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ABSTRACT 

 

Triclosan (TCS) is a chlorinated organic compound which, due to its antibacterial 

properties in vitro, has found widespread usages in many medical and consumer products 

such as textiles, plastics and personal care products. Humans are directly and chronically 

exposed to TCS via dermal and mucosal contact from the use of TCS-formulated products 

such as soap and toothpaste.  TCS is classified as an environmental contaminant by the 

European Union Water Framework Directive, whose mandatory goal is to develop new 

and simple-to-use analytical methodologies capable of measuring low concentrations of 

TCS and that are suitable for high-throughput detection. 

Synthetically-derived single-stranded oligonucleotides, also known as aptamers, are 

superior candidates for the development of sensitive and high-throughput biosensing 

strategies. Biosensors utilising aptamers as molecular recognition elements have showed 

great promise in a variety of diagnostic and therapeutic applications, especially for the 

detection of small molecular weight organic compounds such as TCS. The aim of this 

thesis was to develop aptamers as new capture reagents for TCS, as the first step towards 

the development of an alternative, user-friendly, diagnostic technique for monitoring TCS 

in both environmental and biological samples. The objectives of the thesis were to: [i] 

produce by in vitro selection procedures, TCS binding single-stranded DNA (ssDNA) 

aptamers; [ii] characterise the selected aptamers and determine their equilibrium 

dissociation constant (Kd) values and; [iii] evaluate the applicability of the selected 

aptamers in a biosensing platform. 

To achieve these objectives, ssDNA aptamers capable of binding TCS were generated 

in vitro using a sequential approach known as systematic evolution of ligands by 

exponential enrichment (SELEX). An affinity column-based SELEX strategy together with 

a variety of SELEX modifications such as negative and counter selections, real-time 

amplification and fluorescence quantification were explored for finding TCS specific 

aptamers. A total of 20 TCS aptamers, ten from 8 rounds of a basic-SELEX procedure, and 

the other ten from 10 rounds of a revised-SELEX procedure were generated.  
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In general, these aptamers showed acceptable levels of sensitivity and specificity to TCS, 

and the best binding aptamer demonstrated a Kd value of 378 nM. The Kd value is 

comparable to published Kd values for compounds that share similar chemical structures 

to TCS. In addition, a novel fluorescent-based imaging method was developed in this 

dissertation. The method developed provides an alternative approach for monitoring 

SELEX progression and has the potential to simplify the way to characterise the binding 

properties of an aptamer to its cognate target. The utility of this method was compared 

with commonly used methods such as dot blot and fluorescent binding assays. The 

performance of the new imaging method was superior to the existing methods in terms 

of accuracy, simplicity and reproducibility. Furthermore, the best binding TCS aptamer 

was evaluated for its utility in an aptamer-based biosensor. The developed aptasensor, 

utilising a TCS aptamer as the recognition element and gold nanoparticles (AuNPs) as the 

signal reporter, was capable of detecting TCS in spiked-water samples at concentrations 

ranging from 20–750 nM with a visual detection limit of 150 nM.  

In conclusion, methods were developed to select, refine, and characterise ssDNA 

aptamers capable of binding to TCS, and these aptamers have the potential to offer a 

sensitive, simple-to-use, and user-friendly analytical method for TCS detection. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

Global production of chemically-synthesised organic compounds has increased 

dramatically over the past decades. Many of these have been beneficial for mankind, but 

often they are potentially harmful or have toxic properties. Moreover, many persist for 

long periods in the environment and as a consequence can accumulate within living 

organisms (Daughton and Ternes 1999; Daughton 2004). In addition to their persistence, 

and risk of bioaccumulation, these substances are known to adversely affect biological 

systems in plants and animals, including humans (Crisp et al. 1998). Therefore it is 

important to develop suitable methods for detecting and monitoring the presence of 

these compounds in living organisms and ecosystems in order to support rational 

decisions regarding their usage. From this perspective, the work in this thesis focuses on 

the development of a novel aptamer-based biosensor for assessing the levels of organic 

compounds that exhibit varying degrees of endocrine-disrupting properties. The 

following describes: [i] a list of selected endocrine-disrupting compounds; [ii] a summary 

of using aptamers for molecular recognition; [iii] a technique for generating ssDNA 

aptamers; [iv] a review on aptamer-based biosensors and; [v] the aim and objectives. 

 

1.1 Endocrine-disrupting compounds (EDCs) 

 

Compounds that interfere with the endocrine system and disrupt physiological functions 

of endogenous hormones are called EDCs. EDCs are known to elicit their responses by 

modifying the synthesis, secretion, transportation and/or binding of endogenous 

hormones responsible for the regulation of development and maintenance of cellular 

homeostasis (Crisp et al. 1998). Sources of EDCs include natural and synthetic hormones, 

pesticides, polychlorinated biphenyls, phthalates, alkylphenol ethoxylates, dioxins, flame 

retardants, parabens, bisphenol A, and triclosan (Richardson and Ternes 2011). Factors 

contributing to the presence of EDCs in the environment are leaching or discharges from 

industrial or agricultural processes; transfer of contaminants from manufactured 

household goods and; degradation or leaching from landfills.  
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Wastewater treatment plants (WWTPs) are major contributors to the EDC pollution, and 

these chemicals are found in effluents from WWTPs, and thus can access adjacent 

surfaces and the ground water (Legler et al. 2002; Schwarzenbach et al. 2006). The fact 

that EDCs are ubiquitous in the environment, especially in aquatic ecosystems, has raised 

concerns. The occurrence of chemical compounds that influence the sexual development 

of fish in English rivers was reported over 20 years ago (Purdom et al. 1994). Since then, 

many studies have demonstrated the negative effects of EDCs on wildlife and human 

health, which seem to occur even at concentrations as low as 0.1 ng/L (Kannan et al. 2003; 

Koh et al. 2005; Campbell et al. 2006). Moreover, some EDCs possess diverse 

characteristics such as antiandrogenic as well as steroidogenic activities (Leijs et al. 2009; 

Brausch and Rand 2011). There are great variabilities in molecular structures of EDCs 

(Figure 1.1), and the ability to monitor all of these reagents for potential adverse effects 

is a major challenge. In particular, this research has focussed on EDCs more commonly 

found in environmental and biological samples that differ in their properties and origins 

namely: [i] steroid hormones; [ii] brominated flame retardants; [iii] alkylphenol 

ethoxylates; [iv] personal-care products and; [iv] triclosan. 

 

1.1.1 Steroid hormones 

Natural and synthetically-derived steroid hormones such as oestrone, oestradiol (OE2), 

progesterone and testosterone, are considered to be the most potent EDCs present in the 

environment with proven effect on the biological activity of organisms upon exposure 

(Mills and Chichester 2005). Examples of possible adverse effects of steroid hormones 

include feminisation in fish, decreased sperm quality and number in human males, and 

increased prevalence of breast cancer and reproductive abnormalities, such as 

miscarriages, irregularities of the menstrual cycle, and infertility in human females 

(Larsson et al. 1999; Amaral Mendes 2002; Waring and Harris 2005). More detailed 

information concerning the fate and distribution of steroids and their metabolites (e.g. 

steroid conjugates) in the environment is important because of their accessibility to living 

organisms via sewage treatment plants or the leaching of wastewater into soils and 

water-ways (Brion et al. 2004; Gregoraszczuk et al. 2008). Thus, there has been 

increasing interest in developing more sensitive and simpler methods to detect steroidal 

compounds in recent years.  
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Figure 1.1: Molecular structures of selected endocrine disrupting compounds.  

     

A common characteristic to most EDCs is the presence of at least one aromatic moiety in 
their molecular structures.  
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1.1.2 Brominated flame retardants  

Brominated flame retardants including polybrominated diphenyl ethers (PBDEs), 

polybrominated biphenyls, brominated cyclohydrocarbons, decabromodiphenyl ethers, 

hexabromocyclododecanes, and tetrabromobisphenol A, have been used for many years 

in a variety of commercial products, including children’s sleepwear, foam cushions in 

chairs, computers, plastics, and electronics (Covaci et al. 2011). The use of these flame 

retardants has led to their widespread presence in the environment. They are 

environmentally persistent and lipophilic, and therefore can bioaccumulate in both 

animals and humans (Vonderheide 2009). Because of their widespread presence and 

potential toxicity to mammals, the Euoropean Union (EU) has banned the use of penta- 

and octa-PBDEs in 2004. However, deca-PBDEs are still being manufactured and used. 

Research now shows that the deca-PBDEs can accumulate in animal and human tissues, 

and metabolically form the toxic penta- and octa-species (Richardson and Ternes 2011).  

1.1.3 Alkylphenol ethoxylates 

Alkylphenol ethoxylates (APEOs) are a class of non-ionic surfactants that are used 

extensively as detergents, emulsifiers, wetting and dispersing agents in industrial, 

agricultural, and household applications. Because alkylsubstituted phenols are relatively 

polar due to the presence of hydroxyl groups, they are highly soluble in aqueous solutions, 

thereby increasing their potential to pollute water sources (Ferguson and Brownawell 

2003). APEOs are known to degrade in WWTPs to metabolites nonylphenols or 4-

octylphenols. These metabolites are more toxic, lipophilic and oestrogenic in nature, and 

persist in the environment than the parent compounds (Vega Morales et al. 2009). In the 

past 20 years, several studies have reported that this class of compounds bioaccumulate 

in aquatic organisms resulting in chronic toxicity (Staples et al. 2004). Moreover, these 

compounds are known to mimic natural hormones and disrupt endocrine functions by 

interacting with oestrogen receptors (Jobling et al. 2006; Lu et al. 2008).  
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1.1.4 Personal-care products  

Personal-care products (PCPs) are the focus of much research because of their potential 

impacts on the environment and human health, as well as the increased public awareness 

and concern. Despite the growing availability of PCPs, few studies have demonstrated 

their potential biological and ecological impacts to living organisms (Subedi et al. 2012; 

Ortiz de Garcia et al. 2013). Even fewer studies have addressed the potential human 

health relevance of these and other non-regulated xenobiotics (Kumar and Xagoraraki 

2010). Through the use of PCPs, humans are continually and directly exposed to synthetic 

musks (e.g. nitro-musk, galaxolide, and tonalide) used in the perfume industry, 

preservatives (e.g. triclocarban and methyl-paraben) for personal hygiene, sunscreen 

filters (e.g. oxybenzone), and insect repellents (e.g. metofluthrin, and icaridin). PCPs are 

lipophilic and due to constant exposure persist in human tissues. Some studies have 

suggested that the half-life of these compounds are in the order of several months 

(Hutter et al. 2010).  

1.1.5 Triclosan (TCS) 

TCS is a broad spectrum antimicrobial and preservative agent that is used in a wide range 

of products including antibacterial soaps, toothpaste, shampoo, lotion, and deodorants. 

TCS can also be incorporated into polymers and fibres to provide materials with 

antimicrobial properties. It is frequently used in mattress pads, food cutting boards, 

household sponges, rubbish bags and plastic rubbish bins (Saleh et al. 2010). The annual 

usage of TCS is increasing with the rising consumer demand for hygienic products (Singer 

et al. 2002). It has been estimated that the annual usage of TCS is > 300 tons in USA and 

350 tons in Europe (Singer et al. 2002; Halden and Paull 2005). Extensive use of TCS 

increases the potential for general population to be exposed to TCS through ingestion or 

dermal contact or through consumption of contaminated food and drinking water.  
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TCS has been identified in human breast milk at levels between 100 to 2,100 µg/kg lipids  

(Dayan 2007), plasma samples at levels just under 10 ng/mL  (Sandborgh-Englund et al. 

2006), and in samples of urine at levels approaching 4000 ng/mL  (Calafat et al. 2008). 

These data indicate quite clearly that humans are being exposed to TCS at levels that 

enable the molecule to bioaccumulate and become readily available in various excretory 

fluids. A cause for concern in this regard, is that both in vitro and in vivo studies show that 

TCS is capable of exerting adverse effects on hormonal homeostasis and metabolic 

mechanisms (Wong et al. 2001; Gafni et al. 2004; Chen et al. 2007; Ahn et al. 2008; Kumar 

et al. 2008; Kumar et al. 2009). TCS is structurally similar to polychlorinated biphenyls 

(PCBs) and has similarly been shown to potentially interact with ryanodine receptors and 

stimulate cellular Ca2+ mobilisation, thereby adversely affecting neural-development 

(Ahn et al. 2008; Wong et al. 2001; Gafni et al. 2004). In vitro studies of TCS shows dose-

dependent antagonism at low micromolar (µM) levels towards oestradiol- and 

testosterone-mediated activation of oestrogen and androgen receptors respectively 

(Chen et al. 2007). Furthermore, recent studies have shown that the oral administration 

of TCS at doses of 10 and 20 mg/kg/day inhibits testicular androgen production in male 

rats (Kumar et al. 2008; Kumar et al. 2009).  

1.1.6 Current methods of EDC detection 

The detection of EDCs is an essential initial step to evaluate whether their environmental 

impacts are of concern. However, analyses of EDCs represent a difficult task due to the 

complexities of the matrices (soils, water, sediments, biological fluids or tissues) being 

analysed and the available concentrations are often very low (ng/L). The challenge in 

detecting trace-levels of EDCs in complex sample mixtures requires new analytical 

methods not only with high sensitivity, but also with different levels of selectivity and 

resolution (Aufartova et al. 2011). Chromatographic methods such as high performance 

liquid chromatography (HPLC), liquid chromatography-tandem mass spectrometry (LC-

MS2), and gas chromatography-tandem mass spectrometry (GC-MS2) are the traditionally 

used techniques for quantitative and qualitative measurement of EDCs (Table 1.1).  
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Table 1.1: Determination of endocrine-disrupting compounds in biological and environmental samples 

Analytes Samples Extraction Methods Analytical 
parameters 

References 

26 steroids including natural and synthetic estrogens, progestogens, 
and androgens 

Water samples SPE LC-MS2 Recovery > 80 % 
MDLs: 0.1-0.73 ng⋅/L 

(Vulliet et al. 2008) 

Boldenone, nandrolone, testosterone, methyltestosterone, 
epiandrosterone, androsterone, and satnozolol 

Human urine In-tube 
SPME 

LC-MS2 Recovery: 86-117 % 
LODs: 9–182 pg/mL 

(Saito et al. 2010) 

Estrone, 17𝛼-estradiol, 17𝛽-estradiol, estriol, 17𝛼-ethinylestradiol, 
diethylstilbestrol, estradiol 17-glucoronide, estrone 

Sewage sludge PLE LC-MS2 Recovery > 81 % 
LODs < 26 ng/g 

(Nieto et al. 2008) 

Eighteen androgens and progestogens Environmental 
waters 

DLLME HPLC-MS2 Recovery: 87-116 % 
LODs: 0.8–3.1 𝜇g/L 

(Chang and Huang 
2010) 

Octyl, nonylphenol ethoxylates, and carboxylates Wastewater SPE, LLE LC-MS2 Recovery: 21-71 % 
LODs: 2–29 ng/L 

(Loyo-Rosales et al. 
2007) 

Octyl, nonylphenol ethoxylates and bisphenol A Bottled water — HPLC-MS2 Recovery: 97-106 % 
LODs: 0.04–0.057 𝜇g/L 

(Wang and Schnute 
2010) 

Bisphenol A Human milk SPE GC-MS2 LOQ = 1.16 mg/kg (Deceuninck et al. 
2015) 

Bisphenol A Bovine milk SPE LC-MS Recovery: 71-97 % 
LOD: 0.20 𝜇g/L 

(Yan et al. 2009) 

TBBPA and brominated bisphenol A analogues Sediment and 
sludge 

Soxhlet LC-MS2 Recovery: 70-105 % 
LOQs: 0.02–0.15 ng/g 

(Chu et al. 2005) 

PBDE28, 47, 99, 100, 153, 154 and 183 Soil PLE GC-MS Recovery: 88-110 % 
LOD: 1154 pg/g 

(Zhang et al. 2010) 

36 halogenated flame retardants Fish PLE LC-MS2 IDLs: 4.7 pg (Zhou et al. 2010) 
HBCDs and TBBPA Sewage sludge PLE HPLC-MS2 Recovery: 65-112 % 

LOQs: 0.005–0.14 ng/g 
(Mascolo et al. 
2010) 

Triclosan and triclocarban Waste and tap 
waters 

DLLME LC-MS2 Recovery: 70-103 % 
LODs: 0.04–0.58 𝜇g/L 

(Zhao et al. 2010) 

Triclocarban, triclosan, Methylparaben, ethylparaben, benzylparaben, 
and propylparaben 

Surface and waste 
waters 

SPE HPLC-MS2 Recovery: 20-101 % 
LODs: 20-200 ng/L 

(Pedrouzo et al. 
2009) 

Triclosan and triclocarban, methyl paraben, ethyl paraben, propyl 
paraben, and benzyl paraben 

Sewage sludge PLE HPLC-MS2 Recovery: 15-100 % 
LODs < 8 ng/g 

(Nieto et al. 2009) 

Benzophenone-1, -2, -3 and -4, 4,4-dihydroxybenzophenone, ethyl-4-
aminobenzoate, 2-ethylhexyl-4-trimethoxycinnamate,3-(4-
methylbenzylidene)-camphor, and 3-benzylidene-camphor 

Fish Ethyl acetate, 
n-heptane, 
and water 

LC-MS Recovery > 72 % 
LODs: 78-205 ng/g 
1.8-5.3 𝜇g/kg 

(Zenker et al. 2008) 

SPE = solid phase extraction; SPME = solid phase microextraction; PLE = pressurized liquid extraction; DLLME = dispersive liquid-liquidmicroextraction method; LLE = liquid-liquid 
extraction = IL-DLLME; LC-MS2 = liquid chromatograph tandem mass spectrometry; HPLC-MS2 = high performance liquid chromatography tandem mass spectrometry; GC-MS = gas 
chromatography mass spectrometry; LC-MS = liquid chromatography mass spectrometry; LOD = limit of detection; LOQ = limit of quantification; MDL= method detection limit; IDL = 
instrument detection limit; TBBPA = tetrabromobisphenol A; PBDE = polybrominated dipheny lethers and; HBCD = hexabromocyclododecanes. 
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Although these technologically-sophisticated instruments are sensitive and selective, 

their analytical processes typically require an extraction step prior to the measurement 

procedure. This extraction step plays a key role in determining the overall level of 

analytical performance, and often constitutes the most time- and labour-intensive parts 

of the analytical process (Shelver et al. 2007). In addition, these methods typically require 

sophisticated laboratory-based environment and highly trained personnel, and are not 

really amendable for decentralised analyses. Alternatively, conventional receptor-based 

assays, such as immunoassays have been developed with some success for the analysis of 

some EDCs (Ebrahimi 2007; King and Hassell 2008; Cha et al. 2012). These assays utilise 

antibodies as molecular recognition elements, and are more cost-effective compared with 

chromatographic techniques, but lag in terms of stability, production time and often 

specificity. Burn et al. developed an enzyme-linked immunosorbent assay (ELISA) for TCS 

detection in water samples (Brun et al. 2008). This method not only eliminated the 

extraction step, but also the use of expensive equipment, and thus significantly reduced 

the assay costs. However, the polyclonal antibody for TCS raised in the assay is less 

sensitive compared with the chromatographic methods, and false positive results are 

inevitable due to the antibody cross-reacting with compounds that have a similar 

structure to TCS (Brun et al. 2008). Furthermore, antibodies are obtained by immunising 

animals and therefore, raise ethical concerns which are becoming more prevalent.  

The limitations of these existing techniques have led to considerable research efforts 

towards the generation of alternative molecular recognition elements. One such 

alternative approach has been to evaluate the potential use of aptamers for molecular 

recognition due to their ease of production and modification, and be readily integrated 

into many biosensing platforms (Levy et al. 2005; Choi et al. 2006; Liu and Lu 2006; 

Freeman et al. 2013).  
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1.2 Molecular recognition using aptamers 

 

Molecular recognition between two biomolecules plays an essential role in various 

biological and biomedical applications (Dominy 2008). These molecular recognition or 

binding events may occur between proteins and small molecules (i.e. small molecular 

weight compounds) to induce signalling processes (Schoeneberg et al. 2007), between 

proteins and nucleic acids, such as in DNA/histone interactions (Henikoff and Ahmad 

2005), and between nucleic acids and small molecules, such as those displayed by 

riboswitches (Serganov et al. 2006). Principles mediating these recognitions include the 

shape of the two interactive binding surfaces, the extent of hydrogen bonding, ionic and 

dipolar properties, as well as potential solvent interactions, and van der Waals forces 

(Dominy 2008). Researchers have taken advantage of molecular recognition principles 

to form the foundation of current target detection methods and modern diagnosis and/or 

treatment of disease. While antibodies have been the gold standard for molecular 

recognition elements for several decades, the relatively new technology of aptamers is 

emerging as a valuable alternative. 

1.2.1 Aptamers 

Aptamers are single-stranded deoxyribonucleic acids (ssDNA) or ribonucleic acids (RNA) 

that can bind target molecules with high affinity and specificity by folding into unique 

three-dimensional (3D) structures (Ellington and Szostak 1990). The ability of aptamers 

to fold into distinct 3D conformations allows for high affinity binding and selectivity for 

their target. Similar to the molecular recognition that mediates antibody-antigen binding, 

aptamer-target binding is through intermolecular interactions such as van der Waals 

forces, hydrogen bonding, electrostatic interactions between charged groups, and Pi-Pi 

stacking of “flat-structured” aromatic moieties (Hermann and Patel 2000). The 3D 

structures of ssDNA aptamers (Figure 1.2) possess hairpins (i.e. a combination of stems, 

loops or bulges), pseudoknots, or G-quadruplexes (Feigon et al. 1996; Piganeau and 

Schroeder 2003). 
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Figure 1.2: The common three-dimensional structures assumed by ssDNA aptamers 

                         

A represents the hairpin structure composed of stem and loop region; B represents the 

G-quadruplex structure; C represents the pseudoknot structure and; D represents the 

hairpin structure with a bulge on the stem region. The Figure is reprinted with 

permission from Dr Shalen Kumar (Victoria University of Wellington, NZ). 

 

Aptamers were first reported 25 years ago by Ellington & Szostak and Tuerk & Gold, who 

independently developed techniques to select RNA molecules against specific organic 

dyes and T4 DNA polymerase respectively (Ellington and Szostak 1990; Tuerk and Gold 

1990). Ellington & Szostak named the RNA molecule as “aptamer” referring to the Latin 

word aptus – meaning “to fit”, and the Greek word meros – meaning “region” (Ellington 

and Szostak 1990). Tuerk & Gold named the technique as systematic evolution of ligands 

by exponential enrichment (SELEX) (Tuerk and Gold 1990). Both descriptions have 

become standard terms for aptamer technology.  
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1.2.2 Aptamers versus antibodies 

Aptamers are excellent alternatives or substitutes to antibodies, as they have several 

important features which are suitable for bioanalytical applications. Aptamers have 

binding affinities and specificities that are comparable to, and in some cases, even surpass 

those of monoclonal antibodies. For example, aptamers have been generated with high 

target structural specificity and enantioselectivity which make them possible to 

discriminate a specific molecule from its analogues (Jenison et al. 1994; Geiger et al. 

1996). The theophylline aptamer developed by Jenison et al. showed an affinity for its 

cognate ligand that is 10,000-fold higher than that for caffeine, which differs from 

theophylline by only a single methyl group at nitrogen atom N-7 (Figure 1.3) (Jenison 

et al. 1994). The arginine aptamer developed by Geiger et al. showed a 12, 000 fold 

stronger affinity with L-arginine than with D-arginine (Figure 1.3) (Geiger et al. 1996). 

Aptamers are not immunogenic or toxic in vivo, because nucleic acids are not typically 

recognised by the human immune system as foreign agents (Ireson and Kelland 2006). 

Thus aptamers are very useful as drug candidates. Aptamers are generally smaller in size 

compared with antibodies, have better tissue penetration and are more easily 

internalised by target cells, thereby improving their therapeutic value (Xiang et al. 2015). 

Aptamers can be developed in vitro against a seemingly unlimited range of targets. To 

date, specific aptamers against highly diverse-range targets have been developed, such 

as ions  (Ciesiolka et al. 1995), small molecules  (Li et al. 1996), neurotransmitters  

(Mannironi et al. 1997), organic pollutants  (Joeng et al. 2009; Jo et al. 2011), drugs  (Lato 

et al. 1995; Wallis et al. 1997), peptides (Welch et al. 1997; Fukusaki et al. 2001) , proteins  

(Paborsky et al. 1993; Mendonsa and Bowser 2004), and even complex cells or tissues  

(Daniels et al. 2003; Mallikaratchy et al. 2007). Aptamers are stable under a wide range 

of temperature and buffer conditions and are resistant to harsh treatments such as 

physical or chemical denaturation without any significant loss of activity. These features 

are important for long-term applications of aptamers and also require less restrictive 

transporting conditions compared with antibodies. 
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Figure 1.3: Chemical structures of theophylline, caffeine, L-arginine and D-arginine 

             

 

Finally, aptamers can be chemically synthesised using well-established synthetic 

chemical technologies and a given aptamer can be produced or modified in large scale, 

with minimal batch-to-batch variation. 

1.2.3 Applications of aptamers 

Applications of aptamers are so numerous that studies describing their use appear in the 

literature on a weekly basis. The versatility of aptamer technology is reflected in the fact 

that there are few areas of research to which aptamers cannot be applied. Some areas of 

their expanding usages include therapeutics (Rusconi et al. 2002; Farokhzad et al. 2006; 

Ng et al. 2006), purification and separation (Romig et al. 1999; Michaud et al. 2003; 

Murphy et al. 2003), disease diagnosis and biomarker discovery (Gold et al. 2010; Ostroff 

et al. 2010; Turner et al. 2011), cancer imaging and detection (Martin et al. 2011; Shigdar 

et al. 2011; Kim et al. 2012), and target validation (Fredriksson et al. 2002; Centi et al. 

2007; Xiang and Lu 2011). Many reviews have been published recently that discuss the 

various applications of aptamers, including their usages as potential drugs for clinical 

applications (Proske et al. 2005; Keefe et al. 2010), molecular imaging probes for cancer 

detection (Liu et al. 2013; Kadioglu et al. 2015; Ma et al. 2015), capture agents for 

environmental and food safety monitoring (Amaya-Gonzalez et al. 2013; Wu et al. 2014) 

and as vehicles for targeted-drug delivery (Tombelli et al. 2007; Cao et al. 2009; Knop et 

al. 2010). 
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1.3 Generation of aptamers using SELEX technique 

 

Aptamers are generated using an in vitro process commonly known as SELEX which is a 

procedure where target-binding oligonucleotides are selected from a random sequence 

pool of oligonucleotides through iterative cycles of affinity separation and amplification 

(Tuerk and Gold 1990). The SELEX process can be divided into the following categories 

namely: [i] designing an aptamer library (pool); [ii] performing the SELEX cycle; [iii] 

monitoring the SELEX progression; [iv] cloning and sequencing the selected sequences 

and; [v] aptamer binding property characterisation. These categories are generally 

applicable to most aptamer selections.  

1.3.1 Designing an aptamer library  

SELEX process begins with the generation of a randomised oligonucleotide (ssDNA or 

RNA) sequence library, which is normally composed of ~1015 different sequences that 

theoretically can recognise any target molecules (Ellington and Szostak 1990; Tuerk and 

Gold 1990). An aptamer library is chemically synthesised by multiple couplings of 

adenine (A), thymine (T), guanine (G) and cytosine (C) through phosphoramidite 

chemistry (Ho et al. 1996). Most libraries are designed to be around 70 to 120 bases in 

length with a randomised core region of 20 to 80 random bases flanked by custom-

designed constant-primer binding regions (17–21 bases) at 5’ and 3’ ends (Figure 1.4) to 

allow for amplification using polymerase chain reaction (PCR)  (Ma et al. 2015).  

Figure 1.4: A schematic diagram of an ssDNA aptamer library 

 

F and R represent the constant sequence regions, i.e. the forward and reverse primer 

binding regions respectively; N represents the random sequence region and; 5’ and 3’ 

refer to the terminal ends.  
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When designing an aptamer library, several key parameters need to be considered; such 

as the length of the random core region, the size of the target molecule, and the degree of 

randomisation. The diversity within the library is determined by the length of the random 

core region. Generally, as the length of the random region increases, the structural 

diversity within the library also increases. This increase in diversity allows for the 

presence of more complex 3D structures, which are more likely to be high-affinity 

moieties (Luo et al. 2010). Another important parameter to consider is the size of the 

target molecule. The molecular size difference between proteins such as bovine serum 

albumin (~66 KDa) and small molecules such as TCS (~0.29 KDa) is vast. Therefore, the 

surface area available for an aptamer to interact with the target varies significantly 

between different classes of molecules. An appropriate length of the random region 

should strike a balance between the structural diversity required for selecting high 

affinity aptamers and an appropriate surface coverage of the target molecule (Marshall 

and Ellington 2000). Increasingly, the design of an aptamer library is driven by the 

structural traits of its cognate target. This may incorporate the application of 

computational analyses of aptamer-target interactions (Wang et al. 2009). Furthermore, 

when designing an aptamer library, the random core region can be either a complete 

randomisation or a partial (doped) randomisation (Santosh and Yadava 2014). To select 

aptamers against totally new targets, a completely randomised aptamer library is 

required. However, there may be some aptamers obtained previously that have already 

shown some affinity or specificity to their targets. Based on the critical motif whose 

structure is responsible for binding with the target molecule, a doped aptamer library can 

be synthesised to re-select optimal aptamers, which can usually improve their affinity to 

the target (Duclair et al. 2015; Lennarz et al. 2015). Finally, an aptamer library in-solution 

normally forms energy efficient secondary structures by self-folding and this may 

obstruct the availability of nucleotide bases to interact with the target molecule (Fabrizio 

et al. 2003). To overcome this, the aptamer library at the start of every SELEX round is 

normally heat-denatured (Jayasena 1999; Kim and Gu 2014). Following this heat-

denaturing process, the linearised oligonucleotides are able to interact more freely with 

the target molecule. 
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1.3.2 Performing the SELEX cycle 

SELEX cycle usually involves five major steps of [i] co-incubation of an aptamer library 

with the target of interest to form aptamer-target complexes, [ii] partition of unbound 

sequences from the aptamer-target complexe, [iii] elution of the bound aptamers from 

the complexe, [iv] amplification of the eluted aptamers and [v] preparation of an enriched 

ssDNA aptamer library for the subsequent cycle of selection (Figure 1.5).  

Figure 1.5: General scheme of the SELEX procedure 

 

 

As shown in Figure 1.5, for ssDNA aptamer selection, once an ssDNA library is 

synthetically generated, the library is incubated with the target molecule either in a free 

form (i.e. in solution) or in a form that is immobilised on a solid substrate surface. Some 

sequences in the library will bind to the target. The unbound sequences in the library are 

then separated from the bound ones.  



32 
 

Thereafter, the bound sequences are eluted and amplified by PCR. The amplified products 

are then purified and strand-separated to generate a new ssDNA library for the 

subsequent SELEX cycle. For RNA aptamer selection, the SELEX procedure is similar to 

the ssDNA aptamer selection, except that the initial ssDNA library is PCR amplified and 

than the PCR products are transformed into an RNA library via in vitro transcription 

before starting the RNA aptamer selection. During selection, the selected RNA sequences 

from each round are amplified by reverse transcription PCR (rt-PCR). The rt-PCR 

products are then transcribed in vitro again to generate a new RNA library for the 

subsequent round of selection.  

1.3.2.1 Co-incubation  

For the first step of the SELEX cycle, a synthetic aptamer library and the target of interest 

are co-incubated to form aptamer-target complexes in an appropriate buffering system 

at optimal binding conditions. An interaction between an aptamer and the target 

molecule induces a conformational change within the aptamer, which forms the most 

energy efficient 3D structure specific to the target (Foerster et al. 2012). This induced-fit 

mechanism can be influenced by the ionic composition, i.e. sodium (Na+), magnesium 

(Mg2+), calcium (Ca2+) and potassium (K+) ions, as well as physicochemical properties, i.e. 

temperature, pH and ionic strength, of the buffering system. 

The buffer composition can have a profound influence on the overall efficacy, function 

and structural conformation of aptamers (Baaske et al. 2010). Nucleic acids are 

polyanionic molecules and negative-negative charge repulsion may inhibit the formation 

of complex structures and thus impede binding with the target without the presence of 

counter ions. In particular, the monovalent ion Na+ is effective for neutralising negative 

charges of the phosphate molecules on the DNA backbone, thereby preventing the 

negative-negative charge repulsion. The divalent ions Mg2+ and Ca2+ can influence the 

degree of DNA folding. Study by Carothers et al. demonstrated that performing SELEX 

under low Mg2+ concentrations (1-2.5 mM) increased the stringency of selection, leading 

to the production of high-affinity binding aptamers (Carothers et al. 2010).  
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Another study by Cruz-Aguado and Penner demonstrated the binding affinity of an 

ochratoxin A (OTA) aptamer increased when Ca2+ ions were present (Cruz-Aguado and 

Penner 2008). Both studies suggested that aptamers form a target binding complex in 

coordination with divalent ions. Many aptamers such as thrombin-binding (Paborsky et 

al. 1993), hematoporphyrin (Okazawa et al. 2000), HIV-1 integrase (de Soultrait et al. 

2002), and adenosine triphosphate (ATP) aptamers (Huizenga and Szostak 1995) fold 

into G-quadruplex structures. During the generation of these aptamers, K+ was included 

in the selection buffers, since K+ is required to help stabilise G-rich sequences to fold into 

the G-quadruplexes. 

Both ssDNA and RNA aptamers require nuclease-free water for buffer preparation to 

prevent degradation by nucleases (Williams et al. 1997). However, ssDNA aptamers are 

less susceptible than RNA aptamers to nucleases, and thus they are applied more widely 

for environmental sensing applications (Kim et al. 2007; Song et al. 2008; Xu et al. 2012). 

Other factors, such as temperature, pH and ionic strength also affect the binding ability 

and efficiency of aptamers to form the most favoured binding complexes during selection 

(Hianik et al. 2007). Determining the appropriate in vitro conditions is guided primarily 

by aptamer endpoint applications. Moreover, it is generally recommended that these 

conditions remain constant throughout the selection process so optimal binding 

efficiency can be achieved.  

