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Abstract

In this thesis, a method for the design and implementation of a spatially

robust multichannel microphone beamforming system is presented.

A set of spatial correlation functions are derived for 2D and 3D far-

field/near-field scenarios based on von Mises(-Fisher), Gaussian, and uniform

source location distributions. These correlation functions are used to de-

sign spatially robust beamformers and blocking beamformers (nullformers)

designed to enhance or suppress a known source, where the target source

location is not perfectly known — due to either an incorrect location estimate

or movement of the target while the beamformers are active.

The spatially robust beam/null-formers form signal and interferer plus

noise references which can be further processed via a blind source separa-

tion algorithm to remove mutual components — removing the interference

and sensor noise from the signal path and vice versa. The noise reduction

performance of the combined beamforming and blind source separation sys-

tem approaches that of a perfect information MVDR beamformer under

reverberant conditions.

It is demonstrated that the proposed algorithm can be implemented on

low-power hardware with good performance on hardware similar to current

mobile platforms using a four-element microphone array.
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2 CHAPTER 1. INTRODUCTION

1.1 Motivation

This thesis is focussed on developing beamforming solutions for speech en-

hancement in noisy environments, with a particular focus on robustness to

spatial errors (imperfect knowledge of where the source is relative to the

microphone array) and have a computationally efficient implementation. The

objective is to design a system which works reliably under noisy conditions

without relying on user intervention or perfect knowledge of where the user

is relative to the array, and is tolerant of array imperfections (microphone

mismatching, geometry errors, and general noise). In addition, one of the

objectives is to consider more realistic near-field and scatterer-based modelling

of sound propagation which has largely been overlooked in the literature. The

outputs of this thesis are intended to be used in the field of public safety, in

particular for use in mobile devices. In this application a number of constraints

are required, including a restriction of the number of microphones, geometry,

size of the array, working in high background noise levels, and assuming

limited (or no) user interaction with the mobile device to tweak parameters

for example. The mobile device nature also implies approximate (but not

perfect) knowledge of where the desired signal (the user) is in relation to the

device, introducing the requirement of spatial robustness to beamforming

algorithms.

1.2 Background

This thesis builds on the work previously done in [Anderson, 2012] in which

a number of microphone beamforming methods were analysed in the context
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of near-field beamforming for speech enhancement. Previously a variety

of microphone beamforming methods such as differential array processing,

least squares designs and adaptive designs were investigated in the context

of speech enhancement in extreme noise environments. It was found that

adaptive processing provided the best overall performance, however the system

developed was not particularly robust to intrinsic sensor noise or movement.

1.2.1 Speech Enhancement

Previous approaches to speech enhancement in the literature focus on a

number of techniques including multi-channel beamforming [Capon, 1969;

Frost, 1972; Flanagan et al., 1985] (Section 2.3, Chapters 4 and 5), in which

multiple microphone signals are processed to enhance speech by spatially

suppressing background interference; post-processing methods such as spectral

subtraction [Boll, 1979] and Wiener filtering [Jeub and Vary, 2010; Van Trees,

2004] (Section 2.3.5, Chapter 3), in which statistics of speech signals and

known interference/noise signals are used to filter the microphone signals;

blind source separation [Jolliffe, 2002; Hyvärinen et al., 2004; Kellermann

et al., 2006] (Section 2.4, Chapter 6, Section 7.2) in which information

theoretical approaches are used to separate mixtures of different sources

(multiple talkers, speech in background noise, etc.); and more computationally

expensive techniques such as speech dictionary training-based methods such

as non-negative matrix factorisation [Wilson et al., 2008; Weninger et al.,

2012], in which speech is enhanced through feature comparison/extraction

methods.
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1.3 Proposed Algorithm

In this thesis, a low-complexity robust adaptive beamforming algorithm

will be developed using spatial correlation models designed to account for

uncertainty in the expected location of the desired source. Two beamformers

will be designed, one of which imperfectly enhances the desired signal, and

the other imperfectly estimates the interference/noise. The outputs of the two

beamformers will be post-processed using a blind source separation algorithm

in order to remove mutual components from each channel: desired speech

signal in the interference/noise channel, and interference/noise in the desired

speech channel. The intent of the BSS system is to emulate a generalised

sidelobe canceller-type design without the signal leakage problems inherent

in that particular design.

