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Abstract

This thesis establishes results in several different areas of computability theory.

The first chapter is concerned with algorithmic randomness. A well-known
approach to the definition of a random infinite binary sequence is via effective
betting strategies. A betting strategy is called integer-valued if it can bet only
in integer amounts. We consider integer-valued random sets, which are infinite
binary sequences such that no effective integer-valued betting strategy wins ar-
bitrarily much money betting on the bits of the sequence. This is a notion that
is much weaker than those normally considered in algorithmic randomness. It is
sufficiently weak to allow interesting interactions with topics from classical com-
putability theory, such as genericity and the computably enumerable degrees. We
investigate the computational power of the integer-valued random sets in terms of
standard notions from computability theory.

In the second chapter we extend the technique of forcing with bushy trees. We
use this to construct an increasing w-sequence {a,, ) of Turing degrees which forms
an initial segment of the Turing degrees, and such that each a,. is diagonally
noncomputable relative to a,. This shows that the DNR, principle of reverse
mathematics does not imply the existence of Turing incomparable degrees.

In the final chapter, we introduce a new notion of genericity which we call
w-change genericity. This lies in between the well-studied notions of 1- and 2-
genericity. We give several results about the computational power required to
compute these generics, as well as other results which compare and contrast their

behaviour with that of 1-generics.
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Chapter 1

Introduction

This thesis is divided into three parts, each in an area of computabil-

ity theory.

The first part, which is joint work with George Barmpalias and
Rod Downey, concerns algorithmic randomness, which uses ideas
from computability theory to give a mathematically rigorous defini-
tion of a random binary sequence.

Early approaches to the definition of a random binary sequence
were concerned with statistical properties. One such property is the
law of large numbers. Suppose that we repeatedly flipped a fair coin.
We would expect that the ratio of heads to tails would tend to 1 as
the number of coin flips increased. The sequence 01010101... obeys
the law of large numbers, but is certainly not random according to
our intuition. Von Mises ([45]) suggested that a sequence should be
considered random if it obeys the law of large numbers, and further-
more that certain subsequences obey the law of large numbers. He

did not however specify which subsequences should be considered.

1



2 CHAPTER 1. INTRODUCTION

The first satisfactory definition of a random binary sequence was
given by Martin-Lof ([36]) using ideas from computability theory.
The statistical tests here are certain kinds of computable sets of mea-
sure zero. Since then, many variations on this idea have produced a

range of randomness notions.

We might also consider a binary sequence to be random if it is
unpredictable. Suppose that we begin with some amount of money,
and we bet on the bits of the sequence. The sequence is revealed
to us one bit at a time, and we bet on what the next bit will be. If
the sequence is random, then we should not be able to win arbi-
trarily much money in this way. The idea of a betting strategy can
be formalised with the notion of a martingale. Schnorr ([41]) ef-
fectivised the notion of a martingale, and showed that this approach
was equivalent to the approach using statistical tests that had already

been developed.

The martingale approach is especially useful in considering ran-
domness notions that are weaker than Martin-Lof’s. The particu-
lar type of martingale associated with Martin-Lof randoms is quite
complicated. The amount that we bet on a particular finite binary
sequence can be a left-c.e. real number. This number is given by
enumerating, in some computable way, the set of rational numbers
less than it. In particular, this may be an infinite process. If we in-
stead require that the number be a computable number (that is, there
1s an algorithm that on input n, returns the nth bit in the binary ex-

pansion), we arrive at the notion of a computably random sequence.



We can further weaken this notion by restricting the kind of bets
we can make. The weakest such notion considered so far is known
as integer-valued randomness. Here, we can only bet in integer
amounts. This was introduced by Bienvenu, Stephan, and Teutsch
in [5], where its interactions with all other commonly studied ran-
domness notions were described. In Chapter 2, we establish several
results relating integer-valued randomness to classical measures of
computational power from classical computability theory. Integer-
valued randomness seems sufficiently weak for there to be signif-
icant interaction in ways that have not been observed before with
stronger notions of randomness. In particular, we establish connec-
tions between integer-valued randomness and genericity (which is
the subject of Chapter 4), and obtain several results about integer-
valued randomness and the computably enumerable degrees, which
are certainly the most well-studied objects in classical computability

theory.

The second part of the thesis, which is joint work with Mingzhong
Cai and Noam Greenberg, concerns a technique known as forcing
with bushy trees. This particular technique has been used in the last
few years to exhibit sets with interesting computational properties.

As is standard, our abstract model of computation is the Turing
machine. A set of natural numbers A is said to be Turing reducible
to a set of natural numbers B if there is a Turing machine, which
when equipped with information about membership in B, can decide

membership in A. We also say that B computes A. Two sets A and
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B are said to be Turing equivalent if each is Turing reducible to the
other. This gives an equivalence relation on the set of all subsets of
natural numbers. The equivalence classes are called Turing degrees.
We then say that a Turing degree a is Turing reducible to a Turing
degree b if for some A € a and B € b, A is Turing reducible to B.
Turing degrees are designed to capture information content; all sets

with the same information are in the same Turing degree.

The Turing degree 0 is the degree containing the empty set 5. We
consider the sets in 0 to contain no information, since membership
in such a set can be easily determined using a Turing machine. A
Turing degree a is minimal if it is not equal to 0, and the only Turing
degrees reducible to a are 0 and a itself. Then a is minimal in the
sense that if it contained any less information, it would be 0. Of

course, these degrees are considered computationally weak.

There are many ways in which we may consider a Turing de-
gree to be computationally strong. One such way is if it is able to
compute a function which is so called diagonally noncomputable
(whose definition we give in Chapter 3). One question is whether a
Turing degree can be both minimal, and compute a diagonally non-
computable function. This was answered affirmatively by Kumabe
and presented in [32], using forcing with bushy trees. In Chapter 3

we extend this result.

This result has an application in reverse mathematics, which is a
programme in the foundations of mathematics which asks, given a

theorem ordinary classical mathematics, which set existence axioms



are necessary 1n its proof. One system, DNR, ensures the existence
of a diagonally noncomputable function. A slightly stronger system,
WWK L, ensures the existence of a Martin-Lof random set. Conidis
([15]) showed that the system WWKL, implies Turing incompara-
bility. That is, in every collection of sets satisfying WW KL, there
are sets A and B such that neither is Turing reducible to the other.
However, our result shows that DNR,, does not imply Turing incom-
parability. In fact, it does not imply the existence of a pair of Turing

incomparable sets.

The final part of the thesis concerns genericity. We may consider
random sets as typical, in that almost all sets, in the sense of mea-
sure, are random. If instead we look at what it means for a set to
be typical with respect to category, we arrive at the generic sets; the
generic sets are comeager in the set of all subsets of natural num-
bers. In [26], Jockusch introduced restricted forms of genericity.
For every n € N, we have the n-generic sets. These form a proper
hierarchy: every n + 1-generic set is n-generic, but the converse does
not hold.

The greater the n, the more typical we consider an n-generic set
to be. In many cases, typical behaviour starts with the 2-generic
sets, and will fail for 1-generic sets. As an example, the collection
of sets computing a 2-generic set has measure 0, whereas the col-
lection of sets computing a 1-generic set has measure 1. Thus it is
of great interest to determine exactly when typical behaviour starts,

and we may use notions of genericity intermediate between 1- and



6 CHAPTER 1. INTRODUCTION

2-genericity to more finely specify this.

Several such notions have already been defined. The most well-
known is pb-genericity, which was introduced by Downey, Jockusch,
and Stob in [20]. To highlight the difference, we consider what we
must do in order to construct generic sets. In computability theory,
we often construct a set with a certain property by satisfying in-
finitely many requirements. To construct a 1-generic set, we need to
act only once to satisfy each requirement. To construct a pb-generic
set, we may need to act many times to satisfy a requirement, but the
number of times we must act is known to us before the construction
begins.

In Chapter 4 I introduce a new notion of genericity intermedi-
ate between 1- and 2-genericity, which I call w-change genericity.
Here, in order to construct an w-change generic, we may need to
act many times, but the number of times is only revealed to us
during the course of the construction. This introduces a more dy-
namic flavour to the constructions. I establish several results which
quantify the level of computational power required to compute an
w-change generic set. These are related to a hierarchy recently in-
troduced by Downey and Greenberg in [17]. I also extend a result of
Chong and Downey from [13] to give a characterisation of those sets
which are computable in an w-change generic. I finally comment on

the downward density of w-generics below 0.



Chapter 2

Integer-valued randomness

This chapter is joint work with George Barmpalias and Rod Downey

and has appeared in [3].

2.1 Introduction

An interesting strategy for someone who wishes to make a profit by
betting on the outcomes of a series of unbiased coin tosses, is to
double the the amount he bets each time he places a bet. Then, inde-
pendently of whether he bets on heads or tails, if the coin is fair (i.e.
the sequence of binary outcomes is random) he is guaranteed to win
infinitely many bets. Furthermore, each time he wins he recovers all
previous losses, plus he wins a profit equal to the original stake. This
is a simple example from a class of betting strategies that originated
from, and were popular in 18th century France. They are known
as martingales. The “success” of this strategy is essentially equiva-

lent to the fact that a symmetric one-dimensional random walk will

7



8 CHAPTER 2. INTEGER-VALUED RANDOMNESS

eventually travel an arbitrarily long distance to the right of the start-
ing point (as well as an arbitrarily long distance to the left of the
starting point).

So what is the catch? For such a strategy to be maintained, the
player needs to be able to withstand arbitrarily large losses, and such
a requirement is not practically feasible. In terms of the random
walk, this corresponds to the fact that, before it travels a large dis-
tance to the right of the starting point, it is likely to have travelled a

considerable distance to the left of it.

2.1.1 Martingales and randomness

Martingales have been reincarnated in probability theory (largely
though the work of Doob), as (memoryless) stochastic processes
(Z,) such that the conditional expectation of each Z, | given Z, re-
mains equal to the expectation of Z;. The above observations on
a fair coin-tossing game are now theorems in the theory of martin-
gales. For example, Doob’s maximal martingale inequality says that
with probability 1, a non-negative martingale is bounded. Intuitively
this means that, if someone is not able (or willing) to take credit (so
that he continues to bet after his balance is negative) then the proba-
bility that he makes an arbitrarily large amount in profit is 0.
Martingales in probability rest on a concept of randomness in or-
der to determine (e.g. with high probability) or explain the outcomes
of stochastic processes. In turns out that this methodology can be

turned upside down, so that certain processes are used in order to
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define or explain the concept of randomness. Such an approach was
initiated by Schnorr in [41], and turned out to be one of the standard
and most intuitive methods of assigning meaning to the concept of
randomness for an individual string or a real (i.e. an infinite binary
sequence, a point in the Cantor space). This approach is often known
as the unpredictability paradigm, and it says that it should not be
possible for a computable predictor to be able to predict bit n + 1 of
areal X based on knowledge of bits 1, ..., n of X, namely X | n. The
unpredictability paradigm can be formalized by using martingales,
which (for our purposes) can be seen as betting strategies. We may
define a martingale to be a function f : 2<“ — R>? which obeys the

following fairness condition:
f(o0) + fo])

flo) = 22

If f is partial, but its domain is downward closed with respect to

the prefix relation on finite strings, then we say that f is a partial
martingale.

In probability terms, f can be seen as a stochastic process (a se-
ries of dependent variables) Z; where Z; represents the capital of a
player at the end of the sth bet (where there is 50% chance for head
or tails). Then the fairness condition says that the expectation of
f at stage s + 1 1s the same as the value of f at stage s. In other
words, the fairness condition says that the expected growth of f at
each stage of this game is 0. If we interpret f as the capital of a
player who bets on the outcomes of the coin tosses, the fairness con-

dition says that there is no bias in this game toward the player or the
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house. Moreover note that our definition of a martingale as a bet-
ting strategy requires that it is non-negative. Recalling our previous
discussion about gambling systems, this means that we do not allow
the player to have a negative balance. This choice in the definition is
essential, as it prevents the success of a ‘martingale betting system’
as we described it. Continuing with our definition of martingales as

betting strategies, we say that f succeeds on a real X if

limsup f(X | n) = .

n—aoo

Schnorr [41] was interested in an algorithmic concept of random-
ness. Incidentally, Martin-Lof [36] had already provided a math-
ematical definition of randomness based on computability theory
and effective measure theory. But Schnorr wanted to approach this
challenge via the intuitive concept of betting strategies. He proved
that a real (i.e. an infinite binary sequence) X is Martin-Lof ran-
dom if and only if no effective martingale can succeed on it. Here
“effective” means that f is computably approximable from below.
Schnorr’s result is an effective version of the maximal inequality
for martingales in probability theory, which says that with probabil-
ity 1 a non-negative martingale is bounded. There is a huge liter-
ature about the relationship between martingales and effective ran-
domness, and variations on the theme, such as computable martin-
gales and randomness, partial computable martingales, nonmono-
tonic martingales, polynomial time martingales, etc. We refer the
reader to Downey and Hirschfeldt [18] and Nies [37] for some de-

tails and further background.
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2.1.2 Why integer-valued martingales?

Recall the standard criticism of martingale betting systems, i.e. that
their success depends on the ability of the player to sustain arbitrar-
ily large losses. This criticism lead (for the purpose of founding
algorithmic randomness) to defining a martingale as a function from
the space of coin-tosses to the non-negative reals (instead of all the
reals) which represent the possible values of the capital available
to the player. There is another criticism on such betting strategies
that was not taken into account in the formal definition. Schnorr’s
definition of a martingale (as a betting strategy) allows betting in-
finitesimal (i.e. arbitrarily small) amounts. Clearly such an option is
not available in real gambling situations, say at a casino, where you
cannot bet arbitrarily small amounts on some outcome. It becomes
evident that restricting the betting strategies to a discrete range re-
sults in a more realistic concept of betting. Such considerations led
Bienvenu, Stephan and Teutsch [5] to introduce and study integer-
valued martingales, and the corresponding randomness notions. In-
terestingly, it turns out that the algorithmic randomness based on
integer-valued martingales is quite different from the theory of ran-
domness based on Martin-Lof [36] or Schnorr [41] (as developed
in the last 30 years, see [18, 37] for an overview). The reason for
this difference is that most of the classical martingale arguments in
algorithmic randomness make substantial use of the property of be-
ing able to bet infinitesimal amounts (thereby effectively avoiding

bankruptcy at any finite stage of the process).
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Quite aside from the motivations of examining the concept of
integer-valued martingales for its own sake, if we are to examine the
randomness that occurs in practice, then such discretised random-
ness will be the kind we would get. The reason is evident: we can
only use a finite number of rationals for our bets, and these scale to
give integer values. Additionally, at the more speculative level, if
the universe is granular, finite, and not a manifold, then if there is
any randomness to be had (such as in quantum mechanics) it will be

integer-valued for the same reason.

2.1.3 Integer randomness notions and computability

We formally introduce and discuss the notions of integer-valued ran-
domness in the context of computability theory. For the purposes
of narrative flow, we will assume that the reader is familiar with
the basics of algorithmic randomness. Schnorr based algorithmic
randomness on the concept of effective strategies. Along with this
foundational work, he introduced and philosophically argued for a
randomness notion which is weaker than Martin-L6f randomness
and is now known as Schnorr randomness. Further notions, like
computable randomness, are quite natural from the point of view of
betting strategies and have been investigated extensively (see for ex-
ample Chapter 7 of [18] and Chapter 7 of [37]). Integer-valued mar-
tingales induce randomness notions with properties that are quite a
different in flavour from those of, for instance, Martin-Lo6f random-

ness, computable randomness and the like. Our goal in the present
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chapter is to clarify the relationship between integer-valued random-
ness and classical degree classes which measure levels of computa-

tional power.

Definition 2.1.1 (Integer-valued martingales). Given a finite set F' <
N, we say that a martingale f is F-valued if f(oi) = f(o) + k for
some k € F. A martingale is integer-valued if it is N-valued, and is

single-valued if F = {a, 0} for some a # 0.

Note that a martingale is F-valued if at any stage we can only bet k
dollars for some k € F on one of the outcomes i € {0, 1}, and must
lose k dollars if 1 — i is the next bit. We note that partial integer-
valued martingales are defined as in Definition 2.1.1, only that the
martingales can be partial. In the following we often say that, given
a string o, the string 00 is the sibling of o1 (and o1 is the sibling of
d0).

If we restrict our attention to the countable class of computable or
partial computable martingales, we obtain a number of algorithmic
randomness notions. For example, a real is [partial] computably
random if no [partial] computable martingale succeeds on it. Similar

notions are obtained if we consider integer-valued martingales.

Definition 2.1.2 (Integer-valued randomness). A real X is [partial]
integer-valued random if no [partial] computable integer-valued mar-
tingale succeeds on it. Moreover X is finitely-valued random if for
each finite set /' = N, no computable F-valued martingale succeeds
on it, and is single-valued random if no computable single-valued

martingale succeeds on it.
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Integer-valued Computable
Finite-valued Single-valued
Partial integer-valued Partial computable

Table 2.1: Randomness notions based on effective martingales

We list these randomness notions in Table 2.1, along with the tradi-
tional randomness notions computable and partial computable ran-
domness. Note that partial integer-valued randomness is stronger
than integer-valued randomness, just as partial computable random-
ness is stronger than computable randomness. Bienvenu, Stephan
and Teutsch [5] clarified the relationship between integer-valued,
single-valued and a number of other natural randomness notions.
Figure 2.1 illustrates some of the implications that they obtained.
We already know (see [18]) that computable randomness implies
Schnorr randomness, which in turn implies Kurtz randomness (with
no reversals) and that Schnorr randomness implies the law of large
numbers. Bienvenu, Stephan and Teutsch proved that if we add the
above notions to the diagram in Figure 2.1, no other implications
hold apart from the ones in the diagram and the ones just mentioned.
In addition, we may add a node for ‘partial computably random’ and
an arrow from it leading to the node ‘computably random’. Nies
showed in [37, Theorem 7.5.7] that the converse implication does
not hold, i.e. there are computably random reals which are not partial

computably random. A strong version of this fact holds for integer-
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computably random |— | integer-valued random Kurtz random

! |

bi-immune «—— finitely-valued random |-| single-valued random

Figure 2.1: Implications between randomness notions obtained in [5].

valued randomness. We show that there are integer-valued random
reals which not only are not partial integer-valued random, but they
do not contain any partial integer-valued random reals in their Tur-

ing degree.

One interesting observation of Bienvenu, Stephan and Teutsch
[5], was that integer-valued randomness was a meeting point of gener-
icity (and hence category) and measure since weakly 2-generic sets
are integer-valued random. Hence the integer-valued randoms are
co-meager as well as having measure 1. The reader should recall
that a subset of N is called n-generic if it meets or avoids all X0 sets
of strings, and is weakly n-generic if it meets all dense X0 sets of
strings. The reason that highly generic reals are integer-valued ran-
dom is that there is a finitary strategy to make a set integer-valued
random, since we can force an opponent who bets to lose. The point
here is that if the minimum bet is one dollar and he has k dollars to
spend, then he can lose at most k times, so we can use a finite strat-
egy to force the opponent into a cone (in Cantor space) where he can-
not win. This finite strategy is not available if arbitrarily small bets
are allowed. Naturally the question arises as to what level of gener-

icity is needed for constructing integer-valued randoms. Bienvenu,
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Stephan and Teutsch [5] proved that it is possible to have a 1-generic
which is not integer-valued random. So the answer they gave to this
question is ‘somewhere between weak 2 and 1-genericity’. As we

see in the next section, we give a more precise answer.

2.1.4 Our results, in context

Bienvenu, Stephan and Teutsch [5] showed that the class of integer-
valued random is co-meager, so sufficient genericity is a guarantee
for this kind of randomness. They also quantified this statement
via the hierarchy of genericity, showing that the genericity required
lies somewhere between weak 2-genericity and 1-genericity. We
show that a notion of genericity from [20] which is known as pb-
genericity, implies (partial) integer-valued randomness. Recall from
[20] that set of strings S 1s pb-dense if it contains the range of a
function f : 2<“ — 2<“ with a computable approximation ( f;) such
that (o) > o for all strings o and |{s | fs11(07) # fs(0)}| < h(o)
where the function 4 : 2=“ — w is primitive recursive. A real X is

pb-generic if every pb-dense set of strings contains a prefix of X.

Theorem 2.1.3 (Genericity for integer-valued randoms). Every pb-

generic real is (partial) integer-valued random.

This result might suggest that integer-valued randomness and partial
integer-valued randomness are not easily distinguishable. In Section
2.2.2 we present a rather elaborate finite injury construction of a

real which is integer-valued random but not partial integer-valued
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random. In Section 2.2.3 this construction is modified into a 0" tree
argument, which proves the following degree separation between the

two randomness notions.

Theorem 2.1.4 (Degree separation of randomness notions). There
exists an integer-valued random X <r 0 which does not compute

any partial integer-valued random.

We are interested in classifying the computational power that is
associated with integer-valued randomness. Computational power
is often represented by properties of degrees, which in turn define
classes like the degrees which can solve the halting problem, or the
array non-computable degrees from [20]. The reader might recall
that A is array noncomputable if and only if for all f <, &, there
is a function g <7 A such that g(n) > f(n) for infinitely many n.
This class has turned out to be ubiquitous and characterized classes
defined by many distinct combinatorial properties. Recall that a pre-
sentation of a real A is a c.e. prefix-free set of strings representing
an open set of Lebesgue measure a. The c.e. array noncomputable

degrees are exactly the c.e. degrees that

(a) contain c.e. sets A of infinitely often maximal (i.e. 2 log n) Kol-

mogorov complexity; (Kummer [33])

(b) have effective packing dimension 1; (Downey and Greenberg

[16])

(c) compute left-c.e. reals B <7 A such that every presentation of

A 1s computable from B; (Downey and Greenberg [17])
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(d) compute a pair of disjoint c.e. sets such that every separating set
for this pair computes the halting problem; (Downey, Jockusch,
and Stob [19])

(e) do not have strong minimal covers; (Ishmukhametov [25])

Also by Cholak, Coles, Downey, Herrmann [11] the array noncom-
putable c.e. degrees form an invariant class for the lattice of H(l)
classes via the thin perfect classes.

Theorem 2.1.3 can be used to show that a large class of de-
grees compute (partial) integer-valued randoms. By [20], every ar-
ray noncomputable degree computes a pb-generic. Therefore Theo-

rem 2.1.3 has the following consequence.

Corollary 2.1.5 (Computing integer-valued randoms). Every array

noncomputable degree computes a (partial) integer-valued random.

Note however that an integer-valued random need not be of array
noncomputable degree. Indeed, it is well known that there are array
computable Martin-L6f randoms. A converse of Corollary 2.1.5 can
be obtained for the c.e. degrees, as Theorem 2.1.7 shows.

While genericity is an effective tool for exhibiting integer-valued
randomness in the global structure of the degrees (as we demon-
strated above) it is incompatible with computable enumerability. Since
generic degrees (even l-generic) are not c.e., investigating integer-
valued randomness in the c.e. degrees requires a different analysis.
Already the fact that randomness can be exhibited in the c.e. degrees

1s quite a remarkable phenomenon, and restricted to weak versions
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of randomness. Martin-Lof randomness is the strongest standard
randomness notion that can be found in the c.e. degrees. A c.e. de-
gree contains a Martin-Lof random set if and only if it is complete
(i.e. it is the degree of the halting problem). Furthermore, the com-
plete c.e. degree contains the most well-known random sequence—
Chaitin’s QQ—which is the measure of the domain of a universal
prefix-free machine, the universal halting probability. An interest-
ing characteristic of this random number is that it is left-c.e., i.e. it
can be approximated by a computable increasing sequence of ratio-
nals. Weaker forms of randomness—Iike computable and Schnorr
randomness—can be found in incomplete c.e. degrees, even in the
form of left-c.e. sets. For example, Nies, Stephan and Terwijn [38]
showed that the c.e. degrees which contain computably and Schnorr
random sets are exactly the high c.e. degrees. Moreover each high
c.e. degree contains a computably random left-c.e. set and a Schnorr
random left-c.e. set. We prove an analogous result for integer-valued

randomness and partial integer-valued randomness.

Theorem 2.1.6 (C.e. degrees containing integer-valued random left-c.e.
sets). A c.e. degree contains a (partial) left-c.e. integer-valued ran-

dom if and only if it is high.

This result is pleasing, but this is where the similarities between
computable randomness (based on computable betting strategies)
and integer-valued randomness (based on integer-valued computable

betting strategies) end, at least with respect to the c.e. degrees. We
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note that

( In the c.e. degrees, the following classes are equal to

the high degrees:

(i) degrees containing computably random sets;

{ 2.1
(i1) degrees containing left-c.e. computably random 1)

sets;

(i11) degrees computing computably random sets.

\

This characterization follows from the following facts, where (a) is
by Schnorr [41], (¢) was first observed by Kucera [30], and (b), (d)

are from [38].
(a) computable randomness implies Schnorr randomness;

(b) a Schnorr random which does not have high degree is Martin-

Lof random;
(c) a Martin-Lof random of c.e. degree is complete;

(d) every high c.e. degree contains a computably random left-c.e.

set.

In the case of integer-valued randomness (2.1) fails significantly. In
particular, the c.e. degrees that compute integer-valued randoms are
not the same as the c.e. degrees that contain integer-valued randoms.
In fact, we provide the following characterization of the c.e. degrees

that compute integer-valued randoms.
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Theorem 2.1.7 (C.e. degrees computing integer-valued randoms).
A c.e. degree computes an integer-valued random if and only if it is

array noncomputable.

In view of this result it is tempting to think that that every c.e. array
noncomputable might contain an integer-valued random. We will
see however in Section 2.5.1 that there are array noncomputable c.e.
degrees which do not contain integer-valued randoms. In fact, The-
orem 2.1.8 is an extreme version of this fact, which is tight with
respect to the jump hierarchy.

We have seen that high c.e. degrees are powerful enough to con-
tain integer-valued randoms, even left-c.e. integer-valued randoms.
However, while we know that left-c.e. integer-valued randoms nec-
essarily have high degree, the question arises as to whether a weaker
jump class is sufficient to guarantee that a c.e. degree contains an
integer-valued random, if we no longer require that the set is left-
c.e. We give a negative answer to this question by the following

result, which we prove in Section 2.5.2 by a 0”-argument.

Theorem 2.1.8. There is a high, c.e. degree which does not contain

any integer-valued randoms.

Note that this result shows the existence of array noncomputable
c.e. degrees which do not contain integer-valued randoms, in stark
contrast to Theorem 2.1.7.

Furthermore, the c.e. degrees that contain integer-valued randoms
are not the same as the c.e. degrees that contain left-c.e. integer-

valued randoms. In fact, in contrast with Theorem 2.1.6, there exists
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a low c.e. degree containing an integer-valued random set. More
generally, we can find c.e. degrees containing integer-valued random
sets in every jump class. Section 2.4 is devoted to the proof of this

result.

Theorem 2.1.9 (Jump inversion for c.e. integer-valued random de-
grees). If ¢ is c.e. in and above (O then there is an integer-valued

random A of c.e. degree with A’ € c.

There are a number of open questions and research directions
pointed by the work in this chapter. For example, is there a c.e.
degree which contains an integer-valued random but does not con-
tain any partial integer-valued randoms? More generally, which de-
grees contain partial computable randoms? Algorithmic randomness
based on partial martingales is a notion that remains to be explored

on a deeper level.

2.2 Genericity and partial integer-valued randoms

Bienvenu, Stephan, and Teutsch [5, Theorem 8] showed that every
weakly 2-generic set is integer-valued random. In Section 2.2.1 we
give a proof of Theorem 2.1.3, i.e. that pb-genericity is sufficient for
(partial) integer-valued randomness.

Hence a certain notion of genericity (pb-genericity) is a source
of integer-valued randomness. In fact, by Theorem 2.1.3, every pb-
generic is not only integer-valued random but also partial integer-

valued random. We do have concrete examples of reals that are
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integer-valued random but not partial integer-valued random. Sec-
tion 2.2.2 is dedicated to constructing such an example. We give the
basic construction of a Ag real which is integer-valued random but
not partial integer-valued random. We give this in full detail, as it is
based on an interesting idea.

In Section 2.2.3 we provide the necessary modification of the pre-
vious construction in order to show that the degrees of integer-valued
randoms and partial integer-valued randoms can also be separated,
even inside Ag. In particular, we are going to prove Theorem 2.1.4,
i.e. that there is a Ag integer-valued random which does not compute
any partial integer-valued randoms. These modifications are essen-
tially the implementation of the main argument of Section 2.2.2 on
a tree, which results from the additional requirements that introduce
infinitary outcomes that need to be guessed (i.e. the totality of the
various functionals with oracle the constructed set). Given the orig-

inal strategies and construction, the tree argument is fairly standard.

2.2.1 Proof of Theorem 2.1.3

For every partial computable integer-valued martingale m with ef-
fective approximation (m;) we define a function 1 : 2<¢ — 2<¢
with uniformly computable approximation (7). Let (o) = o
for all strings o. Inductively in s, suppose we have defined 7.
At stage s + 1, if my,(ri15(07)) is defined and there exists an ex-
tension 7 of it of length < s + 1 such that m,.(7) is defined and

ms1(7) < mygyq(g(0)), then we define 71, (o) to be the least
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such string 7 (where strings are ordered first by length and then lex-
icographically). Otherwise let /71,1 (07) = fing(0r).

Since m is an integer-valued martingale we have |{s | A1, 1 (o) #
ig(o)} | <m(o) + 1 and m(o) < 2191 - m(). Note that given any
partial computable martingale m, the range of 71 is dense. So every
pb-generic intersects the range of m for every partial computable
martingale m. Moreover given any partial computable martingale m,

the range of 7 1s a subset of
W, = {o | m(c’) ~ m(o) for all extensions ¢ of o }.

So every pb-generic intersects W, for each partial computable mar-
tingale m. This means that every pb-generic is partial integer-valued

random.

2.2.2 An integer-valued random which is not partial integer-

valued random

It suffices to construct an integer-valued random set A <7 ' and a
partial integer-valued martingale m which succeeds on A. We will
define a computable approximation (A;) which converges to a set A
which has the required properties. Let (n,).c,, be an effective list of
all partial computable integer-valued martingales. For each e > 2

we need to satisfy the requirements

R,: If n, 1s total, then n, does not succeed on A.

Q.: m wins (at least) $e on A.
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We first see how we might meet one requirement Ry. We begin by
setting Ag = 1 and defining m to start with $2 and wager $1 on
every initial segment of Ay. If we later see that ny has increased
its capital along A, then we would like to move our approximation
to A so that ny decreases in capital. In changing A; to decrease ny’s
capital we may also decrease m’s capital along A;. If n, had, say, $10
in capital at some point, then as it loses at least a dollar every time
it decreases in capital, it can lose at most 10 times. Our martingale,
if it bets in $1 wagers, can withstand losing $10 only if its capital at

that point is at least $11.

If m does not have sufficient capital for us to start attacking imme-
diately, we must find a way to increase its capital. We can increase
m’s capital to $k as follows. We have not yet defined m on any string
extending 0. We therefore wait until ny has halted on all strings of
length k. If this never happens, then g is not total, and R is met. If
no does halt on all strings of length k, we pick a string 7 of length
extending 0 such that ny(7) < n9(0). Such a string must exist since
ng is a (partial) martingale. We are then free to define m to wager $1
on every initial segment of 7 and set A; = 77 1“. We will then have
m(t) > no(7). If ng later increases its capital along Ay we will be
able to change the approximation to A to decrease ng’s capital. As
m now has greater capital than ny, we will be able to decrease ny’s

capital to $0 while ensuring that m does not run out of money.

When dealing with multiple requirements, we must take care in

defining m as it is a global object. We set a restraint r, for every
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e € w. We arrange things so that only R, will be able to define m
on a string extending A [ r. ;" 0. Suppose R, has not required at-
tention since it was last injured. When we see n, increase its capital
above n,(A; | r.), rather than starting to attack immediately, even
if possible, we choose a string 7/ extending A; | r.;"0 and define
m such that m(7") — m(A; | r.s"0) > n.(As; | r.s"0). We in-
jure requirements of weaker priority by lifting their restraints. We
may then decrease n,’s capital to $0 and still have m left with some
capital. We now turn to the formal details of the construction.

We have for every requirement R, a restraint r,. At every stage
a requirement will either be declared to be waiting for convergence
at some length, or declared to not be waiting for convergence at any
length. As usual, this will stay in effect at the next stage unless
otherwise mentioned. We say that R, requires attention at stage s if

either

(i) R, was declared to not be waiting for convergence at any length

at stage s, and there is [ such that

(a) l > re,s,
(b) n. (o) | for all strings o of length /, and
(©) ne(Ag 1'1) > n.(As 1 (I—1)), or

(11) R, was declared to be waiting for convergence at length 4 at

stage s, and n, (o) | for all strings o of length A.

In Case (1) we say that R, requires attention through /. We say that



2.2. GENERICITY AND PARTIAL INTEGER-VALUED RANDOMS 27

Q. requires attention at stage s if m(A; I r.;) < e. We order the

requirements as Ry, R, Ry, 0>, R3,Qs, . ...

Construction

Stage 0: Set Ag = 1 and m(1) = 2, and let m wager $1 on every
initial segment of Ag. Setr, o = e forall e € w. For all e € w, declare
that R, is not waiting for convergence at any length at stage 1.

Stage s, s > 1: Find the requirement of strongest priority which
requires attention at stage s. (If no such requirement exists, go to the
next stage.) There are several cases.

Case 1: R, requires attention at stage s in Case (1). Has R, re-
quired attention since it was last injured?

Subcase la: No. Declare R, to be waiting for convergence at
length n,((As | 7.5)"0) + 1 + (r.s + 1) at stage s + 1.

Subcase 1b: Yes. Suppose [ is least such that R, requires attention
through / at stage s. Let Ay, = (A, [ (I —1))"(1 — As(I —1))" 1.
Define m to wager $1 on every initial segment of A, ; of length at
least [+ 1. For all ¢’ > e, let rp ;11 be a fresh large number such that
for all e; < e, we have r,, 41 < re,s+1, and declare that R,/ 1s not
waiting for convergence at any length at stage s + 1.

Case 2: R, requires attention at stage s in Case (i1). Suppose R,
was declared to be waiting for convergence at length £ at stage t.

Choose a string 7 above Ay I r,"0 of length & such that n,(7) <

ne(As | ros"0). Define m to wager $1 along every initial segment of

7 with length in (r, + 1,|7|]. Set Ay = 77 1%. Define m to wager
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$1 on every initial segment of A, of length at least |7| + 1. For all
¢ > e, let ry 541 be a fresh large number such that if e; < e, then
Feis+1 < Teps+1. For all €’ > e, declare that R, is not waiting for
convergence at any length at stage s + 1.

Case 3: Q, requires attention at stage s. Let 7 be the least string
extending A; | r. s for which m(7) = e. Set Ag; = 77 1% and for all
e > e, let ro 4,1 be a fresh large number such that if e; < e, then
Fepst1 < Te,s+1. For all €” > e, declare that R, is not waiting for

convergence at any length at stage s + 1.

Verification

Before we demonstrate the satisfaction of requirements R,, Q., we
need to show that the partial martingale m is well-defined, and for

alln, s € w,
if m(A; ' n)| then m(As I'n) > 1. (2.2)

We clarify that in this statement, m denotes the state of the partial
martingale at stage s. We prove this statement by induction on the
stages s. We first claim that if R, requires attention in Case (i1) at
stage s, then m has not been defined on any string extending A |
res 0. Suppose R, requires attention in Case (i) at stage s. Let
s* — 1 < s be the last stage at which R, was initialised. We choose
ros+ to be some fresh large number. In particular, m has not been
defined on any string extending A« [ 1.+~ 0. Note that r, ; = r, s

and Ag« [ 7e5 = A | 1es. If Ry for k > e acts at stage ¢ > s* it may
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define mon A, | rr,”0, but as ry, > r,, > r., it cannot define m on
any string extending As« [ r. s~ 0. No R; for i < e may act between
stages s* and s as this contradicts the choice of s*. Therefore m has

not been defined on any string extending A; | r. "0 at stage s.

By the definition of Ay and m at stage 0, we have m(Aq [ n) > 2
for all n. Furthermore, m is at least 1 on the sibling of any initial
segment of Ay (recall the definition of the sibling of a string, just
after Definition 2.1.1). Suppose that m(A; | n) > 1 for all n and m
is at least 1 for any sibling of an initial segment of A,. If we act for
Q. at stage s, then it is easy to see that m(As,; [ n) > 1 for all n.
So suppose that we act for R, at stage s. If we act in Case 2 for R,
at stage s, then we will choose a string 7 extending Ag | 7.0 of
some length 4. By assumption, m(A; | r.s"0) > 1. We then let A,
extend 7 and define m such that m(t) — m(As T res"0) > n.(Ag |
Fes0). Then m(Asyq [ n) > 1 for all n.

Now suppose that we act for R, in Subcase 1b through length [ at
stage 5. Our martingale m wagers at most $1 at a time, and so loses
at most $1 at a time. We decrease n, by at least $1 while decreasing
m by at most $1. As m(A; 1) > n.(As; [ (I — 1)), we may reduce
n,’s capital to $0 while m has capital remaining. Now requirements
of stronger priority than R, may start to act. Suppose that R, with
¢’ < e requires attention. If R, requires attention in Case (ii) then
we will act as in the previous paragraph and m will still have capital
left. Otherwise, R, may act in Subcase 1b at stage ¢ after having

acted in Case 2 before stage s. However, in this case, we would have
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increased m’s capital by n, (A | ro"0) previously. Therefore, after
having reduced n,’s capital to 0, we may then reduce n,’s capital
to 0 as well, while ensuring that m still has capital remaining. This
concludes the induction on the stages and the proof of (2.2).

Note that we have not yet shown that the approximation (A;) con-
verges to a set A. This is a consequence of the use of restraints in
the construction, and the following lemma which says that each re-

quirement R, receives attention only finitely often.

Lemma 2.2.1. For all e € w, R, receives attention only finitely often,

and is met.

Proof. Suppose by induction that s* — 1 is the last stage at which R,
1s injured (i.e. the least stage after which no requirement of stronger
priority than R, receives attention). If R, never requires attention at
some later stage in Case (i), then either n, is not total, or n,(A) <
ne(Ag« | reg). In either case R, is met. Therefore suppose that R,
requires attention through / at some stage s’ > s*. We will act in
Subcase la and declare R, to be waiting for convergence at length
ne((Ay 1 rey)”0) + 1+ (rey + 1) =: hy. As no requirement R,
for ¢/ < e receives attention after stage s*, R, will be waiting for
convergence at length hg until, if ever, R, requires attention in Case
(ii). If R, never requires attention after stage s’ then n, is not total. So
suppose that R, requires attention in Case (ii) at stage . We choose a
string 7 of length kg above A, | r.”0 such that n. (1) < n.(A, I r.0).
Since n, is a (partial) martingale, n.(o") < n.(Ay | r.”0) for at least

one string o of length iy above A, | r,”0. Therefore such a string
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must exist.