Surfactants such as sodium dodecyl sulphate (SDS), Tween 20 to 80 and Nonidet P40 have 

been used widely in biological assays for reducing non-specific bindings, coating solid 

surfaces and adjusting overall charge distributions (Dias et al. 2000; Dias et al. 2004). For 

aptamer selection, surfactants are often included in the selection buffers to reduce non-

specific interactions (Lin and McNatty 2009). Manipulating the amount of surfactant used 

(~ 0.01-0.1 %, w/v) can often improve the pooling of highly stable and avid aptamer-

target complexes, thereby eliminating aptamers with weak associations (Kumar 2014).  
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1.3.2.2 Partition 

Following the formation of aptamer-target complexes, separation of bound sequences 

from unbound or weakly bound sequences is one of the most crucial steps during 

selection, as this enables the screening of high affinity aptamers from the library pool. 

The most commonly used partitioning method for protein targets is nitrocellulose 

membrane filtration owing to the fact that most proteins can passively be adsorbed onto 

the membrane surface (Bianchini et al. 2001). The first SELEX report utilised this 

partitioning method to separate binding and nonbinding RNA aptamers for T4 DNA 

polymerase (Tuerk and Gold 1990). Protein with bound RNA molecules was retained by 

the membrane, whilst the unbound RNA molecules was washed off. This method of 

partitioning is well studied and is still being used today (Gopinath et al. 2006; Sekiya et al. 

2006).  

Alternatively, size discrimination techniques such as gel and capillary electrophoresis 

have been used successfully to separate aptamer-target complexes from unbound 

sequences. Electrophoretic technique exploits the difference in mobility of an analyte 

when an electrical field is applied. The change in mobility is usually the result of the size 

and charge ratio of the free analyte and analyte-bound complexes as they passes through 

either a slab gel or capillaries. The binding of aptamers to large molecules demonstrate a 

significant size difference between bound and unbound sequences when compared with 

binding to small molecules, thus the electrophoresis technique is an ideal separation 

method for selecting aptamers binding to large molecules. Electrophoresis-based 

partition methods have been used to identify aptamers targeting a myriad of proteins, 

such as IgE (Mendonsa and Bowser 2004), neuropeptide Y (Mendonsa and Bowser 2005), 

and Muts protein (Drabovich et al. 2005).  

For small molecules, size discrimination techniques are not applicable as the change in 

overall size of aptamers after they form binding complexes with small molecules is 

relatively small. Therefore, when developing aptamers against small molecules, the 

target of interest is often immobilised onto the surface of a solid matrix, such as sepharose, 

agarose or magnetic beads (Ciesiolka et al. 1995; Tombelli et al. 2005; Stoltenburg 
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et al. 2005), thereby allowing easy partitioning of unwanted sequences through multiple 

washing steps. However, the fixation of the target molecule onto the surface of a matrix 

may introduce non-specific binding sites to be recognised by aptamers and/or result in 

structural changes of the target molecule. The SELEX technique overcomes this problem 

by performing multiple rounds of negative selection using unconjugated matrix (Jayasena 

1999), and counter selection using structurally similar molecule-immobilised matrices 

(Jenison et al. 1994) to eliminate sequences displaying affinity for either the solid-

support or compounds sharing structural similarity to the target. 

Apart from these conventional techniques, more advanced partitioning methods have 

been reported for aptamer selection, such as the use of affinity tags (Dobbelstein and 

Shenk 1995), centrifugation (Rhie et al. 2003), flow cytometry (Davis and Szostak 2002), 

and electrophoretic mobility shift assays (Tsai and Reed 1998). Several of these 

partitioning methods for aptamer selection have been reviewed in detail by Gopinath 

(Gopinath 2007).  

1.3.2.3 Elution 

The next step in the SELEX cycle is to elute bound aptamers from aptamer-target 

complexes. Interactions between the bound sequences and the target of interest are non-

covalent in nature, and so several methods are possible for eluting these sequences. 

Elution by affinity with free target molecule is the preferred method (Bridonneau et al. 

1999; Silverman 2009). In this procedure, the free target molecule in solution competes 

for aptamer binding with the target molecule affixed on a matrix. Typically, the target 

molecule used for elution should be as pure as possible, and concentrations required for 

a successful elution are often at milimolar (mM) levels. Studies by Huizenga et al. and 

Cruz-Aguado & Penner have demonstrated the use of 3 mM ATP and 2 mM OTA to elute 

ATP and OTA aptamers respectively (Huizenga et al. 1993; Cruz-Aguado and Penner 

2008).  
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It is worth noting that the target-based elution method is restricted by the solubility of 

the target molecule. For some EDCs, such as TCS, bisphenol A (BPA) and OE2, their 

aqueous solubilities are at low µM levels, thus it is not usually feasible to prepare these 

molecules at the concentrations required for competitive elution. Furthermore, the cost 

related with the use of target-based elution can also be a limiting factor. A study by 

McKeague et al. demonstrated the use of free fumonisin B1 (FB1) to elute FB1 binding 

aptamers could cost up to $12,000 if the FB1 is obtained through a standard chemical 

supply house (McKeague et al. 2010). Other commonly used methods for elution include: 

changes in ionic strength or the pH of the buffer, thermal displacement by heating (Bruno 

and Kiel 2002), and the use of denaturing substances such SDS, ethylenediamine 

tetraacetic acid (EDTA) and urea, to disrupt hydrophobic stacking of DNA bases or 

chelation of aptamer-target complexes (Geiger et al. 1996; Bridonneau et al. 1999; 

Bianchini et al. 2001). It is also worth noting that complete elution of bound sequences 

may not always be achievable. Some sequences possessing extremely high affinity to the 

target molecule are often difficult to elute, and therefore are lost during elution (Liu and 

Stormo 2005; Tombelli et al. 2005).  

An alternative strategy for obtaining bound sequences is to use aptamer-target 

complexes directly as the template for PCR amplification, providing the binding 

complexes do not interfere with the Taq polymerase used in PCR. This strategy has been 

applied successfully in generating OE2-specific aptamers (Kumar 2014). In this approach, 

the bound OE2 aptamers dissociates from the aptamer-bound matrix during the 

denaturation step of the PCR cycle, and become freely available for primers to bind, 

thereby initiating the amplification process (Kumar 2014).  

1.3.2.4 Amplification  

Once separated from the target molecule, the isolated-sequences are amplified to yield 

an enriched-amount of selected aptamers. The amplification process is typically achieved 

by performing PCR for ssDNA aptamer selection or rt-PCR for RNA aptamer selection.  
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These conventional techniques are, in general, effective in amplifying the isolated 

sequences after elution. However, this is not always true due to a plethora of diverse 

sequences present in the recovered pool. When using these randomised sequences as 

templates, the conventional PCR amplification is usually inefficient and prone to the 

production of non-specific by-products rather than desired aptamer sequences (Tolle et 

al. 2014). Although optimising PCR conditions, such as primer concentration, annealing 

temperature, and the number of amplification cycles can, to some extent, reduce the 

amount of PCR by-product formation, it is not always effective. Thus, inefficient PCR 

amplification is a key limitation to a successful SELEX selection. To overcome this 

problem, some advanced PCR techniques, such as real-time PCR and emulsion PCR have 

been incorporated to the SELEX procedure for aptamer selection (Wang et al. 2005; 

Huenniger et al. 2014; Yufa et al. 2015).  

Real-time PCR is preferable over standard PCR as the optimal numbers of PCR cycles 

necessary to amplify the isolated sequences can be followed in real time by introducing a 

fluorescent dye such as SYBR green; this dye preferentially fluoresces when binding to 

double-stranded DNA (dsDNA) molecules as the reaction progresses (Wang et al. 2005). 

The graphic output of a real-time PCR can be used to determine when the amplification 

should be stopped. This is important as over amplification can often result in the 

formation of PCR by-products, thus reduce the efficiency of aptamer enrichment (Tolle 

et al. 2014). Emulsion PCR is another advanced PCR technique, in which the diverse 

aptamer sequences can be diffused to form single-sequence templates, so that each 

single-sequence template is specifically amplified thereby reducing the formation of PCR 

by-products. For example, by combining emulsion PCR amplification and capillary 

electrophoresis, Yufa et al. successfully developed high-affinity aptamers against AlkB 

homologue 2, in three rounds of selection, while SELEX with conventional PCR failed to 

produce the aptamer (Yufa et al. 2015). With the aim of reducing PCR by-products, some 

other PCR techniques, such as rolling circle PCR (Zhou et al. 2007) and high-fidelity digital 

PCR (Ouellet et al. 2015) have also been applied in the SELEX procedure.  
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Regardless of which PCR method is chosen for aptamer discovery, designing a functional 

pair of primers is essential, as it determines the efficiency of PCR amplification. One 

consideration in primer design is nucleotide length, which is typically around 17-21 

nucleotides. This length is efficient to specifically recognise the primer region of an 

aptamer library. Also, GC content must be carefully controlled in order to maintain a 

desirable melting temperature (Tm), which is approximately ±5°C of the annealing 

temperature used. Primers are designed to have similar Tm (within 1°C), and to avoid 

stretches of repeated bases (such as AAAAAA or CGCGCG) in order to encourage the 

proper primer annealing positions. Furthermore, primers should not demonstrate 

significant secondary structure formation (hairpins) near the Tm, or form either homo- 

or hetero-dimers. These interactions will effectively lower the yield of PCR by decreasing 

the amount of primers available for annealing to the template strand.  

Introducing mutations into PCR amplicons is another consideration that is important in 

the SELEX process, as it ultimately determines the overall diversity of aptamer libraries 

towards the target molecule (Jenison et al. 1994; Kim and Gu 2014). Mutations within the 

random region of aptamer sequences enable the production of variants that potentially 

enhance their binding properties through iterative cycles of selection (Lin and McNatty 

2009). Mutation can be introduced by manipulating PCR conditions by: [i] varying the 

concentrations of individual nucleotides (dNTPs); [ii] using nucleic acid analogues such 

as deoxy inositol triphosphate (dITPs) and; [iii] using a DNA polymerase with low fidelity. 

Among these approaches, alterations to the nucleotide composition in the dNTP mix 

during amplification can introduce bias of nucleotides within the aptamer library 

(Hamula et al. 2006), whereas substitutions of dNTPs with dITPs can often lead to the 

biased incorporation of C and G over A and T nucleotides (Kuipers 1996). Therefore, 

introducing mutations using low fidelity DNA polymerase is becoming increasingly 

popular, as a high rate of mutation can be achieved through the manipulation of Mg2+ 

concentration in the reaction buffer or substitution of the Mg2+ with manganese ions 

(Mn2+) (McKeague et al. 2010).  
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1.3.2.5 Preparation of ssDNA aptamer library 

PCR amplification results in the formation of dsDNA molecules, whereas aptamer 

selection is usually carried out using only the positive strands of the dsDNA. Therefore, 

the positive strands need to be separated to start the next cycle of selection. The most 

commonly used technique for ssDNA preparation is alkaline denaturation utilising the 

natural interaction between biotin and streptavidin (Murphy et al. 2003). In this 

approach, a biotin tag is incorporated into the dsDNA molecules using biotinylated-

primers during amplification. Streptavidin-coated affinity matrices (e.g. agarose or 

magnetic beads) are then used to bind the biotinylated-strands and the unlabeled 

complementary strands can be eluted using an alkaline solution. The ssDNA aptamers 

isolated after alkaline denaturation are immediately neutralised using an acid solution to 

prevent degradation.  

Other general techniques for ssDNA preparation include: [i] asymmetric PCR 

amplification, where the replication initiated by one PCR primer is relatively inefficient, 

leading to the accumulation of ssDNA molecules synthesised from the other primer 

(Ellington and Szostak 1992); [ii] the use of a hexaethyleneglycol (HEGL) spacer and an 

extension of several adenine nucleotides (polyA) at the 5’-end of the reverse primer. The 

HEGL–spacer acts as a terminator for DNA polymerase. The elongation of positive strands 

stops, whilst negative strands grow further. The two strands can then be separated by 

size using electrophoresis (Williams and Bartel 1995) and; [iii] the use of phage lambda 

exonuclease to cleave the phosphorylated strands of dsDNA molecules (Fitter and James 

2005). Avci-Adali et al. have provided a detailed review of the commonly used methods 

for ssDNA preparation (Avci-Adali et al. 2010).  

Generation of ssDNA is the last step of a SELEX cycle. The resulting ssDNA molecules are 

then subjected to the subsequent SELEX cycle that serves to either increase their affinity 

for the target molecule (positive selection) or eliminate sequences that have affinity for 

undesirable compounds (negative or counter selections). Typically, the SELEX cycle is 

repeated for 6–20 rounds in order to generate and isolate target specific aptamers with 

high binding affinities (Gopinath 2007).  
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1.3.3 Monitoring the SELEX progression  

The evolution of aptamers with increasing affinity towards a target molecule is 

progressively monitored throughout selection to determine if SELEX conditions are 

appropriate and also to establish when the polyclonal aptamer library has achieved 

sufficient sensitivity to the target molecule. Techniques used for assessing sensitivity are 

normally associated with aptamer partitioning methods. In a nitrocellulose membrane-

based SELEX system, dot blotting (or Eastern blotting) is an easy and convenient method 

for characterising aptamer affinity from each round of selection. Based on the dot blotting 

method, target molecules, either proteins or small molecules, are dissolved in an 

appropriate solvent and spotted onto a membrane surface or a surface capable of 

retaining the target molecules. The membrane is then exposed to the isolated aptamers 

that are modified with a signaling molecule such as a fluorophore or a biotin. 

Subsequently, the aptamer-target binding event is visualised by fluorescence, 

luminescence or chemiluminescence (Navani et al. 2009). Dot blotting has been 

successfully applied to the SELEX technology for identifying ovine follicle-stimulating 

hormone (Lin and McNatty 2009), OE2 and BPA-specific aptamers (Kumar 2014).  

In an affinity column-based SELEX procedure, affinity column elution is the preferred 

method for monitoring SELEX performance (Ciesiolka et al. 1995; Stoltenburg et al. 2005; 

Tombelli et al. 2005). This can be achieved by labeling aptamers with either a radio-

isotope or fluorescent tag. After the labelled aptamers have bound to the column matrix, 

the attached aptamers can then be eluted and quantified by either using a radioisotope 

counter or a fluorescent reader. Subsequently, the amount of aptamers recovered is 

compared to the amount of aptamers added before binding to the matrix. Thereafter, the 

percentage of aptamers recovered after progressive cycles of selection can be monitored. 

An increase in the percentage of aptamers recovered when compared to the initial library 

indicates that more of the aptamers are binding to the target, resulting in an increasingly 

enriched pool. Typically, less than 5 % of recovery is observed for the first few rounds of 

selection because the aptamer pools from earlier rounds are generally not enriched 

enough (Stoltenburg et al. 2005).  
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However, as the selection progresses past the initial rounds, one usually observes that 

the pool of aptamers gradually increases with respect to the efficiency of recovery, 

indicating that selection conditions are appropriate for enriching the pool. The selection 

process is considered complete when the following conditions are met: [i] there is a 

significant increase in the aptamer recovery between the initial library and the selected 

library and; [ii] further rounds of selection do not increase the aptamer recovery. Once 

these criterias are met, the recovered aptamers are ready for cloning and sequencing to 

identify monoclonal aptamer sequences. 

1.3.4 Cloning and sequencing  

The SELEX process is designed so that the amount of aptamers with the highest binding 

affinity to the target molecule reaches a saturation level after several rounds of selection. 

In general, individual aptamer sequences (also known as monoclonal aptamers) can be 

identified from the last round of the aptamer library using DNA cloning and sequencing 

technology. Subsequently, the identified nucleotide sequences of each individual aptamer 

can be evaluated using in silico analytical tools such as Clustal Omega (Larkin et al. 2007) 

and Geneious (Kearse et al. 2012). These tools enable the identification of key nucleotide 

regions within each aptamer sequence, and the demonstration of their evolutionary 

relationships. The identified sequences can also be evaluated using mFold to predict their 

two-dimensional (2D) structures (Zuker 2003). The predicted 2D structures can be 

further analysed to identify key motifs that are perhaps crucial for aptamer-target 

interactions. Cloning and sequencing are the last steps of the SELEX cycle.  

1.3.5 Aptamer characterisation 

Following aptamer generation, [i] assessing binding affinity and specificity of the 

monoclonal sequences, [ii] determining Kd values, and [iii] confirming in-solution binding 

capability are important steps to be undertaken for aptamer characterisation. Sequences 

capable of binding to the target molecule are considered to be “aptamers”. Nonbinding 

sequences are considered to be those oligonucleotides that either bind to non-target 

entities or have low affinity to the target.  
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1.3.5.1 Assessing binding affinity and specificity 

Methods used for monitoring the progression of SELEX, such as dot blot assay and affinity 

column elution (see Section 1.3.3) are generally applicable for screening binding affinity 

and specificity of the identified aptamers. Instead of using the isolated sequences (which 

are polyclonal) after elution, monoclonal aptamers can be chemically synthesised and 

modified to perform target binding assays. Once the binding assays are completed, the 

binding affinity of each monoclonal aptamer is ranked, so that aptamers with low affinity 

can be excluded from further studies, and high affinity aptamers are then subjected to 

determine their Kd values.  

1.3.5.2 Kd determination 

In the SELEX study, Kd is a reliable measure to evaluate the strength of aptamer-target 

interactions. The Kd is a calculated value that describes the ratio of unbound and bound 

aptamers, expressed in molar units (M) corresponding to the concentration at which half 

of the saturation binding of an aptamer to the target molecule occurs. In order to 

determine the Kd value, the amount of aptamer-target complexes formed over a range of 

starting concentrations must be measured. Generally, this is achieved when the 

concentration of one of the two variables (i.e. aptamer or target molecule) is kept 

constant while the other is serially varied. General methods used for determing the Kd 

value include: [i] surface plasma resonance (Tombelli et al. 2005), [ii] aptamer-based 

ELISA (Woo et al. 2013), [iii] equilibrium filtration or dialysis (Koizumi and Breaker 

2000; Geiger et al. 1996), and [iv] fluorescent binding assay (Mann et al. 2005).  

[i] Surface plasma resonance 

Surface plasma resonance (SPR) is a commonly used technique to determine kinetic 

parameters such as, equilibrium constants and stoichiometry of a binding reaction (Di 

Primo et al. 2011). When light strikes the surface of a metal (usually silver or gold), at a 

particular angle, it can excite electrons on the metal surface, causing an electrodensity 

wave to propagate along the surface. This phenomenon, known as SPR, allows for precise 

measurements of surface molecular interactions in real-time (Zeng et al. 2014).  
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Instruments based on the SPR phenomenon can be used for label-free detection between 

targets immobilised at a solid-liquid interface and their binding partners in solution. In 

case of aptamer-target interaction, SPR has been used to determine Kd values for 

aptamers targeting either proteins such as HIV-1 tat protein (Tombelli et al. 2005), 

vascular endothelial growth factor (Li et al. 2007), and retinol binding protein 4 (Lee et 

al. 2008), or small molecules such as kanamycin B (Kwon et al. 2001), codeine (Win et al. 

2006), and S-adenosylhomocysteine (Gebhardt et al. 2000). Though the concept of SPR is 

remarkable, the instrumentation associated with the SPR technology is expensive, which 

restricts the use of SPR in many laboratories. Therefore, there is a niche market to 

develop simple, low cost and user-friendly assay for Kd determination.   

[ii] Aptamer-based ELISA 

The concept for aptamer-based ELISA is to replace antibodies with aptamers for 

biorecognition. In most cases, this assay is performed by coating a fixed amount of protein 

target in a microtiter plate, and then increasing the concentrations of target specific 

aptamers (labelled with a biotin tag) being added to each well. Thereafter, unbound 

aptamers are washed away, and an enzyme, usually streptavidin-horse radish peroxidase 

(ST-HRP) is added to each well for binding with the aptamers. Finally, the enzyme 

substrate, such as 3,3′,5,5′-Tetramethylbenzidine (TMB) is added for colour 

development. The amount of bound aptamers can then be quantified by measuring the 

optical density (OD) of the colored solution in each well, so that a binding isotherm can 

be plotted based on the OD reading at each aptamer concentration. The aptamer-based 

ELISA has been utilised to determine the Kd values for protein-specific aptamers, such as 

influenza virus NS1 protein (Woo et al. 2013), epidermal growth factor receptor variant 

III (Tan et al. 2013), and  Ras protein (Wang et al. 2014). However, the assay procedure 

usually involves multiple binding and washing steps, which can be time consuming. In 

addition, the enzyme substrate, TMB, is carcinogenic and therefore not user-friendly. 
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 [iii] Equilibrium filtration or dialysis  

Equilibrium filtration or dialysis is commonly used method to study the affinity of 

aptamers for small molecules. In both approaches, an aptamer and its target are mixed in 

a series of microfuge tubes, in which the amount of aptamer is kept constant, but the 

amount of target is increased incrementally. These samples are allowed to reach 

equilibrium. Thereafter, separation of unbound target molecules from aptamer-target 

complexes is performed by applying a molecular weight cut-off membrane such as a size 

exclusion filter or a dialysis chamber. Both methods utilise radio-isotope labelled target 

molecule, and the exact amount of unbound target is quantified by measuring the amount 

of radioactivity inside the filter or dialysis chamber using a scintillation counter. Since 

input concentrations of the aptamer and target analyte are known, a series of numbers 

that describes the amount of aptamer bound at each target concentration can be 

calculated to plot a binding curve for Kd determination.  

Equilibrium-based methods have been applied in many aptamer studies. Koizumi and 

Breaker demonstrated the use of equilibrium filtration to determine the Kd value for an 

cAMP specific aptamer using 32P-labelled cAMP and a centrifugal filter that had a 

molecular weight cut-off of 3000 Da (Koizumi and Breaker 2000). Geiger et al. used 

equilibrium dialysis to determine the Kd value of an L-arginine specific aptamer using a 

dialysis chamber with a molecular weight cut-off of 5000 Da to separate L-(2,3,4,5-3H) 

arginine at different concentrations (Geiger et al. 1996). It is worth noting that 

equilibrium-based methods assume free crossing of small molecules to a membrane, 

which may not always be the case for some molecules, such as ATP. A study by Huizenga 

and Szostak demonstrated an incomplete passing of ATP through the membrane 

(Huizenga and Szostak 1995). Moreover, both methods utilise radio-isotope labelled 

targets, thus a radio-isotope certified laboratory is required to undertake these assays 

which is not always available.  
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[iv] Fluorescent binding assay  

Fluorescent binding assays, first described by Mann et al. for the selection of 

ethanolamine-binding aptamers, have attracted a lot of attention in the aptamer field due 

to simplicity, low cost, and user-friendly features (Mann et al. 2005). The method has 

been used to determine Kd values for aptamers targeting either proteins such as 

streptavidin (Stoltenburg et al. 2005), platelet derived growth factor BB (Cho et al. 2010), 

and anthrax protective antigen (Choi et al. 2011), or small molecules such as, 

chloramphenicol (Mehta et al. 2011), L-tryptophan (Yang et al. 2011), polychlorinated 

biphenyls (Mehta et al. 2012), and okadaic acid (Eissa et al. 2013).  

The assay utilises convenient chemical synthesis and modification of oligonucleotides. By 

labelling an aptamer with a fluorophore, such as FAM (Bing et al. 2011), Alexa488 (Qian et 

al. 2009) or Cy3 (Choi et al. 2011), quantifications of aptamers can be achieved through 

the measurement of fluorescent intensity. The assay requires the immobilisation of a 

target molecule to a solid support (e.g. polystyrene microtiter plates, magnetic beads, 

agarose beads and sepharose beads). Then, a constant amount of the immobilised target 

can be incubated with a fluorophore-labelled aptamer at variable concentrations. 

Following incubation, any excess unbound aptamers can be removed by multiple washing 

steps, and bound aptamers are then eluted from aptamer-target complexes through the 

use of denaturing substances such as SDS, EDTA or urea. Fluorescent intensity of the 

eluted aptamers can then be determined by fluorometry using appropriate excitation and 

emission wave-lengths corresponding to the fluorophore used for aptamer labelling. 

Thereafter, the amount of eluted aptamers can be calculated by using fluorophore 

calibration plots. Saturation curves can then be generated by plotting the amount of 

eluted aptamers versus the amount of total incubated aptamers.  

1.3.5.3 Aptamer in-solution binding activity 

Aptamers are normally used to measure free targets in solution, thus the in-solution 

binding activity of an aptamer needs to be characterised before applying the aptamer in 

a sensing application.  
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As mentioned earlier, aptamers exhibit specific binding ability to target molecules which 

is a result of conformational changes from a random coiled structure to rigid tertiary 

structure such as hairpin or G-quadruplex structures (Wu et al. 2010; Foerster et al. 

2012). It has been reported that there is a mixture of aptamers of both random coil and 

rigid tertiary structures before binding to target molecules and there is an equilibrium 

between the two conformations (Wei et al. 2007). Therefore, assessing the level of 

conformational change upon an aptamer binding to its target is a useful indicator for 

confirming the in-solution binding activity of the aptamer. 

Circular dichroism (CD) spectroscopy, an optical technique that measures the difference 

in the absorption of left and right circularly polarised light, is a widely used technique for 

estimating secondary structures and conformations adopted by nucleic acids and 

polypeptides. In case of nucleic acids, CD spectroscopy measures the asymmetry from the 

asymmetric backbone sugars and helical structures adopted by oligonucleotides. CD 

spectroscopy is sensitive to oligonucleotide conformation within the 180 to 320 nm 

wavelength range, and particularly powerful for monitoring structural changes resulting 

from target-induced binding (Fasman 1996). It was reported that upon binding to the 

target, an aptamer with a hairpin structure possessed a CD spectrum characterised by a 

positive ellipticity maximum around 280 nm and a negative minimum around 248 nm 

(Nakano et al. 2002). CD spectroscopy is also a powerful tool for identifying aptamers 

with G-quadruplex structures (Paramasivan et al. 2007). For parallel G-quadruplexes, in 

which all four strands are in the same orientation, CD minima and maxima are typically 

near 240 and 264 nm, respectively. For antiparallel G-quadruplexes, in which strands 

orientation alternates, the corresponding values are typically near 265 and 295 nm, 

respectively (Balagurumoorthy et al. 1992; Dapic et al. 2003).   

1.3.6 Innovation in the SELEX method 

Several strategies to innovate the SELEX technique have been reported. These include: 

toggle-SELEX (White et al. 2001), cell-SELEX (Mallikaratchy et al. 2007), mirror image-

SELEX (Eulberg and Klussmann 2003), and epitope-specific SELEX (Lao et al. 2014). 
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Toggle-SELEX alternates aptamer selection between a human clinical target and an 

animal disease target, creating aptamers that are specific for both. Aptamers generated 

from toggle-SELEX can be tested in the animal target first and then evaluated for future 

human treatments (White et al. 2001). Cell-SELEX is essentially SELEX but with whole 

cells as enrichment targets.  It is often combined with the toggle-SELEX, to positively 

enrich aptamers against disease cells expressing a target of interest, and then negatively 

against normal cells without the presence of the target molecule (Mallikaratchy et al. 

2007). Mirror image-SELEX utilises naturally occurring D-chiral oligonucleotides to 

perform SELEX against an L-chiral target. At the end of aptamer generation, the D-chiral 

groups of the identified aptamer were converted to L-chrial groups. As a result, the L-

chiral aptamer is capable of recognising the D-chiral target. Aptamers generated from the 

mirror image-SELEX are termed as “spiegelmers”. These are extremely resistant to 

nuclease degradation, but retain the function, low immunogenicity, and low toxicity of 

their aptamer counterparts (Eulberg and Klussmann 2003). Most SELEX processes are 

considered to operate within a black box in that the target binding site of an aptamers is 

not known in advance. To overcome this problem, Lao et al. developed an epitope-specific 

SELEX procedure that can select aptamers binding to a desired epitope (Lao et al. 2014). 

This technique makes the selection of aptamers with predicted functions possible.  

Another new direction of SELEX innovation is automation and high-throughput selection. 

The objective of automating the development of aptamers is to integrate different 

molecular biological methods to perform the SELEX cycle automatically. This is clearly a 

very complex challenge. Nevertheless, Eulberg et al. have developed an automated SELEX 

procedure with high flexibility and versatility in terms of choice of reagents and buffers 

used for selection, as well as the stringency of selection conditions (Eulberg et al. 2005). 

This robotic procedure can perform two selection rounds per day with proven successful 

outcomes. Another form of automated SELEX integrated microfluidic selection, high-

throughput sequencing, and in situ-synthesised aptamer arrays (Cho et al. 2013). This 

selection robot can simultaneously measure the affinity and specificity for thousands of 

candidate sequences in parallel.  
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1.4 Aptamer-based biosensors 

 

An aptamer-based biosensor, often known as an aptasensor, is a compact analytical 

device that is used to detect the presence of a given target analyte by incorporating an 

aptamer as the sensing element either integrated within or intimately associated with a 

physiochemical transducer surface (e.g. gold nanoparticles or quantum dots), which 

translates the binding event into a measurable physical signal (e.g. mass, charge, heat or 

light) (Hayat and Marty 2014). Principles behind the use of aptamers for biosensing 

purposes exploit their high target affinity, as well as target-induced conformational 

change (Foerster et al. 2012). The change in conformation by aptamers forms the 

foundation for many sensing approaches, including fluorescence (Levy et al. 2005; Choi 

et al. 2006; Freeman et al. 2013), colorimetric  (Liu and Lu 2006), and electrochemical 

methods  (Liu et al. 2011). This versatility makes aptamers suitable candidates for the 

development of simple-to-use devices for analytical applications. In theory, aptamer-

based biosensors can be fabricated to respond to any target for which an aptamer exists 

(Wang et al. 2011; Tang et al. 2014). Examples of commonly used aptasensors include 

ELISA sandwich, acoustic, electrochemical, quantum dot-based fluorescent and gold 

nanoparticle-based colorimetric aptasensors. Each of these aptasensors is explained in 

detail next, except for the gold nanoparticle-based colorimetric aptasensors, as it will be 

addressed later in Chapter 5. 

1.4.1 ELISA sandwich aptasensors  

ELISAs have been widely used in research and diagnostic medicine (Engvall and 

Perlmann 1971). One approach of this assay, commonly known as a sandwich-ELISA, 

involves the simultaneous use of two antibodies or analyte-binding receptors to firstly 

capture the analyte of interest and secondly to report target detection. Following this idea, 

Drolet et al. developed a new detection method that is appropriately named as enzyme-

linked oligonucleotide assay (ELONA) (Drolet et al. 1996).  
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In ELONA (Figure 1.6 A), the reporting antibody was substituted for a fluorescein-tagged 

aptamer specific for detecting the target of interest. Using an aptamer against human 

VEGF as a model, this group showed that the developed ELONA can be applied to quantify 

human VEGF in sera over an range of 31.25 to 8,000 pg/mL (R2 = 0.99), and the accuracy 

and specificity of the ELONA was comparable to that of the well-established ELISA (Drolet 

et al. 1996). 

Figure 1.6: Aptamer-based sandwich assays: (A) ELONA (enzyme-linked 

oligonucleotide assay) and (B) ALISA (aptamer-linked immobilised sorbent assay) 

 

 

To further exclude the use of antibodies in the sandwich-ELISA, Vivekananda and Kiel 

devised a method that employs aptamers as both the target capturing and reporting 

elements (Vivekananda and Kiel 2006). This technique (Figure 1.6 B) was named as 

aptamer-linked immobilised sorbent assay (ALISA), and was applied by the researchers 

to examine the specificity of an aptamer against a bacteria surface antigen. Their results 

showed that the target antigen is readily detected by the ALISA at 25 ng/mL of total 

antigen, and the sensitivity and detection of the target is attained as low as 1.7 x 103 

cell/mL of bacteria (Vivekananda and Kiel 2006).  
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Results from both studies demonstrated that aptamers can be used in sandwich-ELISA 

format for the detection of specific targets. As mentioned earlier, aptamers tend to have 

a longer shelf-life and are easier to produce compared with antibodies. Considering that 

aptamers are approximately 10 times smaller than antibodies, they are also more facile 

to modification and labelling. These advantages render the use of the ELONA and ALISA 

for analyte detection even more appealing than using ELISA for similar purposes. 

1.4.2 Acoustic aptasensors  

Acoustic aptasensors utilise the change in properties of waves travelling along the surface 

of a signal transducer to communicate the presence of targets. In these sensors, a 

piezoelectric material, such as quartz crystals, is used as the signal transducer (Figure 

1.7). These surfaces are frequently coated with gold and modified by coating a monolayer 

of self-assembled linkers to allow for the association of aptamers to the transducer 

surface. 

Figure 1.7: General design and mechanism of an acoustic aptasensor 

 

 

Mass loading resulting from the target binding to aptamers decreases the velocity of 

surface acoustic waves propagating along the transducer surface, consequently 

decreasing the resonance frequency of the waves or changing the phase shift between 

input and output waves. Thus, monitoring the change in one of these two properties 

would provide an indication of the absence or presence of the target molecule.  
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Schlensog et al. have developed acoustic aptasensors that utilises Love waves, a form of 

horizontally propagating surface acoustic waves (Schlensog et al. 2004). This group 

coupled ssDNA aptamers against human thrombin and HIV-1 Rev proteins onto a gold 

layer atop a quartz crystal. The binding of thrombin or Rev proteins to their 

corresponding aptamers resulted in a detectable phase shift of the Love wave. The 

sensors developed are capable of accurately detecting their relevant target with a limit of 

detection (LOD) of 70 to 80 pg/cm2 (Schlensog et al. 2004) 

1.4.3 Electrochemical aptasensors  

Electrochemical aptasensors for molecular recognition are based mainly on the detection 

of electric current produced by redox reactions resulting from interactions occurring at 

electrode transducer surfaces (Hayat et al. 2013). Rational design of an electrochemical 

aptasensor usually involves: [i] choosing a transducer surface (e.g. gold and carbon 

surfaces); [ii] coating an aptamer onto the transducer surface (Xiao et al. 2005) and; [iii] 

introducing a redox label (e.g. ferrocene or methylene) to the sensor surface. This is 

generally performed by the use of a redox-labelled signalling oligonucleotide that has a 

sequence that is complimentary to the distal terminus of an aptamer, thus the labelled-

oligonucleotide can hybridise to the aptamer, thereby changing the electrical properties 

of the aptamer (Figure 1.8).  

