2 Multiplication

We will now describe von Staudt's multiplication of any pair of points on a line. Let p_{0}, p_{1}, p_{∞} be points on A called the fundamental points. In any plane through A, let B, l_{1}, C be any three lines through the p_{0}, p_{1} and p_{∞} respectively. As for addition, we call the lines A, B, C the distinguished lines. Let l_{1} be the line which meets B and C at the points b_{1} and c_{1} respectively.

Figure 1.4: Multiplication of points of A

Let p_{x}, p_{y} be any two points of A. Let the lines $p_{x} b_{1}$ and $p_{y} c_{1}$ meet C and B in the points X and Y respectively.

Figure 1.5: Multiplication of points of A

The point $p_{x y}$ in which the line $X Y$ meets A is called the product of p_{x} by p_{y} in the scale p_{0}, p_{1}, p_{∞} on A. The operation of obtaining the product of two points is called multiplication.

Figure 1.6: Multiplication of points of A

It follows from [4] that the multiplication of points of A is independent of both our
choice of the three distinguished lines A, B, C and of our choice of l_{1}. We prove in Chapter 3 that if the points of A are the points of a field, then this multiplication of points corresponds to multiplication in the field. As one would expect, multiplication has the properties of commutativity and associativity.

1.1.3 The connection between addition and multiplication

If we disregard whether or not the three distinguished lines A, B, C are co-punctual, we observe that the two operations of addition and multiplication are geometrically the same operation. That is, if we disregard the point p_{∞} in Figure 1.3 and the points p_{0}, c_{0} in Figure 1.6, then addition and multiplication amount to same operation as shown in Figure 1.7 below. We label a point in Figure 1.7 by x / y if x and y are the equivalent points in Figure 1.3 (the additive case) and Figure 1.6 (the multiplicative case) respectively.

Figure 1.7: Addition and multiplication can geometrically be regarded as equivalent operations.

When we apply the algebra of throws to matroids, we will be performing this
operation locally to ' 3 -line configurations' - that is, matroid configurations partitioned by 3 lines as in Figure 1.7. Therefore we can disregard whether the 3 lines are co-punctual or not and need only consider a single geometric operation for both the addition and multiplication of points.

1.2 Overview of chapters

In Chapter 2 we generalize the algebra of throws to an analogous operation on 3-line configurations from rank-3 matroids. This analogous operation is local to three 'distinguished' lines and can give rise to either a partial binary operation or a full binary operation on one of the distinguished lines, called the 'main' line. We define this analogous operation on lines through an identity point on the main line. There may be many lines through this identity point and it is not guaranteed that we can apply this analogous operation on every line. This gives rise to this analogous operation being 'strong' if it can be applied to all lines through the identity point, or being 'weak' if it cannot be applied to all lines through the identity point. Whether we consider the strong or weak notion will hugely affect the complexity of our results.

If we apply the algebra of throws to matroids in a general setting, we want to recover the addition and multiplication of the algebraic structure. In Chapter 3, we show if the matroid configuration comes from a projective plane over a field, then addition corresponds to the field addition and similarly multiplication corresponds to the field multiplication. We also show if we have a matroid configuration from a projective plane over some algebraic structure other than a field, and we coordinatize using a classical method, then addition and multiplication corresponds to
the addition and multiplication of coordinates respectively.

In Chapter 4 we consider the properties of commutativity and associativity. We construct lists of forbidden configurations, which provide a polynomial time check for these properties. We note the importance of Pappus configurations as a check for commutativity when we have a strong binary operation.

In Chapter 5 we consider matroid configurations which represent groups. We include some examples of matroid configurations of small groups and prove the uniqueness of certain group configurations when the algebra of throws defines a strong binary operation.

In Chapter 6 we overview the matroids related to biased graphs and reveal the bijection between certain group configurations and the jointless Dowling geometries.

Any undefined notation or terminology will follow [1]. Any known matroids we reference follow the notation as found in the appendix of [1].

Chapter 2

Generalizing the algebra of throws

In this chapter, we generalize the algebra of throws to rank-3 matroid configurations. Recall that within projective planes over fields, the algebra of throws defines two well-defined binary operations - namely, addition and multiplication over the given field. In the context of matroids, the analogous operation is not guaranteed to be well-defined. We construct finite lists of forbidden configurations to check for these two properties within a rank-3 matroid configuration.

2.1 3-line configurations

Recall a simple matroid is one with no loops or parallel elements. A line of a matroid M is a rank-2 flat. A trivial line contains exactly two points and a nontrivial line contains at least three points. We will only show non-trivial lines in our diagrams. A 3-line configuration is a rank-3 simple matroid G with lines A, B, C such that $\{A, B, C\}$ partition $E(G)$. We say that A, B, C are the distinguished lines of G and we call the elements of $E(G)$ points. An e-based 3-line configuration is a triple $(G,\{A, B, C\}, e)$ where G is a 3-line configuration with lines A, B, C and
$e \in A$. The element e is called the identity point. If $\{A, B, C\}$ and e are clear from context, we will abbreviate ($G,\{A, B, C\}, e$) to G and abbreviate "e-based 3-line configuration" to configuration.

Figure 2.1: An e-based 3-line configuration

Given a configuration G, the 3-point lines we are interested in are those which contain a point from each of the distinguished lines. That is, whenever we refer to a 3-point line $a b c$, we will assume $a \in A, b \in B$ and $c \in C$, and call $a b c$ a triangle. For example, in Figure 2.1, ehf is not a triangle as $e, h, f \in A$. However, hig is a triangle, as $h \in A, i \in B, g \in C$. For the fixed element $e \in A$, we say $e b c$ is an e-triangle. For example, in Figure 2.1, eid is an e-triangle. Two configurations $(G,\{A, B, C\}, e)$ and $\left(G^{\prime},\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}, e^{\prime}\right)$ are isomorphic if there exists a bijection $\sigma: G \rightarrow G^{\prime}$ such that $\sigma(A)=A^{\prime}, \sigma(B)=B^{\prime}, \sigma(C)=C^{\prime}, \sigma(e)=e^{\prime}$ and $x y z$ is a triangle in G if and only if $\sigma(x) \sigma(y) \sigma(z)$ is a triangle in G^{\prime}. A sub-configuration of a configuration G is a subset of the points and lines of G which is itself a configuration.

To ensure our 3-line configurations are indeed rank-3 matroids, we need only satisfy the following lemma:

Lemma 2.1.1. Let E be a set and \mathscr{L} be a collection of subsets of E such that if $l \in \mathscr{L}$ then $|l| \geq 3$. Then \mathscr{L} is the collection of non-trivial lines of a rank-3 simple matroid if and only if $\left|l_{i} \cap l_{j}\right| \leq 1$ for all $l_{i}, l_{j} \in \mathscr{L}$.

Recall that a binary operation on a set A is a function $f: A \times A \rightarrow A$. If f is not a function, but a partial function (i.e. f is defined for a subset of $A \times A$), then f is a partial binary operation. For example, division over \mathbb{R} is a partial binary operation as division by 0 is undefined for any real number. We may refer to a binary operation as a full binary operation for clarity. Within projective planes, the algebra of throws defines two full binary operations - namely, addition and multiplication over the given field. However, this is not the case when we apply an analogous technique to matroid configurations. In general, it is not even the case that we have a partial binary operation. So the question is, when can we describe an analogous construction for matroid configurations, and when does this construction give rise to partial and full binary operations? We will answer this by using the algebra of throws to define a relation, \circ, from $A \times A$ to A. As we are defining \circ on A, we call A the main line of the configuration. Later, we describe the conditions under which the relation \circ gives rise to either a partial or full binary operation.

Let $G=(G,\{A, B, C\}, e)$ be an e-based 3-line configuration. We will define the relation o between $A \times A$ and A as follows:

Take a pair $(x, y) \in A \times A$. We say $((x, y), z) \in \circ$, or $(x, y) \circ z$, if the following conditions hold:
(1). There exists an e-triangle, $e b_{1} c_{2}$, such that the triangles $x b_{1} X$ and $y Y c_{2}$ exist. Call the triangles $x b_{1} X$ and $y Y c_{2}$ the necessary triangles of the pair (x, y)
with respect to $e b_{1} c_{2}$. Note that $X \neq c_{2}$ and $Y \neq b_{1}$, by Lemma 2.1.1.

Figure 2.2: The necessary triangles (coloured blue) of the pair (x, y) with respect to the e-triangle $e b_{1} c_{2}$ (coloured green).
(2). There exists $z \in A$ such that $z Y X$ is a triangle, called the relation triangle of (x, y) with respect to $e b_{1} c_{2}$. Note that $z \notin\{x, y\}$ if we are to satisfy Lemma 2.1.1 and remain a matroid.

Figure 2.3: The necessary triangles and the relation triangle (coloured red) of (x, y) with respect to the e-triangle $e b_{1} c_{2}$. For this particular case, we have $z \notin$ $\{x, y\}$.

If both conditions (1) and (2) hold, then $((x, y), z) \in \circ$ and we say $x \circ y$ is defined on $e b_{1} c_{2}$. We say $x \circ y$ is undefined on $e b_{1} c_{2}$ if either (1) does not hold, or if (1) holds but there does not exist $z \in A$ such that $((x, y), z) \in \circ$ on $e b_{1} c_{2}$. If there does
not exist any $z \in A$ such that $((x, y), z) \in \circ$ on any e-triangle, then we say $x \circ y$ is undefined.

For some $x, y \in A$, it may be that $x \circ y$ is inconsistently defined across multiple e-triangles. That is, $x \circ y$ may be defined on $e b_{1} c_{2}$ and $e b_{1}^{\prime} c_{2}^{\prime}$, giving $\left((x, y), z_{1}\right) \in \circ$ and $\left((x, y), z_{2}\right) \in \circ$ where $z_{1} \neq z_{2}$. Later, we will want to know when the relation \circ is consistently defined. If there exists an e-triangle $e b_{1} c_{2}$ such that $x \circ y$ is defined on $e b_{1} c_{2}$, then we say $x \circ y$ is defined. We will say that $x \circ y$ is well-defined if $x \circ y$ is defined, and whenever $x \circ y$ is defined on more than one e-triangle, for any pair of e-triangles $e b_{1} c_{2}$ and $e b_{1}^{\prime} c_{2}^{\prime}$ where $x \circ y$ is defined on $e b_{1} c_{2}$ giving $\left((x, y), z_{1}\right) \in \circ$, and $x \circ y$ is defined on $e b_{1}^{\prime} c_{2}^{\prime}$ giving $\left((x, y), z_{2}\right) \in 0$, then $z_{1}=z_{2}$. So $x \circ y$ is welldefined if it is consistently defined. We will say that $x \circ y$ is strongly defined if $x \circ y$ is well-defined and for every e-triangle $e b c$ in G we have $x \circ y$ defined on $e b c$.

The notions of strongly defined and well-defined pairs will become important later when we describe the different partial and full binary operations which may arise. For now, our focus is local - we are interested in whether pairs of $A \times A$ are defined on a particular e-triangle, so we are not concerned whether a pair is well-defined or strongly defined.

2.2 Complexity

We will assume basic complexity theory knowledge. As we can view rank-3 simple matroids as hypergraphs, we can use a standard model of complexity, as opposed to an Oracle model of complexity which is usually used in matroid theory. Our model will be a hypergraph, where the three hyperedges A, B, C partition the
points of the hypergraph. That is, these three hyperedges correspond to the distinguished lines of the configuration. All other hyperedges will be triangles of the form $a b c$ where $a \in A, b \in B, c \in C$. The size of an instance is the number of points, n, in the hypergraph. When we say a property can be checked in polynomial time - we mean polynomial in n. All algorithms mentioned are polynomial in n.

2.3 Basic configurations

There are a finite number of configurations to check for whether there exists $z \in A$ such that $x \circ y$ is defined on an e-triangle giving $(x, y) \circ z$. We call these the basic relation configurations, denoted R_{i}. Similarly, there are a finite number of configurations to check for whether $x \circ y$ is undefined on a particular e-triangle - we call these the basic non-relation configurations, denoted $N R_{j}$. A basic configuration is a basic relation configuration or a basic non-relation configuration.

First we will list the basic relation configurations, where \circ is the relation defined previously. In subsection 2.1, Figure 2.3 gives one example for which we have $(x, y) \circ z$ through the e-triangle $e b_{1} c_{2}$ - the following configurations make up all possible instances, up to isomorphism.

Figure 2.4: R_{1} basic relation configuration.

Figure 2.4 tells us $(x, y) \circ z$ through $e b_{1} c_{2}$, i.e. $x \circ y$ is defined on $e b_{1} c_{2}$.

Figure 2.5: R_{2} basic relation configuration.

Figure 2.5 tells us $(x, y) \circ e$ through $e b_{1} c_{2}$, i.e. $x \circ y$ is defined on $e b_{1} c_{2}$. Note that $R_{2} \cong P_{7}$.

Figure 2.6: R_{3} basic relation configuration.

Figure 2.6 tells us $(x, x) \circ z$ through $e b_{1} c_{2}$, i.e. $x \circ x$ is defined on $e b_{1} c_{2}$. Note that $R_{3} \cong P_{7}$. Also note that even though the underlying matroids of both Figures 2.5 and 2.6 are the same matroid, configurations R_{2} and R_{3} are not isomorphic.

Figure 2.7: R_{4} basic relation configuration.

Figure 2.7 tells us $(x, x) \circ e$ through $e b_{1} c_{2}$, i.e. $x \circ x$ is defined on $e b_{1} c_{2}$. Note that $R_{4} \cong M\left(K_{4}\right)$.

Figure 2.8: R_{5} basic relation configuration.

Figure 2.8 tells us $(x, e) \circ x$ through $e b_{1} c_{2}$, i.e. $x \circ e$ is defined on $e b_{1} c_{2}$.

Figure 2.9: R_{6} basic relation configuration.

Figure 2.9 tells us $(e, y) \circ y$ through $e b_{1} c_{2}$, i.e. $e \circ y$ is defined on $e b_{1} c_{2}$.

Figure 2.10: R_{7} basic relation configuration.

Figure 2.10 tells us $(e, e) \circ e$ through $e b_{1} c_{2}$, i.e. $e \circ e$ is defined on $e b_{1} c_{2}$. We now prove that the above configurations $R_{1}-R_{7}$ are all possible basic relation configurations up to isomorphism.

Lemma 2.3.1. Given a configuration G, for $x, y, z \in A$, we have $(x, y) \circ z$ on the e-triangle $e b_{1} c_{2}$ if and only if there is a basic relation configuration for e, x, y, z that is isomorphic to one of $R_{1}-R_{7}$, where the isomorphism is the identity for the points e, x, y, z, b_{1}, c_{2}.

Proof. We will consider a case analysis of the distinct subsets of elements from $\{e, x, y, z\}$.

Assume all four points in $\{e, x, y, z\}$ are distinct. By inspection, $(x, y) \circ z$ if and only if we have a configuration isomorphic to R_{1}.

Now assume only three points in $\{e, x, y, z\}$ are distinct and $(x, y) \circ z$. There are three cases to consider. Firstly, suppose e, x, y are distinct and $z \in\{e, x, y\}$. Recall that we cannot have $z \in\{x, y\}$ and remain a matroid, so we must have $z=e$. The three points e, x, y are distinct and $z=e$ if and only if we have a configuration
isomorphic to R_{2}. Secondly, suppose e, x, z are distinct and $y \in\{e, x\}$ (recall we cannot have $y=z$). Then $y=e$ if and only if $z=x$, contradicting our assumption that x, z are distinct, so we must have $y=x$. The three points e, x, z are distinct and $y=x$ if and only if we have a configuration isomorphic to R_{3}. Finally, suppose e, y, z are distinct and $x \in\{e, y\}$ (recall we cannot have $x=z$). Then $x=e$ if and only if $z=e$, contradicting our assumption that e, z are distinct, so we must have $x=y$. The three points e, y, z are distinct and $x=y$ if and only if we have a configuration isomorphic to R_{3}.

Now assume only two points in $\{e, x, y, z\}$ are distinct and $(x, y) \circ z$. There are two cases to consider. Firstly, suppose e and x are distinct. Then $y=e$ if and only if $z=x$, if and only if we have a configuration isomorphic to R_{5}. On the other hand, $y=x$ if and only if $z=e$ if and only if we have a configuration isomorphic to R_{4}. For the second case, suppose e and y are distinct. Then $x=e$ if and only if $z=y$, if and only if we have a configuration isomorphic to R_{6}. On the other hand, $x=y$ if and only if $z=e$, if and only if we have a configuration isomorphic to R_{4}.

Finally, assume $e=x=y=z$. By inspection, $(x, y) \circ z$ if and only if we have a configuration isomorphic to R_{7}.

These basic relation configurations show when $x \circ y$ is defined on a particular e triangle. Recall that the basic non-relation configurations, denoted $N R_{j}$, show when $x \circ y$ is not defined on a particular e-triangle. We now list these configurations, denoting non-collinearities by dashed lines. When we have an unlabelled red point on A, which forms a dashed-line triangle with two points $c \in C, b \in B$ (eg. Figures 2.11 and 2.12), this means that $\{a, b, c\}$ is independent for all $a \in A$. In other words, there is no point in A which forms a triangle with $b c$. If we have
dashed-line triangle $a b c$ where $a \in A$ is a black filled point (eg. Figures 2.13 and 2.14), this means for the specific point a, a is independent from $b c$. There may (or may not) exist some point $a^{\prime} \neq a$ which is collinear with $b c$.

Figure 2.11: $N R_{1}$ basic non-relation configuration.

In Figure 2.11, the red dashed line tells us there is no point on A that is collinear with c_{1} and b_{2}, i.e. $x \circ y$ is undefined on $e b_{1} c_{2}$.

Figure 2.12: $N R_{2}$ basic non-relation configuration.

In Figure 2.12, the red dashed line tells us there is no point on A that is collinear with c_{1} and b_{2}, i.e. $x \circ x$ is undefined on $e b_{1} c_{2}$.

Figure 2.13: $N R_{3}$ basic non-relation configuration.

In Figure 2.13, the red dashed line says for the specific point x, that $x \circ e$ is undefined on $e b_{1} c_{2}$.

Figure 2.14: $N R_{4}$ basic non-relation configuration.

In Figure 2.14, the red dashed line says for the specific point y, that $e \circ y$ is undefined on $e b_{1} c_{2}$.

Figure 2.15: $N R_{5}$ basic non-relation configuration.

We now prove that the above configurations $N R_{1}-N R_{5}$ are all possible basic non-relation configurations.

Lemma 2.3.2. Given a configuration G, for $x, y \in A$, then $x \circ y$ is undefined on the e-triangle $e b_{1} c_{2}$ if and only if there is a basic non-relation configuration for e, x, y that is isomorphic to one of $N R_{1}-N R_{5}$, where the isomorphism is the identity for the points e, x, y, z, b_{1}, c_{2}.

Proof. As for Lemma 2.3.1, our proof considers a case analysis of the distinct subsets of elements of $\{e, x, y\}$.

Assume all three elements from $\{e, x, y\}$ are distinct. By inspection, $x \circ y$ is undefined on $e b_{1} c_{2}$ if and only if we have a configuration isomorphic to $N R_{1}$.

Now assume two elements from $\{e, x, y\}$ are distinct and $x \circ y$ is undefined on $e b_{1} c_{2}$. Suppose e, x are distinct. By inspection, $y=x$ if and only if we have a configuration isomorphic to $N R_{2}$ and $y=e$ if and only if we have a configuration isomorphic to $N R_{3}$. Suppose e, y are distinct. By inspection, $x=e$ if and only if we have a configuration isomorphic to $N R_{4}$ and $x=y$ if and only if we have a
configuration isomorphic to $N R_{2}$. Suppose x, y are distinct. By inspection, $e=x$ if and only if we have a configuration isomorphic to $N R_{4}$ and $e=y$ if and only if we have a configuration isomorphic to $N R_{3}$.

Finally, assume $e=x=y$. Then $x \circ y$ is undefined on $e b_{1} c_{2}$ if and only if we have a configuration isomorphic to $N R_{5}$.

To check whether a pair is defined on an e-triangle, we need only check for five forbidden configurations. As each of these configuration has no more than eight points, for a configuration with n points, we can check this in no more than $5\binom{n}{7}\binom{8}{3}$ steps, which is polynomial in n. This proves the following corollary.

Corollary 2.3.2.1. Let $(G,\{A, B, C\}, e)$ be an e-based configuration with n points. There is an algorithm, which is polynomial in n, to check whether a pair of points is defined on an e-triangle.

2.4 Forbidden configurations for binary operations

The basic relation and basic non-relation configurations consider the relation \circ on a single e-triangle at a time. Now, we want to check when \circ is consistent, so we must consider when \circ is defined on pairs of e-triangles. We say \circ is consistent if for all $x, y \in A$, if $(x, y) \circ z_{1}$ and $(x, y) \circ z_{2}$, then $z_{1}=z_{2}$. In other words, \circ is consistent if every defined pair $(x, y) \in A \times A$ is well-defined. Now define the operation \circ by $x \circ y=z$ if there exists an e-triangle $e b_{1} c_{2}$ such that $(x, y) \circ z$. Recall that \circ is a partial binary operation if $\circ: A \times A$ is a partial function. The next lemma follows immediately from the definition of a partial binary operation.

Lemma 2.4.1. The operation \circ is a partial binary operation if and only if \circ is consistent.

We want to test for when a configuration has a partial binary operation, o. We only need to check that \circ is consistent, that is, we need to check that every defined pair in $A \times A$ is well-defined. The basic configurations test when $x \circ y$ is defined for a particular e-triangle. If $x \circ y$ is defined for multiple e-triangles, we want to check that $x \circ y$ is well-defined, i.e. gives the same answer on all e-triangles. There is a small number of configurations, each with no more than twelve points, which show that $x \circ y$ is not well-defined for a pair $(x, y) \in A \times A$. We will construct these forbidden configurations by a case analysis of the distinct points of $\{e, x, y, z\}$. This list will consist of exactly the forbidden configurations for being a partial binary operation. The following eight configurations make up part of this list.

Figure 2.16: W_{1} forbidden configuration

Figure 2.17: W_{2} forbidden configuration

Figure 2.18: W_{3} forbidden configuration

Figure 2.19: W_{4} forbidden configuration

Figure 2.20: W_{5} forbidden configuration

Figure 2.21: W_{6} forbidden configuration

C

Figure 2.22: W_{7} forbidden configuration

Figure 2.23: W_{8} forbidden configuration

We will prove that the configurations $W_{1}-W_{8}$ are all possible forbidden configu-
rations for the pair (x, y) being well-defined when e, x, y, z are distinct points. First, a quick note. For the rest of this thesis, we will employ a particular colour coding in an attempt to make the myriad of configurations more digestible. We will colour the e-triangles we are working with green, colour the necessary triangles blue and finally colour the relation triangle red.

