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Abstract 
 

Background: Drug addiction is a chronic, relapsing disorder with great socioeconomic and 

morbidity costs. An estimated 27 million people worldwide suffer from drug dependence, 

with over 180,000 drug abuse-related deaths reported annually (UNODC, 2015). 

Currently, there are no FDA-approved pharmacotherapies for psychostimulant addiction, 

limiting the efficacy of treatment for cocaine and amphetamine abuse. Kappa-opioid 

receptor (KOPr) agonists can act as inhibitors of reward, and have been investigated in 

pre-clinical models of drug abuse for potential anti-addictive properties, but display 

undesirable side-effects such as dysphoria and sedation. A naturally-occurring KOPr 

agonist, Salvinorin A (SalA), has been explored as a lead for new KOPr-based anti-

addictive medications. SalA is a short-acting but potent non-nitrogenous KOPr agonist with 

known anti-cocaine effects, and chemical alterations to this structure have produced novel 

agonists with comparable or greater potency at the KOPr. This thesis compares two novel 

SalA analogues, 16-ethynyl Salvinorin A (Ethy-SalA) and 16-methyl Salvinorin A (Me-

SalA), in pre-clinical models of addiction and side-effect tests. 

Methods: Sprague-Dawley rats were used to model the behavioural effects of acute KOPr 

treatment upon cocaine self-administration and drug-seeking behaviour, natural reward-

seeking, cocaine-induced and spontaneous locomotion, and pro-depressive forced-swim 

testing. Transiently co-transfected HEK-293 cells were used to model the influence of 

KOPr activation upon dopamine transporter (DAT) function in an in vitro model of 

dopamine uptake, using confocal microscopy to detect internalisation of the fluorescent 

DAT substrate ASP+. 

Results: Acute pre-treatments of Ethy-SalA significantly attenuated cocaine-reinstatement 

of drug-seeking behaviour (at 0.1 and 0.3 mg/kg) and progressive ratio (PR) self-

administration of cocaine (at 2.0 mg/kg). The less potent agonist Me-SalA did not attenuate 

cocaine-reinstatement or PR self-administration at the doses tested (0.3-2.0 mg/kg). 
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Despite apparent anti-cocaine effects, Ethy-SalA (0.3 mg/kg) was not found to effectively 

reduce cocaine-induced locomotor hyperactivity or sensitisation in rats. Side-effect 

screens were carried out on the novel compounds using the doses tested in cocaine-

primed reinstatement. Ethy-SalA (0.3 mg/kg) and Me-SalA (1.0 mg/kg) did not significantly 

affect spontaneous locomotor behaviour 0.3 mg/kg, or reduce self-administration of the 

natural reward sucrose at a dose of 0.3 mg/kg in rats. Depression-like effects caused by 

acute Ethy-SalA treatment (0.3 mg/kg) were also not detected in the Forced Swim Test. 

Treatment with Ethy-SalA (10 µM) significantly increased uptake of the fluorescent ASP+ 

in co-transfected DAT/KOPr HEK-293 cells.  

Conclusions: A single treatment of the novel KOPr agonist Ethy-SalA, but not the novel 

agonist Me-SalA, was found to attenuate drug-seeking behaviours in models of cocaine 

administration with greater potency than SalA, and without detectable sedative or 

depression-like effects at a dose of 0.3 mg/kg. The cellular mechanism-of-action by which 

Ethy-SalA depresses cocaine reward is at least in part due to positive regulation of DAT, 

which would act to reduce extracellular dopamine within the brain. The lack of significant 

side-effects and the apparent improved potency of the compound support further 

exploration of Ethy-SalA as a lead for the development of an anti-addictive 

pharmacotherapy. 
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Chapter 1 : Introduction 
 

1.1 Addiction: Definitions and Socioeconomic cost 
 

Addiction is one of the most debilitating outcomes associated with drug abuse, and is a 

significant barrier to the cessation of drug use. The addictive condition is defined as a 

chronic, relapsing disorder associated with long-term substance abuse (Rinaldi et al., 

1988; WHO., 2010). Addiction is not unanimous amongst drug users, but population 

studies in the USA and Australia indicate that around one in five people who regularly use 

illicit drugs will go on to develop drug dependence (Glantz et al., 2009; Grant, 1996; Hall 

et al., 1999).  

Globally, drug abuse accounts for a substantial economic burden through early morbidity, 

crime, and treatment costs (Andlin-Sobocki & Rehm, 2005; Cartwright, 2008; Harwood et 

al., 1999; Wickizer, 2013). Global mortality as a result of drug abuse is estimated at 

187,100 deaths per year, and only one in six drug abusers has access to treatment or 

interventions (UNODC, 2015). Psychostimulants, such as cocaine, amphetamine-like 

stimulants, and opioids such as heroin are among the most heavily abused drugs 

(UNODC, 2015). In New Zealand, approximately 17% of people over the age of 16 years 

admit to recreational use of illicit drugs (Mason et al., 2010), with 83% of regular opioid 

users, 55% of regular methamphetamine users, and 10% of regular 3,4-methylenedioxy-

N-methylamphetamine (MDMA) or ‘ecstasy’ users being classified as dependent upon 

their drug of abuse (Wilkins et al., 2008). Drug use in New Zealand is also strongly 

associated with criminal activity; in a survey of the major cities Auckland, Wellington and 

Christchurch across 2006 and 2007, 16% of frequent illicit drug users were reported to 

have committed theft within the past month, 6% to have committed violent crime, and 38% 

to be dealing illegal drugs themselves (Wilkins et al., 2008). The cumulative costs of drug 

and alcohol abuse in New Zealand have been estimated at $6.525 billion NZD (BERL-
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Economics., 2009). In the United States of America, a similar estimate based upon 2007 

data suggested total costs of approximately $193 billion USD (NDIC, 2011). 

Heroin, cocaine, and amphetamines are some of the most heavily abused drugs 

worldwide, and contribute to the majority of drug-abuse cases (UNODC, 2015). Demand 

for cocaine-related treatment is highest in North and South America (UNODC, 2015; 

WHO., 2010), and though there are indications that cocaine availability and abuse in the 

U.S. and Europe is decreasing in the face of increased heroin, methamphetamine and 

prescription opioid abuse, cocaine still represents a significant global problem in terms of 

abuse and addiction (NDIC, 2011; UNODC, 2015). In New Zealand cocaine is a 

comparatively much rarer drug of abuse, though a 2005-2007 survey indicated that 

cocaine availability was trending towards an increase (Wilkins et al., 2008). Successful 

rehabilitation treatment for drug addiction has the potential for significant economic 

benefits to both society and the individual, by reducing costs associated with crime and 

treatment (Flynn et al., 1999; Prendergast et al., 2002). Effective treatment for addiction is 

therefore a highly desirable outcome, and though pharmacology-based therapies exist for 

alcohol and opiate dependence, there are currently no treatments for psychostimulants 

approved by the Food and Drug Administration (FDA). 

 

1.2 Neurophysiology of Drug Abuse and Addiction 
 

1.2.1 The Reward Pathway  

 

Drug abuse is intrinsically tied to the mesolimbic and mesocortical dopaminergic pathways 

of the brain, often referred to collectively as the ‘reward pathway’. The three key areas of 

the brain involved in the generation of reward are the ventral tegmental area (VTA), the 

nucleus accumbens (NAc) and the pre-frontal cortex (pFC) (Phillips & Fibiger, 1978). The 

major biochemical basis for the sensation of reward is the neurotransmitter dopamine (DA) 
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(Carlsson et al., 1957; Simon et al., 1979), which is synthesised within the VTA by 

dopaminergic neurons with extensions to the NAc and pFC (see Fig.1.1), forming the 

respective mesolimbic and mesocortical neural pathways (Swanson, 1982; Wood & Rao, 

1991). Stimulation of the VTA results in release of DA at synaptic terminals in the NAc and 

pFC, evoking a pleasurable or euphoric feeling in response to behavioural stimuli such as 

the ingestion of food and drink (Yoshida et al., 1992) and sexual activity (Pfaus et al., 

1990). The actions of DA upon post-synaptic target cells in the NAc and pFC are mediated 

by a family of G-protein coupled receptors, generally ordered into the major groupings of 

D1-like and D2-like receptors according to their respective stimulatory or inhibitory 

intracellular interactions with adenylyl cyclase (Kebabian, 1978; Self et al., 1996). In 

studies of the interaction of cocaine and amphetamines with the reward pathway, it has 

been identified that D1 receptor-signalling enhances drug reward (Graham et al., 2007), 

while striatopallidal D2 receptor-signalling acts to inhibit pro-reward processes (Durieux et 

al., 2009), in part by enhancing the activity of the DA transporter (DAT) and increasing DA 

uptake (Bolan et al., 2007).  

All known drugs of abuse cause hyperactivity of the reward pathway, by increasing 

extracellular levels of DA (Di Chiara & Imperato, 1988). The mechanisms by which drugs 

of abuse achieve this are many and varied; cocaine is one of the most widely studied, and 

is known to increase synaptic levels of DA by binding to and inhibiting the actions of the 

DAT, which normally acts to clear the synapse after DA release (Cass et al., 1992; Ritz et 

al., 1987). Inhibition of DAT results in a prolonged period of dopaminergic stimulation, 

which translates to the potent ‘high’ experienced by users of the drug (Volkow et al., 1997).  

The abnormal stimulation of the reward pathway by drugs of abuse can induce significant 

neurophysiological changes in regular abusers. Chronic exposure to the drug cocaine is 

thought to induce a variety of neurophysiological changes, including alterations to D1 and 

D2 receptor expression and activity, with D1 activation being favoured over D2 (Navarro et 

al., 2013; Park et al., 2013); and depletion of mesolimbic DA (Taylor & Ho, 1977), 
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potentially as a result of decreased expression of the vesicular monoamine transporter-2 

(VMAT2), an important pre-synaptic regulator of DA storage (Little et al., 2003). Decreased 

VMAT2 is thought to stimulate a reciprocal down-regulation of DA storage vesicles, and 

thus an overall decreased pool of DA (Narendran et al., 2012). Positron emission 

tomography (PET) imaging studies of dopaminergic activity in human methamphetamine 

and cocaine abusers, using D2 receptor radio-ligands, has indicated a loss of dopaminergic 

function in long-term abusers in comparison to non-abusers (Volkow et al., 2001; Volkow 

et al., 1993). Taken together, these studies suggest that long-term drug abuse can lead to 

DA imbalances and general dysregulation within the reward pathway. 
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Figure 1.1. The reward pathway. A representation of the mesolimbic (dark red) and 

mesocortical (dark blue) dopaminergic projections of the VTA, which form the reward 

pathway in human and rat brains. The reward pathway and its components are well 

preserved between humans and rats, and the rat is a commonly-used animal model for 

human reward and drug-associated behaviours.  VTA= ventral tegmental area; NAc= 

nucleus accumbens; pFC= pre-frontal cortex. 
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1.2.2 Theories of Addiction 

 

Long-term drug abusers are among the most likely to develop dependence or addiction 

upon their drug of choice. A repeating pattern of behaviour is formed, with periods of drug 

abuse and intoxication immediately followed by a dysphoric withdrawal state, 

characterised by an obsession or craving for more drug to alleviate negative withdrawal 

symptoms (see Fig. 1.2), which in turn leads to a relapse to drug taking (Koob & Bloom, 

1988; Koob & Moal, 1997).  Detoxified cocaine addicts, when exposed to the cocaine-like 

drug methylphenidate, show decreased DA activity in the striatal (NAc-containing) region, 

but increased activity in the thalamus, an area strongly associated with drug craving 

(Volkow et al., 1997). Two theories currently exist to explain the role of DA in the 

development of an addicted state; the first, the ‘dopamine-depletion’ hypothesis (Dackis & 

Gold, 1985) posits that increased craving can be attributed to depleted  stores as a result 

of chronic hyper-stimulation . The second theory, of ‘incentive-sensitization’, proposes that 

chronic abuse induces neurophysiological adaptations, causing the dopaminergic pathway 

to become highly sensitised to the drug of abuse (Robinson & Berridge, 1993). In both 

models, the abused substance then becomes the only means to reduce the negative 

sensations of withdrawal, and induces strong cravings which can propel drug abusers into 

the addiction paradigm.  
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Figure 1.2. An illustration of the three-stage addictive cycle. This cycle is self-

perpetuating, as preoccupation or ‘craving’ for the drug promotes drug intoxication, in turn 

inducing a negative withdrawal state which causes further drug craving to alleviate the 

negative effects of withdrawal. Addiction therapy attempts to break drug abusers out of 

the cycle at the withdrawal stage; if unsuccessful, those being treated will often relapse to 

drug abuse (top). The cycle can also be visualised as a descending spiral, where 

perpetuation of the cycle drives drug abusers further and further towards an addicted state 

(bottom). Modified from Koob and Le Moal (1997). 
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1.3 Behavioural Models of Addiction and Drug-seeking behaviour 
 

In order to better study the phenomenon of addiction, two animal models for human drug-

seeking behaviour are most commonly used: drug self-administration (in rodents or non-

human primates) and conditioned place preference (in rodents) (CPP) (Balster, 1991; 

Tzschentke, 1998). In the self-administration procedure, first described by Weeks (1962), 

animals are conditioned to associate drug delivery with a physical action of a lever press, 

and subsequent measures of their responses can be used as a measure of drug-seeking 

behaviour (Panlilio & Goldberg, 2007). Self-administration studies are most commonly 

performed in rats, with drug being delivered intravenously through a catheter inserted into 

the jugular vein and attached to a delivery mechanism which responds to lever presses 

performed by the rat within an operant box (de Wit & Stewart, 1981; Weeks, 1962). The 

drug administered acts as a highly effective positive reinforcement for the required 

behaviour (Weeks, 1962), particularly in the case of cocaine: if allowed unlimited access, 

animals sensitised to cocaine will nearly continuously self-administer, even when placed 

on a reinforcement schedule which demands multiple responses from the animal in order 

to receive a single unit of drug (Griffiths et al., 1975).  

Different types of self-administration regimens can be used to test the different effects of 

drugs of abuse. The drug-primed reinstatement model (de Wit & Stewart, 1981) has been 

used as an approximation of human relapse to drug abuse (Bossert et al., 2013; Shaham 

& Miczek, 2003), where abstinent individuals return to drug-seeking and drug-taking 

behaviour after acute exposure to the drug of abuse (de Wit, 1996) or a drug-associated 

environmental cue (Childress et al., 1993; O'Brien et al., 1992). The progressive-ratio 

model, where subjects are required to increase their responses in a roughly exponential 

pattern to continue to receive infusions (Depoortere et al., 1993; Hodos, 1961), measures 

the motivation of test subjects to continue seeking drug (Richardson & Roberts, 1996). 

Progressive-ratio has been previously used to examine differences in response in animals 
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previously sensitised to an abusive drug (Mendrek et al., 1998), comparisons of 

reinforcement between different drugs (Roberts, 1993), and the effect of a pre-treatment 

upon the reinforcing effects of a drug of abuse (McGregor et al., 1993). Changes to a 

‘break-point’, or the point at which an animal will cease to attempt to self-administer the 

drug on offer, are used to gauge the subject’s relative level of motivation  (Stafford et al., 

1998). As well as confirming the reinforcing effects of drugs of abuse, self-administration 

models in both rats and non-human primates have also been used to test potential anti-

addictive pharmacotherapies by screening the ability of various compounds, including 

kappa-opioid receptor (KOPr) agonists to reduce drug-seeking behaviour (Cappendijk & 

Dzoljic, 1993; Heidbreder & Shippenberg, 1994; Schenk et al., 1999).  

The CPP protocol tests ‘preference’ for a drug by causing the test subject to associate 

delivery of the drug with a particular environment (Bardo & Bevins, 2000; Rossi & Reid, 

1976). Animals are also given a neutral or ‘vehicle’ treatment in a different environment. 

On the test day the subject (usually mice or rats) is primed with an injection of the drug 

and then allowed to explore both ‘drug’ and ‘vehicle’ environments (Rossi & Reid, 1976). 

If the animal chooses to spend more time in the environment in which they first received 

drug, they are said to display ‘preference’ for drug.  

 

1.4 The Kappa-opioid system in Addiction 
 

1.4.1 Kappa-opioid physiology 

 

The kappa-opioid (KOP) system is an important regulator of mood within the central 

nervous system, and the endogenous KOP agonist dynorphin is thought to play an 

important role in mediating stress-associated dysphoria (Land et al., 2008). Dynorphin and 

its target, the G-protein coupled kappa-opioid receptor (KOPr), also have important anti-

addictive regulatory functions by acting to oppose the dopaminergic effects and 
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neurophysiological changes induced by long-term drug abuse (Mysels & Sullivan, 2009; 

Spanagel et al., 1992). Synthetic KOPr agonists are being explored as an alternative target 

to DA receptor or DAT antagonism for anti-addiction pharmacotherapies (Prisinzano et al., 

2005). Within the reward pathway, the KOP system acts to inhibit DA release in the NAc 

and pre-frontal cortex  through negative regulation of dopaminergic neurons extending 

from the VTA (Margolis et al., 2006; Shippenberg et al., 2007), and also increases DA 

uptake by DAT (Thompson et al., 2000).  

Long-term, the activity of dynorphin is also thought to encode the depressive and 

dysphoric components of drug withdrawal (Chartoff et al., 2012), and, together with the 

corticotrophin-releasing factor (CRF) activity, is strongly implicated as an important 

mediator of aversive stress responses (Bruchas et al., 2010).  Exposure to drugs of abuse 

causes marked changes in KOP expression and activity, particularly in areas of the brain 

associated with reward. Increased dynorphin expression is observed in the striatal region 

of the brains of human cocaine addicts (Hurd & Herkenham, 1993) and also within animal 

subjects given chronic cocaine treatment (Carlezon et al., 1998), suggesting that 

potentiation of the KOP system occurs as a result of long-term abuse.  Successful stress-

induced reinstatement to drug-seeking behaviour using acute KOPr agonist treatment has 

been generated  in animal models of alcohol (Funk et al., 2014) and cocaine self-

administration (Redila & Chavkin, 2008; Valdez et al., 2007) and can be blocked by KOPr 

antagonists (Beardsley et al., 2005), indicating that the dysphoric state caused by KOPr 

activation can act as a negative reinforcer of drug-seeking behaviour. Acute drug exposure 

can also influence KOP activity; a single injection of amphetamine has been shown to 

desensitise KOP receptors within the rat NAc, an effect which lasts for at least 5 days after 

amphetamine treatment (Xia et al., 2008). 

Not all of the KOP-mediated effects in the brain appear to be aversive, however. A recent 

study using selective optogenetic activation of dynorphin-expressing cells of the ventral 

and dorsal regions of the NAc have indicated that while KOP activity within the ventral 
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region of the NAc does produce an aversive response in place preference tests in mice, 

activation of dorsal KOP-expressing cells can induce a reward response (Al-Hasani et al., 

2015). Similarly, other research has identified the presence of KOP-activated pro-reward 

“hot-spots” within a rostral region of the rat NAc shell (Castro & Berridge, 2014). The 

contribution of the KOP system to behaviour is clearly much more complex than its 

traditionally assigned role as a mediator of aversive and dysphoric states of emotion. 

 

1.4.2 KOPr signalling pathway 

 

KOPr is a transmembrane G-protein coupled receptor (GPCR) widely expressed in the 

central and peripheral nervous systems; KOPr expression is particularly high in areas of 

the brain associated with reward, pain perception, and learning and memory (Simonin et 

al., 1995). KOPr activation generally has an inhibitory effect upon KOPr-expressing cells, 

which include nociceptive neurons in the periphery, and dopaminergic neurons in the 

central nervous system (CNS). According to one model (Bruchas & Chavkin, 2010), 

agonist-binding to the KOPr activates Gαi protein subunits, whose major downstream 

effect is the inhibition of cyclic-AMP synthesis by adenylyl cyclase (Taussig et al., 1993) 

and activation of the inflammatory and stress-associated c-Jun N-terminal Kinase (JNK) 

(Kam et al., 2004), while KOPr-mediated activation of Gγβ protein subunits is thought to 

influence K+ and Ca2+ channel activity, increasing membrane potentials and inhibiting 

action-potential transmission (Eriksson et al., 1993; Grudt & Williams, 1993). The KOPr 

also activates the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in two distinct 

stages, termed ‘early’ and ‘late’ phase activation Early phase activation appears to be Gγβ 

-mediated, while late-phase ERK1/2 activation occurs as a result of β-arrestin recruitment 

by the KOPr (McLennan et al., 2008) (see Fig. 1.3 for summary). The β-arrestin-dependant 

pathway includes activation of both ERK1/2 and p38 mitogen-activated protein kinase 

(MAPK), a combination which is thought to be responsible for many of the negative side-
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effects associated with classic KOPr agonists. The actions of p38 MAPK in particular have 

been strongly implicated in the development of aversion and negative stress-induced 

behaviours in animal models (Bruchas et al., 2011). It is also suspected that β-arrestin 

mediated signalling is responsible for human KOPr desensitisation, by stimulating receptor 

internalisation (Li et al., 1999). The downstream actions of β-arrestin recruitment therefore 

greatly hinder the therapeutic application of classical KOPr agonists, both as analgesic 

agents and as potential anti-addictive therapies.  

KOP receptors have been shown to regulate DAT and serotonin (5-HT) transporter (SERT) 

function as part of an ERK1/2 dependant pathway (Kivell et al., 2014). The regulation of 

DAT is particularly pertinent to an anti-addictive mechanism of action, and in vitro 

experimentation has indicated that KOPr-expressing cells will increase DA uptake and cell-

surface expression of DAT when exposed to the KOPr agonist Salvinorin A (Kivell et al., 

2014). KOPr and DAT are co-expressed in dopaminergic cells of the rat NAc (Svingos et 

al., 2001), and there is evidence for the formation of KOPr-DAT in cells co-transfected with 

DAT and KOPr, very likely allowing for direct regulation of DAT by physical association 

with the KOPr  (Kivell et al., 2014). Dual expression of KOPr and DAT is observed in 

several regions of the brain, in both rats and humans (see Fig. 1.4) (Ciliax et al., 1999; 

Ciliax et al., 1995; Mansour et al., 1987; Tempel & Zukin, 1987).The regulatory activity of 

the KOPr upon DAT may be central to many KOPr-mediated behavioural effects, 

particularly the negative regulation of reward. 

Regulation of SERT by KOPr may also influence drug-associated behaviours. Agonist 

stimulation of cells co-expressing KOPr and SERT in vitro decreases SERT activity (Kivell 

et al., 2014), and in vivo studies in 5-HT-depleted rats indicate that 5-HT activity may be 

integral to depression of the hyperactive locomotor response observed in acute cocaine-

treated rats pre-treated with chronic KOP agonist (Zakharova et al., 2008), as well as 

mediating aversive, stress-associated behavioural effects (Bruchas et al., 2011; Land et 

al., 2009). 
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Figure 1.3. Summary of KOPr signalling pathways and effects. An illustration of the 

early (top) and late (bottom) phases of ERK1/2 activation associated with KOPr activation, 

including downstream regulatory effects. Arrows indicate activation or stimulation; blunt-

ended lines represent inhibition. Adapted from Bruchas and Chavkin (2010). cAMP= cyclic 

adenosine monophosphate; CREB= cAMP response element-binding protein; DAT= 

dopamine transporter; ERK1/2= extracellular signal-regulated kinase 1 and 2; GRK3= G-

protein coupled receptor kinase 3; JNK= c-Jun N-terminal Kinase; p38 MAPK= p38 

mitogen-activated protein kinase; SERT= serotonin transporter. 
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Figure 1.4. KOPr and DAT co-expression in the brain. Expression profiles of DAT 

and KOPr in human and rat brain tissue, based upon tissue immunohistochemistry 

assays by Ciliax et al. (1995,1999), Mansour et al. (1987) and  Tempel and Zukin (1987). 

The size and number of the coloured circles does not represent relative expression. Co-

expression of DAT and KOPr is observed in areas associated with reward (VTA, NAc 

and pFC), mood (NAc, amygdala), and learning and memory (caudate nucleus, 

putamen). Regulation of DAT by KOPr may therefore play an important role in regulating 

both reward and mood states within the brain, as well as the development of reward 

association. 
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1.4.3 Kappa-opioids in addiction research 

 

The use of acute KOPr-agonist treatment for addiction is currently being explored in pre-

clinical trials. Experiments in drug-conditioned rats and mice with synthetic KOPr agonists 

have demonstrated the ability of KOPr ligands to decrease the rewarding effects of drugs, 

particularly that of cocaine.  

The selective KOPr agonist trans-(±)-3,4-Dichloro-N-methyl-N-[2-(1-

pyrrolidinyl)cyclohexyl]benzeneacetamide (U-50,488; see Fig. 1.5) has been shown to 

block conditioned place preference (CPP) for cocaine and attenuate cocaine-induced 

hyperactivity in rats at 5 mg/kg (s.c.) (Crawford et al., 1995), and reduces cocaine self-

administration (U-50,488 at 0.032-0.1 mg/kg/hr, i.v.) in rhesus monkeys (Negus et al., 

1997), while the agonist (+)-(5α,7α,8β)-N-Methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-

8-yl]-benzeneacetamide (U-69,593; see Fig. 1.5) has been shown to attenuate cocaine 

but not amphetamine reinstatement of drug-seeking behaviour in rats with 0.16 and 0.32 

mg/kg (s.c.) pre-treatment (Schenk et al., 1999). Pre-treatment with either U-69,593 (0.04-

0.32 mg/kg, s.c.) or U-50,488 (2.5-7.5 mg/kg, s.c.) has also been shown to block the 

development of behavioural sensitisation to cocaine in rats in a chronic administration 

model (Heidbreder et al., 1995). A study by Morani et al. (2009) established that treatment 

with the agonists U-50,488 (30 mg/kg, i.p.), U-69,593 (0.3 mg/kg, s.c.) and spiradoline (1 

mg/kg, i.p.) in drug-conditioned rats resulted in significant dose-dependent decreases in 

drug-seeking behaviour using a cocaine self-administration model.  Pre-treatment with 

spiradoline and U-50,488 has also been shown to attenuate responses during standard 

cocaine and morphine self-administration sessions (Glick et al., 1995).  KOPr agonists are 

therefore promising potential leads for anti-addictive therapies (Prisinzano et al., 2005).  A 

self-administration study by Freeman et al. (2014) showed that infusions of the selective 

KOP agonist Salvinorin A (SalA) co-infused with either cocaine or the MOR agonist 

remifentanil could reverse lever preference in rhesus monkeys, indicating that KOP 

agonists can act as “punishers” of drug-seeking behaviour. Classical synthetic KOPr 
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agonists, however, cause a variety of un-wanted side-effects in both human and animal 

models, including dysphoria, sedation, and nausea which limits their clinical applications 

(Land et al., 2008; Mello & Negus, 2000; Pfeiffer et al., 1986). 

Chronic KOPr agonist administration has also been shown to paradoxically increase drug-

induced self-administration behaviour (Negus, 2004; Potter et al., 2011), an effect which 

may be linked to the proposed role of the KOP system in the homeostatic ‘opponent 

process theory’ of drug abuse. Opponent process theory proposes that the initial rewarding 

‘high’ provided by drugs of abuse is followed by a reciprocal aversive and dysphoric state 

(Solomon & Corbit, 1974), a  process which is specifically induced in response to 

hyperactivity of the reward pathway (Vargas-Perez et al., 2007). In drug-dependant 

individuals, it is theorised that pro-aversive KOPr signalling out-weighs the initial reward 

response, enhancing withdrawal symptoms and reinforcing the ability of the drug of abuse 

to temporarily alleviate the dysphoric withdrawal state (Walker et al., 2012). Therefore, 

chronic exposure to KOP agonists may exacerbate the withdrawal state and enhance 

dependence upon the drug of abuse, by facilitating negative reinforcement of drug-taking 

behaviour (Wee & Koob, 2010). This theory is supported by animal studies of alcohol 

abuse where treatment with the long-acting kappa opioid antagonist norbinaltorphimine 

(norBNI; see Fig. 1.5) at 15 and 20 mg/kg was shown to reduce ethanol self-administration 

in ethanol-dependant rats (Walker et al., 2011). KOP antagonism in these animals is 

proposed to block at least some of the negative reinforcing effects of ethanol abuse and 

so reduce their dependence on the drug (Walker et al., 2012). This effect has also been 

shown in models of cocaine and methamphetamine administration, where treatment with 

norBNI (15 and 30 mg/kg) prevented the escalation in dosage normally observed in rats 

allowed to administer cocaine during ”long-access” 6 hour sessions (Wee et al., 2009; 

Whitfield et al., 2015). These studies therefore indicate that KOP antagonism may also 

hold promise as a preventative or protective anti-addictive therapy. 
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Figure 1.5. KOPr agonists and antagonist. Molecular structures of the synthetic alkaloid 

KOPr agonists spiradoline (A), (±)U-50,488 (B), and U-69,593 (C), and the selective KOPr 

antagonist norBNI (D). For comparison, the non-nitrogenous structure of neoclerodane 

diterpene Salvinorin A (E) is shown [structures generated using MarvinSketch chemical 

drawing software]. 
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1.5 Novel Kappa-opioid Agonists 
 

1.5.1 Functional Selectivity 

 

It has been identified that many receptors, in particular the GPCRs, are not limited to a 

single functional profile. Studies of the down-stream signalling effects of different ligands 

upon a single receptor have shown that certain ligands can favour the activation of one or 

more intracellular signalling pathways over others, an effect which is known as functional 

selectivity or ‘ligand bias’ (Kenakin, 2011). Functionally selective ligands have been 

identified for the mu-opioid receptor (MOR) which do not promote MOR internalisation 

(Groer et al., 2007) and display a reduced side-effect profile compared to classical MOR-

agonists (DeWire et al., 2013), characteristics which may be correlated with decreased β-

arrestin recruitment. The identification of functionally selective agonists for the KOPr which 

avoid or minimise β-arrestin recruitment and late-phase ERK1/2 activation offer the most 

promising means of developing clinically viable KOPr-based therapies (Le Naour et al., 

2014). 

 

1.5.2 Salvinorin A 

 

A new source of synthetic KOP compounds has stemmed from the discovery of the potent 

and selective KOPr-agonist properties of Salvinorin A (SalA), the active component of the 

hallucinogenic plant Salvia divinorum. Salvia has a history of use in traditional and religious 

ceremonies  by the Mazatec Indians of Oaxaca, Mexico (Valdes, 1983), and the plant has 

gained some recent popularity as a recreational drug due to its hugely potent 

hallucinogenic effects (Lange et al., 2008). Originally identified structurally by Ortega et al. 

(Ortega et al., 1982), SalA has been shown to selectively activate KOPrs without 

interaction at 5-HT receptors, unlike other hallucinogens such as lysergic acid 

diethylamide (LSD) (Butelman et al., 2007; Roth et al., 2002), and is not self-administered 
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even at low doses by rats (Serra et al., 2015). SalA has therefore been used as a lead 

compound for the manufacture of novel anti-addictive (Prisinzano et al., 2008) and 

analgesic pharmacotherapies (McCurdy et al., 2006).  

