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Abstract

In this Master’s Thesis, we set up the groundwork for [8], a paper co-written by the author
and Hung Pham.

We summarise the Fourier and Fourier-Stieltjes algebras on both abelian and general lo-
cally compact groups. Let Γ be a locally compact group. We answer two questions left
open in [11] and [13]:

1. When Γ is abelian, we prove that if χS ∈ B(Γ) is an idempotent with norm 1 <
‖χS‖< 4

3 , then S is the union of two cosets of an open subgroup of Γ.

2. For general Γ, we prove that if χS ∈McbA(Γ) is an idempotent with norm ‖χS‖cb <
1+
√

2
2 , then S is an open coset in Γ.
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Chapter 1

Preliminaries

1.1 Locally compact groups

Within this and the following chapter, we summarise information from [2], [5] and [9].
These texts provide greater insight into the topics of topological groups, measure theory
and harmonic analysis, however we will only outline the theorems that are of particular
use to us for chapters 3 and 4.

Definition 1.1.1. A Hausdorff topological space X is called locally compact if every point
x ∈ X has an open neighbourhood whose closure is compact.

A locally compact group is a group G equipped with a locally compact topological struc-
ture, such that the operations (x,y) 7→ xy and x 7→ x−1 are continuous with respect to the
topologies of G×G→ G and G→ G respectively.

For any subset A⊆ G, and any x ∈ G, we will use the conventions

Ax = {ax : a ∈ A} xA = {xa : a ∈ A} A−1 = {a−1 : a ∈ A}

For some B⊆ G, we will have AB = {ab : a ∈ A,b ∈ B}.

Proposition 1.1.2. For any open subset U ⊆ G, then for any x ∈ G and A ⊆ G, we have
xU,Ux,U−1,AU and UA open in G.

Unless stated otherwise, we shall use multiplicative notation xy for a general group, and
call the identity element e. If we are assuming the group is abelian, then we shall use
additive notation x+ y, and call the identity element 0.

1
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1.2 The dual of a locally compact abelian group

Definition 1.2.1. Let G be a locally compact abelian group. We define the dual group Ĝ
of G to be

Ĝ = {γ : G→ T : γ is a continuous homomorphism}

For γ1,γ2 ∈ Ĝ, we define (γ1+γ2)(x)= γ1(x)γ2(x), and have the constant function 0̂(x)= 1
as the identity in Ĝ. For any γ ∈ Ĝ, we have (−γ)(x) = γ(x)−1 = γ(x).

It is convention to write (x,γ) in place of γ(x), in which case we have (x1 + x2,γ) =
(x1,γ)(x2,γ), and (x,γ1 + γ2) = (x,γ1)(x,γ2).

The topology on Ĝ is the topology of compact convergence. In particular, a neighbour-
hood base for some point γ0 ∈ Ĝ consists of all the sets of the form

Uε,K = {γ ∈ Ĝ : |1− (x,γ− γ0)|< ε,∀x ∈ K}

for ε > 0, and K a compact subset of G.

Throughout this text, we shall denote Ĝ as Γ.

Proposition 1.2.2. The dual Γ of a locally compact abelian group G is a topological
abelian group.

Proof. It is obvious that Γ is an abelian group, so we must check that the operations of
(a) + : Γ×Γ→ Γ and (b) − : Γ→ Γ are continuous.

a) Take γ1,γ2 ∈ Γ. For compact, non-empty K ⊂ G, and ε > 0, the set U2ε,K , and its
translates, are open in Γ, thus (γ1 +Uε,K)× (γ2 +Uε,K) is an open neighbourhood of
〈γ1,γ2〉 ∈ Γ×Γ.

Via the triangle inequality, if η1 ∈ γ1+Uε,K and η2 ∈ γ2+Uε,K , for all x ∈ K, we have

|(x,γ1 + γ2)− (x,η1 +η2)|= |(x,γ1)(x,γ2)− (x,η1)(x,η2)|
= |(x,γ2) [(x,γ1)− (x,η1)]+(x,η1) [(x,γ2)− (x,η2)]|
≤ |(x,γ1)− (x,η1)|+ |(x,γ2)− (x,η2)|
< ε + ε = 2ε

Hence 〈η1,η2〉 must be in (γ1 +Uε,K)× (γ2 +Uε,K), proving + is continuous.

b) Again, for any ε > 0 and compact, non-empty K ⊆ G, let us define γ +Uε,K to be an
open neighbourhood of γ . For any η ∈ γ +Uε,K , and for all x ∈ K, we have
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|(x,−γ)− (x,−η)|=
∣∣∣(x,γ)− (x,η)

∣∣∣
=
∣∣∣(x,γ)− (x,η)

∣∣∣
= |(x,γ)− (x,η)|< ε

Hence −η ∈ −(γ +Uε,K), so − must also be continuous.

Theorem 1.2.3. The dual group Γ of a locally compact abelian group G is a locally
compact abelian group.

As we know Γ is an abelian topological group, all that remains to be seen is that the
topological structure is locally compact. However, this requires additional machinery we
do not wish to cover it in this text, so the proof shall be excluded. It can be found in [9].

Proposition 1.2.4. The dual group of a compact group is discrete.

Proof. Assume G is compact, and take γ0 ∈ Γ to be arbitrary.

Then all sets of the form Uε = {γ :
∣∣1− (x,γ−1

0 γ)
∣∣ < ε,x ∈ G} are the open neighbour-

hoods of γ0, for any ε > 0. If we fix ε =
√

2, then we must have the set

U√2 = {γ :
∣∣1− (x,γ−1

0 γ)
∣∣<√2,x ∈ G}

as an open set in Γ. Surely γ0 is in U√2, but assume some γ1 6= γ0 is also in U√2. Then∣∣1− (x,γ−1
0 γ1)

∣∣<√2 for all x ∈ G.

Take some x0 such that z := (x0,γ
−1
0 γ1) ∈ T satisfies z 6= 1. For some n ∈ N, we must

have Re(zn) < 0. Hence |1− zn| ≥
√

2, and more directly,
∣∣1− (xn

0,γ
−1
0 γ1)

∣∣ ≥ √2. This
contradicts the definition of U√2, hence γ1 6∈U√2, and indeed U√2 = {γ0}.

Theorem 1.2.5 (Pontryagin duality theorem). The dual group of Γ is G.

The proof of this result can be found in [9].

Corollary 1.2.6. The dual group of a discrete group is compact.
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Corollary 1.2.7. Sets of the form

Uε,K = {γ ∈ Γ : |1− (x,γ)|< ε,∀x ∈ K}

for compact K ⊆G, ε > 0, and their translates, form an open neighbourhood base for G.

Proof. This is simply the topology of compact convergence on Γ, hence is the topology
of G by the Pontryagin duality theorem.

The above statement is proved as Proposition 1.2.6. in [9], without reference to the Pon-
tryagin duality theorem, as it is a key part of the theorem’s proof. As it is a natural
consequence of the theorem, we are happy to accept it within this paper.

Example 1.2.8. Let Z be the integers equipped with addition and the discrete topology, T
be the unit circle with multiplication and the standard topology, and R be the real numbers
with addition and the standard topology. Then we have

1. T̂= Z, via the map (n,eiθ ) = einθ for each n ∈ Z,eiθ ∈ T.

2. Ẑ= T, via the map (eiθ ,n) = einθ for each eiθ ∈ T,n ∈ Z.

3. R̂= R, via the map (x,y) = e2πixy for each x,y ∈ R.

4. Ẑn = Zn, via the map (a,b) = e2πiab/n for each a,b ∈ Zn

It also follows that every finite abelian group is self dual.

1.3 Annihilators of locally compact abelian groups

Definition 1.3.1. Let H be a subgroup of an locally compact abelian group G. We call
the set

Λ = {γ ∈ Γ : (x,γ) = 1,∀x ∈ H}

the annihilator of H.

Proposition 1.3.2. If Λ is the annihilator of H, then Λ is a subgroup of Γ. Furthermore,
the annihilator of Λ is H.

Proof. Certainly 0 ∈ Λ, for (x,0) = 1. For any γ ∈ Λ, (x,γ) = 1 = (x,−γ) for all x ∈ H,
as 1 is real valued, and finally if γ1,γ2 ∈ Λ, then (x,γ1 + γ2) = (x,γ1)(x,γ2) = 1.