Figure 1.8: A structure-switching electrochemical aptasensor  
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When the target is not bound to the aptamer, the two strands hybridise causing the 

labelled-oligonucleotide to be more rigid resulting in an increased distance between the 

redox molecule and the electrode, thereby preventing electron transfer. Upon binding to 

the target, the aptamer undergoes a series of conformational changes and releases the 

signalling oligonucleotide allowing it to be more flexible and accessible to the electrode 

surface, thereby generating a current on the electrode. Electrochemical aptasensors have 

been used to detect small molecules, such as cocaine in foetal calf serum or human saliva 

(Baker et al. 2006), OTA in wine samples (Barthelmebs et al. 2011) and okadaic acid in 

mussel extracts (Hayat et al. 2011), with good sensitivities and specificities.  

1.4.4 Quantum dot-based fluorescent aptasensors  

Quantum dots (QDs) are nanocrystals that are usually comprised of atoms from 

elemental groups II and VI (e.g. cadmium sulphide and cadmium selenide) or groups III 

and V (e.g. indium phosphide and indium arsenide) (Chan et al. 2002). The small radii (in 

the nanometer scale) of these structures leads to electron confinement causing a small 

and finite separation between energy levels which give rise to their unique optical 

properties, such as broad adsorption spectrum, narrow emission spectrum and 

tuneability by adjusting their size (Medintz et al. 2005). The use of QDs as a signal 

transducer offers numerous advantages over standard fluorescent dyes including greater 

photo-stability, longer fluorescent lifetimes and sharper emission bands (Medintz et al. 

2005). Recent studies have demonstrated that QDs can be used in the construction of 

aptasensors (Levy et al. 2005; Choi et al. 2006; Huang et al. 2006; Liu et al. 2011). Levy et 

al. created a QD-based aptasensor (Figure 1.9), utilising fluorescence resonance energy 

transfer (FRET) (Levy et al. 2005), a mechanism describing energy transfer between two-

light sensitive molecules referred to as a donor and acceptor (Cheng 2006).  
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Figure 1.9: A quantum dot-based aptasensor utilising fluorescent resonance energy 

transfer (FRET) 

      

 

QDs used in this study are decorated with multiple thrombin-binding aptamers. These 

aptamers are bound by a quencher-modified antisense sequence. In the absence of 

thrombin, the signal emitted from the QDs is dampened due to a FRET effect from the QDs 

(donor) to the quencher (acceptor). Upon binding to thrombin, the conformational 

change of the aptamer results in the release of the quencher-modified strand, thereby 

switching off the FRET effect and resulting in fluorescence signal from the QDs. 

 A closely related method to the FRET mechanism for the development of QD-based 

aptasensors utilises a chemiluminescence resonance energy transfer (CRET) process. 

This mechanism (Figure 1.10) involves the transfer of chemically-generated 

chemiluminescence energy to the QDs, resulting in the photo-excitation of the QDs 

(Huang et al. 2006; Liu et al. 2011).  
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Figure 1.10:  Chemiluminescence resonance energy transfer (CRET) stimulated within 

the hemin and G-quadruplex coated quantum dots in the presence of luminol and H2O2 

                       

                   

This method makes use of the fact that many aptamer sequences (e.g. thrombin-binding, 

hematoporphyrin, HIV-1 integrase and ATP aptamers) form G-quadruplex structures 

upon binding to their targets (Paborsky et al. 1993; Huizenga and Szostak 1995; Okazawa 

et al. 2000; de Soultrait et al. 2002). Thus, the incorporation of hemin molecules into such 

G-quadruplex structures can often lead to the formation of catalytically-active 

oligonucleotides, commonly known as DNAzymes, which are able to mimic horseradish 

peroxidase by catalysing the oxidation of luminol by H2O2, with the concomitant 

generation of chemiluminescence (Travascio et al. 1998; Travascio et al. 1999). Liu et al. 

exploited this idea by incorporating the hemin molecule into a thrombin-binding aptamer 

for the detection of thrombin (Liu et al. 2011). Their findings showed that the resulted 

DNAzyme was catalytically active and able to generate chemiluminescence on a QD 

surface upon the addition of the target molecule, thereby resulting in photo-excitation of 

the QDs by CRET effects. This method enabled sensitive detection of thrombin with a 

detection limit that corresponds to 1.4 nM (Liu et al. 2011). 
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1.6 The aim and objectives 

 

As discussed earlier, TCS is a potential risk factor to human health because of its 

endocrine-disrupting properties, and also because this molecule is extensively used 

today. TCS is now a major concern world-wide, and recently it has been listed as an 

environmental contaminant by the EU Water Framework Directive (Aldous et al. 2009). 

In addition, Australia’s industrial chemical regulatory agency declared TCS a priority 

existing chemical (Commonwealth of Australia 2003). The long term effects of this 

molecule are unknown due to the lack of suitable detecting methods to monitor the 

presence of TCS on a regular basis, thus its potential impact to the environment and 

humans remains to be evaluated. Therefore, the aim of this thesis was to develop 

aptamers as new capture reagents for TCS, as a first step towards the development of an 

alternative, user-friendly, diagnostic technique for monitoring TCS in both environmental 

and biological samples. With this aim, the objectives of this thesis were: [i] in vitro 

selection of TCS binding ssDNA aptamers; [ii] characterisation of the selected aptamers 

and determination of their Kd values and; [iii] evaluating the applicability of TCS-specific 

aptamers in a biosensing platform. 
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CHAPTER 2 

GENERAL METHODOLOGY 

 

The methodology described herein refers to that for generating aptamers for TCS using 

an affinity column-based SELEX strategy including affinity matrix preparation and 

isolation, identification and characterisation of polyclonal and selected monoclonal 

sequences. The latter includes studies using dot blot assay for aptamer characterisation, 

fluorescent binding assay to determine the Kd values and circular dichroism (CD) 

spectroscopy to determine potential conformational changes after binding of aptamers 

to TCS. Methods related to the development of a fluorescent imaging assay and gold 

nanoparticle-based aptasensor is described in Chapter 3 and 5 respectively. The various 

steps involved in the SELEX procedure are outlined in the subheadings below. All 

materials, reagents and suppliers are shown in Appendix I. 

 

2.1 Synthesis of affinity matrices for aptamer selection 

 

To undertake the selection of aptamers capable of binding TCS, an affinity matrix capture 

system was developed by conjugating TCS to sepharose beads using two conjugation 

strategies. Two different linker molecules 1,4-butanediol diglycidyl ether (DE) (Sundberg 

and Porath 1974) and epichlorohydrin (ECH) (Porath and Fornsted.N 1970) were used. 

TCS-matrices prepared using DE were named TCS D matrix, whereas those prepared 

using ECH were named TCS E matrix. To eliminate the potential of non-specific binding 

by aptamers to the matrix or compounds with similar chemical structures to the target, 

unconjugated matrices subjected to either DE or ECH chemistry, as well as BPA- and OE2-

conjugated matrices were also prepared. The BPA-matrix was prepared using the DE 

chemistry. The OE2-matrix synthesised using an amine coupling chemistry was kindly 

provided by Dr Shalen Kumar (Victoria University of Wellington, NZ). The following 

protocol describes the methods for preparing these matrices for aptamer selection. 
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2.1.1 Synthesis of TCS-conjugated matrices  

2.1.1.1 Preparation of TCS solution 

A working solution containing 1.6 mmol of TCS was prepared using 30 mL of 1M NaOH, 

and the pH of the solution was adjusted to 11.0 using 1M HCl. The solution was filtered 

using a 0.22 µm minispin filter to remove any precipitates formed during pH adjustment.  

2.1.1.2 Preparation of sepharose beads 

For each conjugation procedure, a 16 ml aliquot of sepharose beads was pipetted into a 

sintered glass funnel and washed sequentially with 500 mL of 0.5M NaCl, 1000 mL of 

deionised water (dH2O), and 200 mL of 1 M NaOH. Following these washing steps, the 

beads were dried under a vacuum for 10 minutes (mins) before being weighed. 

2.1.1.3 Matrix activation 

The vacuum-dried beads were then transferred into a 50 mL round bottom flask. For TCS 

D matrix preparation, 8 mL of 1 M NaOH, 5.6 mL of dH2O, and 2.4 mL of DE (13 mmol) 

was added for DE activation reaction and then the flask was incubated at room 

temperature (RT) for 8 hours (hrs) with gentle stirring.  

For TCS E matrix preparation, 8 mL of 1 M NaOH, 7 mL of dH2O, and 1 mL of ECH 

(12.8 mmol) was added for ECH activation reaction and the flask was heated at 60 °C for 

two hrs with gentle stirring.  

Thereafter, these matrices were each placed into a sintered glass funnel and washed 

thoroughly using 500 mL of 1 M NaOH. This was followed by 2000 mL of dH2O and then 

both preparations were dried under a vacuum at RT. Once completely dried, a portion (i.e. 

3 g) of each activated matrix was immediately blocked using 15 ml of 1 M ethanolamine 

for future use as control matrices: these are referred to as control D and E matrices. In 

addition to preparing control matrices, other portions of the activated beads were used 

for preparing either TCS D or E matrices. 
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2.1.1.4 TCS conjugation  

The TCS solution prepared in Section 2.1.1.1 was added to each activated matrix (20 mL 

per matrix) and incubated overnight at RT with gentle stirring. Following overnight 

incubation, these matrices were washed and dried described in Section 2.1.1.3. 

Thereafter, any residual active groups on the matrices were blocked by overnight 

incubation with 15 mL of 1 M ethanolamine. Following blocking, the blocked TCS-

conjugated and control matrices were washed with 2000 mL of dH2O and resuspended 

in 5 % (v/v) ethanol solution for long term storage at 4 °C. 

2.1.1.5 Ultraviolet-visible (UV-visible) characterisation 

Both control and TCS-conjugated matrices (each 0.5 g) were washed with 500 mL of dH2O 

and resuspended in 5 mL of dH2O. Each matrix suspension was loaded into a 1 mm thick 

quartz cuvette. The presence of TCS molecule on the conjugated matrices was determined 

by scanning each matrix suspension over a wavelength range of 200–800 nm using a 

CARY 500 SCAN UV-visible spectrophotometer (Agilent Technologies, Santa Clara, 

California, USA). The presence of an absorption peak at ~280 nm indicated the successful 

conjugation of TCS onto the surface of sepharose beads. 

2.1.2 Synthesis of BPA- and OE2-conjugated matrices  

2.1.2.1 Synthesis of BPA-matrix  

BPA-matrix was prepared as followed: epoxy activated (via DE) sepharose beads were 

washed and dried (see Section 2.1.1.3). The activated beads were then transferred into a 

50 mL round bottom flask. Subsequently, 20 mL of BPA solution (0.8 mmol) prepared in 

1 M NaOH was added for conjugation. The resulting mixture was then incubated 

overnight at RT with gentle stirring. Following incubation, the BPA-matrix was washed, 

dried and blocked (see Section 2.1.1.4). Thereafter, UV-visible characterisation of the 

BPA-matrix was carried as described for TCS-conjugated matrices (see Section 2.1.1.5). 

Successful conjugation was confirmed by the presence of absorbance peaks at ~225 and 

~280 nm. 
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2.1.2.2 Synthesis of OE2-matrix  

OE2-matrix was prepared and characterised by Dr Shalen Kumar. In brief, 17β-

oestradiol-17-hemisuccinate (OE2) was prepared in 5 mg/mL in 50 % (v/v) of 1,4-

dioxane in dH2O, and the pH was adjusted to between 4 and 5 using 0.1 M HCl. Then, 8 mL 

of 1,6-diaminohexane-agarose matrix was pipetted into a sintered glass funnel and 

washed with 100 mL of 0.9 % (w/v) NaCl followed by an equal volume of dH2O before 

adjusting the pH of the matrix suspension to 5.0 using 0.1 M HCl. Subsequently, the OE2 

solution was added to the matrix suspension and mixed by rotating the flask for 5 mins. 

N-hydroxysuccinimide was added at a final concentration of 1 mM to catalyse the reaction. 

Thereafter, 1-ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide was added at a final 

concentration of 0.1 M for conjugation reaction. The pH of the suspension was maintained 

between 5 and 6 for 2 hrs using either 0.1 M HCl or 0.1 M NaOH. Thereafter, the 

suspension was incubated overnight at RT with gentle stirring. Following incubation, the 

matrix was washed to remove any traces of un-reacted reagents using 100 mL of 50 % 

(v/v) 1,4-dioxane in dH2O, followed by 500 mL of dH2O. Thereafter, the matrix was 

resuspended in 20 mL of dH2O. UV-visible characterisation of the OE2-matrix was carried 

out as stated for the BPA-matrix (see Section 2.1.2.1), and the presence of an absorption 

peak at ~280 nm indicated successful conjugation of OE2 onto the surface of agarose 

beads. 

 

2.2 Preparation of ssDNA aptamer library and primers 
 

In this study, an N40 library consisting of 40 random nucleotides was chosen to strike a 

balance between structural diversity and an appropriate surface coverage of the target 

molecule. The N40 library (75 bases in length) contained a central random region of 40 

bases, a forward and reverse region of 18 and 17 bases respectively. Forward (Pf) and 

reverse (Pr) primer sequences were designed by Oligo Analyzer Software provided by 

Integrated DNA Technologies (http://sg.idtdna.com/site). Nucleotide sequences of the 

N40 library and primers used in this study are summarised in Table 2.1.  

http://sg.idtdna.com/site
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Table 2.1: Nucleotide sequences of the N40 library and primers used in the SELEX 

procedure 

Oligonucleotide Nucleotide sequence (5’-3’) 

N40 library ATACGAGCTTGTTCAATA-N40-TGAT AGTAAGAG CAATC-3’ 

Forward primers ATACGAGCTTGTTCAATA 

Reverse primers GATTGCTCTTACTATCA 

“N40” represents nucleic acids A, C, T, and G organised in a randomised order. 

 

For aptamer generation and characterisation purposes, a biotin tag was introduced to the 

5’-end of primer sequences. Primer combinations for PCR amplification at different 

stages of the SELEX procedure are summarised in Table 2.2.  

Table 2.2: Primer combinations used at different stages of the basic-SELEX procedure 

Stage Forward Reverse 

Selection Pf biotin-Pr 

Dot blot assay biotin-Pf Pr 

Cloning and sequencing Pf Pr 

Pf = forward primer and; Pr = reverse primer. 

 

The N40 library and primers were commercially synthesised by Life Technologies 

(Carlsbad, California, USA). The library was synthesised on a 1 µmol scale. The labelled 

and unlabelled primers were synthesised on a 50 nmol scale. All synthesised 

oligonucleotides were purified using denaturing polyacrylamide gel electrophoresis by 

the manufacturer. 

 

2.3 SELEX preparation 

 

2.3.1 Oligonucleotide hydration 

Vials containing commercially synthesised oligonucleotides received from the 

manufacturer were centrifuged for 30 seconds (sec) at 13, 000 x g. The vials were opened 

inside a Type A2 Biosafety Laminar Flow Cabinet (Labconco, Kansas City, Missouri, USA). 
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An appropriate amount of DNAse free water was added to each vial to obtain a final 

concentration of 100 µM. These stock solutions were incubated at RT for 30 mins before 

being further diluted to make 10 µM working solutions. Both the stock and working 

solutions were stored at -20 °C for future use. 

2.3.2 Preparation of selection buffers 

2.3.2.1 Binding and washing buffer (BWB) 

A 10X stock solution of BWB consisting of 1000 mM NaCl, 50 mM KCl, 20 mM MgCl2, 

10 mM CaCl2, and 200 mM Tris-HCl pH 7.5 was prepared using dH2O and was sterilised 

by autoclaving. For subsequent use, the 10X BWB was diluted to 1X using dH2O and  

analytical grade surfactant, IGEPAL CA 630, was added to the 1X BWB to obtain a final 

concentration of 0.1 % (v/v) unless stated otherwise. 

2.3.2.2 Blocking buffer (Blotto) 

A Blotto solution was prepared fresh before immediate use by adding appropriate 

volume of 1X BWB to 99.9 % fat free skim milk powder at a final concentration of 5 % 

(w/v). The Blotto solution was vortexed until all milk powder was dissolved and then 

stored at 4 °C before use. 

 

2.4 SELEX cycle procedures 

 

2.4.1 Blocking of affinity matrices  

Before each SELEX cycle, fresh aliquots of TCS D and E matrices were washed three times 

with 200 µL of 1X BWB and individually resuspended in 200 µL of Blotto solution for two 

hrs at RT to reduce the likelihood of non-specific binding by the oligonucleotides to the 

matrix. The amount of TCS-conjugated matrices was adjusted for each cycle of selection 

depending on the amount of selection pressure desired for the cycle. 
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2.4.2 Heat-denaturing of ssDNA aptamer library 

The synthetic N40 library (3 nmol) was resuspended in 200 µL 1X BWB. Thereafter, the 

library solution was heat-denatured for 10 mins at 90 °C and then cooled at 4 °C for 

15 mins before further incubation at RT for 10 mins. The heat-denaturing step was also 

utilised to denature aptamer libraries (each ~ 50 pmol) from subsequent SELEX rounds.  

2.4.3 Co-incubation of aptamer library with affinity matrices 

Following heat-denaturing step, the aptamer library was added into each TCS-conjugated 

matrix solution (100 µL per matrix) and the resulting solutions were then incubated at 

4 °C with gentle shaking. The incubation time was adjusted for each cycle of selection 

depending on the amount of selection pressure required.  

2.4.4 Removal of unbound oligonucleotides 

Following incubation, each aptamer-bound matrix was transferred into a filtered syringe 

column. Unbound oligonucleotides were removed by thoroughly washing aptamer-

bound matrices using 1X BWB. The washing volume was increased for each cycle of 

selection in order to increase the selection pressure. The resulting matrices were each 

resuspended in 65 µL of DNAse free water and were used as templates for subsequent 

PCR amplification. 

2.4.5 PCR amplification 

PCR was undertaken to amplify aptamer-bound matrices for selection, dot blot assay, and 

cloning and sequencing procedures using different primer combinations (Table 2.2). A 

PCR sample was prepared at a final reaction volume of 50 µL using HotMasterTM Taq kit. 

The PCR buffer was composed of 10 µM dNTPs, 1.1 µM of each primer, 2.5 mM Mg2+, and 

2 units of Taq DNA polymerase. PCR cycles were carried out using the following steps: an 

initial denaturing step of 95 °C for 2 mins to ensure complete denaturation of the 

template; followed by 35 cycles of 94 °C for 40 sec (denaturing), 55 °C for 20 sec 

(annealing), and 72 °C for 30 sec (extension); and a final extension step at 72 °C for 2 mins.  
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2.4.6 Agarose gel electrophoresis  

Agarose gel electrophoresis was used to separate and analyse PCR products following 

amplification. The PCR products were first incubated with 1.6 µL of 100X SYBR green dye 

for 8 mins at RT. Then, 6X DNA loading dye was added to the products to give a final 

concentration of 1X before loading the products into the wells of a 3 % (w/v) agarose gel 

prepared using 1X TAE buffer. The gel was run in a Mini-Sub Cell GT Gel Tank (Bio-Rad, 

Hercules, California, USA) submerged in 1X TAE buffer for 75 mins at 95 volts. Thereafter, 

the gel was visualised using a UVsolo TS stand-alone gel documentation system (CORE 

Life Sciences, Laguna Niguel, California, USA), and the presence of 75 mer dsDNA bands 

which contained the desired aptamer sequences were confirmed by size comparison with 

a low range DNA ladder. The identified bands of interest were excised from the gel using 

a scalpel blade and stored at -20 °C until required. 

2.4.7 Extraction of dsDNA molecules 

The desired aptamer sequences were extracted from the excised gels using a Qiagen mini 

elute dsDNA extraction kit. The protocol used for extraction was specified in the 

manufacturer’s guidelines with following modifications: after dissolving the excised gels 

in QG buffer and addition of isopropanol, the resulting solution was vortexed for 10 sec 

before being centrifuged at 6,000 x g for 1 minute using mini elute columns. To maximise 

the retention of aptamers on the column matrix, each aliquot of the flow-through 

solutions was passed through 5 times before being discarded. This was followed by 

washing the column with 500 µL buffer QG and then centrifuged at 6,000 x g for 1 min. 

Thereafter, all column washing and centrifugation steps were carried out as stated in 

manufacturer’s guidelines. The dsDNA preparations were eluted from each column 

membrane, using a 1:50 dilution of EB buffer. The first elution step was carried out using 

50 μL of EB followed by a second elution step using 30 μL of EB. To stabilise the dsDNA 

products and to enable an improved strand separation yield, 80 μL of 2X BWB was added 

to the eluate. The eluted dsDNA preparations were then stored at -20 °C until future use 

or were immediately subjected to strand separation. 
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2.4.8 Strand separation 

Alkaline denaturation of dsDNA preparations was the method of choice for generating 

ssDNA aptamers for either the sequential round of SELEX or an intended-dot blot assay. 

2.4.8.1 Strand separation to generate ssDNA aptamers for selection 

To carry out the next round of SELEX, dsDNA preparations were subjected to a strand 

separation process, since only forward strands are utilised during SELEX. In brief, a 30 μL 

aliquot of streptavidin-coated magnetic beads (SMBs) was pipetted into a micro-

centrifuge tube before being recovered using a magnetic pipette (PickPen) with silicone 

tips and transferred to a microcentrifuge tube containing 50 μL of 1X BWB. The SMBs 

were stirred using pipette tip for a thorough washing and then transferred to a new tube. 

This washing step was repeated three times, and the washed SMBs were incubated with 

160 µL of each biotin-labelled dsDNA preparation. The resulting solution was incubated 

at RT for 20 mins with periodic mixing to allow for the formation of SMB-biotin-dsDNA 

complexes. Following incubation, the complexes were washed with 50 µL of 1X BWB 

three times, and then mixed with 30 μL of 0.3 M NaOH. The mixture was then incubated 

for 3 mins at RT, followed by removing SMB complexes (i.e. the SMB-biotin-reverse 

strands) using the PickPen. The leftover solution containing only the forward strands was 

neutralised immediately by adding 8.5 µL of 1 M HCl. The resulting solution containing 

ssDNA aptamers was used as the aptamer library for the subsequent round of selection. 

2.4.8.2 Strand separation to generate ssDNA aptamers for dot blot assay 

Preparation of biotin-labelled ssDNA aptamers for dot blot assay was similar to that for 

selection (see Section 2.4.8.1) with minor modifications. In brief, the biotin-labelled 

dsDNA preparations (each 160 µL) were incubated with the washed SMBs (30 µL for each 

preparation). The protocol for SMB washing and incubation with the biotin-labelled 

dsDNA molecules was performed as described previously (see Section 2.4.8.1). After 

formation of SMB-biotin-dsDNA complexes, strand separation was performed by adding 

30 μL of 0.3 M NaOH, which produced the SMB bound forward strands (retained on the 

beads) and the unbound reverse strands (in solution).  
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The forward strand-biotin-SMB complexes were then transferred to a new tube and 

treated with 30 µL of 0.3 M NaOH for a further 1 min to ensure complete dissociation of 

the reverse strands from the complexes. Thereafter, the forward strand-SMB complexes 

were washed with 50 μL dH2O for three times. Following washing steps, the forward 

strands were dissociated from the SMB-biotin forward strand complexes by heating the 

complexes in an 85 °C water bath for 2 mins to break biotin-streptavidin bonds. The SMBs 

were removed using the PickPen and the leftover solution containing the biotin-labelled 

forward strands was then used for the subsequent dot blot assay. 

 

2.5 Dot blot assay for monitoring SELEX progression  

 

TCS binding ability of polyclonal aptamers selected from the SELEX cycle was tested using 

dot blot assay developed in the Reproduction Laboratory (Victoria University of 

Wellington, NZ). 

2.5.1 Preparation of nitrocellulose membranes  

Nitrocellulose membranes for blotting the target compound were prepared by soaking 

the membranes 10 mins in 12 mL of 1X BWB before being completely air-dried under the 

laminar flow workstation. Thereafter, serial dilutions (6.25–50 mg/mL) of the target 

molecule prepared using analytical grade ethanol were each spotted onto the membranes 

at 2 µL per spot. The amount of target molecules presented on the membrane was 

between 75–600 nmol. The ethanol was spotted (2 µL) as a negative control. Serial 

dilutions of N-hydroxysuccinimide long chain biotin (NHS-biotin) were also spotted (2 µL 

per spot) at a final amount ranging from 0.1–10 nmol: these were used as positive 

controls to determine the consistency between dot blot assays. After spotting, the 

membranes were air-dried and blocked at RT using 12 mL of the Blotto solution. The 

blocked-membranes were then incubated for 2 hrs on a Cole-Parmer Rocking Shaker at 

15 osc/min (Thermofisher Scientific, Waltham, Massachusetts, USA). 
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2.5.2 Incubation with biotin-labelled ssDNA aptamers 

Following blocking, biotin-labelled ssDNA aptamers (each ~ 50 pmol suspended in 12 mL 

of Blotto) prepared from the strand separation process (see Section 2.4.8.2) were added 

to sample membranes and an equal volume of Blotto solution (without any aptamers) 

was added to control membranes. Both membranes (i.e. sample and control) were then 

placed on the orbital shaker (at 15 osc/min) for overnight incubation at 4 °C. Following 

incubation, both membranes were rinsed three times for 10 mins with 12 mL of 1X BWB 

on the orbital shaker (at 40 osc/min) to remove any unbound aptamers.  

2.5.3 Incubation with streptavidin-horse radish peroxidase 

A final conentration of 167 ng/mL ST-HRP solution was prepared using 1X BWB. Then, 

12 mL of the ST-HRP solution was added to each membrane (sample and control). 

Thereafter, both membranes were incubated at RT on the orbital shaker (15 osc/min) for 

2 hrs. Following incubation, each membrane was washed with 12 mL of 1X BWB for three 

times (each 10 mins) before being subjected to a chemiluminescence reaction.  

2.5.4 Chemiluminescence reaction  

For visualisation, 20 mL of chemiluminescence reaction solution (0.1 M Tris-HCl pH 8.5, 

25 μM luminol, 396 μM p-coumaric acid, and 0.01 % of hydrogen peroxide in dH2O) was 

prepared immediately before use. Both sample and control membranes were incubated 

together in the reaction solution for 1 min RT in a darkroom. The membranes then 

immediately placed on a clear plastic backing, wrapped using clear plastic wrap and then 

inserted into an x-ray cassette. X-ray film was placed on top of the membranes and 

exposed for 7 mins. Thereafter, the film was developed by soaking in GBX developing 

solution for 3 mins, and then rinsed for 1 min using H2O before a further 3 mins soaking 

in the GBX fixing solution prior to a final rinse in H2O. The film was air dried and then 

evaluated to determine the binding intensity and sensitivity of the selected aptamers. 
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2.6 DNA cloning, sequencing, and nucleotide analysis 

 

Following dot blot assay, once the selected aptamers demonstrated successful binding to 

TCS, they were cloned and sequenced to identify their nucleotide compositions. 

2.6.1 DNA ligation   

To identify monoclonal forms of TCS aptamers, PCR products amplified from the final 

selection round using primers Pf and Pr, were purified and extracted as outlined in 

Section 2.4.6 and 2.4.7. Then, 3 µL of each purified PCR product was added to 5 µL of 2X 

ligation buffer (final concentration of 1X) with the addition of 50 ng of pGEM-T Easy 

cloning vector and 3 units of T4 DNA ligase in a final reaction volume of 10 µL. 

Thereafter,  the reaction mixture was stirred for 30 sec and then kept on ice for 2 hrs.  

2.6.2 Transformation and colony picking 

The ligated plasmids were transformed into chemically competent Escherichia coli 

(E coli) DH5-α cells by co-incubation on ice with the cells for 30 mins. Thereafter, the 

cells were subjected to “heat shock” treatment at 37 °C for 2 mins. This was followed by 

a further 2 mins incubation of the cells on ice. The transformed cells were allowed to 

grow in 950 µL of Luria broth (LB) media for 1 hr at 37 °C before being centrifuged at 

3,000 x g for 5 mins. The resulting supernatant was discarded and the leftover pellet was 

then resuspended in 100 µL LB media. Thereafter, the LB pellet solution was plated 

aseptically onto LB agar plates containing 2 % X-gal and 50 µg/mL ampicillin. 

Following plating, the agar plates were incubated first at RT for 2 hrs, and then at 37 °C 

for overnight. Following overnight incubation, distinct white colonies containing the 

desired aptamer sequences were each aseptically picked and transferred into a glass vial 

containing 10 mL LB media and 50 µg/mL ampicillin. Each colony containing solution 

was incubated overnight at 37 °C with gentle shaking.  
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2.6.3 Isolation of plasmid DNA 

Plasmid DNA containing the inserted aptamer sequence from the cells was purified using 

QIAprep Spin Kit following the manufacturer’s instructions. Briefly, vials containing 

10 mL overnight cultures were each centrifuged at 3,000 x g for 10 mins before 

discarding the supernatant from each vial. The pelleted cells were resuspended in 250 µL 

of P1 buffer before transferring the suspension individually from each vial into 

microcentrifuge tubes. Subsequently, 250 µL of P2 buffer was added into each tube and 

mixed gently by inverting the tubes six times. The resulting suspension in each tube was 

then incubated at RT for 5 mins to lyse the cells. Thereafter, 350 µL of neutralisation 

buffer (N3) was added into each tube and mixed by inverting the tubes six times before 

centrifugation at 13,000 x g for 10 mins. The resulting supernatant from each tube was 

then transferred individually into QIAprep spin columns and centrifuged for 1 min at 

13,000 x g. The flow-through from each column was discarded and the columns were 

washed using 500 µL of PB buffer. Thereafter, 750 µL of PE buffer were added to each 

column to precipitate the plasmid DNA. This was followed by centrifuging the columns at 

13, 000 x g for 1 min to remove the PE buffer. After a further centrifugation of the columns 

at 13,000 x g for 1 min, the collection tube from each column was discarded and the 

columns were placed individually into microcentrifuge tubes. The plasmid DNA from 

each column was eluted using 50 µL of EB which was added with care directly onto the 

column filter and incubated at RT for 1 min before centrifugation at 13,000 x g for 1 min. 

Following centrifugation, the columns were discarded and the eluted plasmid DNA from 

each column was quantified by measuring absorption spectra at 260 nm using a WPA 

Biowave II UV-visible Spectrophotometer (Biochrom Ltd, Cambridge, England, UK). The 

purified plasmid DNA from each column was stored at -20 °C until further use.  
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2.6.4 Confirmation of ligation 

Before sequencing, successful insertion of the selected aptamers was confirmed by 

restriction enzyme digestion of the inserted-plasmid DNA. The digested products were 

separated by agarose gel electrophoresis, and visualised using the Gel Doc system. Briefly, 

10 µL of each purified plasmid DNA was added individually into microcentrifuge tubes. 

This was followed by the addition of 1.5 µL of restriction digest buffer (Buffer H) and 

3.5 µL of EcoRI restriction enzyme (containing 10 units) into each tube. Thereafter, all 

tubes were incubated at 37 °C for 30 mins. The digestion reaction was stopped by heating 

each tube to 65 °C for 5 mins to denature the restriction enzyme. Following denaturation, 

the digested DNA from each tube was stained using 1.6 µL of 100X SYBR Green dye and 

subsequently separated by electrophoresis using a 2.5 % agarose gel. The 75 mer DNA 

bands containing the desired aptamer sequences were confirmed by comparison with a 

low range DNA ladder when visualised using the Gel Doc system. 

2.6.5 DNA sequencing 

All aptamer samples were sequenced at the DNA sequencing facility of Waikato 

University (Hamilton, NZ) using an ABI 3130XL instrument fitted with 50 cm capillary 

arrays and using Applied Biosystems Big Dye v3.1 dye terminator chemistry.  

2.6.6 Nucleotide analysis  

Nucleotide analysis was undertaken to characterise the isolated aptamers and identify 

sequence homologies and structural motifs. 

2.6.6.1 Generation of a phylogenetic tree  

A phylogenetic tree was generated using default Neighbour-Joining option in the 

Geneious software (http://www.geneious.com) to evaluate the evolutionary lineage 

within each aptamer population as a result of the SELEX process.  

 

 

http://www.geneious.com/
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2.6.6.2 DNA alignment 

DNA nucleotide alignment was undertaken using default settings in the Clustal Omega 

software (https://www.ebi.ac.uk/Tools/msa/clustalo/) to identify key nucleotide 

regions (homologous sequences) from each aptamer sequence.   

2.6.6.3 Two-dimensional (2D) structural analysis  

Web-based mFold, DNA structural folding program, provided by the Zuker laboratory 

(http://mfold.rna.albany.edu/?q=mfold/DNA-Folding-Form), was used for 2D structural 

analyses of all identified aptamers. All parameters for the predictions were set as 

default except for temperature which was set at 23 °C and ionic condition settings were 

150 mM and 2 mM for Na+ and Mg2+, respectively. 

 

2.7 Aptamer characterisation 

 

Monoclonal TCS aptamers identified from the SELEX procedure were characterised with 

respect to their [i] target binding affinities and specificities, [ii] Kd values, and [iii] in-

solution conformational change. All monoclonal TCS aptamers utilised in the 

characterisation studies were commercially synthesised by Life Technologies (Carlsbad, 

California, USA) on a 1 µmol scale with a biotin tag for dot blot assay, or a HEX tag for 

fluorescent binding assay at the 5’-end of each oligonucleotide sequence, or unlabelled 

for CD spectroscopy.    

2.7.1 Dot blot assay for binding affinity and specificity  

Binding affinity and specificity of each monoclonal TCS aptamer were characterised using 

the dot blot assay as described in Section 2.5. The amount of each monoclonal aptamer 

used in the assay was 50 pmol.  

