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ABSTRACT 
 

Alzheimer’s disease (AD) is a neurodegenerative disease that is responsible for 

50-80% of dementia cases and is characterised by lack of visuospatial perception, 

impairment of language and memory. One of the main physiological attributions 

towards this disease is the accumulation of large insoluble deposits of amyloid beta, a 

toxic peptide, which results in the generation of amyloid plaques found in between 

neurons in the brain. Currently no therapeutic treatments are available. Clusterin (CLU) 

is an apolipoprotein that when defective is the second highest genetic risk factor for AD. 

It has been strongly debated whether CLU counteracts or promotes AD pathology. With 

the roles of CLU including but not limited to acting as a chaperone for cholesterol 

transport and aiding autophagy functionality in cancer models, this thesis investigates 

these two specific functionalities by overexpressing CLU in an in vitro SH-SY5Y and in an 

in vivo AD model of Drosophila melanogaster (fruit fly). Conclusions from this study 

reveal that within D. melanogaster, CLU reduced Aβ42 levels and increased 

cholesterol effect through the blood brain barrier. Additionally, in human cells, 

CLU ameliorated the defective flux in autophagy. This thesis sheds light into how 

CLU plays a protective role within an Alzheimer’s disease mammalian system.  
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Alzheimer’s disease 
 
In 2015, there are currently 47.5 million people who live with dementia and 

within the year, 7.7 million new cases will occur.  In 2030, it is estimated that the 

total number of people with dementia will rise to 75.6 million people. 

Alzheimer’s disease (AD) is a terminal neurodegenerative disorders that is 

estimated to contribute 60-70% of dementia cases153. 

  Unfortunately, no long term therapeutic treatments are currently available153. 

Even though AD manifests as a form of dementia in the elderly with diagnosis of 

the disease typically occurring around the age of 652, this disease is not an 

underlying cause that naturally affects ageing processes. The progression rate of 

the AD is variable, but usually occurs over a decade3.  

 Characterisation of the disease includes lack of visuospatial perception 

and impairment of language function and memory. In the late stages of AD, 

motor abnormalities become increasingly common as simple activities carried 

out on a daily basis are severely impaired3. Physiological attributes associated 

with AD include the development of intracellular neurofibrillary tangles in the 

hippocampus, particular subcortical nuclei, cortex and amygdala3, loss of 

function of neurons and synapses, and the build-up of senile plaques4 Prior head 

trauma is also a factor that can contribute to the pathogenesis of AD4. With the 

key contributor of the disease being the accumulation of amyloid plaques in the 

brain, the dynamics of how this mechanism in AD leads up to such a severe 

degenerative state within the brain is poorly understood5 . There are two 

different modalities of acquiring this particular form of dementia: familial and 

sporadic5. In familial AD, amyloid precursor proteins (APP) undergo two separate 

types of cleavage (the first cleavage is though β-secretase and the second by γ-

secretase) resulting in amyloid beta (Aβ) fragments which is a component of the 

amyloidogenic pathway (Figure 1), with sporadic consisting the remainder of AD 
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cases. It should be noted that alongside plaque accumulation within the body, 

neurofibrally tangles (NFTs) made up of hyperphosphorylated tau protein are 

also a key contributor to the disease. Tau destabilises microtubules, which also 

contribute to neuronal death. It is believed that amyloid beta accumulation leads 

to NFTs, however other studies question this hypothesis, and instead postulate 

that the leading cause of AD is actually the inverse, with the presence of tau 

pathology occurring before amyloid plaque deposits. 

 The negative implications of Aβ oligomer generation includes the 

hindrance of long-term potentiation of the hippocampus, obstruction of synaptic 

function and oxidative stress, and inflammatory stress generated by deposited 

and aggregated Aβ. This in turn leads to neurotransmitter impairments and loss 

of cognitive function as the disease develops6 5.  

Approximately 1% of AD cases is considered familial and portray autosomal 

dominant inheritance6. 

Figure 1.1: Processing of APP by non-amyloidogenic and amyloidogenic pathways 
(Figure taken from Del Prete et al, 2014). Amyloid precursor protein (APP) can be 
processed by alpha, beta and gamma secretases into fragments which are readily 
cleared from the body or fragments which promote neurotoxicity and lead to 
detrimental downstream effects that accelerate the ageing process in the body. In 
the non-amyloidogenic pathway, APP is processed by alpha and gamma secretase to 
produce amyloid precursor protein intracellular domain (AICD), p3 and sAPP-alpha 
which are all degraded and cleared from the body. However in the amyloidogenic 
pathway, gamma secretase cleaves APP, but alpha-secretase cleavage is replaced by 
beta-secretase. This results in toxic fragments known as amyloid beta. These plaques 
build up in the body and contribute to a neurodegenerative state. 
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 The amyloid cascade hypothesis states that the balance between these 

two processes of amyloid build up and clearance is a crucial cycle that needs to 

be maintained in order to avoid plaque build-up7. The familial form of AD has 

been linked to mutations found in the following genes: APP on chromosome 21, 

presenilin 1 (PSEN1) on chromosome 14 and presenilin 2 (PSEN2) on 

chromosome 13,7. These three genes are identified as the causative agents 

contributing approximately 30-50% of early onset familial AD3. 

However, the majority of the disease links to the late-onset sporadic AD 

(LOAD) that is a consequence of multiple underlying factors7.  The number one 

risk factor is the ϵ4 allele of the apolipoprotein E (APOE) gene on chromosome 

143,7. Further studies have confirmed this finding as APOE being a main 

determinant in the contribution to lowering the age of onset (68 instead of 84) of 

the disease as well as increasing the risk of AD (20% to 90%)7. If an individual 

possesses one copy of the ϵ4 allele, the extra copy could potentially increase the 

development of AD from two to five fold. If two copies of the allele are obtained, 

the probability of increasing the disease further increases to above a five-fold 

probability3.  

 Previous studies by Lambert et al. (2013), used genome wide association 

study (GWAS) analyses to determine other genetic variants and factors 

contributing to the disease. The three major variants that were identified in the 

clusterin (CLU) gene (on chromosome 8) , the complement component (3b/4b) 

receptor 1 (CR1) gene (on chromosome 1) and the phosphatidylinositol binding 

clathrin assembly (PICALM) gene (on chromosome 11)3,7. Other genes which 

have been found to play a role in Alzheimer’s disease, but to a lesser extent, 

include bridging integrator 1 (BIN1) gene and sortilin-related receptor 1 (SORL1) 

gene3
. Within GWAS studies, CLU, CRI and PICALM are identified in every hit 

whilst BIN1 and SORL1 are not necessarily produced in every study. As the APOE 

ε4 is another gene heavily implicated as the top genes being involved in AD, 

APOE ε4 general role in cholesterol homeostasis had lead scientists to examine 

the role of cholesterol in AD3. 
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1.2 Cholesterol and lipid metabolism in Alzheimer’s disease 

 
Even though the brain consists 2% of an individual’s total body mass, the 

brain holds approximately 25% of the total body cholesterol3. Cholesterol in the 

brain exists mainly in the membranes of neurons and glial cells, as well as in 

myelin sheaths in an unesterified form4. Cholesterol metabolism is pivotal to 

synaptic plasticity and neuronal development. Other critical mechanisms that 

cholesterol regulates include regulation of neurotransmitter release, neurite 

outgrowth, formation of synapse, and synaptic vesicle transport3. In previous 

studies of the brain examining cholesterol regulation, it has been concluded that 

Figure 1.2: Cholesterol and APOE in regulation of amyloid beta fragments 
Figure taken from (Paolo and Kim, 2011). Cholesterol in the brain is supplied 
through either de novo synthesis from the endoplasmic reticulum, (ER) or from 
outside of the brain in the form of high-density lipoproteins (HDLs) which due to 
their size can pass through the blood brain barrier. Larger lipoproteins such as 
very low-density lipoprotein and low density lipoprotein (VLDL/LDL) can’t pass. 
However it should be noted that when LDL receptors are upregulated, plaque 
clearance is dramatically increased (Kim et al, 2009). HMG-CoA mediates the 
cholesterol biosynthesis from the ER, whereas ACAT converts free cholesterol to 
cholesterol esters for storage. When HMG-CoA and ACAT activity are blocked, 
amyloid beta peptide levels are lowered. APOE linked to HDLs bind to LRP 
receptor and aids clearance of amyloid beta peptides, whereas free APOE has the 
opposite effect, in that it aids plaque aggregation. Note that Aβ peptides are 
generated in the lumen of neuronal organelles, whereas peptides are drawn in 
the diagram in the cytoplasm for simplicity.  
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a balance between cholesterol esters and free cholesterol is vital in controlling 

amyloidogenesis4.  

 Cholesterol plays an important part contributing to AD. Abnormally high 

levels of cholesterol have been found in the cores of mature Aβ plaques in post-

mortem brains of AD patients. These findings have also been reproduced in an 

AD mouse models expressing the Swedish APP mutation (TgAPPSw line 2576)9, 

with both high cholesterol and Aβ absent from normal controls. These results 

Figure 1.3: Lipid mechanisms that influence APP processing. 
Figure taken from (Paolo and Kim, 2011). a. APP is embedded in lipid rafts and 
processing primarily occurs at this site by beta and gamma secretases to produce 
amyloid beta peptides. Cholesterol and LRP encourages BACE1 localisation and 
cleavage in lipid rafts. GGPP (geranylgenranyl pyrophosphate) influences localisation 
of gamma secretase with lipid rafts. b. Alpha secretase also acts on APP within lipid 
rafts through the non-amyloidogenic pathway. Alpha-secretase preferentially cleaves 
in a non-lipid raft environment. Other factors that promote and contribute to the non-
amyloidogenic pathways include  phospholipase C (PLC), diaglycerol and isoprenoids. 
c. Particular lipids (shown in the blue boxes) act on BACE and gamma secretase 
activity. When ceramide and cholesterol increase, BACE1 activation as well as 
cholesterol and sphingolipid levels increases activity of gamma secretase. However, 
phospholipase D1 PLD1 and sphingomyelinase SMase negatively regulate gamma-
secretase levels.  
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suggest unusual cholesterol metabolism in the brain which may contribute to AD 

pathology.  

 The association between cholesterol, APP processing and amyloid beta 

regulation in AD has been investigated primarily through regulating diet in in 

vitro and in vivo models. The first experiment that displayed this association 

illustrated that within rabbit hippocampal neurons, when fed for high-cholesterol 

during a four week period, amyloid beta generation is enhanced10. Whilst one 

approach concentrates on upregulating cholesterol for experimental 

investigations into APP-mediated lipid metabolism, pharmacological drugs have 

also been used to study effects on APP and amyloid beta in a lowered 

lipid/cholesterol environment. Cholesterol drugs include, but are not limited to, 

simvastatin11,12, BM15.76613, lipitor 14 and lovastatin15 which also have effects in 

other cholesterol diseases such as atherosclerosis and diabetes.      

 Complementary to the studies above that regulated cholesterol levels 

through either diet or drugs to study the effects of cholesterol in AD, additional 

experiments have focused on manipulating gene expression within genetic 

models that control cholesterol homeostatic processes. 

 As mentioned above, APOE, a regulator of cholesterol metabolism in the 

brain, is the top genetic risk factor for AD. APOE also systemically regulates 

triglyceride metabolism in the body4. In the brain, APOE aids in the uptake of 

lipoprotein particles through three receptor channels: the very low-density 

family lipoprotein receptor, the lipoprotein receptor related protein (LRP) and 

the low-density lipoprotein (LDL) receptor4. In AD, APOE is severely hindered and 

is a contributing factor to this form of dementia3,16 such as deregulating 

cholesterol efflux and autophagic clearance1,3,4.  As potent as APOE can be in the 

role of AD, APOE can be regulated via expression levels of ABCA1, a gene that is 

critical in the efflux of excess intracellular cholesterol to extracellular lipid 

chaperones, allowing these chaperones to be lipidated17-19 (Figure 1.2). 

It has been shown that when APOE is inhibited in APP transgenic mice, this 

results in reduced APOE levels and in turn increases amyloid beta deposition. 

Since cholesterol levels increase due to impaired transport by apolipoproteins 

(e.g., APOE) and subsequently neurons and synapses degenerate, cholesterol 
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efflux to and from the blood-brain barrier (BBB) by APOE and other proteins also 

contributes to amyloid-β generation. It should be noted that since mammalian 

cells can’t degrade cholesterol, it must be transported elsewhere in the body to 

be utilised.  

Acyl-coenzyme A: cholesterol acyltransferase (ACAT) is another gene that 

is implicated in Alzheimer’s disease. When ACAT is inhibited using drugs such as 

CP-113, 818 8,20,21, cholesterol esters decrease as expected and  

amyloid beta levels also decrease. Deletion of ACAT also increases oxysterol 

levels of 24(S)-hydroxycholesterol by converting excess free cholesterol in the 

brain. Oxysterols can then be transported through the BBB, which suggests the 

balance between cholesterol esters and free cholesterol is a crucial component 

to lowering abnormal plaque levels in the brain. Cholesterol can also directly 

influence the behaviour of secretase activities that affect Aβ regeneration. If 

levels of cholesterol are decreased in the membrane, for example by βMCD (β-

methyl cyclodextrin), activity of BACE1 and γ-secretase are decreased, which in 

turn leads to decreased levels of Aβ generation22,23. Cholesterol levels also 

control the γ-secretase-mediated production of Aβ11. These findings elucidate 

that environments containing high cholesterol directly mediate BACE1 activity. In 

addition, cholesterol and other lipids such as sphingolipids and diacylglycerol 

(Figure 1.3) also influence APP processing. Since several studies show 

correlations between high cholesterol and the increase of Aβ build up along with 

AD pathology24-26, therapeutic approaches need to address lowering excess 

cholesterol and lipid levels in the brain.  

1.3 Autophagy and Alzheimer’s Disease 
 
Macroautophagy (now referred to as autophagy) is a mechanism within the body 

that is responsible for degrading, recycling and clearance of damaged organelles 

and misfolded proteins. It exhibits a protective role and is triggered by either the 

inhibition of the molecular target of rapamycin (mTOR) pathway or by activation 

of AMP-activated protein kinase (AMPK). This lysosomal degradative process 

(Figure 1.4) is one of several steps within the autophagy pathway that ensures 
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Figure 1.4: Induction of autophagy and autophagosome generation 
 Figure adapted fromFerri et al, 2005 1 and Ranbinowitz and White et al, 2010. 
Macroautophagy (referred to in text as autophagy), is a mechanism which recycles 
cytoplasm and defective proteins and organelles. First in this process is the generation 
of an isolation membrane (phagophore), followed by elongation of the phagophore 
around a selected region of protein and/or cytoplasm  which eventually closes to form 
a double membraned autophagosome. Note that LC3 proteins (LC3I after lipidation 
converts to LC3II) are incorporated into the inner and outer membrane during this 
process. The autophagosome will either directly fuse with the lysosome, or first 
combine with an endosome. The end product will be formation of the autolysosome. 
Hydrolic enzymes contained mainly within lysosomes will establish efficient enzymatic 
digestion. Degraded proteins are then released into the cytoplasm where proteins are 
in a metabolic form that cells can use for energy or used for de novo synthesis of 
proteins. LC3II proteins are also degraded in this process.  
 

 
 efficient regulation by two processes. The first process is acted by lysosomal- 

associated membrane protein 1 and 2 (LAMP1 and LAMP2) which prevent 

lysosomal self-digestion. The second process focuses on the expression and 

regulation of TFEB (transcription factor EB) and mTORC1 controlled by ‘The 

Ragulator’ (a protein complex made up of small GTPases). This acts as an on/off 

switch for activation or inhibition of autophagy. The dynin-dystan complex also 

facilitates the efficiency of autophagosome fusions and digestion of intracellular 

contents by transporting autophagosomes towards the MTOC (microtubule 
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organising centre) within neurons in which lysosomes are most abundantly 

found1. 

In AD, the lysosomal digestion mechanism during autophagic processing is 

dysfunctional, as autolysosomes and associated autophagic vacuoles accumulate 

in neuritic swellings in an AD brain27. This finding suggests that autophagosomes 

retain the ability to fuse with lysosomes, however the release of digested 

substrates from the autolysosome is somewhat impaired. The disruption of 

autolysosomal proteolysis in wild type mice phenocopies the pathology of that 

seen in mouse models of Alzheimer’s disease, and further disruption of 

lysosomal proteolysis in these mice aggravates pre-existing pathologies 27. 

Contributions to defective lysosomal digestion include several genetic risk 

factors associated with AD such as presenilin 1 (PSEN1) and APOE as well as 

defective proteins such as APP. PSEN1 controls lysosomal acidification through 

the v-ATPase multimeric enzyme complex. This complex is integrated into the 

lysosomal membrane and is responsible for downstream effects that regulate 

protease activity in order to upregulate or downregulate the rate of autophagic 

processes. With this mechanism that ensures cellular homeostasis in eukaryotic 

organisms being compromised, disease onset is dramatically accelerated as well 

as exacerbating the pathological symptoms of AD 1.  

 Lysosomal membrane permeabilization (LMP) can also be triggered by 

amyloid beta build up and the APOE4 variant. Depending on the level of LMP 

activation, this process can lead to catabolic hydrolases being prematurely 

released which in turn results in necrosis or apoptosis and neuronal cell death1. 

The APOE4 variant, abnormal cholesterol levels, or APP mutations also influence 

substrate clearance, as overload of substrates in the lysosome destabilises the 

autolysosomal membrane. ApoE also affects Rab5 and Rab7 activation. Rab5 is 

critical for recruiting Rab7 to the phagosome, which is in turn essential for 

maturation of the endosome and endo-lysosomal trafficking and transport1. 
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1.4 Cholesterol and Autophagy in Alzheimer’s disease 
 

Few studies focus on drug interactions between cholesterol and 

autophagy regulation acting in synchrony to achieve homeostasis within AD 

models. However drugs such ursolic acid28 and simvastatin29 have shed some 

insight that the two mechanisms are linked. In C57BL/6J mice fed a high-fat diet, 

administration of ursolic acid activates PPAR-alpha; a factor that controls beta 

oxidation and fatty acid transport. Activation of PPAR-alpha in turn increased 

adiponectin, hepatic autophagy, HDL cholesterol and other genes regulating 

lipogenesis (e.g., SREBP-1c)28. However, simvastatin operates through a different 

mechanism. Within a J774A.1 macrophage cell line, it has been demonstrated 

that simvastatin can induce therapeutic affects in diseases such as 

atherosclerosis by inducing autophagy through increasing both oxidised low-

density lipoprotein, conversion of LC3-I to LC3-II and attenuating cholesterol 

accumulation29.  

 Given that APOE is a genetic risk factor for Alzheimer’s disease, attention 

has also been concentrated on apolipoproteins. ApoA-I interacts with ABCA1 

following lipidation by migration to the plasma membrane to bind cholesterol. 

