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Abstract

One of the biggest challenges facing robotics is the ability for a robot to
autonomously navigate real-world unknown environments and is consid-
ered by many to be a key prerequisite of truly autonomous robots. Au-
tonomous navigation is a complex problem that requires a robot to solve
the three problems of navigation: localisation, goal recognition, and path-
planning. Conventional approaches to these problems rely on computa-
tional techniques that are inherently rigid and brittle. That is, the under-
lying models cannot adapt to novel input, nor can they account for all po-
tential external conditions, which could result in erroneous or misleading
decision making.

In contrast, humans are capable of learning from their prior experi-
ences and adapting to novel situations. Humans are also capable of shar-
ing their experiences and knowledge with other humans to bootstrap their
learning. This is widely thought to be an important part of the success of
humanity by allowing high-fidelity transmission of information and skills
between individuals, facilitating cumulative knowledge gain. Further-
more, human cognition is influenced by internal emotion states. Histor-
ically considered to be a detriment to a person’s cognitive process, recent
research is regarding emotions as a beneficial mechanism in the decision
making process by facilitating the transfer of simple, but high-impact in-
formation.

Human created control approaches are inherently rigid and cannot ac-
count for the complexity of behaviours required for autonomous navi-
gation. The proposed thesis is that cognitive inspired mechanisms can
address limitations in current robotic navigation techniques by allowing



robots to autonomously learn beneficial behaviours from interacting in
their environment. The first objective is to enable the sharing of naviga-
tion information between heterogeneous robotic platforms. The second
objective is to add flexibility to rigid path-planning approaches by utilis-
ing emotions as low-level but high-impact behavioural responses.

Inspired by cognitive sciences, a novel cognitive mapping approach
is presented that functions in conjunction with current localisation tech-
niques. The cognitive mapping stage utilises an Anticipatory Classifier
System (ACS) to learn the novel Cognitive Action Map (CAM) of decision
points, areas in which a robot must determine its next action (direction of
travel). These physical actions provide a shared means of understanding
the environment to allow for the transferring of learned navigation infor-
mation.

The presented cognitive mapping approach has been trained and eval-
uated on real-world robotic platforms. The results show the successful
sharing of navigation information between two heterogeneous robotic plat-
forms with different sensing capabilities. The results have also demon-
strated the novel contribution of autonomously sharing navigation infor-
mation between a range-based (GMapping) and vision-based (RatSLAM)
localisation approach for the first time. The advantage of sharing informa-
tion between localisation techniques allows an individual robotic platform
to utilise the best fit localisation approach for its sensors while still be-
ing able to provide useful navigation information for robots with different
sensor types.

Inspired by theories on natural emotions, this work presents a novel
emotion model designed to improve a robot’s navigation performance
through learning to adapt a rigid path-planning approach. The model is
based on the concept of a bow-tie structure, linking emotional reinforcers
and behavioural modifiers through intermediary emotion states. An im-
portant function of the emotions in the model is to provide a compact set of
high-impact behaviour adaptations, reducing an otherwise tangled web of



stimulus-response patterns. Crucially, the system learns these emotional
responses with no human pre-specifying the behaviour of the robot, hence
avoiding human bias.

The results of training the emotion model demonstrate that it is capa-
ble of learning up to three emotion states for robotic navigation without
human bias: fear, apprehension, and happiness. The fear and apprehension
responses slow the robot’s speed and drive the robot away from obstacles
when the robot experiences pain, or is uncertain of its current position. The
happiness response increases the speed of the robot and reduces the safety
margins around obstacles when pain is absent, allowing the robot to drive
closer to obstacles. These learned emotion responses have improved the
navigation performance of the robot by reducing collisions and navigation
times, in both simulated and real-world experiments. The two emotion
model (fear and happiness) improved performance the most, indicating
that a robot may only require two emotion states (fear and happiness) for
navigation in common, static domains.



iv



Acknowledgements

I would first like to thank my supervisors Will N. Browne and Dale Carnegie
for the invaluable advice over the course of both my PhD and undergradu-
ate studies. I greatly appreciate the amount of time and effort you have put
into helping me with my research, and the feedback on the papers written
throughout. You both have the patience of saints for teaching me the ways
of using grammar properly. In saying that, thank you Louis McArdell for
spending some of your free time on proof reading this thesis.

I am grateful to Victoria University of Wellington (VUW) for award-
ing me the Victoria PhD Scholarship and to Will N. Browne and Mengjie
Zhang for supporting my PhD scholarship application. Without the finan-
cial support I would not have been able to conduct this research.

I would also like to thank the technical staff at VUW for the support
in setting up and handling the robotic platforms. Thank you in particular
to Brett Ryan for spending time away from your masters to help develop
and construct Ownbot, special mention to Robby Lopez and Jeremy Ley
for assisting.

Last but not least, I give thanks to my friends and family for support-
ing me during my PhD. Especially to those who have tolerated my im-
passioned and long winded discussions of robotics and machine learning.
Your excellent listening skills have helped me improve my understand-
ing of the work I have conducted and helped me explain my ideas with
greater clarity.

v



vi ACKNOWLEDGEMENTS



Contents

Acknowledgements v

Glossary xv

1 Introduction 1

1.1 Motivations and Objectives . . . . . . . . . . . . . . . . . . . 5

1.1.1 Cognitive action mapping . . . . . . . . . . . . . . . . 5

1.1.2 Adaptive path-planning through emotions . . . . . . 7

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 13

2.1 SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Statistical based SLAM . . . . . . . . . . . . . . . . . . 14

2.1.2 Appearance based SLAM . . . . . . . . . . . . . . . . 17

2.1.3 Active SLAM . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Robotic navigation . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Bow-tie models . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Emotion models . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Reinforcement learning . . . . . . . . . . . . . . . . . 30

2.5.2 Challenges of RL in robotics . . . . . . . . . . . . . . . 32

2.5.3 Learning Classifier Systems . . . . . . . . . . . . . . . 33

2.6 XCS: Accuracy based LCS . . . . . . . . . . . . . . . . . . . . 38

vii



viii CONTENTS

2.6.1 XCS classifier . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.2 Learning parameters . . . . . . . . . . . . . . . . . . . 39
2.6.3 Parameter update . . . . . . . . . . . . . . . . . . . . . 41

2.7 ACS: Anticipatory classifier system . . . . . . . . . . . . . . . 42
2.7.1 ACS classifier . . . . . . . . . . . . . . . . . . . . . . . 43
2.7.2 Learning parameters . . . . . . . . . . . . . . . . . . . 43
2.7.3 Parameter update . . . . . . . . . . . . . . . . . . . . . 44

2.8 Robot operating system . . . . . . . . . . . . . . . . . . . . . 45
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Cognitive Action Mapping SLAM 49
3.1 CAM-SLAM model . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Decision points . . . . . . . . . . . . . . . . . . . . . . 51
3.1.2 Mental mapping: SLAM . . . . . . . . . . . . . . . . . 54

3.2 Anticipatory Classifier System . . . . . . . . . . . . . . . . . . 54
3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Action selection . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Parameter update . . . . . . . . . . . . . . . . . . . . . 61

3.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.1 Robotic platforms . . . . . . . . . . . . . . . . . . . . . 63
3.4.2 Environment . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.1 Experiment one: Learning a CAM . . . . . . . . . . . 67
3.5.2 Experiment two: Benchmark algorithm . . . . . . . . 70
3.5.3 Experiment three: Learning a change in the environ-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5.4 Experiment four: Sharing navigation information through

CAM-SLAM . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Cognitive Action Mapping SLAM Results 73
4.1 Learning a CAM with Ownbot . . . . . . . . . . . . . . . . . 74

4.1.1 Experiment one: Ownbot . . . . . . . . . . . . . . . . 75



CONTENTS ix

4.2 Learning a CAM with Pioneer . . . . . . . . . . . . . . . . . . 80
4.2.1 Experiment one: Pioneer . . . . . . . . . . . . . . . . . 80
4.2.2 Pioneer: GMapping mental mapping stage . . . . . . 80
4.2.3 Pioneer: RatSLAM mental mapping stage . . . . . . . 81
4.2.4 Summary of initial learning . . . . . . . . . . . . . . . 83

4.3 Benchmark Algorithm experiment . . . . . . . . . . . . . . . 86
4.4 Learning a change in the environment . . . . . . . . . . . . . 86
4.5 Sharing navigation information . . . . . . . . . . . . . . . . . 90

4.5.1 Same sensor type, different morphology experiment 91
4.5.2 Different sensor, different morphology experiments . 95
4.5.3 Summary of shared learning . . . . . . . . . . . . . . 99

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Emotion Inspired Path Planning 101
5.1 Emotion model . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.1 Reinforcers . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1.2 Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Anthropomorphic emotions . . . . . . . . . . . . . . . . . . . 111
5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Reinforcer Input . . . . . . . . . . . . . . . . . . . . . 116
5.3.2 Reinforcer-Emotion . . . . . . . . . . . . . . . . . . . . 117
5.3.3 Emotion-Modifier . . . . . . . . . . . . . . . . . . . . . 118
5.3.4 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.1 Experiment One: Simulated emotion model training 122
5.4.2 Experiment two: Learn-ability of the system . . . . . 124
5.4.3 Experiment three: Emotion model path-planning per-

formance . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4.4 Experiment four: Real-world emotion model training 125

6 Emotion Inspired Path Planning Results 129
6.1 Simulated emotion model training . . . . . . . . . . . . . . . 130



x CONTENTS

6.1.1 Two Emotions . . . . . . . . . . . . . . . . . . . . . . . 131
6.1.2 Three Emotions . . . . . . . . . . . . . . . . . . . . . . 136
6.1.3 Four Emotions . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Learn-ability of the system . . . . . . . . . . . . . . . . . . . . 140
6.3 Emotion model path-planning performance . . . . . . . . . . 142
6.4 Real-world emotion model training . . . . . . . . . . . . . . . 145
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7 Conclusions 153
7.1 Cognitive action mapping . . . . . . . . . . . . . . . . . . . . 153
7.2 Emotion Inspired Path Planning . . . . . . . . . . . . . . . . 155
7.3 Summary of contributions . . . . . . . . . . . . . . . . . . . . 157
7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.6 Final Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Bibliography 163



List of Figures

2.1 Flow diagram of SLAM . . . . . . . . . . . . . . . . . . . . . 15

2.2 Metric versus topological mapping representations . . . . . 20

2.3 Many inputs with high variability are filtered through the
‘knot’ of the bow-tie. The knot then determines the output
or response of the system. . . . . . . . . . . . . . . . . . . . . 23

2.4 Roll’s frame work of emotions . . . . . . . . . . . . . . . . . . 27

2.5 Flow diagram of a LCS . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Flow diagram of CAM-SLAM . . . . . . . . . . . . . . . . . . 52

3.2 An example of a decision point . . . . . . . . . . . . . . . . . 53

3.3 Representation of a classifier in a map . . . . . . . . . . . . . 55

3.4 Pioneer and Ownbot . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Ground truth of level two of the Cotton building . . . . . . . 68

3.6 Ground truth of level three of the Cotton building . . . . . . 69

4.1 CAM learned by Ownbot on the third floor of Cotton . . . . 78

4.2 Mental map by Ownbot on the third floor of Cotton . . . . . 79

4.3 CAM learned by Pioneer on the second floor of Cotton . . . 81

4.4 Mental map by Pioneer on second floor of Cotton . . . . . . 82

4.5 Image based CAM learned by Pioneer on second floor of
Cotton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Example of an image based decision point . . . . . . . . . . . 85

4.7 Human generated map of the third floor of Cotton . . . . . . 87

xi



xii LIST OF FIGURES

4.8 Subsection of a CAM . . . . . . . . . . . . . . . . . . . . . . . 89
4.9 LIDAR based CAM learned through sharing . . . . . . . . . 92
4.10 LIDAR and Image based CAM learned through sharing . . . 96
4.11 LIDAR and Image based CAM learned through sharing . . . 98

5.1 Reinforcer-Emotion-Modifier bow-tie structure . . . . . . . . 104
5.2 Co-operative model of emotions and modifiers . . . . . . . . 105
5.3 Navigation Stack mapping example . . . . . . . . . . . . . . 109
5.4 Example of classifiers in LCS . . . . . . . . . . . . . . . . . . 115
5.5 Flow diagram of emotion system . . . . . . . . . . . . . . . . 116
5.6 Simulated Willow Garage office . . . . . . . . . . . . . . . . . 123
5.7 Simulated benchmark course . . . . . . . . . . . . . . . . . . 126
5.8 Real-world benchmark course . . . . . . . . . . . . . . . . . . 127

6.1 Behavioural response of learned emotions . . . . . . . . . . . 132
6.2 Bow-tie example of emotion one . . . . . . . . . . . . . . . . 133
6.3 Bow-tie example of emotion two (A) . . . . . . . . . . . . . . 135
6.4 Bow-tie example of emotion two (B) . . . . . . . . . . . . . . 135
6.5 Classifier fitness in each emotion model . . . . . . . . . . . . 140
6.6 Modifier fitness in each emotion model . . . . . . . . . . . . 141
6.7 Simulated comparison of time between each checkpoint . . . 143
6.8 Simulated comparison of collisions between each checkpoint 144
6.9 Real-world (R) comparison of time between each checkpoint 147
6.10 Real-world (R) comparison of collisions between each check-

point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.11 Real-world (R) comparison of classifier and modifier fitness 149



List of Tables

3.1 Example of the environmental state as a classifier condition.
Classifier one is an example of a classifier learned by a range
based robot, and classifier two is an example from a vision
based robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Classifier population learned to lead to the goal location on
the third floor of Cotton. . . . . . . . . . . . . . . . . . . . . . 76

4.2 Average number of matches for Ownbot Classifiers across
10 trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Average number of new classifiers created by the Pioneer
for each of Ownbot’s classifiers across 10 trials . . . . . . . . 94

5.1 Modifier Example, showing default values from the Navi-
gation stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Emotions and reinforcers that could potentially trigger them. 112

6.1 Example of two emotions with different labels that would
be clustered into a single emotion state. . . . . . . . . . . . . 131

6.2 Learned most fit emotion to modifier mapping averaged
over 30 trials: two emotions . . . . . . . . . . . . . . . . . . . 132

6.3 Example of the consistent Reinforcer-Emotion classifiers for
the emotion model trained with two emotion states . . . . . 134

6.4 Learned most fit emotion to modifier mapping averaged
over 30 trials: three emotions . . . . . . . . . . . . . . . . . . 137

xiii



xiv LIST OF TABLES

6.5 Example of the consistent Reinforcer-Emotion classifiers for
the emotion model trained with three emotion states . . . . . 138

6.6 Learned most fit emotion to modifier mapping averaged
over 30 trials: four emotions . . . . . . . . . . . . . . . . . . . 139

6.7 Learned most fit emotion to modifier mapping: real-world
experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.8 Example of the consistent Reinforcer-Emotion classifiers for
the emotion model trained with two emotion states: real-
world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



Glossary

ACS Anticipatory Classifier System.

CAM Cognitive Action Map.

CAM-SLAM Cognitive Action Mapping SLAM.

GA Genetic Algorithm.

LCS Learning Classifier System.

RL Reinforcement Learning.

ROS Robot Operating System.

SLAM Simultaneous Localisation and Mapping.

VUW Victoria University of Wellington.

XCS Accuracy Based Classifier System.

XCSCFC XCS using Code Fragmented Conditions.

xv



xvi Glossary



Chapter 1

Introduction

The past couple of decades have seen extensive progress towards mak-
ing autonomous robots a reality. A very recent show case of just how far
autonomous robotics has come is the current DARPA robotics challenge1.
Teams demonstrated humanoid robots completing a series of autonomous
challenges, including climbing stairs, navigating obstacle rich zones, and
physically driving cars. Although the winning robots were impressive
they were still slow, prone to errors, and expensive. Autonomous mobile
robotic research has come a long way, but still has a long way to go before
robots are as capable of reliably navigating and operating in the real-world
as effectively as humans do.

One of the biggest challenges facing mobile robotics is the ability for a
robot to autonomously navigate unknown real-world environments and is
considered by many to be one of the key prerequisite of truly autonomous
robots [26], citefinn2012. Of course there are still many challenges to over-
come outside of the task of navigation requiring different forms of non-
mobile robotics platforms, e.g optimal kinematics or an assembly line robot.
The focus of this research is on mobile robots and will be discussed in the
general term ’robot’ in this thesis.

The ability for a robot to be placed at an unknown location in an un-

1http://www.theroboticschallenge.org/

1



2 CHAPTER 1. INTRODUCTION

known environment and then have it build a map, using only its own
sensory observations, to simultaneously navigate with, would help make
such a robot autonomous [26]. A solution to the navigation problem would
be of great value in a range of applications where absolute position or pre-
cise map information is unavailable. This includes, amongst others, au-
tonomous planetary exploration, sub-sea autonomous vehicles, autonomous
air-borne vehicles, and autonomous all-terrain vehicles in tasks such as
mining and construction. In order to achieve this level of autonomy a
robot must solve the three complex tasks of navigation [89].

Where am I? The robot must know where it is within the environment in
order to make a useful decision. Finding the whereabouts of a robot
is termed localisation.

Where am I going? In order to fulfil a given task a robot must know where
it is going, this is known as goal recognition.

How do I get there? Once the robot knows where it is, and where it is
going, it has to determine how it is going to get to the goal. This is
known as path-planning.

Obtaining the localisation of the robot (‘Where am I?’) is a non-trivial
problem, as there are many possible states available in real-world prob-
lems. Similar to humans, a robot requires an accurate map of its environ-
ment to localise from. However, to generate an accurate map within an
unknown environment a robot must be localised. Simultaneous Locali-
sation and Mapping (SLAM), see section 2.1, is the technique that seeks
to allow a robot to autonomously localise itself within unknown environ-
ments. The the main advantage of SLAM is that it eliminates the need
for human generated infrastructures or a priori knowledge of the environ-
ment. This allows applications where map gathering is impractical, avoid-
ing slow human map building and negating any human bias.

The problem of goal recognition is specified on a task by task basis,
generally by a human operator. The robot is then required to determine
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how it will achieve the specified goal. In robotic navigation the robot is
typically given a goal location or goal target it must find within an envi-
ronment. For example, searching for people in a disaster zone.

Path planning (‘How do I get there?’) is an important issue as it al-
lows a robot to get from point A to point B within its environment, see
section 2.2. For a robot to successfully path plan to a goal location it must
have a map of its environment and know where the goal location is within
the map. This becomes complex within real world environments where
goal locations are not easily defined or known and maps are unavailable,
making path-planning dependant on solving the localisation problem. For
example, a rescue robot within a disaster zone looking for survivors, the
‘goal location’ of survivors is unknown and an accurate map of the envi-
ronment is not going to be available.

Current approaches for solving these problems have advanced in the
past couple of decades and have been shown to be effective in a variety
of environments, see section 2. However, these traditional techniques rely
on rigid computational approaches. Rigid computational models lack the
abilities to adapt to novel environments or to improve their behaviour
over time [77]. Although certain techniques have been designed to adapt
to specific conditions within an environment, the term rigid is regarding a
path-planning approaches lack of learning or adaptability to novel input
the system is not designed for a priori.

This rigidity makes computational approaches inherently brittle in that
underlying models cannot account for all potential external conditions or
relevant variables which could result in erroneous or misleading decision
making [91]. Rigidity can be lessened by manually optimising perfor-
mance in a diverse set of environments, but this may result in a ‘Jack of
all trades, master of none’ system that compromises performance in one
type of environment to achieve satisfactory performance in another.

In contrast, humans are capable of not only reasoning about their en-
vironment but also learning from prior experiences and updating under-
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lying decision making processes. This allows a person to perform in a
variety of environments or conditions by adapting to novel experiences.
Furthermore, people are capable of sharing their experiences and knowl-
edge with the community, enabling a person to learn from the experiences
of others. Teaching, alongside imitation, is widely thought to underlie the
success of humanity by allowing high-fidelity transmission of informa-
tion, skills, and technology between individuals, facilitating cumulative
knowledge gain [37]. The communal benefit provides a greater under-
standing of a problem or environment, and reduces the risk to an individ-
ual exploring a new terrain on their own [36].

The field of cognitive robotics seeks to give robots high level cogni-
tive functions that involve reasoning to help robots autonomously com-
plete complex goals [101]. It refers to robots learning to complete tasks
autonomously through their own interactions with the environment, such
as obstacle avoidance, control, and various motion related tasks. This is
an important part of robotics as cognitive reasoning allows robots to au-
tonomously perceive and interact with real world environments. Where
robots in factory lines are capable of doing complex tasks, most of them do
not have perceptual abilities (beyond basic touch sensors); they are pro-
grammed to do one thing in a controlled environment.

Cognitive robotics is instead interested in robots that perceive, rea-
son, remember, learn, and that can communicate with humans and each
other [101]. The advantage this gives robotics is the ability to perform in
a range of environments by adjusting their own behaviour through per-
ceiving changes in the environment and reasoning about how to proceed
[101]. Furthermore, complex tasks can be learned by the robotic platforms
without the need for a human to develop a specific routine for each task
[38]. This potentially allows for improved performance, as it avoids hu-
man bias, assumptions, and simplifications in conventional rigid models.



1.1. MOTIVATIONS AND OBJECTIVES 5

1.1 Motivations and Objectives

The broad objective of the work presented in this thesis is to apply human
inspired mechanisms to address limitations in current robotic navigation
techniques. In particular to the specific problems of ‘where am I?’ (SLAM)
and ‘how do I get there? (path-planning). Two novel approaches inspired
by how humans are considered to approach these problems will be pre-
sented in this thesis, one for each of the respective problems.

1.1.1 Cognitive action mapping

A number of SLAM techniques have been developed that effectively al-
low mobile robots to map unknown environments using a variety of range
based or vision based sensors, see section 2.1. However, these approaches
tend to rely on extracting high detail, feature rich maps of the environ-
ment. These maps are potentially storing large amounts of redundant or
irrelevant information that could be filtered out, reducing computational
complexity and memory requirements. Robots are also required to pro-
duce maps through their own independent sensor configurations and pa-
rameters, which may not translate to another robot without considerable
human expertise being applied. Although mapping techniques such as
grid and graph based maps are considered robot independent, varying
placements of similar sensors can drastically change environmental per-
ception [51]. Even the same model sensors can vary in their exact proper-
ties, requiring calibration before being used with many types of mapping
approaches. In some cases comparing sensory perceptions between robots
is infeasible. For example, a range based map is uninterpretable by a vi-
sual based robot platform and vice versa.

An ideal solution would only map salient information useful for nav-
igation and in a format such that this information can be transferred be-
tween heterogeneous robots. Being able to transfer navigation information
can improve co-operation between robotic platforms. Instead of having to
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individually map an environment, once one robot has mapped a region it
can share this information with other robots, decreasing the time required
to explore and increasing the knowledge of the environment for all the
robots involved. This can be useful in hazardous environments such as
disaster relief, where low cost robots can be sent in to map the region be-
fore risking the higher cost robots designed for saving people.

Cognitive geography is the study of how humans perceive the world
in their ‘mind’s eye’ [7]. Cognitive mapping is a process composed of a
series of psychological transformations by which an individual acquires,
codes, stores, recalls, and decodes information about the relative locations
and attributes of phenomena in their everyday spatial environment [29]. A
cognitive map is a spatial representation of the outside world that is kept
within the mind until an actual manifestation (physically drawn map) of
this perceived knowledge is generated, called the mental map [50]. In
most cases, a cognitive map exists independently of a mental map. Cog-
nitive mapping is the implicit (imagined), while mental mapping is the
explicit (measured) part of the same process.

In practical terms the cognitive map is the abstract map or image a
person has in their own head of an environment, this can be different for
each individual. The mental map is the drawn map of the environment
from the person, making the cognitive map into a physical description of
the environment.

Cognitive maps are created through internal movement cues, and in-
put from senses like vision, proprioception, olfaction, and hearing [50].
The perceived cognitive map consists of directional cues and positional
landmarks. Directional cues can be both explicit cues, e.g. using a com-
pass, or implied cues through internal movement relative to the environ-
ment. Positional landmarks provide information about the environment
by comparing the relative position of specific objects, whereas directional
cues give information about the shape of the environment itself. These as-
pects are then processed by the hippocampus together to provide a graph
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(topological map) of the environment through relative locations.

Inspired by this perception of a separate cognitive and mental map in
humans, a novel cognitive mapping stage will be presented that works in
conjunction with current SLAM techniques, which are considered as the
mental mapping stage. The mental mapping stage is specific to a robotic
platform or sensor type, and will provide localisation for their respective
robotic platforms. The cognitive mapping stage will seek to learn a high
level action (physical movement cues) based map which is ubiquitous be-
tween robotic platforms. Similar to the human cognitive map, the robot
cognitive map will be a topological map with regions within the environ-
ment linked by actions the robot can take. The main considerations of this
technique are minimising the amount of unnecessary mapping informa-
tion, reducing the memory costs of maps, and allowing shared navigation
information through high level maps. The cognitive action mapping ap-
proach will thus be assessed on its ability to:

1. Reduce the amount of mapping information required for successful
navigation.

2. Share cognitive maps between heterogeneous robotic platforms.

3. Share navigation information between visual and range base SLAM
approaches.

Experiments will be conducted in a real-world environment with two
heterogeneous robotic platforms with differing sensing capabilities.