 

https://www.ebi.ac.uk/Tools/msa/clustalo/
http://mfold.rna.albany.edu/?q=mfold/DNA-Folding-Form
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2.7.2 Fluorescent binding assay for Kd determination 

Monoclonal TCS aptamers with the desired binding properties were subjected to a 

fluorescent binding assay (Mann et al. 2005) to determine their Kd values. In brief, fresh 

aliquots (each 1 mg) of TCS D and E matrices were washed three times with 200 µL of 1X 

BWB and resuspended in 100 µL of Blotto solution for 2 hrs at RT. Eight different 

concentrations, ranging from 80 to 2000 nM, of each HEX-labelled aptamer were 

prepared duplicate in 100 µL 1X BWB. This was followed by heat-denaturing of each 

aptamer solution for 10 mins at 90 °C, cooling at 4 °C for 15 mins and then incubated at 

RT for 10 mins. Thereafter, the heat-treated aptamer solutions were incubated with 

aliquots of both TCS D and E matrices for 60 mins at RT with gentle shaking. Unbound-

aptamers were then discarded by washing with 200 µL of 1X BWB three times. Bound-

aptamers however were eluted from the aptamer-bound matrices, once with 200 µL 1X 

BWB at 95 °C for 9 mins, and once with 200 µL EB at 80 °C for 9 mins. Both eluates were 

combined and fluorescent intensity of each eluted aptamer was determined using a 

PerkinElmer EnSpire Fluorescent reader (PerkinElmer, Waltham, Massachusetts, USA) 

with excitation and emission wave-lengths of 485 and 535 nm, respectively. As 

references, the fluorescent binding assay were also performed exactly as described but 

with the use of control D and E matrices in order to assess non-specific binding of the 

assayed aptamers to the matrices. The sample volume used in the fluorescent 

measurement was 180 µL per well in a 96-well flat-bottomed polystyrene microtiter 

plate. Fluorescent readings obtained from each well were used to calculate the amount of 

eluted aptamers using calibration plots generated from each HEX-labelled aptamer. 

Based on these data, saturation binding curves for each aptamer being tested were 

obtained by plotting the amount of eluted aptamer versus the concentration of the 

incubated aptamer. Assuming an aptamer and its cognate target are binding at 1:1 ratio, 

the apparent Kd value for an aptamer is determined by nonlinear regression for one-site 

binding according to the equation “Y=Bmax*X/( Kd +X)”, where Y is degree of saturation, 

Bmax is the maximum binding sites and X is the molar concentration of the aptamer. This 

analysis was performed using Graphpad Prism software (Mehta et al. 2011). 
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2.7.3 Circular dichroism for assessing conformational change  

Monoclonal TCS aptamers with the highest Kd values were subjected to CD spectroscopy 

for assessing the levels of conformational change upon binding to the target. CD 

measurements of each aptamer were performed using a ChirascanTM CD Spectrometer 

(Applied Photophysics, Cambridge, England, UK) at a temperature holding constant at 

25 °C in a quartz cell with an optical path length of 10 mm. The CD spectra were obtained 

by taking a scan at a scanning rate of 100 nm/min. Each tested aptamer was suspended 

in 1X BWB with 5 % (v/v) ethanol at pH 7.4 and prepared at 1 μM for all CD experiments. 

TCS was prepared in the same buffer at concentrations of 2, 5, and 10 µM. In a typical 

experiment, the CD spectra of each aptamer sample were recorded from 325 to 205 nm 

before and after binding to TCS for 60 mins. Buffer baseline spectra were collected in the 

same cuvette and subtracted from that determined for the sample spectra. Contributions 

of target spectra were also eliminated by subtraction from the corresponding sample 

spectra. For comparison, TCS was also incubated with a 75 base-random sequence 

prepared at 1 µM and measured using the same conditions as each tested aptamer. The 

data were collected in units of millidegrees versus wavelength and were normalised to 

have zero ellipticity at 325 nm. 
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CHAPTER 3 

INITIAL SELEX INVESTIGATION AND THE DEVELOPMENT OF 

A FLUORESCENT IMAGING ASSAY 

 

3.1 Introduction 

 

This chapter describes experiments using an affinity column-based SELEX procedure for 

generating ssDNA aptamers to TCS. Specifically, the work presented here outlines the 

results of experiments using a basic-SELEX procedure which involved the use of a 

sepharose bead-based partitioning method to capture TCS-specific binding sequences 

and subsequently, separating them from nonbinding sequences. In addition, the 

applicability of each method used in the SELEX procedure was evaluated. These 

investigations included: [i] preparation of target-immobilised affinity matrices; [ii] 

performing conventional PCR amplifications to enrich selected sequences; [iii] an 

alkaline denaturation step for preparing ssDNA molecules; [iv] monitoring the SELEX 

progression using dot blot assay and; [v] characterising selected aptamers using dot blot 

and fluorescent binding assays. Also investigated was a novel fluorescent imaging 

method for aptamer characterisation. This imaging method is potentially a more 

powerful and simpler procedure for assessing binding affinities of newly-generated 

aptamers. The reasons behind investigating each of the aforementioned methods are 

explained as followed.  

Affinity columns play an important role in generating aptamers binding to small 

molecules, and there have been recent reports (Kim et al. 2007; Joeng et al. 2009; Jo et al. 

2011; Mehta et al. 2012) utilising affinity columns for producing aptamers against targets 

that are structurally similar to TCS, such as polychlorinated biphenyls (PCBs), BPA, OE2 

and diclofenac (DCF) (Figure 3.1). 
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Figure 3.1: Compounds with structural similarities to triclosan   

 

 

Mehta et al. reported the isolation of an 80 mer ssDNA aptamer capable of binding PCB72 

and 106 using a magnetic bead-based SELEX methodology. This aptamer had Kd values of 

284 and 128 nM for PCB72 and 106 respectively (Mehta et al. 2012). Xu et al. also 

developed a 76 mer DNA aptamer against PCB77 using an agarose bead-based SELEX 

methodology, and this aptamer had a micromolar Kd value for the target molecule (Xu et 

al. 2012). Other examples of using affinity columns for selection include the development 

of aptamers against DCF (Joeng et al. 2009), BPA (Jo et al. 2011), and OE2 (Kim et al. 2007).  

Based on these reports, it was reasoned that a similar strategy might successfully be 

applied for selecting TCS-specific aptamers. Therefore, TCS was immobilised onto the 

surface of epoxy-modified sepharose beads using two linker molecules (i.e. DE or ECH) 

(Figure 3.2). 
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Figure 3.2: Conjugation chemistries for the formation of TCS affinity matrices 

 

 

As a result of conjugation, the TCS molecule is nine-atoms further away from the matrix 

surface in the TCS D matrix (highlighted in Figure 3.2) compared with the TCS E matrix. 

Both matrices were applied in the basic-SELEX procedure for aptamer selection to 

investigate whether a longer spacer-arm in the D matrix compared with the E matrix 

would result in the generation of better quality aptamers (i.e. higher specificity, better 

binding characteristics, etc). The rationale here was that if the target molecule was kept 

further away from the surface of the D matrix, then there was likely to be less steric 

hindrance for recognition by aptamers during selection. 

In the-basic SELEX procedure, conventional PCR was chosen due to its availability in the 

laboratory, and also because the cost for running this form of PCR is lower compared with 

other PCR techniques such as real-time PCR, emulsion PCR and digital droplet PCR. In 

addition, the aptamer-bound matrices from each cycle of selection were used as the 

template for PCR amplification without eluting the bound-aptamers off the matrices. An 

earlier study by Dr Shalen Kumar reported that the presence of a matrix had no effect on 

the performance of DNA polymerase used during amplification (Kumar 2014). Another 

important advantage of not eluting the bound aptamers was that it prevented the loss of 

highly specific sequences, which might otherwise occur during any elution step.  
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As addressed in Chapter 1, alkaline denaturation and fluorescent binding assays have the 

advantages of convenience and low cost without the need for expensive equipment. 

Therefore, both methods were chosen for ssDNA preparation and Kd determination 

respectively. The dot blot assay, which was used successfully for characterising aptamers 

binding to small molecules (i.e. BPA and OE2), was chosen to monitor the progression of 

the basic-SELEX procedure, and also for aptamer characterisation (Kumar 2014). Finally, 

experiments utilising a novel fluorescent imaging-based technique were undertaken for 

aptamer characterisation, but these will be described later. 

In summary, the aim of this chapter was to establish a practical laboratory procedure for 

generating ssDNA aptamers capable of binding to TCS with the objectives of: [i] 

investigating the utility of a spacer-arm for affinity matrix preparation; [ii] evaluating the 

dot blot assay for aptamer characterisation and; [iii] determining the Kd values for the 

selected TCS aptamers. 

 

3.2 Methods 

 

The methodology described herein refers to that for generating aptamers for TCS using a 

basic-SELEX procedure including affinity matrix preparation, as well as selection and 

characterisation of polyclonal and monoclonal aptamers. The methodology also includes 

the development of a novel fluorescent imaging assay for aptamer characterisation.  

3.2.1 Synthesis of affinity matrices  

Preparation of TCS-conjugated matrices for aptamer selection is described in Chapter 2 

(see Section 2.1.1). The resulting TCS D and E matrices, as well as free TCS molecule in 

water, unmodified sepharose beads and unconjugated matrices (i.e. control D and E 

matrices) were characterised using the UV-visible spectroscopy (see Section 2.1.1.5, 

Chapter 2). 
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3.2.2 Basic-SELEX procedure  

The N40 aptamer library and primer sequences used for aptamer selection are listed in 

Table 2.1 (see Chapter 2). Preparation of all synthesised oligonucleotides and buffers 

were carried out as outlined in Chapter 2 (see Section 2.3). The various steps of the basic-

SELEX procedure are described in detail in Chapter 2 (see Section 2.4). The following 

section provides a summary for selecting TCS-specific aptamers.  

3.2.2.1 Blocking of affinity matrices 

TCS D and E matrices used for each SELEX cycle were washed and blocked as described 

in Chapter 2 (see Section 2.4.1).  

3.2.2.2 Denaturation of ssDNA aptamer library 

For the first round selection, two aliquots (each 3 nmol) of the synthetic N40 aptamer 

library were individually suspended in 100 µL of 1X BWB. Thereafter, the resulting 

library solutions were heat-denatured as described in Chapter 2 (see Section 2.4.2). For 

subsequent rounds of selection, each aptamer library was subjected to the same 

treatment. 

3.2.2.3 Co-incubation of the aptamer library with the affinity matrices  

During the first cycle of SELEX, heat-denatured synthetic library solutions were 

incubated with Blotto-treated TCS matrices (one aliquot of the N40 library per TCS matrix) 

overnight at 4 °C with gentle shaking. For subsequent rounds of selection, the aptamer 

library generated using TCS D matrix was incubated with the blocked TCS D matrix. 

Similarly, the library generated using TCS E matrix was incubated with the blocked TCS 

E matrix.  

3.2.2.4 Removal of unbound oligonucleotides 

Following incubation, sequences with little or no affinity for TCS were removed by 

washing each of the aptamer-bound matrices as described in Chapter 2 (see Section 2.4.4).  
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3.2.2.5 PCR amplification 

For the first round, the entire aptamer-bound TCS D and E matrix preparations were 

amplified in two parallel PCR reactions (one for each matrix). For subsequent rounds, 

only half of each matrix preparation was amplified with the remaining half set aside for 

analysis and in case of PCR failure. The procedures for PCR sample preparation and cycle 

amplification are outlined in Chapter 2 (see Section 2.4.5). After amplification, the PCR 

products from each matrix preparation were purified, extracted and strand-separated 

(see Section 2.4.6–8, Chapter 2) to generate a new aptamer library pool for the next cycle 

of selection.  

3.2.2.6 Selection conditions for the basic-SELEX procedure 

The basic-SELEX cycle was repeated eight times to generate TCS-specific aptamers. In 

order to select high affinity aptamers, the stringency of the SELEX procedure was 

gradually increased through each cycle by reducing the amount of TCS-conjugated 

matrices from 50 mg for the first cycle to 10 mg for the last cycle. The decrease in the 

target molecule is thought to permit greater competition amongst sequences for fewer 

available targets, and this competition should in theory yield tighter-binding aptamers. 

Moreover, it is thought that decreasing the incubation time from the initial overnight 

interval to just 1 hr at the end, would result in newly-generated sequences with the most 

favourable binding characteristics. Finally, increasing the washing volume after the 

second cycle of selection by 5 ml per cycle is thought to likely remove weakly-bound 

sequences from the target molecule. All manipulated selection conditions used in the 

basic-SELEX procedure are summarised in Table 3.1. 

3.2.3 Progression of the basic-SELEX procedure 

The dot blot assay described in Chapter 2 (see Section 2.5) was utilised to monitor the 

success of aptamer generation during the basic-SELEX procedure. Polyclonal aptamer 

libraries (one from each TCS-conjugated matrix) from selection rounds 4, 6 and 8 were 

subjected to the dot blot assay to assesse their target binding ability.  
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Table 3.1: Aptamer selection conditions used in the basic-SELEX procedure 

SELEX 

round 

Affinity column 

(mg) 

Incubation 

time (hr) 

Incubation 

temperature (°C) 

Wash volume 

(mL) 

1      50 12 4 5 

2      40 8 4 5 

3      40 8 4 10 

4      30 4 4  15 

6      30 4 4 20 

6      20 2 4 25 

7      20 2 4 30 

8      10 1 4 35 

 

3.2.4 DNA cloning, sequencing and nucleotide analysis 

Following the dot blot assay, and provided the selected aptamers demonstrated 

successful binding to TCS, the aptamer libraries from round 8 in the basic-SELEX 

procedure were cloned and sequenced to identify their nucleotide compositions (see 

Section 2.6.1–5, Chapter 2). A total of twelve plasmid DNA molecules (six from each 

matrix) were subjected to sequencing, and ten unique sequences (each contained 

75 bases) were identified from the sequencing step. These monoclonal sequences were 

referred to as TCS round 8 (R8) aptamers. Thereafter, nucleotide analyses were 

performed by: [i] sequence alignment using Clustal Omega software; [ii] generation of a 

polygenic tree using Geneious software and; [iii] secondary structure prediction using 

mFold software (see Section 2.6.6, Chapter 2). 

3.2.5 Aptamer characterisation 

Following the evolution of the basic-SELEX process, TCS R8 aptamers were characterised 

with respect to binding affinity and specificity, as well as the determination of Kd values. 

3.2.5.1 Binding affinity and specificity 

Binding affinity and specificity of TCS R8 aptamers were screened using the dot blot assay 

described in Section 2.5 (see Chapter 2), except that commercially synthesised R8 

aptamers (with a biotin tag at the 5’-end) were utilised in each assay.  
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For the binding affinity studies, each biotin-labelled TCS R8 aptamer (50 pmol) was 

incubated overnight at 4 °C with nitrocellulose membranes that had been spotted with 

different amounts of TCS (from 75–600 nmol). For binding specificity studies, TCS R8 

aptamers with desired binding properties were also subjected to dot blot assays using 

compounds sharing structural similarities to TCS. These related molecules were methyl-

triclosan (MTS), BPA, DCF and OE2. The amount of positive control (i.e. NHS-biotin) 

varied from 16–2000 pmol. 

3.2.5.2 Fluorescent binding assay for Kd determination  

Following dot blot characterisation, TCS R8 aptamers with the most desirable binding 

properties were subjected to the fluorescent binding assay to determine their Kd values. 

These experiments were performed exactly as described in Chapter 2 (see Section 2.7.2).  

3.2.6 The development of a novel fluorescent imaging assay 

The development of a fluorescent imaging assay for aptamer characterisation was 

inspired by Dr Junsheng Lin (Huaqiao University, China) who had selected aptamers 

against human sperm antigens (personal communication). In Dr Lin’s approach, an 

aptamer specific to sperm surface antigens was labelled with a fluorophore molecule. 

Upon binding to sperm cells, the resulting aptamer-sperm complexes were then 

visualised under a fluorescent microscope. Dr Lin found that the labelled-aptamer 

gathered around each sperm cell and giving rise to fluorescence around the cells. A halo 

ring around each sperm was observed under the microscope. Similar aptamer-based 

imaging technique, has been used previously for cancer cell detection and diagnostics 

(Ma et al. 2015). The present work utilised micrometre-sized sepharose beads, a similar 

size to sperm cells, for affinity column preparation. It was thought that these beads might 

be more suitable for developing an imaging-based technique for aptamer 

characterisation. Preliminary studies established that some of TCS R8 aptamers bound to 

these beads. Therefore, a simple visualisation of aptamer-bound beads was then used to 

measure the binding affinity of the selected aptamers.  
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The following sections describe a proof of concept experiment for the development of a 

quantitative procedure, and validation of the fluorescent imaging method for aptamer 

characterisation.  

3.2.6.1 Proof of concept  

Aptamer-bound matrices used for imaging experiments were prepared similar to those 

used in the fluorescent binding assay (see Section 2.7.2, Chapter 2). In brief, a HEX-

labelled TCS R8 aptamer (500 nM) was prepared, in duplicate, in 100 µL of 1XBWB, and 

heat-denatured. Thereafter, the aptamer solutions were each added to aliquots (each 1 

mg/100 µL) of the blocked control and TCS-conjugated matrices. The resulting aptamer-

matrix suspensions were incubated at RT for 60 mins. Following incubation, unbound-

aptamers were discarded by washing the aptamer-bound matrices with 200 µL of 1X 

BWB three times. The washed aptamer-bound matrices were then resuspended in 30 µL 

1X BWB. Thereafter, these matrix suspensions were each loaded onto a glass slide with a 

cover slip on top before being visualised under a Leica DM6000 FS fixed stage fluorescent 

microscope (Leica Microsystems, Buffalo, Illinois, USA). The microscope was operated 

first under bright light to find an appropriate region for observation, and then switched 

to fluorescent mode to acquire fluorescent images. In this initial experiment, the HEX tag 

was excited under UV, blue and green light sources with the aim of finding the most 

appropriate light source for excitation. Images were captured under same conditions at 

each excitation state with 1 sec of exposure time, and the acquired images saved as tagged 

image file format (TIFF) were then subjected to image analysis.  

3.2.6.2 Image analysis 

The captured images were subjected to image analyses to provide quantitative 

information regarding binding affinity of each aptamer to the control and TCS-conjugated 

matrices. The image analysis process was performed using Igor Pro 6 (Wavemetrics, 

https://www.wavemetrics.com/index.html), a scientific graphic and image processing 

software used widely by researchers (Gomez et al. 2002).  

https://www.wavemetrics.com/index.html
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In detail, each captured image was loaded into the software as a TIFF file. Then the image 

was divided into three layers corresponding to red, green and blue colour code. The layer 

with highest fluorescent intensity was chosen for the analytical process. In the chosen 

layer, fluorescent beads were presented as white spots, whereas surrounding buffer 

region remained black. Thereafter, regions of interest (ROI) on the beads were chosen 

randomly as circles with a sum of 100 ± 3 cm in diameter (which remained constant for 

each analysed image) and light intensity within ROI was automatically averaged by the 

software to give a fluorescent count (FC) named as FCbeads. In addition, the ROI within 

surrounding buffer was also chosen as random shapes and light intensities were also 

averaged to give a FC named as FCbuffer. The mean FC (FCmean) defined as the difference 

between the ROI of beads and buffer, was then calculated by subtracting FCbuffer from 

FCbeads. The FCmean representing the strength of fluorescent intensity within each image 

was used to indicate the affinity strength of an aptamer to its cognate target. 

3.2.6.3 Validation 

The applicability of the fluorescent imaging method for aptamer characterisation was 

validated by applying the method to assess the binding affinities of TCS R8 aptamers to 

both the control and TCS-conjugated matrices. The Kd value of a chosen aptamer was also 

determined using the imaging method. In both studies, preparation of aptamer-bound 

matrices was carried out as described Section 3.2.6.1, except that each aptamer being 

tested in the binding affinity study was prepared at one concentration of 500 nM, whereas 

the aptamer used in the Kd study was prepared at eight different concentrations ranging 

from 80–2000 nM. Fluorescent images captured from both studies were analysed using 

the image analysis methodology (see Section 3.2.6.2). Binding affinty of each aptamer in 

the affinity study was ranked based on the values of FCmean. Binding saturation curves for 

the Kd study were plotted using FCmean versus aptamer concentration, and the Kd value 

was then determined using GraphPad Prism software (see Section 2.7.2, Chapter 2).  
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3.3 Results 

 

3.3.1 Preparation of affinity matrices 

Successful conjugation of TCS to the sepharose beads was confirmed by obtaining the UV-

visible absorption spectra of TCS D and E matrices (Figure 3.3). 

Figure 3.3: UV-visible spectra of (A) TCS in water; (B) unmodified sepharose beads 

(blue), control D matrix (red), and control E matrix (green); (C) TCS D matrix; and (D) 

TCS E matrix 

  
 

The key characteristic difference between TCS-conjugated (Figure 3.3 C and D) and 

unconjugated (Figure 3.3 B) matrices was the presence of an absorption peak at 280 nm 

in the conjugated matrices. The absorption peak was also observed in free TCS prepared 

in water (Figure 3.3 A), denoting the presence of TCS molecules on the surface of the 

conjugated matrices.  
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3.3.2 PCR amplification 

Conventional PCR was carried out throughout the basic-SELEX procedure to enrich the 

selected aptamer libraries. One example of the PCR results is shown in Figure 3.4. 

Figure 3.4: PCR amplification of the basic-SELEX round 8 aptamer-bound matrices for 

dot blot assays 

          

Lane 1: -ve control (no template); lane 2: DNA ladder; lane 3: +ve control (1 nM N40 

library); lanes 4–7: sample bands amplified from TCS D matrix; lanes 8–11: sample bands 

amplified from TCS E matrix and; bp = base pair. 

 

Non-specific PCR by-products were formed during the amplification of aptamer-bound 

TCS D matrix (Figure 3.4, lanes 4–7). Only sample bands (75-bp) were excised for dot blot 

assay. When amplifying the R8 aptamer-bound TCS D and E matrices for selection, non-

specific bands were also observed (data not shown), resulting in a significant loss in the 

recovery of 75 mer aptamers for the subsequent round of selection. 

3.3.3 Progression of the basic-SELEX procedure 

Polyclonal aptamer libraries generated from selection rounds 4, 6 and 8 were subjected 

to dot blot assays to evaluate their binding affinity to TCS (Figure 3.5). 
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Figure 3.5: Dot blot assays for polyclonal TCS aptamers from the basic-SELEX rounds 4, 6, and 8 selected using (i) long-arm TCS D matrix; 

(ii) short-arm TCS E matrix and; (iii) control experiments 
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TCS = triclosan; ST-HRP = streptavidin-horseradish peroxidase; 
NHS = N-hydroxysuccinimide; “+” means the presence of and; “-” 
means not present. 

(ii) Polyclonal TCS E aptamers 
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As shown in Figure 3.5 i and ii, there were no positive dot blot signals after 4 rounds of 

selection using either TCS D or E matrix. However, visible dots began to develop at round 

6, and became intense at round 8. These polyclonal R8 aptamers from both matrices 

showed strong binding to TCS at 600 and 300 nmol. Control samples showed that the dot 

blot experiments had similar sensitivities with a LOD down to 0.1 nmol, and there were 

no non-specific bindings by the enzyme ST-HRP to TCS without aptamers (Figure 3.5 iii). 

3.3.4 DNA cloning, sequencing and nucleotide analysis 

Twelve plasmid DNA (each containing one monoclonal aptamer insertion) from the basic-

SELEX procedure were sequenced. Clones D1 to D6 were produced using TCS D matrix, 

whilst E1 to E6 were the products of TCS E matrix. Two clones, D3 and E4, were more 

than 75 bases in length, and were therefore excluded from further studies (data not 

shown). The remaining clones (each 75 bases) are shown in Table 3.2.  

Table 3.2: Nucleotide sequences of basic-SELEX round 8 TCS aptamers (Clones D and E) 

and the composition (%) of individual bases (A, T, G, and C) in the N40 random region 

within each aptamer 

Clone Full sequence 5’ to 3’ A T  G  C  

D1 ATACGAGCTTGTTCAATAGGATCAATTTCTGAAGCCTG 

TTATTGTAAGGTCGTTCGCATGATAGTAAGAGCAATC 
22.5 35 25 17.5 

D2 ATACGAGCTTGTTCAATAGTGAATTTTGTGTACGCACA 

CAGCTGTGCTCGATGTCTGGTGATAGTAAGAGCAATC 
17.5 32.5 30 20 

D4 ATACGAGCTTGTTCAATATGTAGTGATTAAATGTCCAG 

TTGGGTCCAATAGCATTCCGTGATAGTAAGAGCAATC 
25 32.5 25 17.5 

D5 ATACGAGCTTGTTCAATATTAATGCTTCTGCGTAGAAG 

TGCGGTAGGATGCGTATGGGTGATAGTAAGAGCAATC 
20 30 37.5 12.5 

D6 ATACGAGCTTGTTCAATAGCAGTGACTTTCCTGGTATC 

TTGTTAACAGGTTGTCTGTATGATAGTAAGAGCAATC 
17.5 40 25 17.5 

E1 ATACGAGCTTGTTCAATACTGTGTGTTGTTATCGTTCA 

GCAAGTGGAATGGGTATGTGTGATAGTAAGAGCAATC 
17.5 37.5 35 10 

E2 ATACGAGCTTGTTCAATACGCGATCGTTCGATGCGTTA 

TGTATTTGTGTGGCGCCGTGTGATAGTAAGAGCAATC 
10 35 35 20 

E3 ATACGAGCTTGTTCAATACTTGCGTTAGTTTTGCTTGG 

GACGGGGTGCTTGTTGTTGATGATAGTAAGAGCAATC 
7.5 42.5 37.5 12.5 

E5 ATACGAGCTTGTTCAATATTGGAACCGAAATGTTGATG 

TGTGGGTGTTTCGTTTGGAATGATAGTAAGAGCAATC 
20 37.5 35 7.5 

E6 ATACGAGCTTGTTCAATACATGTTTCATGTTGGTTATC 

TTTTGGACTTCAATGCGGTGTGATAGTAAGAGCAATC 
15 45 25 15 

Highlighted nucleotides represent forward (red) and reverse (blue) primer regions.  
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Analysis of the N40 random region for each TCS R8 aptamer indicated an enrichment of 

T and G nucleotides with T being the most abundant occupying over 30 % of the N40 

region (Table 3.2).  

Phylogenetic analysis of TCS R8 aptamers was undertaken to elucidate their evolutionary 

relationships (Figure 3.6).  

Figure 3.6: Phylogenetic relationships among TCS round 8 aptamers D (red) and E 

(blue) clones 

 

 

The phylogenetic tree (Figure 3.6) indicated one distinct aptamer E3 alone in lineage 1, 

whereas the others were incorporated into two major branches of evolutionary lineage 

(i.e. 2 & 3). Aptamers D1, D2, D4 and D6 were grouped together in lineage 2: these were 

generated using TCS D matrix for selection. Surprisingly, aptamer D5, which was selected 

using the TCS D matrix, showed more evolutionary similarity with aptamers from the TCS 

E matrix, and grouped with E1, E2, E5 and E6 in lineage 3. 
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Nucleotide alignment in the N40 region for TCS R8 aptamers and positions with 

conserved sequences were then analysed (Figure 3.7). 

Figure 3.7: Alignment of the N40 regions for TCS round 8 aptamers (D and E clones) 

D1    ----GGATCAATTTCTGAA-GCCTGTTATTGTAAGGTCGTTCGCA- 

D2    ---GTGAATTTTGTGTACGCACACAGCTGTGCTCGATGTCTGG--- 

D4    --TGTAGTGATTAAATGTC-CAGTTGGGTCCAATAGCATTCCG--- 

D5    ---TTAATGCTTCTGCGTA-GAAGTGCGGTAGGATGCGTATGGG-- 

D6    ---GCA-GTGACTTTCCTG-GTATCTTGTTAACAGGTTGTCTGTA- 

E1    -CTGTGTGTTGTTATCGTT-CAGCAAGTGGAATGGGTATGTG---- 

E2    --CGCGATCGTTCGATGCG-TTATGTATTTGTGTGGCGCCGTG--- 

E3    -CTTGCGTTAGTTTTGCTTG-GGACGGGGT-GCTTGTTGTTGA--- 

E5    -TTGGAACCGAAATG-TTG-ATGTGTGGGTGTTTCGTTTGGAA--- 

E6    ----CATGTTTCAT-GTTGGTTATCTTTTGGACTTCAATGCGGTG-  
Highlighted sequences denoted the regions of homology. 

 

Analysis of the N40 regions revealed no conserved regions among the R8 TCS aptamers, 

but duplicate, triplicate and even quadruplet copies of T and G nucleotides, as well as 

duplicates and triplicates of A nucleotides were common features (Figure 3.7).   

Secondary 2D structures of TCS R8 aptamers were predicted in order to find their folding 

characteristics between the primer and random regions. The secondary structures of 

aptamers D5 and E6 are shown in Figure 3.8, and the complete folding are shown in 

Appendix II. 
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Figure 3.8: Secondary structures of aptamers D5 (TR8D5) and E6 (TR8E6) demonstrated 

a three stem-loop (SL) structure 

                         

                         

 

According to the folded-secondary structures (Figure 3.8 and Appendix II), three 

aptamers (i.e. D1, E2, and E3) were folded into similar linear stem-loop structures. Two 

aptamers (i.e. D6 and E5) showed two stem-loop structures, four aptamers (i.e. D2, D5, 

E1 and E6) showed three stem-loop structures, and aptamer D4 showed a four stem-loop 

structure. 

3.3.5 Aptamer characterisation 

TCS R8 aptamers (i.e. D1, D2, D4, D5, D6, E1, E2, E3, E5 and E6) were characterised with 

respect to their binding intensity and sensitivity (i.e. detection limits), and aptamers (i.e. 

D4, D5, D6, E5 and E6) were also tested for their binding specificity to TCS using the dot 

blot assay. Subsequently, the Kd values of two aptamers D5 and E6 were determined using 

the fluorescent binding assay.  
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3.3.5.1 Binding intensity and sensitivity 

The binding of each TCS R8 aptamer was tested over different amounts of TCS (75 to 600 

nmol). The results from dot blot assays are summarised in Figure 3.9, and the results for 

control experiments are shown in Appendix III.   

Figure 3.9: Binding intensity and sensitivity of TCS round 8 aptamers (D and E clones) 
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TCS R8 aptamers were classified into three categories based on the intensity and 

sensitivity of dot blot signals (Figure 3.9). The best candidates were aptamers D4, D5, D6, 

E5 and E6 as these showed strong positive binding at 600 and 300 nmol of TCS. The next 

best candidates were aptamers D2 and E3 which also showed positive binding down to 

300 nmol, but with signal intensity much weaker compared with the aforementioned 

aptamers. Finally, aptamers D1, E1 and E2 were considered to be the poorest of those 

selected because of their weak binding signals with only light spots at 600 nmol. 

Furthermore, none of the aptamers showed binding to TCS at 150 and 75 nmol. 

3.3.5.2 Binding specificity 

To verify binding specificity, the best TCS R8 aptamers (i.e. D4, D5, D6, E5 and E6 ) were 

each subjected to additional dot blot assays (Figure 3.10) using structurally similar 

compounds (i.e. MTS, BPA, DCF and OE2).  

Figure 3.10: Dot blot assay for screening the binding specificities of TCS round 8 

aptamers (i) D4, (ii) D5, (iii) D6, (iv) E5 and (v) E6 to TCS (triclosan), MTS (methyl-

triclosan), BPA (bisphenol A), DCF (diclofenac) and OE2 (oestradiol). 

                              (i) D4 
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Aptamer D4 showed positive binding to TCS at 600 and 300 nmole. Non-specific 

interaction was observed with MTS and BPA at 600 nmoles, with very faint signals 

observed with DCF at 600 nmol and OE2 at 150 nmole.  
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   (ii) D5                                                                                                                                    (iii) D6                              
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Aptamer D5 showed positive binding to TCS at 600 and 300 

nmol. Non-specific interaction was observed with MTS at 

600, 300, and 150 nmol. No visible signals were observed 

with BPA, DCF and OE2. 
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Aptamer D6 showed positive binding at 600 and 300 nmol 

to TCS, MTS, BPA, DCF and OE2. In addition, visible signals 

were observed with 150 nmol of TCS, MTS and BPA. Faint 

signals were also observed at 75 nmoles of MTS and BPA.  
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    (iv) E5                                                                                                                                   (v) E6                                                                                                           
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Aptamer E5 showed positive binding to TCS at 600 and 300 

nmol. Non-specific interaction was observed with MTS at 

600 nmol and BPA at 600, 300, and 150 nmol.  
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Aptamer E6 showed positive binding to TCS at 600 and 300 

nmol. Non-specific interaction was observed with MTS at 

600 and 300 nmol. 
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Based on results from Figure 3.10, aptamer D6 showed binding to all reagents tested 

(Figure 3.10 iii), and was therefore excluded for further characterisation. For the 

remaining aptamers tested, weak dot blot signals were observed with DCF and OE2, but 

strong binding was noted for MTS (Figure 3.10 i, ii, iv, and iv). In addition, aptamers D4 

and E5 also showed affinity to BPA (Figure 3.10 i and iv) with E5 being able to detect BPA 

at concentrations as low as 150 nmol. Only aptamers D5 and E6 showed the least amount 

of binding to the structurally similar compounds, and both aptamers also demonstrated 

strong affinities to TCS (Figure 3.10 ii and v). Therefore, aptamers D5 and E6 were chosen 

for further characterisation to determine their Kd values. 

3.3.5.3 Fluorescent binding assay for Kd determination  

The Kd values for the chosen aptamers D5 and E6 were determined using the fluorescent 

binding assay. The concentrations of each aptamer being tested varied from 40 to 1000 

nM, whilst the amount of TCS-conjugated matrices used in each assay was kept constant. 

Control matrices (D & E) were also assayed as references to assess the extent of non-

specific binding by both aptamers. Saturation binding curves were plotted by measuring 

the amount of matrix-bound aptamer versus the corresponding input-aptamer 

concentration used in the assay (Figure 3.11).  
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Figure 3.11: Saturation curves of (A) aptamer D5 to control and TCS D matrices; (B) 
aptamer E6 to control and TCS E matrices and; normalised saturation curves of (C) 
aptamer D5 and (D) aptamer E6 after subtracting the non-specific binding to control 
matrix from the specific binding to TCS-conjugated matrix 
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The error bars in A and B represent the standard deviation of the amount of eluted 
aptamers measured via four independent experiments. 
 

Under the assay conditions, aptamer D5 showed a higher affinity to TCS compared with 

aptamer E6, as the binding curves of D5 approached saturation, whereas E6 showed a 

linear increase with no signs of saturation up to 1000 nM aptamer (Figure 3.11 A and B). 

The mean ± SD Kd value for aptamer D5 was determined to be 700 ± 174 nM, whereas the 

Kd value for E6 was estimated to be more than 1 µM (Figure 3.11 C and D).  