We set Ay; = 771¢ and define m so that m(t) > n.(7). If R,
receives attention after stage ¢’ then it must do so in Subcase 1b. Our
martingale m wagers at most $1 at a time, and so loses at most $1 at
a time. If R, requires attention through some [ > h at a stage ” > 1
then we will again act in Subcase 1b and force n, to lose at least
$1 while m loses at most $1. This can happen at most n.(7) many
times before n, loses all its capital and can no longer bet. Thus the

induction can continue, and R, is met. O

It remains to show that m succeeds on A. For this, it suffices to

show that all requirements Q,, e > 2 are met.

Lemma 2.2.2. Foralle > 2, Q, receives attention only finitely often,

and is met.

Proof. Suppose by induction that s* is the least stage after which
no requirement of stronger priority than Q, receives attention. As
no requirement of stronger priority than Q, receives attention after
stage s*, the restraint r, ;+ will never again be increased unless Q,
acts. If Q, requires attention at stage s > s* then we must have
m(A; T res) < e. As no requirement of stronger priority receives
attention after stage s*, we must have that Q,_; is satisfied, and so
m(A; | res) = e — 1. We have defined m to wager $1 on all initial
segments of Ay and so there is 7 such that m(7) = e. Welet Ay, | =
77 1¢ and increase the restraints r, ;.| for all ¢’ > e. We then have

that 7 < A and Q, is satisfied. O
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2.2.3 Integer-valued randoms not computing partial integer-

valued randoms

The construction of Section 2.2.2, non-trivial as it is, admits some
modifications. For example, it is not hard to add the requirement that
A 1s 1-generic and still successfully perform the argument. This re-
quirement can be canonically split into an infinite sequence of condi-
tions, with corresponding strategies in the constructions which will
occasionally change the approximation to A. Since the 1-genericity
sub-requirements are finitary, their effect will be similar to (in fact,

more benign than) the R, requirements.
There is a 1-generic IVR which is not partial IVR.

Note that 1-generics are generalized low, so since A is AY, it follows
that
There is a low IVR which is not partial IVR.

The next modification of the construction of Section 2.2.2 results in
the proof of Theorem 2.1.4 and requires more explanation. We can

replace the requirements Q, with
Q. If @4 is total and non-computable then m wins (at least) $k on ®%.

Note that now m will bet on ®4 rather than A. For this reason, the
family of requirements Q;, need to act under the hypothesis that
@7 is total. This means that we need to implement the argument of
Section 2.2.2 on a tree, where the family of requirements Q;, lies

below a ‘mother-node’ Q7 which has two outcomes, a IT) outcome i
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and a X outcome f. The outcome i corresponds to the fact that @2
has infinitely many expansionary stages (i.e. stages where the least
n such that ®?(n) is undefined is larger than every before) while
outcome f corresponds to the negation of this statement. Moreover
the construction guarantees that if i is a true outcome, then @4 is
total. Requirements 0, act as the Q; of Section 2.2.2 while R, are
the same in the two constructions. Moreover these two requirements
have a single outcome in the tree argument. The crucial point here
is that if @4 is total and non-computable then @, will have splitting
along A, 1.e. for each prefix 7 of A there will be two finite extensions
7; of T and an argument x such that ®;°(x) # ®,'(x). This means that
before strategy O, starts operating, it can secure a splitting which
it can use to move away from versions of ®? on which m has not
bet appropriately. In the construction of Section 2.2.2 this happened
automatically as m bet on the real itself, and not its image under a
Turing functional. Other than these points, the construction and ver-
ification are entirely similar to those of Section 2.2.2. Since there is
no novelty in this extension of the argument of Section 2.2.2 (given
the standard machinery for tree arguments and the above remarks)

we leave the remaining details to the motivated reader.

2.3 Computable enumerability and IVRs

Nies, Stephan and Terwijn [38] showed that a c.e. degree is high if

and only if it contains a computably random c.e. real. Moreover an
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analogous statement holds for partial computably random c.e. reals.
In Section 2.3.1 we show that the same is true for integer-valued
random c.e. reals. In other words, we give the proof of the first part
of Theorem 2.1.6 that we discussed in the introduction. The proof
of the remaining part of Theorem 2.1.6 (regarding partial integer-
valued randoms) is deferred to Section 2.4.3, since the required ma-
chinery is similar to the one we use for the jump inversion theorems.
In Section 2.3.2 we give the proof of Theorem 2.1.7. Note that by
Corollary 2.1.5, for this proof it suffices to show that array com-

putable c.e. degrees are not integer-valued random.

2.3.1 Degrees of left-c.e. integer-valued randoms

In this section we prove the part of Theorem 2.1.6, i.e. that the high
c.e. degrees are exactly those c.e. degrees which contain integer-
valued random left-c.e. reals. (We prove the rest of the theorem in
Section 2.4.3.) The ‘if” direction is a consequence of [38]. For the
‘only if” direction it suffices to show that every integer-valued ran-
dom left-c.e. real has high degree. Let a be an integer-valued ran-
dom left-c.e. real, and {« )., a computable increasing sequence of
rationals converging to @. We know that @ has infinitely many 1s as
it is integer-valued random, and so by speeding up the enumeration
we may ensure that « has at least s 1’s. Let Tot = {e | ¢, is total} be
the canonical Hg complete set. We build a Turing functional I" such
that for all e, lim; I'®(e, k) = Tot(e). Then " <7 @ and so « is

high. We also construct for each e € w a computable integer-valued
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martingale M,. Let

d,s = d,[s] = max{k| (Yo €25 (M, (o)[s] |)}
les = max{k|(Vj<k)(e.(J)]s] )}

We proceed in stages s, each consisting of two steps.

Construction at stage s + 1  For each {e, k) < s do the following

(a) IfT*(e, k)[s] 1, define it as follows. If [, ;1 > kletT*(e, k)[s+
1] = 1 with use y(e, k)[s + 1] = 0; otherwise let I'*(e, k)[s +
1] = 0 with use the maximum of y(e, k)[s], y(e,k — 1)[s + 1],

and h, where & is the position of the first 1 of a; after a; [ d,.

(b) If I, 511 > L5, Define M, to wager 1 dollar on (e | h)"1,
and bet neutrally on all other strings with length in (d, , h + 1],

where £ is the position of the first 1 of «; after o [ d, ;.

Verification Since « is a left-c.e. real, it follows from the construc-
tion that I' 1s well defined, 1.e. it 1s consistent. We show that I'“ is
total by showing that lim; y(e, k)[s] exists for all pairs (e, k), and
that lim; I'* (e, k) = Tot(e). We say that a stage 7 is e-expansionary
ifley > los .

First suppose that e ¢ Tot. Then lim, [, ; and lim; d, ; both exist.

Let limg/,; = [ and lim;d,; = d, and suppose these limits are



36 CHAPTER 2. INTEGER-VALUED RANDOMNESS

reached by stage so. Let s; > s9 be the least stage where o, |
d = a | d. Then for all k and all stages s where {e,k) > s > s,
(e, k)[s] is set to O and y(e, k)[s] is set to be the position of the
first 1 after a; | d. As « is left-c.e., the position of the first 1 of «;
after a; [ d at any stage s > s; 1s at most the position of the first 1
of ay, after a;, | d. Therefore lim;y(e, k)[s] exists. For all k such
that (e, k) < sy, limyy(e, k)[s] is at most max,_, h, s where A, is

the position of the first 1 of a; after o | d, .

Now suppose that e € Tot. Then there is a sequence of stages
{(s;y and a sequence (h;) such that we define M, to wager 1 dollar on
(a5, T h;)" 1 at stage s;. Note that s; is least such that [, ;, = i. The
real a is left-c.e., so a; | (h;+ 1) can only move lexicographically to
the left as s increases. Moreover, the approximation to a will never
extend (@ [ h;)"0, and so M, cannot lose capital along a. As « is
integer-valued random, M, does not succeed on . If & | (h; + 1) =
ay, | (h;+1) then M, increases in capital by 1 dollar. Therefore there
are only finitely many A; for whicha | (h;+1) = a;, | (h;+1). Let
io be least such that @ ' (hj + 1) # ay, | (h; + 1) for all j > ip. We
show that I'*(e, k) = 1 for all k > i, thus concluding the proof.

Suppose by induction that T'*(e, i) = 1 for all iy < i < k. At stage
sg—1 we have [, , = k — 1. For any stage ¢ with s;_; <t < s, if
['*(e, k) becomes undefined we set I'*(e, k)[z] = 0 and set y(e, k)|¢]
to be the maximum of y(e, k)[t— 1], y(e, k—1)[t], and the position of
the first 1 of «; after a; [ d,,. Let h be the position of the first 1 in ay,

after a, [ d,, At stage s, we see [, 5, = k and define M, to wager

Sk—1°
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1 dollar on (@ I h)"1. If @ changes below y(e, k)| s, — 1] at stage sy
then y(e, k)[s¢] will be set to at least . Otherwise, y(e, k)[sy — 1] >
h. Then as k > iy, & changes below 4 at some stage ' > s;. At stage
', T%(e, k) will become undefined. At the next e-expansionary stage
we set ['“(e, k) = 1 with use 0. This concludes the verification and

the proof of part of Theorem 2.1.6.

2.3.2 Array computable c.e. degrees do not compute integer-

valued randoms

A natural class of c.e. degrees that do not contain integer-valued
randoms is the class of array computable degrees. In this section we
sketch the proof of this fact, which along with Corollary 2.1.5 gives
Theorem 2.1.7 that was presented in the introduction.

By [25, 44] (also see [18, Proposition 2.23.12]) if A is array
computable and c.e., & is a nondecreasing unbounded function and
f <r A, then there exists a computable approximation (f[s]) of f
such that

[{s | fF(x)[s] # f(n)[s + 1]}| < h(x) for all x. (2.3)

Hence given an integer-valued random B and a c.e. set A such that
B <7 A, it suffices to define an order function /4 and a function
f <r A such that any computable approximation (f[s]) to f does
not satisfy (2.3). Let B be integer-valued random and suppose A is
c.e. and I = B. We assume that at stage s, I has computed s many

bits of I'[s]. We define an order function 4 and a Turing functional
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A such that the function f = A does not satisfy (2.3) for any com-
putable approximation ( f[s]) of it. Let (i, ) be an effective list of all

binary partial computable functions. We meet the requirements

Re: (3x)(f(x) # limgie(x,5) v [{s | Yre(x,5) # (x5 + D} >
h(x)).

We define for each e € w an integer-valued martingale m,. First, let
us describe the strategy for Ry. We will have 2(0) = 1. At stage 1
we define f(0) = 1 with use §;(0) = y;(0). We wait until a stage
s where we see ¥((0,s) = f(0)[s] = 1. If this happens, we will
want to define mg to put pressure on A to change so that we may
redefine f(0). We define my to start with $1 in capital and wager $1
on I[s] 1 1. If T | 1 changes then we get a change in A below
v1(0), and so a change in A below 61(0). We may therefore redefine
f(0) and so meet Ry. We assume that there will be no change in
I | 1, and so we immediately look to see whether we can start
attacking Ry again by trying to redefine f(1). At stage 2 we define
f(1) = 2 with use §,(1) = y,(1). If we see no change in I | 1,
then the martingale mg has $2 on T4 | 1. We will have h(1) =
1. We wait until a stage s’ where we see ¥((0,s") = f(0)[s'] and
wo(l,s') = f(1)[s']. If this happens, we define m to wager $1 on
[[s'] | 2. If A changes below y (1) then we may redefine f(1) and
meet Ry.

We would like m to be total. Therefore whenever we let m
wager some of its capital on a string o, we extend m by letting it

bet neutrally on all other strings of length at most |o-|. Now suppose



2.3. COMPUTABLE ENUMERABILITY AND IVRS 39

that none of our previous attempts to redefine f(0), ..., f(x—1) have
been successful. We wait until a stage s where we have ¥, (y, s) =
f(y)[s] for all y < x. The use d,(x) will be equal to y,(/) for some
[. Suppose we have defined my up to strings of length / — 1 and that
mg has $k on " | (I — 1). Suppose h(x) = n. Then we require n
changes in A to redefine f(x) as many times as we would like. If
we let my wager $1 on I'* | [ and see A change below v,(I), we
can redefine f(x) once. Suppose that we see this change at stage 7.
We lift 6,(x) = y,(I + 1). The martingale m( has been defined up
to strings of length I, and we have mo(T? | [) = k — 1. We again
wait until a stage ¢’ where y.(y,7') = f(y)[f] for all y < x. If this
occurs, we now define mjg to wager $2 on %) | (14 1). We do this so
that if we do not see a change in this instance, m’s capital becomes
$k + 1. When we set §,(x) = y;(I + 1) this caused f(x’) to become
undefined for all X' > x. Atstage t + 1 we define f(x + 1) = x + 2
with use 6,4 1(x+ 1) = yy41(I + 2). Therefore, if necessary we may
start attacking Ry by trying to redefine f(x + 1). If every time we
see a change for f(x) we increase our wager by $1, after n — 1 many
changes we are left with $k — (1 +2+...+n—1) = $k—1(n—1)n.
In attempting to get the nth change, we wager all remaining capital
and require that if we do not see another change, then we end up
with more than $k. So we want 2(k — 3(n — 1)n) > k. That is,
k > (n — 1)n. We therefore set 2(0) = 1 and let i(n) be the greatest
m such that (m — 1)m < h(n — 1) + 1. If we define my as above

then either we see all required changes, or my’s capital increases to
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at least k + 1. As B is integer-valued random, we eventually do see

all changes to redefine some f(x), and satisfy Ry.

Multiple requirements and interactions

In order to to deal with multiple requirements, we proceed as fol-
lows. The function f = A” is a global object which must be defined
on all inputs. As in the strategy above, the values f(x) are changed
by the action of the requirements. Suppose we satisfy Ry by redefin-
ing £(0) once. We could attempt to satisfy R; by further redefining
£(0), but at some point we must stop. We choose a fresh large num-
ber xi, and have the strategy for R; try to redefine f(x;) as many
times as necessary. As we saw above, the strategy for R; may at
any one time be wanting to redefine f(y) for possibly many y. We
formalise this by associating to each requirement R, at stage s an
interval [, ; of natural numbers, so that R, at stage s is wanting to
redefine f(x) for x € I,;. When we are successful in redefining
x € I, ,, we remove all y > x from [, ;. If we have not already satis-
fied R, at some later stage s’ and we see ,(z,s") = f(z)[s'] for all
z < x+ 1, then we add x + 1 to I, ¢ and attempt to redefine f(x + 1)
as well.

Consider the requirements R, and R,/, with R, of stronger priority
than R,. We are defining martingales m, for R, and m, for R.. It is
possible that when I'* moves and we redefine some f (k) for the sake
of R, that the martingale m, also loses capital, even though we do

not redefine some f(j) for the sake of R,. We will therefore want
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to start a new version of m, every time a requirement of stronger
priority than R, acts. We say that R, requires attention at stage s if

one of the following holds:

1. I, = O&.

2. for all x < max [, ; we have ¥, (x, s) = f(x)[s] and

{t <s: f)[r] # )+ 11} < h(x),
and A(z) # As_1(z) forsome z € (6,(min I, ;—1),5,(max I, )].

3. for all x < max I, ; we have ¥, (x, s) = f(x)[s] and

{r <s: f)l # f)lz + 11} < h(x),
and Y, (max I, + 1,s) = f(max I, + 1)[s].

We are ready to produce the construction.

Construction

At stage 0, define m, (1) = 1forall e € w. Let f(x)[0] = A*(x)[0] =
1 with use 6y(x) = x for all x € w. Let I,; = J for all e € w. Each
stage of the construction after stage O consists of three steps. At
stage s, s > 1 proceed as follows:

Step I: For all e < s, if a requirement of stronger priority than
R, has acted since R, last acted, we start a new version of m,, and
define m,(1) = 1. Otherwise, we continue with the previous version
of m,. Let d, ; denote the length of the longest string for which the

current version of m, 1s defined.
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Step 2: Let x be least such that f(x) is undefined at the beginning
of stage s. (If there is no such x, proceed to the next step.) Let
| = max,<,d, ;. Define f(x)[s] = s + 1 with use §,(x) = y,(I + 1).

Step 3: Let R, be the requirement of strongest priority which re-
quires attention at stage s. Choose the first case by which R, requires
attention.

If case 1 holds, choose a fresh large number x, and let 7, ;1 =
{xe}-

If case 2 holds, then let x € I, ; be least such that As(z) # As—1(z)
for some z € (6,(x— 1), d5(x)]. Let f(x) = s+ 1 with use d;41(x) =
¥s+1(des + 1). We have that

me(TA[s] 1 dos) < me(TA[s] | (doy — 1)).

If m(I[s] I d.y) # 0, let n, = max;eq,, h(m (TA[s] T i)).
Suppose that j is such that n, = h(m.(I'*[s] | j) and let n, =
[{m,(T[s] 1 i) : j <i<d.}|- Then we have received n, of the
n, permissions required to redefine f(x) at least 4(x) many times. If
n, = n, — 1, then define m, to wager I'A[s] | d., dollars on I'*[s] T
(d.s+1). Otherwise letw = mo(TA[s] 1 (doy—1))—me(TA[s] 1 de.s)
and define m, to wager $(w + 1) on TA[s]| I (dos + 1). If mo(TA[s] |
d.s) = 0, let m, bet neutrally on all other strings of length d, ; + 1.
Let I, 51 = [min, g, x].

If case 3 holds, then let I, ;| = I, s U {max I, ; + 1}. Define m,
to wager $1 on TA[s]| | (dos + 1).

In any case, let I/ ;.1 = ¢ forall ¢ > e.
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Verification

We need to show that for all e € w, R, is satisfied. Assume by
induction that stage s* is the last stage at which a requirement of
stronger priority than R, acts. Assume for all s > s* that . (x, s) =
f(x,s) for all x < max/,,. At stage s* + 1 we will define a new
version of m,, which will be the final version. At every stage after
s* 4 1, we define more of m,. Therefore m, is total. As I'! is integer-
valued random, m,(I'"") = sup {m.(T* | i) : i € w} < oo. Let
sup{m.(I'* | i) : i € w} = k and iy be such that m,(I'* | iy) = k.
Suppose s is least such that sq > s* + 1 and I [so] | ig = T | ip,
and x is such that ,(x) = y,(des, +1). Then f(x) is redefined /(x)

many times and R, is satisfied.

2.4 Jump inversion for integer-valued randoms

Jump inversion for Martin-L6f randoms was discovered in [30, 21]
and was generalized in [4]. Every degree which is c.e. in and above
0’ contains the jump of some Martin-L6f random Ag set. Hence the
same holds for the integer-valued randoms. However in this case we
can obtain a stronger jump inversion theorem by requiring that the
‘inverted” degrees are c.e. Note that this stronger theorem does not
hold for Martin-Lof randoms since 0/ is the only c.e. degree con-
taining a Martin-Lof random. Moreover it does not hold for com-
putable randomness or Schnorr randomness, since by [38] the only

c.e. degrees that contain such randoms are high. integer-valued ran-
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domness is the strongest known randomness notion for which jump
inversion holds with c.e. degrees.

Since the argument is somewhat involved, we present it in two
steps. In Section 2.4.1 we discuss the strategy for controlling the
jump of an integer-valued random of c.e. degree. This argument
gives a low c.e. degree which contains an integer-valued random. It
is a finite injury construction, and the hardest of the two steps. Our
argument actually shows the stronger result that there is a low c.e.
weak truth table degree which contains an integer-valued random.
We can then add coding requirements in order to prove the full jump
inversion theorem, which we present in full detail in Section 2.4.2.
This construction is a tree argument which uses the strategies of Sec-
tion 2.4.1 for ensuring that the jump of the constructed set is below
the given 2(2) set, combined with standard coding requirements which

deal with the remaining requirements.

2.4.1 A low c.e. degree containing an integer-valued random

We build an integer-valued random A of low c.e. degree. In fact, we
build an integer-valued random A and a c.e. set B such that A =,,;,; B.
Let (m, ) be an effective list of all partial integer-valued martingales.
In order to ensure that A is integer-valued random it suffices to sat-

isfy the following requirements:

R.: if m, 1s total, then m, does not succeed on A;

Ne:  (375) (@g(e)[s] 1) = P7(e) |.
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We order the requirements as Ry > Ny > Ry > N; > ... and
begin by setting A; = 1. To meet Ry, we observe the values of the
martingale myg. If mg increases its capital along A, we change A to
force my to lose capital. As my is integer-valued, if it loses capital, it
must lose at least $1. Thus if we can force my to lose capital every
time we act, we need only act for Ry finitely many times. As we are
building reductions I" and A such that I'’? = A and A* = B, to change
A we will need to change B. Once we have changed B, we will then
need to change A again to record this fact. To satisfy the requirement
N, we use the usual strategy of preserving the restraint % (e)[s] at
all but finitely many stages. As the strategy for an R-requirement is

finitary, this can be done easily.

The finite injury construction

In order to help with the definition of the reductions, we make use of
levels (I;)i~,, and {d;);-,,. We calculate the size of the levels below.
We set y(I;) = d; and 6(d;) = 1;;1. We say that we act for require-
ment R, at level [; ;| at stage s if we change A to decrease m,’s capital
fromA [ [;to A | ;1. Thatis, m.(Ay | liy1) > me.(As | [;) and
me(Agi1 T liv1) < me(Agir | ;). We act at level [, only for the
sake of the requirements Ry, ...,R;. Once we have acted at level
li11, we enumerate an element from [d;, d;, 1) into B. To record this
change in B, we let A extend a string of length /;;, which has not
yet been visited. So that the reduction A is consistent, we must not

let A extend a string which is forbidden, that is, a string o such that
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A? £ Bg,. We carefully define the levels /; so that the action from
the requirements never forces us to extend a forbidden string.

Before we define {/;);,, and {d;);~.,, we lay out the construction
(in terms of these unspecified parameters and a function d defined
below). Later in this section we discuss the various properties that
these parameters need to satisfy in order for the construction to be
successful (i.e. produces sets A, B which satisfy the requirements
R, N,).

We have for every e € w and every stage s a restraint r, ;. We say

that R, requires attention at level /;, | at stage s if

1. m.(o)[s] | for all strings o of length < /;, 1,
2. li—i—l > Te,s

3. me<As rli+1) > me<As flz)

We say that R, requires attention at stage s if it does so at some level.
We say that N, requires attention at stage s if @7 (e)[s] |. Recall the
definition of the sibling of a string, just after Definition 2.1.1.

Construction Lety(l;) = d;and §(d;) = l;;1. Atstage 0, let A} = 1¢
and r,; = [, for all e.

Stage s, s > 1: Find the requirement of strongest priority which re-
quires attention at stage s. (If there is no such requirement, proceed

to the next stage.)
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Case I: If this is R,, let [; | be least such that R, requires attention
at level [;. | at stage s. Let [ € (I;,1;1] be least such that m,(A; |
) > m,(A | 1;). Choose a string 7 of length /;,; which extends the
sibling of A; | (I — 1) such that the minimum of all d(, i), where
u is any forbidden string of length /;,; extending A | [;, is as large
as possible. Enumerate an element of [d;,d;;;) into B. Choose a
string p of length /;, extending 7 such that p £ A, for all t < s,
and the minimum of all d(p, 1), where the minimum is taken over
forbidden strings u of length /;, , extending 7, is as large as possible.
Set Ay 1 = pl®. Forall ¢ > e with rp s < i, let ro o1 = iy,

Case 2: 1If this is N,, for all ¢ > e with 7. < ¢3(e)[s], let
rese1 = ¢o(e)[s].

In the following section we give the remaining specifications and

analysis of the construction, as well as the verification.

The calculation of the levels /; and d; for a successful construction

In the following we calculate the levels /;, d;, and depict this process
in Figure 2.2. Suppose that we act at level /;;; for R, and naively
let A extend a string 7 of length /;,; whose sibling is forbidden.
Consider the situation where m increases its capital on the very last
bit of Ay | [;11, loses capital on 7, and is neutral on all other strings
of length /;, ;. We will not be able to change A to extend 7’s sibling,
as this string is forbidden. However, we do not want to change A so
that my 1s neutral, as we would like the action for Ry to be finitary. To

avoid such a situation we must be more careful in how we change A.
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In particular, we must ensure that A is kept in some sense “far away”
from forbidden strings. This is made precise below.

We first calculate an upper bound on the number of forbidden
strings of length /; | which can occur above a nonforbidden string of
length /;. Our upper bound will not be strict. A string o of length /;,
becomes forbidden if A“ is no longer giving correct B-information.
As 6(d;) = l;y1, A7 will be incorrect only if we enumerate an ele-
ment into B below d;, which occurs only when we act for a require-
ment at some level < /;. We will act for R, at level /;;; only when
we see m, halt on all strings of length /;,, and so if A no longer
changes below /;, we will act for R, at level /;, | at most once. As we
act at level /;, | only for the sake of requirements Ry, ..., R;, if A no
longer changes below /;, we can act at level /;; | at mosti + 1 times.
After acting at a level /; for some j < i, we allow Ry, ...,R; to act
at level /;;; again. We begin with A} = 1¢. Suppose we acti + 1
times at level /; ;1. We then act at level /;. We act another i + 1 times
at level /;,; before we again act at level /;, We can act at level /; at
most i times. This can continue until we get to level /;, where we can
change A once below [; for the sake of requirement Ry. Therefore
we actat alevel < ;2.3.4....- (i +2) = (i + 2)! many times, and

there are at most
fier = 2o+ 1)!

many forbidden strings of length /;, ;. Note that for any k € w
we may enumerate all partial integer-valued martingales with ini-

tial capital k. We therefore may assume that our list (m,) of all
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partial integer-valued martingales comes with a computable intial
capital, m,(1). As a martingale may at most double its capital in a
single bet, the upper bound on m,’s capital at a string of length n is
2"m,(A).

We now show how a martingale can force us “closer” to a for-
bidden string. Suppose at stage s that A; extends the string v of
length /;;, and there is a forbidden string u of length /;;, above.
For simplicity, suppose that A extends the leftmost string of length
l;+» which extends v, and that u is the rightmost string of length /;.»
which extends v. If R; requires attention at level /;,,, we would like
to choose a string 7 of length /;» with m;(7) < m;(v). The problem
is the following. Suppose that m; increases its capital on all string
of length /;,, which extend v0. We recall Kolmogorov’s inequality,
as stated in Theorem 6.3.3 of [18].

Theorem 2.4.1 (Kolmogorov’s inequality). Let d be a martingale.

For any string o and any prefix-free set S of extensions of o, we
have Y.__¢ 27 d(t) < 271ld(o).

By Kolmogorov’s inequality (with vO = o and S the set of strings
of length /;;, which extend v0 in the above), this must mean that
m;(v0) > m;(v), and so m;(v1) < m;(v). If m; has sufficient capital
at v1, it may then increase its capital above m;(v) on all strings of
length /;,, which extend v10. Again by Kolmogorov’s inequality we
have m;(v10) > m;(v1) and som;(v1l) < mj(vl) < m;(v). Now m;
is an integer-valued martingale, and so after doing this finitely many

1

times, say n times, we have m;(v1") < sm;(v) and so m; cannot
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increase its capital above m;(v) on all strings of length /;;, which
extend v1"0. If l;,» > [;,; + n + 1, then we can pick a string 7
extending v1"0 with m;(t) < m;(v) and which is not forbidden. For
two strings @ and g of length , let d(a,8) be [ — b, where b is the
length of the longest common initial segment. Then in this situation,
we have d(As, 1) = lio—1iyy and d(7, u) < liyo— 111 —n. Therefore
m; has forced A distance n closer to the forbidden string u. Now R;
might not be the only requirement which can act at level /;.,. We
will then need to calculate the distance that the other martingales

may move A, and ensure that /;;, is high enough.

We calculate a bound on how far an integer-valued martingale m
may move A. If m(v) = k and m increases its capital to k + 1 on
all strings extending v0, then m(v1) = k — 1. If m(v1) > 2 then m
can increase its capital to k + 1 on all strings extending v10. Then
m(v1l) =k —1—2.If m(vl) > 4 then m can increase its capital to

k + 1 on all strings extending v110. Then m(v111) =k—1—-2 —4.

When m(v1") = k—1—-2—...—2"" < 1k, m is not able to
increase its capital to k + 1 on all strings extending v1"0. We let
n(k) = (un)(k —1—2—...—=2""" < lk). Then m can move A

at most a distance n(k). In the case where A; is not the leftmost
string extending v and u i1s not the rightmost string extending v, a
similar argument shows that m, can still move A a distance of at
most n(k). The only difference is that m, would then need to bet

against the initial segments of u which are of length greater than
liyo —liy1 — d(As,,U)-
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Suppose we act at level ;.| at stage s and let A extend the string
v of length /;,; which has forbidden strings of length /;,, above.
We enumerate an element of [d;, d;, ) into B. To record this change
in B, we choose a string p of length /;,, which has not been visited
before, and which is as far from any forbidden string as possible. We
have that there are at most f;;, many forbidden strings of length /;
above a nonforbidden string of length /; ;. Let x = (ux)(2* > fi12).
By the counting argument for f;. given above, if [; . ,—1; 11 = h > x,
then there is a string of length /;;, which has not been visited yet, and
which is at least distance 4 — x from a forbidden string. Now suppose
that R; requires attention at level /;,». We know that there are no
forbidden strings above p | [;41 + x + 1, and so if we can reduce m;
by moving to a string which is still above p [ /11 + x + 1, we will
do so. Otherwise, m; will move us closer to a forbidden string. The
bound on the capital of m; at Ay | (l;41 +x+ 1) is 2175 m(2). So
we know that m; may move us a distance at most n(21 ™ 1m;(2))
towards a forbidden string. If ;20— /i1 > x+n(21 ™1 ;(2)) then
we will be able to choose a nonforbidden string o’ which decreases
m;. Suppose that Ry, which is of stronger priority than R;, requires
attention at level [;;, at stage s’. Our reasoning is similar to the
previous case. Let ny = n(2+ " 1m;(1)). We know that there
are no forbidden strings above p’ | ;1 + x + ng + 1, and so if
we can reduce my; by moving to a string which is still above p’ |
liy1 + x4+ ng + 1, we will do so. Otherwise, m; will move us closer

to a forbidden string. The bound on the capital of my at Ay | (i1 +
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\ A forbidden u /K,urz

Figure 2.2: Calculating the levels /; and avoiding the forbidden strings.

x+ng + 1) is 21T 0ty (1), So we know that n; may move us a
distance at most n(2+1 0y, (1)) towards a forbidden string. If
livo — livy > x + ng + n(2in 0+ (1)) then we will be able to
choose a nonforbidden string p” which decreases m;,. We will need
l;+> to be large enough so that we can always move in this way for

any requirement which might act at level /; .

The requirements Ry, . .., R; can act at level ;.. We do not know
the order in which the requirements may act, so we will have to
take the maximum of the capitals of the martingales my, ..., m; in
our calculation. We illustrate this definition in Figure 2.2 . We set

lo = 0. Given [;, we setl;, 10 = i+ (ux)(2* > fi11) and for 0 < j < i,
li+1’j+1 = l,’+1,j + II]}EIX n(21i+1’f+1mk(/l))
<i

and let /.1 = li+1,+1 + 1. The levels d; are chosen so that we can
enumerate an element into [d;, d;;1) every time we act at level /; .

This calculation is the same as that of f;. . Let dy = 0. Given d,, let
divi = di+ Y o(j+ 1)L,
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Verification of the finite injury construction

First, we show that A =,,; B. As in the calculation of f;, we can
act at level /;,1 at most Z;ZO( Jj + 1)! many times. We have that
disg =d;+ Z’j:o(j + 1)! for all i. Every time we act at level /;,; and
change A below /;; 1, we enumerate an element from [d;, d;,) into B.
The uses y([;) are clearly computable, and so we have I'? = A via the
weak truth-table functional I". For the other reduction, note that the
consistency of A is a consequence of A never extending a forbidden
string. Again the uses 6(d;) are computable and so A* = B via the
weak truth-table functional A.

Next we argue that all N, requirements are met. Suppose induc-
tively that all requirements of stronger priority than N, do not act
after a certain stage ¢. If at some stage s after stage ¢ the computa-
tion in requirement N, halts, then a restraint r, ; will be erected so
that the use of the computation is protected from further enumera-
tions into A. Therefore in that case the computation actually halts.
Therefore N, is met, and this concludes the induction step.

It remains to show that for every e € w, R, is satisfied. Suppose
by induction that all requirements of stronger priority than R, do not
act after stage s*. Let iy be least such that [;, > r,«. We show that
m.(A) < m.(As [ I;,). Suppose at stage s > s* we see m, increase
its capital beyond m,(As [ [;,). Then R, will require attention at
stage s. Suppose that R, requires attention at level /;,; at stage s.
Let r < s be the last stage at which we acted for some requirement

at a level below [; ;. Suppose we acted at level [, ;. At stage r we
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chose some string p of length /;,, and let A, = p1“. Then A;_; |
l; = A; ' l;. If j =i—1then we chose p which would have been
at least distance ;1 — [; — x, where x = (ux)(2* > fi1), from any
forbidden string of length /;,; (that is, p and any forbidden string
have a common initial segment of length at most /; + x). Otherwise
Jj < i—1 and there is no forbidden string of length /; | above A; | [;.
Suppose that between stages ¢ and s — 1 inclusive we acted at level
l;+1 k many times. We have that k < i + 1. Then Ay | /; and any
forbidden string have a common initial segment of length at most
livix. Letl e (I;,1;41] be least such that m.(A; | 1) > m.(As T I;).
If I > [i114 + 1, then there is a string 7 above A | /114 + 1 with
m.(t) < m,(As; | [) and which is not forbidden. Otherwise m,
can move us at most distance n(2++*1m,(1)) closer to a forbidden
string. We have that [;, | > ;4 +n(2/+4"1m,(2)), so we can find a
nonforbidden string 7 with m,(7) < m,(A; | [). Restraints are then
imposed so that R, and no other requirement of weaker priority may
act at level [;, | after stage s. Therefore A | [;;; = Agy1 | [ and
S0 me(A) < me(Ag | 1;,).

2.4.2 The full jump inversion theorem for integer-valued ran-

doms

Given a set S >7 0’ which is c.e. in ' we show how to construct
an integer-valued random set A of c.e. degree such that A’ =7 S.
Along with A, we build a c.e. set B such that A =7 B, and show

that B = S§. Let (m,) be an effective enumeration of all partial
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computable integer-valued martingales. So that A is integer-valued

random, we meet the requirements
R,: If m, is total, then m, does not succeed on A.

We also build wtt-reductions I" and A such that '? = A and A* = B.
For the requirement S <7 B’, we build a functional A and meet the

requirements
P.: lim,AB(e,t) = S (e).

The basic strategy for a P-requirement is as follows. As S is c.e.
in and above 0/, we know that S is 2(2). Therefore there is some
computable approximation {S;};c, such that n € S if and only if
there is an s such that n € S, for all t > 5. We define A®(e,s) = 1
for larger and larger s with some large use A(e, s). If we see at
some stage u that e ¢ S, and u > 1, then we enumerate A(e, f) into
B and redefine A®(e,1) = 0 with use —1, i.e. the axiom defining
AB(e,t) = 0 does not depend on B.

For the requirement B’ <7 S we attempt to meet the requirements
Net (375)(@8(e) |) — ®2(e) |.

We attempt to meet these as usual by restraining B below the use
©5(e)[s] whenever we see ®3(e)[s] |. Although we will not actu-
ally meet these requirements (doing so would mean that B’ = '),

trying to meet the requirements will allow us to show that B’ <7 S.
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The priority tree

The construction will use a tree of strategies. To define the tree,
we specify recursively the association of nodes to requirements, and
specify the outcomes of nodes working for particular requirements.
To specify the priority ordering of nodes, we specify the ordering

between outcomes of any node. We order the requirements as
Ry >Py>Ny >Ry >Py >N >---

and specify that all nodes of length k work for the k™ requirement on
the list. We will have nodes dedicated to R-, P-, and N-requirements.
A node dedicated to a P-requirement will have the oo outcome, cor-
responding to enumerating infinitely many markers A(e, s), and the f
outcome, for when only finitely many markers are enumerated. Sup-
pose that the node a works for P, and 8 works for Ny with o < .
If f 1s the true outcome of @ and a” f < B, then only finitely many
markers are enumerated, and 8 does not need to worry about the
computations it sees being destroyed infinitely many times. Now
suppose that oo is the true outcome of @ and @ “ o0 < . Then 8
will be guessing that P, will enumerate all its unrestrained mark-
ers A(e, s) into B. It will then not believe a computation ®3(e)[s]
until it sees that all unrestrained markers below the use ¢Z(e)[s]
have been enumerated. This is formalized with the definition of a
[B-correct computation below. The outcomes of R- and N-nodes are
...<n<...<1 <0, corresponding to the restraint they impose

on B.
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Making the sets A, B of the same degree

In Section 2.4.1 we discussed the proof that there is a low c.e. de-
gree containing an integer-valued random set. As in that argument,
we make use of /evels in the definition of the reductions I' and A.
We slightly adjust the definition of the levels because we now must
also enumerate the markers A(e, s) into B. We increase the size of
each interval [d;, d;, 1) to accommodate a coding marker. The coding
markers will be chosen to be d; for some i € w. Now that we are also
enumerating coding markers into B, we also adjust the definition
of the levels /;. Enumerating the coding markers will cause more
strings to become forbidden. We recalculate the upper bound on the
number of forbidden strings of length ;. As before, the require-
ments Ry, ..., R; may act at level ;. We calculated in Section 2.4.1
that we may act at most (i + 2)! many times at level /;;;. When the
coding marker d; is enumerated, the requirements Ry, . .., R; may act
again at level /;, . Therefore we may act at most 2(i +2)! + 1 many
times at level /;;;. So there are at most 2320(2( j+ D!+ 1) many
forbidden strings of length /;;,. Letting f/, | = >3 (2(j + 1)! + 1),
we calculate the levels /; as before. We let [y = 0, and given [;, we

letli10 =1L+ (un)(2" > f},,) and for 0 < j < i we let
livijor = livrj + hax n(2'7 iy (1))

and ;| = li+1,i+1 + 1. Setdy = 0. Givend,, letd;,; = d; + 2(1 +
DI'+1+1.
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Coordination and restraint on the tree

The action for R-requirements will otherwise be identical with the
construction of Section 2.4.1. Nodes working for R-requirements
will also have to be wary of coding done by P-nodes above. Suppose
B, working for R, is below the o0 outcome of @, which is working
for P,. If we see the martingale m, increase its capital along Aj
and wish to enumerate an element of [d; + 1,d;,) into B to change
A, we will wait until all unrestrained markers A(e, s) below d; have
been enumerated into B before changing A for the sake of Ry. If o

1s accessible at stage s, we let
r(o,s) = max{o(|a|) | @ < o is an N-node or an R-node}.

We say that a computation ®5(e)[s] is o-correct if for every P-
node a such that "0 < o, r(a,s) < Ale,t) < ¢B(e)[s]| implies
A(e, t) € By. Recall the definition of the sibling of a string, just after
Definition 2.1.1.

Construction of the sets A, B

At stage O we set Ay = 19, By = &, and let r,; = [, for all e.
Moreover we set AZ(0,0) = 0 with use d;. Each stage s > 1 is
conducted in two steps:

Step 1: For e,t < s, if AB(e,t) is undefined at stage s, then let
AB(e,t) = 1 with some fresh large use A(e, ) equal to d; for some
[ € w.