SalA is unusual amongst other known KOPr agonists in that its structure carries no 

nitrogen, as the presence of a charged nitrogenous group was once thought to be a 

universal feature of opioid agonists (Bera & Ghoshal, 2014). As with other KOP agonists, 

the anti-addictive action of SalA likely occurs through attenuation of DA release in the NAc 

(Ebner et al., 2010) and stimulation of enhanced DAT activity (Kivell et al., 2014). The 

compound shows a strong reduction in drug-seeking behaviour in cocaine-conditioned rats 

at a dosage of 0.3 mg/kg (Morani et al., 2009) without decreasing spontaneous movement 

(i.e. causing sedation) or causing taste aversion (Morani et al., 2012). In vitro, SalA 

displays an approximate 40-fold reduction in β-arrestin-associated KOPr internalisation 

compared to U-50,488 (Wang et al., 2005), which suggests that the ligand may display 

some degree of functional selectivity. 

Though SalA appears to show anti-depressive effects in mice and rats when given at very 

low doses of 0.001-1000 µg/kg (Braida et al., 2009) and induces rewarding effects in 

zebrafish when administered at 5 and 10 µg/kg (Braida et al., 2007), SalA has been shown 

to cause depressive-like effects in rats subjected to the forced swim test (FST) at 0.3 mg/kg 

(Carlezon et al., 2006; Morani et al., 2012). In addition to pro-depressive effects at high 

doses, SalA is rapidly metabolised and has a very short duration of action (Hooker et al., 

2008) making the compound unsuitable for therapeutic use. SalA is a substrate of the 

blood-brain barrier transporter P-glycoprotein ATPase (Teksin et al., 2009), and P-

glycoprotein activity is likely a major contributor to the fast clearance of SalA from the brain 

(Butelman et al., 2012).  SalA has been used as the basis for the creation of a number of 

synthetic KOPr agonists (Prevatt-Smith et al., 2011) which seek to retain the selectivity 

and anti-addictive effects of the parent compound, with improved pharmacokinetic 

parameters and reduced side-effects.  
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1.5.3 Binding Interactions with the KOPr 

 

A number of binding models have been proposed for the interaction of SalA with the KOPr, 

with the most current, by Kane et al. (2008), concluding that SalA binds in a region between 

Transmembrane II and VII of the KOPr, with residues Y (tyrosine) 119, Y313, Y320 and Q 

(glutamine)115 of the KOPr identified as important mediators of SalA binding (see Fig. 1.6 

for summary). Agonist binding is most likely enabled through a mixture of hydrogen 

bonding (Q115), hydrophobic Van der Waals (Y119 and Y313) and aromatic ‘pi-stacking’ 

(Y320) interactions (Kane et al., 2008). The furan ring of SalA has been identified to be 

particularly crucial for high-affinity agonist binding, as the KOPr binding site appears to 

have very low tolerance for chemical substitution of the furan ring (Harding et al., 2006; 

Simpson et al., 2007) and its substituents (Riley et al., 2014). Alteration of these sites 

tends to greatly decrease agonist binding affinity, suggesting that availability of the Y320 

region of the KOPr binding site is dependent upon steric agonist-receptor interactions 

(Riley et al., 2014). An isomer of SalA with alteration to the position of the furan ring, 12-

epi-Salvinorin A, also displayed reduced binding affinity compared to unmodified SalA 

(Béguin et al., 2009), giving further evidence for a highly specific binding site. 

The KOPr is more tolerant of modifications to other carbon positions of the SalA molecule. 

Chemical addition to the carbon-2 position of SalA have produced two analogues with 

enhanced KOPr-binding affinity, (Munro et al., 2008; Wang et al., 2008), and several 

analogues with similar binding affinities to the parent compound (Prevatt-Smith et al., 

2011; Simonson et al., 2015). 
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Figure 1.6. SalA binding interactions with the KOPr. Adapted from Kane et al. (2008). 

Red circles represent oxygen atoms; grey circles are carbon atoms (SalA); blue lines 

represent proposed binding interactions between labelled residues and SalA groups. TM= 

transmembrane region. KOPr crystal structure adapted from Wu et al. (2012). 
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1.5.4 Synthesis of novel Salvinorin-based KOPr agonists 

 

The synthesis of the novel KOPr agonists used in this thesis has been performed by the 

laboratory of Professor Thomas Prisinzano (Kansas University) (Harding et al., 2006), who 

has guided the creation of a series of compounds which preserve the basic structure of 

Salvinorin A but contain functional changes to the acetate group at the carbon-2 position. 

Alterations at this position have the potential to increase potency and binding affinity at the 

KOPr (Prevatt-Smith et al., 2011), and allow for the addition of metabolism-protective 

functional groups (Munro et al., 2008). Transformation at the carbon-2 position has yielded 

the SalA analogues 2-methoxymethyl (MOM) SalB, 2-ethoxymethyl (EOM) SalB, (Morani 

et al., 2013; Munro et al., 2008), Mesyl-SalB (Harding et al., 2005; Simonson et al., 2014), 

and β-tetrahydropyran (βTHP) SalB (Prevatt-Smith et al., 2011), all of which have been 

confirmed to act selectively at the KOPr. Self-administration studies have also shown that 

these compounds all act to reduce drug-seeking behaviour in cocaine reinstatement tests 

with rats (see Table 1.1). The analogue MOM-SalB also appears to display some degree 

of functional selectivity, by activating only early-phase ERK1/2 (McLennan et al., 2008). 

However, at least one of these compounds (MOM-SalB) displays depressive side effects 

in rat models (Morani et al., 2013) and there is a need for further anti-addictive SalA 

analogues with reduced side-effects. 

A novel set of SalA-based compounds have recently been generated through 

cycloaddition to the carbon-16 position of the furan ring present on SalA (Riley et al., 2013). 

Three of these compounds have been made available to our laboratory: 16-bromo 

Salvinorin A (Br-SalA), 16-methyl Salvinorin A (Me-SalA) and 16-ethynyl Salvinorin A 

(Ethy-SalA). Br-SalA has been shown to attenuate cocaine-seeking behaviour at a dosage 

of 1 mg/kg, and appears to display few negative side effects in preliminary behavioural 

studies (A. Ewald, PhD thesis 2015). Ethy-SalA and Me-SalA have been screened for 

activity at the KOPr and have been identified as KOPr agonists with no activity at the MOR 

(Riley et al., 2014), but have yet to be tested in vivo. 
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STRUCTURE 

(X) 
NAME 

EC50 

(cellular 

KOPr 

assay*) 

MINIMUM 

EFFECTIVE DOSE 

(COCAINE-

REINSTATEMENT) 

REFERENCES 

 

Salvinorin A 
40 ± 10 nM 

(1) 
0.3 mg/kg (2) 

1Prevatt-Smith et al., 

2011; 2Morani et al., 

2013 

 MOM-Salvinorin B 6 ± 1 nM (1) 0.3 mg/kg (2) 

1Prevatt-Smith et al., 

2011; 2Morani et al., 

2013 

 EOM-Salvinorin B 
0.65 ± 0.17 

nM (1) 
0.1 mg/kg (2) 

1Prevatt-Smith et al., 

2011; 2Unpublished 

data, Kivell lab 

 Mesyl-Salvinorin 

B 
30 ± 5 nM (1) 0.3 mg/kg (2) 

1Harding et al., 2005; 
2Simonson et al., 2014 

 β-

tetrahydropyran-

Salvinorin B 

60 ± 6 nM (1) 1.0 mg/kg (1) 
1Prevatt-Smith et al., 

2011 

Table 1.1. Carbon-2 analogues of SalA. Chemical structures and comparative potencies 

(EC50) of Salvinorin A and analogues arising from modification to the functional group of 

carbon-2. All effective doses are i.p. injections of compound in rats. * Assays for potency 

at the KOPr were performed using a [35S]GTP-γ-S functional assay; the effective 

concentration (50%) is in comparison to the stimulation of [35S]GTP-γ-S binding to the 

KOPr by U-50,488 (500 nM).  Assays were performed in Chinese Hamster Ovary (CHO) 

cells stably expressing KOPr. 

R = 
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1.6 Aims and Hypotheses 
 

This thesis aims to investigate the potential anti-cocaine effects of an acute administration 

of the novel KOPr agonists 16-ethynyl Salvinorin A and 16-methyl Salvinorin A in models 

of cocaine self-administration, cocaine-primed reinstatement of drug-seeking behaviour 

and cocaine-induced hyperactivity and behavioural sensitisation. We hypothesise that 

these compounds will display a similar anti-cocaine profile to the Salvinorin A in cocaine-

primed reinstatement and cocaine sensitisation and hyperactivity behavioural tests. This 

thesis will also evaluate the effects of acute KOPr agonist administration in a progressive-

ratio model of cocaine self-administration, as well as the behavioural side-effects including 

appetite and natural reward suppression, sedation, and depressive-like behaviours. We 

also aim to partially explain the mechanism of action of these novel compounds by testing 

their ability to regulate DAT function in a cellular model of DA reuptake. 
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Chapter 2 : Behavioural anti-cocaine effects of novel 

KOPr agonists 
 

2.1 Methods 
 

Multiple self-administration and locomotor assays were used to determine the ability of 

acute pre-treatments of Ethy-SalA and Me-SalA to alter characteristic behaviours 

associated with cocaine administration in rats. These behavioural tests were designed to 

detect the potential anti-cocaine effects of these novel KOPr agonists, as first step to 

identifying a KOPr-based anti-addictive pharmacotherapy. Self-administration procedures 

were used as models of active cocaine-seeking and taking behaviours in rats, while 

cocaine hyperactivity and behavioural sensitisation tests were used as secondary 

measures of anti-cocaine effects. 

 

2.1.1 Animals 

 

Male Sprague-Dawley rats were used for all behavioural testing, and were bred and 

housed within a secure facility at the School of Biological Sciences in Victoria University 

of Wellington with a 12-hour light/dark cycle (light on at 0700 hours, dark at 2100 hours), 

or were obtained from a similar facility operated by the School of Psychology. Rats were 

housed in white plastic cages within a shelved Scantainer Ventilated Cabinet (Scanbur 

Technology, Karlslunde, Denmark) controlled for temperature (19-21°C) and humidity 

(55%). All rats were housed in groups of 2-4 rats per cage, excepting cocaine self-

administration rats, which were housed individually. Rats used for sucrose self-

administration rats weighing between 250-350 g were housed two to a cage, and were fed 

a restricted diet to maintain approximately 85% of their initial weight, but had ad libitum 

access to water (except when undergoing self-administration training or testing).  All other 
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rats were given ad libitum access to both food and water. All behavioural experimental 

work was carried out between 0800 and 1600 hours, in the presence of white noise or with 

sound-attenuating boxes.  All experimental procedures were approved by the Victoria 

University of Wellington Animal Ethics Committee (Ethics Approval AEC-2012-R34). Rats 

used for self-administration and behavioural sensitisation were cocaine naïve prior to 

surgery. Rats used for locomotion assays and the Forced Swim Test were re-used from 

prior experimentation, after a minimum of a week’s rest period, in accordance with the 

recommendation of the National Centre for the Replacement, Refinement and Reduction 

of Animals in Research (UK) (Russell & Burch, 1959). 

 

2.1.2 KOPr agonists 

 

All SalA-derived KOPr agonists were generously provided by Prof. Thomas Prisinzano. 

SalA was extracted and purified from the leaves of Salvia divinorum (Butelman et al., 

2007). The novel chemical analogues of SalA (Ethy-SalA, Me-SalA) were produced using 

Suzuki-Miyaura coupling to the furan ring of SalA followed by reduction (Riley et al., 2014). 

All compounds were purified using column chromatography, and solid products were 

determined to be > 95% pure using analytical High-Performance Liquid Chromatography 

(HPLC) (Riley et al., 2014). Powders were stored at 4ºC in the dark before use. 

Unless specified, all KOPr agonists used in this and in other chapters for behavioural 

assays were dissolved in a vehicle of dimethyl sulfoxide (DMSO), polysorbate 80 (Tween 

80) and double-distilled water (ddH2O) in a 2:1:7 ratio. KOPr agonists in powdered form 

were weighed and completely dissolved in DMSO before adding Tween 80 and ddH2O, 

with vortexing to ensure complete mixture of the solution. KOPr agonist solutions were 

stored at 4°C in the dark for a maximum of 1 week. Agonist pre-treatment times and 

injection methods for Sal A, U-50,488 and U-69,593 were based upon previous literature 

examining the anti-cocaine effects of these drugs (Morani et al., 2009). 



27 
 

2.1.3 Chemicals and solutions 

 

Stock solutions of pentobarbital (500 mg/mL), xylazine (20 mg/mL), ketamine (100 

mg/mL), carprofen (50 mg/mL), terramycin powder, sodium lactate solution, Vetadine 

(1.6% iodine, w/v), heparin (5,000 unit/mL) and penicillin G sodium (1,000,000 IU) were 

purchased from Provet (Auckland, New Zealand). To make heparin solutions of 30 unit/mL 

and 3 unit/mL, the 1,000 unit/mL stock was diluted in sterile 0.9% saline (0.9% NaCl, w/v) 

solution, and filtered before use. Working solutions of carprofen (5 mg/mL) and 

pentobarbital (50 mg/mL) solutions were made using sterile, filtered 0.9% saline solution. 

Penicillin solution (100,000 unit/mL) was made by dissolving penicillin powder in 30 

unit/mL heparin, and is referred to as ‘penicillin/heparin solution’.  

Cocaine hydrochloride (BDG Synthesis, Wellington, NZ) was dissolved in 0.9% saline 

solution containing 3 unit/mL heparin to a concentration of 1.65 g/L for cocaine self-

administration (referred to as ‘heparinised cocaine’), or in sterile filtered 0.9% saline 

solution to a concentration of 20 mg/mL for cocaine-prime injections. 

 

2.1.3 Self-administration intra-jugular surgery 

 

Catheter preparation, intra-jugular surgery procedures and post-operative care are 

described in detail in Appendix 2. Briefly, rats weighing 300-350 g were anaesthetised with 

a mixture of ketamine and xylazine (90 mg/kg ketamine, 9mg/kg xylazine) and operated 

upon to insert an indwelling catheter into the right jugular vein. The metal opening of the 

catheter was fixed on the crown of the head by jewellers screws mounted on the exposed 

skull and covered with a layer of dental acrylic. The open end of the catheter was sealed 

with a short, close-ended length of tygon tubing. Rats were monitored for significant weight 

changes over 5 days, after which self-administration training was begun. Rats were 

flushed daily with 0.2 mL of penicillin/heparin solution to prevent blood clots within the 
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catheter. Catheter patency was tested weekly by pulling blood back into a syringe from the 

catheter, or by flushing the catheter with 0.15 mL of 50 mg/kg pentobarbital to observe an 

immediate sedative effect. If a catheter became blocked or developed a leak, rats were 

further operated upon to replace the blocked metal terminal of the catheter or to introduce 

a new catheter into the left jugular. If the second catheter was lost, the rat was removed 

from the experiment and euthanized. 

 

2.1.4 Cocaine self-administration training 

 

Self-administration training was performed as previously described (Bosch, 2013). Briefly, 

training was performed in operant chambers (ENV-001, Med Associates, St. Albans, 

Vermont) enclosed within sound- and light- attenuating boxes, with a choice of an active 

(right-hand) or inactive (left-hand) lever paired with a light stimulus. The metal-pieces of 

the jugular catheters were connected to a 20 mL syringe of cocaine solution (1.65 g/L) 

within a mechanical pump (PHM-100VS, Med Associates) via tygon tubing Cole-Parmer 

C-P06418-02, Thermo-Fisher Scientific Inc., Melbourne, Australia). Rats were initially 

trained under a Fixed-Ratio (FR) -1 schedule, where a single depression of the active lever 

stimulated activation of the light above the lever and a simultaneous infusion of 

heparinised cocaine (0.1 mL).  Rats were considered to have acquired drug-seeking 

behaviour once they were consistently receiving at least 20 infusions over the two hour 

session, with a ratio of active:inactive lever presses  of at least 2:1. After acquisition, rats 

were moved to an FR-2 schedule (two lever presses per infusion), where they were also 

required to achieve greater than 20 infusions per session over three days, and were then 

moved to a FR-5 schedule (5 lever presses per infusion) for a minimum of 10 days. A 

baseline level of active cocaine responding for each rat was calculated by taking the mean 

infusions of three consecutive FR-5 administration sessions, with the variation in response 

being less than 20% of the mean. All cocaine infusions and responses and were controlled 
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and recorded using Med Associates software (MED-PC IV, version 4.2). Rats were flushed 

with 0.2 mL of penicillin/heparin solution immediately prior to and after self-administration 

sessions. During the training phase, rats were given five consecutive days of self-

administration, followed by two rest days, during which catheters were tested for patency. 

After establishment of baseline responding, rats were moved to the cocaine-primed 

reinstatement model. 

 

2.1.5 Cocaine-primed reinstatement 

 

Extinction and reinstatement of drug-seeking behaviour was performed using a between-

session design (Bosch, 2013). Once FR-5 responses for heparinised cocaine did not vary 

by more than 20% from baseline over two consecutive days, or by more than 10% over 

three consecutive days, on the proceeding day the rat was moved to an extinction phase. 

Cocaine syringes were replaced with a 3 unit/mL heparin, 0.9% saline solution and the 

light stimulus disconnected from the active lever. Drug-seeking behaviour was judged as 

being extinguished once active lever responses for heparinised saline dropped below 20 

presses over a single 2 hour-session. Rats were then tested on the following day for their 

ability to reinstate drug-seeking behaviour after a priming injection of cocaine. The light 

stimulus connection to the active lever was restored, and rats were injected i.p. with 

cocaine (20 mg/kg) and placed immediately into the operant chamber with a syringe of 

heparinised saline available (see Fig. 2.1 for summary). Rats were advanced to the 

treatment regimen if active lever responses were recorded at or above baseline activity in 

response to the cocaine prime. For each reinstatement test, rats were required to complete 

the two-day baseline and extinction phases described above. On the day of reinstatement, 

rats were pre-treated with Me-SalA (0.3 mg/kg, 1 mg/kg), Ethy-SalA (0.1 mg/kg, 0.3 

mg/kg), SalA (0.3 mg/kg) or vehicle 10 minutes (Me-SalA, Ethy-SalA, vehicle) or five 

minutes (SalA) before a priming injection of cocaine (20 mg/kg). Rats were then placed 
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into the operant box and allowed to self-administer heparinised saline for 2 hours. The 

order of treatment was varied using a Latin square design (Appendix 4, Table 6.1) to 

mitigate the effect of a single treatment order upon the results obtained. 

 

2.1.6 Progressive-ratio cocaine self-administration 

 

Rats were trained in cocaine self-administration as previously described (see section 

2.1.6) until rats had successfully achieved 10 days at FR-5. Rats were then allowed two 

further days on a FR5 schedule, before moving to a progressive-ratio (PR) schedule (Fig. 

2.2). The schedule used required rats to increase the number of active responses for each 

new infusion, at a rate calculated using the equation (Roberts, 1993): 

Ratio = [(5 x e(0.2 x infusion number) – 5)]  

Rats were maintained on this PR schedule until the number of infusions achieved on three 

consecutive days did not vary by more than ± 2 infusions. On the fourth day, rats were 

injected with vehicle (i.p.), Ethy-SalA (0.3, 1.0 or 2.0 mg/kg; i.p.), Me-SalA (1.0 or 2.0 

mg/kg; i.p.), SalA (at 2.0 mg/kg; i.p.), or U-69,593 (10 mg/kg; s.c.) 10 minutes (vehicle, 

Ethy-SalA, Me-SalA), 15 minutes (U-69,593) or 5 minutes (SalA) prior to the start of a PR 

session. The order of treatment was varied using a Latin square design (see Appendix 4, 

Table 6.2). After completing a test session, rats were given two days of rest to allow the 

KOPr agonist to pass out of the rat’s system, and to test catheter patency. 
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Figure 2.1. Cocaine-primed reinstatement. Schematic of the self-administration training 

(I.) and reinstatement (II.) procedures used for cocaine self-administration. On the day of 

reinstatement, treatments were administered 5-10 minutes before the priming injection of 

cocaine. 
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Figure 2.2. Progressive ratio responses. Graphical representation of accumulative 

responses during a PR self-administration session for one animal up to 15 infusions. 

Infusion 
number 

Active lever 
responses 
required 

Cumulative 
responses 

1 1 1 

2 2 3 

3 4 7 

4 6 13 

5 9 22 

6 12 34 

7 15 36 

8 20 69 

9 25 94 

10 32 126 

11 40 166 

12 50 216 

13 62 278 

14 77 355 

15 95 450 

16 118 568 

17 145 713 

18 178 891 

19 219 1110 

20 268 1378 

Table 2.1. Progressive-ratio responses. Numbers of required and accumulative 

responses under the PR self-administration schedule for infusions from 1 to 20. 
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2.1.7 Cocaine-induced locomotor hyperactivity 

 

Cocaine-induced hyperactivity tests were used to explore the ability of acute Ethy-SalA 

treatment to alter the hyperactive behaviour caused by cocaine in drug-naïve rats, at a 

dose previously found to attenuate cocaine-reinstatement (0.3 mg/kg). Rats weighing 

between 300-400g were placed in open-top activity chambers (ENV-520, Med Associates) 

within light- and sound-attenuating boxes and allowed to habituate to the space for 30 

minutes, before being removed from the chamber and injected with either vehicle (i.p.), 

0.3 mg/kg Ethy-SalA (i.p.) or 0.3 mg/kg U-69,593 (s.c.) and placed in the home cage for 

10 (vehicle, Ethy-SalA treatment) or 15 minutes (U-69,593 treatment). Rats were then 

removed from the home cage, injected i.p, with 20 mg/kg cocaine and placed back into the 

activity chamber and allowed to explore the space for a further 60 minutes. Horizontal 

movement was detected by infra-red photobeam and transmitters and receivers positioned 

on the sides of the box, and recorded by Med Associates Activity Monitor Software (SOF-

811).  Stereotypic and ambulatory activity was recorded during both habituation and 

testing sessions. A single ambulatory count was calibrated to be recorded when three 

consecutive horizontal photobeam breaks were made by the rat. Stereotypic behaviour 

was defined by the software as any horizontal movement detected below this threshold. 

 

2.1.8 Behavioural sensitisation to cocaine 

 

The cocaine sensitisation assay was used to establish whether acute Ethy-SalA pre-

treatment (0.3 mg/kg) could suppress behavioural sensitisation to the locomotor-

enhancing effects of daily cocaine injections in rats. Drug-naïve rats weighing 300-370 g 

were obtained from the School of Psychology (Victoria University), and were allowed a 

period of a week to acclimatise to their new surroundings, and to become used to being 

handled. Rats were assigned to cocaine- or saline-treatment groups, and received 

injections of 20 mg/kg cocaine or saline (i.p.) for five consecutive days. On Day 1, rats 
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were first habituated to a locomotor activity chamber (see section 2.1.11) for 30 minutes, 

then injected with either cocaine or saline and their activity recorded for 60 minutes. On 

Days 2-5, rats were injected and placed back into their home cage. Rats received no 

treatment on days 6-9. On Day 10 of the experiment, cocaine- and saline-treated rats were 

again habituated to the activity chamber, before being returned to their home cages and 

injected with either vehicle or 0.3 mg/kg Ethy-SalA (i.p.), 10 minutes before an injection of 

20 mg/kg cocaine. Rats were then placed back into the activity chamber and locomotor 

activity was recorded for 60 minutes (see Fig. 2.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Treatment schedule for cocaine sensitisation. Rats were initially split into 

two treatment groups (Days 1-5), and then into two further groups, receiving either vehicle 

or Ethy-SalA pre-treatment. 
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2.1.9 Statistical analysis 

 

All statistical analyses were performed using GraphPad Prism 5.0 software. Rats receiving 

multiple treatments using a Latin square design (cocaine reinstatement and progressive-

ratio self-administration) were split into groups and analysed using repeated measures 

one-way ANOVA with Dunnett’s multiple comparison post-test for 3 or more treatment 

groups, or paired t-tests for 2 treatment groups. For cocaine-reinstatement and 

progressive-ratio experiments, not all subjects received all treatments, and so for 

repeated-measures analysis subjects were grouped and analysed separately. 

Progressive-ratio data was analysed with respect to infusions rather than active 

responses, as comparisons of exponentially increasing lever responses would violate 

assumptions of equal variance when performing ANOVA analysis (Richardson & Roberts, 

1996). Results were considered to show significance if the p-value for statistical tests was 

< 0.05. Numerical results are reported in-text as Mean ± Standard Error of Mean. 
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2.2 Results 
 

2.2.1 Operant training: cocaine self-administration 

 

All rats used in this experiment acquired cocaine-seeking behaviour within three weeks of 

the start of cocaine self-administration training (Fig. 2.4A). The shortest time to acquire 

drug-seeking behaviour was from the first day of administration (1 rat), and the longest 

time taken was 16 days. All rats, regardless of the length of training, eventually showed 

significant differences in active, cocaine-delivering lever and inactive lever responses 

[F(9,114)=4.91, p<0.0001], with active responses observed as being significantly greater 

than inactive responses over at least three consecutive days [Bonferroni post-test, 

p<0.001] (Fig. 2.4B).  

Baseline active responses and cocaine administration were monitored to test the 

assumptions that (1) rats would stably administer cocaine during baseline sessions 

between reinstatement tests, and (2) that drug-seeking behaviour was consistently 

extinguished under saline administration condition.  

Mean active and inactive lever responses showed significant differences prior to all 

reinstatement sessions [F(1,40)=464.50, p<0.0001], with inactive significantly less than 

active responses at each time point [Bonferroni post-test, p<0.001] (Fig. 2.5A). Mean 

active and inactive responses were also significantly different during extinction phases 

[F(1,40)=26.60, p<0.0001], but only prior to the 1st and 6th reinstatement sessions 

[Bonferroni post-test, p<0.05]. (Fig. 2.5B). Two-way ANOVA analysis of active responses 

under baseline and extinction conditions (Fig. 2.5C) identified a significant effect of The 

administration phase (baseline or extinction) had a significant effect upon active 

responding [F(1,40)=429.13, p<0.0001], with responses during extinction phases being  

consistently reduced to approximately 5% that of baseline-phase responses [Bonferroni 

post-test, p<0.001].   
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Cocaine administration during the baseline phases of each reinstatement course was 

stable (Fig. 2.6), with linear regression modelling indicating no significant positive or 

negative correlation between reinstatement number (time) and dose [Spearman’s 

coefficient, r2= 0.0001]. The slope of this regression was not significantly non-zero 

[F(1,74)=0.007, p>0.05]. 
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Figure 2.4. Acquisition of cocaine self-administration. All rats used in this experiment 

acquired cocaine-seeking behaviour within 18 days of the start of cocaine self-

administration training (A). The shortest time to acquire drug-seeking behaviour was from 

the first day of administration (1 rat). Analysis of active and inactive lever responses (B) 

shows a highly significant difference between the numbers of active and inactive lever 

responses for cocaine in all rats over last three days prior to the end of FR1 training. Mean 

active responses over these three days were 36.67 ± 5.35. ***= p<0.001 (two-way ANOVA 

with Bonferroni post-test). 
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Figure 2.5. Baseline cocaine self-administration responses. Mean active responses 

during baseline cocaine-administration sessions were significantly greater than inactive 

responses (A). During the extinction phase, mean active responses did not show significant 

differences to inactive responses, except during extinction sessions 1 and 6 (B). A 

comparison of baseline and extinction phases showed highly significant differences 

between baseline and extinction active responses (C). *=p<0.05, ***=p<0.001 (two-way 

repeated measures ANOVA, with Bonferroni post-test). n= 4-8 rats. 
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Figure 2.6. Baseline cocaine dose. The cumulative dose of cocaine self-administered 

during the baseline phases of each reinstatement test was stable, with no significant 

increase or decrease in dose observed between sessions (p>0.05; one-way ANOVA, with 

Bonferroni post-test), or over a period of seven reinstatement courses (Pearson correlation 

coefficient, r2= 0.0001). n= 4-8 rats. 
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2.2.3 Cocaine-primed reinstatement  

 

The mean active lever responses during the initial baseline, extinction and reinstatement 

phase of cocaine-primed reinstatement (no pre-treatment) testing showed highly 

significant differences [F(2,6)=11.87, p<0.01]. Mean active responses across all extinction 

phases (12.48 ± 1.32) were significantly reduced in comparison to mean baseline 

responses (190.3 ± 15.22) [Dunnett’s multiple comparison test to baseline, p<0.05]. Active-

lever responses were restored to approximately baseline levels of responding (282.0 ± 

63.71) [p>0.05] with a cocaine prime (20 mg/kg) (Fig. 2.7A).  

Rats pre-treated with Ethy-SalA or vehicle showed significant differences in their reinstated 

mean active responses [F(2,5)=5.23, p<0.05]. Pre-treatment with 0.1 mg/kg Ethy-SalA 

(163.3 ± 22.79 responses) and 0.3 mg/kg Ethy-SalA (161.7 ± 18.18 responses) reduced 

the number of active responses in comparison to vehicle pre-treatment (267.8 ± 41.36 

responses) [Dunnett’s multiple comparison test to vehicle, p<0.05] (Fig. 2.7C). No 

significant differences were detected between Me-SalA (0.3 and 1.0 mg/kg) and vehicle 

pre-treatment [F(2,4)=1.95]. Pre-treatment with SalA significantly attenuated mean lever 

responses at a dosage of 0.3 mg/kg (124.4 ± 45.60) in comparison to vehicle responses 

(280.4 ± 48.26) [paired t-test, t(4)=3.423, p<0.05]  (Fig. 2.7B).  
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Figure 2.7. Cocaine-primed reinstatement of self-administration behaviour with KOPr 

agonist pre-treatment. Responses during the extinction phase of the reinstatement test 

were significantly lower than baseline responses for cocaine. Active responding for self-

administered cocaine was restored after extinction by a single priming injection of cocaine 

(20 mg/kg) without vehicle or KOPr agonist pre-treatment (A). Pre-treatment with Ethy-SalA 

before a priming injection of cocaine (20 mg/kg) significantly reduced active lever responses 

made at doses of 0.1 and 0.3 mg/kg. SalA also significantly attenuated lever responses at 

a dose of 0.3 mg/kg (B). Pre-treatment with Me-SalA was not found to significantly attenuate 

active lever responses when at either 0.3 mg/kg or 1 mg/kg treatment (C). *= p<0.05; **= 

p<0.01; ***= p<0.001 (one-way repeated measures ANOVA, with Dunnett’s multiple 

comparison post-test (A, C, D) or repeated measures t-test (B). n= 5-7 rats. 
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2.2.4 Progressive-ratio self-administration 

 

Rats pre-treated with U-69,593 (1.0 mg/kg) achieved fewer infusions in a progressive-ratio 

session (8.44 ± 1.27 infusions) than when treated with vehicle (12.6 ± 0.44 infusions) 

[t(8)=3.54, p<0.01] (Fig. 2.8A). Pre-treatment with Ethy-SalA (0.3 and 1.0 mg/kg) (Fig. 

