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Abstract 

The late Miocene-early Pliocene geology of the Makara and Ruakokoputuna Valleys in the 

northern Aorangi Range, south-east Wairarapa, is described in detail. In this area, a succession of 

Neogene sedimentary units laps onto basement rocks of Cretaceous age, and late Miocene-early 

Pliocene stratigraphy varies markedly, from bathyal mudstone to high energy coastal 

environments, over distances of only a few kilometres. Sections were measured at four key 

locations, which provided reference sites for stratigraphic changes across the study area. 

Additional detailed field mapping was carried out around Te Ahitaitai Ridge. Depositional 

environments were interpreted using grain size analysis, macrofossil and foraminiferal 

assemblages, and palynology. Foraminiferal biostratigraphy was used to constrain the ages of 

samples. Data obtained by these methods were combined with previous authors’ work to 

produce a synthesis map, unit correlations, and geological cross-sections of the Makara and 

Ruakokoputuna Valleys. Late Miocene-early Pliocene geological history is interpreted, and a 

depositional model is proposed to explain the presence of giant cross-beds in the Clay Creek 

Limestone. 

Despite major differences in lithology, the Clay Creek Limestone and Bells Creek Mudstone are 

shown to be partially laterally equivalent, while the overlying Makara Greensand is shown to be 

a diachronous unit which ranges from late Miocene (Kapitean) to early Pliocene (Opoitian) in 

age. This revised stratigraphy raises questions about the current classification of the Palliser and 

Onoke Groups, and provides new insights into regional geological history. The late Miocene-

early Pliocene stratigraphy records a history of regional subsidence, punctuated by episodes of 

deformation which caused localised uplift and erosion. Previous seismic imaging studies 

identified one such episode of accelerated crustal shortening and deformation in the Wairarapa 

region near the Miocene-Pliocene boundary. The Clay Creek Limestone has proven to be a useful 

marker horizon for constraining the timing and style of deformation, which is interpreted to 

have occurred prior to 7.2 Ma. Major differences in stratigraphy between the upthrown and 

downthrown sides of the Mangaopari Fault indicate that the fault was active during this 

deformational episode. Lithostratigraphic units from the study area have been correlated with 

units in other parts of the Wairarapa, and these correlations suggest that late Miocene 

deformation in the region may have propagated from south to north. 
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A note on place names 
Some of the Māori place names in the study area have alternate spellings, or spellings that have 

changed over the years. Previous geologists have sometimes used the spelling ‘Ruakokopatuna’ 

for the Ruakokoputuna River and Valley; the spelling used here is the one recognised by Land 

Information New Zealand (LINZ). The Aorangi Range has previously been referred to by some 

authors as the Haurangi Range, but Aorangi is recognised by LINZ as the correct Māori name, 

and is the name which appears on contemporary maps. 

The spelling ‘Mangaopari’ is here used for Mangaopari Stream, although LINZ uses the spelling 

‘Mangapari’ for this stream. The Plio-Pleistocene section in Mangaopari Stream has been studied 

extensively by geologists, and the spelling ‘Mangaopari’ has always been used in geological 

literature, although some early authors rendered the name ‘Manga-o-pari’. I have been advised 

that the spellings ‘Mangaopari’ and ‘Mangapari’ are both sensical, and have chosen to use 

‘Mangaopari’ in this study, for consistency with previous geological literature. 
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Chapter 1 Introduction  

1.1 General introduction 

Late Miocene to early Pliocene stratigraphy in the northern Aorangi Range varies greatly over 

distances of only a few kilometres (Vella and Briggs, 1971). This variability is particularly 

pronounced in the case of the Clay Creek Limestone, which partly overlies Cretaceous basement 

and partly overlies late Miocene sedimentary rocks (Vella and Briggs, 1971, Beu, 1995). Seismic 

reflection studies in the Wairarapa region (e.g. Cape et al., 1990, Nicol et al., 2002) show 

evidence for an episode of uplift and accelerated tectonic shortening during the latest Miocene 

or early Pliocene, and the Clay Creek Limestone may be a useful marker horizon for this event. 

An improved understanding of late Miocene-early Pliocene stratigraphy in the northern Aorangi 

Range will allow for better constraints on the paleogeography and tectonic history of the region 

during this time interval.  

1.2 Aims 

This study aims to reconstruct late Miocene-early Pliocene geological history in the northern 

Aorangi Range, and to place this in the wider context of the Neogene evolution of the southern 

Hikurangi Margin. In order to achieve this aim, the following objectives have been identified: 

• Collect data and measure sections in key locations in the field; 

• Interpret depositional environments based on lithology, grain size, and paleontology; 

• Use biostratigraphy to constrain the ages of late Miocene-early Pliocene units in key 

sections; 

• Correlate units across the field area; 

• Combine data collected in this study with data from previous studies to produce a 

synthesis map and stratigraphic interpretation; 

• Interpret late Miocene-early Pliocene geological history in the region; 

• Constrain the timing and style of tectonic activity during this time interval. 

1.3 Study area 

The Aorangi Range is the southernmost of a series of coastal ranges which extend along the 

eastern side of the Wairarapa region. The study area is located on the range’s northern margin, 

approximately 12 km south of Martinborough. The area is about 75 km2, and encompasses the 

valleys of the Ruakokoputuna and Makara Rivers, and their tributaries Blue Rock Stream, Clay 

Creek, Bells Creek, and Mangaopari Stream (Figure 1.1). 
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Figure 1.1: Study area, showing locations of key sections. 20 m topographic contours and spot heights (in metres) 
are also shown. 
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1.4 Geological setting 

The study area is part of the southern Hikurangi Margin, where the Pacific Plate is being 

obliquely subducted beneath the Australian Plate. The forearc region of the Hikurangi Margin 

can be divided into several key structural components: a subduction trench (the Hikurangi 

Trough), a 150 km wide accretionary prism, and a zone of uplifted basement rocks forming the 

North Island axial ranges (e.g. Cole and Lewis, 1981, Beanland et al., 1998, Nicol et al., 2002). 

Deformation associated with the plate boundary is partitioned into a zone of strike-slip faulting 

in the axial ranges, and a fold-and-thrust belt extending from the inner forearc to the subduction 

trench (e.g. Cape et al., 1990, Nicol et al., 2002). The study area is located near the southern end 

of the forearc basin, within the fold and thrust zone (Figure 1.2). 

Basement rocks of Late Permian to Early Cretaceous age are exposed in the axial and coastal 

ranges. In the East Coast forearc basin, these basement rocks are overlain by Paleogene and 

Neogene sediments. The Neogene sequence records the development of the plate boundary 

zone, starting in the Miocene (Begg and Johnston, 2000). This sedimentary record has allowed 

the paleogeography of the eastern North Island to be reconstructed in some detail through the 

Pliocene and Pleistocene (e.g. Kamp et al., 1988, Beu, 1995, Trewick and Bland, 2011). However, 

rocks of Miocene age in the southern East Coast Basin are less widespread than younger 

sediments, and few paleogeographic details are known for this time interval (Beu, 1995). 

One of the defining features of the East Coast Basin Neogene sedimentary record is the presence 

of several coarse-grained, barnacle-dominated limestones, which are mostly of Pliocene age, but 

range from late Miocene to early Pleistocene (e.g. Beu, 1995, Kamp et al., 1988, Nelson et al., 

2003). Barnacle plate limestones are rare globally, and the East Coast Basin limestones may be 

the most extensive barnacle limestones in the world (Beu, 1995). By volume, these limestones 

account for <10% of Neogene sediments in the basin, which consist mostly of terrigenous 

sandstone and mudstone (Nelson et al., 2003). Despite their relatively small volume, however, 

the barnacle-dominated limestones are a distinctive, widespread, and recurring facies 

throughout the onshore portion of the basin. This barnacle-dominated limestone facies is known 

as the Te Aute Lithofacies (Beu, 1995). The Pliocene Te Aute limestones have been interpreted 

as having been deposited on the margins of a narrow, tide-swept forearc seaway known as the 

Ruataniwha Strait (Kamp et al., 1988, Beu, 1995, Trewick and Bland, 2011) (Figure 1.3). 
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Figure 1.2: Map and cross section of the plate boundary zone in the lower North Island, showing zones of strike-slip 
and reverse faulting. From Cape et al. (1990); cross-section after Lamb and Vella (1987). 
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Figure 1.3: Paleogeographic reconstruction of central New Zealand during the early Pliocene (Opoitian stage, Wo) 
and Late Pliocene (Waipipian and Mangapanian stages, Wp and Wm) showing the development of the Ruataniwha 
Strait. From Trewick and Bland (2011). 
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1.5 Previous work 

The history of geological research in the south-eastern Wairarapa stretches back more than a 

century. McKay (1878) conducted a reconnaissance survey of the eastern Wairarapa in which he 

noted Miocene and Pliocene limestone beds unconformably overlying greywacke basement on 

the margin of the Aorangi Range. Waghorn (1926) mapped part of the Ruakokoputuna Valley 

and suggested that the Tertiary sediments were deposited on a peneplain greywacke surface 

during an episode of marine transgression. King (1933) and Vella (1954) compiled faunal lists of 

molluscan fossils found in Tertiary rocks from the Ruakokoputuna and Makara valleys and from 

Palliser Bay. 

Couper (1948) conducted the first detailed survey of the geology of the Makara and Mangaopari 

Valleys, and identified three main Tertiary lithological units. Larger-scale mapping studies were 

carried out by McLean (1953), who mapped an area between Dry River and Tuturumuri, and 

Bates (1967), who mapped an area between Lake Ferry and Makara River. Areas of key mapping 

studies from 1948 onwards are shown in Figure 1.5. 

Vella and Briggs (1971) described and named 12 Cenozoic lithostratigraphic units in the Northern 

Aorangi Range. They noted that Cenozoic stratigraphy varies significantly over distances of only a 

few kilometres in the Ruakokoputuna-Makara area. Vella and Briggs’s (1971) stratigraphy was 

revised by Vella and Collen (1984) based on new biostratigraphic data and tuff marker beds. 

Several Victoria University students carried out projects in the Ruakokoputuna-Makara area 

between the 1960s and 1990s. Rodley (1961) studied the geology and paleoecology of Late 

Pliocene-Early Pleistocene sediments near the confluence of the Ruakokoputuna and Makara 

Rivers. Abbas (1971) studied the sedimentology of Miocene and Pliocene rocks, with a focus on 

the Sunnyside Conglomerate and the Bridge Sandstone Member of the Mangaopari Mudstone. 

Anderson (1976) studied the Upper Haurangi Limestone and Bull Creek Limestone at the 

Haurangi Hairpin section in Ruakokoputuna Valley, while Dobbie (1976) studied the Clay Creek 

Limestone, Makara Greensand, and Lower Haurangi Limestone at the same section and in the 

Makara and Blue Rock Stream Valleys. Crundwell (1979) studied the Makara Greensand at 

several locations across the northern Aorangi Range. Fittall (1979) mapped an area between 

Mangaopari and Whakapuni Streams, while Eggo (1979) studied biostratigraphic zonation in the 

mudstones in the southern part of Mangaopari Stream. Green (1981) and Hatfield (1981) 

mapped late Miocene to early Pliocene sediments at Paruwai in the southern Makara River 

Valley. Most recently, Henry (1996) mapped an area around the confluence of the Makara River, 
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Bells Creek and Mangaopari Stream, and Clark (1998) studied the biostratigraphy of the Pukenui 

Limestone in the Makara and Ruakokoputuna Valleys. 

The Mangaopari Stream section has been used in several studies of Pliocene-Pleistocene climate 

fluctuations. Devereux et al. (1970) combined oxygen isotope ratios from foraminiferal tests 

with coiling ratios of Neogloboquadrina pachyderma to produce a record of fluctuations in ocean 

temperature during Plio-Pleistocene times. Data from this section were also used in a landmark 

study by Kennett et al. (1971), which demonstrated that magnetostratigraphy could successfully 

be applied to Cenozoic marine sediments exposed on land, as well as constraining the ages of 

climate events reported by Devereux et al. (1970).The Mangaopari section was also included in 

studies of glacio-eustatic cycles by Beu and Edwards (1984) and Gammon (1997). 

Beu (1995) conducted an in-depth study of Te Aute Lithofacies limestones of the eastern North 

Island, including in the northern Aorangi Range. He reviewed and revised the stratigraphic 

nomenclature for these limestones, and discussed their lithological characteristics, depositional 

environments, and pectinid biostratigraphy. He noted that the Clay Creek Limestone is of 

particular interest because it sits partly on Cretaceous basement and partly on Miocene 

mudstone. 

Crundwell (1997) revised the definitions of some of the stratigraphic units in the study area, 

including the Makara Greensand, to better integrate the Aorangi Range stratigraphy with 

stratigraphy in other areas of the southern Wairarapa. 

Several studies have examined the structural geology and tectonic history of the Wairarapa 

region. Wells (1989a) studied the burial history of Neogene basins in the Wairarapa and 

identified two cycles of subsidence followed by rapid uplift in the last 15 Ma. A seismic reflection 

study by Cape et al. (1990) identified buried folds in Miocene sediments which are 

unconformably overlain by Pliocene to Quaternary sediments which have also undergone 

folding. Nicol et al. (2002) used outcrop and seismic reflection data to study the growth of 

contractional structures in the Wairarapa over the last 10 Ma. They found that most 

deformation occurred during three episodes of accelerated shortening. The oldest of these 

episodes occurred during the latest Miocene, between about 8 and 6 Ma, with subsequent 

shortening episodes occurring between 3.4 and 2.4 Ma and from 1.8 Ma to the present day.  
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Figure 1.4: Map showing areas of previous mapping studies in the northern Aorangi Range from 1948 to 1996. The 

area of the current study is shaded. 
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Chapter 2 Methods 

2.1 Mapping 

In preparation for field study, maps produced in previous studies of the Northern Aorangi Range 

were scanned and the images were imported into ArcMap. Images were manually 

georeferenced to the NZMS260 rivers vector dataset. A draft compilation map was digitised 

from these data, and was used to correlate units and to identify key locations for field study. The 

area around Te Ahitaitai Ridge was identified as a key location in need of more detailed field 

mapping due to the dramatic changes in stratigraphy between the Makara River and Bells Creek.  

Detailed field mapping was carried out along Te Ahitaitai Ridge and in the adjacent Makara River 

valley. Station locations, outcrop lithology, and strike and dip data were plotted on a 20 m 

topographic contour map in the field. No GPS was used, but bearings to key landmarks were 

taken and used when plotting locations on the field map. A draft geological map and cross-

section of the Te Ahitaitai area were constructed over the course of the field campaign. 

In creating the final Te Ahitaitai map (Figure 4.3), data from the field map were combined with 

high-resolution aerial photography acquired by the Greater Wellington Regional council, and 

made available through Land Information New Zealand. Aerial imagery was used to locate key 

features with greater accuracy than could be achieved with topographic contours alone. The 

map was manually digitised in ArcMap 10. 

This Te Ahitaitai map was incorporated into the larger-scale compilation map. The compilation 

map incorporates data from most of the previous studies listed in Chapter 1. Some maps were 

omitted from the final compilation. The map by McLean (1953) was omitted because the 

Neogene rocks were mapped by New Zealand stages rather than by lithology, and the Miocene-

Pliocene limestones were not differentiated and were all assigned to the now-antiquated 

Waitotaran stage. Some other maps were omitted due to duplication: the map of Vella and 

Briggs (1971) is very similar to that of Abbas (1971), and the latter could be obtained as a better-

quality image, so the Vella and Briggs (1971) map was omitted. The map by Anderson (1976) was 

also omitted due to its similarity to the Vella and Briggs (1971) and Abbas (1971) maps. The map 

by Fittall (1979) was also omitted as the same area was mapped in greater detail by Vella and 

Collen (1998). The map by Henry (1996) was omitted because it was partly duplicated and partly 

contradicted by field observations from this study. 

The remaining maps included in the compilation agreed well in some areas and were mutually 

contradictory in others. Where maps contradicted field observations made in this study, the field 



10 
 

observations were given priority. The main areas of conflict were the Te Ahitaitai area, where 

data from this study were prioritised over all older maps, and the Makara River-Clay Creek 

interfluve. For the latter area, and at other locations of conflict, the following strategies were 

employed: 

• Check to see if any of the conflicting maps include additional data for these locations, 

such as strike and dip of faults or bedding; 

• If so, prioritise the map with more details plotted at the conflicting location; 

• If no map is clearly more detailed in the area of conflict, check the aerial photography 

for any indicators of which lithologies may be present; 

• Plot inferred geology for the area in question, based on aerial photography, topography, 

and interpolation from nearby areas of known geology; 

• Attempt to construct a cross-section, and adjust the mapped geology as necessary for 

the cross-section to work; 

• Indicate uncertainty on the map with appropriate symbology. 

Strike and dip data from previous maps were also used in the compilation, along with strike and 

dip data from this field study. As these maps displayed the strike of beds visually, the bearing of 

strike had to be estimated when the symbols were digitised. For this reason, strike and dip data 

from older maps were omitted for areas where georeferencing distorted the original maps. 

The cross-sections that accompany the maps were created using topographic data extracted 

from the 15 m digital elevation model (DEM) produced by the Otago University School of 

Surveying.  

2.2 Measured sections and sample collection 

Sections were measured at four key localities: the Haurangi Hairpin, Clay Creek, Te Ahitaitai 

Ridge, and Bells Creek. These sections provide key reference sites for changes in stratigraphy 

from southwest to northeast across the study area. Sections were measured using a 30 m tape 

measure, geological compass, Jacob’s staff, and Abney level. Sections were described from 

outcrop and shallow excavation where required, using standard terminology and symbols after 

Andrews (1982). Fossil and bulk rock samples were collected and their heights recorded in the 

section descriptions. Additional samples were collected during field mapping around Te Ahitaitai 

Ridge. Samples were taken back to Victoria University for processing. A table of sample 

numbers, sample locations, and VUW locality numbers is presented in Appendix 1.  
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2.3 Sample processing 

2.3.1 Grain size analysis 

Grain size analysis was based on the methodology of Dunbar and Barrett (2005). 

Grain size analysis was only carried out for sandstone and mudstone samples. Limestone and 

greensand were omitted, as the sizes of shell fragments and glauconite grains do not reflect 

hydrodynamic properties of depositional processes. The less cemented sandstone and mudstone 

samples were crushed between wooden blocks. Some samples proved to be too well-cemented 

for this method; they were crushed using a hydraulic press. 

50-100 g of from each crushed sandstone or mudstone sample was measured out for grain size 

analysis. These samples were placed in beakers which were then filled with 0.5 g/L Calgon and 

disaggregated in a sonic tank for 15 minutes. The samples were then wet-sieved through 60 µm 

mesh to separate the sand and mud components. The separated sand and mud were then dried 

in a 40°C oven. The dried sand fractions were then weighed, and the weight percentage of sand 

calculated. Sand components were then placed in a sieve stack with 0.5 φ intervals and shaken 

in a Fritsch sieve shaker for 15 minutes. The sediment retained in each sieve was weighed, and 

the weights recorded in a spreadsheet. 

The dried mud fractions were manually disaggregated using a spatula, and 4 g of each sample 

measured out into beakers. A 0.5 g/L Calgon solution was added to each beaker and samples 

were further disaggregated in the sonic tank prior to being run through SediGraph 5100. The 

SediGraph data were then combined with the sieve data to obtain full grain size distributions, 

and statistics were calculated using a MATLAB script. Grain size data are presented in Appendix 2 

as per cent frequency figures for each 0.5 φ size class, summary statistics, and per cent 

frequency histograms. 

2.3.2 Macro- and microfossils 

Some macrofossils were picked in the field and others were extracted from disaggregated bulk 

sediment samples. The less well-cemented limestone samples were disaggregated by crumbling 

under running water, and macrofossils and clasts were removed and set aside. Cemented 

limestone samples were broken apart with a sledgehammer and crushed in a hydraulic press. 

Greensand samples were crushed with wooden blocks and macrofossils extracted. Macrofossils 

were identified with assistance from Dr. Katie Collins (VUW) and Dr. Alan Beu (GNS Science). 

For micropaleontological analysis, crushed and disaggregated sediment samples were rinsed 

through two sieves: a 2 mm sieve to remove sediment coarser than sand, and a 64 µm sieve to 
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remove mud. Samples were then dried in an oven at 40°C. A census of 300 foraminifera was 

picked from each sample where possible and mounted on slides, producing a total of 16 

censuses. Three additional samples yielded some foraminifera, but not enough for a census. 

Other notable microfossils, such as ostracods and micro-brachiopods, were also picked and 

mounted on these census slides. Foraminifera were identified with assistance from Dr. John 

Collen (VUW) and Dr. Martin Crundwell (GNS Science). 

In several cases the initial foraminiferal census data did not adequately constrain the age and 

paleodepth of samples, and further analysis of the residue from the picked samples was 

necessary. The residue was sieved at 150 µm to remove juvenile specimens and speed up the 

picking process. It was then searched for species which are key age indicators (e.g. the 

Globoconella miotumida-Globoconella puncticulata lineage) or paleodepth indicators as 

identified by Hayward et al. (2010). Four key samples were further processed in this way, and 

the specimens mounted on separate slides from the initial censuses. 

2.3.3 Palynology 

Three bulk rock samples collected in the field (19A, BC1, and 28A) contained significant amounts 

of visible organic matter, and these samples were processed for pollen. 10-11 g of each crushed 

sample was measured out and placed in a beaker. Two sub-samples were taken from sample 

28A in order to balance the centrifuge. 

Samples were first soaked in 10% HCl for 30 minutes. 30 mL of 40% HF was then added to each 

sample, and samples were left to digest for two days. Samples were then topped up with filtered 

water, stirred, left to settle, and drained, and this process was repeated four times. Sediment 

from the beakers was emptied into 50 mL tubes and spun in a centrifuge at 2600 rpm for 8 

minutes. Samples were drained and topped up with filtered water, and this process was 

repeated four times, with samples only placed in the centrifuge for 5 minutes the second two 

times.  