Interestingly, lipidation of ApoA is enhanced through suppression of Akt via 

mTOR inhibition. Furthermore, only functional ABCA1 are affected, with mutant 

forms of the ABCA1 gene unaffected4. In APOE-deficient mice, overexpression of 

lireglutide (glycogen-like peptide) activates autophagy and exhibits a protective 

role, including the decrease of LDL-cholesterol and total cholesterol levels 30. In 

linking these mechanisms to Alzheimer’s disease, the emergence of the impact 

that cholesterol and autophagy has in this neurodegenerative disease has been 

rigorously investigated. 

 Studies examining cholesterol genes as the source of abnormal 

autophagic regulation have focused on ACAT1, an endoplasmic reticulum 

enzyme that blocks the cholesterol accumulation within membranes by 

converting cholesterol to cholesterol esters. A recent study shows that the 

pharmacological ACAT1 inhibitor K604 can improve Aβ1-42 clearance by the 

autophagic pathway as well as improve packaging of oligometic Aβ1-42 via 
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stimulated autophagosome formation. TFEB, one of the regulators that control 

the expression levels of autophagy is also upregulated by ACAT1 inhibition. 

Results linking ACAT1 and autophagy have also been demonstrated in an ACAT1 

knockout mouse31 as well as in a triple mutant mouse model expressing human 

APP, tau and presenilin-1. Within this study, through inactivation of ACAT1, tau 

levels also decrease31. 

 Other studies have investigated whether components of the autophagic 

pathway are the primary cause for defective lipogenesis. For example, deletion 

of cystatin B (a lysosomal protease inhibitor) in the TgCRND8 mouse model of AD 

improved clearance of lipid-containing lysosomes via autolysosomes for 

clearance of neuronal debris, misfolded proteins and excess lipid accumulation32.  

1.5 Clusterin  
 

Clusterin (CLU), also known as APOJ33, SP40-4034, CLI35 TRPM-236, XIP837 

and SGP-238, is a stress-induced 80 kDa glycoprotein39. CLU is located on 

chromosome 8p21 and comprised of nine exons 40. Clusterin is synthesized by 

Figure 1.5: The structure of clusterin 
The figure was adapted from the following: (Kirszbaum et al., 1989; Jenne and Tschop., 
1989; Jordan-Starck et al.; 1992; Jenne and Tschopp., 1992; Fritz and Murphy, 1993; 
Wong et al., 1994; Rosenberg and Silkensen., 1995; Calero et a.l, 2000). Clusterin is an 
80kDa protein, made up of a heterocomplex consisiting of an alpha chain, containing 
205 amino acids, and beta chain consisting of 222 amino acids. Based from literature 
reports, each chain consists of four amphipathic helices (indicated by orange regions), 
four heparin binding domains (indicated by black circles), and three N-linked 
glycosylation sites. Both chains are linked together by five disulphide bonds. Purple dots 
indicate N-linked glycosylation site cysteine.  
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megakaryocytes, a type of bone marrow cell responsible for the production of 

platelets33.40. CLU exists as a heterodimeric structure in alpha and beta subunits, 

each roughly 40kDa that are linked by five disulphide bonds (Figure 1.5). 

Particular regions located within clusterin have been found to have some 

homology with certain members of the complement system (e.g., C7-9), the 

chaperone protein ApoA-I, and myosin heavy chain34,35,39,41. 

 CLU is a mammalian protein that has been identified in mouse, rat, quail 

and human42-48. Clusterin is expressed in all tissues of the human body. . Apart 

from the brain, high levels of clusterin mRNA are found in the stomach, liver, 

testis, epididymis and ovaries, whereas there are low levels of expression in the 

breast, lung, heart and spleen.  Interestingly, CLU is not expressed in T 

lymphocytes47. It is also found in plasma and cerebrospinal fluid49 High 

expression levels suggest that the function of clusterin is generally important for 

maintaining homeostatic processes. Within the body, circulating clusterin is 

incorporated/associated with high-density lipoproteins (HDL) and is bound to 

ApoA-I. CLU is expressed at fluid-tissue interfaces within tissues, thus clusterin is 

not always expressed by all cells in the entire organ. This suggests a role in 

protection of cell membranes by bodily fluids (e.g., protection from bile and 

gastric juices as well as from other harmful proteins and organelles that exhibit a 

detrimental effect to healthy tissues)47,49. 

 One unique structural property of clusterin is that it has three separate 

molten globular domains that enables it to undergo various conformational 

changes so it can bind proteins in different regions in order to stabilize misfolded 

proteins50, exhibiting chaperone protein properties. This feature allows clusterin 

to be implicated in many various homeostatic processes in the body such as 

complement regulation, sperm maturation, apoptosis, lipid transport, promotion 

of cell-to-cell interactions, membrane protection and endocrine secretion, 

facilitation of ER stress.  Furthermore, CLU is upregulated in several diseases (at 

mRNA and protein levels). A portion of the functions of clusterin will be 

discussed below: 
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1.5.1 Reproduction 

CLU was first detected and isolated from rat ram testis fluid in Sertoli 

cells51. CLU is also located in several other regions of the reproductive tract such 

as in epididymal principal cells and spearmatozoa52. In the reproductive system, 

clusterin serves a protective role in aiding sperm maturation as well as 

cytoskeletal generation of sperm tails53. 

1.5.2 Complement Regulation 

 
CLU is an element of the membrane attack complex (SC5b-9) and 

functions as a complement inhibitor34,35,54. The activity of clusterin in the 

complement pathway in the immune system resembles S-protein (also known as 

vitronectin), which is also part of the SC5b-9, even though the proteins are quite 

different in structure. When clusterin is bound to C5b-6, it inhibits the generation 

of the membrane-attack complex, which in turn inhibits complement mediated 

cytolysis34,35,54.  

 

1.5.3 Ageing and Oxidative Stress 
 

ROS (reactive oxygen species) are upregulated during ageing, which 

contributes to deleterious effects with homeostatic processes55,56. CLU exhibits 

the same upregulating pattern within an ageing organism, which elucidates that 

clusterin plays a protective role in oxidative injury. Due to the specific regulatory 

element in clusterin and the AP-I regions located in the gene promotor, clusterin 

is sensitive to environmental stress such as ionizing radiation57,58, heavy metals, 

proteolytic stress, heat shock stress, and several oxidants. 

1.6 Clusterin and Alzheimer’s disease 
 

In AD, CLU is expressed in high levels in astrocytes and pyramidal neurons in 

the areas of the brain that are most affected in AD, the entorhinal cortex and 

hippocampus, as well as in senile plaques59-62. Many studies have investigated 

how CLU is implicated in the toxicity, binding and potential clearance of amyloid 
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plaques across the BBB via binding to LRP263  in in vitro64-67 and in vivo AD models 

of AD68,69. The presence of CLU enhances the clearance of Aβ42 across the BBB by 

83% compared to the absence of the CLU protein70,71.  

It has also been shown that CLU acts in combination with APOE to aid 

clearance of amyloid beta plaques in in vitro and in vivo models66,70. 

Observations have also been recently replicated and further investigated from 

experiments usage of a PDAPP mouse model expressing human APP in 

conjunction with a particular AD mutation (VF17F) resembling a human AD 

phenotype70,71. APOE levels also seem to directly correlate with levels of CLU, as 

within an APOE-/- PDAPP mouse model, decreased levels of CLU are found 

compared APOE+/+  PDAPP mice70. 

 Research has primarily focused on the relationship between Aβ42 and 

CLU; however it has recently been suggested that CLU also has quite an 

important role in associating and clearing Aβ40 species as well. Recent studies 

have investigated the role of CLU in the aggregation and disaggregation of fibrils 

that occur in Aβ1−40. Through confocal two-colour coincidence detection (cTCCD) 

and two-colour version of total reflection fluorescence microscopy (TIRFM) 

techniques, CLU has been shown to form stable complexes with Aβ1−40 and by 

the sequestration of Aβ oligomers; CLU impacts the behaviour of Aβ1−40
72. 

Specifically, CLU is predominantly associated with Aβ40 in comparison to Aβ42 

plaques as immunoreactivity in AD brains show a stronger ratio of Aβ40 labelling 

in the cerebral cortex73. 

 Within the body of a healthy individual, clusterin is therefore found in 

balanced levels that are sufficient to prevent abnormal oligomer growth, in turn 

protecting the body from oligomer toxicity72. The protective properties of CLU 

have been identified and have been the sole focus of research in discovering a 

new mechanism that can help shed light on AD progression toxicity72. However, 

it should be noted that there are debates about the beneficial properties of CLU. 

Previous studies have also claimed to have identified CLU contributing negative 

affects within AD67-69. Regardless of the contribution of CLU to Alzheimer’s 

disease, the role for CLU in the link between cholesterol and autophagy is poorly 

understood.  
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1.7 Clusterin-mediated Lipid Metabolism 
 

One of the first known functions of CLU is that it was implicated in 

cholesterol transport33,74,75, as high density lipoproteins (HDL) have been 

recognised to be involved in reverse cholesterol transport76. Clusterin exhibits its 

apolipoprotein activity by binding to megalin (LRP2) receptors and aiding 

cholesterol transport. 

 As clusterin is made up of APOA-I, cholesteryl esters associate with HDL 

and act synergistically with APOE, it’s interesting that even though clusterin also 

shows similar functionality to APOA-I, it shows having a separate functionality 

from APOE in terms of cholesterol efflux. This has been demonstrated when CLU 

regulated cholesterol levels within an APOE knockout mouse model. 

 In mouse models, clusterin has been shown to inhibit hepatic steatosis by 

negative regulation of LXR (liver X receptor) and SREBP-1c (sterol regulatory 

binding protein 1c), thus resulting in the inhibition of cholesterol accumulation77. 

Different concentrations of clusterin have also been tested with foam cells 

expressing high levels of cholesterol and cholesterol esters. Studies have shown 

that clusterin induces phospholipid efflux, promotes cholesterol efflux and 

regulates intracellular cholesterol ester levels, therefore showing protective 

effects and potentially exhibiting antiatherogenic properties78. 

 Interestingly, even though previous literature looks at clusterin and its 

general function in relation to cholesterol efflux and regulation, no studies have 

focused on the impact of clusterin on cholesterol metabolism in Alzheimer’s 

disease. Primarily, studies have instead focused on obvious cholesterol 

implicated diseases such as atherosclerosis148. With levels of cholesterol and 

other lipids being a key regulator of many processes in the brain, it is apparent 

that disruption to normal levels of cholesterol would result in impairment of the 

normal functioning of the human brain which would lead to various negative 

secondary effects. Further investigations into CLU-mediated cholesterol 

metabolism in the brain are key to understanding the pathology of AD. 
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1.8 Clusterin-mediated Autophagy 
 

CLU and autophagy are independently associated with tumour 

suppression in the first stages of carcinogenesis, resistance to anti-cancer 

treatments in later stages, increased aggreopathies and reduced protein 

homeostasis1,27. The role of CLU in autophagy has been poorly understudied until 

it was recently discovered that CLU enhances the survival of cancer through 

aiding the lipidation of LC3I to LC3II, as well as promoting the stability of LC3-

Atg3 binding complex79. This results in autophagy activation and upregulated 

production of autophagosome formation. Therefore, CLU aids survival of cells via 

an autophagy-dependant mechanism. Since CLU is highly expressed when 

anticancer treatments are administered, silencing CLU could prove to be a 

beneficial treatment towards tackling tumorigenesis79 Further insights into how 

CLU functions in combination with other cellular pathways will prove to be 

beneficial in how it affects the homeostasis of other genes in neurodegenerative 

diseases. 

1.9 Model Organisms to Investigate Alzheimer’s Disease 
 

1.9.3 SH-SY5Y cell model  
 

Using a neuroblastoma cell line derived from the SK-N-SH cell line, SH-

SY5Y cells have many distinguishing functional and biochemical features 

representative of neurons80. These cells also have the potential to be induced to 

differentiate into having dendrite-like morphology when given various 

treatments such as brain-derived neurotrophic factor (BDNF), TPA or retinoic 

acid81-84. This has enabled scientists to adopt SH-SY5Y cells as a popular neuronal 

cell model to investigate changes and effects on AD phenotypes, especially when 

analysing Aβ1−42 pathology. SH-SY5Y cells are also used for neurotoxic research, 

as when SH-SY5Y cells are subjected to cytotoxic compounds, the cells mimic 

responses which are found in human primary cultures85  

 Throughout this thesis, the AD cell model used in experiments will be SH-

SY5Y cells expressing the Swedish mutation form of APP (swAPP695). In AD, three 
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isoforms of APP are generated; APP695, APP751 and APP770, with APP695 being 

highly expressed in the brain in comparison to APP751 and APP770
86. However, 

APP695 is the only isoform which seems to correlate to high levels Aβ40 and Aβ42 

generation along with the increase of the APP intracellular domain (AICD) which 

regulates expression of genes such as neprilysin (NEP), an Aβ-degrading enzyme87 

Furthermore, when a Swedish mutation of APP695 is expressed, the pathology is 

markedly increased compared to wild type APP695 SH-SY5Y cells87. This increase is 

due to the double mutation found at lysine and asparagine at residue 595 and 

methionine to leucine mutation at position 596. The latter mutation is primarily 

responsible for the accumulation of plaque pathology88-90.  

 While this cell line is extensively used to investigate neurodegenerative 

diseases, it should be noted that SH-SY5Y neuronal like activity such as 

expressing dopaminergic markers and its adrenergic phenotype decrease with 

increasing passage numbers. Therefore, it is advised that passage number of cells 

should be kept as low as possible and ideally should not exceed beyond passage 

twenty (P20). If cells are used beyond P20, neuronal markers should be used to 

insure the required behaviour is still present within the cell line. Several studies 

have used SH-SY5Y cells to investigate AD. However, no studies to date have 

used this cell line to investigate the effects of clusterin in AD. Utilizing this model 

for an in vitro model would be beneficial in complementing research from in vivo 

AD experiments. 

1.9.4 Fruit fly Model of Alzheimer’s disease  
 

Drosophila melanogaster, a species of fruit fly that is a model organism 

for many human diseases, was one of the first model organisms to have its 

genome fully sequenced91. This organism has complex structural anatomy and a 

long history of being exploited for studying mechanisms and pathways of 

learning and memory92,93. As D. melanogaster has been used as one of the 

earliest model organisms utilised in the science industry; many tools have been 

developed over the years in order to optimise different research approaches 

using this organism94. Having a short lifespan of 120 days, accumulation of data is 

easy to obtain and is good for looking at ageing process along with age-related 
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neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. 

As 70% of human disease-causing genes have orthologues in D. melanogaster, 

processes in relation to human activities and processes can be linked through 

this model organism95.  

 Relevant to AD, the D. melanogaster genome contains all sections of the 

gamma-secretase complex96 as well as the Drosophila homolog of  human APP 

(dAPPL)97. dAPPL share many similar characteristics with the APP gene family in 

vertebrates, however they do not contain an Aβ42 cleavage site. Therefore, in 

order to investigate the effects of Alzheimer’s disease within this organism, 

transgenic flies expressing human APP and BACE (requirements to generate Aβ42) 

have been constructed through using the UAS/GAL4 system (Figure 1.6)98,99.  

Figure 1.6: The GAL4/UAS (upstream activating sequence) system in D. melanogaster 
Figure adapted from Miratu et al, 2002. To induce abnormal gene expression within 
Drosophila in either a particular area of interest or systemically, the GAL4/UAS system 
is utilised. The human gene of interest is placed downstream of the UAS region that is 
constituted of several sites that GAL4 can bind to. The yeast transcriptional activator 
(GAL4 driver) is expressed in another fly line which most likely will be placed 
downstream of a promotor specific for a cell or tissue section such as ELAV (embryonic 
lethal abnormal vision) (Berger et al, 2007). With both parts of the system being 
isolated within both flies, both sections of the system are essentially inactive. However 
once both transgenic fly lines are crossed over, GAL4 binds to the UAS region and 
transcribes the human gene of interest.  
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 Previous studies have upregulated the expression of Tau and subsequent 

production of Aβ42 in flies; these studies show phenotypic effects in neuronal 

decline such as decreased locomotion in both larvae and adult flies, diminished 

lifespan, hindrance in flight ability, and deformities in eye texture98. An 

additional bonus to working with these phenotypes is that these phenotypes can 

be quantified, thus generating a reliable output of information. Cognitive 

defects, a noted symptom of AD patients, have also been observed in AD flies.  

Relevant to this thesis, it is critical to note that D. melanogaster does not 

contain CLU.  This is actually experimentally advantageous as demonstrated by a 

previous ageing study that expressed human CLU in D. melanogaster without 

having to be concerned with any effects of endogenous CLU100.  In that study, 

human CLU extended the lifespan of D. melanogaster as well as increased 

tolerance to oxidative stress, starvation, and heat shock. ROS (reactive oxygen 

species) levels were also decreased among other protective activities100. It was 

thus proposed that CLU acts as an antioxidant protein and also that the 

disulphide linkages and sulfydryl groups of cysteines in CLU interact with 

misfolded proteins. When these groups were inactivated by addition of N-

ethylmaleimide, the protective role of clusterin vanished100. While the role of 

CLU has been examined in mouse models of Alzheimer’s disease101, studies have 

not yet looked at how CLU functions in a fly model of AD. 
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1.10 AIMS AND HYPOTHESES  
 

It is seen in previous reports that CLU has been associated with several 

processes defective in the pathology of Alzheimer’s disease such as amyloid 

plaque build-up, cholesterol, and autophagy. However, there has not yet been a 

focused investigation into mechanisms through which all three components have 

been linked together. Is AD pathology upregulated purely due to protein burden 

exhibited within cells that in turn have an effect on Aβ accumulation?  Or does 

the CLU pathway operate separately to Aβ42 in relation to cholesterol and 

increased autophagy? 

 From information gathered from previous studies, I hypothesize that 

increasing CLU expression will reverse certain pathological aspects of Alzheimer’s 

disease and lead to a reduction in Aβ levels, decrease levels of APP, increase 

efflux of cholesterol, upregulate cholesterol transport and upregulate Aβ40 

secretion in the brain. To test this hypothesis, I will investigate these processes in 

vitro (SH-SY5Y cell line) and in vivo (Drosophila melanogaster) models of AD. If 

observations match the proposed hypothesis, then this study would be a 

powerful case to consider in regards to the therapeutic potential of CLU to treat 

patients who suffer from AD and perhaps other forms of dementia. 
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CHAPTER 2 

2.1. INTRODUCTION 
 

Alzheimer’s disease (AD) is a progressive detrimental brain disorder that 

is characterised primarily by the irreversible deterioration of the brain leading to 

increased impairment of language function and memory3. First manifesting as 

dementia within elderly patients, there is currently no cure or effective therapy 

to treat AD153. Genetic risk factors by GWAS studies include APOE, APOJ (CLU), 

CR1 and PICALM. The top two genetic risk factors, APOE and APOJ (CLU), are 

known to both be involved in cholesterol homeostasis. APOE and CLU are similar 

in their functionality as both proteins have been demonstrated to cooperatively 

bind and clear excess cholesterol within the brain, as they have the ability to bind 

cholesterol and pass through the blood brain barrier (BBB) so cholesterol can be 

utilized by other mechanisms in the body40. Much research has been invested 

within examining APOE, as it’s been thought of as the key player in developing a 

therapeutic treatment towards patients; however no treatments from this 

research have emerged. Less research has been directed into CLU functionality 

and the roles that this gene plays within an Alzheimer’s disease model. Despite 

previous research, it remains unresolved whether the overexpression of CLU 

results in a therapeutic or detrimental effect within treating the AD condition. 