2.8B) did not identify any significant differences in comparison to vehicle treatment 

[F(2,10)=1.22, p>0.05]. Similar analysis of rats pre-treated with 1.0 and 2.0 mg/kg Me-

SalA also did not detect significant differences to vehicle treatment (Fig. 2.8C).  

Rats pre-treated with higher doses of both SalA (2.0 mg/kg) and Ethy-SalA (2.0 mg/kg) 

and vehicle (Fig. 2.8D) showed significant differences in mean infusions achieved in 

comparison to vehicle [F(2,6)=3.98, p<0.05]. Rats treated with Ethy-SalA (2.0 mg/kg) 

showed reduced numbers of infusions (10.00 ± 1.62) when compared to vehicle treatment 

(13.10 ± 0.67 infusions) [Dunnett’s multiple comparison post-test, p<0.05]. Treatment with 

SalA (2.0 mg/kg) had no significant effect upon mean infusions. 
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Figure 2.8. Progressive ratio cocaine self-administration with KOPr agonist pre-

treatment. Rats pre-treated with 1.0 mg/kg of U-69,593 achieved significantly fewer 

cocaine infusions per test session than rats treated with vehicle (A). Treatment with 0.3 

and 1.0 mg/kg of Ethy-SalA (B) and 1.0 and 2.0 mg/kg of Me-SalA (C) had no significant 

effect on infusions achieved. Treatment with 2.0 mg/kg of SalA also did not cause a 

significant change in infusion number, but 2.0 mg/kg of Ethy-SalA significantly attenuated 

infusions achieved (D). *= p<0.05; **= p<0.01 (paired t-test (A) or repeated-measures one-

way ANOVA with Dunnett’s post-test: comparison to vehicle (B-D)). ESA= Ethy-SalA, 

MeSA= Methy-SalA. n= 6-11 rats. 
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2.2.5 Cocaine hyperactivity with KOPr agonist pre-treatment 

 

One-way ANOVA analysis of hyperactive locomotor activities with vehicle or KOPr 

agonist pre-treatment and cocaine or saline treatment identified significant differences 

between mean ambulatory responses [F(4,45)=3.68, p<0.05] (Fig. 2.9A)  and mean 

stereotypic responses [F(4,450=2.90, p<0.0001] (Fig. 2.9B). Saline-primed rats treated 

with Ethy-SalA (0.3 mg/kg) (1090 ± 239 counts) or vehicle (1029 ± 144 counts) showed 

significantly fewer mean ambulatory counts than rats pre-treated with vehicle and primed 

with cocaine (hyperactive control) (20 mg/kg) (4246 ± 886 counts) [Dunnett’s multiple 

comparison post-test, p<0.05]. A significant reduction was detected in the mean 

stereotypic counts of cocaine-primed rats pre-treated with U-69,593 (0.3 mg/kg) (5574 ± 

731 counts) compared to the hyperactive control (124511 ± 810 counts) [Dunnett’s 

multiple comparison post-test, p<0.001], and between saline-primed rats treated with 

Ethy-SalA (5278 ± 566 counts) or vehicle (5734 ± 453) and the hyperactive control 

[p<0.001]. 

Time course analysis of rats pre-treated with vehicle, Ethy-SalA or U-69,593 (Fig. 2.10A) 

indicated a significant effect of time upon ambulatory activity [F(18,558)=13.01, p<0.001], 

but no significant differences between the treatment groups [Bonferroni post-test, 

p>0.05]. Similar analysis of stereotypic counts (Fig. 2.10B) also identified a significant 

interaction between time and treatment, [F(36,558)=3.77, p<0.0001], with significant 

difference in stereotypy between U-69,593 and vehicle treated rats between 40-55 

minutes and 65-85 minutes [Bonferroni post-test, p<0.05]. 
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Figure 2.9. Measures of Cocaine hyperactivity with KOPr agonist pre-treatment. Rats 

were treated with Ethy-SalA (0.3 mg/kg) or U-69,593 (0.3 mg/kg) 10 and 15 min before a 

priming injection of cocaine (20 mg/kg) or saline, after 30-min habituation to an activity 

chamber. Ethy-SalA pre-treatment did not significantly reduce ambulatory (A) or 

stereotypic (B) cocaine hyperactivity. U-69,593 pre-treatment significantly reduced 

stereotypic (B) but not ambulatory hyperactivity (A). Animals treated with vehicle or Ethy-

SalA and saline did not show a hyperactive response (A, B). Veh= vehicle. *= p<0.05; ***= 

p<0.001 (one-way ANOVA with Dunnett’s post-test: comparison to Veh+Cocaine). n= 7-

15 rats. 
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Figure 2.10. Time course analysis of cocaine hyperactivity with KOPr agonist pre-

treatment. Analysis of cocaine-induced ambulatory counts taken every 5 minutes (A) 

showed no significant differences between treatment groups. Analysis of stereotypic 

counts (B) indicated a reduction in stereotypic behaviour from 40-55 minutes and 65-85 

minutes in rats pre-treated with U-69,593 (0.3 mg/kg) before a cocaine prime (20 mg/kg). 

No significant differences in activity during the habituation phase were detected between 

treatment groups. *= p<0.05, **= p<0.01, ***= p<0.001 (two-way ANOVA, with Bonferroni 

post-test). n= 7-15 rats. 
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2.2.6 Behavioural sensitisation to cocaine with acute KOPr treatment 
 

Analysis of ambulatory responses on Day 1 vs. Day 10 indicated a significant effect of time 

upon mean ambulatory counts [F(1,18)=25.81, p<0.0001] (Fig. 2.11A). No significant 

differences in ambulatory means between treatment groups were detected on either Day 

1 or Day 10. Similar analysis of stereotypic responses on Day 1 vs. Day 10 identified a 

significant interaction between Day and treatment [F(3,18)=5.50, p<0.01] (Fig. 2.11B). 

Bonferroni post-test analysis identified significant differences in mean stereotypic counts 

between the Ethy-SalA pre-treated chronic-cocaine and chronic-saline treatment groups 

on Day 1 of sensitisation [p<0.01], and between vehicle pre-treated chronic-cocaine and 

chronic-saline treatment groups on Day 1 [p<0.001]. No significant differences in mean 

ambulatory counts were detected between control (saline) and sensitised (cocaine) 

treatment groups on Day 1 or 10 (Fig. 2.11B). Bonferroni post-test analysis of activity 

counts within treatment groups on Day 1 and Day 10 (Fig. 2.11C) identified a significant 

increase in ambulatory counts in the chronic cocaine/Ethy-SalA group on Day 10 (20730 

± 3402) compared to Day 1 (6379 ± 2087) [p<0.01]. Post-test analysis of stereotypic 

activity within treatment groups (Fig. 2.11D) identified significant differences between Day 

1 and Day 10 activity counts in groups receiving chronic cocaine with Ethy-SalA pre-

treatment (Day 1=14530 ± 2336, Day 10=20610 ± 1024) [p<0.05], chronic saline with 

vehicle pre-treatment (Day 1=4872 ± 709, Day 10=19940 ± 1113) [p<0.001], and chronic 

saline with Ethy-SalA pre-treatment (Day 1=5449 ± 609, Day 10=15430 ± 2343) [p<0.01]. 
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Figure 2.11. Cocaine sensitisation testing with KOPr agonist pre-treatment. 

Comparisons of open-field locomotor activity recorded on Day 1 and Day 10 of the 

sensitisation experiment. Rats received only cocaine or saline on Day 1, and ESA or Veh 

pre-treatment followed by an injection of cocaine on Day 10. Treatment groups showed no 

significant difference in ambulatory behaviour during the 1-hour testing phase on Day 1 or 

Day 10 (A).  Cocaine/Veh and Cocaine/ESA groups showed a significant increase in 

stereotypic behaviour on Day 1 compared to their control groups (Saline/Veh and 

Saline/ESA) (B). Cocaine/ESA rats showed a significant increase in ambulatory behaviour 

on Day 10 compared to Day 1 (C). Stereotypic behaviour was increased in Cocaine/ESA, 

Saline/ESA and Saline/Veh treatment groups between Day 1 and Day 10. *=p<0.05, 

**=p<0.01, ***=p<0.001 (repeated measures two-way ANOVA, Bonferroni post-test). Veh= 

vehicle. n= 5-6 rats per treatment group. 
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2.3 Discussion 
 

This chapter examines the anti-cocaine properties of the novel KOPr agonists Ethy-SalA 

and Me-SalA in two self-administration models and two locomotor activity models in rats. 

The use of multiple behavioural models allows for a more complete characterisation of the 

effects of KOPr activation upon cocaine-associated behaviours, including drug-seeking, 

reward motivation, hyperactivity and sensitisation. These experiments represent the first 

in vivo tests of these novel compounds, and are a crucial first step in the pre-clinical 

identification of a novel anti-addictive pharmacotherapy. 

 

2.3.1 Operant cocaine conditioning 

 

Self-administration is a widely-used procedure in addiction research, and is generally 

considered to be the best way of modelling drug-taking in a laboratory setting, with 

intravenous self-administration using rats being the most common method. Cocaine self-

administration is widely used, due to its well-documented reinforcing effects, and the high 

rate of successful acquisition seen in operant training using this drug (Pickens & 

Thompson, 1968). The operant training method used (Weeks, 1962) relies upon the 

assumption that rats will form a strong association between an active lever and delivery of 

the drug, and that responding on the active lever will be reinforced by the near immediate 

rewarding effects of intravenous cocaine (Ahmed, 2012).  A strong preference for the 

active lever during cocaine self-administration was observed in all rats used for cocaine-

primed reinstatement (Fig. 2.4B). This active vs. inactive lever discrimination was also 

consistently observed during FR5 baseline cocaine-administration phases (Fig. 2.5A), 

indicating a strong association between the active lever and drug delivery in these rats. 

The observation that inactive lever responses did not significantly increase during the 

‘extinction’ saline-administration phase of the reinstatement courses (Fig. 2.5B) suggests 
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that saline-administration produced true extinction of drug-seeking behaviour, and not 

simply transferral of the behaviour to the opposite lever.  

 

2.3.2 Models of drug relapse and reward motivation: cocaine-reinstatement 

and progressive-ratio testing.  

 

Cocaine-primed reinstatement and progressive-ratio self-administration tests were used 

to evaluate two separate addiction-associated behaviours. The reinstatement model has 

been historically used to test ability of drug-cues, environmental cues or stressors to 

reinstate drug-seeking behaviour (Epstein et al., 2006), while the progressive-ratio model 

tests the motivational potential of an administered drug or other reinforcer (Richardson & 

Roberts, 1996). These two models approximate two different phases of the addictive cycle 

proposed by Koob et al. (see Chapter 1, Fig.1.2): relapse to drug-seeking/craving, and 

active drug taking behaviour. A reduction in the number of active responses evoked by a 

reinstating cocaine prime, or a reduction in the total number of infusions achieved on a 

progressive-ratio schedule can indicate that a pre-treatment has interfered with the 

reinforcing, rewarding effects of cocaine, or that the pre-treatment has reduced the rat’s 

motivation to continue drug-seeking.  

In order to detect the ability of cocaine to re-awaken drug-seeking in rats, the cocaine-

reinstatement model requires that baseline drug-seeking behaviour is extinguished before 

reinstatement (Yeo et al., 2003). Matching previous observations by Davis and Smith 

(1976), extinction of active lever responding was achieved by replacing the administered 

drug with 0.9% saline solution, with the lack of a rewarding stimulus perturbing the rat’s 

association of the active lever with reward (Fig. 2.6A). Rats receiving 0.3 mg/kg of SalA 

showed reduced mean reinstatement responses in comparison to vehicle, an effect 

replicated from an earlier study of the behavioural effects of SalA (Morani et al., 2009).  
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Ethy-SalA is shown here to attenuate cocaine reinstatement in rats at a lower dose than 

SalA (0.1 mg/kg compared to 0.3 mg/kg) (Fig. 2.6C). The compound Me-SalA does not 

show comparable potency and has a more variable effect (Fig. 2.6D), and may only be an 

effective inhibitor of cocaine reinstatement at dosages higher than those tested in this 

experiment (0.3 and 1.0 mg/kg).  

The progressive-ratio self-administration paradigm was used in this thesis to explore the 

effect of acute doses of novel and existing KOPr agonists upon the reinforcing effects of 

cocaine, and the ability of KOPr agonist treatment to alter the motivational qualities of 

cocaine. Progressive-ratio has been previously used to examine differences in response 

in animals previously sensitised to an abusive drug (Mendrek et al., 1998), comparisons 

of reinforcement between different drugs (Roberts, 1993), and the effect of a pre-treatment 

upon the reinforcing effects of a drug of abuse (McGregor et al., 1993), which this study 

uses. Changes to a ‘break-point’, or the point at which an animal will cease to attempt to 

self-administer the drug on offer, are used to gauge the subject’s relative level of motivation  

(Stafford et al., 1998). 

The results of the cocaine-primed reinstatement testing for Ethy-SalA and Me-SalA has 

been published along with another novel KOPr agonist, 16-bromo Salvinorin A (Br-SalA), 

which has also been shown to significantly reduce reinstatement responses at 1.0 mg/kg 

(Riley et al., 2014). Cellular assays accompanying the behavioural data show Ethy-SalA 

to be a more potent activator of the KOPr than SalA and Br-SalA in a cellular model of 

KOPr-mediated cAMP-inhibition, while Me-SalA shows an almost 14-fold reduction in 

potency compared to SalA (see Table 2.2). To date, Ethy-SalA is the most potent KOPr 

agonist generated from carbon-16 modifications to the structure of SalA. As well as 

attenuating cocaine-primed reinstatement at a lower dose than other tested compounds, 

Ethy-SalA is the only SalA-derived KOPr agonist shown to effectively attenuate 

progressive-ratio, at dose of 2.0 mg/kg. The enhanced cellular activity displayed by Ethy-

SalA may explain its increased potency in comparison to SalA in cocaine-reinstatement 
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tests, and the ability to attenuate progressive-ratio self-administration. Reduced potency 

at the KOPr could explain the more variable effect seen with Me-SalA pre-treatment, and 

the lack of significant effect detected in progressive-ratio. The increased potency of Ethy-

SalA may also be contributing to a sedative effect, particularly at the relatively high dose 

of 2 mg/kg, preventing the test rat from physically performing the operant task. 

Unpublished data from tests performed by another student of the lab indicates that Ethy-

SalA does not show significant sedative effects at 2 mg/kg in cocaine-naïve rats. Further 

tests of baseline locomotor activity or motor coordination through motion tracking and 

rotarod assays would help confirm this observation. 

The anti-cocaine effect observed in this behavioural model is most likely due to a 

suppression of DA signalling caused by KOPr activation within the reward pathway, which 

has been observed and confirmed in rat models both in vivo (Mueller et al., 2003) and ex 

vivo (Cortez et al., 2010; Dasgupta et al., 2003). By activating the KOPr system prior to an 

injection of cocaine, the rewarding stimulus of the cocaine is theorised to be blunted, 

reducing the efficacy of cocaine to reinstate drug-taking behaviour. The ability of KOPr 

agonists to attenuate cocaine-primed reinstatement has been confirmed with a number of 

classical KOPr agonists and novel SalA derivatives (Morani et al., 2013 ; Morani et al., 

2009 ; Prevatt-Smith et al., 2011; Simonson et al., 2015 ), and appears to be a 

characteristic effect of KOPr activation in the context of cocaine priming. The ability of 

KOPr agonism to alter progressive-ratio responding is less well studied. A dose of 2.0 

mg/kg SalA has shown the ability to attenuate progressive-ratio sucrose responding in rats 

(Ebner et al., 2010), and recent testing has indicated that co-infusions of SalA with 

oxycodone can reduce progressive-ratio break-points in rhesus monkeys (Naylor et al., 

2015). The experiments performed by A. Ewald (PhD thesis, 2015) and the work of this 

thesis represent the first tests of acute KOPr agonist treatment in a progressive-ratio model 

of self-administration. 
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Table 2.2. Carbon-16 analogues of SalA. Chemical structures and comparative 

potencies (EC50) of Salvinorin A and analogues arising from cycloaddition to the carbon-

16 position. All effective doses are i.p. injections of compound in rats. *Assays for potency 

at the KOPr conducted by measuring inhibition of forskolin-induced cAMP accumulation. 

Assays were performed in CHO cells stably expressing KOPr (unpublished data, 

Prisinzano lab). Cocaine-reinstatement effective doses for Ethy-SalA and Me-SalA 

represent findings from this thesis published in 2014. 

 

STRUCTURE NAME 
EC50 (cellular 

KOPr assay*) 

MINIMUM 

EFFECTIVE DOSE 

(COCAINE-

REINSTATEMENT) 

REFERENCES 

 
Salvinorin A 0.030 ± 0.004 nM (1) 0.3 mg/kg (2) 

1Riley et al., 2014; 
2Morani et al., 2009 

 16-bromo-

Salvinorin A 
0.038 ± 0.010 nM (1) 1 mg/kg (1) (1) Riley et al., 2014 

 16-methyl-

Salvinorin A 
0.407 ± 0.147 nM (1) Not observed (1) Riley et al., 2014. 

 
16-ethynyl-

Salvinorin A 
0.019 ± 0.004 nM (1) 0.1 mg/kg (1) (1) Riley et al., 2014. 

R = 
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2.3.4 Models of cocaine locomotor effects: cocaine hyperactivity and 

behavioural sensitisation 

 

Treatment with the effective cocaine-reinstatement attenuating dose of Ethy-SalA (0.3 

mg/kg) was not found to significantly affect total ambulatory or stereotypic count in either 

acute cocaine hyperactivity (Fig. 2.9) or sensitised hyperactivity (Fig. 2.11) assays of open-

field locomotion. This result is unusual, as dopaminergic activity in the mesolimbic arm of 

the reward pathway is closely tied to the hyperactive effects of cocaine in rats and mice 

(Herrmann et al., 2003; Xu et al., 1994). Therefore, if the attenuation of cocaine reward 

observed in cocaine-reinstatement and progressive-ratio (PR) behavioural tests were due 

to dopaminergic inhibition, a decrease in cocaine-induced hyperactivity would also be 

expected.  

SalA has also shown unusual experimental results in cocaine hyperactivity tests. A high 

dose of SalA (2.0 mg/kg) attenuates cocaine hyperactivity in rats with a 10 mg/kg cocaine 

prime, but does not significantly alter cocaine hyperactivity with acute (0.3 mg/kg) (Morani 

et al., 2012) or chronic pre-treatment (1.0-3.2 mg/kg) (Gehrke et al., 2008) before a 20 

mg/kg cocaine challenge. Pre-treatment with the classical KOPr agonists U-69,593 (0.3 

mg/kg) and U-50,488 (5 mg/kg) paired with 15 and 20 mg/kg cocaine challenges 

respectively has been shown to supress hyperactivity (Crawford et al., 1995; 

Vanderschuren et al., 2000). Other KOPr agonists derived from carbon-2 modifications 

have also shown the ability to attenuate cocaine hyperactive behaviour with a 20 mg/kg 

cocaine challenge (unpublished data, Kivell laboratory). U-69,593, which was used as a 

positive control for cocaine hyperactivity testing (as shown by Vanderschuren et al., 2000), 

was found to attenuate stereotypic behaviour but not total ambulatory counts. The lack of 

observed effect may be due to differences in tracking software (EthnoVision as opposed 

to Med Associates tracking software) and the parameters for behavioural scoring, as well 

as differences in rat strain (Wistar as opposed to Sprague-Dawley) and the dose of cocaine 
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used (15 mg/kg in comparison to 20 mg/kg). A high dose of SalA (2.0 mg/kg) was initially 

intended as the positive control based upon an experiment by Chartoff et al. (2008) using 

a 10 mg/kg cocaine challenge, but preliminary tests indicated that SalA treatment was 

enhanced cocaine hyperactivity (Appendix 5, Fig 6.4). 

The atypical effects of SalA observed in this thesis and in other literature, and that of Ethy-

SalA, may be due to the interference of hallucinogenic and off-target dopaminergic effects. 

Acute pre-treatment with the classic serotonergic hallucinogens LSD and N,N-

dimethyltryptamine (DMT) has previously been shown to enhance the dopaminergic 

hyperactivity caused by drugs such as amphetamine and apomorphine (Fink et al., 1979),  

suggesting that the interaction of 5-HT and DA pathways may have an important role in 

regulating hyperactivity. SalA does not interact directly with 5-HT receptors, and 

discriminates from the effects of LSD and other serotonergic hallucinogens in both primate 

and rodent behavioural tests (Butelman et al., 2010; Killinger et al., 2010 ).  However, SalA 

has been shown to inhibit SERT, and therefore very likely influences 5-HT levels within 

the brain (Kivell et al., 2014). Unusually, SalA has also been shown to stimulate D2 

receptors in ex vivo rat striata, an effect which was blocked by D2 antagonism (Seeman et 

al., 2009). D2 and D1-receptor co-activation influences expression of cocaine-induced 

locomotor behaviours in rats (Arnt et al., 1988; Ushijima et al., 1995), and D2 agonism or 

indirect activation by SalA and potentially Ethy-SalA could explain the failure of these 

compounds to significantly attenuate acute cocaine hyperactivity at low doses. 

Behavioural sensitisation in rats was used in an attempt to establish whether the anti-

cocaine effects of Ethy-SalA were dependent upon prior chronic experience to cocaine. 

However, the control rats used for this study did not develop significant locomotor 

sensitisation to the effects of cocaine after five consecutive days of high-dose cocaine (20 

mg/kg), limiting any meaningful comparison to Ethy-SalA treatment. Cocaine sensitisation 

is a robust procedure which has been successfully used in conjunction with KOPr agonist 

treatment to establish the effects of chronic and acute KOPr activation upon sensitised 
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cocaine hyperactivity (Heidbreder et al., 1995; Heidbreder & Shippenberg, 1994 ; Morani 

et al., 2009 ). The lack of cocaine sensitisation detected in this experiment may be due to 

high variability in hyperactive responses coupled with relatively low numbers (5-6 rats per 

treatment group). The animals used for this experiment were also taken from another 

facility (the School of Psychology) and, despite a week’s rest before the start of 

experimentation, may have been suffering from move-related stress, which likely would 

have influenced behavioural results. 

 

2.3.5 Limitations and future directions 

 

The self-administration model is one of the standard models used in addiction research, 

but does have limitations in its ability to completely and accurately model human addiction. 

It has been observed that only a relatively small sub-set of animals regularly exposed to 

drugs of abuse will develop true ‘addiction’ or uncontrollable craving for drug (Ahmed, 

2005), particularly in rats allowed only restricted access to drug (1-2 hours) as opposed to 

extended access of 6 hours or greater (Ahmed & Koob, 1998). As rats for both cocaine-

reinstatement and progressive-ratio paradigms were trained using a restricted access 

model, it is arguable whether the animals used in this study could be considered 

‘dependant’ upon cocaine and to have developed the strong association necessary to 

accurately model drug addiction in humans. The reward salience of cocaine in rats may 

also not be as great as it is in humans.  It is significant that the majority of rats (an estimated 

94% of an experimental population) will select a saccharin reward over a cocaine infusion 

when given the choice, regardless of the dosage of drug on offer (Lenoir et al., 2007). The 

development of operant cocaine acquisition can even be attenuated if rats are exposed to 

other reinforcers such as food or glucose/saccharin solutions (Campbell & Carroll, 2000). 

Rats trained under extended access conditions would be much harder to extinguish 

behaviour in, and would presumably respond much more strongly to a cocaine prime, 
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making attenuation of drug-seeking behaviour much harder to achieve. The development 

of addiction in humans also involves a number of social factors and cues (Quigley & 

Collins, 1999) which cannot be modelled well in a laboratory situation, and which the self-

administration paradigm does not account for, though there is evidence that the social 

isolation which self-administration rats are placed under after surgery may enhance 

responsiveness to drugs of abuse such as cocaine and amphetamine (Jones et al., 1990; 

Schenk et al., 1987). 

The Latin square treatment designs used for progressive-ratio and cocaine-primed 

reinstatement testing, rats received multiple injections of KOPr agonist over time, as part 

of a within-subject treatment design. This design assumes that single acute treatments of 

KOPr agonists do not have long-lasting effects upon the brain that may interfere with 

subsequent behavioural testing. A study by Zhang et al. (2005) showed that a single 

injection of SalA at 3.2 mg/kg reduced DA levels in the mouse caudate putamen for a 

period of 10 hours, but that after 23 hours this effect had dissipated, with DA levels 

returning to baseline (Zhang et al., 2005). A recent study also showed that a high dose of 

SalA (2.0 mg/kg) significantly affected the reward potential of cocaine for up to 24 hours 

after acute injection in rats (Chartoff et al., 2015), despite the fact that SalA is almost 

entirely metabolised and cleared from the brain 60 minutes after i.p. injection (Hooker et 

al., 2009). To allow for complete clearance of Me-SalA and Ethy-SalA, and for behavioural 

effects to subside, rats were allowed a rest period of 48 hours before resuming cocaine 

administration. Rats in this study received acute KOPr agonist treatments at least seven 

days apart, whereas significant behavioural effects for multiple KOPr treatments have only 

been detected with daily injections of KOPr agonists (Chartoff et al., 2008; Heidbreder et 

al., 1993; Potter et al., 2011).  

The measurement and comparison of ‘baseline’ cocaine responding prior to each 

reinstatement is a useful identifier of long-term KOPr agonist effects. Chronic KOP 

administration could be expected to alter baseline responding for cocaine, as chronic 
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exposure to SalA has been shown to increase intra-cranial self-stimulation baselines in 

rats (Potter et al., 2011), and conversely chronic blockade of the KOPr in rats can prevent 

escalation of dose in cocaine-dependant animals (Wee et al., 2009). Analysis of the mean 

total dose of cocaine administered during each baseline session, normalised to weight, 

showed no significant increase or decrease in cocaine dosage over time, suggesting that 

cocaine administration remained stable in these rats, even with multiple staggered 

injection of KOPr agonist.  

Chronic cocaine administration in itself has a considerable effect upon the KOP system. 

Daily cocaine administration for extended periods of time (7-14 consecutive days) has 

been shown to increase KOPr expression in the caudate putamen and NAc of rats 

(Unterwald et al., 1994), an effect which enhances binding of the KOPr agonist U-69,593 

(Collins et al., 2002). Chronic cocaine exposure is therefore likely to enhance KOP effects 

within the brain compared to drug-naïve animals. All rats used in this study for self-

administration were given a prolonged period of self-administration training, involving 

chronic exposure to cocaine for a minimum of 25 days. Though not tested, it could be 

reasonably assumed that all rats displayed this heightened KOP sensitivity prior to testing. 

This effect has also been observed in human subjects with a history of chronic cocaine 

abuse (Hurd & Herkenham, 1993). Self-administration rats could therefore be expected to 

show much greater sensitivity to KOPr treatment than rats receiving a single cocaine 

challenge, or even multiple cocaine treatments for only 5 days, as was performed for 

cocaine hyperactivity and behavioural sensitisation testing.  

Measures of cocaine-induced locomotor hyperactivity have been used as an alternative 

screen for anti-cocaine effects, or more generally for anti-dopaminergic effects. However, 

the results of obtained from self-administration testing in this thesis suggest that cocaine 

hyperactivity is not a good predictor of anti-cocaine reward effects, and that DA-dependant 

reward and hyperactivity processes may be regulated in significantly different ways. The 

NAc is a key dopaminergic area with great influence on locomotor and hyperactive 
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behaviour (Delfs et al., 1990). However, significant behavioural differences have been 

detected between dopaminergic inhibition of the ‘shell’ and ‘core’ regions of the NAc, with 

inhibition of the core enhancing the development of sucrose CPP in rats, while shell DA 

inhibition produced the opposite effect (Ito & Hayen, 2011). For locomotor behaviour, 

glutamatergic extensions into the NAc core have been shown to regulate the cocaine-

stimulated hyperactivity in rats, but do not influence this behaviour in the shell (Pulvirenti 

et al., 1994). These opposing effects within the NAc are also seen with regard to kappa-

opioid activity: a recent optogenetic study in mice has shown that selective activation of 

KOPr receptors in only the dorsal or ventral regions of the NAc shell can induce entirely 

opposite behavioural effects, with animals showing either reward or aversion responses 

respectively (Al-Hasani et al., 2015). The complex sub-structural differences in behavioural 

output suggest that even though the NAc is a key component of both locomotor and reward 

pathways, the results of reward-based testing may not be predictive of locomotor 

behaviour in animal models, and vice versa. 

Future studies of the anti-drug properties of Ethy-SalA could include more robust models 

of drug addiction, such extended-access self-administration, and other drugs of abuse 

such as the psychostimulants methamphetamine and amphetamine. Previous studies 

have shown that treatment with U-69,593 (0.16, 0.32 mg/kg) can reduce 

methamphetamine locomotor behaviour (Tzaferis & McGinty, 2001), in a similar manner 

to the attenuation of cocaine hyperactivity. To date, SalA and its novel derivatives have 

not been tested in models of drug-seeking other than cocaine self-administration. The 

inclusion of other drug models, including opioids such as morphine and heroin, could help 

determine whether the potential anti-addictive effects observed for Ethy-SalA have wider 

applications beyond an anti-cocaine mechanism. 
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2.3.6 Conclusions 

 
 
Acute treatments of Ethy-SalA were shown to successfully attenuate cocaine-primed 

reinstatement (0.1 and 0.3 mg/kg) and progressive ratio self-administration (2.0 mg/kg), 

but did not significantly alter cocaine-induced hyperactive behaviour or the expression of 

cocaine behavioural sensititsation with respect to locomotion in Sprague-Dawley rats. Me-

SalA was not found to significantly affect either cocaine-reinstatement or progressive ratio 

self-administration at the doses tested (0.3-2.0 mg/kg). 
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Chapter 3 : Behavioural side-effect testing of novel 

KOPr agonists 
 

3.1 Methods 
 

3.1.1 Sucrose self-administration training 

 

Sucrose reinforcement training was performed in the same operant chambers used for 

cocaine self-administration (see Chapter 2, section 2.1.4), but with a sucrose pellet 

delivery apparatus (Med Associates, ENV-203M-45) inset between the levers in place of 

an infusion apparatus. Depression of the active lever resulted in delivery of a single pellet 

(Dustless Precision Pellet, 45 mg sucrose: Able Scientific, Perth, AUS) and activation of 

the paired light for 12 seconds; depression of the left lever resulted in no outcome. Rats 

were placed in the operant box and allowed to self-administer sucrose pellets on an FR-1 

schedule for 45 minutes. Once rats were responding more than 20 times on the active 

lever over three consecutive days, and with an active-to-inactive lever ratio of greater than 

2:1, rats were placed on an FR-5 schedule. Rats were moved to the testing phase of 

administration when less than 20% variation in responding was observed over three 

consecutive days. Sucrose self-administration was run as daily 45-minute sessions during 

the training phase. All responses and sucrose deliveries were recorded and controlled 

using Med Associates software (MED-PC IV, version 4.2). 

 

3.1.2 Sucrose administration with KOPr agonist pre-treatment  

 

Rats were injected with either U-50,488 (10 mg/kg, i.p.), U-69,593 (0.3 mg/kg, s.c.), Me-

SalA (0.3 mg/kg, i.p.), Ethy-SalA (0.3 mg/kg, i.p.) or vehicle 10 minutes (U-50,488, Me-

SalA, Ethy-SalA) or 15 minutes (U-69,593) prior to the start of an administration session. 