1.1.2 Adaptive path-planning through emotions

Path-planning techniques are based on rigid computational models that
rely solely upon the physical sensing capabilities of the robotic platform to
determine a course of action. This makes path-planning approaches rigid
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and inflexible to novel occurrences. That is, they can fail in new environ-
ments and cannot adapt to novel input or stimuli. Ideally a robotic navi-
gation system should be able to adapt its path planning and behaviour to
overcome a variety of obstacles within an environment without the need
for specialised planning approaches. A specialised planning approach is
one that is specifically designed for a particular environment, or has pre-
programmed responses to states or objects within an environment. For
example, detecting doorways or chairs is not generally applicable to out-
door environments. A complete rigid path-planning approach will have a
complete mapping of all eventualities of these forms of states to responses
for the robot to follow during navigation. Developing such a mapping
is infeasible given the potentially infinite possible state-response pairs re-
quired to navigate the real-world.

What is required is a means of generalising the state-response pairs
into a manageable set of patterns or behaviours, i.e. create categorised
responses for a given set of states. However, determining the ideal pat-
terns or behaviours by hand efficiently or effectively is not feasible given
the large search space. Ideally, a robot should be capable of learning these
beneficial behaviours from its own experiences in an environment without
human intervention, avoiding human bias and providing the system the
flexibility to adapt to novel environments.

Humans rely upon cognitive reasoning to interact with our environ-
ment, however our reasoning ability is influenced by our internal emo-
tional state. Generally considered to be a detriment to a person’s cognitive
process, recent research is regarding them as a beneficial mechanism in
the decision making process [23] [61]. Fellous [33] suggests that biologi-
cal emotions facilitate the transfer of simple, but high-impact information,
both externally (e.g. lack of energy) and internally (e.g. reacting to ’threat-
ening’ situations), for operating system-like tasks. Subsequently, recent
years have seen an increase into research of robots and intelligent systems
that possess emotion-inspired mechanisms. Generally targeted at social
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robots for human interaction [9] [41], further work has also applied emo-
tions to behavioural tasks such as navigation [58].

Inspired by these theories, a novel method will be developed to learn
an emotion inspired model that can beneficially adapt a rigid cognitive
path-planning approach based on the robot’s interaction with the envi-
ronment. Rather than mapping external stimuli directly to responses, the
emotion model will seek to learn an intermediary set of emotion categories
intended to achieve many of the same goals, but in a general way. An im-
portant function of emotions in the model is to provide a compact set of
high-impact behaviour adaptations, reducing an otherwise tangled web of
stimulus-response patterns into a more manageable structure.

In engineering and biology, the concept of a bow-tie is used to repre-
sent complex adaptive systems in a manner that provides flexibility with-
out compromising efficiency of processing in the system. The shape of a
bow-tie describes systems that include large numbers of inputs and out-
puts bridged by a smaller number of intermediary states and processes.
Emotions may form the ‘knots’ of some of these bow-tie structures in bio-
logical cognitive systems, decoupling stimulus and response [65]. Manu-
ally pruning all possible connections to the bow-tie shape is an impractical
task, with potential for added human bias. Therefore, the aim of this work
is to use machine learning techniques as global search techniques to learn
the bow-tie structures in a human-readable form.

From a purely algorithmic viewpoint, the robot will learn policies that
adjust the parameters of its navigation algorithm in the form of bow-tie
structures. From a physiological viewpoint, the behaviour of the robot
based on its interaction with the environment will be used to determine
the learned emotional response.

The emotion model will be assessed in two ways. The goal of the
system is to learn a mapping of stimulus-response behaviours that ben-
eficially adapt the robot’s navigation behaviour. Based on this, the key
assessment is the benefit of the system to the robot’s navigation perfor-
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mance through providing a generalised means of adapting its computa-
tional functions. This will be measured as the time to navigate the envi-
ronment, and the number of collisions during navigation.

The secondary assessment of the learned emotion model will inves-
tigate the system for any emergent emotion responses. Emotions repre-
sented will not necessarily match their human counterparts, as the prob-
lem of mobile robot navigation differs from many problems that human
emotions have evolved to address. Nonetheless, the results will provide
an interesting insight into the formation of emotions. However, the pri-
mary aim of the system is to improve robotic navigation performance
rather than attempting to imitate human emotion responses. Experiments
will train the emotion system and compare the rigid computational model
against the adaptive emotional system.

1.2 Thesis outline

Chapter Two An overview of robotic navigation techniques is provided,
covering SLAM and path-planning approaches. Psychological per-
spectives on biological emotions is then presented with a review of
related work using emotions in robotics. Machine learning tech-
niques are the core mechanism for the approaches presented in this
work, a review of machine learning is given with respect to robotics.
Finally, Robot Operating System (ROS) is used as a means for con-
trolling the robotic platforms in both simulation and the real-world,
a description of ROS and the packages used in this thesis is provided.

Chapter Three Implementation details of the cognitive action mapping
approach are provided. The decision points and common action fea-
tures are described, and how machine learning is used to map them.
The two robots utilised in this work and the environments used for
testing are also introduced.
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Chapter Four Quantitative experimental results of the cognitive action
map being learned and shared between two real-world heteroge-
neous robotic platforms are presented and discussed. Including re-
sults demonstrating sharing information between visual and range
based systems.

Chapter Five A description of the emotion model and how it adapts the
cognitive navigation system is presented. Followed by details on
how machine learning was used to learn the emotion model in both
simulation and real-world environments.

Chapter Six Results demonstrating the utility of the learned emotion model
against the computational system are given and discussed. Results
of training the emotion model are also presented with any emergent
behaviours in the system being examined.

Chapter Seven This thesis concludes with a summary of the contribu-
tions, the international publications resulting from this research, and
a discussion of future work.



12 CHAPTER 1. INTRODUCTION



Chapter 2

Background

In order to achieve true autonomy in mobile robotics, a robot must be able
to reason about its environment and follow a self determined course of
action to complete given tasks without any human input. A major part of
solving this problem is providing a means for robots to develop maps of
their environment useful for navigation. Autonomous mapping of envi-
ronments is covered by Simultaneous localization and mapping (SLAM)
techniques, detailed in section 2.1. Autonomous navigation (detailed in
section 2.2) falls under the domain of path planning relying upon SLAM
to generate useful maps. This thesis introduces novel human inspired ap-
proaches to these problems to provide a means for a robot to learn from its
interactions with the environment. Section 2.4 provides insights into the
human emotion models that inspire these techniques. To implement these
human inspired approaches, machine learning techniques will be utilised
to provide a means for the robots to learn from their experiences. A re-
view of machine learning techniques is given in section 2.5. The backbone
of the approaches presented relies on Robot Operating System (ROS) for
controlling the robotic platforms in both simulation and the real-world.
A description of ROS and the packages used is provided in section 2.8.
Finally, a summary of the background will be given in section 2.9.

13
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2.1 SLAM

SLAM asks if it is possible for a mobile robot to incrementally build a con-
sistent map of an unknown environment from an unknown location while
simultaneously determining its location within this map. This can be con-
sidered a ‘chicken or the egg‘ problem; to localise the robot requires a map
but to create an accurate map the robot must be localised. Since robot mo-
tion is subject to error, the mapping problem induces a robot localisation
problem. The basic principle of SLAM methods is to use environmental
observations from a variety of sensors to help adjust for these movement
errors, e.g. cameras, ultrasonic or LIDAR sensors. However, as sensors
are not perfect, sensor noise introduces mapping errors into the system.
The complexity of the technical processes such as locating and mapping
under conditions of errors and noise do not allow for a coherent solution
of both tasks. SLAM is a method that combines these problems into a loop
with iterative feedback from one process to the other to enhance the re-
sults of both consecutive steps. Figure 2.1 shows the general process of
SLAM algorithms. Different implementations of SLAM will substitute or
add their own approaches to each stage in the system depending on the
type of sensor the robot is using or environment it is operating in. For ex-
ample a camera based approach could use SIFT features or line extraction
for feature identification and comparison.

2.1.1 Statistical based SLAM

Smith and Cheeseman published the beginnings of SLAM techniques in
1986 [92]. This paper laid the groundwork for extracting a robot’s posi-
tion, with an uncertainty, from observed and measured position estimates
through an Extended Kalman Filter (EKF). Further work by Leonard and
Durrant-Whyte then expanded the techniques to not only represent uncer-
tainty, but to reduce or eliminate the uncertainty through observed mea-
surements [60]. These early SLAM techniques were capable algorithms,
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Figure 2.1: The position is estimated via internal motion readings. Landmarks are then
extracted from the environment at the estimated position. Re-associated landmarks are
then used to improve position estimate, while new landmarks are added to the map.
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winning the DARPA Grand challenge in 2005 [100]. However, as Leonard
and Durrant-Whyte [60] argued years earlier, these techniques still had
fundamental issues in solving data association, environmental dynamics, and
computational complexity. These three factors have driven development in
SLAM until present day research, and are considered in the work pre-
sented in this thesis.

EKF SLAM [2] has issues with data association and computational com-
plexity. Robots using these approaches rely upon range based sensors
such as LIDARs and ultrasonics. These sensors require the landmark ex-
traction stage to rely upon the position estimate of the robot, inherently
adding uncertainty to landmark estimates. Over the course of environ-
mental navigation this added uncertainty will eventually drive the posi-
tion estimate into error, in which the robot cannot recover as it is unable
to re-associate previously seen landmarks. EKF SLAM also has compu-
tational complexities in the calculation of the covariance matrix, with a
quadratic scaling with each new landmark in the map. This prevents EKF
SLAM from scaling to larger environments with tens of thousands of land-
marks.

To tackle these problems Montemerlo et. al introduced the Rao-Blackwellized
particle filter in FastSLAM [74] and FastSLAM 2.0 [73]. By having indi-
vidual position estimates across the particle filter, FastSLAM is resilient
to (but does not solve) data association errors from inherent uncertainty
in landmark extraction. FastSLAM further improves upon EKK by utilis-
ing a tree structure to efficiently represent landmark positions, reducing
the computational complexity of landmarks to a logarithmic scaling. This
allows FastSLAM to learn in environments with up to fifty thousand land-
marks, which EKF approaches cannot computationally handle. Variants of
FastSLAM are now considered to be the current de facto SLAM technique
on range based sensor robots.
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2.1.2 Appearance based SLAM

Range based sensors are computationally simple but financially expensive
and limit SLAM approaches in data association and dynamic environmen-
tal problems. Vision based techniques are desirable as they are relatively
cheap sensors which provide a rich range of information about an environ-
ment. Importantly, they also decouple the reliance on the robot’s position
estimate, with image comparison only requiring the images themselves.
The limitation in early attempts was from inefficient and unreliable meth-
ods for image processing techniques in computer vision with early tech-
niques relying on artificial landmarks for proof of concepts. Through ad-
vances in computer vision, visual based SLAM approaches have become
a research focus.

Milford et al. introduced a rat inspired visual based approach, Rat-
SLAM [71]. RatSLAM demonstrated a visual approach capable of resolv-
ing ambiguous landmark data even when subject to large uncertainty in
position estimates. Since then vision based approaches have been scaled
to large environments with up to 1000 km trajectories being mapped [21]
[66]. Other notable visual based approaches are MonoSLAM [22], and
FrameSLAM [55].

Vision based approaches all rely upon feature extraction techniques
for precision in place recognition, with false positives being a major hin-
drance to localisation performance. Common feature finding approaches
such as SIFT [63] and SURF [4] can handle scaling and rotations of images,
enabling pose invariance. However, these approaches are unsuitable for
dealing with perceptual changes in the environment such as day to night
or sun to rain [76]. Condition invariance is required for solving long dura-
tion navigation based problems.

Several condition invariant solutions use training to dynamically model
or predict changes in appearance [64] [95]. Training is also used to learn
invariant place-dependant features [68] for place recognition. These tech-
niques are limited by the computational overhead of collecting datasets,
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and have limited applicability to unseen types of environments. Milford
et al. introduced a new approach SeqSLAM [70], which relies upon match-
ing a sequence of images over conventional approaches which make sin-
gle place to place matches. SeqSLAM and its successor SMART [81] have
been demonstrated to be robust for localisation through extreme changes
in weather, addressing dynamic illumination in the environment. These
two approaches are condition invariant, but have limited pose invariance.
When simply changing lanes on the road, neither approach is able to suc-
cessfully localise. Present work is attempting to bridge the gap between
pose-invariant, condition-sensitive and the condition-invariant, but pose-
sensitive place recognition algorithms [80].

2.1.3 Active SLAM

SLAM assumes an ideal goal directed path a robot can follow in order to
explore the domain, which is likely not to exist in practical situations. Ac-
tive SLAM approaches determine the robot’s path based on reducing the
SLAM uncertainty, improving mapping accuracy, and map completeness
[32]. This is achieved via path planning that will select a path based on
improving mapping accuracy and completeness, while also minimising
the required time to explore. In contrast, the approach presented in this
thesis seeks to learn a map of actions, in contrast to a sensor based map,
that allow a robot to successfully traverse an environment. These actions
are high level navigation information learned over time that can be shared
between heterogeneous robotic platforms, as opposed to explicit low level
navigation information aimed at improving the SLAM process.

2.2 Robotic navigation

Robotic navigation is the specific problem of finding a sequence of actions
that will enable a robot to achieve a goal state given its current state [57].
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For mobile robotics this involves safely and optimally navigating an envi-
ronment. An ideal safe plan involves avoiding harm to the environment
and the robot itself, either through preventing collisions or avoiding un-
safe regions. An optimal or near-optimal path is considered with respect
to time, distance driven, or energy used to reach the goal. Distance is most
commonly considered. Accordingly, path-planning algorithms might cal-
culate anything from a desired speed/direction of travel to an entire se-
quence of actions for the robot to follow.

Path-planning approaches generally rely on a map of the environment
to generate these paths for the robot to follow. As discussed in section 2.1,
localisation and mapping are interdependent processes as using a map to
localise a robot requires that the map exists, while building a map requires
the position to be estimated relative to the partial map learned so far. In
contrast, path-planning is an separate process that takes place once the
map has been built and the robot’s position estimated. That is, first a map
is generated from the environment, and then a path-planning approach
utilises the map to generate a plan.

There are two common map representations used in path planning ap-
proaches, metric and topological maps [35] [69]. Metric maps represent
the environment as a set of objects with co-ordinates in two-dimensional
space. Topological maps represent the environment as place definitions
and their relative positions are recorded as links. An example of the clas-
sic definitions of these representations is shown in figure 2.2.

The metric framework is the most commonly used representation by
humans (world and road maps) and considers a two-dimensional space in
which they places the objects in the environment. The objects are placed
with precise and continuous coordinates. When displayed, a metric map
generally looks like an architectural sketch and is easy to read for humans.
This representation is very useful, but is sensitive to positional noise and
it is difficult to calculate the object positions precisely from sensors due to
uncertainties in their measurements.
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Figure 2.2: Illustration of the distinction between metric and topological maps. In the
metric framework, object positions are inferred and represented in a common reference
frame. Two positions, A and B, are represented in this map by their coordinates in this
reference frame. These coordinates make it possible to infer their distance. In topological
maps, places are stored with their spatial relations, the two positions A and B are recog-
nized as individual places with links between them. This makes it possible to infer that
position B can be reached from position A via the path 1, 2, 3, 5, 6 or 1, 2, 4, 5, 6.
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The topological framework only considers places and relations between
them, often being the distances between each place. The map is therefore
a graph in which the nodes correspond to places and links correspond to
the paths. In contrast to metric maps, topological maps only store locally
relevant information. The downside is that learning and associating the
nodes in the environment is a difficult problem. Either the nodes are too
numerous and not locally unique, or are too few and thus hard to find.

Path-planning approaches are dependant on their mapping represen-
tations for creating paths. Metric frameworks provide a detailed map of
the whole environment, allowing for detailed paths to be found at the
cost of computational complexity. Topological maps inherently provide
high level path planning through nodes in the graph and are computa-
tionally simple. But they do not allow for local control strategies as they
lack details between nodes. A variety of path-planning techniques exist
that utilise both or combinations of these representations.

Classical approaches to path-planning operate on graph search algo-
rithms (such as A) and work well for planning an initial path through
a known environment [34]. However, when operating in real-world en-
vironments robots do not have perfect information and graph based ap-
proaches may not be able to provide optimal or complete paths. An opti-
mal path is defined on a heuristic and could be based on measures such
as time, distance, or energy use. A complete path is a path that leads from
the start to the end location with no missing steps.

One approach to improving the performance of graph based approaches
is to re-plan the path each time new information becomes available. Re-
planning each time new information is available is computationally ex-
pensive, especially in dynamic or large environments. Another option is
to instead repair the original path to account for the changes in the map
[93]. By repairing only the sections affected by the new information the
system can improve the computational time but it will not guarantee an
optimal path as it only adjusts the locally affected area [34].
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Recent path-planning techniques utilise behaviour-based control meth-
ods to discover paths in the environment, e.g. state machines [42], [59];
biologically inspired systems based on artificial neural networks [42], [90];
fuzzy inference systems and/or evolutionary algorithms [52], [53], [79];
and search-based motion planners that employ detailed world representa-
tions [56].

These approaches are typically tuned, trained or evolved in a specific
type of environment or a set of similar environments [77]. Once param-
eters are set, the system performs rigidly to the set parameters and take
actions directly based on the external sensors of the robotic platform. That
is, they can fail in new environments and cannot adapt to novel input that
they have not been explicitly designed to handle a priori. To clarify, a path-
planning approach may be able to adjust a plan to new information from
the environment. However, it will not adjust its navigational behaviour
and will not learn from its experience, in the same situation the approach
will provide the same plan each time even if it leads to failure. This thesis
is seeking to add a learning or memory mechanism through emotions to
adapt a robot’s navigation behaviour from its own experiences.

2.3 Bow-tie models

Learning a complete mapping of stimuli to response patterns is infeasi-
ble given the potentially infinite number of possible combinations a robot
could require. Instead, it may be desirable to learn an intermediary num-
ber of states useful for filtering the environmental stimulus into manage-
able parts before determining a response. In engineering and biology these
structures are commonly used and referred to as bow-ties.

Bow-tie architectures refer to ordered structures that often underlie
complex technological or biological systems which are capable of balanc-
ing efficiency, robustness and evolvability in a natural setting [20]. Struc-
turally bow-ties represent a system that maps many inputs through a few
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Figure 2.3: Many inputs with high variability are filtered through the ‘knot’ of the bow-
tie. The knot then determines the output or response of the system.

intermediary states to many outputs. These architectures are used to man-
age a wide range of inputs through a core (knot), constituted by a limited
number of elements, to a variety of outputs or responses. The knot acts
as a manifold for the inputs to group or order the inputs into manage-
able parts. The knot then determines one of a possibly large variety of
responses for the system to output. An example of this type of structure is
shown in figure 2.3.

The emotion model presented in this thesis utilises the concept of bow-
tie to learn a mapping of emotion based reinforcers (stimuli from the en-
vironment) to behavioural modifiers to adapt the behaviour of the robot
based on its interaction with the environment. From a purely algorithmic
viewpoint, the robot will learn policies that adjust the parameters of its
navigation algorithm in the form of bow-tie structures. From a physiolog-
ical viewpoint, the behaviour of the robot based on its interaction with the
environment will be used to determine the learned emotional response.
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2.4 Emotion models

Emotions are increasingly being regarded as a beneficial mechanism in
the decision making process [23] [61]. Emotions, through an associative
learning process, provide a low-level generalised behavioural response to
a range of potentially beneficial or hazardous reinforcers from the envi-
ronment [88]. Where a reinforcer is an emotional trigger associated to an
aspect of the environment or sense of self. The low-level emotion response
allows an organism to focus higher-level cognitive systems on important
or specific aspects of the environment. Fellous [33] suggests that biological
emotions facilitate the transferring of simplified, but high-impact informa-
tion, both externally (e.g. lack of energy) and internally (e.g. reacting to
’threatening’ situations), for operating system-like tasks.

Computational models of emotion can be broadly divided into those
that define a small set of basic emotions (or emotion categories) such as
anger, fear, joy and sadness, and those that model a set of dimensions
such as valence and arousal, from which the various emotions can be in-
ferred. Categorical models are often inspired by Ekman’s cross-cultural
research on human facial expressions [31], which suggests that humans
universally recognise facial expressions of anger, fear, joy, sadness, sur-
prise and disgust. Plutchik [83] argues that for an emotion to be regarded
as basic or primary, it should also cross species boundaries. Plutchik’s cir-
cumplex model [83] defines eight primary emotions, grouped into polar
opposites (joy/sadness, anger/fear, anticipation/surprise, trust/disgust)
and arranged in a 3D colour wheel, allowing adjacent emotions to be com-
bined to form secondary emotions such as optimism (anticipation + joy).

Many robot implementations that attempt a complete, biologically plau-
sible representation include Ekman’s original six basic emotions. Other
emotions are less frequently included, primarily because the various the-
ories of biological emotion do not agree upon them (and perhaps also be-
cause they are applicable to a smaller set of task domains). Velsquez’s
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Cathexis architecture [99], one of the most influential early emotion-based
robot controllers, models Ekman’s six basic emotions. The robotic head
Kismet [9], inspired by Plutchik et. al., expands this list to also include
interest and boredom. Similarly, a typical set of emotions modelled in
Moshkina and Arkin’s TAME architecture [75] includes Ekman’s six, and
interest [1]. These approaches provide an insight into the use of emotions
in robots for the goal of social interaction between humans and robots.
The research in this thesis is seeking to utilise emotions for the benefit of
robotic navigation.

Lee-Johnson and Carnegie have presented an emotion-modulated nav-
igation architecture [58], which includes five of Ekman’s six basic emo-
tions, omitting disgust (which was considerd to have limited usefulness
in a robot that does not need to interact with humans or other robots),
and adding interest (curiosity) and confusion. This work applies emo-
tions to a hybrid reactive/deliberative planning and control architecture
for a range of navigation and exploration tasks. Emotions are not mod-
elled as discrete states or as internal sensors that drive action selection, but
as continuous modulations of the robot’s internal parameters throughout
multiple computational layers. While many behaviour-based models re-
gard emotions as potential replacements for deliberation, in their research
they utilised emotions to augment the robot’s deliberative capabilities by
providing location-specific biases to path planning.

Each location specific bias was achieved by incorporating emotions
into the map used for path-planning. Typically maps utilise sensor data
to build a representation of the environment and path-planning will gen-
erate paths through the maps based on their path-planning heuristic. In
the emotion model presented by Lee-Johnson the emotions are a further
addition to the map that effect the generation of the path. For example, a
sad emotion will cause the robot to move slower or cause the planning to
avoid the particular area as if it was a potential hazard. In contrast to Lee-
Johnson’s work [58], the system presented in this thesis will not pre-define
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how the emotions adapt behaviour and the assumption that the robot will
have perfect information about its current state in the environment is re-
moved [58]. The emotion responses will be learned by the robot from its
own exploration of the environment.

Rolls [86] [87] presents a dimensional model in which emotions re-
sult from the presence, omission or termination of rewards and punishers,
called instrumental reinforcers. Instrumental reinforcers can be primary,
determined by genes (e.g. the tastes and smells associated with food), or
secondary, learned by association with primary reinforcers (e.g. the sight
of a favourite food). Figure 2.4 shows how specific emotions can arise from
their respective reinforcement contingencies.

Primary instrumental reinforcers proposed by Rolls [86] include many
that serve the goal of reproduction, such as courtship, parental attach-
ment, nest-building and the crying of infants, which are not applicable
to our robot (although some may be relevant to robots assigned the role of
pet or caregiver). Reinforcers related to general social interaction, such as
facial expressions, altruism, group acceptance and mind-reading (predict-
ing others’ behaviour), are likely applicable to multi-robot systems and
human-machine interaction scenarios. Others related to bodily functions,
such as tastes, odours, breathing, exercise and pain, are only relevant if
some equivalent robot function is present (e.g. an analogy can be drawn
between food or sleep, and a mobile robot’s need to recharge its batteries).
The reinforcers that are most likely to be relevant for our tasks are those
that can be applied to the general adaptive behaviour of individuals, in-
cluding novel stimuli, habitat preference, control over actions, problem-
solving, and play.

A combination of factors such as the reinforcement contingency (whether
a reward or punishment is presented, withheld or terminated), the in-
tensity, the primary and secondary reinforcers involved, and whether an
active or passive response is possible, can account for a wide variety of
emotions. The presentation of a reward might correspond with satisfac-



2.4. EMOTION MODELS 27

Figure 2.4: Framework for understanding specific emotions as arising from specific rein-
forcement contingencies. From “Emotion Explained” [86]
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tion or happiness, while its omission might result in frustration or anger
if an active response is possible. If the reward is terminated, or if no ac-
tive response is possible, an animal may instead experience sadness or
grief. Similarly, the presentation of a punishment might result in fear,
or, if the punishment is inescapable or recurring, depression, whereas its
omission or termination are likely to elicit relief. For example, Ishii et.
al. [49] demonstrated that rats tormented by a robotic “bully rat” over
an extended period of time showed signs of depression (characterised by
immobility).

Rolls [86] is not a proponent of categorical studies of emotion such as
those conducted by Ekman [31], arguing that some of those approaches
risk finding a small number of emotion categories, even if that results in
an incomplete model, because “seven, plus or minus two” is the max-
imum number of categories with which humans normally operate [72].
However, in the robotics domain, a higher level of completeness might be
considered excessive and impractical. It can be argued that there need not
be a perfect correlation between human, animal and computational emo-
tions, given their vastly different cognitive architectures. A robot need
not include a complete set of biological emotions if a smaller subset can
provide sufficient adaptive capabilities for the tasks it must perform. Such
tasks might include avoiding hazards that the primary sensors cannot eas-
ily detect (e.g. glass walls), or responding quickly and appropriately to
unexpected or dynamic situations.