A few drops of 10% HCl were added to each sample, and topped up with filtered water. Samples 

were again centrifuged at 2600 rpm for 5 minutes, drained, and topped up with filtered water, 

and this process was repeated three times, and samples were drained of water. A sodium 

polytungstate (SPT) solution with a specific gravity of 1.85 was then added to each sample. 

Samples were centrifuged at 1800 rpm for 15 minutes, and left to settle overnight. 

Organic matter floating at the top of the SPT solution was collected from each tube and 

transferred to smaller tubes, which were topped up with water. These tubes were placed in the 
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centrifuge at 3000 rpm for 3 minutes. Samples 19A and BC1 separated well, and were drained 

and topped up with water. The two sub-samples of 28A did not separate well, and were not 

drained. All four samples were centrifuged again, drained, and topped up, and this process was 

repeated six times. 

Because sample 28A contained a large amount of very fine organic material, it was then filtered 

through a 6 µm mesh to remove this fine component. The coarse material from the mesh was 

then washed into centrifuge tubes and spun at 3000 rpm for 3 minutes. All samples were 

mounted on glass microscope slides. Pollen grains were identified by Matt Ryan and Dr. Bill 

McLea (VUW). 
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Chapter 3 Stratigraphic framework 

3.1 Introduction 

This chapter summarises the stratigraphic framework for dividing the Neogene rocks present in 

the study area. The Neogene stratigraphy of the northern Aorangi Range has been extensively 

studied since the early 20th Century. However, the most detailed studies (e.g. Devereux et al., 

1970, Kennett et al., 1971, Vella and Collen, 1984) have focused on the Pliocene-Pleistocene 

succession, with relatively little attention paid to the less widespread late Miocene-early 

Pliocene units. The definitions and interpretations of some late Miocene-early Pliocene units, 

especially the Clay Creek Limestone and Makara Greensand, have proven to be problematical. 

Section 3.2 outlines and discusses previous authors’ interpretations of the late Miocene-early 

Pliocene rocks in this area. Section 3.3 lists and briefly describes the stratigraphic units 

recognised in this study. Most of the lithostratigraphic units recognised are after Vella and Briggs 

(1971).  

The lithostratigraphic units in the study area have been defined and correlated using the stages 

of the New Zealand Geological Timescale. The New Zealand stages have been revised several 

times since they were first defined by Finlay and Marwick, (1940, 1947), and changing stage 

definitions are an additional source of uncertainty in correlating units. The currently recognised 

stages and their 2015 age calibrations are listed in Appendix 3. The biostratigraphic basis for 

some stage correlations is discussed further in Chapter 6. 

3.2 Previous interpretations 

Previous authors’ interpretations of late Miocene-early Pliocene lithostratigraphy in the Makara-

Ruakokoputuna area are summarised in Figure 3.1. 

Couper (1948) was the first geologist to divide the rocks of the northern Aorangi Range into 

lithostratigraphic units. The oldest of Couper’s Cenozoic units, the Makara Formation, consisted 

of basal conglomerate and limestone, overlain by mudstone; he considered the limestone and 

conglomerate to be laterally equivalent. He assigned the Makara Formation to the 

Tongaporutuan stage, and noted an apparent absence of Kapitean sediments from the area. The 

Makara Formation was disconformably overlain by the Manga-o-pari Formation, the lower part 

of which he assigned to the Opoitian stage.  

McLean (1953) and Bates (1967) both mapped the Cenozoic rocks in the Aorangi Range on the 

basis of New Zealand stages rather than lithostratigraphic units. McLean (1953) assigned the 

limestones of the Ruakokoputuna and Makara valleys to the now-antiquated Waitotaran stage 
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(equivalent to the modern Waipipian and Mangapanian stages), though he noted the presence 

of an apparently Tongaporutuan limestone in the lower limestone gorge of Makara River. Bates 

(1967) was the first to recognise Kapitean sediments in the area, in the form of a thin bed of 

glauconitic limestone and shelly glauconitic mudstone in the hills between Clay Creek and the 

Makara River. However, he considered the limestones of the Ruakokoputuna Valley to belong to 

the Opoitian and Waitotaran stages.  

The first formally recognised Cenozoic lithostratigraphic unit found in the study area was the 

Hurupi Formation, which was initially described as the Hurupi Series by King (1933), and 

renamed the Hurupi Formation by Vella (1954). Vella and Briggs (1971) defined twelve 

lithostratigraphic units in the northern Aorangi Range, and divided the Neogene units into two 

groups. The oldest units, the Sunnyside Conglomerate and Bells Creek Mudstone, were placed 

with the Hurupi Formation in the Palliser Group, while all younger units were placed in the 

Onoke Group, with the two groups separated by an angular unconformity in the northern 

Aorangi Range, but conformable at other locations in the Wairarapa. Most of the units 

recognised in this study follow Vella and Briggs (1971). 

The Clay Creek Limestone has proven problematical. It was defined by Vella and Briggs (1971) as 

the basal unit of the Onoke Group in the northern Aorangi Range, and was assigned to the 

Kapitean stage. This is in sharp contrast to Couper (1948), who placed this limestone at the base 

of his Makara Formation, stratigraphically below what is now recognised as the Bells Creek 

Mudstone, and assigned it to the Tongaporutuan stage. Previous studies have also reported 

widely varying stratigraphic thicknesses for the Clay Creek Limestone, from a maximum of 10 

metres (Vella and Briggs, 1971) to over 100 metres (Green, 1981). 

Hatfield (1981) and Green (1981) described the Clay Creek Limestone as unconformably 

overlying the Hurupi Formation in the southern Makara River valley, and grading 

stratigraphically and laterally into a unit of neritic to bathyal sands, muds, and shellbeds 

belonging to the Kapitean and Opoitian stages, which they informally named the Paruwai 

Formation.  

According to Vella and Collen’s (1984) revised stratigraphy, the upper Bells Creek Mudstone at 

Hinakura Road is Kapitean to lower Opoitian in age and a lateral equivalent of both the Clay 

Creek Limestone and Makara Greensand. The Bells Creek Mudstone was redefined to include all 

mudstones underlying the Opoitian Hikawera Tuff marker bed and overlying either the Hurupi 

Formation or Torlesse basement. This definition would include at least the lower part of the 

Paruwai Formation (Figure 3.1). 
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Crundwell (1987) mapped the Neogene rocks of Wainuioru Valley, approximately 50 km 

northeast of Ruakokoputuna. In this area, he found the Palliser and Onoke Groups to be 

separated by an angular unconformity associated with the Makara Greensand, which he inferred 

to belong to the Kapitean stage. Later, Crundwell (1997) revised the definitions of the Palliser 

and Onoke Groups in order to better integrate the stratigraphy of the Wainuioru area with that 

of the Aorangi Range. He found the Hikawera Tuff to be an unsuitable marker horizon for 

separating the two groups due to its limited distribution, and redefined the base of the Onoke 

Group as the base of the Makara Greensand where present, or the first appearance of Kapitean 

fossils in sections where the greensand is absent. As Kapitean fossils are present in the Clay 

Creek Limestone, Crundwell considered the greensand overlying the limestone to be a separate 

unit from the Makara Greensand. The greensand overlying the Clay Creek limestone was given 

informal status as an unnamed glauconitic bed. This redefinition of the late Miocene-early 

Pliocene greensands was also used by Field et al. (1997), but Begg and Johnston (2000) grouped 

the greensand overlying the Clay Creek Limestone with the Makara Greensand for mapping 

purposes. 

Figure 3.1: Previous authors' interpretations of late Miocene-early Pliocene stratigraphy at various locations in the 

northern Aorangi Range, arranged from southwest to northeast. Ages in Ma are approximate and based on the 

2015 calibrated ages for NZ stage boundaries (Raine et al., 2015) 
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3.3 Stratigraphic units recognised in this study 

3.3.1 Cretaceous 

The basement rocks in the study area are of Early Cretaceous age, and belong to the Pahau 

Terrane and overlying Pahaoa Group of the Torlesse Composite Terrane (Moore and Speden, 

1984, Begg and Johnston, 2000). They consist mainly of indurated quartzose sandstone and 

argillite, which is highly sheared and brecciated at some locations. Rare igneous rocks are also 

present within the Torlesse basement in the study area; most notably, a band of spilite forms 

prominent bluffs in Mangaopari Stream, adjacent to the Mangaopari Fault. The Torlesse rocks 

are not differentiated in this study. 

3.3.2 Sunnyside Conglomerate 

The basal unit of the Neogene sequence in the northeast of the study area is the Sunnyside 

Conglomerate, which overlies the Cretaceous basement with an angular unconformity (Vella and 

Briggs, 1971). The Sunnyside Conglomerate is a poorly sorted conglomerate, consisting of 

pebble- to boulder-sized clasts in a light brown sandy matrix. Clasts consist exclusively of 

basement-derived, indurated sandstone and argillite, are sub-angular to well-rounded, and have 

generally high sphericity. The conglomerate is a mixture of matrix- and clast-supported, and is 

interbedded in some sections with friable sands and organic siltstone. 

3.3.3 Hurupi Formation 

The Hurupi Formation forms the base of the Neogene sequence in the southeast of the study 

area; like the Sunnyside Conglomerate, it overlies Cretaceous basement rocks with an angular 

unconformity. It consists mostly of grey sandstones and sandy mudstones, although sandy 

limestones and metre-scale beds of conglomerate are also present at some locations (e.g. 

Hatfield, 1981). The Hurupi Formation contains a distinctive molluscan fauna, with key species 

including Glycymeris hurupiensis, Polinices huttoni, Eumarcia thompsoni, and Struthiolaria 

callosa (Vella, 1954, Beu and Maxwell, 1990).  

3.3.4 Bells Creek Mudstone 

The Hurupi Formation and Sunnyside Conglomerate are both overlain by the Bells Creek 

Mudstone. The exact nature of the basal contact of the Bells Creek Mudstone is unknown, and 

its relationships to underlying units are discussed in Chapter 6. The Bells Creek Mudstone is a 

massive, blue-grey mudstone with a significant clay component. It was initially defined by Vella 

and Briggs (1971) as a calcareous mudstone containing a distinctive assemblage of sparse, 

scattered bivalves, gastropods, and scaphopods, but the definition was broadened by Vella and 

Collen (1984) to include laterally equivalent mudstones lacking this fossil assemblage. 
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3.3.5 Clay Creek Limestone 

The Clay Creek Limestone is the basal unit of the Neogene sequence in the west of the study 

area, where it unconformably overlies Cretaceous basement rocks. In other parts of the study 

area, it variably overlies the Sunnyside Conglomerate, Hurupi Formation, and Bells Creek 

Mudstone. It is a coarse-grained, weakly-bedded, well-cemented coquina limestone, which is 

white to pale yellow-grey on fresh surfaces and weathers to dark grey. It contains sparse to very 

abundant pebbles and cobbles of basement-derived sandstone and argillite, and in some places 

resembles a calcareous conglomerate. It is the oldest of the Te Aute Lithofacies limestones 

present in this area.  

3.3.6 Makara Greensand 

The Makara Greensand is here recognised as disconformably overlying both the Clay Creek 

Limestone and Bells Creek Mudstone, for reasons that are discussed in Chapter 6. The Makara 

Greensand is a thin (<10 m), friable unit of glauconitic sandstone and mudstone, with scattered 

pebbles of basement-derived sandstone and argillite. Scattered to abundant shell fragments and 

rare intact shells are also present in the greensand at some locations. 

3.3.7 Haurangi Limestone 

The Haurangi Limestone overlies the Makara Greensand in the west of the study area, and is the 

second of the Te Aute Lithofacies limestones present in the area. It is a medium-grained, 

barnacle-dominated coquina limestone which is moderately well-cemented. Vella and Briggs 

(1971) informally divided it into two parts, the lower and upper Haurangi Limestone, although 

the latter was subsequently defined as a separate unit (see below). Many exposures of the 

Haurangi Limestone contain abundant specimens of Towaipecten ongleyi (Beu 1995). 

3.3.8 Dyerville Limestone 

The upper Haurangi Limestone was formalised as a separate formation by Beu (1995), who 

renamed it the Dyerville Limestone. The Haurangi and Dyerville Limestones are separated by a 

disconformity, which at some locations is marked by an unnamed greensand bed. The Dyerville 

Limestone is a yellow-grey, coarse-grained barnacle plate limestone which varies from well-

cemented to poorly cemented, and often contains intact specimens of Phialopecten marwicki. 

The Haurangi and Dyerville Limestones are not differentiated on the large-scale map. 

3.3.9 Mangaopari Mudstone 

In the eastern, southern, and central parts of the field area, the Makara Greensand is 

conformably overlain by the Mangaopari Mudstone, the lower part of which is considered to be 
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a deep-water lateral equivalent of both the Haurangi and Dyerville Limestones (Vella and Briggs, 

1971, Beu, 1995). The Mangaopari Mudstone is a grey mudstone that is mostly massive. Vella 

and Briggs (1971) informally divided the Mangaopari Mudstone into lower, middle, and upper 

sub-units, and also formally recognised one member: the Bridge Sandstone Member of the 

lower Mangaopari Mudstone. The Bridge Sandstone Member consists of a sequence of well-

sorted, friable sandstone beds, which are interbedded with grey mudstone on a centimetre to 

metre scale. Macrofossils are extremely rare in the lower Mangaopari Mudstone and the Bridge 

Sandstone Member, but molluscan species such as Pelicaria vermis become more common with 

increasing stratigraphic height. Bedding on a decimetre scale, and concretionary bands parallel 

to bedding, become apparent in the upper part of unit. 

3.3.10 Greycliffs Formation 

The Greycliffs Formation was defined by Vella and Briggs (1971) as a unit of interbedded grey 

sandstone and mudstone containing scattered to abundant molluscs and concretionary bands. It 

conformably overlies the Mangaopari Mudstone, and the two are often difficult to distinguish in 

the field. Its status as a formation is disputed: Crundwell (1997) and Field et al. (1997) both treat 

it as a member of the Mangaopari Mudstone, while Begg and Johnston (2000) call it a formation 

in its own right. For the purposes of this study, the Greycliffs unit is mapped as a formation. 

3.3.11 Bull Creek Limestone 

The Bull Creek Limestone is a variably cemented, coarse-grained, barnacle plate limestone which 

is grouped with the Te Aute Lithofacies. Vella and Briggs (1971) and Anderson (1976) assigned 

the Bull Creek Limestone to the Mangapanian stage and correlated it with the upper Mangaopari 

Mudstone, but Beu (1995) showed it to belong to the lower Nukumaruan stage, and interpreted 

it as a shallow-water correlative of the Greycliffs Formation.  

3.3.12 Pukenui Limestone 

The Pukenui Limestone is the youngest formation recognised in this study, and the fifth of the Te 

Aute Lithofacies limestones in the study area. It conformably overlies the Greycliffs Formation. It 

consists of a sequence of cyclothemic interbedded shoreface limestone and mid-shelf muddy 

sandstone belonging to the Nukumaruan stage (Beu and Edwards, 1984, Beu, 1995, Clark, 1998). 

For the purposes of this study, the Pukenui Limestone is not differentiated from younger units, 

such as the Hautotara and Te Muna Formations, which may also be present in the north of the 

study area. 
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Chapter 4 Mapping and key localities 

4.1 Introduction 

This chapter provides details of the lithostratigraphy, stratigraphic variation, and structural 

geology of the study area. Geological maps and cross-sections are presented and discussed in 

section 4.2, and the structural geology of the area is outlined. Sections 4.3-4.6 present data from 

detailed measured sections, which illustrate lateral changes in stratigraphy from southwest to 

northeast. Sections 4.7-4.9 describe changes in late Miocene-early Pliocene stratigraphy from 

north to south in the Makara River valley. Additional lithological data from samples collected at 

the described locations are also presented in this chapter. 

4.2 Geological maps 

Figure 4.1 shows the locations of observations made and samples collected over the course of 

this study. The geological map presented in Figure 4.2 is a synthesis, combining data collected 

from these locations with data from previous authors’ maps (see chapter 2). The synthesis map 

shows several key features of Neogene geology in the area. A transition in lithologies is 

apparent, from limestone-dominated Miocene-Pliocene successions in the west of the field area 

to mudstone-dominated successions in the east; the Mangaopari and Bells Creek Mudstones 

both thicken significantly from west to east. The Clay Creek Limestone outcrops over large areas 

in the central part of the study area, between Clay Creek and the Makara River, but thins to the 

west and disappears entirely in the east. 

In contrast to highly variable late Miocene-early Pliocene stratigraphy, the late Pliocene-early 

Pleistocene stratigraphy in this area is relatively uniform, with the Greycliffs Formation and 

Pukenui Limestone appearing as continuous, laterally extensive layers across the northern and 

central parts of the study area. 

Structurally, the mapped area is dominated by large, northeast-southwest striking reverse faults 

and folds, most notably the Mangaopari, Ruakokoputuna, Blue Rock, and Nikorima Faults. The 

Nikorima Fault is an informal name used here for the first time. The northern and southern 

segments of this fault have been mapped previously by several geologists (e.g. Collen and Vella, 

unpublished, Crundwell, 1979, Eggo, 1979, Green, 1981), while the central segment connecting 

the two is inferred here based on the mapped geometry of the contact between the Cretaceous 

basement and overlying Neogene units. The Mangaopari Fault is inferred to split into two 

strands near the Makara River’s upper limestone gorge at Paruwai. Field observations suggested 

that more than one fault might cut through the gorge, and a second fault is shown in cross-

section B-B’. The extent of this second fault strand to the northeast is not known; it is inferred to 
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diminish rapidly to the southwest of its mapped location, as offset of the Clay Creek Limestone 

across the Mangaopari Fault becomes negligible at the southern end of the upper limestone 

gorge, and remains so for a distance of 1 km along strike. The main expression of the 

Mangaopari Fault over this interval is a large monoclonal flexure in the Clay Creek Limestone, 

shown in Figure 4.5 and cross-section A-A’ (Green, 1981). Further to the southwest, vertical 

offset across the Mangaopari Fault increases again (Green, 1981, Hatfield, 1981). 

Cross-sections A-A’, B-B’, and C-C’ (Figure 4.3) illustrate some of these structural features, 

especially the Mangaopari Fault and broad Mangaopari Anticline. Lateral variations in 

stratigraphy, and inferred lateral relationships between units, are also illustrated in these cross-

sections.  

The Te Ahitaitai map (Figure 4.4) shows the results of the detailed field mapping carried out in 

the area around Te Ahitaitai Ridge. This map shows major lateral changes in stratigraphy 

between the Makara River and Bells Creek. The Clay Creek Limestone overlies Torlesse rocks in 

the Makara River valley, and overlies Sunnyside Conglomerate on the western side of the ridge, 

but is absent in Bells Creek, where the Sunnyside Conglomerate is overlain by Bells Creek 

Mudstone, and on the eastern side of the ridge adjacent to the Mangaopari Fault, where the 

conglomerate is overlain by Makara Greensand. 

The main structural features in the Te Ahitaitai area are the Mangaopari Fault and the northern 

part of the Mangaopari Anticline. Smaller-scale features include the McLeod Fault, which was 

mapped and discussed in detail by Vella and Collen (1998), the Birch Hill Syncline (new name), 

and the Makara Fault, which was mapped by Couper (1948) and Abbas (1971). The Makara Fault 

is shown as an inferred feature due to uncertainties around its precise location, age, and 

geometry. Faulted, brecciated, and sheared basement rocks were observed in Makara River to 

the south of Homestead Creek, consistent with Couper’s (1948) description of the Makara Fault 

as a relatively broad zone of deformation running through the Cretaceous basement, sub-

parallel to the river. Abbas (1971) mapped the fault with a more northeast-southwest strike than 

Couper, and showed it truncating the Sunnyside Conglomerate, but not the overlying Clay Creek 

Limestone. The faulting-out of the Sunnyside Conglomerate could not be confirmed in the 

present study, but is assumed to be correct. There is no sign of offset in the Clay Creek 

Limestone, so activity on the Makara Fault is assumed to postdate the deposition of the 

Sunnyside Conglomerate and pre-date the Clay Creek Limestone. 

Observations from aerial photographs show a difference in strike of up to 20° between the 

Sunnyside Conglomerate and Makara Greensand in Bells Creek, and an angular unconformity is 
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apparent between the Sunnyside Conglomerate and Clay Creek Limestone in the area around 

Homestead Creek. In this area, the Clay Creek Limestone dips to the northeast at 20°, while the 

outcrop pattern of the Sunnyside Conglomerate indicates that has a shallow dip to the east or 

southeast. Vella and Briggs (1971) considered the relationship between the Sunnyside 

Conglomerate and Bells Creek Mudstone to be conformable, and placed the angular 

unconformity between the Bells Creek Mudstone (the uppermost unit of the Palliser Group) and 

the Clay Creek Limestone (the basal unit of the Onoke Group). However, in this study, it is 

suggested that the Clay Creek Limestone is a partial lateral equivalent of both the Bells Creek 

Mudstone and Makara Greensand. Possible relationships and correlations between these units 

are discussed further in Chapters 5 and 6. 

Figure 4.1: Map showing outcrop and measured section locations for this study.
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Figure 4.5: Clay Creek Limestone (CCL) forming a monocline across the Mangaopari Fault (MF). View looking 
southwest from the upper limestone gorge, Makara River. Modified from Green (1981). Photo coordinates: 
BQ34/050176. 
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4.3 Haurangi Hairpin section 

The Haurangi Hairpin section is located in the south-west of the field area, on the southern side 

of a large hairpin bend in the Haurangi Road (NZTopo50 map ref. BQ33/001178). It consists of a 

sequence of limestones and greensands which unconformably overlie Torlesse basement rocks. 