A lower dose of U-50,488 compared to the previously reported cocaine-attenuating 
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effective dose of 30 mg/kg (Morani et al., 2009) was used due to the observation that a 30 

mg/kg dose caused complete sedation in an initial test. Rats were placed into operant 

chambers set up as described for sucrose administration training and allowed to self-

administer sucrose for 45 minute, with responses being recorded. Treatment order was 

varied using a Latin square design (see Appendix, Table 6.3). All training and testing was 

carried out between 1300 and 1500 hours. After each test day, rats were given two days 

of rest to allow the KOPr agonist to pass out of the rat. 

 

3.1.3 Sedation testing: locomotor activity 

 

Measures of locomotor activity were used in this study to identify potential sedative affects 

caused by the novel KOPr agonists, at the doses used for cocaine-reinstatement testing. 

Rats weighing between 280-400g were placed in activity chambers (ENV-520, Med 

Associates) within light- and sound-attenuating boxes for a 30-minute habituation period 

prior to administration of vehicle, Me-SalA (1 mg/kg, i.p.) or Ethy-SalA (0.3 mg/kg, i.p.). 

Rats were then placed back into the activity chamber and allowed to explore the space for 

a further 60 minutes. Stereotypic and ambulatory activity was recorded during habituation 

and testing sessions as previously described (see Chapter 2, section 2.1.7).  

 

3.1.4 Pro-depressive screening: Forced Swim Test 

 

The FST was used to determine the potential pro-depressive effects of the novel KOPr 

agonist Ethy-SalA. A modified version of the original Forced Swim Test (FST) created by 

Porsolt et.al (1977) was used (Slattery & Cryan, 2012), with a habituation stage 24 hours 

prior to testing. On the habituation day a 40 cm tall cylinder of 19 cm diameter, closed at 

one end, was filled with tap water (23-25 °C) to a height of 30 cm from the bottom of the 

cylinder. Rats were then placed into the water-filled cylinder for a 15-minute period, after 
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which the rat was removed, towelled dry and briefly blow-dried. After 24 hours, rats were 

pre-treated with vehicle (i.p.), Ethy-SalA (0.3 mg/kg, i.p.), or SalA (0.3 mg/kg, i.p.) 10 

minutes (vehicle, Ethy-SalA) or 5 minutes (SalA) prior to being placed into the water-filled 

cylinder. Activity within the cylinder was filmed from a side-view for 5 minutes. Rats were 

then removed and towelled dry. Any rat which climbed out of the cylinder during either 

habituation or testing stages was excluded from the experiment. For analysis, videos were 

edited into 5-second blocks, and scored as either displaying either climbing, swimming or 

immobility for the majority of the 5 seconds. Videos were scored by a researcher blinded 

to the treatment groups. Following the recommendations of Slattery & Cryan (2012), prior 

to experimental scoring three different videos were scored multiple times by the same 

researcher until the score variation was less than 10 %, to ensure intra-scorer accuracy.  

 

3.1.5 Statistical analysis 

 

All statistical analysis was performed using GraphPad Prism 5.0 software. One-Way 

ANOVA tests were used to analyse the variances of 3 or more means, and t-tests were 

used to analyse 2 means. Two-way ANOVA analysis was used for examining the time 

course effect of treatments (open-field locomotion, cocaine hyperactivity). Repeated-

measures analysis was used for data where rats received multiple treatments (sucrose 

administration) or were scored for multiple behaviours (FST). Post-tests were either 

Bonferroni or Dunnett’s multiple comparison. Results were considered to show 

significance if the p-value for statistical tests was <0.05. Numerical results are reported in-

text as Mean ± Standard Error of Mean. 
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3.2 Results 
 

3.2.1 Effects of acute KOPr agonist treatment upon sucrose self-

administration 

 

The use of the non-drug reward stimulus sucrose was used to determine if acute 

administration of Ethy-SalA or Me-SalA affected natural reward in rats, at doses used in 

cocaine-reinstatement testing. Significant differences in mean sucrose responses were 

detected between treatment groups [F(5,6)=1.380, p<0.0001]. Rats treated with U-50,488 

(10mg/kg) showed a significant reduction in active responses (150.7 ± 59.13) when 

compared to vehicle pre-treatment (632.9 ± 42.2) [Dunnett’s multiple comparison to 

vehicle post-test, p<0.001]. U-69,593, Ethy-SalA and Me-SalA pre-treatments (all 0.3 

mg/kg) did not show a significant attenuation of sucrose administration compared to 

vehicle. Vehicle responses were also not significantly different to mean baseline 

responses for sucrose (Fig. 3.1). Analysis of mean active and inactive self-administration 

responses during five 3-day baseline phases between testing days was used to test the 

assumptions that (1) the active lever would be favoured over the inactive lever and (2) that 

the amount of sucrose administered in each successive baseline phase would not alter 

significantly. A significant interaction between session number (time) and the numbers of 

active and inactive responses was detected [F(4,30)=4.20, p<0.001] (Fig. 3.2A). The 

numbers of mean active responses were significantly greater than inactive responses for 

each baseline session [Bonferroni post-test, p<0.001]. Linear regression analysis of the 

mean dose of sucrose (grams) self-administered by rats in successive 3-day baseline 

sessions (Fig. 3.2B) showed a weak positive correlation between time and sucrose dose 

[Pearson correlation coefficient, r2=0.2854]. The slope of the linear model of dose against 

time was significantly non-zero [F(1,33)=13.18, p<0.001]. 
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Figure 3.1. Effects of acute KOPr agonist treatment upon sucrose self-

administration. Pre-treatment with the KOPr agonist U-50,488 at 10 mg/kg significantly 

reduced sucrose pellet self-administration in rats compared to vehicle pre-treatment. U-

69,593, Ethy-SalA and Me-SalA did not show a significant change in sucrose responding 

when pre-treated at 0.3 mg/kg. Sucrose responses when pre-treated with vehicle did not 

differ significantly from mean sucrose responses during baseline sucrose administration 

sessions. *** = p<0.001 (repeated measures one-way ANOVA with Dunnett’s post-test: 

comparison to vehicle). n= 7 rats for each treatment. 
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Figure 3.2. Baseline sucrose self-administration responses. The differences in mean 

active and inactive lever responses for sucrose pellets during 5 three-day baseline 

sessions (A) were highly significant in all sessions (***= p<0.001; two-way ANOVA with 

Bonferroni post-test). Comparison of active baseline lever responses between baseline 

sessions identified no significant differences (p>0.05; one-way ANOVA). The total amount 

of sucrose (g) self-administered by rats in each baseline session showed a weak linear 

increase in dose over time (Pearson correlation coefficient, r2=0.285). This increase in 

dose over time was significant (p>0.05; slope not significantly non-zero). n= 7 rats for each 

treatment. 
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3.2.3 Locomotor activity profiles of Ethy-SalA and Me-SalA  

 

Rats treated with 0.3 mg/kg Ethy-SalA did not show any significant difference in 

ambulatory counts during the 1-hour test phase in comparison to vehicle treatment 

[t(12)=0.940, p>0.05] (Fig. 3.3A). Time course analysis of ambulatory counts (Fig. 3.3B) 

identified a significant effect of time upon ambulatory counts for both treatment groups 

[F(17,204)=23.10, p<0.0001], though  post-test analysis did not detect any significant 

differences between treatment groups at any time point. Similar analyses of stereotypic 

counts also identified no significant difference between vehicle and 0.3mg/kg Ethy-SalA 

treatment [t(12)=2.094, p>0.05], and a significant effect of time upon stereotypic counts 

[F(17,204)=20.31, p<0.0001] with no significant difference between treatment groups 

[Bonferroni post-test, p>0.05].   

Treatment with Me-SalA (1.0 mg/kg) also showed no significant change in ambulatory 

behaviour [t(12)=0.35, p>0.05] or stereotypic behaviour [t(12)=1.12, p>0.05] when 

compared to vehicle (t-test) (Fig. 3.4A). Time course analysis of ambulatory counts 

indicated a significant effect of time upon stereotypic counts [F(17,204)=26.42, p<0.0001], 

with no significant differences between treatment groups [Bonferroni post-test, p>0.05]. 

Stereotypic counts for Me-Sal treatment also showed a significant time-related effect 

[F(17,204)=17.97, p<0.0001] with no significant difference between treatment groups 

[Bonferroni post-test, p>0.05] (Fig. 3.4B). 
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Figure 3.3. Effects of Ethy-SalA on locomotion. Rats treated with 0.3mg/kg of Ethy-

SalA after 30 min habituation to an open field activity chamber showed no significant 

change in total post-habituation ambulatory counts (A) or stereotypic (B) counts compared 

to vehicle treatment (t-test, p>0.05). Time-course analysis of ambulatory (C) and 

stereotypic (D) behaviours with Ethy-SalA treatment showed no significant difference in 

activity profiles between vehicle and treatment groups during both the habituation and 

treatment phases of the experiment (two-way ANOVA with Bonferroni post-test, p>0.05). 

n=7 rats for each treatment. 
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Figure 3.4. Effects of Me-SalA on locomotion. Rats treated with 1 mg/kg of Me-SalA 

after 30-min habituation to an open field activity chamber showed no significant change 

in total post-habituation ambulatory counts (A) or stereotypic (B) counts compared to 

vehicle treatment (t-test, p>0.05). Time-course analysis of ambulatory (C) and 

stereotypic (D) behaviours showed no significant difference in activity profiles between 

vehicle and treatment groups during both the habituation and treatment phases of the 

experiment (two-way ANOVA with Bonferroni post-test, p>0.05). n= 7 rats for each 

treatment. 
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3.2.4 Forced Swim Test with acute KOPr agonist treatment 

 

Comparison of the vehicle-treatment group with Ethy-SalA (0.3 mg/kg) treatment did not 

identify any significant differences between the amounts of time rats were scored as 

displaying immobile [t(12)=1.105], swimming [t(120=0.563] and climbing [t(12)=0.247] 

behaviours (Fig. 3.5A). Rats treated with SalA (0.3 mg/kg) also did not show significant 

differences in immobile [t(12)=1.726], swimming [t(12)=0.378] and climbing [t(12)=1.196] 

behaviours compared to vehicle (Fig. 3.5B). 

  



73 
 

Figure 3.5. Forced Swim Test with acute KOPr agonist treatment. Visual scoring of 

FST activities showed no significant differences between immobile and active behaviours 

behaviours between vehicle and Ethy-SalA (0.3 mg/kg) (A) and SalA (0.3 mg/kg) (t-test, 

p>0.05). n=9-12 rats for each treatment. 
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3.3 Discussion 
 

3.3.1 Modelling natural reward: sucrose self-administration 

 

Ethy-SalA has already been shown to attenuate drug-seeking and drug-taking behaviour 

using two models of cocaine self-administration in rats, indicating that the agonist acts to 

suppress cocaine reward. To extend the understanding of KOPr activation by Ethy-SalA 

as a reward inhibitor, sucrose self-administration has been used here as a model of a non-

drug or ‘natural’ rewarding stimulus in rats. Ideally, an anti-addictive pharmacotherapy 

would inhibit drug-induced reward but not affect natural reward processes, as a complete 

inhibition of reward sensations could impair addiction therapy, and possibly promote 

further drug abuse. 

Sucrose self-administration has been used in this study is to establish the effects of Ethy-

SalA and other KOPr agonists (SalA, U-69,593,) at the effective doses observed to 

attenuate cocaine-primed reinstatement, or at a comparable dose for an ineffective KOPr 

agonist (Me-SalA). The agonist U-50,488 was given at a lower dose than the effective 

cocaine-reinstatement dose (10 mg/kg instead of 30 mg/kg) (Morani et al., 2009), as initial 

tests with this high dose showed complete sedation of rats. 

Pre-treatment of SalA, Ethy-SalA, Me-SalA and U-68,593 at 0.3 mg/kg did not attenuate 

responses for sucrose pellets in comparison to vehicle, whereas U-50,488 (10 mg/kg) 

significantly reduced responses for sucrose (Fig. 3.1). This indicates that although SalA 

and Ethy-SalA interfere with cocaine reward and administration (see Chapter 2), the same 

doses do not have a detectable effect upon the self-administration of a natural food reward. 

Naturally rewarding stimuli are thought to affect the reward pathway in a significantly more 

complex manner to that of drugs of abuse. A study using rat self-administration models 

showed that sucrose did not induce long-term potentiation of dopaminergic neurons in the 

VTA, unlike cocaine (Chen et al., 2008). Other studies have reported that the 
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administration of a DA antagonist (pimozide) does not change the palatability of sucrose 

in rats. Sucrose is still perceived as being sweet and can be discriminated from other 

stimuli, despite the suppression of rewarding sensorimotor stimulation due to decreased 

DA signalling (Peciña et al., 1997; Willner et al., 1990). ). It is noticeable that, in this study, 

rats are shown to self-administer sucrose to a much higher degree than cocaine over a 

shorter time scale (a 45-minute sucrose administration session as opposed to a 2-hour 

cocaine administration session) with mean sucrose baseline responses of 570 ± 31.9 

compared to 190 ± 15.2 for cocaine. However, this comparison is not conclusive due to 

the differences in route of administration (oral of sucrose as opposed to intravenous for 

cocaine). 

 

3.3.2 KOPr treatment 

 

The use of a Latin-square treatment design in this experiment was to mitigate any 

confounding effects of treatment order or time upon the results of the repeated-measure 

experiment. Analysis of baseline sucrose intake indicated a significant trend towards an 

increase in sucrose dose over time (Fig. 3.2B). As the rats used in this experiment were 

maintained at 85% of their initial pre-training weight throughout sucrose administration, the 

effect observed is likely to be age-related rather than weight related, or as a result of 

multiple KOPr agonist injections. This effect very likely distorts some of the results 

obtained, and makes a repeated measures analysis less viable. However, the 

counterbalanced treatment design in this experiment should at least partially account for 

this effect. 

The observed increase in sucrose dosage contrasts with the finding that cocaine self-

administration in rats is stable over time (Chapter 2, Fig. 2.6). This effect again cannot be 

directly compared due to differences in the routes of administration, but may further 
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support the existence of differences in drug-reward and natural-reward processing within 

the brain. 

 

3.3.3 Sedative side-effects: locomotor activity testing 

 

Open field locomotion tests were used to identify the potential sedative effects of Ethy-

SalA and Me-SalA, both as part of general side-effect profiling for the agonists and in order 

to distinguish attenuation of response due to a reduced reward cue in cocaine-primed self-

administration testing from attenuation of response due to test subject sedation. Sedative 

effects have been shown for SalA in rats (2.0 mg/kg, i.p.)  (Chartoff et al., 2008) and in 

rhesus monkeys (0.1 mg/kg, i.v.) (Butelman et al., 2009), but at doses far greater than 

those used in self-administration experiments. Low doses of SalA analogues (0.1-1.0 

mg/kg, i.p.) have not shown significant sedative effects (Simonson et al., 2015; Bosch, 

PhD thesis 2014; Ewald, PhD thesis 2015), suggesting that sedative effects are only 

significant with high doses of a KOPr agonist. Reduced locomotor activity was not 

observed with Ethy-SalA (0.3 mg/kg, i.p.) or Me-SalA (1.0 mg/kg, i.p.) treatment at the 

maximum doses used for cocaine-primed reinstatement testing, indicating that treatment 

with these compounds should not affect the ability of rats to lever-press during self-

administration. 

 

3.3.4 Pro-depressive side-effects: the Forced Swim Test 

 

The Forced-Swim Test (FST) was originally designed as an assay to test the anti-

depressant effects of novel compounds (Porsolt et al., 1977), but has in some studies been 

re-purposed to examine pro-depressive effects (Carlezon et al., 2006; Morani et al., 2012). 

The amount of time that a test animal spends immobile is used as an approximation of a 
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depressive or despairing state, and changes to immobility time in comparison to vehicle 

treatment have been used to gauge the anti-depressive or pro-depressive effects of 

compounds administered to rats or mice. 24 hours before the test day, rats are exposed 

to the water-filled FST chamber for 15 minutes. This habituation step is to reinforce the 

stress-inducing effects of continuous swimming, and to ‘teach’ the rat that escape from the 

chamber during the test is not possible, enhancing the likelihood of observing behavioural 

despair during the 5-minute test phase. 

In this experiment, a 0.3 mg/kg treatment of Ethy-SalA did not significantly increase or 

decrease immobility, swimming/medium activity or climbing/high activity times in 

comparison to vehicle, indicating that Ethy-SalA does not induce pro-depressive effects at 

a low dose.  

SalA has previously been shown to display pro-depressive effects in rats with single acute 

(Morani et al., 2012) and acute multiple treatments (Carlezon et al., 2006), and so was 

used as a positive control in this experiment at a dose of 0.3 mg/kg. However, SalA did 

not cause a significant increase in immobility, conflicting with previous acute administration 

data (Morani et al., 2012), which calls into question the reliability of these results. 

Climbing/high activity and swimming/medium activity times were unusually high in 

comparison to literature FST results. One possible explanation for these observations is 

that all of the rats used for FST had previous experimental histories (in CPP, novel-object 

recognition tests, and elevated-plus maze tests) and many had received either KOPr 

agonist or vehicle treatment, whereas the rats used by both Carlezon et al. (2006) and 

Morani et al. (2012) were naïve to KOPr agonists and were assumed to have no previous 

experimental history. Carlezon et al. (2006) also gave rats three injections of SalA in the 

24 hours prior to testing, whereas the FST protocol used here and by Morani et al. (2012) 

uses only a single pre-treatment.   
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The re-use of rats in this thesis was designed to minimise unnecessary wastage, according 

to the recommendations outlined by the National Centre for the Replacement, Refinement 

and Reduction in Animal Research (UK). A period of at least 1 week was allowed between 

the end of the previous experiment and the start of FST, to allow any residual KOPr agonist 

to pass out of the animal. Recent studies have indicated that a single acute injection of 

SalA may have much longer-lasting neurophysiological effects in rats than previously 

thought (Chartoff et al., 2015), so that even a single injection of a short-acting KOPr agonist 

may have significant long-term effects upon the rodent brain. It is therefore possible that 

previous exposure to KOPr agonists and/or previous experimental experience may be 

protective against the pro-depressive effects of the FST.  

 

3.3.5 Limitations and future directions 

 

This study has examined only the potential reward-attenuating properties of KOPr agonist 

treatment, but has not taken into account the more complex interaction between the KOPr 

system and natural reward. KOPr activation has been linked to increased appetite and 

administration of natural rewards. Rats treated with low doses of the KOPr agonist U-

50,488 (215 nM infusion) have shown increased consumption of high-fat foods (Ookuma 

et al., 1997), an effect which is opposed by administration of the KOPr antagonist norBNI 

(Arjune & Bodnar, 1990). The link between KOPs and appetite appears to be the pro-

reward and appetite-stimulating peptide hormone orexin, which has recently been 

identified to have a potentially important role in the positive regulation of cocaine reward 

(Hollander et al., 2012). Despite their apparent opposing functions, both dynorphin and 

orexin have been observed to be released in response to electrical hypothalamic 

stimulation (Li & van den Pol, 2006), and recent research has identified that these two 

peptides are in fact packaged within the same synaptic vesicles in the hypothalamus 

(Muschamp et al., 2014). The increase in sucrose administration over time observed in 
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this study is possibly related to the appetite-stimulating properties of KOPr agonists. The 

interplay of these two signalling pathways complicates the traditional anti-reward 

properties of the KOP system, and merits further investigation. 

High doses of both SalA and Ethy-SalA at 2 mg/kg (as used in cocaine self-administration 

testing; see Section 2.1.6) were not tested in the sucrose-administration paradigm, limiting 

conclusions that SalA and Ethy-SalA display cocaine-reward specific effects. At higher 

doses, it is possible that SalA and Ethy-SalA could act as general inhibitors of all reward 

processes, and future tests should include doses higher than those tested here (0.3 

mg/kg). 

The locomotor activity assay used here is limited by the lack of a positive sedative control, 

which would confirm whether the test has the ability to accurately detect sedation in rats. 

By measuring only total activity, the locomotor activity test used here does not take into 

account more specific sedative effects, such as balance and co-ordination. One such 

assay that does explore these effects is the rotarod performance test (Dunham & Miya, 

1957), where rats or mice are trained to negotiate a constantly rotating wheel, and then 

tested for the ability of potentially sedative drugs or disease states to alter their 

performance on the wheel. Rotarod testing of rats treated with Ethy-SalA and Me-SalA 

would complement the existing data and confirm if any either of the compounds have 

significant motor and coordination side-effects. 

As well as test for sedation, locomotor activity in rats can be used to gauge the 

hallucinogenic properties of novel drugs. SalA is a known potent hallucinogen, and it could 

be expected that the derivatives Ethy-SalA and Me-SalA would also display 

hallucinogenic-like effects. Classic hallucinogens such as LSD and mescaline have been 

observed to significantly alter exploratory behaviours and stereotypic locomotor 

behaviours, with characteristic suppression of exploratory behaviour (Adams & Geyer, 

1985), reduced interaction with novel stimuli (Geyer et al., 1979), and rotational movement 
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(Fleisher & Glick, 1979) observed in Wistar and Sprague-Dawley rats. However, these 

tests have been established using serotonergic hallucinogens, from which SalA shows 

significant behavioural differences in rats (Killinger et al., 2010). Zebra-fish have been 

recently identified as an alternative model for hallucinogenic effects, with characteristic 

changes in immobility-versus-activity and swimming and diving patterns identified for the 

classical hallucinogens LSD (Grossman et al., 2010),  mescaline, and phenylcyclidine 

(Kyzar et al., 2012); and also for the novel hallucinogens ibogane (a mixed MOR, KOPr 

and 5-HT receptor agonist) (Cachat et al., 2013) and SalA (Braida et al., 2007). Tests 

using a zebra-fish model could confirm whether Ethy-SalA and Me-SalA display significant 

hallucinogenic effects.  

The results of FST testing show here are not conclusive, due to the lack of an effective 

positive control. Repetition of this experiment with larger numbers and with experimentally 

naïve animals could improve upon this finding.  

The FST shows some limitations as a model of behavioural despair in rats. In the original 

proposed test, immobile behaviour was taken as a measure of a despair-like state, due to 

test subjects learning during the pre-test that escape was not possible (Porsolt et al., 

1977). A study comparing groups of rats allowed to escape the FST chamber during the 

pre-test and rats with no chance of escape showed no differences in immobility times 

during the test phase (O'Neill & Valentino, 1982), suggesting that the experience of the 

pre-test may not significantly influence test behaviour. Some uncertainty also exists as to 

whether the immobility observed during the test phase is truly due to a despair-like state, 

or whether the response is more an adaptation to a familiar environment (Borsini & Meli, 

1988; Hawkins et al., 1978 ). The tail-suspension test (TST) is an alternative pro-

depressive model performed in mice (Steru et al., 1985). After treatment, subjects are 

suspended by the tail and isolated from any means of support, with immobile behaviour 

during testing also being used as an approximation of despair. The test does not require 

a pre-test phase, avoiding the confounds associated with prior exposure to the test 
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environment, is generally short (around 6 minutes), and also avoids the potentially 

confounding effects of hypothermia due to immersion in water (Cryan et al., 2005). The 

TST could therefore be used to corroborate FST results, as a second measure of potential 

anti-depressant or pro-depressive effects. 

 

 

3.3.5 Conclusions 

 

Acute treatments of the novel KOPr-agonists Ethy-SalA and Me-SalA were shown to have 

no effect on sucrose self-administration (at 0.3 mg/kg), or affect basal locomotor activity in 

Sprague-Dawley rats at the highest doses used for cocaine-primed reinstatement testing 

(0.3 and 1.0 mg/kg respectively). Ethy-SalA (0.3 mg/kg) also shows no significant pro-

depressive or anti-depressive effects in FST with comparison to vehicle treatment. 
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Chapter 4 : Cellular effects of Ethy-SalA: modelling 

dopamine re-uptake  
 

KOPr agonists, including SalA and many of its chemical derivatives, have been shown in 

cellular and ex vivo tissue models to influence re-uptake of DA via activation of the KOPr 

(Kivell et al., 2014; Simonson et al., 2015). The dye trans-4-[4-(dimethylamino)styryl]-1-

methylpyridinium (ASP+) acts as a substrate for monoamine transporters, including DAT, 

and fluoresces strongly in a lipid environment (Magrassi et al., 1987; Schwartz et al., 

2003). Transfected cells expressing DAT show linear uptake of ASP+, which accumulates 

within the cytoplasm and can be detected using confocal microscopy (Zapata et al., 2007).  

Measures of ASP+ uptake have been used to identify changes to DAT function in cells co-

expressing KOPr and DAT. This chapter examines the cellular effects of Ethy-SalA upon 

DAT function using an jn vitro cellular model of DA re-uptake, in order to determine a 

mechanism of action for the agonist’s anti-cocaine effects.  

 

4.1 Methods 
 

4.1.1. Cell culture materials and solutions 

 

Sterile plasticware, including cryovials, Falcon tubes (15 and 50 mL), T25 (25 cm2) and 

T75 (75 cm2) flasks were obtained from Becton Dickinson Ltd. (Auckland, New Zealand). 

Confocal glass-bottomed Fluorodishes were obtained from Coherent Scientific (WPI Inc., 
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Victoria, Australia). Dubecco’s Modified Eagle’s Medium (DMEM; Invitrogen), penstrep 

antibiotic (penicillin G sodium 5000 units/mL and streptomycin sulphate 5000 units/mL in 

0.85% saline), Lipofectamine 2000 (Invitrogen), Opti-MEM 1 medium (Invitrogen), bovine 

serum albumin and trypsin was obtained from Life Technologies Ltd. (Auckland, New 

Zealand). Fetal calf serum (FCS) was obtained from ICP Biologicals, (Auckland, New 

Zealand). Phosphate-buffered saline (PBS; 137 nM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 

1.5 mM KH2PO4, pH 7.4) and Krebs buffer (130 mM NaCl, 1.3 mM KCl, 2.2 mM CaCl2, 1.2 

mM MgSO4.6H2O, 1.2 mM KH2PO4, 10 mM HEPES, 10 mM D-glucose, pH 7.4) were 

prepared using lab reagents and sterilised (autoclaved and filtered) before use. Trans-4-

[4-(dimethylamino)styryl]-1-methylpyridinium (ASP+) iodide and norbinaltorphimine 

(norBNI) was obtained from Tocris Bioscience (Bristol, UK). Anti-myc monoclonal mouse 

antibodies and goat anti-mouse Cy5 antibodies were obtained from Abcam (Melbourne, 

Australia). The YFP-hDAT and myc-rKOPr plasmids used in this study were kindly donated 

by L. Devi (Jordan & Devi, 1999), and J. Javitch (Daws et al., 2002) respectively.  

 

4.1.2 Cell culture- Human Embryonic Kidney cells (HEK-293) 

 

HEK-293 cells were grown and passaged using sterile plasticware in a sterile biological 

safety cabinet (AES Environment PTY, Auburn, Australia). Cells were cultured in a 

standard DMEM solution containing 10% (v/v) Fetal Calf Serum and 1% (v/v) penstrep 

antibiotic. Cell cultures were stored and grown in a Heracell incubator (Kendro Laboratory 

Products, GmbH, Germany) at 37°C in humid conditions and with 5% carbon dioxide. 

An adherent immortalised Human Embryonic Kidney cell line (HEK-293) was used for all 

cellular experimentation. HEK-293 cell stocks were stored in cryovials in liquid nitrogen, 

and thawed for use. Vials were defrosted in a 37°C water bath containing metal beads, 

and cells were added to a 15 mL Falcon tube containing 10 mL of standard DMEM and 

centrifuged at 1250 rpm, 300 g for 5 min. Pelleted cells were re-suspended in 7 mL of 
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standard DMEM and placed in a sterile T25 flask and allowed to grow for approximately 2 

days until cells were 80-90% confluent, at which point the cells were passaged. 

Cells were passaged by removing the culture media and washing with 5 mL of 1x 

phosphate buffered saline (PBS). Cells were then incubated with 1 mL trypsin for 3-5 

minutes, until cells had visibly detached from the bottom of the flask. 5 mL of standard 

DMEM was added to the flask to inactivate the trypsin, and the mixture pipetted multiple 

times over the surface of the flask to wash any remaining cells from the flask. The cell 

suspension was the centrifuged at 1250 rpm, 300g for 5 min, and the pelleted cells re-

suspended in 2 mL of standard DMEM. Cells were re-seeded at 1 mL in a total of 15 mL 

standard DMEM in a T75 tissue culture flask. For further passaging of T75 flasks, cells 

were treated with 2 mL of trypsin, and the pelleted cells re-suspended in 5 mL of standard 

DMEM. 

 

4.1.3 HEK-293 co-transfection 

 

In preparation for transfection, cells were passaged and plated on glass-bottomed 35 mm 

diameter Fluorodishes at a concentration of 3.0 x 105 cells/mL in 1 mL of standard DMEM. 

To obtain a specific concentration for plating, the number of live cells in suspension was 

counted using 0.4% trypan blue (Sigma-Aldrich, Auckland, NZ) and a standard 

haemocytometer. 24 hours after plating the culture medium was removed and replaced 

with 1 mL of penstrep-free DMEM (10 % FCS only). To give transfection solution for a 

single plate, 3 µL of Lipofectamine 2000 was combined with 47 µL of Opti-MEM 1 medium 

(Invitrogen) and incubated for 5 min at room temperature. In a separate tube, 1.8 µg/mL 

of myc-tagged rat KOPr (myc-rKOPr) plasmid DNA, and 0.8 µg/mL of yellow fluorescent 

protein-tagged human DA transporter (YFP-hDAT) plasmid DNA were made up in a total 

volume of 50 µL of Opti-MEM 1. After the 5 min incubation, both tubes were combined and 
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incubated at room temperature for 20 min. Dishes were then treated with 100 µL of the 

transfection solution, and incubated for 48 hours. 

 

 

4.1.4 Confocal microscopy: trans-4-[4-(dimethylamino)styryl]-1-

methylpyridinium (ASP+) uptake 

 

Transiently co-transfected HEK293 cells were visualised with an Olympus Fluoview 

FV1000 confocal laser scanning biological microscope (inverted model 1X81), using 

FV10-ASW 4.0 software (Olympus Pty. Ltd., Melbourne, Australia). A 10 mM stock solution 

ASP+ was made using sterile Krebs buffer. This stock was further diluted to a 

concentration of 10 µM in Krebs Buffer, and incubated in a 37°C water bath. 

Media was aspirated from plated cells, and replaced with sterile KREBs buffer at 37°C. A 

glass-bottomed 35 mm diameter dish containing YFP-hDAT and myc-rKOPr transfected 

cells was placed in an insulated heating chamber (INU-21LCS-f1 model; Tokau Hit Co. 