 

 

Kd = 700 ± 174 nM Kd > 1000 nM 
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3.3.6 The development of a fluorescent imaging assay  

The applicability of a fluorescent imaging method for aptamer characterisation was 

investigated after first confirming that the TCS-conjugated matrix elicited fluorescent 

signals upon binding with a HEX-labelled TCS aptamer. The HEX-labelled aptamer E6 

(HEX-E6) was used for binding studies with both control and TCS E matrices. The 

resulting aptamer-bound matrices were visualised under differed light sources (i.e. UV, 

blue and green). Fluorescent images were taken under each light excitation, and the 

captured images are summarised in Figure 3.12a.  

Figure 3.12a: Fluorescent microscope operation for capturing fluorescent images from 
HEX-labelled aptamer E6 (HEX-E6) binding to control and TCS E matrices 

    

Fluorescent images were captured under different light sources with 1 second of 
exposure time and; UV = ultraviolet. 
 

From the images in Figure 3.12a, it is evident that upon binding with the HEX-E6, both 

control and TCS E matrix were capable of fluorescence under either blue or green light 

excitation. In addition, it was observed that fluorescent signals emitted from the TCS E 

matrix were stronger when compared with the control E matrix. Furthermore, the green 

light was consistently better than blue light for exciting the HEX molecules, and thus was 

chosen for the subsequenct fluorescence-based studies.  
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In order to obtain quantitative information regarding the strength of fluorescence from 

each matrix, the captured fluorescent images (green light excitation) were subjected to 

the imaging analysis methodology described in Section 3.2.6.2 and shown in Figure 3.12b. 

Figure 3.12b: Image analysis of HEX-labelled aptamer E6 (HEX-E6) binding to control 
and TCS E matrices 

HEX-
E6 

Fluorescent 
image 

Black and 
white image 

ROI 
Beads 

ROI 
Buffer 

FCmean 

 

control 
E 

matrix 
    

 
10427 

TCS 
E 

matrix 
    

 
35552 

ROI = regions of interest; FCbeads = average fluorescent counts on beads; FCbuffer = average 
fluorescent counts on buffer and; FCmean = mean fluorescent counts, which defined as 
FCbeads – FCbuffer. 
 

After choosing regions of interest (ROI) on both the beads and buffer solution, average 

fluorescent counts (FC) within each ROI was then determined by the IGOR PRO software. 

Based on these data, FCmean, was calculated to be 10427 for the control E matrix and 

35552 for the TCS E matrix (Figure 3.12b). These values represented the strength of 

fluorescent intensity within each matrix, and were used to indicate binding affinities of 

HEX-E6 aptamer to TCS.  

The fluorescent imaging method was applied to assess binding affinity of TCS R8 

aptamers D4, D5, D6, E5 and E6. The fluorescent images captured from these experiments 

are summarised in Figure 3.13a and analysed to obtain FCmean value for each image (data 

not shown). Thereafter, the FCmean from an average of three independent experiments 

was plotted for each aptamer being tested (Figure 3.13b). 

As shown in Figure 3.13a and 3.13b, aptamers D5 and E6 showed a higher level of binding 

to TCS-conjugated matrices than to control matrices, indicating that these two aptamers 

had higher affinities for TCS than D4, D6 and E5 aptamers.  
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Figure 3.13a: Fluorescent images showing affinities of TCS round 8 (R8) aptamers D4, 
D5, D6, E5 and E6 to control and TCS-conjugated matrices 

R8 Control D or E matrix TCS D or E matrix 
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E5  
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Images were captured under same conditions with 1 sec of exposure time via three 
independent experiments. 
 

Figure 3.13b: Fluorescent counts representing binding affinities of TCS round 8 (R8) 
aptamers to control and TCS-conjugated matrices 

                             

The error bars represent the standard deviation of fluorescent counts from three 
independent experiments. 
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The fluorescent imaging method was also utilised to determine the Kd value for aptamer 

D5. The resulting images from the Kd experiment are summarised in Figure 3.14a, and 

then analysed to obtain FCmean value for each image (data not shown).  

Figure 3.14a: Fluorescent images of HEX-labelled TCS aptamer D5 (HEX-D5) binding to 
control and TCS D matrices at 8 concentrations ranging from 40 to 1000 nM 

(nM) 1000  800  600  400  250  160  80  40  

D5-
control 

D matrix  

D5-TCS 
D matrix 

 

Each image was taken under same conditions with 1 sec of exposure time. 

 

Binding saturation curves for aptamer D5 against control and TCS D matrices were 

plotted (Figure 3.14b i). Subsequently, the mean ± SD Kd value for aptamer D5 was 

determined to be 584 ± 251 nM based on the normalised binding curve (Figure 3.14b ii). 

Figure 3.14b: Saturation curves of (i) TCS aptamer D5 to control and TCS D matrices, and 
(ii) a normalised saturation curve of D5 by subtracting the non-specific binding to control 
matrix from the specific binding to TCS D matrix 
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In the final experiments, HEX-D5 bound TCS D matrix and HEX-E6 bound TCS E matrix 

were each visualised after eluting both aptamers from the matrices in order to check if 

the elution steps used in the fluorescent binding assay preparation were capable of fully 

recovering aptamers D5 and E6 from the aptamer-bound matrices (Figure 3.15). 

Kd = 584 ± 251 nM 

(i) (ii) 
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Figure 3.15: Figure 3.15: Fluorescent images of HEX-labelled aptamers D5-bound TCS D 

matrix and E6-bound TCS E matrix after elution 

(nM) 1000  800  600  400  250  160  80  40  

D5-TCS 
D matrix 

 

E6-TCS 
E matrix 

 

Each image was taken under same conditions with 1 sec of exposure time. 

 

As shown in Figure 3.15, no observable fluorescent signals were left on HEX-D5 bound 

matrix. However, HEX-E6 bound matrix showed a relatively high fluorescent signals 

indicating either current elution conditions were not stringent enough to fully recover 

the aptamer E6, or that this aptamer was too strong to be eluted. 

 

3.4 Discussion 

 

The work in this chapter describes the generation of ssDNA aptamers capable of binding 

TCS using an affinity column-based SELEX strategy referred to as the basic-SELEX. A total 

of ten monoclonal TCS aptamers were generated after eight rounds of selection (Table 

3.2). These aptamers are then subjected to a number of in silico characterisation, such as 

nucleotide sequence analyses, phylogenetic evolutionary relationship and 2D structure 

prediction. Discussion of these results will be made in general discussion (see Chapter 6).  

The selection procedure was restricted to 8 rounds due to the formation of non-specific 

PCR by-products (generally larger than 75 bases) during conventional PCR amplification 

(Figure 3.4). The undesired PCR by-products are thought to be the consequence of over 

amplification. The amount of aptamers captured by each affinity matrix generally 

increases with increasing rounds of selection, thus requiring reduced numbers of PCR 

cycle amplification. However, PCR cycle number was kept constant in this study resulting 

in unnecessary cycles of amplification which can often lead to non-specific annealing of 

the template by primers, thereby forming PCR products with variable lengthes.  



101 
 

The binding capability of TCS R8 aptamers to TCS was validated using the dot blot assay, 

and this method successfully allowed for the identification of the desired aptamer 

candidates to only two sequences (i.e. aptamers D5 and E6). Initial binding affinity 

studies revealed five aptamers (i.e. D4, D5, D6, E5 and E6) that had superior binding 

affinity, as the intensity of their dot blot signals were the strongest among all aptamers 

tested (Figure 3.9). At this stage, it was uncertain as to which of the five sequences would 

turn out to be the best TCS aptamer. With this in mind, these five aptamers were further 

examined for their binding specificity by testing their ability to recognise compounds (i.e. 

MTS, BPA, OE2 and DCF) sharing structural similarities with TCS. Three candidates D4, 

D6, and E5 showed higher levels of binding affinity to the compounds tested indicating 

they were less specific to TCS (Figure 3.10 i, iii and iv), thus they were excluded for further 

studies. Only two aptamers (D5 and E6) were considered suitable for further evaluation 

(Figure 3.10 ii and v).  

The aforementioned experiments demonstrated the screening power of the dot blot 

assay. However, it is worth noting that this method utilises nitrocellulose membranes as 

a carrier for holding TCS. The membrane is generally designed to hold macromolecules 

such as proteins, and their ability to retain small molecules like TCS is unclear. As 

evidenced from the dot blot results, small molecules like TCS and other structurally 

similar compounds need to be prepared in large quantities, i.e. up to 50 mg/mL, in order 

to get sufficient signals (Figure 3.10 i–v). Additionally, the dot blot signals do not always 

follow a titration trend in signal strength corresponding to an increase in the amount of 

molecules being spotted onto the membrane. There were no observable signals when TCS 

was spotted at 150 and 75 nmol (Figure 3.9). This is unlikely to be due to the low affinity 

of the aptamers being tested, as the intensity of the dot blot signals is not proportional to 

the amount of TCS being spotted even at large quantities. For example, the aptamers D6 

and E6 showed weaker signals at 600 nmol when compared with 300 nmol (Figure 3.9). 

Therefore, it was more likely that TCS when spotted at low quantities completely 

dissociated from the membrane during washing steps, whereas some of the TCS 

molecules remain attached to the membrane when large quantities were spotted. The 

lack of signal titration is an issue when using the dot blot assay for aptamer 

characterisation.  
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During SELEX experiments, Kd determination provides an indicator for the likely 

performance of selected aptamers. The fluorescent binding assay was utilised to 

determine the Kd values of aptamers D5 and E6. These two aptamers demonstrated 

notable differences in their relative binding capacities to TCS (Figure 3.11 A and B). The 

mean ± SD Kd value for the aptamer D5 was determined to be 700 ± 174 nM (Figure 3.11 

C), and was comparable to the published Kd values for PCBs (Mehta et al. 2012; Xu et al. 

2012). In contrast, aptamer E6 under current assay conditions failed to reach saturation 

(Figure 3.11 D). Based on these results, aptamer D5 was considered to have the most avid 

binding to TCS with respect to its Kd value. In addition, both aptamers displayed some 

non-specific binding to unconjugated matrices (Figure 3.11 A and B). This result 

compromised their binding specificity to TCS. The observation of non-specific binding 

could be due to either non-specific electrostatic interaction between an aptamer and the 

surface of a matrix or specific recognition of the matrix by aptamers. As a consequence, 

the future practical use of aptamers D5 and E6 might be questionable unless a method 

can be found to eliminate their non-specific binding to the matrix. 

One of the key steps in the basic-SELEX procedure is the conjugation of TCS to column 

matrix. As mentioned in the introduction, it was assumed that the long-arm matrix should 

have less steric hindrance upon aptamer binding, thus be more efficient in selecting TCS 

specific aptamers when compared with the short-arm matrix. This indeed was the case, 

as evidenced during the progression of the SELEX selection. After 6 rounds of selection, 

polyclonal aptamers generated using TCS D matrix showed apparent dot blot signals at 

600 and 300 nmol, whereas the use of TCS E matrix required at least 8 rounds of selection 

to get decent dot blot signals (Figure 3.5 i and ii). In addition, when screening the binding 

affinities of TCS R8 aptamers, TCS D aptamers, in general, showed more intense dot blot 

signals than TCS E aptamers (Figure 3.9). However, the most convincing evidence 

supporting the use of a long-arm matrix for selection came from the Kd measurements 

(Figure 3.11 C and D). Aptamer D5 generated using the long-arm matrix showed lower a 

Kd value than aptamer E6 which was produced by the short-arm matrix. Therefore, the 

long-arm TCS D matrix is suggested to be the preferred matrix for future selection. 
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The development of a fluorescent imaging-based technique could potentially simplify the 

way to characterise aptamer binding properties. From this perspective, the fluorescent 

imaging assay was subjected to an initial “proof of concept” experiment with the use of 

aptamer E6. The experiment demonstrated that TCS-conjugated matrices can elicit 

fluorescent signals upon binding by the HEX-labelled aptamer. By evaluating the 

fluorescent intensity of each image, the method is capable of distinguishing a difference 

between aptamer-bound control matrix and TCS-conjugated matrix (Figure 3.12a and 

3.12b) thus verifying that the aptamer E6 was specifically binding to TCS. In addition, 

binding affinity of aptamers D4, D5, D6, E5 and E6 were also screened using the 

fluorescent imaging method. From the earlier studies using the dot blot assay, it was 

established that these aptamers were capable of binding to TCS. The purpose for using 

the fluorescent imaging assay was to evaluate whether this method might be suitable for 

aptamer characterisation and for quantitating aptamer binding affinities. As shown in 

Figure 3.13a and 3.13b, aptamer D5 and E6 showed a higher level of binding to TCS-

conjugated matrices than to control matrices, indicating the two aptamers had higher 

affinities than the other aptamers. These results agreed with those obtained from the dot 

blot assay. Furthermore, the Kd value of 584 ± 251 nM for aptamer D5 determined using 

the imaging method (Figure 3.14b ii) was comparable to that obtained from the elution-

based method (Kd = 700 ± 174 nM).  

It is noteworthy that the standard deviation of the Kd from the imaging method is 

relatively large indicating that more data points are required to minimise the variation. 

However, further experiments were not carried out, since results from both the dot blot 

and fluorescent binding assays showed that most of TCS R8 aptamers had either low 

affinity (e.g. D1, D2, D3, E1 and E3) or poor specificity (e.g. D4, D6 and E5). From the 

remaining two aptamers (i.e. D5 and E6), there was evidence of high levels of non-specific 

binding. Therefore, it was considered that none of the R8 aptamers were ideal candidates 

to be used for thoroughly investigating the potential usages of the fluorescent imaging 

method. Finally, the imaging method also revealed that the elution steps performed in the 

fluorescent binding assay procedure was unable to fully remove the bound-aptamer E6 

(Figure 3.15), thus compromising the accuracy of using this method for Kd determination. 

To sum up, these preliminary studies demonstrated that the fluorescent imaging method 

provided a simple-to-use assay for aptamer characterisation. 
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3.5 Conclusion 

 

Based on the work presented here, TCS specific aptamers were generated and 

characterised with acceptable binding affinity and specificity to the target molecule. 

Aptamer D5 was proven to be the best candidate with a Kd value of 700 nM similar to 

some of the published Kd values for structurally similar molecules. The long-arm TCS D 

matrix proved to be more effective than the short-arm matrix in generating aptamers with 

better quality. Aptamer characterisation by dot blot and fluorescent binding assays have 

shown some promising results in the basic-SELEX study, despite each of them has its own  

limitations. In contrast, the fluorescent imaging assay explored in this chapter can 

potentially solve these problems, as this method not only avoids the use of nitrocellulose 

membrane, but also eliminates the need to elute bound aptamers. Furthermore, this 

method alone can potentially provide a comprehensive methodology for aptamer 

characterisation including the determination of Kd values. Finally, the basic-SELEX 

procedure was found to have limitations in generating TCS specific aptamers as 

evidenced by the observation of non-specific binding to the surface of a matrix by 

aptamers. Besides, the selection process was restricted from going beyond eight rounds 

due to the formation of non-specific PCR by-products.  

Overall, it was concluded that aptamers generated during the basic-SELEX procedure are 

unsuitable for applications in aptamer-based biosensors for TCS detection. To advance 

the utility of TCS aptamers for biosensing, it is suggested that the basic-SELEX procedure 

needs to be modified in order to generate aptamers with higher affinity and better 

specificity to TCS.  
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CHAPTER 4 

TRICLOSAN APTAMER SELECTION: REVISING THE  

SELEX METHOD 

 

4.1 Introduction 

 

The basic-SELEX procedure was found to have limitations in generating TCS aptamers 

with high affinity and specificity (see Chapter 3). These included: [i] non-specific binding 

to the matrix by aptamers; [ii] the lack of capability for conventional PCR to specifically 

amplify the selected aptamer sequences and; [iii] limitations when using dot blot and 

fluorescent binding assays for aptamer characterisation. To mitigate these problems, a 

few modifications were introduced to the selection process, and a revised-SELEX 

procedure was investigated in this chapter aiming to generate aptamers with improved 

binding properties. These modifications involved: [i] the use of transfer RNA (tRNA) 

formulated Blotto for matrix blocking; [ii] the inclusion of negative and counter selection 

strategies; [iii] replacing conventional PCR with real-time PCR for amplification and; 

[iv] utilising a fluorescent imaging assay for aptamer characterisation.  

To minimise electrostatic interactions between oligonucleotides and the matrix, a new 

Blotto solution was prepared by adding tRNA to the old Blotto solution formulated using 

skim milk powder. Being composed of nucleic acids, it was postulated that tRNA would 

be more appropriate for reducing non-specific adsorptions caused by oligonucleotides 

when compared with the milk, as the latter is often effective in reducing non-specific 

binding by proteins. The presence of tRNA in large quantities can potentially restrict the 

access of oligonucleotides to those polar-regions presented on the surface of a matrix (Lin 

and McNatty 2009). This new blocking strategy was applied for blocking all matrices. 

During earlier studies, it became increasingly evident that any aptamer sequences with 

non-specific binding properties towards matrix and/or linker arm needed to be excluded 

when performing an affinity column based-SELEX procedure. This is because aptamers 

are normally used to measure free target in solution. Thus, any non-specific affinity to the 

matrix is likely to reduce the functionality of an aptamer in sensing applications.  
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For example, the aptamer for rhodamine displayed a weaker binding to rhodamine when 

in solution compared to when it was immobilised on a matrix (Wilson and Szostak 1998). 

To eliminate sequences that display binding or partial recognition to the matrix, SELEX 

experiments sometimes included a negative selection step with unconjugated matrix 

before a positive round of selection with the target-immobilised matrix (Jayasena 1999). 

In addition, to further enhance aptamer selectivity, it is common to perform selections 

with compounds having similar molecular structures to the target molecule (Jenison et 

al. 1994). This selection strategy is referred to as counter selection, as it is used to remove 

any sequences from the pool that may have affinity to structurally similar molecules, 

which might well be found in samples containing the target of interest. Therefore, both 

negative and counter selection strategies were introduced for aptamer selection. 

Conventional PCR was replaced by a real-time PCR in the revised-SELEX procedure to 

amplify aptamer-bound matrices, as the levels of fluorescent signal from the real-time 

PCR can be used to follow the amplification process. Once sufficient amplification is 

reached, the reaction can be manually stopped to avoid over-amplification, thus reducing 

the likelyhood of forming any undesired PCR by-products. The fluorescent imaging assay 

developed in Chapter 3 was the method of choice for aptamer characterisation, as the dot 

blot and fluorescent binding assays used in the basic-SELEX procedure showed some 

limitations. For example, aptamer characterisation by dot blot assay can only provide 

qualitative measures regarding binding affinity and specificity of an aptamer. The lack of 

quantitation restricts the use of this assay for Kd determination. In the fluorescent binding 

assay, an elution step is inevitable in order to get quantitative information. The efficiency 

of this elution step is not easy to measure routinely. Thus, more often than not, it is 

assumed that no detectable fluorescent signals in the eluates means no aptamers left over 

on the matrix. As demonstrated in Chapter 3, this is not always the case since the E6 

aptamer showed incomplete elution from the aptamer-bound matrix.  

In addition, aptamers generated using the revised-procedure were subjected to in-

solution characterisation of the target binding activity using CD spectroscopy, as 

conformational change induced by aptamer-target interactions forms the foundation for 

many biosensing approaches (Levy et al. 2005; Liu and Lu 2006; Liu et al. 2011).  
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Morover, truncation of aptamer sequences based on in silico characterisation can have a 

profound effect on the target binding ability of aptamers. Lin and McNatty demonstrated 

that the target binding characteristics of an aptamer can be improved when specific 

regions of the aptamer identified from the predicted 2D structure were utilised in Eastern 

blotting assay (Lin and McNatty 2009). The LOD was significantly improved when using 

the selected regions instead of the parent aptamer as the probing agent for the assay. In 

addition, Alsager et al. reported an OE2 aptasensor showed an increased LOD when using 

truncated versions of the OE2 aptamer based on the 2D structural analysis (Alsager et al. 

2015). The applicability of the truncation method to TCS-specific aptamers is yet to be 

determined. Furthermore, in employing the revised-SELEX procedure, only the long-arm 

TCS D matrix was investigated, as the evidence from Chapter 3 suggesting it was more 

suitable for aptamer selection when compared with the short-arm TCS E matrix. 

To sum up, the objectives of this chapter were to: [i] assess the levels of improvement in 

aptamer selection using the aforementioned SELEX modifications; [ii] investigate the 

performance of the fluorescent imaging assay; [iii] select TCS aptamers with improved 

affinity and specificity as assessed by their Kd values and in-solution binding studies and; 

[iv] investigate the efficacy of truncated sequences of the best TCS aptamer.  

 

4.2 Methods 

 

Apart from the aforementioned SELEX-modifications, all other steps in the revised-SELEX 

procedure were performed as described for the basic-SELEX procedure (see Section 3.2, 

Chapter 3). The following method section describes how the modifications were 

incorporated into the selection process for generating TCS-specific aptamers. 

4.2.1 Synthesis of affinity matrices  

Preparation of the TCS D matrix is described in Chapter 2 (see Section 2.1.1). Three other 

matrices were also included in the revised-SELEX procedure, namely control D matrix, 

BPA- and OE2-matrices. The control D matrix synthesised during the preparation of the 

TCS D matrix was used for negative selection. The BPA- and OE2-matrices synthesised as 

described in Chapter 2 (see Section 2.1.1) were used for counter selections.  
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4.2.2 Revised-SELEX procedure 

The N40 aptamer library and primer sequences used in the revised-SELEX procedure 

were the same as the basic-SELEX procedure, except for the forward primer was labelled 

with a HEX tag, and it was incorporated to the forward strands of dsDNA during 

amplification, thereby providing aptamers with fluorescence capability. Primer 

combinations used in the revised-SELEX procedure are summarised in Table 4.1.  

Table 4.1: Primer combinations used at different stages of the revised-SELEX procedure 

Stage Forward Reverse 

Selection HEX-Pf biotin-Pr 

Cloning and sequencing Pf Pr 

Pf = forward primer and; Pr = reverse primer. 
 

Preparations of all synthesised oligonucleotides and buffers were carried out as outlined 

in Chapter 2 (see Section 2.3). The following section provides a summary of the revised-

SELEX procedure for selecting TCS-specific aptamers.    

4.2.2.1 Blocking of affinity matrices 

A new Blotto solution prepared by adding tRNA to the Blotto solution at 10 mg/mL was 

utilised to block all matrices (i.e. control and TCS D matrices, as well as BPA- and OE2-

matrices). The process for washing and blocking these matrices was performed as 

described in Chapter 2 (see Section 2.4.1). 

4.2.2.2 Denaturation of ssDNA aptamer library 

The initial synthetic aptamer library (3 nmol), and those libraries (each ~ 50 pmol) used 

for subsequent rounds of selection were subjected to a heat-denaturing process (see 

Section 2.4.2, Chapter 2) before being incubated with either TCS D matrix for positive 

selections or appropriate matrices for negative and counter selection.   
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4.2.2.3 Co-incubation of the aptamer library with the affinity matrices  

For the first two cycles, the aptamer library for each cycle was only incubated with TCS D 

matrix. Before starting the third cycle, a negative selection was performed by incubating 

the aptamer library with control D matrix for 60 mins at RT with gentle shaking. Then, 

the aptamer-control matrix suspension was centrifuged for 2 mins at 13,000 x g. 

Thereafter, the supernatant was collected and added to TCS D matrix to start the third 

round of selection. Counter selections using OE2- and BPA-matrices were performed 

before selection rounds 6 and 8, respectively. These selections were performed as 

described for the negative selection. 

4.2.2.4 Removal of unbound oligonucleotides 

Following incubation with TCS D matrix, sequences with little or no affinity for TCS were 

removed during multiple washing steps (see Section 2.4.4, Chapter 2). The resulting 

aptamer-bound matrices as well as those obtained from negative and counter selections 

were subjected to real-time PCR amplification.  

4.2.2.5 Real-time PCR amplification 

A real-time PCR sample was prepared as for a standard PCR sample (see Section 2.4.5, 

Chapter 2), except for the addition of SYBR Green (1X final concentration), and the use of 

different primer combinations (Table 4.1). Furthermore, the real-time amplification 

process was stopped immediately after the signal output reached a plateau, as assessed 

by SYBR green binding to dsDNA molecules. Following amplification, the real-time PCR 

products from positive, negative and counter selections were purified and visualised (see 

Section 2.4.6, Chapter 2). Only the 75 bp bands from positive selections were excised, 

extracted and strand-separated as described in Chapter 2 (see Section 2.4.6– 8). 

4.2.2.6 Selection conditions for the revised-SELEX procedure 

Ten cycles of positive selections were undertaken which involved one negative selection 

and two counter selection steps in the revised-SELEX procedure. The stringency of 

selection was controlled in a similar fashion as for the basic-SELEX by altering the amount 

of TCS D matrix used, the time of incubation and the volume of washing within each cycle 

(Table 4.2).  
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Table 4.2: Aptamer selection conditions used in the revised-SELEX procedure 

SELEX 

round 

Affinity column 

(mg) 

Incubation 

time (hr) 

Incubation 

temperature (°C) 

Wash volume 

(mL) 

1 TCS 50 12 4 5 

2 TCS 40 12 4 5 

3 Control 

TCS 

20 

30 

1 

12 

23 

4 

n/a 

10 

4 TCS 30 8 4 15 

5 TCS 30 8 4 20 

6 OE2 

TCS 

20 

20 

1 

8 

23 

4 

n/a 

25 

7 TCS 20 4 12 30 

8 BPA 

TCS 

20 

20 

1 

4 

23 

12 

n/a 

35 

9 TCS 10 1 4 40 

10 TCS 10 1 4 45 

The bold represents negative and counter selections undertaken at the respective 
SELEX round. 
 

4.2.3 Progression of the revised-SELEX procedure 

The fluorescent imaging assay was utilised to assess the progression of the revised-SELEX 

procedure. In brief, 5 µL of aptamer-bound TCS D matrix from each cycle was 

resuspended in 25 µL of 1X BWB, and the resulting matrix suspension was loaded onto a 

glass slide with a cover slip on top. Thereafter, the glass slide was visualised using 

fluorescent microscopy. For each cycle, three images were captured corresponding to 

three different regions of the slide under blue light excitation. The captured images were 

analysed using the methodology described in Chapter 3 (see Section 3.2.6.2). Enrichment 

of the aptamer library was assessed at each selection round by monitoring average 

fluorescent signals from the aptamer-bound TCS D matrix via the measurement of three 

images per round. The selection process was stopped when no increase in fluorescence 

was observed.  
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4.2.4 DNA cloning, sequencing and nucleotide analysis 

Following the fluorescent imaging assay, and provided no increase in fluorescence was 

observed, the selected aptamer library from round 10 was cloned and sequenced to 

identify their nucleotide compositions as outlined in Chapter 2 (see Section 2.6.1– 5). Ten 

unique sequences (each 75 bases), referred to as TCS round 10 (R10) aptamers, were 

identified from the sequencing step. Thereafter, nucleotide analyses of TCS R10 aptamers 

were performed as described in Chapter 2 (see Section 2.6.6). 

4.2.5 Aptamer characterisation 

The binding affinity and specificity of TCS R10 aptamers were characterised. In addition, 

their Kd values, as well as the degree of conformational change in-solution were 

detemined. All aptamers being characterised were synthesised without labelling (CD 

spectroscopy), or synthesised and modified at the 5’-end with either a biotin tag 

(fluorescent binding assay) or HEX tag (fluorescent imaging assay). Furthermore, a 75 

base-long random sequence synthesised and modified the same as aptamers was 

included as a control to assess non-specific binding of oligonucleotides during the 

following characterisation process. 

4.2.5.1 Binding affinity 

The fluorescent imaging assay was utilised to screen binding affinity of TCS R10 aptamers. 

The assays were performed as described in Chapter 3 (see Section 3.2.6.1), except that: 

[i] control and TCS D matrices were utilised for binding with aptamers; [ii] each aptamer 

being tested was prepared at a final concentration of 150 nM; [iii] random sequence (75 

mer) was included as a control and; [iv] green light was utilised to excite the fluorophore. 

The fluorescent images captured from both control and TCS D matrices were then 

analysed using the methodology described in Chapter 3 (see Section 3.2.6.2).  

4.2.5.2 Kd Determination using both fluorescent imaging and binding assays 

The Kd values of TCS R10 aptamers were determined firstly using the fluorescent imaging 

assay, and secondly using the fluorescent binding assay under identical conditions to 

establish if the imaging method was suitable for Kd determination. Preparation of 

aptamer-bound matrices for the Kd experiments was performed as described in Chapter 2 

(see Section 2.7.2) with modifications:  
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[i] the use of control and TCS D matrices for binding with aptamers tested; [ii] each 

aptamer was prepared at a final concentration range of 20–750 nM; [iii] in the imaging 

method, aptamer-bound matrices were visualised under the microscope, whereas in the 

affinity procedure, aptamer-bound matrices were subjected to elution and; [iv] random 

sequence was included in both assays as a control, and was prepared the same as each 

aptamer tested.  

The fluorescent images captured from the imaging method were analysed as described 

in Chapter 3 (see Section 3.2.6.2), and the binding saturation curve for each sequence 

tested was generated by plotting the concentrations of assayed sequences versus their 

fluorescent counts following image analyses. The data obtained from the fluorescent 

binding assay was analysed as described in Chapter 2 (see Section 2.7.2), and the binding 

saturation curve for each sequence tested was generated by plotting the amount of eluted 

aptamer versus the concentration of the incubated aptamer. The Kd values from both 

methods were determined using the GraphPad Prism software as described in Chapter 2 

(see Section 2.7.2). 

4.2.5.3 In-solution conformational change 

The method for obtaining CD spectra is outlined in Chapter 2 (see Section 2.7.3). In brief, 

both the random sequence and TCS R10 aptamers with preferred binding properties were 

prepared at final concentration of 1 µM with 1X BWB containing 5 % (v/v) ethanol, 

whereas TCS was prepared in the same buffer at concentrations of 2, 5 and 10 µM. The CD 

spectra of each tested sequence were recorded before and after mixing with TCS for 

60 mins.  

4.2.5.4 Binding specificity 

The binding specificity of TCS R10 aptamers with the most desirable binding properties 

were investigated using the fluorescent imaging assay applied via an in-solution 

competitive binding strategy. The rationale here was that free TCS or structurally similar 

molecules in solution will compete with the immobilised TCS (i.e. on the matrix) for 

aptamer binding sites and cause matrix bound-aptamers to dissociate, thereby reducing 

the fluorescent signal of the aptamer-bound matrix.  
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In brief, HEX-labelled aptamer aliquots (each 100 µL) were prepared using 1X BWB at 

1200 nM, and each aliquot was heat-denatured (see Section 2.4.2, Chapter 2). TCS D 

matrix aliquots (each 1mg) were washed and blocked (see Section 2.4.1, Chapter 2). 

Thereafter, each aptamer aliquot was incubated with each matrix aliquote for 60 mins at 

RT. The resulting aptamer-bound matrix preparations were washed two times with 200 

µL of ethanol-treated BWB (i.e. 1X BWB containing 5 % ethanol). Following matrix 

washing, each aptamer-bound matrix preparation was resuspended in 200 µL of the 

ethanol-treated BWB containing one of the competitive reagents (i.e. TCS, MTS, BPA and 

OE2) each prepared at 10 µM. A reference sample containing only ethanol-treated BWB 

was also prepared as a control. Thereafter, each matrix suspension was incubated at RT 

for 30 mins with gentle shaking. Following incubation, two washings using 200 µL 

ethanol-treated BWB was carried out, and the resulting matrices were each resuspended 

in 30 µL ethanol-treated BWB before being visualised under the fluorescent microscope. 

The extent of the reduction in the fluorescent intensity was used to evaluate the degree 

of non-specific interaction with each competitive reagent.  

4.2.6 Aptamer truncation study 

In order to locate the target binding site and evaluate the effect of different regions (i.e. 

primer and random region) of an aptamer on its target binding capability, TCS R10 

aptamers with the most desirable binding properties were truncated by either removing 

forward, reverse or both primer regions. The resulting truncated versions of the aptamer 

(Table 4.3) were chemically synthesised and modified with a HEX tag at the 5’-end, and 

subjected to Kd determination using the fluorescent imaging assay (see Section 4.2.5.2). 

Table 4.3: Nucleotide sequences of the truncated TCS aptamer H6 with their given 
identities (IDs): 57H6F, 58H6R and 40H6B 

ID Sequence (5’ – 3’) Length  
57H6F GTCTGAAGGGATTGAGTATCCGGGGAGATGATGTCGTTGGTGAT

AGTAAGAGCAATC 
57 

58H6R ATACGAGCTTGTTCAATAGTCTGAAGGGATTGAGTATCCGGGGA
GATGATGTCGTTGG 

58 

40H6B GTCTGAAGGGATTGAGTATCCGGGGAGATGATGTCGTTGG 40 

The table shows sequences of 57H6F (forward primer deletion), 58H6R (reverse primer 
deletion), and 40H6B (both primer deletion); the red and blue highlighted nucleotides 
represent forward and reverse primer regions of H6 aptamer respectively. 
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4.3 Results 

 

4.3.1 Preparation of affinity matrices  

Conjugation of BPA onto the surface of sepharose beads was confirmed by obtaining UV-

visible absorption spectra of free BPA and BPA-matrix in water (Figure 4.1). Conjugation 

and characterisation of OE2-matrix were performed by Dr Shalen Kumar (data not 

shown). 

Figure 4.1: UV-visible spectra of (A) free BPA in water and (B) BPA-matrix in water 

A.                                                                                  B. 

  
 

The presence of absorption peak at wavelengths 276 was observed for both BPA-

conjugated matrix and BPA in water thus confirming the successful conjugation of BPA 

onto the matrix.  

4.3.2 Elucidating the impact of negative and counter selections  

The effect of the negative and counter selections in the revised-SELEX procedure was 

assessed based on the band intensity of the amplified PCR products. Specifically, the 

aptamer-bound positive selection matrices (from rounds 3, 6 and 8), the negative 

selection matrix before round 3, and the counter selection matrices before rounds 6 and 

8 were amplified under identical conditions using real-time PCR. Thereafter, the PCR 

products from these amplifications were subjected to agarose gel electrophoresis and 

visualised under UV light (Figure 4.2).  
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Figure 4.2: Real-time PCR amplification of aptamer-bound positive, negative and counter 
selection matrices from the revised-SELEX rounds 3, 6, and 8 

 

Lane 1: +ve control (1 nM N40 library); lane 2: DNA ladder; lanes 3 & 4, 7 & 8, and 11 &12: 
the amplification of positive selection matrices from selection rounds 3, 6 and 8, 
respectively; lanes 5 & 6: the amplification of unconjugated matrix for negative selection; 
lanes 9 & 10, and 13 & 14: the amplification of OE2- and BPA-matrices respectively for 
counter selections; bp = base pair; BPA = bisphenol A and; OE2 = 17-β oestradiol. 
 