Step 2: We let the collection of accessible nodes 6 be an initial
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segment of the tree of strategies. Let o be a node which is accessible
at stage s. We describe the action that o~ takes, and if |o7| < s, then
we specify which immediate successor of o is also accessible at
stage s; otherwise, we proceed to the next stage.

Suppose first that oo works for R,. Let k be least such that d; >
r(o,s). If

1. for all P-nodes a such that "0 < o, r(a,s) < Ale,t) <
dr = Ae,t) € By, and

2. there is [ > [y, 1. s such that

(a) m, (o) | for all strings o of length /, and
(b) me(Ag 1'1) > m,(Ag [ (I—1)),

then let i be such that [ € (I;, ;1] (if there is more than one such /, we
choose the least). Choose a string 7 of length /;,; which extends the
sibling of A; ' (I — 1) such that the minimum of all d(t, u), where
u 1s any forbidden string of length /; | extending A | [;, is as large
as possible. Enumerate an element of [d; + 1,d;;) into B. Choose
a string p of length /;,, extending 7 such that p £ A, for all ¢ < s,
and the minimum of all d(p, 1), where the minimum is taken over
forbidden strings u of length /;,, extending 7, is as large as possible.
Set Ay = pl®. Forall ¢’ > e with ry y < [, letry g1 = li11. The
string 0" d; 1 1s accessible at stage s.

Now suppose that o works for P,. For all e, < s, if A(e,t) >

r(o,s), e ¢ S and we have AB(e,)[s| = 1, then enumerate A(e, t)
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into B and define A®(e,t) = 0 with use —1. Suppose that A(e, 1) =
d;. Choose a string p of length /;,; extending A [ /; such that p £ A,
for all # < s, and the minimum of all d(p, i), where the minimum
1s taken over forbidden strings u of length /; | extending A [ [;, is
as large as possible. Set A, = p" 1¢. If a marker was enumerated,
let 0" o0 be accessible at stage s. Otherwise let o~ f be accessible at
stage s.

Finally suppose that o works for N,. If ®3(e)[s] | via a o-correct
computation, then let "% (e)[s] be accessible at stage s. Otherwise,

let 0”0 be accessible at stage s.

Verification of the construction

By the construction, the set B is c.e. We verify that A =; B, that A
is integer-valued random, and that A’ =; S. First, we establish the

existence of a ‘true path’.

The leftmost path which is visited infinitely often 2.4)

exists.

As there are only finitely many outcomes of a P-node, we need
to verify that the restraint imposed by an N- or R-node comes to a
limit. Let o work for R,, and suppose by induction that no node to
the left of o is visited after stage s¢, and that lim; r(c, s) exists. We
must have r(o, s) = r(o, so) and r,; = r, forall s > so. Let k be
such that d; > r(o, sg). Whenever we act for R, at level [; for i >
k + 1, m,’s capital decreases by at least $1 and we increase restrains

for all R-requirements of weaker priority. The only elements which
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may be enumerated below the restraints R, places on B are coding
markers belonging to P-requirements stronger than R,. However, if
R, 1s below the o outcome of P,, then R, waits until all unrestrained
markers below d; enter B before acting at level /. Therefore the
only markers which enter below R,’s restraint belong to those P-
requirements with o below the f outcome. By induction, we do not
visit any node to the left of o after stage sy, and so no such strategy
may act after stage so and enumerate a coding marker below R,’s
restraint. Therefore we act for R, only finitely many times after
stage so. Similarly, as we require the computations N-nodes observe
to be o-correct, if o works for N, and is on the true path, it will
increase its restraints only finitely many times. This concludes the
proof of (2.4).

Let the true path, TP, be the leftmost path visited infinitely often.
The proof of (2.4) shows that we act only finitely often for any R-
requirement. Therefore m,(A) < oo and R, is satisfied for all e € w.

Therefore
the set A is integer-valued random. (2.5)

The use of the systems of levels [/, d; in the construction define Tur-
ing reductions A <7y B and B <7y A respectively, with computable
use. So that by an induction on the stages of the construction we

have

the sets A and B are in the same weak truth table 2.6)
degree. '

It remains to show that S =; B’. First, we show that S <7 B
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Let o < TP be devoted to P,, and suppose that no node to the left
of o is visited after stage syo. As the restraints set by R- and N-
requirements are finite, r(co, so) is finite and (o, s) = r(o, so) for
all s > s¢. Therefore o may enumerate all but finitely many markers
if it wishes. Therefore for all e € w, lim, AB(e, ) = S (e). It remains

to show that B’ <r S. We have

ec B < ®8e) L (@)@ | AB 1 ¢P(e)l] = B I ¢E(e)[1]).

2.7)
First use S to compute S | e. Fori < e, if S(i) = 1 then we will
want to eventually stop enumerating markers A(i, s). If S(i) = 0,
then we will want to enumerate all unrestrained markers. Suppose
we see a computation ®3(e)[z] |. We find the markers A(i, s) below
©B(e)[t] for i < e. As we know the fate of every marker below the
use, we can computably determine whether this computation is B-
correct, that is, whether B will change below the use after stage r.
Therefore equation 2.7 is 2(1), and can be decided by &¥'. As J' <r

S,wehave B <7 S.

2.4.3 Degrees of left-c.e. partial integer-valued randoms

Here we show that every left-c.e. real that is integer-valued ran-
dom is Turing (and in fact, weak truth table) equivalent to a par-
tial integer-valued random left-c.e. real. Hence along with the ar-
gument of the previous section, it proves Theorem 2.1.6. In order
to make the argument more concise, we will often refer to the ar-

gument of Section 2.4.1, which uses a similar machinery. Given
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a left-c.e. integer-valued random set A we will construct a partial
integer-valued random set B such that A =, B. Suppose we are
given A with a computable approximation (A;). Let (¢, be an ef-
fective enumeration of all partial computable integer-valued martin-
gales. We build a set B and weak truth-table reductions I" and A such

that I'* = B and A? = A to meet the requirements
R.: ¢, does not succeed on B.

We also build for each e € w a partial integer-valued martingale m,.

In the case that ¢, is defined along B, m, will be total.

Strategy for the single requirement R.

Let y(n)[s] be the use of computing I'*(n)[s] and §(n)[s] the use of
computing AZ(n)[s]. We begin by setting y(n)[0] = nand 6(n)[0] =
n for all n. We observe the values of ¢, along B. First we wait to see
@o(A). If we later see ¢y increase its capital along B, then we will
wish to change B to force ¢ to lose capital. We will need permission
from A to do so. We put pressure on A to change by defining the
martingale my. If ¢ increases its capital on B; by betting on B; [ n,
then we define my to start with capital ¢y(A), place the same bets as
@o[s] along A; | n, and bet neutrally on all other strings up to length
n. We repeat this every time we see ¢ increase its capital along B
until we see a change in A. As A is integer-valued random, m(A) <
o0 and so A must eventually move. This gives us a permission to

change B.
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Suppose that at stage s we have defined mg up to length d, and
A changes below d. Let m be least such that A;_(m) # Ay(m). We
have defined 6(m)[s — 1] = m and so we must change B on its mth
bit. Welet By = B, | m™(1—B;_1(m))"0“. The partial martingale
o might not be defined on any string extending B | m, whereas my
has been defined to be neutral on all initial segments of B, of length
between m and d. Later ¢y might increase its capital along these
strings, and we would not be able to define my to directly copy its
bets. We can however raise the use y(m)[s] to be large. At stage s
we let y(m)[s] = 2d. If ¢, then bets along initial segments of B of
length between m and d, we copy the wagers that ¢y makes on these
strings by placing the same wagers along the initial segments of A of
length between d and 2d. We are then still putting pressure on A to
change. If A changes below 2d we can then change B below d and

force ¢ to lose money.

Multiple requirements

The interaction between multiple requirements will cause difficulty
in coding. We use levels (/;) and {d;) in order to facilitate the coding.
We set y(l;) = d; and 6(d;) = ;4 and let [; = 5 (the choice of /; is
not significant). We attempt to change B above a string of length /
for I € (;,1;41] only for the sake of the requirements Ry, ..., R;.

We will attempt to change B below [; only for the sake of de-
creasing ¢o’s capital along B | /. We would like y(/;) to be large

enough so that we can copy all the wagers that ¢y may place along



2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 65

strings of length /;. There are 2" many such strings, and so if we
set d; = y(I;) = 2".1, this will certainly be large enough. As A is
left-c.e., A can change below d; at most 24 many times. Therefore
there are at most 29 many forbidden strings. To calculate /,, we be-
gin by setting Lo = [; + (ux)(2* > 2%) = I, + d;. We act at level
[, for the sake of Ry and R;. The action for these requirements can
again move us closer to forbidden strings. The distance we can be
moved, is given in terms of the function d which is introduced in
the argument of Section 2.4.1. Therefore we define /5 1,1, and [, as

before.

Suppose A changes below d; at stage s. Then we are free to
change B below [;. We choose a string 7 of length /; which min-
imises my; if there is no reason to move, we do not move. In either
case, we then choose some string p of length [, extending the cur-
rent version of B [ [; which has not been visited before, and let

BS+1 = plw.

We change B below [, for the sake of requirements Ry and R;.
We define the total martingale m to copy the wagers that ¢, places
on B | [, and we define the total martingale m; to copy the wagers
that ¢; places on B [ I,. We require d, to be large enough so that m
can copy all the wagers that ¢y may place along strings of length /,
beneath d,, and m; can copy all the wagers that ¢; may place along
strings of length /, beneath d,. Therefore, by the same reasoning as
the calculation of d;, we would like d to be at least 22.1,. We then

define l3 similarly, with 13’() = lz + dz, and 13,1, 13’2, 13,3 and l3 as in
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the argument of Section 2.4.1.

Now suppose that A changes between d; and d, at stage s’. That
is, Ay I di = Ay_; | di, but there is m € [d,,d,) with Ay(m) #
Ay_1(m). We cannot change B below /1, but we can change B above
[1. We therefore choose a string 7 of length [, which minimises the
martingales ¢y and ¢;. As Ry has stronger priority than R, we first
look to minimise ¢y. If we can, we change B to minimise ¢y, and if
we cannot, we then look to minimise ¢;. If we can, we change B to
minimise ¢, and if we cannot, we do not change B. In any case, we
then choose some string p of length /5 extending the current version

of B | [ which has not been visited before, and let By, | = p1“.

Construction

For every e € w and at every stage s we have a restraint r, ;. During
the construction we will say that “m, has copied ¢,’s wager on o”
for some e and string o. Let d, ; denote the length of longest string
for which we have defined m, by the beginning of stage s. Setly = 0,
dy = 0 and [; = 5. Given [;, we set d; = 2%.1;, and then given d;, we
setlir10 =1+ d;and for 0 < j < i,
livijrr = liv1j+ Max n(2" (),

andletl; 1 = l;11,41 + 1. Sety(l;) = d; and 6(d;) = [;;; for all i. At
stage 0, we set By = 1¢, m,(1) = ¢,(A) for all e, and r,; = [, for all
e. At stage s > 0 do the following:

Case 1I: there is [ > r, such that @, (Bs; | (I + 1)) > ¢.(Bs |

l), m, has copied ¢,’s wagers on B; | 1,...,Bs [ [, and m, has
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not already copied ¢.’s wager on By [ (I 4+ 1). Let e be the least
applicable, and [ the least applicable for this e. Define m, to wager
@e(Bs I (I4+ 1)) —@e(Bs I [) on Ay | (d,s + 1) and wager 0 on all
other strings of length d, ; + 1. We say that m, has copied ¢,’s wager
on By I (I+ 1). Leti be such that [ € (I;,[;]. For all ¢’ > e with
Fes < liy1,letry 11 = lio. Proceed to the next stage.

Case 2: Ag(m) # Asy1(m). Let m be the least applicable, and let
i be such that m € (d;, d;;1]. Choose the least e with r, ; < ;11 such
that there is 7 of length /;; | extending B, I [; with max j¢;,,, @e s+1(7 T
J) < maxjg,,, @es+1(Bs I j). For this e, choose an applicable string
7 with min, d(7, u) as large as possible, where the minimum is taken
over all forbidden strings of length /;; extending By [ [;. If there is
no such e, then let 7 = B; | [;;;. Choose a string p of length /;,,
extending 7 such that p £ B, for all # < s. Let By, = pl1“. Proceed
to the next stage.

If neither case applies, proceed to the next stage.

Verification of the construction

First, we observe that A =,,, B. Indeed, the uses y(/;) are clearly
computable, and so we have I'* = B via the weak truth-table func-
tional I'. The consistency of A is a consequence of B never extend-
ing a forbidden string. Again the uses §(d;) are computable and so
AB = A via the weak truth-table functional A.

It remains to show that for all e € w, R, is satisfied. Suppose by

induction that all requirements of stronger priority than R, do not act
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after stage s*. We show that if ¢, succeeds on B, then m, succeeds
on A, which is a contradiction to A being integer-valued random.

Let iy be least such that /;, > r, (+. By the restraints imposed, we
cannot change B below /;, for the sake of R,. Now suppose that at
stage s > s* we see @, 5(Bs | [) > @os(Bs [ I;,). Let [ be the least
applicable, and suppose i is such that [ € (I;,1;]. From stage s we
have m, copy ¢.’s wagers, and at some stage s’ > s we define m, to
wager ¢, (By ['l) —@.(By [ (I—1))on Ay I d.y + 1. If m, copies
all of the wagers that ¢, makes on strings of length less than or equal
to [ — 1, then m, is defined on strings of length at most 2/~1 - (1 — 1).
Therefore d, ¢ <271 - (1 — 1) < dj11.

Suppose that at stage t > s’ we see A change below d;, . Then
we will choose a string 7 of length /;,| extending B; | [; with
maxc,,, @es(T I j) < @es(Bs [ 1). Taking the contrapositive, we
see that if ¢, makes capital on B past /;,, then m, makes capital on

A. Therefore if ¢, succeeds on B then m, succeeds on A.

2.5 C.e. degrees not containing IVRs

It is hardly surprising that there are c.e. degrees which do not con-
tain integer-valued randoms. After all, computable enumerability
hinders randomness, and indeed with respect to a sufficient level of
randomness, c.e. sets are not random. However integer-valued ran-
domness is sufficiently weak so that it has interesting interactions

with computable enumerability. In this section we look at the ques-
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tion of which c.e. degrees do not contain integer-valued randoms.
The first example of such degrees was given in Section 2.3.2 where
we showed Theorem 2.1.7. Perhaps more surprising is the fact that
there are c.e. degrees which are not array computable (so, by Corol-
lary 2.1.5 they compute an integer-valued random) yet they do not
contain integer-valued randoms. We prove this in Section 2.5.1, and
extend it to a much stronger result (namely Theorem 2.1.8) in Sec-
tion 2.5.2.

2.5.1 C.e. array noncomputable degrees not containing IVRs

We wish to construct an array noncomputable c.e. degree not con-
taining an integer-valued random set. We use the original definition
of array noncomputable from [19] in terms of very strong arrays.
Let (T'., Ae).ceo be an effective listing of all pairs of Turing function-
als, and let (D, be the very strong array with Dy = {0},D; =
{1,2},D, = {3,4,5},D3 = {6,7,8,9},.... We build a c.e. set B to

satisfy the requirements
R,: (In)(W,n D, = Bn D,)
N,: Af =A, A Ffe = B = A, is not integer-valued random.

We build for each e € w an integer-valued martingale m,, and replace
the requirement N, with the following requirements N, for all k >
2:

Ny Af =A, A F’;‘f = B =— m, wins at least k dollars on A,.
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We effectively order the requirements, making sure that if k < &/,
then N, has stronger priority than N,p. We say that R, requires

attention at stage s if

1. R, has no follower at stage s, or

2. R, has follower i at stage s and W, ; n D; # By n D;.

For any e € w, let d, ; be the length of the longest string o for which
m.(0) is defined by stage s. We have for every ¢ € w a restraint
r.. Let r.xs = max D; where i is the follower at stage s of any R-
requirement of stronger priority than N, ;. Let [(e, s) be the length

B
of agreement between Fff and B at stage s,

B

(e, s) = max{x | (¥y < x)(Te* ()[s] = By)[s]}.
We say that N, ; requires attention at stage s if
1. me(Aps 1 des) =k — 1,
2. l(e,s) > Fregss

3. l(e,s) > 6e(Ve(rexs))[s]

4. v.(l(e, 5))[s] > des

Figure 2.3 illustrates the reductions involved in requirement N,.
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Ye(Teas)[s] Ye(l(e, ))[s]

Teks  Oe(Ye(rens))ls]  Ue.s)  de(ve(lle, s)))[s]

Figure 2.3: A visualization of the reductions in requirement N,

Construction At stage 0, let By = . Let m,(1) = 1 for all e € w.
At stage s, s > 1, find the requirement of strongest priority which
requires attention at stage s.

Case I: this is R,. If R, has follower i, enumerate W, ; N D; into
B. If R, does not have a follower, appoint a fresh large follower for
R..

Case 2: this is N,y. Let v = A.[s] T y.(I(e, 5))[s]. Define m, to
wager $1 on 7, and bet neutrally on all other strings with length in
(dess
ity than N, .

7|]. Remove the followers of R-requirements of weaker prior-

Verification It remains to show that each requirement requires at-
tention only finitely often, and is met. Assume by induction that all
requirements of stronger priority than R, do not require attention af-
ter stage s. If R, does not have a follower at stage s then it will be
appointed one. This follower cannot be cancelled as requirements of
stronger priority can no longer act. Suppose that R, has follower i at
stage s. If we ever see that B, n D; # W, , n D; then we will enumer-

ate W,, n D; into B. As |D;| = i+ 1, R, can require attention at most
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i + 1 many times after stage s. Then we will have B~ D; = W, n D;

and R, is satisfied.

We claim that for all e, if Af = A, and I“?e = B, then m, is
nondecreasing along A,. Suppose we have m,(o) = k — 1 for some
string 0. Suppose N, requires attention at stage ¢t and we define
m,(7) = k. We remove the followers for R-requirements of weaker
priority, and so only requirements of stronger priority than N,; can
enumerate elements into B that are below &,(y.(I(e,))[t]. Suppose
R; has stronger priority than N,;. Then R; can either enumerate
elements below r,;, or if it is later injured, enumerate elements
larger than 6,(y.({(e,))[?] into B. Suppose that R; enumerates an
element below r,;, into B. If I, and A, later recover at stage 7/,
T 1= A.[f'] | Ve(rex,)[t] must be incomparable with 7 = A,[¢] T
Ye(rers)|t]; otherwise A, will not have recorded the B-change and
we could not have Af = A, and Ff"' = B. In particular, 7" must not
extend either 7 or its sibling (recall the definition of the sibling of a
string, just after Definition 2.1.1). As m, is defined to bet neutrally
on strings of length || that are not either 7 or its sibling, we will
have m,(A.[f] | |7|) = k— 1. By induction, this holds for all k. This

establishes the claim.

Now assume by induction that all requirements of stronger prior-
ity than N, ; do not require attention after some stage s. As N, ; for
any j < k does not require attention, we must have m, (A, ' d.s) =
k—1. If N, does not require attention at any stage ¢ > s then the hy-

pothesis of the requirement does not hold. Therefore N, 1s satisfied
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vacuously. If N, does require attention at stage ¢ > s then we define
m,(t) = k fort = A.[t] | ve(l(e,1))[t]. R-requirements of stronger
priority have finished acting, and so no numbers less than r,;, en-
ter B after stage r. We remove the followers for R-requirements of
weaker priority. When they are appointed new followers they will
choose fresh numbers, and so all enumerations into B after stage
t will be larger than 6.(y.(I(e,1))[t]. As B cannot change below
5.(ye(l(e,1)))[t], Ac = AB cannot change below y.(I(e, t))[t]. There-
fore r < A, and m.(A, 1 y.(I(e,1))[t]) = k. By the previous claim,
m.(A.) > k, and N, is satisfied.

2.5.2 A high; c.e. degree not containing integer-valued ran-

doms

In this section we prove Theorem 2.1.8. Nies, Stephan and Ter-
wijn showed that every high degree contains a computably random
set, and so a fortiori, an integer-valued random set. It is instructive
though to see why we cannot build a high degree that does not con-
tain an integer-valued random set. This will give us some insight as
to why the construction works when we only require our set to be
high,. So that the degree of A does not contain an integer-valued

random set, we meet the requirements
A
Ne: F?e = A total = A% is not integer-valued random

where (I',, A,) is an enumeration of pairs of Turing functionals. We

break the requirement N, into the following subrequirements N, .
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A7

p Se(ve(p))[s]  Uess)  Selve(le)))]s]

Figure 2.4: Diagram with the uses and where we bet, for the proof of Theorem 2.1.8.

A
Nei: F?e = A total = m, wins at least k dollars on Ag‘

where m, is an integer-valued martingale we build for the sake of N,.
Suppose that the martingale m, has won $k — 1 on A2 | n. The basic
strategy to win another dollar is to first pick a large location marker
p. Let [(e)[s] be the length of agreement between A and FeA? at stage
s. If we later see that [(e)[s] > p and I(e)[s] > d.(y.(p))[s], then
we define m, to wager $1 on A2[s] I y.(I(e))[s] and bet neutrally
elsewhere, and freeze A below 6.(y.(I(e))[s]. If we are successful
in freezing A, then m, wins $1 on A%, If A changes below p at
stage s’ > s, then if we are to have ng = A, As'] T ve(p)[s] is
incomparable with A%[s] | y.(p)[s] and m, does not lose any capital
along A?. We can then try the basic strategy again.

To make A high we would define a functional A such that lim; A% (x, k) =
Tot(x), where Tot is the canonical I19-complete set. The basic strat-
egy for the highness requirement is to define A% (x, s) = 0 for larger
and larger s with some big use A(x, s). When we see ¢,(s") | for
all s < s, then for each s’ < s we enumerate the current use A(x, s')
into A (if currently A%(x, s’) = 0) and redefine A% (x,s') = 1 with

use —1, i.e. the axiom defining A*(x, s') = 0 does not depend on A.
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This strategy will succeed as long as we are prevented from redefin-
ing A*(x, s) from 0 to 1 at most finitely often.

Let us see how these strategies might interact. Suppose at stage s
we saw the /(e) computations converge and defined more of m,. The
highness requirement, if unrestrained, can destroy the /(e) computa-
tions and cause m, to lose capital if it enumerates a marker between
p and 6.(y.(I(e))[s]. Therefore if m, is to ever win money along A%
we must impose restraint on A. The problem is that the strategies
for N, may gang up and impose restraint on all markers A(x, s); ev-
ery time a marker is defined we may define m, and impose restraint,
and never allow the marker to be enumerated. If Tot(x) = 1 we
will never be able to correct A*(x, s) to be 1 and the limit will be
incorrect.

Another approach we might take would be to capriciously enu-
merate the markers which occur below 6, (y.(/(e))[s]. If we do this
and always have some marker below the use, we will be able to con-
clude that Ff? # A (this argument is given in full in the verification
below). However, the problem now is that we might not have wanted
to enumerate the markers. If Tot(x) = 0 and we capriciously enu-
merate all markers A(x, s) and redefine A%(x, s) to be 1, the limit
will be incorrect.

To make A high,, we need to instead define a functional A such
that

lim lim A% (x, m, t) = Cof(x)

m t

where Cof = {x | W, is cofinite} is the canonical Z3-complete set.
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The double limit means that we may be wrong on a finite number
of the m while still satisfying the requirement. This will allow us to
employ the capricious enumeration strategy successfully. We have

the requirements
H,: lim,, lim, A*(x,m,t) = Cof(x)

as well as the N, from above. The construction will use a priority
tree. For each global requirement N, we have several nodes devoted
to meeting N,, each equipped with a guess as to the outcomes of
stronger priority requirements. Such a node will be called a mother
node devoted to N,. Each such node 7 builds its own martingale
m.. We argue in the verification that for every e € w there is some
node 7 such that m, succeeds on A%, For each subrequirement N,
we have several nodes devoted to meeting N, ;. Such a node will be
called a worker node devoted to N, , and will occur below a mother
node 1 devoted to N,. For the longest such 7, we say that o’s mother
node is 7. When we reach a node o devoted to N,, we choose a
fresh location marker p for o, and place a link from o back up to 7.
The link can be seen as testing the hypothesis of N,. The length of
agreement between A and Ffﬁ will be measured at 7. When we next
arrive at 7 and see the length of agreement computations converge,
this further confirms the hypothesis of N,. We travel the link to o,
define more of the martingale m,, and then remove the link.

The requirement H, will have nodes S, ,, for m € w. The node

B tests whether [m,o0) < W,. Note that this is a I, test. Such
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a node will have outcomes co, which corresponds to the I1, test in-
finitely often looking correct, and f, corresponding to the finite out-
come. The B.,, nodes will be responsible for defining A% (x, m, 1)
for each . As we do not know the true path in advance, each path
through the priority tree will have a ., node, which collectively
will define A% (x,m, t) for all .

The basic strategy for S, , is to define A% (x,m,t) = 0 for larger
and larger ¢ with some big use A(x,m, t). If we see [m, s|] & W, then
for each s’ < s we enumerate the current use A(x,m, s’) into A (if
currently A% (x,m, s') = 0) and redefine A?(x,m, s') = 1 with use
—1, i.e. the axiom defining A*(x,m, s’) = 0 does not depend on A.
It is important to note that the markers A(x, m, s) are shared by all
the B, , nodes. Whether we succeed in enumerating the markers and

updating A as needed will depend on how the construction proceeds.

We will now describe how these requirements interact and what
modifications we need to make to the priority tree as a consequence.
First we consider the situation where we have H, of lower prior-
ity than N, (which is associated with the mother node 7). The
problem is the following. Suppose we have a situation with nodes
T < Bym < 0 where o is devoted to N, and 7 is 0”’s mother node.
That is, while o has higher global priority than B, its local prior-
ity is lower. Suppose at some stage o picks a location marker p(o)
and creates a link back to 7 at stage sg. At a later stage s; we get
to 7, see the necessary computations converge, and would like to

travel the link and define the martingale. This causes no problem if
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o > Bym  f, but there are problems if o > By, " 0. We will re-
quire the computations /(7)[s] to be T-correct; that is, all guesses T
makes about the enumeration of markers below d,.(y.(I(e)))[s] have

already occurred.

The trouble is that at stage s; there now might be some marker
A = A(x,m,q) which is greater than p(co), but below the use of
I(t)[s1]. We may not yet want to enumerate A into A because the X,
outcome may now be looking correct at By, (that is, we might think
Cof(x) = 0). If we did define the martingale, since S, ,, has higher
priority than o, any restraint imposed at s; may not be successful
since (3, , might later put A into A. This could potentially cause our

martingale m, to lose all its capital, and it could never bet again.

The solution to this problem is as follows. When we hit 7, if
there is some link to a node o and there is some A as above, we
immediately enumerate any A below the use of /(7)[s] into A, but we
do not define the martingale. This means that 3, ,,, cannot later use A
to make m, lose capital. If there is no such A then we do define the
martingale, since we can be sure that o is satisfied provided that it
is on the true path. This is the situation we would like, but failing
that, we would like to get a global win on N,. In the case that such
a A exists, we travel the link from 7 to o, enumerate all applicable
markers, but we do not delete the link. Because of this, we need
to add a new outcome to 0. Therefore o will have outcomes g and
d. The outcome g will be played when we perform the capricious

enumeration of A as above. The outcome d will be played when
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we define the martingale. Suppose we have some worker node o
with location marker p(o-) which always has some A below the use
of I(7)[s]. We will then define A“(x,m,t) to have limit 1 for any
pair (x,m) such that T < B,,, < o; note that there are only finitely
many pairs (x, m). We will also have a link from 7 to o for almost all
stages. This corresponds, however, to a global win on N, since p(o)
is a witness to the fact that 6,(y,.({/(e)) does not exist and so Ff? + A.
The permanent link may cause us to skip over other mother nodes,
which would mean we cannot meet their requirements. We therefore
restart all N-requirements of weaker priority than N, under the g
outcome of o. We do this by assigning the requirements N, for
¢ > e, as well as their subrequirements N, ; for k € w, to nodes
below o~ g in some fair way. We do not restart any 8 nodes, since
A% (x,m,t) will be defined to be 1 for the finitely many x and m
with 7 < B,,, < o. This will mean that for a finite number of m,
lim; A% (x, m, t) may be incorrectly outputting 1 instead of 0. This
is fine though, since we will only lose on a finite number of the m
and still can satisfy H,. The sacrifice of losing on an m will only
be made when we can ensure a global win on a 7 node of stronger

priority.

We now come to the situation where we have an H, of higher
global priority than the N, associated with 7. We now cannot allow
T to capriciously enumerate all the markers belonging to S, ,, if f is

Bxm’s true outcome. We now describe our solution to this problem.

First suppose that 8., and 3., are worker nodes devoted to H,
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with m < n. If B, occurs below S, ,, " oo, then B, , is guessing that
[m,0) < W,. Therefore B, , must also be guessing that [n, c0) < W,

as n > m, and so B, , will have only the oo outcome.

Suppose that 7 is below the f outcome of any g, node with
m < n. We will restart T below S, " o. Consider the situation
Bin 0 < T < Byy < o with n’ > n. If there is a link from 7 to o
then capriciously enumerating the markers A(x,n’,t) into A will not
injure 3, v since this is what .., would like to do anyway. Therefore
9H, cannot be injured in this situation. We show in Lemma 2.5.1 that

such a 7 can be restarted only finitely many times.

There is one last problem. Suppose we have v < g, ,, < o with a
link (7,0). As o’s mother is above 3, ,,, we must have 8,,," f < o
If the link is permanent then S, ,, will not be able to enumerate its
markers. As H, has higher global priority than N,, this is not a sit-
uation we want. We employ the following technique from Downey-
Stob [22]. When we hit 7, we realize that if there is a link from 7
down then this may be a potentially permanent link. We first per-
form a scouting report to see where we would go if there were no
link around. If we were to go to a node vy to the left of o then we
will erase the link and actually go to y instead. This ensures that if
Bxm 00 1S By,’s true outcome, then it will be able to enumerate its

markers.
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The Priority Tree

Our priority tree, PT, will have three types of nodes. The first type
are mother nodes 7, which have outcomes oo and f, and will be
assigned to some global requirement N,. We write e(7) = e. The
next type are worker nodes o- which are devoted to a subrequirement
of some N,, and hence will be assigned some e, k. We write e(0) =
e,k(oc) = k. We form the tree so that such o occur below some
7 with e(7) = e. For the longest such 7 with e(7) = e, we will
write 7(0) = 7. This is to indicate that 7 is ¢”’s mother. ¢ has
outcomes g and d with g < d. Finally we have nodes 8 which are
devoted to some H,, and hence will be assigned some x,m. We
write x(8) = x,m(B) = m, or simply B,,,. B will have outcomes oo
and f, with oo < f, unless 8 occurs below ' oo for some §' with
x(B') = x(B), in which case $ has only the single outcome co.

We now assign requirements and subrequirements to nodes on
the tree. In a basic infinite injury argument we would have all nodes
of the same level working for the same requirement. However in
our case, as we must restart 7 nodes, it is more complicated. We
use lists of, for example, Chapter XIV of [43] for this. We will have
three lists, Ly, L, and L,, which keep track of indices for 7,0 and g

nodes, respectively.

n = 0. Let 2 be devoted to Ny, and let Ly(Ad) = Li(A) = Lp(A) =

Forn > 0, let y € PT be of the form 6 "a. Adopt the first case

below to pertain, letting L;(y) = L;(6) unless otherwise mentioned.
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Case 1. 9 1s devoted to N..
Case la. a = f. Ly(y) = (Lo(6) — {e}) u {€' | ¢ > ¢}

Li(y) = (Li(6) — {{e,k) | ke w}) u {{e,k) | & > e, k € w}.

Case 1b. a = . Ly(y) = Lo(6) — {e}.

Case 2. ¢ 1s devoted to N .

Case 2a. a = g. Define the lists as in Case 1a.

Case 2b. a = d. Let Li(y) = Li(6) — {{e, k)}.

Case 3. § is devoted to H, with m(5) = m.

Case 3a. a = f. Ly(y) = Ly(6) — {{x,m)}.

Case 3b. a = o. Let Ly(y) be the union of Ly(6) with

{e| (AT)(VB)(e(t) = enx(B) =xnx<erB<T<6 = Bf<1)}
and let L, (7y) be the union of Ly(5) with
{(e,ky| (AT)(VB)(e(T) = enx(B) = xrx<erB<T<6 = B'f<71),kew}

Also let Ly(y) = Ly(6) — {{x,m)}.

Having defined the lists, we now assign requirements to nodes of
the priority tree as follows. Let y € PT and i be the least element
of Lo(y) U Li(y) u Ly(y). If i € Ly(y), let y be a mother node
devoted to N;. If i € Li(y) — Lo(y) and i = {e, k), let y be a worker
node devoted to N, . Otherwise i = (x,m) € L,(y) and we let y be

worker node devoted to H, with m(y) = m.

Lemma 2.5.1 (Finite injury along any path lemma). For every path
h € [PT] and every e,k € w,
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1. (3=%a < h)(e(a) =e A h(]a|) = g),
2. (3%a < h)(a devoted to N,),

3. (3% a < h)(a devoted to N, ).

Proof. (1) and (3) are straightforward. For (2), a node T devoted to
N, is restarted below 8”0 if x(8) < e and 7 has been below only
the f outcomes of nodes devoted to H,. Once restarted, it can no
longer be restarted below any other 8’ with x(8') = x(8). Thus 7 is

restarted finitely many times. O

The construction below will proceed in substages. We will ap-
pend a subscript 7 to a parameter G, so that G, denotes the value of
G at substage ¢ of the construction. As usual all parameters hold
their value unless they are initialized. When initialization occurs
they become undefined, or are set to zero as the case may be. We
will append a parameter [s], when necessary, to denote stage s. We
may write (s, 7) to denote substage ¢ of stage s.

If we visit a node v at stage (s,¢) we will say that (s, 1) is a gen-
uine v-stage. It might be that we do not visit v at stage (s, t), rather
we visit some V' extending v. In this case we say that (s,¢) is a
v-stage, and hence a v-stage may not be genuine. In fact, should
we put in place some permanent link (7,0) with 7 < v < o, then
v might only ever be visited finitely often. However, this is when
o~ g is the true outcome for some higher priority 7, and we would
claim that a new version of v would live below outcome g of 0. We

will eventually define the genuine true path as those nodes that are
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on the leftmost path visited infinitely often, and for which there are
infinitely many genuine stages.

We have for each node on the priority tree y and for all x,m € w
a restraint ¢, (x,m). These restraints will be initially set to zero in
the construction, and will only be increased when vy is a mother node
devoted to some N,. We say that a computation 2% (x)[s] is 7-correct
if (Vg < 5)(Vp) the condition
(B" 0 <tAX(B) = xAm(B) = m A max co(x,m)[s] < Alx,m,q) < &*(x)[s])

7'

implies A(x,m,q) € A[s]. If 7 is a mother node devoted to N,, then
let

Li(7)[s] = max{x | (Vy < x) (Ff? (y)[s] = A[s](y)) via a T-correct computation}.

Let m;(7)[s] = max{l;(7)[s'] | s’ < s1is a genuine 7-stage}. [f Tisa
node devoted to H, with m(t) = m, thenlet r(7)[s] = max{y | [m,y] <
W,[s]}. Let

my(7)[s] = max{L(7)[s'] | s’ < sis a genuine 7-stage}.

For 7 a mother node devoted to some N,, let d;[s] denote the length

of the longest string for which m;, is defined by stage s.

Construction At stage 0 set A%(0,0,0) = 0 with choose some use
2(0,0,0). Set ¢,(x,m)[0] = O for all x,m € w and all nodes y on
the priority tree. Set m.(4) = 1 for all nodes 7 devoted to some

requirement N,. Stage s + 1 will proceed in substages ¢ < s. As
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usual, we will generate a set of accessible nodes, TP[s + 1],, and
will automatically initialize nodes «a to right of TP[s + 1];. A node
is initialized by removing its location marker and removing any link
to or from the node.

Substage 0. Define TP[s + 1]y = A, the empty string. Let
A4(x,m,s + 1) = 0 with some large use A(x,m,s + 1) for all
x,m< s+ 1.

Substage t + 1 < s + 1. We will be given a string y = TP[s + 1],.
Adopt the first case to pertain below.

Case 1. v is a mother node devoted to N,.

Subcase la. There is a link (y, o) for some node o~. We perform
the scouting report by computing the string y’ that would be TP[s +
1] were there no link. If ' <; o, remove the link (y, o), let TP[s +
1 =79 1 (ly] + 1), and go to substage t + 2. If ' £, o, see
whether [, (y)[s+ 1] > p(0),.(v.(p(c)))[s+ 1] withy.(p(o))[s+
1] >d,[s + 1].

Subcase la.1. No. Set TP[s + 1],.; = 7" f and go to substage
t+ 2.

Subcase 1a.2. Yes and for some node B devoted to H, with
m(B) = mand y < "0 < o, there is a marker A(x,m,q) with
plo) < Ax,m,q) < 6.(ve(li(y)))[s + 1]. Our action is to set
TP[s + 1],+1 = o. We refer to this action as traveling the link.
Go to substage  + 2.

Subcase 1a.3. Otherwise, set TP[s+1],;; = o and go to substage
t+ 2.
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Subcase 1b. There is no link from y. Let TP[s + 1],;; = y"o0.

Case 2. y 1s a worker node devoted to N, .

Subcase 2a. We were 1n subcase 1a.2 in the previous substage.
Enumerate all markers as in the previous substage into A. Let TP[s+
i1 =7v"g.

Subcase 2b. We were in subcase 1a.3 in the previous substage.
Define m,(,) to wager $1 on AZ[s + 1] T v.(li(r(y)))[s + 1] and
bet neutrally on all other strings up to and including that length.
For all x,m such that there is 8 > y with x(8) = x,m(8) = m,
let ¢y (x,m)[s + 1] = .(ve(li(r(y)))[s + 1]. Remove the link
(t(y),y). Let TP[s + 1],41 = y"d.

Subcase 2¢. We did not travel a link to arrive at y. If mq,) (A T
de(y)[s+1]) > k,let TP[s + 1],41 = ¥"d, and go to substage 7 + 2. If
not, choose a fresh large follower p(y) for y, place a link (7(y),7y),
and go to stage s + 2.

Case 3. 7y is a node devoted to H, with m(y) = m. Consider the
immediate successors of y on the priority tree.

Case 3a. The immediate successors of y are y" oo and vy~ f. See
whether L, (y)[s + 1] > ma(y)[s + 1].

Case 3a.1. Yes. For all ¢ < my(y)[s + 1], if A(x,m,q) >
max,<, c-(x,m)[s + 1] and A*(x,m,q) = 0, enumerate A(x,m,q)
into A and define A%(x,m,q) = 1 with use —1. Set TP[s + 1], =
v~ o0.

Case 3a.2. No. Set TP[s + 1],.1 =y f.
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Case 3b. The immediate successor of y is v~ oo. For all g <

my(y)[s + 1], if

A(x,m,q) > max c.(x,m)[s + 1] and A*(x,m,q) = 0

169

enumerate A(x,m, g) into A and define A*(x, m,q) = 1 with use —1.