Denote by Λ⊥ the annihilator of Λ in G. Clearly H ⊆Λ⊥, as (x,γ) = 1 for all x∈H,γ ∈Λ.
If H = G, then Λ = {0}, and the result is obvious. Instead consider that H is a strict
subgroup of G, and there some x0 ∈ Λ⊥ that is not in H. Then G/H is a nontrivial
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group of G, and there exists some dual member φ : G/H → T that is not the identity
map. The map γ : x 7→ (x+H,φ) is a continuous homomorphism, hence is in Γ, and
satisfies (x,γ) = 1 whenever x ∈ H; this must mean that γ is in fact a member of Λ. Ergo
(x0,γ) = (x0 +H,φ) 6= 1, and x0 cannot be in Λ⊥, thus completing the proof.

Not only are H and Λ mutually annihilators for each other, but they are deeply related to
the quotient group structure within G and Γ.

Theorem 1.3.3. Let G be a locally compact abelian group, with subgroup H, let and Λ

be the annihilator of H in Γ. Then Λ is isomorphic to Ĝ/H, and Γ/Λ is isomorphic to Ĥ,
both in a homeomorphic way.

Proof. For any x∈G, there is a natural, open and continuous homomorphism h(x)= x+H
onto G/H. For any φ ∈ Ĝ/H, we can create a map ι : Ĝ/H→Λ defined by ι(φ) := φ ◦h.
Then ι is injective, as if ι(φ1)= ι(φ2), then φ1◦h= φ2◦h. This means φ1◦h(x)= φ2◦h(x)
for all x ∈ G, and φ1(x+H) = φ2(x+H) for all x+H ∈ G/H, so we get φ1 = φ2.

The map ι is also surjective, as for any γ ∈ Λ, we can consider γ ◦ h−1 as a member of
Ĝ/H. This is because, for any coset x+H ∈ G/H, the inverse h−1(x+H) = {x+a : a ∈
H}, and as γ annihilates H, we have γ(x+ a) = γ(x) for all a ∈ H, hence the formula
γ ◦h−1 is well-defined. It can easily be shown that γ ◦h−1 is a continuous homomorphism
on G/H, and as ι(γ ◦h−1) = γ , Λ and Ĝ/H are bijective.

We also have that ι is an homomorphism, as

(x, ι(φ1 +φ2)) = (h(x),φ1 +φ2) = (h(x),φ1)(h(x),φ2) = (x, ι(φ1)+ ι(φ2)) (x ∈ G)

For any compact set K1 ⊆G, the set h(K1) is compact in G/H, and for any compact K2 ⊆
G/H, there is some compact K1 ⊆ G such that h(K1) = K2, as h is open and continuous.
By 1.2.7, the sets

Uε,K1 = {γ ∈ Λ : |1− (x,γ)|< ε,∀x ∈ K1}
form an open neighbourhood base of Λ, and ι maps any Uε,K1 onto the open set Uε,K2 ,
where

Uε,K2 = {φ ∈ Ĝ/H : |1− (w,φ)|< ε,∀w ∈ K2}
Furthermore, for any open set of the form Uε,K2 , there is some open Uε,K1 such that
ι(Uε,K1) = Uε,K2 , hence ι is a homeomorphism, thus it is a homeomorphic isomorphism
from Ĝ/H to Λ.

As H and Λ are mutual annihilators, Γ̂/Λ is isomorphic to H, and so by the Pontryagin
duality theorem, Γ/Λ is isomorphic to Ĥ, and the theorem is proved.

Corollary 1.3.4. The annihilator of an open subgroup is compact, and the annihilator of
a compact subgroup is open.

Proof. Let H be an open subgroup of G, with annihilator Λ. Then G/H is discrete, and
its dual Λ is compact. The rest follows from mutual annihilation.
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Chapter 2

The Fourier-Stieltjes and Fourier
algebras

2.1 Complex measures

Definition 2.1.1. Let (X ,M ) be a measurable space. A complex measure µ on (X ,M )
is a function from M to C that satisfies

µ( /0) = 0 and µ(
∞⋃

n=1

An) =
∞

∑
n=1

µ(An)

for any disjoint sequence An in M .

Any complex measure can be written in the form µ = µr + iµi, where µr,µi are finite
signed measures on (X ,M ), and via the Jordan Decomposition theorem,

µ = µ1−µ2 + iµ3− iµ4

for µn finite positive measures on (X ,M ). The total variation of a measure |µ| of a
complex measure µ is defined to be the positive measure |µ|(A) = sup∑

n
j=1 |µ(A j)|, this

supremum taken over all finite partitions of A into M -measurable sets.

The total variation norm of a complex measure µ is defined to be ‖µ‖= |µ|(X).

It can also be seen that |µ|(E)≤ µ1(E)+µ2(E)+µ3(E)+µ4(E) for measurable E ⊆ X .

Proposition 2.1.2. Let M(X ,M ) denote the space of all complex measures on (X ,M ).
Then M(X ,M ) is a complex vector space, and the total variation norm ‖µ‖ is indeed a
norm on this space.

M(X ,M ), equipped with the total variation norm, forms a Banach space.

7
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Definition 2.1.3. The Borel σ -algebra of X is the σ -algebra generated by the open subsets
of X . A measure on X is called a Borel measure if it is defined on the Borel measurable
sets, and a function f is called a Borel function if it is Borel measurable.

If µ is a Borel measure on X , then we say µ is

i. Outer regular if for each open set U , µ(U) = sup{µ(K) : K ⊆U, for compact K}

ii. Inner regular if for each measurable set A, µ(A) = inf{µ(U) : A⊆U, for open U}

iii. Regular if it is both outer and inner regular, and each compact K satisfies µ(K)< ∞.

In the case that our topological space G is a locally compact group, we will write M(G)
to denote the space of all regular Borel measures on G.

Proposition 2.1.4. Let µ ∈ M(G). For any bounded f on G, the inequality |
∫

f dµ| ≤
‖ f‖

∞
‖µ‖ holds.

Proof. First, let f be a simple function. Then there exists values a1, · · ·ak and sets
A1, · · · ,Ak such that

∣∣∣∣∫ f dµ

∣∣∣∣=
∣∣∣∣∣ k

∑
j=1

a jµ(A j)

∣∣∣∣∣≤ k

∑
j=1

∣∣a j
∣∣ ∣∣µ(A j)

∣∣≤ ‖ f‖
∞
‖µ‖

It is well known any Borel function f can be expressed as the uniform limit of a increasing
sequence of simple functions ( fn) on G, and so∣∣∣∣∫ ( f − fn)dµ

∣∣∣∣= ∣∣∣∣∫ ( f − fn)µ1−
∫

( f − fn)µ2 + i
∫

( f − fn)µ3− i
∫

( f − fn)µ4

∣∣∣∣
≤

4

∑
j=1

∣∣∣∣∫ ( f − fn)dµ j

∣∣∣∣
≤

4

∑
j=1

∫
| f − fn|dµ j ≤ ‖ f − fn‖∞

4

∑
j=1

∥∥µ j
∥∥

and indeed we have
∫

fndµ →
∫

f dµ as n→ ∞, hence |
∫

fndµ| → |
∫

f dµ| also.

As |
∫

fndµ| ≤ ‖ fn‖∞
‖µ‖ for all simple functions, it follows that our inequality holds for

all Borel functions of G.

Definition 2.1.5. Let G be a locally compact group. For µ,ν ∈M(G), we can define the
convolution µ ∗ν to be a measure

(µ ∗ν)(E) = (µ×ν)(D), where D = {(x,y) ∈ G×G : xy ∈ E}

Convolution of measures is associative, and is commutative if and only if G is abelian.
Furthermore, we have ‖µ ∗ν‖ ≤ ‖µ‖‖ν‖, so in fact M(G) is a Banach Algebra, when
equipped with convolution.
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2.2 The Fourier-Stieltjes algebra B(Γ)

Definition 2.2.1. Let G be a locally compact abelian group. For µ ∈M(G), we define the
Fourier-Stieltjes transform µ̂ to be the function

µ̂ : γ 7→
∫

G
(−x,γ)dµ(x) (∀γ ∈ Γ)

Proposition 2.2.2. The map ˆ : µ 7→ µ̂ is a algebra homomorphism from M(G) into L∞(Γ).

Proof. We can see the Fourier-Stieltjes transform preserves multiplication, as

µ̂ ∗ν(ξ ) =
∫
(−z,ξ )d(µ ∗ν)(z)

=
∫ ∫

(−x− y,ξ )dµ(x)dν(y) (x+ y = z)

=
∫
(−x,ξ )dµ(x)

∫
(−y,ξ )dν(y)

= µ̂ ν̂

Furthermore, µ̂ is bounded, as |µ̂(γ)|= |
∫
(x,γ)dµ(x)| ≤ ‖µ‖

The image of M(G) under the Fourier-Stieltjes Transform is called the Fourier-Stieltjes
algebra, and is denoted B(Γ). We define the norm of B(Γ) to simply be ‖µ̂‖B(Γ) :=
‖µ‖M(G).