At the time of writing, the lower part of the Neogene sequence is well-exposed in a new road 

cutting, allowing for more detailed study than has previously been possible. The section was 

measured along the road cutting (Figure 4.6), and extends from the Torlesse basement to the 

lower part of the Dyerville Limestone. The measured section is presented in Figure 4.7. 

The Clay Creek Limestone is the basal unit of the Neogene sequence at this location, and overlies 

the Torlesse with an angular unconformity. It is 2.4 m thick, and is overlain by Makara 

Greensand. The greensand at this location can be divided into two sub-units: 60 cm of grey-

green glauconitic mudstone overlain by 1.4 m of sandy glauconitic shell hash. The Makara 

Greensand is overlain by 22 m of Haurangi Limestone, a finer-grained and more pure calc-

arenite than the Clay Creek Limestone. An unnamed greensand unit, which varies between 4 m 

and 6 m in thickness, separates the Haurangi Limestone from the overlying Dyerville Limestone. 

The presence of a greensand bed separating the Haurangi and Dyerville limestones has been 

noted before, and its thickness estimated at between 30 cm and 1 m (Beu, 1995, Vella and 

Briggs, 1971, Abbas, 1971). The measured section presented in Figure 4.7 shows that this 

greensand is significantly thicker than previously thought.

Figure 4.6: View of the Haurangi Hairpin section. The road cutting is approximately 5 m high. Photo: Cliff Atkins. 
Photo coordinates: BQ33/002189. 
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Figure 4.7: Haurangi Hairpin measured section. See Fig. 4.1 for location. Arrows denote sample heights. 
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The uppermost unit at this location is the Bull Creek Limestone, which is not included in the 

measured section. The Bull Creek Limestone overlies the Dyerville Limestone with an angular 

unconformity (Vella and Briggs, 1971, Abbas, 1971, Anderson, 1976). The thickness of the Bull 

Creek Limestone at this locality was reported as 52 m by Vella and Briggs (1971). 

4.4 Clay Creek section 

The Clay Creek Limestone was found to be poorly exposed at its type locality in Clay Creek, but a 

well-exposed section was found in a tributary 350 m along strike from the type locality 

(BQ33/026195), where a section was measured. At this section location, the Clay Creek 

Limestone forms a narrow gorge in the creek. The lower part of the limestone appears heavily 

recrystallized, and near the basal contact the walls of the gorge are covered by flowstone and 

stalactites. The basal contact with Cretaceous sandstone and argillite is unconformable and 

highly irregular, with up to 1 m of relief (Figure 4.8). 

The Clay Creek Limestone is 13.4 m thick in this section, thicker than the 10 m reported by Vella 

and Briggs (1971) at the type locality (Figure 4.9). The thickness of the limestone can be reported 

with confidence despite the presence of a covered interval, as the top of the unit forms an 

obvious ‘ramp’ on either side of the stream at the downstream end of the limestone gorge. The 

Makara Greensand is assumed to be present in the covered interval, as it was recorded by Vella 

and Briggs (1971) overlying the Clay Creek Limestone in this area. The Mangaopari Mudstone in 

this section is a poorly-sorted mudstone with mean and modal grain sizes near the silt-clay 

boundary, and a negligible sand component (Figure 4.9). 

Figure 4.8: Basal contact of the Clay Creek Limestone in the Clay Creek section. Hammer is 50 cm long. Photo: Cliff 
Atkins. Photo coordinates: BQ33/026195. 
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Figure 4.9: Clay Creek measured section. See Fig. 4.1 for location. Arrows denote sample heights. 
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Figure 4.10: Thin section of Clay Creek Limestone, viewed in cross-polarised light. Notable features include (a) 
foraminifera, (b) shell fragments, some partly recrystallized, (c) micritic cement, (d) lithic sand grains derived from 
Cretaceous basement, and (e) pore spaces fringed with sparry calcite. 

Five thin sections were cut from the Clay Creek Limestone samples collected at this location 

(samples CC1-CC5). In a typical thin section (Figure 4.10), the limestone is shown to have micritic 

cement, with small amounts of sparry calcite fringing some skeletal grains and pore spaces. 

Skeletal components include barnacle, mollusc, and bryozoan fragments and foraminifera. Large 

lithic sand grains are abundant, and are inferred to be derived from Torlesse sandstone and 

argillite. The sizes of grains within these lithic particles range from fine sand to mud, and their 

mineralogy appears to be dominated by quartz and feldspar. Feldspar veins were observed in 

some lithic particles. No significant variation was noted between limestone samples taken at 

different stratigraphic heights. 
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4.5 Te Ahitaitai section 

The easternmost known exposures of pebbly, cemented Clay Creek Limestone are found on the 

eastern side of Te Ahitaitai Ridge. The section presented here was measured at the top of a gully 

200 m east of the ridge top (BQ34/066207). The section is poorly exposed, and was studied 

using shallow excavation in addition to outcrop data. The measured section is presented in 

Figure 4.12. 

At the base of the section, outcrops of Sunnyside Conglomerate are clearly visible in the hillside 

(Figure 4.11). Above these conglomerate outcrops is a poorly exposed interval of friable 

quartzose sandstone. The sandstone lacks any shell material, and is considered to be a sandy 

facies within the Sunnyside Conglomerate. Grain size analysis (see Figure 4.12) shows that the 

sandstone is poorly sorted, with a modal peak in the fine sand range. The lower sample collected 

from this sandstone interval has a significant coarse sand and grit component which is absent in 

the upper sample. This is interpreted as evidence for a vertical gradation from conglomerate to 

sandstone. The extended mud tails on the grain size distributions are likely to be diagenetic, as 

the samples were collected near the surface of a heavily weathered outcrop. 

Figure 4.11: View of the Te Ahitaitai section. Photo: Ben Hines. Photo coordinates: BQ34/066209. 
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Figure 4.12: Te Ahitaitai measured section. See Fig. 4.1 for location. Arrows denote sample heights. Note that 
Sample 07A was collected 200 m northwest of the section; it is shown here in its inferred stratigraphic position 
relative to samples from this section. 
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The sandstone fines upward to a sandy mudstone which underlies the Clay Creek Limestone. 

Abundant pebbles and rare shell fragments, which are found in the mudstone up to 30 cm below 

the limestone contact, are interpreted as having been introduced from the overlying limestone 

by bioturbation. The mudstone is extremely poorly sorted, and has a bimodal grain size 

distribution, with modal peaks in the fine gravel and fine sand ranges (Figure 4.12). The fine sand 

modal peak is similar to those of the underlying sandstone samples. 

The Clay Creek Limestone is not well-exposed in this section; it forms the upper row of outcrops 

in the hillside, which are visible in Figure 4.10. The Clay Creek Limestone is finer-grained here 

than at many other localities. In contrast to previous sections, the indurated sandstone and 

argillite clasts in the limestone at this section are mostly sub-centimetre sized.  

The Clay Creek Limestone is overlain by a calcareous grey mudstone which is assigned to the 

Mangaopari Mudstone. The Makara Greensand is therefore absent from this section. The 

Mangaopari Mudstone in this section is poorly sorted, with a modal peak and mean grain size 

near the silt-clay boundary. The small sand component of the sample consists almost entirely of 

foraminifera. 

The uppermost unit in the Te Ahitaitai section is a micaceous sandstone which is tentatively 

assigned to the Bridge Sandstone Member of the Mangaopari Mudstone. Grain size distributions 

from sandstone samples show a well-sorted fine sand peak with coarse and fine tails. 

Examination with a binocular microscope shows that the coarse component of these samples 

consists of iron-cemented aggregates of finer grains. The fine tail is likely to be a diagenetic 

effect, as, like the sandstones from lower in the section, these samples were collected near the 

surface of a weathered outcrop. The well-sorted modal peaks to the grain size distributions from 

these samples closely resemble those of Bridge Sandstone samples analysed by Abbas (1971). 

Although absent from the measured section, the Makara Greensand is present on the ridge top 

200 m to the northwest, where a sample of greenish-grey glauconitic mudstone was collected. 

The grain size distribution for this glauconitic mudstone is included in Figure 4.12, in its inferred 

stratigraphic position relative to the grain size samples from the measured section. The 

distribution resembles that of the Mangaopari Mudstone sample, and the sample from the ridge 

top is thought to belong to the top of the Makara Greensand or base of the Mangaopari 

Mudstone. In addition to foraminifera, the sand component of the glauconitic mudstone also 

includes glauconite grains and small iron oxide nodules. 
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4.6 Bells Creek sections 

Two sections were measured in Bells Creek. The first, Section A, was measured on the true right 

of the stream, below White Rock Road (BQ34/073218). This section was measured through the 

Makara Greensand at its type locality, designated by Vella and Briggs (1971). The measured 

section is presented in Figure 4.14. 

The section starts near the top of the Bells Creek Mudstone, which here contains moderately 

abundant, scattered shell material and otoliths. Also present in the mudstone are sub-

centimetre sized fragments of black carbonaceous matter, and the bulk sample collected from 

the mudstone was processed for pollen in addition to foraminiferal and grain size analysis. The 

grain size distribution for this sample is included in Figure 4.14. The Bells Creek Mudstone in this 

location is poorly sorted, with a modal peak in the silt range and a clay mean. 

The Makara Greensand at this locality overlies Bells Creek Mudstone with an irregular, 

bioturbated contact (Figure 4.13). The greensand is 8 m thick, and can be divided into four 

distinct sub-units, shown in Figure 4.14. The lowest sub-unit is an 80 cm sandy bed which has a 

distinct dark green colour when fresh, and weathers brown. This sub-unit contains scattered 

pebbles and concretions at its base and fines upward to gritty sand. 

Figure 4.13: The bioturbated basal contact of the Makara Greensand at Bells Creek section A. Photo: Cliff Atkins. 
Photo coordinates: BQ34/073218. 
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Figure 4.14: Bells Creek measured section A. See Fig. 4.1 for location. Arrows denote sample heights. 
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The second sub-unit of the greensand is an 80 cm thick, muddy, glauconitic shellbed. Most of the 

shell material present consists of randomly oriented, angular fragments; in addition, many of the 

more intact shells are brittle and decalcified. Also present in the shellbed are rounded and 

polished pebbles of basement-derived sandstone and argillite. 

The shellbed is overlain by 4.7 m of medium-grained, friable glauconitic sandstone. This unit is 

green-brown at its base, and this colour gradually changes to dark green over the lower 3 m as 

glauconite content increases with stratigraphic height. 

The uppermost sub-unit of the Makara Greensand is marked by a change in colour from dark 

green to greenish grey. This change in colour is taken to indicate an increase in terrigenous 

sediment content and a decrease in the relative abundance of glauconite in this sub-unit when 

compared to the other sub-units of the greensand. Terrigenous mud content continues to 

increase towards the top of the unit, which fines upward to a grey siltstone with only diffuse 

glauconite grains. 

The Makara Greensand is overlain with an abrupt contact by Mangaopari Mudstone. The 

Mangaopari Mudstone in this section is paler in colour than the Bells Creek Mudstone, and lacks 

visible fossil material. Its grain size distribution shows better sorting than the Bells Creek 

Mudstone (although the sample is still poorly sorted) with a mean and mode in the clay range 

and only a negligible sand component. 

A second Bells Creek section, section B, was measured on the true left of Bells Creek 

(BQ34/071217) by Ben Hines in November 2014, and data from this section are presented in 

Figure 4.15. A major feature of this section is the presence of a 20 cm interbed of brown, 

organic-rich siltstone within the Sunnyside Conglomerate. This siltstone bed was sampled for 

pollen, and its implications for the depositional environment of the Sunnyside Conglomerate are 

discussed in Chapters 5 and 6. The Sunnyside Conglomerate is at least 18 m thick in this section, 

considerably thicker than the 10 m estimated by Vella and Briggs. The thickness of the Bells 

Creek Mudstone in this section cannot exceed 31 m. 

The Makara Greensand in section B overlies the Bells Creek Mudstone with a bioturbated 

contact very similar to its basal contact in section A. The greensand in section B is only 2 m thick. 

The sub-units identified at Bells Creek section A are not clearly differentiated in section B, and 

the shellbed from section A is absent in section B. 
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Figure 4.15: Bells Creek measured section B. See Fig. 4.1 for location. Section measured by Ben Hines. Arrows 
denote sample heights. 
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4.7 Lower Makara River 

The basal contact of the Clay Creek Limestone is exposed in several places in the lower part of 

Homestead Creek, a small tributary on the true right of the Makara River, 2 km upstream from 

the Birch Hill homestead (BQ34/057217). At most places where the contact is exposed, the Clay 

Creek Limestone rests on an irregular, eroded surface of Torlesse sandstone and argillite (Figure 

4.16A). However, in one exposure near the mouth of Homestead Creek, the Clay Creek 

Limestone overlies a fine grey mudstone which resembles the Bells Creek Mudstone (Figure 

4.16B). The limestone-mudstone contact appears to be heavily bioturbated. 

No section was measured here, but samples were collected from both the mudstone and 

limestone. The grain size distribution for the mudstone shows poor sorting, with a coarse silt 

mode and fine silt mean (Figure 4.17). The sand component consists mainly of foraminifera, but 

also includes grains of glauconite and pyrite. The overall shape of the grain size distribution 

resembles that of the Bells Creek Mudstone in Bells Creek section A (Figure 4.14), though the 

Homestead Creek sample has a larger sand component. Due to its stratigraphic position beneath 

the Clay Creek Limestone, and to other features such as its grain size distribution and the 

presence of otoliths, this mudstone is correlated with the Bells Creek Mudstone. 

The Clay Creek Limestone has an estimated thickness of 4.5 metres in Homestead Creek. 

Approximately 30 m upstream from the mouth of the creek, a small cave has formed in the 

limestone, and the creek runs through it for several metres before the valley opens out again. A 

poorly exposed, weathered glauconitic mudstone found above the cave is correlated with the 

Makara Greensand. 

Across the Makara River from Homestead Creek, the Clay Creek Limestone thins rapidly. In a 

tributary on the true left of the river (BQ33/055216), the limestone is only 1 m thick, and again 

rests unconformably on weathered, brecciated Torlesse basement rocks. The limestone in this 

section is thinner than the overlying greensand, which appears to be at least 2 m thick. The 

limestone was traced for a further 110 m along the hillside to the south of this tributary. 

Whether it continues along the western side of the valley, or whether it pinches out, is 

unknown. 



37 

Figure 4.16: Two exposures of the basal contact of the Clay Creek Limestone in Homestead Creek. Photos: Cliff 
Atkins. Photo coordinates: BQ34/057217 (A and B). 
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Approximately 250 m northeast of Homestead Creek is another small creek which runs through 

Clay Creek Limestone for most of its length. Much of this creek is not traversable, as the 

limestone forms high, narrow gorges and waterfalls. The Clay Creek Limestone is inferred to be 

thicker in this creek than it is in Homestead Creek, possibly 10 m or more. Limestone bluffs in the 

hillside above this creek contain abundant intact scallops, and a picked fossil sample was 

collected for later identification. Slumped, poorly exposed Makara Greensand was found 

overlying the limestone near the bottom of this creek (BQ34/059217); its thickness here is 

unknown but thought to be less than 5 m. 

Figure 4.17: Grain size distribution for sample TBG-02-14-19A, mudstone underlying Clay Creek Limestone in 
Homestead Creek. 
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4.8 Saw Cut Gorge 

The Makara River has cut a narrow, 250 m long gorge through the Clay Creek Limestone at a 

location called Saw Cut Gorge (BQ34/054190; see Figure 1.1), 3 km south of Homestead Creek. 

At this location the Clay Creek Limestone unconformably overlies Torlesse basement rocks. 

Although there is no measured section from this location, field observations show that the Clay 

Creek Limestone dips 30° to the southeast at the northern end of the gorge. It is inferred from 

aerial photography to dip to the north or northwest at the gorge’s southern end, forming a 

syncline.  

At the northern end of Saw Cut Gorge, the Clay Creek Limestone resembles a calcareous 

conglomerate, with very abundant sub-angular to rounded clasts of basement-derived 

sandstone and argillite ranging from 0.5 cm to 10 cm in diameter in a shell hash matrix. Another 

notable feature of the Clay Creek Limestone at this location is the presence of large sedimentary 

structures resembling giant cross-beds or channel features, which can be seen from a distance of 

50 m in limestone bluffs immediately to the north of the gorge (Figure 4.18). Giant cross-beds 

are a prominent feature of some Pliocene Te Aute limestones in Hawke’s Bay (Kamp et al., 

1988), but features such as these have not, to the author’s knowledge, been previously 

recognised in limestones from the Wairarapa region. 

Figure 4.18: Bluffs of Clay Creek Limestone north of Saw Cut Gorge in the Makara River valley, showing giant 
trough cross-bedding or channel structures. Trees are 3-5 m high. Photo: Cliff Atkins. Photo coordinates: 
BQ34/054190. 
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The thickness of the Clay Creek Limestone at Saw Cut Gorge is unknown. Couper (1948) 

estimated it to be approximately 30 m, which is probably a conservative estimate. The Clay 

Creek Limestone is unconformably overlain by another barnacle plate limestone which dips 10° 

to the southwest at the gorge’s northern end. The upper limestone is yellower in colour and less 

cemented than the Clay Creek Limestone, and lacks the basement-derived sandstone and 

argillite clasts which characterise the lower limestone. It consists of coarse, angular barnacle and 

molluscan fragments and contains moderately abundant intact scallops. This upper limestone 

was mapped as Bull Creek Limestone by Abbas (1971) and Vella and Briggs (1971).It is here 

tentatively correlated with the Dyerville Limestone based on its fossil content (see next chapter). 

4.9 Paruwai 

A second limestone gorge occurs in the Makara River, 1 km south of Saw Cut Gorge, at the 

Paruwai Farm Settlement (BQ34/501179). On the true right of the gorge, between the two 

strands of the Mangaopari Fault, the Clay Creek Limestone overlies a fine grey mudstone which 

is bedded on a cm scale and contains abundant mm-scale shell fragments. The grain size 

distribution for this mudstone is shown in Figure 4.19. The distribution is bimodal, with peaks 

near the sand-silt and silt-clay boundaries. The mean grain size is similar to that of samples taken 

from the Bells Creek and Mangaopari Mudstones. The sand portion of the sample consists 

mainly of foraminifera, but also includes aggregates of finer grains. This mudstone is likely to be 

Bells Creek Mudstone based on its foraminifera (see next chapter). 

Figure 4.19: Grain size distribution for sample TBG-02-14-18A, mudstone underlying Clay Creek Limestone on the 
true right of the upper limestone gorge, Makara River. 
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The Clay Creek Limestone may be locally as thick as 100 m in the vicinity of the gorge at Paruwai 

(See Figure 4.2). Between Paruwai and Clay Creek is a broad limestone plateau with numerous 

large sinkholes and other karst features. Observations from caves in the plateau (G. Holden, 

pers. comm.) indicate a thick (at least 30 m) unit of cemented, pebbly limestone unconformably 

overlying Torlesse sandstone and argillite, which is likely to be Clay Creek Limestone. 

In the Makara River valley to the south of the upper limestone gorge, the Clay Creek Limestone 

is overlain by greensand (Green, 1981). Overlying the greensand is a unit of grey mudstone 

interbedded with cemented pebbly shellbeds on a decimetre scale (Figure 4.20). These shellbeds 

have sharp basal contacts and grade upwards into mudstone in repeating packages; the 

shellbeds resemble the Clay Creek Limestone in lithology. This shellbed and mudstone unit is 

considered to be a facies within the Mangaopari Mudstone. 

Figure 4.20: Cemented pebbly shellbeds interbedded with mudstone at the Paruwai Farm Settlement. Photo: Cliff 
Atkins. Photo coordinates: BQ34/051175. 
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Chapter 5 Biostratigraphy and Paleontology 

5.1 Introduction 

This chapter summarises biostratigraphic and paleontological data from the study area. Sections 

5.2-5.4 outline the biostratigraphy and paleontology of key sections from southwest to 

northeast. The Clay Creek section is omitted, as foraminiferal censuses were not conducted for 

Clay Creek Limestone samples collected at this section, and no foraminifera or other fossils were 

found in the Mangaopari Mudstone sample collected at this location. Sections 5.5-5.7 outline 

the biostratigraphy and paleontology of samples collected from key locations in the Makara 

River, from north to south. A table showing sample numbers, locations, and VUW locality 

numbers is presented in Appendix 1. Full faunal lists are presented in Appendix 4. 

Some foraminiferal species are referred to in the literature by multiple taxonomic names. For 

example, one key index species is referred to as Globorotalia miotumida in the World 

Foraminifera Database (Hayward et al., 2015), as Globorotalia (Globoconella) miotumida by 

Kennett and Srinivasan (1983), and as Globoconella miotumida in the New Zealand Geological 

Timescale (Cooper, 2004, Raine et al., 2015). As this study uses the stages of the New Zealand 

Geological Timescale (Raine et al., 2015; see Appendix 3) for correlating biostratigraphic ages, 

taxonomic names used in the timescale and associated literature are given priority here. 

Paleoenvironmental assessments for foraminiferal samples are made using the paleodepth and 

oceanicity zones defined in Hayward et al. (2010). These are shown in Figure 5.1. It should be 

noted that the oceanicity of the water mass, which is indicated by the percentage of planktic 

specimens in an assemblage, does not always correspond to paleodepth, which is indicated by 

the depth ranges of benthic taxa. Planktic specimens can be abundant in shallow, inshore 

locations if they are transported by currents (e.g. Hayward et al., 1994), and deep nearshore 

basins may be sheltered by land and isolated from the open ocean, resulting in low planktic 

percentages even at bathyal depths (e.g. Hayward et al., 1986). However, in general, planktic 

percentages increase with increasing water depth and distance from land (Hayward et al., 2010). 
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Figure 5.1: Diagram summarising divisions of the continental shelf and ocean, and key foraminiferal depth 
indicators for New Zealand Cenozoic faunas. From Hayward et al. (2010), after Morgans and Strong (unpublished). 