In a sense the robotic emotions in this thesis can be considered as a
low level response to the environment based on internal stimuli. Where
path-planning traditionally uses external senses to control the behaviour
of the robot, the emotional reinforcers are an internal sense of the robot’s
current performance. The term emotion in this sense is a control policy. A
control policy that learns to adapt the robot’s navigation behaviour based
on internal stimuli.

The model for path planning presented in this thesis is inspired by
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these theories. Rather than mapping stimuli directly to actions, or learning
the actions in a single step, the robots learn an intermediary set of emotion
categories intended to achieve many of the same goals, but in a more gen-
eral way. An important function of emotions in the model is to provide
a compact set of high-impact behaviour adaptations, reducing an other-
wise tangled web of stimulus-response patterns into a more manageable
structure.

Emotions have been applied to path-planning before by Johnson et.
al, showing an emotion model that beneficially adapted a robot’s path-
planning [58]. However, this work assumed perfect localisation and had
pre-defined emotion responses. Perfect localisation means there is no un-
certainty in the position estimate, which is unrealistic in robotics. Pre-
defined emotions means the system had human encoded emotion response
for environmental conditions, creating potential human bias to the navi-
gation behaviour. The model presented here will learn these behavioural
responses and have no pre-defined emotion states.

2.5 Machine learning

The previous sections have detailed the limitations in current SLAM and
path planning techniques. Machine learning techniques provide methods
that can potentially allow a robot to autonomously learn to solve these
navigation problems through its own interactions with the environment.
Machine learning techniques have been used successfully in many robotic
problems, making use of the abilities of the techniques to adapt to their
problem environment [24] [25] [27]. This section will provide an overview
of Machine learning and the techniques used in the work presented in this
thesis.

Machine learning seeks to develop methods of allowing computers or
robots to learn to act without being explicitly programmed to. The advan-
tage of learning allows a system to be adaptable, organise new knowledge
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into effective general representations, and discover new facts through ob-
servation [113]. This allows a robot to respond to and learn from novel
input from the environment. Machine learning techniques learn through
systematic trial and error approaches, relying on feedback from the envi-
ronment to determine the quality of their actions [30]. Depending on the
type of feedback, machine learning algorithms can be classified into three
main categories: supervised, unsupervised and reinforcement learning.

Supervised Learning The agent is learning with labelled class examples
or instances. The desired outputs for a problem are known in ad-
vance, and the goal is to learn a function that maps inputs to desired
outputs.

Unsupervised Learning The agent is learning without labelled class ex-
amples, which means there are no correct answers for the agent to
explicitly learn from. It attempts to find inherent patterns that can
then be used to determine clusters for given instances.

Reinforcement Learning Desired outputs are not directly provided. Ev-
ery action of the agent has some impact to the environment, and the
environment provides feedback on the quality of its action in the
form of scalar rewards and punishments. The agent learns based
on the rewards and punishments it receives from the environment.

Supervised learning is generally used in classification problems, learn-
ing models to match data to given labels. Unsupervised learning is used
for clustering problems, learning to find labels for data. Reinforcement
learning (RL) is useful for the domain of robotic navigation, providing a
means for a robot to learn from interaction with its environment.

2.5.1 Reinforcement learning

A large variety of problems in robotics can be treated as Reinforcement
Learning (RL) problems [54]. RL is closely related to the theory of classical
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optimal control, a familiar approach in the field of robotics [84]. Both RL
and optimal control seek to address the problem of finding an optimal
policy (controller or control policy) that optimises an objective function
(the accumulated cost or reward). Both also rely on the notion of a system
being described by an underlying set of states, and there being a model
that describes transitions between these states.

Optimal control assumes perfect knowledge of the system’s descrip-
tion in the form of a model, i.e., a function that describes what the next
state of the robot will be given the current state and action. For such mod-
els, optimal control ensures strong guarantees which often break down
due to model and computational approximations [54]. In contrast, RL op-
erates directly on observed data and rewards from interaction with the
environment, allowing RL techniques to handle problems which are ana-
lytically intractable using approximations and data-driven techniques.

For example the common multiplexer problem attempts to create a
map of the inputs to a multiplexer to its output [45]. Even a relatively
simple multiplexer at 11 bits has 211 = 2048 possible combinations to man-
ually check, increasing this to 135 bits becomes impractical to check every
possible combination of inputs to outputs as the computational power re-
quired does not exist to provide the answer in a timely manner. Using LCS
Iqbal et. al have shown that is possible to learn a set of rules that can map
the inputs to output (without having to check every possible combination)
through RL [45]. A concise discussion of viewing reinforcement learning
as ‘adaptive optimal control’ is presented in [96].

In standard RL models a learning agent has a perception of its state in
the environment and a set of possible actions the agent can effect. These
actions effect a change in the environment, changing the current state of
the agent, which produces a scalar reinforcement signal (reward). In many
cases, the reward is arranged by the experimenter or trainer of the tech-
nique. For instance, in a classification context, the reward may be 1.0 for
‘correct’ and 0.0 for ‘incorrect’. In a robotic context, an example of reward
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could be a number representing the change in distance to a recharging
source, with more desirable changes (getting closer) represented by larger
positive numbers. Reward is used by the system to alter the likelihood of
taking an action given what has been learned previously in similar con-
ditions. The agent learns to map these state and action combinations to
their utility (ability to provide reward), with the aim of the learning to
maximise reward from the environment. The learning system learns this
mapping over time by systematic trial and error, relying on a variety of
search techniques for guidance.

2.5.2 Challenges of RL in robotics

Although suited for robotics, RL is generally a hard problem, and many of
its challenges are most apparent in robotic applications. These limitations
must be taken into account when choosing appropriate machine learning
techniques.

As the number of dimensions in the search space grows, exponentially
more data and computation are needed to cover the complete state-action
space, coined the curse of dimensionality by Bellman [5]. Robotic systems
often have to deal with high dimensional states and actions, notably in
anthropomorphic robots. In robotic navigation, the action space is con-
tinuous in the directions and behaviours a robot may choose, creating a
very large search space. The chosen RL technique will need to be efficient
at searching in order to feasibly learn, both in a time and learn-ability per-
spective, on a robotic platform. Learn-ability is whether or not the learning
system can learn a solution in the given problem domain.

Learning the state and action mapping is not a trivial task as reward
signals in robotics are generally sparse and unspecific. Sparse means the
rewards are not always available and may only occur after a long sequence
of actions have been carried out. Unspecific means the rewards provide
little information as to how well the robot has performed, often being just
a binary reward value for succeed or fail. Meaningful differentiation be-
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tween different solutions is non-trivial, two solutions may succeed but no
further information as to quality can be determined from the reward.

Robotics deals with real-world systems where sensor and environmen-
tal noise add uncertainty to observations. The RL technique will not be
able to precisely know the state of the robot and will have to handle noise
in the data. This makes learning state action mappings difficult as two
similar states may require different actions to be considered optimal and
the system will be required to reliably differentiate between them. Fur-
ther challenges are discussed by Kober et al. [54], providing an in-depth
survey of using machine learning techniques in real-world and simulated
robotics.

The aim of this work is to apply human inspired systems to robotic
navigation. As described above, to learn in a real-world environment a
machine learning technique requires: an ability to generalise states to re-
duce memory and computation, the ability to handle sparse and unspecific
reward, and the ability to handle noisy real-world input.

Learning Classifier Systems (LCSs) are desirable for this task as they
can generalise rules to cover large search spaces, are designed to operate
in RL problems, and can learn with noisy real-world data. A further ad-
vantage of LCSs is they produce human readable solutions in the form
of “IF condition THEN action” rules. This transparency is in contrast to
other machine learning approaches such as neural nets which work as a
black box and require extensive examination to interpret the results. As
LCS allows us to examine the results and interpret what the system has
learned.

2.5.3 Learning Classifier Systems

A Learning Classifier System (LCS) is a machine learning technique that
learns a population of “IF condition THEN action” rules called classifiers
[11]. A classifier’s condition is a representation of a state within a prob-
lem environment. These learned rules provide a means for the system to
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choose the best action given its current state in the environment. Evolu-
tionary Computation (EC) techniques and heuristics are used to search the
space of possible rules, whilst RL is used to assign utility to the rules.

EC techniques are machine learning algorithms based on Darwin’s prin-
ciples of evolution. EC uses the concepts of natural selection and genet-
ics to evolve (learn) a population of optimal solutions to a given prob-
lem. Central to the idea of EC is the idea of searching a problem space
by evolving an initially random population of solutions such that fitter
(higher quality or more optimal) solutions are bred (generated) over time.
This is seen as the population being adapted to the problem environment;
fit solutions survive and breed to produce fitter solutions. For more on EC
a detailed introduction and history is given by Eiben and Smith in [30].

LCSs were first introduced by Holland based around his seminal algo-
rithm the Genetic Algorithm (GA) [38] with influences from Q-learning
[102]. LCS aimed to provide a technique capable of credit assignment
under conditions of sparse reinforcement, distributed and generalisable
representations of complex categories, and adapting system knowledge
through interaction with the environment.

This initial LCS was considered to be overly complex and practical ex-
perience did not demonstrate the desired learning behaviour/performance
[112]. Wilson then introduced the “zeroth-level” LCS (ZCS), which simpli-
fied the original framework of Holland’s LCS and improved performance
[110], becoming the new standard framework for future LCSs shown in
figure 2.5. ZCS is a strength based classifier system, which defines classi-
fier fitness as the amount of reward expected if the agent takes a particular
action in the given state. ZCS’s representation of fitness is limited in that it
only searches niche regions of the state space that provide reward, leaving
low reward, no reward, or even negative reward regions un-searched.

To address this Wilson introduced an accuracy based LCS called XCS
with a new fitness definition [111]. XCS defines fitness as the accuracy of
the classifier to predict the expected reward for an associated action. XCS
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Figure 2.5: An agent uses sensors to detect the current environment state, finds the rules
in the population that match the current state, and selects from them which action to take.
The agent then affects the action on the environment, receiving a reward signal which is
allocated to the classifiers. Finally, a Genetic Algorithm is used to search for new and
potentially useful classifiers.
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attempts to maximize the accuracy of the predicted reward value from tak-
ing a given action. This definition of accuracy based fitness allows the evo-
lution of classifiers that are both maximally general and accurate in their
prediction of payoff [111]. This allows classifiers to learn accurate rules
that predict all reward conditions, covering the complete search space.

The standard State-Action classifier has no memory mechanism and
can only learn optimal rule sets in Markov environments, where the best
action is determined solely by the state of the current sensory input. Real-
world environments are only partially observable Markov environments
from an agent’s sensory information. Within these environments, Condition-
Action classifiers either fail, or only develop a suboptimal policy due to
aliasing of the rules [116].

To compensate for this lack of memory, Anticipatory Classifier Systems
(ACSs) have been developed that remember previous states [94]. The ACS
is a learning algorithm that combines the LCS with the learning theory
of ‘Anticipatory Behavioral Control’ [118]. The insight from psychology
is that higher animals form an internal environmental representation and
adapt their behaviour by forming anticipations [13]. The knowledge of an
ACS is represented by Condition-Action-Expectation rules.

Traditional LCS are limited as they are unable to apply previously learned
domain knowledge from smaller problems to more complex or larger prob-
lems in the same domain. This requires LCSs, as in the case of many
other approaches, to re-learn from the start for each new problem. To
address this, recent work by Iqbal et. al. [44] has incorporated genetic
programming based representations to action selection, XCS using Code
Fragmented Conditions XCSCFC. This code fragmented representation al-
lows a LCS to build on previously learned information and apply it to
more complex problems without the need to re-learn. This reduces the
number of training instances required in large problems, but requires ex-
tra time due to more involved methods [43].

LCSs initially used binary values in the state to represent the problem
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environment. Research has since expanded the binary rule representation
to include real-valued state representations capable of representing real-
world inputs [12]. The LCS also has a ‘don‘t care’ operator it can assign to
any elements within a state/condition. The ‘don‘t care’ operator, usually
denoted as #, acts as a wild card value that will match any input to that
element in the state. This allows for generalisation of rules. As a binary
example, a classifier with the state 1#1 will match inputs 111 and 101. A
generalised rule in the case of mobile robotics will have only the relevant
sensor values required to define the state, for example filtering out redun-
dant or irrelevant sensor data from the robot’s sensors. Generalised rules
compact the overall number of rules required to solve a problem. This re-
duces the overall memory and computational requirements for a mobile
robot.

Fuzzy Classifier Systems have also been developed for handling con-
tinuous real-world inputs through fuzzy rule-based models [6]. These
fuzzy rules follow the form of “IF x is A THEN y is B”, in contrast to the
traditional structure of classifier rules “IF condition THEN action”. These
fuzzy rules have been used primarily for classification problems with real-
world continuous data [48] [115]. Fuzzy classifiers have also been used in
robotic control problems [82], however for this work the traditional rule
set of learning actions given conditions is considered to have a direct rela-
tion to the decisions a robot must make while navigating.

In summary, the LCS is an efficient global search technique that is com-
monly used to find transparent (human readable) State-Action or State-
Action-Expectation [117] rule sets. This thesis extends these representa-
tions in order to utilise the capabilities of the LCS. The next two sections
will provide details on the operation of the XCS and ACS algorithms used
in this thesis.
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2.6 XCS: Accuracy based LCS

The overall goal of XCS is to form a complete and accurate mapping of the
problem space (rather than simply focusing on the higher payoff niches
in the environment) through efficient generalisations. In RL terms, XCS
learns a value function over the complete state-action space. In this way,
XCS represents a way of using traditional RL on complex problems where
the number of possible state-action combinations is very large. The output
of XCS is a population of rules to allow an agent to make the best action
in any given state within the environment. The best action is considered
the action that will provide the most reward from the environment to the
agent. Provided in this section is a general overview of the XCS algorithm,
a full description of the XCS algorithm can be found in [17].

2.6.1 XCS classifier

XCS learns a population of classifiers which represent its knowledge about
the problem environment. Each classifier is a Condition-Action rule with
attributes:

Condition Specifies the input states (sensory state of the environment) in
which the classifier can be applied.

Action Specifies the action that the classifier proposes the agent enacts,
e.g. the direction the robot moves.

Prediction Estimates the reward the agent will receive for enacting the
action if the state matches the classifier’s condition.

Fitness A measure of the classifier’s accuracy of its prediction; the higher
the value the more accurate the classifier is.

Numerosity Reflects the number of micro-classifiers (ordinary classifiers)
this macro-classifier represents. Classifiers in XCS are macro-classifiers,
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i.e. each classifier represents nmicro-classifiers having identical con-
ditions and actions.

The dot notation will be used to refer to an attribute of a classifier cl, i.e
cl.C, cl.a, cl.p, cl.F , cl.n respectively. There are also three notable sets used
throughout the XCS algorithm.

Population [P ] consists of all classifiers that currently exist in XCS.

Match [M ] consists of the classifiers in [P] that match the current state S.

Action [A] consists of the classifiers in [M] that propose the enacted action.

2.6.2 Learning parameters

XCS is an online learner that takes in a new input from the environment
and determines the best action to take in that state. The best action is the
action that is expected to give the highest reward from the environment.
XCS learns this by iterating through a trial and error process until an end
condition is met. The end condition can be either a pre-determined num-
ber of iterations or until a given classifier fitness level is reached.

Each learning iteration, a new state S is generated from the environ-
ment through the learning agent’s sensors. XCS will then generate [M ]

from the classifiers that match S with their condition C. Covering is then
called if the size of [M ] is below a set threshold. Covering is used to gener-
ate classifiers to match a new S, in particular at the beginning of a training
run when the population is empty. A new classifier is created to match the
current S, and is associated with a random action to propose (as there is
no information available to choose an action). The new classifier is then
added to [M ]. For each possible action a in [M ], the system prediction
P (S, a) is computed as the fitness weighted average of the rules that advo-
cate a in [M ]
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P (S, a) =

∑
cl.a=a∧cl∈[M ] cl.p ∗ cl.F∑

cl.a=a∧cl∈[M ] cl.F
(2.1)

giving a prediction of reward for each possible action from the current
state.

XCS will then select an action a from those advocated in [M ] and create
[A]. This can be done in two different ways: exploitation, select the highest
predicted performing rule; or exploration, randomly select a rule in [M ].
Exploration is used to prevent locally optimum rules being ingrained by
exploring random areas of the search space. During training the selected
action alternates between exploration and exploitation. The selected ac-
tion is then effected in the environment by the agent, a scalar reward r is
returned to the system prior to the next input state St+1 based on the out-
come on the environment. If exploitation is used then a GA will be applied
to [A] in order to generate potentially better rules.

The GA is used as the primary discovery method for new, potentially
promising, classifiers. A stochastic search method is necessary as the con-
tinuous domain means an exhaustive search is impractical and a discre-
tised domain needs human expertise and/or generates imprecise rules.
The GA selects two parents from [A] depending on the classifiers’ fitness,
e.g. through roulette selection or tournament selection. The two parents
are copied then crossed over and mutated to produce two new children
[38]. Each child is then checked for subsumption, a test that determines
if a parent is an accurate and more general form (covers more problem
instances) of its child. If the child is not subsumed it is inserted into the
population, else the parents’ numerosity is increased by one as it covers
the new micro classifier. If the population is full, another classifier will be
deleted based on the XCS deletion method [15].

Reward is provided by the environment when a goal location or condi-
tion is discovered, sometimes requiring multiple actions to be enacted. If
no reward signal is received (different from a reward signal of zero) then
XCS will iterate over the steps described above until a reward signal is
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given. When a reward signal is received, XCS will update the relevant
classifier parameters.

2.6.3 Parameter update

XCS updates the fitness of the classifiers in the action set [A] based on the
reward received from the environment. First the predicted reward cl.p for
each classifier in [A] is updated by the actual reward r with a learning rate
β(0 ≤ β ≤ 1), typically 0.1.

p← p+ β(r − p) (2.2)

In the same way the prediction error ε is updated.

ε← ε+ β(|r − p| − ε) (2.3)

Next, the fitness is updated in three stages. First, the absolute accuracy
κ of a classifier is derived from the reward prediction error ε,

κ←

1 ε < εo

(ε/εo)
ν otherwise

(2.4)

where εo controls the maximal tolerance for prediction error ε, with ν a
constant controlling the rate of decline in accuracy κ when εo is exceeded.
Essentially any classifier with ε below εo is considered accurate, while ν
controls the difference between degrees of non-accurate classifiers.

Second, the relative accuracy κ′ is derived from the absolute accuracy
κ, which assists in allocating rules evenly throughout the search space.

κ′ ← κ∑
[A] κ

(2.5)

Finally the fitness of each classifier F is updated based on the relative
accuracy.
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F ← F + β(κ′ − F ) (2.6)

In the case where multiple actions have been taken to obtain reward,
the update method is run for each action set from the start of the learning
iteration to the final iteration which received the reward. The reward is
propagated down the action sets, usually with a discount factor or prob-
lem specific approach. This is similar to Q-learning [102], where an agent
take numerous actions before receiving reward from the environment.

XCS does not have a memory mechanism. XCS can thus only learn an
optimal policy in Markovian environments where in every situation, the
optimal action is always determined solely by the state of current sensory
inputs. But in many applications, the agent has only partial information
about the current state of the environment, so that it does not know the
state of the whole world from the state of the sensory input alone. The
agent is then said to suffer from the hidden state problem or the perceptual
aliasing problem, while the environment is said to be partially observable
with respect to the agent.

In non-Markovian environments a robot knowing only is current state
may not be able to know (sense) its global position. In order to generate
a useful action mapping the system will require a memory mechanism
to remember previous locations and the actions the robot must effect to
navigate between states. ACS provides a suitable memory mechanism
and is described in the next section.

2.7 ACS: Anticipatory classifier system

ACS has the same output as XCS, a population of rules to allow an agent to
make the best action in any given state within the environment. However,
ACS also provides the expected effect, next state, from affecting a given
action on the environment. With this rule set, ACS has been trained with
robots in simulated mazes [118] and with robots in controlled small scale
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environments [14] with good results being shown. Provided in this section
is a general overview of the ACS algorithm, a full description of the ACS
algorithm can be found in [16].

2.7.1 ACS classifier

ACS extends the XCS’s Condition-Action classifier to incorporate expec-
tations through a Condition-Action-Expectation classifier representation.
ACS can then differentiate between aliasing states by learning to expect
what the next state will be for taking a given action. Each classifier is a
Condition-Action-Expectation rule with attributes:

Condition Specifies the input states in which the classifier can be applied.

Action Specifies the action that the classifier proposes the agent enacts,
e.g. the direction the robot moves.

Expectation Specifies the expected next state of the agent if it enacts the
proposed action.

Prediction Estimates the reward the agent will receive for enacting the
action if the state matches the classifier’s condition.

Fitness Is the measure of the classifier’s expectation accuracy; the higher
fitness the more likely the agent will be in the predicted next state,
therefore, the more useful the classifier is for path planning.

The dot notation will be used to refer to an attribute of a classifier cl,
i.e. cl.C, cl.a, cl.E, cl.p, cl.F respectively.

2.7.2 Learning parameters

The ACS algorithm operates in the same manner as XCS, whereby an
agent perceives a state within the environment and effects an associated
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action following the same process as described in section 2.6.1. This pro-
cess is repeated until the environment provides a reward signal for reach-
ing the goal state. ACS differs from XCS in how the reward signal is pro-
cessed, and adds an additional reward signal for correct expectations.

In ACS an action is always accompanied by an expectation of its re-
sult on the environment, the expected next state St+1 in the case of robotic
navigation. By comparing the differences of the perceived result from act-
ing on an environment and a classifier’s expectations, ACS learns a pop-
ulation of Condition-Action-Expectation classifiers [94]. For example if a
robot moves in a given direction (effects an action) it will learn to expect
where it will be within the environment after completing the action. A
robot can then traverse these expectations to find a path to a desired goal
state.

Reinforcement is provided to ACS in two ways: from the environment,
when the robot discovers the goal state; and internally when a classifier
successfully anticipates the new state, arriving where the robot predicted.
When a reward signal is received, ACS will update the relevant classifier
parameters.

2.7.3 Parameter update

ACS performs the same as XCS with the addition of the expectation up-
date. When the environment provides a reward signal to the agent, the
classifier’s reward prediction is updated following the XCS update method
shown in section 2.6.1.

ACS updates the fitness of each classifier when the expectation of a
classifier in [A] matches the next state correctly. Therefore, classifiers with
a high fitness accurately predict the next state (after taking a given action)
and are therefore useful for path planning. Classifiers with high reward
prediction are useful for navigating to specifically learned goal locations as
it has been learned that their actions reliably lead to the goal location, and
subsequently provide reward. There are three cases where a classifier’s
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fitness is updated:

Useless case The useless case is when no change in perception is per-
ceived from the environment after taking a given action. In this case
the expected fitness q of each classifier in [A] is decreased: q = q−bq∗q
where bq is the learning rate for the expectation.

Unexpected case The unexpected case is when the new state does not
match the expected prediction of the classifier in [A]. In this case a
new classifier will be generated that matches the incorrect classifier’s
C − A but with the current state as the E. The incorrect classifier is
then penalized as in the useless case.

Expected case The expected case is when the new state does match the
expected state of the classifier in [A]. In this case the expected fitness
of the classifier q is increased: q = q + bq ∗ q, where bq is the learning
rate for the expectation.

2.8 Robot operating system

Robot Operating System (ROS1) is a open source software framework for
robot software development, providing operating system like function-
ality on a heterogeneous computer cluster [85]. ROS provides standard
operating system services such as hardware abstraction, low-level device
control, implementation of commonly-used functionality, message pass-
ing between processes, and package management. It is based on a graph
architecture where processing takes place in nodes that may receive, post
and multiplex sensor, control, state, planning, actuator and other mes-
sages. This makes ROS a powerful research tool in robotics as software
can be developed for robotic platforms almost regardless of the physical
hardware and sensors.

1http://www.ros.org/about-ros/
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The work presented in this thesis will utilise ROS (distribution Hydro
Medusa) as the core system for SLAM, navigation, and communicating
between the robot and the machine learning techniques. GMapping will
be used for range based robots, while ROS RatSLAM will be used for vi-
sion based robots. The navigation stack will be the base navigation system
that the emotion model will adapt.

The ROS package GMapping2 is a state-of-the-art implementation of a
Rao-Blackwellized particle filter [28]. GMapping successively estimates
the pose and the map based on sensor readings and generates a met-
ric two-dimensional occupancy grid map. ROS RatSLAM [3] is an open
source implementation of RatSLAM designed to operate within the ROS
framework. Based on continuous attractor network dynamics, RatSLAM
is capable of mapping by closing loops to correct odometry error. In con-
junction with a camera, RatSLAM produces an estimate of the robot’s po-
sition. However, RatSLAM does not produce a standard sensor map of
the environment, but rather a Cartesian map of the robot’s path within the
environment. Technical details on Open RatSLAM can be found in [3].

The navigation stack3 [67] is a commonly used robotic navigation al-
gorithm that provides path planning and navigation controls for generic
robotic platforms, with a variety of parameters that require tuning for op-
timal navigation for each platform. The navigation stack utilises a metric
grid based map of the environment for path planning, created using the
robot’s external sensors and localisation through SLAM algorithms. The
emotion system will learn to adjust these parameters to control the be-
haviour of the robot’s navigation.