No non-specific PCR by-products formed after 8 rounds of positive selection (Figure 4.2, 

lanes 11 and 12). The intensity of 75 bp bands (Figure 4.2, lanes 5&6, 9&10, and 13&14) 

were analysed to estimate the amount of oligonucleotide sequences removed from the 

aptamer pool by negative and counter selections. 

4.3.3 Progression of the-revised SELEX procedure 

To monitor the efficiency of the revised-SELEX procedure and to establish when the 

SELEX cycle can be stopped, the aptamer-bound TCS D matrix from each cycle was 

subjected to the fluorescent imaging assay (Figure 4.3a). 
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Figure 4.3a: Fluorescent images of the aptamer-bound TCS D matrix from each revised-
SELEX round 

Round            1                       2                       3                       4                       5               

 

 

Round            6                      7                        8                       9                      10           

 

 

 

Fluorescent intensity of the aptamer-bound matrix at each SELEX round was analysed to 

quantify TCS binding affinity of each selected aptamer library (Figure 4.3b). 

Figure 4.3b: Fluorescent counts representing the binding affinity of selected aptamer 
library at each revised-SELEX round to TCS D matrix 

    

The error bars represent the standard deviation of the fluorescent counts measured from 
three separate images at each SELEX round. 
 

As shown in Figure 4.3a and 4.3b, negative selections using control D matrix before round 

3 showed a reduction in the amount of aptamer recovered indicating the removal of 

oligonucleotide sequences that non-specifically interact with the matrix surface.  
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In contrast, there was no signal reduction when using OE2-matrix for counter selection 

before round 6. However, counter selection using BPA-matrix caused a significant 

reduction in the amount of aptamer recovered, and therefore indicationg the eliminating 

of oligonucleotide sequences capable of binding to BPA. Over all, no significant 

enrichment occurred at 9th and 10th rounds. Therefore, selection experiments were 

stopped after 10 cycles. 

4.3.4 DNA cloning, sequencing, and nucleotide analysis 

Ten monoclonal TCS aptamers (named as H1 – H10) from the 10th round (R10) of the 

revised-SELEX procedure were cloned and sequenced (Table 4.4).  

Table 4.4: Nucleotide sequence of revised-SELEX round 10 TCS aptamers (H1 – H10) and 
the composition (%) of individual bases (A, T, G and C) in the N40 random region within 
each aptamer 

Clone Full sequence 5’ to 3’ A (%) T (%) G (%) C (%) 

H1 ATACGAGCTTGTTCAATACATTGCGGCGAGTGATGAGG 

TTCGAAGGGGTGGGGGCGGGTGATAGTAAGAGCAATC 
15 17.5 55 12.5 

H2 ATACGAGCTTGTTCAATACGGGGGAGGTGGGTTAAGG 

GGGTGGAGAGTGTAGGTGTG TGATAGTAAGAGCAATC 
15 20 60 5 

H3 ATACGAGCTTGTTCAATAGACGTTTGGGTCAGGTGGGT 

GGTGCGGGGACGGTGTGTGGTGATAGTAAGAGCAATC 
7.5 25 57.5 10 

H4 ATACGAGCTTGTTCAATAGCGTGGGGAGGTTAAAGGGC 

CGGGGGTGGTGTCAGTTGTGTGATAGTAAGAGCAATC 
12.5 22.5 55 10 

H5 ATACGAGCTTGTTCAATAGTTGGTAGGATGTTTGGACG 

GAAGGGATGGGGGCTGGTGGTGATAGTAAGAGCAATC 
15 25 55 5 

H6 ATACGAGCTTGTTCAATAGTCTGAAGGGATTGAGTATC 

CGGGGAGATGATGTCGTTGGTGATAGTAAGAGCAATC 
20 27.5 42.5 10 

H7 ATACGAGCTTGTTCAATACGGGTGGTTGAGGTGGGGCG 

GGTTGGTGGAGGTTGTGGCGTGATAGTAAGAGCAATC 
5 25 62.5 7.5 

H8 ATACGAGCTTGTTCAATATGTGATTGTGGATGTTGGGT 

GTGATGGTTTTGGGCTGTGGTGATAGTAAGAGCAATC 
7.5 42.5 47.5 2.5 

H9 ATACGAGCTTGTTCAATATCGGGCGGGTGGACGTGGTG 

AGTTGGGGCGTTGTGGTGCGTGATAGTAAGAGCAATC 
5 25 57.5 12.5 

H10 ATACGAGCTTGTTCAATATGGTCGTGGGGGAGGTGGTG 

GGTAGGACGGTTATGGTGTGTGATAGTAAGAGCAATC 
10 27.5 57.5 5 

Highlighted nucleotides represent forward (red) and reverse (blue) primer regions 

 

Analyses of the N40 random region for each TCS R10 aptamers indicated an enrichment 

of G and T nucleotides across all sequences with G being the most abundant occupying 

over 40 % of the N40 region.  
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The evolutionary relationship between the identified aptamers was further investigated 

using phylogenetic analyses (Figure 4.4).  

Figure 4.4: Phylogenetic relationships among TCS round 10 aptamers (H1 – H10) 

 

 

The phytogenic tree (Figure 4.4) indicated three major branches of evolutionary lineage. 

Aptamers H4 and H7 were grouped in lineage 1, which showed the closest relationship, 

and was also evident from their similar nucleotide compositions in the N40 random 

region (Table 4.4). Aptamers H1, H5, H2 and H8 were grouped in lineage 2, which when 

compared with lineage 1, appeared rather closely related each other although H8 was 

more distinct from the others. In lineage 3, aptamer H6 was more distinct compared with 

aptamers H3, H9 and H10, with H3 and H9 the most closely related.  
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Nucleotides within the N40 region of each TCS R10 aptamer were then aligned to identify 

regions of homology (Figure 4.5) to assist in identifying shared conserved sequences.  

Figure 4.5: Alignment of N40 regions for TCS round 10 aptamers (H1 – H10) 

H2   --GGGGGAGGTGGGTTA-------AGGGGGTGGAGAGTGTAGGTGTG 

H6   ----GTCTGAAGGGATTGAGTATCCGGGGAGATGATGTC-GTTGG-- 

H1   CATTGCGGCGAGTGATGAGGTTCGAAGGGGTGGGGGCGG--G----- 

H5   GTTGGTAGGATGTTTGGACGGAAGGGA---TGGGGGCTG--GTGG-- 

H4   ---GCGTGGGGA-GGTTAAAGGGC---CGGGGGTGGTGTCAGTTGTG 

H3   -----GACGTTTGGGTCAGGTGGGTGGTGCGGGGACGGTGTGTGG-- 

H7   -------CGGGTGGTTGAGGTGGGGCGGGTTGGTGGAGGTTGTGGCG 

H8   ---TGTGATTGTGGATG--TTGGGTGTGATGGTTTTGGGCTGTGG-- 

H9   --TCGGGCGGGTGGACGTGGTGAGTTGGGGCGTTGTGGTGCG----- 

H10  --TGGTCGTGGGGGAGGTGGTGGGTAGGACGGTTATGGTGTG----- 

Highlighted nucleotides denoted conserved sequences. 

 

Analysis of the N40 regions when aligned showed some conserved sequences such as: 

“XGGGX”, where X can be both T, both A or C and T” (8 aptamers), “GGTTX”, where X can 

be either A, T, C or G” (7 aptamers), “GGGGX” where X can be either A or T” (7 aptamers), 

and “TGGGGGX”, where X can be either C or A” (5 aptamers) (Figure 4.5).  

Secondary structures of TCS R10 aptamers were then predicted in order to find their 

folding characteristics between primer and random regions. Secondary structures of 

aptamers H2, H5 and H6 are shown in Figure 4.6, and the complete folding are shown in 

Appendix IV. 
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Figure 4.6: Secondary structures of aptamers H2 (TR10H2), H6 (TR10H6) and H5 
(TR10H5) demonstrating two, three and four stem-loop (SL) structures respectively 

                        

                        

                        
 

According to the folded-secondary structures (Figure 4.6 and Appendix IV), two variants 

(H7 and H9) were folded into similar linear hairpin loop-stem structures. Three variants, 

H2, H4 and H10 displayed two stem-loop structures. Another three variants H1, H6 and 

H8 displayed three stem-loop structures. Aptamer H5 displayed a four stem-loop 

structure. 
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4.3.5 Aptamer characterisation 

TCS R10 aptamers (H1 – H10) were initially characterised using the fluorescent imaging 

assay, and three aptamers H2, H5 and H6 were chosen to determine their Kd values using 

both the fluorescent imaging and binding assays. Thereafter, the chosen aptamers were 

subjected to CD spectroscopy for assessing their levels of conformational change upon 

target bininding. Furthermore, the binding specificity of aptamer H6 was determined 

using the competitive binding assay. 

4.3.5.1 Binding affinity 

TCS R10 aptamers and the random sequence were screened individually for their affinity 

towards both control and TCS D matrices (Figure 4.7a).  

As shown in Figure 4.7a, no visual fluorescent signals were observed from control D 

matrix for all sequences tested. The random sequence along with aptamers H7, H8, and 

H9 showed very little affinity towards TCS D matrix, whereas aptamers H1, H3, H4 and 

H10 all showed some affinity. In contrast, aptamers H2, H5 and H6 showed relatively high 

affinity with H6 being the highest amongst all aptamers tested.  
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Figure 4.7a: Fluorescent images showing affinities of the random (Rand) sequence and 
TCS round 10 (R10) aptamers (H1 – H10) to control and TCS D matrices 

R10 Control D matrix TCS D matrix 

Rand 
 

  

H1 
 

  

H2 
 

  

H3 

  

H4 

  

H5 

  

H6 

  

H7 

  

H8 

  

H9 

  

H10 

  

Images were captured under the same conditions via three independent experiments. 
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The fluorescence intensity of each oligonucleotide-bound matrix was analysed to 

quantify TCS binding capabilities of TCS R10 aptamers (Figure 4.7b). 

Figure 4.7b: Fluorescent counts representing binding affinities of the random (Rand) 
sequence and TCS round 10 (R10) aptamers to control and TCS D matrices  

 
The error bars represent the standard deviation of the fluorescent counts measured via 
three independent experiments. 
 

Using the fluorescent image analysis methodology, no fluorescent signals observed from 

control D matrix, and TCS aptamers H2, H5 and H6 showed highest affinity to TCS D 

matrix when compared with the remaining sequences being tested (Figure 4.7b). 

Therefore, these aptamers were chosen for Kd determination. 

4.3.5.2 Kd determination  

The Kd values of aptamers H2, H5, and H6 were determined using both the fluorescent 

imaging and binding assays to establish the utility of the imaging method for Kd 

determination.  
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In the fluorescent imaging assay, the determination of a Kd value for each sequence was 

repeated five times. Figure 4.8a summarises fluorescent images from one of the five 

experiments for each sequence and the complete images are shown in Appendix V. 

Figure 4.8a: Fluorescent images of HEX-labelled aptamers (H2, H5 and H6) and the 
random sequence (Rand) prepared at 20–750 nM, binding to control and TCS D matrices  

nM       750              750             550             350              150              50               20 

H2  

 
 

H5 

 
 

H6 

 
 

Rand   

 

TCS          -                    +                    +                  +                   +                  +                  + 

TCS (-) = control D matrix; TCS (+) = TCS D matrix and; each image was captured under 

the same conditions with an exposure time of 1 sec. 

 

From visual examination (Figure 4.8a), the random sequence showed no affinity towards 

TCS D matrix even at the highest concentration of 750 nM. In contrast, aptamers H2, H5 

and H6 showed binding to the TCS D matrix at 150 nM, and thereafter the binding 

increased progressively with increasing concentrations of aptamers. Furthermore, no 

fluorescent signals were observed by any sequences to the control D matrix. Thus, the 

negative image from the highest concentration only is shown in Figure 4.8a.  

Thereafter, image analysis was performed to determine fluorescent intensity (Appendix 

VI). Based on image analysis, binding saturation curves for H2, H5, H6 and control 

(random) aptamers were generated to determine their Kd values (Figure 4.8b).  
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Figure 4.8b: Saturation curves of TCS aptamers H6 (i), H5 (ii), H2 (iii) and the random 
sequence (Rand) (iv) to TCS D matrix determined using the fluorescent imaging assay 

i.                                                                                  ii. 
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iii.                                                                               iv. 
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The error bars represent the standard deviation of the fluorescent counts measured via 
five independent experiments. 
 

The mean ± SD Kd values for aptamers H6 and H5 were determined to be 378 ± 50 and 

604 ± 85 nM respectively (Figure 4.8b i and ii). Binding of TCS ligand to increasing amount 

of aptamer H2 did not reach saturation up to 750 nM (Figure 4.8b iii). This result suggests 

that higher concentration of the aptamer was required to reach saturation. Since the other 

two aptamers demonstrated better affinity than H2, no further increases in aptamer 

concentration were carried out for H2. However, the Kd value for H2 was estimated by the 

Prism software to be 1448 ± 395 nM. The random sequence (Figure 4.8b iv) showed no 

significant binding to the TCS D matrix over all concentrations tested. 

Aptamers H2, H5 and H6 as well as the random sequence were also assessed for their Kd 

values (Figure 4.8c) using the fluorescent binding assay. 

Kd = 378 ± 50 nM 

Kd = indefinite Kd = 1448 ± 395 nM 

Kd = 604 ± 85 nM 
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Figure 4.8c: Saturation curves of TCS aptamers H6 (i), H5 (ii), H2 (iii) and the random 
sequence (Rand) (iv) to TCS D matrix determined using the fluorescent binding assay 
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iii.                                                                iv. 
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The error bars represent the standard deviation of the eluted aptamers measured via five 
independent experiments. 
 

The Kd value of H6 (369 ± 82 nM) determined by the affinity method (Figure 4.8c i) was 

similar to that determined by the imaging method (378 ± 50 nM), and the Kd value of H5 

(544 ± 107 nM) (Figure 4.8c ii) was also comparable to that found for the imaging assay 

(604 ± 85). No evidence that saturation binding was achieved with H2 (Figure 4.8c iii), 

similar to that found for the imaging method. Moreover, only a very low level of binding 

was evident with the random sequence (Figure 4.8c iv).  

4.3.5.3 Conformational change 

CD spectroscopy was used to investigate the in-solution binding activity of aptamers H2, 

H5 and H6 to TCS. CD spectra of these aptamers as well as the random sequence were 

recorded before and after binding to TCS for 60 mins (Figure 4.9 A to F). 

Kd = 544 ± 107 nM 

Kd = indefinite 

Kd = 369 ± 82 nM 

Kd = indefinite 
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Figure 4.9: CD spectra (A to F) of 1 µM TCS aptamers (H2, H5, and H6) and the random 
sequence (Rand), and also the independent detection of TCS at 2, 5 and 10 µM 

A.                                                                                  B.                                        

 
C.                                                                                  D.                                        

 
E.                                                                                  F.                                        
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CD spectra of the random sequence and aptamer H2 overlapped each other before and 

after the present of TCS at 5 µM (Figure 4.9 A and B), indicating no conformational change 

possessed by the sequences upon interaction with TCS. There was a very small shift to 

the right in the CD spectra of aptamer H5 after binding with TCS (Figure 4.9 C), but no 

overall changes in the ellipticity. Aptamer H6 showed a very small reduction of the 

ellipticity at 220 and 244 nm upon binding to 5 µM TCS (Figure 4.9 D), and it appeared 

that the reduction increased in the presence of 10 µM TCS (Figure 4.9 E), but decreased 

at 2 µM TCS (Figure 4.9 F). However, it cannot be conclusively determined whether the 

small changes was due to the aptamer associating with TCS or due to the increase of 

background noise observed in the CD spectra. 

4.3.5.4 Binding specificity  

Binding specificity of TCS aptamer H6 was investigated using the in-solution competitive 

binding assay. If the aptamer has better affinity towards competitive reagents (i.e. TCS, 

MTS, BPA and OE2), the aptamer will dissociate from the aptamer-bound matrix, thereby 

causing a reduction in the fluorescent signal (Figure 4.10a).   

Figure 4.10a: Fluorescent images showing reduced fluorescent intensity of the H6 
aptamer-bound matrix at the presence of competitive reagents in solution 

      Control              BPA                  OE2                  MTS                   TCS 

 

 

 

 

 

BPA = bisphenol A, OE2 = oestradiol, MTS = methyl triclosan and TCS = triclosan. 



129 
 

Visually, the competitive assay showed alterations to the fluorescence intensity of the 

aptamer-bound TCS D matrix following the introduction of MTS and TCS compared to the 

control (Figure 4.10a).  

The fluorescence intensity was further evaluated using image analysis methodology 

(Figure 4.10b). 

Figure 4.10b: Binding specificity of the H6 aptamer as assessed in competitive binding 
studies 

 

The error bars represent the standard deviation of the fluorescence reduction from 5 
independent experiments with the sample reading normalised to the control values; BPA 
= bisphenol A, OE2 = oestradiol, MTS = methyl triclosan and TCS = triclosan. 
 

TCS is the most specific target for aptamer H6 with over 40 % reduction in the fluorescent 

signal (Figure 4.10b). The results also show that the aptamer has a binding affinity to MTS 

with around 25 % fluorescent reduction, wherease the aptamer showed little binding to 

either BPA or OE2 as there was only ~10 % reduction observed for these molecules 

(Figure 4.10b).  

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Control BPA OE2 MTS TCS



130 
 

4.3.6 Aptamer truncation study 

The Kd values of the truncated aptamers were determined using the fluorescent imaging 

assay and by replicating the experiments five times. Figure 4.11a summarises fluorescent 

images for each aptamer from one of the five experiments and complete images are 

shown in Appendix VII. 

Figure 4.11a: Fluorescent images of HEX-labelled aptamers 57H6F, 58H6R and 40H6B 
prepared at 20–750 nM, binding to control and TCS D matrices 

 (nM)        750             750             550             350              150              50                20 

57H6F  

 

58H6R  

 

40H6B  

 

TCS           -                   +                  +                   +                    +                   +                  + 

TCS (-) = control D matrix; TCS (+) = TCS D matrix and; each image was captured under 
the same conditions with an exposure time of 1 sec. 
 

From visual examination (Figure 4.11a), the 40H6B had lost its affinity to TCS matrix even 

at the highest concentration of 750 nM. In contrast, the 57H6F and 58H6R showed 

binding to the matrix at 300 and 150 nM, respectively. Thereafter, binding increased 

progressively with increasing concentrations of the aptamers. Furthermore, no 

fluorescent signals observed from any sequences tested to the control matrix at 750 nM. 

Image analysis was performed to generate binding saturation curves for the truncated 

sequences in order to determine their Kd values (Figure 4.11b).  
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Figure 4.11b: Saturation curves of the truncated sequences 57H6F, 58H6R and 40H6B 
binding to TCS D matrix determined using the fluorescent imaging assay 
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The error bars represent standard deviation of the fluorescent counts measured via five 
independent experiments. 
 

As shown in Figure 4.11b, the binding of the truncated sequences 57H6F and 40H6B 

failed to reach saturation, whereas the Kd value of 58H6R (574 ± 109 nM) is increased by 

almost two-fold than that for the full length sequence (378 ± 50 nM) (Figure 4.8b i).  

 

4.4 Discussion 

 

This chapter explored a revised-SELEX procedure for generating TCS specific ssDNA 

aptamers. The ten monoclonal TCS aptamers (named as H1 – H10) were generated after 

ten cycles of selection (Table 4.4). The aptamers showed improved binding affinity and 

specificity as a consequence of introducing modifications, such as the use of tRNA for 

matrix blocking, negative and counter selections, as well as real-time amplifications.  

The fluorescent imaging assay proved to be suitable for aptamer characterisation. 

Utilising this method, three acceptable aptamers H2, H5 and H6 were identified, and their 

Kd values were determined to be 1448, 603 and 378 nM (Figure 4.8b) respectively. 
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Aptamer H6 showed an almost two-fold improvement in binding affinity with TCS 

compared with the best binding aptamer D5 (Kd = 700 nM) from the basic-SELEX 

procedure. These three candidates H2, H5 and H6 were assessed for their in-solution 

binding activity using CD spectroscopy and competitive binding assay. These 

experiments suggested that aptamer H6 was the best candidate for binding to TCS. 

Although truncated versions of this aptamer showed reduced binding affinities to TCS, 

future investigation of H6 as a capture molecule is worthwhile.   

In the revised-SELEX procedure, the use of tRNA formulated Blotto for matrix blocking 

proved to be effective in minimising non-specific adsorption caused by electrostatic 

interactions between oligonucleotides and the matrix. This is evidenced in the 

experiments, where the binding affinity of a 75 base-random sequence to both control 

and TCS D matrices was completely restricted in the presence of tRNA (Appendix VIII). 

The application of a 10 mg/mL tRNA Blotto formulation was standard practice in the 

revised-SELEX procedure. With this formulation, the random sequence and aptamers H2, 

H5 and H6 showed little non-specific adsorptions to control matrix even at the highest 

concentration of 750 nM (Figure 4.8a).  

Negative and counter selection strategies were applied in the revised-SELEX procedure 

to eliminate nucleotide sequences that bound to either the matrix or compounds sharing 

structural similarity to TCS. Typically, SELEX experiments perform a negative selection 

step using unconjugated matrix before the first round of selection (Silverman 2009). 

However, as individual sequences in the initial synthetic library are single copies, 

performing negative selection before the first round of SELEX can cause a significant 

reduction in the complexity (i.e composition) of the nucleotide pool. Therefore, in the 

revised-SELEX procedure used herein, a negative selection step with control D matrix 

was performed before the third round of SELEX, after the aptamer library had already 

been enriched twice. It was anticipated that this would ensure the presence of multiple 

copies for each putative aptamer sequence. To further enhance aptamer selectivity, 

counter selections with OE2- and BPA-matrices were also performed prior to selection 

rounds 6 and 8 respectively. OE2 and BPA have similar structures to TCS, thus removing 

aptamers that bind to these structures should increase the binding specificity for TCS.  
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The performance of both negative and counter selection strategies were assessed during 

the progression of the selection procedure (Figure 4.3b). A gradual increase in aptamer 

affinity was noted for most positive selection rounds, except for the rounds 3 and 8, where 

there was reduced fluorescent intensity compared with the previous rounds 2 and 7 

respectively. This was not unexpected as negative selection and counter selection with 

control D and BPA-matrices were applied before these two rounds to remove non-specific 

sequences. Therefore, there was less aptamer bound to TCS D matrix and so that the 

matrices showed a reduced fluorescent signal. 

In contrast, the use of OE2-matrix for counter selection before round 6 did not result in 

reduced fluorescent intensity. This indicated that only a few of the nucleotide sequences 

at the SELEX round 5 were binding with OE2. This is reasonable given the fact that the 

chemical structure of OE2 (a four ring-structure) is somewhat different from TCS (a two 

ring-structure) when compared with BPA (also a two ring-structure) (Figure 3.1, Chapter 

3). After five rounds of positive selection, it was safe to assume that the selected polyclonal 

aptamer library contained sequences preferentially binding to the two-ring structure 

molecules, with very few sequences remaining that were specific to the four ring-

structures such as OE2. The results are in agreement with the observation from the PCR 

amplification where only faint bands were observed when amplifying aptamer-bound 

OE2-matrix (Figure 4.2, lanes 9 & 10), whereas bands with reasonable intensity (Figure 

4.2, lanes 5 & 6 and 13 & 14) were observed with aptamer-bound control D and BPA- 

matrices indicating some sequences specific to these matrices have been removed from 

the polyclonal aptamer libraries. It is worth mentioning that counter selection using MTS 

was not performed in this study, as not only are the structural difference between MTS 

and TCS minimal, but also that MTS is a metabolite of TCS. It was considered that 

aptamers demonstrating affinity towards MTS would be also a useful indicator for the 

presence of TCS. The fluorescence imaging method showed that no further enrichment 

occurred during the last two rounds of selection (Figure 4.3b). Therefore, the selection 

was stopped at round 10, and the aptamer library from round 10 was cloned and 

sequenced to identify TCS specific monoclonal aptamers. 
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Replacing conventional PCR amplification of an aptamer-bound matrix by real-time PCR 

amplification was a major improvement in the revised-SELEX procedure. Using real-time 

PCR, there were no signs of undesired PCR by-products formation after eight rounds of 

selection (Figure 4.2, lanes 11 & 12). Therefore, the revised-SELEX cycle proceeded 

beyond eight rounds. The only difference between performing a standard PCR and a real-

time PCR is that the amplification process in the real-time procedure is stopped 

immediately after the real-time signal reaches a plateau, whereas a fixed 35 cycles of 

amplification was applied in the standard PCR process. This confirmed that over 

amplification of the aptamer-bound matrix was the cause for the formation of non-

specific PCR by-products.  

Some potential applications of the fluorescent imaging assay were evaluated in the-

revised SELEX procedure. This method was used for monitoring the SELEX progression, 

characterising binding affinity and specificity of the selected aptamers, and determining 

their Kd values. Specifically, the imaging method can be applied for cycle-based 

surveillance when monitoring the SELEX performance. In contrast, when using the dot 

blot assay in the basic-SELEX procedure, the first positive result was not evident until the 

sixth round of selection. And, beforehand it wasn’t clear what was taking place during the 

SELEX procedure. Often, it is the initial rounds of SELEX which are critical in determining 

whether the conditions are appropriate for aptamer selection. Moreover, it was found 

that the imaging method required less effort when compared with dot blot assays, and 

the relatively simple visualisation of aptamer-bound matrices from each cycle provided 

useful information regarding the SELEX performance. When applying the imaging 

method for aptamer characterisation, the binding affinity of the R10 aptamers were 

ranked based on their fluorescent counts, and three promising aptamer candidates H2, 

H5 and H6, were identified in the initial affinity screening studies (Figure 4.7b). Later, the 

Kd values of these candidates were determined using both fluorescent imaging and 

binding methods. Results from both methods agreed each other (Figure 4.8b and 4.8c) 

confirming the novel fluorescent imaging assay is a suitable method for determining the 

Kd values.  
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In addition, the random sequence was included as a control in the aforementioned 

experiments to assess non-specific binding. This is a critically important step, as it 

confirms that the selected aptamer candidates are specific to TCS molecule instead of 

other moieties on the matrix surface. The resulting binding data that can be generated 

represent specific binding by aptamers, when the random sequence shows little or no 

affinity to TCS D matrix at all concentrations tested (Figure 4.8b iv and 4.8c iv).  

In-solution binding activities of the chosen aptamers H2, H5 and H6 were assessed using 

CD spectroscopy. As shown in Figure 4.9, aptamer H2 had no response in the CD spectrum 

at the presence of TCS. This is consistent with the finding that the H2 is a low affinity 

aptamer failing to reach saturation during the Kd study. It is most likely that the affinity of 

H2 is matrix-based, just like the rhodamine case mentioned in the introduction to this 

chapter. The CD results for aptamer H5 were ambiguous, and the reason for the shift in 

its spectra (Figure 4.9 C) was unclear, whereas aptamer H6 showed a minimal change in 

the ellipticity in the CD spectra (Figure 4.9 D, E and F). Overall, the CD results are 

informative to conclude the binding activity of the chosen aptamers in solution. Therefore, 

the H6 aptamer was subjected to further characterisation using the competitive assay. In 

these studies, the H6 aptamer-bound matrix were subjected to an in-solution competition 

with TCS and structurally similar compounds (i.e. MTS, BPA and OE2). Dissociation of 

aptamer H6 from the matrix complex was observed when using TCS and MTS for 

competition as large fluorescent signal reductions observed (Figure 4.10a and 4.10b). 

In contrast, only small reductions (Figure 4.10a and 4.10b) observed with the use of BPA 

and OE2 for competition indicating that H6 is specific to TCS and also it’s metabolite MTS. 

Although the competitive binding study has the potential to be developed as a sensing 

assay for TCS, the major drawback is that the sepharose beads are not an ideal carrier for 

such an assay. This is because the beads are not of uniform-size. Moreover, the synthesis 

of these beads leads to large batch to batch variation, and thus inconsistent assay 

performance. Therefore, it is reasonable to suggest that aptamers such as H6 will require 

a different assay platform for sensing applications. 
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Truncation studies based on the use of aptamer H6 were carried out to identify TCS 

binding motifs. As evidenced from Figure 4.11a and 4.11b, the truncated versions 

aptamer H6 showed reduced affinity to TCS, and by removing both primer regions, the 

aptamer (i.e. 40H6B) lost its affinity to TCS completely. The message derived from these 

results is that just simply chopping off primer regions does not in itself help to identify 

the exact binding pocket for a selected aptamer, and further discussion on the aptamer 

truncation study will be addressed in Chapter 6. With respect to the information 

concerning nucleotide analyses, phylogeny and 2D structures of TCS R10 aptamers, 

discussion of these results in detail will be made in general discussion (see Chapter 6). 

 

4.5 Conclusion 

 

Selection modifications applied in the revised-SELEX procedure have led to the 

generation of TCS-specific aptamers with improved binding affinity and specificity. The 

best aptamer candidate H6 was fully characterised with respect to its Kd value 

determination, in-solution conformational change and binding specificity, as well as 

through the truncation studies. These results suggest that this aptamer may well be an 

appropriate candidate for the development of an aptamer-based biosensor for detecting 

TCS. Finally, the fluorescent imaging assay was proved to be a superior technique for 

SELEX applications.  
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CHAPTER 5 

DETECTION OF TRICLOSAN USING A GOLD NANOPARTICLE 

COLORIMETRIC METHOD 

 

5.1 Introduction 

 

The use of gold nanoparticles (AuNPs) with ssDNA aptamers to measure binding 

interactions with small molecules is becoming an increasingly popular detection method. 

The chemical and optical properties of AuNPs make these nanoparticles an ideal 

candidate for use with ssDNA aptamers. In particular, AuNPs offer options of both 

chemical attachment of ssDNA molecules modified with reactive groups (e.g. -NH2 or -

SH) and/or non-specific adsorption of ssDNA molecules onto their negatively-charged 

surface (Li and Rothberg 2004). In addition, the colour of a colloidal gold solution changes 

from red to violet during aggregation or from violet to red during disaggregation due to 

changes in inter-particle plasmon coupling and the resulting surface plasmon band shift 

(Elghanian et al. 1997). The change in the surface plasmon coupling of AuNPs allows for 

both qualitative (visual change in colour) and quantitative (UV-visible spectroscopy) 

measurements (Wang et al. 2007; Wei et al. 2007). Based on these properties, AuNPs have 

been utilised in the development of aptasensors by using the nanoparticles as the signal 

transducer with aptamers being the receptor. A number of AuNP-based aptasensors have 

been developed to detect either proteins or small molecules (Cheng et al. 2011; Li et al. 

2011; Mei et al. 2013).  

For example, by making use of chemical conjugation of oligonucleotides onto the gold 

surface and DNA hybridisation technology, Liu et al. designed ATP and cocaine 

aptasensors that use cross-linked AuNPs as the signal transducer (Liu and Lu 2006). In 

this system, ATP or cocaine aptamers is connected to a linker sequence. The AuNPs are 

functionalised with either a short oligo (oligo 1) whose sequence is complementary to 

the 5’ end of the linker sequence or another short oligo (oligo 2) whose sequence is 

complementary to the 3’ end of the linker sequence and part of the aptamer sequence 

(Figure 5.1a).  
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Figure 5.1a: An aptasensor utilising cross-linked gold nanoparticles 

 
 

When the target is absent, the aptamer with the linker sequence hybridised to both oligo 

1 and oligo 2, thereby crosslinking the AuNPs and forming aggregates that appear violet 

in solution. To accommodate the target molecule, the aptamer adopted a folded structure, 

thereby displacing the oligo 2 from the linking arm. This resulted in the breakdown of the 

aggregates and a violet-to-red colour change was observed in solution. This approach 

relies on a physical change of AuNPs from aggregation state to free dispersion in solution. 

This to some extent is less sensitive for target detection, since the AuNPs once aggregated 

are difficult to disaggregate presumably because of Van der Waals forces or steric 

hindrance restricting the accessibility of biomolecules into the aggregates (Zhao et al. 

2007). As stated in this study at least 0.5 mM ATP and 1 mM cocaine are required to break 

down the AuNP aggregates and result in a noticeable colour change by naked-eye (Liu 

and Lu 2006).  

Alternatively, Zhao et al. developed an aptasensor for ATP detection that utilises the same 

principle of oligonucleotide conjugation and DNA hybridisation, but relies on salt-

induced aggregation of uncross-linked AuNPs (Zhao et al. 2007). The AuNPs used in this 

aptasensor are functionalised with a short oligonucleotide whose sequence is 

complementary to part of the aptamer sequence (Figure 5.1b).  
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Figure 5.1b: An aptasensor utilising uncross-linked gold nanoparticles 

 

 

The aptamer sequence is hybridised to the short oligonucleotide in the absence of its 

target molecule, but quickly dissociate from the oligonucleotide when the target molecule 

is present. Since un-hybridised AuNPs are less stable at a specific salt concentration 

compared to their hybridised counterparts, the AuNPs aggregate and result in a red to 

violet colour change in solution. When applying the same ATP aptamer, the use of this 

uncross-linked AuNPs showed better sensitivity with a detection limit around 10 µM, 

which is approximately 20 times better than what was achieved with the cross-linked 

aptasensor (Figure 5.1a).  

Both the above-mentioned studies involved a chemical conjugation of oligonucleotides to 

the surface of AuNPs. As mentioned earlier, ssDNA molecules can also electrostatically 

adsorb onto the surface of AuNPs, thereby stabilising the AuNPs against aggregation at 

certain salt concentrations (Li and Rothberg 2004). The ability of anchoring ssDNA 

molecules onto the gold surface via non-specific adsorption has inspired many 

researchers to develop a new type of AuNP-based aptasensor referred to as the aptamer-

protected AuNP aptasensor. Alsager et al. reported an ultrasensitive colorimetric 

detection of 17β-oestradiol (OE2) based on the use of an OE2 aptamer-protected AuNP 

aptasensor as demonstrated in Figure 5.1c (Alsager et al. 2015).  
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Figure 5.1c: An aptasensor utilising aptamer-protected AuNPs 

      

(i) monodispersed (red) AuNPs aggregating (blue) upon the addition of NaCl; (ii) addition 
of an aptamer leads to the coating of the AuNPs, thereby preventing aggregation and; (iii) 
addition of the aptamer target molecule leads to the aptamer preferentially binding to the 
target resulting in the isolated AuNPs aggregating following the addition of NaCl. 
 