5.2 Haurangi Hairpin section 

Foraminiferal censuses were conducted for three samples collected at the Haurangi Hairpin: one 

from the Clay Creek Limestone (sample HH1) and one from each sub-unit of the Makara 

Greensand (samples HH2 and HH3). Sample heights are shown in Figure 4.7. Some macrofossils 

were identified in outcrop, and additional specimens were extracted from the HH1 and HH3 bulk 

samples. 

5.2.1 Clay Creek Limestone 

Foraminifera are abundant in the Clay Creek Limestone at this location. Preservation is 

somewhat poor, with many specimens showing signs of abrasion. The assemblage consists 

mostly of benthic species, with only a 5% planktic component. Agglutinated foraminifera are 

especially abundant: 141 of the 300 specimens picked in the census for this sample were 

agglutinated. Of the 141 agglutinated specimens, 87 belonged to the species Gaudryina convexa 

(Figure 5.2), accounting for close to 30% of the total benthic fauna. Other significant 

agglutinated species include Spiroplectinella proxispira, Textularia barnwelli, and Textularia cf. 

kapitea. 
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Figure 5.2: Abundant specimens of Gaudryina convexa from the Clay Creek Limestone at the Haurangi Hairpin 
section (sample HH1). 

The remainder of the benthic fauna consists mainly of buliminids and rotaliids, including 

Trifarina bradyi, Cibicides molestus, and Melonis sp. A small number of lagenids, mostly 

unilocular species, were also found. The planktic component of the assemblage includes 

Globigerina bulloides, Orbulina universa, Neogloboquadrina pachyderma, and both Globoconella 

miotumida and Globoconella conomiozea. In addition to foraminifera, micro-brachiopods and 

several species of ostracod were found in the Clay Creek Limestone (Figure 5.3). Most ostracod 

shells are disarticulated, but some remain articulated. 

Few macrofossils could be identified from the Clay Creek Limestone, as the vast majority of shell 

material in the limestone consists of angular fragments. However, some intact fossils were 

extracted from the disaggregated bulk limestone sample. These included the brachiopods 

Notosaria nigricans and Neothyris sp., spheroidal bryoliths up to 1 cm in diameter, and 

moderately abundant, disarticulated juvenile ostreid valves (Figure 5.4). A partial valve of a 

mature ostreid was identified as Crassostrea ingens, and a cast of an unidentified pectinid was 

also found. 
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Figure 5.3: Articulated ostracods (A and B) and micro-brachiopods (C) from the Clay Creek Limestone at the 
Haurangi Hairpin section (sample HH1). 

Gaudryina convexa is most abundant in exposed, high-energy, inner- to mid-shelf environments, 

forming up to 25% of benthic assemblages in such environments around New Zealand in recent 

times (Hayward et al., 2010). The low planktic percentage in the sample is consistent with an 

inner shelf depositional environment. However, Cibicides molestus and Trifarina bradyi both 

have upper depth limits of approximately 150 m, and Melonis is restricted to outer shelf and 

bathyal depths (Hayward et al., 2010). This combination of species suggests that some mixing of 

benthic faunas has occurred, possibly by transportation of shallow-water sediment and 

deposition on the outer shelf. 



46 

Figure 5.4: Examples of macrofossils collected from the Clay Creek Limestone at the Haurangi Hairpin section 
(sample HH1). Pictured are (a) bryoliths, (b) barnacle plates, (c) juvenile oyster valves, (d) brachiopods. 

The presence of both the Tongaporutuan index species Globoconella miotumida and the 

Kapitean Globoconella conomiozea suggests that the Clay Creek Limestone at this location has a 

lower Kapitean or possibly upper Tongaporutuan age, as Gc. miotumida grades into Gc. 

conomiozea at the base of the Kapitean stage (Cooper, 2004, Crundwell and Nelson, 2007). 

5.2.2 Makara Greensand 

Sample HH2, collected from the lower, muddy sub-unit of the Makara Greensand (see Figure 

4.6) yielded no macrofossils, but abundant foraminifera. The benthic assemblage is dominated 

by buliminids and rotaliids. The most abundant species in the sample are Cassidulina carinata, 

Bulimina aculeata, and Trifarina bradyi. Agglutinated species are far less abundant than in the 

underlying limestone, and include Martinottiella communis and Karreriella ?cylindrica (Figure 

5.5), and Sigmoilopsis schlumbergi. Lagenids in the sample are relatively rare but diverse, 

including Lenticulina calcar, elongate species such as Laevidentalina communis, and unilocular 

species such as Favulina hexagona.  

The sample has a 17 % planktic component. This includes Globoconella puncticulata and 

Globoconella pliozea, Globigerina bulloides and Globigerina falconensis, and other species such 

as Neogloboquadrina pachyderma, Turborotalita quinqueloba, and Orbulina suturalis. In addition 

to foraminifera, rare ostracods fish scales, and possible bryozoan fragments were found. 
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Figure 5.5: Textulariids from the lower part of the Makara Greensand (sample HH2) at the Haurangi Hairpin section, 
including (L-R) Martinottiella communis, Karreriella ?cylindrica, Siphotextularia wairoana, and Textularia sp. 

Sample HH3 was collected 1.3 m above the base of the Makara Greensand, in the sandy, 

calcareous upper sub-unit (see Figure 4.6). Like sample HH2, it contains abundant foraminifera, 

with a benthic assemblage dominated by buliminids and rotaliids, with abundant specimens of 

Globocassidulina cuneata, Globocassidulina subglobosa, and Cibicides deliquatus. Other notable 

buliminids and rotaliids in this sample include Patellinella inconspicua, Cibicides molestus, 

Gyroidina soldanii, and Notorotalia taranakia. Rare specimens of Gaudryina convexa are the only 

agglutinated foraminifera identified from this sample, and the only lagenids to be found are 

Sigmoidella (Sigmoidina) pacifica, Amphicoryna hirsuta, and Bifarilaminella advena. The 

foraminiferal assemblage has a 30% planktic component, which includes many of the same 

species as sample HH2, including Globoconella puncticulata and Globoconella pliozea.  

In addition to foraminifera, disarticulated ostracod valves are abundant and varied in sample 

HH3 (Figure 5.6). Macrofossils extracted from the bulk sample from the upper greensand include 

Neothyris sp., which is the dominant species in the brachiopod-dominated shell beds within this 

unit (see section 4.3). A single, bored specimen of Talochlamys gemmulata was also found. 

The overall assemblage from sample HH2 resembles a typical Mangaopari Mudstone fauna (J. 

Collen, pers. comm.). The low planktic percentage in this sample indicates low oceanicity, but 

several benthic species indicate a bathyal depositional environment. Martinottiella communis 
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has a minimum depth of 500 ±100 m, and Sigmoilopsis schlumbergi has a minimum depth of 600 

±150 m (Hayward et al., 2010). Collectively, these suggest deposition at mid-bathyal depths in a 

coastal basin which was close to land and sheltered from the open ocean. 

Sample HH3 lacks the mid-bathyal index species which are present in HH2, and instead contains 

a mixture of shelf and upper bathyal species. Globocassidulina subglobosa has an upper depth 

limit of 250 ±80 m, and several other species present in the sample, such as Cibicides molestus, 

Gyroidina soldanii, and Amphicoryna hirsuta, suggest an outermost shelf or upper bathyal 

depositional environment. Species which are most abundant on the inner to mid-shelf, such as 

Gaudryina convexa and Patellinella inconspicua, are assumed to have been transported. The 

planktic percentage indicates a more oceanic water mass at the time when HH3 was deposited, 

compared to HH2, suggesting a more exposed, but still coastal, depositional setting for HH3. 

Samples HH2 and HH3 are assigned to the lower Opoitian stage, based on the presence of 

Globoconella puncticulata and Globoconella pliozea. It appears that the later part of the 

Kapitean stage is not recorded at this location, missing in a disconformity between the Clay 

Creek Limestone and Makara Greensand. 

Figure 5.6: Disarticulated ostracod valves from the upper part of the Makara Greensand (sample HH3), Haurangi 
Hairpin section. 
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A sample held in the GNS collection (sample GS14873, S28/f215), collected at the Haurangi 

Hairpin from the same calcareous greensand interval as sample HH3, provides some additional 

biostratigraphic information. Two scallop species were identified from this sample by Dr. Alan 

Beu as Phialopecten aff. tolagaensis and Mesopeplum waikohuense. Mesopeplum waikohuense 

has a first appearance in the Opoitian, while Phialopecten tolagaensis is restricted to the 

Kapitean. 

5.3 Te Ahitaitai section 

Seven bulk rock samples were collected from the Te Ahitaitai section, but fossil material was 

only recovered from samples TA3, TA4, and TA5 (see Figure 4.12). Foraminifera were also found 

in sample 07A, collected from the ridge top 200 m northeast of the measured section. 

Foraminiferal censuses were conducted for samples TA4 and TA5, while insufficient specimens 

were found for censuses from samples TA3 and 07A.  

5.3.1 Sunnyside Conglomerate 

No macrofossils were observed in outcrop in the Sunnyside Conglomerate, and no foraminifera 

or other microfossils were found in samples TA1 or TA2. Sample TA3, collected from the pebbly, 

sandy mudstone overlying the conglomerate and sandstone facies and immediately underlying 

the Clay Creek Limestone, is the lowest sample in this section to contain fossil material. 

Foraminifera in sample TA3 are very rare and are poorly preserved, showing signs of dissolution. 

A foraminiferal census could not be conducted, but 13 species were identified, mostly buliminids 

and rotaliids. These include Cassidulina carinata, Globocassidulina cuneata, Trifarina bradyi, and 

Cibicides molestus. No agglutinated species or lagenids were found. Planktic species include 

Globoconella cf. miotumida and Neogloboquadrina pachyderma. Also present are sponge 

spicules, bryozoan fragments, and sharks’ teeth. 

Trifarina bradyi and Cibicides molestus both have upper depth limits on the outer shelf. The age 

of the fossils in sample TA3 is not well constrained, although the presence of Globoconella cf. 

miotumida suggests a possibly Tongaporutuan age. Given the rarity of fossil material in sample 

TA3, and the complete absence of fossils in samples from lower in the Sunnyside Conglomerate, 

it is likely that the fossils in sample TA3 were introduced from the overlying Clay Creek 

Limestone by bioturbation (see Section 4.5). 

5.3.2 Clay Creek Limestone  

Foraminifera are abundant in sample TA4, collected from the Clay Creek Limestone. Many 

specimens show signs of wear and abrasion. Unlike sample HH1, sample TA4 has a benthic 

foraminiferal assemblage dominated by buliminids and rotaliids, with abundant Cassidulina 
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carinata and Cibicides deliquatus. Other notable buliminids include Trifarina bradyi (Figure 5.7D), 

Patellinella inconspicua, and Uvigerina ?delicatula; notable rotaliids include Cibicides molestus, 

Elphidium novozelandicum, Pileolina sp., and Notorotalia ?hurupiensis. Agglutinated species 

make up 14% of the benthic assemblage, and include Gaudryina convexa and Textularia kapitea 

(Figure 5.7C).Rare lagenids include ?Nodosaria vertebralis, Lenticulina calcar, Saracenaria 

latifrons, and unilocular species. One miliolid, Cornuspira sp., was also found. 

The foraminiferal assemblage from sample TA4 is 12% planktic. The planktic assemblage includes 

Globoconella miotumida (Figure 5.7A) and Globoconella conomiozea (Figure5.7B), in addition to 

Globigerina bulloides, Zeaglobigerina woodi, and Neogloboquadrina pachyderma. Like sample 

HH1, sample TA4 includes moderately abundant ostracods, some of which are articulated. 

Bryozoan and sponge fragments were also found. The only macrofossil identified from the Te 

Ahitaitai section is Neothyris sp., which was identified in the Clay Creek Limestone outcrop but 

not collected. 

The overall benthic foraminiferal assemblage from sample TA4 resembles those associated with 

upper bathyal depths (M. Crundwell, pers. comm.). Depth index species for the outermost shelf 

are present, including Trifarina bradyi and Cibicides molestus. Specimens of shallow water 

species, such as Gaudryina convexa, Pileolina sp., and Elphidium novozealandicum are generally 

somewhat abraded, and are likely to have been transported. The presence of Globoconella 

miotumida, Globoconella conomiozea, and Textularia kapitea indicate that, like sample HH1, 

sample TA4 has a lower Kapitean or possibly upper Tongaporutuan age. 

Figure 5.7: Key foraminifera from the Clay Creek Limestone at the Te Ahitaitai section, sample TA4. A: Globoconella 

miotumida, B: Globoconella conomiozea, C: Textularia kapitea, D: Trifarina bradyi. 
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5.3.3 Mangaopari Mudstone 

Sample TA5, from the Mangaopari Mudstone in the Te Ahitaitai section, contains foraminifera 

which are abundant and well-preserved. The benthic component of the assemblage is 

dominated by buliminids, including abundant Uvigerina and Neouvigerina spp., Bulimina striata, 

Bulimina aculeata, Globocassidulina cuneata, Globocassidulina subglobosa, and Trifarina bradyi. 

Rotaliids are moderately abundant, and include Gyroidina soldanii, Cibicides molestus, and 

Pullenia bulloides. Only two agglutinated species were found, Gaudryina convexa and 

?Siphotextularia sp. Seven species of lagenid were found, predominantly elongate species such 

as Neugeborina longiscata, ?Nodosaria vertebralis, Amphicoryna hirsuta, and Stilostomella sp. 

Planktic species make up 35% of the foraminiferal sample. These include Globoconella 

puncticulata, Truncorotalia crassaformis, Globigerina bulloides, Zeaglobigerina woodi, and 

Neogloboquadrina pachyderma. 

The presence of Pullenia bulloides, Amphicoryna hirsuta, Gyroidina soldanii, and 

Globocassidulina subglobosa indicate deposition in water depths of at least 200 m. Abundant 

buliminids also support a bathyal depositional environment. The sample is inferred to represent 

an upper bathyal environment due to the absence of deeper water index species such as 

Karreriella cylindrica, Martinottiella communis and Sigmoilopsis schlumbergi. Despite the bathyal 

depositional environment, the relatively low planktic percentage suggests deposition close to 

land in neritic waters. The sample belongs to the Opoitian stage, as indicated by the presence of 

Globoconella puncticulata and Truncorotalia crassaformis. 

No macro- or microfossils were found in samples TA6 and TA7, which were collected from the 

Bridge Sandstone Member of the Mangaopari Mudstone at the Te Ahitaitai section. 

5.3.4 Makara Greensand 

Rare and poorly preserved foraminifera were found in the glauconitic mudstone sample 07A, 

collected on the ridge top 200 m northwest of the Te Ahitaitai section. This sample is assigned to 

the upper Makara Greensand or possibly the base of the Mangaopari Mudstone. In many cases 

only internal casts of foraminifera are present, and where tests are preserved, the original 

calcium carbonate has been diagenetically replaced by iron oxide minerals (Figure 5.8). No 

census was conducted, but 22 species were identified. The benthic component of the sample 

consists mostly of buliminids and rotaliids, including ?Uvigerina sp., Sphaeroidina bulloides, 

Chilostomella ovoidea, Nonionella sp., and Pullenia quinqueloba. Like sample TA5, the planktic 

component of sample 07A includes Zeaglobigerina woodi, Globoconella puncticulata and 

Truncorotalia crassaformis. 
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Figure 5.8: Foraminifera from the Makara Greensand on Te Ahitaitai Ridge, showing poor preservation and 
diagenetic replacement of calcium carbonate by iron oxide. 

The benthic component of sample 07A resembles an outer shelf or upper bathyal assemblage (J. 

Collen, pers. comm.), although this depositional environment is not well constrained due to the 

poor preservation of the sample and the likelihood that some species may have been 

preferentially weathered or preserved. The presence of Globoconella puncticulata and 

Truncorotalia crassaformis indicates an Opoitian age for this sample. 

5.4 Bells Creek sections 

Bells Creek section A yielded the most detailed biostratigraphic record of the sections measured 

in this study. One sample was collected near the top of the Bells Creek Mudstone, three were 

taken from different sub-units of the Makara Greensand, and a sample was taken from the base 

of the overlying Mangaopari Mudstone (See Figure 4.14). Foraminiferal censuses were 

conducted for all five samples, and sample BC1 was also found to contain spores and pollen. 

Spores and pollen were also found in sample 28A, the only sample collected from Bells Creek 

section B. 

5.4.1 Bells Creek Mudstone 

Sample BC1 was collected from the Bells Creek Mudstone 60 cm below the base of the Makara 

Greensand. It contains abundant foraminifera which are generally well preserved. The benthic 
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component of the sample consists mainly of buliminids and rotaliids, and includes extremely 

abundant Uvigerina spp. (Figure 5.9), which make up 33% of the total foraminiferal assemblage. 

Bolivinita pohana is also abundant in the sample. Key rotaliids include Pullenia bulloides, 

Gyroidina soldanii, and Gyroidinoides zelandica. Agglutinated species are rare, and lagenids 

moderately abundant, including elongate species such as Stilostomella sp. and Mucronina 

subtregonata. Planktic foraminifera account for only 8% of the sample, and only five planktic 

species were identified. These were Globigerina bulloides, Zeaglobigerina woodi, Globigerinita 

glutinata, Globigerinita uvula, and a single specimen of Globoconella miotumida.  

The presence of Pullenia bulloides indicates deposition at a depth of at least 200 m. The relative 

abundance of Uvigerina may indicate a mid-bathyal or deeper depositional environment, and 

additionally suggests high carbon flux and low oxygen levels (Hayward et al., 2010). The very low 

planktic percentage suggests that the sample was deposited in a deep coastal basin which was 

sheltered from oceanic waters. The presence of Globoconella miotumida indicates a probable 

Tongaporutuan age, and the absence of Globoquadrina dehiscens suggests that the sample 

belongs to the upper Tongaporutuan (Cooper, 2004, Crundwell and Nelson, 2007). However, 

being based on a single specimen, this age estimate should be treated with caution. 

Figure 5.9: Abundant Uvigerina spp. in sample BC1, collected from the Bells Creek Mudstone, Bells Creek section A. 
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Sample BC1 was sampled for pollen in addition to foraminifera, due to the significant amount of 

black, carbonaceous matter visible in hand sample. It was found to contain spores, pollen and 

plant debris. Pollens extracted from the sample include Nothofagidites type and Lateropora 

type. 

5.4.2 Makara Greensand 

Sample BC2, the lowest of the three samples collected from the Makara Greensand, was 

collected from the shellbed sub-unit (see Figure 4.14). Foraminiferal preservation in this sample 

is variable, with some well-preserved specimens and some that are fractured or abraded. The 

benthic assemblage is dominated by buliminids and rotaliids; the most abundant species are 

Cassidulina laevigata (Figure 5.10A), Cassidulina carinata, Cibicides deliquatus, and Gyroidina 

soldanii. Pullenia bulloides is also present. Agglutinated species are rare, though more abundant 

and varied than in sample BC1, and include Textularia cf. kapitea, Martinottiella communis, and 

Haeuslerella morgani. Six species of lagenid were found: Nodosaria sp., Stilostomella sp., 

Plectofrondicularia pohana, Lenticulina calcar, Lenticulina loculosa, and Lenticulina orbicularis 

(Figure 5.10B). Also present was one species of robertinid, Hoeglundina elegans. Planktic 

foraminifera make up 12% of the assemblage. Both Globoconella miotumida and Globoconella 

conomiozea are present (Figure 5.10B), along with dominantly sinistral Neogloboquadrina 

pachyderma. Macrofossils present in the shellbed are generally poorly preserved, fragile and 

decalcified. Taxa identified in the outcrop include Tucetona laticostata, Purpurocardia sp., 

Mesopeplum sp., Neothyris ovalis, and Notosaria nigricans. 

Sample BC3 was collected 3.5 m above sample BC2, in the dark green, sandy sub-unit of the 

Makara Greensand. Foraminifera from this sample are generally poorly preserved: many show 

signs of abrasion and minor dissolution, and almost all are stained orange-brown (Figure 5.10C-

D). The benthic assemblage contains abundant buliminids, with Uvigerina spp. accounting for 

36% of the total benthic assemblage. Rotaliids are moderately abundant, including Cibicides 

molestus and Laticarinina pauperata. Agglutinated species are also moderately abundant, 

including Karreriella cylindrica, Karreriella cushmani, and Martinottiella communis. Lagenids 

include large Lenticulina specimens >1 mm in diameter (Figure5.10C). Sample BC3 is 48% 

planktic, with abundant Globoconella puncticulata specimens and less common Globoconella 

pliozea and Globoconella cf. conomiozea (Figure 5.10D). 

The third sample from the Makara Greensand at this locality, sample BC4, was collected from 

the greensand’s uppermost, silty sub-unit. It contains a diverse and well-preserved foraminiferal 

fauna. The benthic assemblage includes abundant buliminids and rotaliids, and moderately 
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abundant agglutinated species and lagenids. Key benthic species include Pleurostomella 

alternans, Laticarinina pauperata (Figure 5.10E), Karreriella cylindrica, and Karreriella bradyi, 

along with Sigmoilopsis schlumbergi and elongate nodosariids such as Laevidentalina communis 

(Figure 5.10F). The assemblage is 35% planktic. The planktic component includes Globoconella 

puncticulata, Globoconella cf. sphericomiozea, and Truncorotalia crassaformis. 

The three foraminiferal samples from the greensand show a gradual increase in water depth. 