Machine learning algorithms can take a large number of iterations to
learn a solution, this can take from hours to days, up to even months,
depending on the problem. Running real-world experiments over these
times frames is not always feasible, with battery time, access to testing

2http://wiki.ros.org/gmapping
3http://wiki.ros.org/base local planner
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environments, and health safety requirements to consider, i.e. requiring
active personnel to prevent damage to property or persons. This necessi-
tates that longer experiments are run in simulation where these concerns
are not a problem. Gazebo4 is an open source extensive robotics simula-
tion tool, which provides physics simulations of robots in various envi-
ronments, and is extensively used in projects such as the DARPA robotics
challenge. Gazebo offers the ability to accurately and efficiently simulate
robots in complex indoor and outdoor environments, providing the ability
to rapidly test algorithms, and train them in realistic scenarios.

2.9 Summary

The current state of robotic navigation has been discussed in this chapter,
covering both SLAM and path-planning techniques and their respective
limitations. A perspective on human emotions and their possible applica-
tion to robotic navigation has then been discussed. Finally, machine learn-
ing (in particular LCSs) have been discussed as a means of implementing
the human inspired robotic navigation presented in this thesis.

The two novel human inspired approaches are presented in the next
four chapters, the first addresses limitations in SLAM, while the second
addresses limitations in path-planning. The next chapter presents the im-
plementation of the cognitive mapping approach called Cognitive-Action-
Mapping SLAM (CAM-SLAM). Inspired by the concept of human cogni-
tive maps, CAM-SLAM is seeking to map only the regions in which a robot
must make decisions on its action within the environment. Unlike previ-
ous navigation systems where sensor data is considered salient, this new
approach focuses on these decision points as the primary features of the
map. The goal of these features is to reduce the amount of mapping infor-
mation required for navigation, and to provide a common reference frame
for heterogeneous robotic platforms to share navigating information. This

4http://gazebosim.org/
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technique is then trained on real-world robotic platforms, with chapter 4
presenting and evaluating the results.

Chapter 5 presents an emotion inspired path-planning technique. Cur-
rent path-planning is limited by their rigidity, emotions provide a means
of adapting a robot’s behaviour based on its interaction with the environ-
ment. The emotion system will adapt a computational approach’s param-
eters (ROS navigation stack) based on the robot’s internal emotion states,
which are influenced by the robot’s interaction with the environment. In
contrast to Lee-Johnson’s work [58], this system will not define how the
emotions adapt behaviour and the robot will not have perfect information
about its current state in the environment [58]. The emotion responses
will be learned by the robot from its own trial and error. The results of
the emotion model will be discussed in chapter 6, providing results into
the performance benefits, if any, to the robot’s performance. This is then
followed by discussions on the emergent behaviour from the learned emo-
tion model, what behaviours has the robot learned, and how they might
be considered as representations of human emotions.



Chapter 3

Cognitive Action Mapping SLAM

Ideally SLAM algorithms would only map the most salient landmarks of
the environment for navigation and in a format such that mapping and/or
navigation information can be shared between heterogeneous robotic plat-
forms. Note that sharing navigation information (what action to take given
a situation) is crucially different to sharing map information (given situa-
tions only). The ability to share navigation information between heteroge-
neous robots would be advantageous for completing common goals such
as mapping, goal locating, and path planning.

Currently SLAM approaches rely on extracting high detail maps of the
environment, building feature rich maps from range sensors or storing
thousands of images for place recognition. These maps are potentially
storing large amounts of redundant or irrelevant information that could
be filtered out, reducing computational complexity and memory require-
ments which are limited on small scale robot platforms. Robots are also
required to produce maps through their own independent sensor config-
urations and parameters, which may not translate to another robot with-
out considerable human expertise being applied. Although mapping tech-
niques such as grid and graph based maps are considered robot indepen-
dent, varying placements of similar sensors can drastically change envi-
ronmental perception [51]. Even the same model sensors can vary in their
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exact properties, requiring calibration before being used with many types
of mapping approaches. In some cases comparing sensory perceptions
between robots is infeasible. For example, a range based map is uninter-
pretable by a visual based robot platform and vice versa.

Inspired by the perception of a separate cognitive and mental map
in humans, this chapter presents a novel cognitive mapping stage to the
SLAM process which seeks to address these issues. The cognitive map-
ping stage will work in conjunction with current SLAM techniques, which
will be considered to be the mental mapping stage. The mental stage will
learn a detailed sensory map of the environment, as per normal, providing
localisation for the robot platform. The cognitive mapping stage will seek
to map a series of novel “decision points” with associated novel “action”
features linking them together. Decision points are constructed on the
physical actions a robot can take in a given region, where the actions are
physical directions the robot can move. These high level decision points
are similar to a topological based map and should reduce the information
required for navigation. This technique being presented is called Cogni-
tive Action Mapping SLAM (CAM-SLAM1).

An advantage of using physical actions for mapping is that they are
ubiquitous across robotic platforms, even with varying sensing abilities.
This allows the cognitive mapping stage to be independent of the men-
tal mapping stage, only requiring a position estimate from SLAM. There-
fore, the common action features should be able to be utilised to provide
a means for heterogeneous robotic platforms to share navigation informa-
tion. The robots are effectively providing information about the environ-
ment through directions and landmark queues based on the choices they
should make about their direction of travel at certain points. Colloquially,
this is similar to providing directions to the pub for a friend “take the first
left, the second right, and then head straight until you see it“. The indi-

1formerly Learned Action SLAM (LA-SLAM), however changed to keep terminology
in-line with physiological inspirations.
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vidual robot will be required to track its location through its own means,
while using the directions (cognitive map) of the co-operating robot to
guide it.

However, determining which decision points are most salient during
mapping is a non-trivial problem, being computationally impractical to
consider all possible combinations of features in a continuous real-world
domain [62]. It is hypothesised that through the generalization abilities
of the LCS, a robot may learn to only consider the salient decision points
within the environment such that it can successfully navigate, while fil-
tering irrelevant or redundant aspects, e.g. excessive landmarks or poor
paths.

3.1 CAM-SLAM model

CAM-SLAM seeks to learn a map of decision points (see section 3.1.1) with
associated actions (see section 3.2) for the robot to traverse between them,
termed the Cognitive Action Map (CAM). CAM-SLAM autonomously de-
tects and learns these decision points as the robot traverses the environ-
ment through the machine learning approach ACS, which represents the
decision points as Condition-Action-Expectation classifiers. A visual rep-
resentation of the CAM-SLAM approach is shown in figure 3.1.

3.1.1 Decision points

Decision points are regions within an environment where the robot must
make a decision on the action it will perform, for example an intersection
in a corridor. In robotic navigation the action is the direction the robot
will move in an attempt to find a goal location, whether to turn left or
right at the intersection. These key points are similar to landmark features,
however they are prominent for the action decisions the robot can make
as opposed to sensory information in standard landmark association.
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Figure 3.1: Flow diagram of the proposed CAM-SLAM. The robot navigates within the
environment using SLAM to track a position estimate. ACS uses this position estimate
and the robot’s sensor data to learn the high level CAM of the environment.
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Figure 3.2: An example of a decision point, with the possible actions a robot can take.
Arrows indicate the possible actions and the red star shows the location of the decision
point. Note that decision points are not known a priori so the system must learn their
optimum placement, which may be any location in the continuous domain

Decision points contain only the locally relevant position and sensory
estimates required to associate the decision point with a robot’s sensory
configuration. Each decision point is then linked via an action association.
These action associations predict the next decision point the robot should
reach if it were to follow a given action. This creates a graph like structure
of decision points in which a robot can navigate.

The robot autonomously determines decision points through its cur-
rent state, sensor conditions, and the actions it determines are available.
A robot will recognise a new decision point if a new action is detected, or
the current action has become infeasible (e.g. there is an obstruction in the
way). Once a new decision point has been recognised, the robot will stop
and determine a new action to perform. An example of a decision point is
given in figure 3.2.
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3.1.2 Mental mapping: SLAM

CAM-SLAM utilises SLAM for localisation only relying on the CAM to
provide path planning through decision points. The abstraction of the
SLAM algorithm provides the ability to utilise the SLAM approach best
suited to the given robot and its given sensor configuration, while still
being able to utilise the navigation information from other robot plat-
forms. For example, a vision based robot is best suited for vision based
SLAM approaches, and range based robots are best suited for statistical
based approaches. The two SLAM approaches used as mental maps in
this work are GMapping for range based robots, and RatSLAM for vision
based robots, both of which are described in section 2.8.

3.2 Anticipatory Classifier System

An ACS is used to learn a population [P ] of Condition-Action-Expectation
(C − A − E) classifiers. These classifiers represent a physical location in
the environment with a position estimate and associated sensor data. A
classifier example from CAM-SLAM is shown in a classifier form in table
3.1 and in a map form in figure 3.3. Table 3.1 shows that the sensor data
is stored as the condition of the classifier and the associations between de-
cision points (other classifiers) are stored as expectations. Classifier one is
from a range based sensor, where the condition data is distance measure-
ment between 0-360 degrees of the robot. Classifier two is from a camera,
the condition data is then an image at the location of the specific decision
point. Figure 3.3 shows classifier one in standard mapping format within
the CAM. These autonomously learned C − A − E classifier populations
[P ] thus represent the CAMs and can be learned through ACS.
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Table 3.1: Example of the environmental state as a classifier condition. Classifier one is
an example of a classifier learned by a range based robot, and classifier two is an example
from a vision based robot

ID Condition
Expectation (Action→ Classifier)
North East South West

1 2, 3, 4...20, #, 30, #, 33 2 N/A N/A N/A

2 2 N/A N/A N/A

Figure 3.3: Left: Ground truth matching the classifier’s position. Right: Classifier exam-
ple: The black square represents the robot’s estimated position when the classifier was
generated, the blue line indicates orientation and the smaller red square the LIDAR po-
sition. Lines extracted from LIDAR data for classifier matching are shown as green lines,
with the red dashed lines indicating lines set as ‘don’t care’.



56 CHAPTER 3. COGNITIVE ACTION MAPPING SLAM

Condition

The Condition is the state, position and sensor estimates of the decision
points within the environment. As the state values are estimates from the
real world they will contain uncertainties due to noise. The Condition
mitigates the noise through an upper and lower bound around each value
determined via the associated condition’s uncertainty. The position esti-
mate is taken from the robot’s SLAM approach, with the upper and lower
bounds set by the uncertainty (variance) in the position estimate com-
puted by the SLAM algorithm. The sensor estimates are obtained from
the sensors on the robot platform, with the upper and lower bounds set
by the respective sensor’s physical measurement uncertainty. For exam-
ple, if the distance measurement is 0.90 m and the sensor’s uncertainty is
±0.03 m then the upper and lower bounds will be 0.93 and 0.87 respec-
tively. This allows for cases where the robot is in the same place but due
to noise the sensor is not reading the same measurement.

Action

In the real-world the number of possible actions a robot can perform is
potentially infinite, with all possible directions being available with a high
enough precision in movement. To reduce this action space, and for ease
of testing validity, the number of possible actions is discretised into a set
of four possible directions the robot can choose to move, shown in fig-
ure 3.2 on page 53. Increasing the number of actions increases the number
of expectation mappings the ACS is required to learn, which extends the
required number of training iterations to a point where this becomes im-
practical in real-world robotics. A discrete action set is a viable compro-
mise for testing the validity of the approach and is a reasonable assump-
tion for the testing environment (see section 3.4.2) where the need for a
continuous action set is minimal. A robot determines which actions are
feasible through its sensor input, for example the LIDAR can determine
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feasible actions based on the distance the robot can travel in a given trajec-
tory. In the case of the vision sensor, this work will utilise a sonar sensor
in the same manner as the LIDAR to determine feasible actions, however
only the vision sensor will be used for localisation estimates.

Expectation

The Expectation links the classifiers through associating actions. Each clas-
sifier predicts which classifier, and hence which decision point, the robot
will reach next if it takes a given action. These associations provide path
planning information, with the robot able to follow a series of actions be-
tween decision points.

3.3 Implementation

As has been described above the CAM is represented by a population [P ]

of Condition−Action−Expectation classifiers. In order to learn these clas-
sifiers the ACS approach described in section 2.7 will be used. To train the
ACS the robot is tasked to find a given location within the environment,
with reward being provided for successfully finding it. Each learning it-
eration is a single traversal from the start position to the goal location,
with numerous iterations required to learn the [P ] (CAM). The robot has
no initial knowledge of the goal state’s position; however the robot can
recognise the goal independent of its position estimate through external
sensors, for example a camera to recognise a red sign. This has the conse-
quence that the robot can find the goal location but may not be estimating
its own position correctly. The ACS will need to learn with potentially
erroneous inputs if SLAM position estimates fail.

During navigation, when the robot determines it has reached a decision
point, the robot will stop and send its current state S to the ACS. The
match set [M ] is then formed of all classifiers in the population that match
S. To determine if S is a match to a classifier cl the condition for each is
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compared in three stages:

Sensor matching

In Sensor Matching the sensor data in S is compared to the sensor data in
cl. Focusing on matching the sensor data helps to generalise the classifier
conditions to contain only sensor data specific to a single state within the
environment. Classifiers with overly general sensor data will suffer from
aliasing and incorrectly match various states. These classifiers will have
inconsistent expectation predictions eventually leading to removal from
P . Conversely classifiers that are consistently accurate in their predictions
will increase in fitness.

Sensor matching can utilise a variety of methods for different environ-
ments. However, as sensor matching is not the main focus of this research,
simple but effective solutions in the testing environments were used:

LIDAR Matching LIDAR matching compares the 2D point cloud data
from the LIDAR in S and a classifier’s LIDAR condition clLIDAR.
Each point in the cloud is stored as a Cartesian point with an origin
of zero. Each LIDAR point in S is associated to its closest Euclidean
match in clLIDAR. A pair of points is considered to be the same if the
Euclidean distance is less than the uncertainty in the LIDAR mea-
surements. A matching percentage Mp is calculated based on the
total number of matches over the total size of the smaller LIDAR
data.

Mp =Matches(SLIDAR, clLIDAR)/Min(SLIDAR, clLIDAR) (3.1)

If Mp is over 95%, the classifier is considered a match to S and is
placed into [M ]. The 95% threshold was determined from empirical
testing in the environment. Ground truth LIDAR data was taken at
different locations in the environment. The robot was then placed at
each location to tune the matching threshold. The threshold with the
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highest accuracy of correctly matching the locations to the ground
truth was selected. This quick and simple procedure will be required
for each new domain type, future work will seek to replace this ap-
proach with a pose and condition invariant solution.

Different LIDAR sensors have varying capabilities (e.g. range or res-
olution), and can be mounted at various positions on a robot; mak-
ing a direct comparison of their outputs non-trivial for complex en-
vironments. For the structured domain used in these trials, this ap-
proach is reasonable and is used for simplicity for initial verification
of CAM-SLAM. This approach may be extended to more complex
domains through various feature extraction techniques.

Image Matching Image matching compares the image captured in S with
a classifier’s image condition in clImage. This process follows the
same approach utilised by SeqSLAM [70]. Both images are down
sampled from their original size to a set size (48x16 pixel resolution)
and converted to grey-scale before processing. Each image is then
put through patch normalization to reduce local variation, which has
been shown to enable robust scene recognition in varying illumina-
tions [119]. The Sum of Absolute Differences (SAD) between both
images is calculated as:

SAD =
1

s

∑
x=0

∑
y=0

∣∣pix,y − pjx,y∣∣ (3.2)

If the SAD score is less than 0.10, determined in the same process as
the LIDAR threshold, the classifier is considered a match to S and is
placed into [M ].

Action matching

Action Matching compares the position estimates and the possible actions
that S and a cl’s condition perceive to be feasible. In the case that sensor
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types are different, this process allows a mode of comparison through the
common action set. In the case the sensors are the same but no match is
found, this process provides a secondary means of comparison if the sen-
sor’s configurations are sufficiently different to cause matching failures.

If the position estimates are within a given distance (1.0 metre plus the
variance of the measurement) then sensor data will be compared based on
the perceived available actions from the common action set. For example,
if each sensor’s data determines that the robot can only take actions north
and south then the condition is considered a match. If both conditions are
met cl is added to [M ].

If Action matching is used, a new classifier cln will be created from S

in an attempt to adjust to the new perspective in the environment. cln will
initialise with half the average quality rating of the classifiers that match S
to propagate previously learned information. It is unknown whether the
new classifier is useful or not, to propagate more fitness may hinder the
system if it is poor but to propagate less fitness if it is good will also hinder
the system. Propagating half the fitness is a common compromise in this
situation. This is to help seed the learning and improve the re-learning
time in the new area. cln is added to both [P ] and [M ].

Position matching

If both the Sensor Matching and Action Matching fail to find a match, the
system relies on the position estimates. This allows for cases where the
robot has a high confidence in its current position estimate but the en-
vironment has changed, either a new action has become available or an
existing action is no longer feasible. If both the cl’s and S’s position esti-
mates are confident (variance less than 0.2 m) and the Euclidean distance
is less than 1.0 m, then they will be considered a match.

This third matching case will create a new classifier cln from S, in an
attempt to adjust to any potential change in the environment. cln will
carry over half the average quality rating of the classifiers that match S
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to propagate previously learned information. However, cln is added to
both [P ] and [M ] if and only if [M ] is empty after checking all classifiers
in [P ] against S. This is to mitigate creating classifiers when the robot’s
position estimate is in reality in error.

3.3.1 Action selection

Action selection will alternate between; exploitation, select an action a

with the highest payoff prediction; or exploration, randomly select an a

in [M ]. This is to prevent locally optimum paths being ingrained. The ac-
tion set [A] is generated from the classifiers in [M ] that advocate a. Finally,
a GA is applied to [A] to generalise the sensor data and reduce redundant
information.

3.3.2 Parameter update

Classifier parameters are updated in two cases. First, the fitness of the clas-
sifier is updated depending on the difference between the expected and
the actual result of taking a given action. Second, the reward prediction
of the classifier is updated when it receives a reward from the environ-
ment, i.e. finds the goal location. Each of the rewards is a static value and
does not diminish over time, with the robot receiving the full reward each
time it successfully finds the goal location or correctly predicts the next
location.

Expectation update

Expectation update learns the action associations between classifiers (de-
cision points) to provide path planning information. Classifiers in A are
rewarded based on their predictions of the next state. The classifiers in A

will predict which classifier (decision point) will be encountered from the
robot taking a.
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Useless case No change in perception is perceived from the environment
after taking a given action, for example the robot does not move. In
this case the fitness q of each classifier in [A] is decreased: q = q−bq∗q
where bq is the learning rate for the expectation.

Unexpected case The new state does not match the expected prediction of
the classifier in [A], the robot encounters a different decision point. In
this case a new classifier will be generated that matches the incorrect
classifier’s C − A but with the new state as the expectation. The
incorrect classifier is then penalized as in the useless case.

Expected case The new state does match the expected prediction of the
classifier in [A]. In this case the quality of the classifier q is increased:
q = q + bq ∗ q.

The fitness of a classifier is an indicator of how reliable a classifier is
at predicting the next state and how useful it is for path planning. The
higher the fitness of the classifier, the more reliable the classifier is for path
planning.

Action update

Action update rewards the classifiers that successfully lead to the given
goal location. As the robot will enact multiple actions before reaching the
goal, the reward must be distributed to all classifiers involved. The reward
is distributed with a discount factor to all classifiers in all [A]i that have
been used to get to the goal location.

rewardi = Rewardtotal ∗ discountFactor−i (3.3)

Each classifier’s reward prediction cl.r is then updated with the dis-
counted reward value rewardi.

cl.r ← cl.r + β ∗ (rewardi − cl.r) (3.4)
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The last action effected will receive the full reward, as it brought the
robot to the goal location, while earlier actions will still receive some re-
ward for contributing. The disadvantage to this approach is that the dis-
count factor needs to be tuned to the length of the chain of actions, in this
case it was set to 0.5 from empirical testing. An algorithmic description of
CAM-SLAM is given in algorithm 1. The next section will provide details
on the experimental set-up used to train CAM-SLAM.

3.4 Experimental setup

CAM-SLAM will be validated by training CAM-SLAM on two robotic
platforms with different morphologies. Training of the robots will be con-
ducted in the office environment of the Cotton building at Victoria Uni-
versity of Wellington (VUW).

3.4.1 Robotic platforms

Ownbot

“Ownbot” was designed and built for autonomous navigation of indoor
environments at VUW, see figure 3.4 on page 66. The platform utilises a
Hokuyo LIDAR URG-04LX-UG01 placed 0.14 m off the ground for land-
mark extraction with a maximum range of 5.6 m. Mecanum wheels give
the platform omni-directional movement, with Hall effect sensors giving
odometry estimates with a precision of 0.6 mm per tick. With no IMU for
corrections, Ownbot does suffer an average Euclidean error of ±50 mm
over one metre. The consequence of this is that SLAM has to account for
a relatively large uncertainty in movement. Ownbot is equipped with a
Fit-PC 3 Pro, 1.65 GHz dual core, 4 GB DDR3 RAM, running Ubuntu 12.04
with ROS Hydro. An Arduino Mega 2560 controls the motor drivers and
communicates with the on-board computer via rosserial2.

2http://wiki.ros.org/rosserial
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Algorithm 1: CAM-SLAM algorithmic description
Data: [P ]: population of rules; cl: classifier ∈ [P ]; cln: new classifier;

[M ]: match set; Mp : Match set position; [A]: action set; [As]:
action set stack; a: action; S: state;

1 [As] = [];
2 repeat
3 S = robot.processNewState(); \\Robot reads new pose and

sensor state
4 [M ] = []; [Mp] = [];
5 \\Find classifier in [P ] that match the current state to create [M ]

6 foreach cl in [P ] do
7 if matches(Ssensor, clsensor) then
8 [M ].add(cl);
9 else if matches(Sposition, clposition) then

10 [Mp].add(cl);

11 \\If [M ] is empty cover new state and utilise classifier which
match the position estimate

12 if [M ].isEmpty() then
13 [M ] = [Mp];
14 cln = cover(S, [P ]);
15 [M ].add(cln);

16 if [M ].size() ≤ 4 then
17 cln = cover(S, [P ]);
18 [M ].add(cln);

19 \\Update the classifiers in the previous match sets expectations
20 if ![M ]−1.isEmpty() then
21 updateFitness([M ]−1, S);
22 M−1 = [M ];
23 \\If the goal is found update classifiers reward prediction, else

determine an action and enact it on the environment
24 if Goal Discovered then
25 rewardActions([As]);
26 else
27 [A] = createActionSet([M ]);
28 applyGA([A]);
29 [As].put([A]);
30 robot.followAction([A]);

31 until Goal Discovered;
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Pioneer

The Pioneer P3-DX3, see Figure 3.4, is designed and built by Adept for
robotic research. The Pioneer P3-DX is a differential drive robot platform
with configurable sensing capabilities and is popular in mobile robot re-
search. The Pioneer is equipped with a Mamba Dual-Core Computer, 2.26
GHz dual core, 8GB DDR3 RAM, running Ubuntu 12.04 with ROS Hy-
dro. Where Ownbot uses smaller, lower accuracy sensing equipment, the
Pioneer utilises higher quality accurate sensing equipment. The Pioneer
utilises gyro corrections with its odometry-based position estimate. This
gives the Pioneer a greater accuracy in its movement estimates, resulting
in an average Euclidean error of ±5 mm over one metre compared with
±50 mm for Ownbot. The main range based sensor for the Pioneer is a
SICK LIDAR LMS-100 placed 0.40 m off the ground. The LMS-100 can give
range estimates up to 20 m across 270 degrees at a resolution of 30 mm.
This gives the Pioneer a greater mapping size and accuracy than Ownbot
at 5.6 m and resolution of 3%. Finally, the Pioneer has been equipped with
a Kinect sensor providing 3D range data and vision data, however only
the vision data is used in this work.

3.4.2 Environment

CAM-SLAM trials were run on the second and third floors of the Cot-
ton building at VUW, see figures 3.5 on page 68 and 3.6 on page 69 re-
spectively. These environments have a common office layout, which have
been used to test a variety of different SLAM techniques. As per standard
offices, the area provides a range of features and obstacles, such as corri-
dors, various chairs and tables, glass walls, doorways, and rubbish bins.
The Cotton building is also a convenient location for testing this research
as it is in the same building as this work was developed. The testing areas
are small compared with state-of-the-art SLAM algorithms, where the size

3http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
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Figure 3.4: Left Pioneer: Adept robotic research platform. Right Ownbot: designed and
built at Victoria University of Wellington for indoor autonomous robotic navigation.
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of the domain is restricted to provide practical learning times for ACS. No
a priori information was provided to the learning algorithm.

Ground truth for each floor was determined based on the action set
available for the robots, e.g. north and south. Each point in the environ-
ment at which the robot will be required to make a decision about its cur-
rent course of action is considered a decision point, e.g. intersections and
T-junctions in the corridors. Based on this criteria ground truth has been
determined and shown for each floor in figures 3.5 and 3.6 on page 69.

3.5 Experiments

The first set of experiments aims to validate CAM-SLAM by training the
system individually on each robot platform. The second experiment will
benchmark the memory requirements of CAM-SLAM against a standard
SLAM algorithm. The third test will determine how CAM-SLAM handles
changes in the environment. The final two experiments will test CAM-
SLAM’s ability to share navigation information between two heteroge-
neous robotic platforms.