Lemma 2.4.2. For a configuration G, suppose $e, x, y \in A$ are distinct points and there exists $z \in A$ such that $(x, y) \circ z$ and $z \notin\{e, x, y\}$. Then $x \circ y$ is well-defined and $x \circ y=z$ if and only if G has no sub-configuration isomorphic to any of $W_{1}-W_{8}$, where the isomorphism is the identity for the points e, x, y, z.

Proof. We will consider a case analysis of the configurations which define $x \circ y=z$ on two distinct e-triangles. We will begin with the basic relation configuration R_{1}, which defines $x \circ y=z$. We will then consider how to extend R_{1} so that $x \circ y$ is defined on two distinct e-triangles. Given R_{1}, there are three other structurally different e-triangles on which we can define $x \circ y=z$:

Figure 2.24:

Case (i). Suppose we define $x \circ y=z$ on the e-triangle $e b_{3} c_{2}$:

Figure 2.25:

By inspection, we must have the necessary triangle $y b_{4} c_{2}$, where $b_{4} \neq b_{i}$ for $i \in\{1,2,3\}$, and either one of the two following sub-cases:

Sub-case (a). The necessary triangle $x b_{3} c_{3}$ exists, where $c_{3} \neq c_{i}$ for $i \in$ $\{1,2\}$. In this case $x \circ y$ is not well-defined if and only if the relation triangle $z b_{4} c_{3}$ does not exist - as the configuration shows both $x \circ y=z$ and $x \circ y \neq z$. So in this case $x \circ y$ is not well-defined if and only if we have a configuration isomorphic to W_{1}.

Figure 2.26: The configuration forced by defining $x \circ y$ on the e-triangle $e b_{3} c_{2}$, with the necessary triangles $x b_{3} c_{3}$ and $y b_{4} c_{2}$.

Sub-case (b). The necessary triangle $x b_{3} c_{1}$ exists. In this case $x \circ y$ is not
well-defined if and only if the relation triangle $z b_{4} c_{1}$ does not exist, if and only if we have a configuration isomorphic to W_{2}.

Figure 2.27: The configuration forced by defining $x \circ y$ on the e-triangle $e b_{3} c_{2}$, with the necessary triangles $x b_{3} c_{1}$ and $y b_{4} c_{2}$.

Case (ii). Suppose we define $x \circ y=z$ on the e-triangle $e b_{2} c_{4}$, where $c_{4} \neq c_{i}$ for $i \in\{1,2\}$.

Figure 2.28:

By inspection, we must have the necessary triangle $x b_{2} c_{3}$, where $c_{3} \neq c_{i}$ for $i \in\{1,2,4\}$, and either one of the two following sub-cases:

Sub-case (a). The necessary triangle $y b_{3} c_{4}$ exists, where $b_{3} \neq b_{i}$ for $i \in$ $\{1,2\}$. In this case $x \circ y$ is not well-defined if and only if the relation
triangle $z b_{3} c_{3}$ does not exist, if and only if we have a configuration isomorphic to W_{3}.

Figure 2.29: The configuration forced by defining $x \circ y$ on the e-triangle $e b_{2} c_{4}$, with the necessary triangles $x b_{2} c_{3}$ and $y b_{3} c_{4}$

Sub-case (b). The necessary triangle $y b_{1} c_{4}$ exists. In this case $x \circ y$ is not well-defined if and only if the relation triangle $z b_{1} c_{3}$ does not exist, if and only if we have a configuration isomorphic to W_{4}.

C

Figure 2.30: The configuration forced by defining $x \circ y$ on the e-triangle $e b_{2} c_{4}$, with the necessary triangles $x b_{2} c_{3}$ and $y b_{1} c_{4}$.

Case (iii). Suppose we define $x \circ y=z$ on the e-triangle $e b_{3} c_{3}$, where $b_{3} \neq b_{i}$, $c_{3} \neq c_{i}$ for $i \in\{1,2\}$.

Figure 2.31:

By inspection, we must have one of the three following sub-cases:

Sub-case (a). Suppose the necessary triangles $x b_{3} c_{4}$ and $y b_{1} c_{3}$ exist, where $c_{4} \neq c_{i}$ for $i \in\{1,2,3\}$. In this case $x \circ y$ is not well-defined if and only if the relation triangle $z b_{1} c_{4}$ does not exist, if and only if we have a configuration isomorphic to W_{5}.

Figure 2.32: The configuration forced by defining $x \circ y$ on the e-triangle $e b_{3} c_{3}$, with the necessary triangles $x b_{3} c_{4}$ and $y b_{1} c_{3}$

Sub-case (b). Suppose the necessary triangles $x b_{3} c_{4}$ and $y b_{4} c_{3}$ exist, where $b_{4} \neq b_{i}$ for $i \in\{1,2,3\}$ and $c_{4} \neq c_{i}$ for $i \in\{1,2,3\}$. In this case $x \circ y$ is not well-defined if and only if the relation triangle $z b_{4} c_{4}$ does not exist
if and only if we have a configuration isomorphic to W_{6}.

Figure 2.33: The configuration forced by defining $x \circ y$ on the e-triangle $e b_{3} c_{3}$, with the necessary triangles $x b_{3} c_{4}$ and $y b_{4} c_{3}$

Sub-case (c). Suppose the necessary triangles $x b_{3} c_{1}$ and $y b_{1} c_{3}$ exist. In this case $x \circ y$ is not well-defined if and only if the relation triangle $z b_{1} c_{1}$ does not exist, if and only if we have a configuration isomorphic to W_{7}. Note that the triangle $z b_{1} c_{1}$ cannot exist - if it did, we would have two lines meeting at more than one point, giving a non-matroid configuration.

Figure 2.34: The configuration forced by defining $x \circ y$ on the e-triangle $e b_{3} c_{3}$, with the necessary triangles $x b_{3} c_{1}$ and $y b_{1} c_{3}$

These are all possible extensions of R_{1} such that $x \circ y$ is not well-defined, com-
pleting the proof.

The following figures show further forbidden configurations.

Figure 2.35: W_{9} forbidden configuration

Figure 2.36: W_{10} forbidden configuration

Figure 2.37: W_{11} forbidden configuration

We will prove that above configurations $W_{9}-W_{11}$ are all possible forbidden configurations for the pair (x, y) being well-defined when e, x, z are distinct and $y=x$.

Lemma 2.4.3. For a configuration G, suppose e $, x, \in A$ are distinct points, and there exists $z \in A$ where $z \notin\{e, x\}$ such that $(x, x) \circ z$. Then $x \circ x$ is well-defined and $x \circ x=z$ if and only if G has no sub-configuration isomorphic to any of $W_{9}-W_{11}$, where the isomorphism is the identity for the points e, x,z.

Proof. As for Lemma 2.4.2, we will begin with a basic relation configuration. For this case, we will begin with R_{3}, which defines $x \circ x=z$, and consider a case analysis of possible extensions of this configuration so that $x \circ x$ is defined on two distinct e-triangles. Given R_{3}, there are three other e-triangles on which we can define $x \circ x=z:$

Figure 2.38:

Case (i). Suppose we define $x \circ x=z$ on the e-triangle $e b_{2} X_{C}$:

Figure 2.39:

As the necessary triangle $x b_{1} X_{C}$ already exists, for the remaining necessary triangle we must have either one of the two following sub-cases:

Sub-case (a). Suppose the triangle $x b_{2} c_{1}$ exists:

Figure 2.40: Not a matroid

But this forces a non-matroid configuration.

Sub-case (b). So we must have the triangle $x b_{2} c_{2}$, where $c_{2} \notin\left\{c_{1}, X_{C}\right\}$. In this case $x \circ x$ is not well-defined if and only if the relation triangle $z b_{1} c_{2}$ does not exist, if and only if we have a configuration isomorphic to W_{9} :

C

Figure 2.41: The configuration forced by defining $x \circ x$ on the e-triangle $e b_{2} X_{C}$, with the necessary triangles $x b_{2} c_{2}$ and $x b_{1} X_{C}$.

Case (ii). Suppose we define $(x, x) \circ z$ on the e-triangle $e X_{B} c_{3}$:

Figure 2.42:

Note that the necessary triangle $x X_{B} c_{1}$ already exists. By inspection, the remaining necessary triangle must be $x b_{2} c_{3}$. In this case $x \circ x$ is not welldefined if and only if the relation triangle $z b_{2} c_{1}$ does not exist, if and only if we have a configuration isomorphic to W_{10} :

Figure 2.43: The configuration forced by defining $x \circ x$ on the e-triangle $e X_{B} c_{3}$, with the necessary triangles $x X_{B} c_{1}$ and $x b_{2} c_{3}$.

Note that this configuration is isomorphic to Figure 32.

Case (iii). Finally, suppose we define $(x, x) \circ z$ on the e-triangle $e b_{3} c_{4}$:

Figure 2.44:

By inspection, the necessary triangles must be $x b_{3} c_{5}$ and $x b_{4} c_{4}$, where $c_{5} \notin$ $\left\{c_{1}, c_{4}, X_{c}\right\}$ and $b_{4} \notin\left\{b_{1}, b_{3}, X_{B}\right\}$. In this case $x \circ x$ is not well-defined if and only if the relation triangle $z b_{4} c_{5}$ does not exist, if and only if we have a configuration isomorphic to W_{11} :

Figure 2.45: The configuration forced by defining $x \circ x$ on the e-triangle $e b_{3} c_{4}$, with the necessary triangles $x b_{3} c_{5}$ and $x b_{4} c_{4}$.

These are all possible extensions of R_{3} such that $x \circ x$ is not well-defined, completing the proof.

The following figure is another forbidden configuration.

Figure 2.46: W_{12} forbidden configuration

We will now prove that for $x \circ x=e$ to be well-defined, W_{12} is the only forbidden configuration.

Lemma 2.4.4. For a configuration G, suppose $e, x \in A$ are distinct points such that $(x, x) \circ e$. Then $x \circ x$ is well-defined and $x \circ x=e$ if and only if G has no subconfiguration isomorphic to W_{12}, where the isomorphism is the identity for the points e, x.

Proof. As for the previous two lemmas, we will begin with a basic relation configuration. Given R_{3}, which defines $x \circ x=e$, there is only one other e-triangle on which $x \circ x=e$ may be defined - the e-triangle $e b_{2} c_{2}$, where $b_{2} \notin\left\{b_{1}, X_{B}\right\}$ and $c_{2} \notin\left\{c_{1}, X_{C}\right\}:$

Figure 2.47:

By inspection, the necessary triangles must be $x b_{2} c_{3}$ and $x b_{3} c_{2}$ where $c_{3} \notin\left\{c_{1}, c_{2}, X_{C}\right\}$ and $b_{3} \notin\left\{b_{1}, b_{2}, X_{B}\right\}$. In this case $x \circ x$ is not well-defined if and only if the relation triangle $e b_{3} c_{3}$ does not exist, if and only if we have a configuration isomorphic to W_{12} :

Figure 2.48: The configuration forced by defining $x \circ x$ on the e-triangle $e b_{2} c_{2}$, with the necessary triangles $x b_{2} c_{3}$ and $x b_{3} c_{2}$.

These are all possible extensions of R_{3} such that $x \circ x=e$ is not well-defined, completing the proof.

Finally, we list the remaining forbidden configurations for a pair being welldefined.

C

Figure 2.49: W_{13} forbidden configuration

Figure 2.50: W_{14} forbidden configuration

Note that in Figure 2.50, the red, dashed triangle $e b_{3} c_{1}$ is not really necessary it cannot exist as it would violate Lemma 2.1.1.

Figure 2.51: W_{15} forbidden configuration

Similarly, note that in Figure 2.51, the non-existent, red, dashed triangle $e b_{1} c_{3}$ is not really necessary - it cannot exist as it would violate Lemma 2.1.1.

Figure 2.52: W_{16} forbidden configuration

We will now prove $W_{13}-W_{16}$ are the only forbidden configurations for $x \circ y$ being well-defined when $x \circ y=e$.

Lemma 2.4.5. For a configuration G, suppose $e, x, y \in A$ are distinct points such that $(x, y) \circ e$. Then $x \circ y$ is well-defined and $x \circ y=e$ if and only if G has no sub-configuration isomorphic to any of $W_{13}-W_{16}$, where the isomorphism is the identity for the points e, x, y.

Proof. Starting with the basic relation configuration R_{2}, which defines $x \circ y=e$, the only two other e-triangles on which we can define $x \circ y=z$ are $e b_{2} c_{2}$ and $e Y X$ where $b_{2} \notin\left\{b_{1}, Y\right\}$ and $c_{2} \notin\left\{c_{1}, X\right\}$:

Figure 2.53:

Suppose we define $x \circ y$ on the e-triangle $e b_{2} c_{2}$. By inspection we must have one of the following four possibilities for our choice of necessary triangles:

Case (i). The triangles $x b_{2} c_{1}$ and $y b_{1} c_{2}$ exist if and only if $x \circ y$ is well-defined, as the relation triangle $e b_{1} c_{1}$ already exists.

Case (ii) Suppose we have the necessary triangles $x b_{2} c_{1}$ and $y b_{3} c_{2}$, where $b_{3} \notin$ $\left\{b_{1}, b_{2}, Y\right\}$. In this case $x \circ y$ is not well-defined if and only if the relation triangle $e b_{3} c_{1}$ does not exist, if and only if we have a configuration isomorphic to W_{14} :

Figure 2.54: The configuration forced by defining $x \circ y=e$ on the e-triangle $e b_{2} c_{2}$, with the necessary triangles $x b_{2} c_{1}$ and $y b_{3} c_{2}$.

Case (iii). Suppose we have the necessary triangles $x b_{2} c_{3}$ and $y b_{1} c_{2}$, where $c_{3} \notin$ $\left\{c_{1}, c_{2}, X\right\}$. In this case $x \circ y$ is not well-defined if and only if the relation triangle $e b_{1} c_{3}$ does not exist, if and only if we have a configuration isomorphic to W_{15} :

Figure 2.55: The configuration forced by defining $x \circ y=e$ on the e-triangle $e b_{2} c_{2}$, with the necessary triangles $x b_{2} c_{3}$ and $y b_{1} c_{2}$.

Case (iv). Suppose we have the necessary triangles $x b_{2} c_{3}$ and $y b_{3} c_{2}$, where $c_{3} \notin$ $\left\{c_{1}, c_{2}, X\right\}$ and $b_{3} \notin\left\{b_{1}, b_{2}, Y\right\}$. In this case $x \circ y$ is not well-defined if and only if the relation triangle $e b_{3} c_{3}$ does not exist, if and only if we have a configuration isomorphic to W_{13} :

Figure 2.56: The configuration forced by defining $x \circ y=e$ on the e-triangle $e b_{2} c_{2}$, with the necessary triangles $x b_{2} c_{3}$ and $y b_{3} c_{2}$.

Now suppose we define $x \circ y$ on the e-triangle $e Y X$. By inspection we must have the necessary triangles $x Y c_{2}$ and $y b_{2} X$, where $c_{2} \notin\left\{X, c_{1}\right\}$ and $b_{2} \notin\left\{b_{1}, Y\right\}$. In this case $x \circ y$ is not well defined if and only if the relation triangle $e b_{2} c_{2}$ does not exist, if and only if we have a configuration isomorphic to W_{16} :

Figure 2.57: The configuration forced by defining $x \circ y=e$ on the e-triangle $e Y X$, with the necessary triangles $x Y c_{2}$ and $y b_{2} X$.

These are all possible extensions of R_{2} such that $x \circ y=e$ is not well-defined, completing the proof.

Now we have proved Lemmas 2.4.2-2.4.5, we have the complete list of forbidden configurations for any pair of points of A being well-defined, which we prove in the next theorem.

Theorem 2.4.6. Let $(G,\{A, B, C\}, e)$ be an e-based configuration. Then the relation \circ is a partial binary operation if and only if G does not contain any subconfiguration isomorphic to any of $W_{1}-W_{16}$, where the isomorphism is the identity for the point $e \in A$.

Proof. It follows from Lemmas 2.4.2, 2.4.3, 2.4.4 and 2.4.5 that if G contains any of $W_{1}-W_{15}$, then \circ is not a well-defined operation and therefore not a partial binary operation. If G doesn't contain any of $W_{1}-W_{16}$, then \circ is a well-defined operation and therefore a partial binary operation.

Corollary 2.4.6.1. Let $(G,\{A, B, C\}, e)$ be an e-based configuration. Then the relation \circ is a full binary operation if and only if \circ is a partial binary operation and every pair $(x, y) \in A \times A$ is defined.

Observe that to check whether a pair $(x, y) \in A \times A$ is well-defined, we need only check for 16 forbidden configurations. As each forbidden configuration has no more than 12 points, for a configuration with n points, we can check this in less than $16\binom{n}{11}\binom{12}{3}$ steps, which is polynomial in n. This proves the following corollary.

Corollary 2.4.6.2. Let $(G,\{A, B, C\}, e)$ be an e-based configuration with n points. There is an algorithm, which is polynomial in n, to check whether \circ is a partial binary operation.

The next corollary follows from Corollaries 2.4.6.1 and 2.4.6.2

Corollary 2.4.6.3. Let ($G,\{A, B, C\}, e)$ be an e-based configuration with n points. There is an algorithm, which is polynomial in n, to check whether \circ is a full binary operation.

2.5 Strong and weak binary operations

We conclude this chapter by describing strong and weak binary operations, which exist in addition to full and partial binary operations.

Recall that $x \circ y$ is well-defined if $x \circ y$ is defined and when $e b_{1} c_{2}$ and $e b_{1}^{\prime} c_{2}^{\prime}$ are e-triangles such that $x \circ y$ is defined on $e b_{1} c_{2}$ giving $x \circ y=z_{1}$ and $x \circ y$ is defined on $e b_{1}^{\prime} c_{2}^{\prime}$ giving $x \circ y=z_{2}$, then $z_{1}=z_{2}$. Also recall that $x \circ y$ is strongly defined if it is well-defined and for every e-triangle $e b c$ we have $x \circ y$ defined on $e b c$. We say G has a weak partial binary operation \circ if \circ is a partial binary operation and at least one defined pair of $A \times A$ is well-defined but not strongly defined. We say G has a strong partial binary operation \circ if \circ is a partial binary operation and every defined pair $(x, y) \in A \times A$ is strongly defined. That is, \circ is a strong partial binary operation if for every defined pair (x, y), then $x \circ y$ is defined on every e-triangle.

Similarly, we say G has a weak full binary operation \circ if \circ is a full binary operation and at least one well-defined pair $(x, y) \in A \times A$ is not strongly defined. In other words, \circ is a weak full binary operation if there exists some pair (x, y) such that $x \circ y$ is not defined on at least one e-triangle. We say G has a strong full binary operation \circ if \circ is a full binary operation and every pair of $A \times A$ is strongly defined. That is, \circ is a strong full binary operation if for every pair (x, y), then $x \circ y$ is defined on every e-triangle. We say G has a weak full binary operation \circ if \circ is
a full binary operation and at least one pair $(x, y) \in A \times A$ is well-defined but not strongly defined. In other words, \circ is a weak full binary operation if there exists some pair (x, y) such that $x \circ y$ is not defined on at least one e-triangle.

From now on, though we will specify when necessary, we generally assume that \circ is a full binary operation. Whether we consider the strong or weak binary operation will hugely impact the complexity of our results.

Chapter 3

Connections with the projective

plane

In this chapter we will explore the connections between the algebra of throws within matroid configurations and the algebraic structure of the projective plane. If we have a matroid configuration from a projective plane representable over a field, we show that the addition and multiplication defined by the algebra of throws corresponds to addition and multiplication respectively in the field. On the other hand, if we have matroid configuration from a projective plane over some other algebraic structure, using a classical coordinatization of the projective plane, we show that the algebra of throws corresponds to the addition and multiplication over the given structure.

3.1 Coordinatizing the projective plane

There are various classical, equivalent methods of coordinatizing the projective plane. We will paraphrase the most commonly used method by Hughes and Piper,
as described in Chapter 5 of [2].

Let \mathscr{P} be a projective plane of order n and let R be any set of n symbols such that $0,1 \in R, 0 \neq 1$ and $\infty \notin R$. Choose any line of \mathscr{P} and label it l_{∞}. Choose any two other lines of \mathscr{P}, which we label l_{1}, l_{2}, with the condition that l_{1}, l_{2}, l_{∞} form the sides of a non-degenerate triangle. We will label the points of this triangle by X, Y, O, where $X=l_{2} l_{\infty}, Y=l_{1} l_{\infty}$ and $0=l_{1} l_{2}$. Pick any point I which is not incident with any of the lines l_{1}, l_{2}, l_{∞}. Finally, we will label three more points as follows. Let A be the intersection of the lines $X I$ and l_{1}; let B be the intersection of the lines $Y I$ and l_{2} and let J be the intersection of the lines $A B$ and l_{∞}. We will use the elements of $R \cup\{\infty\}$ to coordinatize \mathscr{P} with respect to the quadrangle $0, X, Y, I$.

Figure 3.1:

Figure 3.2:

First, we arbitrarily assign elements of R to the points of the line $l_{1} \backslash Y$, with the condition that 0 is assigned to O and 1 is assigned to A. If $c \in R$ is assigned to the point $C \in l_{1}$, then we give C the coordinate $(0, c)$. For $D \in l_{2}$ such that $D \neq X$, let D^{\prime} be the intersection of the lines $J D$ and l_{1}. Then if D^{\prime} has coordinate $(0, d)$, we say D has coordinate $(d, 0)$. This means that O has the coordinate $(0,0)$. For any point $E \notin l_{\infty}$, if $X E \cap l_{1}$ is the coordinate $(0, g)$ and $Y E \cap l_{2}$ is the coordinate $(f, 0)$, then E is given the coordinates (f, g). Excluding the points on the line l_{∞}, every point has been given unique coordinates (x, y) where $x, y \in R$. Now we will coordinatize points of l_{∞}. Suppose $M \in l_{\infty} \backslash Y$ and the line joining M to $(1,0)$ meets l_{1} at the point $(0, m)$. Then we give M the coordinate (m). Finally, coordinatize M by giving it the coordinate (m). Now every point of \mathscr{P} has been coordinatized, and depends only on our initial choice of the quadrangle O, X, Y, I and the way in which we assigned the elements of R to the points of $l_{1} \backslash Y$.

We will now coordinatize the lines. If l is any line where $Y \notin l$, then if $l \cap l_{\infty}=(\mathrm{m})$ and $l \cap l_{1}=(0, k)$, then we give l the coordinates $[m, k]$. If l is a line where $Y \in l$ and $l \neq l_{\infty}$, then we label the line $[k]$ where $l \cap c_{1}=(k, 0)$. Finally, call l_{∞} the line $[\infty]$. Now we have coordinatized every point and every line of \mathscr{P}.

Figure 3.3:

It follows from [2] that we can think of l_{2} and l_{1} as the x-axis and y-axis respectively, and l_{∞} as the line at infinity. Any line with slope m and y-intercept k is labelled $[m, k]$ and meets l_{∞} at the point (m).