The presence of Martinottiella communis in sample BC2 indicates a paleodepth of at least 400 

m, and deposition at upper bathyal depths is supported by the presence of Gyroidina soldanii 

and Pullenia bulloides, and the absence of deeper index species. Shallower water species are 

assumed to have been transported, and this is supported by the degree of abrasion and 

fragmentation of many foraminiferal tests and macrofossils. The low planktic percentage 

indicates deposition in a deep coastal basin sheltered from the open ocean, and dominantly 

sinistral Neogloboquadrina pachyderma may indicate a cold climate, although a more detailed 

census of N. pachyderma specimens would be needed to confirm this. 

Sample BC3 was also deposited at a depth of at least 400 m, as indicated by the presence of 

Martinottiella communis and Karreriella cylindrica. The abundance of Uvigerina spp. and the 

presence of Laticarinina pauperata in this sample may indicate a deeper depositional 

environment, as recent New Zealand benthic assemblages with more than 25% Uvigerina are 

restricted to mid-bathyal and deeper environments, and Laticarinina pauperata has a modern 

minimum depth of 1500 ± 500 m (Hayward et al., 2010). The planktic percentage in this sample 

indicates a significant increase in oceanic influence, from a middle neritic water mass in sample 

BC2 to an outer neritic water mass in sample BC3. 

Sample BC4 contains more bathyal index species than sample BC3. The presence of Karreriella 

bradyi, Sigmoilopsis schlumbergi, and Pleurostomella alternans in sample BC4 indicates a 

paleodepth of at least 600 m for this sample. In addition, the presence of Laticarinina pauperata 

suggests that the sample may have been deposited in a lower bathyal (>1000 m) environment, 

though other lower bathyal index species were not found. The planktic percentage in sample 

BC4 is consistent with an outer neritic water mass, with limited oceanic influence. 

The presence of Globoconella miotumida, Globoconella conomiozea, and Textularia cf. kapitea in 

sample BC2 indicates a Kapitean or possibly upper Tongaporutuan age for this sample, while the 

presence of Globoconella puncticulata in samples BC3 and BC4 places these samples in the 

Opoitian. The Miocene-Pliocene boundary is therefore probably located within the Makara 

Greensand in this section, between samples BC2 and BC3.  
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Figure 5.10: Key foraminifera from the Makara Greensand in Bells Creek section A. Top row from sample BC2, A: 
Cassidulina laevigata, B: Lenticulina orbicularis, Globoconella conomiozea, Globoconella miotumida. Middle row 
from sample BC3. Note poor preservation and orange-brown discolouration. C: Lenticulina sp., D: abundant 
Globoconella spp., mostly Gc. puncticulata. Bottom row from sample BC4. E: Laticarinina pauperata, Laticarinina 
altocamerata, F: Sigmoilopsis schlumbergi, Laevidentalina communis. 
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5.4.3 Mangaopari Mudstone 

Foraminifera from sample BC5, from the base of the Mangaopari Mudstone, are smaller and less 

abundant than the foraminifera from samples BC1-BC4. The benthic assemblage from sample 

BC5 is dominated by buliminids and rotaliids, including Cassidulina carinata, Uvigerina spp., 

Trifarina bradyi, Laticarinina altocamerata, Pullenia bulloides, and Cibicides molestus. Rare 

agglutinated species include Martinottiella communis, Karreriella cylindrica, and Sigmoilopsis 

schlumbergi. Lagenids are also rare, and include Mucronina hasta, Amphicoryna hirsuta, and 

Parafrondicularia antonina. One robertinid species, Hoeglundina elegans, was also found. 

Planktic species make up 64% of sample BC5, the highest percentage of planktic foraminifera to 

be found in any sample in this study. The planktic assemblage includes Globoconella 

puncticulata, Hirsutella cf. scitula, Neogloboquadrina pachyderma, and Globigerina bulloides. 

Additional fossil material found in this sample includes sponge spicules and shark’s teeth. 

The presence of Sigmoilopsis schlumbergi indicates that sample BC5 was deposited at a depth of 

at least 600 m. The planktic percentage indicates that the basin was more exposed to oceanic 

water at the time of deposition of sample BC5 than it was when samples BC1-BC4 were 

deposited, with sample BC5 deposited in a sub-oceanic environment. The presence of 

Globoconella puncticulata indicates an Opoitian age for sample BC5. 

5.4.4 Sunnyside Conglomerate (Bells Creek section B) 

Foraminiferal samples were not collected from Bells Creek section B, but a bulk sample (sample 

28A) was collected from the organic-rich siltstone interbedded in the Sunnyside Conglomerate 

(see Figure 4.15) and processed for pollen. This sample was found to contain very abundant 

plant debris, pollen, and spores. Pollen grains identified from the sample include Nothofagidites 

type, abundant swamp types, Myrtaceae type, Podocarpaceae type, Proteacidites type, 

Haloragacidites type, and Asteraceae type (Figure 5.11). The pollen assemblage indicates the 

presence of nearby shrubland and forest. The abundance of plant material in this sample, 

combined with the absence of marine fossils in the Sunnyside Conglomerate, strongly implies 

that this unit may have been deposited in a terrestrial rather than a marine environment, as has 

previously been suggested (Vella and Briggs, 1971). 
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Figure 5.11: Examples of Nothofagidites type (A), and Asteraceae type (B) pollen grains from the Sunnyside 
Conglomerate. 

5.5 Lower Makara River 

Although no section was measured, several samples were collected in the lower Makara River 

area. Foraminiferal censuses were conducted for three samples from Homestead Creek (map 

ref. BQ34/057217): one from the Bells Creek Mudstone (sample 19A) and two from the Clay 

Creek Limestone (samples 23A and 24A). In addition, spores and pollen were found in sample 

19A, and some macrofossils were identified from sample 23A. Additional macrofossils were 

identified from sample 25A, a picked fossil sample collected from the Clay Creek Limestone on 

the hillside north of Homestead Creek (BQ34/059216). Bulk samples were also collected from 

the Makara Greensand at both Homestead Creek and the creek 200 m to the northeast (see 

section 4.7); however, no foraminifera or other fossil material was found in these samples. 

5.5.1 Bells Creek Mudstone 

Abundant, diverse, and well-preserved foraminifera were found in sample 19A, collected from 

the grey mudstone underlying the Clay Creek Limestone near the mouth of Homestead Creek. 

The benthic foraminifera from this sample are predominantly buliminids and rotaliids, including 

several species of Bolivina, Bolivinita quadrilatera (Figure 5.12A), Cibicides deliquatus and 

Cibicides molestus, and abundant Gyroidinoides zelandica (Figure 5.12B). Agglutinated species 

are relatively rare, but diverse, including Textularia miozea, Karreriella cylindrica, Martinottiella 

communis, and several species of Siphotextularia. Rare lagenids include elongate species such as 

?Nodosaria vertebralis, unilocular species such as Favulina melo, and three species of 

Lenticulina. Two miliolids, Spiroloculina sp. and Biloculina sp., and one robertinid, Hoeglundina 

elegans, were also found. 
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Figure 5.12: Well-preserved benthic foraminifera from sample 19A, collected from the Bells Creek Mudstone at 
Homestead Creek. A: Bolivinita quadrilatera, Cassidulina carinata, B: Gyroidinoides zelandica. 

The foraminiferal assemblage from sample 19A is 38% planktic. Globoconella miotumida 

specimens from this sample are predominantly dextrally coiled, and a few, mostly sinistrally 

coiled, specimens of Globoconella cf. conomiozea are also present. Other notable planktic 

species include Zeaglobigerina nepenthes, Hirsutella scitula, Neogloboquadrina pachyderma, and 

rare specimens of Globoquadrina dehiscens. In addition to foraminifera, sample 19A includes 

otoliths, a small unidentified gastropod, and ostracods, including Bradleya sp. The carbonaceous 

matter in this mudstone includes spores, pollen, and plant debris. Cyathea type and monolete 

fern spores were identified, as well as Pimelea type, Centrolepis type, and Nothofagidites type 

pollen grains. 

The presence of Karreriella cylindrica and Martinottiella communis in sample 19A indicate that 

the sample was deposited at a depth of at least 400 m. The planktic percentage is consistent 

with an outer neritic water mass, and the presence of pollen and plant matter also suggest that 

the sample was deposited in coastal waters. The sample is interpreted as having been deposited 

at upper or mid-bathyal depths in a sheltered coastal basin with limited oceanic influence. 

The presence of both Globoquadrina dehiscens (Figure 5.13A) and Globoconella miotumida 

(Figure 5.13 D) places the sample in the lower Tongaporutuan substage, as the regional 

extinction of Globoquadrina dehiscens, at 8.96 Ma, defines the base of the upper Tongaporutuan 

substage (Raine et al., 2015). Four-chambered Globoconella cf. conomiozea specimens are also 

known to occur in New Zealand during the lower Tongaporutuan (Raine et al., 2015) (Figure 

5.13B), and the presence of Textularia miozea (Figure 5.13C) further supports a Tongaporutuan 
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age for the sample. The high percentage of dextrally coiled Globoconella miotumida specimens 

means that the age of the sample can be further constrained to one of three dextral coiling 

zones recognised in the lower Tongaporutuan: the Kaiti, Mapiri, and Tukemokihi Coiling Zones. 

Finally, the presence of Neogloboquadrina pachyderma constrains the sample to the Tukemokihi 

Coiling Zone, as the lowest occurrence of this species occurs above the Kaiti and Mapiri Coiling 

Zones (Cooper, 2004).  

Figure 5.13: Age-indicative foraminifera from the Bells Creek Mudstone at Homestead Creek. A: Globoquadrina 
dehiscens, B: Globoconella cf. conomiozea, C: Textularia miozea, D: Globoconella miotumida, mostly dextral forms. 

5.5.2 Clay Creek Limestone 

Two foraminiferal samples were collected from the Clay Creek Limestone in Homestead Creek. 

The lower sample, sample 24A, was collected from a discontinuous, 10 cm thick layer of shelly 

mudstone and angular Torlesse fragments at the contact between the Clay Creek Limestone and 

Torlesse basement. The benthic foraminiferal assemblage from sample 24A is dominated by 

rotaliids, including Cibicides deliquatus, Cibicides molestus, and Cibicides cf. novozelandicus. 

Buliminids are also abundant, including Cassidulina carinata and Trifarina bradyi. Agglutinated 

species are moderately rare, and include Gaudryina convexa and Spiroplectinella proxispira. Rare 

unilocular lagenids are also present, along with one miliolid, Cornuspira sp. Sample 24A has an 
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8% planktic component, which includes Globigerina falconensis, Globigerinita uvula, and 

Globigerinita glutinata. 

The second foraminiferal sample collected from the Clay Creek Limestone at this location, 

sample 23A, was taken from 1.5 m above the basal contact. Agglutinated species make up 41% 

of the benthic assemblage in this sample, including abundant Gaudryina convexa. Other 

agglutinated species include Spiroplectinella proxispira and several species of Textularia, 

including one specimen of Textularia kapitea. Rotaliids are also very abundant, and include 

Cibicides molestus, Cibicides deliquatus, Pileolina spp., and Laticarinina altocamerata. The only 

buliminid species found in the sample was Cassidulina laevigata, although this is moderately 

abundant. Rare lagenids include Lenticulina calcar, Lenticulina orbicularis, and Fissurina spp. 

Sample 23A contains only one identified planktic species, Globigerina falconensis, which 

accounts for just 1% of the sample. In addition to foraminifera, micro-brachiopods (Figure 5.14) 

and ostracods were found in the sample. Microfossil specimens from sample 23A are larger than 

those from other samples, with the average size in the coarse sand range. 

An almost intact scallop valve was found in sample 23A, and was identified as Mesopeplum 

(Borehamia) crawfordi (Figure 5.15A). A large fragment of Crassostrea ingens was also found at 

this location, and the scaphopod Fissidentalium solidum was noted in the outcrop but not 

collected. The scallops in sample 25A, collected from the hillside 200 m northeast of Homestead 

Creek, were identified as Mesopeplum burnetti (Figure 5.15B). 

Figure 5.14: Micro-brachiopods from sample 23A, collected from the Clay Creek Limestone at Homestead Creek. 
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The foraminiferal assemblage collected from sample 24A resembles the assemblage found in 

sample TA4 from the Te Ahitaitai section, while the assemblage from sample 23A resembles that 

of sample HH1 from the Haurangi Hairpin section. The presence of Cibicides molestus in samples 

24A and 23A suggests that both samples were deposited at outer shelf depths; shallow water 

species such as Gaudryina convexa and Pileolina spp. are assumed to have been transported. 

The relatively low diversity of the assemblage in sample 23A, along with the large average size of 

specimens and the anomalously low planktic percentage, may be attributed to current action 

winnowing away finer grains (Hayward et al., 2010). 

The foraminiferal samples from the Clay Creek Limestone in Homestead Creek do not have well-

constrained ages. The presence of Textularia kapitea in sample 23A suggests a Kapitean age, but 

T. kapitea is also found in the upper Tongaporutuan and lower Opoitian (Hornibrook et al.,

1989). Mesopeplum burnetti has a probable last appearance in the Kapitean (Beu, 1995), while

Crassostrea ingens has its first appearance in the Tongaporutuan (Beu and Maxwell, 1990).

Mesopeplum crawfordi, once thought to be a Waipipian index species, has now been found in

samples dating back to the Waiauan stage (A. Beu, pers. comm.). Based on correlations with the

Clay Creek Limestone at other locations, samples 23A, 24A, and 25A are all assumed to belong to

the Kapitean stage.

Figure 5.15: Pectinid fossils from the Clay Creek Limestone, lower Makara River valley. A: Mesopeplum (Borehamia) 
crawfordi from sample 24A, B: Mesopeplum burnetti from sample 25A. 
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5.6 Saw Cut Gorge 

Two samples were collected at Saw Cut Gorge (BQ34/054190), one from each of the limestones 

present. A foraminiferal census was carried out for the Clay Creek Limestone sample, sample 

35B. The sample collected from the upper limestone (probable Dyerville Limestone) did not 

contain sufficient foraminifera for a census to be conducted. 

5.6.1 Clay Creek Limestone 

Sample 35B, collected from the Clay Creek Limestone at Saw Cut Gorge, contains abundant 

foraminifera, but preservation is poor. Many specimens are fractured and abraded, and most 

show signs of partial dissolution and recrystallization. The benthic assemblage is dominated by 

buliminids and rotaliids, and the most abundant species are Cassidulina carinata, Cassidulina 

laevigata, and Cibicides deliquatus. Other notable buliminids and rotaliids from this sample 

include Trifarina bradyi, Cibicides molestus and Elphidium novozealandicum. Agglutinated 

species make up 8% of the sample, and include Gaudryina convexa and Spiroplectinella 

proxispira. Rare lagenids include Lenticulina sp. and Fissurina cf. submarginata. The sample is 

12% planktic. The planktic component includes Truncorotalia juanai, Turborotalita quinqueloba, 

Neogloboquadrina pachyderma, Globoconella miotumida, and one specimen of Globoconella cf. 

conomiozea.  

Like other samples from the Clay Creek Limestone, sample 35B includes both shallow water 

species such as Elphidium novozealandicum and outer shelf species such as Trifarina bradyi and 

Cibicides molestus. It is interpreted as having been deposited on the outer shelf, but containing 

specimens transported from shallower depths. The presence of Globoconella miotumida, 

Truncorotalia juanai, and Globoconella cf. conomiozea indicate that sample 35B has an upper 

Tongaporutuan or possibly lower Kapitean age. 

5.6.2 Dyerville Limestone 

Sample 35A, collected from the upper limestone at Saw Cut Gorge, contained only one 

identifiable foraminifer, a single, battered Lenticulina sp. An intact scallop valve from this sample 

was identified as Phialopecten marwicki (Figure 5.16), which is a characteristic species of the 

Dyerville Limestone (Beu, 1995). The Dyerville Limestone is thought to be Opoitian in age, but 

the scallop collected resembles the Waipipian form of P. marwicki more closely than the 

Opoitian form (A. Beu, pers. comm.).  
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Figure 5.16: Phialopecten marwicki from sample 35A, collected from the Dyerville Limestone at Saw Cut Gorge. 

5.7 Paruwai 

One foraminiferal sample, sample 18A was collected in the Paruwai area. The sample was 

collected from the calcareous mudstone which underlies the Clay Creek Limestone on the true 

right of the upper limestone gorge (map ref. BQ34/052178; see section 4.9). The benthic 

component of the sample is dominated by buliminids and rotaliids, including very abundant 

Uvigerina spp. Only three agglutinated species were found to be present: Karreriella cylindrica, 

Haeuslerella morgani, and Sigmoilopsis schlumbergi. Lagenids are also relatively rare in the 

sample, but include large specimens of Lenticulina calcar and Saracenaria italica. The 

foraminiferal assemblage from sample 18A is 14% planktic, and many of the planktic specimens 

appear to have been compressed and sheared after deposition (Figure 5.17A). The planktic 

assemblage includes Globigerina bulloides, Truncorotalia cf. juanai, Globoconella conomiozea 

(Figure 5.17B), and a single specimen of Globoconella cf. miotumida. 

The presence of Sigmoilopsis schlumbergi indicates that sample 18A was deposited at a depth of 

at least 600 m. The abundance of Uvigerina spp. also supports a bathyal depositional 

environment, probably with low oxygen and high carbon flux to the seafloor. The low planktic 

percentage indicates deposition in a sheltered coastal basin, with a neritic water mass despite 

the sample’s bathyal depth. The presence of Globoconella conomiozea indicates that the sample 

belongs to the lower Kapitean stage. On the basis of its Kapitean age, and stratigraphic position 

below the Clay Creek Limestone, Sample 18A is correlated with the Bells Creek Mudstone. 
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Figure 5.17: Planktic foraminifera from sample 18A, collected from the Makara River's upper limestone gorge at 
Paruwai. A: Poorly preserved, squashed, and sheared specimens of Globigerina and Zeaglobigerina spp., B: 
Globoconella conomiozea. 
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Chapter 6 Correlations and geological history 

6.1 Introduction 

The chapter presents an interpretation of the late Miocene-early Pliocene stratigraphy and 

geological history of the study area, based on the data presented in Chapters 4 and 5. Section 

6.2 discusses stratigraphic correlations between late-Miocene-early Pliocene formations across 

the field area. Section 6.3 presents an interpretation of the area’s geological history through the 

late Miocene and early Pliocene. Section 6.4 discusses the larger context of this study and its 

results, including correlations outside the study area, time constraints on episodes of 

accelerated deformation, and comparisons between the Clay Creek Limestone and key Hawke’s 

Bay Te Aute Lithofacies limestones. 

6.2 Unit correlations 

6.2.1 Key features of regional stratigraphy 

The fence diagram (Figure 6.1) shows lateral relationships between units across the study area. 

Eight stratigraphic columns are presented and correlated. Stratigraphic columns are compiled 

from measured sections and other key locations presented in Chapter 4, with additional unit 

thickness data from Vella and Briggs (1971) for the Haurangi Hairpin column, Green (1981) for 

the upper limestone gorge column, and Couper (1948) for the Saw Cut Gorge column. Unit 

thicknesses in the Homestead Creek column are estimates. 

The fence diagram shows changes in late Miocene-early Pliocene stratigraphy from the 

southwest to the northeast of the study area. Aside from the Torlesse basement, the most 

persistent units across the study area are the Clay Creek Limestone, Makara Greensand, and 

Mangaopari Mudstone. The fence diagram illustrates the lateral transition discussed in Section 

4.2, from limestone-dominated stratigraphy at the Haurangi Hairpin, to limestone overlain by 

mudstone in central parts of the study area, and then to mudstone-dominated stratigraphy 

overlying the Sunnyside Conglomerate in the Bells Creek sections. 

The fence diagram shows significant lateral variations in the thicknesses of both the Clay Creek 

Limestone and Bells Creek Mudstone. The Clay Creek Limestone is shown to be a wedge- or lens-

shaped unit, varying in thickness between 1 m and as much as 100 m over distances of only a 

few kilometres. It reaches its maximum thickness at the upper limestone gorge at Paruwai, and 

thins rapidly to the northeast and to the west. The Bells Creek Mudstone shows a similarly rapid 

change in thickness across the Te Ahitaitai area. In Bells Creek Section B, the thickness of the 

Bells Creek Mudstone cannot exceed 31 m (see Figure 4.15), but it has an estimated thickness of 



Figure 6.1: Stratigraphic columns and correlations 
between geological units in the study area 
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80 m below Bells Creek section A, only 200 m away. In the Mangaopari Stream section (not 

shown on the fence diagram) the thickness of the Bells Creek Mudstone has been measured as 

290 m (Vella and Briggs, 1971). 

Another key feature of the late Miocene-early Pliocene stratigraphy in the study area is the 

presence of rapid lateral transitions between fine-grained bathyal mudstone and coarse-grained 

limestone, which can be seen in both the Bells Creek Mudstone-Clay Creek Limestone transition 

in the Te Ahitaitai area, and the Mangaopari Mudstone-Haurangi and Dyerville Limestones 

transition in the Ruakokoputuna Valley. 

Inferred spatial and temporal relationships between late Miocene-early Pliocene 

lithostratigraphic units are summarised in Figure 6.2. These relationships between units are 

discussed in greater detail below. Significant differences in stratigraphy are apparent on either 

side of the Mangaopari Fault. The Hurupi Formation is present on the eastern (downthrown) 

side of the fault but absent on the upthrown side, suggesting that it may have been removed 

from the upthrown block by erosion. The Makara Greensand differs in age across the fault, 

indicating that greensand formed at different times on the upthrown and downthrown blocks. 

The implications of these differences in stratigraphy across the Mangaopari Fault are discussed 

in Sections 6.3 and 6.4. 