3.5.1 Experiment one: Learning a CAM

The first autonomous learning experiment is to validate the system on the
two heterogeneous robotic platforms. This will provide a comparison on
the performance of CAM-SLAM on robots with varying capabilities, and
robots utilising different SLAM approaches. First, the robot Ownbot will
be trained on the third floor of Cotton, shown in figure 3.6 on page 69,
using its LIDAR and GMapping. Second, the Pioneer robot will be trained
on the second floor of Cotton, shown in figure 3.5, first with its LIDAR
and then with its camera (via the Kinect), using GMapping and RatSLAM
respectively. The shared learning experiment will then swap each robot
and provide the respective CAMs of each floor learned by the other robot.
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Figure 3.5: Ground truth layout of level two of the Cotton building, at Victoria University
of Wellington, used for real-world experimentation. Red diamonds: human ground truth
decision points to assess the learning of the robot. Green Arrows: potential actions the
robot can take. An action is taken until the robot autonomously determines it has reached
a new decision point, which are unknown a priori, without access to the ground truth. The
domain is continuous such that the robot must determine its own decision points, which
will be compared to the ground truth to judge performance. Where North is faces to the
right of the image.
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Figure 3.6: Ground truth layout of level three of the Cotton building, at Victoria Univer-
sity of Wellington, used for real-world experimentation. Red diamonds: human ground
truth decision points used to assess robot performance only. Green Arrows: potential
actions the robot can take. Where North is faces to the right of the image.
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3.5.2 Experiment two: Benchmark algorithm

As no other algorithm, known to the author, seeks to share maps with
path planning information embedded, no direct comparison can be made.
However, a comparison with human in-the-loop mapping to autonomous
path planning can be conducted. Ownbot will be manually driven through
Cotton level three in a raster scan pattern between pre-set human way
points to generate a complete map of the environment. In an unstruc-
tured and unknown environment a human generated path may not be
discernible or optimum for reliable mapping, but in this case ground truth
will be known and way points can be easily set. This experiment will serve
as a comparison to the amount of navigation information a common navi-
gation technique stores compared to the learned CAM-SLAM information
stored as a CAM.

3.5.3 Experiment three: Learning a change in the environ-

ment

In order to test CAM-SLAM’s ability to adapt to a change in the previously
static environment it has already learned, the doors to CO346 and CO350
(see figure 3.6) were opened. The open doors presents the robot with a new
potential action to take and changes the associated LIDAR data the robot
has already learned in the initial learning experiment. Using the previously
learned [P ], 10 further learning iterations are run to test how CAM-SLAM
will adapt to this change.

3.5.4 Experiment four: Sharing navigation information through

CAM-SLAM

Two experiments are designed to test the ability of CAM-SLAM to share
navigation information between heterogeneous robotic platforms, Own-
bot and the Pioneer. In these experiments each of the robots will be placed
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in the opposite environment and be given the CAM learned by the other
robot.

The first experiment will test whether navigation information learned
by a lesser sensory capable robot (Ownbot) can be useful for a relatively
more sensory capable robot (Pioneer) and vice versa. This experiment will
run both of the robots with LIDAR sensors, with each LIDAR having
different sensing capabilities and positions on their respective platforms.
This means the robots can match sensor data to match decision points dur-
ing navigation, potentially providing a more robust classifier matching cri-
terion.

The second experiment will test the performance of CAM-SLAM shar-
ing navigation information learned from two robotic platforms utilising
different sensor types and SLAM techniques. The novel part of this ex-
periment is sharing information between a LIDAR based platform using
GMapping and a camera based platform using RatSLAM. Each respective
SLAM technique is designed to operate with each sensor type, and shar-
ing information between them would currently require human interaction.
This is because it is not possible to directly compare 2D distance data from
the LIDAR, with 2D colour data from the camera. Furthermore, GMap-
ping generates a metric grid based map of the environment, and RatSLAM
generates a Cartesian point map of the path the robot takes within the en-
vironment. This requires a means of converting between each perspective,
which is a non-trivial problem. CAM-SLAM seeks to solve this problem
through learning a map of decision points (CAM) using actions as a com-
mon perspective between the robots.
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Chapter 4

Cognitive Action Mapping SLAM
Results

The previous chapter detailed the CAM-SLAM algorithm, which is de-
signed to learn a map of decision points within an environment. It is
hypothesised that by learning a map of decision points CAM-SLAM can:
reduce the amount of unnecessary mapping information, reduce the mem-
ory costs of maps, and allow navigation information to be shared between
heterogeneous robotic platforms. This chapter presents the results of train-
ing CAM-SLAM on real-world robotic platforms and evaluates the perfor-
mance of CAM-SLAM based on these criteria.

The experiments in this chapter have trained the system on two hetero-
geneous robotic platforms (Ownbot and Pioneer in section 3.4.1) on levels
two and three of the Cotton building (see section 3.4.2). This is to provide
a comparison on the performance of CAM-SLAM learning on robots with
different capabilities, and on robots utilising different SLAM approaches.
Each experiment has been run through 10 trials for repeatability testing
and statistical analysis using the Student’s T test. Ideally, a minimum of
30 trials would be required for statistical analysis, but these experiments
are being run on real-world robots and 30 trials requires an impractical
amount of hours to complete. This is due to the time constraints of run-
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ning autonomous robots in an active work space, the limited battery life
of the robots, and requiring personnel to be present to observe the robot in
case of failures or potentially hazardous malfunctions. However, the Stu-
dent’s T test is designed for small sample sizes. A small sample size will
not differentiate the trials if there are small differences but will indicate
large differences between trials.

Each trial is a run of 10 learning iterations. A learning iteration is a single
traversal of the robot from the start location to the goal location, one itera-
tion of the ACS process. This is based on previous work which has shown
localisation improvements occurring within 10 learning iterations in similar
work [103]. Between each learning iteration only the CAM (classifier pop-
ulations) is kept, the full SLAM map (mental map) from each respective
SLAM approach is discarded at the end of each iteration. It is expected
that only the learned navigation information in the CAM is required for
effective navigation.

To judge the performance of CAM-SLAM, the CAM for each experi-
ment is compared to a human determined ground truth of the environ-
ment. Ground truth is determined by judging regions within the environ-
ment where the robot will be required to make a decision about the action
it will follow. The ground truth for the levels two and three of the Cotton
building were presented in figures 3.5 on page 68 and 3.6 on page 69.

4.1 Learning a CAM with Ownbot

The aim of this experiment was to evaluate CAM-SLAM’s ability to gen-
erate useful CAMs. This was done individually on two heterogeneous
robotic platforms to test the robustness of the system to varying degrees in
measurement uncertainty, in both the sensors and movement of the robots.
The second part of the experiment was to evaluate CAM-SLAM’s ability
to learn with both a range and vision based mental map.

To achieve this, CAM-SLAM was trained on the Ownbot and Pioneer
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platforms on levels three and two of the Cotton building respectively.
First, both robots were trained with their respective LIDARs and utilised
GMapping for the mental mapping stage. Second, the Pioneer was trained
again, on level two, this time using its camera and RatSLAM for the men-
tal mapping stage. Note, both Pioneer experiments were started from the
beginning with no information shared between experiments.

4.1.1 Experiment one: Ownbot

Considering the ground truth map for level three of the Cotton building
(figure 3.6 on page 69) it can be determined that there are five decision
states Ownbot must identify (out of an infinite possible in the continuous
real environment) and take action to reach the goal location following an
optimal path. The optimal path is the path that requires the robot to take
the least number of actions to reach the goal location autonomously.

From 10 trials the average number of classifiers CAM-SLAM learned to
successfully path-plan to the goal location through the shortest path is six.
This population is shown as an LCS population in table 4.1. Each classifier
has a condition containing locally relevant information about the decision
point and an associated expectation link indicating the expected classifier
(decision point) should the robot take a given action. This is shown in
table 4.1 in the Expectation column, where the action has the expected clas-
sifier ID underneath, e.g. given classifier one if you take action north you
would expect to reach classifier two. Finally, the classifier contains a fit-
ness value indicating its usefulness for navigation. A high level of fitness
(i.e. approaching one on a zero to one scale) demonstrates that these classi-
fiers have a relatively high prediction accuracy. The higher the prediction
accuracy the more likely it is to be correct and therefore the more the robot
can trust it for path-planning.

From the final populations, the top five classifiers have an average
fitness rating of 0.82 with a variance of 0.15. The high level of fitness
across each trial indicates that CAM-SLAM is repeatedly learning and re-
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Table 4.1: Classifier population learned to lead to the goal location on the third floor of
Cotton.

Classifier ID Condition
Expectation (Action→ Classifier ID)

Fitness
North East South West

1 2 N/A N/A N/A 0.90

2 7 3 1 N/A 0.88

3 8 5 9 2 0.77

4 8 5 9 2 0.82

5 10 N/A 6 3 0.79

6 5 N/A N/A N/A 0.75

associating meaningful decision points within the environment that are
useful for navigation.

The population can be displayed as a CAM by placing the classifiers
relative to the position estimates in each classifier’s condition. This is
shown in figure 4.1 on page 78, where the black squares indicate position,
green lines indicate LIDAR data, and the numbers indicate the classifier’s
ID (labelled one through six). These six classifiers had the highest fitness
level across the final population after 10 learning iterations. When com-
pared to the map generated by GMapping in figure 4.2 on page 79, the
CAM is mostly empty of features or details. Only the key decision points
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within the environment have been mapped.

Comparing to ground truth, Ownbot generated one extra classifier,
competing classifiers three and four, than the considered ideal of five. This
is due to a data association problem, where inaccuracies in the localisa-
tion of the robot’s angular position (given the relative low accuracy of its
odometry) lead to poor matching performance between classifier states.
Therefore, poor matching in this particular region consistently generated
two competing (but still useful for navigation) classifiers. The reason this
particular area is prone to odometer errors is when coming towards the
region from a westerly (relative to the robot’s actions) direction there is a
short slope in part of the corridor. Because of this viewing the location
from each direction the robot’s sensors will be skewed relative to each
other. This causes some inconsistencies in the mental mapping approach
which adds error to the position of the robot.

As would be expected, the first classifier in each trial had a fitness rat-
ing of almost one. This was because the robot’s (and the CAM-SLAM’s)
starting position was always pre-set by a human and sensor data could
match the static environment. CAM-SLAM was always able to match the
first state and did not produce any separate competing classifiers. CAM-
SLAM on average across the 10 trials, produced three separate classifiers
per each of the five human judged decision states. States further from the
goal location, in terms of distance, produce on average one more classifier
than classifiers at closer states. This was due to closer classifiers having a
higher confidence in their position estimate giving better classifier associ-
ations and vice versa for more distant classifiers.
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Figure 4.1: Top six classifiers, for each of the 10 trials, which were learned to lead Ownbot
to the goal location on the third floor of the Cotton building. Note that only decision
points are stored as opposed to the complete mapping information.
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Figure 4.2: Mental map generated by GMapping during the final learning iteration of
CAM-SLAM with Ownbot on the third floor of the Cotton building, where the corridors
are actually orthogonal in the world.
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4.2 Learning a CAM with Pioneer

4.2.1 Experiment one: Pioneer

The Pioneer was subject to two separate experiments on level two of the
Cotton building. First, it was trained with its LIDAR using GMapping.
The first experiment provides a comparison of CAM-SLAM when trained
on a relatively more sensory capable robot when compared with Ownbot.
Second, it was trained with its camera using RatSLAM. The second ex-
periment is to evaluate CAM-SLAM operating with a vision based mental
mapping stage (SLAM). No information was shared between each experi-
ment, the Pioneer learned from the beginning of both experiments.

4.2.2 Pioneer: GMapping mental mapping stage

Considering the ground truth map for Cotton level two (figure 3.5 on
page 68) it can be determined that there are five decision states the Pio-
neer must identify and pass through to reach the goal location following
an optimal path. From 10 trials the average number of classifiers CAM-
SLAM learned to successfully path plan to the goal location through the
shortest path was five. The decision points consistently matched the hu-
man judged ground truth. From the final populations, the top five classi-
fiers had an average fitness rating of 0.88 with a variance of 0.11. The high
level of fitness across each trial indicates that CAM-SLAM is repeatedly
learning and re-associating meaningful decision points within the envi-
ronment. When compared against Ownbot, the classifier matching perfor-
mance was higher. This is due to the Pioneer’s relatively more accurate
odometry, and more accurate LIDAR allowing CAM-SLAM to match de-
cision points more robustly.

The CAM produced by the Pioneer is shown in figure 4.3, with the
map generated by GMapping shown in figure 4.4 on page 82. Similar to
Ownbot, the CAM has significantly reduced the amount of information
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Figure 4.3: LIDAR based CAM learned to lead Pioneer to the goal location on the second
floor of the Cotton building.

required to navigate to the goal location.

4.2.3 Pioneer: RatSLAM mental mapping stage

In this experiment the Pioneer utilised RatSLAM for localisation, and gen-
erated decision points in CAM with image data. This means that CAM-
SLAM was matching decision states based on image comparisons instead
of range data. After 10 trials on level two of the Cotton building the aver-
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Figure 4.4: Mental map generated by GMapping during the final learning iteration of
CAM-SLAM with the Pioneer on the second floor of the Cotton building.
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age number of classifiers CAM-SLAM learned to successfully path plan to
the goal location through the shortest path was five. The decision points
consistently matched the human judged ground truth.

The CAM produced by the camera can be seen in figure 4.5. Each clas-
sifier is represented by up to four images, one per available action. An
enlarged example of this is shown in figure 4.6 on page 85, where the clas-
sifier is at an intersection with four possible actions. Similar to the LIDAR
based approach, these classifiers are the only navigation information cre-
ated about the environment, with no detailed image maps being created.
As before, an infinite number of images could be used for navigation. The
robot must recognise a decision point based on the learned images, ac-
tions, and position estimates only.

From the final populations the top five classifiers have an average fit-
ness rating of 0.84 with a variance of 0.19. The high level of fitness demon-
strates that CAM-SLAM is capable of repeatedly learning meaningful im-
age based decision points within the environment that are useful for nav-
igation.

4.2.4 Summary of initial learning

The initial learning experiments have demonstrated the ability for CAM-
SLAM to learn a CAM that is capable of directing a robot to a given goal lo-
cation. CAM-SLAM has shown good performance at autonomously gen-
erating classifier populations (CAMs) that can be used for path planning
and mapping of a real-world environment on a physical robot, seen by
the high fitness of the classifiers. CAM-SLAM learned classifiers which
were capable of predicting which state to expect next, if a robot were to
take a given action, and provide a fitness rating for the robot to gauge
which path is the most reliable from its own experience. This was suc-
cessful when both a LIDAR and camera based SLAM approach was used
as the mental mapping stage. The advantage this provides is each robot
can utilise the best suited SLAM approach for its given capabilities with
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Figure 4.5: Image based CAM learned to lead Pioneer to the goal location on the second
floor of the Cotton building.
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Figure 4.6: Enlarged example of a image based decision point learn by the Pioneer on the
second floor of the Cotton building.



86 CHAPTER 4. COGNITIVE ACTION MAPPING SLAM RESULTS

CAM-SLAM. The next experiment will evaluate if the CAM is storing less
navigation information than a standard SLAM approach.

4.3 Benchmark Algorithm experiment

In order to quantify the reduction in navigation information; the memory
size of a complete map of an environment generated by GMapping was
compared with the CAM generated by Ownbot. Ownbot was manually
driven by remote control through Cotton level three along the centre of
the corridors to generate a complete map of the environment. In an un-
structured and unknown environment a human generated path may not
be discernible or optimum for reliable mapping. In this case ground truth
was known and way points could be easily set.

The GMapping (driven by a human) generated map can be seen in
figure 4.7, with an overall memory size of 45 MB. Conversely, in CAM-
SLAM each population across 10 trials had an average memory size of
1.5 MB with a variance of 0.3 MB. CAM-SLAM was capable of repeatedly
navigating a learned environment without any human knowledge, and re-
duced the overall memory requirements to successfully navigate by 97%.
Although this experiment was run on a relatively small environment size
compared to modern SLAM approaches, the reduction in memory usage
will scale to larger environments provided the technique scales.

4.4 Experiment three: Learning a change in the

environment

To test the performance of CAM-SLAM when a change in the environment
occurs, Ownbot was required to navigate Cotton level three with its CAM
(from section 4.1.1) again but with CO350 (shown in figure 3.6 on page 69)
now open. This change affects the LIDAR associations and provides the
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Figure 4.7: Human generated map of the third floor of the Cotton building.



88 CHAPTER 4. COGNITIVE ACTION MAPPING SLAM RESULTS

robot with two new actions to learn.

The change on the third floor of the Cotton building affected the previ-
ously learned CAM in three ways, see figure 4.8. First the initial classifier
cl1, figure 4.1 on page 78, was no longer correctly matching the new sensor
condition. However, the position estimate still matched, thus a new classi-
fier cl8 was formed by the system, initialised at half the fitness rating of cl1.
As training progressed, cl8 became the dominant classifier as the previous
classifier cl1 could not match the new sensor condition. cl8 was then able
to learn to expect cl7 when taking action east and cl2 when taking action
north, see figure 3.6 on page 69.

However, cl7, was still able to associate the sensor condition as the open
door did not drop the matching rate below the set threshold of 95%. cl7
did learn to expect cl8 when taking action west, however its sensor con-
dition cls still indicated an obstacle. This does not affect CAM-SLAM’s
path planning between classifiers but does create an inconsistency when
viewed in the map. The main reason for this is CAM-SLAM does not have
an ‘infeasible‘ expectation flag, i.e. if an action is not feasible the classifier
does not learn to expect either itself or an ’infeasible’ state. This allows
CAM-SLAM to learn expectations when an action becomes feasible.

The final effect was cl2 having to re-learn the expectation from taking
action south. cl2 originally learned to expect cl1 however cl8 became the
dominant classifier. After 10 learning iterations cl2 still predicated cl1, this
showed that it did not have sufficient training to re-learn the expectation
to the new classifier cl8.

CAM-SLAM did struggle to re-learn after a change in the environment,
but it was still functionally capable. Classifier matching conditions may
need to be stricter on sensor matching conditions to allow CAM-SLAM to
recognise changes in previously learned sensor data. However, an over-
ally strict matching condition will increase the number of classifiers gener-
ated due to sensor noise and minor variations in the real-world, increasing
the required learning time. Data association is a common problem in LI-
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Figure 4.8: Subsection of the CAM learned after a change to the static environment on the
third floor of the Cotton building.
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DAR based navigation [39] and CAM-SLAM does not provide a means to
improve LIDAR associations. However, CAM-SLAM was only required
to partially re-learn two decision points from the Pioneer in order for it
to navigate to the goal location. This demonstrates that CAM-SLAM is
robust to these problems as it still navigated to the goal and shared appro-
priate knowledge. The next set of experiments seek to evaluate the perfor-
mance of CAM-SLAM sharing CAM between two heterogeneous robotic
platforms.

4.5 Experiment four: Sharing navigation infor-

mation through CAM-SLAM

The experiments conducted now seek to demonstrate CAM-SLAM shar-
ing navigation information between heterogeneous robotic platforms through
CAMs. The first experiment demonstrates a CAM being shared by Own-
bot to the Pioneer, where each has relied on their respective LIDAR sen-
sors. That is, a CAM generated by a robot with a low capability LIDAR
(low cost) is being shared with a robot with a high capability LIDAR (high
cost). This ability to share information from a low cost robot to a relatively
high cost robot can be useful in hazardous co-operative robotics domains,
such as disaster relief. The low cost robot can be used for initial investiga-
tion and mapping before risking the higher cost robot.

The second experiment shows the CAM sharing navigation informa-
tion between the GMapping approach on Ownbot and the RatSLAM ap-
proach on the Pioneer. That is a range-based to camera-based robot, where
both the sensors and morphologies are different. A direct one-to-one map-
ping at the sensor level is therefore impossible. A higher-order abstraction
in terms of the CAM produced in the previous results is necessary.
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4.5.1 Same sensor type, different morphology experiment

The Pioneer was tasked with navigating level three of the Cotton building
using its LIDAR and GMapping as the mental mapping stage. The Pio-
neer was given the CAM generated by Ownbot in section 4.1.1, i.e. CAM-
SLAM’s classifier population was seeded with the classifiers learned by
Ownbot. However, given the different sensing capabilities and position of
the LIDARs for each platform, matching the Pioneer’s state to the classi-
fiers generated by Ownbot is not guaranteed.

Considering Ownbot’s CAM (figure 4.1 on page 78), the Pioneer had
an initial population of classifiers (one through six) from Ownbot, with
which to plan a direct path to the goal location. The best case scenario is if
all the classifiers in the seeding population will be matched by the correct
Pioneer state and no new classifiers would be required from the Pioneer.
This will require CAM-SLAM to correctly match the state of the Pioneer to
the condition of the classifier generated by Ownbot. The consequence of
creating new classifiers is that ACS has to learn new expectations, which
increases the learning time.

From the 10 trials on the Pioneer, the top classifiers now in the CAM
are shown in figure 4.9. The CAM learned by the Pioneer does not contain
the redundant classifier from the initial CAM and now matches ground
truth. Through better quality LIDAR and odometry estimates, the Pio-
neer was able to repeatedly match classifier three at that location in the
environment. As a result, the expectation mapping of neighbouring clas-
sifiers was able to learn to expect classifier three. This is a positive result
as it demonstrates the ability for CAM-SLAM to continue learning across
heterogeneous robots.

Across all 10 trials the Pioneer was able to reliably match classifiers one,
two, and three. On average each classifier was matched in eight learning
iterations with a variance of one, creating on average four new classifiers
with a variance of two. However, in each of the 10 trials the Pioneer strug-
gled to repeatedly match classifiers five and six. On average classifiers five
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Figure 4.9: LIDAR based CAM learned by sharing information between Pioneer and
Ownbot on the third floor of the Cotton building
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Table 4.2: Average number of matches for Ownbot Classifiers across 10 trials

Classifier ID 1 2 3 4 5 6
Matched 9±1 7±0.5 8±0.7 3±1.2 4±0.9 2±2

and six were only matched four times with a variance of two, creating on
average seven new classifiers with a variance of two. Table 4.2 shows the
average number of times the Pioneer platform was able to match each clas-
sifier learned by Ownbot shown in figure 4.1 on page 78. Table 4.3 shows
the average number of classifiers created for each of Ownbot’s classifiers.

LIDAR association does not rely on the co-ordinate of the robot’s posi-
tion; however it does rely on the angular position estimate for data com-
parison. Ownbot’s position estimate was more accurate at the start of the
navigation compared to later into the navigation for each learning itera-
tion. This produces classifiers with an accurate angular estimate in the
early stages of the learning and vice versa for later classifiers. An analy-
sis of the classifiers shows that classifiers one through three have a high
confidence in position estimate, with an average variance of 0.2 m. This
provides better matching performance for classifiers on both LIDAR data
and position estimates. Classifiers five and six had a low confidence in
their position estimate with an average variance of 0.6 m. This reduces the
matching performance of the LIDAR data through an unreliable angular
estimate and makes position matching unreliable.

These results suggest that a CAM-SLAM is strongly dependant on its
mental mapping stage, requiring accurate angular estimates to generate
similar sensory perspectives. With CAM-SLAM’s current sensor match-
ing methods, if the size of the domain is increased then robots with poor
localisation performance will not be able to share navigation information
successfully. If CAM-SLAM were to be applied to larger domains, a pose-
invariant feature extraction solution is required. Computationally, CAM-
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Table 4.3: Average number of new classifiers created by the Pioneer for each of Ownbot’s
classifiers across 10 trials

Classifier ID 1 2 3 4 5 6
New Classifiers 2±1.2 6±2.0 4±1.2 2±0.6 7±2.1 7±1.8

SLAM scales linearly with the number of classifiers added and can scale
provided the mental mapping approach can provide a localisation esti-
mate.

Classifier four, a redundant classifier created by Ownbot, was only
matched an average of three times with a variance of two across the 10 tri-
als. A qualitative analysis of the ground truth suggests that classifier three
was a better match for the LIDAR data from the Pioneer than classifier
four. The consequence of this is CAM-SLAM was able to learn to expect
classifier three, in place of three and four and hence reduce the number of
classifiers, seen in figure 4.9 on page 92, needed to path plan to five which
now matches the ground truth.

The time required for Ownbot to learn the third floor of the Cotton
building over a trial was on average one and half hours with a variance of
10 minutes. The time required for the Pioneer to do a trial with the prior
learning from Ownbot was on average half an hour with a variance of 10
minutes. The Pioneer learning on its own, with no prior learning, in the
same environment had an average trial time of an hour with a variance of
15 minutes. Contrasting with the Pioneer’s own individual learning run,
Ownbot’s learned classifiers improved the learning time of the Pioneer
platform and did not adversely effect its learning, even with the conflicting
classifiers.

This result demonstrates that sharing navigation information between
the robots is beneficial, as the time required to learn was shown to im-
prove. This is beneficial as multiple lesser capable (cheap preferably dis-
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posable) robots can learn multiple environments in parallel at low cost
or risk. The information can then be shared with the more capable (ex-
pensive) robot in each of the environments, reducing time spent in the
environment, reducing risk to the robot and improving productivity.

4.5.2 Different sensor, different morphology experiments

These experiments will test the ability for CAM-SLAM to share naviga-
tion information between a LIDAR and a vision based robot system. Two
experiments will be run, the first will run the same robot with different
sensors to isolate the sensor as the main difference between the robots.
Using the same robot means the movement uncertainties from the robot’s
odometry estimates are the same for each SLAM process. This means that
the only difference in positional estimate should be from the inherent dif-
ferences between RatSLAM and GMapping estimates. The second exper-
iment will share a CAM between two robots with different sensors and
morphologies. This will require CAM-SLAM to match states with both
different sensor types, and positional movement uncertainties.

The first experiment tasked the Pioneer to navigate Cotton level two
with its camera and RatSLAM, provided to the Pioneer was the CAM gen-
erated with its LIDAR and GMapping in section 4.2.2. Given the different
sensors CAM-SLAM had to rely on matching decision points based on
action matching (see section 3.3) and position estimates (see section 3.3).
After 10 trials the resulting CAM is shown in figure 4.10. The result is
five decision points, matching ground truth, that have both the previously
learned LIDAR data and new image data. This result shows that CAM-
SLAM has successfully collated the information from both RatSLAM and
GMapping into a single CAM, by learning decision points with both LI-
DAR and image based conditions.