Ltd, Japan) at 37°C, filled with distilled water perfused with 5% CO2. Cells were observed 

at 60 X magnification using a silicon immersion objective. YFP-hDAT fluorescence was 

observed using a 473 nm laser (YFP filter: excitation at 473 nm, detection at 527 nm) at 

0.7% laser power and high voltage settings (HV) of 700 V. ASP+ fluorescence was 

observed using a 558 nm laser (ASP+ filter: excitation at 570 nm, detection at 670 nm) at 

0.5% laser power and HV of 560 V. A differential interference contrast (DIC) filter was used 

to visualise all cells in the field of view. The microscope pinhole was opened to 500 µm to 

reduce confocality, allowing near-total cellular accumulation of ASP+ to be visualised. The 

viewing software was programmed take 120 images at five-second intervals in a single 

field of view, for a total time-course of 10 minutes. 
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Once a field of view was chosen, with at least 50% of the cells fluorescing and visible in 

the YFP confocal channel, Krebs solution was aspirated from the cells, and the time-

course started. Once the first image had been taken, 1 mL of 10 µM ASP+ was carefully 

added to the dish. Baseline ASP+ uptake was recorded up to 300 seconds, after which 1 

µL of KOP agonist or vehicle (100% DMSO) was added to the dish in the vicinity of the 

field of view and combined with the Krebs/ASP+ medium by gently pipetting up and down. 

Treated cells were then imaged for a further 300 seconds. 

KOP agonists were prepared at a concentration of 10 mM and 1 mM in pure DMSO, so 

that when 1 µL of agonist solution was added to the 1 mL of KREBS solution the final 

concentration of agonist was approximately 10 µM and 1 µM respectively. For experiments 

requiring norBNI pre-treatment, cells were incubated in 1 mL of Krebs solutions containing 

1 µM of norBNI (Tocris Bioscience, UK) prior to the start of confocal experimentation. 

ASP+ uptake was analysed by manual selection of regions-of-interest (ROIs) 

encompassing YFP-hDAT-expressing cells, and plotting Arbitrary Fluorescent Units 

(AFUs) over time, using the Series Analysis function of the FV10-ASW 4.0 software 

(Olympus Pty. Ltd, Australia). ROIs were excluded from analysis if the regions initially 

showed YFP-hDAT fluorescence of less than 100 AFUs, and if the plot of ASP+ 

fluorescence showed significant deviation from a linear uptake, as this indicated that the 

selected region contained a cell which had shifted or moved out of focus. The rate of ASP+ 

uptake for ROIs was approximated by plotting AFU values for a 60-second period of time 

prior to addition of KOPr agonist (typically from 200-260 seconds), and then plotting the 

fluorescence of multiple overlapping 60-second periods (20-second overlap, with a 

minimum of 5 periods plotted) after agonist addition. A trendline was fitted to each plot 

using Linear regression software (Prism 5.0, GraphPad, La Jolla, USA). The maximal 

gradient observed post-agonist addition was compared to the pre-agonist gradient using 

the following formula: 

-100 % change in uptake = 
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All treatments (excepting norBNI treatment) were performed over a minimum of 3 separate 

transfections, with 2-3 plates per transfection for each treatment condition. 

 

  

4.1.5 Confocal visualisation of myc-rKOPr expression 

 

KOPr immunostaining was performed 72 hours after plating and 48 hours after co-

transfection. Cells were fixed with ice-cold methanol/acetone (1:1) for 7 min, and then 

washed 3 times, at 5 min per wash, in Phosphate-Buffered Saline (PBS). Cells were then 

blocked with 0.25% Tween 20, 1% Bovine Serum Albumen (BSA) in PBS for 30 min at 

room temperature. The blocking solution was aspirated, and anti-myc monoclonal mouse 

antibody in 1% BSA in PBS at a dilution of 1:20 was incubated with the cells at 4°C for 12 

hours. After incubation, the antibody solution was aspirated, and the cells washed 3 times 

with 0.25% Tween 20 in BSA, at 5 min per wash. Goat anti-mouse Cy5 antibody at a 

dilution of 1:100 was added to the cells and incubated at room temperature for one hour. 

The antibody solution was replaced with PBS and stored at 4°C in the dark prior to confocal 

imaging. YFP-hDAT and Cy5-immunolabelled myc-rKOPr-expressing cells were 

visualised by confocal microscopy (see above) using a 493 nm and 693 nm lasers with 

YFP (see Section 4.1.3) and Cy5 (excitation at 635 nm, detection at 664 nm) filters, at 40x 

magnification (silicon objective) (Olympus Fluoview FV1000 microscope). 

 

4.1.6 Statistical analysis 
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All statistical analysis was performed using GraphPad Prism 5.0 software. Mean ASP+ 

uptake increases post-KOPr agonist addition were compared using a one-way ANOVA 

with Dunnett’s multiple comparison post-test (comparison to vehicle). Results were 

considered to show significance if the p-value for statistical tests was <0.05. Numerical 

results are reported in-text as Mean ± Standard Error of Mean. 

 

 

4.2 Results 
 

4.2.1 Co-expression of myc-rKOPr and YFP-hDAT in transfected HEK-293 

cells 

 

 Visualisation of YFP-hDAT and myc-rKOPr, using auto- and immunofluorescence 

respectively, indicates that co-transfection with YFP-hDAT and myc-rKOPr plasmids 

induces co-expression of YFP-DAT and myc-KOPr protein in HEK-293 cells.  Overlays of 

YFP-hDAT and Cy5-immunostained myc-rKOPr images show expression of both proteins 

occurring within the same cells (Fig. 4.1). 
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Figure 4.1. Co-expression of myc-rKOPr and YFP-hDAT in transfected HEK-

293 cells. Confocal microscopy images of auto-fluorescent YFP-hDAT (A) and Cy5-

stained myc-rKOPr (B) expression. White arrows indicate regions of YFP-hDAT and myc-

rKOPr fluorescence. The marked areas of fluorescence in A and B correspond to cellular 

structures in DIC images (C and E), with overlap between regions of YFP-hDAT and myc-

rKOPr expression (D). 

DAT KOPr 

Overlay 2 (DAT/KOPr/DIC) Overlay 1 (DAT/KOPr) 

DIC 
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4.2.2 Characterisation of ASP+ uptake in DAT/KOPr co-transfected HEK 293 

cells 

 

Cells expressing YFP-hDAT show marked accumulation of fluorescent ASP+ over time, 

whereas non-expressing cells do not (Fig. 4.2). ASP+ uptake in representative YFP-hDAT-

expressing show strong linear uptake approximately 100 s after addition of ASP+ [Pearson 

correlation coefficient, r2>0.98] up until 300 s. Linear uptake continued after addition of 1 

µL of vehicle (100% DMSO) or KOPr agonist to the cells at 300 s, though changes in the 

slope of ASP+ uptake can be observed (Fig. 4.3). 

 

  



91 
 

 

 

  

Figure 4.2. Time course images of ASP+ uptake in co-transfected DAT/KOPr HEK-

293 cells. Images A-C represent YFP-hDAT expression at time= 0 seconds, prior to ASP+ 

addition. YFP-hDAT-expressing (red arrows) and non-expressing cells (white arrows) are 

indicated. Images D-H represent accumulation of ASP+ within the same sample of cells 

from 0 s to 8 minutes 45 seconds. Fluorescence increases within cells expressing YFP-

hDAT (red arrows), while non-expressing cells do not show visible accumulation (white 

arrows). The punctate fluorescence observed in labelled cells is a result of mitochondrial 

binding of ASP+. 

DAT Overlay (DAT/DIC) DIC 

ASP+ 
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Figure 4.3. Linear ASP+ uptake in DAT/KOPr co-tranfected HEK-293 cells. 

Representative traces from individual YFP-hDAT-expressing cells showing increasing 

ASP+ fluorescence over time with vehicle (DMSO) treatment (A) and KOPr agonist 

treatment (B). Measurements of ASP+ fluorescence were taken every 5 seconds. ASP+ 

accumulation prior to treatment after the initial ASP+ binding phase (100-300 s) and after 

treatment (305-500 seconds) shows highly linear correlation for both vehicle and KOPr 

agonist treatment (Pearson correlation coefficient, r2>0.98). All linear regressions are 

significantly non-zero. 
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4.2.3 Changes to ASP+ uptake in DAT/KOPr co-transfected HEK-293 cells 

after KOPr agonist treatment 

 

The ASP+ uptake model was used to explore the effect of KOPr activation by the novel 

KOPr agonist Ethy-SalA upon DAT activity in a transiently-transfected HEK-293 cellular 

model. YFP-hDAT expressing cells treated with 10 µM of SalA showed increased ASP+ 

uptake of 16.9 ± 5.05 %. Treatment with 1 µM of Ethy-SalA increased ASP+ uptake by 

11.9 ± 4.53 %, while treatment with 10 µM increased uptake to 31.5 ± 6.10 %. Treatment 

with vehicle alone did not produce a significantly non-zero increase or decrease in ASP+ 

uptake (-0.39 ± 2.59 %). Cells incubated with 1 µM of norBNI prior to the ASP+ time-course 

showed a reduced ASP+ uptake of 10.5 ± 9.01 %. Analysis using one-way ANOVA 

indicated significant differences in mean change in ASP+ uptake between treatment 

groups [F(4,186)=6.53, p<0.0001].  In comparison to vehicle, 10 µM of SalA significantly 

increased ASP+ uptake (Dunnett’s multiple comparison post-test, p<0.05) and 10 µM of 

ESA increased ASP+ uptake with high significance (p<0.001) (Fig. 4.4) 
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Figure 4.4. Changes to ASP+ uptake in YFP-hDAT and myc-rKOPr co-transfected 

HEK-293 cells after KOPr agonist treatment. Comparisons of the slopes of linear 

regression lines fitted to ASP+ AFU values for individual cells over a 60 s period before 

and after treatment. The increase in uptake induced by treatment with SalA (10 µM) and 

Ethy-SalA (10 µM) is significantly different to the effect of vehicle treatment alone. No 

significant differences were detected between uptake in SalA and Ethy-SalA-treated cells. 

Incubation of co-transfected HEK-293 cells with 1 µM of the KOPr antagonist norBNI 30 

min prior to the start of the time course reduces the effect of Ethy-SalA upon ASP+ uptake. 

*= p<0.05; ***= p<0.001 (one-way ANOVA, with Dunnett’s post-test: comparison to 

vehicle). n=26-58 cells for vehicle, SalA and Ethy-SalA treatments; n=12 cells for norBNI 

pre-treatment. 



95 
 

4.3 Discussion 
 

The novel KOPr agonist Ethy-SalA has been shown to attenuate cocaine reinstatement 

and self-administration (Chapter 2), without sedative effects or inhibiting natural reward 

(Chapter 3). The cellular pathways activated by Ethy-SalA are currently un-tested. A 

transiently co-transfected cellular model of DAT and KOPr expression was used to explore 

the ability of Ethy-SalA to regulate DAT function through the KOPr, and so identify a 

potential mechanism for Ethy-SalA’s potent anti-cocaine reward effects. 

 

4.3.1 YFP-hDAT and myc-rKOPr co-expression in HEK293 cells 

 

The HEK-293 cells used in this study replicate quickly, grow well in standard DMEM culture 

medium, and transfect readily (Thomas & Smart, 2005). Originally transformed by Graham 

et al. (1977), HEK-293 cells have become a standard tool in cellular research. Though 

derived from advenoviral-transformed human embryonic kidney cells, HEK-293 cells 

display neuronal cell-like features, including endogenous expression of several 

neurofilament proteins (Shaw et al., 2002), suggesting that HEK-293 cells may be more 

representative of an early neuronal progenitor than a pure epithelial kidney cell . Analysis 

of endogenous transporter expression in HEK-293 cells has not detected significant 

expression of any of the monoamine transporters (DAT, SERT and norepinephrine 

transporters) or of opioid receptors (Ahlin et al., 2009; Thomas & Smart, 2005 ), making 

the cell line ideal for transient co-transfection of KOPr and DAT. 

 

4.3.2 Interaction of KOPr and DAT to enhance ASP+ uptake 

 

ASP+, used in this study as a surrogate for dopamine, is a lipid-dependant fluorophore 

derived from chemical modification to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) 

(Magrassi et al., 1987). ASP+ shows substrate specificity for norepinephrine transporters 
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(Schwartz et al., 2003), SERT (Oz et al., 2010) and DAT (Bolan et al., 2007; Zapata et al., 

2007 ), and will appear to fluoresce significantly only within cells expressing these 

transporters. After an initial binding phase, where ASP+ fluorescence increases rapidly, 

ASP+ uptake through monoamine transporters as measured by AFU within cells is highly 

linear (Schwartz et al., 2003), and allows the use of a within-cell experimental design, 

where ASP+ uptake can be plotted before and after treatment. Linear regressions of AFU 

traces for selected cells in this experiment had on average an r2 value >0.9, indicating a 

strong linear correlation between increasing fluorescence and time. Comparison of initial 

YFP-hDAT fluorescence in selected cells and ASP+ AFU at 250 seconds showed a weak 

positive correlation between DAT expression and the amount of internalised ASP+ 

(Appendix 7, Fig. 6.6). Passive ASP+ uptake into non-transfected cells is possible, due to 

basal expression of organic cation transporters (OCT) in Hek-293 cells (Ahlin et al., 2009); 

however, the relative expression levels of OCT in the HEK-293 cell line are extremely low, 

and are unlikely to significantly contribute to ASP+ internalisation in comparison to DAT.  

Treatment with Ethy-SalA was shown to increase ASP+ uptake via KOPr activation in a 

dose-dependent manner, an effect which is reversed (with high variability, due to low 

numbers) by KOPr blockade with norBNI (Fig. 4.4). Previous studies with the classic KOPr 

agonists U-50,488 and SalA and Mesyl-SalA have also shown this effect in HEK-293 and 

neuronal-derived EM4 cells (Kivell et al., 2014 ; Simonson et al., 2015). In this assay, SalA 

was found to increase mean ASP+ uptake by 17%, whereas a previous study identified 

SalA to increase uptake by approximately 45 % (Simonson et al., 2015). This difference in 

result may be due to less successful co-transfection of KOPr with DAT in this experiment, 

limiting the ability of the KOPr to influence DAT activity.  

The increase in ASP+ uptake seen with SalA and Ethy-SalA treatment is assumed to be 

due to enhanced activity of existing DAT, and not an increase in DAT cell-surface 

expression. Previous studies have detected no significant increases in cell-surface 

expression of YFP-hDAT in HEK-293 cells co-expressing rKOPr and YFP-hDAT, 60-260 
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seconds after treatment with classical and novel KOPr agonists, including SalA 

(Simonson, PhD thesis 2011). Significant increases in YFP-hDAT expression are only 

observed in co-transfected HEK-293 cells after 30 min incubation with SalA (Simonson, 

PhD thesis 2011), which is well beyond the scope of the 5 min agonist incubation time 

used in the ASP+ uptake protocol. It is not yet confirmed whether Ethy-SalA treatment 

alters DAT or KOPr expression levels, which could be explored using Western blot and 

further confocal analysis of cell-surface YFP-hDAT expression over time, but it may be 

assumed that the agonist has similar effects to SalA and that the observed increase in 

ASP+ uptake over the course of the assay is due to enhanced DAT activity and not cell-

surface expression.  

 

4.3.3 Limitations and future directions 

 

A high degree of variability in ASP+ uptake values was observed in this experiment (Fig. 

4.4), despite consistency in the confocal settings and experimental procedure applied to 

each plate. Normalising AFU values to background fluorescence (i.e. non-transfected 

cells) for each sample could remove some of this variability. 

In this confocal assay, human-derived cells (HEK-293) were transfected with fluorescently-

tagged human DAT and a rat KOPr plasmid. Expression of the rat KOPr was detected in 

co-transfected cells, suggesting that the inter-specific difference does not affect successful 

transcription and translation of the receptor. The use of a rat-derived KOPr in a human cell 

line is problematic in terms of the validity of the model. However, the amino-acid sequence 

of the rat and human KOPr are very similar, with 94.1% homology reported by Simonin et 

al. (1995) and the online protein database UniProt (see Appendix 6). This structural 

homology between the two species is mirrored by functional homology in analgesic 

assays, and in the dysphoric effects caused by KOPr agonism in both species (Hunter et 

al., 1990; Reece et al., 1994 ; Walsh et al., 2001 ); though cellular data indicates that the 
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rat KOPr does not show significant receptor internalisation when treated with selected 

KOPr agonists, whereas the human KOPr does (Li et al., 1999). Repetition of this 

experiment with a human KOPr plasmid could confirm if any significant inter-specific 

differences do exist.  

The use of a human cell line also limits the effective comparisons that can be made to the 

pre-clinical rat models used in this thesis. Analysis of DA uptake in ex vivo rat brain 

samples (NAc, pFC and dorsal striatal regions) using rotating-disk electrode voltammetry 

(RDEV) has previously been used to complement ASP+ uptake data (Kivell et al., 2014; 

Simonson et al., 2015 ), and could be used to confirm if the DAT-enhancing effects of Ethy-

SalA observed in vitro translate to a tissue model. Repetition of this confocal assay using 

neuronal-derived cell lines such as N2A (murine) (Klebe & Ruddle, 1969) or NTERA-2 

(human) (Andrews et al., 1984) would complement these results. 

 

4.3.4 Conclusions 

 

Treatment with Ethy-SalA (10 µM) significantly increased DAT function in HEK-293 cells 

co-expressing YFP-hDAT and rKOPr protein, measured by up uptake of the DAT-

specific fluorophore ASP+. This finding suggests a cellular mechanism for the anti-

cocaine effects of Ethy-SalA observed in self-administration studies (Chapter 2). 
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Chapter 5 : Discussion 
 

5.1 Significance of this thesis  
 

The behavioural testing performed in this thesis represents the first published (Riley et al., 

2014) and unpublished in vivo studies of the novel compounds Ethy-SalA and Me-SalA. 

Cocaine self-administration assays, hyperactivity and sensitisation assays have been 

used to explore the potential anti-cocaine effects of these agonists, in particular that of 

Ethy-SalA, with side-effect testing to understand the wider behavioural effects of these 

compounds. The confocal ASP+ uptake assay performed with Ethy-SalA also represents 

the first confirmation of this compound’s mechanism of action as an indirect regulator of 

DAT function. The results obtained as part of this study provide a basis for further 

investigations of the cellular and behavioural activities of these novel compounds, in 

particular Ethy-SalA, with the ultimate goal of identifying a potential anti-addictive 

pharmacotherapy with minimal off-target effects and unfavourable side-effects. 

 

5.2 Summary of key findings 
 

5.2.1 Acute treatment with Ethy-SalA attenuates responding in cocaine self-

administration behavioural models 

 

Acute doses of Ethy-SalA at 0.1 and 0.3 mg/kg were shown to attenuate active lever 

responses made by rats in a cocaine-primed reinstatement model of drug-seeking 

behaviour, to a level comparable to that of SalA at 0.3 mg/kg. A higher dose of Ethy-SalA 

(2.0 mg/kg) was also shown to be sufficient to attenuate the number of infusions achieved 

in a progressive-ratio model of cocaine self-administration, whereas 2.0 mg/kg of SalA 

was not effective. These results indicate that Ethy-SalA has the ability to alter cocaine-

evoked drug-seeking and motivation for cocaine reward in rats, with greater potency than 
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SalA. The ability of Ethy-SalA to effectively attenuate progressive-ratio cocaine 

administration over a minimum 2-hour session also suggests that the compound may have 

a longer half-life than SalA. The less-potent analogue Me-SalA was not shown to 

significantly alter behaviour in these models, which supports cellular data indicating that 

the compound acts as a less effective or more variable activator of the KOPr than SalA 

(Riley et al., 2014).  

 

5.2.2 Acute Ethy-SalA treatment does not affect cocaine-induced hyperactivity or 

sensitisation in rats 

 

Pre-treatment with Ethy-SalA (0.3 mg/kg) was not found to significantly reduce acute 

cocaine hyperactivity or supress the expression of cocaine behavioural sensitisation in 

rats, despite the anti-cocaine effects observed in self-administration testing. The lack of 

hyperactivity attenuation may be due to the low dose of agonist used, the high dose of the 

cocaine challenge (20 mg/kg), or to un-tested hallucinogenic effects and off-target 

dopaminergic effects of the compound. Cocaine sensitisation was not observed in this 

study, even in control animals not receiving KOPr agonist. This may be due to the low 

numbers used, or the confounding effects of stress, as the rats used were relocated from 

another facility. 

 

5.2.3 Low doses of Ethy-SalA and Me-SalA do not show sedative or pro-

depressive side-effects, or attenuate natural reward in rats 

 

Ethy-SalA and Me-Sal did not attenuate the self-administration of sucrose pellets in rats 

when injected at a dose of 0.3 mg/kg, indicating that the effective anti-cocaine reward dose 

of Ethy-SalA does not inhibit reward in this model of a natural reward stimulus. This effect 

is likely due to the more complex set of stimuli (taste, smell etc.) associated with food, 

which are not significantly inhibited by KOPr agonism at the dose tested. Neither Ethy-
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SalA or Me-SalA showed significant sedative effects in an open-field test of locomotor 

behaviour, confirming that the behavioural effect observed in cocaine-primed 

reinstatement testing is unlikely to be due to the sedation of test animals receiving 0.1 or 

0.3 mg/kg Ethy-SalA. FST testing of acute Ethy-SalA treatment did not detect any 

significant pro-depressive effects when compared to vehicle treatment in rats, though 

these results may be confounded by the use of test animals with previous exposure to 

KOPr and MOR agonists, and with different experimental backgrounds. Taken together, 

this data suggests that the anti-reward effect of low doses of Ethy-SalA is only 

behaviourally significant in the presence of drugs of abuse, such as cocaine, which cause 

dopaminergic hyperactivity of the reward pathway. 

 

5.2.4 Ethy-SalA treatment enhances DAT uptake of ASP+ in an in vitro cellular 

model 

 

Investigations of the ability of Ethy-SalA to regulate DAT function via KOPr activation were 

performed using confocal microscopy. HEK-293 cells co-transfected with YFP-hDAT and 

rKOPr showed enhanced uptake of the fluorescent DAT substrate ASP+ when treated with 

10 µM of Ethy-SalA, an effect which was attenuated in cells pre-incubated with 1 µM of 

the KOPr antagonist norBNI before Ethy-SalA treatment. This result indicates that Ethy-

SalA activation of the KOPr positively regulates DAT function in an in vitro cell model, an 

observation which may partially explain the anti-cocaine effects observed in self-

administration behavioural models, and supports the theory of the KOPr system as a 

regulator of DA within the reward pathway. The attenuation of this effect observed in cells 

incubated with norBNI supports the assumption that Ethy-SalA is a selective KOPr agonist, 

and that the cellular and behavioural effects of Ethy-SalA are mediated through the KOPr; 

though the high degree of error observed in norBNI-treated cells means that the result is 

not conclusive.  
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5.3 Limitations and future directions 
 

Ethy-SalA displays noticeable differences to its parent compound, SalA. Ethy-SalA is 

effective at a lower dose than SalA in the cocaine-primed reinstatement model (0.1 mg/kg 

compared to 0.3 mg/kg SalA; see Chapter 2, Section 2.2.3) and is effective at reducing 

the number of infusions achieved during a progressive-ratio self-administration session (at 

2.0 mg/kg), whereas SalA is not (see Chapter 2, Section 2.2.4). Previous cellular assays 

by the Prisinzano laboratory have shown that Ethy-SalA is a more effective inhibitor of 

cAMP accumulation in a CHO KOPr-expressing model (Riley et al., 2014). Unpublished 

data from our laboratory also indicates that Ethy-SalA has a longer analgesic duration of 

action in a mouse tail-flick assay than SalA at 2.0 mg/kg. Taken together, this data 

indicates that Ethy-SalA shows enhanced KOPr interaction compared to SalA. 

There are at least two possible explanations for this effective difference: enhanced or 

differential binding-site interactions between Ethy-SalA and the KOPr receptor and 

differences in the metabolism of Ethy-Sal compared to SalA. The most current model of 

SalA KOPr binding (Kane et al., 2008) shows SalA binding within a pocket between KOPr 

transmembrane regions II and VII. Addition of different functional groups to the carbon-16 

position of SalA by Riley et al. (2014) were deliberately designed to explore the role of the 

furan ring in the KOPr-SalA binding interaction. Addition of an ethynyl (RCH) substituent 

at the carbon-16 position was shown to increase agonist potency compared to SalA 

(EC50=0.019 ± 0.004 nM compared to EC50=0.030 ± 0.004 nM) while addition of a methyl 

group (R-CH3; Me-SalA) substantially decreases potency (EC50=0.407 ± 0.147 nM) (see 

Chapter 2, Fig. 2.2). This may indicate that the area of the binding pocket adjacent to the 

carbon-16 position of Salvinorin A is sterically hindered, as the addition of a methyl group 

contributes slightly more steric bulk to the molecule than the ethynyl group (see Appendix 

2, Fig. 6.1). The flattened molecular geometry of the ethynyl group may allow it to fit easily 

within the furan-associated binding pocket, and enhance both hydrophobic and Van der 
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Waals interactions, resulting in a more stable agonist-receptor association. A more 

complete binding of the agonist to the receptor may in turn result in enhanced or prolonged 

receptor activation, or even induce a functionally selective signalling profile at the KOPr. 

Conversely, the high variability or lack of effect seen in cocaine-primed reinstatement 

(Chapter 2, section 2.2.3) and progressive-ratio (Chapter 2, section 2.2.4) behavioural 

subjects treated with Me-SalA may be due to incomplete and sterically hindered binding 

of the agonist caused by the presence of the incompatible methyl group. Quantification of 

the binding affinities of Ethy-SalA and Me-SalA for the KOPr would confirm whether the 

addition of different functional groups to the carbon-16 position affects ligand-receptor 

interactions at the KOPr. Assays which measure the level of activation of different GPCR 

signalling pathways, such as comparisons of Gαi and β-arrestin activity, can identify 

functional selective GPCR agonists (Zhou et al., 2013). Functional selectivity tests would 

help correlate the cellular and behavioural effects associated with Ethy-SalA treatment to 

an overall enhanced activation of multiple pathways, or biased activation of a few signalling 

pathways. 

The uptake and metabolism of Ethy-SalA may also be altered compared to SalA by the 

addition of an ethynyl group. Steroids such as estradiol show greatly enhanced intestinal 

absorbance into the blood when conjugated with an ethynyl group (Reed & Fotherby, 

1979). Ethynyl groups are also known to act as inhibitors of cytochrome P450 enzymes, 

thereby preventing much of the metabolism of the drugs they are conjugated to (Ortiz de 

Montellano & Kunze, 1980; Zhu et al., 2010). P450 enzymes are major contributors to drug 

metabolism (Wrighton & Stevens, 1992), and the short metabolic half-life of SalA is likely 

due primarily to the activity of this family of enzymes (Teksin et al., 2009). Enhanced 

absorption of Ethy-SalA into the blood could help explain why significant behavioural 

effects are observed at a lower dose than SalA (0.1 mg/kg Ethy-SalA compared to an 

effective dose of 0.3 mg/kg SalA) in a cocaine-primed reinstatement model, while P450 

enzyme inhibition may explain the longevity of Ethy-SalA treatment in the progressive-ratio 
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self-administration model and in the unpublished tail reflex assay. The compound Me-

SalA, which like SalA does not contain a metabolic inhibitory functional group, would not 

be afforded the same protection and longevity within the body, which may also partially 

explain the compound’s lack of significant effect and higher variability in cocaine-primed 

reinstatement and progressive-ratio tests. To confirm this, metabolic time-course analyses 

would have to be conducted upon blood and/or urine samples of animals injected with 

Ethy-SalA, as well as analyses to confirm which metabolites of Ethy-SalA and Me-SalA 

are present and active within the CNS, at time scales correlating to the anti-cocaine effects 

observed in self-administration models. 

Ethy-SalA and Me-SalA have been tested for activity and efficacy at the KOPr and MOR, 

but not for any other opioid receptors or GPCRs. SalA has previously been tested for 

activity at a variety of CNS receptors and found to be effectively inactive at all screened 

receptors other than the KOPr (Roth et al., 2002). As the novel compounds investigated 

in this thesis are derived from SalA and share the same target, it is unlikely that either of 

the compounds are significantly active at other receptors. However, it is possible that the 

differences in potency observed between Ethy-SalA and SalA and the inability of Ethy-

SalA to significantly attenuate cocaine hyperactivity and sensitisation effects may be 

explained by the interaction of Ethy-SalA with other signalling systems within the brain. A 

wide activity screen of Ethy-SalA against key CNS receptors, including delta-opioid, 5-HT, 

GABA and glutamate receptors, would validate its current designation as a selective KOPr 

agonist. 

This thesis considers only the effects of acute KOPr agonist administration. To widen 

understanding of these novel KOPr agonists, the effects of chronic KOPr administration 

will have to be taken into consideration, particularly as chronic KOPr activation with 

classical agonists has been shown to promote drug-seeking and addictive-like behaviours 

(Negus, 2004). The effects of acute Ethy-SalA treatment should also be observed at longer 

time scales (> 2 hours after treatment) in anti-cocaine and side effect testing, as recent 
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research indicates that acute SalA (2.0 mg.kg) continues to show significant effects up to 

24 hours after treatment (Chartoff et al., 2015). 

The separation of behavioural and cell-specific testing hinders direct comparison between 

animal and cellular models, and the explanation of the mechanisms of behavioural effects. 

Recent optogenetic advances have allowed precision targeting and activation of selected 

brain areas, through a combination of directed adenoviral transfection of light-sensitive ion 

channels and the insertion of micro-LED devices (Kim et al., 2013; Siuda et al., 2015). This 

technique has already been used to show the existence of sub-population of KOPr-

expressing neurons in the NAc with opposing behavioural effects (Al-Hasani et al., 2015). 

Cellular manipulations of an in vivo model has huge advantages over whole-body drug 

administration, and will be a useful method for determining the effects of KOPr activation 

in isolated regions of the brain, in order to better understand the full complexity of the KOPr 

system. 

Finally, this investigation of the effects of novel KOPr agonists is greatly limited by 

confinement to a single mammalian model and a single cell line. Self-administration 

models using non-human primates have already been used to test the ability of SalA to 

alter drug-seeking behaviour, and would be a useful next step in the pre-clinical testing of 

Ethy-SalA and other novel KOPr agonists. The use of HEK-293 cells in this investigation 

also limits the conclusions that can be drawn from the data obtained. Performing the assay 

using a variety of cultured cell types, particularly cells of neural lineage, would confirm the 

regulatory effect of the KOPr upon DAT this effect would be observed in a range of different 

cell types. 

The development of novel SalA-derived anti-addictive medications shows most promise 

with regards to the prevention of prescription-opioid abuse. Self-administration studies in 

rhesus monkeys have identified that co-infusion of SalA with the opiates remifentanil and 

oxycodone can reduce the reinforcing and rewarding qualities of the drugs. Addition of 
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KOPr agonists to existing opioids could reduce their addictive potential, allowing patients 

to receive effective pain relief without the development of dependence upon the drug. 