CLU is an 80 kDa linked glycoprotein39 which is located on chromosome 

8p2140 which is structured into nine axons41 and is synthesised by 

megakaryocytes. Even though there is not a complete understanding of the 

function of CLU in AD 62, 63, other roles within the mammalian system have been 

identified. This includes CLU being involved in complement regulation34,35,54, 

reproduction52,53, as well as acting as in a similar fashion to heat shock proteins, 

with CLU production induced under stress, and serving protective roles by 

binding misfolded proteins and organelles in attempts to stabilize them39.  

 One of the recent functionalities of CLU that has been identified is its 

involvement in autophagy in a cancer cell line, as upon administration of CLU in 

PC3 prostate cancer cell model; CLU aids the lipidation processes of LC3, as well 
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as stabilizing the LC3-Atg3 complex. This results in correct autophagosome 

formation as well as correct induction of autophagic processes which in turn 

enhances cancer survival and incurs resistance towards anti-cancer treatments. If 

CLU responds in the same manner within an Alzheimer’s model organism, there 

is potential for CLU to protect and aid the survival of neurons, which in turn 

should decrease deterioration of the brain.  

Given that CLU is involved in cholesterol and autophagic processes, this 

suggests that these two pathways are linked. It makes sense to examine these 

two processes and CLU in how they interact in regards to processing APP and 

clearance of Aβ42. To date, there has not been a determined relationship or 

mechanism through which all three components have been linked together. Is 

AD pathology upregulated purely due to protein burden exhibited within cells 

which in turn have an effect on amyloid beta accumulation? Or does the 

pathway operate separately to Aβ42 in relation to cholesterol and increased 

autophagy?  From the protective roles of CLU, it can be hypothesised that 

increasing CLU expression will reverse certain pathological aspects of Alzheimer’s 

disease and lead to a reduction in Aβ levels; decrease levels of APP, increase 

efflux of cholesterol and up regulate cholesterol transport in the brain. If 

observations match the proposed hypothesis, then this study would be a 

powerful case to consider in regards to the therapeutic potential of targeting 

CLU in patients who suffer from AD and perhaps other forms of dementia. 

Here I hypothesise that increasing CLU expression will reverse certain 

pathological aspects of Alzheimer’s disease and lead to a reduction in Aβ levels, 

decrease levels of APP, increase efflux of cholesterol and up regulate cholesterol 

transport. To evaluate this hypothesis, cholesterol metabolism, autophagy 

regulation, APP processing and Aβ42 clearance will be examined in vitro (SH-SY5Y 

cell line) and in vivo (Drosophila melanogaster) Alzheimer’s disease (AD) models. 

Levels of APP, amyloid beta, cholesterol and autophagy levels will be measured 

and then compared between in vitro and in vivo AD models that have over-

expressed levels of clusterin. This will be done by administration of a clusterin 

containing plasmid in each model. This will allow for the determination of the 

effects of CLU in whether it promotes or reverses the pathology of AD.  
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2.2 METHODS 

2.2.1 Maintenance of Organisms 
 

Cells: SH-SY5Y and SH-SY5Y swAPP cells were obtained from Dr Jerry 

Turnbull (University of Liverpool) and grown in RPMI medium + 10% FCS + 1% 

penicillin streptomycin. Cells were split every 2-4 days, seeded at 1x10^5 

cells/mL. Growth of APP cells was approximately double the speed of WT cells. 

Transfected cells were incubated without the presence of antibiotics.  

 

Fruit Flies: Lines of Drosophila melanogaster were grown and maintained 

at 22°Ϲ. Food material (for 500 mL) consisted of 5 g agar, 20 g yeast, 55 g ground 

cornmeal and 500 mL MilliQ H20. Ingredients were brought to a boil and 

simmered for 2 min, and then 10 ml molasses, 65 g sugar, 1.6 g Moldex and 18 

mL 95% ethanol were mixed with the solution. The fly model of Alzheimer’s 

disease (APP/BACE) was obtained from the Bloomington Stock Centre. The wild 

type fly (wt188) was used to cross all fly genotypes analysed (WT, APP/BACE, 

APP/BACE/CLU and ELAV/CLU) to the same genetic background after CLU 

overexpressing flies were generated.  

 

2.2.2 Expression of Clusterin  

 

SH-SY5Y cells: To express CLU in SH-SY5Y cells, the mammalian 

expression vector pcDNA3.1(+) and pUAST-attb + CLU (pUAST-attB vector from 

Groth et al, Stanford University154 were digested with NotI and XbaI restriction 

enzymes for 1 hr at 37°Ϲ and then treated with Calf Intestine Phosphatase (CIP) 

for an additional 1 hr at 37°Ϲ. Products were electrophoresed on a 0.7% agarose 

gel, and purified using a gel purification kit (Geneaid) according to the 

manufacturer’s instructions. Ligation following band excision was carried out 

overnight for 16hrs at 4°Ϲ and consisted of the following: 10µL CLU Insert 

(1373bp), 2 µL pcDNA3.1(+) vector (5416bp), 2 µL 10X buffer, 4 µL dH2O and 2 µL 

T4 DNA ligase (Invitrogen).  
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Reporter construct GFP addition to CLU vector: To verify ligation and 

quantify efficiency of CLU transfection into SH-SY5Y cell lines, we introduced a 

GFP sequence within pcDNA3.1(+). The 705 bp GFP segment from vector 

RG203629 (Origene) was PCR amplified using primers that were 59 bp and 29 bp 

long that contained 18 bp and 13 bp of the original GFP sequence (Table 2). The 

PCR reaction contained 17.375 µL dH2O, 2.5 µL 10X Ex Taq PCR buffer, 2 µL dNTP 

(2.5mM), 1 µL forward primer (10 µM) 1 µL reverse primer(10 µM)  0.125 µL Ex 

Taq (Takara), and 2 µL RG203629 plasmid DNA containing GFP. PCR was carried 

out in the Techne TC 5000 PCR machine with the following parameters: 94°Ϲ for 

10 min, followed by 36 cycles of 94°Ϲ for 30 sec, 51°Ϲ for 30 sec and 72°Ϲ for 

2min, and a final extension at 72°Ϲ for 10 min. PCR products were purified using 

the Purelink® Quick Plasmid Miniprep Kit (Invitrogen) according to the 

manufacturer’s instructions.  

pcDNA3.1(+) + CLU + GFP transfection: To overexpress clusterin in SY5Y 

cells, we transfected a plasmid expression vector (pcDNA3.1(+) + CLU + GFP) 

using Lipofectamine 2000 (Invitrogen)  Briefly, cells were grown to ~80% 

confluency, 4 µL Lipofectamine® 2000 reagent was diluted in 100 µL RPMI 

medium, and 2 µg DNA was diluted in 500 µL RPMI medium.  Transfection 

reagent and DNA were added in a 1:1 ratio and incubated for 5 min at room 

temperature. The DNA-lipofectamine complex (1:2) was added to SH-SY5Y cells 

and incubated for 4 hrs before replacing transfection media with normal growth 

media. Cells were further incubated for 1-2 days. Transfected cells were 

identified using the GFP filter (FITC) on the fluorescent microscope.  

 

Table 1: RG203629 primer sequences  
 

Primer Sequence 
 

Forward 5’CCTCTAGACCGAGGAGATCTGCCGCCGCGATCGCCGGCGCGCTCGAGATGGAGAGCGAC3’ 

    XbaI site     RBS and Kozac sequences                     XhoI site and start of GFP 
 

Reverse 5’ CCCGTTTAAACTTAAACTCTTTCTTCACC 3’ 

           
         PmeI site     GFP end sequence 
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Fruit flies: Human CLU was expressed in D. melanogaster with a series of 

steps culminating in microinjection of a PCR construct. First, a plasmid containing 

human CLU was purchased (DNASU Plasmid Repository, Cat# HsCD00000239); 

this plasmid contained a mutation at 123 bp with an L6R substitution. To correct 

this mutation and restore WT version of CLU, the plasmid was digested with SalI 

and XbaI restriction enymes and the 625 bp fragment was PCR amplified using 

primers that contained 28 bp and 15 bp flanking regions of the pDNR-Dual vector 

(Table 1) which had the desired cloning sites for CLU to be excised and ligated 

into the fly vector pUAST-attB.  Within the primer, amino acids CTG were added 

to correct the amino acidsCGG (arginine). The PCR reaction was carried out as 

follows: Mix 1 (for three reactions): 3 µL dNTP mix 2.5mM), 4.5 µL forward 

primer (10 µM) 4.5 µL reverse primer (10 µM) and 61.5 µL dH20; Mix 2 (for 3 

reactions): 57.75 µL dH20, 15 µL10x Ex Taq PCR  buffer 2.25 µL Expand 

Polymerase (Sigma-Alrich). The template (pDNR-Dual + CLU) for PCR reaction was 

0.5 µL of forward and reverse primers, 24.5 µL ‘Mix 1’ and 25.5 µL ‘Mix 2’. Cycling 

parameters for PCR amplification on the Techne TC 5000 PCR machine were the 

following: 94°Ϲ for 2 min, 3 cycles of 94°Ϲ for 15 sec, 55°Ϲ for 30 sec and 72°Ϲ for 

45 sec, 32 cycles of  94°Ϲ for 15 sec, 63°Ϲ for 30 sec and 72°Ϲ for 45 sec, and a 

final extension of 72°Ϲ for 7min.  The resulting PCR product and pDNR-Dual 

vector were each digested with SalI and SmaI, gel purified and ligated with a 5 

min ligation using the Quick Ligation Kit (New England Biolabs). The ligated 

product of a PCR-corrected and now WT version of human CLU in pDNR-Dual 

vector was transformed into competent E.coli cells and purified using purification 

kit (Invitrogen).  To insert DNA into fly embryos via microinjection, we introduced 

human CLU in a specialised vector used for microinjection (i.e., pUAST-attB). 

pDNR-Dual + CLU vector was digested with SalI and XbaI, and pUAST-attB was 

digested with Xhol and XbaI. Insert and vector were CIP treated, purified, ligated 

and transformed into competent E. coli.  The resulting plasmid of human CLU in 

pUAST-attB was purified using the PureLink® HiPure Plasmid Miniprep Kit (Life 

Technologies) according to the manufacturer’s instructions.  

 In order to deliver CLU DNA into flies, this is achieved by microinjecting 

DNA into fly embryos. To microinject the plasmid containing human CLU into 
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flies, an aliquot of the pUAST-attB + CLU plasmid was concentrated by 

precipitation. 10µL 3M NaAc (pH 5.2) and 220 µL 100% ethanol were added to 

20µg of DNA in 100 µL dH2O, incubated at -20˚Ϲ overnight, and centrifuged at 

13,000 x g for 10 min s at 4˚Ϲ.  Pellets were then  washed with 70% ethanol and 

resuspended in 50 µL microinjection buffer (50 mM KCL, 0.1 mM sodium 

phosphate) as previously described by102. 

 The microinjection is the final step to directly getting the CLU DNA within 

the fly by injecting the eggs of the fly at a mid-interval developed stage. Over-

developed eggs are discarded, as CLU will not be efficiently taken up the egg. The 

microinjection procedure began 2-3 days prior to injection when, extra yeast was 

added to the food of mature, 3-4 week old wild type flies (strain WT118). The 

day before injection, approximately 20-30 egg plates were made. On the 

morning prior to injection, a small amount of yeast paste (water and yeast) was 

placed in the centre of the egg plates. Paste on the egg plate serves as an 

adhesive material for laying of eggs by flies, so these can be collected and used 

for dechorionation and microinjection. Wild type flies were then transferred to a 

plastic chamber and sealed with the egg plate. To induce laying of eggs, flies 

were incubated at 25˚Ϲ for 1 hr. Purified DNA was also prepared for injection by 

centrifugation at 12,000 x g at 4˚Ϲ for 10 min. 

Embryos were collected and egg plates were switched at an average rate 

of 25 min (in order to collect the maximal amount of eggs laid by flies), 

transferred to a prepared microscope slide with 10 mm x 20 mm Scotch adhesive 

tape with a fine point paint brush, dechorionated via. blunt forceps for 5-20 min, 

then transferred and organised in rows of 12-24 eggs on a 5 mm x 10 mm Scotch 

adhesive tape adjacent to the site where the dechorionation was executed. 

Dechorionation is carried out to break the outer capsule of the egg and expose 

the embryo for microinjection. 1-2 drops of Halocarbon Oil 700 (Life 

Technologies) was placed over dechlorionated eggs and was dehydrated using 

silica gel for 10-15 min. An Eppendorf FemtoJet Express with a micromanipulator 

mounted on an Olympus CK2 Inverted Microscope was used for microinjection of 

precipitated DNA. Surviving pupae were directly placed in an air tight plastic 
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vessel lined with damp towels and incubated at 18˚Ϲ for 1 day, and then 

provided with a slight oxygen burst and further incubated at 22˚Ϲ for 1 day. 

 

Primer Sequence 

Forward 5’ ATAATAGTCGACGGATCCACCATGATGAAGACTCTGCTGCTGTTTG 3’  

                 SalI and BamHI site            start of pDNR-Dual 

Reverse 5’ TAAGCCTAATAACCCGGGTGAAGAACCTGTCCT 3’ 

                       SmaI site   pDNR-Dual end sequence 

Table 2: pDNR-Dual primer sequence 

2.2.3 Protein Extraction 
Cells: For Western Blot analysis, cells were grown in 12 well dishes to 

~80% confluence and then transfected for 20 h with the constructed clusterin 

plasmid. Then 1 mL of PBS was added to each well after media was removed and 

left on ice for 1 min, PBS was removed and 50 µL Protease Inhibitor (Roche) 

dissolved in RIPA buffer (Sigma) was added to each well and left for 5 min. Cells 

were harvested at 4˚Ϲ, placed in a 1.5 mL microcentrifuge tube, vortexed for 30 

min at 5 min intervals, centrifuged at 13,000 g at 4 ˚Ϲ, and supernatant was 

transferred to a fresh 1.5 microcentrifuge tube and stored at -80˚Ϲ. 

For ELISA cells were grown in 100 µL of media (RPMI + 10% FCS) in 12 

well plates and transferred to a 1.5 mL microcentrifuge tube with HALT protease 

inhibitor centrifuged for 5min at 4°Ϲ at 13,000 x g.  Samples were stored at -80˚Ϲ. 

Protocol for specific detection of Aβ42 was implemented as outlined in the 

manufacturer’s instructions.  

 

 Fruit Flies: For Western Blot analysis, ~50 fly heads were collected 

and instantly lysed in 100 µL RIPA buffer containing Protease Inhibitor Cocktail 

(Roche) using a motorised pestle for 1 min with 20 sec stroke intervals whilst 

being kept continuously on ice. Lysate was centrifuged for 2 min at 13,000 g at 

4˚Ϲ and supernatant was transferred to a fresh 1.5 mL microcentrifuge tube. 

Protein for all mentioned extractions was quantified using the Pierce BCA Protein 

Assay Kit (Thermo Scientific) according to the manufacturer’s instructions.  
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2.2.4 Western Blot Analysis 
 

Cells and fruit flies: Protein extracted from cells and flies was investigated 

via Western blot analyses.  20 µg of protein was electrophoresed with the 

addition of 6 µl beta-mercaptoethanol and 12 µl 5X SDS loading buffer (for 5x 

stock: 250 mM Tris HCl pH 6.8, 10% SDS, 30% glycerol, 0.02% bromophenol blue). 

For SDS-PAGE, equal amounts of protein were run on a 7.5% Tris-bis gel (with 4% 

stacking gel) for duration of 1.5 h at 120V at room temperature. Proteins were 

transferred to a 0.2 µM PVDF membrane that was normalised with methanol for 

90 sec before being rinsed with transfer buffer and transferred using a wet 

transfer apparatus (Bio-Rad) for 2 h at 100V at room temperature. The transfer 

buffer recipe for 1L was the following: 14.4 g glycine, 3.03 g Tris Base and 20% 

methanol. The membrane was blocked with 3% BSA in PBST for 1 h at 4˚Ϲ 

followed by incubation of APP polyclonal antibody (Anti-Amyloid Precursor 

protein, C-Terminal (751-770), cat # 171610, Calbiochem) at a 1:1000 dilution 

overnight at 4˚Ϲ for 12-16hrs. The membrane was washed with PBST three times 

followed by secondary anti-rabbit antibody incubation (1:2000) for 1 h at 4˚Ϲ. 

The membrane was washed again with PBST three times and visualized with a 

fluorescent image analyzer (Fujifilm FLA-5100) with CH2 (Cy5 channel) at 400V.  

Quantification of FL-APP or CTF-APP was normalised to alpha tubulin 

densitometry (1:1000 dilution) (alpha-tubulin, cat#ab18251, Abcam) that was 

visualised with anti-rabbit secondary (ECL Plex goat-anti rabbit IgG, Cy5, cat # 

PA45011, GE Healthcare, VWR Global) used at 1:2000 dilution.  

2.2.5 Cholesterol Localization 
 
 Cells: SH-SY5Y cells were grown in 1 mL RPMI + 10% FCS media on nitric 

acid-treated coverslips in 12 well plates to 70-80% confluency. Transfected cells 

were grown on nitric acid-treated coverslips with the addition of poly-L-lysine 

(100 µg/mL) and laminin (50 µg/mL) adhesive (Sigma). After 500 µL media was 

removed, 500 µL 4% PFA + 3% sucrose was added and incubated for 20 min, 

followed by a wash with 3X PBS for 5 min prior to the addition of 1.5 mg/mL 

glycine for 10 min. After a brief wash for 1 min with PBS, 1 mL of 50 mg/mL 

Filipin (Sigma, ca#f767-MG) in DMSO was added and incubated for 2 h. After a 
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wash with 3X PBS, coverslips were mounted on slides with Vectashield antifade 

mounting medium (Vector Laboratories) and imaged with a 60X objective under 

the Olympus BX63 fluorescent microscope using the DAPI filter.  

 

Flies: Filipin was also used to visualize cholesterol in brains dissected from 

flies. Flies were prefixed in PFAT-DMSO (4% paraformaldehyde in 1x PBS, 0.1% 

Triton X-100, 5% DMSO) for 2 h rotating at room temperature and washed with 

PBT (1x PBS, 0.5% Triton X-100) three times at 5 min intervals. Flies were then 

transferred and dissected for 10-15 min in PBT in a mini petri dish under a 

dissecting microscope with forceps. Brains were transferred with a pasteur 

pipette to cold PTB in a 1.5 mL microcentrifuge tube, and stored on ice. PBT was 

then replaced with 368 µL fresh PBT solution, 32 µL of 38% formaldehyde and 

500 µL heptane. Samples were then shaken by hand for 30-45 sec, followed by 

incubation at room temperature to allow the foam to settle, and the upper 

heptane phase and most of the aqueous phase was removed and transferred to 

a clean 1.5 µL microcentrifuge tube. 700 µL of fresh PBT, 63 µL of 38% 

formaldehyde and 40 µL of DMSO was added and incubated on a rocking 

platform for 20 min to fix the brains. Fixed brains were washed twice for 5 min in 

100% methanol and then stored at -20˚Ϲ in 100% methanol.  