1.4 Thesis Contents

The second chapter will introduce important concepts in spatial beamforming,

the main focus of the thesis. An overview of current beamforming and blind

source separation techniques is presented.

Chapter 3 will introduce a simple technique for obtaining a Wiener filter in

real-time using the concept of dual robust beamformers to estimate signal and

interference/noise statistics. This chapter develops the concept of the spatially

robust null-steering beamformer (nullformer) to estimate interference.

Chapter 4 develops new novel spatial correlation models for far-field and

near-field multi-channel beamformers using the von Mises(-Fisher), radial

Gaussian, and uniform distributions. The key contributions to the literature
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are the development of a set of cylindrical and spherical Bessel function

expressions for far and near-field spatial correlation functions, which can be

used to develop spatially robust beamformers, and of particular interest in

this thesis, nullformers for interference estimation.

Chapter 5 develops models for designing beamformers for sources near

or located on a solid sphere, and compares the theoretical performance of a

scatterer-based design with traditional free-field designs. The intention is to

more realistically model the effect of the human head on wave propagation,

rather than assuming free-field propagation, and investigate whether there

are any advantages in doing so. This has been a neglected aspect of prior

work.

Chapter 6 combines the spatially robust fixed beamformer design with

a two-channel blind source separation post-processor to compensate for im-

perfections in assumed knowledge used to design the beamformers. The

intention is to use a well known blind source separation algorithm to emulate

a traditional adaptive noise canceller design without the usual issues which

arise with imperfect beamformer design.

Chapter 7 is focussed on the real-time implementation of the algorithms.

The first of which is a graphics processing unit (GPU) accelerated blind source

separation algorithm; and the second is a complete implementation of the

fixed beamformer plus BSS post-processor solution introduced in Chapter 6.

The results in this chapter demonstrate that the algorithms can be feasibly

implemented on current devices.

Chapter 8 outlines the conclusions and highlights potential future research

to extend this project.
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1.5 Publications

The majority of this thesis has been submitted for publication, with the

exception of the preliminary theory and portions of Chapter 7 focussed on

implementations and real-world algorithm testing. The content is largely

unchanged from the submitted/published versions aside from some repetitive

information removal, corrections, and notation modifications to standardise

throughout the thesis.

• Chapter 3 has been presented at the Statistical Signal Processing (SSP)

conference held in 2014, as the paper “Multichannel Wiener Filter

Estimation using Source Location Knowledge for Speech Enhancement”

[Anderson et al., 2014b].

• Chapter 4, Section 1 has been published in the IEEE/ACM Transac-

tions on Audio, Speech and Language Processing journal as the article:

“Spatially Robust Far-field Beamforming using the von Mises(-Fisher)

Distribution” [Anderson et al., 2015b]. Chapter 4, Section 2 has been

submitted as the article: “Spatial Correlation of Spherically Symmetric

Near-field Source Distributions”, and has been accepted for publica-

tion in the IEEE/ACM Transactions on Audio, Speech and Language

Processing journal.

• Chapter 6 was presented at the International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP) conference held in 2015,

as the paper “TRINICON-BSS System Incorporating Robust Dual

Beamformers for Noise Reduction” [Anderson et al., 2015a].

• Chapter 7, section 1 was presented at the 4th Joint Workshop on
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Hands-free Speech Communication and Microphone Arrays (HSCMA)

conference held in 2014, as the paper “A GPU-Accelerated Real-time

Implementation of TRINICON-BSS for Multiple Separation Units” [An-

derson et al., 2014a].

All of the submitted articles/conference papers had input from my supervisors

Paul Teal and Mark Poletti, with additional contributions from Stefan Meier

and Walter Kellermann on the two TRINICON related papers.
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Chapter 2

Preliminaries

2.1 Introduction

This chapter introduces the wave propagation models used to design beam-

formers for near and far-field scenarios. An overview of existing optimal

beamforming algorithms is presented, and a brief introduction to blind source

separation is provided.