Theorem 2.2.3. For µ,ν ∈M(G), if µ̂ = ν̂ , then µ = ν .

This is called the Fourier Uniqueness theorem. The proof is very long and involved, but
it can be found in [9], on pages 17-30. As we are not proving this result in this paper, we
shall try not to rely too heavily on it. However, it is essential for Chapter 3.

Definition 2.2.4. A function φ : G→ C is called positive definite if for all c1, · · · ,cN ∈ C
and all x1, · · · ,xN ∈ G, the following inequality holds:

N

∑
m,n=1

cncmφ(x−1
m xn)≥ 0

This definition may be more intuitively realised as requiring the matrix

(
φ(x−1

m xn)
)

i, j≤N =

 φ(e) · · · φ(x−1
1 xN)

... . . . ...
φ(x−1

N x1) · · · φ(e)


be a positive semi-definite matrix, for x1, · · · ,xN ∈ G.
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We shall denote by P(G) the set of all continuous positive-definite functions on G, and
P1(G) the set of all continuous positive-definite functions on G satisfying φ(e) = 1.

Theorem 2.2.5. (Bochner’s Theorem) Let φ be a continuous function on a locally com-
pact abelian group G. Then φ is positive-definite if and only if there exists some non-
negative measure M(Γ) such that

φ(x) =
∫
(x,γ)dµ(γ) (x ∈ G)

The proof can be found in Rudin (pg 19). The proof is quite long, so we will exclude
most of it. However, one direction is quite easy to see.

For suppose µ is a non-negative measure on Γ, and define φ(x) =
∫
(x,γ)dµ(γ). Then in

order to show φ(x) is positive-definite, consider c1, · · · ,cn ∈ C, and x1, · · · ,xn ∈ G. We
have

n

∑
i, j=1

cic jφ(xi− x j) =
n

∑
i, j=1

cic j

∫
(xi− x j,γ)dµ(γ)

=
n

∑
i, j=1

cic j

∫
(xi,γ)(x j,γ)dµ(γ)

=
∫ n

∑
i, j=1

cic j(xi,γ)(x j,γ)dµ(γ)

=
∫ n

∑
i, j=1

cic j(xi,γ)(x j,γ)dµ(γ)

=
∫ ( n

∑
i

ci(xi,γ)

)(
n

∑
j

c j(x j,γ)

)
dµ(γ)

=
∫ ∣∣∣∣∣ n

∑
i

ci(xi,γ)

∣∣∣∣∣
2

dµ(γ)≥ 0

Hence the non-negative measure of M(Γ) give rise to positive-definite functions on G.

Corollary 2.2.6. Let f be a function on Γ. Then f is a member of B(Γ) if and only if it is
the linear combination of continuous positive-definite functions on Γ

Proof. First let f = µ̂ ∈ B(Γ). Then, by Jordan decomposition and the linearity of the
Fourier-Stieltjes transform, we know µ̂ = µ̂1− µ̂2 + iµ̂3− iµ̂4, which we know are con-
tinuous positive-definite functions due to Bochner’s theorem.

Conversely, suppose f =∑
N
n=1 αnφn, for αn ∈C and φn ∈P(G). Then, again by Bochner’s
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theorem, each φn is of the form µ̂n for non-negative µn. As such, if we define

µ :=
N

∑
n=1

αnµn

then µ ∈M(G), and µ̂ = ∑
N
n=1 αnµ̂n = f , hence the result is shown.

Using this corollary, we can form a new definition for B(Γ) that does not make reference
to Γ being the dual group of some G; a structure we don’t have in the case that Γ is
non-abelian.

Definition 2.2.7. The Fourier-Stieltjes algebra B(Γ) is the algebra of linear combinations
of continuous positive-definite functions on Γ.

This definition is first given in Eymard’s seminal paper [4]. In this paper, it is shown that
one way to define the norm on B(Γ) is using the formula

‖u‖B(Γ) = sup

∣∣∣∣∣ N

∑
n

cnu(γn)

∣∣∣∣∣
where the supremum is taken over all finite collections of γn ∈ Γ,cn ∈ C satisfying

sup
φ∈P1(Γd),

N

∑
n=1

N

∑
m=1

cncmφ(γ−1
m γn) = 1

where Γd is Γ equipped with the discrete topology.

This new norm agrees with the standard norm on B(Γ), in the case that Γ is abelian.

2.3 The Haar Measure

In the next section, we are going to define the space of integrable functions. For this, we
require a measure that connects intimately with the group and topological structure.

Definition 2.3.1. A regular [0,∞]-valued measure m on locally compact group G is called
a Haar measure if it satisfies

m(xE) = m(E) for all x ∈ G, and all Borel sets E

This property is called translational invariance. In the case the G is non-abelian, this is
called left invariance, and the measure is called the left Haar measure. The right Haar
measure is a measure with right invariance. In general, the left Haar and right Haar
measures are distinct.
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Theorem 2.3.2. Every locally compact group G admits both a left and right Haar mea-
sure.

The proof of this statement is quite involved, and can be found in Theorem 9.2.1 in [2].
We shall give an outline of the construction of the left Haar measure, which will be remi-
niscent of a technique for estimating the area of planar regions.

By taking subsets K and V of G, such that K is compact, and V has non-empty interior,
then we can take translates xV ◦ of V ◦ to be an open cover of K. As K is compact, there
must exist a finite sequence {x1, · · · ,xn} such that K is covered by

⋃n
i=1 xiV ◦. From here,

we can define #(K : V ) to be the least possible n such that n translates of V ◦ cover K.

From here, a compact subset K0 of G with non-empty interior is chosen, to serve as a
standard for measuring the size of other compact subsets. For each open neighbourhood
U of the identity e ∈ G, we define the function hU : C → R by

hU(K) =
#(K : U)

#(K0 : U)

where C denotes the collection of all compact subsets of G. This estimates the size of
K in terms of K0, by counting how many more (or fewer) translates of U are needed to
cover K. As U gets smaller, the size estimate become more accurate, as there will be less
overlap between translates of U , and less overhang (translates of U covering G\K).

From here, a sort of “limit” of hU is constructed, by considering U moving along a net
of open neighbourhoods of the identity, towards the empty set. This gives a function
h : C → R, which satisfies many nice conditions, such as being non-negative, having
h( /0) = 0, h(K0) = 1, h(xK) = h(K), and h(K1∪K2) ≤ h(K1)+ h(K2) (with the equality
holding if K1∩K2 = /0).

Our size estimating function h is only defined on compact subsets of G, but can be ex-
tended to an outer measure µ∗ on G. First we define µ∗ on the open subsets of G by

µ
∗(U) = sup{h(K) : K ∈ C ,K ⊆U}

then further extend it to all subsets by defining

µ
∗(A) = inf{µ∗(U) : U is open ,A⊆U}

This indeed forms a non-zero, left translationally invariant outer measure. If we restrict
this outer measure to B(G), the Borel sets of G (the σ -algebra generated by the open sets
of G), it is then a measure; the left Haar measure of G.

The proof holds similarly for the existence of the right Haar measure, or we can easily
see that mR(E) = mL(E−1) gives a right Haar measure. In the case that G is abelian, a left
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Haar measure is trivially also a right Haar measure. The following statements we shall
make about the left Haar measure shall hold equally true for the right Haar measure with
similar proofs.

Lemma 2.3.3. The left Haar measure of G is unique up to scalar multiplication, hence
referring to it as the left Haar measure is justified.