6.2.2 Sunnyside Conglomerate 

The age of the Sunnyside Conglomerate in the study area is not well constrained. In the mapped 

area, the Bells Creek Mudstone overlies the Sunnyside Conglomerate unconformably. To the 

south of the area mapped in this study, Hatfield (1981) mapped Sunnyside Conglomerate 

underlying the Hurupi Formation with a gradational contact. Based on this stratigraphic 

relationship, the age of the Sunnyside Conglomerate is considered to be early Tongaporutuan 

and possibly partly Waiauan. 
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Figure 6.2: Late Miocene-early Pliocene lithostratigraphy, showing approximate ages of units and lateral changes in 
stratigraphy in two parallel sections from southwest to northeast of the study area, separated by the Mangaopari 
Fault. Grey areas indicate intervals of erosion or non-deposition. 

6.2.3 Hurupi Formation 

Although it was not sampled or examined in detail in this study, the Hurupi Formation has been 

studied extensively by others, and its early Tongaporutuan age and shallow marine depositional 

environment are well established (e.g. King, 1933, Vella, 1954, Beu and Maxwell, 1990). In the 

Paruwai area, Green (1981) and Hatfield (1981) described the Hurupi Formation as fining 



69 

upward from basal sandstone to grey mudstone, and also becoming finer-grained and muddier 

to the northeast. At Paruwai, the Bells Creek Mudstone overlies the Hurupi Formation 

disconformably, but northeast of Paruwai, the upper, muddy part of the Hurupi Formation is 

interpreted to grade laterally into the lower Bells Creek Mudstone; in the southern part of 

Mangaopari Stream, the Hurupi Formation is represented only by a thin sandstone unit which 

underlies Bells Creek Mudstone and overlies Torlesse (see Figures 4.2 and 4.3). 

6.2.4 Bells Creek Mudstone 

Vella and Briggs (1971) considered the relationship between the Sunnyside Conglomerate and 

Bells Creek Mudstone to be conformable. However, results from this study show that the two 

units are separated by an angular unconformity. The clearest evidence for this can be found on 

the western side of Te Ahitaitai Ridge and in Homestead Creek. The Sunnyside Conglomerate is 

present on the downthrown side of the Makara Fault, but absent on the upthrown side, where a 

lens of Bells Creek Mudstone rests unconformably on Torlesse basement. Additional evidence 

comes from the marked difference in strike between the Sunnyside Conglomerate and Makara 

Greensand in Bells Creek, noted in Section 4.2. 

The Bells Creek Mudstone ranges from early Tongaporutuan (sample 19A) to Kapitean (sample 

18A) in age; the lower part of the ‘Paruwai Formation’, informally named by Hatfield (1981) and 

Green (1981), is here considered to be a part of the Bells Creek Mudstone. The upper part of the 

Bells Creek Mudstone is therefore a deep-water lateral equivalent of the Clay Creek Limestone. 

Lateral equivalence between the two units is most obvious in the Paruwai area, where Clay 

Creek Limestone in the western side of the Makara Syncline passes into Bells Creek Mudstone on 

the eastern side of the syncline (see Figures 4.2 and 4.3). A similar relationship between the 

units is inferred in Bells Creek, with Clay Creek Limestone passing laterally into Bells Creek 

Mudstone on the eastern side of Te Ahitaitai Ridge. The age of the uppermost Bells Creek 

Mudstone in this area is poorly constrained (see Section 5.3) but is inferred to be latest 

Tongaporutuan to early Kapitean, equivalent to the Clay Creek Limestone in the Te Ahitaitai 

section (see section 5.2). 

6.2.5 Clay Creek Limestone 

Vella and Briggs (1971) considered the Clay Creek Limestone to be separated from the Bells 

Creek Mudstone by a regional unconformity. While an angular unconformity is indeed present 

between the two units in Homestead Creek, results from this study show that the Clay Creek 

Limestone and Bells Creek Mudstone are conformable and partly laterally equivalent in other 

locations. Foraminiferal assemblages show that the Clay Creek Limestone belongs to the early 
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Kapitean stage, and may extend back to the latest Tongaporutuan at some locations where 

Globoconella miotumida is present. 

The glauconitic shellbed in Bells Creek section A (see Figure 4.13) has previously been considered 

to be part of the Clay Creek Limestone (Vella and Briggs, 1971, Dobbie, 1976, Beu, 1995), which 

was thought to grade laterally from cemented pebbly limestone on Te Ahitaitai Ridge to poorly 

cemented pebbly shell bed in Bells Creek. The absence of limestone or a shellbed in Bells Creek 

section B is here considered to be evidence against this interpretation. 

The limestone on the Makara River-Clay Creek interfluve was mapped as undifferentiated by 

Vella and Briggs (1971) and Abbas (1971), although Vella and Briggs recognised the presence of 

Clay Creek Limestone at the upper limestone gorge, and described the karst plateau between 

Paruwai and Clay Creek as including large areas of Clay Creek Limestone. In this study, all the 

limestone in the upper gorge and on the plateau is assigned to the Clay Creek Limestone, 

following the stratigraphy of Green (1981). 

6.2.6 Makara Greensand 

Foraminiferal abundance and preservation in the Makara Greensand vary greatly, which can 

make correlations difficult. Crundwell (1997) inferred the Makara Greensand to be Kapitean in 

age, and a separate unit from the Opoitian greensand that overlies the Clay Creek Limestone. 

Results from this study show that the Makara Greensand is partly Opoitian in age at its type 

locality (Bells Creek section A), and that it can be correlated with the greensand which overlies 

the Clay Creek Limestone at the Haurangi Hairpin section. However, the presence of 

Tongaporutuan and Kapitean species in the shellbed at Bells Creek section A indicates that the 

base of the greensand is older at this section than at the Haurangi Hairpin. The greensand 

mapped in the Paruwai area by Green (1981) and Hatfield (1981) is inferred to be entirely 

Kapitean in age, as the Kapitean index scallop Sectipecten wollastoni was recorded from 

shellbeds in the overlying mudstone. The Makara Greensand is therefore interpreted as a 

diachronous unit which ranges in age from Kapitean to early Opoitian.  

6.2.7 Mangaopari Mudstone 

The lower part of the Mangaopari Mudstone is Opoitian in age on the western (upthrown) side 

of the Mangaopari Fault. However, on the eastern (downthrown) side of the fault, the basal 

Mangaopari Mudstone is of Kapitean age. Both Green (1981) and Hatfield (1981) reported the 

presence of Sectipecten wollastoni in the pebbly shellbeds which are interbedded in the 

Mangaopari Mudstone at Paruwai. The Opoitian foraminifer Globoconella puncticulata was 

reported as first occurring in the massive mudstone which overlies the shellbed facies (Green, 
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1981, Hatfield, 1981). The Bridge Sandstone Member is also of early Opoitian age, and is 

interpreted as a sequence of turbidites, following Vella and Briggs (1971). The Mangaopari 

Mudstone extends through to the Mangapanian stage (Vella and Briggs, 1971). 

6.2.8 Haurangi Limestone and Dyerville Limestone 

The Haurangi Limestone and the Dyerville Limestone are known to be shallow-water equivalents 

of the Mangaopari Mudstone (Vella and Briggs, 1971); both limestones have previously been 

assigned to the Opoitian stage (Beu, 1995). However, this study shows that the limestone 

mapped as Dyerville Limestone is probably of Waipipian age at Saw Cut Gorge. The upper 

limestone at Saw Cut Gorge may therefore be younger than the Dyerville Limestone recognised 

at other locations, or the Dyerville Limestone may by Waipipian in other locations too.  

6.3 Late Miocene-early Pliocene geological history 

The general tectonic and paleoenvironmental trend in the northern Aorangi Range throughout 

late Miocene and early Pliocene times was one of subsidence (Wells, 1989a) and increasing 

oceanicity. However, episodes of accelerated shortening across the plate boundary were 

accommodated by reverse faulting and folding and the growth of contractional structures (Nicol 

et al., 2002), creating local uplift episodes which are superimposed on the regional subsidence 

trend. Although Antarctic ice sheets were present during the late Miocene and early Pliocene, 

glacio-eustatic fluctuations in sea level at this time were relatively small (<50 m) in amplitude 

(Miller et al., 2005) and are not considered to have played a major role in the changes in water 

depth that occurred in the study area during this time. 

At the end of the Waiauan and beginning of the Tongaporutuan stage, the Aorangi Range was 

emergent as a hilly, forested island, ‘Aorangi Island’ (previously referred to as Haurangi Island by 

Beu, 1995), separated from the westerly mainland by a proto-Ruataniwha Strait. The island was 

gradually subsiding at this time, and the hills were being eroded by rivers. The Sunnyside 

Conglomerate was deposited in a river and lake system. Early in the Tongaporutuan, the sea 

transgressed across the study area, and the Hurupi Formation was deposited in a shallow marine 

environment as subsidence continued. Subsidence was more rapid in the east of the study area, 

with bathyal Bells Creek Mudstone being deposited in the Mangaopari area while shallower 

facies associated with the Hurupi Formation continued to be deposited at Paruwai. 

An episode of local uplift occurred in the early Tongaporutuan, and is superimposed on the 

trend of regional subsidence. This uplift is associated with movement on the Makara Fault, and is 

correlated with the rapid uplift event identified by Wells (1989a) as occurring at around 10.5-10 

Ma. The uplift event caused a hiatus in deposition across much of the study area, and the 
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Sunnyside Conglomerate and Hurupi Formation were eroded from the upthrown side of the 

Makara Fault. As activity ceased on the Makara Fault and regional subsidence continued, Bells 

Creek Mudstone was deposited continuously across the Makara Fault in the later part of the 

early Tongaporutuan substage. The Aorangi Island remained emergent during this time, possibly 

as a low-lying, swampy and forested island surrounded by relatively deep sea, including some 

deep, sheltered coastal basins or embayments. Pollen and organic matter, washed out to sea 

from the island, were deposited into a coastal basin along with terrigenous mud. The lack of 

exposure to oceanic water and sheltering from currents created a stratified water column in 

these coastal basins, with foraminiferal assemblages indicating low oxygen levels at depth. Low-

oxygen conditions allowed for the preservation of carbonaceous matter. 

A second episode of tectonic shortening and uplift occurred in late Tongaporutuan time. The 

Mangaopari Fault became active at this time, along with the Huangarua and Martinborough 

Faults (Nicol et al., 2002), and possibly also the Ruakokoputuna, Blue Rock, and Nikorima Faults. 

The western and central parts of the study area were raised above sea level by folding and 

reverse movement on the Mangaopari Fault. In the uplifted area, the Bells Creek Mudstone was 

eroded back to basement level, with the exception of a few localised patches from the base of 

the unit preserved in depressions in the Torlesse surface. Uplift was less pronounced in the 

northeast of the study area, where the Mangaopari Fault passed laterally into an anticline, and 

deposition of Bells Creek Mudstone continued on the anticline’s eastern limb. On the 

downthrown side of the Mangaopari Fault, a basin formed, which subsequently allowed for the 

accumulation of over 100 m of Kapitean limestone and mudstone in the Paruwai area. 

This uplift episode ended near the Tongaporutuan-Kapitean boundary, and regional subsidence 

continued. In the early Kapitean, the Aorangi Island was fringed by shoals and reefs created by 

basement antiforms which had been uplifted in the late Tongaporutuan. These shoals, reefs, and 

tide-swept, rocky coasts became carbonate factories for the Clay Creek Limestone. Tidal currents 

and storm events periodically transported shell material and basement-derived gravel from 

these coastal environments, across a narrow inner shelf, to the outer shelf, where the Clay Creek 

Limestone was deposited. Finer-grained terrigenous sediment bypassed the shelf, and was 

deposited at bathyal depths further offshore to the east, forming the uppermost Bells Creek 

Mudstone. This depositional model for the Clay Creek Limestone is discussed further in Section 

6.4.4. 

An acceleration of subsidence in the middle of the Kapitean reduced terrigenous sediment 

supply to much of the study area. The Makara Greensand began to form at bathyal depths on 
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the downthrown side of the Mangaopari Fault and eastern limb of the proto-Mangaopari 

Anticline at this time, as bottom currents winnowed away terrigenous mud and left behind a lag 

deposit of glauconite, pebbles, and foraminifera. This interval of greensand formation was 

relatively brief at Paruwai, but extended into the early Opoitian in Bells Creek and Mangaopari 

Stream. In the western and central parts of the study area, greensand did not begin to form until 

early Opoitian times, when the upthrown side of the Mangaopari Fault eventually subsided to 

bathyal depths. 

In the late Kapitean, deposition of mudstone resumed at Paruwai. The south-western corner of 

the study area remained at shelf depths during this time, and carbonate sediments resembling 

the Clay Creek Limestone were deposited on this shelf. This was the source area for the 

shellbeds which are interbedded in the lower Mangaopari Mudstone at Paruwai; following 

Hatfield (1981) and Green (1981) these alternating shellbeds and mudstones are interpreted as 

turbidites. Also during the latter part of the Kapitean, the shellbed in Bells Creek section A (see 

Figure 4.13) was deposited as a debris flow from the shelf, accounting for the abundant angular 

shell fragments and basement-derived pebbles in this sub-unit. 

Throughout the late Kapitean and early Opoitian, the subsidence of Aorangi Island and the 

surrounding shelf and reefs reduced barriers to oceanic water. Increasing oceanicity in the study 

area at this time is recorded by the increased abundance of planktic foraminifera in successively 

younger Opoitian samples from both the Haurangi Hairpin and Bells Creek sections. In early 

Opoitian times, the study area was tilted, uplifting the far west of the area to shelf depths while 

the rest of the area continued to subside. The Haurangi Limestone was deposited in the far west 

of the study area, probably at shallower depths than the Clay Creek Limestone, as the better 

preservation of shell material in the Haurangi Limestone indicates a shorter transport distance. 

Across the central and eastern parts of the study area, the Mangaopari Mudstone was deposited 

as a deep-water lateral equivalent to the Haurangi Limestone. Regional subsidence continued, 

and by the beginning of the Late Pliocene, the Aorangi Island was mostly or entirely submerged 

(Beu, 1995, Trewick and Bland, 2011) (see Figure 1.3). 

6.4 Discussion 

6.4.1 Lateral correlations 

The Sunnyside Conglomerate can be correlated with the Putangirua Conglomerate in Palliser 

Bay, which would have been located on the western margin of the Aorangi Island in 

Tongaporutuan times. Another likely correlative for the Sunnyside Conglomerate is the basal 

conglomerate of the Mangaoranga Formation (sm1 conglomerate of Neef, 1974) in the western 
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Wairarapa and Tararua districts. Both of these suggested correlatives are terrestrial, fluvial 

conglomerates which rest unconformably on Torlesse basement, and are conformably overlain 

by shallow marine sandstone and mudstone of the Hurupi and Mangaoranga Formations (e.g. 

Bates, 1967, Wells, 1989b, Begg and Johnston, 2000, Neef, 1974). 

In the Eketahuna district, the Mangaoranga Formation is overlain by the Kaiparoro Formation 

(Neef, 1974) which includes the Kaiparoro Limestone Member, a Kapitean limestone of the Te 

Aute Lithofacies. Beu (1995) suggested that the Kaiparoro and Clay Creek Limestones may be 

equivalent units, which were laterally adjacent before being separated by dextral strike-slip 

faulting after the formation of the Wairarapa Fault zone at 2.5 Ma. Subsequent studies have 

shown that the Aorangi and Eketahuna districts would not have been adjacent at this time, and 

that strike-slip motion has not played a major role in the Neogene tectonic history of the East 

Coast Basin (e.g. Nicol et al., 2007). However, the similarity of facies present in these areas 

indicates that Eketahuna and the Aorangi Range have similar late Miocene-early Pliocene 

tectonic and paleoenvironmental histories. Other Te Aute Limestones of Kapitean or partly 

Kapitean age include the Waikopiro Limestone Member of the Mangatoro Formation, which 

outcrops in the Dannevirke-Ormondville area, and the Owhaoko Limestone, a cemented, pebbly 

unit of Tongaporutuan to Kapitean age which has been found along the Napier-Taihape Road 

(Beu, 1995). 

The lateral extent on the Clay Creek Limestone beyond the study area is unknown. It is likely to 

be present adjacent to the Dry River Fault in the upper Tauanui River, west of the Haurangi 

Hairpin (approx. NZTopo50 coordinates BQ33/932161 to BQ33/947175). In this area, Bates 

(1967) described a coarse-grained, cemented limestone unconformably overlying Torlesse 

basement and containing abundant basement-derived pebbles, which was overlain by 

greensand and by a finer-grained limestone believed to be Haurangi Limestone. Fittall (1979) 

mapped isolated outcrops of loosely consolidated Kapitean calc-arenite between Mangaopari 

and Whakapuni Streams, which he assigned to the Clay Creek Limestone. An isolated outcrop of 

Clay Creek Limestone unconformably overlying Torlesse is present at the crest of the Harris 

Ridge Anticline, 4 km southeast of Martinborough (Collen and Vella, unpublished, Nicol et al., 

2002), and the presence of Clay Creek Limestone has been interpreted in a seismic section 

between the Huangarua and Martinborough Faults (Nicol et al., 2002) (see Figure 6.3). The Clay 

Creek Limestone is absent at Hinakura Road (Vella and Collen, 1984) and in Palliser Bay (Bates, 

1967, Vella and Briggs, 1971), where the lower Kapitean is represented by Bells Creek Mudstone. 
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Despite being a thin unit, the Makara Greensand is present across much of the Wairarapa, and is 

thought to represent a regional disconformity (Cape et al., 1990, Crundwell, 1997). In 

Crundwell’s (1997) stratigraphic interpretation, the base of the Makara Greensand is treated as 

the contact between the Palliser and Onoke Groups; in sections where the greensand is absent, 

the contact is marked by the first appearance of Kapitean fossils. However, this study has shown 

the Makara Greensand to be diachronous and partly Opoitian in age; in the study area, the 

Makara Greensand is found stratigraphically above the Kapitean Clay Creek Limestone and 

laterally equivalent mudstone. As the Clay Creek Limestone is also part of the Onoke Group 

(Vella and Briggs, 1971, Crundwell, 1997) this creates a discrepancy. In light of these findings, it 

may be necessary to re-evaluate the classification of the Palliser and Onoke Groups. 

6.4.2 Constraints on late Miocene-early Pliocene deformation 

The findings from this study can provide some constraints for the episode of accelerated 

shortening identified by Cape et al. (1990) and Nicol et al. (2002, 2007) as occurring in latest 

Miocene or earliest Pliocene time. The partly conformable and partly unconformable 

relationship between the Bells Creek Mudstone and Clay Creek Limestone, described in this 

study, was also noted by Nicol et al. (2002), who interpreted the Clay Creek Limestone as 

overlying Torlesse basement and Bells Creek Mudstone with an angular unconformity on the 

upthrown side of the Huangarua Fault, but showed the Clay Creek Limestone conformably 

overlying Bells Creek Mudstone further west, on the downthrown side of the Martinborough 

Fault (Figure 6.3). This relationship indicates that deformation immediately preceded the 

deposition of the Clay Creek Limestone, and that erosion in uplifted areas coincided with near-

continuous sedimentation in other areas. 

Foraminiferal biostratigraphy from this study shows that the base of the Clay Creek Limestone is 

of early Kapitean to possibly latest Tongaporutuan age. The base of the Kapitean stage has a 

calibrated age of 7.2 Ma (Raine et al., 2015), so the deformational event is inferred to have 

occurred prior to 7.2 Ma, and deformation is constrained to the older end of the 8 Ma-6 Ma 

possible age range identified by Nicol et al. (2002). 

In addition to movement on the Martinborough, Huangarua, and Mangaopari faults, this 

deformational episode caused the growth of folds throughout the Wairarapa, such as the 

Chester and Gladstone anticlines (Wells, 1989a, Cape et al., 1990, Nicol et al., 2002) (Figure 6.4). 

Deformation was associated with an erosional event which affected most of the Wairarapa, and 

removed up to a kilometre of sediment from the crests of anticlines (Wells, 1989a). It should be 

noted that Nicol et al. (2002) also correlated this shortening event with movement on the 
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Makara Fault; however, this study shows that the Makara Fault was associated with a separate, 

earlier deformational event. 

A comparison between the stratigraphy described in this study and the stratigraphy described by 

Wells (1989b) in the Carrington area, 45 km north of the present study area, suggests that the 

latest Miocene deformation event, while regionally widespread, was not isochronous. At 

Carrington, the Mangaoranga Formation records a history of subsidence throughout the late 

Miocene, from Tongaporutuan fluvial conglomerate and shallow marine sandstone to bathyal 

mudstone of Kapitean age. The Mangaoranga Formation is unconformably overlain by Hurunui 

Limestone, a poorly sorted sandy limestone containing pebbles and cobbles of basement-

derived, indurated sandstone and argillite, which is lower Opoitian in age (Wells, 1989b, Beu, 

1995). This indicates that uplift in the Carrington area took place during Kapitean rather than 

latest Tongaporutuan times. It is here suggested that crustal shortening in latest Miocene time 

progressed from south to north, or from southeast to northwest, across the Wairarapa, although 

more detailed study in other areas is needed in order to confirm this. 

Figure 6.3: Cross-section based on seismic data interpreted by Nicol et al. (2002), showing partly conformable and 
partly unconformable relationship between the Bells Creek Mudstone and Clay Creek Limestone. Modified from 
Nicol et al. (2002). 
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Figure 6.4: Cross-section showing the Chester Anticline, a buried fold in the western Wairarapa which was formed 
in late Miocene sediments during the latest Miocene episode of crustal shortening. From Cape et al. (1990). 

6.4.3 Deformation after the early Opoitian 

Regional subsidence in the Wairarapa continued through most of the Pliocene, but was 

punctuated by further episodes of crustal shortening which caused localised uplift. The presence 

of Waipipian Dyerville Limestone unconformably overlying Clay Creek Limestone at Saw Cut 

Gorge suggests that one such episode of localised uplift took place in the mid-Pliocene. This 

uplift event would have led to the removal of the Makara Greensand and Mangaopari Mudstone 

from above the Clay Creek Limestone at Saw Cut Gorge, and the deposition of shallow water 

limestone. The presence of a 6 m muddy greensand between the Haurangi and Dyerville 

Limestones in the Haurangi Hairpin section provides additional evidence for an episode of 

subsidence followed by uplift in late Opoitian or basal Waipipian times. 