Set TP[S + 1]t+1 = y" 0.

Verification We define TP, the true path, to be the leftmost path vis-
ited infinitely often. This clearly exists as the priority tree is finite-
branching. We define GTP, the genuine true path, to be those o <

TP such that there are infinitely many genuine a-stages.

Lemma 2.5.2. For every e € w there is a node T devoted to N, on
GTP.

Proof. Let 7 be the longest node devoted to N, on TP, which exists
by the finite injury along any path lemma. We claim that 7 is on
GTP. Suppose otherwise. Then it must be the case that there are 7/
and o on GTP such that 7/ < 7 < ¢ and the link (7/, o) is there at
almost all stages. This implies that 0" g is on GTP. On the priority
tree, if 71 < 7, then e(7;) < e(12). Now as o links to its mother
node 7’ and 7 < 7 we must have ¢(7') < e(r) = e. But then by
the construction of the priority tree, there is an N, node below 0" g,

contradicting the hypothesis that 7 is the longest such. O

Lemma 2.5.3. For every e € w, N, is satisfied.
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Proof. Let 7 be the longest node on GTP devoted to N,. First sup-
pose that 7" f < GTP. Then Ff? # A and N, is vacuously satisfied.
If there is a permanent link (7, o) for some node o, then we claim
that FEA? # A. For contradiction suppose FEA? = A, and suppose the
link was placed at stage syo. Then there is a stage s > sy and uses
5.(re(1 (1)) = a1, 7e(li(1)) = @z, such that T2 "[s] < A | a.
However if this were the case, at the next genuine 7-stage greater
than s we will see that these computations have converged, play the
d outcome, and remove the link. This contradicts the fact that the

link is permanent. This establishes the claim.

Now suppose there is no such permanent link. We will show
that m, succeeds on AZ. We must ensure that m.’s capital does not
decrease along A2. Fix k € w, and let ¢/ > 7 be the first node
devoted to N, that is visited. Suppose we visit ¢ first at stage s.
At stage so we assign o a fresh large location marker p(o”’) and
link back to 7. Let s; be the stage at which we first define m; to
win $k on A[sy]. As we acted in case (2b) of the construction, we
did not play the g outcome at stage s; and so there were no markers
belonging to any nodes B such that 7 < 8" o0 < ¢ below the use
of our computations. The computations are 7-correct at stage s;
and restraint is imposed on requirements of weaker priority than o~
Therefore the only markers which can be enumerated below the use
are those belonging to nodes 8 such that 7 < 8" f < o”. As 8" f was
visited at stage sg, there is at least one marker, namely A(x, m, s¢)

where x = x(8) and m = m(f), that has not been enumerated into A
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by stage so. The location marker p(o”’) was chosen to be large at the
substage when o’ was visited, and so is larger than A(x, m, s¢). If at
some later stage r we enumerate A(x,m, sg) into A, then A changes
below p(c'). If we are to have ['* = A, then AA[t] T yve(p(a”))[s0]
is incomparable with A2[so] | y.(p(c”))[so]. Therefore m,(A}[t] T
d;[t]) = k — 1, and so m, has not decreased in capital along A2. If
we later arrive at 8, we will play 8" oo and initialize o as it is to the
right of 87 co. If we visit o’ again, a new location marker will be
chosen, which must be larger than at least one marker of any node

such that T < B f < o”.

Let sp be the least genuine 7-stage. As 7 is genuinely visited at
stage s there can be no link (7/,0”) at stage so with 7/ < 7 < ¢,
Fix k € w and suppose for contradiction that o < TP devoted to
N, 1s never genuinely visited. Then there is some permanent link
(r",0") with T < ™ < o < ¢”. Suppose the link (7”,0") was
placed at stage s;. Then as ¢ is genuinely visited at stage s; and
o < o, o is genuinely visited at stage s;. Contradiction. At stage
s1 we define the location marker p(o-) and create a link (7,07). Let
s, be the stage at which we travel the link to o and define m, to
win $k on A%[s,]. If we visit a node that is below 7 but to the left
of o then, as in the previous paragraph, m, will then have capital
k — 1. However oo < TP, and so this will occur only finitely many
times. Let s3 be the greatest stage at which o is initialized. We
remove any link over o as part of the initalization. At the next o-

stage after s3 we will genuinely visit o and place a link if we see
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that m.(A2[s3] I d.[s3]) < k. Let s be the stage at which we travel
the link to o and define more of m,. As we never visit a node to the
left of o, no marker belonging to a node S such that r < 8" f < o
will be enumerated after stage s’. As in the previous paragraph, A

cannot change below the use 6, (y.(I(7))[s'] and m.(A%) > k. O
Lemma 2.5.4. For every x € w, H, is satisfied.

Proof. Suppose x ¢ Cof. Let 8 < TP be the node devoted to H,
with m(B) least such that 8, ,, is not permanently linked over by 7’s
of stronger priority for all m > m(B). Let mg = m(B). We show that
lim; A%(x,m,t) = 0 for all m > my. We will have A*(x,m,t) = 0
unless the marker A(x,m,t) is enumerated into A. Thus we must
show that we eventually stop enumerating the markers A(x, m, t) into
A. As [my, 0) & W,, the I, test which measures whether [m, o) <
W, will eventually always say “no”. So eventually the S, nodes
will stop putting their markers into A and redefining A% (x,m, t).
Therefore the only way we will enumerate the markers is if there
is a link (7,0) over B, wWith 7 < B,,," 00 < o and 7 is accessible.
We must show that if there is such a link then 7 is accessible at only
finitely many stages.

For 7 with e(1) > x, we will restart 7 below B, . If "0 <
T < Bym, < o and alink (7, o) is placed over B, ,,,, for some m; > m,
then as 8" co can be visited at most finitely many times, only finitely
many markers A(x, my,t) will be enumerated.

Now suppose 7 is above 8 and we place a link (7, o) over 8. Sub-

case (2a) of the construction will enumerate markers A(x, m, ) only
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if Bym 00 < 0. As o must be below 3" f, the markers A(x, m, t) will

not be enumerated, and we will have lim; A*(x, m, ) = 0.

Finally, if 8, is another node on another path of the priority tree
which is visited infinitely often, we must ensure that it does not enu-
merate all of the markers A(x,m, ). The II, test performed at 5,
is the same test which is performed at By, and so will eventually
always say “no”. Therefore the marker A(x,m, ) will only be enu-
merated if there is a link (7, 0) over 8, with 8/, "0 < 0. As 8,
is to the right of TP it will be initialized infinitely many times. Any
link over 8, ,, will be removed as part of the initialization, and so 8 ,,
is not permanently linked over. The marker A(x, m, ) is enumerated
capriciously only if 8/, “0o < o. For the marker to be enumerated
infinitely many times we must visit o~ below ), " o0 and place a
link back to 7. However if 5, "0 is visited infinitely many times,
this contradicts x ¢ Cof. Therefore f/ ,, cannot enumerate infinitely

many of its markers.

Now suppose that x € Cof and [mg, 0) < W,. Let 8 < TP be the
node devoted to H, with m(B) least such that 3, ,, is not permanently
linked over by 7’s of stronger priority for all m > m(B). Let m' =

max{m(B), my}. We show that lim; A*(x,m,t) = 1 for allm > m'.

We first show that lim;c.(x,m)[s] exists for all 7 < B and so
all markers A(x, m, q) > max,glim, ¢,(x, m)[s| may be enumerated
into A. The value of ¢, (x, m) can be increased only when the mother
node 7 links to some worker o~ with o~ < ), and subsequently de-

fines more of the martingale m,. The priority tree is finite-branching,



92 CHAPTER 2. INTEGER-VALUED RANDOMNESS

and so there are only finitely many nodes S, ,,. Consider
(¢',k'y = max ug,_ {{e,k)| o < By, has mother T and is devoted to N, }.

Let o be the node on TP devoted to N, 4, and suppose that no node
to the left of o7 is visited after stage so. When we genuinely visit
any node o < o with mother node 7, the construction will check
to see whether m.(A2[s] T dq[s]) > k(o). If so, we will play the d
outcome. As o < TP, the martingale will never decrease in capital
and ¢, (x, m) cannot be increased again after travelling a link to some
o’ devoted to N, k(). If m (AL | d;[s]) < k(or), then we will create
a link from o back to 7 at stage s > sg. If the link is permanent
then ¢, (x, m) will never be increased. If we later define more of m;
we will then increase ¢, (x,m). Again, as o < TP, the martingale
will never decrease in capital and c.(x, m) cannot be increased again
after travelling a link to some o devoted to N, (). There are only
finitely many worker nodes o < o with mother node 7. Therefore
limg ¢ (x, m)[s] exists for all T < B.

We will restart all 7 nodes with e(7) > x below S, ~00. As
[m',0) < W,, the II, test which measures whether [m, ) < W,
will say “yes” infinitely many times for all m > m’. If a link (7, o)
is placed over B, v, and so B, " f < o, we will perform a scouting
report when we arrive at 7. Suppose the link (7, o) is placed at stage
so and that s; is the least stage greater than sy at which the II, test
says “yes”. At the least 7-stage after s, the scouting report will be
successful, and By, " o0 will be accessible. We then will remove the

link (7, 0) and enumerate the marker A(x, /', ). In this way all of
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B.n’s markers will eventually be enumerated.

Now suppose that By, "0 < T < Bym < 0. The node By,
has only the co outcome, as it is below B, ~ o0 with m' < my.
If Bym, 1s on GTP then it will enumerate its markers whenever it
is accessible and define A such that lim; A*(x,m1,t) = 1. If By,
is not on GTP then the link (7,0) must be permanent. As in the
previous paragraph, B, ~ oo will be accessible at infinitely many
stages. When we arrive at 7 and see the link, we will enumerate
markers of the form A(x, my, q). Therefore all of 3, ,,,’s markers will

eventually be enumerated and lim, A*(x,m,t) = 1. O

This concludes the verification of the construction, and the proof of
Theorem 2.1.8.
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Chapter 3

DNR and incomparable Turing

degrees

This chapter is joint work with Mingzhong Cai and Noam Green-

berg, and has appeared in [10].

3.1 Introduction

One way in which we might consider a Turing degree to be compu-
tationally strong is if it computes a diagonally noncomputable func-
tion: a function f: w — w such that f(e) # ¢.(e) when the latter is
defined. Then f is thought to be far from computable because it can
give f(e) as a counterexample to the assertion that f = ¢,.

We might wonder whether a Turing degree can be simultane-
ously strong in this sense, but weak in another. Sacks in [39] asked
whether there exists a degree which both computes a diagonally

noncomputable (DNC) function and is minimal. Kumabe ([32]) an-

95
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swered this affirmatively using a technique known as forcing with
“bushy trees”. Since then the technique has been used in several re-
sults, including some in algorithmic randomness and reverse mathe-
matics. See [29] for a survey of such results.

In this chapter we extend this technique to show:

Theorem 3.1.1. There is an initial segment a; < a, < a3 < --- of
the Turing degrees such that each a,, | is a DNC degree relative to

an.
The theorem has a corollary in reverse mathematics.

Corollary 3.1.2. The system DNR does not imply Turing incompa-
rability, in fact it does not imply the existence of a pair of Turing

incomparable reals.

Although no knowledge of reverse mathematics is required for
the proof of the theorem, we provide some background for motiva-
tion.

Reverse mathematics is a programme in the foundations of math-
ematics with deep connections with computability theory. We con-
sider subsystems of second order arithmetic. Our models M consist
of two parts. The first part is a set |M| which we interpret as our
numbers, and the second part is a collection Sy, of subsets of |M|
which we interpret as our sets. We are often interested in so-called
w-models, where | M| is simply w, the standard natural numbers. Our
collection of sets is usually a Turing ideal. That is, it is closed under

computable join and downward closed under Turing reducibility.
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We consider axiom systems and models of such systems. One im-
portant system is known as WK Ly (weak Konig’s lemma). It ensures
that our Turing ideal contains a completion of Peano Arithmetic.
In [31], Kucera and Slaman solved a long-standing open problem
by showing that for every model M of WKLy, if x € Sy, is noncom-
putable, then there is some y € 8§y, which is Turing incomparable
with x. We say that Turing incomparability holds in every w-model
of WKLy. This was improved by Conidis [15] to show that Turing
incomparability holds in w-models of the weaker system WWKL,,

the system which ensures the existence of a Martin-L6f random set.

A prominent system below WWKLj is DNRy, the system which
ensures the existence of a DNC function. The systems WWKL
and DNR, were first separated by Ambos-Spies et al. [1] using a
tame version of bushy tree forcing. Our corollary shows that Turing
incomparability does not necessarily hold in models of the weaker
system DNR).

We prove Theorem 3.1.1 in four steps. The third step (in Sec-
tion 3.4) provides the construction, for each n < w, of an initial
segment @; < --- < a, of the desired infinite sequence {(a;). The
fourth and last step (in Section 3.5) shows how to string these con-
structions together and so prove Theorem 3.1.1. The first two steps
serve as an introduction to the construction of Section 3.4. In Sec-
tion 3.2 we recast Kumabe’s construction in the language of forcing
that we subsequently use. In Section 3.3 we discuss the case n = 2

(the construction of a minimal DNC degree a; and a strong mini-
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mal cover a, of a; which is DNC relative to a;). Recall that b is
a strong minimal cover of a if b > a, but for all ¢ < b we have
¢ < a. We say that the function f is DNC relative to a if for some
function a of degree a, f(e) # ®%(e) where the latter is defined, and
we write f € DNC?. We say that the degree b is DNC relative to a

if it contains some function which is DNC relative to a.

3.1.1 Fast-growing functions

Below we use trees (or tree systems) which are fairly “bushy” but
associated with them we will have sets of “bad” strings which we
want to avoid. In the first step we use infinite trees and for example
declare every string which is not DNC to be bad. We then extend the
bad set of strings when we force divergence or force a functional to
be constant on a tree. We cannot simply remove the bad strings from
the tree because the trees will be computable whereas the set of bad
strings will be c.e. To ensure that most strings are not bad, and that
the construction can proceed, we will require that the tree is 4-bushy
and that the bad set of strings is b-small above the stem of the tree,
where i grows much more quickly than the order-function b. Here
we discuss the notion of relative quickness that we will use.

For an equivalence notion of rate of growth we close under rela-
tive elementary recursive functions. (We could use relative primitive
recursive functions but this is not needed.) For any order function 4
one defines the class of order functions which are obtained from A

using a list of rules such as substitution and bounded summation and
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multiplication.

We are only concerned with rates of growth. If 4 grows suf-
ficiently quickly then g is bounded by a function elementary in 4 if
and only if it is dominated by an iterated composition of /& with itself.
In particular, the elementary recursive functions are those which are
bounded by iterated exponentials.

It will be convenient to consider functions that may be undefined

on a finite initial segment of w.

Definition 3.1.3. Let Q denote the collection of nondecreasing com-

putable functions h: w — [2, w) satisfying h(n) > 2" for all n.

Forh € Qlet ') = hand for k > 1, h**Y = p o K% For two
functions & and g in Q we say that h majorises g if h(n) > g(n) for
all n (and write h > g). We say that h > g above m if h(n) > g(n) for
all n > m. We say that h dominates g if h > g above some m (and

write h >* g).

We will use the fact that iterated exponentials of /& are dominated

by iterates of 4. For example:
Example 3.1.4. Let h € Q. Let g(n) = [],o,) (m). Then g <*

h3). For g < h" whereas h® > 2" and h® > 22", and 2% >* K"

Definition 3.1.5. Let 4, g € Q. We say that h dominates the iter-
ates of g uniformly, and write h » g, if there is a computable se-

quence {dy) such that for all k > 1, h > g¥) on the interval (d, w).

The relation » on Q is transitive. Indeed if # » g, ' >* h and
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g >* g/ then W » g. Further, h » g for all k, and so for example
h > 28.

The following density lemma will be used to keep extending con-

ditions.

Lemma 3.1.6. For all h,g € Q such that h > g there is some [ € Q
such thath > f > g.

Proof. The idea is to gradually let f copy g¥. If f is bounded
by g for a long time, then for a shorter time we can ensure that
f® is bounded by g, so we do this until the point where A starts
to majorise g{**1°)_ and only then start copying g**+1.

Since g is nondecreasing and dominates the identity, each g is
nondecreasing and g**1) > ¢,

Letk > 1, e > 0 and let f be a function. Suppose that f < g¥)
on the interval [0, g*")(e)] (actually the interval [0, g* % (¢)] will
suffice). Then f® < g®) on the interval [0,e]: by induction on
j < k we see that 1) < g on the interval [0, g*(*=7)(¢)].

Let (d;) witness that &7 » g. We may assume that {dy) is nonde-
creasing.

We define a computable sequence —1 = ay < a; < --- and
then define f by letting f = g®) on the interval (a;_;,a;]. So the
sequence {(a;_;) witnesses that f » g. But also f < g® on the
interval [0, a;] for all k > 1. So we let a; = g(kz)(d(kﬂ)z). This
ensures that ) < g(kz) on [0,d1)2], which in turn shows that
h > f® on the interval (di2,d;1y2]- Since f € @ f™ > f0 if

=z
m > k, so the sequence {d;2) witnesses that 1 > f. O
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3.1.2 Other notation and conventions

A string is a finite sequence of natural numbers, an element of w=%.
If o is a string then we let o~ be the collection of strings which
extend o, and [o"]~ be the set of elements of Baire space w® which
extend o-. If C is a set of strings then C~ = | .- o~ and so [C]|~ =
Useclo]™

We may assume that for any Turing functional I and for any
string 7, the domain of I'(7) is downwards closed. Thus I' deter-
mines a monotone computable map 7 — I'(7) from strings to strings,
which induces a partial computable function on Baire space: I'(x) =
U{T(7) : 7 < x}.

We let lowercase Greek letters denote strings, lowercase Roman
letters denote elements of Baire space, and uppercase Roman letters

denote sets of strings and sometimes subsets of Baire space.

3.1.3 Compactness, splittings and computability

Definition 3.1.7. A subset X of Baire space is computably bounded

if some computable function majorises every element of X.

Every computably bounded and closed subset of Baire space is

compact.

The following is well-known.

Lemma 3.1.8. Let X < w® be H(l) and computably bounded; let
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f: X — 2% be a computable function.

o If f is constant on X then this constant value is computable.
o If fis I-1 on X then forall x € X, x =¢ f(x).

Proof. Suppose that f is constant on X; let f[X]| = {y}. The fact
that X is computably bounded implies that the set of @ € 2= such
that X = f~![[a]~] is c.e.; this is the set of initial segments of y,

so y is computable.

Suppose that f is 1-1 on X. Let Y = f[X]. Then Y a I1{ subset
of 2¢ and f is a homeomorphism between X and Y. And f!is
computable: the set of pairs (@, 7) such that [a|~ " Y < f[[r]~] is

C.C. a

If X < (w”)” and x € w” we let X, = {y : (x,y) € X}.

Lemma 3.1.9. Ler X < (w®)* be I19 and computably bounded. Let
f: X — 2% be computable and suppose that the collection of sets
f1X:] for x € dom X are pairwise disjoint. Then for all (x,y) € X,

x <t f(x,y).

Proof. For 7 € w™ let X; = (J,c[;j< X»- The set of pairs (7,C)
where C < 2¢ is clopen and f[X.]| = C n f[X] is c.e. O

"Here we think of X and 2¢ as computable metric spaces. A computable function from X to 2¢

is given by a uniform Turing reduction.
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3.1.4 Forcing with closed sets

We quickly remind the reader of just a few definitions needed for
our development of forcing. A good reference for forcing more gen-
erally in computability theory is Chapter 3 of [42].

A notion of forcing is a partial order (P, <). We call the elements
of P conditions, and if ¢ < p, then we say that g extends p, or that g
1s below p. A subset F of P is called a filter if is is upwards closed,
and every pair of elements in F has a common extension in F. A
subset D of P is dense if every condition p € P has an extension in
D.

Definition 3.1.10. Let P be a notion of forcing. Suppose that with
each condition p € P we associate a closed subset X” of Baire space.

We call this assignment acceptable if:
(a) for all p € P, X? is nonempty;
(b) if g extends p then X9 < X”; and

(c) for every m, the set of conditions p € P such that X? < [o]~

for some string o of length m is dense in P.

(Below we will consider finite powers (w®)" of Baire space, but

these are of course effectively isomorphic to Baire space.)

Recall the Borel codes for Borel subsets of Baire space. These
can be identified with propositional sentences in L, ,. To be pre-

cise:

e Every finite set of strings C is a Borel code;
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e If C is a Borel code then —C is a Borel code;

e If C is a countable set of Borel codes, then \/ C and /\ C are

Borel codes.

The semantics are obvious (a finite set of strings C defines the set
[C]7); if C is a Borel code then we let |C| be the Borel subset of
Baire space defined by C.

Suppose that P is a notion of forcing equipped with an acceptable
assignment of closed sets X”. We define the forcing relation p + C
between conditions in P and Borel codes C. We start with strong

forcing.

Definition 3.1.11. Let C be a Borel code and let p € P. We say that
p strongly forces C if XP < |C|. We write p +* C.

Now by recursion on Borel codes C we define forcing.

e For a finite set of strings D, p I D if the collection of conditions

which strongly force D is dense below p.
e p I —C if no extension of p forces C.
e pi ACif pi Cforall C e C.

e p I \/ Cif the set of conditions which force some element of C

1s dense below p.
The basic properties of forcing hold.

Lemma 3.1.12. Let p € P and let C be a Borel code.
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1. No condition forces both C and —C.
2. The set of conditions which decide C is dense in P.
3. If g extends p and p v C then g I+ C.

4. If the set of conditions which force C is dense below p then
pIFC.

Forcing equals truth. That is, every sentence in our language is
true if and only if it can be forced. It will be convenient to con-
sider directed subsets of P rather than filters; of course the upwards
closure of a directed set is a filter, so we can always pass to filters
without adding information. Genericity for directed sets is defined
using dense open sets: dense subsets of P which are closed down-
wards (closed under taking extensions). Note that the dense sets of
conditions mentioned above are all open.

Suppose that G < P is a directed set. If G meets all of the dense
XPis a

singleton that we denote by {x®}. (This uses the completeness of

open sets of conditions guaranteed by (c) above, then | ) eP
Baire space; we do not need the sets X” to be compact.)

In the rest of the chapter, the statement “for all sufficiently generic
G < P ..” means: there is a countable collection O of dense open
subsets of P such that for every directed subset of P meeting all the

sets in D, ...

Lemma 3.1.13. Let C be a Borel code. If G < P is a sufficiently
generic directed set then x° € |C| if and only if p v C for some p €
G.
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Proof. First note that if p € G and p * C then x% € |C]. On
the other hand, suppose that D is a finite set of strings, and suppose
that x® € [D]|~: there is some 7 < x% such that 7 € D. By as-
sumption, there is some string 1 of length |7| and some p € G such
that X? < [n]=. Then n = 7, and so p +* D, which implies that
p - D.

The rest of the argument follows the usual proof of the equiva-

lence of forcing and truth for generic filters. O

Since every condition can be extended to a sufficiently generic

directed set, we conclude:
Corollary 3.1.14. Let p € P and let C be a Borel code.

1. p v Cifand only if for every sufficiently generic directed set G,
if p € G then x° € |C].

2. If|Cl < |C'|and p v C then p v C'.
3. Ifpw* Cthenp i C.
In light of (2) we write p - x° € A when A is a Borel subset of

Baire space, rather than a code for such a set.

3.1.5 Simplified iterated forcing

We give a not-completely-standard definition for restriction maps

between notions of forcing.
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Definition 3.1.15. Let P and Q be partial orderings. A restriction
map from Q to P is an order-preserving map i from Q to P such that
for all ¢ € Q, the image of Q(< ¢) (the set of extensions of ¢) under i

is dense below i(q).

That is, for all ¢ € Q and p < i(q) there is some r < g in Q such
that i(r) < p.

Lemma 3.1.16. Let i: Q — P be a restriction map.
1. If G < Qs a directed set then i|G] < P is a directed set.
2. If D C Pis dense and open then i '[D] < Q is dense and open.

Hence for any collection D of dense open subsets of P there is
a collection & of dense open subsets of Q such that if G < Q is
a directed set which meets every set in &, then i[G] is a directed
set which meets every set in D. In other words, if G is sufficiently
generic then so is i[G].

Suppose that P and Q have acceptable assignments of closed sets
XP < w® for p e Pand Y4 < (w®)” for g € Q. Suppose that i: Q —
P is a restriction map and further that for all ¢ € Q, X9 © dom Y9,

Let G < Q be sufficiently generic; we denote the generic pair of

reals by (x%,y%). Then x'l6] = xC.

3.1.6 The plan

To prove Theorem 3.1.1, for each n < w we define a notion of

forcing P, which adds an initial segment of the degrees of length n,
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each degree DNC relative to the one below it. We then show that
there are restriction maps from each P, to P,_;. This will allow us
to obtain generic G,, < P, which are coherent, from which we will

obtain the desired w-sequence of degrees.

3.2 A DNC minimal degree

Khan (see [29]) showed that for any Turing degree x there is a func-
tion which 1s DNC relative to x and of minimal Turing degree. He
presented an elaboration on the Kumabe-Lewis construction using
the language of forcing in computability (rather than give an explicit
construction). The extra complication is due to the fact that the set
of strings which are not DNC” is c.e. in x, rather than merely c.e.
We have no access to this set when defining the computable trees.
For this reason Khan needs to use trees with terminal elements (and
the set of terminal elements is co-c.e. but not computable).

In this section we present a proof of the original Kumabe-Lewis
theorem using the language of forcing. We use c.e. sets of bad

strings and trees with no terminal elements.

3.2.1 Trees and forests

We follow [1, 23, 29] and use trees which are sets of strings rather
than function trees (as in [9, 32]). We localise to basic clopen sets.
Recall that for a string o, o~ is the set of strings extending o

A tree above o is a nonempty subset of o~ which is closed in o=
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under taking initial segments. A set of strings A is prefix-free if no
two distinct elements of A are comparable. If A is a finite prefix-free
set of strings then a forest above A is a set T < A= such that for
all o € A, T n o~ is a tree above o. In particular we require that
A < T. When we just say “tree” we mean a tree above o for some o;
the string o will usually be clear from the context or unimportant.
The same holds for forests. We will mostly only use finite forests,

but will use both finite and infinite trees.

Let T be a forest and let T € T. An immediate successor of ron T
is a string 7/ > 7 on T such that |'| = |7| + 1. A leaf of a forest T,
also known as a terminal element of T, is a string on 7" which has

Nno proper SucCessors on T.

A subtree of atree T 1s a subset S < T which is a tree. Note that
the stem of S may equal the stem of T, or properly extend the stem
of T. If T is a tree and 7 € T then the full subtree of 7 above T is

T n 7=, the set of strings on T which extend .

If T is a tree above o then [T] is the set of infinite paths of T, the
set of x € w® such that x|, T for all n > |o|. This is a closed subset
of w®. Recall that [o|~ is the set of extensions of o~ in Baire space;

in our notation, [o]~ = [0~].

A tree T is bounded by a function h if for all T € T, 7(n) < h(n)
for all n < |7|. It is computably bounded if h can be taken to be
computable. If T is computably bounded then so is [T'] (Defini-
tion 3.1.7).
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3.2.2 Bushy notions of largeness

The basic notions of “bushiness” were extended from constant bounds
to order functions, see [8, 29]. We recall the definitions and basic

properties. A bounding function is a computable function from w
to [2, w).

Definition 3.2.1. Let T be a forest above a finite prefix-free set of
strings A; let & be a bounding function. We say that T is h-bushy if
every nonterminal 7 € T has at least A(|7|) many immediate succes-

sors on 7.

Definition 3.2.2. Let A be a finite prefix-free set of strings and let B
be a set of strings. Let & be a bounding function. The set B is h-big
above A if there is a finite forest 7" above A which is h-bushy, all of
whose leaves are elements of B.

If A is an infinite set of strings then we say that B is h-big above A
if B is h-big above every finite, prefix-free subset of A.

If B is not h-big above A then we say it is h-small above A.

If A is a singleton {o} then we say that B is h-big (or h-small)
above 0. A set B is h-big above A if and only if the set of minimal
strings in B is h-big above A. We thus often use the notion for either
prefix-free sets of strings, or for open sets of strings — those that
are upwards closed (closed under taking extensions). Also note that
sometimes we do not assume that B only contains extensions of A,

but of course for this notion it suffices to look at B n A~.
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The following remark is trivial. Its generalisations in later sec-

tions will be less so.

Remark 3.2.3. Suppose that B is a set of strings, h-big above A, and
that A, B < T for some tree T. Then any forest S which witnesses
that B is h-big above A is a subset of T'.

The basic combinatorial properties of this notion of largeness
have been repeatedly observed [27, 32, 23, 29].

Lemma 3.2.4 (Big subset property). Let h and g be bounding func-
tions. Let B and C be sets of strings, let o be a string, and suppose
that B U C is (h + g)-big above . Then either B is h-big above o

or C is g-big above 0.

Here it is important that we work above a single string o~ and not

above any finite A.

Proof. Let T be a tree which witnesses that B U C is (h + g)-big
above o. Label a leaf 7 of T “B” i1f it 1s in B, and “C” otherwise.
Now if p € T and all immediate successors of p have been labelled
then since p has at least /(|p|) + g(|p|) immediate successors on 7,
either at least i(|7|) of these are labelled “B” or at least g(|r|) of
them are labelled “C”. In the first case label p “B”, in the other label
it “C”. Eventually o is labelled. If o is labelled “B” then the set
of p € T labelled “B” form a tree which witnesses that B is h-big

above o; and similarly if o is labelled “C”. O

Lemma 3.2.5 (Concatenation property). Let h be a bounding func-
tion. Let A, B and C be sets of strings. Suppose that B is h-big
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above A, and that C is h-big above every T € B. Then C is h-big

above A.

Proof. Let A’ be a finite, prefix-free subset of A. Let T be a forest
which witnesses that B is i-big above A’. For aleaf 7 of T let R, be a
tree which witnesses that C is h-big above 7. Then T U || R,, where

T ranges over the leaves of T', witnesses that C is h-big above A’. O

The concatenation property will sometimes be used to recursively
build bushy trees meeting infinitely many big sets. Again the follow-
ing are fairly immediate; their generalisations in the next sections

will be less so.

Definition 3.2.6. A forest R is an end-extension of a forest § if every

string in R\S extends some leaf of S.

(This is not the same as the usual definition for partial order-
ings, but under the usual definition, any tree extension is an end-
extension.) The argument proving the concatenation is broken up to

show:

Lemma 3.2.7. Let A, B, C be sets of strings, and let h be a bounding

function.

1. Suppose that C is h-big above every T € B. Then C is h-big

above B.

2. Suppose that A is prefix-free and finite; suppose that B is h-big
above A and that C is h-big above B. Then any forest which
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witnesses that B is h-big above A has an end-extension which

witnesses that C is h-big above A.

Remark 3.2.8. Throughout, we will assume that whenever we are
given a set of strings which is guaranteed to have some largeness
property, then this set is the set of leaves of a forest witnessing this
property. For example, suppose that we are given a set B which
is h-big above some o. We will assume, often without mentioning
it, that B is finite, that it is prefix-free, and that every string in B

extends o.

3.2.3 The notion of forcing and the generic

Let Bpnc be the set of strings o that are not initial segments of di-
agonally noncomputable functions: o(e) = J(e)| for some e < |o|,

where J is a fixed universal jump function, for example J(e) =

pe(e).
Let T be a tree. We say that a set of strings B < T isopenin T if

itis upwards closedin 7: if c e Band 7 > oisin T then 7 € B.

We let P; be the set of tuples p = (o?, T?, B, h?, b?) satisfying:

1. T? is a computably bounded, computable tree above o” with

no leaves.
2. h? € Q and T? is h”-bushy.
3. BP c T?isc.e.and openin T?, and B? © Bpne N T7.

4. b? € Q and BP? is bP-small above o?.



114 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES
5. W’ » bP and h” > b? above |oP|.
Lemma 3.2.9. P, is nonempty.

Proof. The set Bpnc is c.e. and is 2-small above the empty string {).
Fix some b € Q (and recall that b > 2); and find some & € Q such
that 2 » band h > b (for example i(n) = b+ (n)). Recall that A=<
is the set of h-bounded strings. Then p = (), h~“, Bpnc "h=%, h, b)

1s a condition in P;. O

We define a partial ordering on P; as follows. A condition ¢
extends a condition p if o7 < 04, T is a subtree of T?, B? n T <
B4, and h? < h” and b? > b” above |o4|.

To use the machinery of forcing developed in Section 3.1.4 we

need to associate with each condition p € Py a closed set X”.

Lemma 3.2.10. The assignment of closed sets XP = [TP|\[B’]~ =
[TP\BP?] for p € Py is acceptable (Definition 3.1.10).

Proof. Requirement (b), that X¢ < X? if g extends p, follows di-
rectly from the definition of the partial ordering on P;.

Let p € Py. Suppose that [T?] < [B?]~. Since T? is bounded,
[T?] is compact. This implies that there is a prefix-free, finite set
C < B? such that every 7 € T? is comparable with some element
of C. The collection of strings in 77 extended by some string in C
witnesses that B? is h”-big above o”. Since h? > bP above |o?| this
implies that B? is b”-big above o”. We get requirement (a): X7 is

nonempty.



3.2. A DNC MINIMAL DEGREE 115

Againlet p € Py. Let m > |o?|. There is some 7 € T? of length m
above which B? is b”-small; otherwise, the concatenation property
implies that B” is bP-big above o”. If B? is b”-small above 7 then
qg = (t,T? n =, B? n 75, hP,b") is a condition in P; extending p
and satisfying X9 < [T?] < [r|*. This gives requirement (c) of
Definition 3.1.10. O

As discussed in Section 3.1.4, if G < P; is sufficiently generic
then (). [T7\B] is a singleton {x“}. In fact

xG=U{0"’ . peG}.

Let p € Py; since Bpne N TP < BP we see that X < DNC. Since

strong forcing implies forcing (Corollary 3.1.14(3)) we get:
Proposition 3.2.11. Every condition in P, forces that xX® € DNC.

Remark 3.2.12. Let A be an open set of strings and let g be a bound-
ing function. We say that A is g-closed if every string above which A
is g-big 1s an element of A.

The concatenation property implies that every set A has a g-
closure: the set of all strings above which A is g-big is g-closed.

Let p € P;. We could require that B be b”-closed by replacing it
by its b”-closure. In this case T7\B? is an (h” — b”)-bushy tree with
no leaves.

In later sections we will use notions of largeness for which the
concatenation property fails, and so will not be able to quite mimic
this operation. Some amount of closure will be required to ensure

that we get a restriction map from P, to P,,_;.
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3.2.4 'Totality

Recall that for a set of strings C we let [C]™ = | J,.c[c]~ be the set

of x € w® which extend some string in C.

Lemma 3.2.13. Let p € P. Let C < T? be c.e. and open in T?.
Suppose that p « x© € [C|~. Let T € T?; let g € Q such that h” > g,
and h? > g > b? above |t|. Then the set B? U C is g-big above 7.

Proof. Otherwise g = (7, T” n7~, (B?UC) 1™, hP, g) is a condition
extending p which strongly forces that x® ¢ [C]~. (We need g > b”
above |7| not to ensure that ¢ is a condition but to ensure that it

extends p.) O

Remark 3.2.14. Let p € Py, let C < T? be c.e. and open in 77, and
suppose that p strongly forces that x° € [C]~. By compactness there
is some level m such that all strings in 77 of length m are in B U C.

This shows that B” U C is h”-big above every 7 € T?.

The following proposition shows that when we force totality of I'(x©)

(for some Turing functional I'), we can in fact force strong totality.

Proposition 3.2.15. Let C < w* be I and let p € Py. Then
p I+ xY € C if and only if the set of conditions which strongly force

that x° € C is dense below p.

Proof. It suffices to show that if p - x® € C then p has an extension
which strongly forces that x¢ € C. Fix such p.
By Lemma 3.1.6, find some g € Q such that /7 » g » bP. Asdis-

cussed above, every level of 77 contains a string above which B? n
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T? is bP-small. So by extending o7 (and taking the full subtree above
that string) we may assume that A > g > b? above |o?|.

Let (C) be a uniform sequence of c.e. subsets of 77, open in 77,
such that C n [T?] = [T?] n [ ,[Cx]~. Lemma 3.2.13 says that for
all T € T?, for all k, the set B? u Cy 1s g-big above 7.

We effectively define an increasing sequence (S of finite g-

bushy trees with the following properties:
e Sy is g-bushy;

e 5,1 1s an end-extension of S, and no leaf of S, is a leaf

of Ski1;
e S, cTP’;and
e the leaves of S, lie in B” U (4.

We start with S¢g = {o”}. We know that B” U Cj is g-big
above o”; Lemma 3.2.13 together with Lemma 3.2.7 shows that for
all k > 0, B? u Cy i1s g-big above B” U Cy_,. Thus, given S; we
can find a g-bushy end-extension § ;C of S, with leaves in B” u Cy;
Remark 3.2.3 shows that §; < T?. Since T” has no leaves, we can
extend S to the required S, by adding children from 77 to each
leaf of S (using the fact that #” > g above |o”|).

Having defined the trees Sy we let S = | J, Sk. Then S < 77, S
is g-bushy, and S has no leaves. Also, S is computable: a string of

length k1sin § if and only if it is in Sy.
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Every path in S lies in [B? U Ci]~ for all k and so [S\B?] < C.
We required that g » b”,so g = (0?,S,B? n S, g,b") is a condition

which extends p and strongly forces that x° € C. O

3.2.5 Minimality
We prove:

Proposition 3.2.16. Every condition in Py forces that deg,(x%) is

minimal.

Let I': w* — 2% be a Turing functional. There are three ways
to ensure that I'(x“) does not violate the minimality of deg (x%):
ensuring that it is partial, ensuring that it is computable, or ensuring

that it computes x.

For the rest of this section, fix a Turing functional I': w® — 2¢.

Definition 3.2.17. Let B be a set of strings. Two sets Ay and A;
of strings T'-split mod B if T'(rg) L T'(ry) for all 79 € Ay\B and
T € A]\B

Lemma 3.2.18. Suppose that p € P, strongly forces that T'(x%) is
total, and forces that T'(x°) is noncomputable.

Let Tt € TP. Let g € Q such that h? > g, and h? > 3g and g > b?
above |t|. Then there are Ayg,A, < TP, each g-big above t, which
I"-split mod BP.

Proof. Suppose that 7 and g witness the failure of the lemma; we

find an extension of p which forces that I'(x%) is computable.
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For @ € 2<% let
Ay =B U{peT? : T(p) = a}

and
A= JAs [Be27 & B La].
Let @ € 2=“ and suppose that A, is 2g-big above 7. By Re-
mark 3.2.14 the set A, U Ay~ 1s hP-big above every p € A,. Since

h? > 2g above | 1|, the concatenation property implies that A, UA4
i1s 2g-big above 7. By the big subset property there is some i < 2
such that A, 1s g-big above 7 [Here we use that the range of I' is
in Cantor rather than Baire space; we also use this in the proof of
Lemma 3.2.20].