Proof. Suppose µ,ν are both (nonzero) left Haar measures on G. Fix some nonzero
g ∈C+

C (G), so that
∫

gm1,
∫

gm2 > 0. For any f ∈CC(G), we have

∫ ∫ f (x)g(yx)∫
g(tx)dν(t)

dν(y)dµ(x) =
∫ ∫ f (x)g(yx)∫

g(tx)dν(t)
dµ(x)dν(y) Fubini’s theorem

=
∫ ∫ f (y−1x)g(x)∫

g(ty−1x)dν(t)
dµ(x)dν(y) x→ y−1x

=
∫ ∫ f (y−1x)g(x)∫

g(ty−1x)dν(t)
dν(y)dµ(x) Fubini’s theorem

=
∫ ∫ f (y−1)g(x)∫

g(ty−1)dν(t)
dν(y)dµ(x) y→ xy

=
∫

g(x)dµ(x)
∫ f (y−1)∫

g(ty−1)dν(t)
dν(y)

Note that the above use of Fubini’s theorem is legitimate, as
∫

g(tx)dν(t) is continuous
and vanishes nowhere, hence the fraction is also continuous. Re-examining the left hand
side of the equation also shows us that

∫ ∫ f (x)g(yx)∫
g(tx)dν(t)

dν(y)dµ(x) =
∫

f (x)
∫

g(yx)dν(y)∫
g(tx)dν(t)

dµ(x) =
∫

f (x)dµ(x)

Hence we get

∫
f (x)dµ(x) =

∫
g(x)dµ(x)

∫ f (y−1)∫
g(ty−1)dν(t)

dν(y)

Thus we find that the ratio between
∫

f (x)dµ(x) and
∫

g(x)dµ(x) depends purely on f
and g, not the Haar measure µ used. So we must have that

∫
f dµ∫
gdµ

=

∫
f dν∫
gdν

and so µ and ν differ only by a scalar.
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Hence there is (up to scalar multiplication) a unique left Haar measure, which we shall
call m. If G is discrete, it is typical to use the counting measure for the Haar measure. If
G is not discrete, but is compact, it is typical to normalise m such that m(G) = 1.

Example 2.3.4. The Haar measure on R is the length measure m([a,b]) = b−a, although
in some texts the scalar multiple m√

2π
is used, in order to preserve Haar measure when

taking the group dual. Given the above convention, the Haar measure of Z is the counting
measure, and the Haar measure of T is the arc length measure, divided by a factor of 1

2π
,

to affirm that m(T) = 1.

As the left Haar measures is unique, when we integrate with respect to it, we shall say
dx in place of dm(x). If m is the left Haar measure on G, then the measure mx(E) =
m(Ex) will also be a left Haar measure and hence must differ from m only by a scalar
multiple. This scalar will be dependent only on x ∈ G, and hence we can define the
modular function.

Definition 2.3.5. The modular function of a locally compact group G is a function

∆ : G→ R

such that ∆(x)m = mx, where m is the left Haar measure of G.

If µ,ν are two left Haar measures, then ν = cµ for some c ∈R. We also have νx = cµx =
∆(x)ν = c∆(x)µ , so indeed ∆ is uniquely determined by the group, and not which Haar
measure is being used as the standard.

By observing the equation

∆(xy)µ(E) = µ(Exy) = ∆(y)µ(Ex) = ∆(x)∆(y)µ(E)

we can see that ∆(xy) = ∆(x)∆(y). So in fact if ∆(x) > 1 for any x ∈ G, then ∆ will be
unbounded (consider ∆(xn) as n→ ∞).

If ∆≡ 1, then G is called a unimodular group. If G is abelian, then it is clearly unimodular,
but also if G is discrete, as the left Haar measure is the counting measure, which is also
right-translation invariant, hence G will be unimodular.

It can be seen (such as in [5], Proposition 2.31) that dm(x−1) = ∆(x−1)dm(x).

2.4 The integrable function space L1(G)

Definition 2.4.1. L p(G) is the space of all functions on G which are p-integrable with
respect to the (left) Haar measure, for 1≤ p≤∞. Lp(G) is a quotient space of L p(G), in
which f1 ∼ f2 if the set of points where f1 and f2 disagree is:
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i. null (of Haar measure zero), for p < ∞

ii. locally null (has null intersection with every compact set) for p = ∞

For f ∈ Lp(G), we define fx ∈ Lp(G), the translate of f by x ∈ G to be fx(y) = f (yx). If
G is non-abelian, this is called the right translate, while the left translate is x f (y) = f (xy).

Definition 2.4.2. For any Borel functions f and g, we can define

( f ∗g)(x) =
∫

f (y)g(y−1x)dy

to be the convolution of functions.

Convolution of functions is associative, and commutative if and only if G is abelian.

The space L1(G) is of particular interest to us. It can be viewed as a subspace of M(G),
as for f ∈ L1(G), we can define a µ f ∈M(G) to be µ f (E) =

∫
E f (x)dm. We have

‖ fx‖1 = ‖ f‖1 =
∥∥µ f

∥∥= ∥∥µ fx

∥∥
and µ f ∗ µg = µ f∗g, so L1(G) is in fact a Banach subalgebra of M(G), when equipped
with convolution of functions. In particular, ‖ f ∗g‖1 ≤ ‖ f‖1 ‖g‖1. Moreover, L1(G) is a
closed ideal of M(G).

2.5 The Fourier algebra A(Γ)

Definition 2.5.1. For f ∈ L1(G), we define the Fourier Transform of f to be the function

f̂ : γ 7→
∫

G
(−x,γ) f (x)dx (∀γ ∈ Γ)

The image of L1(G) under the Fourier Transform is called the Fourier algebra, and is
denoted A(Γ). We equip A(Γ) with the norm inherited from L1(G).

Clearly A(Γ) is a subspace of B(Γ), as we have f̂ = µ̂ f . In fact, A(Γ)⊆C0(Γ) also holds
true, forming a more general version of the Lebesgue-Riemann lemma.

Example 2.5.2. For

1. G = Z, we have f̂ (eiθ ) = ∑
∞
n=−∞ e−inθ f (n), for eiθ ∈ T

2. G = T, we have f̂ (n) = 1
2π

∫
π

−π
e−inθ f (eiθ )dθ , for n ∈ Z

3. G = R, we have f̂ (x) =
∫

∞

−∞
e−ixy f (y)dy, for x ∈ R
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Proposition 2.5.3. L2(G) ·L2(G) = L1(G), with norm defined by

‖h‖1 = inf{‖ f‖2 ‖g‖2 : h = f g, f ,g ∈ L2(G)}

Proof. Let f ,g be in L2(G). Then
∫
| f |2 dm and

∫
|g|2 dm are both finite values. Thus

∫
G
| f g|dm≤

(∫
G
| f |2 dm

) 1
2
(∫
|g|2 dm

) 1
2

by the Cauchy-Schwarz inequality, so indeed L2(G) · L2(G) ⊆ L1(G). Conversely, any
h ∈ L1(G) can be expressed as h

1
2 ·h 1

2 ∈ L2(G) ·L2(G), so we are done.

An interesting consequence of this is that L2(Γ)∗L2(Γ) = A(Γ). In order to show this, we
will need to harness what is called the Plancherel Theorem. This states that the Fourier
transform, when restricted to the space of functions in both L1(G) and L2(G), is an isom-
etry (with respect to the L2 norm) onto a dense subspace of L2(Γ). As such, it can be
extended uniquely to an isometry from L2(G) onto L2(Γ). This isometry is called the
Plancherel transform, and from it we can obtain the Parseval formula, which states∫

G
f (x)g(x)dx =

∫
Γ

f̂ (γ)ĝ(γ)dγ f ,g ∈ L2(G)

The proof of these statements can be found in [9].

Proposition 2.5.4. The Fourier transform maps L2(G) ·L2(G) onto L2(Γ)∗L2(Γ), hence
L2(Γ)∗L2(Γ) = A(Γ)

Sketch of proof. Let f ,g ∈ L1(G)∩L2(G). If we use the Parseval formula with g in place
of g, then as the Fourier transform of g is

∫
(−x,γ)g(x)dx (which has complex conjugate∫

(−x,−γ)g(x)dx = ĝ(−γ)), we get∫
f (x)g(x)dx =

∫
f̂ (γ)ĝ(−γ)dγ

Further, if for some γ0 ∈ Γ, we use the Parseval formula with (−x,γ0)g(x) instead of g(x),
we get ∫

f (x)g(x)(−x,γ0)dx =
∫

f̂ (γ)ĝ(γ0− γ)dγ

which is the value of f̂ ∗ ĝ evaluated at γ0.

These results can be extended to f ,g ∈ L2(G) (and not necessarily in L1(G)), so indeed
for any h ∈ L1(G), we can express h as f g for f ,g ∈ L2(G), which will have Fourier
transform ĥ ∈ A(Γ) satisfying ĥ = f̂ ∗ ĝ ∈ L2(Γ).

In the case that Γ is a non-abelian group, it seems desirable to define A(Γ) to simply be
L2(Γ)∗L2(Γ), with the norm defined by

‖φ‖A(Γ) := inf{‖ f‖2 ‖g‖2 : φ = f ∗g, f ,g ∈ L2(Γ)}
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However, the convolution f ∗ g for f ,g ∈ L2(Γ) is only guaranteed to be well-defined
when Γ is unimodular, such as when Γ is abelian, or discrete.