We will show that the algebra of throws constructions defining addition and multiplication is equivalent to the addition and multiplication of points along the line l_{1}. Before we do so, we define some notation. When we apply the algebra of
throws operation $a \circ b$, if this corresponds to the addition of points, we denote the sum of the points a and b by $a \oplus b$. On the other hand, if $a \circ b$ corresponds to the multiplication of points, we denote the product of the points a and b by $a \otimes b$. We let $(0, a+b)$ be the sum of the points $(0, a),(0, b) \in l_{1}$, as described in [2], where $(0, a+b)$ is defined to be on the line through the points (1) and (a, b); i.e. the line $[1, a+b]$ with slope 1 and y-intercept $a+b$. We let $(0, a \times b)$ be the product of the points $(0, a),(0, b) \in l_{1}$, as described in [2], where $(0, a \times b)$ is defined to be on the line through the points (a) and $(b, 0)$; i.e. the line $[a, a \times b]$ with slope a and y-intercept $(b, 0)$.

3.1.1 Addition

Suppose we are given three lines l_{1}, l_{2}, l_{3}, which are incident at a point labelled (∞); i.e. this corresponds to the point Y as in Figure 3.1. Choose any point on l_{1} and call it $(0,0)$; i.e. this corresponds to the point O as in Figure 3.1. We will label this point with coordinate $(0,0)$ by e. Choose any line except l_{1} through the point e and call it l_{e}. Let $l_{e} \cap l_{2}=(1,0)$; i.e. this corresponds to the point B as in Figure 3.1. We will label this point with coordinate $(1,0)$ by b_{1}. Let $l_{e} \cap l_{3}=(0)$; i.e. this corresponds to the point X as in Figure 3.1. We will label the point (0) by c_{1}.

Choose any point on $l_{1} \backslash c_{1}$ and call it $(0,1)$. Then the point on the intersection of the lines $(0,1)(0)$ and l_{2} is the point I in the coordinatization of the plane. Note, however, that we do not use the point I doing addition.

We will show that if we apply the algebra of throws to any pair of points $(0, \alpha),(\beta, 0) \in$ l_{1}, then $(0, \alpha \oplus \beta)=(0, \alpha+\beta)$, where $(0, \alpha+\beta)$ is defined to be on the line
through the points (1) and (α, β).

Note that the lines l_{1}, l_{2}, l_{3} correspond to the distinguished lines A, B, C (as described in the previous chapters) respectively. Pick points $(0, \alpha),(0, \beta) \in l_{1}$, which we denote by a and b respectively. We now apply the algebra of throws to the points a and b to obtain their sum, the point $(0, \alpha \oplus \beta) \in l_{1}$. Let us consider the necessary triangles for the operation $a \circ b$ with respect to the e-triangle $e b_{1} c_{1}$. The line through the points $(0, \alpha)$ and $(1,0)$ has slope α, so meets l_{3} at the point (α). The line through $(0, \beta)$ and c_{1} meets l_{2} at the point labelled $b^{\prime}=(1, \beta)$.

Figure 3.4: The blue triangles $a b_{1}(\alpha)$ and $b b^{\prime} c_{1}$ are the necessary triangles of $a \circ b$ with respect to the green e-triangle $e b_{1} c_{1}$.

The line through (α) and b^{\prime} meets l_{1} at some point $(0, y)$. As the line through (α) and $(1, \beta)$ has slope α, then $y-\beta=\alpha$ and so $y=\alpha+\beta=\alpha \oplus \beta$. That is, $(0, \alpha \oplus \beta)=(0, \alpha+\beta)$ therefore the addition of points using the algebra of throws
is equivalent to the addition of points on l_{1} defined by the coordinatization of the projective plane.

Figure 3.5: The red triangle $(a \oplus b) b^{\prime}(\alpha)$ is the relation triangle of $a \circ b$.

3.1.2 Multiplication

Suppose we are given three lines l_{1}, l_{2}, l_{3} which are not co-punctual. Choose any point on l_{1} and call it $e=(0,1)$; i.e. this corresponds to the point A as in Figure 3.1. Choose any line through e and call it l_{e}. Let $l_{e} \cap l_{2}=(1,0)$; i.e. this corresponds to the point B as in Figure 3.1. We denote the point with coordinate $(1,0)$ by b_{1}. Let $l_{e} \cap l_{3}=(1)$; i.e. this corresponds to the point J as in Figure 3.1. We denote the point (1) by the label c_{1}. We will show that if we apply the algebra of throws to any pair of points $(0, \alpha),(0, \beta) \in l_{1}$, then $(0, \alpha \otimes \beta)=(0, \alpha \times \beta)$, where $(0, \alpha \times \beta)$ is defined to be on the line through the points (α) and $(\beta, 0)$. Note that we do not use the points I, X, Y, ∞ when doing multiplication.

As was the case for addition, note that the lines l_{1}, l_{2}, l_{3} correspond to the distinguished lines A, B, C (as described in the previous chapters) respectively. Pick points $(0, \alpha),(0, \beta) \in l_{1}$, which we denote by a and b respectively. We now apply the algebra of throws to the points a and b to obtain their product, the point $(0, a \otimes b) \in l_{1}$. Let us consider the necessary triangles for the operation $a \circ b$ with respect to the e-triangle $e b_{1} c_{1}$. The line through the points $(0, \alpha)$ and $(1,0)$ has slope α, so meets l_{3} at the point labelled (α). The line through $(0, \beta)$ and c_{1} has slope 1 , so meets l_{2} at the point $(\beta, 0)$, which we will denote by b^{\prime}.

Figure 3.6: The blue triangles $a b_{1}(\alpha)$ and $b b^{\prime} c_{1}$ are the necessary triangles of $a \circ b$ with respect to the green e-triangle $e b_{1} c_{1}$.

The line through (α) and $(\beta, 0)$ meets l_{1} at the point $(0, \alpha \otimes \beta)$. As the line through (α) and $(\beta, 0)$ has slope α, it must be the line $[\alpha, \alpha \otimes \beta]$ and we must
have $\frac{\alpha \otimes \beta}{\beta}=\alpha$, therefore $\alpha \otimes \beta=\alpha \times \beta$. That is, $(0, \alpha \otimes \beta)=(0, \alpha \times \beta)$ and therefore the multiplication of points using the algebra of throws is equivalent to the multiplication of points on l_{1} defined by the coordinatization of the projective plane.

Figure 3.7: The red triangle $(a \otimes b) b^{\prime}(\alpha)$ is the relation triangle of $a \circ b$.

3.2 Projective planes over fields

We will now prove algebraically that given a projective plane over a field, the addition and multiplication of points using the algebra of throws corresponds to addition and multiplication respectively over the given field. Note that for this section, when we refer to $x y z$, this need not be a triangle such that $x \in A, y \in B, z \in$ C, as we defined in Chapter 2. Rather, $x y z$ are simply any three collinear points.

In all future chapters, we will return to the notation as described previously in Chapter 2.

3.2.1 Addition

Recall the following diagram defining the addition of points using the algebra of throws.

Figure 3.8:

The following lemma will use the same notation as in Figure 3.8 .

Lemma 3.2.1. Suppose G is representable over a field \mathbb{F} and we scale the basis (e, i, c) such that $\vec{e}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \vec{i}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\vec{c}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ and scale x, y such that $\vec{x}=\left(\begin{array}{l}x \\ 1 \\ 0\end{array}\right)$ and $\vec{y}=\left(\begin{array}{l}y \\ 1 \\ 0\end{array}\right)$. Then $\overrightarrow{x \oplus y}=\left(\begin{array}{c}x+y \\ 1 \\ 0\end{array}\right)$.

Proof. Let $\vec{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right), \vec{X}=\left(\begin{array}{c}X_{1} \\ X_{2} \\ X_{3}\end{array}\right), \vec{Y}=\left(\begin{array}{c}Y_{1} \\ Y_{2} \\ Y_{3}\end{array}\right)$ and $\overrightarrow{x \oplus y}=\left(\begin{array}{c}z_{1} \\ z_{2} \\ z_{3}\end{array}\right)$.
As bce is a circuit, $\left|\begin{array}{lll}b_{1} & 0 & 0 \\ b_{2} & 0 & 1 \\ b_{3} & 1 & 0\end{array}\right|=0$ if and only if $b_{1}=0$.
Therefore, after scaling, $\vec{b}=\left(\begin{array}{c}0 \\ 1 \\ b_{3}\end{array}\right)$. As $X c i$ is a circuit, $\left|\begin{array}{ccc}X_{1} & 0 & 1 \\ X_{2} & 0 & 0 \\ X_{3} & 1 & 0\end{array}\right|=0$ if and
only if $X_{2}=0$. Therefore $\vec{X}=\left(\begin{array}{c}X_{1} \\ 0 \\ X_{3}\end{array}\right)$. As $X b x$ is a circuit, $\left|\begin{array}{ccc}X_{1} & 0 & x \\ 0 & 1 & 1 \\ X_{3} & b_{3} & 0\end{array}\right|=0$ if and only if
$X_{1}\left(-b_{3}\right)+x\left(-X_{3}\right)=0$ if and only if $x=\frac{-X_{1} b_{3}}{X_{3}}$ if and only if $X_{1}=\frac{-x X_{3}}{b_{3}}$.
As $c Y y$ is a circuit, $\left|\begin{array}{ccc}0 & Y_{1} & y \\ 0 & Y_{2} & 1 \\ 1 & Y_{3} & 0\end{array}\right|=0$ if and only if $Y_{1}-y Y_{2}=0$
if and only if $Y_{1}=y Y_{2}$. As $b Y i$ is a circuit, $\left|\begin{array}{ccc}0 & Y_{1} & 1 \\ 1 & Y_{2} & 0 \\ b_{3} & Y_{3} & 0\end{array}\right|=0$ if and only if
$Y_{3}-b_{3} Y_{2}=0$ if and only if $Y_{3}=b_{3} Y_{2}$.

As $e(x \oplus y) i$ is a circuit, $\left|\begin{array}{ccc}0 & z_{1} & 1 \\ 1 & z_{2} & 0 \\ 0 & z_{3} & 0\end{array}\right|=0$ if and only if $z_{3}=0$.

As $X Y z$ is a circuit, $\left|\begin{array}{ccc}\frac{-x X_{3}}{b_{3}} & y Y_{2} & z_{1} \\ 0 & Y_{2} & z_{2} \\ X_{3} & b_{3} Y_{2} & 0\end{array}\right|=0$ if and only if
$\frac{-x X_{3}}{b_{3}}\left(-z_{2} b_{3} Y_{2}\right)-y Y_{2}\left(-z_{2} X_{3}\right)+z_{1}\left(-X_{3} Y_{2}\right)=0$ if and only if
$x X_{3} z_{2} Y_{2}+y z_{2} X_{3} Y_{2}-z_{1} X_{3} Y_{2}=0$ if and only if $x z_{2}+y z_{2}-z_{1}=0$
if and only if $z_{1}=z_{2}(x+y)$.

Therefore $\overrightarrow{x \oplus y}=\left(\begin{array}{c}z_{2}(x+y) \\ z_{2} \\ 0\end{array}\right)$, which we can scale to $\left(\begin{array}{c}x+y \\ 1 \\ 0\end{array}\right)$.
Note that \vec{x}_{c} and \vec{y}_{b} scale to $\left(\begin{array}{c}\frac{-x}{e_{3}} \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}y \\ 1 \\ e_{3}\end{array}\right)$ respectively.

3.2.2 Multiplication

Recall the following diagram defining the multiplication of points using the algebra of throws.

Figure 3.9:

The following lemma will use the same notation as in Figure 3.9 .

Lemma 3.2.2. Suppose G is representable over a field \mathbb{F} and we scale the basis (n, l, m) such that $\vec{n}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \vec{l}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\vec{m}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ and scale x, y such that $\vec{x}=\left(\begin{array}{l}x \\ 1 \\ 0\end{array}\right)$ and $\vec{y}=\left(\begin{array}{l}y \\ 1 \\ 0\end{array}\right)$. Then $\overrightarrow{x \otimes y}=\left(\begin{array}{c}x y \\ 1 \\ 0\end{array}\right)$.

Proof. Scale \vec{e} and $\overrightarrow{x \otimes y}$ respectively so that $\vec{e}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $\overrightarrow{x \otimes y}=\left(\begin{array}{c}z_{1} \\ 1 \\ 0\end{array}\right)$. Let $\vec{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right), \vec{X}=\left(\begin{array}{c}X_{1} \\ X_{2} \\ X_{3}\end{array}\right), \vec{Y}=\left(\begin{array}{c}Y_{1} \\ Y_{2} \\ Y_{3}\end{array}\right)$ and $\vec{c}=\left(\begin{array}{c}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$.

As $\operatorname{lm} b$ is a circuit, $\left|\begin{array}{lll}1 & 0 & b_{1} \\ 0 & 0 & b_{2} \\ 0 & 1 & b_{3}\end{array}\right|=0$ if and only if $-b_{2}=0$.
Therefore $\vec{b}=\left(\begin{array}{c}b_{1} \\ 0 \\ b_{3}\end{array}\right)$, which we can scale to $\left(\begin{array}{c}1 \\ 0 \\ b_{3}\end{array}\right)$.
Similarly, as $l Y b$ is a circuit, $\vec{Y}=\left(\begin{array}{c}Y_{1} \\ 0 \\ Y_{3}\end{array}\right)$, which we can scale to $\left(\begin{array}{c}1 \\ 0 \\ Y_{3}\end{array}\right)$.
As $m n c$ is a circuit, $\left|\begin{array}{ccc}0 & 0 & c_{1} \\ 0 & 1 & c_{2} \\ 1 & 0 & c_{3}\end{array}\right|=0$ if and only if $c_{1}=0$. Therefore $\vec{c}=\left(\begin{array}{c}0 \\ c_{2} \\ c_{3}\end{array}\right)$,
which we can scale to $\left(\begin{array}{c}0 \\ 1 \\ c_{3}\end{array}\right)$. Similarly, as $X m n$ is a circuit, we have $\vec{X}=$ $\left(\begin{array}{c}0 \\ 1 \\ X_{3}\end{array}\right)$. As $x b X$ is a circuit, $\left|\begin{array}{ccc}x & 1 & 0 \\ 1 & 0 & 1 \\ 0 & b_{3} & X_{3}\end{array}\right|=0$ if and only if $-x b_{3}-X_{3}=0$ if and only if $X_{3}=-x b_{3}$. As $e b c$ is a circuit, $\left|\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & b_{3} & c_{3}\end{array}\right|=0$ if and only if $-b_{3}-c_{3}=0$ if and only if $-b_{3}=c_{3}$. As $y Y c$ is a circuit, $\left|\begin{array}{ccc}y & 1 & 0 \\ 1 & 0 & 1 \\ 0 & Y_{3} & c_{3}\end{array}\right|=0$ if and only if $-y Y_{3}-c_{3}=0$ if and only if $Y_{3}=\frac{-c_{3}}{y}$.

Finally, as $X Y z$ is a circuit, $\left|\begin{array}{ccc}0 & 1 & z_{1} \\ 1 & 0 & 1 \\ X_{3} & Y_{3} & 0\end{array}\right|=0$ if and only if $X_{3}-z_{1} Y_{3}=0$ if and only if $z=\frac{X_{3}}{Y_{3}}=-x b_{3} \frac{-y}{c_{3}}=\frac{x c_{3} y}{c_{3}}=x y$. Therefore $\overrightarrow{x \otimes y}=\left(\begin{array}{c}x y \\ 1 \\ 0\end{array}\right)$

Given a projective plane over a field, the algebra of throws corresponds to the addition or multiplication of the given field. Therefore, we have the properties of commutativity (i.e. we have a Desarguesian projective plane) and associativity. These properties are not guaranteed in the context of matroids, as we will explore in the next chapter.

Chapter 4

Commutativity and associativity

In Desarguesian projective planes over finite fields, the algebra of throws is both a commutative and associative operation. However, in the context of matroids, it is not necessarily true that \circ is either commutative or associative. We construct the forbidden configurations for commutativity and associativity by a detailed analysis.

Recall that in Chapter 2 we showed we are able check in polynomial time whether \circ is a full binary operation. Within this chapter, we assume \circ is a full binary operation. However, it is important to note that the forbidden configurations are exactly the same for both full and partial binary operations - the only difference being that it clearly takes longer to check for the commutativity or associativity of a full binary operation than for a partial binary operation. We simply assume - is a full binary operation to be consistent with later chapters. We will clarify when necessary whether \circ is a weak binary operation or a strong binary operation. Checking for both commutativity and associativity can be done in polynomial time, regardless of whether \circ is weak or strong. Having said this, if \circ is a
weak binary operation, matters become more complicated than if \circ is a full binary operation, particularly when we are checking for associativity.

4.1 Commutativity

Given a configuration G, for $x, y \in A$ where $x \circ y=z$ and $y \circ x=z^{\prime}$, we say the pair (x, y) is a commuting pair if $z=z^{\prime}$. On the other hand, if $z \neq z^{\prime}$, then we say the pair (x, y) is a non-commuting pair. If a configuration G has a strong binary operation \circ and all pairs $(x, y) \in A \times A$ are commuting pairs, then we say \circ a commutative strong binary operation. Similarly, if a configuration G has a weak binary operation \circ and all defined pairs $(x, y) \in A \times A$ are commuting pairs, then we say - is a commutative weak binary operation. A configuration G is a commutative configuration if it has either a commutative strong binary operation or a commutative weak binary operation. We want to be able to check when a configuration is commutative, so we will construct a list of forbidden configurations for commutativity. Before doing so, we will briefly touch on the relevance of Non-Pappus configurations with respect to projective planes over non-commutative division rings.

4.1.1 Pappus configurations and commutative projective planes

The following fundamental theorem is attributed to Pappus of Alexandria (circa 340 AD).

Theorem 4.1.1 (Pappus' hexagon theorem). Let a, b, c be three points on a straight line and let x, y, z be three points on another line. If the lines $a y, b z, c x$ intersect the lines $b x, c y$, az respectively at the points l, n, m, then the three points l, n, m are collinear.

Figure 4.1: A Pappus configuration

We call such a configuration a Pappus configuration, and call the line containing the points l, m, n the Pappus line. Projective planes satisfying this theorem are called Pappian planes. If a projective plane satisfies Pappus' theorem, this means the underlying coordinate system is commutative. For example, a projective plane over any field is clearly a Pappian plane. However, projective planes over any noncommutative division ring (or skew-field) are not Pappian planes. We will see that the Non-Pappus matroid plays a similar role in revealing the commutativity of a configuration under a strong binary operation.

Note that in the appendix of [1], there is only one Pappus matroid and one NonPappus matroid. However, there are other matroids satisfying Pappus' hexagon theorem which are not isomorphic to the Pappus matroid. For example, in Figure 4.1, the collinearities bmy, xna and $c l z$ may exist. We will still call a configuration satisfying Pappus' theorem with any of these added collinearities a Pappus configuration. Similarly, we can have a Non-Pappus configuration with any of these collinearities.

4.1.2 Forbidden configurations for commutativity when \circ is a strong binary operation

For this subsection, we will assume that \circ is a strong binary operation. We will prove that the following Figure 4.2 is the only forbidden configuration for a commutative configuration.

Figure 4.2: C_{1} forbidden configuration.

Theorem 4.1.2. Suppose G is an e-based 3-line configuration with a strong binary operation \circ. Then G is a commutative configuration and \circ is a commutative binary operation if and only if G does not contain a sub-configuration isomorphic to C_{1}, where the isomorphism is the identity for the point e.

Proof. We will consider all possible commuting pairs $(x, y) \in A \times A$. If $x=e$, then (e, y) is a commuting pair; if $y=e$ then (x, e) is a commuting pair and if $x=y=e$ then (e, e) is a commuting pair. If $x=y$, then (x, x) is clearly a commuting pair. So suppose $x \neq y$. There are two cases to consider, the first being the case when $x \circ y=e$ and the second being when $x \circ y \neq e$. For the first case, $x \circ y=e$ if and only if $y \circ x=e$, so (x, y) is a commuting pair. Therefore we are left with the
second case, for which e, x, y, z are all distinct points. As $x \circ y=z$, there must be a sub-configuration of G which is isomorphic to the basic relation configuration R_{1}.

Figure 4.3: R_{1} basic relation configuration. Note that the labelling is slightly different to that in Chapter 2.

As \circ is a strong binary operation, we know $y \circ x$ must also be defined on the e triangle $e b_{1} c_{1}$. By inspection, we must have the necessary triangles $y b_{1} Y_{C}$ and $x X_{B} c_{1}$, where $Y_{C} \notin\left\{X_{C}, c_{1}\right\}$ and $X_{B} \notin\left\{b_{1}, Y_{B}\right\}$.

Figure 4.4:

If (x, y) is a commuting pair, then the relation triangle $z X_{B} Y_{C}$ must exist, and we have the following configuration:

Figure 4.5: The commutative configuration of the pair (x, y), denoted Com $_{x, y}$.

So by inspection, we see that (x, y) is a non-commuting pair if exactly one of the relation triangles $z Y_{B} X_{C}$ or $z X_{B} Y_{C}$ exists. If the relation triangle $z Y_{B} X_{C}$ exists but $z X_{B} Y_{C}$ doesn't, then we have a configuration isomorphic to C_{1} where the isomorphism is the identity for the points e, x, y, z. On the other hand, if the relation triangle $z Y_{B} X_{C}$ does not exist and the relation triangle $z X_{B} Y_{C}$ does, then we have a configuration isomorphic to C_{1} where the isomorphism is the identity for the points e, z (but not for the points x, y). Therefore (x, y) is a non-commuting pair if and only if G has a sub-configuration isomorphic to C_{1}.

Therefore \circ is commutative if and only if every pair (x, y) is a commuting pair if and only if G does not contain a configuration isomorphic to C_{1}.

Observe that to check whether a configuration is commutative, we need only check for one forbidden sub-configuration, C_{1}, which has 10 points. For a configuration G with n points, we can do this in less than $\binom{n}{9}\binom{10}{3}$ steps, which is polynomial in n. This proves the following corollary.

Corollary 4.1.2.1. Let ($G,\{A, B, C\}, e)$ be an e-based configuration with n points, where \circ is a strong binary operation. There is an algorithm, which is polynomial
in n, to check whether \circ is a commutative binary operation.

Let M be the underlying matroid of C_{1}, the forbidden configuration for commutativity as shown in Figure 4.2. Notice that $M \backslash e$ is isomorphic to a Non-Pappus configuration, where the dashed red triangle $z X_{B} Y_{C}$ corresponds to the non-existent Pappus line. Consider the commutative configuration $\operatorname{Com}_{x, y}$ as in Figure 4.5, which we call the commutative configuration with respect to x, y, z. Let M^{\prime} be the underlying matroid of the configuration $\operatorname{Com}_{x, y}$. Then $M^{\prime} \backslash e$ is isomorphic to a Pappus configuration. This implies the following corollary.

Corollary 4.1.2.2. Let G be an e-based 3-line configuration with a strong binary operation \circ. Then G is a commutative configuration and \circ is commutative if and only iffor every distinct triple of points $x, y, z \in A$ where $x \circ y=z$, the commutative configuration with respect to x, y, z is isomorphic to a Pappus configuration, where the Pappus line is the relation triangle of $y \circ x$.