The assumption implies that A | 4~ is g-small above 7. Since A~U
Al 18 hP-big above 7 and 3g < h” above || it must be that in

fact A, 1s 2g-big above 7.

By recursion define the unique z € 2¢ such that for all @ < z, A,

1s 2g-big above 7. Note that z is computable. The set
AJ_Z = U AJ_Z Mk

is g-small above 1 because it is the union of an increasing sequence
of sets, each g-small above 7; since largeness is witnessed by a finite
tree, g-smallness above 7 is preserved when taking the union. The
fact that z is computable shows that A, is c.e., whence the tuple
(1, TP n 15,A1, n 7, hP, g) is a condition extending p as required

(recalling that BP < A} ;). O
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The following lemma will allow us to construct a “delayed split-

ting” subtree of T7.

Lemma 3.2.19. Suppose that p € Py strongly forces that T'(x°) is to-
tal, and forces that T'(x®) is noncomputable. Suppose thatty,7s, ..., Ty €
TP. Let g € Q such that h» » g, and g > bP and h? > 3kg

s> |Tk|}. Then there are sets A1, Ay, ..., A; C

above min{|ty|, |12

b

TP, each A; g-big above 7, which pairwise I'-split mod BP.

To prove Lemma 3.2.19 we need the following, which (mod B)
is Lemma 6.2 of [32].

Lemma 3.2.20. Let g, h € Q; let B be a set of strings. Suppose that:
e T and T* are strings;
e A is a set of strings, 3g-big above 1,

o Forall p € A, E,o and E, are 3g-big above p and I'-split
mod B; and

o Fis a set of strings, 3h-big above 7, satisfying |U(c)| > |T'(v)]
forallo € F\Bandallv € E\B, where E = | JE,; [peA,i<2].

Then there are E' < E, g-big above 7, and F' < F, h-big above 7,
which I'-split mod B.

We delay the proof of Lemma 3.2.20 until the end of the section.

Proof of Lemma 3.2.19, given Lemma 3.2.20. The proof is by induc-

tion on k. The lemma is vacuous for k = 1. Assume the lemma has
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been proven for k. Let 7q,...,7; and 7" be strings on 77; suppose

that h” » g, and h? > 3*"1gand g > b” above min{|7*|,

71|, [t2l, -5 |7kl
The hypothesis for k holds for the bound 3g instead of g, and so

by induction we find finite sets Ay,...,Ax < T7, each A; 3g-big
above 7, which pairwise I'-split mod B”. As per Remark 3.2.8 we
assume that A; ¢ Tf..

Forevery j = 1,...,k, for every p € A;, by Lemma 3.2.18 find
finite E, o and E, 1, subsets of 77, each 3g-big above p and contained
in p=, which I'-split mod B?. Let E; = | JE,; [p € A;,i < 2]. Note
that the E; also pairwise I'-split mod B”.

Since J,, E; is finite, p strongly forces totality of I'(x%) and
3k+lg < hP above |7*|, by Remark 3.2.14 we find F = T? which is
3kg-big above 7*, such that |['(c)| > |['(v)| for all ¢ € F\B? and
ve U Ej\BP.

Let F, = F. By (reverse) recursion on j = k,k— 1,...,1 we

define sets E; C Ejand F;_; < F; such that every E; 1s g-big
above 7;, F; is 3/g-big above 7* and E; and F;_; pairwise I'-split
mod B”. To do this, given F; apply Lemma 3.2.20 with 7 = 7,
A=A g, v and E,; as themselves, F = F;and h = 3/ 1g.

In the end the sets E; for j < k and F)y are as required. O

Proposition 3.2.21. Every condition in Py forces that if T'(x°) is total

and noncomputable then T'(x%) =1 x©.

Proof. It suffices to show that if p € P; forces that I'(x®) is total and

noncomputable then p has an extension which forces that I'(x®) =;
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x°. By Proposition 3.2.15 we may assume that p strongly forces

that I'(x%) is total.

By Lemma 3.1.6 find some g € Q such that /”» > g » bP.
Let g(n) = [],,-, g(m). As above by extending o” we may assume
that h? > 38g and g > b? above |o”| (see Example 3.1.4).

We effectively define an increasing sequence (£} ) and a sequence
{8\ of finite subtrees of T? such that: (a) S, is an end-extension
of S4; (b) the leaves of S all have length ¢;; and (c) S is exactly g-
bushy: every nonterminal 7 € S has precisely g(|7|) many immedi-
ate extensions on S .

Let £y = |o”| and Sy = {oP}. Suppose that S and ¢, have been
defined. For every leaf 7 of S we find a finite tree R, < T?, exactly
g-bushy above 7, such that the sets of leaves of the various R, pair-
wise I'-split mod BP. This can be done since the number of leaves
of Sk is [ [,c(ios|.c,) 8(m), which is bounded by g({,). We assumed
that 47 > 3%g and so h? > 38(%) g above £; so Lemma 3.2.19 applies.

LetS ;{ be the union of S, with the trees R, for all leaves 7 of S;.
Let {1 be greater than the height of S’; obtain S| by appending
a subtree of 77, exactly g-bushy above p, to every leaf p of S.

Let S = J, Sk As in the proof of Proposition 3.2.15, § is
computable, computably bounded and has no leaves. It is g-bushy,
and " is 1-1 on [S\B?]: if x,x’ € [S\B?] and x [, # X [, then
[(xle,,) LT(x'T¢.,,). The tuple (o, S, B” N S, g, b”) is a condition

as required (Lemma 3.1.8). O

Proof of Proposition 3.2.16. Let p € P;. Let I' be a Turing func-
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tional. If p has an extension which forces that I'(x“) is partial then
we are done. Otherwise p forces that I'(x®) is total. We can extend p
to a condition ¢ which decides whether I'(x%) is computable or not.
If the former then we are done. Otherwise, Proposition 3.2.21 says

that ¢ forces that I'(x®) = x°. O

Proof of Lemma 3.2.20. Let E = | JE,; [i <2 & peA].

For a string @ € 2=¢ let
Feo=(FNnB)u{oceF :I'(o) > a},

and similarly define F,, E.,, E<, and so on.

If F n Bis h-big above 7* then we canlet F/ = FnBand E' = E.
Similarly if E n B is g-big above 7.

Suppose otherwise. In that case, for sufficiently long «, F, is
h-small above 7* (as it equals F n B). Let a be a string, maximal

with respect to F, being h-big above 7*. We will show that either
1. £, 1s g-big above 7, or
2. E., 1s g-big above 7 and F |, 1s h-big above 7*.

In both cases we can find E’ and F’ as required.

We examine two cases, depending on E,.

First, suppose that E., is g-big above 7. Let R be a tree wit-
nessing this. Every leaf of R extends some element of A, so ev-
ery element of R is comparable with some element of A. Since A
is an antichain, the restriction of R to initial segments of elements
of A is g-bushy. This shows that A’, the set of p € A such that
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E., 1s g-big above p, is g-big above 7. We show that E |, is g-big
above every p € A’; with the concatenation property this implies (1).
Let p € A’; there are two possibilities. If B N E is g-big above p then
we are done. Otherwise for some i < 2, E,; intersects E<,\B. But

then E,_; € E |4, and E,;_; is 3g-big above p.

In the second case, suppose that E, is g-small above 7. Since E =
E ,uE.,uE,is3g-bigabove 1, either (1) holds, or E, is g-big
above 7. Assume the latter. We assumed that £ n B is g-small
above T; together, we see that E.,\B is nonempty. In turn this im-
plies that |I'(0)| > |a| forall o € F\B;so F = Fy, U F,.

The maximality of @ ensures that F', i1s 2h-small above 7* [Here
again we use the fact that I' maps into Cantor space]. Since F is 3h-

big above 7* it must be that F |, is h-big above 77, so (2) holds. O

3.3 A relatively DNC SMC of a DNC minimal de-

gree

We now construct two sequences x,y € w® such that x € DNC, x
has minimal Turing degree, y € DNC* and deg, (x,y) is a strong
minimal cover of deg (x). Here, deg,(x,y) is the Turing degree of
the computable join of x and y.

We use the mechanism of tree systems that was used by Cai [7,
6, 9] to show that there is a generalised high degree which is a min-
imal cover of a minimal degree. This is a more versatile approach

than the homogenous trees which are usually used to construct initial
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segments of the Turing degrees (as in [35]).

3.3.1 Length 2 tree systems

Let A € w™=“ x w=“ be a set of pairs of strings. For 7 € w=~“ we let
Alt) ={pew™®: (1,p) e A}.
Of course domA = {7 : Jp [(1,p) € A]}.

Definition 3.3.1. A tree system of length 2 above a pair (o, 1) is a

set T of pairs of strings satisfying:
e dom 7 is a tree above o;
e Forall 7 € dom T, T(7) is a finite tree above u; and
e If 7 < 7/ are in dom T then T(7’) is an end-extension of T'(7).

In this section we only consider systems of length 2 and so we

omit mentioning the length.

A tree system S is a subsystem of 7' if § < 7. This means that
dom S is a subtree of dom 7 and for all 7 € dom S, S (7) is a subtree
of T(t). If (1,p) € T then T n (7,p)~ is a tree system, the system
whose domain is the full subtree of dom 7" above 7 and which maps
all 7" in its domain to the full subtree of T(7’) above p. Here of
course (7,0)% = 7~ x p= is the upwards-closure of {(z,p)} in the
partial ordering < on (a)<‘”)2 defined by the product of extension on

strings: (7,p) < (7,p))ifr< 7 and p < p'.
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A tree system is h-bounded if for all (1,p) € T, 7(n) < h(n) for
alln < |r| and p(n) < h(n) for all n < |p|. It is computably bounded
if it is bounded by some computable function.

If T is a computable and computably bounded tree system then
dom T is computable and the map 7 — T'(7) is computable (for each

7 € dom T we obtain a canonical index for T'(7) as a finite set).

Forest systems

To iterate largeness we require the notion of forest systems.

We call a set of pairs of strings A < (w=®)* prefix-free if dom A
is prefix-free and for all T € dom A, A(7) is prefix-free. For a set
of pairs A let AS = |J,)ca(0, )™ be the upwards closure of A
under <. If A is prefix-free then A< is the disjoint union of (o, u)~
for (o, 1) € A. In other words, if (7,p) extends some element of A

then that element is unique. We denote this element by (7, p) 4.

Definition 3.3.2. A forest system of length 2 above a finite prefix-

free set A < (a)<‘”)2 is a set T of pairs of strings satisfying:

e dom 7 i1s a forest above dom A;

e For all T € domT7, T(7) is a finite forest above A (7~ 9m4)

(where again 7~ 9°™4 is 1’s unique predecessor in dom A); and

e If 7 < 7/ are in dom T then T(7’) is an end-extension of 7T'(7).

A leaf of a forest system T is a pair (7,p) € T such that 7 is a

leaf of dom T and p is a leaf of T (7). Equivalently, it is a maximal
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element of the set of pairs 7, if T is partially ordered by double

extension <. The set of leaves of a finite forest system is prefix-free.

Paths of tree systems

Let T be a tree system above (o, u). For x € [dom T'| we let
T(x) = UT(T) [o <t <x].
We also let
[T] = {(x,y) : xe|[domT]| & ye [T(x)]}.
In general the set [T'| need not be closed.

Lemma 3.3.3. Suppose that for all x € [domT| the tree T (x) has

no leaves. Then [T] is a closed subset of o, u]~.

Proof. For 7 € dom T let

E.=|Jlp® [paleaf of T(z)[;
forn > |o| let
E,=|J (7]" xE;) [redomT & [t = n].

Each E, is clopen. We show that [T] = () E,. We always have
[T] < (Nus/o| En- For suppose that (x,y) € [T], and let n > |o|. Let
T = x[,; s07 € domT. Let m be greater than the height of T'(7),
and let p = y,. Since p € T(x) there is some 7/ < x such that
p € T(7). Since p ¢ T(r) we must have 7 < 7/, and so p extends

some leaf of 7'(7); this shows that y € E,, so (x,y) € E,,.
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In the other direction we use our assumption. Suppose that (x,y) €
(Nusjo En- Foralln > |o

x € [domT]. Foralln > |o

, (x,y) € E, implies that x[,€ dom T, so

, some leaf of T(xI,) is an initial
segment of y. To show that y € [T(x)] it suffices to show that the
minimum length of a leaf in T'(x[,) is unbounded as n — co. But

otherwise 7' (x) would have a leaf. O

We will require that the pairs in tree systems appearing in our
conditions can be extended to paths. It is not enough to require that

the system does not have leaves.

Lemma 3.3.4. Let T be a bounded tree system and suppose that dom T

has no leaves. The following are equivalent:

1. For all k there is some m such that for every T € domT of

length m, every leaf of T (7) has length at least k.

2. Forall x € [domT], T(x) has no leaves.

Proof. That (1) implies (2) is immediate. Suppose (2) holds. By
Lemma 3.3.3, [T] is closed; since T is bounded, [T] is compact.
Let k < w. The collection of clopen rectangles [7, o]~ where 7 €
domT, p is a leaf of T(7), and |p| > k is an open cover of [T]; a

finite sub-cover gives the desired m. O

To simplfy the combinatorics of finding big splittings, we restrict

ourselves to “balanced” tree systems.

Definition 3.3.5. Let 7 be a tree system and let n < w. We say

that m is a balanced level of T if for all T € dom T of length m, every
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leaf of T(7) has length m. We say that T is balanced if dom T has

no leaves and T has infinitely many balanced levels.

If T 1s bounded and balanced then it satisfies the conditions of
Lemma 3.3.4 and so by Lemma 3.3.3, [T] is closed. If T is bal-
anced, computable and computably bounded then [T] is effectively
closed (this is really where we use the requirement that if 7’ extends 7
in dom 7T then T'(7') is an end-extension, rather than any extension,
of T(7)).

3.3.2 Bushiness for forest systems

Definition 3.3.6. Let g and /& be bounding functions. A forest sys-
tem T is (g, h)-bushy if dom T is g-bushy and for all 7 € dom7,
T (7) is h-bushy.

Lemma 3.3.7. Let A (a)<“’)2 be finite and prefix-free, and let g
and h be bounding functions. The following are equivalent for a

set B of pairs of strings:

1. There is a finite (g, h)-bushy forest system above A, all of whose

leaves lie in B.

2. The set of T such that B(t) is h-big above A(t~9°™4) is g-big

above dom A.

Proof. Assume (2). We define a forest system S by first defin-
ing dom S, and then for all 7 € dom S, defining S (7). We let dom S

be a g-bushy forest above dom A such that for every leaf 7 of dom S,
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B(7) is h-big above A(r~9°™4), Now let T € dom S ; let o = 7~ dom4,
There are two cases. If 7 is a leaf of dom S then we let S (7) be
an h-bushy forest above A(o) which witnesses that B(7) is h-big
above A(o). If Tis not aleaf of dom S then welet S (7) = A(o). O

These equivalent conditions define the notion of B being (g, h)-
big above A; if they fail, we say that B is (g, h)-small above A. If A
is infinite then we say that B is (g, h)-big above A if it is (g, h)-big
above every finite prefix-free subset of A.

For brevity we let for B = (w=“)*, a bounding function / and a

finite prefix-free set of strings D
mt(B) = {r : B(1) is h-big above D} .

Note that 7},(B) = [\,cp 7(B). A set B is (g, h)-big above a finite
prefix-free set A if and only if for all o € dom A, ﬂ'Z(U)(B) is g-big

above 0.

The big subset property (the analogue of Lemma 3.2.4) holds.

Lemma 3.3.8. Let g, g’ and h, W' be bounding functions and let (o, ) €
(w=*)%. Suppose that B,C < (w=*)* and that BUC is (g+g', h-+I)-
big above (o, ). Then either B is (g, h)-big above (o, u) or C is
(g',)-big above (o, ).

Proof. The set 7" (B U C) is (g + g')-big above o-. The big subset
property implies that nﬁ*h/(B uC) < nl(B)u ﬂZ/(C ). Utilising the
big subset property again, this time on the left coordinate, we see

that either ﬂZ(B) is g-big above 7 or ﬂZ/(C ) is g’-big above 7. The
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first means that B is (g, h)-big above (o, u); the second, that C is
(g',W')-big above (o, ). O

Weak concatenation

The concatenation property (Lemma 3.2.5) fails. Suppose that A is
(g, h)-big above (o, 1), and that B is (g, h)-big above every (1, p) €
A. It is possible that B is not (g, h)-big above (o, u): take for exam-
ple two strings p; and p; and a string 7 such that (7, p1), (7, 02) € A.
Then 7", (B) and 7}} (B) are both g-big above 7, but the trees wit-

nessing these facts need not be the same. That is, it is possible that

h
T
{.01 ,,02}

(g, h)-small above some (o, ) but the set of pairs above which B is

(B) is g-small above 7. As a result, it is possible that a set B is
(g, h)-bigis (g, h)-big above (o, u). Instead, we will employ a weak
version of the concatenation property.

Definition 3.3.9. Let S and R be forest systems. We say that R is an

end-extension of S if:
e domR is an end-extension of dom S;
e If 7 € dom S is not a leaf of dom S, then R(7) = S (7);
e If 7 is a leaf of dom S then R(7) is an end-extension of S (7).

Note that this relation is transitive. Now if 7 is a finite (Iength
1) forest above A, E is the set of leaves of 7, and U is a forest
above E, then T u U 1s a forest above A, an end-extension of T

whose leaves are the leaves of U. For forest systems we cannot take
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unions. Suppose that S is a finite forest system above A; let D be
the set of leaves of S, and suppose that R is a forest system above D.

We define the concatenation S"R of S and R:
e dom(S"R) = (domS) u (domR);
e For 7 € domS\domD, (S"R)(7) = S (7);
e Forr e domR, (S"R)(7) = (S (v~ %mP)) U R(7).

This 1s a forest system above A, an end-extension of S whose leaves
are the leaves of R. Note that if 7 € dom D then we do not assume
that R(7) = D(1), and so it is possible that (S"R)(7) # S(r). If
both S and R are (g, 1)-bushy then so is S"R. We conclude:

Lemma 3.3.10. Suppose that B is (g, h)-big above A, and that C
is (g, h)-big above B. Then C is (g, h)-big above A. Indeed, every
finite (g, h)-bushy forest system whose leaves are in B has a finite

(g, h)-bushy end-extension whose leaves are in C.

A set B of pairs of strings is open if it is upwards closed in the
partial ordering <: closed under taking extensions in either coordi-
nate.

The following lemma concerns sets of strings, not pairs of strings.
It is a consequence of the concatenation property, and is formally

proved by induction on |B|.

Lemma 3.3.11. Let B be a finite collection of open sets of strings,
and let A be a finite, prefix-free set of strings. Suppose that each B €
B is g-big above every o € AX. Then (| B is g-big above A.
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Lemma 3.3.12. Let A and B be sets of pairs of strings, and let g
and h be bounding functions. Suppose that B is open. Suppose that
for all (o,u) € A, for all o > o, B is (g, h)-big above (o, ).
Then B is (g, h)-big above A.

Proof. It suffices to show that for any o0 € domA and any finite,
prefix-free E < A(o), % (B) is g-big above o~. We apply Lemma 3.3.11
to the collection of sets ﬂZ(B) for u € E. The fact that B is open im-
plies that each :(B) is open; the assumption is that each 7}'(B) is

g-big above every extension of o O

Corollary 3.3.13 (Weak concatenation property). Let A, B and C be
sets of pairs of strings, and suppose that C is open. Suppose that B
is (g, h)-big above A, and that for all (t,p) € B, forall v > 7, C is
(g,h)-big above (7',p). Then C is (g, h)-big above A.

Working within tree systems

We will need to apply the weak concatenation property while work-

ing within a given tree system 7.

Remark 3.3.14. Suppose that B is (g, h)-big above A, that T is a tree
system and that A, B < T'. Then the forest system constructed in the

proof of Lemma 3.3.7 is a subset of 7.

Fix a tree system 7. Suppose that S is a finite forest system; let D
be the set of leaves of S. Let R be a forest system above D. Suppose
that both § and R are subsets of 7. Then S R is also a subset of T'.
Thus, Remark 3.3.14 can be extended. Suppose that B is (g, /)-big
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above A, that C is (g, h)-big above B, and that A, B,C < T. Then
not only is there a finite (g, #)-bushy forest system S < T above A
whose leaves are in B, but further, any such system S can be end-
extended to a finite (g, #)-bushy forest system R < T above A whose

leaves are in C.

If T is a tree system and B < T then we say that B is open in T
if it 1s upwards closed in the restriction of the partial ordering <
to 7. Lemma 3.3.11 can be “restricted to atree S: if A, B < S and
each B € Bis openin S and g-big above AN N S, then [ B is g-big

above A. We then obtain a version of Lemma 3.3.12 restricted to 7':

Lemma 3.3.15. Let T be a tree system, let A, B < T, and let g and h
be bounding functions. Suppose that B is open in T, and that for all
(o) € A, forall 0 » o indomT, B is (g, h)-big above (o, p).
Then B is (g, h)-big above A.

And so we get the weak concatenation property within a tree sys-

tem:

Corollary 3.3.16. Let T be a tree system, let A, B,C < T, and sup-
pose that C is open in T. Suppose that B is (g,h)-big above A,
and that for all (t,p) € B, for all 7 » v in domT, C is (g, h)-big
above (1',p). Then C is (g, h)-big above A, and in fact every finite
(g, h)-bushy forest system S < T which witnesses that B is (g, h)-
big above A has an end-extension R = T which witnesses that C is
(g,h)-big above A.

We obtain a lemma which will allow us to take full subsystems
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as extensions.

Lemma 3.3.17. Let T be a bounded and balanced (b, c)-bushy tree
system above (o,u) and let B < T be open in T and (b, c)-small

above (o, u). Then for every m there is some (1,p) € T such that

7|, |o| = m and above which B is (b, c¢)-small.

b

Proof. Let m be some balanced level of T. Let D be the set of pairs
(r,p) € T such that |[r| = |p| = m. Then D is (b, c)-big above
(o, u). If there is no pair as required then the weak concatenation
property localised to 7' (Corollary 3.3.16) shows that B is (b, ¢)-big

above (o, ). O

Remark 3.3.18. We use the same convention discussed in Remark 3.2.8;
we assume that large sets given to us are sets of leaves of tree sys-
tems witnessing their largeness. For example, if we are given a set B

of pairs, (g, h)-big above some A, then we assume that B is finite and

b

prefix-free; that for all 7 € dom B, B(1) is h-big above A(r~9°m4);

and that B < A~.

3.3.3 The notion of forcing and the generic

Let Bpyc2 be the set of pairs (7, o) such that 7 € Bpnc or p € Bpner;
the latter means that p(e) = J"(e)| for some e < |p|. Note that this
set of pairs is (2,2)-small above (), ()).

We let P, be the set of tuples p = ((o?,u?), T?, BP, h?, b?) satis-
fying:
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1. T? is a computably bounded, computable, balanced tree system

above (o7, u?);
2. h? € Q and T? is (h?, h?)-bushy;
3. BP < T?isc.e.and openin 77, and B 2 Bpyc2 N T?;
4. b? € Q and B? is (b, b”)-small above (o”, u”); and
5. h? » bP and h? > bP above min{|o?|, |uP|}.

We define a partial ordering on P, as follows. A condition g
extends a condition p if (o7, u?) < (0%, u?), T is a subsystem of 77,

B? nT? < B4, and h? < h” and b? > b? above min{|c?|, |u|}.

Lemma 3.3.19. The assignment of closed sets X? = [T?]\[B?]~ for
p € Py is acceptable (Definition 3.1.10).

Note that 77\B? may not be a tree system and so we have not
defined [T7\B?].

Proof. As discussed above, the fact that 77 is balanced implies that
[T7] is closed. That X9 < X? when ¢ extends p again follows di-
rectly from the definition of the partial ordering on P;.

Let p € P,. Suppose that [T?] < [B?]=. Since T? is bounded,
[T?] is compact. There is some finite C — B? such that [T?] <
[C]~=. We may assume that C is prefix-free. Then C shows that B” is
(hP, hP)- and so (b?, b”)-big above (o7, u”). Hence X” is nonempty.

Let m < w. Since h” > b? above min{|o”|, |u”|} Lemma 3.3.17

shows that there is some pair (7,p) € T? with |t

p| > m above

9
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which B? is (b?,bP)-small. Then ¢ = ((1,p),T? n (1,p), B N
(1,p)%, WP, bP) is a condition in P, extending p satisfying X? < [T7] <
[7,p]=. Thus for every m, the set of conditions p € P, such that
X? < [1,p]™ for some strings 7, p, both of length at least m, is dense

in P,; this implies requirement (c) of Definition 3.1.10. O

As in the previous section, if G < P, is sufficiently generic then
(e[ TPI\[BP]~ is a singleton which we denote by {(x%,y%)}. In
fact x° = J{o? : pe G}andy® = | J{u” : p e G}.

Let p € P,; since Bpyc2 S B we see:

Proposition 3.3.20. Every condition in P, forces that x° € DNC
and that y° € DNCY.

The restriction of P, to P,

We do not actually have a restriction map to P; from P, but from a
dense subset of P,. Note that if Q < Pisdense and G < Q is a

generic directed set, then it is also a generic directed subset of P.

Proposition 3.3.21. There is a dense subset Q, < P, and a restric-
tion map i: Qy — Py such that for all p € Q,, X'?) > dom X?.

In particular this shows that P, is nonempty.
Proof. We define i: P, — P; by letting
i(q) = (09,dom T, ﬂZZ(Bq), h?, b?)

where we recall that 7%, (B?) is the set of 7 such that BY(7) is b?-big

above u9.
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Let g € P,. It is routine to check that i(g) € P;.

However, i is not order-preserving. For this reason we let
Q={peP,: ﬂzf,(Bp) = {redomT? : y” € B’ (1)}}.

Suppose that ¢ € Q»; then X? © dom X4. To check this we observe
that if (x,y) € [T?]\[B?]™ then for all 7 < x, (7,u?) ¢ B? and so
T ¢ B'9; so x € [domT9]\[B9]<. (In fact X'@ = dom X?; if
x € X9 then B?(x) is b9-small above w9, so T9(x)\B?(x) has a
path.)

Let ¢ € P,. Define a set B < T?: for T € dom T‘f\yr .(B7) we
let B(t) = Bi(1); for T € 7r ,(B%) we let B(t) = T9(t). Let v(q) =
((c?,u), T, B, h1,b?). The concatenation property implies that 7 q(Bq) =
JTzZ(B), which shows that v(q) € P,, in fact that v(q) € Q,, and it ex-
tends ¢g. Hence Q; is dense in P,. We observe that i(¢) = i(v(q)).

To show that the restriction of i to Q; is order-preserving we need
to check that if ¢, s € Q, and ¢ extends s, then B'®) ~ T4 < Bia)
If r € BY (and 7 € T'@) then (1, 1) € B®; since B® is open in T*,
this means that (7, u?) € B*; since B* n T? < B, (t,u?) € B? and so

e B9,

Let ¢ € Q, and let p € Py extend i(g); we need to find r € Q,
extending ¢ such that i(r) extends p. Using the map v, it suffices to
find r € P,.

Let T be the restriction of 79 to T”: dom7 = T? and for Tt € T?,
T(t) = T%(t). The system T is (h”, h?)-bushy above (o, u9).

Also define B < T;if r € BP then B(t) = T(7); if T € TP\ B then
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B(t) = Bi(t). The set Bis open in T, is c.e., and is (b?, b?)-small
above (o”,u). To see that let S be (b?, b?) bushy above (o7, u?);
by Remark 3.3.14 we may assume that § < 7. Since domS is a
subtree of 77 we find a leaf 7 of dom S which is not in B”. Since p
extends i(q), T ¢ B9 and so B(t) = B(t) is b?%-small above ¢, so
S (7) has a leaf p which is not in B(7).

Since h” > bP above |o”| and h? > b? above |u?|, T is (b?, b?)-
bushy. By Lemma 3.3.17 we can find (o, )
max{|o?|, |u?|} and above which B is (b”, b?)-small.

We now define r = ((o,u), T n (o, 1)~, B (o, 1)<, kP, bP). The
point is that /¥ < h? and b? > b4
(h?, h?)-bushy and B" is (b”, b?)-small above (o, u). This also shows
that r extends ¢g. To show that i(r) extends p we need to show that
B? ndomT" < B"). Lett € B” ndomT". Then 7 > o and so

peT(r) = B(r),sote B, O

u| =

so 77 1s

Corollary 3.3.22. Every condition in P, forces that x° has minimal

Turing degree.

Totality

Proposition 3.3.23. Let C = (w®)* be I and let p € Py. If
p I+ (x6,9%) € C then p has an extension which strongly forces
that (x°,y%) € C.

Proof. The proof is similar to the proof of Proposition 3.2.15. We
choose a function g € Q such that #” » g » bP. By Lemma 3.3.17

we may assume that 2”7 > g > bP above min{|o”|, [u”|}.
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We fix a sequence of c.e. sets C, < T, open in T7, such that C n
[T?] = [T?] " ([Ci]™. For all (1, p) € T?, for all k, the set B” L Cy
is (g, g)-big above (7, p); otherwise ((1,p), T? N (1,p)~, (B? U Cy) N
(1,p)<, k", g) is a condition extending p which forces that (x°, y©) ¢
C.

We define a sequence of finite tree systems Sy < 77 such that:
each Sy is (g, g)-bushy; S, is a proper end-extension of Sy; the

leaves of S;; are in C, U B?; if k > 0 then there is some ¢} such

7| = |p| = b
We begin with S¢ = {(c”,u?)}. Given Sy, Corollary 3.3.16 says

that C;, U B? is (g, g)-big above the set of leaves of Sy, so we can

that for every k > 1, for every leaf (7,p) of Sy,

find a finite (g, g)-bushy end-extension S; < T? of S with leaves in
Cy u BP.
Now find some ¢}, greater than |7| and |p| for any leaf (7,p)
of S, which is a balanced level for 77 (Definition 3.3.5). Then the
set of (7,p) € T? such that |7| = |p| = €441 is (g, g)-big above the
set of leaves of § ;{ Hence we can find S;,; < T” to be an end-
extension of S as required.
It follows that S = [ J, S« is a computable, (g, g)-bushy and bal-
anced tree system above (o7, u”) and that the condition ((o?, u?), S, BPn

S, g,b") extends p and strongly forces that (x¢,y%) e C. m

3.3.4 Minimal cover

We work toward showing that deg,.(x“, y©) is a strong minimal cover

of deg,(x°). We do this in two steps. First we show that it is a
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minimal cover. This mostly uses the tools of the previous section.
LetI': (w®)* — 2 be a Turing functional. For a condition p €

P,, a bounding function g and a string p let I'-Spf(p) be the set of

7 € dom T? such that T?(7) contains two sets Ag(7) and A;(7), both

g-big above u, which I'(r, —)-split mod B? (7).

Lemma 3.3.24. Suppose that p € P, strongly forces that T'(x%,y°)
is total and forces that T'(x%,y%) & xC. Let (o,u) € TP. Let g € Q
u|}. Then

such that h? > g, and h? > 3g and g > b” above min{|o

2

I-Spi(p) is g-big above 0.

Proof. Suppose that (o, u) and g witness the failure of the lemma;
we find an extension of p which forces that I'(x®, y©) is computable
from x©.

Let ® be the (c.e.) set of pairs (7, @) such that 7 € dom 77, « €
2=“and A, (1) is g-big above u, where as before A, = B’ U {(1,p) €
T? : T'(t,p) > a}.

For brevity let C = T-Spfi(p). The set C is open in dom 77. If
7 € dom TP\C then the strings in O(7) are pairwise comparable.

Let 7 € dom TP\C. The argument of the proof of Lemma 3.2.18
shows that if |I'(r,p)| > m for every leaf p of T?(7) which is not
in BP(7) then O(7) contains a string of length m. Also, B?(7) is g-
small above ¢ and so O(7) is finite; in this case we let @ = | O(7)
be the longest string in O(7).

If 7 < 7’ are in dom 7P\C then ® < ©". This follows from the

fact that A, (1) < A, (7') for all a.
Let D = {(r,p) € T? : 7 € CorI'(r,p) L aforsomea €
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O(7)}. The set D is c.e. and is open in T7. Also, D u B? is (g, g)-
small above (o, ). To see this, suppose that S < 77 is a finite (g, g)-
bushy tree system above (o, u) (as above we use Remark 3.3.14).
Then there is a leaf 7 of dom S which is not in C; and then S (1)
must contain a leaf p ¢ B?(7) such that I'(t, p) is compatible with
Q.

Now suppose that (x,y) € [T?]\[D u B”]~. No initial segment
<X ®T
is total, and so I'(x,y) = O(x). Certainly ®(x) <1 x. Therefore the

of x is in C. A compactness argument shows that ©(x) = | J

condition ((o, u), T? n (o, 1)<, (D U BP) n (o, 1)<, h?, g) extends p

and (strongly) forces that I'(x%, y%) < x©. O

Definition 3.3.25. Let B = (w=“)>. Two sets A and A; of pairs
of strings locally T-split mod B if for all 7, Ay(7) and A;(7) form a
(7, —)-splitting mod B(7). That is, if (7,p9) € Ao\B and (7,p;) €
A\B then T'(1,po) L I'(1,p1).

We introduce the notion of uniform largeness.

Definition 3.3.26. Let A be finite and prefix-free, and let B be a
collection of sets of pairs of strings. We say that the sets in B are
uniformly (g, h)-big above A if the set of T such that for all B € 8B,
B(1) is h-big above A(r9™4) is g-big above dom A.

The conclusion of Lemma 3.3.24 is that there are Ay and A, sub-
sets of 77 uniformly (g, g)-big above (o, 1), which locally T'-split

mod B?.
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Lemma 3.3.27. Suppose that p € P, strongly forces that T'(x%,y°)
is total and forces that T'(x%, y%) &1 xC.
Let o € domT?, and let py, o, . . ., i be elements of TP (o). Let
g € Qsuchthat h? » g, and h? > 3*g and g > bP above min{|c|, |u1|, |ual, . . ., [p|}-
Then there is a set A < TP, (g, g)-big above {(o, ;) : j <k}, such
that the sets A n (o, u;)~ pairwise locally I'-split mod B?.

Proof. The idea is to extend bushily on the first coordinate so that
we can emulate the proof of Lemma 3.2.19 on the second coordi-
nate. Formally this is done by induction on k. Suppose this has been
shown for k; let uy, . . ., t and p* be elements of 77(o); suppose that
W gl 2 J <k}
Then i » 3g; so by induction we can find a set A, (3g, 3g)-big above

h > g,and h” > 3**1g and g > b” above min{|o

9

{(o,pj) : j <k} such that the sets A N (o, ;)™ pairwise locally I'-
split mod B?. In fact we only need (g, 3g)-big.

Let ({,v) € A. By Lemma 3.3.24, for all / > ¢ on domT?,
I-Sp2¥(p) is 3g-big above ¢’ (again we only need g-big). By re-
peatedly extending we see that for all { € domA, O = {5 n
M. AQ) r-Sp* (p) is 3g-big above . We extend the set A by let-
ting A(7) = A(¢) forall 7 € Q;. Let O = Usegoma Qcs it is 3g-
big above o. For every 7 € Q and all v € A(t) we can find sets
E,o(7),E, (1) < TP?(1), each 3g-big above v, which I'(r, —)-split
mod B?(1).

Further, by extending in dom 77, we may assume that for all 7 €
Q we can find F(r) < T?(r) which is 3¥g-big above u* and such
that |I'(7,p)| > |[[(r,n)| for all p € F(r)\B?(7) and all n € E,;(7)
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(for both i < 2 and all v € A(7)).

Overall we see that for all 7 € Q we can run the argument proving
Lemma 3.2.19 inside 77(7) and using Lemma 3.2.20 find F'(7) <
F(7), g-big above u* and for j < k, E'(1) < T"(7), g-big above u;,
with every string in E’(7) extending some string in A;(7), such that
F'(7) and E’(7) form a I'(r, —)-splitting mod B”(7); the fact that
strings in E'(7) extend strings in A(7) N ,uf. shows that the sets E'(7)

also pairwise I'(7, —)-split mod B? (7). O

Proposition 3.3.28. Every condition in P, forces that if I'(x®,y°) is
total and T'(x6,y°) &r x© then T'(x%,y°) @ x© =1 y°.

Proof. As in the proof of Proposition 3.2.21 we take some p € P,
which strongly forces that I'(x®, y©) is total and forces that I'(x®, y©) &;

xY, and find an extension of p which forces that I'(x%,y%) @ x% >;

Na

Find some g € Q such that hi” » g » bP. Let g(m) = [ [,_,, (k).
By Lemma 3.3.17 we can extend (o”,uP) so that h? > 38g and
g = b? above min{|o?|, |u”|}.

We define an increasing sequence {{;) and a sequence {(S;) of
finite subsystems of 77 such that: dom S, is g-bushy and for all

7 € dom Sy, Sy (7) is exactly g-bushy; S| is a proper end-extension

7| = |p| = .
To begin we find some ¢y > |o?|, |u”|, a balanced level for T7.

of Sy; for every leaf (7, p) of Sy,

We let domSy = domT7? [ <, and for each leaf T of dom S, we
let So(7) be an exactly g-bushy subtree of 77(r) whose leaves all

have lenght {y,. As usual if 7 € dom Sy is not a leaf then we let
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So(r) = {u’}.

Given S we note that for every leaf o of dom Sy, the number
of leaves of Si(c) is precisely | [, ) &(m) which is bounded
by 2(¢); and 7 > 38 g above £;. By Lemma 3.3.27 we can
find for each leaf o of dom S a finite (g, g)-bushy forest system
R, < T? above {(o,v) : valeafof Si(o)}, such that for every
leaf 7 of dom R, the sets R, (1) n v= for the leaves v of (o) pair-
wise I'(7, —)-split mod B”. By shrinking we may assume that for all
leaves 7 € domR,, R,(7) is exactly g-bushy. Let R = | J, R, and
letS7 = SR

Now as in the proof of Proposition 3.3.23 we let ;.| be a bal-
anced level of 77, greater than the length of any string appearing in
S ,’(, and let S;,; < T? be an end-extension of § ;{ with the desired
properties.

Let S = [J, Sk Then for all x € [domS], I'(x,—) is 1-1 on
[S (x)]\[B?(x)]=. The tuple ((o”, u?), S, B? NS, g, bP) is a condition

as required (relativise Lemma 3.1.8 to each x). O

3.3.5 Strong minimal cover

The following is the usual definition of splitting, restated for pairs

of strings.
Definition 3.3.29. Let B < (a)<“’)2. Two sets Ag and A, I'-split
mod B if for all (1,p) € Ag\B and (7,p’) € A|\B, I'(t,p) LT'(7,p).

Lemma 3.3.30. Let g1, g2, h1,hy € Q; let B be an open set of pairs
of strings. Suppose that:
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o (o,u) and (0%, u*) are pairs of strings;
o Ais (3g1,3g2)-big above (o, ),

e Ey and E| are uniformly (3g1,3g>)-big above A; and for all
(r,p) € A, Eg n (1,p)~ and E| (1, p)~ locally T-split mod B;

and

e Fis (3hy,3hy)-big above (o*,u*), and |U(A,v)| > |T'(¢,n)| for
all (A,v) € F\Band all ({,n) € E\B, where E = Ey U E].