Consider briefly the case when Γ is non-unimodular, and take f ,g ∈ L2(Γ). Then f ∗
g(γ) =

∫
f (η)g(η−1γ)dη . Consider f ∗g(e) =

∫
f (η)g(η−1)dη . By Hölder’s inequality,

we have

| f ∗g(e)|=
∣∣∣∣∫ f (η)g(η−1)dη

∣∣∣∣≤ (∫ | f (η)|2 dη

) 1
2
(∫
|ǧ(η)|2 dη

) 1
2

where ǧ(η) = g(η−1).

For f ∗g(1) to be well defined, ideally we would have ǧ ∈ L2(Γ), however∫
|ǧ(η)|2 dη =

∫
∆(η)−1 |g(η)|2 dη

As Γ is unimodular, ∆(η)−1 is unbounded, so it is not necessary that ǧ ∈ L2(Γ) when
g ∈ L2(Γ), and so the construction above may not work in general.

As such, we need a different way to define A(Γ) in the non-abelian case, which will work
even if Γ is not unimodular.

This problem was investigated by Eymard in [4], and it is shown that we can define A(Γ)
as follows.

Definition 2.5.5. The Fourier algebra A(Γ) of a locally compact group Γ is the set

A(Γ) = L2(Γ)∗

̂

L2(Γ)

with the norm ‖φ‖= inf{‖ f‖2 ‖g‖2 : φ = f ∗ ǧ, f ,g ∈ L2(Γ)}.

This may seem unbelievable that this is indeed an algebra (or even a linear space), but
it follows more easily after we observe other ways to construct A(Γ). If we let g̃(γ) :=
ǧ(γ) = g(γ−1), [4] shows the following 1:

Theorem 2.5.6. The complex vector spaces of functions

i. E1 generated by f ∗ ǧ for f ,g ∈CC(Γ)

ii. E2 generated by h∗ h̃ for h ∈CC(Γ)

iii. E3 generated by f ∗ ǧ for f ,g ∈ L∞(Γ) with compact support

iv. E4 generated by h∗ h̃ for h ∈ L∞(Γ) with compact support

1Actually, we are presenting Eymard’s results in a different order to fit our purpose. In [4], the statement
of Theorem 2.5.6 is used as justification to define A(Γ) = L2(Γ)∗ L̂2(Γ), and so the definition given in 2.5.5
is given after this theorem.
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v. E5 = B(Γ)∩CC(Γ)

vi. E6 generated by P(Γ)∩CC(Γ)

vii. E7 generated by u ∈P(Γ) satisfying ∆
− 1

2 u ∈ L1(Γ)

viii. E8 generated by P(Γ)∩L2(Γ)

ix. E9 generated by h∗ h̃ for h ∈ L2(Γ)

x. E10 generated by f ∗ ǧ for f ,g ∈ L2(Γ)

all have A(Γ) as their closure in B(Γ), and the A(Γ) norm agrees with the inherited norms.

Clearly, the space A(Γ) is an algebra, and is closed under translation.

Theorem 2.5.7. A(Γ) is a dense subalgebra of C0(Γ).

Proof. It is now obvious that A(Γ) is a subalgebra of C0(Γ), so we aim to use the Stone-
Weierstrass theorem to prove it is dense.

For any γ0 ∈ Γ, we can define a function f ∈ L2(Γ) that is 1 on a non-empty compact
neighbourhood C of γ0, and 0 otherwise. Recall that γ0 f (γ) = f (γ0γ), and so γ̃0 f (γ) =
f (γ0γ−1). Then

f ∗ γ̃0 f (γ0) =
∫

f (γ)
(

γ̃0 f (γ−1
γ0)
)

dγ =
∫

f (γ)γ0 f (γ−1
0 γ)dγ =

∫
| f (γ)|2 dγ = m(C)

where m(C) is the (non-zero) Haar measure of C. Hence f ∗ γ̃0 f (which can also be

viewed as f ∗

̂
γ0 f ) is in A(Γ) and maps γ0 to some nonzero value, therefore A(Γ) vanishes

nowhere.

Now let γ0 6= γ1 ∈ Γ. As A(Γ) is translation invariant, we can assume γ1 is the identity, and
γ0 is any other element. The goal will be to construct a function f , such that f ∗ f (γ0) = 0,
and f ∗ f (e) 6= 0. To do this, we will construct our f to have support U , such that γ0 is not
contained in U2.

Let A be an open neighbourhood of e whose closure does not contain γ0 (this is possible,
as we require locally compact groups to be Hausdorff). By the continuity of the inverse
operation t 7→ t−1, we know that A−1 is open also, and so B = A∩A−1 is an open neigh-
bourhood of e. B is called a symmetric neighbourhood of e, as it is closed under inverses.
The pre-image of B under the group product is a neighbourhood of 〈e,e〉 ∈ Γ×Γ, and
hence contains some U ×U ⊆ Γ×Γ, where U contains e, does not contain γ1 in its clo-
sure, and has U2 ⊆ B. Hence if we choose f to be the characteristic function of U , f ∗ f̃
will evaluate e to be m(U) 6= 0, and γ0 to be 0 2.

2We have assumed that U has non-zero Haar measure. This is true for all non-empty open sets, as the
Haar measure is regular, hence we can find some compact set C such that m(C) 6= 0, and n many translates
of U cover C. Therefore m(U)≥ 1

n m(C)
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Finally, if f ∗ ǧ ∈ A(Γ), then f ∗ ǧ ∈ A(Γ), as f ∗ ǧ = f ∗g.
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Chapter 3

Idempotents of small norm on LCA
groups

Throughout this chapter, we will use G to denote a locally compact abelian group with
dual group Γ. We shall use + to denote the abelian group operation, and 0 to denote the
identity element of both groups. Subscripts will be used in case of ambiguity.

3.1 Idempotent measures

Definition 3.1.1. A member a of an algebra A is called an idempotent if a2 = a. In
particular, we say a measure µ ∈M(G) is idempotent if µ ∗µ = µ . We denote the set of
all idempotent measures on G by J(G).

If µ ∈M(G) is an idempotent measure, then the Fourier-Stieltjes transform µ̂ must be an
idempotent function in B(Γ); µ̂ only takes values 0 and 1. This means that µ̂ is actually
a characteristic function for some subset of Γ. We shall call this subset S(µ), and more
formally define it to be

S(µ) = {γ ∈ Γ : µ̂(γ) = 1}

When it comes to discussing norms of idempotent measures, there are some small but
important details we can use. Consider µ ∈ J(G). As µ is idempotent, ‖µ‖= ‖µ ∗µ‖ ≤
‖µ‖2, so if µ 6= 0, then ‖µ‖ ≥ 1. So the smallest norm of interest to us will be ‖µ‖= 1.
A very important fact we will prove shortly is that idempotent measures have norm 1 if
and only if S(µ) is an open coset in Γ, but first we need this small result.

Proposition 3.1.2. Let φ be a positive definite function on Γ. Then for all γ,η ∈ Γ,

|φ(γ)−φ(η)|2 ≤ 2φ(0) Re [φ(0)−φ(γ−η)]

Proof. Let c1 := 1, and set

21



22 CHAPTER 3. IDEMPOTENTS OF SMALL NORM ON LCA GROUPS

c2 :=
c |φ(γ)−φ(η)|

φ(γ)−φ(η)
, c3 :=−c2

for real valued c. Then, by the definition of φ being positive definite, with 0,γ,η as our
x1,x2,x3 and c1,c2,c3 ∈ C as our constants, we must have

φ(0)(1+2c2)+2c |φ(γ)−φ(η)|−2c2Reφ(γ−η)≥ 0

which viewed as a quadratic polynomial in c can’t possibly have a non-negative discrim-
inant, thus giving us the result.

Theorem 3.1.3. For non-zero µ ∈ J(G), ‖µ‖ = 1 if and only if S(µ) is an open coset in
Γ.

Proof. If we suppose that ‖µ‖= 1, then µ is non-zero, and hence S(µ) is non-empty. By
taking γ0 ∈ S(µ), we can define a measure dν(x) = (x,−γ0)dµ(x), to ensure that 0∈ S(ν).
With this, we have

1 = ν̂(0Γ) =
∫

dν = ν(G)≤ ‖ν‖= ‖µ‖= 1

Hence ν(G) = ‖ν‖= 1. This can only happen if ν is a non-negative measure, and hence
by Bochner’s Theorem, if ν̂ is a positive definite function. With this, we are now ready to
show that S(ν) is an subgroup, and hence S(µ) is the coset γ +S(ν) in Γ.