9
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2.2 Wave Propagation

2.2.1 Wave/Helmholtz Equation

Beamformer design relies on modelling the wave propagation between sound

sources and a set of microphones in an array (or the relative propagation

within the array). This is governed by the wave equation [Morse et al.,

1948, p 294], which can be expressed as

52 ψ − 1

c2
0

∂2ψ

∂t2
= 0 (2.1)

where ψ is the wave function and is a function of space and time, c0 is

the speed of the medium, which throughout this thesis was assumed to be

c0 = 343.0 ms−1 — the speed of sound at 20◦C, and the Laplace operator 52

defined in Cartesian coordinates as

52 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.2)

or in spherical coordinates as

52 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
(2.3)

Additionally, the Laplace operator can be defined in cylindrical, prolate

spheroid, and many more coordinate systems. In this thesis the spherical

coordinate system is the predominant system used.

Solutions to the wave equation can be found by assuming that the wave

function can be decomposed into spatial and temporal components, and using

the technique of separation of variables to solve, i.e.,

ψ = ψsp.(x, y, z)ψt(t) (2.4)
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or in spherical coordinates

ψ = ψsp.(r, θ, φ)ψt(t) (2.5)

Inserting either of these definitions into (2.1) and dividing by ψsp.ψt results in

1

ψsp.

52 ψsp. =
1

c2
0ψt

d2ψt

dt2
(2.6)

The equality in (2.6) is possible if both sides of are equal to some constant

−β0.

The temporal component can now be expressed as

d2ψt

dt2
+ β0c

2
0ψt = 0 (2.7)

A reasonable expectation for the time dependent component of the ψ function

is that it is harmonic, thus we expect solutions of the form

ψt(t) ∝ sin(ωt), cos(ωt), eiωt, e−iωt (2.8)

Inserting one of the trial solutions into (2.7) gives

− ω2ψt + β0c
2
0ψt = 0 (2.9)

(2.9) is satisfied if

β0 =
ω2

c2
0

(2.10)

which is equal to the wavenumber k squared.

In spatial beamforming, the spatial component of the wave equation is of

most interest. In (2.10) the solution for the constant β0 was demonstrated

to be the wavenumber squared. Inserting the constant in place of the time

dependent component in (2.1) leads to the Helmholtz equation — the time
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independent wave equation which will form the basis of the beamforming

methods throughout this thesis.

The homogeneous Helmholtz equation is given as [Li and Duraiswami,

2007, (2)]

52 ψ + k2ψ = 0 (2.11)

2.2.2 Plane Wave Solution

The simplest, and most commonly used propagation model is the plane wave.

In this model, wave propagation occurs, without attenuation, along some axis

with a planar wave-front perpendicular to the travel direction.

Taking the x-axis as the propagation axis, the Helmholtz equation in one

dimension becomes
d2ψx

dx2
+ k2ψx = 0 (2.12)

which has solutions in terms of complex exponential functions/trigonometric

functions

ψx(x) ∝ eikx, e−ikx, sin(kx), cos(kx) (2.13)

2.2.3 Spherically Symmetric Point Source

The plane-wave model is a simplification valid when measuring the sound field

at a large distance from the source, commonly referred to as the far-field. For

sources close to the measurement point, a model which includes attenuation

is desirable (referred to as a near-field model). The near/far-field transition

point is usually defined as occurring at some multiple of the wavelength,

defined in [Mailloux, 2005, (1.47)] as rff = 2d2/λ, where d is the length of

a linear array or the diameter of a circular/spherical array, and λ is the
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wavelength. Below this point, the wave-fronts exhibit significant spherical

curvature and attenuation across the array and can therefore no longer be

accurately modelled as plane-waves.

A basic near-field model of wave propagation can be developed by consid-

ering a spherically symmetrical source, i.e., there are no angular variations in

the wavefronts, and allowing the propagating wave to decay with increasing

distance from the source (as seen in Figure 2.1).

The spherical coordinate definition of the Helmholtz equation can be

expressed as

52
r ψr + k2 ψr = 0 (2.14)

It can be demonstrated that the trial solution

ψr(r) =
eikr

r
(2.15)

is a solution of the Helmholtz equation. This trial solution provides a simple

description of a spherically symmetric point source, which will be an important

result for the design of near-field beamformers in subsequent chapters.