Then there are E' < E, (g1, g2)-big above (o,u), and F' < F,
(hy, hy)-big above (o*, u*), which T-split mod B.

Proof. The proof is very similar to that of Lemma 3.2.20. As above,
forastringa@ € 2<“let Fy, = (FnB)u{(r,p) € F : ['(1,p) = a},
and similarly define F |, E+,, E<, and so on. If F " Bis (hy, hy)-big
above (0", u*) then we can let F/ = F n B and E’' = E. Similarly if
E n Bis (g1, g2)-big above (o, u).

Suppose otherwise. In that case, for sufficiently long «, F, is
(hy, hy)-small above (o, u*). Let a be a string, maximal with re-
spect to Fy, being (hy, hy)-big above (o*, u*). As above we show
that either

1. E 1, is (g1, g2)-big above (o, u), or
2. E.,is (g1, g2)-bigabove (o, u) and F |, is (hy, hy)-big above (o, u*).

In both cases we can find E’ and F’ as required.

Again we examine two cases, depending on E,.
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First suppose that E, is (g1, g2)-big above (o, u). Let R wit-
ness this. Fix ¢, a leaf of domR. The argument of the proof of
Lemma 3.2.20 is now carried out within R(). Let T = £~ 4m4, Ev-
ery v € E({) extends some unique p € A(7). The tree R({) restricted
to initial segments of strings in A(7) shows that A(7) "R({) is g,-big
above u; foreach p € A(7)NR({), E<4({) is go-big above p. The pre-
vious argument shows that for each such p, E | ,({) is g»-big above p.
The concatenation property shows that E |, () is g>-big above u.
And then dom R shows that E | , is (g1, g2)-big above (o, u).

Next suppose that E-, is (g1, g2)-small above (o, u); the argu-
ment is now identical to the comparable one in Lemma 3.2.20, using
Lemma 3.3.8. It shows that (2) holds. O

Lemma 3.3.31. Suppose that p € P, strongly forces that T'(x%, y°)
is total and forces that T'(x%,y%) & x©.

Let C < TP be prefix-free and finite; let g € Q such that h? > g,
and h? > 31" g and g > b” above min{|o|, |u| : (o, u) € C}.

Then there is a set A < T?, (g, g)-big above C, such that the sets

b

A n (o, uP)= (for o € dom C) pairwise T-split mod B .

Proof. We prove the lemma by induction on |C|. Let C* = C u
{(o*u*)} < TP be finite and prefix-free, and suppose that the lemma
is already known for C. Let g satisfy the assumptions of the lemma
for C*. The assumptions of the lemma hold for the set C and the
function 3/€lg. Let A be as guaranteed by the lemma for C and 3/Cg.

Let (o1, 1), (02, 142)5 - - - » (0ks i1 ) list the elements of C such that

o; # 0. By reverse recursion on j < k we define aset A; < T?,
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(3/g,37g)-big above C*. We will ensure that A; n C< < A<, and
so the sets A; N (o, u?)= for o € domC pairwise I'-split mod B”.
Further, we will ensure that A;_; n (o*,u*)S and A;_; N (07, 1)
I'-split mod B?; and that A;_; < Af.. Thus in the end, the set Ag is

as required.

We start with Ay = A U {(o*, u*)}. Now suppose that j > 0 and
we are given the sets A;. Let 7 € (domA;) N af.. Lemma 3.3.24 says
that for all 7 > rindom 77, forall p € A;(7) m,uf., the set F—Spgjg(p)
is 3/g-big above o ;. So applying Lemma 3.3.11 to these sets, and
repeating this process for all such 7, we find (finite) E ;o < T? and
E;; < T?, uniformly (3/g,3/g)-big above A; n (o, u;)<, such that
for every (1,p) € A; n (0j,1;)%, Ejo n (1,p)% and Ej; N (7,p)°
locally I'-split mod B?. Given E; = E;o U E;; we can find F; < T?,
(3/g,37g)-big above A; N (o, u*)= (and lying above that set) such
that |I'(r,p)| > |['(7,p")| for all (r,p) € F;\B? and all (7',p) € E;.
We then appeal to Lemma 3.3.30 with F; in the role of F, E;; in the
role of E;, A;n (0 j, ;) in the role of A, and using the function 3i-1g
we get ', € F, (3/7'g,3/"1g)-big above (o, u*) and E', < E}, also
(3/1g,3/~1g)-big above (0, u;), which I'-split mod B?.

We now define the set A;_;. We first define domA;_;, and we
do this by defining (domA;_;) n o= for all o € domC*. Let o €
domC*. If o # oj,0" then (domA;_;) n o~ = (domA;) no~. We
let (domA;_1)n(c*)" = dom F’ and (domA;_1)n(07;)~ = dom E'.

Now for 7 € domA;_; we define A;_(7). Fix such 7; let { =

p— . - * - *
"4 and let ¢ = 7 = 7T f o # o0 then
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{=tand welet A;j_;(7) = Aj(t). Otherwise, we define A;_;(7) by
defining A;_; nu~ forall u € C*(o). Suppose that o = o*. If u # u*
then we let A;_; (1) n u™ = A;({) n p~ (which inductively will just
equal A(7~%™4) A u%). Welet A; (1) N (u*)% = F'(7). Similarly,
ifo=oc;andu # u;thenweletA;_(7) nu™ = A;({) nu™; we let
A 1(7) o ()% = E(1). o

Proposition 3.3.32. Every condition in P, forces that if I'(x%,y°) is
total and T'(xC,y%) &r x© then T'(x%,y%) > xC.

Proof. The construction is similar to the one in Propositions 3.2.21
and 3.3.28. It is here that we really use the fact that 77 is bal-

anced, for we ensure that each S; we build is exactly (g, g)-bushy.

We assume that #” » 3% g above min{|o?|, |u”|} and then apply

b

Lemma 3.3.31 to C being the set of leaves of S';. We use Lemma 3.1.9.
O

And as a result:

Proposition 3.3.33. Every condition in P, forces that deg.(x°,y%)

is a strong minimal cover of deg,(x°).

Remark 3.3.34. We could combine the proofs of Lemmas 3.3.27
and 3.3.31 to build a “totally I'-splitting” extension: a set A such
that if (o, ;) € C (fori < 2) and (1;,p;) € A n (074, 4i)S\B, then
['(t9,00) L T(71,p1) provided that either oy # o, or 79 = T
(and pg # p1). We could then have a single construction (replac-

ing Propositions 3.3.32 and 3.3.33) giving a condition forcing that
F(XG’yG) =T (xG’yG)'
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3.4 The general step

We now generalise to get a linearly ordered initial segment of length n.
Once the correct definitions are in place, much of the development

closely follows the previous section.

3.4.1 Length n forest systems

We work with n-tuples of strings. We use boldface notation for tu-
ples. If 7 is a tuple then 7; denotes the i component of 7. The
partial ordering of extension < on (w=*)" is defined as expected.
For a set A © (w=?)" we let A< be the upward closure of A un-
der this partial ordering. If 7 is an n-tuple and &k < n then we let
™he= (t1,.. ., T) and Tl )= (Tks1s- -5 Tn)-

For a set A € (w=®)" and k < n we let dom; A be the domain

of A thought of as a relation between k-tuples and (n — k)-tuples:
domy A = {1]: T € A}.
For T € (w=*)" we let

A(t) = {p e ()" (1,p) eA}.
We will frequently need to chop off the last bit, so for compact no-
tation we let 7|= 7], forall T € (w=*)", and let A|= dom,,_ A =
{r]: TeA}forall A < (w=*)".

Definition 3.4.1. By induction on n we define the notion of a prefix-

free set of tuples of strings: a set A = (w=*)" is prefix-free if A| is

prefix-free, and for all T € A|, A(7) is a prefix-free set of strings.
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If A is prefix-free and T € A= then there is a unique o~ € A such
that o < 7 (formally this is proved by induction on n); we denote
this o- by 7~4. Note that if A is prefix-free and T € A< then t|€ (A} )~
and (1)) ~4' = v74].

Definition 3.4.2. By induction on n we define the notion of a length n
forest system. Let A = (w=)" be prefix-free and finite. A length n

forest system above A is a set T < A= such that:
e 7| is alength n — 1 forest system above A|;
e forall T € T|, T(7) is a finite forest above A(T4);
e if T < 7' € T| then T(7’) is an end-extension of 7(t).

A forest system S is a subsystem of 7 if S < T. We write £(T)
for the length of T. If A is a singleton o then we say that T is a tree

system above o

Lemma 3.4.3. Let T be a tree system and let o0 € T. Then T N o=

is a tree system above 0.
(In fact o can be replaced by any finite, prefix-free subset of T').

Proof. By induction on £(T). Let R = T no~. The point is that R| =
T| n(o])=. For suppose that Tt € T| n(o|)S. Then T(o|) < T (1)
and o € T imply that (t,0,) € T and witnesses that T € R|. Finally

we also observe that for 7 € R| we have R(t) = T(t) n (0,)S. O

The definition of an 4-bounded (and so of a computably bounded)

tree system is as expected. If 7 is computable and computably
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bounded then for all k < ¢(T), dom; T is computable and the map

T — T(7) is computable.

A leaf of a forest system 7 is a <-maximal element of 7. A
tuple 7 is a leaf of T if and only if 7| is a leaf of T'| and 74(7) is a
leaf of T'(7]). The set of leaves of a forest system is prefix-free.

If T and S are length n forest systems then we say that 7 is an

end-extension of S if:

e T'| is an end-extension of S |;

o If 7€ S| isnotaleaf of S| then T(t) = S (7);

e If 7is aleaf of S| then T'(7) is an end-extension of S (7).
Note that this is a transitive relation.

Lemma 3.4.4. Let {S,,) be a sequence of forest systems above A,
with each S,,.1 an end-extension of S,,. Then UmS m 1S a forest

system above A.

Proof. Let S = |J,Su. Then S |= |J,Sn |, and so by induc-
tion on the length, § | is a forest system above A|. Lett € S |.
Then S (7) = J,, Sm(7) is the union of a sequence of end-extensions
above A(774}), and so is a forest above that set; note that if T € S,
but is not a leaf of S| then S (1) = S,,(7). O

Other breaking points

We don’t have to isolate only the last coordinate. For example:
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Lemma 3.4.5. Let A  (w=®)". The following are equivalent:
1. A is prefix-free;

2. For some k € {1,...,n — 1}, domy A is prefix-free and for all
T € domy A, A(T) is prefix-free; and

3. Forall k € {1,...,n — 1}, domy A is prefix-free and for all
T € domy A, A(T) is prefix-free.

The proof relies on the fact that (A])(t) = (A(7))|, and induc-

tion. For forest systems we do not get as nice a result.
Lemma 3.4.6. Let A < (w=“)" be prefix-free and let T = A~.

1. Suppose that T is a forest system above A. Then for all k €
{1,2,...,n— 1}: (a) dom; T is a forest system above dom; A;
(b) Forall T € domy T, T(7) is a forest system above A (1~ 9MA);

and (c) if T <7’ are in domy T then T (1) < T (7).

2. Letk e {1,2,...,n—1}; suppose that dom; T is a forest system
above domy A, that for all T € domy T, T(t) is a forest system
above A(t~%™A) and that if T < 7" are in domy T then T (t)

is an end-extension of T (t'). Then T is a forest system above A.

Again the proof is routine. In the situation of (1) we don’t al-
ways get that T(7’) end-extends 7'(t). Suppose for example that
7 < 7’ are in dom; T and that p < p’ are in dom; 7(7) (and so
also in dom; T'(7)). It is possible that T'(7,p) # T(r,p), even
though p is not a leaf of 7' (7). For example we could have T'(7/, p') =
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T(7,p) = T(r,p’) which is a proper end-extension of T'(t,p). For

end-extending, though, we do get full invariance of breaking point:

Lemma 3.4.7. Let S and T be forest systems of length n. The fol-

lowing are equivalent:
1. T is an end-extension of S ;

2. Forsomek e {1,...,n—1}, dom T is an end-extension of dom; S,
for all T € dom; S, T(t) is an end-extension of T(t), and if
T € domy S is not a leaf of domy S, then T(t) = S (7).

3. Forallk € {1,...,n—1}, domy T is an end-extension of domy S,
for all T € dom; S, T(t) is an end-extension of T(t), and if
T € domy S is not a leaf of domy S, then T (1) = S (7).

Also note that if S 1s a forest system then 7 € § 1is a leaf of S
if and only if for some (all) k € {1,2,...,¢(S) — 1}, 1k is a leaf

of domy S and 7| ¢(s)) is a leaf of S (T]y).

Paths of tree systems

We simplify our presentation by restricting ourselves to balanced

tree systems.

Definition 3.4.8. Let T be a tree system and let m < w. We say
that m 1s a balanced level of T if for all T € dom; T of length m,
every component of every leaf of 7'(7) has length m. We say that T is
balanced if dom; T has no leaves and T has infinitely many balanced

levels.



3.4. THE GENERAL STEP 155

For a balanced tree system 7" we let
[T] = {x e (w*)"") : x1,.e T for every balanced level m of T} :

The set [T] is a closed subset of (w®)".

For x € [T|] we let T(x) = | J,_, T (7). This is a tree with no
leaves. If T is balanced thensois 7'}, and [T] = {(x,y) : x € [T|] & y e [T(x)]}.
If T is balanced, computable and computably bounded then [T'] is

effectively closed.

Bushiness for forest systems

Let g = (g1,...,8n) be a tuple of bounding functions, and let T be
a length n forest system. We say that T is g-bushy if T| is g|-bushy
and for all T € T'|, T(7) is g,-buhsy. As usual, T is g-bushy if and
only if for some (all) k € {1,2,...,n — 1}, dom; T is g[,-bushy and
for all T € dom; T, T(7) is g[(x-bushy.

We say that a set B = (w=*)" is g-big above some finite prefix-
free set A < (w=®)" if there is a g-bushy finite forest system R
above A whose leaves lie in B. This is extended to all sets A as
above. For k < n, B < (w=*)", a finite, prefix-free A < (w=*)" and

an (n — k)-tuple & of bounding functions we let
73(B) = {r € (domy A)~ : B(t) is h-big above A(T~ domkA)} _

Note that this notation is different from the one used in the previous
section; however, if A is a singleton o then we revert to the old no-

tation and write JTZT(k,n] (B) instead of 7 (B). A set B is g-big above A
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if and only ﬂir(k’”]

the proof of Lemma 3.3.7, using Lemma 3.4.6(2) (and the fact that

(B) is g[x-big above A. The proof of this follows

every finite prefix-free set is a forest system above itself, and any
forest system R above A is an end-extension of A). The proof gives
the analogue of Remark 3.3.14: if B is g-big above A, T 1is a forest
system and A, B < T then a finite forest system S witnessing the

largeness can be taken to be a subset of 7.

m—k n—m

e (=),

g be an (m — k)-tuple of bounding functions, and an (n — m)-tuple

Remark3.49. Letl <k <m <n,leto € (w=*)

of bounding functions. Let B < (w=“)". Then

75(ms(B)) = 75 (B).

The big subset property holds for largeness over singletons, with

the same proof as that of Lemma 3.3.8.

For the weak concatenation property, we will straightaway work
within tree systems. But first we discuss concatenations. Suppose
that S is a finite forest system, that A is the set of leaves of §, and
that R is a forest system above A. Since § is finite, A| is the set of
leaves of S'|. We then define S "R by letting:

o (S"R)l=S|'Rl;

e Forte S|, notaleaf of S|, welet (S°R)(t) = S(1);

e Fort e R| welet (S°R)(r) = S(v™*)'R(t) = S(v+74) UR(7).

Then S °R 1s an end-extension of .S, whose leaves are the leaves of R.

Also note that if S, R < T for some forest system 7" then S"R = T.
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If both § and R are g-bushy then sois S "R. We thus get the restricted

analogue of Lemma 3.3.10. From now we fix a forest system 7.

e Suppose that B is g-big above A, and that C is g-big above B.
Then C is g-big above A. If A,B,C < T then every forest
system § < T witnessing that B 1s g-big above A has an end-

extension R < T which witnesses that C is g-big above A.

We get an analogue of Lemma 3.3.11. The notion of an open

subset of T is as expected.

Lemma 3.4.10. Let B be a finite family of subsets of T which are
openinT. Let A < T be finite and prefix-free. Suppose that each B €
Bis g-big above AN N T (recall that this means that it is g-big above
every finite, prefix-free subset of ASNT). Then () Bis g-big above A.

We can now prove the analogue of Lemma 3.3.12.

Lemma 3.4.11. Let T be a forest system and let A, B < T; suppose
that B is open in T. Suppose that for all T € AN n T, B is g-big
above t. Then B is g-big above A.

Proof. By induction on the length of 7. We may assume that A
is finite and prefix-free. We need to show that C = 7%'(B) is g |-
big above A|. Lett € (A])S n T |. We claim that C is g |-big
above 7 (and then apply the induction hypothesis). Let o0 = 774,
Then C n 0~ equals [),cx(,) 7 (B). By assumption, each m;'(B)
is g|-big above every tuple in o= n T |; we apply the analogue of

Lemma 3.3.11 mentioned above. O
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Corollary 3.4.12. Let T be a tree system, let A, B,C < T, and sup-
pose that C is openin T. Suppose that B is g-big above A, and that C
is g-big above every tuple in BSnT. Then C is g-big above A, and in
fact every finite g-bushy forest system S < T which witnesses that B
is g-big above A has an end-extension R = T which witnesses that C

is g-big above A.
As a corollary we get the analogue of Lemma 3.3.17:

e If T is a bounded and balanced b-bushy tree system above o,
and B < T is open in T and b-small above o, then for every m
there is some 7 € T such that |7;| > m for all i < ¢(T), and

above which B is b-small.

3.4.2 The notion of forcing and restriction maps

We let Bpner be the set of tuples 7 € (w=“)" such that either 7 /€
Bpner-1, OF T, € Bpyerts that s, if there is some e < |7,| such that
T.(e) = J™(e).

For brevity, for a tuple o € (w=*)" we let |or| = min {|o| : i < n}.
When a tuple-length 7 is clear from the context, then for a function g
weletg = (g,8,...,8).

We let P, be the set of tuples p = (o?, T?, B, h?, bP) satisfying:

1. T? is a computably bounded, computable, balanced tree system

above o?;

2. h? € Q and T? is h”-bushy;
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3. BP < T?isc.e.and openin T?, and B? 2 Bpner N T7;
4. b? € Q and B? is b”-small above o”; and
5. h? » bP and h? > bP above |o?|.

We define a partial ordering on P, as follows. A condition g
extends a condition p if 07 < 09, T9 is a subsystem of T”, BPnT9 <
B4, and h? < h? and b? > bP above |0|.

The assignment of closed sets X? = [T?|\[B”]* for p € P, is
acceptable; the proof is identical to the proof of Lemma 3.3.19.

If G < P, is sufficiently generic then we denote the generic tuple
(the element of the singleton [ ;[T7]\[B"]*) by x“. As above,

every condition in P, forces that x¢ is DNC relative to x|,

The restriction maps
For all n > 2, define i,: P,, — P,_; by letting

in(q) = (a0, T, 774 (B?), %, b7),
where we have

7% (BY) = {Tr € TY, : BY(t)is b’-big above o} .

O-I‘l

It is routine to check that i,,(¢) € P,_; for all ¢ € P,,. Inductively we
define Q, < P,: Q; = Py, and Q, is the set of conditions g € Q,
such that:

e i,(q) € Q,_1;and
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o 1% (BY) = {reTi: ol e Bi(1)}.

We again observe that for all ¢ € Q,, X4|= X"(@; the proof is the
same as above. The proof that the restriction of i, to Q, is order-

preserving is identical to that in the proof of Proposition 3.3.21.
Lemma 3.4.13. There is a map v, : P, — Q, such that:
1. v,(q) < q forall g € P,; and
2. 1,0V, =V,_10I,
In particular, Q, 1s dense in P,,.

Proof. We omit the indices n and n — 1 from i,, v, etc.; they will be
clear from the context.

Let g € P,,. For brevity we let C,, = B and fork € {1,...,n — 1}
we let C; = 7! (BY). Remark 3.4.9 says that if k < m < n then

o1 r(k,n]

Cy=n"_ (Cn).

o1 r(k,m]

We define a tuple v(gq) = (04, T4, B9 pa, b?) by letting
B9 = {reT!: 1€ Cy for some k < n}.

The set B"9) is b?-small above o9. For let D be the set of leaves of
a b?-bushy finite tree system § < 79 above 0. Since C| is b?-small
above 0"1] we find some 7; € (dom; D)\C;. Since C; = ﬂS%(Cz),
C»(7) is b?-small above o]
(dom, D)\C; and so on, we find some T € D\B"?. We conclude

that v(q) € P, (and v(g) < g).

; we find some 7, such that (71,7;) €
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Now B@ = C,_;; so B"9) is the set of tuples T € T'%| such that
Th € Cy forsome k <n— 1.

Let 7 € T%. If t|e B"9) then B9 (7r) = T9(r), in particular
ol ¢ B'9(t). Otherwise, B"? (1) = B(t), and since in this case
T ¢ C,_; we see that B"9 (1) is b9-small above 0. We conclude
that B'"(@)) = ﬂz"q(BV(Q)) = B*((9) and so that i(v(q)) = v(i(q)).

We also conclnude that T € ﬂZ(BV(‘I)) if and only if o € B"9 (7).

By induction, v(i(q)) € Q,_1, so v(q) € Q,. O
Proposition 3.4.14. i,[q, is a restriction map from Q, to Q,_,.

Proof. It remains to show that if ¢ € Q, and p € Q,_; extends i,(q)
then there is some r € Q, extending ¢ such that i,(r) < p. By using
the map v, it suffices to find r € P,,. The proof is identical to that of
Proposition 3.3.21. O

Lemma 3.4.15. i,[q, is onto Q,_;.

Proof. Let p € Q,_;. We define ¢ € Q, such that i,(¢q) = p by
letting, for o € T?, T9(o) = (h?)~°!, and let BY(o) = T9(o) if
o € B?, otherwise B?(0") = Bpnce. O

Totality

Proposition 3.4.16. Let C < (w®)" be I1) and let p € P,. If p I

xY € C then p has an extension which strongly forces that x© € C.

The proof is identical to the proof of Proposition 3.3.23.
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3.4.3 Minimality

LetI: (w®)" — 2¢ be a Turing functional.

Definition 3.4.17. Let B < (w=*)". Two sets Ag, A; < (w=*)" form
a local T-splitting mod B if for all T € (w=*)""", the sets Ay(t) and
A (1) I'(t, —)-split mod B(T).

Definition 3.4.18. Let A = (w=)" be finite and prefix-free, and let
B be a collection of subsets of (w=*)". We say that the sets in B are

uniformly g-big above A if (g 7' (B) is g|-big above A|.

Lemma 3.4.19. Suppose that p € P, strongly forces that T'(x%) is
total, and forces that it is not computable from x°|. Let o € T?; let
g € Q such that h? » g, and h? > 3g and g > b? above |or|. Then
there are sets Ay, Ay < TP, uniformly g-big above o, which locally
I"-split mod BP.

Proof. Identical to the proof of Lemma 3.3.24. O

Lemma 3.4.20. Let g and h be n-tuples of bounding functions;
let B < (w=®)" be open. Suppose that:

<w\".
bl

¢ 0,0 € (w
e Ais3g-big above o

o £y and E| are uniformly 3g-big above A; and for all T € A,
Eo n 1t and E; n 1= locally T'-split mod B; and

o F is 3h-big above o*, and |I'(p)| > |T'({)| for all p € F\B and
all { € E\B, where E = Ey U E].
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Then there are E' < E, g-big above o, and F' < F, h-big above o,
which I'-split mod B.

Proof. Identical to the proof of Lemma 3.3.30. O

Lemma 3.4.21. Suppose that p € P, strongly forces that T'(x©)
is total, and forces that it is not computable from x® |. Let k €
{0,1,....,n — 1}. Let C < T? be finite and prefix-free. Let g € Q
such that h? > g, and h* > 3Ig and g > b above |o| for all
oeC.

Then there is a set A < TP, g-big above C, such that for all

T € domy A, the sets in the collection

{A(T) N (0,0 T2+ p € dom, A(7)}
pairwise I'(t, —)-split mod BP(T).

Proof. The notation for the case k = 0 is slightly easier. In this
case we closely follow the proof of Lemma 3.3.31. For simplicity
of notation, for a set A < T? and some tuple T € dom; T” (for some
k<n)yweletAn (1) =An (1,07 1n.)". We prove the lemma by
induction on |C|; we let C* = C U {0o™*}; by induction we are given
A which is 3/€/g-big above C, and the sets A ~ (p)= (for p € dom; C)
pairwise I'-split mod B”. We list the elements oy, 03,...,0, of C
such that (07j); # o]. By reverse recursion on j < m we define
sets A; < TP with A;_; Af. and A,, n o~ c A< forallo € C. We
ensure that A is 3/g-big above C* and that A;_| N 0'7. andA; | no*

form a I'-splitting mod B.
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We start with A,, = A U {o*}. Say we are given A;, j > 0. For
brevity let Dj = (A; n 07)]. For T € A; n o7 we let O be the set

of { € D;* n T?| such that either:
o T|X {;or

e in T7({) there are Gy and Gy, 3/g-big above 7,,, which I'(£, —)-
split mod B?({).

Then Lemma 3.4.19 says that for all u € Df. N T? | the set Q; is
3/g-big above . By Lemma 3.4.11, Q- is 3/g-big above DT n T?|.
By Lemma 3.4.10, ()
find E;o and E};, finite subsets of 77 which are uniformly 3/g-big

reA;no” Q- is 3/g-big above D;. Thus, we can
above A ij'f., which locally I'-split mod B?. We obtain F; as before.
Applying Lemma 3.4.20 we finally get F'; < Af. N (o)<, 3/ big
above o*, and E; - Af. N (rf., 3/~1g-big above o ;, which I-split
mod B?.

In this proof we employ the following notation: for a set X <
(w=*)" and k < n we let X; = domy X. To define a set X it suffices
to first define X;; then, for all 7, € X, define X,(7;) (a set of strings);
then, for all (1, 7,) € X,, define X3(71,7,), and so on.

We define the set A;_;. First, we consider all oo € C* such that
o1 # 07, (0j)1. Forallsucho weletA;_; n o~ =A; no~. Welet
Aji 0 (o) = (F)iand Aj_11 0 ((077)1)% = (E)1.

Next, consider all o~ € C* such that oy = o}, but o, # o7. For all
11 € (F)y welet Aj_i(t1) N (01 (1) = A;(t,") 0 (07 (11): this
completely defines A;_; N o=. We similarly define A;_; n o=~ for
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o € C" suchthatoy = (o)1 but o # (07;)2. Then, forall 7y € (F));
we let Aj_io(71) = (F})(71); this defines A; 1> n (0" 2)*, and
similarly define A;_1, n (07 2). The process continues similarly
until all of A;_; is defined.

The case k > 0 is very similar. Morally it follows the idea of the
proof of Lemma 3.3.27, extending bushily on the first & coordinates
so that we can emulate the proof of the case k = 0 (but with n — &

replacing n) within the image. We give a sketch. Again we work

by induction on |C|; we start with some C for which we inductively
already have A as required; and add to C a tuple o™ to get C*. We
now let the list 07y, 0, ..., 0, contain those elements oo € C such
that o [v= o [x but o411 # o, . We start with A,, = A U {0}
and build sets A; with the same properties as above. Given A; we
aim to find Eo, E;; and F; as above, except that we also require
that domy E; = domy F;; this is possible because o [y= o™ [4:
we first get E; as above, and then extend domy E; to domy F;; and
“relabel” E; by letting E;({) = E;(7) for all { € dom F; extending
7 € domE;. Then we obtain E; and F’; but require that domy E; =
domy F’; = dom F;; we apply Lemma 3.4.20 within 77({) for each

¢ € dom F;. We then define A;_; as above. O

Proposition 3.4.22. Every condition in P, forces that deg.(x®) is a

strong minimal cover of deg.(x%)).

Proof. Let p € P, which strongly forces that I'(x“) is total, and

forces that it is not computable from x¢|. Fix k € {0,1,...,n — 1}.
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Using Lemma 3.4.21 and the by now familiar construction we obtain
an extension g of p which (strongly) forces that T'(x®) @ (x° ;) >+
x,(f“. Iterating for each k we obtain a condition which forces that

I'(x%) =; xC. O

3.5 Proof of the main theorem

We prove Theorem 3.1.1. We have obtained a directed sequence of

forcing notions

in I3 I4 I5

Qi - Q, - Qs - Q4 -

With each i, a restrction map. Form < nleti, ., = i1 020
-+ - o1, (and of course let i,_,, = idg,). A composition of restriction
maps is a restriction map, so each i,_,,, is a restriction map.

As sets, the forcing notions Q,, are pairwise disjoint. Let Q_,, =
U, Q.. We order Q,, as follows: if p € Q, and ¢ € Q,, then ¢
extends p if m > nand i,,_,,(¢q) < p in Q,. Note that the ordering on
each Q, agrees with this ordering.

For n < wlet Q¢, = J,,<, Qu, ordered as a sub-order of Q.
Define j, .,: Qzy, — Qg, by letting, for ¢ € Q,, jun(q) =
g if m < n, and otherwise j, .,(q) = in_n(q). For m > n let
Jm—n: Qem — Qg be jy—nlo.,. These maps are restriction maps
and they commute: forn < m < @ < W, jon = Jmon © Jaom-

Let G, © Q. be very generic. Let G, be the filter in Qg,
generated by the generic directed set j, .,[G~,]. By Lemma 3.4.15,
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each Q, is dense in Qg,; so G, = G, N Q, 1s a fairly generic filter
of Q,; and iy, .,|G] € G,. (By ‘very generic’ and ‘fairly generic’
we mean that if we need G,, to be sufficiently generic, then we can
ensure that by making G, sufficiently generic. Technically, for
any countable collection O of dense subsets of Q, we can find a
countable collection & of dense subsets of Q_,,, such that if G_,,
meets every set in &, then G,, meets every set in D.)

This gives us a sequence xp, xp,... of elements of Baire space

such that (xi,...,x,) = x%.

By Proposition 3.4.22, each tuple
(x1,...,x,) is a strong minimal cover of (xi,...,x,_1); and x, €

DNC(X[ ..... x,,_l).
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Chapter 4

Multiple genericity

4.1 Introduction

Real numbers that are typical in some sense play an important role
in computability theory. They arise from considering the notions
of measure and category. Given a countable collection of sets that
are considered large in some sense, we consider the reals that are in
every such set in some way. If the sets in our collection are large
with respect to measure, we arrive at random reals, and if they are
large with respect to category, we arrive at generic reals.

In [26], Jockusch introduced the notion of n-generic reals, for
every n € w. The original definition was in terms of reals that are
generic for Cohen forcing restricted to n-quantifier arithmetic. This
was shown by Jockusch and Posner ([26]) to be equivalent to the
following. Our collection of sets are the X0 sets of strings. We say
that the real A meets the X0 set S if there is some o < A such that

o € §, and that A avoids S if there 1s some o < A such that no

169
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extension of o is in S. Then a real is n-generic if it either meets
or avoids every XV set of strings. The n-generic sets form a proper
hierarchy: every n+ 1-generic real is also n-generic, but the converse
does not hold.

We also have the weakly n-generic sets, as defined by Kurtz in
[34]. We say that a set of strings S 1is dense if every string has
an extension in §. Then a real A is weakly n-generic if it meets
every dense 22 set of strings. Kurtz ([34]) showed that this refines
the hierarchy, in that we have for all n, the n-generic reals properly
contain the weakly n + 1-generic reals, which properly contain the

n + 1-generic reals.

The greater the n, the more typical we consider an n-generic real
to be. In many cases, typical behaviour starts with the 2-generic re-
als, and will fail for 1-generic reals. A similar situation occurs with
the hierarchy of n-random sets. Barmpalias, Day, and Lewis ([2])
survey many such results for randomness and genericity. As an ex-
ample, Kurtz ([34]) showed that the collection of sets computing a
2-generic real has measure 0, whereas the collection of sets comput-
ing a 1-generic real has measure 1 ([34]). Thus it is of great interest
to determine exactly when typical behaviour starts, and we may use
notions of genericity intermediate between 1- and 2-genericity to

more finely specify this.

Several such notions have already been defined. Apart from weak
2-genericity, the most well-known notion is pb-genericity, which

was introduced by Downey, Jockusch, and Stob in [20]. We meet
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pb-dense sets of strings. A set is pb-dense if it is the range of a
total function f : 2<“ — 2=“ with f(o") > o which can be approx-
imated, as in the Limit Lemma, with a primitive recursive bound
on the number of mind changes. Schaeffer ([40]) defines dynamic
genericity, which is a stronger notion than pb-genericity which also

uses dense sets of strings.

To highlight the difference between these notions, we consider
what we must do in order to construct these generics. Suppose that
we would like to construct a real A which is 1-generic. Let S be a
c.e. set of strings. Suppose that we already have decided that o will
be an initial segment of our real A. For A to meet or avoid S, we
simply wait until a string T with 7 > o is enumerated into S. If no
such 7 exists, then o avoids S. If such a 7 does exist, we can then
let A extend 7, and A will meet S. The point is that we need to act at
most once in order to satisfy the requirement that we meet or avoid
S.

Suppose we would like to instead make A pb-generic. Let f :
2% — 2<% be a total function with approximation {f;) that has a
primitive recursive bound p on the number of mind changes. Sup-
pose that we decide at stage s that our real A must extend o. So that
A meets range f, at every stage ¢ of the construction after stage s,
we would like A;, our current approximation to A, to extend f;(o),
the current approximation to f(o). Although we do not know dur-
ing the construction which approximation fi(o) to f(o) is correct,

we do know that we only have to change our approximation to A at
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most p(o) many times before it will permanently extend f (o). In
particular, given the string o~ and the function f with bound p, the
number of times we must act in order to satisfy the requirement that
some extension of o meets range f is bounded in advance, namely
by p(o).

We wish to generalise this notion of genericity so that given o and
some set of strings T we would like to meet or avoid, the number of
times we must act in order to meet 7" is only revealed to us during
the course of the construction. We would also like to allow for the

possibility that T is not a dense set of strings.

We imagine, as is standard in computability theory, that we are
trying to construct a real that is generic in this sense, and that our
opponent gets to play the set of strings 7. Suppose that we have
decided that o is an initial segment of the real we are building. Our
opponent is enumerating the strings in 7. We look for such a string
extending o. Suppose that at some stage s our opponent enumerates
the string 7 extending o. We then let our approximation to A extend
7. For the moment we think that we have met 7', and will work
towards meeting other such sets U played by the opponent. At some
later stage, our opponent then enumerates some extension 7’ of T,
and demands that we must instead ensure that our real A extends 7/
in order to meet 7. We change our approximation to A to extend 7’.
This can repeat a certain number of times. We require however, that

our opponent tells us at stage s how many times this may repeat.

This is formalised as follows. The set T is thought of as the
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range of a partial computable function f : w X w — 2%, equipped
with a partial computable function 4. Suppose at stage s we see
f(x,0)[s] |. We also require that h(x)[s] |. Then f(x,0) is the
current string which we would like to extend in order to meet 7', and
we know that we may see up to /(x) many extensions of f(x,0). We
may at some later stage s’ see that f(x, 1)[s’] |, in which case we
would then like to extend f(x, 1) in order to meet 7. Our opponent
must ensure that [{k : f(x,k) |}| < h(x). Of course there may also
be y # x such that f(y,0)[s’] |. In order for the real A to meet 7,
we only need there to be some x such that f(x,k) < A, where k is
greatest such that f(x,k) |. We say that the real A avoids range f
if it avoids range f when considered simply as a c.e. set of strings.
That 1s, if there 1s some o < A such that there are no x and k such
that f(x, k) # o. We refer to range f as an w-change set of strings.

We give the definition again in the next section.

In section 4.3 we consider the computational power required to
compute such a generic. We see a connection between these generics
and the hierarchy recently introduced by Downey and Greenberg in
[17]. In section 4.4 we first present a corrected version of the proof
from [13] that if a set has no c.e. tight cover then it is computable
in a 1-generic, and then extend this result to the case of w-change
generics. In the final section, we give another proof of Haught’s
theorem that every noncomputable degree below a 1-generic below
' contains a 1-generic. We hope in further work to show that the

analogous result for w-change generics does not hold, and that they
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are not downward dense below ¢7’.

4.2 Definitions

An w-change set of strings 1s the range of a partial computable func-
tion f : w X w — 2~ for which there is a partial computable

function % : w — w such that for all x,

1. if f(x.k + 1)| then f(x.k) |,

2. if f(x,k + 1) then f(x,k + 1) > f(x.k),
3. forall s, if f(x,0)[s] |, then A(x)[s] |, and
4 |{k = f(x k) L} < h(x).

Letrange f be an w-change set of strings with partial computable
bound 4. We say that a set A meets range f if there is some x and
k such that f(x,k) < A and f(x,k’) 1 for all K’ > k. We say that A
avoids range f if A avoids range f as a c.e. set of strings. That is,
there is some o < A such that for all x and n, f(x,n) ¥ o. We say
that a set is w-change generic if it meets or avoids every w-change
set of strings.

We see that every w-change generic is 1-generic, as every c.e. set
of strings is an w-change set of strings. If range f is an w-change
set of strings, then range f is a 23 set of strings. Therefore every

2-generic 1s w-change generic.
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For the remainder of this chapter, we let {f;, h;);., be an effective
list such that (range f;) is a list of all w-change sets of strings, and

that range f; has partial computable bound #;.

4.3 Computing w-change generics

In this section we give several results which progressively refine the

computational power required to compute w-change generic sets.

4.3.1 Forcing arguments

Importantly, the following theorem shows that w-change generics
exist below . Note that this is not the case for weakly 2-generic

sets.
Theorem 4.3.1. There is an w-change generic set G with G <r &'

Proof. We must built G <7 ¢’ and satisfy the requirements
R.: G meets or avoids range f,.

We build G by finite extension. The construction will proceed in
stages, with each stage consisting of possibly many substages. Let
G, be the string at the end of the last substage of stage s, and let
G, denote the string at the n substage of stage 5. Let Gy = A, the
empty string.

Construction

Stage e + 1: we deal with R, at this stage.
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Substage 0: Let G110 = Ge.
Substage 1: We ask ¢’ the X9 question

(Is)(3x) (k) (h.(x)[s] | and fo(x,k)[s]|| > Gey10)-

If the answer is no, then there is no string in range f, which extends
Ge+10, S0 we can let G.; = G110 and proceed to the next stage.
If the answer is yes, then let x, be the least x found at the least
such stage. We let G111 = f,(x.,k) where k is greatest such that
fe(xe,k)[s] |, and proceed to the next substage.

Substage u, u > 2: We ask &' the X9 question

(3k) (3s) (fe(xes K)[8] 1> Gerru)-

If the answer is no we let G, = G,.11,-1 and proceed to the next
stage. If the answer is yes, we let G, 1, = f.(x., k), and proceed to

the next substage.