 

5.4 Final conclusions 
 

This thesis explores the behavioural and cellular effects of Ethy-SalA, a potent novel KOPr 

agonist, and a less potent agonist Me-SalA. Ethy-SalA shows anti-cocaine effects in self-

administration models of relapse and reward motivation in Sprague-Dawley rats, but does 

not significantly affect cocaine hyperactivity or the expression of behavioural sensitisation 

to cocaine in locomotor assays, in contrast to previously-tested KOPr agonists. Neither 

Ethy-SalA or Me-SalA show significant sedative side-effects at low doses, and also do not 

attenuate the self-administration of the natural food reward, sucrose. Ethy-SalA also does 

not display any pro-depressive side-effects in the Forced Swim Test, a model of 

depression-like behaviour. The anti-cocaine effects observed in self-administration studies 

are at least in part due to KOPr-mediated enhancement of DAT activity, as enhanced 

uptake of the DAT substrate ASP+ is observed in DAT/KOPr co-transfected HEK-293 cells 

treated with Ethy-SalA. Further behavioural and cellular testing of Ethy-SalA will establish 

whether the novel compound shows promise as a lead for the development of an anti-

addictive pharmacotherapy. 
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Chapter 6 : Supplementary information 
 

Appendix 1: Buffer solutions 
 

Phosphate Buffered Saline (PBS) pH 7.4 (10x concentrate) 

Concentration (M) (g/L)  

NaCl    1.4 M   80  

KCl    26.8 mM   2.0  

Na2HPO4   81.0 mM  26.8  

KH2PO4   14.7 mM   2.4  

 

KREBS Buffer pH 7.4  

Concentration (M)  (g/L)  

NaCl    130 mM   7.6  

KCl    1.3 mM  0.10  

CaCl2    2.2 mM   0.24  

MgSO4.6H2O   1.2 mM   0.27  

KH2PO4   1.2 mM   0.16  

HEPES   10 mM   2.6  

D‐Glucose   10 mM   1.8 
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Appendix 2: In silico modelling of novel KOPr agonists 
 

Chemical drawing software (MarvinSketchTM) was used to construct representations of the 

molecules SalA, Ethy-SalA and Me-SalA as 3-dimensional ‘ball-and-stick’ models using 

MarvinSpace 3-D visualisation software (ChemAxon software, Budapest, Hungary). Ball-

and-stick structures were overlaid with Van der Waals surface projections of each 

molecule, to visualise differences in electron density around the carbon-16 position of each 

molecule. The carbons of the SalA structural backbone were numbered as per Ortega et 

al. (1982). 

Van der Waals surface modelling of the three compounds SalA, Ethy-SalA and Me-SalA 

identified areas of steric difference around the carbon-16 position of each molecule. Both 

Ethy-SalA and Me-SalA display increased areas of steric bulk at the carbon-16 position in 

comparison to SalA, due to the presence of the respective ethynyl and methyl groups.  
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Figure 6.1. Computer-generated modelling of KOPr compounds. (A) Carbon atom 

numbering of the SalA structure, as originally determined by Ortega et al. (1982). Van der 

Waal’s surface-area models were generated From the chemical structures of SalA (B), 16-

ethynyl SalA (C), and 16-methyl SalA (D), with overlaid ball-and-stick models representing 

the molecular backbone (hydrogens omitted; carbon= grey, oxygen= red). Steric areas 

associated with the carbon-16 position are highlighted in yellow. Both Ethy-SalA and Me-

SalA show increased steric bulk at the carbon-16 position in comparison to SalA. While the 

ethynyl group of C is longer than the methyl group of D, it displays an overall decreased 

steric bulk compared to the methyl group [images generated using MarvinSketch and 

MarvinSpace chemical drawing software]. 
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Appendix 3.1: Catheter preparation for surgery 
 

Catheters for use in self-administration were prepared at least 2 days before surgery to 

allow the silicon coating to completely dry before use. 22-gauge BD needles (Becton 

Dickinson Ltd., NZ Auckland, New Zealand) were cut and blunted with a hand-held rotary 

sander (Dremel 3000) to a length of approximately 3 cm, and rinsed thoroughly in 70% 

ethanol to remove any particulate matter from the gauge. This metal piece was inserted 

into a section of silastic tubing (0.5 x 0.9 mm ID, C-P96115-02), so that roughly half the 

metal was covered. The catheter was flushed with 70% ethanol and allowed to dry before 

being coated with a thin, smooth layer of silicon. A minimum of two such coats were 

applied, with each coat being allowed a full day to dry before application of the next. After 

the final coating, a small nub of silicon was added to the catheter at the opposite end to 

the metal piece to act as an anchor for the catheter once inside the vein. The tubing was 

cut at an angle approximately 4 cm from the silicon nub to allow for insertion of the catheter 

into the vein (see Fig. 6.2). 

 

 

 

 

 

 

 

 

  
Figure 6.2. Intra-jugular catheter. Schematic of the catheter used in self-administration 

surgery. Total length of catheter= approx. 20 cm long. Materials are silastic tubing (0.5 x 

0.9 mm ID, C-P96115-02), 22-Gauge BD needles, and silicon (Selleys Wet-Area Silicone 

Sealant). 
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Appendix 3.2: Intra-jugular catheter surgery 
 

Surgery was performed upon animals undergoing cocaine self-administration. Before 

surgery, rats weighing 300-350 g were handled for two days. On the day of surgery, rats 

were anaesthetised with an intraperitoneal (i.p.) injection of a 2:1 mixture of ketamine and 

xylazine (90 and 9 mg/kg; Provet NZ Pty. Ltd., Auckland, New Zealand). The rat was 

considered to be appropriately anaesthetised upon complete loss of muscle tone and lack 

of a kicking reflex when a strong pinching stimulus was applied to the hind footpad.  The 

crown of the head and the right-hand side of the chest were shaved, and the skin swabbed 

with Vetadine (1.6% iodine w/v: Provet, New Zealand) and 70% ethanol. Lacrilube (Provet, 

New Zealand) was applied to the eyes to reduce dryness over the course of the surgery. 

A subcutaneous (s.c.) injection of the painkiller carprofen (Provet, New Zealand) at 5 

mg/kg was given directly prior to the start of the surgical procedure. A small incision directly 

above the right jugular vein was made through the skin of the chest, and the underlying 

tissue gently teased apart to expose the vein. Once located, the vein was securely tied off 

using suture wire at the head end of the vein. A small hole was then cut through the skin 

at the back of the head, and the bevelled end of the catheter run subcutaneously around 

the neck to the exposed jugular vein. A small incision was made part-way through the 

jugular, and the end of the catheter passed into the vein to a depth of around 4 cm. The 

catheter was then tied securely into the vein, using the silicon nub as an anchor. Catheter 

patency was confirmed by flushing the catheter with 3 unit/mL heparin solution in a 1 mL 

syringe attached to the metal piece and drawing a little blood back into the tubing. The 

open end of the metal piece was then capped with a short section of close-ended tubing. 

A long sagittal cut was made into the skin of the head and the underlying tissue carefully 

scraped away to expose the skull. The surface was rubbed with terramycin powder to dry 

the bone and to stem any bleeding. The head of the rat was then securely placed in a 

restraining device and four small holes were drilled into the skull. Jeweller’s screws were 

threaded into each of the holes, leaving a 2-3 mm gap between the head of the screw and 
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the skull. The metal of the catheter was placed running sagittally between these screws 

and a section of the metal bent upwards at an angle of between 45-90° from the skull. 

Ostron powder and Ostron liquid (Henry Schein Shalfoon, Auckland, New Zealand) was 

mixed to form a slurry and was placed over the exposed portion of the skull to secure the 

catheter. Using more Ostron mixture, a larger screw with the thread pointing upwards was 

placed on the head just behind the protruding metal piece. The Ostron was then left to dry, 

forming a hard acrylic-resin headpiece. Chest and head wounds were sealed with small 

amounts of superglue and dusted with terramycin powder. 10 mL of sodium lactate 

solution (Provet, New Zealand) was injected s.c. into the flank on either side of the rat (5 

mL each side) to replace electrolytes lost over the course of the surgery. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Catheter placement. Schematic of catheter and headpiece placement for 

intravenous self-administration. 



113 
 

Appendix 3.3: Post-operative care 
 

All rats undergoing jugular surgery were allowed a minimum of five days to recover, with 

weights carefully monitored over the recovery period.  Carprofen at 5 mg/kg was also given 

s.c. for two days post-surgery. Catheters were flushed daily with 0.2 mL of a sterile solution 

of 30 unit/mL heparin and 100,000 unit/mL penicillin (Provet, New Zealand) to prevent 

infection and the formation of blood clots within the tubing. Catheters were also tested 

weekly for patency, by using a 1 mL BD syringe with a plastic tubing attachment to flush 

the catheter with 0.1 mL of heparin/penicillin solution and then draw back approximately 

0.1-0.2 mL of liquid.  If blood appeared in the tubing, the line was considered patent. If this 

failed, a secondary method of testing was to flush the catheter with 0.15 mL of a 50 mg/mL 

pentobarbital solution, and observe the rat for immediate loss of muscle tone. If this 

occurred, the catheter was considered patent; if not, it was assumed that the catheter had 

developed a leak, and the rat was operated on to insert a second catheter into the left 

jugular. After failure of a second catheter, the rat was no longer viable for experimentation. 

If the catheter developed a block due to clot formation within the metal piece, a 

replacement metal piece was inserted into the existing catheter and attached to the 

headpiece, under general anaesthesia. 
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Appendix 4: Latin square treatment designs (self-admin) 
 

For experiments where subjects received multiple treatments, a latin square design was 

to counterbalance treatments and to control for the potentially confounding effect of a 

treatment order upon the results obtained. 

 

  Treatment order 

  A B C D E F 

R
a
t 
n

u
m

b
e
r 

1 SalA 0.3 MeSA 1.0 MeSA Veh 0.1 ESA 0.3 ESA 

2 0.1 ESA SalA 0.3 MeSA 1.0 MeSA Veh 0.3 ESA 

3 0.3 ESA 0.1 ESA SalA 0.3 MeSA 1.0 MeSA Veh 

4 Veh 0.3 ESA 0.1 ESA SalA 1.0 MeSA 0.3 MeSA 

5 1.0 MeSA Veh 0.3 ESA 0.1 ESA SalA 0.3 MeSA 

6 0.3 MeSA 1.0 MeSA Veh 0.3 ESA 0.1 ESA SalA 

7 Veh 1.0 MeSA 0.3 MeSA SalA 0.1 ESA 0.3 ESA 

8 0.3 ESA Veh 1.0 MeSA 0.3 MeSA SalA 0.1 ESA 

9 0.1 ESA 0.3 ESA Veh 0.3 MeSA 1.0 MeSA SalA 

10 SalA 0.3 ESA 0.1 ESA Veh 1.0 MeSA 0.3 MeSA 

11 0.3 MeSA SalA 0.1 ESA 0.3 ESA Veh 1.0 MeSA 

12 1.0 MeSA 0.3 MeSA SalA 0.1 ESA 0.3 ESA Veh 

 

Table 6.1. Cocaine reinstatement treatments. Latin square design used in cocaine self-

administration KOPr treatment. MeSA= Me-SalA; ESA= Ethy-SalA; Veh= vehicle. 

Numbers represent the doses of treatments (e.g. 0.3= 0.3 mg/kg). SalA was given at a 

dosage of 0.3 mg/kg. 
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  Treatment order 

  A B C D E 

R
a
t 
n

u
m

b
e
r 

1 Veh U69 MeSA ESA U50 

2 U69 MeSA ESA U50 Veh 

3 MeSA ESA U50 Veh U69 

4 ESA U69 Veh U50 MeSA 

5 U69 Veh U50 MeSA ESA 

6 Veh U50 U69 MeSA ESA 

7 U50 MeSA ESA U69 Veh 

 

Table 6.3. Sucrose self-administration treatments. Latin square design for sucrose 

administration KOPr treatments. MeSA= Me-SalA (0.3 mg/kg), ESA= Ethy-SalA (0.3 

mg/kg), U69= U-69,593 (0.3 mg/kg), U50= U-50,488, (10 mg/kg), Veh= vehicle. 

 

  Treatment order 

  A B C D E F G H 

R
a
t 
n

u
m

b
e
r 

1 0.3 ESA Veh U69 
1.0 

MeSA 
1.0 ESA 

2.0 
MeSA 

SalA 
2.0 

ESA 

2 
2.0 

MeSA 
0.3 ESA Veh U69 

1.0 
MeSA 

1.0 ESA 
2.0 

ESA 
SalA 

3 1.0 ESA 
2.0 

MeSA 
0.3 ESA Veh U69 

1.0 
MeSA 

SalA 
2.0 

ESA 

4 
1.0 

MeSA 
1.0 ESA 

2.0 
MeSA 

0.3 ESA Veh U69 
2.0 

ESA 
SalA 

5 0.3 ESA 1.0 ESA 
1.0 

MeSA 
2.0 

MeSA 
U69 Veh SalA 

2.0 
ESA 

6 
2.0 

MeSA 
U69 Veh 0.3 ESA 1.0 ESA 

1.0 
MeSA 

2.0 
ESA 

SalA 

7 
1.0 

MeSA 
2.0 

MeSA 
U69 Veh 0.3 ESA 1.0 ESA SalA 

2.0 
ESA 

8 1.0 ESA 
1.0 

MeSA 
2.0 

MeSA 
U69 Veh 0.3 ESA 

2.0 
ESA 

SalA 

Table 6.2. Progressive-ratio treatments. Latin square design used for progressive-ratio 

KOPr treatments. MeSA= Me-SalA, ESA= Ethy-SalA, U69= U-69,593, U50= U-50,488, 

Veh= vehicle. SalA and Ethy-SalA treatments at 2.0 mg/kg were added to the design 

retrospectively in order to test the higher doses. 
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Appendix 5: Cocaine hyperactivity with SalA pre-treatment 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. SalA cocaine hyperactivity. Cocaine hyperactivity data for two animals pre-

treated with 2.0 mg/kg SalA before a 20 mg/kg injection of cocaine, compared to animals 

receiving vehicle pre-treatment before either 20 mg/kg cocaine or saline injections. 

Analysis of total ambulatory counts (A) identified a significant difference between means 

[F(2,22)=7.90, p<0.05], with vehicle-saline and 2.0 mg/kg SalA-cocaine treatments 

showing significant differences to the hyperactivity negative control. Analysis of stereotypic 

activity counts (B) also identified significant differences between the means 

[F(2,22)=15.30, p<0.0001], with the vehicle-saline treatment group showing a significant 

difference to the hyperactivity negative control. * = p<0.05, *** p<0.001; Kruskal-Wallis test 

(non-parametric) with Dunn’s multiple comparison post-test. n= 2-15. 
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Appendix 6: Rat/Human KOPr homology 
 

Rat and human KOPr sequences as listed on UniProt (http://www.uniprot.org/) were 

searched and aligned using UniProt software. Analysis identified 94.1% homology 

between human and rat KOPr amino-acid sequences. Screenshots of the alignment 

output (dated 20 November 2015) are shown below. 
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Appendix 7: ASP+ accumulation and YFP-hDAT expression 
 

The amount of YFP-hDAT expression (approximated by measures of AFU made using the 

EYFP confocal microscope filter at time= 0 seconds) is weakly positively correlated 

[Pearson correlation coefficient, r2= 0.301] with the level of ASP+ accumulation within cells 

at 250 (approximated by AFU measured with the ASP+ confocal microscope filter at t=250 

s). The correlation between YFP-hDAT expression and ASP+ accumulation was 

determined using linear regression modelling. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 6.5. Correlation of YFP-hDAT expression and cellular ASP+ accumulation in 

untreated transfected HEK-293 cells. Comparison of YFP-hDAT AFU at time=0 s and 

ASP+ AFU at time=250 s for individual cells. The level of YFP-hDAT expression is weakly 

positively correlated with ASP+ AFU accumulation (Pearson correlation coefficient, r2= 

0.301). The linear regression is significantly non-zero (p<0.0001). n= 221 cells. 



119 
 

References 
 

Adams, L. M., & Geyer, M. A. (1985). A proposed animal model for hallucinogens based on LSD's 
effects on patterns of exploration in rats. Behavioral Neuroscience, 99(5), 881-900. doi: 
http://dx.doi.org/10.1037/0735-7044.99.5.881 

Ahlin, G., Hilgendorf, C., Karlsson, J., Szigyarto, C. A.-K., Uhlén, M., & Artursson, P. (2009). 
Endogenous Gene and Protein Expression of Drug-Transporting Proteins in Cell Lines 
Routinely Used in Drug Discovery Programs. Drug Metabolism and Disposition, 37(12), 
2275-2283. doi: 10.1124/dmd.109.028654 

Ahmed, S. H. (2005). Imbalance between drug and non-drug reward availability: A major risk 
factor for addiction. Eur J Pharmacol, 526(1–3), 9-20. doi: 
http://dx.doi.org/10.1016/j.ejphar.2005.09.036 

Ahmed, S. H. (2012). The Science of Making Drug-Addicted Animals. Neuroscience, 211, 107-125. 
doi: DOI 10.1016/j.neuroscience.2011.08.014 

Ahmed, S. H., & Koob, G. F. (1998). Transition from moderate to excessive drug intake: change in 
hedonic set point. Science (New York, N.Y.), 282(5387), 298-300.  

Al-Hasani, R., McCall, Jordan G., Shin, G., Gomez, Adrian M., Schmitz, Gavin P., Bernardi, Julio M., 
. . . Bruchas, Michael R. (2015). Distinct Subpopulations of Nucleus Accumbens 
Dynorphin Neurons Drive Aversion and Reward. Neuron, 87(5), 1063-1077. doi: 
http://dx.doi.org/10.1016/j.neuron.2015.08.019 

Andlin-Sobocki, P., & Rehm, J. (2005). Cost of addiction in Europe. European Journal of 
Neurology, 12, 28-33. doi: 10.1111/j.1468-1331.2005.01194.x 

Andrews, P. W., Damjanov, I., Simon, D., Banting, G. S., Carlin, C., Dracopoli, N. C., & Føgh, J. 
(1984). Pluripotent embryonal carcinoma clones derived from the human 
teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Laboratory 
investigation; a journal of technical methods and pathology, 50(2), 147-162.  

Arjune, D., & Bodnar, R. J. (1990). Suppression of nocturnal, palatable and glucoprivic intake in 
rats by the κ opioid antagonist, nor-binaltorphamine. Brain Res, 534(1–2), 313-316. doi: 
http://dx.doi.org/10.1016/0006-8993(90)90147-4 

Arnt, J., Bøgeso, K. P., Hyttel, J., & Meier, E. (1988). Relative Dopamine D1 and D2 Receptor 
Affinity and Efficacy Determine Whether Dopamine Agonists Induce Hyperactivity or 
Oral Stereotypy in Rats. Pharmacology & Toxicology, 62(3), 121-130. doi: 
10.1111/j.1600-0773.1988.tb01859.x 

Balster, R. L. (1991). Drug abuse potential evaluation in animals. British Journal of Addiction, 
86(12), 1549-1558.  

Bardo, M. T., & Bevins, R. A. (2000). Conditioned place preference: what does it add to our 
preclinical understanding of drug reward? Psychopharmacology, 153(1), 31-43. doi: 
10.1007/s002130000569 

Beardsley, P., Howard, J., Shelton, K., & Carroll, F. I. (2005). Differential effects of the novel 
kappa opioid receptor antagonist, JDTic, on reinstatement of cocaine-seeking induced by 
footshock stressors vs cocaine primes and its antidepressant-like effects in rats. 
Psychopharmacology, 183(1), 118-126. doi: 10.1007/s00213-005-0167-4 

Béguin, C., Duncan, K. K., Munro, T. A., Ho, D. M., Xu, W., Liu-Chen, L.-Y., . . . Cohen, B. M. (2009). 
Modification of the furan ring of salvinorin A: Identification of a selective partial agonist 
at the kappa opioid receptor. Bioorganic & Medicinal Chemistry, 17(3), 1370-1380. doi: 
http://dx.doi.org/10.1016/j.bmc.2008.12.012 

Bera, I., & Ghoshal, N. (2014). Positively Charged Nitrogen is Not Indispensable Requirement for 
Binding of Nitrogenous kappa-Opioid Agonists: Insights from Docking Studies. Letters in 
Drug Design & Discovery, 11(6), 809-813.  

http://dx.doi.org/10.1037/0735-7044.99.5.881
http://dx.doi.org/10.1016/j.ejphar.2005.09.036
http://dx.doi.org/10.1016/j.neuron.2015.08.019
http://dx.doi.org/10.1016/0006-8993(90)90147-4
http://dx.doi.org/10.1016/j.bmc.2008.12.012


120 
 

BERL-Economics. (2009). Costs of harmful alcohol and other drug use. Report to the Ministry of 
Health and ACC. Wellington: BERL Economics. 

Bolan, E. A., Kivell, B., Jaligam, V., Oz, M., Jayanthi, L. D., Han, Y., . . . Shippenberg, T. S. (2007). 
D2 Receptors Regulate Dopamine Transporter Function via an Extracellular Signal-
Regulated Kinases 1 and 2-Dependent and Phosphoinositide 3 Kinase-Independent 
Mechanism. Mol Pharmacol, 71(5), 1222-1232. doi: 10.1124/mol.106.027763 

Bolan, E. A., Kivell, B., Jaligam, V., Oz, M., Jayanthi, L. D., Han, Y., . . . Shippenberg, T. S. (2007). D-
2 receptors regulate dopamine transporter function via an extracellular signal-regulated 
kinases 1 and 2-dependent and phosphoinositide 3 kinase-independent mechanism. Mol 
Pharmacol, 71(5), 1222-1232. doi: DOI 10.1124/mol.106.027763 

Borsini, F., & Meli, A. (1988). Is the forced swimming test a suitable model for revealing 
antidepressant activity? Psychopharmacology, 94(2), 147-160. doi: 10.1007/BF00176837 

Bosch, P. (2013). The preclinical study of methamphetamine self-administartion and the 
underlying molecular biology and proteomics changes in the reward system. (Doctor of 
Philosophy), Victoria University of Wellington, Wellington.    

Bossert, J., Marchant, N., Calu, D., & Shaham, Y. (2013). The reinstatement model of drug 
relapse: recent neurobiological findings, emerging research topics, and translational 
research. Psychopharmacology, 229(3), 453-476. doi: 10.1007/s00213-013-3120-y 

Braida, D., Capurro, V., Zani, A., Rubino, T., Viganò, D., Parolaro, D., & Sala, M. (2009). Potential 
anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of 
Salvia divinorum, in rodents. British Journal of Pharmacology, 157(5), 844-853. doi: 
10.1111/j.1476-5381.2009.00230.x 

Braida, D., Limonta, V., Pegorini, S., Zani, A., Guerini-Rocco, C., Gori, E., & Sala, M. (2007). 
Hallucinatory and rewarding effect of salvinorin A in zebrafish: κ-opioid and CB1-
cannabinoid receptor involvement. Psychopharmacology, 190(4), 441-448. doi: 
10.1007/s00213-006-0639-1 

Bruchas, M. R., & Chavkin, C. (2010). Kinase cascades and ligand-directed signaling at the kappa 
opioid receptor. Psychopharmacology, 210(2), 137-147. doi: 10.1007/s00213-010-1806-y 

Bruchas, M. R., Land, B. B., & Chavkin, C. (2010). The dynorphin/kappa opioid system as a 
modulator of stress-induced and pro-addictive behaviors. Brain Res, 1314, 44-55. doi: 
10.1016/j.brainres.2009.08.062 

Bruchas, M. R., Schindler, A. G., Shankar, H., Messinger, D. I., Miyatake, M., Land, B. B., . . . 
Chavkin, C. (2011). Selective p38alpha MAPK deletion in serotonergic neurons produces 
stress resilience in models of depression and addiction. Neuron, 71(3), 498-511. doi: 
10.1016/j.neuron.2011.06.011 

Butelman, E. R., Caspers, M., Lovell, K. M., Kreek, M. J., & Prisinzano, T. E. (2012). Behavioral 
effects and central nervous system levels of the broadly available kappa-agonist 
hallucinogen salvinorin A are affected by P-glycoprotein modulation in vivo. J Pharmacol 
Exp Ther, 341(3), 802-808. doi: 10.1124/jpet.112.193227 

Butelman, E. R., Mandau, M., Tidgewell, K., Prisinzano, T. E., Yuferov, V., & Kreek, M. J. (2007). 
Effects of salvinorin A, a kappa-opioid hallucinogen, on a neuroendocrine biomarker 
assay in nonhuman primates with high kappa-receptor homology to humans. J 
Pharmacol Exp Ther, 320(1), 300-306. doi: 10.1124/jpet.106.112417 

Butelman, E. R., Prisinzano, T. E., Deng, H., Rus, S., & Kreek, M. J. (2009). Unconditioned 
behavioral effects of the powerful kappa-opioid hallucinogen salvinorin A in nonhuman 
primates: fast onset and entry into cerebrospinal fluid. J Pharmacol Exp Ther, 328(2), 
588-597. doi: 10.1124/jpet.108.145342 

Butelman, E. R., Rus, S., Prisinzano, T. E., & Kreek, M. J. (2010). The discriminative effects of the 
kappa-opioid hallucinogen salvinorin A in nonhuman primates: dissociation from classic 
hallucinogen effects. Psychopharmacology (Berl), 210(2), 253-262. doi: 10.1007/s00213-
009-1771-5 



121 
 

Cachat, J., Kyzar, E. J., Collins, C., Gaikwad, S., Green, J., Roth, A., . . . Kalueff, A. V. (2013). Unique 
and potent effects of acute ibogaine on zebrafish: The developing utility of novel aquatic 
models for hallucinogenic drug research. Behavioural Brain Research, 236, 258-269. doi: 
http://dx.doi.org/10.1016/j.bbr.2012.08.041 

Campbell, U. C., & Carroll, M. E. (2000). Acquisition of drug self-administration: environmental 
and pharmacological interventions. Exp Clin Psychopharmacol, 8(3), 312-325.  

Cappendijk, S. L. T., & Dzoljic, M. R. (1993). Inhibitory effects of ibogaine on cocaine self-
administration in rats. Eur J Pharmacol, 241(2–3), 261-265. doi: 
http://dx.doi.org/10.1016/0014-2999(93)90212-Z 

Carlezon, W. A., Jr., Béguin, C., DiNieri, J. A., Baumann, M. H., Richards, M. R., Todtenkopf, M. S., 
. . . Cohen, B. M. (2006). Depressive-Like Effects of the κ-Opioid Receptor Agonist 
Salvinorin A on Behavior and Neurochemistry in Rats. Journal of Pharmacology and 
Experimental Therapeutics, 316(1), 440-447. doi: 10.1124/jpet.105.092304 

Carlezon, W. A., Jr., Thome, J., Olson, V. G., Lane-Ladd, S. B., Brodkin, E. S., Hiroi, N., . . . Nestler, 
E. J. (1998). Regulation of cocaine reward by CREB. Science, 282(5397), 2272-2275.  

Carlsson, A., Lindqvist, M., & Magnusson, T. O. R. (1957). 3,4-Dihydroxyphenylalanine and 5-
Hydroxytryptophan as Reserpine Antagonists. Nature, 180(4596), 1200-1200.  

Cartwright, W. S. (2008). Economic costs of drug abuse: Financial, cost of illness, and services. 
Journal of Substance Abuse Treatment, 34(2), 224-233. doi: 10.1016/j.jsat.2007.04.003 

Cass, W. A., Gerhardt, G. A., Mayfield, R. D., Curella, P., & Zahniser, N. R. (1992). Differences in 
dopamine clearance and diffusion in rat striatum and nucleus accumbens following 
systemic cocaine administration. Journal of Neurochemistry, 59(1), 259-266. doi: 
http://onlinelibrary.wiley.com/doi/10.1111/j.1471-4159.1992.tb08899.x/abstract 

Castro, D. C., & Berridge, K. C. (2014). Opioid Hedonic Hotspot in Nucleus Accumbens Shell: Mu, 
Delta, and Kappa Maps for Enhancement of Sweetness “Liking” and “Wanting”. The 
Journal of Neuroscience, 34(12), 4239-4250. doi: 10.1523/jneurosci.4458-13.2014 

Chartoff, E. H., Ebner, S. R., Sparrow, A., Potter, D., Baker, P. M., Ragozzino, M. E., & Roitman, M. 
F. (2015). Relative Timing Between Kappa Opioid Receptor Activation and Cocaine 
Determines the Impact on Reward and Dopamine Release. Neuropsychopharmacology. 
doi: 10.1038/npp.2015.226 

Chartoff, E. H., Potter, D., Damez-Werno, D., Cohen, B. M., & Carlezon, W. A., Jr. (2008). 
Exposure to the selective kappa-opioid receptor agonist salvinorin A modulates the 
behavioral and molecular effects of cocaine in rats. Neuropsychopharmacology, 33(11), 
2676-2687. doi: 10.1038/sj.npp.1301659 

Chartoff, E. H., Sawyer, A., Rachlin, A., Potter, D., Pliakas, A., & Carlezon, W. A. (2012). Blockade 
of kappa opioid receptors attenuates the development of depressive-like behaviors 
induced by cocaine withdrawal in rats. Neuropharmacology, 62(1), 167-176. doi: 
10.1016/j.neuropharm.2011.06.014 

Chen, B. T., Bowers, M. S., Martin, M., Hopf, F. W., Guillory, A. M., Carelli, R. M., . . . Bonci, A. 
(2008). Cocaine but Not Natural Reward Self-Administration nor Passive Cocaine Infusion 
Produces Persistent LTP in the VTA. Neuron, 59(2), 288-297. doi: 
http://dx.doi.org/10.1016/j.neuron.2008.05.024 

Childress, A. R., Hole, A. V., Ehrman, R. N., Robbins, S. J., McLellan, A. T., & O'Brien, C. P. (1993). 
Cue reactivity and cue reactivity interventions in drug dependence. NIDA research 
monograph, 137, 73-95.  

Ciliax, B. J., Drash, G. W., Staley, J. K., Haber, S., Mobley, C. J., Miller, G. W., . . . Levey, A. I. 
(1999). Immunocytochemical localization of the dopamine transporter in human brain. 
The Journal of Comparative Neurology, 409(1), 38-56. doi: 10.1002/(SICI)1096-
9861(19990621)409:1<38::AID-CNE4>3.0.CO;2-1 

http://dx.doi.org/10.1016/j.bbr.2012.08.041
http://dx.doi.org/10.1016/0014-2999(93)90212-Z
http://onlinelibrary.wiley.com/doi/10.1111/j.1471-4159.1992.tb08899.x/abstract
http://dx.doi.org/10.1016/j.neuron.2008.05.024


122 
 

Ciliax, B. J., Heilman, C., Demchyshyn, L., Pristupa, Z., Ince, E., Hersch, S., . . . Levey, A. (1995). 
The dopamine transporter: immunochemical characterization and localization in brain. 
The Journal of Neuroscience, 15(3), 1714-1723.  