Expanding (2.14) gives,

d2ψr

dr2
+

2

r

dψr

dr
+ k2 ψr = 0 (2.16)

The first derivative of the ψr function is

dψr

dr
= −e

ikr

r2
+ ik

eikr

r
(2.17)

=

(
−1

r
+ ik

)
ψr (2.18)

The second derivative of the ψr function is given as

d2ψr

dr2
= 2

eikr

r3
− 2ik

eikr

r2
− k2 e

ikr

r
(2.19)

=

(
2

r2
− 2ik

r
− k2

)
ψr (2.20)
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Figure 2.1: Near-field point source propagation. The wavefronts expand

outwards from the source origin symmetrically.

Inserting (2.18) and (2.20) into the left hand side of (2.16) gives

(
2

r2
− 2ik

r
− k2

)
ψr +

(
− 2

r2
+

2ik

r

)
ψr + k2 ψr = 0 (2.21)

from which it can be seen that the terms cancel, therefore the simple point

source equation is a valid solution of the Helmholtz equation.
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Figure 2.2: A somewhat more complicated source.

2.2.4 General Solution

A general solution in spherical coordinates can be obtained by considering

angular components as well as the radial component, this allows for solutions

for more complex wave propagation such as the example displayed in Figure 2.2.

Assuming the wave function is separable into radial and angular components,

it can be expressed as

ψ(r, θ, φ) = ψr(r)ψθ(θ)ψφ(φ) (2.22)
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Inserting into the Helmholtz equation, and using the spherical coordinate

definition of the Laplacian gives

ψθψφ
r2

∂

∂r

(
r2∂ψr

∂r

)
+

ψrψφ
r2 sin θ

∂

∂θ

(
sin θ

∂ψθ
∂θ

)
+

ψrψθ
r2 sin2 θ

∂2ψφ
∂φ2

+ k2ψrψθψφ = 0

(2.23)

Dividing (2.23) by ψrψθψφ and multiplying by r2 gives,

1

ψr

∂

∂r

(
r2∂ψr

∂r

)
+k2r2 +

1

sin θψθ

∂

∂θ

(
sin θ

∂ψθ
∂θ

)
+

1

sin2 θψφ

∂2ψφ
∂φ2

= 0 (2.24)

in which the radial and angular parts are now separated. This implies that

the radial and angular parts can be expressed as being equal to some constant

β1,

1

ψr

d

dr

(
r2dψr

dr

)
+ k2r2 = − 1

sin θψθ

∂

∂θ

(
sin θ

∂ψθ
∂θ

)
+

1

sin2 θψφ

∂2ψφ
∂φ2

= β1

(2.25)

The angular component can be separated into θ and φ components following

a similar treatment.

β1 +
1

sin θψθ

∂

∂θ

(
sin θ

∂ψθ
∂θ

)
+

1

sin2 θψφ

∂2ψφ
∂φ2

= 0 (2.26)

Multiplying by sin2 θ separates the θ and φ components as follows,

β1 sin2 θ +
sin θ

ψθ

d

dθ

(
sin θ

dψθ
dθ

)
+

1

ψφ

d2ψφ
dφ2

= 0 (2.27)

The two independent components are now equal to some constant −β2

β1 sin2 θ +
sin θ

ψθ

d

dθ

(
sin θ

dψθ
dθ

)
= − 1

ψφ

d2ψφ
dφ2

= −β2 (2.28)

It can now be seen that there are now separate differential equations for
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each separable function:

d

dr

(
r2dψr

dr

)
+
(
k2r2 − β1

)
ψr = 0 (2.29)

sin θ
d

dθ

(
sin θ

d

dθ
ψθ

)
+
(
β1 sin2 θ − β2

)
ψθ = 0 (2.30)

d2ψφ
dφ2

− β2ψφ = 0 (2.31)

Angular Solutions

Equation (2.31) has solutions described by the complex exponential functions

ψφ = ei
√
β2φ, e−i

√
β2φ (2.32)

Boundary conditions require that ψφ(0) = ψφ(2π), which is satisfied if
√
β2 is

equal to some integer m.

The ψθ component can be obtained by defining the following

x = cos θ (2.33)

dx

dθ
= − sin θ (2.34)

and finding a solution in terms of a power series in x [Morse and Ingard,

1968, (p333-334)].