We have defined ν such that S(ν) contains the identity. Let γ ∈ S(ν) be arbitrary. Then∫
(x,−γ)dν(x) =

∫
(x,γ)dν(x) =

∫
(x,γ)dν(x) = 1

so −γ ∈ S(ν) also.

As we have shown ν̂ is positive-definite, the inequality in 3.1.2 holds. Hence for γ1,γ2 ∈
S(ν), since we have −γ1,−γ2 ∈ S(ν), and by setting γ := γ1− γ2,η := γ1, we get

|ν̂(γ1− γ2)− ν̂(γ1)| ≤ 2ν̂(0Γ)Re(ν̂(0Γ)− ν̂(−γ2)) = 0

So we must have ν̂(γ1− γ2) = ν̂(γ1) = 1, hence γ1− γ2 ∈ S(ν), completing the proof that
S(ν) is an subgroup in Γ.

To prove the converse, assume S(µ) is a open coset in Γ. Then there is some open
subgroup Λ and some γ0 ∈ Γ such that γ0 + Λ = S(µ). Let H be the annihilator of
Λ. Note that by Corollary 1.3.4, H is be compact. Construct a measure ν by setting
dν(x) = (x,−γ0)dmH(x), for mH the Haar measure of H, normalised to have mH(H) = 1.
1

1This may appear to be nonsensical, as mH is not a member of M(G), but any measure µ ∈M(H) can
be extended to one in M(G) by considering it as some µ̃ ∈M(G) such that µ̃(E) = µ(E ∩H)
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For any γ ∈ Γ, ν̂(γ) =
∫
(x,γ − γ0)dmH(x). First notice that if γ is such that γ − γ0 ∈ Λ,

then ν̂(γ) =
∫
(x,γ− γ0)dmH(x) =

∫
dmH = 1. Now consider when γ− γ0 is not in S(µ).

(x,γ − γ0) will not be 1 for all x ∈ H, otherwise γ − γ0 would be in the Λ, so there must
exist some x0 ∈ H such that (x0,γ− γ0) 6= 1. This means

ν̂(γ) =
∫
(x,γ−γ0)dmH(x) =

∫
(x0+x,γ−γ0)dmH(x) = (x0,γ−γ0)

∫
(x,γ−γ0)dmH(x)

thus
∫
(x,γ− γ0)dmH(x) = (x0,γ− γ0)

∫
(x,γ− γ0)dmH(x), which can only happen if they

are both zero.

Hence µ̂ = ν̂ , as their supports are identical. Ergo, by Fourier Uniqueness, we have µ = ν .
By construction, dν(x) = (x,−γ0)dmH(x), so

‖µ‖= ‖ν‖= |ν |(H) =
∫
|(x,−γ0)|dm(H) = 1

Proposition 3.1.4. Let µ ∈M(G) be of the form dµ(x) = [(−x,γ1)+(−x,γ2)]dm(x), for
distinct γ1,γ2 ∈ Γ and m the Haar measure of G. Then µ is idempotent, and will have
norm defined by

‖µ‖=


2/
(

qsin( π

2q)
)

(for odd q)

2/
(

q tan( π

2q)
)

(for even q)
4
π

(q = ∞)

where q≥ 3 is the order of γ
−1
2 γ1 in Γ.

This is not hard to calculate, but the details can be found in [11]

3.2 Idempotents of norm less than 4
3

Let us now assume that µ is an idempotent measure of M(G), for compact abelian G,
such that ‖µ‖< 4

3 . We will write S for S(µ).

Lemma 3.2.1. Suppose there exist u,v ∈ S and w ∈ Γ such that u + w ∈ S, but both
v+w,v−w 6∈ S. Then we have ‖µ‖ ≥ 4

3

Proof. In order to prove this, we harness the fact that for any f ∈ L∞(G), we have∣∣∣∣∫G
f dµ

∣∣∣∣≤ ‖ f‖
∞
‖µ‖



24 CHAPTER 3. IDEMPOTENTS OF SMALL NORM ON LCA GROUPS

Now it suffices to find such an f to satisfy

4
3
≤
|
∫

G f dµ|
‖ f‖

∞

≤ ‖µ‖

We define f to be the function

f (x) = 2(−x,u)+2(−x,v)+2(−x,u+w)+
1
2
(−x,u−w)− (−x,v+w)− (−x,v−w)

= (−x,u)[2+2(−x,w)+
1
2
(−x,−w)]+(−x,v)[2− (−x,w)− (−x,−w)]

From the first form of f given above, we have

∣∣∣∣∫G
f (x)dµ(x)

∣∣∣∣=
{∣∣2+2+2+ 1

2

∣∣ = 13
2 If u−w ∈ S(µ)

|2+2+2| = 6 If u−w 6∈ S(µ)

telling us |
∫

G f dµ| will always be at least 6. Now, by rewriting (−x,w) as eiθ , the second
form gives us

‖ f‖
∞
≤
∣∣∣∣2+2eiθ +

1
2

e−iθ
∣∣∣∣+ ∣∣∣2− eiθ − e−iθ

∣∣∣
=

∣∣∣∣2+ 5
2

cos(θ)+
3
2

isin(θ)
∣∣∣∣+ |2−2cos(θ)| (∀θ ∈ [0,2π])

If we examine this further, using the identity |z|=
√

zz, we find

∣∣∣∣2+ 5
2

cos(θ)+
3
2

isin(θ)
∣∣∣∣+ |2−2cos(θ)| =

√
25
4
+10cos(θ)+4cos2(θ)+2−2cos(θ)

= 2

√
(cos(θ)+

5
4
)2 +2−2cos(θ)

= 2cos(θ)+
5
2
+2−2cos(θ)

=
9
2

So we have ‖ f‖
∞
≤ 9

2 .

Hence 12
9 = 4

3 ≤
|∫G f (x)dµ(x)|
‖ f‖

∞

≤ ‖µ‖.
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Lemma 3.2.2. Let µ be an idempotent measure with ‖µ‖< 4
3 , and let d be the difference

of two elements in S. Then for any c ∈ S, at least one of c±d is in S.

Proof. Using the above Lemma, we see that if there exists some u,v ∈ S(µ),w ∈ Γ such
that u+w ∈ S,v±w 6∈ S, then ‖µ‖ ≥ 4

3 .

Suppose c ∈ S, and d = b−a for a,b ∈ S. If c± (b−a) are both not in S, then we can use
u = a,v = c,w = b−a to see that ‖µ‖ ≥ 4

3 . This contradicts our assumption that ‖µ‖< 4
3 ,

so indeed at least one of c± (b−a) ∈ S.

Corollary 3.2.3. For all possible choices of a,b,c ∈ S, we must have at least 2 of −a+
b+ c,a−b+ c,a+b− c in S.

Proof. For any possible pairing of these sums, we have at least one must be in S by
Lemma 3.2.2. We can repeat Lemma 3.2.2 with the remaining two, and see at least a
second must also be in S.

Proposition 3.2.4. If there exists some progression η ,η + γ,η + 2γ ∈ S, then the coset
η + 〈γ〉 must be completely contained inside S.

Proof. Assume η ,η + γ,η +2γ ∈ S. Using Lemma 3.2.2 with c = η + γ,d = 2γ , we see
we must have one of η + 3γ,η − γ ∈ S. Assume WLOG that we have η + 3γ ∈ S. We
now aim to show that we must have that also η− γ ∈ S. Let us assume not, and derive a
contradiction.

Consider the function f (x) = −3
2(−x,η − γ)+3(−x,η)+ (−x,η + γ)+ (−x,η +2γ)+

(−x,η +3γ).

We have |
∫

G f dµ| = 6, and can evaluate ‖ f‖
∞

using the relation |z| =
√

zz. Let us write
(−x,γ) as eit , and remove the factor of (−x,η). This gives us

| f (x)|=
∣∣∣∣−3

2
e−it +3+ eit + e2it + e3it

∣∣∣∣= cos(t)+5cos(2t)+3cos(3t)−3cos(4t)+
57
4

By substituting y = cos(t), we get the function g(y) = −24y4 + 12y3 + 34y2− 8y+ 25
4 ,

which attains its extrema when g′(y) =−4(y−1)(24y2 +15y−2) = 0.