An unconformity of this age is also present at Carrington, where the Waipipian Tea Creek 

Limestone Member of the Carrington Formation overlies bathyal Mangatarere Mudstone of 

Opoitian age (Wells, 1989b). The base of the Waipipian has a calibrated age of 3.7 Ma (Raine et 

al., 2015), so this deformational event predates the episode of deformation identified by Vella 

and Collen (1998) and Nicol et al. (2002) as occurring between 3.4 and 2.4 Ma, in mid-Waipipian 

to Mangapanian times. It is therefore likely that two episodes of deformation and localised uplift 

occurred in the Wairarapa area during mid- to Late Pliocene times. The earlier episode probably 

occurred in the late Opoitian or earliest Waipipian (ca. 4.3-3.6 Ma), prior to the deposition of the 

Dyerville and Tea Creek Limestones. Further investigation will be needed in order to identify 

faults and folds involved in this contractional episode. 

The later Pliocene deformational episode occurred after the deposition of the Spooner Tuff, 

which has an age of 3.44 Ma (Shane et al., 1995). This episode included movement on the 
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McLeod Fault and development of the McLeod Monocline (Vella and Collen, 1998), as well as 

renewed activity on the Mangaopari Fault and growth of the Mangaopari Anticline, creating the 

angular discordance between the Dyerville and Bull Creek Limestones (Nicol et al., 2002). The 

monocline in the Clay Creek Limestone at Paruwai (see Figure 4.4) may also have formed during 

this late Pliocene deformational episode. 

6.4.4 A depositional model for the Clay Creek Limestone 

Results from this study show that the Clay Creek Limestone has more characteristics in common 

with the Pliocene Te Aute limestones of Hawke’s Bay than previously thought, including an 

extremely variable stratigraphic thickness, and the presence of possible giant cross-beds at Saw 

Cut Gorge. However, other characteristics of the Clay Creek Limestone, such as its high degree of 

cementation, micritic cement, and inferred outer shelf depositional environment, set it apart 

from many younger Te Aute limestones. 

A conceptual model for the deposition of giant cross-bedded facies in the Te Onepu and 

Whakapunake Limestones of Hawke’s Bay was proposed by Kamp et al. (1988), and is illustrated 

in Figure 6.5. In this model, the giant cross-beds are interpreted as showing the basinward 

migration of a series of large bodies of coarse-grained carbonate sediment, which formed 

submarine deltas or fans on the flanks of basement antiforms. The crests of these antiforms 

acted as carbonate factories, supporting an assemblage of epifaunal bivalves, barnacles, and 

bryozoa. Saddles in the antiform ridges acted to focus strong tidal currents, which periodically 

entrained sand- and gravel-sized carbonate particles and transported them to deeper water.  

The giant cross-bedded facies of the Te Onepu and Whakapunake Limestones often overlies, or 

is contained within, limestone exhibiting smaller-scale cross-bedding, including bipolar cross-

beds. These are seen as evidence that carbonate fans were deposited in relatively shallow water, 

where they continued to be influenced by strong, bidirectional tidal currents (Kamp et al., 1988). 

Smaller-scale cross-bedding of this sort has not been observed in the Clay Creek Limestone, and, 

throughout the study area, the Clay Creek Limestone has been found to contain benthic 

foraminifera which are depth index species for the outermost shelf. In order to account for these 

key differences, a modified version of Kamp et al.’s (1988) depositional model is proposed for 

the Clay Creek Limestone. 

Like the Te Onepu and Whakapunake Limestones, much of the carbonate material in the Clay 

Creek Limestone was probably derived from exposed, tide-swept antiforms at inner to mid-shelf 

depths. This is supported by the abundance of Gaudryina convexa in the Clay Creek Limestone, 

as G. convexa is most abundant in shallow, exposed, current-swept marine environments 
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(Hayward et al., 2010). Material from these antiforms was entrained by tidal currents funnelled 

through saddles in the antiform crests, as proposed by Kamp et al (1988). However, the 

transport distance for carbonate sediment in the Clay Creek Limestone was greater than that for 

the Te Onepu and Whakapunake Limestones, and carbonate deltas and fans were deposited on 

the outer shelf, in lower-energy conditions than the Hawke’s Bay limestones. A greater transport 

distance accounts for the fragmentation and general poor preservation of shell material in the 

Clay Creek Limestone, when compared with many younger limestones of the Te Aute Lithofacies. 

Unlike the Hawke’s Bay limestones, the antiforms that acted as carbonate sources for the Clay 

Creek Limestone were part of a network of shoals and reefs around the fringes of an uplifted 

island of Torlesse basement. The abundant basement-derived pebbles and cobbles in the 

limestone are considered to have been eroded from this island and surrounding rocky reefs, and 

transported by the same mechanisms as the shell material, while finer-grained terrigenous 

sediment was transported further offshore and deposited in a bathyal environment. Reefs and 

shoals would also have sheltered parts of the island’s coast from powerful waves and currents. 

These sheltered bays on the margins of the Aorangi Island provided a secondary source of 

carbonate material, and are considered to be the source for the brachiopods, juvenile oysters, 

and bryoliths that are present in the Clay Creek Limestone. Shell material from these calmer-

water environments would have been transported to the outer shelf in storm events.  

Figure 6.5: Conceptual model for the deposition of giant cross-beds in the Te Onepu and Whakapunake Limestones 
of Hawke's Bay. Black arrows show the direction of tidal currents in the seaway, while open arrows show tidal flow 
through saddles and channels in antiform crests. From Kamp et al. (1988). 
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The Clay Creek Limestone is interpreted as having been deposited at water depths of between 

150 and 250 m. Coarse-grained skeletal carbonate platform deposits have been observed at 

depths of up to 250 m around New Zealand in the present day (Nelson et al., 1988). The Clay 

Creek Limestone in the Te Ahitaitai section, which is finer-grained than at other locations visited 

in this study, may represent a transitional facies between the coarse-grained, pebbly limestone 

found at localities to the west, and laterally equivalent finer-grained, deeper-water mudstone to 

the east. Rapid lateral and down-dip transitions from coarse-grained limestone to fine-grained 

terrigenous sediment are commonly observed in Te Aute Lithofacies limestones (Kamp et al., 

1988, Beu, 1995, Nelson et al., 2003), and similarly rapid transitions from carbonate to 

terrigenous sediment are frequently observed in modern shelf carbonates around New Zealand 

(Nelson et al., 1988, Beu, 1995). 
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Chapter 7 Conclusions 

7.1 Summary of work 

This project set out to reconstruct late Miocene-early Pliocene geological history in the northern 

Aorangi Range, and to place this in the wider context of the Neogene evolution of the southern 

Hikurangi Margin. In order to achieve this aim, sections were measured at four key localities, and 

detailed field mapping was carried out around Te Ahitaitai Ridge. Grain size and paleontological 

data, including macrofossils, foraminifera, and pollen, were used to interpret depositional 

environments for samples collected in the field. Foraminiferal biostratigraphy was used to 

constrain the age of samples. Data from this study were combined with previous authors’ work 

to produce a synthesis map and geological cross-sections for the Makara and Ruakokoputuna 

Valleys. An interpretation of late Miocene-early Pliocene stratigraphy and geological history has 

been presented, the timing and style of latest Miocene deformation have been constrained, and 

episodes of tectonic activity have been correlated with those previously recognised in other 

studies. 

7.2 Key findings 

The key findings of this study can be summarised as follows: 

• The late Miocene-early Pliocene succession in the study area records a history of

subsidence on the margins of an island of uplifted basement rock, showing a progression

from terrestrial to increasingly deep marine environments. Regional subsidence was

punctuated by episodes of crustal shortening which led to localised uplift and erosion in

parts of the study area.

• Two deformational episodes are identified in the late Miocene. The first, in the early

Tongaporutuan, is associated with movement on the Makara Fault. A second episode of

uplift is correlated with a regional deformation event which led to the growth of

contractional structures across the Wairarapa region (Wells, 1989a, Cape et al., 1990,

Nicol et al., 2002).

• Despite their contrasting lithologies, the Clay Creek Limestone and Bells Creek Mudstone

are partially laterally equivalent, and the overlying Makara Greensand is a diachronous

unit which ranges in age from Kapitean to early Opoitian.

• The partly conformable and partly unconformable relationship between the Clay Creek

Limestone and Bells Creek Mudstone indicates that deformation took place immediately

prior to the deposition of the Clay Creek Limestone at the beginning of the Kapitean
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stage. Deformation in the study area is therefore inferred to have taken place before 7.2 

Ma. 

• Major differences in stratigraphy have been identified between the upthrown and

downthrown sides of the Mangaopari Fault, which confirm that this fault was active

during the latest Miocene deformational episode.

• Carbonate content and basement-derived pebbles in the Clay Creek Limestone were

transported from high-energy coastal environments and deposited on the outer shelf. A

depositional model modified after Kamp et al. (1988) is proposed to explain the

presence of giant cross-beds in the Clay Creek Limestone.

• Lateral correlations can be made between the stratigraphy of this study area and other

locations with similar Neogene tectonic and paleoenvironmental histories in the

Wairarapa and broader East Coast Basin.

7.3 Suggestions for further study 

This study has highlighted several possible avenues for future work towards reconstructing the 

Neogene history of the East Coast Basin. These include: 

• Constraining the ages of the Makara Greensand, Bells Creek Mudstone, and Mangaopari

Mudstone at other localities in the Wairarapa, and re-evaluating the classification of the

Palliser and Onoke Groups, as results from this study have raised significant questions

regarding the current classification of these units.

• Searching for evidence of latest Miocene deformation in other parts of the Wairarapa

and wider East Coast Basin; constraining the age of deformation in different areas; and

determining whether deformation progressed from south to north, as proposed here.

• Determining whether the mid-Pliocene deformational episode identified in this study,

associated with the Dyerville Limestone, can be correlated in other locationss, and

whether it represents a localised or basin-wide event.

• Determining the extent to which the depositional model proposed here for the Clay

Creek Limestone can be applied to other limestones of the Te Aute Lithofacies,

especially to pebbly limestones such as the Owhaoko and Hururua Limestones, and to

cemented limestones with a significant mud component, such as the Haurangi and Bull

Creek Limestones.
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Appendix 1: Table of samples 

VUW locality number Sample number Location Coordinates Stratigraphic unit Date collected 
100903 HH1 Haurangi Hairpin, 20 cm above base of Clay Creek Limestone BQ33/001178 Clay Creek Limestone Feb-14 
100907 HH2 Haurangi Hairpin, middle of glauconitic mudstone BQ33/001178 Makara Greensand Feb-14 
100908 HH3 Haurangi Hairpin, middle of lower shelly greensand BQ33/001178 Makara Greensand Feb-14 
100913 07A Te Ahitaitai Ridge, bank next to farm track BQ34/064208 Makara Greensand Feb-14 
100914 TA1 Gully on eastern side of Te Ahitaitai Ridge, 2 m above conglomerate outcrops BQ34/066207 Sunnyside Conglomerate Feb-14 
100915 TA2 Gully on eastern side of Te Ahitaitai Ridge, 3 m below limestone outcrops BQ34/066207 Sunnyside Conglomerate Feb-14 
100916 18A True right of upper limestone gorge, Makara River, 5 cm below base of limestone BQ34/052178 Bells Creek Mudstone Feb-14 
100917 19A Homestead Creek, 10 m downstream from cave, 10 cm below base of limestone BQ34/057217 Bells Creek Mudstone Feb-14 
100918 23A Homestead Creek, 5 m upsteram from 19A BQ34/057217 Clay Creek Limestone May-14 
100919 24A Homestead Creek cave, limestone-basement contact BQ34/057217 Clay Creek Limestone May-14 
100920 25A Western side of Te Ahitaitai Ridge, 200 m north of Homestead Creek BQ34/059216 Clay Creek Limestone May-14 
100921 BC1 Bells Creek near White Rock Road, 60 cm below base of greensand BQ34/073218 Bells Creek Mudstone Nov-14 
100922 BC2 Bells Creek near White Rock Road, shellbed 80 cm above base of greensand BQ34/073218 Makara Greensand Nov-14 
100923 BC3 Bells Creek near White Rock Road, 3 m above shellbed BQ34/073218 Makara Greensand Nov-14 
100924 BC4 Bells Creek near White Rock Road, 40 cm below top of greensand BQ34/073218 Makara Greensand Nov-14 
100925 BC5 Bells Creek near White Rock Road, base of mudstone overlying greensand BQ34/073218 Mangaopari Mudstone Nov-14 
100926 28A Trributary on true left of Bells Creek, 20 cm siltstone interbed in conglomerate BQ34/071217 Sunnyside Conglomerate Nov-14 
100927 TA3 Gully on eastern side of Te Ahitaitai Ridge, 30 cm below limestone BQ34/066207 Sunnyside Conglomerate Nov-14 
100928 TA5 Gully on eastern side of Te Ahitaitai Ridge, 10 cm above top of limestone BQ34/066207 Mangaopari Mudstone Nov-14 
100929 TA4 Gully on eastern side of Te Ahitaitai Ridge, 1 mabove base of limestone BQ34/066207 Clay Creek Limestone Nov-14 
100931 CC1 QEII creek, Greycliffs station, 6.8 m above base of limestone BQ33/026195 Clay Creek Limestone Nov-14 
100932 CC2 QEII creek, Greycliffs station, 8.3 m above base of limstone BQ33/026195 Clay Creek Limestone Nov-14 
100933 CC3 QEII creek, Greycliffs station, 9.8 m above base of limestone BQ33/026195 Clay Creek Limestone Nov-14 
100934 CC4 QEII creek, Greycliffs station, 11.2 m above base of limestone BQ33/026195 Clay Creek Limestone Nov-14 
100935 CC5 QEII creek, Greycliffs station, 12.7 m above base of limestone BQ33/026195 Clay Creek Limestone Nov-14 
100936 CC6 QEII creek, Greycliffs station, 10 m above top of limestone BQ33/026195 Mangaopari Mudstone Nov-14 
100939 35A Saw Cut Gorge, 2 m above base of upper limestone BQ34/054190 ?Dyerville Limestone Feb-15 
100940 35B Saw Cut Gorge, 2 m below base of upper limestone BQ34/054190 Clay Creek Limestone Feb-15 
100946 TA6 Gully on eastern side of Te Ahitaitai Ridge, 1 m above top of limestone BQ34/066207 Bridge Sandstone Member Feb-15 
100947 TA7 Gully on eastern side of Te Ahitaitai Ridge, 3 m above top of limestone BQ34/066207 Bridge Sandstone Member Feb-15 



Appendix 2: Grain size data 

Per cent frequency table 

Sample -2 φ -1.5 φ -1 φ -0.5 φ 0 φ 0.5 φ 1 φ 1.5 φ 2 φ 2.5 φ 3 φ 3.5 φ 4 φ 4.5 φ 5 φ 5.5 φ 6 φ 6.5 φ 7 φ 7.5 φ 8 φ 8.5 φ 9 φ 9.5 φ 10 φ Rest 
CC6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.04 0.13 0.76 2.06 3.21 4.11 5.09 5.78 6.36 7.15 7.54 7.05 5.68 4.89 4.11 36.12 
TA1 0.00 0.00 0.43 0.48 0.86 1.69 2.73 3.76 7.04 12.09 16.96 8.66 5.40 2.52 2.03 2.75 2.91 2.61 2.42 2.42 2.38 2.38 2.09 1.71 1.75 12.00 
TA2 0.00 0.00 0.04 0.00 0.04 0.06 0.12 0.19 0.76 6.05 19.01 11.61 12.28 5.35 4.74 4.46 3.62 3.18 2.87 2.30 2.25 2.43 1.85 1.81 1.94 13.02 
TA3 11.68 4.33 3.94 4.40 3.42 3.44 2.71 1.65 1.50 1.64 3.63 8.01 4.33 1.07 1.53 1.56 1.38 1.65 1.61 1.83 1.74 1.87 1.92 1.78 1.74 25.64 
TA5 0.00 0.00 0.00 0.00 0.05 0.07 0.07 0.07 0.05 0.09 0.16 0.38 1.95 1.78 3.57 4.25 5.12 6.08 6.28 6.66 7.05 6.57 5.02 4.54 4.54 35.63 
TA6 0.00 0.00 0.00 0.27 0.31 0.38 0.44 0.47 0.45 0.44 0.67 5.70 17.99 13.32 10.66 10.87 6.30 3.63 2.42 2.10 2.10 1.65 1.46 1.65 1.46 15.20 
TA7 0.00 0.00 0.00 0.00 0.02 0.08 0.08 0.11 0.20 0.99 25.08 26.92 11.48 2.96 2.20 2.55 2.32 2.03 1.77 1.80 1.93 1.83 1.50 1.31 1.18 11.65 
07A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.15 0.13 0.15 0.25 0.87 0.58 0.88 2.44 3.52 4.10 5.27 5.57 6.06 6.74 5.96 5.37 5.57 46.30 
BC1 0.00 0.00 0.00 0.00 0.03 0.08 0.11 0.13 0.17 0.16 0.25 0.77 2.99 3.10 4.12 5.06 5.53 5.90 6.28 6.00 6.09 5.53 5.44 3.94 4.31 34.21 
BC5 0.00 0.00 0.00 0.00 0.02 0.03 0.07 0.18 0.25 0.18 0.13 0.13 0.15 0.03 0.69 2.47 3.56 4.65 4.05 5.04 6.72 7.02 6.72 5.73 6.03 46.16 
19A 0.00 0.00 0.00 0.09 0.09 0.07 0.13 0.15 0.20 0.31 0.54 2.20 5.50 6.94 4.58 5.27 5.34 5.34 5.34 5.50 5.90 5.66 4.85 4.13 3.88 28.07 
18A 0.00 0.00 0.00 0.09 0.07 0.11 0.22 0.29 0.44 0.51 1.04 3.00 4.95 4.20 2.16 1.75 2.41 2.49 3.16 3.99 5.57 6.65 6.56 6.15 5.98 38.22 

Summary statistics 

Sample Percentiles Graphic Moment 
1 5 16 25 50 75 84 95 Mean SD Skew Kurt Mean SD Skew Kurt 

CC6 4.01 4.81 6.05 6.80 8.56 10.63 11.14 11.76 8.58 2.33 -0.03 0.74 9.11 2.83 0.01 1.59 
TA1 -0.45 0.78 1.93 2.33 3.23 6.93 8.85 11.53 4.67 3.36 0.58 0.96 4.81 3.64 0.99 2.85 
TA2 1.87 2.31 2.73 2.97 3.99 7.14 9.23 11.80 5.32 3.06 0.63 0.93 5.49 3.31 1.10 2.94 
TA3 -2.46 -2.29 -1.50 -0.40 3.48 10.14 12.14 14.57 4.70 5.96 0.29 0.66 4.83 5.50 0.24 1.57 
TA5 3.51 4.54 5.84 6.60 8.48 10.67 11.23 11.92 8.52 2.46 -0.02 0.74 8.99 2.95 -0.06 1.76 
TA6 0.54 3.14 3.69 3.94 4.95 7.17 9.75 12.91 6.13 3.00 0.61 1.24 6.08 3.15 1.06 3.06 
TA7 2.26 2.57 2.79 2.97 3.44 6.01 8.41 12.06 4.88 2.84 0.79 1.28 5.02 3.20 1.46 3.75 
07A 3.63 5.39 6.77 7.58 9.67 10.96 11.36 11.86 9.27 2.13 -0.29 0.79 9.84 2.73 -0.42 1.92 
BC1 3.05 4.05 5.40 6.21 8.29 10.62 11.24 11.99 8.31 2.66 -0.03 0.74 8.74 3.09 -0.03 1.73 
BC5 3.56 5.59 6.93 7.75 9.68 10.85 11.21 11.65 9.27 1.99 -0.32 0.80 9.90 2.67 -0.47 2.15 
19A 2.44 3.61 4.48 5.40 7.70 10.23 10.91 11.75 7.70 2.84 0.00 0.69 8.11 3.23 0.13 1.80 
18A 1.75 3.37 4.75 6.70 9.03 10.61 11.02 11.52 8.27 2.80 -0.38 0.86 8.99 3.31 -0.43 2.04 
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Grain size histograms 
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Appendix 3: New Zealand Geological Timescale 
Stages for the Cenozoic Era, from Raine et al. (2015) 
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Appendix 4: Biostratigraphic data

HH1 
Foraminifera 
Gaudryina convexa 
Spiroplectinella proxispira 
Textularia barnwelli 
Textularia cf. kapitea 
Textularia cf. miozea 
Textularia cf. subrhombica 
Textularia sp. 
Siphotextularia sp. 
Lenticulina calcar 
Lagena striata 
Fissurina clathrata 
Fissurina spp. 
Favulina spp. 
Globigerinoides triloba 
Globigerina bulloides 
Globigerina falconensis 
Turborotalita quinqueloba 
Globoconella conomiozea 
Globoconella miotumida 
?Paragloborotalia sp. 
Neogloboquadrina cf. acostaensis 
Neogloboquadrina pachyderma 
Orbulina universa 
Bolivina petiae 
Rectobolivina striatula 
Rectobolivina parvula 
Cassidulina laevigata 
Cibicides deliquatus 
Cibicides finlayi 
Trifarina bradyi 
Cibicides molestus 
Discorbinella ?complanata 
Cassidulina carinata 
Planulina sp. 
Laticarinina altocamerata 
Pileolina cf. zelandica 
?Rosalina sp. 
Melonis sp. 
?Zeaflorilus parri 
Notorotalia cf. finlayi 