This aptasensor utilised non-specifically adsorbed OE2 aptamer on the surface of AuNPs 

dissociating upon the introduction of OE2. This was expected to occur as once OE2 was 

specifically bound to the aptamer, it would likely lead to a change in the aptamer 

conformation from a random flexible structure to a rigid tertiary structure. It was 

reasoned that an OE2 aptamer with a random flexible structure would be able to envelop 

and protect the AuNPs from NaCl-induced aggregation, whereas with a rigid tertiary 

structure the aptamer could not protect the nanoparticles. 
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Following the addition of NaCl, the AuNPs in the presence of OE2 aptamer would remain 

dispersed, whereas in the presence of OE2, the aptamer would dissociate and AuNPs 

would aggregate. The OE2 aptasensor was able to detect OE2-spiked rat urine samples 

with a LOD of 200 pM (Alsager et al. 2015). Other examples of using aptamer-protected 

AuNPs for sensing include the detection of, oxytetracycline with a LOD of 25 nM (Kim et 

al. 2010), ochratoxin A with a LOD of 20 nM (Cheng et al. 2011), and kanamycin with a 

LOD of 25 nM (Song et al. 2011). Furthermore, a multiplex detection system enabling the 

measurements of sulfadimethoxine, kanamycin, and adenosine at the same time has been 

developed (Niu et al. 2014).  

Overall, the aforementioned studies demonstrate that aptamer-protected AuNP 

aptasensors are suitable for the detection of small molecules, and the LOD achieved in this 

approach is much lower than for those approaches using either uncross-linked or cross-

linked AuNPs. Inspired by these studies, TCS aptamer H6 generated from the revised-

SELEX procedure was tested for its utility in an aptamer-protected AuNP assay system 

(i.e. an aptasensor). Therefore, the aim of this chapter was to explore the development of 

an AuNP-based TCS aptasensor with the objectives of: [i] confirming the applicability of 

TCS aptamer H6 for the construction of an aptasensor; [ii] optimising the working 

conditions for the constructed aptasensor and; [iii] confirming the sensitivity and 

specificity of the aptasensor for TCS detection in-solution. 

 

5.2 Methods 

 

The work undertaken below using an AuNP-based system was developed with Drs Omar 

Alsagar and Shalen Kumar (Victoria University of Wellington, NZ). All materials, reagents 

and suppliers are shown in Appendix I. 

5.2.1 Synthesis and characterisation of AuNPs 

AuNPs used in the present study were chemically synthesised in the laboratory using the 

classical citrate reduction method (Grabar et al. 1995). Briefly, a 100 mL chloroauric acid 

solution (1 mM) was added to a conical flask and heated to boiling with constant stirring. 

Subsequently, a 10 mL sodium citrate solution (38.8 mM) was added, and the resulting 

reaction mixture stirred for another 15 mins with constant heating.  
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During this interval, the reaction mixture underwent colour changes from transparent to 

deep blue and finally to wine red indicating the successful formation of AuNPs. Thereafter, 

the synthesised AuNPs were visualised under a JEOL USA Transmission Electron 

Microscope (TEM) (JEOL Solutions for Innovation, Peabody, Massachusetts, USA), and a 

TEM image was captured at 20 nm resolution. Furthermore, an UV-visible absorption 

spectrum of the AuNPs was recorded from 200 to 800 nm using an Agilent 8453 UV-

visible spectrophotometer (Agilent Technologies, Santa Clara, California, USA) with a 10 

mm path length quarts cuvette at RT.  

5.2.2 Optimisation of AuNPs for biosensing  

Before constructing an AuNP biosensor, the AuNPs were investigated with respect to their 

salt tolerance, target effect and also the optimal amount of aptamer required for 

protection. The AuNPs used for these optimisation experiments were prewashed to 

remove excess amount of citrate ions. Specifically, the AuNPs (20 mL) were evenly 

distributed-into microcentrifuge tubes (each 1 mL), and centrifuged at 12,500 x g for 

30 mins at RT. Following centrifugation, the supernatant from each tube was discarded 

and the resulting pellets were combined and restored to the original volume of 20 mL 

using dH2O. 

5.2.2.1 Salt tolerance 

NaCl-induced aggregation of the unprotected AuNPs was undertaken to determine the 

optimal NaCl concentration needed to induce the aggregation. In a typical experiment, the 

prewashed-AuNPs were pipetted into 9 microcentrifuge tubes (each 100 µL). This was 

followed by the addition of 12 µL of dH2O to each tube. Thereafter, a total of 9 different 

concentrations of NaCl solutions were added (8 µL per tube) to obtain final 

concentrations of NaCl ranging from 0 to 53.3 mM. The resulting solutions were then 

agitated using a wrist-flicking action for 30 sec and then incubated for 15 mins at RT. This 

step, referred to as the “wristflick-incubation”, was used as a standard preparation step 

for the remaining work. Following the wristflick-incubation, samples were aligned on a 

lab bench, and a picture was then taken using a Nikon 200 digital camera to visually 

determine the optimal NaCl concentration (i.e. the minimal amount of NaCl used to fully 

induce the aggregation of the nanoparticles) by naked eye. This photograph and 

visualisation step was also a standard practice adopted for the following experiments. 
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5.2.2.2 Target effect 

The effect of TCS on the AuNPs was investigated to eliminate the possibility of TCS-

induced aggregation. Briefly, the prewashed-AuNPs were pipetted into 9 microcentrifuge 

tubes (each 100 µL), followed by the addition of 8 µL of dH2O to each tube. Thereafter, a 

total of 9 different concentrations of TCS solution were added (12 µL per tube), so that 

the final concentration of TCS in each tube varied from 0 to 2000 nM. The resulting 

solutions then underwent the wristflick-incubation treatment. This was followed by the 

photograph and visualisation step to check for any formation of AuNP aggregates in each 

tube. 

5.2.2.3 Optimisation of aptamer concentration  

After finding the optimal NaCl concentration and excluding the possibility of target effect, 

the amount of aptamer required to protect AuNPs from aggregation was optimised. In 

brief, the prewashed-AuNPs were pipetted into 9 microcentrifuge tubes (each 100 µL). 

This was followed by the addition of 12 µL of TCS H6 aptamer solutions each prepared in 

dH2O and containing different amount of the aptamer (ranging from 0 to 0.5 pmol). The 

resulting mixtures were incubated at RT for 60 mins to allow for the formation of 

aptamer-protected AuNPs. Following incubation, 8 µL of NaCl solution prepared at the 

optimal concentration was added to each aptamer-protected AuNP solution. The final 

concentration of the aptamer used for protection varied from 0 to 140 nM. Thereafter, the 

resulting solutions were subjected to the wristflick-incubation treatment, photography, 

and the visualisation step to determine the optimal aptamer concentration required for 

protection. The concentration, determined as the minimal amount of an aptamer to fully 

prevent the NaCl-induced AuNP aggregation, was chosen to construct the aptasensor for 

TCS detection as described next. 

5.2.3 Detection of TCS using an aptasensor 

In-solution detection of TCS was carried out using the aptamer-protected AuNPs 

constructed with TCS aptamer H6. Formation of the protected nanoparticles was 

performed as described in Section 5.2.2.3, except for that only one aptamer concentration 

(i.e. the optimal concentration) was chosen to protect AuNPs. The resulting AuNP 

aptasensor was utilised to detect TCS and structurally similar compounds, i.e. TCS, 

methyl-triclosan (MTS), bisphenol A (BPA) and oestradiol (OE2).  
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These compounds were first prepared as stock solutions at 25 mM in 100 % ethanol. For 

sensing experiments, the stock solutions of the aforementioned compounds were diluted 

to appropriate working concentrations using dH2O containing 5 % (v/v) ethanol. 

5.2.3.1 In-solution detection of TCS 

Detection of TCS was carried out in six independent experiments. In a typical experiment, 

aliquots (each 100 µL) of the TCS-H6 aptasensor were added into microcentrifuge tubes 

that each contained 12 µL of different concentrations of the TCS solution (0 – 7.5 µM). The 

resulting solutions were incubated at RT for 15 mins to allow for dissociation of the 

aptamer from the surface of AuNPs. Thereafter, 8 µL of NaCl solution at the optimal 

concentration was added to each tube for inducing the aggregation of AuNPs that were 

no longer protected by the adsorbed aptamer due to conformational change as a result of 

the aptamer binding to TCS. Following the addition of NaCl solution, the resulting 

solutions were sequentially subjected to the wristflick-incubation, photography and 

visualisation test. In order to obtain quantitative information for the sensing experiments, 

these samples were also subjected to UV-visible absorption spectroscopy using a 

NanoDrop 1000c Scan UV-visible spectrophotometer (Thermofisher Scientific, Waltham, 

Massachusetts, USA) with a spotting volume of 5 µL per sample. Absorption peaks at 520 

and 625 nm were utilised to obtain a standard curve for TCS detection by plotting the 

ratio of 625/520 versus TCS concentration.  

5.2.3.2 In-solution detection of TCS structural similar compounds 

Detection of compounds sharing structural similarities with TCS (i.e. MTS, BPA and OE2) 

was carried out in three independent experiments. Each of these experiments was carried 

out as described in Section 5.2.3.1. In brief, aliquots (each 100 µL) of the TCS-H6 

aptasensor were added into microcentrifuge tubes that each containing either 12 µL of 

TCS solution at 7.5 µM (as a reference) or one of the structurally similar compounds at 

the same concentration as TCS. A control sample containing 12 µL of dH2O was also 

included in each experiment and treated the same as the tested samples. Thereafter, NaCl 

solution (8 µL) was added to each of the control and test sampled. The remaining steps 

for detecting TCS structural similar compounds were performed the same as the 

detection of TCS.   
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5.3 Results 

 

5.3.1 Spectral characteristics of the synthesised AuNPs 

The synthesised AuNPs were characterised with respect to their optical and physical 

properties by obtaining UV-visible adsorption spectra (Figure 5.2 A) and a TEM image 

(Figure 5.2 B).  

Figure 5.2: Spectral characteristics of the synthesised AuNPs (A) UV-visible adsorption 
spectra and; (B) a transmission electron microscope image 

A.                                                                                       B. 

      
 

Based on the absorption spectra (Figure 5.2 A), the concentration of the synthesised 

AuNPs was approximately 13 nM determined according to Beer-Lambert Law by using an 

absorption peak of 1.3 and the extinction coefficient of 2.01 x 108 M-1 cm-1 at 520 nm 

(Maye et al. 2003). The absorption spectra also indicated that the AuNPs were 

monodispersed, since no shoulder peaks around 520 nm were observed. This was also 

confirmed by visualising the AuNPs under a TEM (Figure 5.2 B), and the diameter of each 

AuNP were estimated to be approximately 15 nm. 

5.3.2 Optimisation of AuNPs for biosensing 

In this study, the NaCl tolerance test was performed by exposing the AuNPs to different 

concentrations of NaCl solutions (Figure 5.3). 
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Figure 5.3: Salt tolerance test of the synthesised AuNPs 

 

Samples 1 to 9 indicate the AuNPs with increasing NaCl concentrations of 0, 6.7, 13.3, 20, 

26.7, 33.3, 40, 46.7 and 53.3 mM respectively. 

 

Only 13.3 mM NaCl was required to induce the AuNP aggregation with a noticeable colour 

change (Figure 5.3, sample 3), and from 26.7 mM NaCl onwards, the AuNPs become 

completely aggregated (Figure 5.3, samples 5 – 9). Therefore, 26.7 mM was chosen as the 

optimal NaCl concentration to induce the aggregation.  

The possibility of target-induced AuNP aggregation was excluded by exposing the AuNPs 

with TCS at different concentrations. The results demonstrated that TCS did not induce 

the aggregation of AuNP up to 2 µM (Figure 5.4). 

Figure 5.4: The effect of increasing concentrations of TCS in the presence of AuNPs 

 

Samples 1-9 indicate the AuNPs with added TCS at 0, 20, 50, 150, 300, 500, 750, 1000 and 
2000 nM respectively. 
 

In order to prepare AuNPs for TCS detection, an aptamer need to be coated on the surfaces 

of AuNPs to form a protective layer to prevent NaCl-induced aggregation. The appropriate 

amount of the aptamer required for this protection was determined by coating the AuNPs 

with different amount of TCS aptamer H6, and the resulting aptamer-protected AuNPs 

were then subjected to NaCl-induced aggregation at the optimal NaCl concentration 

(Figure 5.5).  

1 2 3 4 5 6 7 8 9 

1 2 3 4 5 6 7 8 9 
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Figure 5.5: Optimisation of the amount of the H6 aptamer required for protecting AuNPs 
against 26.7 mM salt-induced aggregation 

                               

Samples 1 to 6 indicate the AuNPs are protected by increasing concentrations of the TCS-
H6 aptamer from 0, 28, 56, 84, 112 and 140 nM respectively. 
 

The use of 26.7 mM NaCl caused complete aggregation of AuNPs when no aptamer was 

present to protect the AuNPs (Figure 5.5, sample 1). Partial aggregation was observed at 

28, 56, and 84 nM aptamer concentrations (Figure 5.5, samples 2–4). No visible 

aggregation was observed at 112 and 140 nM aptamer concentrations (Figure 5.5, 

samples 5 and 6). Therefore, 112 nM was chosen as the optimal aptamer concentration.  

5.3.3 Detection of TCS and structurally similar compounds  

After optimising the various components (i.e. salt tolerance, target effect and aptamer 

concentration), the TCS aptasensor was investigated with the respects of sensitivity and 

specificity to TCS and structurally similar compounds. 

5.3.3.1 Testing the sensitivity of TCS aptasensor   

TCS aptasensor was applied for in-solution detection of TCS at final concentrations 

ranging from 0 to 750 nM. Qualitative analysis (observing the visual colour change by 

naked-eye) was performed and an image was captured (Figure 5.6a).  

Figure 5.6a: Qualitative detection of TCS by observing colour changes due to the 
formation of AuNP aggregates 

                 

Samples 1-7 indicate the TCS-H6 aptasensor with added TCS at 0, 20, 50, 150, 300, 500, 
and 750 nM respectively. 
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A noticeable colour change was evident from 150 nM TCS onwards (Figure 5.6a, sample 

4). Quantitative analysis (measuring the absorption spectra using a nanodrop 

spectrophotometer) was undertaken to confirm the visual observations (Figure 5.6b). 

Figure 5.6b: Quantitative UV-visible spectrophotometric detection of TCS in solution 
using the H6 aptamer-protected AuNPs 

 

The seven spectra are for the control (no TCS) and six concentrations of TCS (20–750 nM). 
 

The absorption peaks at 520 nm wavelength decreased with increasing concentrations of 

TCS (Figure 5.6b) which is in agreement with the visual observation (Figure 5.6a).  

The quantitative detection capability of the TCS aptasensor was further characterised by 

determining the relationship between absorption ratios (A625nm/A520nm) over the 

range of TCS concentrations tested (Figure 5.6c).  
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Figure 5.6c: Correlation between the absorption ratio and the concentration of TCS (20–
750 nM) 

                   

The error bars represent the standard deviation of the mean absorbance ratio from six 
independent sensing experiments. 
 

A linear correlation between the absorption ratio and TCS concentration was observed 

with an R2 value of 0.918 (Figure 5.6c). However, the error bars appear large, analysis of 

the variation in the calculated slopes indicates the sensitivity of this assay is quite 

reproducible and therefore validating the applicability of the aptasensor to measure TCS 

from 20 to 750 nM. 

5.3.3.2 Testing the specificity of TCS aptasensor 

The specificity of the TCS aptasensor was tested by using samples spiked with MTS, BPA 

or OE2 to obtain a final concentration of 750 nM. Visual analysis was undertaken and the 

image was captured (Figure 5.7a). 
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Figure 5.7a: Qualitative determination of the specificity of TCS aptasensor  

                                     

The samples 1–5 indicate 750 nM solution of the control, OE2, BPA, MTS and TCS 
respectively.    
 

Visual analysis (Figure 5.7a) showed no significant changes in colour when the OE2 

(sample 2) and BPA (sample 3) were introduced compared to the control (sample 1). 

Whereas a slight change in colour was observed when tested with MTS (sample 4). The 

aptasensor showed significant changes in colour when TCS (sample 5) was introduced as 

a positive control. Spectral analysis of the samples were undertaken using nandrop 

spectrophotometer (Figure 5.7b). 

Figure 5.7b: Quantitative UV-visible spectrophotometric detection of the specificity of 
TCS aptasensor  

 

The five absorbance spectra represent the control and four compounds tested (i.e. TCS, 
MTS, BPA and OE2) at 750 nM. 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

220 270 320 370 420 470 520 570 620 670 720

A
b

so
rp

ti
o

n

Wavelength (nm)

Control

OE2

BPA

MTS

TCS

1 2 3 4 5 



151 
 

The UV-visible absorption spectra confirmed the visual observations (Figure 5.7b). The 

absorption spectra of OE2 and BPA showed a similar height as the control sample at 

520 nm, whereas, a reduced height observed on MTS when compared with the control 

sample demonstrating some non-specific interaction of the H6 aptamer with MTS.  

The specificity data of the TCS aptasensor was also illustrated by plotting a relative 

response graph (Figure 5.7c).  

Figure 5.7c: Non-specific responses of TCS aptasensor to compounds (MTS, BPA and OE2) 
that are structurally similar to TCS 

         

The error bars represent the standard deviation of the reduced absorption from three 
independent sensing experiments. 

 
The TCS aptasensor showed no non-specific interactions with OE2 and BPA, but some 

interaction with MTS, for which the response was about half of that observed with TCS. 
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5.4 Discussion 

 

In this chapter, a novel AuNP-based aptasensor was developed to detect TCS in-solution 

using the H6 aptamer generated in this dissertation. The synthesised AuNPs were first 

characterised using UV-visible spectrophotometer and TEM.The results showed that the 

AuNPs were monodispersed (Figure 5.2). This was considered to be a critical factor, as 

monodispersed-AuNPs ensure maximum homogeneity of aptamer adsorption, thereby 

allowing a uniform surface plasmon coupling and quantitative analysis of the AuNPs using 

UV-visible spectroscopy.  

During the development of the aptasensor, the optimisation steps (i.e. salt and aptamer 

concentrations etc) validated the application of this system for detecting TCS. 

Distinguishable colour changes in TCS containing samples enabled the qualitative 

determinations of TCS with a LOD of 150 nM by naked-eye using the TCS aptasensor. UV-

visible absorption peaks at 520 and 625 nm also enabled the quantitative determination 

of the TCS molecule in solution. Analyses of the absorption spectra revealed a linear 

correlation (R2 = 0.918) at a concentration range of TCS from 20–750 nM (Figure 5.6c). 

These results are comparable to those obtained from the study by Alsagar et al. (Alsager 

et al. 2015). In their study, the use of a full length 75-mer OE2 aptamer-protected AuNPs 

demonstrated colorimetric sensitivity for OE2 in the nanomolar range from 5 to 400 with 

acceptable linearity (R2 = 0.92) and naked-eye detection around 100 nM. In addition, they 

also demonstrated that the length of the OE2 aptamer used for protection is often 

important, based on the fact that two specifically truncated OE2 aptamers (35 and 22 mer) 

showed greater sensitivity down to picomolar range compared with the full length 

version. They reasoned that the full length aptamer might not be able to fully dissociate 

from the AuNP surface, and part of the sequences were still adhered to the surface. Based 

on this discovery, the 75-mer H6 aptamer was also subjected to truncation by simply 

omitting the primer regions. Unfortunately, the small versions of the H6 aptamer obtained 

showed significant reduction in their binding affinity to TCS (Figure 4.11b, Chapter 4), 

and therefore were not suitable for the sensor development. However, it is reasonable to 

assume that the detection range of the TCS aptasensor may be improved if the H6 aptamer 

can be specifically truncated to leave only the TCS binding pocket.  
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The specificity of the TCS aptasensor is dependent on the capability of the H6 aptamer to 

selectively bind to TCS with minimal cross-reactivity to structurally similar compounds 

such as OE2, BPA and MTS. The results from the binding specificity experiments showed 

that the H6 aptamer showed little interaction with OE2 and BPA at 750 nM. However, the 

aptamer did display some binding affinity to MTS. This is reasonable as MTS is only one 

methyl group difference compared with TCS, and the aptamer H6 was unable to 

differentiate such a small difference between the two molecules. It’s worth noting that 

aptamer H6 was selected without any counter selection against MTS. These results are 

comparable to those from the competitive binding studies (Figure 4.10b, Chapter 4) 

indicating that the H6 aptamer is specific to TCS. 

In summary, initial sensing results obtained from the TCS aptasensor suggest that the H6 

aptamer is suitable for the development of an aptasensor, and that the aptasensor can 

detect TCS in the nanomolar range with some specificity against related organic 

compounds (e.g. MTS). These assured the future applicability of the TCS aptasensor for 

detecting TCS in a free solution environment. 

 

5.5 Conclusion 

 

The work presented here introduced a simple and reliable colorimetric aptasensor for 

the detection of TCS using the H6 aptamer as the recognition element and the AuNPs as 

the signal transducer, with a visual detection limit of 150 nM and with some proven 

discrimination against structurally similar molecules. The developed aptasensor is 

capable of providing both qualitative and quantitative detection of TCS. The 

conformational change of the aptamer upon binding to the target could be reflected in the 

colour change of AuNPs, and thus the detection of TCS could be realised by naked eye. 

Furthermore, it is suggested that by finding the target binding pocket of the H6 aptamer, 

specifically truncated H6 aptamers could further enhance the sensitivity and specificity 

of the TCS aptasensor. Therefore, it is concluded that the AuNP-based aptasensors could 

be used for the detection of small molecules such as TCS, and further the use of the 

aptasensor could provide a simple diagnostic tool for future on-site screening of EDCs. 
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CHAPTER 6 

GENERAL DISCUSSION AND FUTURE PERSPECTIVES 

 

Aptamers have been proven to be highly versatile reagents for biological and diagnostic 

applications ever since the concept was developed in 1990. A multitude of analytical and 

therapeutic usages of aptamers have been reported, and the number of aptasensors 

reported in the literature have increased exponentially in recent years. In this 

dissertation, novel methodologies were developed and utilised in the SELEX technology 

to produce the first known aptamers capable of binding to TCS, and an AuNP-based 

aptasensor was developed for detecting TCS in spiked-water samples. The following 

provides a general discussion for each method used in the SELEX procedure. Also 

discussed is the application of in silico methods for identifying regions of interest within 

an aptamer sequence that maybe responsible for the association with its target. 

 

6.1 Affinity matrix 

 

Preparation of target-immobilised affinity matrices is essential for selecting aptamers 

against small moleculars. In this study, to allow for easy separation of target-bound 

aptamers from unbound oligonucleotides, TCS was chemically conjugated onto the 

surface of sepharose beads using linker molecules with different length in their linker 

arms (Figure 3.2, Chapter 3). As a result, the proximity of TCS from the bead moieties 

increased, thereby allowing for the maximum exposure of the target to associate with 

random oligonucleotides during selection. Results from Chapter 3 (Figure 3.5 and 3.11) 

demonstrated that the long-arm TCS D matrix was more suitable than the short-arm TCS 

E matrix for aptamer selection. This finding indicated that the length of a linker molecule 

used for target immobilisation might influence the efficiency of a SELEX experiment. 

Therefore, it is concluded that determining the appropriate length of a linker molecule 

used for conjugation is an important factor to be considered in future SELEX experiments 

for selecting aptamers capable of binding small molecules. During the preparation of 

affinity matrices, the remaining epoxy groups after TCS immobilisation were blocked 

using ethanolamine. Blocking these groups is necessary as they are potentially reactive 

with either oligonucleotides or proteins presented in the selection buffers.  
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However, the blocking step may introduce alternative recognition sites for association 

with aptamers. Therefore, the reagent used for blocking needs to be as small as possible 

to minimise the non-specific interaction with oligonucleotides during selection. 

Conjugations of TCS onto the surface of a matrix were confirmed by the presence of the 

absorption peaks on the conjugated matrices (Figure 3.3, Chapter 3). UV-visible 

spectroscopy was utilised to obtain the absorption spectra. The method can provide 

qualitative measure (i.e. a successful conjugation), as well as quantitative determination 

of the amount of immobilised TCS molecules provided the extinction coefficient value is 

known. Determination of the extinction coefficient value was not performed in the 

present study. However, it is recommended in future selection work, as knowing the exact 

amount of immobilised-target can reduce the inconsistency during each cycle of selection 

and increase the accuracy for aptamer characterisation. 

 

6.2 SELEX selection 

 

The present study demonstrated the use of both basic- and revised-SELEX procedures for 

selecting TCS-specific aptamers. The basic-SELEX procedure is the most commonly used 

approach for selecting aptamers binding to small molecules. Aptamers (i.e. D and E clones) 

with considerable binding affinities to TCS were identified from this approach. However, 

these aptamers demonstrated significant levels of non-specific binding to the matrix, and 

some of the aptamers also showed evidence of interacting with structurally similar 

compounds (Figure 3.10 and 3.11, Chapter 3). Therefore, it was concluded that more than 

eight rounds of selection were required to generate aptamers with sufficient sensitivity 

to TCS when using the basic-SELEX methodology. However, the selection process was in 

practice restricted to 8 rounds, as further rounds of selection led to the formation of non-

specific PCR by-products (Figure 3.4, Chapter 3). This led to a revised-SELEX procedure 

being developed, and the resulting aptamers (H1 – H10) from the revised-procedure 

were found to have improved binding affinity and specificity (Figure 4.8b and 4.10b, 

Chapter 4), indicating that the introduced modifications (i.e. tRNA for matrix blocking, 

negative and counter selections, and real-time amplification) were effective in 

minimising the non-specific adsorption between oligonucleotides and the matrix, 

eliminating non-specific oligonucleotide sequences binding to structurally similar 

molecules and reducing the formation of non-specific PCR by-products.  
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Therefore, the revised-SELEX cycle can be repeated beyond 8 rounds of selection, if 

necessary. The ability to carry out further rounds of selection would enable in the 

refinement of aptamers to attain desired target-binding characteristics. As a result, these 

modifications were considered to be suitable strategies for future SELEX experiments. 

Table 6.1 summarises the criteria from the revised-SELEX procedure which are suggested 

to be effective for selecting aptamers to small molecules. 

Table 6.1: Summary of methods and conditions used for aptamer selection 

SELEX step Recommend Alternative 
Affinity matrix Sepharose beads 

 
Agarose beads 
Magnetic beads 

Affinity matrix 
characterisation 

UV-visible characterisation  

Aptamer library 75-mer with 40 random region  

Design primers  Oligo Analyzer Software  
- 18-mer forward primer 
- 17-mer reverse primer 

 

SELEX buffers 1X BWB 
- 100 mM NaCl, 5 mM KCl, 2 mM MgCl2,  

1 mM CaCl2, 20 mM Tris HCl, and 0.1 % 

(v/v) IGEPAL CA 630 (pH 7.5) 
Blotto 
- 10 mg/mL yeast tRNA 
- 5 % (v/v) skim milk power 

 

SELEX preparation Matrix blocking 
- 2 hrs blocking at RT 
Aptamer library denaturation 
- 90 °C for 10 mins, 4 °C for 15 mins, and  

10 mins at RT 

 

Selection strategy Negative selection 
- after two rounds of positive selection 
Counter selection 
- after negative selection 

 

Recover bound 
aptamers 

Not necessary Affinity based elution 
Heat-denaturing  

Amplification  Real-time PCR amplification Emulsion PCR 
Digital PCR 

Purification of PCR 
products 

Agarose gel electrophoresis 
- 3 % (w/v) 

PAGE 

Strand separation Alkaline denaturation 
- biotin-streptavidin 

Asymmetric PCR 
Lambda exonuclease 

SELEX progression Fluorescent imaging assay Dot blot assay 
Affinity column elution  

Cloning and 
sequencing 

At least 10 clones to be sequenced   

PAGE = polyacrylamide gel electrophoresis; UV-visible = ultraviolet-visible; BWB = 
binding and washing buffer; Blotto = blocking buffer; PCR = polymerase chain reaction 
and; RT = room temperature. 
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6.3 Aptamer binding characterisation 

 

A significant outcome from this study was the development of a novel fluorescent imaging 

assay to determine the fluorescent intensity of the HEX-labelled aptamer-bound matrices. 

The developed mehod was used for monitoring SELEX progression, as well as 

determining aptamer binding affinity (Kd values) and specificity. In addition, the 

applicability of the assay was compared with the dot blot and fluorescent binding assays, 

and results from all the assays were comparable with each other, thereby validating the 

use of the fluorescent imaging assay for aptamer characterisation (see Chapter 4). 

Table 6.2 summarises the results of using both the fluorescent imaging and binding 

assays for aptamer Kd determination. 

Table 6.2: Summary of Kd values demonstrated by TCS-specific aptamers 

Aptamer Fluorescent imaging assay 

Mean ± SD (nM) 

Fluorescent binding assay 

Mean ± SD (nM) 

H2 1448 ± 50 > 1000 

H5 604 ± 85 544 ± 107 

H6 378 ± 50 369 ± 82 

D5 584 ± 251 700 ± 174 

E6 n/a > 1000 

SD = standard deviation; H2, H5 and H6 are aptamers from the revised-SELEX and; D5 

and E6 are aptamers from the basic-SELEX. 

 

The major advantages of the fluorescent imaging assay include: [i] no requirement to 

elute aptamers once bound to the target-conjugated matrices, thereby eliminating the 

uncertainty of not achieving a complete elution; [ii] simple-to-use, as it requires fewer 

preparation steps when compared with the dot blot and florescent binding assays; [iii] 

reproducibility, as the present study showed that after replicating the Kd experiments five 

times, the standard errors were low (Table 6.2) and; [iv] the simple application of visual 

detection of the fluorescent images. It is also worth noting that the fluorescent imaging 

assay is not restricted for characterising aptamers for small molecules. Aptamers capable 

of binding to protein targets can also be characterised using this method, since proteins 

can easily be immobilised onto the surface of a matrix. The only drawback for the imaging 

method is the analytical procedure.  
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Currently, ROI for each image are manually selected. This can be time-consuming, and 

open to potential errors when selecting different ROI for analysis. However, with the 

current computer technologies, an automated image analysis process would not be 

difficult to develop. Therefore, the fluorescent imaging assay has great potential for 

becoming a standard procedure for aptamer development. 

 

6.4 Aptamer in silico characterisation 

 

In silico characterisation of aptamers can be undertaken using a range of techniques, 

enabling the investigator to identify specific regions of interest within each aptamer 

sequence. The selective conditions being applied during SELEX, generally enriches the 

nucleotide pool with aptamers having an improved affinity and/or specificity towards 

the target molecule. Therefore, analysis of the nucleotide sequences within the random 

region of an aptamer with respect to nucleotide composition, phylogenetic relationship, 

sequence alignment, and secondary structure prediction, can potentially provide insights 

into the evolutionary process and identify key nucleotides that may involve in the target 

binding site. 

6.4.1 Nucleotide composition 

TCS R8 aptamers generated from the basic-SELEX procedure were composed of a 

relatively high degree of G and T nucleotides with T being the most abundant occupying 

over 30 % of the N40 region (Table 3.2, Chapter 3). TCS R10 aptamers generated using 

the revised-SELEX procedure also showed an enrichment of G and T nucleotides, but with 

G being the most abundant nucleotides occupying over 40 % of the N40 region (Table 4.4, 

Chapter 4). This change in the nucleotide composition within the random region could be 

attributed to the fact that more selection rounds were performed in the revised-SELEX 

procedure, and therefore more evolutionary pressure was applied in the nucleotide pool 

to direct the selection of more stable nucleotide combinations when compared with the 

basic-SELEX procedure. In contrast to the double hydrogen bonding between A and T 

nucleotides, the G and C complementary pairing offers a triple bonding alternative which 

requires higher energy to dissociate (Kang et al. 2005). Thus, an increase in the number 

of G over T nucleotides in the R10 aptamers is likely to favor the formation of more stable 

aptamer 3D structures.  
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The generation of G-rich aptamers from the revised-procedure is similar to other reports 

demonstrating G-rich aptamers for small molecules such as the DNA aptamers for OTA 

(47 % of G) (Cruz-Aguado and Penner 2008), ATP (45 % of G) (Huizenga and Szostak 

1995), and cocaine (33 % of G) (Stojanovic et al. 2001).   

6.4.2 Phylogenetic relationship 

The evolutionary pathways of TCS R8 and R10 aptamers were analysed from their 

phylogenetic trees. It was evident that the TCS D aptamers (i.e. D1, D2, D4, D5 and D6) 

were not closely related to the E aptamers (i.e. E1, E2, E3, E5 and E6), despite being 

subjected to identical selection pressures (Figure 3.6, Chapter 3). This was reasonable, as 

different selection matrices (i.e. TCS D and E matrices) were used for generating these 

aptamers. An interesting observation was the distribution of individual aptamers within 

each lineage (Figure 3.6, Chapter 3). For example, aptamers generated using the long-arm 

matrix were spread over a considerable distance from one another indicating diversity 

within the identified aptamers. In contrast, aptamers generated using the short-arm 

matrix clustered more closely within each other. Similarly, when using the long-arm 

matrix to select aptamers from the revised-procedure. The resulting aptamers (H1-H10) 

showed variable evolutionary distance within the phylogenetic tree (Figure 4.4, 

Chapter 4). These observations indicated that aptamers produced using a long-arm 

matrix had a relatively higher degree of diversity compared with the short-arm matrix 

thereby increasing the chance of identifying aptamers with different binding sites, 

whereas the use of short-arm matrix restricted the recognition of the target molecule by 

aptamers possessing different binding characteristics. This finding provides another 

insight in favour the use of long-arm matrix for aptamer selection. In addition, the 

analysis of phylogenetic trees indicated aptamers with desired binding properties to TCS 

(i.e. aptamers D5 and E6 from the basic-procedure and; aptamers H2, H5 and H6 from the 

revised-procedure) are generally evolved further than those aptamers with poor binding 

properties (Figure 3.6, Chapter 3; Figure 4.4, Chapter 4). Furthermore, aptamers with 

similar nucleotide compositions were found to be more closely related to each other, such 

as aptamers E1 & E6 (Table 3.2 and Figure 3.6, Chapter 3), H4 & H7 and H1 & H5 

(Table 4.4 and Figure 4.4, Chapter 4).  
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In summary, analyses of the nucleotide composition and phylogenetic trees discussed 

above is informative in helping to understand the impact of different SELEX strategies on 

a pool of aptamers selected for a particular target. 