In the second experiment the CAM-SLAM had to rely on action match-
ing and position estimates for classifier association, but this time from
relatively less reliable estimates on the position from Ownbot. Using its
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Figure 4.10: LIDAR and image based CAM learned by the Pioneer on the second floor of
the Cotton building. The classifiers contain both the LIDAR data and image data for each
decision point that was learned by the Pioneer.
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camera the Pioneer was tasked with navigating Cotton level three seeded
with the CAM learned by Ownbot in 4.1.1. After 10 trials the resulting
CAM is shown in figure 4.11. The result is five decision points, matching
ground truth, which are a mix between classifiers containing both image
and LIDAR data, and the original LIDAR based classifiers.

Classifier three is a new classifier learned by the Pioneer with the cam-
era, where initially the seeding CAM had two competing classifiers. An
analysis of the learned populations shows CAM-SLAM only partially match-
ing either of the competing matching classifiers, leading the new classifier
to become the dominant classifier through consistent sensor matching.

Conversely, classifier five is an original classifier from the initial CAM.
From the classifier population the fitness of the original classifier is con-
sistently higher than any of the newly formed classifiers for that decision
point. It appears this is due to low image matching performance for that
particular region of the environment, due to varying lighting conditions
by a nearby window. With poor image matching the robot has instead re-
lied on the action and position matching for classifier association, which
has further improved the fitness of the original classifier. This is a benefit
of the CAM-SLAM approach, whereby sensor matching is not required for
navigation if the robot is sure of its position. This can account for dynamic
environments where a particular region can change frequently, e.g. com-
mon work space. However, relying on position estimates in the current
implementation could hinder learning times as new classifiers are being
generated to compensate for the potential change in the environment. Im-
age matching performance can be improved through better place recogni-
tion algorithms, which will help in dynamic environments to reduce the
reliance on position matching.

One of the limiting factors of this approach to sharing information is
the re-learning of the expectation mapping. The expectations are still re-
quired to be learned for classifiers neighbouring new and potentially use-
ful classifiers. This was seen as relatively newer classifiers were consis-
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Figure 4.11: LIDAR and image based CAM learned by the Pioneer on Cotton level three.
Classifier three contains only image based data, but has condensed the original six clas-
sifiers from Ownbot into one. Classifier five only contains LIDAR data, as image com-
parison in that region was not reliable but classifier fives action matching and position
estimate were.
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tently being matched (indicating their usefulness for path planning), but
not yet strongly being expected by neighbouring classifiers, limiting the
performance of any future path planning. A potential solution to this is
propagating new classifiers, generated from position only matching, to
neighbouring classifiers to allow classifiers to seed expectations.

4.5.3 Summary of shared learning

CAM-SLAM has shown to be capable of sharing navigation information
between two robotic platforms with different sensors and morphologies
through CAMs. This was demonstrated by the repeatability of the classi-
fier matching and the reduction of classifiers learned by the Pioneer. The
sharing of information has also shown; improved learning times for robots
with seeded CAMs, continued learning through combining sensory infor-
mation from two robots, and the capability to share less reliable sensory
data with more capable robots.

4.6 Summary

CAM-SLAM, through ACS and generalisation, was shown to autonomously
generate CAMs capable of effectively and consistently navigating robots
to given goal locations with 97% less mapping information than standard
approaches.

The results have demonstrated the successful sharing of CAMs be-
tween two heterogeneous robotic platforms in a real-world environment
without excessive relearning, compared with learning a CAM from scratch.
Furthermore, this result has demonstrated the novel contribution of com-
bining navigation information from two distinct SLAM approaches (GMap-
ping, and RatSLAM) into a single CAM useful for both robots with LIDAR
or vision based sensors. Sharing of navigation information between two
robotic platforms is a positive result as it allows robots to share and make
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use of their respective learning capabilities within environments.



Chapter 5

Emotion inspired adaptive robotic
path planning

The previous two chapters have discussed CAM-SLAM, a topological map
based system for sharing navigation information between heterogeneous
robotics platforms. CAM-SLAM provides high-level path planning infor-
mation through decision points but does not supply a means for robots
to navigate between decision points at a local level. To navigate between
points a robot will require a navigation system that can determine a path
through the environment taking in locally relevant information.

Ideally a robotic navigation system should adapt its path planning
and behaviour to overcome a variety of obstacles within an environment
without the need for specialised stimulus-response planning approaches.
These specialised approaches can not be capable of handling every pos-
sible situation, with the number of required stimulus-response patterns
being potentially infinite. Fellous [33] suggests that biological emotions
facilitate the transferring of simplified, but high-impact information, both
externally (e.g. facial expressions) and internally, for operating system-like
tasks (e.g. reacting to ’threatening’ situations). This concept of emotions
is appealing for path-planning as it can potentially be used to generalise
the web of stimulus-response links in computational path-planning tech-
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niques. This is beneficial as it provides an adaptive path-planning ap-
proach without the need to account for every possible scenario the robot
will encounter.

Inspired by these theories on natural emotions (see section 2.4), this
chapter presents a novel emotion model designed to beneficially adapt
a rigid computational path-planning approach (see navigation stack sec-
tion 2.8). Rather than mapping external stimuli directly to responses, the
emotion model will learn an intermediary set of emotion categories. This
method is intended to achieve many of the same path-planning goals but
in a more generalised way, i.e. the external stimuli to response cases are
filtered through the emotions to provide a compact set of rules or policies
for the robot to follow.

In engineering and biology, the concept of a bow-tie is used to repre-
sent complex adaptive systems in a way that provides flexibility without
compromising efficiency. The shape of a bow-tie describes systems that
include large numbers of inputs and outputs bridged by a smaller num-
ber of intermediary states and processes. Emotions may form the knots
of some of these bow-tie structures in biological cognitive systems, decou-
pling stimulus and response [65]. An important function of emotions in
this model is to provide a compact set of high-impact behaviour adapta-
tions, reducing an otherwise tangled web of stimulus-response patterns
into a compact and manageable structure. The hypothesis here is that the
emotions compact the search space and reduce the complexity (total num-
ber of state-action pairs) of the system. Where the environmental search
space is the map of all possible external stimuli to responses.

The objective is to develop a method to learn these emotional responses
as the robot interacts with the environment. Humans have a bias on what
they define an emotion to be, e.g. sadness, and how it affects (benefi-
cially or not) the behaviour of an agent (e.g. a robot). Not all emotion re-
sponses are intuitively considered beneficial, but removing them from the
system could potentially be limiting the behaviour of the robot. For ex-
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ample, sadness or grief appears to prevent a person or animal from being
mobile or productive [49], in robotics this response would be considered
a hindrance. However, sadness is believed to provide a means of focus-
ing cognitive learning processes onto a specific problem, by shutting out
any further stimuli from the environment [114]. Through learning such
responses, rather than pre-specifying them, this work seeks to prevent hu-
man biasing and instead allow emergent responses to form. However,
learned emotions will not necessarily match their human counterparts, as
the problem of mobile robot navigation differs from many problems that
human emotions have evolved to address. The learned bow-ties can still
provide an interesting insight into the formation of emotions.

5.1 Emotion model

An emotional response is designed as a bow-tie structure linking emo-
tional reinforcers (stimuli, see section 5.1.1) to behavioural modifiers (re-
sponse, see section 5.1.2) through an intermediary internal emotional state.
A visual representation of this bow-tie structure is given in figure 5.1. The
system may have multiple bow-ties that function in parallel but only one
bow-tie (emotion) may be active at a time. This is consistent with cognitive
science research, where it is commonly told that only one natural emotion
can be active at one time [87].

The goal of the emotion model is to learn useful behavioural responses,
through these bow-ties, that aid successful navigation to given locations
without prior input or bias (such as human determined responses to the
emotion states). In order to learn these bow-tie structures an Accuracy
Based LCS (XCS) will be used as a transparent global search technique
with classifiers in the form of Reinforcer-Emotion-Modifiers.

Crucially, the emotion states in the bow-tie are not pre-set with a de-
fined emotion (e.g. happy or sad) or modifier (response). This is in con-
trast to known prior work, such as [58], that pre-sets the stimuli to defined
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Figure 5.1: Reinforcer-Emotion-Modifier bow-tie structure

emotion states and then defined behaviours considered associated to that
emotion. Instead, this work will attempt to learn these behaviours as the
robot navigates the environment. This means the system will be learning
to match emotions to modifiers as the modifiers are being learned. The
system is co-evolving the modifiers and the reinforcer to modifier links,
this is shown in figure 5.2.

Based on the modifier each emotion selects, the resulting navigation
behaviour can be used to label the emotion in a post hoc anthropomorphic
manner. Although interesting, the labelling has no functional contribu-
tion, with any performance benefits still present if the emotion remains
unlabelled (does not have a human equivalent emotion). As an example,
‘pain’ as a reinforcer can associate an emotional response to an aspect of
an environment, such as an obstacle. The resulting action taken by the
robot is considered to be the behavioural response for the emotion. The
behaviour associated to the example emotion may be to avoid the obstacle
to mitigate pain from collisions. We could then label this emotion ‘fear’
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Figure 5.2: The bow-ties are learned via the XCS algorithm, while the modifiers are
learned by the GA. Both learning algorithms receive reward when the robot reaches a
goal locationn

retrospectively, based on the learned (evolved) behaviour after the fact.

5.1.1 Reinforcers

Methods are required to convert sensor readings to perceptions, fed as re-
inforcers to the learning system. Rolls [86] [87] presents a dimensional
model in which emotions result from the presence, omission or termina-
tion of rewards and punishers, which he calls instrumental reinforcers.
Instrumental reinforcers can be primary, determined by genes (e.g. the
tastes and smells associated with food), or secondary, learned by associa-
tion with primary reinforcers (e.g. the sight of a favourite food). From the
large, but non-exhaustive list of primary reinforcers suggested by Rolls
[86], members of a smaller subset were selected that are likely to be bene-
ficial for robotic navigation:

• Robot pain could be chosen to represent potential damage resulting
from collisions. Biological pain can occur without any other observ-
able signs of tissue damage [98]. Similarly, robot pain should not
require actual damage, only a collision. Thus pain is induced via
bump sensors at the front and rear of the robot, and is calculated as
−1.00 for no collision and 1.00 for a collision with no modifier for
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severity.

• Novelty is the quality of a phenomenon being new, original, or un-
usual. Novelty may be the shared experience of a new phenomenon
or the subjective perception of an individual. This reinforcer encour-
ages an animal or robot to seek out and investigate unexpected or
poorly-known objects or areas. We calculate this as the fraction of
new regions n seen by the robot’s sensors compared to previously
seen regions s.

novelty = n/s (5.1)

The map is represented as a grid, which is updated with sensor in-
formation at each time step. The number of unknown grid cells be-
ing updated (seen) at each time step gives n. The total number of
grid cells within the sensor range gives s. Entering a new region will
cause an increase in novelty as more regions are mapped.

• Progress is the robot’s internal estimate of its progress towards com-
pleting the current goal. This is calculated via the local path planner
as the ratio of the current number of completed way points over the
total number of way points planned to reach the global goal (goal
location).

• Sense of Agency (SOA) is a measure of how effectively an animal
or robot is able to control external events through its own actions
[18]. Rolls [86] lists “control over actions” as a primary reinforcer,
but this could also be linked to the ‘active versus passive response’
dimension used to determine whether to elicit active emotions such
as fear or anger, or more passive ones such as sadness [86] [87]. SOA
is represented as a success to failure ratio of all goals delivered to
the controller, e.g. whether the robot reaches the goal successfully or
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must abort its current objective. The number of successes and goals
sent are tracked by the system and SOA is calculated as:

SOA = success/goals (5.2)

the higher the success rate, the higher the SOA.

• Uncertainty is defined as a lack of information about an event, or
how uncertain an animal or robot is about its current course of ac-
tion. For robotic navigation, uncertainty is calculated as the estimate
of localisation accuracy from the SLAM process within the robot’s
navigation system.

Each reinforcer tracks the current value (proportional) at each time
step, the integrated value (integral) over all time, and the rate of change
(differential) of the reinforcer. To achieve this, each reinforcer’s value is
scaled between −1.00 and 1.00. The integrated term represents the in-
fluence of the reinforcer over time on the emotional state, building over
time to potentially elicit a response. For example, if pain is building over
time (e.g. from multiple collisions) it would be potentially useful to elicit
a response to slow down or increase avoidance parameters. The rate of
change of the reinforcer represents the current trajectory of the reinforcer,
depending on its upward or downward trajectory different responses may
be elicited. For example, if pain is reducing over time it may not be advan-
tageous to immediately respond to a potential collision. These examples
are not programmed into the system, but are mere considerations of what
could be a useful response from an emotion system. The system is to au-
tonomously learn the associating modifier for each emotion state.
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5.1.2 Modifiers

A modifier is the term that denotes a set of parameters that will adjust
the robot’s navigation behaviour within its environment. The modifier
parameters influence the paths generated by the robot’s navigation algo-
rithm in an attempt to improve the robot’s progress towards the given goal
location.

The navigation system we use is from Robot Operating Systems (ROS)
navigation stack described in section 2.8. The navigation stack is a com-
monly used robotic navigation algorithm that provides path planning and
navigation controls for generic robotic platforms, with a variety of param-
eters for influencing navigation. Typically these parameters require tuning
for individual robotic platforms. A modifier is a set of these navigation pa-
rameter values that influence the generated navigation behaviour from the
navigation stack.

The navigation stack utilises a grid cell map of the environment for
path planning, created using the robot’s external sensors and localisation
through GMapping (see section 2.8). The grid cell is a map of costs associ-
ated to regions within the environment, where obstacles seen by the robot
will add cost to the grid cell. Path-planning approaches then attempt to
find a path of least cost through the grid cells to a goal location, i.e. the
path of least resistance. An example of the grid based path planning is
shown in figure 5.3. The darker regions in the grid have a higher path-
planning cost, while lighter regions have a relatively low cost.

The modifier parameters influence the paths generated by the naviga-
tion stack by altering the formulae that generate the cost of the gird cells.
This causes regions to change their respective costs of obstacles, freeing
or restricting the robot’s navigation. The set of modifier values used to
influence the navigation stack are:

• The inflation radius is the maximum distance from obstacles at which
a cost to path plan should be incurred. For example, setting the in-
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Figure 5.3: Navigation Stack mapping example. (A) Willow Garage simulation (B) Low
cost path planning (C) High cost path planning.

flation radius at 0.55 m means that the robot will treat all paths that
stay 0.55 m or more away from obstacles as having equal obstacle
cost. All areas between the obstacle and the inflation radius will be
given a score relative to how close to the obstacle the path is, with
higher costs for paths that lead closer to the obstacle. The range can
be set to any value, however it is limited to between 0 m and 30 m
for this work.

• The cost scaling factor determines the cost of the paths between an ob-
stacle and the inflation radius. The lower the cost scaling factor, the
more the cost is spread, see figure 5.3 as an example. With a low cost
scaling factor the cost is spread further away from the obstacle, re-
sulting in low cost paths being pushed further away from obstacles.
This scaling factor is limited between 0 and 30. This is calculated as,

e−1.0∗cost scaling factor∗(distance from obstacle−inscribed radius)) ∗ (251− 1) (5.3)
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where the inscribed radius the size of the robot platform.

• Speed is the maximum speed the robot can move in metres per sec-
ond, with the Pioneer’s maximum speed reaching 4.00 ms−1. The
minimum speed of a moving robot is set at the default setting of 0.10
ms−1, to prevent behaviours which can not move.

• Occlude distance is the weighting for how much the controller should
attempt to avoid obstacles when path planning. Occlude distance in-
creases the cost score of planned paths that traverse through any
high cost regions. This primarily affects paths which may be low
cost (generally shorter paths), but require some traversing of regions
close to obstacles. The occlude distance is limited between 0 and 1.
The occlude distance is an addition to the cost calculation for each
individual path:

Pathcost =Mapcost +Occlude ∗ (maximum obstacle cost) (5.4)

• To generate the grid map used to navigate, each sensor (LIDAR,
SONAR, Collision) is used to update the map based on its sense of
the obstacles in the environment. Each sensor is allocated a weight-
ing, between 0 and 1, to determine the strength of the obstacle within
the map. If a sensor is allocated a high weighting, the path planning
will be more cautious about the obstacles found by that particular
sensor.

An example of a modifier is shown in table 5.1, using the navigation
stack’s default parameter values. Each modifier also has an associated
fitness score to determine how useful it is for the robot’s navigation per-
formance. The fitness score is updated based on the reward provided by
the environment for reaching the goal location, with beneficial modifiers
having a higher fitness score.
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Table 5.1: Modifier Example, showing default values from the Navigation stack.

Inflation radius Cost scaling Speed Occlude distance LIDAR Sonar Collision Fitness
0.55 m 10.00 1.00 ms−1 0.02 m 1.00 1.00 1.00 1.00

In summary, this section has described each part of the Reinforcer-
Emotion-Modifier bow-tie model. The next section will describe how these
bow-ties can form analogies of human emotion.

5.2 Anthropomorphic emotions

In Plutchik’s [83] model, basic emotions have a subset of specific emotions.
These specific emotions are caused by different reinforcer triggers but elicit
the same basic emotion. For example a person can be ‘happy’, but more
specifically they could be ‘satisfied’ or ‘comfortable’. Table 5.2 outlines a
simplified set, suitable for proof of concept, of reinforcers and the emo-
tions that they may trigger.

Typical reinforcement triggers described by Rolls are presentation, omis-
sion, and termination; but this excludes a fourth possibility representing a
transition from omission to presentation, which may be just as relevant as
termination for some reinforcers/emotions. As an example, the detection
of an altruism cheat might elicit a disgust/dislike response. However, if
the cheat was a formerly trusted individual, an anger/betrayal response is
more likely. The important characteristic in the model is the state change
(the rate of change), which could be in either direction.

Provided is a list of emotions that could potentially emerge from the
emotion model and how they could benefit the robot’s behaviour:

Happiness is considered to often be triggered by goal achievement, the
receipt of a reward, or the absence of an expected punishment. Hap-
piness encourages an animal or human to repeat rewarding (or punishment-
avoiding) behaviours. Positive emotions associated with happiness
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Table 5.2: Emotions and reinforcers that could potentially trigger them.

Emotion Specific Emotion Instrumental Reinforcer Expected Resposnes
Presented Omitted Reversal

Happiness Satisfaction Progress Increased Speed
Decreased obstacle costsRelief Pain

Sadness Depression
Pain
Uncertainty

Progress
SOA

Decreased Speed
Increased obstacle costs

Anger Frustration SOA Progress Yes Decreased obstacle costs

Fear Caution
Pain
Novelty

Decreased Speed
Increased obstacle costs

Suprise Shock Uncertainty Yes
Decreased Speed
Increased obstacle costs

have also been linked to a broadening of cognitive focus [46], direct-
ing attention outward and encouraging interaction with the environ-
ment [8]. In a robot, this could be represented as increased mobility
(higher speed) and reduced cost applied to the strategies that led to
success.

Sadness is often associated with the termination of a highly-valued re-
ward (e.g. loss or grief), the failure to achieve goals or the receipt of
punishments when only a passive response is possible [86]. Sadness
facilitates introspection, slowing responses and directing attention
inward, potentially gaining insights that might improve future per-
formance. It also has an important social role, in that expressions of
sorrow encourage others to provide assistance to the distressed indi-
vidual [8]. An appropriate response for a mobile robot might be to
reduce its speed, reorganise or reset its internal maps and/or request
assistance.

Anger is typically elicited when an attempt to reach a goal is obstructed
[78] and an active response is possible [87]. Anger increases activity
and decreases risk-aversion, allowing the obstruction to be overcome
by force. In a robot, this can be expressed as decreased safety mar-
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gins, reducing obstacle avoidance and/or increasing speeds.

Fear often occurs when a punishment is expected. It increases risk-aversion
and encourages the avoidance of, or escape from, dangerous stim-
uli. In humans and animals, the avoidance response to fear is likely
to be all-consuming, suppressing high-level reasoning to a greater
extent than distress/sadness [97]. Most robot architectures lack the
cognitive flexibility to benefit from such a heavy-handed approach.
A typical mobile robot controller, such as the subsumption architec-
ture [10], is planning and reacting simultaneously, and both layers
already have all the computational resources they need at all times
(otherwise the robot would crash). Diverting resources from one
layer to the other would likely be counterproductive. A more ap-
propriate response for a mobile robot is simply to increase its safety
margins and/or move away from a fear-inducing object.

Surprise is triggered when there is a mismatch between perception and
prediction, for example discovering a novel region in a familiar area.
Surprise interrupts ongoing activity [97], directing attention toward
novel stimuli. The shock or startle response normally associated
with surprise could cause a mobile robot to decrease speed or in-
crease safety margins.

The system is not designed to learn these emotions explicitly, however
it has the capability to produce these forms of responses. Empirical anal-
ysis of the bow-tie structure will be used to judge if any of the learned
emotion states are analogous to a human emotion. The next section will
provide details on the implementation of the emotion model in the XCS.

5.3 Implementation

A novel Reinforcer-Emotion-Modifier classifier population is learned through
an XCS to represent the emotional model’s bow-tie structure shown in
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figure 5.1 on page 104. The Reinforcer-Emotion connection is similar to
the standard State-Action classifier representations, in that the reinforcer
(state) elicits an emotional response (action). The Emotion-Modifier con-
nection is a secondary State-Action classifier, where the emotion (state)
elicits a behavioural response through the modifier (action). The emotion
state is acting as a secondary state to compact the initial reinforcers into a
manageable discrete set of emotions for learning a behavioural response.

Figure 5.4 shows this classifier structure compared to a standard XCS
and ACS classifier representation, see section 2.5.3. The figure shows a
robot in an example state in an environment< 1, 1, 1, 0, 0, 0, 1, 1 >, with the
one representing a wall and a zero representing an open space. The stan-
dard XCS classifier representation is a State-Action rule which will take an
action in where its condition matches the current state, in the example the
robot will take action four. In ACS the classifier will take an extra step and
predict the effect of taking the selected action. In the example the classifier
predicts the next state will be < 1, 1, 1, 0, 0, 0, 0, 0 >.

This implementation is a co-operative evolution between the modi-
fier population and the classifier population. The modifier population is
evolving useful navigation behaviours as the robot navigates. The clas-
sifier population is learning to match reinforcer states to a modifier (be-
haviour) through an intermediary emotion state. The aim is to generate
emotional responses beneficial for robotic navigation. Both populations
are learned as the robot navigates to given goal locations.

During navigation the robot’s emotional reinforcers are stimulated through
its interaction with the environment. From the reinforcing input an emo-
tion state is evoked from the model. Note, at all stages the robot will have
an emotion state, even if it is currently considered a low quality response.
The current emotion state then elicits a modifier, from a set of modifiers,
which affects the behaviour of the robot (navigation stack path-planning).
This process is shown in figure 5.5 on page 116.

The XCS algorithm has been adapted to handle the Reinforcer-Emotion-
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Figure 5.4: Standard structure of an XCS and ACS classifier compared to the emotion
based classifier. In emotion (emo) based classifier the emotion is a secondary condition,
used to compact the initial reinforcer condition, and the modifier acts as an action.
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Figure 5.5: The robot’s interaction with the environment stimulates emotional reinforcers,
which elicits an emotion state in the robot. The emotion state then elicits a modifier
affecting the navigation stack, adjusting the behaviour of the robot’s navigation.

Modifier classifier and follows a similar process as described in section 2.6.
XCS is typically used to learn complete mappings of problem environ-
ments, through learning classifiers that are accurate in their reward pre-
diction. However, this work is exploiting XCS’s capability to generalise by
learning bow-ties in the form of compact human readable classifiers. The
XCS will attempt to learn a complete mapping of the emotion model, how-
ever what that would be or mean in terms of emotion states is unknown so
it is not a major goal of this work. Instead an in-complete emotion model
that is still beneficial for navigation will be considered a success.

5.3.1 Reinforcer Input

In each iteration the robot’s reinforcers are stimulated by the environment
generating a new reinforcer state R. If R is different from the previous
iteration’s stateRt−1 it is sent to the XCS to generate the match set [M ], else
the system will continue with the previously chosen action. [M ] is formed



5.3. IMPLEMENTATION 117

by comparing R with each classifier in the population. As each reinforcer
contains real world values, a classifier’s condition contains an upper and
lower bound around each value. The upper and lower bounds of the value
are pre-set to±0.20 of the values inR during the covering stage. This value
was empirically set to allow a range of matches to be possible without
the system being too strict. Being too strict causes the system to change
emotion states frequently, as the matching stage becomes overly precise.
For a classifier to be considered a match, the current reinforcer state values
must be between the upper and lower bounds of the respective values in
the classifier’s condition.

lower ≤ value ≤ upper (5.5)

The ‘don’t care’ (#) value is the equivalent of a maximum upper and
minimum lower bound for each value of the condition, such that any value
will match. If |M | is below the minimum size threshold the covering stage
is called. As per standard XCS, the covering stage creates a new classifier
using the current R to generate the condition and associates a randomly
selected emotion.