There are at most /,(x,) substages of stage e as

[{k = fo(x, k) L} < he(x).
In this way we make sure that G, = f,(x,, k) where k is the great-
est such that f,(x., k) |, and so G meets range f,, and R, is satis-
fied. O

Our next step is showing that every GL, degree computes an w-
change generic. Recall that a set A is in GL, if it is not generalised

low,. That is, for each function f <r A @ &' there is a function
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g <r A such that g(n) > f(n) for infinitely many n; see Corollary
2.23.8 of [18]. The proof is very similar to that of Lemma 2.24.23
of [18], which itself is fairly similar to Lemma 3 in [28].

Theorem 4.3.2. Every GL, degree computes an w-change generic.

Proof. Let a be a GL, degree. We build an w-change generic G <7

a and satisfy the requirements
R.: G meets or avoids range f,.

First let us define the function p : w X 25 X w — w. We
let p(e,o,s) = 0 if there is no x and k such that f,(x,k)[s] | >
o. Otherwise, we let s, < s be the least such that there are x
and k such that f,(x,k)[s.-] | > o. Let x., be the least such x
at stage .. Then if k is greatest such that f,(x..,k)[s] |, we let
ple, o, s) be the least stage s < s such that f,(x... k)[s'] |. We
let g(e, o) = lim; p(e, 0, s). As can be seen from the proof of the

previous theorem, g <r ¢&'. Let

[(n) = max{q(e,0) : e,|o| < n}.

We alsohave [ <7 @ Let A€ GL,. As &' <7 AT, <1 AD .
By Corollary 2.23.8 in [18], there exists a function g <7y A that
escapes domination by /. That is, (3°s)(g(s) > I(s)). We assume
without loss of generality that g is nondecreasing and unbounded.
We obtain G as UGy, where each Gy is a string of length s. At
stage s we look for extensions to our current approximation G,_

in range f, for e < s. The bound on the search is given by g(s). At
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stage s, if R, is the strongest priority requirement that is not currently
satisfied, we see whether there is f,(x,k)[g(s)] |> Gs_1. If so, we
choose x to be the least such at stage s, and k the greatest such for this
x. We will then start working towards f,(x, k) one bit at a time. Once
we reach a stage ¢ where G, = f.(x, k), we say that R, is satisfied
at stage s. This attack can be interrupted by any requirement of
stronger priority. If at any stage u > s we see that there is K’ > k
such that f,(x,k")[g(u)] |, we say that R, is unsatisfied at stage u.
We then repeat the strategy for S..

The construction is carried out computably in g, and so G <7 A.
It is clear that if R, is permanently satisfied then G meets range f,.
We show that each R, is satisfied. Suppose by induction that all R;
for i < e are permanently satisfied at all stages after stage so. Let s >
so be such that g(s) > I(s). If an attack as above is started at stage
s, then this will lead to R, being permanenty satisfied. Otherwise,
there must be a stage v € [so, s) such that an attack for R, is started
at stage v. Suppose that this attack works towards the string f,(x, k).
Then as R, is not said to be unsatisfied at any stage before s, we must
have for all # € (g(v), g(s)] that the greatest / such that f,(x,/)[t] |
is k. Then g(v) > g(e,G,—1) and so R, will be satisfied at all stages
after stage s.

d

Downey, Jockusch, and Stob in [20] extended the result of Jockusch
and Posner from [28] that every GL, degree bounds a 1-generic to

show that every array noncomputable degree bounds a 1-generic.
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This is significant because array noncomputable degrees can exist
within the generalized low,, and in fact the low, degrees ([19], [20]).

We can too show that w-change generics exist in the generalized
low, degrees. We require some concepts introduced by Downey and
Greenberg in [17]. They define for all ordinals @ < g( the notion of
an a-c.a. function. The concepts are quite sensitive to the ordinal
notations used. We refer the reader to Chapter II of [17] for a dis-
cussion of this. The ordinals must have an effective Cantor normal
form. In this chapter we deal only with the ordinals w? and w, and
so for our purposes, if § < w?, then B = wk + n, and we know k
and n. We consider w? with the lexicographic ordering, and so if
a,fB < w2, then @ = wl+m and 8 = wk + n for some [, m, k, n, and

a <pBifandonlyif/ < k,orl=kand m < n.

Definition 4.3.3. An w?-computable approximation of a function f
is a computable approximation { f;) of f, equipped with a uniformly
computable sequence {0;);,, of functions from w to w? such that

for all x and s,

e 0,.1(x) < o04(x), and

o if £ 1(x) # fi(x), then oy, 1(x) < o4(x).

2 2

-c.a. if it has an w
2

Then a function f : w — wWi1s W -computable

approximation. We say that a degree a is w*-c.a. dominated if every

2

function computable in a is dominated by some w--c.a. function.

There is a uniform version of this notion as well. We say that a
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degree a is uniformly w?-c.a. dominated if there is some w?-c.a.

function which dominates every function computable in a.
The definition of an w-c.a. function is similar, replacing w? with
w, and considering w with its standard order. A function is w-c.a. if

and only if it is weak truth-table below ¢'.

Theorem 4.3.4. If a is not uniformly w*-c.a. dominated then A

bounds an w-change generic set.

Proof. We show that the function / from Theorem 4.3.2 is w?-c.a.

We first show that the function ¢ from Theorem 4.3.2 is (w + 1)-
c.a. We have ¢g(e,0) = limy p(e, o, s) and p is a total computable
function. We define a sequence of functions (0, )5y, 05 : WX25¢ —
w+ 1. Letog(e,0) = wif pe,o,s) = 0.1If p(e,o, s) #0, then s,
and x,, are defined at stage s, and h.(x.,)[s] |. We let os(e,0) =
he(xer) + 1 — n, where n is the number of different numbers in the
list p(e, 0, Ser), P(€, 0, Ser + 1),..., p(e, 0, 5).

The function / has the computable approximation (/) where

Is(n) = max { p(e, o, s) : e,|o| < n}.

There are (n+ 1)(2"*! — 1) many pairs (e, o) such that e < n and
o] <. Leto(n) = (14 D = 1) =k, Yoo oren0s(e00))
where k is the number of pairs (e, o) such that p(e,o,s) # 0 and
we do not include terms in the summation where o,(e, o) = w. For
any n, o’(n) is nonincreasing, as the number of pairs (e, o) with

ple,o,s) # 0 can only increase, and o,(e, o) is nonincreasing. If
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for some s we have I;,(n) # [;(n), this must be because there is
some pair (e, o) such that either p(e, o, s+ 1) > p(e, o, s), in which
case o,(e, o) will decrease and so will 0'(n), or p(e,o,s) = 0 and
ple,o,s + 1) # 0, in which case the first coordinate of o/ (n) will
decrease, and so 0’,(n) will.

Let a be a not uniformly w?-c.a. dominated degree. Then a com-
putes a function which escapes domination by /. Then as in the proof

of Theorem 4.3.2, we can build a w-change generic set below a. O

Corollary 4.3.5. There exist w-change generic sets in the general-

ized low, degrees.

Proof. Downey and Greenberg’s hierarchy of a-c.a. dominated de-
grees 1s contained within the generalized low, degrees. They show
that if @ is a power of w, then there is a degree which is a-c.a. dom-
inated but not uniformly @-c.a. dominated. See Chapter III, and in
particular Section IIL1.5 of [17] for more details.

Taking a degree which is w?

w?-c.a. dominated, by the previous theorem, there is an w-change

-c.a. dominated but not uniformly

generic set in the generalized low, degrees. O

4.3.2 A c.e. permitting argument

A closely related notion from [17] is that of a totally a-c.a. degree.
We say that the degree a is totally a-c.a. if every function com-
putable in a is a-c.a.

For c.e. degrees, the notions of (uniformly) a-c.a. dominated

and (uniformly) totally a-c.a. coincide (see Section IIL.5 of [17]).
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In Downey and Greenberg’s hierarchy, immediately below the uni-
formly totally w?-c.a. degrees are the totally w-c.a. degrees. There-

fore we can slightly improve the previous result for c.e. degrees.

Theorem 4.3.6. Every not totally w-c.a. c.e. degree computes an

w-change generic set.

Proof. Let a be a not totally w-c.a. c.e. degree, A € a be a c.e. set,
and let g = I'(A) be a function that is not w-c.a. (where I is a Turing
reduction). Let y,(n) be the use at stage s of computing g(n) via
I'(A). We have a Ag—approximation g for g that is generated from
an enumeration of A viaI".

We build a set G and a Turing functional A such that G = A(A)

to satisfy the requirements
R.: G either meets or avoids range f,.

We first consider how to satisfy R, in the simplified case where
for all x, if h.(x) | then h.(x) = 1. This situation is equivalent to
meeting or avoiding a c.e. set of strings. The construction proceeds
in stages s € w. Associated with every requirement at every stage
is a finite sequence of natural numbers we call lengths. If [; is a
length, then the i substrategy for R, will seek at stage s an exten-
sion to G, [ [; in range f, . If we find an appropriate extension
to G, [ [; (we say that [; is realized) we would like to change our
approximation to G to meet the extension, but will require permis-

sion from A to do so. Whenever a new length is defined we assign
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to it a permitting number; in this instance we assign /; the permit-
ting number i. As /; has permitting number i, we will grant permis-
sion for /; if we see a change in the Ad-approximation to g(i), and
hence a change in A below (). If permission is granted, we change
our approximation to G to meet the extension, and the requirement
will be permanently satisfied. As we may never receive permission
on any of the lengths already in our sequence, we choose a fresh
large number to be a new length and assign it a permitting number.
If there are infinitely many realized lengths, none of which receive
permission, then we derive a contradiction to g not being w-c.a. as
follows. Suppose /; is realized at stage s;. As we do not receive per-
mission for /; after stage s;, we know that g(i) cannot change past
this stage. Thus we can computably bound the number of times g(i)
can change, which is a contradiction. In fact, in this simplified case
we have that A | vy, (i) = Ay, | v,,(i) for all i, which contradicts A

being noncomputable.

Unfortunately, we do not have h,(x) = 1 for all x such that
h.(x) |. This will mean that a single length may require multiple per-
missions, as we now discuss. We begin as above, with the length [
with permitting number 0. Suppose at stage s, [ is realized when we
see for some x that f,(x,0)[s] |, h.(x)[s] |, and Gs_1 | lp < f.(x,0).
We refer to the x here as the location for this attack on R,, and asso-
ciate x with [y by letting xo = x. As above, while we wait to receive
permission for [y we will choose a new length [; with permitting

number 1. If we were to ever receive permission for [y at stage ¢,
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then we would change G, to extend f,(xo,0). In the simplified case,
this action would have been enough to permanently satisfy R,. Here
in the w-change generic case, at some later stage ¥ we may have
fe(x0, D[] > fo(x0,0) but f.(xo, 1) £ Gy, in which case R, would
no longer appear to be satisfied at stage . To change our approxi-
mation to G again we would require another permission for /y. The
number of permissions we may require for [ is at most /. (x), since
[{k : fo(x0,k) |} < he(xo). If not enough permissions for [y are
received to satisfy R,, then we can computably bound the number of
times g(0) may change as follows. We can approximate g(0) every
time [, receives permission, and as this occurs strictly fewer than
h.(xo) many times, our approximation changes at most 4, (xy) many

times.

There is one last complication. Suppose, as above, we acted for
Iy to have G, meet f,(xp,0). R, would then seem to be satisfied.
We may have no further need for /;, and so we clear it from our
sequence of lengths. The problem is that we must challenge the
non-w-c.a.-ness of g at all i € w. What should we do with changes
in g(1)? The solution is to let [y receive permission from A when
there is a change in g(0) or g(1). If at some later stage ' we see that
fe(x0, D[] ] > fe(x0,0), we will wait for permission for /y, choose a
new length /;, and assign it permitting number 2. Why could we not
use the old length /; here? We would like to be able to reason that if
we find no extension to G, | [; then G, avoids range f,. However,

if we were to use the old value for /; we might have [; < |f.(xo, 1)].
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Therefore we choose a fresh number for /;.

In general, each length [; will be assigned a permitting number
n. If [; has permitting number n, it receives permission when there
is a change in the approximation to g(n). If /; receives permission
we clear all [ for i’ > i and then [; takes responsibility for tracking
the changes in g on the permitting numbers of the /; — the permit-
ting number for /; will then become a permitting interval. This is
achieved in practice by lifting the use &, (/;) to equal ¥, 11 (Ppuax),
where n,,,, 1s the largest current permitting number. We show in
Lemma 4.3.7 that the use can be lifted only /. (x;) many times, and
so is well-defined. To argue that R, is met, we show that if there are
infinitely many realized lengths, none of which receive enough per-
missions, then we will be able to obtain a contradiction by building
an w-c.a. approximation g for g. The definition of g, as well as a
bound on the number of times the approximation may change, will
be given during the verification. We now give formal details of the
construction.

At every stage s and for every requirement R, we will have a

sequence
le,O,Sa le,l,s, <y le,imax(e,s),s

of lengths, and a sequence

Xe,0,55 Xe 1,55+« » xe,imax(e,s)fl,s

of locations. At some stages we will also define x,;, . (c.s),s- During

the construction we may clear all or parts of the sequences, and so
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if at stage s we have i entries in our sequence of lengths for R,, we
let iqr(e, s) = i — 1; when the sequence is empty we let i,q.(e, s)
be undefined. We will say that the length /,; is waiting if x,;
1s defined and we are currently seeking permission to change our
approximation to G to extend f,(x.;s, k), where k is greatest such
that £, (x5 k)[s] 1.

To every length [,;, we associate a permitting interval I(l,;).
This is an interval of natural numbers; its left end is fixed from when
lois 1s first defined, but its right end may grow with time (but only
finitely often). We say that [, ; ; is permitted at stage s if for some
nel(l,;s) wehave g, (n) # gs(n).

We say that R, is satisfied stage s if x.; . (), s 18 defined, and
fe(Xeipuile.s),s» k) < G, where k is greatest such that f,(x,;,. (e.5).5 K)[5] |-

We say that R, requires attention at stage s if one of the following
holds:

1. the sequence of lengths for R, is empty at stage s.
2. For some i such that [, ; ; 1s waiting, [, ; ; 1s permitted at stage s.

3. R, was satisfied at some previous stage, but is not satisfied at

stage s.

4. R, is not satisfied at stage s, and there is an x not occuring in

our sequence of locations at stage s, and a k such that &, (x)[s] |
and fe(x, k) [S] l> GS r le,imax(e,s),s-

Why we may want R, to receive attention in case (2), even when
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R, is satisfied, bears some explanation. Suppose at stage s we have
that R, is satisfied but that there is i < i,.(e, s) such that [, is
waiting and [, ; is permitted. Suppose that n € I(l,;). We would
then proceed to act for R, at [, ; ; so that if there are many changes in
g(n) we can meet the requirement at position i. n may be the only
natural number for which we cannot computably bound the number
of changes in g(n). If we do not act at /,; ; and R, were to require
attention in case (3) at some later stage t, we may never receive

permission on lo;  (..+» and R, will not be met.

Construction
Stage 0: Let Gy = 0“. Let 6p(n) = nforalln € w.
Stage s, s > 1:

Find the least e, if any, such that R, requires attention at stage s.
(If no such e exists, go to stage s + 1.) Initialize all requirements R,/
for ¢’ > e by clearing the sequences of lengths and locations for R,

Choose the first case by which R, requires attention.

If case (1) holds, let iy (e, s + 1) = 0 and I, 0,1 be fresh. Let
I(leo,s+1) = {0}.

If case (2) holds, choose the least i that is applicable. Set G, =
fe(xeis, k)"0, where k is greatest such that f,(x,;,, k)[s] |. Clear
loisand x. ¢ forall i/ > i, and set 6. 1(leisr1) = Vsi1(Tmax) Where
Rmax = MaxI(le;. (es)s) Set I(lejsr1) = [minl(les), Bmax] and
Imax(€, s + 1) = i. Say that Leivu(e,s+1),s+1 18 NOt waiting. We say that

R, received attention at position i at stage s.
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If case (3) holds, define ijq.(e, s + 1) = inax(e, s) + 1 and choose
Lejivac(e,s+1),5+1 to be fresh. Let I(l,; . (es+1),5+1) = {n} where n is the
least number that is not already a permitting number for some length
for R,.. Say that [,; . (cs+1)—1,5+1 1S Waiting.

If case (4) holds, define x,;,, (c.5),s to be the x found, define i« (e, s+
1) = ipax(e, s)+1and choose [, (e si1)5+1 tobefresh. Let I(L ;.. (e.s+1),541) =
{n} where n is the least number that is not already a permitting num-

ber for some length for R,. Say that [, (¢ s+1)s+1 18 Waiting.

If we did not act in case (2) then we let 6,,1(n) = §5(n) for all
n. If we did act in case (2), suppose we defined &;.1(l;s+1). For
all m such that 6,(L.;5) < 65(m) < 8541(Leis), we define 6541 (m) =
85+1(le.is). For all other m we let 6y, 1(m) = §5(m).

End of Construction

Verification

Lemma 4.3.7. lim,_,, G, is well-defined and lim,_,, G, <r A.

Proof. We must show that for all n, lim,_,, 6,(n) exists. To see that
limg_,, d,(n) exists, go to stage n. Note that by the way ¢ is defined,
8s(n) can be changed only if there is some length /,;; < n and R,
receives attention in position i at or after stage s. So if at stage n
there is no e such that /,;, < n for some i, then no requirement will
be able to lift the use of §(n) after stage n. Therefore 6,(n) = §,(n)
for all + > n and so the limit exists. Otherwise, choose the least e,

and for this e, the least i, such that /,;,, < n and R, receives attention
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at position i at some stage. Let ty be the least stage at which R,
receives attention at position i. By the way that e and i were chosen,
l.in cannot be cleared from the sequence of lengths by the action
of requirements R; for i < e, or by R, acting in a position j < i.
Thus limg /. ;; =: [,; exists. R, can receive attention in position 7 at
most . (x,.;,) many times after stage n; R, may be satisfied at some
stage and then later require attention in case (3). If permission for
lo.in is granted, R, will receive attention in position i. We have |{k :
fe(Xeis»k) |} < he(xe,is), and so R, can require attention in case (3)
at most h,(x,;,) many times after stage n. So d,(l,;) can change at
most finitely many times. When R, receives attention at position i at
stage 1y, we will clear the sequences of lengths for requirements of
lower priority, and clear /.y, for all / > i. Thus if we define I,
for either f = eand j > i, or f > e, at some later stage u, we will
choose fresh numbers which will be larger than n and not interfere
with the approximation to 6(n). So lim,.,, d5(n) = d(n) exists for

all n.

Lastly, we must show that if Ag, [ §4(n) = Ay I d5(n), then
0s11(n) = 65(n) and Gy ' n = G; | n. If Agyy | 65(n) =
A; | d5(n) then no requirement with a length less than n can re-
ceive permission at stage s. Thus, as discussed above, §,.1(n) =
d,(n). Only lengths greater than n can receive permission at stage
s. If a requirement R, were to act at stage s in position i where
leis > n, we would let G511 = f,(xcis5 k)" 0%, where k is greatest

such that f,(x,;, k)[s] |. But by condition (4) of requires attention,
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fe(-xe,i,Sa k) > Gs T le,i,Sa and so as le,i,s > n, GS—H T n = Gs T n.

Therefore lim,_, G, <r A.

Let G - lims<(u GS’

Lemma 4.3.8. Each requirement receives attention at only finitely

many stages, and is met.

Proof. Assume by induction that there is a stage r after which no
requirement R; for i < e receives attention. Suppose for contradic-
tion that R, receives attention at infinitely many stages. In this case
we show that g 1s w-c.a. by building an w-c.a. function g with com-
putable approximation {g; s, such that lim,_,, g(i) = lim,—,, &,(i)
for all i.

Suppose that x is in our sequence of locations for R,, and that x
1s never cleared from the sequence. We claim that we cannot have
fe(x,k) < G, where k is greatest such that f,(x,k) |. Suppose for
contradiction that x is in the i’ place in our sequence of locations
at all stages after stage s. Then we cannot act for R, at a position
Jj < i, otherwise x would be cleared from the sequence. If at some
stage t we have f,(x,k) < Gy forall ¢ > t and k is greatest such that
fe(x,k) |, then R, is satisfied at all stages after stage ¢, and we do not
act for R, after stage . This is a contradiction, since we act for R,
infinitely many times. Note that this shows that we must act for R,

in case (4) infinitely many times.
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We now show that every natural number is contained in some
permitting interval. At the first stage s > r that we act for R,, we
will define 1, ; and we will have 0 € I(l, ). Suppose by induction
that n is in some permitting interval at stage . As in the previous
paragraph, we must act in case (4) for R, at some later stage, and at

this stage, we will define a permitting interval which includes n + 1.

For every n, let s, be the stage at which a length with permitting
number n is defined, and suppose this length is /,; ;. We define g
as follows. Initially we let go(n) = g, (n). Either this is the correct
value of g(n) and we do not need to update the approximation, or R,
receives attention at some position j < i at some later stage s’. If this
occurs, then we update our approximation and let gy (n) = gy (n).
R, may receive attention at position i, but this must occur at most
he(x.;s) many times. R, may then receive attention at position i — 1.
We will then have n € I(l,;_1,) so that changes in g(n) will give
permission on /,; 1 s, but this must occur at most 4,(x,; 1) many
times, and so on. Therefore we update our approximation at most
2. j<i he(xe js) times. Calculating the bound on the number of times
the approximation g(n) may change is a computable function of n.
The approximation is correct; if we updated our approximation more
than »,;; he(x js) times then f,(x.0sk) < G where k is greatest
such that f,(x.0, k) |, contradicting the first claim of the lemma.
Therefore we have limg g,(n) = lim; gs(n) and so g is w-c.a. This
is a contradiction. Therefore R, receives attention at only finitely

many stages.
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To see that R, is satisfied, go to a stage s after which no require-
ment R; for i < e requires attention. Let x = x,;  (c)s- If Re 18
satisfied at stage s, then as R, does not require attention in case (3)
after stage s, we must have f,(x,k) < G,, where k is greatest such
that f,(x,k) | for all t > s. Therefore f,(x,k) < G and G meets
range f.. If R, is not satisfied at stage s, then [,; (), 1S defined.
As R, does not require attention in case (4) after stage s, there is no
extension to G I L, (e.s),s In range f,, so G avoids range f., and R,
1s met.

(]
(]

Together with the following theorem, we see that a c.e. degree

computes an w-change generic if and only if it is not totally w-c.a.

Theorem 4.3.9. If G is w-change generic then G is not w-c.a. dom-

inated.

Proof. Let G = {ayp < a; < ---}. Recall that the principal func-
tion pg of G is defined by ps(n) = a,. We show that ps escapes
domination by every w-c.a. function.

Let f be an w-c.a. function with computable approximation { f; ),
{5 frn(x) # £} <
g(x). Fix k. We show that there is n > k such that pg(n) > f(n).

and computable function g such that for all x,

We identify strings with natural numbers via some Go6del num-
bering. For o € 2<%, let j, be the number of 1s in o-. We define the

partial computable function f : w x w — 2=“. We set f(0,0)[0] =
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o 1k-106+7e) and g/ (o) = g(k+ j,). If at some later stage s we see
that f;(k+ j,) # fo(k+ j,), then we set f(c, 1)[s] = or1¥=10/s(k+Je),
We continue in this way, defining another f (o, [) every time we see
a change in the approximation to f(k + j,). Then range f is an
w-change set of strings with computable bound g’. G cannot avoid
range f as range f is dense. Therefore G must meet range f. So
there is a o such that 0-1<-10/*+Je) < G. Therefore the (k + j, )" 1
must come after the f(k+ j,)™ bit of G. So pg(k+ j,) = f(k+ j,).

O

It is open whether there is a (non-c.e.) not w-c.a. dominated
degree which does not bound an w-change generic. By Theorem

4.3.4, such a degree would have to be uniformly w?-c.a. dominated.

4.4 Degrees computable in generics

4.4.1 Computable in a 1-generic

In [13] and [12], Chong and Downey obtain a characterisation of
the degrees which are computable in a 1-generic. We recall their
characterisation. A c.e. set of strings T is a tight cover' of a set A if
A neither meets nor avoids 7', and for every other c.e. set of strings
T’ such that A neither meets nor avoids 7", there is some string in 7’
which extends a string in 7. Then a set is computable in a 1-generic

set if and only if it has no c.e. tight cover.

'in [13] this was referred to as a X-dense set of strings
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The proof in [13] that a set with no c.e. tight cover is computable
in a 1-generic set contained a small error in the handling of Sub-
case 2a in the following proof. We present a proof of the theorem,

including a significantly different discussion from that in [13].

Theorem 4.4.1. Let M be a set with no c.e. tight cover. Then there
is a 1-generic set G such that M <t G. In fact, G <t M & &".

Proof. Suppose M has no c.e. tight cover. We first perform a com-
putable construction of a Turing functional ®. We then use the or-
acle M ® ¢¥" to select a 1-generic path G through dom ® such that
O(G) = M.

Let (S, )., be an effective enumeration of all c.e. sets of strings.

We must define G to meet the requirements

R, : G meets or avoids S ,.

Suppose that by stage s we have some string o~ such that for all
m < n, o either meets S, or avoids S ,,, and that ® (o) | < M.
We let G extend o. We would now like to define ® on some string
o’ > o such that ¢ either meets or avoids S ,,, and such that ®(o) <
®(0’) < M.

We wait for a string y € §, with y > o. If we see such a string,
we can set ®(y) = ®(o), and make G extend y. We would like G
to compute M, and so we want to define ® on some string y” > y
so that ®(y”) computes at least one more bit of M than ® (o) did.

The Turing functional @ needs to be c.e., and so in the construction
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of ®, we cannot make any use of M. We therefore choose two in-
comparable strings yg,y; > v, and define ®(yy) = ®(o) "0 and
O(y)) = ®(0)" 1. We say that y, guesses that the next bit of M is 0,
and that y; guesses that the next bit of M i1s 1. Then if O is the next
bit of M we can choose yy < G, and if 1 is the next bit of M we can

choose y; < G.

Of course this strategy does not work with more than one require-
ment because there may not be any string y > o in §,. We cannot
wait forever before beginning work on requirements of weaker pri-

ority.

We now consider how two strategies, one working for R,, and one
working for R,; |, may interact if they both work above the string o
Suppose that at stage s; we see d € S, with 6 > o. We choose
some string & > ¢ such that we have made no ® definitions on or
above &', and define @, (6') = ®(0). We choose two incomparable
strings dp,8; > ¢, and define @, (6p) = ®(0) "0 and Dy, (6;) =
®(0)"1. Now suppose at some later stage s, we see y € S ,,;,, and @
is not already defined on an extension of any string S witho < 8 < vy
and B € S,.;,. We would like to define ®(y’) for some y’ > vy, and
have G extend y' if ®(y') < M. In order to keep @ consistent, we
look for the greatest string n with o < 7 < y such that ®(n)|. We
choose some v’ > vy such that we have made no ® definitions on
or above ¥/, and set @, (y') = ®(n). Suppose that y > §;. Then
n > 6; and so ®(y') > ®(6;). However, if the next bit of M is 0,
then we cannot define ®(y’) for any v’ > y and have ®(y') < M.
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We therefore do not want G to extend y. We must be careful though,
because S 11 and S, could repeat this situation infinitely many times

and G may neither meet nor avoid S ,,.

Suppose that we follow the above strategy and define @ on a set S
of extensions of strings in S, that extend o. If there is some y’ € §
with ®(y") < M, then we choose G to pass through v/, and will
be able to successfully guess at the next bit of M as above. Now
suppose there is no such y' € §. Then M does not meet ®(S). In
this situation, we would like to define ® on some string 7 > o which
avoids S ,,, and such that ®(o) < ®(7) < M. Then we can choose G
to extend 7. We first look at the case where M in addition does not
avoid @(S ). We later consider the case where M avoids ®(S ).

Suppose M neither meets nor avoids @(S ). We use the fact that
M has no c.e. tight cover. So there is some c.e. set of strings Y that
is dense in M and such that no string in ¥ extends a string in ®(S).
We define two strings 7o and 7 extending o, and promise that if we
define ®(p) for any p > 7;, then ®(p) is an initial segment of some

string in Y.

The string 7; guesses that that the next bit of M is j. We will first
wait to define @(7;) before defining ®(p) for any string p > 7;. We
want to define ®(7;) = ®(o)" j, and so will wait for confirmation
that our promise can be kept. If at some later stage t we see some
v € Y, such that v > ®(c0)" j, then we say that 7, is confirmed, and
define ®,(7;) = ®(0)"j. Once 7, has been confirmed, we allow

requirements of weaker priority than R, to act above 7;, as long as
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our promise above is kept.

We note that if we see at some stage u a string y € S, with o <
¥ < 7;, then we will choose an extension y’ > 7 that is incomparable
with 7, regardless of whether 7; has been confirmed by stage u.
As a result, we do not define @ on any string n with o < n <
7;. Therefore at any stage after we create the extension 7, we still
wait for confirmation to define ®(7;) = ®(o)" j. If we do receive

confirmation at some stage ¢, then we can define ®,(7;) = ®(0)"j

and ® will remain consistent.

As 7; is our candidate to avoid S ,,, if we do see some y € S, with
¥y > 7;, then we will want to define ®(y’) for some y’ > 7y in order
to derive a contradiction. Therefore, if we confirm 7; at stage # and
see at some later stage u that there is y > 7; withy € §,,,, then if
we have not already acted for some g € §,, with 7; < 8 < vy, we

will act for .

Suppose j is such that ®(o)” j < M. We show that 7; avoids S .
As Y is dense in M, there is some stage ¢ as above where we define
®,(1;) = ®(0)"j. Suppose that there is y > 7; with y € §,. Let
u > t be least such that there is y € S,,, with y > 7;(0), and for this
u, let v be the least such. By the choice of y, we have not already
acted for some 8 € §,, with 7; < 8 < y. Therefore at stage u we
define ®(y’) for some y > y. Let n be greatest such that n < 7y
and n € dom ®,_;. Then we set ®(y') = ®(5). As 7; € domD,_,
and y > 7;, we must have n > 7;. We have kept the promise that

if we define ®(p) for strings p > 7, then ®(p) is an initial segment
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of some string in Y. So ®(y’) = ®(n) is an initial segment of some

string in Y, which is a contradiction. We can then let G extend 7;.

One problem with the strategy to avoid S, is that we do not know
during the construction of ® what the index for the c.e. set Y is. For
notational convenience, we write Y; for the i’ c.e. set of strings when
considering strings in the range of ®. We instead define at stage s
infinitely many pairwise incomparable strings 7; ;(0) for i < w and
j < 2. The string 7; j(0) guesses that i is an index of Y, and that
the next bit of M is j. We refer to the strings 7; j(0") as extensions.
If we wish to define ®(p) = u for any string p > 7, ;(0), then we
will wait for confirmation. In this case, we now wait until a stage
t where we see a string v € Y;; such that v > u. We may then
define ®,(p) = p. We wait until an extension 7; ;(c") is confirmed
before allowing requirements of weaker priority than R, to act above
7. (o).

Suppose that at stage s we have defined the extension 7; (o), but
have not yet confirmed it. If there is some y € S, ; with y > 7; j(0),
then we will now need to wait for 7; (o) to be confirmed before
we can define ®(y’) for some 7’ > . This will do no harm to the
construction. If i is such that Y; is dense in M, and j is such that
®(0)"j < M, then we will confirm 7; ;(0") at some stage t > s.
Then at stage r we will immediately define ®(y') = (7, (o)) for
some ¥ > vy, and as ®(71;;(0)) = ®(o)"j < M, we will have
®(y') < M as desired.

Suppose we confirm the extension 7y (o) at stage r. We allow
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R, to start working above 7y ;(0). We may have made several
promises about defining ® on strings extending o, for the sake of
requirements of stronger priority than R,. Suppose that I is the set
of indices such that if we want to define ®(p) = u for some p > o,
then we require for every i € [ some string v € Y;, such that v > pu.
We associate the set I with o by tagging the string o with the set
I, and write I(0) = I. In order to define ®(p) = u for a string
extending p > 7 (o), we must in addition see that there is some

string v € Yo such that v > u. Therefore we tag 7 (o) with the set
I(7vj(0)) = 1(o) L {{'}.

Above the string 7, ;(0), we are guessing that if M does not meet
or avoid ®(S), then ¢ is an index for the set Y. We may define @
on strings above 77 j(o). If i’ is not an index for the set Y, then the
argument given above that 7 ;(0") avoids S, does not work. So there
may be strings y € S, with y > 77 (o). Suppose we see such a y
at stage u > t. We wish to define ®(y') for some y' > vy as usual,
in the hopes that ®(y’) < M. We do define ®,(y’) as usual, and
choose extensions yp,y; > Y. We wait for confirmation to define
O(y;) = ©(y')"j, and set I(y;) = I(o). If Y; is dense in M for all
i € I(y;) and j is the next bit of M, then we will eventually confirm

y; and define ®(y;).

If we define ®(p) for any p > y;, we must have ®(p) > O(y;).
Therefore, if ®(y;) « M, there is no point in pursuing a strategy to
define ®(p) for a string p € §,, with p > ;. We do not know during

the construction whether ®(y;) < M, so above y;, we work under
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the assumption that ®(y;) < M.

Strategies of weaker priority than R, may have acted above 7; ;(0)
after stage ¢, but before the stage u where we defined ®(y’). At
stage u, we no longer allow requirements of weaker priority than R,
to work above any string that extends 7, ;(0-). We remove the tag
I(ty (o)) from 7y j(0). If we confirm ; at some later stage v, then
we allow R, to work above y; at stage v. As in a standard finite
injury priority argument, we eventually come to some string 7’ such

that R, works above 7’/ from some stage on.

If ®(y;) # M, then the strategy to avoid S, will continue to be
in place. That is, all other extensions 7; ;(o-) will still have their tag,
and we allow requirements of weaker priority to act above 7; j(0),
as long as we continue to enforce the promises we must keep above
each such extension. If i* is an index for Y and j is such that
®(0)"j < M, then we will confirm 7;« j(0") at some stage and define
®(7;+ j(0)). Then we never remove the tag of 7+ ;(07), 7+ j(07) will
avoid S ,,, and we will have ® (o) < O(7;+ ;(0)) < M.

We finally consider the case where M does not meet @(S ), but M
avoids @(S). Then there is some u > ®(o) such that u < M, and
forall y/ € S, ®(y') # u. We would like to define @ on some string
7 > o such that ®(7) = . Then 7 will avoid S ..

In order to define such a 7, we will need to again guess at the
next bits of M. Along with the extensions 7; j(0"), we create two

special extensions of o-, which we denote 74 ;(0) for j < 2. We wait

A

for confirmation to define ® (74 j(0)) = (o) " j. We tag 74 ;(0)
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with the set (1t j(07)) = I(o), and so if Y; is dense in M for all
i € I(0) and j is the next bit of M, then we will eventually confirm
Tg.j(07) and define ®(7 j(07)) at some stage t. Once 7| = 7y ;(0)
has been confirmed, we create the extensions 7, ;(7;) fori € w U
{J}. We allow only R, to work above 7y (7). If some 7;;(7;)
for i € w 1s confirmed at some later stage, then we allow R, to
work above 7, ;(71). By guessing the bits jj, ..., j, such that u =
®(0)"j1" ...  jm, we eventually come at some stage u to the string

T as above.

As with the other extensions 7; (o) for i € w, Ty (o) is our
candidate to avoid S,. So if we do see some y € §, with y >
Tg,;(0), then we will want to define ®(y’) for some y’ > vy in order
to derive a contradiction. Therefore, if we confirm 7 ;(0) at stage u
and see at some later stage v that there is y > 74 ;(0) withy € S,
then if we have not already acted for some 8 € §,,, with 74 ;(0) <

B < vy, we will act for .

We show that 7 avoids S,,. Suppose that there is y > 7 with y €
S,. Let u > t be least such that there is y € S, with y > 7= (o),
and for this u, let y be the least such. By the choice of y, we have not
already acted for some 8 € S, , with 7 < 8 < . Therefore at stage u
we define ®(y’) for some y' > y. Let i be greatest such that n < y
and n € dom®,_;. Then we set ®(y') = (). As 7 € domD,_,
and y > 7, we must have n > 7. Then ®(y') = ®(n) > O(1) = pu,
which is a contradiction. We now give the formal details of the

construction.
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Construction

Stage 0: Define ®(1) = A, where A is the empty string. Let
I(1) = 7, and say that R is able to work above A.

Stage s, s > 1:
Step 1: defining ® on extensions of strings in S ,,.

There is an n € w and strings o and y such that
1. c e dom®,_,

2. R, is able to work above o,

3. ye S, swithy > o, and

4. (a) if y > 71, ;(0) for some extension 7; ;(c), then R, has not
already acted for any string 8 with 7, ;(0) < 8 < ¥ and
BES,s or

(b) if y is not comparable with any extension 7; ;(c), or y <
7; j(0) for some extension 7; ;(0), then R, has not already

acted for any string Switho < < yandB € S, ;.

Let n be least such that there is o and y as above. For this n, let
o be such that there is y as above, and choose 7y least.

If there is some extension 7;;(0) with o < 7;;(0) < 7, and
7; j(0") has not been confirmed, then we proceed to the next step.

Otherwise, let n < y be greatest with n € dom ®;_;. Choose a
string ' > y incomparable with all strings extending y generated in
the construction so far. Define ®(y") = ®(n). We choose incom-

parable strings yo,y; > y. We add y, and y, to L. For j < 2, we
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say that R, is waiting for confirmation to define ®(y;) = ®(y')"j at
stage s, and tag y; with the set I(y;) = I(0).

For all strings u € dom ®;_; with either o < u < yor u > vy, if
[ > n and R; was able to work above yu at stage s, then R; is unable to
work above u at stage s + 1, we remove the tag of u, and we remove
all extensions defined for u from L, ;.

We say that R, acts for the string .

Step 2: confirmation.

For every string p € L at the end of Step 1, we do the following.
If R, is waiting for confirmation to define ®(p) = wu, and for all
i € I(p) there is v € Y;, such that v > u, then we declare p as
confirmed. We remove p from L, and define ®,(p) = u. If p is not
of the form 7 ;(0), then we say that R, ; is able to work above p
at stage s + 1. If p is of the form 74 ;(0), then we say that R, is able

to work above p at stage s + 1.

Step 3: creating extensions.

For any string o that is maximal in the domain of @ at the end
of Step 2, we do the following. Suppose that R, is able to work
above o at the end of Step 2. If o already has its extensions defined,
we proceed to the next stage. Otherwise, we create infinitely many
pairwise incomparable extensions 7; j(0) of o, fori € w U {J} and
j < 2, so that 7; ;(0r) is incomparable with any string that extends
o defined during the construction so far. We say that o has had its

extensions defined.
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Fori e w, we tag 7; (o) with the set I(7; ;(0)) = (o) v {i}, and
we tag T (o) with the set I(ty (o)) = I(0). We say that R, is
waiting for confirmation to define ®(7; j(0)) = @ (o) " j at stage s.

For each 7; ;(0-) we have just created, we perform Step 2. That is,
if for all for all i € I(7; j(0)) there is v € Y; ; such that v > ®(0)" j,
we declare 7; (o) as confirmed, remove 7; j(0) from L, and define
O (1, (o)) = ®(o)"j. If i € w, then we say that R, is able to
work above 7; j(o) at stage s + 1.