6.4.3 Sequence alignment and secondary structure prediction  

Characterisation of aptamer sequences based on the use of sequence alignment and 

secondary structure prediction can lead to the identification of conserved nucleotide 

domains (Niazi et al. 2008), and sometimes assist in identifying the target binding pocket 

(Lin and McNatty 2009).  

In the present study, random regions of the two selected aptamer families (i.e TCS R8 and 

R10 aptamers) were individually aligned to search for regions of homology. In the case of 

aligning TCS R8 aptamers, there were no obvious conserved regions identified within 

each sequence (Figure 3.7, Chapter 3), but duplicate, triplicate and even quadruplet 

copies of T and G nucleotides, as well as duplicates and triplicates of A nucleotides were 

common features. Since only eight rounds of selection were performed in generating the 

R8 aptamers, it was not surprising that no conserved sequences were found during 

sequence alignment. In contrast, when aligning TCS R10 aptamers for the same purpose 

(Figure 4.5, Chapter 4), some conserved sequences were identified. These included: 

“GGTTX” (where X can be either A, T, C or G), “XGGGX” (where X can be both T, both A or 

C and T), “GGGGX” (where X can be either A or T”), and “TGGGGGX” (where X can be either 

C or A). At this stage, it is inconclusive as to whether these conserved sequences are part 

of the target binding site without confirming: [i] whether these regions of interest can 

contribute to the formation of either stems, loops or bulges, which are common features 

found in aptamer 3D structures and; [ii] aptamers containing these conserved sequences 

can actually bind to the target molecule. Therefore, the next step of in silico 

characterisation is to predict 3D structures of aptamers.  

It is well established that aptamers bind to their target molecules by forming specific 3D 

structures such as hairpins (i.e. a combination of stems, loops or bulges), pseudoknots, or 

G-quadruplexes. However, in silico analysis of aptamer 3D structures has not yet been 

developed. A major factor limiting the development of such an in silico tool is the 

flexibility of ssDNA molecules which complicates the calculation for algorithms for 

computational modelling.  
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Since the formation of aptamer 3D structures are dependent on aptamer primary 

sequences (Takemura et al. 2006), it was proposed that, using aptamer 2D structures, an 

accurate assessment of regions of interest within each aptamer and their potential role 

in binding to the target molecule might be elucidated. It also should be mentioned that: 

[i] the molecular structure of TCS is much smaller than an aptamer, thus only limited 

regions of a TCS-specific aptamer are likely to be involved in binding to TCS and; [ii] the 

mFold software is able to predict 2D secondary structures of ssDNA molecules containing 

multiple stem-loops (SL) in their lowest energy states. Therefore, it could be argued that 

the SL regions might assist in forming the most energetically stable structures necessary 

for an aptamer binding to its target. Based on these rationales, secondary structures of 

TCS R8 and R10 aptamers are each predicted and summarised in Appendix II and IV 

respectively. Nucleotides involved in the formation of SL structures were investigated. 

Initial analysis of these secondary structures indicated a variety of stem-loop 

configurations ranging from one linear stem-loop structure (e.g. D1 and H7) up to four 

stem-loop structure (e.g. D4 and H5). Amongst these structures, aptamers D5 and E6 from 

the basic-SELEX selection, as well as H2, H5 and H6 from the revised-SELEX selection 

showed desirable binding properties to TCS. Therefore, these candidates were chosen for 

further analysis aiming at identifying the target binding site. Generally, it is accepted that 

the random region of the aptamer (N40 in this study) is the main contributor to aptamer-

target interaction over iterative rounds of selection and the role of primer regions is of 

less importance (Bock et al. 1992; Marshall and Ellington 2000). Thus, for each aptamer, 

folding of the random region should ideally involve the primer regions as little as possible. 

As shown in Figure 3.8 (Chapter 3), folding of aptamer D5 showed a three-SL structure. 

The forward primer region (i.e nucleotides 1 to 18) folds into SL1, and removing this 

region should have no effect on the folding of the N40 region. Similarly, the reverse 

primer region (i.e. nucleotides 58 to 75) did not indicate any significant secondary 

structures, and removing this region should also not affecting the folding of the N40 

region. In addition, the N40 region of the D5 composed of two SLs which are adjacent to 

each other by just one nucleotide. This is an interesting structure, as both primer regions 

are not involved in the folding with the N40 region. Thus, it is postulated that the target 

binding site of the aptamer D5 is potentially located in the N40 region, and either of the 

SL2 or the SL3, or both of them were responsible for the binding to TCS.  
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In the secondary structure of aptamer E6 (Figure 3.8, Chapter 3), the reverse primer 

region (i.e nucleotides 58 to 75) interacted with part of the N40 region and formed the 

SL3, thus it was reasoned that removing this region should have a significant impact to 

the secondary structure of the N40 region. Whereas the nucleotide 18 in the forward 

primer region contributed to the formation of the SL2, thus removing the forward region 

should also have an impact on the N40 region (might be to some extent less than the 

reverse region). Overall, both primer regions were interacted with the N40 region of 

aptamer E6, and removing either regions should therefore affect its secondary structure. 

Once again, based on the assumption that the N40 region is the main contributor to the 

target binding site, either of SL2 or SL3 aptamer E6 should contribute to the binding to 

TCS.  

In the case of TCS R10 aptamers (Figure 4.6, Chapter 4), the secondary structure of 

aptamer H2 showed that the forward primer region (i.e. nucleotides 1 to 18) interacted 

with part of the N40 region to form SL2, and the remaining N40 region as well as the 

reverse primer region did not fold into any significant secondary structures. Therefore, it 

is difficult to postulate where the target binding site would be located. The secondary 

structure of aptamer H6 is another interesting structure similar to the aptamer D5 

mentioned before. As shown in Figure 4.6 (Chapter 4), only a couple of nucleotides (i.e. 

nucleotides 58 and 59) in the reverse primer region interacted with the N40 region, and 

the remaining reverse region as well as the forward region (i.e. nucleotides 1 to 18) had 

little interaction with the N40 region. Therefore, it can be postulated that the target 

binding site should be located in either SL2 or SL3 of the H6 aptamer, and also removal 

of either primer region should not significantly affect the secondary structure of this 

aptamer (see Appendix IX). The last secondary structure to be analysed was aptamer H5. 

As shown in Figure 4.6 (see Chapter 4), both the forward and reverse primer regions 

interacted with the N40 region and contributed to the formation of SL2 and SL4 

respectively. The remaining N40 region also demonstrated a stem-loop structure (i.e. 

SL1). Thus, either individually or a combination of the three stem-loops, i.e. the SL1, SL2 

and SL4, should perhaps be responsible for the binding to TCS.  
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After identifying the regions of interest (i.e. stem-loops within each chosen aptamer), the 

next step of the structural analysis was to investigate whether those conserved sequences 

(i.e. “GGTTX”, “XGGGX”, “GGGGX”, and “TGGGGGX”) were involved in the formation of 

these regions. Since only the TCS R10 aptamers showed conserved sequences, the 

following analysis focused on the secondary structures of aptamers H2, H5 and H6 

(Figure 4.6, Chapter 4). [i] The N40 region of aptamer H2 contained the conserved 

sequences “GGGGX”, “XGGGX” and “TGGGGGX”. Among them, the “GGGGX” and “XGGGX” 

contributed to the formation of SL2, whereas the “TGGGGGX” located region did not fold 

into any secondary structures. [ii] The N40 region of aptamer H6 contained the conserved 

sequences “XGGGX”, “GGGGX” and “GGTTX”. The first two sequences involved in the 

formation of SL3, whilst the last sequence contributed to the folding of SL2. [iii] The N40 

region of aptamer H5 contained the conserved sequences of “GGTTX” which appeared 

twice, as well as “XGGGX” and “TGGGGGX”. Among them, “GGTTX” contributed to the 

formation of SL1 and SL2, and the remaining sequences showed little effect on the 

formation of stem-loops.  

In summary, the conserved sequences “XGGGX”, “GGGGX” and “GGTTX” contributed to the 

formation of stem-loops (either alone or a combination) to the three best binding 

aptamers (H2, H5 and H6). Interesting, aptamer H6 had all of these conserved sequences, 

and also demonstrated the best binding capability to TCS (Kd = 378 nM). Aptamers H2 

containing two of the conserved sequences (i.e. “XGGGX” and “GGGGX”) and H5 containing 

one of the conserved sequences (i.e. “GGTTX) but this appeared twice, also showed 

appreciable binding to TCS (Kd = 1448 and 584 nM respectively). Therefore, it is safe to 

assume that these conserved sequences (either alone or a combination) could be at least 

part of the target binding site. The finding also suggested that aptamer H6 could be 

truncated by removing both of its primer regions without significantly altering the folding 

of the target binding site.  

Overall, sequence alignment and secondary structure prediction revealed some 

conserved sequences that in principle might be associated with the target binding site. 

Therefore, it is reasonable to speculate that the aforementioned structural analytical 

process can assist in identifying regions of interest involved in aptamer binding to their 

molecular targets. However, further experimental work, such as those involving 

truncation of aptamers, is needed to validate this possibility.  
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6.5 Aptamer truncation study 

 

Aptamer truncation studies were performed with the aim of locating target binding 

domain, and to elucidate the role of primer and random regions for binding to the target 

molecule. Results from the truncation studies showed that the removal of both primer 

regions completely abolished the affinity of the H6 aptamer to TCS (Figure 4.11b, Chapter 

4).  Similarly, the binding affinity of the H6 aptamer was severly reduced after the 

removal of the forward primer region. In addition, truncation of the reverse primer 

region showed a reduced binding affinity to TCS by approximately two-fold than the 

parent aptamer (Figure 4.11b, Chapter 4). Therefore, it was concluded that both primer 

regions contributed to the binding of the H6 aptamer to TCS, and the role of the forward 

primer region was more significant than the reverse primer region.  

These observations were unexpected, as the in silico characterisations described in 

Section 6.5 suggested that deletion of either primer region should have little effect on the 

target binding site, and thus the truncated aptamers should still retain their binding 

capability to the target molecule. Nevertheless, these results indicated that truncation by 

simply removing primer regions is not an appropriate approach for locating the target 

binding pocket, and a specific truncation strategy needs to be developed in order to 

confirm whether the identified conserved sequences are part of the target binding site. 

 

6.6 Aptasensor 

 

In this study, a TCS aptasensor utilising the non-specific absorptive property of ssDNA 

aptamer onto the surface of AuNPs was developed for detecting TCS in spiked-water 

samples. The major advantages of this aptasensor includes simple to use, rapid, label-free, 

and avoiding the use of expensive equipment. Therefore, in principle it is well suited for 

monitoring EDCs. During the development of the aptasensor, a few optimisation steps are 

necessary for the aptasensor to achieve high sensitivity, stability and reproducibility. 

These included: [i] the determination of salt tolerance of AuNPs, as a high salt 

concentration can improve the sensitivity, but may also decrease the stability and 

reproducibility of an aptasensor; [ii] the optimisation of the amount of aptamers required, 
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as too much aptamers in the sensing system would sacrifice the sensitivity, whereas too 

little would decrease the stability and reproducibility and; [iii] the investigation of the 

aptamer target-induced aggregation, as some aptamer targets are charged and therefore 

can neutralise the charge on the surface of AuNPs, thereby inducing aggregation.  

Initial studies demonstrated that the developed TCS aptasensor was capable of detecting 

TCS in the nanomolar range with evidence of weak non-specific interaction to structurally 

similar compounds (i.e. BPA and OE2). The non-specific interaction to MTS by the H6 

aptamer compromised its specificity. However, given the fact that MTS is a metabolite of 

TCS, affinity towards either of the molecules is a useful indication for the presence of TCS 

or its derivatives. In addition, the TCS aptasensor demonstrated a visual LOD of 150 nM: 

this is comparable to the LOD of the OE2-aptasensor (i.e.100 nM by naked-eye) when 

using the full length 75 mer OE2-aptamer for protection, despite the fact that the H6 

aptamer possessed a much smaller conformational change upon binding to TCS (Figure 

4.9 D, E and F, Chapter 4) compared with the OE2-aptamer (Alsager et al. 2015). These 

results suggested that the LOD of an aptasensor was not necessarily relied on an aptamer 

possessing a high level of conformational change, as similar results were also observed 

with a BPA aptasensor developed by Dr Shalen Kumar. In his study, the BPA aptasensor 

showed a visual LOD of 200 nM, but the 75 mer BPA-aptamer used in the aptasensor did 

not show a significant conformational change upon target binding as well (Kumar 2014). 

Moreover, it is postulated that the LOD of the TCS aptasensor could be improved further 

by subjecting the TCS aptamer H6 to specific truncations, thereby generating a smaller 

version of the aptamer which may dissociate from the surface of AuNPs more easily than 

the full sequence.  

Furthermore, it is worth noting that most aptasensors, such as the ELISA-type, acoustic, 

electrochemical, and quantum dot-based aptasensors, were operated using specific 

buffering conditions which, in general, are similar to the SELEX buffers used for aptamer 

selection to ensure the formation of appropriate aptamer 3D structures. However, the 

aptasensor developed herein allows for the target validation without the dependency of 

a specific buffer system, thereby demonstrating the utility of the developed aptasensor 

for on-field sensing applications. 
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6.7 Future perspectives 

 

6.7.1 Selection using a doped aptamer library 

The investigation of various selection strategies, such as negative and counter selections, 

have provided new insights into the critical steps in generating aptamers binding to small 

molecules. Utilising these strategies have also led to considerable improvement in the 

binding affinity of the selected aptamers. However, the Kd values for the best binding 

aptamers generated are still at around 500 nM. Ideally these values should be below 100 

nM to be considered as high affinity aptamers. To further improve aptamer binding 

affinity, it is suggested that future selection work could include a new selection strategy 

involving a partial randomised (doped) aptamer library. Since the currently selected 

aptamers have already shown some affinity and specificity to the target molecule, and 

based on their critical motifs that are responsible for binding with the target molecule, a 

doped aptamer library can be synthesised to reselect optimal aptamers: this can usually 

improve their affinity to the target. For example, high-affinity aptamers against HIV-1 

aspartyl protease were obtained from a doped aptamer library based on the structural 

information of two previously obtained aptamers: in this instance binding affinities 

expressed as the Kd values of the new aptamers, increased from 92–140 nM to 2–22 nM 

(Duclair et al. 2015). Therefore, using a dope aptamer library for selection, it is expected 

to improve the binding affinity of the current aptamers. 

6.7.2 Identify the target binding site 

In silico characterisation of the selected aptamers has enhanced our theoretical 

understanding of the evolutionary process in generating aptamers. The predicted 

aptamer secondary structures and the identified conserved sequences have 

demonstrated some possible locations that could be responsible for binding with the 

target molecule. However, there are no experimental data to confirm these regions are 

actually within the target binding sites, and the initial aptamer truncation studies did not 

provide good evidence to support this either. Therefore, the exact target binding pocket 

still needs to be discovered.  
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General methods utilised for investigating aptamer-target binding sites include DNA 

footprinting (Zianni et al. 2006), x-ray crystallography (Ruigrok et al. 2012) and nuclear 

magnetic resonance (Kelly et al. 1996). However, these methods have been used mainly 

with aptamers interacting with proteins, and methods for aptamers binding to small 

molecules are limited. One possible approach to locate the target binding pocket is to use 

a novel enzymatic digestion assay developed by Dr Shalen Kumar. This method utilises 

the enzymatic activity of exonuclease to specifically cleave the unbound regions of a 

target-bound aptamer, and the method is dependent upon the capability of an aptamer 

to form a stable secondary structure once co-incubated with the target molecule (IP 

protected work). Experimental work towards the use of this novel method to identify the 

target binding site is ongoing.  

6.7.3 Further use of the developed aptasensor 

The development of an AuNP aptasensor for TCS detection is a significant achievement 

from this thesis. However, the developed aptasensor has only been tested in the target-

spiked water samples. Therefore, testing the utility of the aptasensor in real samples, 

such as the environmental samples from wastewater treatment plants, or biological 

samples from animals or humans, is another important future perspective. Furthermore, 

as mentioned earlier the LOD of the aptasensor does need to be improved to expand its 

versatility, and this can be achieved through the use of refined aptamers from the doped 

selection or shortened-aptamers by specific truncation.    
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LIST OF APPENDICES 

 

APPENDIX I 

Materials, reagents and instruments used in this study 

1. Affinity matrix development 

Reagent/equipment Abbreviation/ 

common name 

Catalogue 

number/model 

Manufacturer/ 

supplier 

5-Chloro-2-(2,4-

dichlorophenoxy)phen

ol 

Irgasan or 

Triclosan (TCS) 

PHR1338-1G  

 

 

 

 

Sigma–Aldrich, St 

Louis, Missouri, 

USA 

1-Chloro-2,3-

epoxypropane 

Epichlorohydrin 

(ECH) 

E1055 

1,4-butanediol 

diglycidyl ether 

DE 220892 

Sepharose® 6B  6B100 

Sodium Chloride NaCl 7647-14-5 

Sodium hydroxide NaOH 1310-73-2 

2,2-Bis(4-

hydroxyphenyl) 

propane 

Bisphenol A 

(BPA) 

239658 

1, 3, 5(10)-Estratrien-3, 

17β-diol 17- 

hemisuccinate (C22 

H28 O5) 

17β-oestradiol-

17- 

hemisuccinate 

E1076-000 Steraloids, 

Newport, USA 

Hydrochloric Acid 36 % HCl 1367 Thermo Fisher 

Scientific, 

Walthem, USA 

Syringe (5mL) Syringe 302135 Becton, Dickinson 

and 

Sintered plastic filters Plastic filters Gifted by Dr Alan 

Clark 

Sintered plastic 

filters 

UV-visible 

spectrophotometer 

UV- spec Model: Cary 300 Agilent 

Technologies, 

Santa Clara, USA 

Quartz SUPRASIL® 

1mm cuvettes 

Quartz cuvettes 100-1-40 Type : 

100-QS 

Hellma® 

Analytics, 

Müllheim, 

Germany 
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2. Synthetic oligonucleotides 

Oligonucleotide Sequence Purification Manufacturer 

ssDNA N40 
library 

5’-ATACGAGCTTGTTCAATA-
40N-TGATAGTAAGAGCAAT 
C-3’ 

 

 

PAGE 

 

 

 

 
 
Life 
Technologies, 
Carlsbad, USA 

Primer forward 
(Pf40) 

5’-ATACGAGCTTGTTCAATA-3’ 

Primer reverse 
(Pr40) 

5’-GATTGCTCTTACTATCA -3’ 

Biotin-Primer 
forward (Pf40-B) 

5’Biotin-
ATACGAGCTTGTTCAATA-3’ 

 

 

HPLC 
Biotin-Primer 
reverse (Pr40B) 

5’Biotin-GATTGCTCTTACTATCA-
3’ 

HEX-primer 
forward (HEX-Pf) 

5’HEX-GATTGCTCTTACTATCA-3’ HPLC 

 

3. Systemic Evolution of Ligands by Exponential Enrichment (SELEX) 

Reagent/Equipment Abbreviation or 
common name 

Catalogue 
number/model 

Manufacturer 
or supplier 

Sodium Chloride 
Reagent grade, purity 
99.5 % 

NaCl 7647-14-5 Scharlau 
Chemie, 
Barcelona, Spain 

Calcium chloride CaCl2 208291 Merck, 
Kenilworth, USA  

Tris(hydroxymethyl)- 
aminomethane 
Purity 99.9-100.1 % 
(HOCH2)3CNH2 

Tris buffer A1086 AppliChem, 
Darmstadt 
Germany 

Potassium Chloride KCl P9541  
 
 
 
Sigma–Aldrich, 
St Louis, 
Missouri, USA 

Magnesium Chloride MgCl2 M8266 
Octylphenoxy 
polyethoxyethanol or 
Octylphenyl-polyethylene 
glycol 

IGEPAL®CA-630 
or IGEPAL 

9036-19-5 
SKU# I8896 

Ribonucleic acid, transfer 
from baker's yeast (S. 
cerevisiae) 

Yeast tRNA R8759 

0.1 % fat Skim Milk powder Skim milk  Fonterra 
Auckland, New 
Zealand 

IKA VXR basic Vibrax® Vibramix 0002819000 IKA, Rawang, 
Malaysia 
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4. Polymerase chain reaction and gel electrophoresis 

Reagent/Equipment Abbreviation/ 
common name 

Catalogue 
number/model 

Manufacturer/ 
supplier 

HotMasterTM Taq 
polymerase kit 

PCR kit 2200310 5 Prime, Hamburg, 
Germany 

Nucleotides (dATP, dCTP, 
dGTP and dTTP) 

dNTPs 10297-018  
 
Life Technologies, 
Carlsbad, USA 

SYBR Green I DNA staining 
dye 

SYBR green S-7567 

UltraPureTM   distilled 
water 

DNase free 
water 

10977 

Rotor-Gene Q  2plex HRM 
Platform 

Real-time PCR 
machine 

9001560 Qiagen, Hilden, 
Germany 

Magnesium ions Mg2+ ions 201203 

Quanta Biotech PCR 
machine 

PCR machine Model QB 24 Quanta Biotech, 
London, UK 

Eppendorf Mastercycler® 
Pro 

PCR machine Mastercycler® 
Pro 

Eppendorf, 
Hamburg, Germany 

SeaKem® Agarose Agarose gel 50004 Lonza, Allendale, 
New Jersey, USA 

Horizontal electrophoresis 
tank 

Gel tank Sub-Cell 
Model 96-170-
4502 

BioRad, Hercules, 
California, USA 

6X DNA loading dye DNA loading 
dye 

R0611 Thermo Fisher 
Scientific, 
Walthem, USA Low range DNA ladder DNA ladder SM-1191 

Ethylenediaminetetraaceti
c acid 
 

EDTA A1104 AppliChem. 
Darmstadf, 
Germany 

1,2,3-Propanetriol or 
Glycerin 

Glycerol G5516 Sigma–Aldrich, St 
Louis, Missouri, 
USA 

 

5. Gel extraction and strand separation 

Reagent/Equipment Abbreviation/ 
common name 

Catalogue 
number 

Manufacturer/ 
supplier 

Qiagen Mini elute Kit Gel extraction kit 28006 Qiagen, Hilden, 
Germany 

Streptavidin coated 
magnetic 
beads (4mg/mL) 

SMB S1420S New England 
BioLabs, Ipswich, 
USA 

PickPen® 1-M and 
silicone tips 

PickPen® 34096 Bio Noble, Zurich, 
Switzerland 
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6. Dot blotting experiments 

Reagent/Equipment Abbreviation/ 
common name 

Catalogue 
number/model 

Manufacturer/ 
supplier 

HybondTM-C Extra 
nitrocellulose 
membrane 

Nitrocellulose 
membrane 

RPN303E Amersham GE 
Biosciences, Little 
Chalfont, UK 

Strepavidin-Peroxidase 
Polymer, Ultrasensitive 

ST-HRP S2438  
 
 
 
Sigma–Aldrich, St 
Louis, Missouri, USA 

Luminol 
Assay ≥ 98 % (HPLC) 

Luminol C9008 

5-Chloro-2-(2,4-
dichlorophenoxy)anisol
e 

Methyl triclosan 34228 

2-[(2,6-Dichlorophenyl)
amino]benzeneacetic 
acid sodium salt 

Diclofenac 
sodium salt 
(DCF) 

D6899 

p-Coumaric acid 
≥98.0 % (HPLC) 

p-Coumaric acid C9008 Scharlau Chemie, 
Adelaide, Australia 

Kodak BioMax XAR Film X-ray films 1651454  
Kodak, Rochester, 
New Jersey, USA 

Developing solution Developer 4037180 
Fixing solution Fixer 4037214 
Kodak X-Omatic cassette X-ray cassette KP 69040C 
Stuart® see-saw rocker See-saw rocker Model: SSL4 Bibby Scientific Ltd, 
Lab Net Orbital LS Orbital shaker Orbital LS Staffordshire, UK 

 

7. DNA ligation and transformation 

Reagent/Equipment Abbreviation/ 
common name 

Catalogue 
number/model 

Manufacturer/ 
supplier 

pGEM®-T Easy Vector 

Systems 

Ligation kit A1360 Promega, Madison, 

Wisconsin, USA 
Subcloning Efficiency™ 
DH5α™ Competent 

Cells 

Competent E. coli 

DH5-α cells 

18265-017 Life Technologies, 
Carlsbad, USA 

Ampicillin anhydrous, 

96.0-100.5 %  
Amp 69-53-4 Sigma–Aldrich, St 

Louis, Missouri, USA 

BactoTM Yeast Extract Yeast extract 212750 Becton, 

Franklin, 

Germany 
BactoTM Tryptone Tryptone 211705 

BactoTM Agar Agar 214010 
EcoR I restriction 

enzyme 
Restriction 
enzyme 

10703737001 RocheApplied 
Science, 

Basel,  

Switzerland 

SuRE/Cut Buffer H for 
restriction digest 

Buffer H 11417991001 

WPA Biowave II UV 
spectrophotometer 

UV spec Biowave II Biochrom Ltd, 
Cambridge, , UK 
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8. Equipment used for aptamer characterisation 

Equipment Common name Model Manufacturer 

ChirascanTM CD 
Spectrometer 

CD Spectrometer TM-Plus Applied 
Photophysics, 
Cambridge, UK 

UVsolo TS stand-alone gel 
documentation system 

Gel Doc System TS stand-alone CORE Life Sciences, 
Laguna Niguel, USA 

Leica DM6000 FS fixed 
stage fluorescent 
microscope 

Fluorescent 
microscope 

DM-6000 FS Leica Microsystems, 
Buffalo, USA 

 

9. Synthesis of gold nanoparticles (AuNPs) 

Reagent/Equipment Abbreviation/
common name 

Catalogue 
number/model 

Manufacturer/ 
supplier 

Hydrogen tetrachloroaurate 

hydrate 

Gold chloride 254169  

Sigma–Aldrich, St 
Louis, Missouri, 
USA 

Sodium citrate tribasic 
dihydrate 

Sodium citrate 1613859 

JEOL USA Transmission 
Electron Microscope 

TEM  JEOL Solutions 
Peabody, USA 

Agilent 8453 UV-visible 
spectrophotometer 

UV-visible spec 8453 Agilent 
Technologies, 
Santa Clara, USA 

 

10. General solvents 

Reagent Abbreviation or 
common name 

Catalogue 
number 

Manufacturer or 
supplier 

Absolute ethanol 
(Analytical grade) 

Ethanol (EtOH) ET0016  
Scharlau Chemie, 
Adelaide, Australia Propan-2-ol 

(Analytical grade) 
Iso propanol AL0323 

 

11. General equipment 

Equipment common name Model Manufacturer or 
supplier 

Still for HQ-distilled 
water 

Water purifier 
system 

High-Q 103S High-Q, Wilmette, 
USA 

Autoclave  Systec DX 65 Systec, Wattenberg, 
Germany 

Sanyo Biomedical 
Incubator 

Incubator MCO-5AC Sanyo/Panasonic, 
Moriguchi, Japan 
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APPENDIX II 

Secondary structures of triclosan round 8 aptamers D1 (TR8D1), D2 (TR8D2), D4 

(TR8D4), D6 (TR8D6), E1 (TR8E1), E2 (TR8E2), E2 (TR8E3) and E5 (TR8E5) from the 

basic-SELEX procedure. Three aptamers (i.e. D1, E2, and E3) were folded into linear stem-

loop structures. Two aptamers (i.e. D6 and E5) showed two stem-loop structures, another 

two aptamers (i.e. D2 and E1) showed three stem-loop structures, and aptamer D4 

showed a four stem-loop structure. 
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APPENDIX III 

Control experiments for the affinity screening of TCS round 8 aptamers (i.e. D and E 

clones). The concentration range of the positive control NHS-biotin spots was from 16 

to 2000 pmol: this was used to assess the consistency of the dot blot assays. The 

concentration of the negative control triclosan spots was at 600 nmol. This was used to 

assess non-specific interactions between triclosan and streptavidin-horse radish 

peroxidase.  

 

(+ ve) 

a 

 

 

APTAMER

S  

NHS-biotin dot blots (pmol) (-ve) 

control 

control 

control 2000 400 80 16 0 

D1 and E1 

      

D2 and E2 

      

D4 and E3 

      

D5 and E5 

      

D6 and E6 

      

TCS 

Aptamer 

ST-HRP 

- 

- 

+ 

- 

- 

+ 

- 

- 

+ 

- 

- 

+ 

- 

- 

+ 

+ 

- 

+ 

TCS = triclosan; NHS = N-hydroxysuccinimide; ST-HRP = streptavidin-horseradish 
peroxidase; “+” means the presence of and; “-” means not present.  
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APPENDIX IV  

Secondary structures of triclosan round 10 aptamers H1 (TR10H1), H3 (TR10H3), H4 

(TR10H4), H7 (TR10H7), H8 (TR10H8), H9 (TR10H9), and H10 (TR10H10) from the 

revised-SELEX procedure. Two variants (H7 and H9) were folded into similar linear 

hairpin loop-stem structures. Another two variants (H4 and H10) displayed two stem-

loop structures. Aptamers H1 H3, and H8 displayed three stem-loop structures. 
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APPENDIX V 

Fluorescent images of the HEX-labelled aptamers (i) H2, (ii) H5 and (iii) H6, as well as (iv) 

the random sequence (Rand) binding to control matrix at 750 nM and binding to triclosan 

(TCS) conjugated matrix at 6 concentrations ranging from 20 nM to 750 nM. A to E 

represents 5 independent repeats of the same experiment.  

(i) H2 

nM      750              750              550              350             150              50                 20 

A 

 
 

B 

 
 

C 

 
 

D 

 

E 

 
TCS           -                    +                  +                  +                   +                   +                   + 

 (ii) H5 

nM        750             750             550               350             150              50                20 

A 

 
 

B 

 
 

C 

 
 

D 

 

E 

 
TCS          -                    +                    +                  +                   +                   +                   + 
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(iii) H6 

nM      750              750             550              350             150               50                20 

A 

 
 

B 

 
 

C 

 
 

D 

 

E 

 
TCS         -                    +                    +                   +                  +                  +                     + 

 (iv) Rand 

nM      750               750             550              350            150                50               20 

A 

 
 

B 

 
 

C 

 
 

D 

 

E 

 
TCS           -                    +                  +                   +                   +                  +                   + 

Each image was captured under the same conditions with 1 sec of exposure; “-” = control 
matrix and “+” = TCS-conjugated matrix. 
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APPENDIX VI 

Image analysis of the HEX-labelled aptamers (i) H2, (ii) H5 and (iii) H6, as well as (iv) the 

random sequence (Rand) binding to triclosan (TCS) conjugated matrix at 6 

concentrations ranging from 20 to 750 nM. A to D represent fluorescent image, black and 

white image, selection of bead regions and selection of background regions, respectively.  

           (i) H2 
nM        750             550              350              150              50               20          

A 

 
 

B 

 
 

C 

 
 

D 

 
TCS          +                   +                  +                    +                  +                  +         

  

            (ii) H5 

H5        750              550             350             150                50              20          

A 

 
 

B 

 
 

C 

 
 

D 

 
TCS          +                   +                   +                   +                    +                   +         
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            (iii) H6 

nM       750              550             350             150                50               20          

A 

 
 

B 

 
 

C 

 
 

D 

 
TCS          +                   +                    +                   +                   +                  +         

   

             (iv) Rand 

nM       750               550             350               150              50               20          

A  

 
 

B 

 
 

C 

 
 

D  

 
TCS           +                   +                  +                    +                   +                   +         

    

Each image was captured under the same conditions with 1 sec of exposure; “-” = control 
matrix and “+” = TCS-conjugated matrix. 
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APPENDIX VII 

Fluorescent images of the HEX-labelled aptamers (i) 57H6F, (ii) 58H6R and (iii) 40H6B 

binding to control matrix at 750 nM and binding to triclosan (TCS) conjugated matrix at 

6 concentrations ranging from 20 nM to 750 nM. A to E represents 5 independent repeats 

of the same experiment.  

(i) 57H6F 

 nM      750              750               550             350              150               50               20 

A 

 
 

B 

 
 

C 

 
 

D 

 

E 

 
TCS          -                     +                   +                   +                  +                  +                   + 

 

(ii) 58H6R 

nM       750             750              550             350             150               50                20 

A 

 
 

B 

 
 

C 

 
 

D 

 

E 

 
TCS          -                     +                  +                   +                   +                   +                   + 
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 (iii) 40H6B 

nM        750            750               550            350             150              50                 20 

A 

 
 

B 

 
 

C 

 
 

D 

 

E 

 
TCS           -                   +                   +                   +                  +                   +                   + 

Each image was captured under the same conditions with 1 sec of exposure; “-” = 

control matrix and “+” = TCS-conjugated matrix. 
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APPENDIX VIII 

The following diagram demonstrats the results from the experiments using yeast tRNA 

for blocking both the control and TCS D matrices. An HEX-labelled random sequence 

(Rand) was chosen to assess the levels of nonspecific binding between the random 

sequence and the aforementioned matrices, and the concentration of tRNA used for 

blocking these matrices was varied from 5 to 20 mg/mL. 

As shown in the diagram above, the random sequence showed considerable binding 

affinity to both the control and TCS D matrices without the presence of the tRNA. In 

contrast, only 5 mg/mL of the tRNA was required to completely restrict the binding of the 

random sequence to both matrices. As a precaution, 10 mg/mL of the tRNA was chosen 

in this study to block the affinity matrices used in the revised-SELEX procedure.   
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APENDIX IX 

Secondary structures of the H6 (TR10H6) and truncated H6 aptamers 57H6F, 58H6R and 

40H6B showing minimal effect of truncation on the folding of the N40 region to form the 

stem-loop 3 (SL3).  

                   