5.3.2 Reinforcer-Emotion

From [M ] a classifier is selected to elicit its associated emotion e. Typically
this is done by alternating between the classifier with the highest predic-
tion value, and a random selection to balance exploration and exploitation.
However, by inspection it was found that this led to connections with early
rewards dominating the population. In order to allow exploration and to
prevent over-fitting the first classifiers, for the first 100 successful goal lo-
cations the selected classifier is always chosen at random from [M ]. After
this, the selected classifier alternates between the Reinforcer-Emotion con-
nection (most fit classifier) and roulette wheel selection.
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5.3.3 Emotion-Modifier

The selected e is then used to select a modifier mod in the modifier set
[Mod]. If |Mod| is below a maximum size threshold a new modifier is
generated. Modifiers are initially created at random, with each parameter
being set to a random valid value. Once the [Mod] is full, every 20 itera-
tions a GA is used to generate new and potentially useful modifiers in the
population (as is common practise for [P ] in XCS).

The emotion states have a connection value conem associated to each
individual modifier in [Mod], measuring the usefulness of the modifier for
the given emotion. For the first 100 successful goal locationsmod is chosen
at random from [Mod], to help avoid over-fitting to e and to share experi-
ence across the initial modifiers. After this, the m alternates between the
highest weighted Emotion-Modifier connection and roulette wheel selec-
tion.

The most useful Emotion-Modifier connectionWeightem is determined
by the conem and the fitness of the modifier Fm with the highest weighted
connection being selected.

Weightem = conem + 0.10 ∗ Fm (5.6)

The aim of the weighting is to select modifiers with a strong connec-
tion to a specific emotion, but only if the modifier is considered to be fit.
Fm is weighted by 0.1 to allow the connection between the modifier to be
the dominate feature. If Fm has a weighting of one, the system would only
ever choose the best modifier. Finally, once a modifier is selected the pa-
rameters of the navigation stack are adjusted. This process continues until
the robot reaches the target location. Once the robot does reach the goal
location a reward is provided and the system is updated.
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5.3.4 Update

The emotion system is updated when a reward is provided by the envi-
ronment, i.e. when the robot reaches the current goal location. The reward
value is determined by an arbitrary value of 1000 plus the inverse time
taken, in order to encourage the robot to complete goals as fast as possi-
ble.

reward = 1000 + 1000/time (5.7)

However, if the robot reaches a state such that it must abort naviga-
tion, the system is updated with a reward value of 0. Aborting navigation
is detected by the navigation stack and occurs if the robot is considered
stuck or finding a valid path is not possible. Each connection is updated
according to the update procedure with the relevant reward.

Reinforcer-Emotion update

The Reinforcer-Emotion connection is a standard XCS classifier and is up-
dated using the process described in section 2.6. The higher the fitness of
the classifier, the better the connection between the reinforcer state and the
emotion category.

Emotion-Modifier update

The system updates each Emotion-Modifier mapping using the delta rule.

conem = conem + β ∗ (Reward− conem) (5.8)

The learning rate β controls the rate at which the connection is learned,
being commonly set to a value of 0.1. The higher the Emotion-Modifier
weighting, the more useful the modifier is considered for that particular
emotion state.
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Modifier

A modifier’s fitness is updated using the delta rule.

Fm = Fm + β ∗ (Reward− Fm) (5.9)

The higher the fitness value the more useful the modifier was for suc-
cessful navigation.

During navigation the robot may utilise multiple Reinforcer-Emotion-
Modifier connections, bow-ties, before reaching the goal location and re-
ceiving a reward, making it a multi-step problem. Therefore, the reward
must be propagated to all the connections used to reach the goal location.
It is not easily distinguishable which of these connections were useful, or
detrimental to navigation. However, the most recently used connections
can be considered to be useful for leading the robot to the goal location as
they did successfully reach the goal. Therefore, the reward is propagated
back to all connections with a discount factor (set to 0.5), giving maximum
reward for the most recently used connection.

An algorithmic description of this process is given in algorithm 2. The
next section will provide details on the experiments used to train and eval-
uate the emotion model described in this section.

Rewardi = Rewardtotal ∗ discountFactor−i (5.10)

5.4 Experimental setup

The first set of experiments aims to train the emotion system on a sim-
ulated robotic platform. The second experiment investigates the ability
of the system to learn useful bow-tie structures (termed the ‘learn-ability‘
of the system). The third experiment evaluates the performance of the
trained emotion model against the rigid navigation system, to discern any



5.4. EXPERIMENTAL SETUP 121

Algorithm 2: Emotional learning algorithmic description
Data: [bowties]: bow-tie set; [M ]: Match set; [E]: Emotion set;
e: Emotion; [Mod]: Modifier set; mod: Modifier; R: Reinforcer

1 iteration = 0;
2 repeat
3 goal = getGoal();
4 [bowties] = [];
5 time = currentTime();
6 repeat
7 R = readNewReinforcerState();
8 [M ] = MatchSet(R);
9 if [M ].size() ≤MIN MATCH SIZE then

10 cover([M ], R);
11 e = SelectEmotion([M ]);
12 [E] = emotionSet([M ]);
13 if TimeForGA(E) then
14 applyGA(E);
15 if [Mod].size() ≤MOD SIZE then
16 generateModifier([Mod]);
17 m = SelectModifier([Mod], e);
18 bowties += [[E], mod];
19 robot.applyModifier(mod);

20 until Goal Discovered OR Goal Unreachable;
21 time = currentTime() - time;
22 if Goal Discovered then
23 rewardTotal = 1000 + 1000/time;
24 if Goal Unreachable then
25 rewardTotal = 0;
26 rewardConnections(rewardTotal);
27 if [Mod] ≥MOD SIZE AND iteration%20 = 0 then
28 generateModifier([Mod]);
29 iteration++;

30 until End of Training;
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improvements to the robot’s navigation performance. The final experi-
ment tests the validity of the system on a real-world robotic platform.

The performance of the navigation systems is measured as: the num-
ber of collisions a robot has with the environment, and the time required
for a robot to navigate to given goals. Ideally, the robot would have zero
collisions with the environment and not require an excessive amount of
time to reach the goal location.

From a psychological perspective, the emotion model provides an in-
sight into the formation of emotions. The resulting bow-ties in each exper-
iment will be examined for emergent emotions. The emotions are judged
based on the relationship between the reinforcer input and the resulting
behaviour of the robot’s navigation.

5.4.1 Experiment One: Simulated emotion model training

In order to train the emotion system a Pioneer (as described in section
3.4.1) is tasked to navigate between goal locations within the simulated
environment of the Willow Garage offices (seen in figure 5.6) using the
Gazebo simulator (as described in section 2.8). The Willow Garage en-
vironment is an open access testing area of a large office environment,
providing useful features to train the system with.

Placed into the environment are random placements of cupboards, of-
fice chairs, and desks to provide obstacles to navigate. Office chairs in par-
ticular are considered a difficult obstacle to tune a navigation algorithm to
handle as the base of an office chair is generally larger than the stem of the
chair. The sensors of a robot are often placed such that only the stem of
the chair is visible, aliasing the size of the base of the chair which the robot
will collide with. The size of an obstacle can be artificially increased via an
inflation radius, however this has the disadvantage of narrowing the path-
able area in tight doorways and reducing the effectiveness of navigating
through them. Being able to adapt to each scenario would be advanta-
geous.
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Figure 5.6: Willow Garage offices in Gazebo simulator. All rooms are accessible, barring
the top right room which is outdoors. Exits to the building were covered to prevent the
robot leaving the office.
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The emotion system is learned as the robot traverses from goal loca-
tion to goal location, with reward being provided if the robot successfully
reaches the current goal location. When the robot reaches a goal location a
new goal location is randomly selected from the rooms in Willow Garage.
If the robot must abort its traversal, the bow-tie is given a reward of zero,
and the robot is reset to a random way point. To investigate the learn-
ability of the emotion model, the number of emotion states is increased for
each subsequent experiment, starting at two emotion states. One emotion
is effectively the equivalent of learning a singular modifier, and does not
provide adaptability to the system. The learn-ability of the system is de-
fined as the ability of the system to learn a population of classifiers that
are beneficial for path-planning. Investigating the number of emotions
that can be learned all at once is important as the complexity of the bow-tie
search space increases with the number of emotions, potentially becoming
too complex to effectively learn with the XCS approach. Furthermore, this
provides an insight into the number of emotions required for successful
navigation for a given domain.

5.4.2 Experiment two: Learn-ability of the system

This experiment compares the bow-tie structure to a direct Reinforcer-
Modifier model. This provides a benchmark to investigate the benefits
of having the intermediate emotions. The hypothesis being that the emo-
tions compact the search space and reduce the complexity (total number of
state-action pairs) of the system, allowing XCS to learn beneficial bow-ties.

The Reinforcer-Modifier model removes the intermediary emotion link
in the presented bow-tie model, with classifiers directly matching a single
modifier in a typical Condition-Action set-up. The Reinforcer-Modifier
model will be trained as described in Emotion training, see section 5.4.1.
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5.4.3 Experiment three: Emotion model path-planning per-

formance

The robot is tasked to navigate a course in Willow Garage to test if the
learned emotion system has any benefit to navigation. To judge the effec-
tiveness of the navigation, the time taken to navigate and the number of
collisions will be measured. These results are then compared to the default
static navigation stack parameters.

After emotion training is complete, the bow-tie structure is made read-
only. A set of five way points is set up in the Willow Garage simulation,
seen in figure 5.7. The Pioneer is tasked with completing the course in
order using the default navigation system, and the learned emotion sys-
tem. Although the environment and learned system are not stochastic (no
further learning occurs at the testing stage) the test is repeated 10 times as
simulated noise may effect performance.

Each path has its own particular challenges for the robot to navigate.
Path one requires navigating through a narrow door. Path two is a series
of tight spaces. Path three is a wide space with large doorways. Path four
is a long narrow corridor. Path five is characterised by small doors within
a narrow corridor.

5.4.4 Experiment four: Real-world emotion model training

In order to test the validity of the emotion learning in the real world, the
emotion training (section 5.4.1) and the benchmark (section 5.4.3) testing
is repeated in the real-world. The system is trained on the Pioneer robot
in a real-world office environment described in section 3.4.2 and shown in
figure 3.6 on page 69. The real-world course the robot will be tested on is
shown in figure 5.8 on page 127.

Running 30 trials for statistical analysis on the real-world robot is pro-
hibitively time consuming. However, a single trial still provides an in-
sight into the learn-ability of the emotion system for real-world robotics.
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Figure 5.7: Simulated benchmark course, each ball indicates a way-point in the course
around the Willow Garage office building. The arrows indicate the path order that the
robot traverses in order to reach the goal location, albiet doors, open rooms, and corridors
must be used to navigate.
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Figure 5.8: Real-world benchmark course, each ball indicates a way point in the course
around the Cotton building level three. The arrows indicate the path order that the robot
traverses in order to reach the goal location.
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Furthermore, this experiment provides a comparison with the simulation
results.



Chapter 6

Emotion inspired adaptive robotic
path planning results

The previous chapter detailed the emotion model. Through learned emo-
tional responses, the emotion model adapts a robot’s path-planning cog-
nition as it interacts with the environment. The hypothesis is that these
learned emotional responses will improve the robot’s navigation perfor-
mance by providing the robot with the flexibility to change its behaviour
based on its interaction with the environment.

This chapter first analyses the results of training the emotion model
from a psychological perspective regarding the emotional responses that
may have emerged in the resulting bow-ties. Second, a discussion on
the learn-ability of the emotion model is given, including a comparison
against a learning system with direct Reinforcer-Modifier mappings (i.e.
infinite emotions). Finally, this chapter provides results evaluating the
navigation performance of the emotion system by comparing it against
the rigid path-planning approach.

The initial experiments reported in this chapter trained and tested the
emotion model within the simulated Willow garage environment (see fig-
ure 5.6 on page 123). This was because XCS can take a large number of
learning iterations to learn a population of solutions, requiring long train-

129



130 CHAPTER 6. EMOTION INSPIRED PATH PLANNING RESULTS

ing times. The simulator provided a means of running 30 training runs
for repeatability testing and statistical analysis. To validate the simulated
results, the final experiment ran a single training run on the real-world Pi-
oneer. This single real-world training run took 14 days to complete (over
a four week period), compared to an average of seven days to complete 30
simulated training runs.

6.1 Experiment One: Simulated emotion model

training

The aim of this experiment was to train the emotion model and investi-
gate the emergence of emotions within the bow-ties. To train the emotion
model, a simulated Pioneer was tasked to navigate between goal locations
within the Willow Garage offices (as described in section 5.4.1). The Pio-
neer had to successfully navigate to a goal location 1000 times before the
training of the emotion model was halted. This was then repeated 30 times
to investigate variance.

To determine if the emotion model was repeatedly learning emotional
responses, the classifier populations in each training run were combined
together into a single population. This was done by clustering classifiers
based on the modifier it elicited. This is because one training run can asso-
ciate a bow-tie to emotion state one, while another training run may have
associated the same bow-tie to emotion state two. But both still elicit the
same behaviour, the emotion states are merely labelled differently due to
the learning process. An example of two similar (lowest absolute differ-
ence between values) modifiers is shown in table 6.1.

Once the classifiers are clustered into their respective emotion states,
the reinforcer conditions of the classifiers are examined to determine if
there are any unique patterns that elicit that particular emotion state. For
example, one emotion may be elicited by classifiers that have high novelty
values, while another emotion is elicited by classifiers with low novelty
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Table 6.1: Example of two emotions with different labels that would be clustered into a
single emotion state.

Emotion Inflation radius Cost scaling Speed Occlude distance LIDAR Sonar Collision
One 0.85 5.98 2.99 0.02 0.81 0.40 0.32
Two 0.77 6.28 2.49 0.02 0.74 0.44 0.52

values.

In order to investigate the learn-ability of the emotion model, at the end
of the 30 training runs the number of emotion states was increased and the
emotion model was re-trained from scratch (initial training starting with
two states).

6.1.1 Two Emotions

Inspection of the results shows a trend for two emotion states to emerge
with similar modifier parameters, as seen in table 6.2. The values of the
modifiers are significantly different between each modifier, indicating the
emotion model is repeatedly learning two distinct behaviours. Two mod-
ifiers were considered significantly different if one of their parameters
passed a two-tailed student T-Test at 95% confidence.

These two distinct parameter settings can be seen in figure 6.1 showing
the grid weightings for each modifier. Emotion one has a relatively lower
weighting for obstacles causing it to be less restrictive on the movements
of the robot platform compared with emotion two. Conversely emotion
two restricts the robot’s path options near obstacles, in particular around
doorways where low cost paths can be seen tightly down the centre of
the doorway. Furthermore, emotion one tends to increase the speed of the
robot compared to emotion two.

By inspection, there is a pattern of fit Reinforcer-Emotion-Modifier clas-
sifiers in each population that matches one of the two emotion states, ex-
amples of which are shown in table 6.3. These classifiers consistently have
relatively high fitness, in the top five of the population, and are consistent
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Table 6.2: Learned most fit emotion to modifier mapping averaged over 30 trials: two
emotions

Emotion Inflation radius Cost scaling Speed Occlude distance LIDAR Sonar Collision
One 0.85 ± 0.20 5.98 ± 1.30 2.99 ± 0.90 0.02 ± 0.01 0.81 ± 0.22 0.40 ± 0.11 0.32 ± 0.11
Two 7.62 ± 1.20 0.62 ± 1.2 1.06 ± 0.10 0.02 ± 0.02 0.75 ± 0.12 0.36 ± 0.13 0.85 ± 0.21

Figure 6.1: (A) Behavioural response of emotion one (“happiness”), note how the occu-
pancy grid is mostly light grey in colour indicating low cost of path planning in most
areas. (B) Behavioural response of emotion two (“fearful”), note how the occupancy grid
is darker grey in colour, compared to (A), indicating a higher cost to path planning re-
ducing suitable regions for navigating.
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Figure 6.2: Bow-tie learned with two emotion states for emotion one

(between training runs) in the emotion they elicit.

Classifiers with low to no pain reinforcement or high progress tend to
select emotion one (using the normalised emotion labels as above). Emo-
tion two tends to be selected by reinforcement with either pain, or low
progress and high novelty. A visual representation of these bow-ties is
given in figures 6.2, 6.3, and 6.4. In each figure the thickness of the line
between the Reinforcer and Emotion is the value’s weight for selecting the
given emotion, no line indicates a ‘don’t care’ value. The arrows then rep-
resent the strength of the modifier values, the thicker the line the larger the
reinforcer value. The arrows in the modifier values indicate an increase or
decrease in value compared with the default navigation stack values.

Considering the results of the emotion to modifier learning in table 6.2,
two distinct behaviours for each emotion can be seen. Classifiers that in-
clude emotion one have reinforcers with low pain or high progress. Emo-
tion one then elicits a modifier that lowers the cost to navigate and in-
creases the speed of the robot. The system has effectively learned to de-



134 CHAPTER 6. EMOTION INSPIRED PATH PLANNING RESULTS

Table 6.3: Example of the consistent Reinforcer-Emotion classifiers for the emotion model
trained with two emotion states

Emotion One
Proportional Integral Differential

Lower Upper Lower Upper Lower Upper
Pain # # -1.00 -0.60 # #

Progress # # 0.60 1.00 # #
Novelty # # # # # #

SOA # # 0.40 0.80 # #
Uncertainty # # -0.60 -0.20 # #
Emotion Two

Pain # # # # # #
Progress # # 0.00 0.40 # #
Novelty 0.00 0.40 0.60 1.00 # #

SOA # # # # # #
Uncertainty # # # # # #
Emotion Two

Pain # # 0.5 1.00 # #
Progress # # # # # #
Novelty # # # # # #

SOA # # # # # #
Uncertainty # # # # # #
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Figure 6.3: Bow-tie learned with two emotion states for emotion two

Figure 6.4: Bow-tie learned with two emotion states for emotion two
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crease the safety margins around obstacles in the environment when the
robot is not colliding with the environment. This allows the robot to drive
faster and potentially move closer to objects within the environment.

Classifiers that include emotion two have reinforcers with high pain,
low progress, or high novelty. Emotion two then elicits a modifier that in-
creases the cost to navigate, and lowers the speed of the robot. The system
has learned to increase the safety margins around obstacles in the envi-
ronment when the robot is colliding with the environment (experiencing
pain) or is within a novel area in the environment. This restricts the path
the robot will follow near obstacles, effectively directing the robot away
from obstacles to potentially prevent collisions.

An anthropomorphic description of emotion one can be considered to
be ‘happiness’, as described in 5.2. Often triggered by goal achievement,
the receipt of a reward, or the absence of an expected punishment, happi-
ness encourages an animal or human to repeat rewarding (or punishment-
avoiding) behaviours. Positive emotions associated with happiness have
also been linked to a broadening of cognitive focus [47], directing atten-
tion outward and encouraging interaction with the environment [9]. This
is seen by the lowering of safety margins, allowing the robot to plan closer
to obstacles. An anthropomorphic description of emotion two can be con-
sidered to be ‘fear’. Fear often occurs when a punishment is expected. It
increases risk-aversion and encourages the avoidance of, or escape from,
dangerous stimuli [97].

6.1.2 Three Emotions

The emotion system’s ability to construct emotions was increased to three
emotion states. The results of the learned modifiers are shown in table 6.4.
Of note in the results is that two of the Emotions (One and Two) have sim-
ilar modifiers to those learned in the two emotion experiment. Emotion
one reduces safety margins, while emotion two increases safety margins.
The new emotion (three) has modifier values in-between the modifier val-
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Table 6.4: Learned most fit emotion to modifier mapping averaged over 30 trials: three
emotions

Emotion Inflation radius Cost scaling Speed Occlude distance LIDAR Sonar Collision
One 0.75 ± 0.10 6.8 ± 1.10 3.1 ± 0.78 0.02 ± 0.06 0.79 ± 0.22 0.48 ± 0.16 0.32 ± 0.13
Two 7.62 ± 1.20 0.62 ± 1.60 1.06 ± 0.10 0.01 ± 0.02 0.74 ± 0.22 0.44 ± 0.16 0.85 ± 0.21

Three 4.62 ± 2.20 1.10 ± 1.05 1.68 ± 0.20 0.01 ± 0.01 0.82 ± 0.12 0.50 ± 0.13 0.55 ± 0.11

ues of emotions one and two. Emotion one and two are contrasted by
the relatively extreme difference in the cost values of obstacles, with low
and high levels of inflation for each emotion respectively. Emotion three’s
modifier is in-between the two with a medium level of inflation, prevent-
ing the robot from getting close to walls but not driving the robot away
from walls.

By inspection, each of the three emotions has a common classifier as-
sociated with it, examples of common high fitness classifiers are shown
in table 6.5. Classifiers that choose emotions one and two are similar to
the previous results. Emotion one is selected by classifiers with low to no
pain, or high progress. Emotion two is selected by classifiers with high
pain, or no progress. The new emotion state three is selected by classifiers
with relatively medium levels of proportional pain, between the first two
emotions proportional pain values.

Emotion three increases safety margins when the robot has been col-
liding with the environment. Emotion three will plan paths further from
obstacles if the robot collides with the environment but not to the extreme
extent that emotion two will. In effect, emotion three is a more cautious
path-planning approach to emotion one but not as overly restrictive as
emotion two is.

Taking into consideration the Reinforcer-Modifier-Emotion connections
the anthropomorphic descriptions of emotions one and two can again be
judged as happiness and fear. Emotion three however, appears to be a
middle ground between the first two emotions. Emotion state three is in-
creasing aversion to obstacles, and slowing speeds but not to the levels of
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Table 6.5: Example of the consistent Reinforcer-Emotion classifiers for the emotion model
trained with three emotion states

Emotion One
Proportional Integral Differential

Lower Upper Lower Upper Lower Upper
Pain # # -0.80 -0.40 # #

Progress # # 0.50 0.90 # #
Novelty # # # # # #

SOA # # # # # #
Uncertainty # # -0.80 -0.40 # #
Emotion Two

Pain # # 0.40 0.80 # #
Progress # # 0.00 0.40 # #
Novelty # # # # # #

SOA # # # # # #
Uncertainty # # # # # #
Emotion Three

Pain # # -0.10 0.10 # #
Progress # # # # # #
Novelty # # # # # #

SOA # # # # # #
Uncertainty # # -0.90 -0.50 # #
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Table 6.6: Learned most fit emotion to modifier mapping averaged over 30 trials: four
emotions

Emotion inflation radius cost scaling speed Occlude distance LIDAR sonar collision
One 2.75 ± 2.80 6.8 ± 2.10 2.1 ± 1.78 0.02 ± 0.06 0.90 ± 0.10 0.48 ± 0.16 0.72 ± 0.23
Two 4.62 ± 4.20 1.10 ± 2.05 1.68 ± 1.20 0.01 ± 0.01 0.82 ± 0.12 0.50 ± 0.13 0.62 ± 0.41

Three 4.62 ± 5.20 1.10 ± 3.05 2.38 ± 1.40 0.01 ± 0.01 0.72 ± 0.14 0.50 ± 0.13 0.53 ± 0.19
Four 4.62 ± 2.20 1.10 ± 2.05 3.20 ± 1.50 0.01 ± 0.01 0.84 ± 0.16 0.50 ± 0.13 0.85 ± 0.11

fear which drastically increases the aversion to walls with two emotional
states available. Based on Rolls’ scale of emotions, shown in figure 2.4 on
page 27, this could be considered as apprehension. Apprehension being
the anxiety or fear that something bad or unpleasant may happen. In this
case of robotic navigation, the robot has encountered a small amount of
pain and is increasing safety margins in response.

6.1.3 Four Emotions

The results of extending the emotion model to four emotions does not
show a clear pattern in either the modifier or classifier populations. The
modifier population, shown in table 6.6, shows non-distinct values be-
tween emotions, indicated through the large variance in each of the clus-
tered Emotion-Modifier responses. The classifier population does not show
any clear Reinforcer-Emotion-Modifier patterns either. The most fit classi-
fiers are also lowly weighted, with an average fitness in the top five classi-
fiers of 0.14, compared with 0.65 and 0.42, for two and three emotion states
respectively. This indicates the system was not learning reliable or useful
bow-ties connections, and is not expected to improve performance and
may even potentially hinder navigation. The potential cause of this result
is discussed in the next section, where the results are compared against a
direct Reinforcer-Modifier model.
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Figure 6.5: Average classifier fitness for model with zero to four emotions

6.2 Experiment two: Learn-ability of the system

In order to get an insight into the learn-ability of the emotion model, the
fitness of the classifier and modifier populations is examined. Figure 6.5
shows the average classifier fitness for the top five classifiers in the popu-
lation, and figure 6.6 presents the average fitness for the top five modifiers.
The higher the fitness of the classifier the more reliable the classifier is for
successful navigation.

Comparing both figures it can be seen that as the number of emotions is
increased, the fitness of both the modifier and classifier populations both
decrease. Similarly, the initial rate at which the fitness increases also de-
creases. The system with no emotions (direct Reinforcer-Modifier connec-
tions) is the worst performing system with fitness in both populations be-
ing significantly lower than the emotion models. In each of the systems
the classifier fitness has plateaued in growth during the 1000 (successful)
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Figure 6.6: Average modifier fitness for model with zero to four emotions

navigation runs. In the two and three emotion models the modifier be-
haviours appear to still be increasing in fitness at a relatively minor rate.

Another trend is that the modifier fitness rises ahead of the classifier
fitness, which is observed as the modifier fitness increasing ahead of the
classifier fitness in figures 6.5 and 6.6. This is reasonable as a classifier’s
fitness is dependant on the modifier population having useful behaviours
for the system to connect emotions to. The classifiers will not reliably re-
ceive reward until the system learns useful modifiers (modifiers that al-
low the robot to reach the goal locations) for the emotions to consistently
match.