Samples were rehydrated in 1 mL of 1:1 50% methanol/PBT, each for 5 

min to slowly rehydrate the sample, and then washed with 4X PBT at 5 min 

intervals to ensure removal of methanol. Then 50 mg/mL (1:500 dilution in PBT) 

of filipin (Sigma-Aldrich, cat# F4767-1MG) was added, incubated for 1 h, and 

washed four times with 3X PBT for 5 min intervals. After the final wash was 

discarded, two drops of Vectashield antifade mounting medium (Vector 

Laboratories) was added, mounted on a premade bridge slide to avoid flattening 

of tissue sample, and imaged with a 40X objective under the fluorescent 

microscope using the DAPI filter on the Olympus BX63 fluorescence upright 

microscope. 
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2.2.6 Lipid Quantification  
 

Cells and Fruit Flies: Lipids were extracted from cells and fruit flies using a 

modification of the Bligh and Dyer method (1959)103 with modifications outlined 

by Guan et al (2014)104. Cells were grown to 90% confluence in 12 well plates, 

and collected with a cell scraper (McFarlane), and resulting lysate was 

transferred to a 1.5mL microcentrifuge tube for lipid extraction.  In contrast, 

~100 fly heads were homogenised with a handheld motorised pestle (Sigma 

Aldrich, cat# Z359971-1EA) for 30 sec in 200 µL PBS buffer on ice, and that was 

used for lipid extraction. For both cells and flies, 600 µL of 1:2 (v/v) 

chloroform:methanol was added to the sample, vortexed for 1 min, and shaken 

in a Thermoshaker (Ependorf) at 10,000 rpm at 4˚Ϲ for 2 h. Then 230 µL water 

and 200 µL chloroform were added and vortexed for 1 min. For phase 

separation, sample was centrifuged at 10,000 rpm for 2 min, and the lower 

organic phase was transferred to a chilled 1.5 µL microcentrifuge tube. Phase 

separation was repeated with the addition of 400 µL chloroform to the upper 

phase and centrifugation at 10,000 rpm for 2 min, with the second lower organic 

phase being pooled with the first lower organic phase. Lower phases were dried 

with a Centrivap Concentrator (Labconco), and the dried lipid pellet was 

resuspended in 40 µL choloform:methanol (1:1 v/v).   

 Lipids in the lipid extracts were quantified using Matrix-assisted laser 

desorption/ionisation-time of flight (MALDI-TOF) mass spectrometer.  The matrix 

2, 5 dihydroxybenzoic acid (DHB) was selected and was prepared with 

acetonitrile: ddH20 (1:1) with the addition of 1% trifluroacetic acid (TFA) and 10 

mg DHB. A dilution of sample:matrix (1:100) was spotted on a 384 Opti-TOF 

123x81 mmRevA MALDI plate and analysed using a MALDI-TOF mass 

spectrometer (AB SCIEX TOF/TOF™ 5800). Spectra were analysed by TOF/TOF™ 

Data Series Explorer™ software. A mass range of 100-900m/z was allocated to 

analysis m/z peaks within total lipid content. Quantification of peak intensity 

(lipid area percent of peak) and normalisation was performed using the following 

calculation: 
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               Lipid (x) area 

                              Sum of all lipid area in sample    

 

Data were expressed by the mean average of peaks in triplicate readings and 

associated standard error. 

2.2.7 FACS sorting 
 
 Cells: CLU/GFP positive cells were sorted on a BD Influx FACS sorter, with 

488 Lazer (525/35 filter) to excite GFP and 355 to excite DAPI (450/50 filter). 

Data analysis carried out on FlowJo V_10 program.  

2.2.8 Autophagy Assays 

 
Cells.: Autophagy was investigated in cells using Western Blot analysis of 

LC3-II. Western blot conditions were carried out as previously described in 

section 2.2.3, with a few modifications. 20 µg protein was run on a 15% Bis-Tris 

gel and transferred to a 0.2 µm pore PVDF membrane with a transfer time of 

2.15 h at 40V at room temperature. The primary anti-LC3 antibody dilution 

(1:1000) (Rabbit polyclonal anti-LC3, Novus, cat # NB100-2220) was incubated at 

4°Ϲ overnight for 12-16 h. Secondary anti-rabbit antibody was used at a 1:2000 

dilution for 1 h at 4°Ϲ prior to visualisation.  

Autophagy was also investigated in cells using Lysotracker Red, a stain 

that is specific for acidified organelles. SH-SY5Y cells were grown in µ-2 well 

confocal dishes to 70-80% confluency, and specific wells were transfected the 

following day. To select wells, Bafilomycin (10 nM) was then added and 

incubated for 16 h. 1 mL of 100nM Lysotracker Red (1:10,000 dilution of main 

stock) in RPMI media was then added and incubated for 2 h at 37 degrees with 

5% CO2. Cells were then washed with 3X RPMI and cells were live-imaged in the 

final wash solution. Cells were imaged on the Olympus FV-1000 confocal 

microscope. Parameters used for assay is as follows: Transfected CLU/GFP cells 

were viewed at 488 lazer, HV at 499, 5% laser intensity. Lysotracker Red was 

viewed at 590 laser, HV at 480, 13% laser intensity. Scan speed for both is set at 

4 microseconds per pixel using the 60x objective. 

x 100 = 
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2.3 RESULTS 

2.3.1 Generation of UASCLU Drosophila/hCLU DNA 

2.3.1.1 Cloning 
 

Despite the evolutionary conservation of CLU among higher mammals, 

CLU is not conserved in D. melanogaster.  This is experimentally advantageous as 

we aim to express human CLU in D. melanogaster, effects of any endogenous 

CLU will not have to be accounted.  We chose to express CLU in an established fly 

model of Alzheimer’s disease (AD), the APP/BACE fly that has human APP and 

BACE overexpressed. To express human CLU in the APP/BACE fly, CLU DNA needs 

to be generated in a form where it can be transcribed and translated within the 

fruit fly genome and be specifically expressed within the fly brain. In order to 

achieve the desired expression, there are two constructs that are required to 

generate transgenic clusterin flies that overexpress CLU. The first construct is the 

corrected (wild type) version of CLU inserted into pDNR-Dual; this is necessary 

because the commercial source of CLU contains an unwanted mutation. The 

corrected version of clusterin was then excised and ligated into a pUAST-attB 

vector, in which the attB site undergoes homologous recombination via PhilC31 

integrase with an attP, which is located in the genome of the fly that will be 

microinjected with the CLU construct. A GAL4/UAS system is then implemented 

in order for clusterin to be expressed in the brain region of the fly (section 1.9.4). 

 

2.3.1.2 Creation of pDNR-Dual + corrected version clusterin construct 
 

First, a commercial source of the open reading frame of human CLU in 

pDNR-Dual was obtained (DNASU Plasmid Repository, cat# HsCD00000239) in 

the form of bacterial glycerol stocks in T1/T5 phage-resistant DH5α strain of E. 

coli. There is one nucleotide substitution (t17g) in this construct that leads to an 

amino acid change (LR6) in the signal sequence of CLU. Although the signal 

sequence is still predicted to be recognised and cleaved, I sought to correct the 

mutation in order to be confident that I am studying the effects of wild type CLU 

and not the effects of a mutant variant of CLU. According to the vector map 
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supplied by DNASU, the 1350 bp clusterin ORF can be released from pDNR-Dual 

with SalI and XbaI as neither enzyme cuts internally in clusterin or anywhere else 

in the plasmid. Since the mutation is very close to the 5’ end, correction of the 

mutation can be easily achieved by incorporating the correct nucleotide and the 

SalI site into a 5’ primer and used in combination with a 3’ primer with a SmaI 

site and the Expand High Fidelity PCR System to amplify a fragment of wild type 

CLU (Table 2).  This fragment was then ligated into the pDNR-Dual/CLU plasmid, 

thus replacing the mutant CLU variant with the wild type CLU.  

To generate the CLU PCR product (Figure 2.2B), I initially used the cycling 

parameters of 94˚Ϲ for 2 min (1 cycle); 94˚Ϲ for 15 sec, 66˚Ϲ for 30 sec and 72˚Ϲ 

for 45 sec (3 cycles); 94˚Ϲ for 15 sec, 72˚Ϲ for 30 sec (x2)(22 cycles); and 72˚Ϲ for 

7 sec (1 cycle). However, this standard protocol did not result in a product, so 

slight adjustments were made to the cycles through increasing the cycle number 

and decreasing the annealing temperature. These PCR conditions also did not 

generate an amplicon.  

To  confirm that the plasmid was definitely pDNR-Dual-CLU, I prepared a 

new plasmid prep and digested  1µg with SmaI and XbaI, for which the correct 

bands (5511 bp and 736 bp) were obtained (Figure 2.2A, lane 2). However SalI 

(expected bands 4882 bp and 1365 bp) resulted in a partial digest (Figure 2.2, 

lane 3), which suggested that the SalI stock being used was not active. I thus 

ordered a new tube of SalI.  

The pDNR-Dual-CLU DNA in the miniprep that was initially used as a 

template for PCR was present in low levels (Figure 2.2A, lane 5). I thus used 

quantified this plasmid concentration to be 8.7 ng/µL.  Regardless of reduced 

levels, the quantity should be sufficient enough to enable PCR replication of the 

CLU gene. A new miniprep was prepared at a concentration of 108.3 ng/µL and 

the PCR protocol was changed (see section 2.2.2) so that the annealing 

temperature was reduced to  55°Ϲ and 63°Ϲ (instead of 66°Ϲ and 72°Ϲ for 30sec 

each) and cycles increased to 32 (instead of 22 cycles). The dilutions of the 

primers and plasmid were also increased to increase yield of PCR product. The 

newly developed PCR cycling protocol resulted in amplification of a 625 bp 

product of the correct size (Figure 2.2B, lane 2).  
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Once the 625 bp CLU fragment had been amplified through PCR, the PCR 

product was digested with SalI and SmaI, while the pDNR-Dual-CLU vector was 

also cut with SalI and SmaI. Each digestion was then treated with CIP. These 

digests were run on a gel (Figure 2.2C) and the PCR product and the vector band 

were gel purified (Figure 2.2D). Then 1 L vector and 5 L of PCR product were 

ligated using the Quick Ligation Kit and an aliquot of the ligation mix was 

transformed into competent E.coli cells. The transformation yielded five colonies 

that were resistant to ampicillin, and plasmids were extracted from these 

transformants using the PureLink Quick plasmid miniprep kit.  

To confirm the leucine mutation had been corrected and that only this 

version had been incorporated into the purified pDNR-Dual vector, I conducted a 

diagnostic restriction digest using the restriction enzymes BamHI and Xbal.   

Since BamHI was included in the primer that amplified the corrected CLU 

amplicon, it will only be present in the plasmid with the corrected version of 

A 

B 

Figure 2.1: Sequence confirmation of corrected CLU fragment within pDNR-Dual + CLU   
 (A) Chromatograph of clone #1 with t17g mutation corrected. The correct nucleotide 
lines up at site amino acid site 123. (B) Sequence line up of incorrected (top line) and 
corrected (bottom line) sequences. CGG codes for arginine and CTG codes for leucine. 
The incorrect clone has a L6R amino acid substitution. An ATG codon is located nine 
amino acids before mutation. 
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clusterin. Bands produced were 4919 bp and 1328 bp (Figure 2.4A), and these 

were the expected sizes. To confirm there were no other mutations incorporated 

within the CLU fragment during the PCR reaction, the plasmids were sequenced 

(Massey University) and the resulting sequence did not identify any additional 

mutations and confirmed the mutant variant was corrected in all five 

transformants (Figure 2.1). Concentrations of each plasmid were quantified using 

a nanodrop, and sample 1 (156.8 ng/µL) was used for further experiments 

(Appendix, Figure A1). 
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Figure 2.2: Correction of CLU mutation in pDNR-Dual + CLU vector 
 (A) Restriction Digest on pDNR- dual/CLU vector; lane 1: 8 µL ladder, lane 2: 5µL 
SmaI and XbaI digest, lane 3: 5µL SalI and XbaI digest, lane 4: blank, lane 5: 5µL 
previous CLU miniprep (B) PCR amplification of pDNR-Dual/CLU construct; lane 1: 
8µL ladder, lane 2: 5µL CLU template (band size 625bp – includes linkers on 
primers), lane 3: 5µL non-template (control) (C) Restriction digests of pDNR-Dual 
and CLU (SmaI/SalI). Lanes 1-3: 5µL vector (5622bp), lanes 4-6: 5µL insert (625bp) 
(D) Purification of PCR product(CLU) and vector (pDNR-Dual); lane 1: 8µL ladder, 
lane 2: 5µL vector (5622bp), lane 3: 5µL insert (625bp). 
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2.3.1.3 Creation of pUAST-attB-CLU construct 
 

Once CLU has been corrected of the mutation, CLU DNA needs to be 

inserted into a vector that is compatible to be integrated into the fly CNS. To 

meet these needs, the pUAST-attB vector (Appendix, Figure A2) was utilized as it 

is specifically suited to a D. melanogaster model, as the attB site recombines 

with attP (via. PhilC31 integrase) to enable CLU to be taken up in the central 

nervous system (CNS) of APP/BACE flies by using the GAL4/UAS system. Without 

this driver system, expression of CLU DNA can’t be achieved. To liberate the 

whole CLU ORF to insert it into pUAST-attB, I first digested pUAST-attB with XhoI 

and XbaI and CIP-treated the digest. Then I conducted a restriction digest on the 

pDNR-Dual/CLU construct with SalI and XbaI (Figure 2.4B). This combination of 

enzymes was chosen because Xhol and SalI have compatible sticky ends. Using 

the PureLink Gel Extraction Kit, the vector and insert were purified. A diagnostic 

gel was run to confirm the presence of pUAST-attB and pDNR-Dual/CLU after the 

gel extraction (Figure 2.4C). 

Once the vector and insert were ligated, transformed and grown on LB 

agar plates containing ampicillin, restriction digests with BglII were performed on 

six individual colonies to confirm that pUAST-attB and CLU have correctly been 

ligated. The restriction digest of all five clones was correct, with the vector 

(pUAST-attB) located as the top band (8800 bp) and the insert (clusterin) being 

the bottom band (943 bp) (Figure 2.4D). Further restriction digests were 

performed with BamHI and SmaI on clone #1 to further confirm that the clone 

was correct. Both restriction enzymes seem to cut at the correct position (Figure 

2.4E), indicating that the pUAST-attB and CLU has successfully been incorporated 

into the pUAST-attB vector (Appendix, Figure A3). 

 

2.3.1.4 Generation of the UAS-CLU Drosophila melanogaster strain 
 

With the construction of the pUAST-attB-CLU construct, CLU is now in a 

form to be inserted into D. melanogaster by microinjection of DNA into fly 

embryos that will overexpress CLU as developing larvae mature into adult flies. 

The pUAST-attB-CLU DNA was injected into the D. melanogaster genotype y w, P 
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{hs-flp}; P {3xP3-RFP=attP-86F}; P{3xP3-RFP=phic-31{3xP3-GFP=vas-phic31}}102F’ 

‘to generate a line that contains the UAS-CLU construct. The particular genotype 

that was used for microinjection resulted in a fly that has white eyes and a 

yellow (y) body. The attP site was tagged with RFP (red fluorescent protein) 

under the control of an eye specific promoter (3XP3) so it can be checked that 

this fly strain contains attP by checking that their eyes fluoresce red under the 

fluorescent microscope. PhilC31 integrase, which catalyses the homologous 

recombination between attP and attB, and is also responsible for integrating the 

CLU DNA into the fly, was inserted with the 3XP3-GFP. This was done so the 

presence of PhilC31 can be detected by checking that the eyes of the fly strain 

fluoresce green under the fluorescent microscope. Once the fly strain (UAS-CLU) 

was developed, the fly was crossed to a fly strain that contains the elav-GAL4 

promotor (genotype‘P{w[+mW.hs]=GawB}elav[C155]’) in order for CLU to be 

specifically expressed within the CNS of the fly. 

Microinjection using the pUAST-attB-CLU construct (the injection target in 

the fly being the poleplasm where germ cells form) had been carried out across 

two consecutive days and the proportion of surviving pupae was examined. 

Overall there was a survival rate of 25%. Viable larvae were then grown at the 

appropriate temperatures with larvae initially grown at 25°Ϲ, however that was 

subsequently dropped to 22°Ϲ due to high mortality rate of flies at 25°Ϲ. During 

dechorionation and dehydration, these processes were dependent on each other 

in that the length of dehydration time was dependent on the amount of 

dechorionation time. These processes are known to affect the success rates of 

microinjection and in my case the incorporation of CLU into the wild type D. 

melanogaster. Eggs that are too dehydrated are unlikely to survive, and eggs that 

are too old are destroyed to lower the risk of contaminating the successful 

development of transgenic CLU flies. Overall, my microinjection experiment was 

successful in that I recovered 50 embryos that survived the microinjection 

process.  

The developing larvae then took 10 days to mature into G0 adults. Males 

and females were then outcrossed to white-eyed wild-type flies (wcs10) of the 

appropriate sex. Transgenic progeny (G1) of this cross were selected by eye 
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colour using the following criteria: transgenic flies were w- and had white eyes 

whereas transgenic flies had the w+ gene and had red eye colour restored. These 

flies were then outcrossed for four more generations in order to place the 

transgene in the same genetic background as the other lines that will be used in 

subsequent experiments. 