Collins, S. L., Kunko, P. M., Ladenheim, B., Cadet, J. L., Carroll, F. I., & Izenwasser, S. (2002). 
Chronic cocaine increases kappa-opioid receptor density: Lack of effect by selective 
dopamine uptake inhibitors. Synapse, 45(3), 153-158. doi: 10.1002/syn.10091 

Cortez, A. M., Charntikov, S., Der-Ghazarian, T., Horn, L. R., Crawford, C. A., & McDougall, S. A. 
(2010). Age-dependent effects of κ-opioid receptor stimulation on cocaine-induced 
stereotyped behaviors and dopamine overflow in the caudate–putamen: an in vivo 
microdialysis study. Neuroscience, 169(1), 203-213. doi: 
http://dx.doi.org/10.1016/j.neuroscience.2010.04.052 

Crawford, C. A., McDougall, S. A., Bolanos, C. A., Hall, S., & Berger, S. P. (1995). The effects of the 
kappa agonist U-50,488 on cocaine-induced conditioned and unconditioned behaviors 
and Fos immunoreactivity. Psychopharmacology, 120(4), 392-399. doi: 
10.1007/BF02245810 

Cryan, J. F., Mombereau, C., & Vassout, A. (2005). The tail suspension test as a model for 
assessing antidepressant activity: Review of pharmacological and genetic studies in 
mice. Neuroscience & Biobehavioral Reviews, 29(4–5), 571-625. doi: 
http://dx.doi.org/10.1016/j.neubiorev.2005.03.009 

Dackis, C. A., & Gold, M. S. (1985). New concepts in cocaine addiction: The dopamine depletion 
hypothesis. Neuroscience & Biobehavioral Reviews, 9(3), 469-477. doi: 
http://dx.doi.org/10.1016/0149-7634(85)90022-3 

Dasgupta, A., Chow, L., Tso, G., & Nazareno, L. (2003). Stability of NT-proBNP in serum 
specimens collected in Becton Dickinson Vacutainer (SST) tubes. Clin Chem, 49(6 Pt 1), 
958-960.  

Davis, W. M., & Smith, S. (1976). Role of conditioned reinforcers in the initiation, maintenance 
and extinction of drug-seeking behavior. The Pavlovian journal of biological science : 
official journal of the Pavlovian, 11(4), 222-236. doi: 10.1007/BF03000316 

Daws, L. C., Callaghan, P. D., Morón, J. A., Kahlig, K. M., Shippenberg, T. S., Javitch, J. A., & Galli, 
A. (2002). Cocaine Increases Dopamine Uptake and Cell Surface Expression of Dopamine 
Transporters. Biochemical and Biophysical Research Communications, 290(5), 1545-
1550. doi: http://dx.doi.org/10.1006/bbrc.2002.6384 

de Wit, H. (1996). Priming effects with drugs and other reinforcers. Experimental and Clinical 
Psychopharmacology, 4(1), 5-10. doi: 10.1037/1064-1297.4.1.5 

de Wit, H., & Stewart, J. (1981). Reinstatement of cocaine-reinforced responding in the rat. 
Psychopharmacology, 75(2), 134-143.  

Delfs, J., Schreiber, L., & Kelley, A. (1990). Microinjection of cocaine into the nucleus accumbens 
elicits locomotor activation in the rat. The Journal of Neuroscience, 10(1), 303-310.  

Depoortere, R. Y., Li, D. H., Lane, J. D., & Emmett-Oglesby, M. W. (1993). Parameters of self-
administration of cocaine in rats under a progressive-ratio schedule. Pharmacology 
Biochemistry and Behavior, 45(3), 539-548. doi: http://dx.doi.org/10.1016/0091-
3057(93)90503-L 

DeWire, S. M., Yamashita, D. S., Rominger, D. H., Liu, G., Cowan, C. L., Graczyk, T. M., . . . Violin, J. 
D. (2013). A G protein-biased ligand at the mu-opioid receptor is potently analgesic with 
reduced gastrointestinal and respiratory dysfunction compared with morphine. J 
Pharmacol Exp Ther, 344(3), 708-717. doi: 10.1124/jpet.112.201616 

Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic 
dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of 
the National Academy of Sciences, 85(14), 5274-5278.  

http://dx.doi.org/10.1016/j.neuroscience.2010.04.052
http://dx.doi.org/10.1016/j.neubiorev.2005.03.009
http://dx.doi.org/10.1016/0149-7634(85)90022-3
http://dx.doi.org/10.1006/bbrc.2002.6384
http://dx.doi.org/10.1016/0091-3057(93)90503-L
http://dx.doi.org/10.1016/0091-3057(93)90503-L


123 
 

Dunham, N. W., & Miya, T. S. (1957). A note on a simple apparatus for detecting neurological 
deficit in rats and mice. Journal of the American Pharmaceutical Association, 46(3), 208-
209. doi: 10.1002/jps.3030460322 

Durieux, P. F., Bearzatto, B., Guiducci, S., Buch, T., Waisman, A., Zoli, M., . . . De Kerchove 
D'exaerde, A. (2009). D2R striatopallidal neurons inhibit both locomotor and drug 
reward processes. Nature Neuroscience, 12(4), 393-395. doi: 
http://dx.doi.org/10.1038/nn.2286 

Ebner, S. R., Roitman, M. F., Potter, D. N., Rachlin, A. B., & Chartoff, E. H. (2010). Depressive-like 
effects of the kappa opioid receptor agonist salvinorin A are associated with decreased 
phasic dopamine release in the nucleus accumbens. Psychopharmacology, 210(2), 241-
252. doi: 10.1007/s00213-010-1836-5 

Epstein, D. H., Preston, K. L., Stewart, J., & Shaham, Y. (2006). Toward a model of drug relapse: 
an assessment of the validity of the reinstatement procedure. Psychopharmacology, 
189(1), 1-16. doi: DOI 10.1007/s00213-006-0529-6 

Eriksson, P. S., Nilsson, M., Wagberg, M., Hansson, E., & Ronnback, L. (1993). Kappa-opioid 
receptors on astrocytes stimulate L-type Ca2+ channels. Neuroscience, 54(2), 401-407. 
doi: 10.1016/0306-4522(93)90261-d 

Fink, H., Morgenstern, R., & Oelssner, W. (1979). Psychotomimetics potentiate locomotor 
hyperactivity induced by dopaminergic drugs. Pharmacology Biochemistry and Behavior, 
11(5), 479-482. doi: http://dx.doi.org/10.1016/0091-3057(79)90028-5 

Fleisher, L., & Glick, S. (1979). Hallucinogen-induced rotational behavior in rats. 
Psychopharmacology, 62(2), 193-200. doi: 10.1007/BF00427136 

Flynn, P. M., Kristiansen, P. L., Porto, J. V., & Hubbard, R. L. (1999). Costs and benefits of 
treatment for cocaine addiction in DATOS. Drug Alcohol Depend, 57(2), 167-174. doi: 
http://dx.doi.org/10.1016/S0376-8716(99)00083-6 

Freeman, K. B., Naylor, J. E., Prisinzano, T. E., & Woolverton, W. L. (2014). Assessment of the 
kappa opioid agonist, salvinorin A, as a punisher of drug self-administration in monkeys. 
Psychopharmacology (Berl). doi: 10.1007/s00213-014-3436-2 

Funk, D., Coen, K., & Lê, A. D. (2014). The role of kappa opioid receptors in stress-induced 
reinstatement of alcohol seeking in rats. Brain and Behavior, 4(3), 356-367. doi: 
10.1002/brb3.222 

Gehrke, B. J., Chefer, V. I., & Shippenberg, T. S. (2008). Effects of acute and repeated 
administration of salvinorin A on dopamine function in the rat dorsal striatum. 
Psychopharmacology, 197(3), 509-517. doi: 10.1007/s00213-007-1067-6 

Geyer, M., Light, R., Rose, G., Petersen, L., Horwitt, D., Adams, L., & Hawkins, R. (1979). A 
characteristic effect of hallucinogens on investigatory responding in rats. 
Psychopharmacology, 65(1), 35-40. doi: 10.1007/BF00491975 

Glantz, M. D., Anthony, J. C., Berglund, P. A., Degenhardt, L., Dierker, L., Kalaydjian, A., . . . 
Kessler, R. C. (2009). Mental disorders as risk factors for later substance dependence: 
estimates of optimal prevention and treatment benefits. Psychological Medicine, 39(8), 
1365-1377. doi: 10.1017/s0033291708004510 

Glick, S. D., Maisonneuve, I. M., Raucci, J., & Archer, S. (1995). Kappa opioid inhibition of 
morphine and cocaine self-administration in rats. Brain Res, 681, 147-152.  

Graham, D., Hoppenot, R., Hendryx, A., & Self, D. (2007). Differential ability of D1 and D2 
dopamine receptor agonists to induce and modulate expression and reinstatement of 
cocaine place preference in rats. Psychopharmacology, 191(3), 719-730. doi: 
10.1007/s00213-006-0473-5 

Graham, F. L., Smiley, J., Russell, W. C., & Nairn, R. (1977). Characteristics of a Human Cell Line 
Transformed by DNA from Human Adenovirus Type 5. Journal of General Virology, 36(1), 
59-72. doi: doi:10.1099/0022-1317-36-1-59 

http://dx.doi.org/10.1038/nn.2286
http://dx.doi.org/10.1016/0091-3057(79)90028-5
http://dx.doi.org/10.1016/S0376-8716(99)00083-6


124 
 

Grant, B. F. (1996). Prevalence and correlates of drug use and DSM-IV drug dependence in the 
United States: results of the National Longitudinal Alcohol Epidemiologic Survey. Journal 
of Substance Abuse, 8(2), 195-210. doi: http://dx.doi.org/10.1016/S0899-
3289(96)90249-7 

Griffiths, R., Findley, J., Brady, J., Dolan-Gutcher, K., & Robinson, W. (1975). Comparison of 
progressive-ratio performance maintained by cocaine, methylphenidate and 
secobarbital. Psychopharmacologia, 43(1), 81-83. doi: 10.1007/BF00437619 

Groer, C. E., Tidgewell, K., Moyer, R. A., Harding, W. W., Rothman, R. B., Prisinzano, T. E., & 
Bohn, L. M. (2007). An Opioid Agonist that Does Not Induce μ-Opioid Receptor—Arrestin 
Interactions or Receptor Internalization. Mol Pharmacol, 71(2), 549-557. doi: 
10.1124/mol.106.028258 

Grossman, L., Utterback, E., Stewart, A., Gaikwad, S., Chung, K. M., Suciu, C., . . . Kalueff, A. V. 
(2010). Characterization of behavioral and endocrine effects of LSD on zebrafish. 
Behavioural Brain Research, 214(2), 277-284. doi: 
http://dx.doi.org/10.1016/j.bbr.2010.05.039 

Grudt, T. J., & Williams, J. T. (1993). Kappa-opioid receptors also increase potassium 
conductance. Proceedings of the National Academy of Sciences of the United States of 
America, 90(23), 11429-11432. doi: 10.1073/pnas.90.23.11429 

Hall, W., Teesson, M., Lynskey, M., & Degenhardt, L. (1999). The 12-month prevalence of 
substance use and ICD-10 substance use disorders in Australian adults: findings from the 
National Survey of Mental Health and Well-Being. Addiction, 94(10), 1541-1550. doi: 
10.1046/j.1360-0443.1999.9410154110.x 

Harding, W. W., Schmidt, M., Tidgewell, K., Kannan, P., Holden, K. G., Dersch, C. M., . . . 
Prisinzano, T. E. (2006). Synthetic studies of neoclerodane diterpenes from Salvia 
divinorum: Selective modification of the furan ring. Bioorg Med Chem Lett, 16(12), 3170-
3174. doi: http://dx.doi.org/10.1016/j.bmcl.2006.03.062 

Harding, W. W., Schmidt, M., Tidgewell, K., Kannan, P., Holden, K. G., Gilmour, B., . . . Prisinzano, 
T. E. (2006). Synthetic studies of neoclerodane diterpenes from Salvia divinorum: 
semisynthesis of salvinicins A and B and other chemical transformations of salvinorin A. 
Journal of Natural Products, 69(1), 107-112. doi: 10.1021/np050398i 

Harding, W. W., Tidgewell, K., Byrd, N., Cobb, H., Dersch, C. M., Butelman, E. R., . . . Prisinzano, T. 
E. (2005). Neoclerodane Diterpenes as a Novel Scaffold for μ Opioid Receptor Ligands†. 
Journal of Medicinal Chemistry, 48(15), 4765-4771. doi: 10.1021/jm048963m 

Harwood, H. J., Fountain, D., & Livermore, G. (1999). Economic cost of alcohol and drug abuse in 
the United States, 1992: a report. Addiction, 94(5), 631-635.  

Hawkins, J., Hicks, R. A., Phillips, N., & Moore, J. D. (1978). Swimming rats and human 
depression. Nature, 274(5670), 512-512.  

Heidbreder, C. A., Babovic-Vuksanovic, D., Shoaib, M., & Shippenberg, T. S. (1995). Development 
of behavioral sensitization to cocaine: influence of kappa opioid receptor agonists. 
Journal of Pharmacology and Experimental Therapeutics, 275(1), 150-163.  

Heidbreder, C. A., Goldberg, S. R., & Shippenberg, T. S. (1993). The kappa-opioid receptor agonist 
U-69593 attenuates cocaine-induced behavioral sensitization in the rat. Brain Res, 
616(1-2), 335-338. doi: 10.1016/0006-8993(93)90228-f 

Heidbreder, C. A., & Shippenberg, T. S. (1994). U-69593 prevents cocaine sensitization by 
normalizing basal accumbens dopamine. Neuroreport, 5(14), 1797-1800.  

Herrmann, Z., Uhl, W., Steinberg, H. W., & Dworschack, R. (2003). The influence of renal function 
on NT-proBNP levels in various disease groups. Clin Lab, 49(11-12), 649-656.  

Hodos, W. (1961). Progressive Ratio as a Measure of Reward Strength. Science, 134(3483), 943-
944. doi: 10.1126/science.134.3483.943 

Hollander, J., Pham, D., Fowler, C., & Kenny, P. J. (2012). Hypocretin-1 receptors regulate the 
reinforcing and reward-enhancing effects of cocaine: Pharmacological and behavioral 

http://dx.doi.org/10.1016/S0899-3289(96)90249-7
http://dx.doi.org/10.1016/S0899-3289(96)90249-7
http://dx.doi.org/10.1016/j.bbr.2010.05.039
http://dx.doi.org/10.1016/j.bmcl.2006.03.062


125 
 

genetics evidence. Frontiers in Behavioral Neuroscience, 6. doi: 
10.3389/fnbeh.2012.00047 

Hooker, J. M., Munro, T. A., Béguin, C., Alexoff, D., Shea, C., Xu, Y., & Cohen, B. M. (2009). 
Salvinorin A and derivatives: Protection from metabolism does not prolong short-term, 
whole-brain residence. Neuropharmacology, 57(4), 386-391. doi: 
http://dx.doi.org/10.1016/j.neuropharm.2009.06.044 

Hooker, J. M., Xu, Y., Schiffer, W., Shea, C., Carter, P., & Fowler, J. S. (2008). Pharmacokinetics of 
the potent hallucinogen, salvinorin A in primates parallels the rapid onset and short 
duration of effects in humans. NeuroImage, 41(3), 1044-1050. doi: 
http://dx.doi.org/10.1016/j.neuroimage.2008.03.003 

Hunter, J. C., Leighton, G. E., Meecham, K. G., Boyle, S. J., Horwell, D. C., Rees, D. C., & Hughes, J. 
(1990). CI-977, a novel and selective agonist for the κ-opioid receptor. British Journal of 
Pharmacology, 101(1), 183-189. doi: 10.1111/j.1476-5381.1990.tb12110.x 

Hurd, Y. L., & Herkenham, M. (1993). Molecular alterations in the neostriatum of human cocaine 
addicts. Synapse, 13(4), 357-369. doi: 10.1002/syn.890130408 

Ito, R., & Hayen, A. (2011). Opposing Roles of Nucleus Accumbens Core and Shell Dopamine in 
the Modulation of Limbic Information Processing. The Journal of Neuroscience, 31(16), 
6001-6007. doi: 10.1523/jneurosci.6588-10.2011 

Jones, G. H., Marsden, C. A., & Robbins, T. W. (1990). Increased sensitivity to amphetamine and 
reward-related stimuli following social isolation in rats: possible disruption of dopamine-
dependent mechanisms of the nucleus accumbens. Psychopharmacology, 102(3), 364-
372. doi: 10.1007/BF02244105 

Jordan, B. A., & Devi, L. A. (1999). G-protein-coupled receptor heterodimerization modulates 
receptor function. Nature, 399(6737), 697-700.  

Kam, A. Y. F., Chan, A. S. L., & Wong, Y. H. (2004). κ-Opioid Receptor Signals through Src and 
Focal Adhesion Kinase to Stimulate c-Jun N-Terminal Kinases in Transfected COS-7 Cells 
and Human Monocytic THP-1 Cells. Journal of Pharmacology and Experimental 
Therapeutics, 310(1), 301-310. doi: 10.1124/jpet.104.065078 

Kane, B. E., McCurdy, C. R., & Ferguson, D. M. (2008). Toward a Structure-Based Model of 
Salvinorin A Recognition of the κ-Opioid Receptor. Journal of Medicinal Chemistry, 51(6), 
1824-1830. doi: 10.1021/jm701040v 

Kebabian, J. W. (1978). Multiple classes of dopamine receptors in mammalian central nervous 
system: the involvement of dopamine-sensitive adenylyl cyclase. Life Sciences, 23(5), 
479-483. doi: 10.1016/0024-3205(78)90157-1 

Kenakin, T. (2011). Functional Selectivity and Biased Receptor Signaling. J Pharmacol Exp Ther, 
336(2), 296-302. doi: 10.1124/jpet.110.173948 

Killinger, B. A., Peet, M. M., & Baker, L. E. (2010). Salvinorin A fails to substitute for the 
discriminative stimulus effects of LSD or ketamine in Sprague–Dawley rats. 
Pharmacology Biochemistry and Behavior, 96(3), 260-265. doi: 
http://dx.doi.org/10.1016/j.pbb.2010.05.014 

Kim, T.-i., McCall, J. G., Jung, Y. H., Huang, X., Siuda, E. R., Li, Y., . . . Bruchas, M. R. (2013). 
Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics. 
Science, 340(6129), 211-216. doi: 10.1126/science.1232437 

Kivell, B., Uzelac, Z., Sundaramurthy, S., Rajamanickam, J., Ewald, A., Chefer, V., . . . Shippenberg, 
T. S. (2014). Salvinorin A regulates dopamine transporter function via a kappa opioid 
receptor and ERK1/2-dependent mechanism. Neuropharmacology, 86(0), 228-240. doi: 
http://dx.doi.org/10.1016/j.neuropharm.2014.07.016 

Klebe, R. J., & Ruddle, R. H. (1969). Neuroblastoma - cell culture analysis of a differentiating stem 
cell system Journal of Cell Biology, 43(2P2), A69-&.  

Koob, G. F., & Bloom, F. (1988). Cellular and molecular mechanisms of drug dependence. 
Science, 242(4879), 715-723. doi: 10.1126/science.2903550 

http://dx.doi.org/10.1016/j.neuropharm.2009.06.044
http://dx.doi.org/10.1016/j.neuroimage.2008.03.003
http://dx.doi.org/10.1016/j.pbb.2010.05.014
http://dx.doi.org/10.1016/j.neuropharm.2014.07.016


126 
 

Koob, G. F., & Moal, M. L. (1997). Drug Abuse: Hedonic Homeostatic Dysregulation. Science, 
278(5335), 52-58. doi: 10.2307/2894498 

Kyzar, E. J., Collins, C., Gaikwad, S., Green, J., Roth, A., Monnig, L., . . . Kalueff, A. V. (2012). 
Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and 
physiology. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 37(1), 
194-202. doi: http://dx.doi.org/10.1016/j.pnpbp.2012.01.003 

Land, B. B., Bruchas, M. R., Lemos, J. C., Xu, M., Melief, E. J., & Chavkin, C. (2008). The dysphoric 
component of stress is encoded by activation of the dynorphin kappa-opioid system. J 
Neurosci, 28(2), 407-414. doi: 10.1523/JNEUROSCI.4458-07.2008 

Land, B. B., Bruchas, M. R., Schattauer, S., Giardino, W. J., Aita, M., Messinger, D., . . . Chavkin, C. 
(2009). Activation of the Kappa Opioid Receptor in the Dorsal Raphe Nucleus Mediates 
the Aversive Effects of Stress and Reinstates Drug Seeking. Proceedings of the National 
Academy of Sciences of the United States of America, 106(45), 19168-19173. doi: 
10.2307/25593161 

Lange, J. E., Reed, M. B., Croff, J. M. K., & Clapp, J. D. (2008). College student use of Salvia 
divinorum. Drug Alcohol Depend, 94(1-3), 263-266. doi: 
10.1016/j.drugalcdep.2007.10.018 

Le Naour, M., Lunzer, M. M., Powers, M. D., Kalyuzhny, A. E., Benneyworth, M. A., Thomas, M. J., 
& Portoghese, P. S. (2014). Putative Kappa Opioid Heteromers As Targets for Developing 
Analgesics Free of Adverse Effects. Journal of Medicinal Chemistry, 57(15), 6383-6392.  

Lenoir, M., Serre, F., Cantin, L., & Ahmed, S. H. (2007). Intense Sweetness Surpasses Cocaine 
Reward. PLoS One, 2(8), e698. doi: 10.1371/journal.pone.0000698 

Li, J.-G., Luo, L.-Y., Krupnick, J. G., Benovic, J. L., & Liu-Chen, L.-Y. (1999). U50,488H-induced 
Internalization of the Human κ Opioid Receptor Involves a β-Arrestin- and Dynamin-
dependent Mechanism: κ RECEPTOR INTERNALIZATION IS NOT REQUIRED FOR 
MITOGEN-ACTIVATED PROTEIN KINASE ACTIVATION. Journal of Biological Chemistry, 
274(17), 12087-12094. doi: 10.1074/jbc.274.17.12087 

Li, Y., & van den Pol, A. N. (2006). Differential Target-Dependent Actions of Coexpressed 
Inhibitory Dynorphin and Excitatory Hypocretin/Orexin Neuropeptides. The Journal of 
Neuroscience, 26(50), 13037-13047. doi: 10.1523/jneurosci.3380-06.2006 

Little, K. Y., Krolewski, D. M., Zhang, L., & Cassin, B. J. (2003). Loss of striatal vesicular 
monoamine transporter protein (VMAT2) in human cocaine users. The American Journal 
of Psychiatry, 160(1), 47-55.  

Magrassi, L., Purves, D., & Lichtman, J. (1987). Fluorescent probes that stain living nerve 
terminals. The Journal of Neuroscience, 7(4), 1207-1214.  

Mansour, A., Khachaturian, H., Lewis, M., Akil, H., & Watson, S. (1987). Autoradiographic 
differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and 
midbrain. The Journal of Neuroscience, 7(8), 2445-2464.  

Margolis, E. B., Lock, H., Chefer, V. I., Shippenberg, T. S., Hjelmstad, G. O., & Fields, H. L. (2006). 
kappa opioids selectively control dopaminergic neurons projecting to the prefrontal 
cortex. Proceedings of the National Academy of Sciences of the United States of America, 
103(8), 2938-2942. doi: 10.1073/pnas.0511159103 

Mason, K., Hewitt, A., Stefanogiannis, N., Bhattacharya, A., Yeh, L. C., & Devlin, M. (2010). Drug 
use in New Zealand: Key Results of the 2007/08 New Zealand Alcohol and Drug Use 
Survey. Wellington, New Zealand: Ministry of Health. 

McCurdy, C. R., Sufka, K. J., Smith, G. H., Warnick, J. E., & Nieto, M. J. (2006). Antinociceptive 
profile of salvinorin A, a structurally unique kappa opioid receptor agonist. 
Pharmacology Biochemistry and Behavior, 83(1), 109-113. doi: 
http://dx.doi.org/10.1016/j.pbb.2005.12.011 

McGregor, A., Lacosta, S., & Roberts, D. C. S. (1993). L-Tryptophan decreases the breaking point 
under a progressive ratio schedule of intravenous cocaine reinforcement in the rat. 

http://dx.doi.org/10.1016/j.pnpbp.2012.01.003
http://dx.doi.org/10.1016/j.pbb.2005.12.011


127 
 

Pharmacology Biochemistry and Behavior, 44(3), 651-655. doi: 
http://dx.doi.org/10.1016/0091-3057(93)90181-R 

McLennan, G. P., Kiss, A., Miyatake, M., Belcheva, M. M., Chambers, K. T., Pozek, J. J., . . . Coscia, 
C. J. (2008). Kappa opioids promote the proliferation of astrocytes via Gβγ and β-arrestin 
2-dependent MAPK-mediated pathways. Journal of Neurochemistry, 107(6), 1753-1765. 
doi: 10.1111/j.1471-4159.2008.05745.x 

Mello, N. K., & Negus, S. S. (2000). Interactions between Kappa Opioid Agonists and Cocaine: 
Preclinical Studies. Annals of the New York Academy of Sciences, 909(1), 104-132. doi: 
10.1111/j.1749-6632.2000.tb06678.x 

Mendrek, A., Blaha, C. D., & Phillips, A. G. (1998). Pre-exposure of rats to amphetamine 
sensitizes self-administration of this drug under a progressive ratio schedule. 
Psychopharmacology, 135(4), 416-422. doi: 10.1007/s002130050530 

Morani, A. S., Ewald, A., Prevatt-Smith, K. M., Prisinzano, T. E., & Kivell, B. M. (2013). The 2-
methoxy methyl analogue of salvinorin A attenuates cocaine-induced drug seeking and 
sucrose reinforcements in rats. Eur J Pharmacol, 720(1-3), 69-76. doi: DOI 
10.1016/j.ejphar.2013.10.050 

Morani, A. S., Kivell, B., Prisinzano, T. E., & Schenk, S. (2009). Effect of kappa-opioid receptor 
agonists U69593, U50488H, spiradoline and salvinorin A on cocaine-induced drug-
seeking in rats. Pharmacology Biochemistry and Behavior, 94(2), 244-249. doi: DOI 
10.1016/j.pbb.2009.09.002 

Morani, A. S., Schenk, S., Prisinzano, T. E., & Kivell, B. M. (2012). A single injection of a novel 
kappa opioid receptor agonist salvinorin A attenuates the expression of cocaine-induced 
behavioral sensitization in rats. Behav Pharmacol, 23(2), 162-170. doi: 
10.1097/FBP.0b013e3283512c1e 

Morani, A. S., Schenk, S., Prisinzano, T. E., & Kivell, B. M. (2012). A single injection of a novel 
kappa opioid receptor agonist salvinorin A attenuates the expression of cocaine-induced 
behavioral sensitization in rats. Behav Pharmacol, 23(2), 162-170. doi: Doi 
10.1097/Fbp.0b013e3283512c1e 

Mueller, T., Gegenhuber, A., Poelz, W., & Haltmayer, M. (2003). Comparison of the Biomedica 
NT-proBNP enzyme immunoassay and the Roche NT-proBNP chemiluminescence 
immunoassay: implications for the prediction of symptomatic and asymptomatic 
structural heart disease. Clin Chem, 49(6 Pt 1), 976-979.  

Munro, T. A., Duncan, K. K., Xu, W., Wang, Y., Liu-Chen, L. Y., Carlezon, W. A., Jr., . . . Beguin, C. 
(2008). Standard protecting groups create potent and selective kappa opioids: salvinorin 
B alkoxymethyl ethers. Bioorg Med Chem, 16(3), 1279-1286. doi: 
10.1016/j.bmc.2007.10.067 

Muschamp, J. W., Hollander, J. A., Thompson, J. L., Voren, G., Hassinger, L. C., Onvani, S., . . . 
Carlezon, W. A. (2014). Hypocretin (orexin) facilitates reward by attenuating the 
antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proceedings 
of the National Academy of Sciences, 111(16), E1648-E1655. doi: 
10.1073/pnas.1315542111 

Mysels, D., & Sullivan, M. A. (2009). The kappa-opiate receptor impacts the pathophysiology and 
behavior of substance use. Am J Addict, 18(4), 272-276. doi: 
10.1080/10550490902925862 

Narendran, R., Lopresti, B. J., Martinez, D., Mason, N. S., Himes, M., May, M. A., . . . Frankle, W. 
G. (2012). In Vivo Evidence for Low Striatal Vesicular Monoamine Transporter 2 (VMAT2) 
Availability in Cocaine Abusers. The American Journal of Psychiatry, 169(1), 55-63.  

Navarro, G., Moreno, E., Bonaventura, J., Brugarolas, M., Farré, D., Aguinaga, D., . . . McCormick, 
P. J. (2013). Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor 
Heteromers. PLoS One, 8(4), e61245. doi: 10.1371/journal.pone.0061245 

http://dx.doi.org/10.1016/0091-3057(93)90181-R


128 
 

Naylor, J., Prisinzano, T., & Freeman, K. (2015). Self-administration of oxycodone alone or as a 
mixture with the kappa agonist, salvinorin a, by monkeys under a progressive ratio 
schedule of reinforcement. Drug Alcohol Depend, 146(0), e48-e49. doi: 
http://dx.doi.org/10.1016/j.drugalcdep.2014.09.503 

NDIC. (2011). National Drug Threat Assessment.  Washington, D.C: U.S. Department of Justice. 
Negus, S. S. (2004). Effects of the kappa opioid agonist U50,488 and the kappa opioid antagonist 

nor-binaltorphimine on choice between cocaine and food in rhesus monkeys. 
Psychopharmacology, 176(2), 204-213. doi: http://dx.doi.org/10.1007/s00213-004-1878-
7 

Negus, S. S., Mello, N. K., Portoghese, P. S., & Lin, C.-E. (1997). Effects of Kappa Opioids on 
Cocaine Self-Administration by Rhesus Monkeys. Journal of Pharmacology and 
Experimental Therapeutics, 282(1), 44-55.  

O'Brien, C. P., Childress, A. R., McLellan, A. T., & Ehrman, R. (1992). Classical Conditioning in 
Drug-Dependent Humansa. Annals of the New York Academy of Sciences, 654(1), 400-
415. doi: 10.1111/j.1749-6632.1992.tb25984.x 

O'Neill, K. A., & Valentino, D. (1982). Escapability and generalization: Effect on ‘behavioral 
despair’. Eur J Pharmacol, 78(3), 379-380. doi: http://dx.doi.org/10.1016/0014-
2999(82)90043-7 

Ookuma, K., Barton, C., York, D. A., & Bray, G. A. (1997). Effect of Enterostatin and Kappa-
Opioids on Macronutrient Selection and Consumption. Peptides, 18(6), 785-791. doi: 
http://dx.doi.org/10.1016/S0196-9781(97)00029-6 

Ortega, A., Blount, J. F., & Manchand, P. S. (1982). Salvinorin, a new trans-neoclerodane 
diterpene from Salvia divinorum(Labiatae). Journal of the Chemical Society, Perkin 
Transactions 1(0), 2505-2508. doi: 10.1039/P19820002505 

Ortiz de Montellano, P. R., & Kunze, K. L. (1980). Self-catalyzed inactivation of hepatic 
cytochrome P-450 by ethynyl substrates. Journal of Biological Chemistry, 255(12), 5578-
5585.  