Clearly there is an extreme value at y = 1, which is g(1) = 81
4 . If we now translate the

function g(y) downwards by 81
4 , we get g(y)− 81

4 = −2(y− 1)2(12y2 + 18y+ 7). This
function is positive nowhere, so must have its global maximum at g(y)− 81

4 = 0, when
y = 1. Hence the global maximum of g(y) is precisely 81

4 , and by taking the square root
of this value, we find ‖ f‖

∞
= 9

2 , so ‖µ‖ ≥ 12
9 = 4

3 , a contradiction.
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Lemma 3.2.5. If for some η1,γ ∈ S the coset η1 + 〈γ〉 is contained in S, then for any
η2 ∈ S, the coset η2 + 〈γ〉 is also contained in S.

Proof. First let us translate S such as to assume η2 = 0 ∈ S. This has no effect on the
norm of ‖µ‖.

Applying Lemma 3.2.2 with c = 0,d = γ and with c = 0,d = 2γ tells us we must have
at least one of ±γ ∈ S, and at least one of ±2γ ∈ S. If γ,2γ ∈ S or −γ,−2γ ∈ S, then
we can apply Proposition 3.2.4, and we are done. Otherwise, we can say, WLOG, that
−γ,2γ ∈ S. Let us assume also that γ,−2γ 6∈ S, and aim for a contradiction.

Applying Corollary 3.2.3 with −γ,0,2γ tells us at least two of 3γ,γ,−3γ are in S. As we
are assuming γ 6∈ S, we are forced to conclude that 3γ,−3γ ∈ S, and in fact, we have the
progression −3γ,0,3γ ∈ S, and so by 3.2.4, 〈3γ〉 ⊆ S.

If we restrict µ to 〈γ〉, we can bind its norm ‖µ‖ below by considering the natural homo-
morphism φ : 〈γ〉→ 〈γ〉/〈3γ〉=Z3. ‖µ‖ only decreases when considering it as a measure
on a subgroup of G, and as the map f 7→

∫
G f (φ(x))dµ(x) is a bounded linear functional

on C(Z3), by Riesz Representation Theorem, there exists a unique measure ν on Z3 with
‖ν‖ ≤ ‖µ‖, such that

∫
G f (φ(x))dµ(x) =

∫
Z3

f dν .

ν is still idempotent, and S(ν) consists of precisely two elements, 0 and an element of
order 3. Via 3.1.4, we can see that ν must have norm 2

3sin(π/6) =
4
3 , so indeed our µ must

have norm ‖µ‖ ≥ ‖ν‖= 4
3 , the desired contradiction.

Hence we must have γ or−2γ ∈ S, and thus the whole subgroup 〈γ〉⊆ S (or upon inversing
the translation, the coset η2 + 〈γ〉 ⊆ S).

Corollary 3.2.6. For η1+〈γ1〉 ⊆ S and η2+〈γ2〉 ⊆ S, the set η1+〈γ1〉+〈γ2〉 is contained
in S.

Proof. By Lemma 3.2.5, as η1 + nγ1 ∈ S for all n ∈ Z, each coset η1 + nγ1 + 〈γ2〉 is
contained in S.

Corollary 3.2.7. The set Λ = {γ ∈ S : ∃η ∈ S such that η + 〈γ〉 ⊆ S} is a subgroup in Γ.

Proof. For γ1,γ2 ∈ Λ, there exists η1,η2 ∈ S such that η1 + 〈γ1〉 ⊆ S and η2 + 〈γ1〉 ⊆ S.
Hence η1+〈γ1〉+〈γ2〉 ⊆ S, and η1+〈γ1+γ2〉 ⊆ η1+〈γ1〉+〈γ2〉, so we can conclude that
γ1 + γ2 ∈ Λ.

As Λ clearly contains inverses, it is a subgroup of Γ.
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Theorem 3.2.8. Let G be a locally compact abelian group, and µ ∈ J(G). If 1< ‖µ‖< 4
3 ,

then S(µ) can be written as the union of two distinct cosets of a subgroup Λ of Γ. In
particular

dµ(x) = [(−x,γ0)+(−x,γ1)]dmH(x)

where H is a compact subgroup of G, and γ0 6= γ1 are characters of H.

Proof. We know Λ, as constructed above, is a subgroup of Γ. By use of Lemma 3.2.5
and Corollary 3.2.7, we see that S must be the union of some collection of cosets of Λ.
Assume there are more than 2 distinct cosets (γ j +Λ) such that S =

⋃n
j=1
(
γ j +Λ

)
. Then,

in particular, we can get γ1,γ2,γ3 ∈ S such that γ1 +Λ,γ2 +Λγ3 +Λ are all disjoint.

Using Corollary 3.2.3 with a= γ1,b= γ2,c= γ3, we can assume without loss of generality
that γ1− γ2 + γ3,γ1 + γ2− γ3 ∈ S. This, together with γ1, forms a progression of 3, so we
must have γ1 + 〈γ2− γ3〉 ⊆ S, hence γ2− γ3,γ3− γ2 must be members of Λ itself. This
means that γ2 +Λ = γ3 +Λ, which contradicts our assumption, so we conclude there can
be no more than two distinct cosets of Λ forming S.

If S consisted of just 1 coset, then ‖µ‖= 1, so it must consist of precisely 2 cosets. Hence
dµ(x) = [(−x,γ1)+(−x,γ2)]dmH(x), where H is the annihilator of Λ.

Theorem 3.2.9. Let Γ be a locally compact abelian group, and f ∈B(Γ) be an idempotent
function. If 1 < ‖ f‖ < 4

3 , then the support of f is the union of two distinct cosets of a
subgroup Λ of Γ.

The interval (1, 4
3) is sharp. This follows from Proposition 3.1.4, and cannot be extended

to (1, 4
3 ], as these theorems would not hold true with ‖µ‖ = 4

3 . We can see this using an
argument from [11], which considers µ with S(µ) = {0,γ,2γ}, for γ being an element of
Γ with order 6. This gives ‖µ‖= 4

3 , while having S(µ) be the union of 3 cosets.
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Chapter 4

Completely bounded Schur multipliers

4.1 Multipliers, and completely bounded multipliers

When we are dealing with an amenable group Γ, the space B(Γ) can be seen as a Pon-
tryagin dual object of M(Γ). However, when Γ is non-amenable, there are various objects
that can be viewed as a Pontryagin dual object of M(Γ). One such object is the collection
of completely bounded Schur multipliers on A(Γ), denoted McbA(Γ)

Definition 4.1.1. A function ϕ : Γ→ C is a multiplier of A(Γ) if ϕ ·ψ ∈ A(Γ), for all
ψ ∈ A(Γ). The collection of all multipliers of A(Γ) is denoted MA(Γ).

Note that every ϕ ∈ MA(Γ) must be continuous, as each ψ ∈ A(Γ) is continuous, and
ϕ ·ψ ∈ A(Γ) is continuous. So

ϕ =
ϕ ·ψ

ψ

is easily continuous at all γ0 ∈ Γ when ψ(γ0) 6= 0. As there must exist some ψ that is
nonzero for any given γ0, ϕ must be continuous everywhere on Γ.

If ϕ is a multiplier of A(Γ), then we can use it to create the multiplication map mϕ :
A(Γ)→ A(Γ), defined by ψ 7→ ϕ ·ψ . Using this, we can define the multiplier norm to be
‖ϕ‖M :=

∥∥mϕ

∥∥, where
∥∥mϕ

∥∥ is the standard operator norm.

We know A(Γ) is an ideal in B(Γ) (this follows from (v) in Theorem 2.5.6 that A(Γ) =
B(Γ)∩CC(Γ)), and as such, we must have that B(Γ) ⊆MA(Γ). Moreover, the inclusion
from B(Γ) into MA(Γ) is easily seen to be norm decreasing, giving

‖·‖M ≤ ‖·‖B(Γ)

This means that idempotents of B(Γ) with small norm do indeed correspond with idem-
potents of small(er) norm in MA(Γ), yet this decrease in norm is too significant for the
problems we aim to solve. Instead, we wish to use what is called the completely bounded

29
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multiplier norm. This norm is constructed by building an operator space structure on
A(Γ).

Given a Banach space V , an operator space structure on V is a sequence of norms ‖·‖n,
for n ∈ N, defined respectively on the n× n matrix spaces Mn(V ). The norm ‖·‖1 must
agree with ‖·‖V , and the norms ‖·‖n must satisfy the conditions that

i. ‖v⊕w‖m+n = max{‖v‖m ,‖w‖n}

ii. ‖αvβ‖n ≤ ‖α‖‖v‖m ‖β‖

for v ∈Mn(V ),w ∈Mm(V ),α ∈Mn,m(C) and β ∈Mm,n(C), where ⊕ is defined to be

v⊕w =

(
v 0
0 w

)
This gives us an abstract operator space.