2.3.1.5 Generation of UAS-APP695-BACE-CLU Drosophila melanogaster strains 
 

In order to generate flies that overexpress UAS-APP695, UAS-BACE and 

UAS-CLU, four additional crosses were performed (Figure 2.3). Balancer genes 

tubby and curly (Tb and Cy) were used to track the specific genotypes in the 

crosses undertaken (as balancer genes are chromosomes that have undergone 

numerous rejoinings and breaks, these loci can no longer recombine to their 

original state)102. The phenotypes of tubby and curly were fat pupae and curly 

Figure 2.3: Generation of APP695/BACE/CLU D. melanogaster mutants (crosses) 
(A) Female APP695/BACE drosophila crossed with male w(CS10) with Tb balancer gene, 
resulting in male APP695/BACE + Tb drosophila (B) female UAS-CLU fly crossed with 
male w(CS10) with Cy balancer gene, resulting in female UAS-CLU drosophila (C) male 
APP695/BACE + Tb drosophila crossed with female CLU + Cy drosophila. Selected for 
pupae and Cy wing adults (wild type eyes) (D) Male APP695/BACE/CLU + Tb and Cy 
drosophila crossed with female APP695/BACE/CLU + Tb and Cy drosophila. Need to 
select Non Cy and Non Tb – all should be homozygous. N.B. Full genotype of 
APP695/BACE flies is ‘w[1118]; P{w[+mC]=UAS-APP695-N-myc}TW6, P{w[+mC]=UAS-
BACE1}1b’ 
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winged flies, respectively. In addition, balancer genes were specifically used to 

identify female progeny, as the male ‘Y’ chromosome does not undergo 

recombination102. When these crosses were carried out; since selection was 

based on eye colour, a small proportion of flies may not have CLU and only have 

the APP695/BACE genotype (since APP695/BACE have dark eyes), therefore 

several single pair matings were required. After the progeny were collected, PCR 

amplification of corrected CLU construct in pUAST-attB/CLU vector that were 

microinjected into flies(using primers from correction of pDNR-Dual + CLU) was 

conducted to confirm all three mutations were indeed present.  
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Figure 2.4: Creation of pUAST-attB + CLU vector 
 (A). Restriction Digests of corrected version of pDNR-Dual/CLU construct 
(BamHI/XbaI); Lane 1: 8µL ladder, lanes 2-6: 5µL pDNR-Dual CLU minipreps (1-5), lane 
7: 8µL ladder (B) Restriction Digests of pUAST-attB (Xhol/XbaI) and pDNR-Dual + CLU 
(SalI/XbaI); lane 1: 8µL ladder, lane 2-4: 25µL vector (pUAST-attB) (bands 8477bp and 
12bp), lanes 5-8: 25µL Insert (pDNR-Dual/CLU construct) (bands 4882bp and 1365bp) 
(C) Diagnostic PAGE; lane 1: 8µL ladder, lane 2: 5µL vector (pUAST-attB) (8477bp), 
lane 3: insert (pDNR-Dual/CLU) (1365bp) (D) Restriction digests using BgllI on pUAST-
attB hCLU plasmid; lane 1: 8µL ladder, lane 2-7: 5µL digests on pUAST-attB/CLU (1-6) 
(8899bp and 943bp), lane 8: 8µL ladder (E) Restriction Digest on pUAST-attB/CLU 
construct; lane 1: 8µL ladder, lane 2: 5µL BglI digest (7358bp and 2484bp), lane 3: 5µL 
SmaI digest (8299bp, 6796bp, 5253bp, 4589bp, 3046bp and 1543bp) 
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2.3.2. Generation of CLU in SH-SY5Y neuroblastoma cells 
 

2.3.1.1 Cloning  
 

To express human CLU within SH-SY5Y and SH-SY5Y+swAPP AD 

neuroblastoma cell lines, CLU was inserted into a vector specific for a 

mammalian system. For this to be achieved, two experimental reagents and one 

experimental optimization were required. First, the CLU fragment cloned into the 

fly vector pUAST-attB was excised and placed into the mammalian vector 

pcDNA3.1(+) between restriction sites NotI and XbaI (Appendix, Figure A4). 

Second, a reporter protein was added to the mammalian vector in order to 

detect positive transfection of CLU into SH-SY5Y cells. To do this, I cloned the GFP 

portion of RG203629 vector and ligated it into the pcDNA3.1(+)/CLU construct 

between restriction sites XbaI and PmeI. Third, optimisation of transfection was 

required in order to obtain the highest percentage of successful CLU 

overexpressing cells. This was determined through administering a range of 

concentrations of the transfection reagent Lipofectamine 2000 and CLU DNA, 

and determining the optimal ratios of Lipofectamine 2000 to DNA that achieved 

the highest yield of SH-SY5Y positive CLU expressing cells.  

 

2.3.1.2  Creation of pcDNA3.1(+) + clusterin construct 
 

To insert clusterin into a mammalian vector that is compatible with the 

SH-SY5Y cell line, I selected the vector pcDNA3.1(+) since this vector is used in 

common lab practice due to its ability to enable high expression levels within a 

variety of mammalian cell lines . The vector pcDNA3.1(+) and insert pUAST-attB + 

CLU was linearized with a restriction digest using  NotI and XbaI and the vector 

CIP treated resulting in 5416 bp and 1373 bp fragments (Figure 2.5A, lane 4-

5).Using Geneaid Gel/PCR DNA Fragments Extrtaction Kit, vector and insert 

bands were purified (Figure 2.4A, lane 2-3, Figure B). Using T4 DNA ligase, 

pcDNA3.1(+) and CLU were ligated with a 4 hr incubation at 37°Ϲ and a 

diagnostic gel was  run to confirm the presence of a successful ligated product.  
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Figure 2.5: Creation of pcDNA3.1(+) + CLU construct 
(A) Gel purification and restriction digests of pcDNA3.1(+) (vector) and insert (pUAST-
attB + CLU).Lane 1: ladder; lane2: gel purification of insert; lane 3: gel purification of 
vector; lane 4: restriction digest with NotI and XbaI on insert (pUAST-attB + 
CLU)(1846bp and 1373bp), lane 5: restriction digest with NotI and XbaI on vector 
(pcDNA3.1(+)) (7546bp and 12bp). (B) Confirmation of gel purified products lane 1: 
ladder; lane 2: Insert (CLU) (1373bp), lane 3: vector ( pcDNA3.1(+)) (5416bp). (C) 
Diagnostic restriction digests on ligated product. Lane 1: ladder, lane 2-3:NotI/XbaI 
digest (5416bp and 1373bp), lane 4-5BamHI/XbaI  digest (5354bp and 1435bp); lane 6-
7:HindIII/XBaI digest (5336bp and 1453bp); lane 8-9:undigested ligated product 
(pcDNA3.1(+) + CLU) (6789bp); lane 10: ladder. 
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However, since the presence of background bands in the gel suggested the 

ligation was partial; two different ligation methods were carried out at 26°Ϲ for 4 

hr in addition to another ligation carried out at 4°Ϲ for 16 hr. The diagnostic gel 

to test out ligation products proved successful for both ligation conditions 

(Figure 2.5C, lane 7-8), demonstrating that the initial 4 hr ligation at 37°Ϲ was 

inadequate for this particular ligation. The confirmed ligations were then 

transformed in competent E. coli cells, selected on ampicillin-containing media, 

miniprepped, and digested to confirm successful incorporation of CLU into 

pcDNA3.1(+) (Figure 2.5C, lanes 2-6). 

2.3.1.3 Integration of GFP in pcDNA3.1(+)/CLU construct 
 

Once the mammalian CLU plasmid was constructed, there was a 

requirement for a reporter gene to be present within the CLU mammalian 

vector. This is to determine successful incorporation of CLU in SH-SY5Y cells 

through the transfection technique with Lipofectamine 2000 as well as 

determining optimum transfection efficiencies within cells. The plasmid 

RG203629 was obtained (Appendix, Figure A5) and the GFP sequence from this 

particular vector was PCR amplified, resulting in a 705 bp fragment (Figure 2.6A). 

PCR products were gel purified, and digested along with pcDNA3.1 (+) + CLU (the 

mammalian construct created in section 2.4.2) with XbaI and PmeI restriction 

enzymes (Figure 2.6B). After incubation for 1 h, the vector was CIP treated, and 

the required bands were gel purified and ligated. Ligation products were 

transformed in E. coli, selected on ampicillin-containing media, and plasmids 

were purified from transformants. Diagnostic restriction digests of plasmids were 

conducted to confirm successful ligation of GFP sequence and pcDNA3.1(+)/CLU 

(Figure 2.6C). 
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Figure 2.6: Creation of GFP + pcDNA3.1(+) CLU construct 
(A) PCR gel of RG203629. Lane 1: Ladder, lane 2:undigested RG203629 (7900bp), lane 
3:RG203629 GFP PCR product 1 (1ul); lane 4: RG203699 GFP PCR product 2 (5ul); lane 5: 
dye; lane 6: ladder (~705bp) (B) Restriction digests of vector (pcDNA3.1(+) + CLU) and 
insert (RF=G203629) by XbaI and PmeI.  Lane 1: Ladder, lane 2-5: restriction digests of 
vector (pcDNA3.1(+) + CLU), lane 6-9: restriction digest of insert (RG203629), lane 10: 
ladder. (C) Diagnostic restriction digests of ligated product (pcDNA3.1(+) + CLU + GFP). 
Lane 1:ladder; lane 2: PmeI/NotI digest (~2078bp and 6789bp); lane 3: NotI/XbaI digest 
(7494bp and 1373bp); lane 4: XbaI/PmeI (~705bp), lane 5: XhoI/PmeI (~675bp); lane 6: 
complete plasmid uncut (~8867bp), lane 7: gel purification of vector (8162bp), lane 8: gel 
purification of insert (~705bp); lane 9: dye; lane 10: ladder. 
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2.3.1.4 Transfection optimisation of pcDNA3.1(+)/CLU/GFP in SH-SY5Y cell 
lines  
 

The transfection reagent Lipofectamine 2000 was used to express the 

pcDNA3.1(+)/CLU/GFP construct into SH-SY5Y neuroblastoma cells. 

Lipofectamine 2000 transfects cells through a lipid-based mechanism in which 

the catatonic liposome formulation consists of positively charged lipids that have 

high binding affinity for negatively charged DNA. Therefore, Lipofectamine forms 

positively charged vesicles around the DNA of interest for cell uptake, as cell 

membranes also exhibit a negatively charged environment. This fusion across the 

cell membrane is mediated by the addition of the neutral lipid in Lipofectamine.  

Given that previous literature indicates that SH-SY5Y cells are particularly 

hard to transfect with maximal transfection efficiencies at 30-40%, it was critical 

that I optimise transfection conditions. Based from the manufacturer’s 

instructions, SH-SY5Y cells were optimised using 3-6 µL Lipofectamine 2000, 0.4-

1.8 µg plasmid DNA (Figure 2.7-2.8). As optimal transfection efficiencies occur 

over a period of 24-48 h, these parameters were adopted for wild type (Figures 

2.9-2.12) and swAPP cells (Figures 2.13). 

The best transfection efficiencies were achieved using ¾, 9/
8 and ½ ratios 

with 24 h incubation. Further investigations were carried out by using different 

concentrations of 1:2 (DNA: Lipofectamine) transfection mix in order to optimise 

use of Lipofectamine product. (Ranges ¾ and 9/
8 ratios were investigated but 

proved to be inconsistent in transfection efficiencies produced). Further 

investigations of ½ ratio proved successful with 1.6 µg:3.2 µL and 2 µg:4 µL 

diluted in 500 µL:100 µL RPMI media (Figures 2.15-2.16). Transfection ratios 

incubated for 4 hr and left to grow for 24 hr at 2 µg:4 µL (DNA/Lipofectamine) 

ratio proved best results for swAPP cells as cells can become ~90-100 confluent 

at 48 hr (Figure 2.15C), whereas 48 hr proved best results for WT SH-SY5Y cells 

(Figure 2.14D). 
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Figure 2.7: Experimental method for WT-SHSY5Y transfection optimisation 
(A) Experimental procedure for examining WT SH-SY5Y transfection efficiency levels 
under different DNA:Lipofectamine 2000 conditions for 24hrs. (B) Experimental 
procedure for examining WT SH-SY5Y transfection efficiency levels under different 
DNA:Lipofectamine 2000 conditions under 48hrs. 
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Figure 2.8: Experimental method for swAPP SH-SY5Y transfection optimisation 
Experimental procedure for examining WT SH-SY5Y transfection efficiency levels under 
different DNA:Lipofectamine 2000 conditions for 24hrs.  
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Figure 2.9: Transfection trial of WT-SHSY5Y cells incubated for 24 h (well 1-6) 
Transfection media on WT SH-SY5Y cells incubated for a 4 h time period before 
replaced with RPMI + 10% FCS media. Ratios given beside each well is the amount of 
DNA to Lipofectamine 2000 amounts.   
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Figure 2.10: Transfection trials for WT SHSY5Y cells incubated for 24 h (well 7-12) 
Transfection media on WT SH-SY5Y cells incubated for a 4 h time period before 
replaced with RPMI + 10% FCS media. Ratios given beside each well is the amount 
of DNA to Lipofectamine 2000 amounts.   
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Figure 2.11: Transfection trials of WT SHSY5Y cells incubated for 48 h (well 1-6) 
Transfection media on WT SH-SY5Y cells incubated for a 4 h time period before 
replaced with RPMI + 10% FCS media. Ratios given beside each well is the 
amount of DNA to Lipofectamine 2000 amounts.   
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Figure 2.12: Transfection trials of WT SHSY5Y cells incubated for 48h (well 7-12) 
Transfection media on WT SH-SY5Y cells incubated for a 4 h time period before 
replaced with RPMI + 10% FCS media. Ratios given beside each well is the amount 
of DNA to Lipofectamine 2000 amounts.   
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Figure 2.13: Transfection trials of swAPP SH-SY5Y cells incubated for 24 h (well 1-6) 
Transfection media on swAPP SH-SY5Y cells incubated for a 4 h time period before 
replaced with RPMI + 10% FCS media. Ratios given beside each well is the amount of 
DNA to Lipofectamine 2000 amounts.   
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Figure 2.14: Transfection trials of swAPP SH-SY5Y cells incubated for 24 h (well 7-12) 
Transfection media on swAPP SH-SY5Y cells incubated for a 4 h time period before 
replaced with RPMI + 10% FCS media. Ratios given beside each well is the amount of 
DNA to Lipofectamine 2000 amounts.   
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Figure 2.15: Transfection optimisation (1:2 DNA:Lipofectamine) in WT SH-SY5Y cells 
(A) Wild type cells treated with 1.6ug DNA: 3.2uL Lipofectamine over a 24 h period 
with a ~10% efficiency (B) Wild type cells treated with 1.6ug DNA: 3.2uL 
Lipofectamine over a 48 h period with ~15-20%  efficiency (C) Wild type cells treated 
with 2ug DNA: 4uL Lipofectamine over a 24hr period with a 20% efficiency (D) Wild 
type cells treated with 2ug DNA: 4uL Lipofectamine over a 24hr period with a 40% 
efficiency. 
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Figure 2.16: Transfection optimisation (1:2 DNA: Lipofectamine) in swAPP SH-SY5Y cells 
Transfection optimisation (1:2 ratio;DNA:Lipofectamine) in swAPP SH-SY5Y cells (A) 
swAPP cells treated with 1.6ug DNA: 3.2uL Lipofectamine over a 24 h period with a <5% 
efficiency (B) swAPP cells treated with 1.6ug DNA: 3.2uL Lipofectamine over a 48 h 
period with ~5-10% efficiency (C) swAPP cells treated with 2ug DNA: 4uL Lipofectamine 
over a 24hr period with a 20% efficiency (D) swAPP cells treated with 2ug DNA: 4uL 
Lipofectamine over a 24hr period with a 40% efficiency. 
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2.4 Clusterin Enhances Survival Rates in the APP/BACE Fruit fly Model of 

Alzheimer’s disease 

 
In AD, gross motor skills such as balancing and head movements as well 

as fine motor skills (e.g., coordination of body parts) are affected as the 

pathology of the disease increases over time. Upon diagnosis, the life expectancy 

after AD is also decreased, with a shortened life expectancy roughly around 10 

years. Due to these symptoms in humans, it was of particular interest to see if 

AD fruit flies exhibit similar patterns, as well as any other pathological symptoms 

during development with the APP/BACE expressed in flies. If APP/BACE fruit flies 

do exhibit this pattern, then deterioration of motor function would therefore be 

due to defects found within the central complex of the fruit fly brain; the region 

which provides motor output after the completion of sensory integration from 

other regions of the brain. 

Commercially purchased APP/BACE flies were initially grown at 25˚Ϲ; 

however the survival rate of the flies was severely affected, as mortality rate was 

extremely high resulting in insignificant amounts of progeny generated for 

following experiments. In order to improve number of surviving progeny, 

APP/BACE flies were grown at 18˚Ϲ and 22˚Ϲ which greatly increased the number 

of offspring produced. This was most likely due to GAL4 functionality as it is more 

active at higher temperatures; therefore more APP695 and BACE were produced 

at 25˚Ϲ, which may have resulted in increased Aβ1-42 toxicity. The resulting 

survival rates between male and female were the following: (WT) = 1:02:1, 

(ELAV/CLU) = 1:0.4:1, (APP/BACE) = 3:74:1, (APP/BACE/CLU) = 1:52:1. 
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2.5 Clusterin Ameliorates the Crumpled Wing Phenotype in the APP/BACE Fruit 

fly Model of Alzheimer’s disease  

 
 Chakraborty and colleagues reported the crumpled wing phenotype 

portrayed in the APP/BACE AD fly (Figure 2.17B). The crumpled wing phenotype 

was also demonstrated within APP flies, however this phenotype was increased 

10-fold in APP/BACE flies98, which supports the notion that morphological 

defects are dependent on the processing of APP by BACE as well as the 

production of amyloid beta plaques. Indeed, the gamma secretase inhibitor 

L685/458 reduced the occurrence the crumpled wing phenotype in APP/BACE 

flies98,105. Based on these reports, I predict that CLU overexpression should 

decrease the morphological defect of crumpled wings due to the protective 

properties of CLU. 

Flies grown at 22°Ϲ that were collected a week apart were characterised 

for the crumpled wing phenotype. APP/BACE mutants did indeed contain 

crumpled wings with 96.9% of the male population and 31.7% female population 

exhibiting this pathological morphology (Figure 2.17C). However there seemed to 

be only a certain portion of APP/BACE progeny that had this phenotype. The 

other phenotype exhibited was no crumpled wings within the AD fly, however 

these flies should theoretically still have the APP695 genotype. This is interesting 

as pathological defects within the fly wing would be expected to occur in all 

APP/BACE genotypes. CLU expression within the APP/BACE flies decreased the 

crumpled wing phenotype in the male population by 31.4% (from 96.9% to 

31.7%) and by 17.7% (from 31.7% to 14%) in the female population (Figure 

2.17C). Therefore, the phenotype of crumpled wings seems to be more 

prominent within males compared to females. To support my observations, I 

monitored the phenotype in additional genotypes, and as expected, wild type 

and ELAV/CLU controls portrayed negative symptoms towards the crumpled 

wing phenotype (wild type males having 0.8% and females 0% crumpled wing 

phenotype and ELAV/CLU males having 0.6% and females 1% crumpled wing 

phenotype).  
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Figure 2.17: Clusterin rescues morphological crumpled wing defect in APP/BACE AD flies 
(A) Representative wild type fly with fully developed straight wings with absence of 
melanotic lesions. (B) Representative APP/BACE fly portraying crumpled wing phenotype 
and melanotic lesions located on the abdomen and proboscis. Fly images taken from 
Chakraborty et al, 2011. (C) Graphical representation of crumpled wing phenotype within 
males and females. (WT)  n= 500 males, 508 females, (ELAV/CLU) n = 524 males, 546 
females, (APP/BACE) n = 97 males, 363 females, (APP/BACE/CLU) n = 226 males, 343 
females. * indicates significant difference (decrease in crumpled wing phenotype by 
17.7%) between CLU treated female AD flies compared to untreated APP/BACE flies. ** 
indicate significant difference (decrease in crumpled wing phenotype by 31.4%) between 
CLU treated male AD flies to untreated APP/BACE flies.   
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2.6 Clusterin Reduces Full Length APP and Aβ42 levels in swAPP SH-SY5Y cells 

but not in the APP/BACE fly     

 

One of the key pathological characteristics of AD is how the full length 

APP protein (FL-APP) is processed by beta secretase (encoded by the BACE gene) 

and gamma secretase. Normal regulation of the APP protein in healthy 

individuals result in FL-APP cleaved by alpha and gamma secretase, resulting in 

non-toxic levels of APP processed fragments which are rapidly cleared from the 

body. However in Alzheimer’s disease, APP is incorrectly processed by BACE 

which results in beta C terminal fragments (β-CTF) that are further processed by 

gamma secretase resulting in amyloid beta fragments Aβ1-42 with the most 

prevalent detrimental isoform being Aβ42. To examine the effect of CLU on 

Alzheimer’s disease pathology, I measured the levels of β-CTF, FL-APP and Aβ42 in 

the APP/BACE fly and the SH-SY5Y+swAPP models of Alzheimer’s disease. As 

clusterin is a stress-induced protein, the overexpression of CLU in these models 

should either reduce the cleavage processes on FL-APP or increase the clearance 

of Aβ42.  