Equation (2.30) can be re-expressed after some manipulation as

(1− x2)
d2ψθ
dx2

− 2x
dψθ
dx

+

(
β1 −

m2

(1− x2)

)
ψθ = 0 (2.35)

which has solutions in terms of associated Legendre functions [Morse and

Ingard, 1968, (p 333-334)], requiring β1 = n(n+ 1) (where n is an integer) to

prevent divergence for cos θ = ±1:

ψθ ∝ Pm
n (cos θ) (2.36)
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Combining the θ and φ angular functions results in the spherical harmonic

functions,

Y m
n (θ, φ) ≡ αmn P

m
n (cos θ)eimφ = αmn ψθ(θ)ψφ(φ) (2.37)

where

αmn =

√
(2n+ 1)(n−m)!

4π(n+m)!
(2.38)

is a normalisation constant to ensure orthonormality:∫
Ω

Y m
n (θ, φ)Y m∗

n (θ, φ) sin θ dθ dφ = 1 (2.39)

where Ω indicates a surface integral.

Radial Solutions

The radial equation (2.29) can be expressed as

r2d
2ψr

dr2
+ 2r

dψr

dr
+
(
k2r2 − n(n+ 1)

)
ψr = 0 (2.40)

which has solutions in terms of spherical Bessel/Hankel functions, found by

considering a power series solution in r [Morse and Ingard, 1968, (p 6, 336)].

The radial component can be expressed as

ψr(r) ∝ jn(kr), yn(kr), hn(kr), h∗n(kr) (2.41)

where jn is the spherical Bessel function of the first kind, yn is the spherical

Bessel function of the second kind, and hn is the spherical Hankel function:

hn(kr) = jn(kr) + iyn(kr) (2.42)
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General Result

Since a linear combination of solutions to the Helmholtz equation is itself

also a solution of the Helmholtz equation, a general solution can be expressed

in terms of weighted Bessel and spherical harmonic functions. The general

solution for the spatial component of the wave equation can therefore be

expressed as

ψ(r, θ, φ) =
∞∑
n=0

n∑
m=−n

Amn jn(kr)Y m
n (θ, φ) (2.43)

ψ(r, θ, φ) =
∞∑
n=0

n∑
m=−n

Amn hn(kr)Y m
n (θ, φ) (2.44)

where Amn denotes the arbitrary combined Bessel and spherical harmonic

coefficients, and the choice of jn or hn depends on the propagation scenario

to be considered. In later chapters these will be described in more detail.

The yn and h∗n based solutions (from (2.41)) are also valid, but not used in

this thesis. The yn based solution diverges at the origin; and the h∗n solutions

represent travelling waves in the opposite direction to the hn solutions.

2.3 Beamforming

2.3.1 Delay/Phase and Sum Beamformer

The output of a microphone array at a particular wavenumber/frequency k

and time-index i (in the short time-frequency domain) can be expressed as

x(i, k) = s(i, k)ψ(i, k) + n(i, k) (2.45)

where x is a vector of received microphone signals, s denotes the desired

signal amplitude, ψ the source to microphone transfer function vector — the
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r1, τ1 = r1/c0

r2, τ2 = r2/c0

Source

dτ = τ2 − τ1

Figure 2.3: Simple delay and sum beamformer. Here waves travelling from

the source take two different lengths of time to reach each of the sensors in

the array. The delay element above the closest element time/phase-aligns the

signals received.

set of source to microphone wave propagation functions, and n, the sensor

noise, which is assumed to be uncorrelated between each sensor.

The delay/phase and sum beamformer [Benesty et al., 2008; Flanagan

et al., 1985; Flanagan et al., 1991a; Flanagan et al., 1991b; Yardibi et al.,

2010] can be described as a set of weights w which, when applied to the signals

received at the microphone array, compensate for the relative delay/phase

differences between the microphones due to some desired source. From Figure

2.3 it can be seen that the different path lengths between the source and

the two microphones will lead to a difference in the time of arrival of the
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wavefront as it propagates from the source. The signal from the source can be

time-aligned by introducing a delay at the closest element equal to the time

difference of arrival between the two elements. Using the spatial-frequency

analysis, this is equivalent to a phase difference between the signals received

at the microphones. The signals can be phase aligned by multiplying the

output of the first microphone by some complex weight corresponding to this

phase difference.