Therefore when \circ is strong, the Pappus line exists if and only if (x, y) is a commuting pair. That is, the Pappus line is a necessary condition for commutativity when \circ is strong. However, this is not the case when \circ is weak.

4.1.3 Forbidden configurations for commutativity when \circ is a weak binary operation

For this subsection we will assume \circ is a weak binary operation and construct the forbidden configurations for commutativity. Along with Figure 4.2 in subsection 4.1.2, the following four figures consider the case when the points e, x, y, z are distinct.

Figure 4.6: C_{2} forbidden configuration.

Let M be the underlying matroid in Figure 4.6. Note that $M \backslash x$ is isomorphic to a Non-Pappus matroid. Furthermore, the non-existent relation triangle $z b_{1} Y_{C}$ corresponds to the non-existent Pappus line.

Figure 4.7: C_{3} forbidden configuration.

Let M be the underlying matroid in Figure 4.7. Note that $M \backslash y$ is isomorphic to a Non-Pappus matroid. Furthermore, the non-existent relation triangle $z X_{B} c_{1}$ corresponds to the non-existent Pappus line.

C

B

Figure 4.8: C_{4} forbidden configuration.

Note that Figure 4.8 does not contain a sub-configuration isomorphic to a NonPappus configuration.

Figure 4.9: C_{5} forbidden configuration.

Note that Figure 4.9 does not contain a sub-configuration isomorphic to a NonPappus configuration. The next lemma proves that Figures 4.2-4.9 are the only forbidden configurations for commutativity when the points e, x, y, z are distinct.

Lemma 4.1.3. For a configuration G, suppose $e, x, y, z, z^{\prime} \in A$ are distinct points such that $x \circ y=z$ and $y \circ x=z^{\prime}$. Then (x, y) is a commuting pair if and only if G does not contain a sub-configuration isomorphic to any of $C_{1}-C_{5}$, where the
isomorphism is the identity for the points e,z.

Proof. We will start with the basic relation configuration of $x \circ y$ and consider the different e-triangles on which $y \circ x$ may be defined. Note that if we began with the basic relation configuration of $y \circ x$, the analysis would be the same, up to the labelling of the points x and y - which is shown in our statement of the lemma, when we state the isomorphism need only be the identity for the points e and z.

So, given the basic relation configuration R_{1} which defines $x \circ y$, there are four possible e-triangles on which to define $y \circ x$:

Case (i). Define $y \circ x$ on $e b_{1} c_{1}$. By inspection we must have the triangles $y b_{1} Y_{C}$ and $x X_{B} c_{1}$, where $Y_{C} \notin\left\{X_{C}, c_{1}\right\}$ and $X_{B} \notin\left\{b_{1}, Y_{B}\right\}$. In this case the pair (x, y) is a non-commuting pair if and only if the relation triangle $z X_{B} Y_{C}$ does not exist if and only if we have a configuration isomorphic to C_{1} :

Figure 4.10:

Case (ii). Now suppose we define $y \circ x$ on the e-triangle $e b_{2} X_{C}$. By inspection there is only one option for our choice of necessary triangles, as the necessary triangle $x b_{1} X_{C}$ already exists and by inspection the second necessary triangle must be $y b_{2} Y_{C}$ where $Y_{C} \notin\left\{c_{1}, X_{C}\right\}$. In this case the pair (x, y) is a
non-commuting pair if and only if the relation triangle $z b_{1} Y_{C}$ does not exist if and only if we have a configuration isomorphic to C_{2} :

Figure 4.11:

Case (iii). Suppose we define $y \circ x$ on the e-triangle $e Y_{B} c_{2}$, where $c_{2} \notin\left\{c_{1}, X_{C}\right\}$. By inspection the necessary triangle $y Y_{B} c_{1}$ already exists and by inspection the remaining necessary triangle must be $x X_{B} c_{2}$, where $X_{B} \notin\left\{b_{1}, Y_{B}\right\}$. In this case the pair (x, y) is a non-commuting pair if and only if the relation triangle $z X_{B} c_{1}$ does not exist if and only if we have a configuration isomorphic to C_{3} :

Figure 4.12:

Case (iv). Finally, suppose we define $y \circ x$ on the e-triangle $e b_{2} c_{2}$, where $b_{2} \notin$
$\left\{b_{1}, X_{B}, Y_{B}\right\}$ and $c_{2} \notin\left\{c_{1}, X_{C}, Y_{C}\right\}$. Note that if the necessary triangles $y b_{2} X_{C}$ and $x Y_{B} c_{2}$ existed, then this would force (x, y) to be a commuting pair. So by inspection, we must have the necessary triangle $x X_{B} c_{2}$, where $X_{B} \notin\left\{b_{1}, Y_{B}\right\}$, and either one of the following two sub-cases:

Sub-case (a). Suppose the necessary triangles $x X_{B} c_{2}$ and $y b_{2} Y_{C}$ exist, where $Y_{C} \notin\left\{c_{1}, c_{2}, X_{C}\right\}$ and $X_{B} \notin\left\{b_{1}, b_{2}, Y_{B}\right\}$. In this case the pair (x, y) is a non-commuting pair if and only if the relation triangle $z X_{B} Y_{C}$ does not exist if and only if we have a configuration isomorphic to C_{4} :

Figure 4.13:

Sub-case (b). Suppose we have the necessary triangles $x X_{B} c_{2}$ and $y b_{2} X_{C}$ where $X_{B} \notin\left\{b_{1}, b_{2}, Y_{B}\right\}$. In this case the pair (x, y) is a non-commuting pair if and only if the relation triangle $z X_{B} X_{C}$ does not exist if and only if we have a configuration isomorphic to C_{5} :

Figure 4.14:

We have considered all non-commuting pairs for the case when e, x, y, z are distinct points, completing the proof.

It is clear that $C_{1}-C_{5}$ are the only forbidden configurations for commutativity, as we now prove.

Theorem 4.1.4. Suppose G is an e-based 3-line configuration with a weak binary operation \circ. Then G is a commutative configuration with a commutative binary operation \circ if and only if G does not contain a sub-configuration isomorphic to any of $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$, where the isomorphism is the identity for the point e.

Proof. As in the proof of Theorem 4.1.2, $(e, e),(e, y)$ and (x, e) are all commuting pairs. For any $x \in A$, the pair (x, x) is a commuting pair as \circ is well-defined. For any $x, y \in A$, then $x \circ y=e$ if and only if $y \circ x=e$, in which case (x, y) is a commuting pair. For the remaining cases - the only cases which may not be commutative - the points e, x, y, z are distinct. It follows from Lemma 4.1.3 that the forbidden configurations for these cases are $C_{1}-C_{5}$ and the theorem follows.

Therefore to check whether a configuration is commutative, we need only check
for five forbidden sub-configurations, each of which has no more than 16 points. For a configuration G with n points, we can do this in less than $5\binom{n}{15}\binom{16}{3}$ steps, which is polynomial in n. This proves the following corollary.

Corollary 4.1.4.1. Let $(G,\{A, B, C\}, e)$ be an e-based configuration with n points, where \circ is a weak binary operation. There is an algorithm, which is polynomial in n, to check whether \circ is a commutative binary operation.

4.2 Associativity

Given a configuration G, for $x, y, z \in A$, we say (x, y, z) is an associative triple if $(x \circ y) \circ z=x \circ(y \circ z)$. On the other hand, we say (x, y, z) is a non-associative triple if $(x \circ y) \circ z \neq x \circ(y \circ z)$. For a configuration G with a binary operation \circ, we say \circ is an associative binary operation if every ordered triple $(x, y, z) \in A \times A \times A$ is an associative triple. We say a configuration G is an associative configuration if it has an associative binary operation.

4.2.1 Forbidden configurations for associativity when \circ is a strong binary operation

For this subsection we will assume that \circ is a strong binary operation. Despite there being only one forbidden configuration for commutativity, there are an overwhelming 54 forbidden configurations for associativity. We construct this list by a case analysis of all possible non-associative triples. During this construction, some of the configurations are easily seen to contradict \circ being well-defined. It is possible that upon more detailed inspection, other configurations from this list may also contradict \circ being well-defined. However, as we can check for a well-
defined operation first, such configurations will never appear during our checks for associativity.

The next lemma follows immediately from the definition of \circ and the point e.

Lemma 4.2.1. For $x, y, z \in A$, if any of x, y, z equals e, then (x, y, z) is an associative triple.

Note that the set $\{e, x, y, z, x \circ y, y \circ z, x \circ(y \circ z),(x \circ y) \circ z\}$ is the set of necessary points for an associative configuration. For convenience, we will denote this set by \mathscr{P}. Constructing all forbidden configurations for associativity requires a case analysis of the distinct subsets of \mathscr{P}. We will first consider the forbidden configurations for the case when all points in \mathscr{P} are distinct. These configurations will be the maximal sized forbidden configurations, from which all other forbidden configurations can be obtained through 'compression'. We can think of compression as a sequence of merging pairs of points, where each pairs of points is contained on the same distinguished line. Merging points may force related triangles to merge. For example, suppose we merge the points $x, y \in A$ in Figure 4.15 so that $x=y$. Consider the triangles $x b_{1} x_{c}$ and $y b_{1} y_{c}$. If $x=y$, in order to remain a matroid this forces $y_{c}=x_{c}$ and $y_{b}=x_{b}$, merging the triangles $x b_{1} x_{c}$ and $y b_{1} y_{c}$ and leaving us with a compression of Figure 4.15. The following are the two maximal sized forbidden configurations for associativity.

Figure 4.15: A_{1} forbidden configuration

Figure 4.16: A_{2} forbidden configuration

Note that Figures 4.15 and 4.16 are isomorphic up to the relation triangles defining $x \circ(y \circ z)$ and $(x \circ y) \circ z$. We will say any two configurations which are isomorphic up to the relation triangles defining $x \circ(y \circ z)$ and $(x \circ y) \circ z$ are a nonassociative pair. One configuration of the pair will include the relation triangle defining $(x \circ y) \circ z=m$, and will have $x \circ(y \circ z) \neq m$; i.e. Figure 4.15. The other configuration of the pair will include relation triangle defining $x \circ(y \circ z)=m$, and will have $(x \circ y) \circ z \neq m$; i.e. Figure 4.16. Clearly, many of the forbidden configurations for associativity will be part of a non-associative pair.

The next lemma proves that A_{1} and A_{2} are the only forbidden configurations for the case when all points in \mathscr{P} are distinct.

Lemma 4.2.2. Let G be a configuration and suppose all points in the set \mathscr{P} of necessary points are distinct. Then (x, y, z) is an associative triple if and only if G does not contain a sub-configuration isomorphic to either A_{1} or A_{2}, where the isomorphism is the identity for the points in \mathscr{P}.

Proof. Given an e-triangle $e b_{1} c_{1}$, we must have necessary triangles through b_{1} and the points x, y and $x \circ y$. These must be the triangles $x b_{1} x_{c}, y b_{1} y_{c}$ and $(x \circ y) b_{1}\left(x y_{c}\right)$ respectively, where the points x_{c}, y_{c} and $x y_{c}$ are distinct from one another and from c_{1}. Similarly, we must have necessary triangles through c_{1} and the points y, z and $y \circ z$. These must be the triangles $y y_{b} c_{1}, z z_{b} c_{1}$ and $(y \circ z)\left(y z_{b}\right) c_{1}$ respectively, where the points y_{b}, z_{b} and $y z_{b}$ are distinct from one another and from b_{1}. By inspection, once we define $x \circ y, y \circ z$ and $(x \circ y) \circ z$, then (x, y, z) is an associative triple if and only if we do not have a configuration isomorphic to A_{1}. Similarly, once we define $x \circ y, y \circ z$ and $x \circ(y \circ z)$, then (x, y, z) is an associative triple if and only if we do not have a configuration isomorphic to A_{2}.

For the remaining cases, we will consider the possibilities for associative triples. Due to the large number of forbidden configurations for associativity, we will not list the corresponding forbidden configurations before each lemma.

The next lemma considers the forbidden configurations for the associative triple (x, y, z) where $\{e, x, y, z\}$ is a distinct set of points.

Lemma 4.2.3. Let G be a configuration where \mathscr{P} is the set of necessary points and $\{e, x, y, z\} \in \mathscr{P}$ is a distinct set of points. Then (x, y, z) is an associative triple if and only if G does not contain a sub-configuration isomorphic to one of $A_{3}-A_{32}$,
where the isomorphism is the identity for the points in \mathscr{P}.

Proof. As we assume all points in $\{e, x, y, z\}$ are distinct, we will consider all possible distinct subsets of points from $\{x \circ y, y \circ x, x \circ(y \circ z),(x \circ y) \circ z\}$, the remaining points of \mathscr{P}.

Case (i). Firstly, suppose that $x \circ y \neq y \circ x$ and both $x \circ y, y \circ z \notin\{e, x, y, z\}$. By inspection, we must have a configuration isomorphic to the following:

Figure 4.17:

Now consider the possibilities for $x \circ(y \circ z)$ and $(x \circ y) \circ z$. If $x \circ(y \circ z)$ and $(x \circ y) \circ z$ are not distinct from the existing points of A in Figure 4.17, then $x \circ(y \circ z) \in\{e, y, z, x \circ y\}$ and $(x \circ y) \circ z \in\{e, x, y, y \circ z\}$. Then we must have one of the following four sub-cases:

Sub-case (a). Suppose either $x \circ(y \circ z)=e$ or $(x \circ y) \circ z=e$. In this case (x, y, z) is an associative triple if and only if G does not contain a configuration isomorphic to either one of A_{3} or A_{4} :

Figure 4.18: A_{3} forbidden configuration

Figure 4.19: A_{4} forbidden configuration

Sub-case (b). Suppose we have $(x \circ y) \circ z=x$. In this case (x, y, z) is an associative triple if and only if G does not contain a configuration isomorphic to A_{5} :

Figure 4.20: A_{5} forbidden configuration

Note that we cannot have $(x \circ y) \circ z=x$, because if the triangle $x\left(y z_{b}\right) x_{c}$ in Figure 4.20 above existed, we would have two lines meeting at more than one point - giving a non-matroid configuration.

Sub-case (c). Suppose either $x \circ(y \circ z)=y$ or $(x \circ y) \circ z=y$. In this case (x, y, z) is an associative triple if and only if G does not contain a configuration isomorphic to either one of A_{6} or A_{7} :

Figure 4.21: A_{6} forbidden configuration

Figure 4.22: A_{7} forbidden configuration

Sub-case (d). Suppose we have $x \circ(y \circ z)=z$. In this case (x, y, z) is an associative triple if and only if G does not contain a configuration isomorphic to A_{8} :

Figure 4.23: A_{8} forbidden configuration

Note that we cannot have $x \circ(y \circ z)=z$, because if the triangle $z z_{b}\left(x y_{c}\right)$ in Figure 4.23 above existed, we would have two lines meeting at more than one point - giving a non-matroid configuration.

These are all possible cases when $x \circ y \neq y \circ x$ and both $x \circ y, y \circ z \notin\{e, x, y, z\}$.

Case (ii). Now we will consider the cases when $x \circ y \notin\{e, z\}$ and $y \circ z \in\{e, x, x \circ$
$y\}$. By inspection we must have the following sub-configuration:

Figure 4.24:

Now we will consider the possibilities for the remaining points of \mathscr{P}; the points $y \circ z, x \circ(y \circ z)$ and $(x \circ y) \circ z$. We must have one of the three following sub-cases:

Sub-case (a). Suppose $y \circ z=e$. Therefore we must have $x \circ(y \circ z)=x$ and the following configuration:

Figure 4.25:

However, this is not a forbidden configuration for associativity. Note that as $x \circ y$ must be defined on the e-triangle $e z_{b} y_{c}$, the triangle $x z_{b}\left(x y_{c}\right)$ must actually exist (contrary to the depiction by a dashed red line as in Figure 4.2.4) in order for $x \circ y$ to be well-defined.

Sub-case (b). Suppose $y \circ z=x$. By inspection we must have the following configuration and one of the four following sub-subcases:

* Suppose either $x \circ(y \circ z)$ or $(x \circ y) \circ z$ is distinct from all existing points. In this case (x, y, z) is an associative triple if and only if we have do not have a configuration isomorphic to either one of A_{9} or A_{10} :

Figure 4.26: A_{9} forbidden configuration

Figure 4.27: A_{10} forbidden configuration

* Suppose either $(x \circ y) \circ z=y$ or $x \circ(y \circ z)=y$. In this case (x, y, z) is an associative triple if and only if we do not have a configuration isomorphic to either one of A_{11} or A_{12} :

Figure 4.28: A_{11} forbidden configuration

Figure 4.29: A_{12} forbidden configuration

Note that we cannot have $(x \circ y) \circ z=x$, as $y \circ z=x$, as either case forces a non-matroid configuration. Similarly, we cannot have $x \circ(y \circ z)=x$.

* Suppose $x \circ(y \circ z)=z$. In this case (x, y, z) is an associative triple if and only if we do not have a configuration isomorphic to A_{13} :

Figure 4.30: A_{13} forbidden configuration

Note that we cannot have $(x \circ y) \circ)=z$, because if triangle $z z_{b}\left(x y_{c}\right)$ in Figure 4.30 above existed, we would have two lines meeting at more than one point - giving a non-matroid configuration.

* Suppose either $(x \circ y) \circ z=e$ or $x \circ(y \circ z)=e$. In this case (x, y, z) is an associative triple if and only if we do not have a configuration
isomorphic to either A_{14} or A_{15} :

Figure 4.31: A_{14} forbidden configuration

Figure 4.32: A_{15} forbidden configuration

Note that we cannot have $x \circ(y \circ z)=x \circ y$ or $(x \circ y) \circ z=x \circ y$, so these are all possibilities for the case when $y \circ z=x$.

Sub-case (c). Now suppose $y \circ z=x \circ y$. Then we must have the following configuration:

Figure 4.33: A_{16} forbidden configuration

As the point z_{b} must be contained in any relation triangle defining $x \circ$ $(y \circ z)$ and $(x \circ y) \circ z$, this is a forbidden configuration for associativity and we need not consider the possibilities for $x \circ(y \circ z)$ and $(x \circ y) \circ z$.

These are all cases for when $x \circ y \notin\{e, x, y, z\}$ and $y \circ z \in\{e, x, x \circ y\}$.

Case (iii). Now we will consider the cases when $y \circ z \notin\{e, x\}$ and $x \circ y \in\{e, z, y \circ$ $z\}$. The we must have one of the five following sub-cases.

Sub-case (a). Suppose $x \circ y=e$. Then we must have $(x \circ y) \circ z=z$ and the following configuration.

Figure 4.34:

Note that as $y \circ z$ must be defined on $e y_{b} x_{c}$, the triangle $z\left(y z_{b}\right) x_{c}$ must actually exist (contrary to being depicted by a red dashed line in Figure 4.33) in order for $y \circ z$ to be well defined. So this case is always associative and Figure 4.34 is not a forbidden configuration for associativity.

Sub-case (b). Now suppose $x \circ y=z$. By inspection we must have the following configuration:

Now we will consider the different possibilities for $(x \circ y) \circ z$ and $x \circ$ $(y \circ z)$. We must have one of the five following sub-subcases:

* Suppose either $(x \circ y) \circ z=e$ or $x \circ(y \circ z)=e$. In this case (x, y, z) is an associative triple if and only if we do not have a configuration isomorphic to either A_{18} or A_{19} :

Figure 4.35: A_{18} forbidden configuration

Figure 4.36: A_{19} forbidden configuration

* Suppose $(x \circ y) \circ z=x$. In this case (x, y, z) is an associative triple if and only if we do not have a configuration isomorphic to A_{20} :

Figure 4.37: A_{20} forbidden configuration

Note that we cannot have $x \circ(y \circ z)=x$, because if the triangle $x\left(y z_{b}\right) x_{c}$ in Figure 4.37 above existed, we have two lines meeting at more than one point - giving a non-matroid configuration.

* Suppose either $(x \circ y) \circ z=y$ or $x \circ(y \circ z)=y$. In this case (x, y, z) is an associative triple if and only if we do not have a configuration isomorphic to either A_{21} or A_{22} :

Figure 4.38: A_{21} forbidden configuration

Figure 4.39: A_{22} forbidden configuration

* Suppose $x \circ(y \circ z)=z$. In this case (x, y, z) is an associative triple if and only if we do not have a configuration isomorphic to A_{23} :

Figure 4.40: A_{23} forbidden configuration

Note that we cannot have $(x \circ y) \circ z=z$, because if the triangle $z y_{b} z_{c}$ in Figure 4.40 above existed, we would have two lines meeting at more than one point - giving a non-matroid configuration.

Also note that we cannot have $(x \circ y) \circ z=y \circ z$, as $x \circ y=z$.

* Suppose either $(x \circ y) \circ z$ or $x \circ(y \circ z)$ is distinct from all existing points. In this case (x, y, z) is an associative triple if and only if we do not have a configuration isomorphic to either A_{24} or A_{25} :

Figure 4.41: A_{24} forbidden configuration

Figure 4.42: A_{25} forbidden configuration

These are all possibilities for the case when $y \circ z \notin\{e, x\}$ and $x \circ y \in\{e, z, y \circ$ $z\}$.

Case (iv). Now suppose $x \circ y \in\{e, z\}$ and $y \circ z \in\{e, x\}$. Then we must have one of the following four sub-cases.

Sub-case (a). Suppose $y \circ z=x$ and $x \circ y=e$. By inspection we must have the following configuration:

Figure 4.43:

Note that as $y \circ z$ must be defined on $e y_{b} x_{c}$, the triangle $z x_{b} x_{c}$ must actually exist (contrary to being depicted by a red dashed line above in Figure 4.42) in order for $y \circ z$ to be well defined. So this case is always associative and Figure 4.43 is not a forbidden configuration for associativity.

Sub-case (b). Suppose $y \circ z=x \circ y=e$. This forces $x \circ(y \circ z)=x$ and $(x \circ$ $y) \circ z=z$. In this case (x, y, z) is an associative triple if and only if we do not have a configuration isomorphic to A_{26} :

Figure 4.44: A_{26} forbidden configuration

Sub-case (c). Now suppose $y \circ z=x$ and $x \circ y=z$. By inspection we must
have the following configuration and one of the three following subsubcases:

* Suppose either $(x \circ y) \circ z=e$ or $x \circ(y \circ z)=e$. In this case (x, y, z) is an associative triple if and only if G does not contain a configuration isomorphic to either A_{27} or A_{28} :

Figure 4.45: A_{27} forbidden configuration

Figure 4.46: A_{28} forbidden configuration

Note that we cannot have $(x \circ y) \circ z=x$ or $x \circ(y \circ z)=x$, as either case forces a non-matroid configuration.

* Suppose either $(x \circ y) \circ z=y$ or $x \circ(y \circ z)=y$. In this case (x, y, z) is an associative triple if and only if G does not contain a configuration isomorphic to either A_{29} or A_{30} :

Figure 4.47: A_{29} forbidden configuration

Figure 4.48: A_{30} forbidden configuration

Note that we cannot have $(x \circ y) \circ z=z$ or $x \circ(y \circ z)=z$, as either case forces a non-matroid configuration.