Using Western blot analysis of SH-SY5Y cells, there is a 48.79% higher 

abundance of FL-APP present (p < 0.001) in the swAPP/CLU+/+ model (Figure 

2.18A-B). This result suggests that there is a decrease in processing of the FL-APP 

protein by BACE and gamma secretase. This inference is supported in my 

measurements of Aβ42 using ELISA, which indicated a decrease of ~30% between 

swAPP/CLU-/- and swAPP/CLU+/+ models (p < 0.001) (Figure 2.18E). β-CTF levels 

were also examined using Western blot analysis, however since this protein is an 

intermediate step before cleaved by either gamma secretase or simply cleared 

through other mechanisms, levels were too low to be detected. This would serve 

as in indirect link as to how much amyloid accumulation and processing is 

occurring. Preliminary experiments show that when the swAPP SH-SY5Y cell line 

is treated with 10 uM gamma secretase (Compound E) inhibitor βCTF levels are 

detected in strong levels (Figure 2.19). WT levels were not assessed as there isn’t 

any presence of APP within control SH-SY5Y cell lines.  
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However upon examining FL-APP levels in the fly model, I did not detect a 

difference in FL-APP in APP/BACE compared to APP/BACE/CLU (Figure 2.18C-D). 

In contrast, a dramatic change was detected in a comparison of WT and 

APP/BACE, wherein there was increase of 94.15% in APP/BACE compared to WT 

(Figure 2.18C-D). FL-APP also seems to be detected as a doublet, except at a 

slightly different size in comparison to SH-SY5Y cells (110-115 kDa compared to 

105kDa). This could be due to detection of the fly’s natural orthologue of APP 

(APPL) that is not by BACE due to the absence of the required cleavage domains.  

Using the commercial ELISA kit that detects human Aβ42, levels of Aβ42 in the 

APP/BACE and APP/BACE/CLU flies were below detectable levels (i.e., below the 

first spot in the standard curve). As APP/BACE genes are of human nature and 

have been inserted into the genome of the fly, Aβ42 should theoretically have 

been detected. Several extraction methods were trialled with all resulting in a 

negative outcome. This suggests that BACE has not been sufficiently 

incorporated into the fly genome.  Alternatively, this result may be due to more 

than BACE considering that models that only overexpress APP (e.g., the SH-

SY5Y+swAPP cells) still represent AD pathology, albeit weaker than with the 

additional BACE mutation.    
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Figure 2.18: CLU prevents cleavage of FL-APP and Aβ42 levels in AD cells and no effect in AD 
D. melanogaster lines 
(A) Representative Western blot analysis showing the effect of CLU overexpression on FL-APP 
processing in swAPP SH-SY5Y cell line. 20 µg protein loaded (3x10^5 cells harvested and 
protein loaded accordingly). * indicates significant increase of FL-APP in CLU treated AD cells 
compared to untreated AD cells (p < 0.001)(B) Densitometry analysis of (A) showing a 38% 
increase in FL-APP protein. (C) Representative Western blot analysis showing the effect of CLU 
overexpression in APP/BACE drosophila line. 20µg protein loaded (D) Densitometry analysis of 
(C) showing an absence of FL-APP processing in APP/BACE flies. (E) Aβ42 ELISA analysis of SH-
SY5Y/swAPP media i.e. excreted Aβ42 levels. * indicates significant change between CLU 
treated AD cells compared to AD cell Aβ42 level (p < 0.0001). ** indicates significance between 
WT and AD cells (p < 0.001). Statistics calculated by Student t-test and standard error used. All 
experiments repeated in triplicate. 
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Figure 2.19: Treatment with gamma secretase on swAPP SH-SY5Y cells 
improves detection on βCTF fragment 
(A) Representative Western blot analysis showing the identification of βCTF 
when swAPP SH-SY5Y cells are treated with 10uM gamma secretase inhibitor 
20ug protein loaded. Experiments done in triplicate, 3x10^5 cells harvested and 
protein loaded as indicated. (B). Densitometry analysis of (A) showing significant 
increase in βCTF detection. Standard error used. * indicates significant 
difference between gamma secretase treated AD cells compared to untreated 
AD cells. Student t-test and standard error used, p < 0.0001.  
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2.7 Clusterin Mobilizes Cholesterol Aggregates in the APP/BACE Fly Model of 

Alzheimer’s Disease   

 
A large reservoir of free cholesterol is found within the brain and is one of 

the key lipids that modify the onset and progression of AD. Cholesterol 

accumulation within brains of patients with AD correlates with amyloid beta 

plaque formation. Attention was further drawn to changes in cholesterol after it 

was found that levels of APOE, the number one genetic risk factor for AD, is 

implicated in the transport of free cholesterol through the blood brain barrier 

and therefore influences cholesterol levels in the brain. Further investigations of 

APOE and cholesterol also identified a role for CLU in the mediation of 

cholesterol clearance. With CLU being previously reported having 

apolipoproteolitic activity as a chaperone protein that also influences cholesterol 

efflux; I predict that CLU will reduce cholesterol levels in the APP/BACE flies and 

swAPP SH-SY5Y cells. I used filipin, a fluorescent stain that binds unesterified 

cholesterol, to localize free cholesterol in the fly brains (Figure2.20) and human 

cells (Figure 2.21).       

 

Filipin staining in the APP/BACE fly brain compared to the wild-type brain 

revealed a 75.1% increase (p <0.01) in the APP/BACE fly with an increase in 

cholesterol aggregates with localisation found around the medial middle 

antennocerebral tract (mACT). The mACT projects directly from the antennal 

lobe (the first order olfactory neutrophil) to the lateral horn with a subset of 

fibres directed towards the pedunculus, with synapses projecting towards 

certain parts of the mushroom body. Filipin aggregates also seem to be 

consistently found within the medulla. Other images captured seem to lie within 

these two regions of the brain, however there is widespread detection in which 

few images show detection of cholesterol detected in the alpha-alpha’ region of 

the mushroom body, the learning and memory centre of the brain. In contrast, 

the cholesterol aggregates in the APP/BACE/CLU fly reflect the dull staining 

observed in the wild type fly, with 70.52% reduction (p < 0.01) of cholesterol in 

APP/BACE/CLU flies compared to the APP/BACE flies. The observation of a 
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particular loss of cholesterol aggregation was variable and hard to pinpoint, 

however the medulla region of the brain seemed to still contain low levels of 

cholesterol aggregation, whereas towards the centre of the brain, staining was 

more diffuse. It should be noted that the sample size is relatively small for all (n = 

8), thus these results should be taken with caution as experimental repeats 

would be recommended to have full confidence in these findings.  

 

 In analyses of human cells, filipin fluorescence was increased (p < 0.01) in 

swAPP SH-SY5Y cells compared to WT SH-SY5Y cells (Figure 2.21A-B top right 

panels). To link autophagy and cholesterol homeostasis, I treated cells with 

bafilomycin, a vATPase inhibitor that disrupts autophagic flux, and I observed a 

further increase in cholesterol levels (Figure 2.21A-B bottom panels). Due to time 

constraints, SH-SY5Y cells transfected with CLU were not visualised. 

Characterisation of these cells is crucial for characterizing the effect of CLU on 

cholesterol homeostasis and further testing the results described above in the 

fruit fly.   
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Figure 2.20: Filipin detection reveals decreased free cholesterol content within 
APP/BACE/CLU fly brains 
(A) Filipin staining observations using Olympus BX63 microscope operated to examine 
WT, APP/BACE (AD fly), APP/BACE/CLU, and ELAV/CLU flies. Cholesterol aggregates 
found in APP/BACE in comparison to WT fly, localised mainly at the mACT region (red 
arrow) whereas clusterin treated flies have a significant reduction in overall cholesterol 
content. (B) Graphical representation of cholesterol levels (all n=8).*, p < 0.01, student 
t-test, comparison between WT and AD flies. **, p < 0.01, Student t-test, comparison 
between AD flies and AD flies with CLU overexpression. Standard error is used. (B) 

Statistical analysis (Image J software) of fluorescent levels of (A). Standard error is used. 
Analysis conducted by measuring Corrected Total Cell Fluorescence (CTCF) by Image J 
software. CTCF = Integrated density – (Total area of cell x mean fluorescence of 
background). 
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Figure 2.21: Filipin detection reveals increased cholesterol content within swAPP 
SH-SY5Y cells 
(A-B) Filipin staining on Olympus FV-1000 confocal microscope within WT and 
APP/BACE fly with and without bafilomycin under (A) 40x and (B) 60x 
magnification. Visual analysis portrays cholesterol aggregates being more 
dominant in swAPP cells in comparison to WT cells, as well as cholesterol content 
is further accumulated in bafilomycin treated cells; n = 10.  
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2.8 Clusterin May Reduce Cholesterol levels in the Brains of the APP/BACE Fly 

Model of Alzheimer’s Disease   

 
To further investigate the effect of CLU on cholesterol metabolism, I 

measured cholesterol in fly brains. MALDI-TOF mass spectrometry was carried 

out on lipids extracted from ~50 fly heads (per each genotype). All samples were 

analysed in triplicate and normalised from background readings detected with 

solely the 2,5-Dihydroxybenzoic acid  (2,5 DHB) matrix.  Although there are 

several isotypes of cholesterol detected by mass spectrometry, the most 

prevalent peak was peak 369m/z.  Preliminary results found at 369 m/z peak 

(Figure 2.22) reinforce results shown in the filipin experiments, wherein there is 

reduced cholesterol in APP/BACE/CLU compared to APP/BACE flies. However, in 

order to fully validate these results, an ms/ms analysis or a cholesterol standard 

is required to confirm this peak is indeed cholesterol.   

It was my intention to examine the effect of CLU in WT SH-SY5Y and 

swAPP SH-SY5Y cells; however my optimal transfection efficiency of around 40% 

was not enough to account for variability in mass spectrometry readings 

between samples. Therefore, in order to increase the percentage of CLU positive 

cells, FACS sorting was trialled in swAPP/CLU+/+ cells by using the BD Influx FACS 

sorter to sort transfected cells (GFP positive) from non-transfected cells (GFP 

negative)(2.24A). Gating strategies were designed to exclude doublets (GFP 

positive closely followed by GFP negative cell) (Figure 2.23A), detection of GFP 

positive cells (Figure 2.23B), detection of viability stain (DAPI) of cells (DAPI 

penetrates dead cell walls more easily than live cells which will exclude the stain) 

for percentage of live to dead cell count in sample (Figure 2.23C), and overall 

percentage of positive GFP/CLU cells in sample (Figure 2.23D). Post sort 1 result 

procedure resulted in 64% recovery of total amount of cells (Figure 2.23B) with a 

total of 1x105cells/mL. However a second sort was trialled in order to achieve 

higher purity results. Post sort 2 results increased the purity of the sample from 

75.5% to 85.5%, however only 3.5x104 cells were recovered (Figure C). This is less 

than ideal to achieve a sufficient signal from the MALDI-TOF mass spectrometer, 

even though the purity level of the swAPP/CLU+/+ is acceptable. Due to low cell 
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numbers collected, SH-SY5Y cells were not analysed, however future directions 

should point towards transfecting a higher amount of cells and only running cells 

through one sort run. 
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Figure 2.22: MALDI-TOF analysis reveals a decrease in overall cholesterol content 
when CLU is upregulated in AD flies 
(A) Example of peak intensity found in APP/BACE fly (369.35m/z) with intensity of 
1.2x104. Image analysis observed on DataExplorer®software. (B) Statistical analysis of 
cholesterol levels found through MALDI-TOF analysis. *, P < 0.01, comparison 
between WT and ELAV/CLU show a 72.89% increase in cholesterol. **, p <0.05, 
comparison between WT and APP/BACE show a 70.82% increase of cholesterol levels. 
***, p < 0.005, comparison between APP/BACE and APP/BACE/CLU show a 49.7% 
reduction in cholesterol levels. Z-test was used, with standard error. 
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Figure 2.23: Gating strategy for FACS sorting of GFP/(swAPP/CLU+/+) positive cells 
(A) Doublet discrimination of cells which are joined together (positive closely 
followed by a negative GFP cell). 75% cells recovered from population for single cell 
detection.(B) Detection of GFP CLU cells (cells of interest). 95.9% cells detected for 
GFP signal (C) Detection of viable cells through DAPI negative cells. 92.7% of cells 
were viable within GFP positive CLU cell sample (D) Detection of total GFP/CLU 
positive events in sample. 47.8% GFP/CLU cells were detected (estimated 
transfection efficiency was ~40%).  
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Figure 2.24: Purity check for FACS sorting of GFP/(swAPP/CLU+/+) cells 
(A) Presort results of GFP/CLU positive containing cells. Initial sample of cells 
contained 47.8% purity of GFP/ (swAPP/CLU+/+) cells. (B)Post-sort 1 of GFP/CLU 
cells. FACS sorting increased purity of GFP/CLU cells from 47.8% to 75.5% 
(difference of 27.7%). (C) Post sort 2 of GFP/CLU containing cells. Post sort #2 
resulted in increased purity from 75.5% to 85.6% (difference of 10.1%). However 
significant loss of cells resulted from second FACS sort.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.9 Clusterin Disrupts Autophagic Flux in SH-SY5Y+ swAPP Cells 
 

It was recently reported that CLU enhances cell survival through 

enhancing lipidation interactions with LC3, allowing it to be conjugated to 

phosphatidylethanolamide (PE), as well as stabilising LC3-Atg3 interactions that 

correct dysfunctional autophagy mechanisms1. Although this is detrimental to 

cancer cells, this mechanism would prove beneficial to survival of neurons and 

prevent degradation of essential memory regions in the brain. In AD, 
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dysfunctional lysosomal digestion within the autophagic pathway is prominent. 

As CLU has been shown to aid autophagy, I hypothesise that the overexpression 

of CLU will correct autophagic processes and aid the degradative processes of 

defective cargo such as Aβ42 monomers prior to aggregation into senile plaques. 

To examine the effect of CLU on autophagy, I used Western blot analyses to 

measure the levels of LC3-II, a protein that is localised on autophagosomal 

membrane and thus a marker for autophagy. As there is an increase of LC3I-II 

protein in AD compared to control populations (due to an upregulation of 

autophagy) we expect increased levels of LC3I-II in swAPP cells in comparison to 

WT SH-SY5Y cells. As CLU increases the lipidation of LC3II as well as stabilising the 

LC3-Atg3 complex to correct dysfunctional autophagic activity, swAPP/CLU+/+ 

cells should downregulate the overall induction of autophagy, as correction of 

autophagic processes would downregulate substrate overload in 

autophagolysosomes.  

My densitometry analysis of LC3I-II levels between wild type and swAPP 

cells showed there was a significant decrease of total LC3 (LC3I-II) protein levels 

by 44.65% in swAPP/CLU+/+ (p = 0.01) when compared to swAPP/CLU-/- (Figure 

2.25A-B). Bands detected from western blot were normalised to alpha-tubulin. 

To further decipher and potentially enhance this result, I treated all cells with 

bafilomycin, an inhibitor of the vATPase-H+ pump in the autophagy pathway that 

controls lysosomal acidification levels. The bafilomycin treatment resulted in 

increased detection of LC3-II protein within all cell lines (WT SH-SY5Y, swAPP SH-

SY5Y and CLU treated cells) (Figure 2.25C), as the degradative process by 

autophagolysosomes was hindered. This enhanced signal increased the signal to 

confidently decipher the effect of CLU in that bafilomycin-treated SH-SY5Y+CLU 

cells had 23% (p < 0.01) less LC3-II than bafilomycin-treated swAPP SH-SY5Y cells 

(Figure 2.25E). Results from this assay reflect differences shown between 

swAPP/CLU-/- and swAPP/CLU+/+ with a decrease in 21.34% (p = 0.01) (Figure 

2.25E). As previous studies recommend that to correctly extrapolate data for 

autophagy mechanisms through LC3 detection, inhibitors such as bafilomycin 

need to be considered alongside LC3 levels without inhibitors155, results from our 

Western blot analyses indicate CLU is regulating autophagy in SH-SY5Y cells. 
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Figure 2.25: Clusterin aids lysosomal digestion and decreases autophagosome 
accumulation in AD SH-SY5Y neuroblastoma cells 
(A) Representative Western blot analysis showing the effect of CLU on LC3I-II processing in 
SH-SY5Y/ swAPP SH-SY5Y cell line. (B)Densitometry analysis of (A) showing CLU exhibiting a 
44.65% decrease in overall LC3 expression within swAPP SH-SY5Y cells, *, p < 0.01, 
Student’s t-test, standard deviation used (C) Representative Western blot analysis showing 
the effect of CLU on LC3I-II processing in SH-SY5Y/swAPP SH-SY5Y cell line treated with 
bafilomycin for 24hrs. (D) Densitometry analysis of (C) showing CLU exhibiting an effect on 
WT and swAPP SH-SY5Y cells by reducing LC3I-II by 23%, *, p = 0.01, Student’s t-test, 
standard error used. (E) Comparison of LC3I-II levels between cells treated with and 
without bafilomycin. 
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2.10 Lysotracker red staining reveals overexpression of clusterin results in 

visual change but no statistical change lysosomal acidification levels within 

swAPP SH-SY5Y Alzheimer’s disease cell model 

 
To further test my finding that CLU restores autophagy, I used Lysotracker 

Red, a fluorescent dye that stains acidified organelles. This particular dye at 

neutral pH is only partially protonated due to being conjugated to a weak base. 

This results in the dye permeating cell membranes. Using this probe to visualise 

lysosomal acidification, this technique is both qualitative and quantitative 

analyses of the autophagic process. Utilizing Lysotracker Red in live cell image 

analysis, swAPP SH-SY5Y cells show that there is a definite upregulation of 

lysosomal components by 80.1% (p < 0.01) (Figure 2.28) shown by red punctate 

within the cell (Figure 2.26B) in comparison to wild type SH-SY5Y cells (Figure 

2.26A). This phenotype is further established when cells are administered 

bafilomycin for 24 hr within swAPP cells (Figure 2.27), with a 27.2% increase of 

Lysotracker red defection in comparison to APP untreated with bafilomycin. 