Oz, M., Libby, T., Kivell, B., Jaligam, V., Ramamoorthy, S., & Shippenberg, T. S. (2010). Real-time, 
spatially resolved analysis of serotonin transporter activity and regulation using the 
fluorescent substrate, ASP(+). Journal of Neurochemistry, 114(4), 1019-1029. doi: DOI 
10.1111/j.1471-4159.2010.06828.x 

Panlilio, L. V., & Goldberg, S. R. (2007). Self-administration of drugs in animals and humans as a 
model and an investigative tool. Addiction, 102(12), 1863-1870. doi: 10.1111/j.1360-
0443.2007.02011.x 

Park, K., Volkow, N. D., Pan, Y., & Du, C. (2013). Chronic Cocaine Dampens Dopamine Signaling 
during Cocaine Intoxication and Unbalances D1 over D2 Receptor Signaling. The Journal 
of Neuroscience, 33(40), 15827-15836. doi: 10.1523/jneurosci.1935-13.2013 

Peciña, S., Berridge, K. C., & Parker, L. A. (1997). Pimozide Does Not Shift Palatability: Separation 
of Anhedonia from Sensorimotor Suppression by Taste Reactivity. Pharmacology 
Biochemistry and Behavior, 58(3), 801-811. doi: http://dx.doi.org/10.1016/S0091-
3057(97)00044-0 

Pfaus, J. G., Damsma, G., Nomikos, G. G., Wenkstern, D. G., Blaha, C. D., Phillips, A. G., & Fibiger, 
H. C. (1990). Sexual behavior enhances central dopamine transmission in the male rat. 
Brain Res, 530(2), 345-348. doi: http://dx.doi.org/10.1016/0006-8993(90)91309-5 

Pfeiffer, A., Brantl, V., Herz, A., & Emrich, H. M. (1986). Psychotomimesis mediated by kappa 
opiate receptors. Science, 233(4765), 774-776. doi: 10.2307/1697305 

Phillips, A. G., & Fibiger, H. C. (1978). The role of dopamine in maintaining intracranial self-
stimulation in the ventral tegmentum, nucleus accumbens, and medial prefrontal cortex. 
Canadian Journal of Psychology-Revue Canadienne De Psychologie, 32(2), 58-66. doi: 
10.1037/h0081676 

http://dx.doi.org/10.1016/j.drugalcdep.2014.09.503
http://dx.doi.org/10.1007/s00213-004-1878-7
http://dx.doi.org/10.1007/s00213-004-1878-7
http://dx.doi.org/10.1016/0014-2999(82)90043-7
http://dx.doi.org/10.1016/0014-2999(82)90043-7
http://dx.doi.org/10.1016/S0196-9781(97)00029-6
http://dx.doi.org/10.1016/S0091-3057(97)00044-0
http://dx.doi.org/10.1016/S0091-3057(97)00044-0
http://dx.doi.org/10.1016/0006-8993(90)91309-5


129 
 

Pickens, R., & Thompson, T. (1968). COCAINE-REINFORCED BEHAVIOR IN RATS: EFFECTS OF 
REINFORCEMENT MAGNITUDE AND FIXED-RATIO SIZE. Journal of Pharmacology and 
Experimental Therapeutics, 161(1), 122-129.  

Porsolt, R. D., Lepichon, M., & Jalfre, M. (1977). Depression: a new animal model sensitive to 
antidepressant treatments. Nature, 266(5604), 730-732. doi: 10.1038/266730a0 

Potter, D. N., Damez-Werno, D., Carlezon Jr, W. A., Cohen, B. M., & Chartoff, E. H. (2011). 
Repeated Exposure to the κ-Opioid Receptor Agonist Salvinorin A Modulates 
Extracellular Signal-Regulated Kinase and Reward Sensitivity. Biol Psychiatry, 70(8), 744-
753. doi: http://dx.doi.org/10.1016/j.biopsych.2011.05.021 

Prendergast, M. L., Podus, D., Chang, E., & Urada, D. (2002). The effectiveness of drug abuse 
treatment: a meta-analysis of comparison group studies. Drug Alcohol Depend, 67(1), 
53-72. doi: http://dx.doi.org/10.1016/S0376-8716(02)00014-5 

Prevatt-Smith, K. M., Lovell, K. M., Simpson, D. S., Day, V. W., Douglas, J. T., Bosch, P., . . . 
Prisinzano, T. E. (2011). Potential drug abuse therapeutics derived from the 
hallucinogenic natural product salvinorin A. Medchemcomm, 2(12), 1217-1222. doi: Doi 
10.1039/C1md00192b 

Prisinzano, T. E., Tidgewell, K., & Harding, W. W. (2005). k Opioids as potential treatments for 
stimulant dependence. The AAPS Journal, 7(3), E592-E599. doi: 10.1208/aapsj070361 

Prisinzano, T. E., Tidgewell, K., & Harding, W. W. (2008). κ Opioids as Potential Treatments for 
Stimulant Dependence. In R. Rapaka & W. Sadée (Eds.), Drug Addiction (pp. 231-245): 
Springer New York. 

Pulvirenti, L., Berrier, R., Kreifeldt, M., & Koob, G. K. (1994). Modulation of locomotor activity by 
NMDA receptors in the nucleus accumbens core and shell regions of the rat. Brain Res, 
664(1), 231-236. doi: http://dx.doi.org/10.1016/0006-8993(94)91977-1 

Quigley, B. M., & Collins, R. L. (1999). The modeling of alcohol consumption: a meta-analytic 
review. Journal of Studies on Alcohol, 60(1), 90-98.  

Redila, V. A., & Chavkin, C. (2008). Stress-induced reinstatement of cocaine seeking is mediated 
by the kappa opioid system. Psychopharmacology, 200(1), 59-70. doi: 10.1007/s00213-
008-1122-y 

Reece, P. A., Sedman, A. J., Rose, S., Wright, D. S., Dawkins, R., & Rajagopalan, R. (1994). Diuretic 
Effects, Pharmacokinetics, and Safety of a New Centrally Acting Kappa-Opioid Agonist 
(Ci-977) in Humans. Journal of Clinical Pharmacology, 34(11), 1126-1132.  

Reed, M. J., & Fotherby, K. (1979). Intestinal absorption of synthetic steroids. Journal of Steroid 
Biochemistry, 11(2), 1107-1112. doi: http://dx.doi.org/10.1016/0022-4731(79)90160-2 

Richardson, N. R., & Roberts, D. C. S. (1996). Progressive ratio schedules in drug self-
administration studies in rats: a method to evaluate reinforcing efficacy. Journal of 
Neuroscience Methods, 66(1), 1-11. doi: http://dx.doi.org/10.1016/0165-
0270(95)00153-0 

Riley, A. P., Day, V. W., Navarro, H. A., & Prisinzano, T. E. (2013). Palladium-Catalyzed 
Transformations of Salvinorin A, a Neoclerodane Diterpene from Salvia divinorum. Org 
Lett, 15(23), 5936-5939. doi: 10.1021/ol4027528 

Riley, A. P., Groer, C. E., Young, D., Ewald, A. W., Kivell, B. M., & Prisinzano, T. E. (2014). Synthesis 
and kappa-Opioid Receptor Activity of Furan-Substituted Salvinorin A Analogues. Journal 
of Medicinal Chemistry, 57(24), 10464-10475. doi: 10.1021/jm501521d 

Rinaldi, R. C., Steindler, E. M., Wilford, B. B., & Goodwin, D. (1988). Clarification and 
standardization of substance abuse terminology. JAMA, 259(4), 555-557. doi: 
10.1001/jama.1988.03720040047025 

Ritz, M., Lamb, R., Goldberg, & Kuhar, M. (1987). Cocaine receptors on dopamine transporters 
are related to self-administration of cocaine. Science, 237(4819), 1219-1223. doi: 
10.1126/science.2820058 

http://dx.doi.org/10.1016/j.biopsych.2011.05.021
http://dx.doi.org/10.1016/S0376-8716(02)00014-5
http://dx.doi.org/10.1016/0006-8993(94)91977-1
http://dx.doi.org/10.1016/0022-4731(79)90160-2
http://dx.doi.org/10.1016/0165-0270(95)00153-0
http://dx.doi.org/10.1016/0165-0270(95)00153-0


130 
 

Roberts, D. S. (1993). Self-administration of GBR 12909 on a fixed ratio and progressive ratio 
schedule in rats. Psychopharmacology, 111(2), 202-206. doi: 10.1007/BF02245524 

Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-
sensitization theory of addiction. Brain Res Rev, 18(3), 247-291. doi: 
http://dx.doi.org/10.1016/0165-0173(93)90013-P 

Rossi, N. A., & Reid, L. D. (1976). Affective states associated with morphine injections. 
Physiological Psychology, 4(3), 269-274. doi: 10.3758/BF03332869 

Roth, B. L., Baner, K., Westkaemper, R., Siebert, D., Rice, K. C., Steinberg, S., . . . Rothman, R. B. 
(2002). Salvinorin A: A potent naturally occurring nonnitrogenous κ opioid selective 
agonist. Proceedings of the National Academy of Sciences, 99(18), 11934-11939. doi: 
10.1073/pnas.182234399 

Russell, W. M. S., & Burch, R. L. (1959). The principles of humane experimental technique: 
Methuen and Co., Ltd., London W.C.I. 

Schenk, S., Lacelle, G., Gorman, K., & Amit, Z. (1987). Cocaine self-administration in rats 
influenced by environmental conditions: implications for the etiology of drug abuse. 
Neuroscience Letters, 81(1–2), 227-231. doi: http://dx.doi.org/10.1016/0304-
3940(87)91003-2 

Schenk, S., Partridge, B., & Shippenberg, T. S. (1999). U69593, a kappa-opioid agonist, decreases 
cocaine self-administration and decreases cocaine-produced drug-seeking. 
Psychopharmacology, 144(4), 339-346. doi: DOI 10.1007/s002130051016 

Schwartz, J. W., Blakely, R. D., & DeFelice, L. J. (2003). Binding and Transport in Norepinephrine 
Transporters: REAL-TIME, SPATIALLY RESOLVED ANALYSIS IN SINGLE CELLS USING A 
FLUORESCENT SUBSTRATE. Journal of Biological Chemistry, 278(11), 9768-9777. doi: 
10.1074/jbc.M209824200 

Seeman, P., Guan, H.-C., & Hirbec, H. (2009). Dopamine D2High receptors stimulated by 
phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil. Synapse, 63(8), 
698-704. doi: 10.1002/syn.20647 

Self, D. W., Barnhart, W. J., Lehman, D. A., & Nestler, E. J. (1996). Opposite modulation of 
cocaine-seeking behavior by D-1- and D-2-like dopamine receptor agonists. Science, 
271(5255), 1586-1589. doi: 10.1126/science.271.5255.1586 

Serra, V., Fattore, L., Scherma, M., Collu, R., Spano, M., Fratta, W., & Fadda, P. (2015). 
Behavioural and neurochemical assessment of salvinorin A abuse potential in the rat. 
Psychopharmacology, 232(1), 91-100. doi: 10.1007/s00213-014-3641-z 

Shaham, Y., & Miczek, K. (2003). Reinstatement—toward a model of relapse. 
Psychopharmacology, 168(1-2), 1-2. doi: 10.1007/s00213-003-1469-z 

Shaw, G., Morse, S., Ararat, M., & Graham, F. L. (2002). Preferential transformation of human 
neuronal cells by human adenoviruses and the origin of HEK 293 cells. The FASEB 
Journal, 16(8), 869-871. doi: 10.1096/fj.01-0995fje 

Shippenberg, T. S., Zapata, A., & Chefer, V. I. (2007). Dynorphin and the pathophysiology of drug 
addiction. Pharmacol Ther, 116(2), 306-321. doi: 10.1016/j.pharmthera.2007.06.011 

Simon, H., Stinus, L., Tassin, J. P., Lavielle, S., Blanc, G., Thierry, A.-M., . . . Le Moal, M. (1979). Is 
the dopaminergic mesocorticolimbic system necessary for intracranial self-stimulation?: 
Biochemical and behavioral studies from A10 cell bodies and terminals. Behavioral and 
Neural Biology, 27(2), 125-145. doi: http://dx.doi.org/10.1016/S0163-1047(79)91745-X 

Simonin, F., Gavériaux-Ruff, C., Befort, K., Matthes, H., Lannes, B., Micheletti, G., . . . Kieffer, B. 
(1995). kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal 
assignment, functional expression, pharmacology, and expression pattern in the central 
nervous system. Proceedings of the National Academy of Sciences, 92(15), 7006-7010.  

Simonson, B., Morani, A. S., Ewald, A. W. M., Walker, L., Kumar, N., Simpson, D., . . . Kivell, B. M. 
(2014). Pharmacology and anti-addiction effects of the novel κ opioid receptor agonist 

http://dx.doi.org/10.1016/0165-0173(93)90013-P
http://dx.doi.org/10.1016/0304-3940(87)91003-2
http://dx.doi.org/10.1016/0304-3940(87)91003-2
http://dx.doi.org/10.1016/S0163-1047(79)91745-X


131 
 

Mesyl Sal B, a potent and long-acting analogue of salvinorin A. British Journal of 
Pharmacology, n/a-n/a. doi: 10.1111/bph.12692 

Simonson, B., Morani, A. S., Ewald, A. W. M., Walker, L., Kumar, N., Simpson, D., . . . Kivell, B. M. 
(2015). Pharmacology and anti-addiction effects of the novel κ opioid receptor agonist 
Mesyl Sal B, a potent and long-acting analogue of salvinorin A. British Journal of 
Pharmacology, 172(2), 515-531. doi: 10.1111/bph.12692 

Simpson, D. S., Katavic, P. L., Lozama, A., Harding, W. W., Parrish, D., Deschamps, J. R., . . . 
Prisinzano, T. E. (2007). Synthetic Studies of Neoclerodane Diterpenes from Salvia 
divinorum:  Preparation and Opioid Receptor Activity of Salvinicin Analogues. Journal of 
Medicinal Chemistry, 50(15), 3596-3603. doi: 10.1021/jm070393d 

Siuda, Edward R., Copits, Bryan A., Schmidt, Martin J., Baird, Madison A., Al-Hasani, R., Planer, 
William J., . . . Bruchas, Michael R. (2015). Spatiotemporal Control of Opioid Signaling 
and Behavior. Neuron, 86(4), 923-935. doi: 10.1016/j.neuron.2015.03.066 

Slattery, D. A., & Cryan, J. F. (2012). Using the rat forced swim test to assess antidepressant-like 
activity in rodents. Nature Protocols, 7(6), 1009-1014. doi: 
http://dx.doi.org/10.1038/nprot.2012.044 

Solomon, R. L., & Corbit, J. D. (1974). An opponent-process theory of motivation. I. Temporal 
dynamics of affect. Psychological review, 81(2), 119-145.  

Spanagel, R., Herz, A., & Shippenberg, T. S. (1992). Opposing tonically active endogenous opioid 
systems modulate the mesolimbic dopaminergic pathway. Proceedings of the National 
Academy of Sciences of the United States of America, 89(6), 2046-2050. doi: 
10.1073/pnas.89.6.2046 

Stafford, D., LeSage, M. G., & Glowa, J. R. (1998). Progressive-ratio schedules of drug delivery in 
the analysis of drug self-administration: a review. Psychopharmacology, 139(3), 169-184. 
doi: 10.1007/s002130050702 

Steru, L., Chermat, R., Thierry, B., & Simon, P. (1985). The tail suspension test: A new method for 
screening antidepressants in mice. Psychopharmacology, 85(3), 367-370. doi: 
10.1007/BF00428203 

Svingos, A. L., Chavkin, C., Colago, E. E. O., & Pickel, V. M. (2001). Major coexpression of κ-opioid 
receptors and the dopamine transporter in nucleus accumbens axonal profiles. Synapse, 
42(3), 185-192. doi: 10.1002/syn.10005 

Swanson, L. W. (1982). The projections of the ventral tegmental area and adjacent regions: A 
combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain 
Research Bulletin, 9(1–6), 321-353. doi: http://dx.doi.org/10.1016/0361-9230(82)90145-
9 

Taussig, R., Iniguez-Lluhi, J., & Gilman, A. (1993). Inhibition of adenylyl cyclase by Gi alpha. 
Science, 261(5118), 218-221. doi: 10.1126/science.8327893 

Taylor, D., & Ho, B. T. (1977). Neurochemical effects of cocaine following acute and repeated 
injection. Journal of Neuroscience Research, 3(2), 95-101. doi: 10.1002/jnr.490030203 

Teksin, Z. S., Lee, I. J., Nemieboka, N. N., Othman, A. A., Upreti, V. V., Hassan, H. E., . . . 
Eddington, N. D. (2009). Evaluation of the transport, in vitro metabolism and 
pharmacokinetics of Salvinorin A, a potent hallucinogen. European Journal of 
Pharmaceutics and Biopharmaceutics, 72(2), 471-477. doi: 
http://dx.doi.org/10.1016/j.ejpb.2009.01.002 

Tempel, A., & Zukin, R. S. (1987). Neuroanatomical patterns of the mu, delta, and kappa opioid 
receptors of rat brain as determined by quantitative in vitro autoradiography. 
Proceedings of the National Academy of Sciences, 84(12), 4308-4312.  

Thomas, P., & Smart, T. G. (2005). HEK293 cell line: A vehicle for the expression of recombinant 
proteins. Journal of Pharmacological and Toxicological Methods, 51(3), 187-200. doi: 
http://dx.doi.org/10.1016/j.vascn.2004.08.014 

http://dx.doi.org/10.1038/nprot.2012.044
http://dx.doi.org/10.1016/0361-9230(82)90145-9
http://dx.doi.org/10.1016/0361-9230(82)90145-9
http://dx.doi.org/10.1016/j.ejpb.2009.01.002
http://dx.doi.org/10.1016/j.vascn.2004.08.014


132 
 

Thompson, A. C., Zapata, A., Justice, J. B., Vaughan, R. A., Sharpe, L. G., & Shippenberg, T. S. 
(2000). κ-Opioid Receptor Activation Modifies Dopamine Uptake in the Nucleus 
Accumbens and Opposes the Effects of Cocaine. The Journal of Neuroscience, 20(24), 
9333-9340.  

Tzaferis, J. A., & McGinty, J. F. (2001). Kappa opioid receptor stimulation decreases 
amphetamine-induced behavior and neuropeptide mRNA expression in the striatum. 
Molecular Brain Research, 93(1), 27-35. doi: http://dx.doi.org/10.1016/S0169-
328X(01)00178-4 

Tzschentke, T. M. (1998). Measuring reward with the conditioned place preference paradigm: a 
comprehensive review of drug effects, recent progress and new issues. Progress in 
Neurobiology, 56(6), 613-672. doi: http://dx.doi.org/10.1016/S0301-0082(98)00060-4 

UNODC. (2015). World Drug Report 2015. Vienna, Austria: United Nations Office on Drugs and 
Crime. 

Unterwald, E. M., Rubenfeld, J. M., & Kreek, M. J. (1994). Repeated cocaine administration 
upregulates kappa and mu, but not delta, opioid receptors. Neuroreport, 5(13), 1613-
1616. doi: 10.1097/00001756-199408150-00018 

Ushijima, I., Carino, M. A., & Horita, A. (1995). Involvement of D1 and D2 dopamine systems in 
the behavioral effects of cocaine in rats. Pharmacology Biochemistry and Behavior, 
52(4), 737-741. doi: http://dx.doi.org/10.1016/0091-3057(95)00167-U 

Valdes, L. J. (1983). The Pharmacognosy of Salvia divinorum (Epling and Jativa-M): an 
investigation of Ska Maria Pastora (Mexico). (8402393 Ph.D.), University of Michigan, 
Ann Arbor.  ProQuest Dissertations & Theses Global database.  

Valdez, G. R., Platt, D. M., Rowlett, J. K., Rüedi-Bettschen, D., & Spealman, R. D. (2007). κ 
Agonist-Induced Reinstatement of Cocaine Seeking in Squirrel Monkeys: A Role for 
Opioid and Stress-Related Mechanisms. Journal of Pharmacology and Experimental 
Therapeutics, 323(2), 525-533. doi: 10.1124/jpet.107.125484 

Vanderschuren, L. J. M. J., Schoffelmeer, A. N. M., Wardeh, G., & De Vries, T. J. (2000). 
Dissociable effects of the κ-opioid receptor agonists bremazocine, U69593, and 
U50488H on locomotor activity and long-term behavioral sensitization induced by 
amphetamine and cocaine. Psychopharmacology, 150(1), 35-44. doi: 
10.1007/s002130000424 

Vargas-Perez, H., Ting-A-Kee, R. A., Heinmiller, A., Sturgess, J. E., & Van Der Kooy, D. (2007). A 
test of the opponent-process theory of motivation using lesions that selectively block 
morphine reward. European Journal of Neuroscience, 25(12), 3713-3718. doi: 
10.1111/j.1460-9568.2007.05599.x 

Volkow, N. D., Chang, L., Wang, G.-J., Fowler, J. S., Franceschi, D., Sedler, M., . . . Logan, J. (2001). 
Loss of Dopamine Transporters in Methamphetamine Abusers Recovers with Protracted 
Abstinence. The Journal of Neuroscience, 21(23), 9414-9418.  

Volkow, N. D., Fowler, J. S., Wang, G.-J., Hitzemann, R., Logan, J., Schlyer, D. J., . . . Wolf, A. P. 
(1993). Decreased dopamine D2 receptor availability is associated with reduced frontal 
metabolism in cocaine abusers. Synapse, 14(2), 169-177. doi: 10.1002/syn.890140210 

Volkow, N. D., Wang, G. J., Fischman, M. W., Foltin, R. W., Fowler, J. S., Abumrad, N. N., . . . Shea, 
C. E. (1997). Relationship between subjective effects of cocaine and dopamine 
transporter occupancy. Nature, 386(6627), 827-830.  

Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Gatley, S. J., Hitzemann, R., . . . Pappas, N. 
(1997). Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent 
subjects. Nature, 386(6627), 830-833.  

Walker, B. M., Valdez, G. R., McLaughlin, J. P., & Bakalkin, G. (2012). Targeting dynorphin/kappa 
opioid receptor systems to treat alcohol abuse and dependence. Alcohol, 46(4), 359-370. 
doi: http://dx.doi.org/10.1016/j.alcohol.2011.10.006 

http://dx.doi.org/10.1016/S0169-328X(01)00178-4
http://dx.doi.org/10.1016/S0169-328X(01)00178-4
http://dx.doi.org/10.1016/S0301-0082(98)00060-4
http://dx.doi.org/10.1016/0091-3057(95)00167-U
http://dx.doi.org/10.1016/j.alcohol.2011.10.006


133 
 

Walker, B. M., Zorrilla, E. P., & Koob, G. F. (2011). Systemic κ-opioid receptor antagonism by nor-
binaltorphimine reduces dependence-induced excessive alcohol self-administration in 
rats. Addiction Biology, 16(1), 116-119. doi: 10.1111/j.1369-1600.2010.00226.x 

Walsh, S., Strain, E., Abreu, M., & Bigelow, G. (2001). Enadoline, a selective kappa opioid agonist: 
comparison with butorphanol and hydromorphone in humans. Psychopharmacology, 
157(2), 151-162. doi: 10.1007/s002130100788 

Wang, Y., Tang, K., Inan, S., Siebert, D., Holzgrabe, U., Lee, D. Y. W., . . . Liu-Chen, L. Y. (2005). 
Comparison of pharmacological activities of three distinct kappa ligands (salvinorin A, 
TRK-820 and 3FLB) on kappa opioid receptors in vitro and their antipruritic and 
antinociceptive activities in vivo. Journal of Pharmacology and Experimental 
Therapeutics, 312(1), 220-230. doi: 10.1124/jpet.104.073668 

Wang, Y. H., Chen, Y., Xu, W., Lee, D. Y. W., Ma, Z., Rawls, S. M., . . . Liu-Chen, L.-Y. (2008). 2-
Methoxymethyl-Salvinorin B Is a Potent κ Opioid Receptor Agonist with Longer Lasting 
Action in Vivo Than Salvinorin A. Journal of Pharmacology and Experimental 
Therapeutics, 324(3), 1073-1083. doi: 10.1124/jpet.107.132142 

Wee, S., & Koob, G. F. (2010). The role of the dynorphin-kappa opioid system in the reinforcing 
effects of drugs of abuse. Psychopharmacology, 210(2), 121-135. doi: 10.1007/s00213-
010-1825-8 

Wee, S., Orio, L., Ghirmai, S., Cashman, J. R., & Koob, G. F. (2009). Inhibition of kappa opioid 
receptors attenuated increased cocaine intake in rats with extended access to cocaine. 
Psychopharmacology, 205(4), 565-575. doi: 10.1007/s00213-009-1563-y 

Weeks, J. R. (1962). Experimental Morphine Addiction: Method for Automatic Intravenous 
Injections in Unrestrained Rats. Science, 138(3537), 143-144. doi: 
10.1126/science.138.3537.143 

Whitfield, T. W., Schlosburg, J. E., Wee, S., Gould, A., George, O., Grant, Y., . . . Koob, G. F. (2015). 
κ Opioid Receptors in the Nucleus Accumbens Shell Mediate Escalation of 
Methamphetamine Intake. The Journal of Neuroscience, 35(10), 4296-4305. doi: 
10.1523/jneurosci.1978-13.2015 

WHO. (2010). Psychoactive Substance Use: Epidemiology and Burden of Disease. Atlas on 
Substance Use. Geneva: WHO Press, 2010; 7-12. 

Wickizer, T. M. (2013). State-level estimates of the economic costs of alcohol and drug abuse. 
Journal of health care finance, 39(3), 71-84.  

Wilkins, C., Girling, M., & Sweetsur, P. (2008). Recent trends in  illegal drug use in New Zealand, 
2005-2007: Findings from the 2005, 2006 and 2007 Illicit Drug Monitoring System 
(IDMS). Auckland, New Zealand: Centre for Social and Health Outcones Research and 
Evaluation, Massey University. 

Wilkins, C., Girling, M., & Sweetsur, P. (2008). Trends in drug use in Auckland, Wellington and 
Christchurch: findings from the three site locations of the 2006 and 2007 Illicit Drug 
Monitoring System (IDMS). Auckland, New Zealand: Centre for Social and Health 
Outcomes Research and Evaluation, Massey University. 

Willner, P., Papp, M., Phillips, G., Maleeh, M., & Muscat, R. (1990). Pimozide does not impair 
sweetness discrimination. Psychopharmacology, 102(2), 278-282. doi: 
10.1007/BF02245934 

Wood, P. L., & Rao, T. S. (1991). Morphine stimulation of mesolimbic and mesocortical but not 
nigrostriatal dopamine release in the rat as reflected by changes in 3-methoxytyramine 
levels. Neuropharmacology, 30(4), 399-401. doi: 10.1016/0028-3908(91)90066-k 

Wrighton, S. A., & Stevens, J. C. (1992). The Human Hepatic Cytochromes P450 Involved in Drug 
Metabolism. Critical Reviews in Toxicology, 22(1), 1-21. doi: 
10.3109/10408449209145319 

Wu, H., Wacker, D., Mileni, M., Katritch, V., Han, G. W., Vardy, E., . . . Stevens, R. C. (2012). 
Structure of the human kappa-opioid receptor in complex with JDTic. Nature, 485(7398), 



134 
 

327-332. doi: 
http://www.nature.com/nature/journal/v485/n7398/abs/nature10939.html#supplemen
tary-information 

Xia, Y.-F., He, L., Whistler, J. L., & Hjelmstad, G. O. (2008). Acute Amphetamine Exposure 
Selectively Desensitizes Kappa-Opioid Receptors in the Nucleus Accumbens. 
Neuropsychopharmacology, 33(4), 892-900. doi: 
http://dx.doi.org/10.1038/sj.npp.1301463 

Xu, M., Hu, X.-T., Cooper, D. C., Moratalla, R., Graybiel, A. M., White, F. J., & Tonegawa, S. (1994). 
Elimination of cocaine-induced hyperactivity and dopamine-mediated 
neurophysiological effects in dopamine D1 receptor mutant mice. Cell, 79(6), 945-955. 
doi: http://dx.doi.org/10.1016/0092-8674(94)90026-4 

Yeo, K. T., Wu, A. H., Apple, F. S., Kroll, M. H., Christenson, R. H., Lewandrowski, K. B., . . . Butch, 
A. W. (2003). Multicenter evaluation of the Roche NT-proBNP assay and comparison to 
the Biosite Triage BNP assay. Clin Chim Acta, 338(1-2), 107-115.  

Yoshida, M., Yokoo, H., Mizoguchi, K., Kawahara, H., Tsuda, A., Nishikawa, T., & Tanaka, M. 
(1992). Eating and drinking cause increased dopamine release in the nucleus accumbens 
and ventral tegmental area in the rat: measurement by in vivo microdialysis. 
Neuroscience Letters, 139(1), 73-76. doi: 
http://www.sciencedirect.com/science/article/pii/030439409290861Z 

Zakharova, E., Collins, S. L., Åberg, M., Kumar, A., Fernandez, J. B., & Izenwasser, S. (2008). 
Depletion of serotonin decreases the effects of the kappa-opioid receptor agonist U-
69593 on cocaine-stimulated activity. Eur J Pharmacol, 586(1–3), 123-129. doi: 
http://dx.doi.org/10.1016/j.ejphar.2008.02.065 

Zapata, A., Kivell, B., Han, Y., Javitch, J. A., Bolan, E. A., Kuraguntla, D., . . . Shippenberg, T. S. 
(2007). Regulation of dopamine transporter function and cell surface expression by D3 
dopamine receptors. Journal of Biological Chemistry, 282(49), 35842-35854. doi: DOI 
10.1074/jbc.M611758200 

Zhang, Y., Butelman, E. R., Schlussman, S. D., Ho, A., & Kreek, M. J. (2005). Effects of the plant-
derived hallucinogen salvinorin A on basal dopamine levels in the caudate putamen and 
in a conditioned place aversion assay in mice: agonist actions at kappa opioid receptors. 
Psychopharmacology, 179(3), 551-558. doi: 10.1007/s00213-004-2087-0 

Zhou, L., Lovell, K. M., Frankowski, K. J., Slauson, S. R., Phillips, A. M., Streicher, J. M., . . . Bohn, L. 
M. (2013). Development of Functionally Selective, Small Molecule Agonists at Kappa 
Opioid Receptors. Journal of Biological Chemistry, 288(51), 36703-36716. doi: 
10.1074/jbc.M113.504381 

Zhu, N., Lightsey, D., Liu, J., Foroozesh, M., Morgan, K., Stevens, E., & Stevens, C. K. (2010). 
Ethynyl and Propynylpyrene Inhibitors of Cytochrome P450. Journal of Chemical 
Crystallography, 40(4), 343-352. doi: 10.1007/s10870-009-9659-0 

 

  

http://www.nature.com/nature/journal/v485/n7398/abs/nature10939.html#supplementary-information
http://www.nature.com/nature/journal/v485/n7398/abs/nature10939.html#supplementary-information
http://dx.doi.org/10.1038/sj.npp.1301463
http://dx.doi.org/10.1016/0092-8674(94)90026-4
http://www.sciencedirect.com/science/article/pii/030439409290861Z
http://dx.doi.org/10.1016/j.ejphar.2008.02.065


135 
 

 