* Suppose either $(x \circ y) \circ z \notin\{e, x, y, z\}$ or $x \circ(y \circ z) \notin\{e, x, y, z\}$. In this case (x, y, z) is an associative triple if and only if G does not contain a configuration isomorphic to either A_{31} or A_{32} :

Figure 4.49: A_{31} forbidden configuration

Figure 4.50: A_{32} forbidden configuration

Sub-case (d). Suppose $y \circ z=e$ and $x \circ y=z$. This forces $x \circ(y \circ z)=x$ and the following configuration:

Note that $x \circ y$ must be defined on $e z_{b} y_{c}$, so the triangle $x z_{b} z_{c}$ must actually exist (contrary to being depicted by a red dashed line in the above Figure) in order for $x \circ y$ to be well-defined. So this case is always associative and this is not a forbidden configuration for associativity.

We have constructed all forbidden configurations for associative triples for the case when $\{e, x, y, z\}$ are distinct points, completing the proof.

The next lemma considers the forbidden configurations for the associative triple (x, x, z) where $\{e, x, z\}$ is a distinct set of points.

Lemma 4.2.4. Let G be a configuration where \mathscr{P} is the set of necessary points of A, where $\{e, x, z\} \in \mathscr{P}$ is a distinct set of points and $y=x$. Then (x, x, z) is an associative triple if and only if G does not contain a sub-configuration isomorphic to one of $A_{33}-A_{37}$, where the isomorphism is the identity for the points in \mathscr{P}.

Proof. Case (i). Suppose $x \circ x, x \circ z \notin\{e, z\}$. Then by inspection we must have the following configuration:

Now consider the possibilities for $(x \circ x) \circ z$ and $x \circ(x \circ z)$.

Sub-case (a). Suppose either $(x \circ x) \circ z=e$ or $x \circ(x \circ z)=e$. Then (x, x, z) is an associative triple if and only if G does not have a configuration isomorphic to either A_{33} or A_{34} :

Figure 4.51: A_{33} forbidden configuration

Figure 4.52: A_{34} forbidden configuration

Sub-case (b). Suppose $(x \circ x) \circ z=x$. Then (x, x, z) is an associative triple if and only if G does not have a configuration isomorphic to A_{35} :

Figure 4.53: A_{35} forbidden configuration

Note that we cannot have $x \circ(x \circ z)=x$, because if the triangle $x\left(x z_{b}\right) x_{c}$ in Figure 4.53 above existed, we would have two lines meeting at more than one point - giving a non-matroid configuration.

Sub-case (c). Note that we cannot have either $(x \circ x) \circ z=x \circ x$ or $x \circ(x \circ z)=$ $x \circ x$.

Sub-case (d). Suppose $x \circ(x \circ z)=z$. Then (x, x, z) is an associative triple if and only if G does not have a configuration isomorphic to A_{36} :

Figure 4.54: A_{36} forbidden configuration

Note that we cannot have $(x \circ x) \circ z=z$, because if the triangle $z\left(x z_{b}\right) y_{c}$ in Figure 4.54 above existed, we would have two lines meeting at more than one point - giving a non-matroid configuration.

Sub-case (e). Suppose either $(x \circ x) \circ z \notin\{e, x\}$ or $x \circ(x \circ z) \notin\{e, z\}$. Then (x, x, z) is an associative triple if and only if G does not have a configuration isomorphic to either A_{37} or A_{38} :

Figure 4.55: A_{36} forbidden configuration

Figure 4.56: A_{38} forbidden configuration

Sub-case (f). Note that we cannot have both $x \circ x=e$ and $x \circ z=e$ as their respective relation triangles would meet at more than one point.

Sub-case (g). Now suppose $x \circ x=z$ and $x \circ z=e$. This forces $x \circ(x \circ z)=x$. Then we have the following configuration:

Figure 4.57:

Note that as $x \circ x$ must be defined on the e-triangle $e y_{b} x_{c}$, the dashed red triangle $x y_{b} y_{c}$ must exist in order for $x \circ x$ to be well-defined. Therefore Figure 4.57 is not a forbidden configuration for associativity.

These are all possible forbidden configurations for the associative triple (x, x, z).

The next lemma considers the forbidden configurations for the associative triple (x, y, y) where $\{e, x, y\}$ is a distinct set of points.

Lemma 4.2.5. Let G be a configuration and \mathscr{P} is the set of necessary points of A where $\{e, x, y\} \in \mathscr{P}$ are a distinct set of points and $z=y$. Then (x, y, y) is an associative triple if and only if G does not contain a sub-configuration isomorphic to one of $A_{39}-A_{44}$, where the isomorphism is the identity for the points in \mathscr{P}.

Proof. First, we will consider the possibilities for the points $x \circ y$ and $y \circ y$.

Case (i). Suppose $x \circ y, y \circ y \notin\{e, x, y\}$. Then by inspection we must have the following configuration:

Figure 4.58:

Now we consider the five possibilities for the points $(x \circ y) \circ y$ and $x \circ(y \circ y)$.

Sub-case (a). Suppose either $(x \circ y) \circ y=e$ or $x \circ(y \circ y)=e$. Then (x, y, y) is an associative triple if and only if G does not contain a configuration isomorphic to either one of A_{39} or A_{40} :

Figure 4.59: A_{39} forbidden configuration

Figure 4.60: A_{40} forbidden configuration

Sub-case (b). Suppose $(x \circ y) \circ y=x$. Then (x, y, y) is an associative triple if and only if G does not contain a configuration isomorphic to A_{41} :

Figure 4.61: A_{41} forbidden configuration

Note that we cannot have $(x \circ y) \circ y=x$, because if the triangle $x\left(y y_{b}\right) x_{c}$ in Figure 4.61 above existed, we would have two lines meeting at more than one point - giving a non-matroid configuration.

Sub-case (c). Suppose $x \circ(y \circ y)=y$. Then (x, y, y) is an associative triple if and only if G does not contain a configuration isomorphic to A_{42} :

Figure 4.62: A_{42} forbidden configuration

Note that we cannot have $(x \circ y) \circ y=y$, because if the triangle $y\left(y_{b}\right)\left(x y_{c}\right)$ in Figure 4.62 above existed, we would have two lines meeting at more than one point - giving a non-matroid configuration.

Sub-case (d). Note that we cannot have either $(x \circ y) \circ y=x \circ y$ or $x \circ(y \circ y)=$ $x \circ y$ as these force non-matroid configurations. Similarly, we cannot have either $(x \circ y) \circ y=y \circ y$ or $x \circ(y \circ y)=y \circ y$.

Sub-case (e). Suppose both $(x \circ y) \circ y$ and $x \circ(y \circ y)$ are distinct from the existing points of A in Figure 4.58. Then (x, y, y) is an associative triple if and only if G does not contain a configuration isomorphic to either one of A_{43} or A_{44} :

Figure 4.63: A_{43} forbidden configuration

Figure 4.64: A_{44} forbidden configuration

These are all possibilities for the points $x \circ(y \circ y)$ and $(x \circ y) \circ y$ given our choice of $x \circ y$ and $y \circ y$.

Case (ii). Now suppose $x \circ y=e$ and $y \circ y=e$. Then $x \circ(y \circ y)=x$ and $(x \circ y) \circ$ $y=y$, forcing $x=y$ and contradicting the assumption that they are distinct points.

Case (iii). Now suppose $x \circ y=e$ and $y \circ y=x$. This forces $(x \circ y) \circ y=y$. Then we have the following configuration:

However, note that the triangle $y x_{b} x_{c}$ must actually exist (contrary to being depicted as a dashed red line in the above Figure) in order for $y \circ y$ to be well-defined, as $y \circ y$ must be defined on the e-triangle $e y_{b} y_{c}$. Therefore the above figure is not a forbidden configuration for associativity.

These are all possible forbidden configurations for the associative triple (x, y, y).

The next lemma considers the forbidden configurations for the associative triple (x, y, x) where $\{e, x, y\}$ is a distinct set of points.

Lemma 4.2.6. Let G be a configuration and \mathscr{P} is the set of necessary points of A where $\{e, x, y\} \in \mathscr{P}$ are a distinct set of points and $x=z$. Then (x, y, x) is an associative triple if and only if G does not contain a sub-configuration isomorphic to one of $A_{45}-A_{50}$, where the isomorphism is the identity for the points in \mathscr{P}.

Proof. It is clear that if \circ is a commutative operation, then \circ is also associative. Therefore we assume that \circ is not commutative.

Case (i). Suppose $x \circ y \neq e$ and $y \circ x \neq e$. Then by inspection we must have the following configuration:

Now we consider the five possibilities for the points $(x \circ y) \circ x$ and $x \circ(y \circ x)$.

Sub-case (a). Suppose either $(x \circ y) \circ x=e$ or $x \circ(y \circ x)=e$. Then (x, y, x) is an associative triple if and only if G does not contain a configuration isomorphic to either A_{45} or A_{46} :

Figure 4.65: A_{45} forbidden configuration

Figure 4.66: A_{46} forbidden configuration

Sub-case (b). Note that we cannot have either $(x \circ y) \circ x=x$ or $x \circ(y \circ x)=x$, as either case would force a non-matroid configuration.

Sub-case (c). Suppose either $(x \circ y) \circ x=y$ or $x \circ(y \circ x)=y$. Then (x, y, x) is an associative triple if and only if G does not contain a configuration isomorphic to either A_{47} or A_{48} :

Figure 4.67: A_{47} forbidden configuration

Figure 4.68: A_{48} forbidden configuration

Sub-case (d). Note that we cannot have either $(x \circ y) \circ x \in\{x \circ y, y \circ x\}$ or $x \circ(y \circ x) \in\{x \circ y, y \circ x\}$, as either case would force a non-matroid configuration.

Sub-case (e). Suppose either $(x \circ y) \circ x \notin\{e, x, y, x \circ y, y \circ x\}$ or $x \circ(y \circ x) \notin$ $\{e, x, y, x \circ y, y \circ x\}$. Then (x, y, x) is an associative triple if and only if G does not contain a configuration isomorphic to either A_{49} or A_{50} :

Figure 4.69: A_{49} forbidden configuration

Figure 4.70: A_{50} forbidden configuration

These are all possibilities for the points $(x \circ y) \circ y$ and $x \circ(y \circ x)$ given our choice of the points $x \circ y$ and $y \circ x$.

Case (ii). Note that we have $x \circ y=e$ if and only if $y \circ x=e$ if and only if (x, y, x) is an associative triple.

These are all possible forbidden configurations for the associative triple (x, y, x).

The next lemma considers the forbidden configurations for the associative triple (x, x, x) where $\{e, x\}$ is a distinct set of points.

Lemma 4.2.7. Let G be a configuration and let \mathscr{P} be the set of necessary points of A where $\{e, x\} \in \mathscr{P}$ are a distinct set of points and $x=y=z$. Then (x, x, x) is an associative triple if and only if G does not contain a sub-configuration isomorphic to one of $A_{51}-A_{54}$, where the isomorphism is the identity for the points in \mathscr{P}.

Proof. Case (i). Suppose either $(x \circ x) \circ x=e$ or $x \circ(x \circ x)=e$. By extending the basic relation configuration R_{3} (which defines $x \circ x$ on $e b_{1} c_{1}$) so that either $(x \circ x) \circ x=e$ or $x \circ(x \circ x)=e$ is defined, by inspection we see that
(x, x, x) is an associative triple if and only if G does not have a configuration isomorphic to either A_{51} or A_{52} :

Figure 4.71: A_{51} forbidden configuration

Figure 4.72: A_{52} forbidden configuration

Case (ii). Suppose either $(x \circ x) \circ x \neq e$ or $x \circ(x \circ x) \neq e$. Then (x, x, x) is an associative triple if and only if G does not have a configuration isomorphic to either A_{53} or A_{54} :

Figure 4.73: A_{53} forbidden configuration

Figure 4.74: A_{54} forbidden configuration

These are all possible forbidden configurations for the associative triple (x, x, x).

Finally, Lemmas 4.2.1-4.2.7 allow us to prove the following theorem, which states there are at most 54 forbidden configurations for associativity.

Theorem 4.2.8. Suppose G is an e-based, 3-line configuration configuration where - is a strong binary operation. Then G is an associative configuration with an associative binary operation ○ if and only if G does not contain a sub-configuration
isomorphic to one of $A_{1}-A_{54}$, where the isomorphism is the identity for the point e.

Proof. We will consider the different possibilities for associative triples. If any of x, y, z equals e, it follows from Lemma 4.2.1 that (x, y, z) is an associative triple. So we will assume for the rest of the proof that none of x, y, z is equal to e. Suppose x, y, z are distinct from one another. Then it follows from Lemmas 4.2.2 and 4.2 .3 that (x, y, z) is an associative triple if and only if G does not contain a subconfiguration isomorphic to any of $A_{3}-A_{32}$. Suppose $x=y$ and x, z are distinct. It follows from Lemma 4.2.4 that (x, x, z) is an associative triple if and only if G does not contain a sub-configuration isomorphic to any of $A_{33}-A_{38}$. Suppose $y=z$ and x, y are distinct. It follows from Lemma 4.2.5 that (x, y, y) is an associative triple if and only if G does not contain a sub-configuration isomorphic to any of $A_{39}-A_{44}$. Now suppose $x=z$ and x, y are distinct. It follows from Lemma 4.2.6 that (x, y, x) is an associative triple if and only if G does not contain a sub-configuration isomorphic to any of $A_{45}-A_{50}$. Finally, suppose $x=y=z$. It follows from Lemma 4.2.7 that (x, x, x) is an associative triple if and only if G does not contain a subconfiguration isomorphic to any of $A_{51}-A_{54}$. Therefore \circ is associative if and only if every triple of A is an associative triple if and only if G does not contain a sub-configuration isomorphic to any of $A_{1}-A_{54}$.

Therefore to check whether a configuration is associative, we need to check for 54 forbidden sub-configurations, each of which has no more than 16 points. For a configuration G with n points, we can do this in less than $54\binom{n}{15}\binom{16}{3}$ steps, which is polynomial in n. This proves the following corollary.

Corollary 4.2.8.1. Let ($G,\{A, B, C\}, e)$ be an e-based configuration with n points, where \circ is a strong binary operation. There is an algorithm, which is polynomial
in n, to check whether \circ is an associative binary operation.

4.2.2 Forbidden configurations for associativity when \circ is a weak binary operation

We will now assume \circ is a weak binary operation. Compared with the case analysis for when \circ was strong, the case analysis when \circ is weak explodes. However, the list of forbidden configurations is still finite and each forbidden configuration is relatively small, containing no more than 23 points. We will not list them all, rather, we will construct the two maximal sized forbidden configurations. Every other forbidden configuration will be a compression of one of these maximal sized forbidden configurations.

Figure 4.75: A_{1}^{\prime} maximal forbidden configuration

Figure 4.76: A_{2}^{\prime} maximal forbidden configuration

Recall that we denote the set $\{e, x, y, z, x \circ y, y \circ z, x \circ(y \circ z),(x \circ y) \circ z\}$ of points in A by \mathscr{P}.

Lemma 4.2.9. Suppose G is an e-based 3-line configuration with a weak binary operation \circ. Then G is a maximal sized forbidden configuration for associativity if and only if G is isomorphic to either A_{1}^{\prime} or A_{2}^{\prime}, where the isomorphism is the identity for all points in \mathscr{P}.

Proof. The maximal associative forbidden configuration will use a distinct e triangle to define each necessary pair - that is, it will use four distinct e-triangles to define each $x \circ y, y \circ z, x \circ(y \circ z)$ and $(x \circ y) \circ z$. This results in a basic relation configuration for each pair. If we are maximal, then every pair of such basic relation configurations will be disjoint on the lines B and C. In other words, we will have four copies of the R_{1} basic relation configuration as in Figure 5.1. The configuration G is not associative if either the relation triangle defining $x \circ(y \circ z)$ or the relation triangle defined $(x \circ y) \circ z$ does not exist. So G must be isomorphic to either one of A_{1}^{\prime} or A_{2}^{\prime}.

Corollary 4.2.9.1. Let G be an e-based 3-line configuration with a weak binary operation \circ. Then there are a finite number of forbidden configurations to check whether \circ is an associative binary operation on G.

Corollary 4.2.9.2. Let ($G,\{A, B, C\}, e)$ be an e-based configuration with n points, where \circ is a weak binary operation. There is an algorithm, which is polynomial in n, to check whether \circ is an associative binary operation.

In conclusion, after some lengthy case analysis, we have finite lists of forbidden configurations for commutativity under both weak and strong binary operations, and for associativity under a strong binary operation. However, it is important to note that this detailed analysis was not necessary to show that the list of forbidden configurations is finite, or that each forbidden configuration is of bounded size. These properties follow from the fact that we can construct the maximal forbidden configurations, which are finite. All other forbidden configurations can be obtained by a finite sequence of compressions of these maximal configurations therefore the complete list of forbidden configurations is finite and each of these configurations is of bounded size.

We apply this argument when considering associativity under a weak binary operation. Though it is possible to construct the complete list of forbidden configurations for this case, as we painstakingly realized, doing so is a substantial undertaking. The salient point is that the list of such configurations is indeed finite and each forbidden configuration is of bounded size, allowing a polynomial time check for associativity under a weak binary operation.

Chapter 5

Group configurations

Given a configuration G, we can check whether \circ is a full binary operation, associative and closed under inverses. Therefore we can consider configurations which represent groups. Before defining such configurations in detail, we will define some notation.

In Chapter 2, given an e-based 3-line configuration ($G,\{A, B, C\}, e$), we define the operation \circ to be based on the point e. Later in this chapter, we will consider the same geometric operation \circ, but based on points of A other than e. If \circ is an e-based operation, we will either denote this as usual by \circ or, for added clarity, by \circ_{e}. However, if \circ is an x-based configuration, for $x \in A$ where $x \neq e$, we will denote this by o_{x}. For example, in the basic relation configuration R_{1} as shown below, if we consider the x-based binary operation \circ_{x}, we have $e \circ_{x} z=y$. Similarly, if we consider the y-based binary operation \circ_{y}, we have $z \circ_{y} e=x$.

Figure 5.1: R_{1} basic relation configuration. Note that the blue and red triangles are the necessary and relation triangles respectively for $e \circ_{x} z=y$.

Given an e-based group configuration G, recall that e is the identity. For $p \in A$, if there exists $q \in A$ such that $p \circ_{e} q=q \circ_{e} p=e$, we say q and p are inverses and denote this by $q=p^{-1}$ and $p=q^{-1}$. For example, in the basic relation configuration R_{2} in Figure 2.5, the points x and y are inverses. If $p=p^{-1}$, we say p is self-inverse. The point x in the basic relation configuration R_{4} in Figure 2.7 is an example of a self-inverse point.

We will now define the configurations which represent groups. Given an e-based 3-line configuration ($G,\{A, B, C\}, e$) (which, as in the previous chapter, we will abbreviate to G when the context is clear), we can check in polynomial time whether the following properties are satisfied:

- The points of A are closed under the e-based binary operation \circ_{e}. That is, we can check whether o_{e} is a full binary operation.
- Every element of A has an inverse in A.
- The binary operation o_{e} is associative.

If G satisfies these three properties, then the points of A form a group $\left(H, o_{e}\right)$
(which we may also refer to as H if the context is clear, or $\left(H_{e}, o_{e}\right)$ for clarity when we are not referring to a specific group), with identity e, under the full e based binary operation \circ_{e}. We say G is an e-based group configuration of H, which we will abbreviate to group configuration or H-configuration when the context is clear. Note that \circ_{e} may be a strong or weak binary operation - we will clarify which when necessary. For an example, let us consider the following e-based group configuration of $\left(C_{2}, \circ_{e}\right)$, the cyclic group of order 2 .

Figure 5.2: The C_{2} configuration $\left(C_{2}, o_{e}\right)_{1}$. Note that for this configuration, o_{e} is a strong binary operation.

The group $\left(C_{2}, o_{e}\right)$ consists of two elements, e and x, where $x=x^{-1}$. By inspection, we can see that $e \circ_{e} e=e, e \circ_{e} x=x \circ_{e} e=x$ and $x \circ_{e} x=e$ on every e-triangle, therefore the points of A are closed under o_{e}. Furthermore, o_{e} is a strong binary operation. As e and x are both self-inverse, clearly the points of A are closed under inverses. Finally, \circ_{e} is associative by Lemma 4.2.1, as at least one point of any ordered triple must be e. So $\left(C_{2}, o_{e}\right)_{1}$ is indeed a group configuration of $\left(C_{2}, \mathrm{o}_{e}\right)$. There are many other e-based group configurations of $\left(C_{2}, \mathrm{o}_{e}\right)$ - Figure 5.2 is only one example. Figure 5.3, as shown below, is another C_{2}-configuration. Note that though \circ is strong in both Figures 5.2 and 5.3 , there do exist group configurations of $\left(C_{2}, \circ_{e}\right)$ where \circ_{e} is weak.

Figure 5.3:

It is not surprising that for any group, there are many corresponding group configurations. To simplify things, we will enforce some natural conditions on the e-based group configurations we consider.

5.0.3 n-replication

Let a group configuration G also be known as G^{1}. Given a group configuration G^{1}, we can always extend it to another group configuration, G^{n}, through a process called n-replication. Within a group configuration $\left(G^{1},\{A, B, C\}, e\right)$, let $A=\left\{a_{1}, \ldots, a_{k}\right\}, B=\left\{b_{1}, \ldots, b_{l}\right\}$ and $C=\left\{c_{1}, \ldots, c_{m}\right\}$. Suppose we duplicate the points of B and C to form the sets $B^{2}=\left\{b_{1}^{2}, \ldots, b_{l}^{2}\right\}$ and $C^{2}=\left\{c_{1}^{2}, \ldots, c_{m}^{2}\right\}$. Then $\left(G^{2},\left\{A, B \cup B^{2}, C \cup C^{2}\right\}, e\right)$ is a 2-replication, or duplication, of $\left(G^{1},\{A, B, C\}, e\right)$ if $a_{h} b_{i}^{2} c_{j}^{2}$ is a triangle in G^{2} if and only if $a_{h} b_{i} c_{j}$ is a triangle in G^{1} for any $h \in\{1, \ldots, k\}, i \in\{1, \ldots, l\}$ and $j \in\{1, \ldots, m\}$. To be clear, a configuration G^{1} is itself a 1-replication. For example, we obtained Figure 5.3 from Figure 5.2 by duplication. In Figure 5.3, the blue points and lines are a duplication of the black points and lines. Performing a duplication means every basic relation configuration in our original configuration, G^{1}, appears twice in the duplication, G^{2}. We can generalize duplication to n-replication. For the configuration $\left(G^{1},\{A, B, C\}, e\right)$,
let $A=\left\{a_{1}, \ldots, a_{k}\right\}, B=\left\{b_{1}, \ldots, b_{l}\right\}$ and $C=\left\{c_{1}, \ldots, c_{m}\right\}$. Let $B^{i}=\left\{b_{1}^{i}, \ldots, b_{l}^{i}\right\}$ and $C^{i}=\left\{c_{1}^{i}, \ldots, c_{m}^{i}\right\}$. Then $\left(G^{n},\left\{A, B \cup\left(\cup_{2 \leq i \leq n} B^{i}\right), C \cup\left(\cup_{2 \leq i \leq n} C^{i}\right\}\right), e\right)$ is an $n-$ replication of G^{1} if $a_{h} b_{i}^{n} c_{j}^{n}$ is a triangle in G^{n} if and only if $a_{h} b_{i} c_{j}$ is a triangle in G^{1} for any $h \in\{1, \ldots, k\}, i \in\{1, \ldots, l\}$ and any $j \in\{1, \ldots, m\}$. We say a configuration G^{\prime} is prime if it cannot be decomposed as an n-replication of some configuration G^{1}. For example, Figure 5.2 is a prime C_{2}-configuration. As for duplication, if G^{n} is an n-replication of a prime configuration G^{1}, then every basic relation configuration of G^{1} is replicated $n-1$ many times, therefore appears n times in total in the n-replication G^{n}. However, we do not gain any new information through n-replication. So, in order to minimize configuration size and complexity, we will assume that every group configuration is prime.