Upon examination of the swAPP/CLU+/+ cell line in the absence of bafilomycin 

treatment, therapeutic effects are not particularly evident, however after 

administration of bafilomycin, effects of lowering overall autophagy rates in the 

swAPP/CLU+/+ cell line are accentuated (Figure 2.28).  As bafilomycin increases 

the stress levels of the cell, this results in higher lysosomal acidification in 

untransfected cells and lower levels of acidification in overexpressing CLU cells. 

However, upon statistical analysis of Lysotracker red images, differences 

between swAPP/CLU-/- and swAPP/CLU+/+ cell lines proved visual observations to 

be insignificant, as well as bafilomycin treated samples (p > 0.05) (Figure 2.28). 

This is most likely due to the low number of cells counted (~100 cells). 
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Figure 2.26: Acidification levels are upregulated within swAPP SH-SY5Y cells in comparison 
to WT SH-SY5Y cells 
(A) Wild type cells (top panels) are dully stained by Lysotracker Red detection of acidified 
organelles, showing low and effective autophagic processes, where visually WT/CLU 
expressing cells (bottom panels) suggest upregulation of acidification in autophagosomes. 
(B) APP cells (top panels) show increased Lysotracker red staining, with APP/BAF cells 
further increasing this phenotype (bottom panels). 
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Figure 2.27: Overexpression of clusterin reduces lysosomal acidification levels in a swAPP 
SH-SY5Y cell line 
(A) APP/CLU expressing cells shown inconclusive result as to whether acidification levels are 
increased or decreased. (B) Bafilomycin treated APP/CLU cells enhance the protective role 
of CLU, as Lysotracker staining is significantly reduced in the APP/CLU transfected cells.  
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Finally, it appears that when CLU is expressed within wild type cells, autophagy 

levels seem to increase (Figure 2.26A, bottom panel). However statistical 

validations show that this observation is indeed the opposite, with a decrease in 

overall autophagy levels by 91.7% in comparison to wild type untreated (p = 

0.01) (Figure 2.28). Student’s t-test, standard error used; n = 6.  
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Figure 2.28: Quantification of Lysotracker red SH-SY5Y samples 
WT-APP genotypes show significant changes whereas APP-APPCLU results prove 
unchanged. Bafilomycin doesn’t show increase of acidification levels. Analysis 
conducted by measuring Corrected Total Cell Fluorescence (CTCF) by Image J software. 
CTCF = Integrated density – (Total area of cell x mean fluorescence of background). 
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2.11 DISCUSSION 

2.11.1 Comparison of in vitro and in vivo models of Alzheimer’s disease 
 

There are various AD models available that have been experimentally 

utilized for targeting different pathways in order to develop a therapeutic cure 

for this disorder98,106,107. In this thesis, in vitro human neuroblastoma cells 

(swAPP SH-SY5Y) and in vivo D. melanogaster (APP/BACE) models have been 

adopted to investigate the effect of CLU on Alzheimer’s disease pathology. For 

the in vitro model, the swAPP genotype has a double mutation located near the 

BACE cleavage site on the FL-APP protein108,109. For the in vivo model, human 

APP/BACE genes have been overexpressed within the fly. Mutations in both 

models lead to increased amyloid beta production 105,106. Theoretically, the fly 

would be predicted to be the more powerful model given it contains two 

mutations that confer AD pathology, while the cells contain just one mutation.  

Here I used ELISA analyses to demonstrate that Aβ42 levels were increased in APP 

cells compared to WT cells, and subsequently reduced with the expression of 

CLU (Figure 2.18E). This result provided direct evidence to support the 

therapeutic potential of activating CLU, as compared to inhibiting CLU that has 

been previously suggested68,110,111. However, the APP/BACE fly model did not 

corroborate the human cell data in that Aβ42 was not detected in the ELISA 

analyses. As the ELISA kit was designed to quantify human Aβ42, combined with 

my attempts at several extractions that have worked previously with other Aβ 

ELISA kits 112,113; this leads us to question whether BACE has been incorporated 

into the genotype of the fly. The capability of the ELISA kit for detection of Aβ42 

levels does not appear to be at fault as Aβ42 levels were successfully recovered 

from the supernatant of swAPP SH-SY5Y cell lines. As the ELISA kit reacts with 

human products, theoretically any Aβ42 levels present within the APP/BACE fly 

should be detected. Even though the model itself isn’t human of nature, the 

genes expressed in the CNS of the fly are human. Fruit fly models in the past 

have managed to recover Aβ42 levels without encountering this issue,98,114  which 

further supports the idea that BACE has not been successfully incorporated, as 

βCTFs were also not recovered. 
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However it was demonstrated within swAPP SH-SY5Y cells that βCTFs 

seem to be present in minute levels that immunoblotting only managed to 

recover after inhibiting gamma secretase with Compound E which enabled 

strong detection of βCTF levels and showed that βCTF was indeed present 

compared to untreated swAPP SH-SY5Y cells. Therefore it is possible that if BACE 

has been successfully incorporated, that Aβ42 plaques are being lost through 

downstream processing, or downstream processing changes the nature of 

amyloid beta in a form which the Aβ42 ELISA kit can’t detect. Scientists who have 

used this Alzheimer’s disease model haven’t seemed to use this kit before, so 

perhaps the Invitrogen Aβ42 kit works in a manner which can only be used 

specifically with human samples.       

Aside from the difficulty of measuring Aβ in the APP/BACE fly, additional 

pathology was observed in the development of cholesterol aggregation (Figure 

2.20-2.21), decreased survival rates (section 2.5), and defective phenotypical 

traits such as crumpled wing formation in APP/BACE  flies (Figure 2.17A-B). The 

crumpled wing phenotype was also previously observed in APP/BACE fly98. 

Likewise, the swAPP SH-SY5Y neuroblastoma cell model was also powerful in 

demonstrating amyloid metabolism (Figure 2.18A-B), cholesterol metabolism 

(Figure 2.20-2.22) and autophagy (Figure 2.25-2.28) which were all defective. 

2.11.2 Effects of clusterin on Alzheimer’s disease pathology  
 

CLU’s protective roles have also been demonstrated in this thesis within 

swAPP SH-SY5Y and APP/BACE AD models. In swAPP/CLU+/+ cells, CLU 

downregulates FL-APP protein cleavage by 48.79% (p < 0.01) (Figure 2.18A-B) as 

well as decreasing Aβ42 levels by 30% (p < 0.01) (Figure 2.18E) which elucidates 

to CLU exhibiting protective properties upon BACE and gamma secretase 

cleavage abilities upon FL-APP. As both FL-APP and Aβ42 levels have both been 

affected within swAPP/CLU-/- and swAPP/CLU+/+ cells, this suggests that CLU is 

not only primarily aiding clearance of Aβ proteins as highlighted in previous 

reports71,72,115, but CLU also exhibits other functionalities which are linked to the 

protection of FL-APP from being cleaved by BACE and gamma secretase. Note 

that if observations in swAPP/CLU-/- and swAPP/CLU+/+ cells resulted in 
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insignificant changes in FL-APP protein, but decreased levels in Aβ42, the primary 

role of Aβ42 clearance would contribute to previous reports. Further 

investigations are needed to determine the effect of CLU upon BACE and gamma 

secretase regulation.  

Chaperone properties of CLU are also seen through the decreased levels 

of overall free cholesterol found in APP/BACE/CLU fly brains by 70.72% (p < 0.01) 

(Figure 2.20). Administration of CLU in APP/BACE flies also enhanced survival 

rates as well as reversed morphological defects of the crumpled wing phenotype 

by 31.4% in males and 17.7% in females (Figure 2.17). Enhanced survival rates 

support findings that CLU is implicated in the reversal of ageing processes100, 

having a significant effect more in males than females which suggests that 

mechanisms underlying ageing are slightly different between sexes. The high 

survival rate of females in comparison to males could be attributed to different 

lipid and hormonal regulation between sexes116. As males have the prominent 

role of inducing courtship behaviour, energy resources (such as lipids) are 

directed towards locomotor activity i.e. distribution of lipids directed to arms, 

legs and wings of the fly. Therefore as resources are concentrated in these areas, 

the pathology of APP/BACE is also concentrated to these areas, resulting in a 

higher mortality rate as there is a defect within transportation of cholesterol and 

other lipids. Females however play a different role in comparison to males, as 

energy resources are directed towards reproductive organs116. Therefore 

pathology may affect reproductive organs in comparison to locomotor limbs of 

the fly which results in a lower mortality rate. CLU acting as a chaperone protein 

would aid redistribution of lipid to the correct areas and ameliorate defects in 

APP/BACE flies. There could also be a protective mechanism within the X 

chromosome itself that aids in survival rates. As flies have two X chromosomes, 

female flies would have higher defence mechanisms against pathological defects 

in comparison to male files which only have one X chromosome.  

As CLU is a human protein, flies do not naturally express CLU. However 

upon induction of CLU within a wild type fly (wcs10), CLU extends the lifespan of 

the fly by increasing stress resistance against ROS (reactive oxidative species), 

heat shock, wet starvation and oxidative stress100 . Within the fly, CLU also 
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prevents inactivation of glutamine synthetase (GS) via metal-catalysed oxidation 

(MCO). GS is an enzyme which (among other areas in the body) is expressed by 

astrocytes in the brain which production of GS is essential for brain 

homeostasis117. Astrocytes are critical for synaptic plasticity, neuronal 

functionality by providing metabolites such as lactase and glucose, controls ion 

environment such as K+118. GS regulation (specifically glutamine-glutamate 

regulation) in Alzheimer’s disease is hindered, as GS expression is significantly 

lowered, especially around where senile plaques are localised119. Impairments of 

the system in the brain lead to confusion and reduced awareness, as well as 

changes in behaviour and mood120. However upon administration of a sulfhydryl 

group modifying compound (N-ethylmaleimide) which blocks the sulfhydral 

groups of cysteines in CLU, protective anti-oxidant properties against GS 

inactivation were eliminated100.  

Oxidised proteins (e.g. MCO) and overall oxidative stress levels occur at a 

higher rate during the ageing process121. CLU is also found to be upregulated 

within normal ageing processes which has led to the discovery of CLU having 

antioxidant properties122 and protein induction is induced to play a protective 

role against ageing rather than being increased as a consequence of ageing100. 

CLU has previously been described having properties that act in a similar fashion 

to heat shock proteins (HSPs)123 as it acts as a chaperone protein which binds 

and stabilises misfolded proteins and organelles under environmental oxidative 

stress124. Other similarities between HSPs and CLU include actively operating 

chaperone mechanisms without the aid for hydrolysis of ATP125 as well as both 

being induced within various diseases which also increase oxidative stress within 

the body such as Parkinson’s disease and Creutzfeldt-Jakob syndrome123. In 

swAPP/CLU+/+ cells, Aβ42 levels are reduced by 30% in comparison to swAPP/CLU-

/- flies. Just as heat shock proteins operate, CLU binds Aβ42 proteins to stabilise 

the protein and prevent aggregation of Aβ42 in senile plaques. Effectively Aβ42 

will be in a dormant state until other mechanisms such as the autophagy 

pathway is recruited to recycle and degrade misfolded proteins and organelles. 
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2.11.3 Effects of clusterin on autophagy 
 

From results obtained (Figures 2.25), we can see through LC3 protein 

analysis (section 2.10) that CLU downregulates defective autophagic processes in 

bafilomycin treated swAPP SH-SY5Y cell line by 21.34% (p = 0.01) in comparison 

to untreated swAPP cells. Interpretation of results could lead to suggest CLU 

would decreases free cholesterol load in the cytosol from being packaged into 

autophagosomes by transporting them out of the BBB, so there is less stress and 

misfolded proteins to be packaged and degraded by the autophagy system. To 

determine if CLU acted upstream or downstream of the autophagy pathway, 

Zhang and colleagues demonstrated that treatment of rapamycin (an mTOR 

pathway inhibitor which increases the rate of autophagy) within CLU expressing 

cancer cells significantly enhanced autophagy rate compared to CLU depleted 

cells79. As SH-SY5Y cells are also cancerous in nature (neuroblastoma cells), 

findings by Zhang et al suggests that within swAPP SH-SY5Y cells, CLU is first 

recruited in response to oxidative stress and ROS levels, which downstream 

effects recruits an upregulation of autophagy once misfolded proteins such as 

Aβ42 have been stabilized by CLU. This in turn aids the lipidation of LC3-PE and 

stabilizes the LC3-Atg3 complex by shielding Aβ42 from directly interacting with 

autophagosomes, which enables correct autophagy acidification and lysosomal 

processing. It is important to note that findings by Zhang et al were not 

replicated in control WT SH-SY5Y cells. However the autophagy mechanism could 

be cell-cell dependant, as PC3 cells (prostate cancer cells) were examined, 

whereas cells used in this study are neuroblastoma cells. Other factors that could 

contribute to differences in findings is the increased passage number of WT SH-

SY5Y cells used (>P20) when cells were treated for mycoplasma over a course of 

2 months.   

Interest in the mTOR pathway and the ability of rapamycin to inhibit this 

pathway is of interest as this pathway is greatly affected in ageing 

processes126,127. Increased lifespan through administration of rapamycin has 

been shown in Drosophila128, C. elegans129 and mice130. Anti-ageing properties of 

rapamycin include anti-inflammatory effects exhibited in atherosclerosis131,132. 
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Alzheimer’s disease experiments using rapamycin also showed potential 

therapeutic effects as administration of rapamycin inhibited the degradation of 

cognition and memory133,134. It was also discovered that rapamycin treatment in 

3XAD-Tg mice lowers the accumulation of Tau levels, amyloid beta as well as 

amyloid beta fibrillary aggregates by ~40-50%135,136 with similar symptoms shown 

in hAPP (J20) mice after treatment with rapamycin over several months133. 

Clinical trials of drugs that upregulate autophagy such as Latrepirdine137 also 

inhibit the mTOR pathway, whereas polyphenols such as Reveratrol138 and 

Metformin139 act to upregulate autophagy through alternative processes such as 

AMPK activation1. As age-related problems include neurodegeneration (e.g. 

dementia), it can be said that through upregulating autophagy, the ageing 

process is attenuated.  

Studies have not linked how CLU acts in response to these drugs, 

however it can by hypothesised that since all these drugs directly act upon the 

mTOR pathway, CLU will behave in the same manner as it does in response to 

rapamycin, and will recruit to sites of oxidative stress and recruit the necessary 

amount of autophagy needed to process misfolded proteins and organelles. If 

this statement holds true and is activated by mTOR drug inhibitors, the finding 

that CLU decreases abnormal autophagic processes within an AD model would 

support therapeutic effects exhibited by CLU.  

2.11.4 Effects of clusterin on cholesterol metabolism 
 

The cholesterol efflux property of CLU was hypothesised to decrease 

abnormal cholesterol build up in the brain. I demonstrated this with filipin and 

mass spectrometry analyses within APP/BACE fly brains.  APP/BACE fly brain 

revealed a 75.1% increase (p<0.01) in cholesterol in comparison to control WT fly 

brains (Figure 2.20A, left panel), which is supported by mass spectrometry 

analysis, showing an increase of cholesterol in APP/BACE fly brains by 78.6% 

(p<0.01) in comparison to control WT fly brains (Figure 2.21B). Overexpression of 

CLU in AD flies (APP/BACE/CLU) in turn decreased overall cholesterol levels by 

70.52% (p < 0.01) (Figure 2.20A bottom panel). Mass spectrometry analysis also 

supports this finding with APP/BACE/CLU cholesterol levels reduced by 50.3% (p 
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< 0.05) (Figure 2.21). Even though comparing statistical analysis from both 

techniques reveal different levels of reduction in cholesterol, both findings are 

statistically significant, with a reduction of cholesterol in APP/BACE/CLU flies at 

least 50% when compared to APP/BACE flies. As there is a drastic reduction in 

cholesterol aggregates in APP/BACE/CLU fly brains, it is important to step back 

and examine the preferential regions of the brain where cholesterol localises at 

within the APP/BACE fly  in order to observe which regions of the brain is 

impaired due to cholesterol aggregation.  

Observations show that cholesterol levels are highly abundant in the 

APP/BACE fly brain, with cholesterol being widespread throughout the brain 

apart from the specific localisation towards the mACT. mACT feeds 

neurosynaptic information from the antennal lobe (primary information site) and 

connects to the lateral horn with small subset of fibres directed towards the 

pedunculus and small region of the mushroom body140,141. The pedunculus is a 

region of the fly brain in which Kenyon cell neuron projections are densely 

found142, whereas the lateral horn is a region of the brain that is part of the 

olfactory system that is responsible for distinguishing and quantifying 

odours143,144. From these odours, the fly can make decisions based on what 

stimulant is being received143,145. As cholesterol aggregates span across the 

mACT region, it could suggest that signals delivered from the antennal lobe to 

the lateral horn is hindered or the signal is completely absent. Damage to this 

region of the brain would result in abnormal courtship behaviour and other 

survival instincts. The lateral horn has been suggested to reflect the amygdala 

within vertebrate brains. The amygdala is a part of the human limbic system and 

abuts the hippocampus through a structure called the uncus143. As the amygdala 

is responsible for emotional awareness, evaluation as well as risk assessment, 

damage to this region of the brain would result in emotional cues not being 

registered146. Examples include the lack of flight-or-fight mechanism, as well as 

not registering aggression or fear. Scientists have hypothesised that if the lateral 

horn is knocked out then this observation would be replicated143. However 

troubles in selectively inhibiting LH function to test this hypothesis still proves to 

be an obstacle that needs to be overcome to gain confidence in this theory.   
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Cholesterol aggregation is also observed in the medulla region of 

APP/BACE flies. The medulla is involved in interpretation of visual information 

from the lamina. Defects in the medulla are consistent with findings from 

Greeves et al, 2004147 which report defects in the retina in Alzheimer’s disease 

flies. Greeves postulated that this defect is due to putative δ-secretase 

expression occurring higher in the retina opposed to other brain regions. δ-

secretase acts on APP12 residues on the N-terminal where BACE acts upon, 

which processing results in longer Aβ42 fragments98,147.  The nature of these 

fragments would therefore have a bigger role in photodegeneration in the retina 

than other neurodegenerative characteristics affecting memory and other 

functionalities98,147.  

In providing a direct connection between cholesterol, CLU and AD 

pathology, my data further supports the significant efforts in targeting 

cholesterol to treat AD.  In order to address cholesterol build-up in AD, statins 

have been employed to inhibit HMG-CoA to reduce cholesterol levels as well as 

reduction in LDL levels148. HMG-CoA is essential for the production of cholesterol 

in the liver (around 70%). As well as lowering cholesterol, statins have anti-

inflammatory effects by the inhibition of inflammatory matrix 

metalloproteinases, chemokines and cytokines, as well as having anti-oxidant 

effects149. In an AD AβPPswe/PS1dE9 mouse model, it was found that simvastatin 

increased synaptic plasticity by decreasing amyloid plaque build-up150. 