The drop in modifier fitness as the the number of emotions increases
may be due to the amount of exploration required when matching emo-
tions to the modifier set. The system is required to match each emotion to
a modifier value. Increasing the number of emotions increases the search
space of Emotion-Modifier connections. In the two emotion system, the
model is searching for two reliable modifiers. As this number of emotions
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increases, the system is required to find more modifiers (assuming there
are more beneficial modifiers to find). Increasing the search space has po-
tentially limited the amount of reward each modifier can receive over time,
as the chance to be selected is lower.

This is seen in the extreme case where no emotions are present for fil-
tering. The no emotion system has to directly match Reinforcer input to
the Modifiers, learning a theoretically infinite number of emotion states.
The system has failed to learn the complex web of inputs. From this it can
be concluded that having two or three emotions as filters has allowed the
system to reduce this complex web and learn emotion states which have
reduced the number of collisions and time to navigate. The next section
will now investigate how these results translate into the real world.

6.3 Experiment three: Emotion model path-planning

performance

The previous section has presented the results of learning the bow-ties.
This experiment evaluates the navigation performance of the emotion model
against the rigid path-planning approach. This will be measured by com-
paring the navigation time, and number of collisions as the robot traverses
a given path of the simulated environment, as described in section 5.4.3.
Ideally the robot would never collide with the environment, as collisions
risk damage to the robot or the environment. However, it is also desirable
that the robot still travels as quickly as it can, without causing collisions.

Figure 6.7 shows the time to navigate to each check point by the learned
emotion models compared with the default navigation stack values. Fig-
ure 6.8 on page 144 shows the number of collisions during navigation for
each approach. The two emotion bow-tie is equal to or out-performs the
default values in both time and collisions, in particular for the most chal-
lenging path, i.e. checkpoint one to two which has the narrowest corri-
dors with the highest risk of collision. The two emotions also provide a
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Figure 6.7: Simulated comparison of time between each checkpoint

time improvement in the open spaces between checkpoints one and three.
The three emotion bow-tie provides similar improvements over time and
collisions to the two emotion bow-tie. The time improvement is not as sig-
nificant an improvement as the two emotion bow-tie, but does provide a
benefit to navigation. The four emotion bow-tie however, has performed
worse than the default settings, both increasing time to navigate and the
number of collisions. This indicates that the four emotions did not learn a
beneficial bow-tie.

The primary advantage demonstrated by the emotion system is the
ability to adapt the robot’s speed and safety margins based on its reinforcer
state, which can be seen prominently in time and collision improvements
in paths two and three. When navigating narrow regions, robots can tend
to collide with obstacles more often, with the ‘fear’ response causing the
robot to increase its obstacle aversion that restricts paths from being near
obstacles. In a static path planning approach this would adversely effect
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Figure 6.8: Simulated comparison of collisions between each checkpoint

performance in wide spaces, resulting in the robot going unnecessarily
slow. However, the happiness response causes the robot to increase its
speed when collisions are low, providing a faster behaviour in open ar-
eas. Although similar behaviour can be pre-programmed, this behaviour
is emergent from the novel learning system.

It was possible that more emotions, up to an undetermined size, would
be more beneficial by providing a larger range of behaviours. These re-
sults indicate that two emotions is the more beneficial option, with three
emotions being relatively similar in performance. The next section will
analyse the fitness of the classifier and modifier populations to investigate
how increasing the number of emotions effects learning.
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Table 6.7: Learned most fit emotion to modifier mapping: real-world experiment

Emotion Inflation radius Cost scaling Speed Occlude distance LIDAR Sonar Collision
One 1.2 4.98 2.50 0.02 0.91 0.80 0.72
Two 3.62 1.50 1.54 0.02 0.82 0.41 0.85

6.4 Experiment four: Real-world emotion model

training

The real-world experiment will investigate how and what the emotion
model learns in a real-world environment. Given the time taken to learn
the emotion model in a simulated environment, the real world training
is restricted to two emotions and only one complete training run of 1000
successful runs. The overall time to complete this experiment was 14 days,
compared to the average seven days to complete 30 training iterations in
simulation.

Inspection of the results shows a familiar trend with two distinct emo-
tion states emerging, shown in table 6.7. Similar to the simulated results,
emotion one has a lower weighting for obstacles and is less restrictive on
the movements of the robot platform compared to emotion two. However,
each emotion does not effect change on the safety margins to the same ex-
treme as the simulated results.

Inspecting the classifier population reveals that there are two common
high fitness classifiers for each emotion state. Emotion one is elicited by
classifiers with no pain, high progress, and low uncertainty. This is the
same as the simulated results, which was considered as an emotional re-
sponse of happiness. Emotion two is elicited by classifiers with pain,
similar to the simulated results for emotion two. However, only pain is
considered in the real-world results compared to the simulated emotion
two which also considered novelty and uncertainty. As the real-world en-
vironment is smaller than the simulated environment the novelty factor
is lower, and the robot’s position estimate should vary less. This could



146 CHAPTER 6. EMOTION INSPIRED PATH PLANNING RESULTS

Table 6.8: Example of the consistent Reinforcer-Emotion classifiers for the emotion model
trained with two emotion states: real-world

Emotion One
Proportional Integral Differential

Lower Upper Lower Upper Lower Upper
Pain # # -1.00 -0.60 # #

Progress # # 0.20 0.60 # #
Novelty # # # # # #

SOA # # # # # #
Uncertainty # # -1.00 -0.60 # #
Emotion Two

Pain 0.60 1.00 0.20 0.60 # #
Progress # # # # # #
Novelty # # # # # #

SOA # # # # # #
Uncertainty # # # # # #

have made the uncertainty and novelty less important for navigation in
the real-world environment. Emotion two may still be considered as a
‘fear’ response, with pain eliciting an aversion to obstacles.

The navigation performance of the emotion model learned in the real-
world was then measured as discussed in section 5.4.4. For comparison
the bow-ties learned in simulation were also run in the real-world naviga-
tion test. The time and collision results are shown in figures 6.9 and 6.10
on page 148 respectively. Both bow-ties learned in simulation showed im-
provement in time and number of collisions compared with the default
system. This provides a demonstration that the emotion models learned
in simulation are applicable to real-world path planning.

The bow-ties learned in the real-world also show an improvement in
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Figure 6.9: Real-world (R) comparison of time between each checkpoint

time performance and the number of collisions compared to the default
system. This is a positive result demonstrating the system trained in the
real-world can learn a beneficial bow-tie for robotic path planning. Com-
paring the real-world results to the simulated results, both of the two emo-
tion systems outperform their three emotion counterparts, although the
result is not significant (under the T-test) it is a similar result to the simu-
lated tests. This supports the proposition that two emotions are the pre-
ferred number of emotions for path planning.

In order to get an insight into the learn-ability of the system in the
real-world, the fitness of the classifier and modifier populations are il-
lustrated in figure 6.11 on page 149. The figure shows that the classifier
fitness again lags behind the modifier fitness, the same as the simulated
results. The overall fitness of each population both rises at a lower rate
and plateaus at a lower value than the simulated tests. This indicates that
the real-world robot is not as successful at reaching way-points as the sim-
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Figure 6.10: Real-world (R) comparison of collisions between each checkpoint

ulated robot. This is potentially due to the differences in simulation and
real-world, such as sensor noise. Overall, the emotion system has learned
similar emotion responses in the real-world and simulated training.

6.5 Discussion

Results from the simulated experiments have shown three human judged
anthropomorphic emotion states; fear, apprehension, and happiness. These
emotions have distinct Reinforcer-Emotion-Modifier bow-ties which de-
fine the behaviour of the robot platform based on its interaction with the
environment. Each of the behaviours is an intuitive response; with in-
creases in pain (collisions) from the environment, the robot should in-
crease safety margins and slow speeds. Conversely the lack of pain should
allow for exploration and potential risk taking, i.e. navigating closer to
obstacles increasing the risk of collisions. Results in the real-world have
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Figure 6.11: Real-world (R) comparison of classifier and modifier fitness

shown similar results with fear and happiness responses being learned,
indicating the validity of the simulated results. Extending the system to
four emotions however, did not show any clear signs of anthropomorphic
emotions, and fitness values indicate the system was unable to learn.

A common trend in the learned classifier populations is the omission of
the differential values being used by fit classifiers. This suggests that the
differential term, i.e. the difference between current and previous value,
is not useful for navigation or has not been useful for differentiating clas-
sifiers. From examining low fitness classifiers the differential term is most
commonly zero or near to zero for most parameters, as each parameter in
the system does not drastically change at each time step. The one excep-
tion is during a collision and the pain value will spike to one.

Because of this, subsumption has eliminated the specific classifiers with
the zero values in the differential terms for classifiers with ‘don’t care’ val-
ues as they have been considered more general. Subsumption is the pro-
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cess of eliminating classifiers which do not add anything to the decision
making process of the system. Subsumption works by attempting to com-
pact the rules through removing overly specific classifiers, i.e. it makes
the classifier population as generalised as possible. This indicates that the
differential term is not useful for robotic navigation.

The differential term provides information on the change in reinforcer
value, this is potentially useful for allowing a robot to learn to anticipate
the next emotion or event (collision or power loss). Anticipation may be
more useful in a dynamic environment or problem domain where the abil-
ity to anticipate the next state is important (anticipating a lack of energy
or collision).

Considering the fitness evaluations, a classifier’s fitness is dependant
on there existing useful, high fitness, modifiers. However, increasing the
number of emotions has a detrimental effect on learning the modifiers,
seen by decreasing fitness values. A potential solution would be to di-
vide the learning process between the modifier population and the clas-
sifier population. First learn a series of useful modifiers, and then learn
reinforcement values to select when to use them. The limitation of this ap-
proach is in how the modifiers will be trained, without an environmental
reference it is not clear how the system will select which modifier to test.
From an evolutionary point of view, the emotional reinforcer is a necessary
part of learning emotional behaviours.

According to modern evolutionary theory, different emotions evolved
at different times [40]. Primal emotions, such as fear, are associated with
ancient parts of the brain and presumably evolved among our earlier an-
cestors. Affectionate emotions, such as love for an offspring, seem to have
evolved among early mammals. Social emotions, such as guilt and pride,
evolved among social primates. Furthermore, more recently evolved parts
of the brain can affect older parts of the brain, such as when the cortex
moderates the amygdala’s fear response. This means that an earlier emo-
tion response or reinforcer may now be affected by more evolved cogni-
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tive process. For example, an initial spider bite on a person’s leg might not
cognitively be noticed (pain response is too low). But then the toxin in the
bite leads to extreme pain being felt, indicating that something is seriously
wrong. The brain may then cognitively associate that initial minor pain
sensation to the subsequent pain response, meaning the next time your
leg brushes against something your brain cognitively increases the pain
sensation you feel. This has led some researchers to propose that pain is
an emotion response [19], meaning pain as considered in this work would
be more accurately defined as a perception of physical feeling (touch).

Considering evolutionary theory, the navigation task the robot was re-
quired to complete is similar to the challenges faced by our early ancestors.
There is no social interaction or community of robots, it would not be rea-
sonable to consider the emotion model to learn emotions such as guilt,
pride, or love in this case. Thus, the navigation task may only require
primitive behaviours such as fear. This proposition is supported by the
emotion model only producing ‘fear’ and ‘happiness’ responses. To learn
more complex emotion behaviours within the presented emotion model
the robot may be required to learn in social or co-operative tasks.

6.6 Summary

In summary, a human inspired emotion model has been trained to adapt
the path-planning behaviour of a robot. Algorithmically the system has
learned three policies capable of adapting the robot’s navigation behaviour.
These policies demonstrate three emergent emotional behaviours: fear,
apprehension, and happiness. The results have demonstrated that these
learned emotion responses have improved navigation performance of the
Pioneer, when compared to the default non-adapting navigation system.
This improvement is seen as the robot reducing the number of collisions
with the environment and improving its time to navigate given paths. The
results have also shown that two emotions improved the performance the
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most, with more emotion states reducing the navigation performance due
to reducing the learn-ability of the emotion model.



Chapter 7

Conclusions

Robotic navigation has traditionally been approached with rigid computa-
tional techniques, relying on pre-determined models to determine a robot’s
behaviour. The objective of the work presented here was to apply hu-
man inspired mechanisms to address limitations in current robotic navi-
gation techniques. With specific emphasis on the problems of ‘where am
I?’ (SLAM) and ‘how do I get there?’ (path-planning). In order to achieve
this, two novel human inspired cognitive systems have been introduced
that add flexibility to current navigation techniques by allowing a robot to
learn through its interaction with the environment.

7.1 Cognitive action mapping

Teaching, alongside imitation, is widely thought to underlie much of the
success of humanity by allowing high-fidelity transmission of informa-
tion, skills, and technology between individuals, facilitating both cumula-
tive knowledge gain and normative culture [37]. Inspired by this concept,
this thesis has introduced a novel cognitive mapping stage to the SLAM
process called CAM-SLAM with the objective of providing a means for
robots to share navigation information.

CAM-SLAM is based on the concept within cognitive science of a sep-
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arate cognitive and mental map in humans. The cognitive mapping stage
functions in conjunction with current SLAM techniques, which are consid-
ered to be the mental mapping stage. The mental stage learns a detailed
sensory map of the environment and provides localisation information.
The cognitive mapping stage utilises an ACS to learn a series of novel
decision points with associated action features linking them together in or-
der to produce a cognitive action map (CAM). The key contribution is the
utilisation of the decision points and actions as mapping features. The ad-
vantage of using physical actions for mapping is that they are ubiquitous
across robotic platforms, even with varying sensing abilities. This is in-
tended to allow heterogeneous robots to share navigation information and
transfer knowledge between range and vision based SLAM techniques by
providing a common means of understanding the environment.

Commonly, in existing SLAM techniques, if a series of landmarks (or
images of the environment) are experienced again, then the robot reasons
it has been in these positions previously, i.e. closing the loop. The insight
in this work is that if a robot experiences a series of actions based on the en-
vironmental input regardless of the format of the input, then it can reason
that it is in these positions on a learnt map.

CAM-SLAM has been trained and evaluated on real-world robotic plat-
forms in an office environment. CAM-SLAM, through ACS and generali-
sation, was shown to autonomously generate CAMs capable of effectively
and consistently navigating robots to given goal locations with 97% less
mapping information than standard approaches.

The results have shown the successful sharing of CAMs between two
heterogeneous robotic platforms with varying capabilities in a real-world
environment. The ability to share mapping information between hetero-
geneous platforms is novel. This is useful for dangerous environments
where a lesser capable robot (cheaper) can be used for the initial explo-
ration before risking more capable (expensive) robot platforms.

Finally, the results have demonstrated the novel contribution of shar-
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ing navigation information between two distinct SLAM approaches, range-
based GMapping and vision-based RatSLAM. The advantage of sharing
information between SLAM processes allows an individual robotic plat-
form to utilise the best fit SLAM process for its sensors, while still provid-
ing useful navigation information for robots with different sensor types.
This improves the communal knowledge of co-operative robotics solving
given tasks.

7.2 Emotion inspired adaptive robotic path plan-

ning

Humans rely upon cognitive reasoning to determine their actions within
the environment, however their reasoning ability is influenced by inter-
nal emotional states. Generally considered to be a detriment to a per-
son’s cognitive process, recent research is regarding emotions as a ben-
eficial mechanism in the decision making process [23] [61]. Fellous [33]
has suggested that biological emotions facilitate the transfer of simple,
but high-impact information, both externally and internally, for operat-
ing system-like tasks. Inspired by these theories on natural emotions, this
thesis has presented a novel emotion model designed to improve a robot’s
navigation performance through learning to adapt a rigid computational
path-planning approach.

Emotions are considered to form the knots of bow-tie structures in bio-
logical cognitive systems, decoupling stimulus and response [65]. Inspired
by this, the emotion model has been implemented based on the concept of
a bow-tie structure by linking emotional reinforcers and behavioural mod-
ifiers through intermediary emotion states. An important function of emo-
tions in the model is to provide a compact set of high-impact behaviour
adaptations, reducing an otherwise tangled web of stimulus-response pat-
terns into a compact and manageable structure. The key contribution is
that the system is capable of learning the behavioural responses with no
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human pre-specifying these responses. The emotion model co-operatively
learns to associate emotional reinforcers to an evolving population of be-
havioural modifiers. The emotion system achieves this through learning
novel Reinforcer-Emotion-Modifier classifiers through an XCS, relying on
a GA to evolve the population of modifiers.

The emotion model was initially trained and evaluated in the simu-
lated offices of Willow Garage. The results of this training demonstrated
the emotion model is capable of learning up to three emotion states for
robotic navigation. The three emotions that were judged to have emerged
from the emotion model were labelled: fear, apprehension, and happiness.
The fear and apprehension responses slow the robot’s speed and drive
the robot away from obstacles when the robot experiences pain (collisions
with the environment). The happiness response increases the speed of the
robot and reduces the safety margins around obstacles when pain is ab-
sent, allowing the robot to drive closer to obstacles in the environment.

However, the emotion model has been shown to be incapable of learn-
ing beneficial behaviours with four or more emotion states. An investi-
gation into the fitness of the modifier and classifier populations indicates
that the classifiers are reliant on the GA evolving beneficial behaviours
(modifiers that achieve a high fitness). Increasing the number of potential
emotions in the model reduces the overall fitness of the modifier popula-
tion by increasing the search space and spreading the reward across more
modifiers, reducing the effectiveness of the learned bow-ties. It can there-
fore be argued that in structured and static environments, such as an office,
only three base emotions are needed to assist navigation.

It has been demonstrated that these learned emotion responses have
improved the navigation performance of the robot by reducing collisions
and navigation times, when compared with the default rigid navigation
system. The two emotion model (fear and happiness) improved perfor-
mance the most, indicating that a robot may only require two emotion
states (fear and happiness) to navigate.
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The emotion model has been verified in the real-world by training the
emotion model in the office environment at VUW with two possible emo-
tion states. The emerging emotion states had similar emotional responses
to the fear and happiness responses from the simulated training. Com-
pared with the rigid path-planning approach, the emotion model was able
to reduce collisions and improve navigation time in the real-world envi-
ronment. It was also demonstrated that the emotion model learned in
simulation could be transferred to the real-world, by also showing an im-
proved navigation performance in the real-world. This demonstrates that
the emotion model can learn beneficial behaviours for robotic navigation,
with both simulated and real-world models improving the navigation per-
formance of the rigid navigation system.

7.3 Summary of contributions

This thesis has introduced a beneficial learning mechanism to the prob-
lems of localisation and path-planning. Both of the presented systems
utilise a LCS to allow the robot to learn from its interaction with the en-
vironment. The LCS is ideal for robotics due to its ability to: generalise
states to reduce memory and computation, handle sparse and unspecific
reward through reinforcement learning, produce human readable state-
action rules, and handle noisy real-world input. As has been demon-
strated in this work, the LCS has been able to successfully reduce the re-
quired navigation information, learn anticipations for path-planning, and
compact the stimulus-response state space while being trained with noisy
robotic sensor data. However, a common problem when applying ma-
chine learning techniques to robotics is the time required for the robot to
physically traverse the environment and the number of learning iterations
required for the system to learn.

In the case of CAM-SLAM the ACS requires numerous iterations to
learn both the decision points and the actions associating them, requiring
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the robot to traverse the environment a number of times. Although shar-
ing navigation information has demonstrated reduced learning times, the
initial learning still requires a number of learning iterations before an ef-
fective CAM is created. In time critical conditions this can hinder a robots
efforts to complete a task, e.g. effectively locate a person in relief efforts.

Similarly, the emotion model took a number of days to learn the emo-
tional behaviours. The emotion model does have the benefit of being able
to transfer knowledge learned in simulation to the real-world, but this still
requires training the emotion model for novel environments and for dif-
ferent platforms.

Learning is what allows humans to be effective at solving problems,
and is considered to be a function required for autonomous robotics to
become a reality. However, a trade-off between required learning times
and resulting capabilities needs to be considered when applying learning
systems to real-world applications.

7.4 Future Work

The environments CAM-SLAM is capable of operating in are limited by
its ability to match decision points based on sensor data. The simple sen-
sor comparison approach used in this thesis is effective only for the spe-
cific domain the robots were trained in. To operate in complex domains,
e.g. outdoors or long time duration experiments, the condition matching
stage needs to be extended to incorporate pose and condition invariant
approaches for matching sensor data.

The action set used in the training of CAM-SLAM was limited to four
actions suitable for verifying CAM-SLAM in an office environment, but
it is unrealistic in domains that contain a more continuous structure. The
action set will need to be extended to incorporate a wider representation
of possible actions. However, simply increasing the number of possible
actions (physical angles the robot can move) will hinder the ability of the
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ACS to learn the possible expectation mappings.

One potential solution would be to develop a set of actions contextu-
alised to the specific location of a decision point. Reducing the arbitrary
number of directions to a more manageable concept. For example, an ac-
tion can refer to a door or opening at a given decision point, i.e. go through
the ‘door’ or ‘opening’. However, not all sensors are capable of extracting
such complex features, a solution should be flexible for a range of sensor
types. Another solution would be to use LCS with computed actions [44]
or code fragmented actions [43], which enable continuous actions to be
learnt provided they can be determined from environmental input.

As discussed in section 6.5, the problem of robotic navigation has no
social interaction or community aspect, so it is not reasonable to consider
that the emotion model can learn emotions such as guilt, pride, or love in
the tested domains. Modern evolutionary theory proposes different emo-
tions evolved at different times [40]. Primal emotions, such as fear, are
associated with ancient parts of the brain and presumably evolved among
our earlier ancestors. Affectionate emotions, such as love for an offspring,
are considered to have evolved among early mammals. Social emotions,
such as guilt and pride, evolved among social primates. Furthermore,
more recently evolved parts of the brain can affect older parts of the brain,
such as when the cortex moderates the amygdala’s fear response.

The navigation task may only require primitive behaviours such as
fear. This proposition is supported by the emotion model only producing
‘fear’ and ‘happiness’ responses. To learn more complex emotions within
the presented emotion model the robot may need to learn in domains with
social or co-operative tasks. For example, co-operative mapping or ‘forag-
ing’ (searching) for a ‘food’ (power) supply.

Furthermore, the emotion model in its current implementation has no
mechanism for behaviours to learn to affect ‘older behaviours’ or rein-
forcer inputs (such as pain influencing the sensation of touch), i.e. the
current model has no feedback mechanism between the emotion and re-
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inforcer inputs. To achieve this, the model could be extended to utilise
XCSCFC (code fragmented LCS). Specifically, the code fragments can take
previously learned rules and incorporate them into newer more complex
rules, i.e. incorporate ‘older’ parts of the brain into ‘newer’ parts of the
brain. The emotion model may then have the ability to learn emotions in
increasingly complex environments, similar to the evolution of emotion in
animals [40].

7.5 Publications

The following publications were produced during this thesis:

• WILLIAMS, H., BROWNE, W. N., AND MILFORD, M. Image region
salience for improving appearance-based place recognition using a
supervised classifier system. In Proceedings of the 2012 Australasian
Conference on Robotics & Automation (2012), Australian Robotics &
Automation Association

• WILLIAMS, H., BROWNE, W. N., AND CARNEGIE, D. A. Robotic
competitions: short term pain for long term gain. In Proceedings of
the 2014 Australasian Conference on Robotics & Automation (2014), Aus-
tralian Robotics & Automation Association

• WILLIAMS, H., LEE-JOHNSON, C., BROWNE, W. N., AND CARNEGIE,
D. A. Emotion inspired adaptive robotic path planning. In Evolution-
ary Computation (CEC), 2015 IEEE Congress on (2015), IEEE

• WILLIAMS, H., BROWNE, W. N., AND CARNEGIE, D. A. Learned ac-
tion slam: Sharing slam through learned path planning information
between heterogeneous robotic platforms. Applied soft computing (In
review as of 2015)
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• WILLIAMS, H., BROWNE, W. N., AND CARNEGIE, D. A. Human
inspired heterogeneous robotic navigation. Applied soft computing (In
process of writing)

• WILLIAMS, H., BROWNE, W. N., AND CARNEGIE, D. A. Emotion
inspired adaptive robotic path planning. Applied soft computing (In
process of writing)

7.6 Final Summary

This thesis has introduced two human inspired mechanisms to address
limitations in current robotic navigation techniques. First, a cognitive map-
ping based technique named CAM-SLAM has been developed that utilises
novel decision points as ubiquitous mapping features to facilitate autonomous
sharing of navigation information between heterogeneous robotic plat-
forms. Furthermore, this technique has been demonstrated as being capa-
ble of autonomously sharing navigation information between range-based
and vision-based SLAM techniques for the first time. Second, an emotion
inspired system has been developed to add flexibility to a rigid navigation
system. The learning system has been shown to be capable of learning
anthropomorphic emotional responses with fear, apprehension, and hap-
piness emerging from training without human bias. It has been demon-
strated that these learned emotion responses have improved the naviga-
tion performance of the robot by reducing collisions and navigation times.
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[95] SÜNDERHAUF, N., NEUBERT, P., AND PROTZEL, P. Predicting
the change–a step towards life-long operation in everyday environ-
ments. Robotics Challenges and Vision (RCV2013) (2014). Cited on
page 17.

[96] SUTTON, R. S., BARTO, A. G., AND WILLIAMS, R. J. Reinforcement
learning is direct adaptive optimal control. Control Systems, IEEE 12,
2 (1992), 19–22. Cited on page 31.

[97] TOMKINS, S. Affect Imagery Consciousness: Volume II: The Negative
Affects. Springer Publishing Company, 1963. Cited on pages 113
and 136.

[98] VAN WILGEN, C. P., AND KEIZER, D. The sensitization model to
explain how chronic pain exists without tissue damage. Pain Man-
agement Nursing 13, 1 (2012), 60–65. Cited on page 105.
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