5.0.4 e-relevance

For a point $x \in A$ within a configuration G, we say an x-triangle $x b c$ is $u s e d$ if $x b c$ is a triangle of a basic relation sub-configuration (based on e) of G. For the point x, if every x-triangle is used, then we say x is an e-relevant point. If every point of A is e-relevant, then we say the configuration G is e-relevant. For example, in Figure 1 , as $\left(C_{2}, \circ_{e}\right)_{1}$ is isomorphic to the basic relation configuration R_{4}, all points of A are used, so the point x is trivially an e-relevant point. Recall \circ_{x} is the relation - based on x, not based on e (for example, in Figure 5.2, on both x-triangles we have $e \circ_{x} e=x$). Given a configuration constructed from \circ_{e}, we want to know the properties \circ_{e} enforces on \circ_{x} for $x \in A-\{e\}$. If we have x-triangles which are not e-relevant, they will interfere with the influence of \circ_{e} on \circ_{x}. Therefore, to eliminate degenerate configurations, we will assume within any e-based group configuration, all points $x \in A-\{e\}$ are e-relevant.

Figure 5.4: $\left(C_{2}, \circ_{e}\right)_{1}$ with an added blue triangle which is not e-relevant. Recall that a red point on a dashed line consisting of the points m, n means there exists no point p such that m, n, p are collinear.

To summarize, we will assume we have an e-based, e-relevant, prime group configuration. Under these conditions, what can we say about the group configurations of a given group? Do they conform to a particular geometric structure? How many group configurations exist for a given group? Given an e-based group configuration $\left(H_{e}, \circ_{e}\right)$, does \circ_{a} define a group $\left(F_{a}, \circ_{a}\right)$ on the points of A ? Furthermore, is $\left(F_{a}, \circ_{a}\right)$ isomorphic to $\left(H_{e}, \circ_{e}\right)$? We can ask these questions for both strong or weak binary operations. We will first consider the case when \circ is a strong binary operation.

5.1 Strong binary operation

In this section we will assume that o_{e} is a strong, full binary operation. We will eventually prove that for any group with a strong binary operation, there is a unique group configuration, given some natural constraints. First, we will motivate our understanding of group configurations by considering those of two small groups - the cyclic group C_{2} and the non-cyclic Klein-4 group.

5.1.1 Group configurations of C_{2}

We will consider the group configurations of the group C_{2}, whose group presentation is $\left\{x \mid x^{2}=e\right\}$. In any group configuration of C_{2}, there must be at least one e-triangle defining $x \circ_{e} x=e$ (and therefore trivially defining $e \circ_{e} x, x \circ_{e} e$ and $e o_{e} e$). This induces the minimal configuration of C_{2}, denoted $\left(C_{2}, \circ_{e}\right)_{1}$, as in Figure 5.2 .

We say any two points lying on different distinguished lines are non-adjacent. Given a pair (x, y) of non-adjacent points, if there exists a triangle containing both x and y, we say the pair (x, y) is connected. For example, in Figure 5.2, every point of B is connected to every point of C. If all non-adjacent pairs of a configuration are connected pairs, then we say we have a full configuration. We now show the minimal configuration of C_{2} is the only group configuration of C_{2}.

Lemma 5.1.1. Suppose ($G,\{A, B, C\}, e$) is an e-based, e-relevant prime C_{2}-configuration. Then $(G,\{A, B, C\}, e)$ is isomorphic to $\left(C_{2}, o_{e}\right)_{1}$.

Proof. Any group configuration of C_{2} must contain the minimal configuration, $\left(C_{2}, o_{e}\right)_{1}$. Note that all pairs of points in $\left(C_{2}, o_{e}\right)_{1}$ are connected so we have a full configuration. Therefore, we cannot add any triangle which contains any pair of points of $\left(C_{2}, o_{e}\right)_{1}$. In other words, the only way to extend the minimal configuration is through n-replication. As we assume our configuration is prime, our configuration must be isomorphic to $\left(C_{2}, \circ_{e}\right)_{1}$.

It is clear that the points of A in $\left(C_{2}, o_{e}\right)_{1}$ are isomorphic up to labelling, resulting in the next lemma.

Lemma 5.1.2. Given the minimal configuration of $\left(\left(C_{2}\right)_{e}, o_{e}\right)$, the binary operation \circ_{x} defines a group $\left(G_{x}, \circ_{x}\right)$ on the points of A. Furthermore, $\left(G_{x}, \circ_{x}\right)$ is isomorphic to $\left(C_{2}, \mathrm{o}_{e}\right)$.

Proof. By inspection, we see that o_{x} is a full binary operation. Every point of A has an inverse and \circ_{x} is associative, \circ_{x} defines a group $\left(G_{x}, \circ_{x}\right)$ on the points of A. It is clear that $\left(G_{x}, \circ_{x}\right)$ is indeed isomorphic to the group $\left(C_{2}, o_{e}\right)$.

Recall the main line of a configuration is the line on which \circ is defined. For the configuration $\left(C_{2}, \circ_{e}\right)_{1}$, the main line is A, and our ordering of the distinguished lines is (A, B, C). What happens if we permute the ordering of these distinguished lines? Do we still have a C_{2}-group configuration? All points of $\left(C_{2}, o_{e}\right)_{1}$ are of equal degree and each of the distinguished lines has exactly two points of degree two, therefore the distinguished lines are isomorphic up to labelling. This proves the following lemma, which states that given $\left(C_{2}, o_{e}\right)_{1}$, any permutation of the distinguished lines and any labelling of points results in the unique group configuration of C_{2}.

Lemma 5.1.3. Consider $\left(C_{2}, o_{e}\right)_{1}$, whose ordering of distinguished lines is (A, B, C). For any permutation of the distinguished lines $\{A, B, C\}$ and for any point p on the main line, the p-based operation \circ_{p} defines a group $\left(F_{p}, \circ_{p}\right)$ on the points of the main line. Furthermore, $\left(F_{p}, \circ_{p}\right)$ is isomorphic to $\left(C_{2}, \circ_{e}\right)$.

Therefore under the restrictions of n-replication and e-relevance, there is a unique group configuration of C_{2}. Furthermore, any ordering of the distinguished lines and any labelling of points of this unique configuration retains the same configuration.

Suppose we remove the restriction of n-replication. For any n-replication of $\left(C_{2}, o_{e}\right)_{1}$, we do not retain a C_{2} configuration if we permute the distinguished lines so that either B or C is the main line, as \circ_{x} will not be a full binary operation for any point x on the given main line. For example, consider Figure 5.3, which is a duplication of $\left(C_{2}, o_{e}\right)$. Suppose we permute the distinguished lines so the
ordering is $\{C, B, A\}$. Our main line, C, has four points, so we certainly cannot have a C_{2}-configuration. Furthermore, we do not have a full binary operation, so this configuration cannot be a group configuration.

5.1.2 Group configurations of V_{4}

We will now consider the group configurations of the smallest non-cyclic group, the Klein-4 group, denoted by either V_{4} or $\left(V_{4}, o_{e}\right)$, whose group presentation is $\left\{a, b \mid a^{2}=b^{2}=\left(a \circ_{e} b\right)^{2}=\left(b \circ_{e} a\right)^{2}=e\right\}$.

Figure 5.5: The V_{4}-configuration denoted $\left(V_{4}, o_{e}\right)_{1}$

We now show that $\left(V_{4}, \circ_{e}\right)_{1}$ is the only V_{4}-configuration up to isomorphism.

Lemma 5.1.4. Suppose ($G,\{A, B, C\}, e$) is an e-based, e-relevant, prime V_{4}-configuration. Then $(G,\{A, B, C\}, e)$ is isomorphic to $\left(V_{4}, \circ_{e}\right)_{1}$.

Proof. Consider any e-triangle of our V_{4} configuration. As every pair is defined on this e-triangle, this forces the following necessary triangles and the following configuration:

Given we have the above configuration, we are now forced to define the relation triangles of all pairs. First we define $a^{2}=b^{2}=c^{2}=e$ on the green e-triangle, forcing the red relation triangles as in the following configuration:

Now we will define $a \circ b=c$ and $b \circ a=c$ on the green e-triangle, forcing the red relation triangles in the following configuration:

Now will define $a \circ c=b$ and $c \circ a=b$ on the green e-triangle, forcing the red relation triangles as in the following configuration:

Finally, we will define $b \circ c=c \circ b=a$ on the green e-triangle, forcing the red relation triangles in the following configuration:

Note that the above configuration is a full configuration, so the only way to extend is through n-replication, contradicting our assumption that our configuration is prime. By inspection, we see that for all $x, y \in\{e, a, b, c\}, x \circ y$ is defined on every one of the four e-triangles. So this configuration is indeed a V_{4}-configuration and by inspection it is isomorphic to $\left(V_{4}, \circ_{e}\right)_{1}$.

It is clear that the points of A in $\left(V_{4}, o_{e}\right)_{1}$ are isomorphic up to labelling, resulting in the next lemma.

Lemma 5.1.5. Consider $\left(V_{4}, o_{e}\right)_{1}$, the unique e-based, e-relevant, prime V_{4}-configuration. For any $x \in A$, the binary operation \circ_{x} defines a group $\left(F_{x}, \circ_{x}\right)$ on the points of A. Furthermore, $\left(F_{x}, \circ_{x}\right)$ is isomorphic to $\left(V_{4}, \circ_{e}\right)$.

Proof. By inspection, we see that for any $x \in A, \circ_{x}$ is a full binary operation. Every point of A has an inverse and \circ_{x} is associative, so \circ_{x} defines a group $\left(F, \circ_{x}\right)$ on the points of A. It is clear that $\left(F, \circ_{x}\right)$ is indeed isomorphic to the group $\left(V_{4}, \circ_{e}\right)$.

For the configuration $\left(V_{4}, o_{e}\right)_{1}$, the main line is A, and our ordering of the distinguished lines is $\{A, B, C\}$. What happens if we permute the ordering of these distinguished lines? Do we still have a V_{4}-group configuration? All points of
$\left(V_{4}, o_{e}\right)_{1}$ are of equal degree and each of the distinguished lines has exactly four points of degree four, therefore the distinguished lines are isomorphic up to labelling. This proves the following lemma, which states that given $\left(V_{4}, o_{e}\right)_{1}$, any permutation of the distinguished lines and any labelling of points results in the unique group configuration of V_{4}.

Lemma 5.1.6. Consider $\left(V_{4}, O_{e}\right)_{1}$, whose ordering of distinguished lines is $\{A, B, C\}$. For any permutation of the distinguished lines $\{A, B, C\}$ and for any point p on the main line, the p-based operation \circ_{p} defines a group $\left(F_{p}, \circ_{p}\right)$ on the points of the main line. Furthermore, $\left(F_{p}, \circ_{p}\right)$ is isomorphic to $\left(V_{4}, \circ_{e}\right)$.

Therefore under the restrictions of n-replication and e-relevance, there is a unique group configuration of V_{4}. Furthermore, any ordering of the distinguished lines and any labelling of points of this unique configuration retains the same configuration.

Suppose we remove the restriction of n-replication. If the ordering of the distinguished lines remains as (A, B, C), then any n-replication of $\left(V_{4}, \circ_{e}\right)_{1}$ remains a V_{4}-configuration. Given an n-replication of $\left(V_{4}, o_{e}\right)_{1}$, suppose we permute the distinguished lines so that either B or C is the main line. Our main line will have $4 n$ points, so we certainly cannot have a V_{4}-configuration. Moreover, for any point p on the main line, o_{p} will not be a full binary operation - so this configuration cannot be a group configuration.

5.1.3 The uniqueness of group configurations

We know that for two small groups - one cyclic and one non-cyclic - each has a unique prime, e-relevant group configuration. This nice property holds for groups
in general, as we now prove.

Theorem 5.1.7. Suppose ($G,\{A, B, C\}, e$) is an e-based, e-relevant, prime group configuration of the group $\left(G_{e}, \mathrm{o}_{e}\right)$, where o_{e} is a strong binary operation. Then $(G,\{A, B, C\}, e)$ is unique up to isomorphism.

Proof. Let $\left(G_{e}, o_{e}\right)$ be a group of order n, whose elements are labelled $e=x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}$. We will prove this theorem by showing that any e-based group configuration that generates $\left(G_{e}, \circ_{e}\right)$ can be built uniquely (up to isomorphism) from $\left(G_{e}, \circ_{e}\right)$. This proof will be facilitated by a particular labelling of the points of G. We will indicate a point lies on B or C by superscripts. For example, x^{b} indicates x^{b} is a point on B. Similarly, y^{c} indicates y^{c} is a point on C. The points on the line A are exactly the elements of G_{e} and will be labelled without superscripts. Our construction will eventually force a triangle to be labelled $x y^{b} z^{c}$ if $x \circ_{e} y=z$.

For any group configuration of G_{e}, there must exist at least one e-triangle. Pick any e-triangle and label it $e e^{b} e^{c}$. By our definition of a full binary operation, $x_{i} \circ_{e} x_{j}$ is defined on every e-triangle for every pair $\left(x_{i}, x_{j}\right) \in A \times A$ for any $i, j \in$ $\{0, \ldots, n-1\}$. In particular, $x_{i} \circ_{e} x_{j}$ must be defined on $e e^{b} e^{c}$. So, for every element $x_{i} \in A$, there must exist a triangle containing x_{i} and e^{b}. We will label this triangle $x_{i} e^{b} x_{i}^{c}$. In order to satisfy Lemma 2.1.1 and remain a matroid, the points x_{i}^{c} must be distinct from one another and from e^{c} for all $1 \leq i \leq n-1$. Once all triangles of the form $x_{i} e^{b} x_{i}^{c}$ are added, e^{b} is connected to all points on A and C, and we have a copy of the elements of the group G_{e} on C, which forces the configuration below in Figure 5.6

Figure 5.6:

Similarly, for every element $x_{i} \in A$, there must exist an e-triangle including x_{i} and e^{c}. We will label this triangle $x_{i}\left(x_{i}^{-1}\right)^{b} e^{c}$. In order to satisfy Lemma 2.1.1 and remain a matroid, the points $\left(x_{i}^{-1}\right)^{b}$ must be distinct from one another and from e^{b} for all $1 \leq i \leq n-1$. Once all triangles of the form $\left(x_{i}^{-1}\right)^{b}$ are added, e^{c} is connected to all points on A and B and we have a copy of the elements of the group $\left(G_{e}, o_{e}\right)$ on B, which forces the configuration below in Figure 5.7 .

Figure 5.7:

As $x_{i} \circ_{e} x_{j}$ is defined on $e e^{b} e^{c}$ for all pairs $\left(x_{i}, x_{j}\right) \in A \times A$, for each such pair we must add the relation triangle $\left(x_{i} \circ_{e} x_{j}\right)\left(x_{j}^{-1}\right)^{b} x_{i}^{c}$. We know the Latin square property holds for the points of A, that is, for each pair $\left(x_{i}, x_{j}\right) \in A \times A$, there exists
unique $x_{f}, x_{g} \in A$ such that $x_{f} \circ_{e} x_{i}=x_{j}$ and $x_{i} \circ_{e} x_{g}=x_{j}$. Therefore there is no way that any two relation triangles can meet at more than one point, so Lemma 2.1.1 is satisfied and our configuration remains a matroid once the relation triangles of the form $\left(x_{i} 0_{e} x_{j}\right)\left(x_{j}^{-1}\right)^{b} x_{i}^{c}$ are added. However, during this process, we add new e-triangles, as the relation triangle for any pair of inverses is an e-triangle. More specifically, for any distinct pair of inverses $\left(x_{j}, x_{j}^{-1}\right)$, we add the two new e-triangles $e x_{j}^{b} x_{j}^{c}$ and $e\left(x_{j}^{-1}\right)^{b}\left(x_{j}^{-1}\right)^{c}$. If an element x_{j} is self-inverse, we add the single e-triangle $e\left(x_{j}^{-1}\right)^{b} x_{j}^{c}=e x_{j}^{b} x_{j}^{c}$. In other words, for every $x_{j} \in A$ we are forced to have the e-triangle $e x_{j}^{b} x_{j}^{c}$. So, on these newly added e-triangles, as \circ is a strong, full binary operation, $x_{i} \circ_{e} x_{k}$ must be defined for all $x_{i}, x_{k} \in A$.

In order to show $x_{i} \circ_{e} x_{k}$ is defined on all e-triangles of the form $e x_{j}^{b} x_{j}^{c}$, first we will prove that the triangle $x_{i} x_{j}^{b}\left(x_{i} \circ x_{j}\right)^{c}$ must exist for any x_{i}, x_{j}^{b}. For any point $x_{j} \in A$, we know the triangles $e x_{j}^{b} x_{j}^{c}$ and $x_{j} e^{b} x_{j}^{c}$ exist. We also know the triangle $\left(x_{i} \circ_{e} x_{j}\right) e^{b}\left(x_{i} \circ_{e} x_{j}\right)^{c}$ must exist, which forces the configuration as in Figure 5.8.

Figure 5.8:

We know there must be a triangle containing x_{i} and x_{j}^{b}. Suppose this triangle is not $x_{i} x_{j}^{b}\left(x_{i} \circ_{e} x_{j}\right)^{c}$, but rather $x_{i} x_{j}^{b} x_{l}^{c}$ for $x_{l}^{c} \neq\left(x_{i} \circ_{e} x_{j}\right)^{c}$. As $x_{i} \circ_{e} x_{j}$ must be defined on the e-triangle $e x_{j}^{b} x_{j}^{c}$, this forces the relation triangle $\left(x_{i} \circ_{e} x_{j}\right) e^{b} x_{l}^{c}$ and the non-
matroid configuration as in Figure 5.9.

Figure 5.9:

Therefore the triangle $x_{i} x_{j}^{b}\left(x_{i} \circ_{e} x_{j}\right)^{c}$ must exist and we know that $x_{i} \circ_{e} x_{j}$ is defined on $e x_{j}^{b} x_{j}^{c}$ for any distinct $x_{i}, x_{j} \in A$. It follows that $x_{i} \circ_{e} x_{k}$ is defined on $e x_{j}^{b} x_{j}^{c}$ for any distinct $x_{i}, x_{j}, x_{k} \in A$, as the configuration in Figure 5.10, with triangles of the form $x_{i} x_{j}^{b}\left(x_{i} \circ_{e} x_{j}\right)^{c}$ must exist.

Figure 5.10:

Therefore every pair of points of A is defined on every e-triangle. As each e triangle is of the form $e x_{i} x_{i}$ for every $x_{i} \in A$, and our group is of order n, there are n many e-triangles. As the points on B and C are exactly the points included in
e-triangles, each of these points has degree n. The identity point e certainly has degree n, and every other point on A has degree n. Therefore all points are of equal degree. More importantly, every pair of non-adjacent points is connected, so we have a full configuration. That is, there are no more triangles we can add to our configuration which include more than one point of the configuration. Therefore the only way we can extend our configuration is to add a new e-triangle $e e^{b^{\prime}} e^{c^{\prime}}$, where $e^{b^{\prime}}, e^{c^{\prime}}$ are distinct from all existing points. The same argument follows and we end up with a duplication of G. In other words, the only way to extend this configuration is through n-replication. But as we assume we have a prime configuration, the configuration G is the only group configuration of the group $\left(G_{e}, o_{e}\right)$, up to isomorphism.

The following corollary follows immediately from our construction in the proof of Theorem 5.1.7.

Corollary 5.1.7.1. Consider the unique group configuration ($G,\{A, B, C\}, e$) of $\left(G_{e}, \circ_{e}\right)$. Then $x y z$ is a triangle of $(G,\{A, B, C\}, e)$ if and only if $x \circ_{e} y=z$.

It also follows from Theorem 5.1.7 that any choice of identity point retains the unique group configuration.

Corollary 5.1.7.2. Consider the unique e-based group configuration ($G,\{A, B, C\}, e$) of $\left(G_{e}, \circ_{e}\right)$. For any $a \in A, \circ_{a}$ is a full binary operation which defines the group $\left(F_{a}, \circ_{a}\right)$ on the points of A. Furthermore, $\left(F_{a}, \circ_{a}\right)$ is isomorphic to $\left(G_{e}, \circ_{e}\right)$.

Proof. For any point $a \in A$, we show that we can change the labelling of the H configuration ($G,\{A, B, C\}, e$) to obtain an a-based F-configuration $\left(G^{\prime},\{A, B, C\}, a\right)$, where the groups $\left(G_{e}, \circ_{e}\right)$ and $\left(F_{a}, \circ_{a}\right)$ are isomorphic. Recall that \circ_{a} is an a-based binary operation. Certainly o_{a} is a full binary operation, as every pair of points in
G is connected.

For any choice of identity point $a \in A$, we will relabel the points on the lines A and C as follows. Every point $p \in A$ can be written uniquely in the form $p=a q$ for some $q \in A$. We will relabel the point $p=a q$ by $q=a^{-1} p$. This enables us to re-label a by e, as $a=a e$. As $e=a a^{-1}$, we re-label e by a^{-1}. For any $x=a y$ we re-label x by $y=a^{-1} x$. The points on B have the same labelling in both G and G^{\prime}. Every triangle labelled $p q\left(p \circ_{e} q\right)$ in G becomes re-labelled as $\left(a^{-1} p\right) q\left(a^{-1}\left(p \circ_{e} q\right)\right)$ in G^{\prime}. Recall from Corollary 5.1.7.1 that $x \circ_{e} y=z$ if and only if $x y z$ is a triangle in G, if and only if $\left(a^{-1} x\right) y\left(a^{-1} x y\right)$ is a triangle in G^{\prime}. Therefore $\left(F_{a}, \circ_{a}\right)$ is isomorphic to $\left(G_{e}, o_{e}\right)$.