Example 4.1.2. Let V be a closed subspace of B(H), for some Hilbert space H. Then
Mn(V ) ⊆Mn(B(H)), where Mn(B(H)) can be viewed as B(Hn). As Hn has a canon-
ical norm as a Hilbert space, B(Hn) has a canonical norm also, thus we can define each
‖·‖n to be the inherited norm from B(Hn). This is called a concrete operator space.

A standard reference for the study of operator spaces is Effros and Ruan’s textbook [3].
By Ruan’s Theorem (See Theorem 2.3.5, [3]), every Banach space V with an operator
space structure upon it can be embedded into B(H), for some Hilbert space H, in such
a way that the norm ‖·‖n of Mn(V ) is identical to the inherited norm from B(Hn) as
described in Example 4.1.2, so in fact all abstract operator spaces are concrete operator
spaces.

Let V,W be Banach spaces with operator space structures. For any operator T : V →W ,
we can naturally define operators T(n) from Mn(V ) to Mn(W ) by applying T to each entry
in a matrix v ∈Mn(V ). That is,

T(n)

 v1,1 · · · vn,1
... . . . ...

v1,n · · · vn,n

=

 T (v1,1) · · · T (vn,1)
... . . . ...

T (v1,n) · · · T (vn,n)


It follows easily from the axiom ‖v⊕w‖m+n = max{‖v‖m ,‖w‖n} that the norms

∥∥T(n)
∥∥

n
form a sequence

‖T‖1 ≤
∥∥T(2)

∥∥
2 ≤ ·· · ≤

∥∥T(n)
∥∥

n ≤ ·· ·

and although each member of this sequence is finite, as n→∞ it’s possible for
∥∥T(n)

∥∥
n→

∞ as well. We define the completely bounded norm to be

‖T‖cb = sup{
∥∥T(n)

∥∥
n : n ∈ N}
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and say that an operator T : V →W is completely bounded if ‖T‖cb < ∞. In the case that
V =W , the set of all complete bounded operators T : V → V form an algebra, which we
call the algebra of completely bounded operators.

We apply this to A(Γ) by utilising another fact shown in [3]; given an operator space
structure on a Banach space V , there exists a canonical way to put an operator space
structure of V ∗, the Banach space dual of V . This is useful to us, as the dual of A(Γ) is
naturally contained in B(L2(Γ))(a result shown in [4], but the abelian case is illustrated
in 1 ). As L2(Γ) is a Hilbert space, B(L2(Γ)) has a natural operator space structure on it,
from which we obtain a canonical operator space structure on A(Γ).

For any ϕ ∈MA(Γ), we have shown the construction of an operator mϕ : A(Γ)→ A(Γ).
As we have shown A(Γ) is an operator space, it is natural to ask whether a given operator
mϕ is completely bounded. This allows us to define the completely bounded multiplier
norm on MA(Γ) to be

‖ϕ‖cb :=
∥∥mϕ

∥∥
cb ϕ ∈MA(Γ)

Definition 4.1.3. The set of all ϕ ∈ MA(Γ) with ‖ϕ‖cb < ∞ is called the completely
bounded multipliers, and is denoted McbA(Γ).

To confirm that McbA(Γ) is indeed an algebra, consider ϕ1,ϕ2 ∈McbA(Γ). Then

‖ϕ1ϕ2‖cb =
∥∥mϕ1ϕ2

∥∥
cb ≤

∥∥mϕ1

∥∥
cb

∥∥mϕ2

∥∥
cb = ‖ϕ1‖cb ‖ϕ2‖cb < ∞

In general, we have B(Γ) ⊆ McbA(Γ) ⊆ MA(Γ), with ‖·‖m ≤ ‖·‖cb ≤ ‖·‖B(Γ), but in the
case that Γ is an amenable locally compact group, B(Γ) = McbA(Γ) isometrically. Thus
an idempotent of small norm in B(Γ) is an idempotent of small(er) norm in McbA(Γ).
These results are detailed in [12].

4.2 Idempotent completely bounded multipliers

Theorem 4.2.1. Let χA ∈ McbA(Γ) be the characteristic function for some non-empty
A⊆ Γ. Then the following are equivalent.

i A is an open coset in Γ

ii ‖χA‖cb = 1

iii ‖χA‖cb <
1+
√

2
2

The equivalence of i and ii is shown in [6]. Surely ii =⇒ iii, hence it suffices to show
that iii =⇒ i. In order to prove this, let us first observe the following.

1If Γ is abelian, then A(Γ) = L1(G), which has dual space L∞(G). L∞(G) can easily be seen as a set of
bounded linear operators on L2(G), which by Plancherel theorem, is isometric to L2(Γ)
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Lemma 4.2.2. For any s∈ S and t ∈ Γ, if st ∈ S (resp. ts∈ S), then stn ∈ S for every n∈N
(resp. tns ∈ S for every n ∈ N).

Proof. By translation, we may (and shall) suppose that s = e, the identity of Γ. Consider
Γ0 be the (abelian) group generated by t, then

∥∥χS∩Γ0

∥∥= ∥∥χS∩Γ0

∥∥
cb ≤ ‖χS‖cb <

1+
√

2
2

.

So by the main theorem of [10] (or by the proof of Theorem 3.2.8, using Proposition
3.1.4), we see that S∩Γ0 = Γ0. This gives the lemma.

To prove 4.2.1, we want to compute the completely bounded multiplier norm of our given
characteristic function. However, the definition of the completely bounded multiplier
norm isn’t very easy to work with. Luckily, there is an easier way to compute the norm.
If we define Mϕ : Γ×Γ→ C to be the function Mϕ(s, t) = ϕ(s−1t), then we can consider
Mϕ to be

[
Mϕ(s, t)

]
, a (possibly infinite) matrix, indexed by elements in Γ. From here,

we can define
‖ϕ‖Schur := sup

‖k‖=1

∥∥Mϕ • k
∥∥

where k is taken from the collection of infinite matrices indexed by Γ with finitely many
nonzero entries, and • is Schur, or entrywise, multiplication, i.e.(

Mϕ • k
)
(s, t) := Mϕ(s, t)k(s, t)

This gives us the Herz-Schur multiplier norm. As shown in [1], McbA(Γ) is isometrically
isomorphic to the space of Herz-Schur multipliers, so in fact, ‖·‖Schur = ‖·‖cb. Using this,
we can prove the following.

Proposition 4.2.3. If ϕ ∈McbA(Γ) is an idempotent function such that

F0 =

 1 1 1
1 1 0
1 0 1


is a submatrix of Mϕ , then ‖ϕ‖cb ≥

1+
√

2
2

Proof. Using the orthogonal matrix U := 1
2

 0
√

2
√

2√
2 1 −1√
2 −1 1

 and the vector ξ := 1
2

√2
1
1

,

we see that

‖F0‖Schur ≥ ‖F0 •U‖B(`2) ≥
‖(F0 •U)ξ‖`2

‖ξ‖`2
=

√
26
4

>
1+
√

2
2

.
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It is shown in [7] that ‖F0‖cb is actually equal to 9
7 , but we only need to know it is greater

than 1+
√

2
2 to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. By [12, Corollary 6.3 (i)], we may (and shall) suppose that Γ is
discrete. Also, applying a translation if necessary, we suppose that e ∈ S. So it remains to
prove that S is a subgroup of Γ.

By Lemma 4.2.2, we see that if u ∈ S, then un ∈ S for every n ∈ N. Thus it remains to
show that S is closed under multiplication.

We next claim that if u,v ∈ S, then either uv ∈ S or vu ∈ S. Indeed, assume towards a
contradiction that both uv /∈ S and vu /∈ S. Then the submatrix of MχS with rows e,u−1,v−1

and columns e,u,v is χS(e) χS(u) χS(v)
χS(s) χS(u2) χS(uv)
χS(v) χS(vu) χS(v2)

=

1 1 1
1 1 0
1 0 1


by the previous paragraph. This contradicts the previous discussion.

Finally, suppose that u,v ∈ S, the proof is completed if we can show that uv ∈ S. The
claim shows that either uv ∈ S or vu ∈ S. Assume the latter holds, then from Lemma 4.2.2
with s = v and t = u, we obtain that vu−1 ∈ S. Since we must have u−1 ∈ S, this in turn
implies, by a similar argument, that v−1u−1 ∈ S. But then, since v−1u−1 = (uv)−1, we
must have uv ∈ S. Hence, in any case, uv ∈ S, and the proof is completed.
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