Notorotalia taranakia 
Mollusca 
Pectinidae indet. 
Crassostrea ingens 
Juvenile Osteridae indet. 
Brachiopoda 
Notosaria nigricans 
Neothyris sp. 
Micro brachiopods indet. 
Other 
Barnacle plates 
Bryozoa (bryoliths) 
Ostracods 

HH2 
Foraminifera 
Karreriella ?cylindrica 
Martinottiella communis 
Siphotextularia wairoana 
Haeuslerella morgani 
Haeuslerella pliocenica 
Textularia spp. 
Sigmoilopsis schlumbergi 
Spiroloculina communis 
Amphicoryna hirsuta 
Laevidentalina communis 
Nodosaria acuminata 
Dentalina spp. 
Neugeborina longiscata 
Mucronina sp. 
Lenticulina calcar 
Lagena cf. desmorphora 
Lagena striata 
Lagena laevis 
Fissurina earlandi 
Favulina hexagona 
Fissurina spp. 
Globoconella puncticulata 
Globigerina falconensis 
Neogloboquadrina pachyderma 
Neogloboquadrina deutertrei 
Globoconella pliozea 
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Orbulina suturalis 
Globigerinoides triloba 
Globigerina sp. 
Globigerina bulloides 
Globigerinita glutinata 
Turborotalita quinqueloba 
Rectobolivina striatula 
Bolivina affiliata 
Bolivina watti 
Bolivina parri 
Cassidulina carinata 
Globocassidulina subglobosa 
Globocassidulina cuneata 
Ehrenbergina mestayerae 
Bulimina aculeata 
Uvigerina cf. mioschwageri 
Uvigerina ?delicatula 
Uvigerina cf. zeacuminata 
Neouvigerina bellula 
Trifarina bradyi 
Sphaeroidina bulloides 
Laticarinina altocamerata 
Laticarinina sp. 
Cibicides deliquatus 
Cibicides molestus 
Dyocibicides biserialis 
Nonionella cf. magnalingua 
Gyroidina soldanii 
Pullenia bulloides 
?Osangularia bengalensis 
Discorbinella bertheloti 
?Anomalinoides sphericus 
Anomalinoides sp. 
Pullenia quinqueloba 
Planulina sp. 
Astrononion cf. stelligerum 
Notorotalia cf. finlayi 
Notorotalia cf. zelandica 
Notorotalia cf. rotunda 
Other 
Ostracods 
Barnacle plates 
Fish scales 
Bryozoa 

HH3 
Foraminifera 
Gaudryina convexa 
Sigmoidella pacifica 
Bifarilaminella advena 
Amphicoryna hirsuta 
Globoconella pliozea 
Globoconella puncticulata 
Globoconella cf. inflata 
Globigerinita glutinata 
?Paragloborotalia sp. 
Globigerina bulloides 
Globigerina falconensis 
Orbulina suturalis 
Neogloboquadrina pachyderma 
Turborotalita quinqueloba 
Bolivina cf. vellai 
Rectobolivina striatula 
Globocassidulina cuneata 
Globocassidulina subglobosa 
Ehrenbergina mestayeri 
Bulimina aculeata 
Uvigerina ?delicatula 
Patellinella inconspicua 
Cibicides deliquatus 
Gyroidina soldanii 
Cibicides molestus 
?Alabaminella weddellensis 
Planulina sp. 
?Dyocibicides sp. 
Notorotalia taranakia 
Cassidulina laevigata 
Rotaliina indet., various 
Other 
Ostracods 
Talochlamys gemmulata (bored) 
Neothyris sp. 

TA3 
Foraminifera 
Globigerina bulloides 
Neogloboquadrina pachyderma 
Globoconella cf. miotumida 
Bolivina petiae 
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Rectobolivina striatula 
?Quinqueloculina sp. 
Cassidulina carinata 
Globocassidulina cuneata 
Trifarina bradyi 
Cibicides deliquatus 
Cibicides molestus 
Gyroidina soldanii 
?Cibicides sp. 
Other 
Bryozoan fragmenta 
Sponge spicules 
Shark teeth 

TA4 
Foraminifera 
Gaudryina convexa 
Textularia kapitea 
Textularia spp. 
?Martinottiella sp. 
Corunspira sp. 
Sigmoidella sp. 
Dentalina sp. 
?Nodosaria vertebralis 
Lenticulina calcar 
Saracenaria latifrons 
Favulina hexagona 
Fissurina cf. orbignyana 
Fissurina sp. 
Globoconella miotumida 
Globoconella conomiozea 
Neogloboquadrina pachyderma 
Globigerina bulloides 
Globigerina falconensis 
Zeaglobigerina woodi 
?Paragloborotalia sp. 
Bolivina watti 
Bolivina parri 
Bolivina sp. 
Rectobolivina striatula 
Rectobolivina parvula 
Cassidulina carinata 
Ehrenbergina sp. 
Ehrenbergina cf. mestayeri 

Uvigerina ?delicatula 
Trifarina bradyi 
Patellinella inconspicua 
Cibicides deliquatus 
Cibicides molestus 
Dyocibicides sp. 
Pileolina sp. 
Nonionella flemingi 
Gyroidinoides zelandica 
Rosalina sp. 
Planulina sp. 
Elphidium novozealandicum 
Notorotalia ?hurupiensis 
?Neoconorbina sp. 
Other 
Ostracods 
Bryozoan fragments 
Sponge spicules 

TA5 
Foraminifera 
Gaudryina convexa 
?Siphotextularia sp. 
Nodosaria longiscata 
Mucronina advena 
Parafrondicularia antonina 
Lenticulina calcar 
Amphicoryna hirsuta 
Nodosaria vertebralis 
Zeaglobigerina woodi 
Globoconella puncticulata 
Truncorotalia crassaformis 
?Paragloborotalia sp. 
Globigerina bulloides 
?Tenuitellinata angustiumbilicata 
Turborotalita quinqueloba 
Neogloboquadrina pachyderma 
Globigerinita glutinata 
Bolivina spathulata 
Bolivina watti 
Bolivina affiliata 
Ehernbergina mestayeri 
Bulimina striata 
Cassidulina laevigata 
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Globocassidulina cuneata 
Globocassidulina subglobosa 
Bulimina aculeata 
Uvigerina ?delicatula 
Uvigerina cf. zeacuminata 
Uvigerina cf. mioschwageri 
Trifarina bradyi 
Neouvigerina bellula 
Neouvigerina eketahuna 
Stilostomella sp. (spined var.) 
Sphaeroidina bulloides 
Cibicides molestus 
Laticarinina pauperata 
Cibicides finlayi 
Cibicides deliquatus 
Anomalinoides parvumbilia 
Gyroidina soldanii 
Melonis sp. 
Pullenia bulloides 
Nonionella novozelandica 
Notorotalia depressa 
Planulina sp. 

07A 
Foraminifera 
Textularia sp. 
?Haeuslerella sp. 
Nodosaria sp. 
Lagena cf. laevis 
?Saracenaria sp. 
Globoconella puncticulata 
Truncorotalia crassaformis 
Neogloboquadrina pachyderma 
Zeaglobigerina woodi 
Orbulina universa 
Globigerina bulloides 
Globigerinita glutinata 
Bolivina cf. affiliata 
Bolivina sp. 
Chilostomella ovoidea 
Ehrenbergina sp. 
?Uvigerina sp. 
Sphaeroidina bulloides 
Nonionella sp. 

Pullenia quinqueloba 
?Cassidalinoides orientalis 
Bolivinita sp. 
Various indet. 

BC1 
Foraminifera 
Siphotextularia sp. 
Textularia cf. miozea 
?Dentalina sp. 
Mucronina subtregonata 
Neugeborina longiscata 
Parafrondicularia antonina 
Stilostomella sp. (spined var.) 
Lenticulina calcar 
Saracenaria latifrons 
Amphicoryna hirsuta 
Globoconella miotumida 
Globigerina bulloides 
Zeaglobigerina woodi 
Globigerinita uvula 
Globigerinita glutinata 
Bolivina affiliata 
Bolivina parri 
Bolivina spathulata 
Cassidulina cuneata 
Bolivina petiae 
Bolivina vellai 
Bolivinita pohana 
Bulimina striata 
Uvigerina ?delicatula 
Uvigerina cf. zeacuminata 
Uvigerina cf. mioschwageri 
Neouvigerina eketahuna 
Trifarina bradyi 
Trifarina angulosa 
Sphaeroidina bulloides 
Cibicides deliquatus 
Cibicides finlayi 
Cibicides sp. 
Nonionoides turgida 
Pullenia bulloides 
Pullenia quinqueloba 
Melonis sp. 
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Anomalinoides cf. subnonionoides 
Gyroidinoides zelandica 
Gyroidina soldanii 
Spores, pollen, etc. 
Nothofagidites type 
Lateropora type 
Fungal spore 
Plant debris 
Insect parts 
Other 
Otoliths 

BC2 
Foraminifera 
Textularia cf. kapitea 
Martinottiella communis 
Siphotextularia cf. awamoana 
Haeuslerella morgani 
Karreriella sp. 
Nodosaria sp. 
Plectofrondicularia pohana 
Stilostomella sp. (spined var.) 
Lenticulina loculosa 
Lenticulina calcar 
Lenticulina orbicularis 
Globoconella miotumida 
Globoconella conomiozea 
Neogloboquadrina pachyderma 
Turborotalita quinqueloba 
Globigerinita glutinata 
Globigerinoides triloba 
Zeaglobigerina woodi 
Bolivina affiliata 
Bolivina watti 
Rectobolivina striata 
Rectobolivina parvula 
Bolivinita pohana 
Cassidulina carinata 
Cassidulina laevigata 
Globocassidulina subglobosa 
Ehrenbergina sp. 
Uvigerina ?delicatula 
Neouvigerina eketahuna 
Trifarina bradyi 

Cibicides finlayi 
Cibicides deliquatus 
Dyocibicides biserialis 
Cibicides molestus 
Cibicides cf. subhadingeri 
Gavelinopsis praegeri 
Gyroidina soldanii 
?Anomalinoides sphericus 
Anomalinoides parvumbilia 
Pullenia bulloides 
Planulina sp. 
Notorotalia sp. 
Rotaliina indet. various 
Hoeglundina elegans 
Mollusca 
Tucetona laticostata 
Mesopeplum sp. 
Purpurocardia sp. 
Brachiopoda 
Notosaria nigricans 
Neothyris ovalis 

BC3 
Foraminifera 
Karreriella cushmani 
Karreriella cylindrica 
Martinottiella communis 
Haeuslerella pliocenica 
Textularia spp. 
?Nodosaria vertebralis 
Dentalina spp. 
Parafrondicularia antonina 
Lenticulina peregrina 
?Marginulina sp. 
Stilostomella sp. (spined var.) 
Lenticulina loculosa 
Lenticulina calcar 
Lenticulina sp. 
Lenticulina ?anaglypta 
?Amphicoryna hirsuta 
?Pseudonodosaria sp. 
Globoconella puncticulata 
Globoconella pliozea 
Globoconella cf. conomiozea 
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Neogloboquadrina pachyderma 
Neogloboquadrina cf. acostaensis 
Orbulina universa 
Globigerina bulloides 
Globigerinita glutinata 
Bolivina affiliata 
Bolivina watti 
Uvigerina ?delicatula 
Uvigerina cf. zeacuminata 
Uvigerina ?rodleyi 
Neouvigerina eketahuna 
Trifarina bradyi 
Sphaeroidina bulloides 
Laticarinina pauperata 
Cibicides molestus 
Cibicides deliquatus 
Anomalinoides subnonionoides 
Anomalinoides parvumbilia 
Notorotalia sp. 
Rotaliina indet. 

BC4 
Foraminifera 
Karreriella cylindrica 
Textularia cf. lythostrota 
Siphotextularia sp. 
Karreriella bradyi 
Textularia spp. 
Sigmoilopsis schlumbergi 
Laevidentalina communis 
Stilostomella sp. (spined var.) 
Nodosaria sp. 
Dentalina sp. 
Laevidentalina sp. 
Lenticulina loculosa 
Nodosaria longiscata 
Nodosaria vertebralis 
Mucronina advena 
Amphicoryna hirsuta 
Fissurina submarginata 
Globoconella puncticulata 
Truncorotalia crassaformis 
Neogloboquadrina pachyderma 
Neogloboquadrina cf. acostaensis 

?Paragloborotalia sp. 
Globoconella cf. sphericomiozea 
?Tenuitellinata angustiumbilicata 
Globigerinella cf. obesa 
Globigerina falconensis 
Globigerina bulloides 
Zeaglobigerina woodi 
Globigerinita glutinata 
Bolivina cf. vellai 
Pleurostomella alternans 
Uvigerina delicatula 
Cassidulina carinata 
Bulimina aculeata 
Bulimina striata 
Trifarina bradyi 
?Rosalina bradyi 
Sphaeroidina bulloides 
Neouvigerina eketahuna 
Neouvigerina bellula 
Laticarinina pauperata 
Patellinella inconspicua 
Laticarinina altocamerata 
Cibicides refulgens 
Cibicides pachyderma 
Cibicides deliquatus 
Cibicides molestus 
Melonis sp. 
Pullenia bulloides 
Anomalinoides parvumbilia 
Oridosalis umbonatus 
?Cibicides sp. 
Notorotalia cf. finlayi 
Notorotalia sp. 
Gyroidinoides zelandica 

BC5 
Foraminifera 
Martinottiella communis 
Karreriella cylindrica 
Textularia spp. 
Sigmoilopsis schlumbergi 
Dentalina sp. 
Mucronina hasta 
Parafrondicularia antonina 



99 

Amphicoryna hirsuta 
Stilostomella sp. (spined var.) 
Lagena spp. 
Globoconella puncticulata 
?Paragloborotalia sp. 
Turborotalita quinqueloba 
Hirsutella cf. scitula 
Globigerinita glutinata 
Globigerina bulloides 
Globigerina falconensis 
?Tenuitellinata angustiumbilicata 
Globigerinoides triloba 
Globigerinita uvula 
?Globorotalia spp. 
Bolivina affiliata 
Bolivina spathulata 
Bolivina compressa 
Cassidulina carinata 
Globocassidulina cuneata 
Bulimina striata 
Bulimina aculeata 
Uvigerina delicatula 
Uvigerina cf. mioschwageri 
Trifarina bradyi 
Neouvigerina eketahuna 
Hoeglundina elegans 
Cibicides molestus 
Pullenia bulloides 
Pullenia quinqueloba 
Laticarinina altocamerata 
Planulina sp. 
Cibicides dispars 
Nonionella sp. 
Astrononion parki 
Astrononion ?stelligerum 
Siphonina sp. 
Rotaliina indet. various 

28A 
Spores, pollen, etc. 
Nothofagidites type 
Asteraceae type 
Rubiaceae type 
Myrtaceae type 

Assamiapollenites type 
Haloragacidites type 
Monosulcites type 
Kuylisporites type 
Liliacidites type 
Swamp types (abundant) 
Podocarpaceae type 
Proteacidites type  
Tricolpites type 
Tetrad type 
Fagaceae type 
Apiaceae type 
Plant debris 

19A 
Foraminifera 
Karreriella cylindrica 
Martinottiella communis 
Siphotextularia awamoana 
Siphotextularia subcylindrica 
Siphotextularia cf. ihungia 
Siphotextularia sp. 
Haeuslerella morgani 
Haeuslerella parri 
Textularia miozea 
Textularia spp. 
Spiroloculina sp. 
Biloculina sp. 
Dentalina sp. 
?Nodosaria vetrebralis 
Nodosaria sp. 
Lenticulina peregrina 
Lenticulina calcar 
Lenticulina cultrata 
Amphicoryna hirsuta 
Lagena spiratiformis 
Fissurina sp. 
Favulina melo 
Globoquadrina dehiscens 
Globoconella miotumida 
Globoconella cf. conomiozea 
Truncorotalia cf. juanai 
Neogloboquadrina pachyderma 
Neogloboquadrina cf. acostaensis 
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Globigerina bulloides 
Globigerina falconensis 
Globigerinoides triloba 
?Paragloborotalia sp. 
Zeaglobigerina woodi 
Hirsutella scitula 
Zeaglobigerina nepenthes 
Turborotalita quinqueloba 
Globigerinita uvula 
Orbulina suturalis 
Orbulina universa 
Bolivina spathulata 
Bolivina parri 
Bolivina minuta 
Bolivina affiliata 
Bolivina albatrossi 
Boilvinita pohana 
Bolivinita quadrilatera 
Fursenkoina vellai 
Cassidulina carinata 
Globocassidulina subglobosa 
Cassidulina laevigata 
Bulimina striata 
Trifarina bradyi 
Uvigerina cf. pliozea 
Neouvigerina eketahuna 
Chilostomella ovoidea 
Cibicides deliquatus 
Cibicides molestus 
Discorbinella rarescens 
Astrononion parki 
Planulina sp. 
Melonis sp. 
Pullenia bulloides 
Anomalinoides subnonionoides 
Anomalinoides parvumbilia 
Grroidinoides zelandica 
Notorotalia finlayi 
Notorotalia taranakia 
Rotaliina indet., various 
Hoeglundina elegans 
Spores, pollen, etc. 
Cyathea type 
Lycopodium type 
Monolete fern 

Centrolepis type 
Pimelea type 
Nothofagidites type 
Fungal spores 
Plant debris 
Other 
Ostracods including Bradleya sp. 
Gastropoda indet. 
Otoliths 

24A 
Foraminifera 
Gaudryina convexa 
Spiroplectinella proxispira 
Textularia sp. 
Siphotextularia wairoana 
Corunspira sp. 
?Marginulina sp. 
Lagena striata 
Fissurina cf. orbignyana 
Fissurina sp. 
Globigerina falconensis 
Globigerinita uvula 
?Paragloborotalia sp. 
Globigerinita glutinata 
Globigerinoides triloba 
Hirsutella cf. scitula 
Bolivina subspinescens 
Bolivina watti 
Bolivina sp. 
Bolivina affiliata 
Cassidulina carinata 
Cassidulina laevigata 
Globocassidulina subglobosa 
Trifarina bradyi 
Patellinella inconspicua 
Cibicides molestus 
Cibicides cf. novozelandicus 
Cibicides finlayi 
Cibicides deliquatus 
Cibicides sp. 
Gyroidinoides zelandica 
Dyocibicides biserialis 
Planulina sp. 
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Nonionella sp. 
Rosalina sp. 
Siphonina sp. 
Anomalinoides cf. subnonionoides 
Astrononion parki 
Nonionella flemingi 
Rotaliina indet., various 

23A 
Foraminifera 
Gaudryina convexa 
Textularia cf. pseudogramen 
Migros cf. medwayensis 
Textularia kapitea 
Spiroplectinella proxispira 
Tectularia barnwelli 
Textularia spp. 
Lenticulina calcar 
Lenticulina orbicularis 
Fissurina spp. 
Globigerina falconensis 
Pileolina spp. 
Cibicides deliquatus 
Cibicides molestus 
Cibicides sp. 
Rosalinidae indet. 
Melonis sp. 
Anomalinoides parvumbilia 
Laticarinina altocamerata 
Cassidulina laevigata 
Planulina sp. 
Rotaliina indet. Various 
Mollusca 
Mesopeplum crawfordi 
Crassostrea ingens 
Fissidentalium solidum (not collected) 
Other 
Micro-brachiopods 
Ostracods 

25A 
Mollusca 
Mesopeplum burnetti 

35B 
Foraminifera 
Gaudryina convexa 
Spiroplectinella proxispira 
Haeuslerella morgani 
Lenticulina sp. 
?Spirillina sp. 
Fissurina cf. submarginata 
Truncorotalia juanai 
Globoconella miotumida 
Globoconella cf. conomiozea 
Turborotalita quinqueloba 
Neogloboquadrina pachyderma 
Globigerina bulloides 
Globigerinoides triloba 
Bolivina spathulata 
Bolivina subspinescens 
Bolivina watti 
Rectobolivina striatula 
Cassidulina laevigata 
Cassidulina carinata 
Ehrenbergina cf. marwicki 
Trifarina bradyi 
Cibicides deliquatus 
Dyocibicides biserialis 
Cibicides finlayi 
Cibicides molestus 
?Rosalina sp. 
Elphidium novozealandicum 
Rotaliina indet., various 
Hoeglundina elegans 

35A 
Foraminifera 
Lenticulina sp. 
Mollusca 
Phialopecten marwicki 
Other 
Barnacle plates 
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18A 
Foraminifera 
Karreriella cylindrica 
Haeuslerella morgani 
Sigmoilopsis schlumbergi 
Nodosaria spp. 
Laevidentalina communis 
Stilostomella sp. (spined var.) 
Lenticulina calcar 
Saracenaria italica 
Globoconella conomiozea 
Globoconella cf. miotumida 
Truncorotalia cf. juanai 
Globigerina bulloides 
Zeaglobigerina woodi 
Globigerinoides triloba 
Globigerinita glutinata 
Globigerina falconensis 
?Tenuitellinata angustiumbilicata 
Neogloboquadrina pachyderma 
Bolivina affiliata 
Bolivina cf. petiae 
Bolivina watti 
Bolivinita pliozea 
Cassidulina laevigata 
Globocassidulina cuneata 
Ehrenbergina cf. mestayeri 
Bulimina striata 
Bulimina aculeata 
Uvigerina ?delicatula 
Uvigerina cf. mioschwageri 
Uvigerina cf. zeacuminata 
Neouvigerina eketahuna 
Siphouvigerina proboscidea 
Trifarina bradyi 
Patellinella inconspicua 
Cibicides deliquatus 
Cibicides finlayi 
Cibicides molestus 
Pullenia quinqueloba 
Pullenia bulloides 
Planulina sp. 
Gyroidinoides zelandica 
Gyroidina soldanii 

Cibicides sp. 
?Nonionoides grateloupi 
Dentalina sp. 
Pleurostomella alternans 
Notorotalia sp. 
Notorotalia taranakia 
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