The next corollary follows from Theorem 5.1.7 and Corollary 5.1.7.2.
Corollary 5.1.7.3. Given the unique group configuration of the group $\left(H_{e}, o_{e}\right)$, for any ordering of the distinguished lines $\{A, B, C\}$ and for any point p on the main line, then \circ_{p} is a full binary operation defining the group $\left(F_{p}, \circ_{p}\right)$ on the points of the main line. Furthermore, $\left(F_{p}, \circ_{p}\right)$ is isomorphic to $\left(H_{e}, \circ_{e}\right)$.

In conclusion, for any group under a strong binary operation, there is a unique prime, e-relevant group configuration, G. For any permutation of the main lines of G, and for any choice of identity on the main line, we retain this unique group configuration. However, this uniqueness and the symmetries which follow do not necessarily hold for group configurations under a weak binary operation, as we will see in the next section. We conclude this section by considering the repercussions of removing the constraint of n-replication.

For a group H of order h, consider $\left(H^{1},\{A, B, C\}, e\right)$ - the unique prime, e relevant, e-based H-configuration as described in Theorem 5.1.7. Note that the
ordering of the distinguished lines of H^{1} is (A, B, C). Consider $\left(H^{n},\{A, B, C\}, e\right)$, an n-replication of H^{1}. Certainly H^{n} is an H-configuration - as H^{n} consists of n copies of H^{1}, which are disjoint on the lines B and C. We will denote these copies by H^{i}, where $2 \leq i \leq n$. Suppose we permute the order of the distinguished lines of H^{n} so that either B or C is the main line. Do we get a group configuration? As the lines B and C are isomorphic in any n-replication, we can consider them as one case. We will denote H_{p}^{n} to be the configuration obtained from H^{n} by permuting the distinguished lines so that either B or C is the main line. In H^{n}, the lines B and C each have $h n$ many points. Therefore in H_{p}^{n}, the main line has $h n$ many points, so H_{p}^{n} cannot be an H-configuration. Furthermore, H_{p}^{n} cannot be a group configuration at all, as for any point p on the main line, \circ_{p} is not a full binary operation. Consider any pair of points x, y on the main line such that x is contained in H^{i} and y is contained in H^{j} where $i \neq j$, where H^{i} and H^{j} are copies of H^{1}. As H^{i} and H^{j} are disjoint on the lines B and C, for any choice of identity p on the main line, $x \circ_{p} y$ is undefined. Therefore \circ_{p} is a partial binary operation, implying that H_{p}^{n} cannot be a group configuration. We have proved the following two corollaries.

Corollary 5.1.7.4. Let $\left(H^{n},\{A, B, C\}, e\right)$ be an n-replication of the unique group configuration of the group $\left(H_{e}, o_{e}\right)$. Then $\left(H^{n},\{A, C, B\}, e\right)$ is an H_{e}-configuration. Furthermore, $\left(H^{n},\{A, C, B\}, e\right)$ is isomorphic to $\left(H^{n},\{A, B, C\}, e\right)$.

Corollary 5.1.7.5. Let $\left(H^{n},\{A, B, C\}, e\right)$ be an n-replication of the unique group configuration of the group $\left(H_{e}, \mathrm{o}_{e}\right)$. If we permute the distinguished lines of H^{n} so that either B or C is the main line, the resulting configuration is not an $H_{e^{-}}$ configuration. Furthermore, this resulting configuration is not a group configuration for any group.

5.2 Weak binary operation

In this section we will assume that o_{e} is a weak, full binary operation. However, we still want to refer to the unique group configurations which we described in Theorem 5.1.7. For a group H, we will refer to unique group configuration arising when \circ is strong as the full configuration of H.

Despite having strong results for group configurations under a strong binary operation, life becomes more complicated when we consider group configurations under a weak binary operation. Luckily, we do not descend into a world of complete chaos. There are some underlying patterns to the examples on the groups C_{2}, and in particular C_{3}. However, to gain a comprehensive 'big picture' understanding of the structure of group configurations under a weak binary operation would be no mean feat.

As for the previous section, we will motivate our understanding of group configurations under a weak binary operation by considering those of two small groups - the cyclic groups C_{2} and C_{3}. First we will introduce some terminology.

5.2.1 n-partitions

For the case when \circ is a strong binary operation, we introduced the notion of n replication. Now we are considering the case when \circ is a weak binary operation, we will extend this notion, as n-replication does not fully encompass the superfluous configurations which may arise.

For a group H, we say a configuration F is a partial H-configuration if it is a
proper sub-configuration of the full configuration of H. That is, F is not itself an H-configuration, as \circ is a partial, not full, binary operation.

We say an H-configuration $(G,\{A, B, C\}, e)$ is a 2-partition if there exist disjoint subsets B_{1}, B_{2} of B partitioning B and disjoint subsets C_{1}, C_{2} of C partitioning C such that $\left(G_{1},\left\{A, B_{1}, C_{1}\right\}, e\right)$ and $\left(G_{2},\left\{A, B_{2}, C_{2}\right\}, e\right)$, the blocks of the 2-partition, satisfy the following two conditions:

- Each block is either an H-configuration or a partial H-configuration;
- The blocks G_{1} and G_{2} have no triangles in common. That is, if $x y z$ is a triangle of G_{1} then $y \in B_{1}$ and $z \in C_{1}$, therefore $y \notin B_{2}$ and $z \notin C_{2}$. Similarly, if $x y z$ is a triangle of G_{2} then $y \in B_{2}$ and $z \in C_{2}$, therefore $y \notin B_{1}$ and $z \notin C_{1}$.

For example, the following Figure 5.11 is a 2-partition C_{2}-configuration.

Figure 5.11: A 2-partition group configuration of C_{2}.

Note that in Figure 5.11, the blue lines make up a partial C_{2}-configuration, as this block is isomorphic to the basic relation configuration R_{6}. Similarly, the black lines make up a partial C_{2}-configuration, as this block is isomorphic to the basic relation configuration R_{4}.

We can extend the notion of a 2-partition to an n-partition. A H-configuration is an n-partition if there exist disjoint subsets $B_{1}, B_{2}, \ldots, B_{n}$ whose union is B and disjoint subsets $C_{1}, C_{2}, \ldots, C_{n}$ whose union is C such that ($G_{1},\left\{A, B_{1}, C_{1}\right\}, e$), $\left(G_{2},\left\{A, B_{2}, C_{2}\right\}, e\right), \ldots,\left(G_{n},\left\{A, B_{n}, C_{n}\right\}, e\right)$, the blocks of the n-partition, satisfy the following two properties:

- Each block is either an H-configuration or a partial H-configuration;
- No pair of blocks share a triangle in common. That is, for any $i \in\{1, \ldots, n\}$, if $x y z$ is a triangle of G_{i} then $y \in B_{i}$ and $z \in C_{i}$ and therefore $y \notin \bigcup_{j \neq i} B_{j}$ and $z \notin \bigcup_{k \neq i} C_{k}$.

We say a configuration which is not an n-partition, i.e. a configuration in which there is a walk between every pair of points, is a 1-block configuration. Within a 1 -block configuration, we say an e-triangle $e b_{1} c_{1}$ is redundant if the only pair defined on $e b_{1} c_{1}$ is $e \circ x$ or $x \circ e$ for some $x \in A$. For example, in Figure 5.11, the blue e-triangle is redundant. As this condition strengthens the notion of e-relevance, if a configuration has no redundant e-triangles, we say it is strongly e-relevant.

To summarize, for the rest of this section, unless otherwise stated, we will assume our group configurations are strongly e-relevant, 1 -block configurations. Given these conditions, we now prove that under a weak binary operation, there is a unique C_{2}-configuration.

5.2.2 Group configurations of C_{2}

Lemma 5.2.1. Suppose $(G,\{A, B, C\}, e)$ is an e-based, strongly e-relevant, 1block C_{2}-configuration where o_{e} is a weak binary operation. Then $(G,\{A, B, C\}, e)$ is isomorphic to $\left(C_{2}, \circ_{e}\right)_{1}$.

Proof. Any group configuration of C_{2} must contain the configuration $\left(C_{2}, \mathrm{o}_{e}\right)_{1}$. As all pair of points are connected, the only way to extend this configuration is to add a new e-triangle. As we assume we have a 1-block configuration, $\left(C_{2}, \circ_{e}\right)_{1}$ is the only group configuration up to isomorphism.

5.2.3 Group configurations of C_{3}

We will now consider the strongly e-relevant, 1 -block group configurations of C_{3} under a weak binary operation.

Figure 5.12: The C_{3}-configuration denoted $\left(C_{3}\right)_{1}$

Figure 5.13: The C_{3}-configuration denoted $\left(C_{3}\right)_{2}$

We will prove later that the above two configurations are the only strongly e relevant, 1-block C_{3}-configurations. First, we will prove some necessary lemmas. Given a configuration G, we say the configuration G^{\prime} is an extension of G if G is a proper sub-configuration of G^{\prime}.

Lemma 5.2.2. Any extension of the C_{3}-configuration $\left(C_{3}\right)_{1}$ results in a configuration isomorphic to the full configuration of C_{3}.

Proof. We prove this by considering all possible extensions of $\left(C_{3}\right)_{1}$. If we extend, we must have one of the four following cases.

Case (i). Suppose the triangle $x b_{3} c_{3}$ exists, where $b_{3} \notin\left\{b_{1}, b_{2}\right\}$. This forces $x \circ x$ to be defined on $e b_{2} c_{3}$, which forces the relation triangle $x^{2} b_{3} c_{1}$ to exist. To be well-defined, we must have $x \circ x^{2}$ defined on $e b_{1} c_{1}$, resulting in a configuration isomorphic to the full configuration of C_{3}.

Case (ii). Suppose the triangle $x^{2} b_{3} c_{1}$ exists, where $b_{3} \notin\left\{b_{1}, b_{2}\right\}$, then we must have $x \circ x^{2}$ defined on $e b_{1} c_{1}$. This forces the relation triangle $e b_{3} c_{2}$ to exist, which forces $x^{2} \circ x^{2}$ to be defined on $e b_{1} c_{1}$ and the triangle $x b_{3} c_{3}$ to exist resulting in a configuration isomorphic to the full configuration of C_{3}.

Case (iii). Suppose the e-triangle $e b_{3} c_{1}$ exists, where $b_{3} \notin\left\{b_{1}, b_{2}\right\}$. If there is a triangle containing $x b_{3}$, this must be the triangle $x b_{3} c_{3}$, in order for our configuration to remain well-defined. If the triangle $x b_{3} c_{3}$ exists, this forces $x \circ x$ to be defined on $e b_{2} c_{3}$, which forces the relation triangle $x^{2} b_{3} c_{1}$ to exist - resulting in a configuration isomorphic to the full configuration of C_{3}. If there is a triangle containing $x^{2} b_{3}$, this must be the triangle $x b_{3} c_{1}$ in order for our configuration to remain well-defined. If the triangle $x b_{3} c_{1}$ exists, this forces $x^{2} \circ x^{2}$ to be defined on $e b_{1} c_{1}$. This forces the relation triangle $x b_{3} c_{3}$
to exist and we have a configuration isomorphic to the full configuration of C_{3}.

Case (iv). Suppose the e-triangle $e b_{3} c_{4}$ exists, where $b_{3} \notin\left\{b_{1}, b_{2}\right\}$ and $c_{4} \notin\left\{c_{1}, c_{2}, c_{3}\right\}$. It follows from above that we cannot have the triangles $x b_{3} c_{3}$ or $x^{2} b_{3} c_{1}$, as this forces a configuration isomorphic to the full configuration of $C_{3}-$ which being a full configuration, cannot also have the triangle $e b_{3} c_{4}$. So if we define any pair on $e b_{3} c_{4}$, the necessary triangles and relation triangle must be disjoint from lines B and C of the current configuration - that is, we have a 2-partition.

Lemma 5.2.3. Any extension of the C_{3}-configuration $\left(C_{3}\right)_{2}$ results in a configuration isomorphic to the full configuration of C_{3}.

Proof. We prove this by considering all possible extensions of $\left(C_{3}\right)_{2}$. If we extend, we must have one of the four following cases.

Case (i). The triangle $x b_{3} c_{3}$ exists (where $c_{3} \notin\left\{c_{1}, c_{2}\right\}$) if and only if $x \circ x$ is define on $e b_{3} c_{2}$ if and only if the triangle $x^{2} b_{1} c_{3}$ exists if and only if $x^{2} \circ x$ is defined on $e b_{1} c_{1}$ if and only if the triangle $e b_{2} c_{3}$ exists if and only if we have a configuration isomorphic to the full configuration of C_{3}.

Case (ii). Suppose the triangle $x b_{1} c_{3}$ exists. Then we must have $x^{2} \circ x$ defined on $e b_{1} c_{1}$, forcing the relation triangle $e b_{2} c_{3}$. To be well-defined, this forces $x^{2} \circ x^{2}$ to be defined on $e b_{1} c_{1}$. Then we must have the relation triangle $x b_{3} c_{3}$ - and we have a configuration isomorphic to the full configuration of C_{3}.

Case (iii). Suppose the e-triangle $e b_{2} c_{3}$ exists. If there is a triangle containing $x c_{3}$, it must be the triangle $x b_{3} c_{3}$ in order for our configuration to remain well-
defined. If the triangle $x b_{3} c_{3}$ exists then $x \circ x$ is defined on $e b_{3} c_{2}$, forcing the relation triangle $x^{2} b_{1} c_{3}$ to exist, resulting in a configuration isomorphic to the full configuration of C_{3}. If there is a triangle containing $x^{2} c_{3}$, it must be the triangle $x^{2} b_{1} c_{3}$ in order for our configuration to remain well-defined. If the triangle $x^{2} b_{1} c_{3}$ exists, this forces $x^{2} \circ x^{2}$ to be defined on $e b_{1} c_{1}$. Then we must have the relation triangle $x b_{3} c_{3}$ and we have a configuration isomorphic to the full configuration of C_{3}.

Case (iv). Suppose the e-triangle $e b_{4} c_{3}$ exists where $b_{4} \notin\left\{b_{1}, b_{2}, b_{3}\right\}$ and $c_{3} \notin$ $\left\{c_{1}, c_{2}\right\}$. It follows from above that we cannot have the triangles $x^{2} b_{1} c_{3}$ or $x b_{3} c_{3}$, as this forces a configuration isomorphic to the full configuration of C_{3} - which being a full configuration cannot also have the triangle $e b_{4} c_{3}$. So if we define any pair on $e b_{4} c_{3}$, the necessary triangles and relation triangle must be disjoint from the current configuration on the lines B and C i.e. we have a 2-partition.

We now use the previous lemmas to prove there are exactly two strongly e-relevant, 1-block C_{3}-configurations, up to isomorphism.

Lemma 5.2.4. Suppose $(G,\{A, B, C\}, e)$ is an e-based, strongly e-relevant, 1block C_{3}-configuration where o_{e} is a weak binary operation. Then $(G,\{A, B, C\}, e)$ is isomorphic to either $\left(C_{3}, o_{e}\right)_{1}$ or $\left(C_{3}, o_{e}\right)_{2}$, where the isomorphism is the identity for the point e.

Proof. Any C_{3} configuration must contain the following basic relation configuration R_{3}, defining $x \circ x=x^{2}$.

Figure 5.14:

Case (i). First, we will consider extensions on the e-triangle $e b_{1} c_{1}$. We must have one of the two following sub-cases.

Sub-case (a). We can extend this by defining $x \circ x^{2}=e$ on the e-triangle $e b_{1} c_{1}$, resulting in a configuration isomorphic to $\left(C_{3}\right)_{2}$. We know from Lemma 5.2.3 that any extension results in the full configuration of C_{3}.

Sub-case (b). We can also extend by defining $x^{2} \circ x^{2}$ on $e b_{1} c_{1}$, resulting in a configuration isomorphic to $\left(C_{3}\right)_{1}$. We know from Lemma 5.2.2 that any extension results in the full configuration of C_{3}.

Case (ii). Now suppose we extend Figure 5.14 by adding a new e-triangle. We must have one of the three following sub-cases.

Sub-case (a). Suppose we add the e-triangle $e b_{3} c_{2}$ where $b_{3} \notin\left\{b_{1}, b_{2}\right\}$. If we define $x \circ x$ on $e b_{3} c_{2}$, this forces the triangle $x b_{3} c_{3}$ where $c_{3} \notin$ $\left\{c_{1}, c_{2}\right\}$ and the following configuration:

In order to be well-defined, the triangles $e b_{2} c_{3}$ (defining $x \circ x^{2}$ on the e-triangle $e b_{3} c_{2}$) and $x^{2} b_{3} c_{1}$ (defining $x^{2} \circ x$ on the e-triangle $e b_{1} c_{1}$) are forced, and we have a configuration isomorphic to the full configuration of C_{3}.

Sub-case (b). Suppose we add the e-triangle $e b_{2} c_{3}$ where $b_{3} \notin\left\{b_{1}, b_{2}\right\}$. We cannot have a triangle containing x^{2} and c_{3}, as this forces $x^{2} \circ x^{2}$ to be defined on $e b_{2} c_{3}$, forcing a non-matroid configuration. If we add the triangle $x b_{3} c_{3}$, where $b_{3} \notin\left\{b_{1}, b_{2}\right\}$, then we have the same configuration as in Figure 5.2.3, and we are forced to extend to the full configuration of C_{3}.

Sub-case (c). Suppose we add a new e-triangle, $e b_{3} c_{3}$, as in Figure 5.2.3 below:

C

We cannot have the triangle $x^{2} b_{3} c_{1}$, as then we cannot define $x \circ x^{2}$ or $x^{2} \circ x^{2}$ on $e b_{3} c_{3}$ and remain a matroid. Similarly, we cannot have the triangle $x^{2} b_{1} c_{3}$, as we cannot define $x^{2} \circ x$ on $e b_{1} c_{1}$ and remain a matroid. So if we define any pair on $e b_{3} c_{3}$, the necessary triangles and relation triangle must be disjoint from the lines B and C of existing configuration as in Figure 5.14 , i.e. we have a 2-partition.

Note that if we start with the configuration defining $x^{2} \circ x^{2}=x$, we get an analysis isomorphic to above up to labelling - simply swap the labels for x and x^{2}. Similarly, if we start with the configuration defining $x \circ x^{2}=x^{2} \circ x=e$, we get an analysis isomorphic to above up to labelling - simply swap x and e. Therefore any strongly e-relevant, 1 -block C_{3}-configuration must be isomorphic to either $\left(C_{3}\right)_{1}$ or $\left(C_{3}\right)_{2}$.

Note that $\left(C_{3}\right)_{1}$ and $\left(C_{3}\right)_{2}$ are isomorphic up to swapping the distinguished lines B and C.

For both $\left(C_{3}\right)_{1}$ and $\left(C_{3}\right)_{2}$, we show that for any choice of identity point on the main line A, we retain the configuration $\left(C_{3}\right)_{1}$ or $\left(C_{3}\right)_{2}$ respectively.

Lemma 5.2.5. For the C_{3}-configurations $\left(C_{3}\right)_{1}$ and $\left(C_{3}\right)_{2}$, for any $a \in A$, the binary operation \circ_{a} defines a group $\left(G_{a}, \circ_{a}\right)$ on the points of A. Furthermore, $\left(G_{a}, \circ_{a}\right)$ is isomorphic to $\left(C_{3}, \circ_{e}\right)$.

Proof. Suppose x becomes our new identity, with the full binary operation \circ_{x}, where $e \circ_{x} e=x^{2}, e \circ_{x} x^{2}=x^{2} \circ_{x} e=x^{2}, x^{2} \circ_{x} x^{2}=e$. Then \circ_{x} defines the group G_{x} on A, where x is the identity. Moreover, $\left(G_{x}, \circ_{x}\right)$ is isomorphic to $\left(C_{3}, o_{e}\right)$. Suppose x^{2} becomes our new identity, with full binary operation $\circ_{x^{2}}$, where $e \circ_{x^{2}} e=x^{2}$,
$e \circ_{x^{2}} x=x \circ_{x^{2}} e=x^{2}$ and $x \circ_{x^{2}} x=e$. Then $\circ_{x^{2}}$ defines the group $G_{x^{2}}$ on A, where x^{2} is the identity. Moreover, $\left(G_{x}, \circ_{x}\right)$ is isomorphic to $\left(C_{3}, \circ_{e}\right)$.

The next lemma shows that for certain permutations of the distinguished lines of $\left(C_{3}\right)_{1}$, we retain a configuration isomorphic to either $\left(C_{3}\right)_{1}$ or $\left(C_{3}\right)_{2}$.

Lemma 5.2.6. Given the C_{3}-configuration $\left(C_{3}\right)_{1}$, for any permutation of the distinguished lines such that A or C is the main line, and for any point pon the main line, the binary operation \circ_{p} defines a group $\left(G_{p}, \circ_{p}\right)$ on the points of the main line. Furthermore, $\left(G_{p}, \circ_{p}\right)$ is isomorphic to $\left(C_{3}, \circ_{e}\right)$.

Proof. Clearly the permutation (A, B, C) satisfies the lemma.

Suppose we permute the distinguished lines so that the ordering is (C, B, A). As lines A and C each have exactly three points of degree four, they are isomorphic up to labelling, therefore \circ_{x} defines a C_{3}-configuration for any $x \in A$.

Suppose we permute the distinguished lines so that the ordering is either (C, A, B) or (A, C, B). For both cases, observe that we have a configuration isomorphic to $\left(C_{3}\right)_{2}$ - which is indeed a C_{3}-configuration.

The next lemma shows that for certain permutations of the distinguished lines of $\left(C_{3}\right)_{2}$, we retain a configuration isomorphic to either $\left(C_{3}\right)_{2}$ or $\left(C_{3}\right)_{1}$.

Lemma 5.2.7. For the C_{3}-configuration $\left(C_{3}\right)_{2}$, for any permutation of the distinguished lines such that A or B is the main line, and for any point p on the main line, the binary operation \circ_{p} defines a group $\left(G_{p}, \circ_{p}\right)$ on the points of the main line. Furthermore, $\left(G_{p}, \circ_{p}\right)$ is isomorphic to $\left(C_{3}, \circ_{e}\right)$.

Proof. Recall that $\left(C_{3}\right)_{2}$ is isomorphic to $\left(C_{3}\right)_{1}$ up to swapping the distinguished lines B and C. Therefore it follows from Lemma 5.2.6 that the lemma holds for $\left(C_{3}\right)_{2}$.

Given either $\left(C_{3}\right)_{1}$ or $\left(C_{3}\right)_{2}$, we now consider the permutations of the distinguished lines which do not retain a group structure on the main line.

Lemma 5.2.8. Consider the C_{3}-configuration $\left(C_{3}\right)_{1}$ whose ordering of the distinguished lines is $\{A, B, C\}$. For any permutation of the distinguished lines such that B is the main line, the resulting configuration is not a C_{3}-configuration. Furthermore, the resulting configuration is not a group configuration.