Atrovastatin and pitavastatin was found to reduce oxidative stress within an AD 

APP-Tg mouse model151 . The Rotteerdam observational study followed 6992 

participants for nine years whom took statins and results were correlated to a 

lower risk of Alzheimer’s disease compared to controls152. These are many 

examples showing the promising therapeutic benefits that statins implement 

within AD patients. The role of CLU was not characterised in these studies, 

though it would be interesting to elucidate whether CLU is upregulated in 

response to statin treatments. 

It is important to note that the usage of statins not only lowers 

cholesterol but also affects the autophagy pathway. In macrophages, simvastatin 

induces therapeutic affects by inducing autophagy through increasing oxidised 
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low-density lipoprotein, increasing conversion of LC3I to LC3II (LC3-PE lipidation) 

and lowering cholesterol accumulation29. In AD, the presence of abnormally high 

amounts of cholesterol (as well as mutant beta-APP) upregulates Rab5 and Rab7; 

two proteins which are implicated in autophagy and are located to early 

endosomes which downstream effects lead to the overloading of substrates such 

as lipids and other cargo within late endosomes, as endocytic activation events 

are accelerated. This results in increased trafficking of lysosomes towards early 

endosomes, resulting in dysfunctional late endocytic clearance.105 Upregulation 

of Rab5 and Rab7 also transports the vATPase to endocytic vesicles which 

increases acidification levels of lysosomes.  

2.11.5 Proposed mechanism of action of CLU in Alzheimer’s disease 
 

Based in my results, I propose that within an AD model (Figure 3.1A); free 

CLU is not present in sufficient levels to counteract the accumulation of 

misfolded proteins and free cholesterol which are packaged in 

autophagolysosomes. Reduced CLU levels result in insufficient levels of lipidated 

CLU to bind and stabilize Aβ42 aggregates and transport excess cholesterol past 

the blood-brain barrier (BBB).  Due to the inability of CLU to process Aβ42 protein, 

the autophagy system is upregulated and recruited in attempts to recycle and 

degrade Aβ42. However interactions with Aβ42 plaques affect the ability of 

autophagolysosmal degradative processes. As autophagolysosomes have 

packaged Aβ42 plaques as well as packaging excess cholesterol present within the 

environment, autophagolysosomes increase and contribute to Aβ42 pathology, as 

well as increasing Aβ42 acidification. 

However, when CLU is overexpressed in an Alzheimer’s disease model 

(Figure 3.1B), free CLU becomes lipidated which upon binding of excess 

cholesterol, it interacts through the lipoprotein receptor-related protein (LRP) 

receptor and enables the transport of free cholesterol past the BBB. CLU is 

expressed in sufficient levels to bind Aβ42 monomers and stabilise increased 

misfolding of the protein. This will prevent Aβ42 aggregation and senile plaque 

development. As CLU has stabilised Aβ42 monomers, this enables the autophagic  
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Figure 3.1: Schematic diagram for processes occurring in an AD model 
 (A). In an AD model, excessive accumulation of free cholesterol and amyloid beta hinders 
several processes within the cell including increasing acidification levels, and insufficient 
degradation of misfolded proteins, organelles and other cargo etc which leads to an 
accumulation of free cholesterol and AB42 levels with this mechanism being what causes 
amyloid plaque accumulation. (B). When overexpression of clusterin is administered, CLU 
activate in the presence of environmental stress ques. This leads CLU to do two essential 
processes. 1. Export cholesterol pass the blood brain barrier  and aids LC3-PE conjugation. 
Figure modified from Di Paolo & Kim, 2011, Nature.  
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system to encapsulate Aβ42 fragments efficiently. CLU will aid this process in two 

ways. 

Firstly, as CLU has bound Aβ42 fragments, CLU will serve as a barrier, as 

Aβ42 can’t directly interact with the autophagosomal membrane as it envelopes 

the Aβ42 monomers for degradation. Secondly, CLU will aid the formation of 

autophagosome by stabilizing the LC3-Atg3 complex as well as aiding in LC3-PE 

lipidation. This partially restores normal lysosomal acidification abilities to 

autolysosomes, allowing the vesicles to degrade the cargo to be retaken up by 

cells. Through these mechanisms, autophagy is efficient in degrading Aβ42 

monomers. As excess cholesterol has been lowered through increased 

cholesterol efflux mechanism by CLU, the substrate overload has been reduced. 

Oxidative stress will therefore be lowered which in turn will lower the 

recruitment of autophagosomes. 
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CHAPTER 3 

3.1 FUTURE DIRECTIONS 
 

 In this thesis, I have investigated the effects of CLU on the Alzheimer’s 

disease pathology through the evaluation of APP processing, Aβ42 levels, 

cholesterol metabolism and autophagy regulation within the swAPP SH-SY5Y cell 

line and in APP/BACE flies. Even though therapeutic results have been concluded 

within this thesis, additional experiments are necessary to confirm and provide 

further insights into these findings.  

3.1.1 Further Characterisation of the Effect of CLU on Alzheimer’s disease 
Pathology 
 

Within this thesis, the effect of CLU in the in vitro swAPP SH-SY5Y cell model 

was characterised by detection of FL-APP protein, Aβ42 levels and βCTF 

detection. To complement the in vitro analysis, the in vivo APP/BACE model of D. 

melanogaster was characterised for the effect of CLU on phenotypic changes 

such as the crumpled wing phenotype, survival rates and alterations in 

cholesterol metabolism. It is essential that further characterisation of the 

APP/BACE fly is conducted due to the uncertainty of the BACE gene being 

incorporated into the CNS of the fly. BACE and gamma secretase levels should be 

quantified by immunoblotting to confirm sufficient expression of both genes 

within the fly. Utilisation of a gamma secretase inhibitor such as L-685,458 

should be implemented in order to measure βCTF in the fly through western 

blotting as well as assay has already been optimised with swAPP SH-SY5Y cells. In 

order to incorporate the inhibitor within the fly, L-685,458 needs to be 

integrated into fly feed. Once all of the above have been achieved, FL-APP 

protein can once again be assessed within APP/BACE/CLU flies as the assay has 

already been optimised for FL-APP detection within the fly. It would be of 

interest if CLU also changed the expression of activities of BACE and gamma 

secretase within APP/BACE flies. This could also be examined within 

swAPP/CLU+/+ to complement findings in flies.  
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In addition to the above, it is important to also determine the role of CLU 

within a model where homeostatic processes are normal (WT genotype model 

organism). From data gathered from this thesis (section 2.8 (figure 2.22) and 

section 2.10 (figure 2.26)), it can be hypothesised that clusterin acts in a 

detrimental manner, where overexpression of clusterin would register normal 

functionalities in e.g. free cholesterol, as negative stress sensors. Therefore CLU 

would decrease active cholesterol through two mechanisms. First binding of free 

cholesterol with CLU will prevent cholesterol from being involved in normal 

homeostatic processes. Secondly, the binding of CLU to cholesterol will not emit 

stress sensors as CLU lowers normal levels of oxidative stress required for normal 

autophagic processes. Therefore there is a reduction in the autophagy system 

which leads to the accumulation of cholesterol plaques within the brain. Based 

on current findings within this thesis, there is a lack of information in this regard 

to draw any positive conclusions; however beta and gamma secretase levels in 

future experiments should be examined in whether effects in activity do change 

upon induction of clusterin in an AD model. However if BACE was indeed not 

incorporated into APP/BACE flies, this means that clusterin would inhibit 

cleavage activity of beta secretase and not gamma secretase, as FL-APP levels 

weren’t changed in the fly model, whereas they were changed within the swAPP 

SHSY5Y AD model. 

 Aβ42 levels should then once again be reassessed in APP/BACE/CLU flies, by 

using the Invitrogen ELISA kit as well as comparing results to previous ELISA kits 

which have had successful detection of Aβ42 using the APP/BACE fly model. 

Alongside the crumpled wing phenotype, Chakraborty et al also identified the 

development of melanotic lesions in APP/BACE flies (Figure 2.7A). Preliminary 

experiments in this thesis also observed melanotic lesions occurring on the 

abdomen and proboscis of APP/BACE flies. The presence of melanotic lesions is 

due to in immune response within the body of the fly. It would be of interest to 

examine whether CLU ameliorates this defect, as CLU has anti-inflammatory 

properties. 

Finally, even though CLU levels are shown to be present through restriction 

digests during the creation of CLU viable plasmids transfection in SH-SY5Y cells, 
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and phenotypic eye colour in flies, it would be beneficial to show CLU expression 

through other techniques through either a proteomic approach using mass 

spectrometry or immunoblotting approach using western blotting. Preliminary 

experiments for detection of CLU involved immunoblotting using WT-SHSY5Y and 

ELAV/CLU samples as a control for optimisation experiments using goat anti-

clusterin/ APOJ antibody (Everest Biotech, Cat# EB06929). Transfer conditions of 

1 hr 40 min, 2.15 h at room temperature and overnight (16 h) at 4°Ϲ were trialled 

with negative results. 0.2 µM and 0.4 µM PVDF membrane was also trialled. 

However CLU wasn’t able to be detected in either sample. Therefore future 

experiments would be to either further optimise the western blot protocol is 

required or antibody replacement is need.  As the ELAV/CLU fly is positive for 

CLU integration within the CNS (section 2.3.1), at least this sample would be 

expected to contain high levels of CLU which western blotting would detect CLU 

band around 35-37kDa. CLU protein control should also be included to have full 

confidence that the purchased antibody is still functional. 

3.1.2 Further Investigation into the Effect of CLU on Cholesterol Metabolism 
 

Cholesterol analysis within in vitro and in vivo models was carried out using 

MALDI-TOF mass spectrometry and filipin staining. MALDI-TOF mass 

spectrometry proved successful for WT, APP/BACE, APP/BACE/CLU and 

ELAV/CLU fly lines; however, repeating these analyses with lipid standards would 

be necessary to insure cholesterol is indeed the lipid being measured. The 

MALDI-TOF was not useful for WT SH-SY5Y, swAPP SH-SY5Y, and CLU expressing 

human cells given the low transfection efficiency and/or recovery of CLU-positive 

cells during FACS analysis. If sufficient levels of transfected cells was obtained 

with high purity of at least 80% (as FACS machine is capable of achieving), then 

cholesterol and other lipid levels could be considered as significant, as variability 

in readings produced by the MALDI-TOF machine would not be considered a big 

issue and will be statistically significant. Expected readings from SH-SY5Y cell 

lines would ideally reflect observations made within flies, as swAPP/CLU+/+ levels 

should be high in comparison to swAPP/CLU-/- cells. If cell data does reflect fly 
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cholesterol levels, then WT/CLU cells will have an increase of cholesterol in 

comparison to WT alone.  

During Filipin staining on APP/BACE fly brains, a subset of staining was 

localised to the junction between the dorsal and medial lobes of the mushroom 

body. The mushroom body is responsible for learning and memory within the fly. 

This structure is important as it reflects anatomy involved in the limbic system in 

humans (including the hippocampus) which is affected within AD patients. To 

confirm findings, APP/BACE and APP/BACE/CLU brains will need to be stained for 

different regions of the brain alongside with Filipin staining to confirm where 

cholesterol aggregates lie. This will enable a brain map to be developed and will 

act as a reference as to which brain regions are specifically affected by 

cholesterol aggregation detrimental defects.  

Preliminary experiments evaluating the structural integrity of the mushroom 

body (the learning and memory centre of the fly) were conducted using FASII 

staining within APP/BACE flies (Figure 4.1).  The results suggested that there 

were defects within this structure, with the dorsal lobe primarily affected with 

either thinning or complete absence of the dorsal lobe (Figure 4.1C-F) in 

comparison to wild type (Figure 4.1A-B). FASII staining was also prominent in the 

central lobe where the axon bundles are located (Figure 4.1C, F). In addition, the 

FASII staining may be useful for distinguishing the APP/BACE flies with and 

without crumpled wings.  The crumpled wing phenotype does not completely 

segregate in the APP/BACE fly98. Further investigation of FASII staining will 

establish a cellular phenotype to help understand the crumpled wing phenotype.  

Additional investigation of the mushroom body within APP/BACE/CLU and 

WT/CLU flies would be beneficial to determine whether CLU rescues this defect 

in APP/BACE. My demonstration that CLU rescues crumpled wing phenotype in 

the APP/BACE fly would predict that the FASII staining defect would also be 

rescued with CLU expression. These results would support a hypothesis that that 

CLU exhibits therapeutic effects by cholesterol efflux mechanisms. 

 Further investigation of cholesterol metabolism in human cells is 

required, but in order to do so, a few things must be optimized.  First, in order to 

measure cholesterol using mass spectrometry, it is compulsory to optimize FACS 
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analysis. FACS sorting for GFP/CLU positive cells should once again be attempted 

with the initial cell count within the sample to be processed, to be double of 

what was trialled out in this thesis, with only one run (compared to processing of 

the sample twice) to be conducted. This will intensify any changes in cholesterol 

within samples.   Second, and alternatively to the first method, a higher yield of 

CLU expressing cells could be generated by producing a stable cell line that 

expresses CLU in WT and swAPP SH-SY5Y cells.  Third, standards for cholesterol 

and other lipids should be obtained and included in future MALDI-TOF analyses.   
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Figure 4.1: Immunohistochemistry FASII staining in AD flies reveals hindrance in 
structural integrity of mushroom bodies  
(A)Wild type FASII staining, (B) Wild type ELAV+/GFP, (C)APP695/BACE crumpled 
wing FASII staining, d.APP695/BACE  crumpled wing FASII staining, e. APP695/BACE 
non-crumpled wing FASII staining, f. APP695/BACE non-crumpled wing FASII 
staining 
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In AD brains, it was found that in the prefrontal cortex (area of the brain 

responsible for decision making); there was an increase of diacylglycerol and 

sphingolipids. An increase of sphingomyelin, cholesterol esters, 

lysobisphophatidic acid and the ganglioside GM3 levels were also observed 

within the entorhinal cortex (area of the brain involved in memory processes)156. 

Therefore once MALDI-TOF experimental parameters have been optimised, 

cholesterol and other lipids should also be investigated in order to see if CLU has 

any unreported effects other than cholesterol e.g. sphingolipid and phospholipid 

content. Investigating other changes in lipid profiles may also elucidate cross-talk 

between different lipid pathways, and more broadly, help further understand the 

function of CLU in AD pathology. 

3.1.4 Further Characterization of the Effect of CLU on Autophagy 
 

Autophagy analysis was investigated within in vitro AD model by the 

detection of LC3I-II and Lysotracker Red. Within cells, Lysotracker Red data 

visually proved promising for distinguishing swAPP/CLU-/- and swAPP/CLU+/+ cells, 

however statistical analysis did not support a difference. Upon examination of 

datasets obtained from Image J quantification, 1-2 outlier cells out of the 100 

quantified cells were present which would enlarge the standard error bars which 

would affect the true statistical result. In order to address this issue, the sample 

size of each cell genotype should be increased. It is also essential to complete the 

dataset of Lysotracker Red images of cells   treated with bafilomycin to provide a 

bigger window to study autophagy and perhaps amplify the effects of CLU on 

autophagy.  

Unfortunately, I was not able to characterise autophagy in the fly.  The LC3 

western blot assay that was used in cells does not work in flies if a mammalian 

LC3 antibody is being used, although the mechanisms behind this are 

unknown157. However western blotting for LC3 does work if a LC3 human protein 

is expressed within flies (GFP-LC3) or if a specific antibody is used for Atg8157. I 

did attempt to quantify the levels of Lysotracker Red with respect to DAPI, an 

assay that is established to investigate autophagy in flies.  However, my 

experiments proved unsuccessful. Suspicions lie in that either brains were stored 
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long term in methanol for a long period of time which affected the uptake of the 

stain in the brain, or concentrations of staining were not optimal. Previous 

studies have successfully used Lysotracker Green in detection of acidified 

organelles within fly brains. Therefore in the future, these experiments can be 

tried again with further optimisation. 

Ideally, fluorescent microscopy of filipin and Lysotracker staining would be 

utilized in the same sample. This technique requires further optimization as my 

preliminary experiments identified that a nitric acid wash on glass coverslips 

don’t efficiently adhere transfected cells after fixation with paraformaldehyde. 

Poly-L-lysine adhesive coating was therefore utilized, however this distorts cell 

morphology, therefore it is questionable whether these results are reliable.  

Trials of small amounts of laminin coated on top of polylysine adhesive 

coating was therefore used and shows promise in that it resolved adherence 

issues. Therefore, the methodology has been refined, but not yet completely 

optimised, to simultaneously investigate the effect of CLU on cholesterol and 

autophagy mechanisms. Alternatively, an indirect approach of visualising cross-

talk between autophagy and cholesterol would be to use bafilomycin to inhibit 

the vATPase H+ pump that is require. However, this method would be sensitive 

to the amount of bafilomycin given that bafilomycin can induce accumulation of 

cholesterol as detected with filipin.  This method will only work using an amount 

of bafilomycin that disrupts autophagic flux without disrupting cholesterol 

transport in the autophagy system. 

3.1.5 Additional Mechanisms to Pursue 
 

An interesting component to test in AD in vivo experiments would be to 

study how behaviour is influenced by CLU overexpression within APP/BACE flies. 

This can be achieved through courtship behaviour or assays using the T-maze. 

These assays would enhance the hypothesis of CLU inducing protective 

mechanisms to rescue symptoms of memory loss, or more broadly, directly test 

if CLU affects the onset and progression of neurodegeneration.  

Previous studies which have investigated the role of CLU in flies have used 

stress related experiments to measure responses to ROS levels and oxidative 
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stress, a phenomenon that is also dysregulated in AD. These experiments 

however have not been utilised in any fly model of AD.  It would be interesting to 

investigate oxidative stress in the APP/BACE fly as well as APP/BACE/CLU fly to 

investigate a role for CLU in oxidative stress.  
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APPENDIX A – VECTOR MAPS 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

Figure A1 – Corrected pDNR-Dual hCLU plasmid  
 
Clusterin cloned between sites SalI and XbaI. Overall plasmid size is 625kb 
(including linkers on primers added when undergoing PCR amplification). 
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Figure A2 - pUAST-attB plasmid  
 
Unique sites in the polylinker are EcoRI, BglII, NotI, XhoI, KpnI and XbaI (Figure S1). 
attB is the sequence for homologous recombination with attP, which is inserted 
into the genome of the strain that is used for microinjection. 
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Figure A3 – pUAST-attb hCLU plasmid  
 
Clusterin is cloned between sites UAS and attb-SV40. This construct was generated 
for microinjection into drosophila eggs to create flies that over-express the clusterin 
gene in the brain as well as throughout the whole CNS of the fly. 
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Figure A4 – pcDNA3.1(+) plasmid 
 
Plasmid used as a vector for inserting CLU DNA from pUAST-attB (Figure A3) to 
generate into pcDNA3.1(+)/CLU.  
 

. 
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Figure A5 – RG203629 GFP plasmid 
 
Plasmid used to cleave GFP sequence out of to insert into pcDNA3.1(+)/CLU 
vector. 
 