End of Construction

We now define G <t M @ " such that ®(G) = M. We do this
in Steps by finite extension.

At Step 0, we set Gg = A. We proceed by induction and assume
that by Step n we have G,, = o for some o € dom @, , where ¢ = t,

1s a stage in the construction such that

1. R, is able to work above o at all stages after stage t,
2. o has tag I(o) at all stages after stage f,

3. forallie I(0), Y; is dense in M,

4. |®(0)| > nand ®(0) < M, and

5. for all m < n, o either meets S, or avoids S ,,.

Suppose at some stage s > t we define ®@(y’) in Step 1 of the
construction for some y' > y where y € S, and y > o. Let S be the

set of all such /.
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Case 1: M meets O(S).

Choose y € S, with y > o least such that there is y > y with
Y € S and ®(y') < M. Suppose that ®(y’) is defined at stage u > .
By induction, we cannot act for R, for m < n after stage u. By part
(4) of the conditions in Step 1 and the choice of y, we do not act for
R, for any string in S, that is comparable with y after stage u. At
stage u we choose strings vq,y1 > ¥/, and R,, waits for confirmation.
We tag y; with the set I(y;) = I(0), and by assumption, Y; is dense
in M for all i € I(o). Therefore if j is such that ®(y')"j < M, we
will confirm y; at some later stage v, and define ®,(y;) = ®(y')" /.
We say that R, is able to work above y; at stage v. Again by
induction, R, is able to work above y; at all stages V' > v, and y;

has tag I(y;) at all stages v/ > v. We have G| = ;.

Case 2: M does not meet ®(S ). There are two subcases.

Subcase a: M avoids ®(S ). Then there exists some u > ®(o)
such that y < M and for all ¥/ € §, ®(y) # u. Suppose u =
Qo) j1" o Jm

Consider the string 7y = 74 j,(07). We have I(t,) = I(0), and by
assumption, Y; is dense in M for all i € I(o). So at some later stage
u; we will confirm 7 and define @, (1) = ®(0)" j;. At stage u,
we define the extensions 7; () fori € w U {J} and j < 2. Again,
at some later stage u, we will confirm 7, = 74 ;,(7;) and define
®,,(12) = ®(0)" ji " jo. We eventually come at some stage u,, to a
string 7,, where @, (7,,,) = p.

We show that 7,, avoids S,,. So suppose for contradiction that
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there is some y € S, with y > 7,,. Letv > u, be least such that
there is y € §,,, with vy > 7, and for this v, let y be the least such.
By the choice of y, we have not already acted for some g € S, with
T < B < 7. Then at stage v we will define ®,(y’) for some y’ > .
Let i be greatest such that 7 < v and n € dom ®,_;. Then we set
®(y') = ©(n). As 1, € dom®,_; and y > 7, we must have > 7,.
Asy > n > 1, and @ is consistent, D(y') = ®(n) > O(1,) = u,
which contradicts the choice of u. So 7, avoids §,,.

At stage u,, we create the extensions 7; ;(7,,) fori € w U {J} and
Jj < 2. Let i’ be such that Yy is dense in M, and let j’ be such that
u*j < M. Wehave I(tyy(1,,)) = I(0) U {i'}, and so at some later
stage w we will confirm 7y j(7,,) and define ®,,(t; (7)) = p” J.
At stage w we say that R, is able to work above 7y ;(7,). By
induction and the fact that 7; y(7,,) avoids S ,, this is true at all stages
after stage w, and 7 j(7,,) has tag I(7; (7)) at all stages after stage

w. We have G, 1 = 77 (T).

Subcase b: M does not avoid ®(S). As M does not have a c.e.
tight set of strings, there is an i* such that Y+ is dense in M and such
that forall @ € Y« and B € ®(S), a # S.

We note the following crucial fact. Suppose the extension 7 is
confirmed at some stage u. Then at any stage v > u, if we de-
fine ®@,(p) for some string p > 7 and R, has not already acted for
some string comparable with 7, then p was confirmed at stage v, and
I(p) 2 I(1).

Let j be such that ®(0)"j < M. At stage t we create the exten-
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sions 7; (o), and R, waits for confirmation to define ®(7; (o)) =
®(0)"j. Let u > t be least such that for all i € I(o7) U {i*}, there is
some v € Y;, such that v > ®(0)"j. Then at stage u we declare the
string 7;+ ;(0") as confirmed, and define @, (7« ;(0)) = ®(0)" .

To show that 7;« j(07) avoids S, suppose for contradiction that
thereis y € §, with y > 75+ ;(0). Let v > u be least such that there
isy € S,, withy > 7+ ;(0), and for this v, let y be the least such.
By the choice of v, we have not already acted for some 8 € §,,, with
T+ j(0) < B < y. Therefore at stage v we will define ®(y’) for some
¥y’ > . Let i be greatest such that n < v and n € dom ®,_;. We set
O(y') = O(n). As 7= j(0) € domD,_; and y > 7;+ ;(0), we must
have 7 > 7+ (o). Suppose ®@(r7) was defined at stage w. Again by
the choice of y, and the fact above, n was confirmed at stage w, and
I(n) 2 I(1+ ;). In particular, i* € I(n), and so there is some v € Y+,
such that v > ®(n). So v > ®(y'), which contradicts the choice of

i*. So 7+ j(0r) avoids S ,. We have G4 = 7+ j(0).

4.4.2 Computable in an w-change generic

We now consider the analogue of the above result for w-change
generics. We say that range f is a w-change tight cover of a set A
if range f is an w-change set of strings, A neither meets nor avoids
range f, and for all other w-change sets of strings range f’, if A nei-
ther meets nor avoids range f’, then there is some string in range f”

which extends a string in range f.
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Suppose that M does not have an w-change tight cover. Then if
range f is an w-change set of strings and M neither meets nor avoids
range f, then there is a partial computable functiony : w x w — 2=¢
and a partial computable function w : w — w such that range y 1is
an w-change set of strings with partial computable bound w, and no
string in range y extends a string in range f. The difference between
M not having a c.e. tight cover and not having an w-change tight
cover is that the existence of y and w is guaranteed even if M meets
range f as a c.e. set of strings. So there may be some x and k such
that f(x,k) |< M, but if M does not meet range f as an w-change
set of strings, that is, there is k¥’ > k such that f(x,k") |# M, then

such a y and w must still exist.

Theorem 4.4.2. Let M be a set with no w-change tight cover. Then
there is an w-change generic set G such that M <r G. In fact,
G<srMae g

Proof. The proof will follow fairly closely the proof of the previous
theorem. Suppose M has no w-change tight cover. We first perform
a computable construction of a Turing functional ®. We then use the
oracle M @ " to select an w-change generic path G through dom @
such that ®(G) = M.

Let {f;, h;)i<., be an effective list such that (range f;) is a list of
all w-change sets of strings, and that range f; has partial computable

bound 4;. We must meet the requirements

R. : G meets or avoids range f..
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Suppose that by stage s we have some string o such that for all
m < n, o either meets range f,, or avoids range f,, and that ®(o") |
< M. We let G extend 0. We would now like to define ® on some
string 0’ > o such that ¢’ either meets or avoids range f,, and such
that ®(o) < ®(0”) < M.

The strategy to define ®(o”) will be similar to the strategy from
the previous proof. Suppose at stage s; we see some x with f,,(x, 0)[s]!
> o, and h,(x)[s;] |. Then we would like to choose some y' >
fu(x,0), define ®(y’), and have G extend ' if f,(x, 1) 1 and ®(y’) <
M. If B is greatest with 8 < f,(x,0) and B € dom @ _;, then we
choose some string y' > f,(x,0) such that no definition for ® has
been made on or above y/, and define @, (y’) = ®(B). We choose
two incomparable extensions yp,y; > ¥/, and wait for confirmation
to define ®(y;) = ®(y')" j as before. Suppose we confirm y; at
some later stage s,. Then above y; we assume that ®(y;) < M, and
so we do not need to act again for R, above y; unless we see at some
later stage s3 that f(x, 1)[s3] |. We allow R, to work above y; at
stage s, + 1.

Now suppose we do see at some later stage s3 that f,,(x, 1)[s3] | >
fn(x,0). Then we would like to define ®(y”) for some y" > f,(x, 1),
and have G extend y” if f,(x,2) 1 and ®(y") < M. We repeat the
above for f,(x, 1). Strategies working for requirements of weaker
priority than R, may have started to work above strings extending

fu(x,0). We restart all such strategies above f,(x, 1). As

[{k = fal, k) LY < Pa(),
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we eventually no longer need to act for R,, and will define ® on
some string extending f,(x, k) where k is such that f,(x, k") 1 for all
kK > k.

Suppose that we follow the above strategy and define ®@ on a set
S < range f; of strings extending 0. Then we show that ®(S) is an
w-change set of strings. We set & = h, and if we choose some ' >
f.(x, k) and define ®(y') at stage s, then we set f,(x, k) = ®(y/).

Suppose M meets the w-change set of strings range f, = ®(S).
Then if 7/ is such that ®(y’) < M and y > f,(x,k), then we let
G extend y'. As M meets range f,, there is no K > k such that
fn(x, k") |, and so G meets range f,. We will be able to successfully
guess at the next bit of M. Now suppose that M does not meet range
fa. As in the previous proof, there are two cases in this situation. If
M avoids range f,, then we will be able to show that there is a string
7 > o such that 7 avoids range f,. If M does not avoid range f,,
then we use the fact that M has no w-change tight cover. In this case
we will also be able to show that there is a string T > o such that 7

avoids range f,.

Consider the case where M neither meets nor avoids range f,.
As M has no w-change tight cover, there is a partial computable
function y with partial computable bound w such that range y is an
w-change set, and no string in range y extends a string in range f,.
Let (y;,w;» be an effective list such that {range y;) is a list of all
w-change sets of strings, and that range y; has partial computable

bound w;. We create extensions 7; ;(c-) with the intention that ; (o)
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guesses that i is an index for the pair (y, w) in the above list, and that
j is the next bit of M. The extensions 7; ;(c") function in the same
way as in the previous proof.

Because M avoids range f, as an w-change set of strings if and
only if it avoids range f, as a c.e. set of strings, the cases where M
does not meet f, are identical to the cases where M does not meet

®(S) in the previous proof.

Construction

Stage 0: Define ®(1) = A, where A is the empty string. Let
I(1) = 7, and say that Ry is able to work above A.

Stage s, s > 1:
Step 1: defining @ on extensions of strings in range f,.

There is an n € w, a string o, and x, k € w such that

1. o0 € dom®d,_,,

2. R, 1s able to work above o,

3. fulx,k)[s]| and f,(x,k) > o,
4. (a) if fu(x,k) > 7, ;(0) for some extension 7; ;(0), and either
i. R, has not already acted for any string 8 with 7; ;(07) <
B < fu(x,k) and B € range f, s, or
ii. R, has acted for the string f,,(x, k—1) but not for f,(x, k).

(b) if f,(x, k) is not comparable with any extension 7; ;(c), or

fu(x,k) < 7, j(0) for some extension 7; ;(0), and either
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1. R, has not already acted for any string § with o < 8 <
fu(x, k) and B € range f;,, or
ii. R, has acted for the string f,,(x, k—1) but not for f,(x, k).

Let n be least such that there are o, x, and k as above. For this n,
let o be such that there 1s x as above, and choose x least.

If there is some extension 7; ;(0") with o < 7; (o) < f,(x, k), and
7; j(07) has not been confirmed, then we proceed to the next step.

Otherwise, let 7 < f,,(x, k) be greatest withn € dom @,_;. Choose
astringy’ > f,(x, k) incomparable with all strings extending f,(x, k)
generated in the construction so far. Define @ (y') = ®(n). We
choose incomparable strings vy, y; > . We add vy, and vy; to L.
For j < 2, we say that R, is waiting for confirmation to define
O(y;) = O(y')"j at stage s, and tag y; with the set I(y;) = I(o).

For all strings u € dom®,_; with either o < u < f,(x,k) or
u > fu(x, k), if I > n and R; was able to work above u at stage s,
then R; is unable to work above u at stage s + 1, we remove the tag
of u, and we remove all extensions defined for u from L;_;.

We say that R, acts for the string f;,(x, k).

Step 2: confirmation.

For every string p € L at the end of Step 1, we do the following.
If R, is waiting for confirmation to define ®(p) = u, and for all
i € I(p) there is v € range y; ; such that v > u, then we declare p as
confirmed. We remove p from L, and define ®,(p) = p. If p is not

of the form 74 ;(0 ), then we say that R, ; is able to work above p
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at stage s + 1. If p is of the form 7 ;(0), then we say that R, is able

to work above p at stage s + 1.

Step 3: creating extensions.

For any string o that is maximal in the domain of @ at the end
of Step 2, we do the following. Suppose that R, is able to work
above o at the end of Step 2. If o already has its extensions defined,
we proceed to the next stage. Otherwise, we create infinitely many
pairwise incomparable extensions 7; j(o") of o, fori € w U {J} and
J < 2, so that 7; ;(0) is incomparable with any string that extends
o defined during the construction so far. We say that o has had its

extensions defined.

Fori € w, we tag 7; j(0) with the set I(7; (o)) = I(o) U {i}, and
we tag Ty (o) with the set /(74 (o)) = I(0). We say that R, is

waiting for confirmation to define ®(7; ;(0)) = ®(o)"j at stage s.

For each 7, ;(0-) we have just created, we perform Step 2. That
is, if for all for all i € I(t; (o)) there is v € range y; such that
v > ®(o)" j, we declare 7, ;(0) as confirmed, remove 7; j(0) from
L, and define ®,(7; j(0)) = ®(0)"j. If i € w, then we say that R,

is able to work above 7; ;(o) at stage s + 1.

End of Construction



214 CHAPTER 4. MULTIPLE GENERICITY

4.5 Downward density of generics in the Ag degrees

4.5.1 Downward density of 1-generics

In [14], Chong and Jockusch showed that the 1-generic degrees be-
low ' are downward dense. That is, if A <7 (J’ is 1-generic and
B <7 A is noncomputable, then there is C <y B that is 1-generic.
This was extended by Haught ([24]) who showed that if A <7 ¢J’ is
I-generic and B <r A is noncomputable, then there is C =7 B that
is 1-generic. We give another proof of Haught’s theorem.

We say that a partial function v from strings to strings is an ex-
tension function if v(a) > «@ for every a € domv. A set is 1-generic
if it meets or avoids every c.e. set of strings. Equivalently, a set is
I-generic if it meets or avoids the range of every partial computable

extension function.

Theorem 4.5.1 (Haught [24]). Let a be a Ag 1-generic Turing de-

gree. Then every noncomputable degree below a is 1-generic.

Proof. Let A € a be 1-generic with computable approximation (Aj).
Suppose that ® is a Turing functional such that ®(A) is noncom-
putable. We build Turing functionals " and A, such that T'(®(A)) is
1-generic and A(T(®(A))) = D(A).

Let (S .).<w be an effective enumeration of all c.e. sets of strings.

We must meet the requirements

R, : T'(®(A)) meets or avoids S ..
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We first discuss how the definition of I" and the strategies to meet
the requirements interact. We discuss the definition of A later. We
write o < 7 to denote that o 1s a proper initial segment of 7. For a
string p, let the sibling of p be the string p of the same length as p,

and which differs from p on only its last bit.

Suppose that at stage s we have have a string @ < A with @ < A;
for all # > s (and so @ < A) such that I'(®(@)) meets or avoids
Sy for all d < e. To meet R,, we look for strings o € S, with
o > I'(D(a)). We may never see such a string, and so we will work
towards satisfying requirements of weaker priority. Suppose that at
stage s; we see 1 € S s, with u > I'(®(a)), for some f > e. We
then define 'y, (®(a’)) = u for some @’ < A, with @(a’) > O(a).

At stage s, > 51 we see o € S, with o > I'(®(a)). If
O(A)[s2] > D(d’), then T'(D(A))[s2] > u. Therefore if o is in-
comparable with u, I'(®(A))[s,] does not extend o~. We will want
®(A) to later become incomparable with ®(a’) so that we may de-
fine ['(®(A)) to extend 0. We however have no way of ensuring this
occurs. We may have @(a’) < ®(A)[t] forallt > s,, and so (P (A))
does not extend o-. This is of no concern to us at stage s, but if we
act as above infinitely many times for requirements of weaker prior-
ity than R,, only to later see a string enter S, that I'(®(A)) does not

extend, then I'(®(A)) will neither meet nor avoid S ,.

We therefore need some way of forcing ®(A) to change. We
make use of the totality and noncomputability of ®(A), as well as the

1-genericity of A. We will want a configuration ®(A;) of ®(A) that
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extends @ («) but is incomparable with ®(a’). Then if at some stage
we see a string o € S, that extends I'(®(A)) but is incomparable
with u, we can use the 1-genericity of A to force A to extend A,,
which in turn forces ®(A) to extend ®(A;), and allows us to define
[(®(A)) to extend o

As ®(A) is total and noncomputable, if @ < A, then there are
infinitely many ®-splits above a. Therefore, if at stage ¢; we see u €
S 4, with g > I'(®(«a)), before defining I' on any string extending
® (@), we wait until a stage t, > f; where we find ®-splits 71, 7,
above . We are then free to set I'(®(71;,)) = . Then if at stage 13 we
see o € S, ., with o incomparable with I'(®(7;)), we start to define
the partial computable extension function v,. We set v, (@) = 7;. We
also define I'(®(v.(a))) = o. This puts pressure on A to change to
extend v, (@), so that ®(A) extends @ (v.(@)), and I'(P(A)) meets S ..

Of course, A does not need to extend v,(a) for it to be 1-generic.
However, if we act as above infinitely many times and define v, (@)
for infinitely many «, then range v, will be dense in A. As A is 1-
generic, it will have to extend some v, (@), which means that ['(®(A))

must meet S ,.

We are keeping the string ®(7;) in reserve for R,, in case we
see some stage t3; and some string o € S,,, with o > I'(®(a))
but incomparable with I'(®(7,)). Suppose that at stage uy > 1, we
have ®(A)[uy] > ®(7y), but there is no string o € S, with o >
[(®(a@)). We are not ready to define I' on any string extending ®(7),

because we may run into the same trouble as before where we had
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no way of forcing ®(A) to change later if necessary. If ®(A)[7] >
®(7y) for all ¢ > u,, then we must define I' on some string extending
®(7y) so that I'(®(A)) is total. However, if this is the case, then
®(11) < O(A). As A is A), there is some stage u3 > u, and a string
¢ with ¢ < A, for all u > uz such that ®(¢) > ®(7r;). Then as
¢ 1s an initial segment of A, at some later stage us we will find @-
splits 73,74 above ¢ such that ®(73), ®(74) > O(11). If A,, > 74,
then we can define I'(®(74)) however we wish, as long as T is kept
consistent, and keep the string ®(73) in reserve, as we did with ®(7)
before. Lemma 4.5.3 below uses the 1-genericity of A to show that
this cannot repeat infinitely many times, and we eventually come to

a final string we keep in reserve for R,.

We will let T'(®(74)) = ['(®(7,)). If we do see at some stage
t4 > uy a string o € S, that is incomparable with I'(®(7;)), then
we can still define v,(¢) = 73 as an attempt to force A to change, so

that we may define I'(®(A)) to extend o

More generally, suppose that at stage s, y < ®@,(Ay) is maximal in
domT;_;, and that we would like to define I'(y’) = u for some y’ >
y with v/ < ®,(A;) in order to satisify Ry. Then we must ensure
that for all e < f, if u does not meet S s, then there is some string,
which we write as res, . ;, which extends y but is incomparable with
¥/, which we keep in reserve for R,. This means that we will need
to find many ®-splits at stage s before we define I'(y') = u. This
causes us no concern, as there are infinitely many ®-splits above any

initial segment of A.
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The last situation we must consider in the definition of I is the
following. Suppose that at stage s, y < O (A;) is the greatest string
such that I';_;(y) |. If ®4(A) is incomparable with all res, ;
for all ¥/ > y with ) € domI;_; and all i, then we can define
[(Dy(Ay)) however we would like, as long as T is kept consistent.
The most progress that we have made above I'(y) is the last string
that we enumerated into the range of I' which extends I'(y). So we
let T'(Dy(Ay)) be that string.

We now discuss the definition of A. Suppose that we have « and
s as above, and we have defined v = A(I'(®(a))) < @(a) < ®(A).
We see the string u € S 75, at stage sy, find the ®-splits 71, 7, above
@ at stage s, and if Ay, > 7, define I'(®(1;)) = u. We will want to
define A on some string extending I'(®(«)) so that we can compute
more of ®(A). We must make sure that A is consistent, and that
A(T'(D(A))) correctly computes ®(A). We ask that if u < T'(D(A)),
then A(u) computes the next bit of ®(A) after v. We therefore have
to guess at stage s, what the next bit of ®(A) will be. We have to
guess in such a way that if we are wrong, then we are able to correct

ourselves later on.

If ®,,(A;,) = ®(12) > v"J, then our guess at stage s; is that j
is the next bit of ®(A). If we knew that our guess were correct, we
could define A(u) = v” j. However, even if our guess is wrong, we
might still like I'(®(A)) to extend u in order to meet R;. But then
A(u) is wrong about ®(A). We instead define I';, (®(13)) = u”j and

A’ j) =v"j.
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Now suppose that at stage s3 we see that ®(A)[s3] > D(a),
but is incomparable with both ®(7;) and ®(1,). If ®(A)[s3] >
v*(1 — j), we guess at stage s3 that 1 — j is the next bit of ®(A). We
would like I'(®(A))[s3] to still extend u to satisfy Ry, and so define
L(®(A))[s3] = p"(1 — j) and A(u” (1 = j)) = v* (1 — ).

Now suppose at stage s4 we have ®(A)[sy] > D(A)[s3], but see

(©

(A)lss] = ™ (1 = ).

If o > u” j, then we would not want I'(®(A)) to extend " j, because

o € S, that is incomparable with with I

at stage s, we are guessing that (1 — j) is the next bit of ®(A), but
A(u” j) = v j. The trouble is that we have defined I'(®(A))[s3] and
['(®(7,)) to be siblings.

We need to ensure that if we define I'(®(7)) = p at stage 7, then
for every string o~ incomparable with p, there is some o > o~ where
A;—1(0") 1. Then if we see a change in ®(A) that allows us to define
[(®(A)) to extend o, we can define T'(®(A)) to extend o’ and let
A;(0”) guess however it wishes about the next bit of ®(A). There-
fore, the domain of A, and so the range of I', must be sparse. We
will define I so that at every stage #, range I'; does not contain both a
string and its sibling. Then there will be some ¢’ as above. We now
turn to the formal details of the construction. For convenience, we
let® =1 0.

Construction
Stage 0: Define I'(1) = A and A(1) = A, where A is the empty
string.

Stage s, s > 1:
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Step 1: defining I" and A.
Let y < @ (Ay) be greatest such that I';_;(y) |, and let @ < Aj
be such that @ (@) = y.

1. yis not maximal in domI’;_;.

(a) There is some e such thatres, ;| and O (A) > resy 1.
If I's_i(res, e s—1) |, then we proceed to the next step. Oth-
erwise, if there are ®-splits 71, 7, above @ such that O(7;), D(7;) >

1€Sy.e 51, if Ay > To, We setres, s = O(71).

(b) There is some B with @ < B8 < Ay such that ®(B) is in-
comparable with y for all y/ € domT'y_; with )y’ > v, and

res, . —1 for all e. Let 8 be the least such.

Then with T = 7, in subcase (a), or T = $ in subcase (b),
we do the following. Let f be least such that for some y' €
domI,_; with v/ > vy, I'(y/) was defined for Ry. Let o €
S fs. Choose some o’ > ¢ such that the sibling of ¢’ is not
inrange [';_1. Define ['(®(7)) = o”’. Let j be such that ®(7) >
A(T'(®(a@)))"j. Define A(o”) = A(T(D(a)))" .

2. yis maximal indomT'y_i, and there is e < s such that I'(y) does
not meet S, ;, but there is o € S, ; with o > I'(y). (We choose
the least such e, and for this e, the least such o.) Suppose

i1,...,I, are the indices i < e such that o~ does not meet S ; ;.

If there are n + 1 many ®-splits py, ..., p,+1 at stage s above a,

then we choose some string o’ > o such that the sibling of o’
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is not in range I'y_;. Assume A > p,11. Define T'y(®(0,+1)) =
o’ and set res,;, = ®(px) for all k = 1,...,n. We say that
['(®(pn+1)) was defined for R,. Let j be such that ®(p,,1) >
A(T'(®(@)))"j. Define A(o”) = A(T(®(a)))"j. We set v,(a) =

Pn+1-

Step 2: defining v,.

For each v/ < @ (A;) with ' € domT, and e < s, we do the
following. Let y < 7' be greatest such that y € dom . If I'(y’) was
defined for Ry at stage f < s and f > e, and if thereis o € S, 5 such
that o > I'(y) but o £ T'(y'), we do the following. Suppose 7 and
u < s are such that ®(7) = res, ., with 7 < A,. If @ < 7 is such
that ®(a) = v, then set v.(@) = 7. Choose some ¢’ > ¢ such that
the sibling of ¢’ is not in range I'y_;. Define I';(®(v.(a))) = 0.
Let j be such that ®(v.(a)) > A(T'(®(a)))” j. Define A(o’) =
A(T(®(@)))"j. We say that I'(®(v,(a)) was defined for R,.

End of Construction

It is immediate that I" and A are consistent. We isolate the fol-
lowing simple lemma, which will be used in the remaining parts of

the verification.

Lemma 4.5.2. Suppose (Ay) is a computable approximation of a Ag
set A, and © is a Turing functional. Let T be an infinite c.e. set of

strings which are initial segments of some A;. Then T is dense in A.



222 CHAPTER 4. MULTIPLE GENERICITY

Proof. As T is as infinite set of binary strings, it contains string of
arbitrary length. Furthermore, for any length / and any stage s, T
must contain a string of length at least / which was enumerated after
stage s.

Let 0 < A, and let s be such that o < A; forall r > 5. We
show that there is 7 € T with 7 > o. Let 7 be a string of length
greater than |o-| which was enumerated into 7 after stage s. Then

T>0. a

Lemma 4.5.3. Suppose that T'(y) was defined at stage s. Fort > s
and e € w, let T, ., be the set of strings y' € domT, such that y' > v,
I'(y") was defined for Ry with f > e at stage t' < t, but I'(y') does
not meet S, y. Then if T, . ; is nonempty, there is a String res, ., > y

such that

1. resy ., = ®(7) for some T < A, and some u < t,
2. ifT(&) | for any & > resy,,, then T'(res, ;)| and meets S,
3. 1es, ., is incomparable with y' forally' € T, ,,, and

4. {1eSy,; 1 1€Sy .| } is a set of pairwise incomparable strings.

Furthermore, if T, ., is nonem at some stage t > s, then
7, 7t
lim, res, ., exists. That is, there is some v such that res, ., = €Sy, ,

forallVv' > v.

Proof. For the first part of the lemma, we suppose by induction that

the lemma holds for stage s— 1, and analyse the different subcases of
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the construction. As in the construction, let y < @ (Ay) be greatest

such that y € domT’_1, and a be such that ®(a) = 7.

It is clear that the result holds if we define I'(y’) at stage s via
Case 2 of Step 1, or via Step 2. Suppose that we act in Subcase 1(a)
at stage s, O;(A;) > res, . 1, and we find the ®-splits 71, 7, above
@. We setres,,; = ®(7;), so point 1 of the lemma holds, and we
define ®(7;). Then res, . is incomparable with ®(7,) because 7,
and 7 are ®-splits. For all res,; ;1 | withi # e, res, ;s = resy; 1,
and point 4 holds by the inductive assumption. Finally suppose that
we act in Subcase 1(b) at stage s. Then we define I'(®(8)), where
®(B) is incomparable with y for all ¥ € domT'y_; with y’ > 7, and
res, .1 for all e. We haveres, ., | = res, ., for all e, and the result

holds at stage s by the inductive assumption.

For the second part of the lemma, suppose for contradiction that
lim, res, ., does not exist. Then there is an infinite sequence #1, 1, . . .
of stages where res, ., , # res,.,. We have res, ., > res,., , for
all j. We redefine res, . ; at a stage s where ®;(A;) > res, . _i. Sup-
pose at stage 7; we find the splits 7y, and 75, above @;, < A,,. Then
resy ., = ®(71,,). Forall j, ®,(A;) > ®(7y,,) for infinitely many ¢,
and so ®(A) > ®(7y,,). As 71, and 75, are ®-splits, ®(7y,,) and
®(7,,,) are incomparable, and so ®(A) # O(12,).

The set T = {13, | j € w} is an infinite c.e. set of strings which
are initial segments of some A;. By Lemma 4.5.2, T is dense in A.
As A is 1-generic, A > 1y, for some j. Therefore ®(A) > (73,

contradicting our observation above.
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O
Lemma 4.5.4. The range of T is infinite.

Proof. Suppose for contradiction that range I is finite, and that we
do not enumerate any new strings into range I after stage s;. We
cannot act in Step 2 after stage s; because we would then enumerate
a new string into range I

Suppose s, > s; is such that res, . ; has reached its limit by stage
sy for all y € domTI'y, and e. Then we cannot act in Case 1(a) after
stage ;.

Consider the set

C = domTy, U {res,.,, : yedomIy, res,,., | }.

Let C' = {p : p <v,v e C}. Then by the way that 8 is chosen in
Subcase 1(b) of the construction, domI" < C’. As C’ is finite, domI"
1s finite too. Let s3 > 55 be such that domI" = domT,.

As domT is finite and ®(A) is total, let y be the maximal string in
domI such that ®(A) > y. As we do not act in Case 1 after stage s3,
¥ is maximal in domT'. Let @ be such that y = ®(«), and suppose
that s4 > s3 1s such that @ < A, for all 5 > s4.

Let ss > s4 be least such that there is e < s5 with o € S, 4,
o > I'(y), ii,...,i, are the indices i < e such that - does not meet
S s> and there are n + 1 many ®-splits above @. Such a stage exists
because there are infinitely many indices e such that S, contains a

string extending I'(y), and there are infinitely many ®-splits above
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any initial segment of A. Then at stage s5 we will enumerate an
axiom into I'. This is a contradiction, and so the range of I is infinite.

O
Lemma 4.5.5. T'(®(A)) is total.

Proof. Let Ly = {a : |[T(®((a))| > k}. By Lemma 4.5.4, range T’
is infinite, and so contains arbitrarily long strings. Therefore for any
k, Lsy 1s an infinite c.e. set of strings which are initial segments of
some A;. By Lemma 4.5.2, L, is dense in A. As A is 1-generic, A
meets Ly, and T'(®(A)) is total.

O

Lemma 4.5.6. Each requirement is met, and so T'(®(A)) is 1-generic.

Proof. Suppose for contradiction that I'(®(A)) neither meets nor
avoids S ,.

If v.(@) < A for some «, then I'(®(A)) meets S,. As ['(®(A))
is total and I'(®(A)) neither meets nor avoids S, we act in Step 2
of the construction at infinitely many stages, and so define v.(a) for
infinitely many strings . Then range v, is an infinite c.e. set of
strings. By Lemma 4.5.2, range v, i1s dense in A. As A is 1-generic,
there is @ such that v,(a) < A. Then I'(®(A)) meets S, and this is

a contradiction.

Lemma 4.5.7. A(T'(®(A))) = O(A).
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Proof. Suppose that we have @ < A, and A(T'(®(a))) < ®(A). Let
@ < A with @ > a be such that I'(®(a’)) is the least initial segment
of ['(®(A)) extending I'(®(«)). Such an o’ exists because I'(®(A))
1s total.

Suppose that Y € domT’, and that y € domTI is greatest with
y <7 Letjbey(|y]). Then A(I'(y")) = A(I'(y))" .

Asd < A, ®(d’) < O(A). Let jbe @(a’)(|®(a)|). Then we have
A(T(@(a))) = AT(®(a)))" . So AT(®(c'))) > AT(®(a))) and
AT (D(a))) < @(A).

4.5.2 Failure of downward density for w-change generics

Downward density for pb-generics was shown to fail by Schaeffer
in [40]. He constructed a pb-generic A below (7’ that bounds a non-
computable array computable set B. As all pb-generics must be ar-
ray noncomputable and array noncomputability is upwards closed,
we see that B cannot bound a pb-generic set.

Martin (see [26]) showed that downward density holds for 2-
generics, so we might wonder whether downward density can be
recovered when we move to the stronger genericity notion of w-
change genericity. We conjecture that this fails, and give a sketch
of what seems to be the most difficult part of the proof. We hope to

confirm this in future work.
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Conjecture 4.5.8. Downward density for w-change generics below

&' fails.

Sketch of proof.

We construct a Ag set A which is w-change generic, and a Turing
functional ® such that ®(A) is noncomputable and does not bound

an w-change generic set. We therefore meet the requirements

P, : A is w-change generic

N, : ®(A) is noncomputable

Q. : if T,(®(A)) is total, then I',(P(A)) is not w-change generic

where (T, ) is an effective list of all Turing functionals.

The strategy to meet P, is familiar. We choose a length p and
then look for extensions to A; [ p in range f,. If we see at stage
s’ some x and k such that f,(x,k)[s'] > Ay | p, we say that the
strategy is realised at stage s’. We ensure that f,(x, k') < A, where k'
is greatest such that f,(x, k) |. We know that after stage s’, we must
act at most %, (x) many times in order to satisfy P,.

The strategy to meet N, is also familiar. We choose a length n and
wait until a stage s where ¢,, the eth partial computable function,

successfully computes the first n bits of ®(A)[s]. In this case we say
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that the strategy has been realised. We then change ®(A) on its nth

bit to diagonalise against ¢,.

In order to meet Q,, if I',(®(A)) is total, then we must build an w-
change set of strings T such that I',(®(A)) neither meets nor avoids
T. As such a set T must be infinite, we see that action for this type
of requirement may be infinitary. We place the construction on a
tree of strategies. A strategy working for a Q-requirement will have
two outcomes. The infinite outcome guesses that I',(®(A)) is total,
and therefore that we must act infinitely many times to build the w-
change set of strings 7. The finite outcome guesses that I',(®(A)) is
not total, and so no further action is required to meet the requirement

after some stage.

The strategy 7 for Q, will pick some length ¢ and will wait for
I, to give a definition on some string extending ®(A)[s]| | ¢. If [,
never gives such a definition, then we keep ®(A)[s] I ¢ as an initial
segment of ®(A). Then T, is not total on ®(A), which gives us a
global win on Q.. If we do see such a definition at some stage s,
then we will begin to define the w-change set of strings 7 which
we would like for I',(®(A)) to neither meet nor avoid. We pick

some new x and define g(x,0) to be some string incomparable with
Le(@(A)[s] T g)-

We must also declare a value for 4(x). The length ¢ might be
quite long. In particular, there may be many lengths n with n <
g belonging to N-requirements of weaker priority than 7 that have

not yet been realised. We let i(x) be twice the number of such N-
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requirements. This is unavoidable, since there must be infinitely

many strategies working for N-requirements below the node 7.

Suppose that at some later stage ¢ we see that an N-strategy of
weaker priority than T with length n < ¢ is realised. We must create
a split in ®(A), and so a split in A, and redirect A through this split.
Suppose that we create the split o in A and let A extend o~. We con-
tinue the construction with A above o, which will inevitably involve
creating further splits in A above o. This situation 1s dangerous for
us. Splits in ®(A) are beneficial for our opponent. Suppose we have
defined ®(p) for some string p with p > o, but ', has not been
defined on any string equal to or extending ®(p). Then he is free
to define I',(®(p)) = g(x,0). He can then press the genericity of A
to force A to pass through p, in which case ®(A) must pass through
®(p), so that I',(®(A)) extends g(x,0). Then I',(DP(A)) will meet

our set 7.

Suppose that u is a strategy working for a P-requirement, and
that u lies below the infinite outcome of 7. Further suppose that u
is realised at some stage u, where we see f,(x,k)[u] |> o. There
may be many splits p that we have created in A with p > f,(x,k),
and for which I', has given no definition for I',(®(p)). If we allow
the multiple genericity of A to force us to extend such splits, then as
above, I', can give a definition which will mean that I',(®(A)) meets

our set 7.

At stage u, we will instead redirect A through a string v; which

is incomparable with o-. If p; was a split in A with p; > f.(x, k) for
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which no definition I,(®(p;))[u] has been made, then we choose
some extension v/ > vi, and define ®(v') = ®(p;). We force the
opponent to make a I', definition on a string extending ®(p;). If
he never makes such a definition, then we let A extend v; forever, so
that T, is not total on ®(A). This gives us a global win on 7. As u lies
below the infinite outcome of 7, this particular strategy for meeting
P, is abandoned, but some strategy for P, below the finite outcome
of 7 can ensure that P, is still met. Similarly, we can attempt to meet
the requirement N, under the finite outcome of 7. If I', does give us
such a definition on some string y > ®(p;), we know that if ®(A)
extends vy, I',(®(A)) must extend T, (y).

Note that it is of no benefit to our opponent if he defines I', on
some string properly extending ®(p). If he does define ', on y >
®(p) and uses the genericity of A to make A pass through p, we are
only required to have ®(A) pass through ®(p). We can therefore
let A pass through p and choose ®(A) to pass through some string
extending ®(p) but not y. Then we have satisfied the commitment
to the genericity of A, but do not need to worry about I',(®(A))
extending g(x,0). We therefore assume that if p is a split, and so
®(p) is defined, that if T, gives a definition on some string extending

®(p), it gives a definition on @ (p).

We repeat the actions in the previous paragraph for every split
pi for which p; > f,(x,k) at stage u. If T', demonstrates that it is
total in each case, we know all of the definitions I',(®(p;)) that it

can make. Once we have seen all such definitions, we let g(x, 1)
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be a string that is incomparable with I',(®(p;)) for all i, and can
then let A extend f,(x, k). If f.(x, k) is equal to some p;, then we
are currently meeting the genericity requirement of A, and I',(®(A))
does not extend g(x, 1). In this case, if we later see that f,(x,k+1) |,
then f,(x,k + 1) > f.(x,k), and so letting A extend f,(x,k + 1) will
do no harm since I',(®(A)) will still not extend g(x, 1).

Otherwise, if at some later stage v we see f.(x,k + 1)[v] |, then
fe(x, k+ 1) might either extend a split p; which was above f,(x, k) at
stage u, or there may be further splits p’ extending f,(x, k + 1) that
were defined after we let A extend f,(x, k), but before stage v. In the
former case, we can let A extend f,(x,k + 1), and as in the previous
paragraph, I',(®(A)) will not extend g(x, 1). In the latter case, a split
that we create after we let A extend f,(x, k) but before stage v must
either extend a split that was there at stage u, or be created for the
sake of a weaker priority N-requirement with length n < g. We then
may be forced to extend such a split, in which case I, (®(A)) might
extend g(x, 1), but there are only i(x) many such N-requirements.
Therefore we may repeat the above strategies, and will reach some
stage where we satisfy the genericity of A and ensure that I',(®(A))
does not extend g(x, k), for some k with k < 2h(x).
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