Proof. Note that the distinguished lines A and C are isomorphic, so the orderings $\{B, A, C\}$ and $\{B, C, A\}$ are isomorphic. Consider $\left(C_{3}\right)_{1}$ with the ordering $\{B, A, C\}$ of the distinguished lines, as shown below in Figure 5.15

Figure 5.15: The configuration $\left(C_{3}\right)_{1}$ with permuted distinguished lines with the ordering $\{B, A, C\}$.

Firstly, consider a as the identity under the a-based operation \circ_{a}. By inspection we see that \circ_{a} is not a well-defined operation, as in Figure 5.15 both $b \circ_{a} b=a$ and $b \circ_{a} b \neq a$. Therefore \circ_{a} does not form a group with identity a on the main line B.

Secondly, consider b as the identity under the b-based operation \circ_{b}. By inspection we see that \circ_{b} is not a full binary operation, as in Figure 5.15, $a \circ_{b} a$ is undefined. Therefore \circ_{b} does not form a group with identity b on the main line B.

We now prove an equivalent lemma for the C_{3}-configuration $\left(C_{3}\right)_{2}$.

Lemma 5.2.9. Consider the C_{3}-configurations $\left(C_{3}\right)_{2}$, whose ordering of the distinguished line is $\{A, B, C\}$. For any permutation of the distinguished lines such that C is the main line, the resulting configuration is not a C_{3}-configuration. Furthermore, the resulting configuration is not a group configuration.

Proof. Recall that $\left(C_{3}\right)_{2}$ is isomorphic to $\left(C_{3}\right)_{1}$ up to swapping the distinguished lines B and C. Therefore, it follows by the same argument as in Lemma 5.2.9 that given $\left(C_{3}\right)_{2}$, the permutations $\{C, B, A\}$ and $\{C, A, B\}$ of the distinguished lines do not result in group configurations.

If we remove the restrictions of n-partitions and strong e-relevance, this results in more complicated C_{3}-configurations. These configurations are compressions of the full configuration of C_{3}, and the blocks of these configurations are isomorphic to either one of $\left(C_{3}\right)_{1}$ or $\left(C_{3}\right)_{2}$.

5.2.4 Conjectures

As evident from Chapter 4, the difficulty with a weak binary operation is that the case analysis escalates extremely quickly. Even for groups of orders four and five, the possibilities snowball. This is clear by the stark contrast in both the length and simplicity of the arguments for the unique, prime, e-relevant group configuration of V_{4} under a strong binary operation, compared with the proof that there are exactly two strongly e-relevant, 1 -block C_{3}-configurations.

For a group H of order n, the full configuration of H will have $3 n$ points, each of degree n, and a total of n^{2} triangles. Consequently, such configurations become very difficult to digest. There is surely an underlying structure to group configurations under a weak binary operation, despite my many unsuccessful hours spent attempting to realize one!

It is interesting that the two strongly e-relevant 1-block C_{3}-configurations are isomorphic up to swapping two of the distinguished lines. It is possible that similar symmetries exist between the group configurations of other cyclic groups - or even for groups in general.

The analysis of the group configurations of C_{3}, as well as the analysis of the group configurations of other small groups, lead to the following conjectures.

Conjecture 5.2.10. Suppose ($G,\{A, B, C\}, e$) is an e-based, strongly e-relevant 1block group configuration of the group $\left(H, \circ_{e}\right)$. For any $p \in A, \circ_{p}$ is a full binary operation which defines the group $\left(F, \circ_{p}\right)$ on the points of A. Furthermore, $\left(F, \circ_{p}\right)$ is isomorphic to $\left(H, \circ_{e}\right)$.

Conjecture 5.2.11. Let $\left(H, o_{e}\right)$ be a group where \circ_{e} is a weak binary operation, and let G_{1}, \ldots, G_{n} be the list of all strongly e-relevant, 1-block H-configurations. Then for any H-configuration without the constraints of n-partitions and strong e-relevance, each block of the configuration is isomorphic to one of G_{i}, where $1 \leq i \leq n$.

There are many other lines of inquiry concerning group configurations, some of which are briefly discussed in Chapter 7.

Chapter 6

Biased graphs and their matroids

In the previous chapter, we proved that for any group H with a strong binary operation, there is a unique prime, e-relevant, e-based H-configuration. We will now explore the connection between these group configurations and the jointless Dowling matroids obtained from group-labelled biased graphs.

Before defining group-labelled biased graphs, we will define biased graphs. First we will define some terminology. A θ-graph consists of two vertices with three edge-disjoint paths, which we denote P_{1}, P_{2} and P_{3}, between them. In other words, any two cycles intersecting in exactly one non-empty path form a θ-graph. A biased graph is a pair (G, \mathscr{B}), where G is a graph and \mathscr{B} is a set of cycles of G, called the balanced cycles, which satisfy the " θ-property". The θ-property states that for any pair of balanced cycles $C_{1}=P_{1} \cup P_{2}$ and $C_{2}=P_{2} \cup P_{3}$ which form a θ-graph, the third cycle, $C_{3}=P_{1} \cup P_{3}$, is also in \mathscr{B}. That is, the θ-property says we cannot have exactly two balanced cycles in a θ-graph. Any cycle which is not in \mathscr{B} is said to be unbalanced. A θ-graph whose cycles are all unbalanced is called an unbalanced θ-graph. We will prove later that the θ-property ensures an
associated matroid of the biased graph.

There are many important examples of biased graphs. These include biased graphs with only balanced cycles, biased graphs with only unbalanced cycles, and signed graphs, whose balanced cycles are exactly those with an even number of edges. We are interested in group-labelled biased graphs. Given a graph G and group H, we obtain a group-labelled graph by assigning a direction and a group element of H to each edge of G. Before describing our choice of balanced cycles to obtain a group-labelled biased graph from a group-labelled graph, we will introduce some more terminology. Let $C=v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{n}, e_{n}, v_{1}$ be a cycle of the group-labelled graph G, which we will traverse in the direction from e_{1} to e_{n}. We say an edge $e_{i} \in C$ is a forward edge if e_{i} is directed from v_{i} to v_{i+1}. We say an edge $e_{i} \in C$ is a reverse edge if e_{i} is directed from v_{i+1} to v_{i}. Given a grouplabelled graph G, we obtain a group-labelled biased graph by defining the set \mathscr{B} of balanced cycles as in the following theorem, in which we show this choice of \mathscr{B} satisfies the θ-property, thus ensuring (G, \mathscr{B}) is indeed a biased graph.

Theorem 6.0.12. Suppose G is a group-labelled graph. Let h $\left(e_{i}\right)$ denote the group label on the edge e_{i}. We say a cycle C is balanced if and only if

$$
\prod_{\text {forvardedges }} h\left(e_{i}\right) \prod_{\text {reverseedges }} h\left(e_{i}\right)^{-1}=1 .
$$

Let \mathscr{B} be the set of all balanced cycles. Then (G, \mathscr{B}) is a biased graph.

Proof. We need only check the θ-property is satisfied. Suppose C_{1} and C_{2} are cycles intersecting in a non-empty path with endpoints v_{1} and v_{n}. We must show that if C_{1} and C_{2} are balanced, then the third cycle, C_{3}, must also be balanced. As C_{1} and C_{2} form a θ-graph, there will be three paths joining v_{1} and v_{n}. Call
these paths P_{1}, P_{2}, P_{3} and assume the edges are directed from v_{1} to v_{2} along P_{1} and directed from v_{2} to v_{1} along P_{2} and P_{3}. Note that if the edges are not directed in this way, we can reverse their direction and relabel the reversed edge e_{i} with group label $h\left(e_{i}\right)^{-1}$. Let ρ_{i} be the product of the new labels along P_{i} for each $i \in\{1,2,3\}$. Let $C_{1}=P_{1} \cup P_{2}, C_{2}=P_{2} \cup P_{3}$ and $C_{3}=P_{1} \cup P_{3}$. As C_{1} and C_{2} are balanced, we have $\rho_{1} \circ \rho_{2}=1$ and $\rho_{2} \circ \rho_{3}^{-1}=1$. Therefore the product of the edge labels of C_{3} is $\rho_{1} \circ \rho_{3}=\rho_{1} \circ \rho_{2}=1$, therefore C_{3} is balanced, so the θ-property holds and the theorem follows.

We are interested in the associated matroids associated of group-labelled biased graphs. For biased graphs in general, the two most commonly associated matroids are the biased matroids and lift matroids.

6.1 Biased matroids

Before defining the biased matroids associated with biased graphs, we will introduce some more terminology. Two cycles with exactly one vertex in common is called a tight handcuff. Two vertex-disjoint cycles with a minimal path joining them is called a loose handcuff. A handcuff is either a tight handcuff or a loose handcuff. We call two disjoint cycles a bicycle. A handcuff or bicycle is unbalanced if all cycles contained in the handcuff or bicycle respectively are unbalanced.

We will use the following lemma from [1] when proving the existence of biased matroids.

Lemma 6.1.1. A connected graph G with at least two cycles has a θ-graph, a loose handcuff or a tight handcuff as a sub-graph.

Proof. Any two distinct cycles C_{1}, C_{2} of G are either vertex-disjoint, have a unique common vertex or have more than one common vertex. If C_{1}, C_{2} are vertex disjoint, as G is connected there must be a path connecting C_{1} and C_{2} and we have a loose handcuff. If C_{1}, C_{2} have a unique common vertex, then we have tight handcuff. If C_{1}, C_{2} have multiple vertices in common, these vertices must form a path and we have a θ-graph.

We will now prove the existence of biased matroids, the associated matroids of biased graphs, by outlining the following theorem which can be found in [1].

Theorem 6.1.2. Let (G, \mathscr{B}) be a biased graph with edge set $E(G)$. Let \mathscr{C} be the collection of subsets of $E(G)$ that are contained in \mathscr{B}, the edges of unbalanced handcuffs and the edges of unbalanced θ-graphs. Let $B(G)$ be the pair $(E(G), \mathscr{C})$. Then $B(G)$ is a matroid with ground set $E(G)$ and \mathscr{C} as its collection of circuits.

Proof. Clearly $\emptyset \notin \mathscr{C}$. As every member of \mathscr{C} contains a cycle, no member of \mathscr{C} is a proper subset of another. So we are left to show that the third circuit axiom holds. That is, for any distinct $C_{1}, C_{2} \in \mathscr{C}$ such that $e \in C_{1} \cap C_{2}$, there exists $C_{3} \in \mathscr{C}$ such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-e$. We will prove this by contradiction. As C_{1} and C_{2} share an edge in common, $G\left[C_{1} \cup C_{2}\right]$ is connected. Let $H=G\left[C_{1} \cup C_{2}\right] \backslash e$. By our assumption, H contains no member of \mathscr{C}, therefore no balanced cycles.

We will now prove by contradiction that H is connected. Suppose H is not connected. Then e cannot be in a cycle of $G\left[C_{1}\right]$ or $G\left[C_{2}\right]$, otherwise H would be connected by the endpoints of e. So $G\left[C_{1}\right]$ and $G\left[C_{2}\right]$ cannot be θ-graphs or tight handcuffs. Therefore they must be loose handcuffs where e is a member of the path connecting the two cycles. When we delete e from H, this divides the two cycles of $G\left[C_{1}\right]$ and $G\left[C_{2}\right]$, so H has a component H_{1} whose edge set is not con-
tained in C_{1}. The edges of C_{1} in H_{1} induce an unbalanced cycle D_{1} together with a path P_{1} from a vertex of $G\left[D_{1}\right]$ to an end vertex v of e. Similarly, the edges of C_{2} in H_{1} induce an unbalanced cycle D_{2} together with a path P_{2} from a vertex of $G\left[D_{2}\right]$ to an end vertex v of e. By our assumption, H does not contain any balanced cycles, unbalanced handcuffs or unbalanced θ-graphs. As H doesn't contain any balanced cycles, it cannot contain any balanced handcuffs or balanced θ-graphs. So by the converse of the previous lemma, H_{1} contains a unique cycle and it must be $D_{1}=D_{2}$. We know $E\left(H_{1}\right)-C_{1}$ is non-empty, therefore P_{2} must contain an edge f that is not in C_{1}. It is clear that $G\left[C_{2} \cap E\left(H_{1}\right)\right] \backslash f$ contains paths from f to v and from f to $V\left[D_{1}\right]$. Connecting these paths to P_{1}, we see that $H_{1} \backslash f$ is connected. Therefore f is contained in a cycle which is not D_{1}, contradicting the fact that H_{1} has a unique cycle. Therefore H is connected.

We will now prove that H contains a cycle. If H contains no cycles, then both C_{1} and C_{2} must be cycles both containing e. By the third circuit axiom applied to $M(G)$, it follows that $\left(C_{1} \cup C_{2}\right)-e=H$ contains a cycle, contradicting our assumption that H contains no cycles. We can now assume that H is connected and contains a cycle. Again, by the converse of the previous lemma, H must have a unique cycle. This cycle must be unbalanced as we assume H contains no balanced cycles.

Neither $G\left[C_{1}\right]$ or $G\left[C_{2}\right]$ has any vertices of degree one, so every vertex of degree one in H must be an end of e. Therefore H consists of one the following four cases, where each path described has non-zero length:

Case (i). a single cycle having e as a diagonal, i.e. a θ-graph;

For the remaining three cases, e is connected to at least one vertex of a path
off a cycle:

Case (ii). A cycle C together with two paths P_{1} and P_{2} that are attached to distinct vertices u_{1} and u_{2} of the cycle such that the only vertices common to any two of P_{1}, P_{2}, C are u_{1} and u_{2}. In this case, e joins the ends of P_{1} and P_{2} that are not in C;

Case (iii). A cycle C, a (u, v)-path P that has one end u on C, but which is otherwise vertex disjoint from both P and C. In this case, possibly $u=w$, and e must join v to the end of Q that differs from w; or

Case (iv). A cycle C and a path P that has one end u on C, but which is otherwise vertex disjoint from C. In this case, e joins the other end of P to either (a) a vertex of C other than u; or (b) a vertex of P, possibly u.

For Case (i), C_{1}, C_{2} must both be balanced cycles and $C_{1} \cup C_{2}$ is a θ-graph, the third cycle of which is in H. Since (G, \mathscr{B}) is a biased graph, it satisfies the θ property and H is a balanced cycle; a contradiction.

For Case (ii), $G\left[C_{1} \cup C_{2}\right]$ is a θ-graph, and C_{1}, C_{2} must both contain P_{1}, P_{2} and e. As neither C_{1} nor C_{2} contains the other (by the second circuit axiom), each of C_{1} and C_{2} is a cycle and hence is balanced. This implies the cycle in H is also balanced; a contradiction.

Case (iii) cannot occur, as this forces one of C_{1}, C_{2} to be a loose handcuff and one to be a cycle contained in the other; a contradiction.

Similarly, Case (iv)(b) cannot occur as this forces one of C_{1}, C_{2} to be a handcuff and one to be a cycle contained in the other; a contradiction. Finally, in case
(iv)(a), C_{1} and C_{2} must both contain P and e. As neither circuit can contain the other, each of C_{1} and C_{2} are cycles and must be balanced. This implies the cycle in H is also balanced; a contradiction.

Therefore, the third circuit axiom holds and $B(G)$ is indeed a matroid with ground set $E(G)$ and circuit set \mathscr{C}.

We call $B(G)$ the biased matroid of the biased graph (G, \mathscr{B}). There are various examples of biased matroids. For example, given a graph G whose cycles are all balanced, the corresponding biased matroid is the graphic matroid of G.

6.1.1 The connection between jointless Dowling geometries and group configurations

We are interested in the jointless Dowling geometries, which are the biased matroid of a particular group-labelled graph. In order to define the more general Dowling geometries, we will first define the biased graphs from which the Dowling geometries - and consequently the jointless Dowling geometries - arise.

Take n vertices and between each pair of vertices take a set of $|H|$ parallel edges, labelled by each of the elements of the group H. We can assume that within any parallel class, all edges are directed the same way. Add to each vertex a loop, whose label is any non-identity element of H. This gives a biased graph, which we denote $H K_{n}^{\circ}$, where \circ represents the existence of loops. The Dowling geometry, denoted $Q_{n}(H)^{\circ}$, is the biased matroid of the graph $H K_{n}^{\circ}$. The loops of $H K_{n}^{\circ}$ correspond to the corner points, or joints, of $Q_{n}(H)^{\circ}$. If we delete the loops of $H K_{n}^{\circ}$, we obtain the loopless graph $H K_{n}$. The jointless Dowling geometry, de-
noted $Q_{n}(H)$, is the biased matroid of the loopless graph $H K_{n}$. We are interested in $Q_{3}(H)$, the rank-3 jointless Dowling geometry of $H K_{3}$. The following lemma will be useful when we discuss the connection between $Q_{3}(H)$ and the unique group configuration of H.

Lemma 6.1.3. Each parallel class of edges in HK_{3} corresponds to an $|H|$-point line of $Q_{3}(H)$.

Proof. The graph $H K_{3}$ consists of three vertices, and between each pair of vertices there are $|H|$ parallel edges, labelled by each of the elements of the group H. We will label these three sets of parallel edges by A, B, C and assume the edges of A and B are oriented in the same direction, with the edges of C oriented in the reverse direction. We say a 2 -cycle is a cycle consisting of two edges. Any 2-cycle contained in a parallel class of $H K_{3}$ is unbalanced. Therefore, by the θ-property, any θ-graph contained in a parallel class is also unbalanced. So every triple of edges within a parallel class of $H K_{3}$ correspond to a triangle in $Q_{3}(H)$. Therefore each parallel class of edges in $H K_{3}$ corresponds to an $|H|$-point line (containing a point for every group element of H) of $Q_{3}(H)$.

We call the $|H|$-point lines described in Lemma 6.1 .3 the distinguished lines of $Q_{3}(H)$. Note that for the case when $|H|=3$, there will be other triangles of $Q_{3}(H)$ which are not distinguished lines. Otherwise, the distinguished lines will be the only $|H|$-point lines.

The following two theorems reveal the beautiful bijection between the rank-3 jointless Dowling geometries and the unique group configurations from Chapter 5.

Theorem 6.1.4. Let $\left(H, o_{e}\right)$ be a finite group where o_{e} is a strong binary oper-
ation. Let $Q_{3}(H)$ be the rank-3 jointless Dowling geometry whose distinguished lines, partitioning the points of $Q_{3}(H)$, are labelled A, B, C and let $e \in A$. Then $\left(Q_{3}(H),\{A, B, C\}, e\right)$ is a prime, e-relevant, e-based group configuration $\left(H^{\prime}, \circ_{e}\right)$. Moreover, $H^{\prime} \cong H$.

Proof. By Lemma 6.1.3, each parallel class of edges of $H K_{n}$ corresponds to a distinguished line of $Q_{3}(H)$. As $H K_{3}$ is loopless, it contains no loose handcuffs. The tight handcuffs of $H K_{3}$ are all sets of size four. The only θ-graphs of size three are those consisting of triples of parallel edges, but the corresponding circuit in $Q_{3}(H)$ already exists as a subset of one of the distinguished lines. Finally, for $a \in A, b \in B, c \in C$, a cycle $a b c$ is balanced in $H K_{3}$ if and only if $a \circ_{e} b=c$ if and only if $a b c$ is a triangle of $Q_{3}(H)$. Recall $a b c$ is a triangle of $(G,\{A, B, C\}, e)$ if and only if $a \circ_{e} b=c$, and the isomorphism follows.

Theorem 6.1.5. Let $(G,\{A, B, C\}, e)$ be the prime, e-relevant, e-based group configuration of the group $\left(H, \circ_{e}\right)$, where \circ_{e} is a strong binary operation. Then $G \cong Q_{3}(H)$, the rank-3 jointless Dowling geometry of H. Moreover, the distinguished lines of $Q_{3}(H)$ are $\{A, B, C\}$.

Proof. As in the proof of the previous theorem, this follows from the fact that for $a \in A, b \in B, c \in C, a b c$ is a triangle of $(G,\{A, B, C\}, e)$ if and only if $a \circ_{e} b=c$ if and only if $a b c$ is a balanced cycle of $Q_{3}(H)$.

Therefore prime, e-relevant, e-based group configurations under a strong binary operation are exactly the rank-3 jointless Dowling geometries.

Chapter 7

Open questions

To conclude this thesis, we briefly touch on some open questions - some of which have been considered, while others are yet to be explored.

Multiple 3-line configurations

Within rank-3 matroids we only consider the algebra of throws locally to 3-line configurations. Suppose we expand our outlook and consider matroids with numerous 3 -line configurations. Given we can check in polynomial time whether a single 3-line configuration is well-defined, can we also check in polynomial time whether \circ is well-defined across multiple 3 -line configurations simultaneously?

Group configurations

There are various unanswered questions regarding group configurations. Given a group configuration, can we check in polynomial time which group it represents? It follows from Chapter 4 that we can check in polynomial time whether a group is abelian. Can we also check in polynomial time whether a group configuration
satisfies other properties? For example, can we easily check whether a group configuration represents a cyclic group?

n-partitions

It is possible that applying the constraint of n-partitions to the forbidden configurations for commutativity and associativity would reduce their number, particularly for associativity.

For group configurations under a weak binary operation, we can also consider removing the restriction of every group configuration being a 1-block. That is, if we allow n-partitions, how would this affect the structure of group configurations? What can we say about the structure of the blocks of any n-partition?

For group configurations under a weak binary operation, it may be that the requirement for a configuration to be a 1-block does not provide as much structural insight as other natural constraints.

Properties of \circ

Within a configuration G with main line A, given an e-based binary operation which may be full or partial, and either strong or weak - what does this imply about the potential for binary operations on other non-identity points of A ? For example, given a strong, full e-based binary operation, this implies at least a weak, partial a-based binary operation on any other non-identity point $a \in A$. There are many other similar questions we can pose. For another example, suppose we have a associative, weak, partial e-based binary operation defined on the main line of a
configuration. What does this imply about the binary operations - if they exist - based on other the other points of the main line?

Conclusion

It is evident there are many avenues for future exploration. Whichever path is taken, it is highly likely that for any conjecture, the case concerning a weak binary operation will yield more obstacles than the corresponding case concerning a strong binary operation. Having said this, it is possible that given the right perspective, there is less disparity between weak and strong binary operations than one would believe.

Chapter 8

Bibliography

[1] Oxley, J. Matroid Theory. 2nd Edition, Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2011.
[2] Hughes, D.R and Piper, F.C. Projective Planes, Graduate Texts in Mathematics. Springer-Verlag, New York, 1973.
[3] Dembowski, P. Finite Geometries. Springer-Verlag, New York, 1968.
[4] Veblen, O. and Young, J.W. Projective Geometry. Volume 1. Blaisdell Publishing Company, 1910.
[5] Brylawski, T. and Kelly, D. Matroids and Combinatorial Geometries, Department of Mathematics, University of North Carolina at Chapel Hill, 1980.
[6] von Staudt, K. Beitrage zur Geometrie der Lage, 1856.
[7] Zaslavsky T. Biased Graphs II. The Three Matroids, J. Combin. Theory Ser.
6:77-93, 1991.