The simple 2-microphone beamformer example, where the objective is

to find the weight w1 to double the amplitude (sum the time/phase aligned

desired signal) by time/phase aligning the microphone signals, can be solved

as

w∗1x1 + x2 = 2x2

w∗1 [s ψs,1] + [s ψs,2] = 2 [s ψs,2]

w1 =

(
ψs,2
ψs,1

)∗
where w1 now compensates for both the phase difference and amplitude

difference between the microphones in the 2-element example (for a single

frequency). The end result of this time/phase alignment is to electronically

steer the response of the array towards the desired source. This can be

trivially extended to more than two microphones by choosing one as the

reference microphone, and designing the weights such that all of the relative

phases between the microphones and the reference microphone cancel.

2.3.2 Interference Suppression

Suppose now, as an example, there are N undesired sources active near the

microphone array. The signals received at the microphone array can now be
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expressed as

x = sψs +
N∑
n=1

vnψvn + n (2.46)

where vn is an interferer signal, and ψvn the interferer to microphone array

propagation vector. The time/frequency indexing has been dropped for

clarity. Unlike sensor noise, interference from one or more other sound

sources can be (and usually is) correlated across the microphones in the array.

For the interferer canceller case, the objective of the beamformer would be

to simultaneously direct the response towards the desired signal and block

the interferer. Mathematically this can be expressed as trying to solve the

simultaneous equations

w1ψ
∗
s,1 + w2ψ

∗
s,2 + ...+ wMψ

∗
s,M = 1

w1ψ
∗
v1,1

+ w2ψ
∗
v1,2

+ ...+ wMψ
∗
v1,M

= 0

... = 0

w1ψ
∗
vN ,1

+ w2ψ
∗
vN ,2

+ ...+ wMψ
∗
vN ,M

= 0 (2.47)

This can be expressed in matrix form as

ΨHw = c (2.48)

where w is the vector containing the beamformer weights (w1, w2, ..., wM) to

solve for, Ψ the matrix containing the transfer functions for each of the source

to microphone pairs (the ψ functions in (2.47)), c the constraint vector (the

right-hand side of (2.47)), and the H symbol denotes the conjugate transpose

(Hermitian) operator.
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Figure 2.4: Near-field beampattern (in dB) designed using (2.50) for a single

target and two interferers using a 4-element circular microphone array.

The beamformer weights can be solved for using least squares methods

[Anderson, 2012] as (
ΨΨH

)
w = Ψc (2.49)

w =
(
ΨΨH

)−1
Ψc (2.50)

In Figure 2.4, a simple demonstration of the least squares method is shown.

The beamformer has been designed to pass the desired source located at (-

0.20 m, 0 m) undistorted and reject the two interferers at (-0.21 m, -0.30 m)
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and (0.10 m, -0.04 m) — corresponding to the constraint vector

cT =
[
1 0 0

]
(2.51)

As it will be seen in the next subsection, this simple interference blocking

beamformer is closely related to both the Minimum Variance Distortionless

Reponse (MVDR) and the more general Linearly Constrained Minimum

Variance (LCMV) beamformers up to a simple scaling factor.

2.3.3 MVDR/LCMV Beamforming

An optimal beamformer problem can be specified as trying to minimise the

interference and noise while simultaneously ensuring the desired signal is re-

ceived undistorted. This is the known as the Minimum Variance Distortionless

Response (MVDR)/Capon beamformer [Capon, 1969; Haykin, 1991; Moonen,

1993; Lorenz and Boyd, 2005], and can be considered to be the simplest form

of Linearly Constrained Minimum Variance (LCMV) beamforming [Frost,

1972; Benesty et al., 2007; Habets et al., 2009] — forcing a single constraint.

For the MVDR case, the objective is to minimise the interference plus noise

subject to the single distortionless desired signal constraint. Mathematically

this can be expressed as

min wH [Rv + Rn] w s.t. wHψs = 1 (2.52)

where Rv denotes the interference spatial correlation matrix, which can be

defined from the definition of the array signals in (2.46) as

Rv = E


(

N∑
n=1

vnψvn

)(
N∑
n=1

vnψvn

)H
 (2.53)
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Rn the sensor noise correlation,

Rn = E{nnH} (2.54)

and ψs the M ×1 transfer function vector describing source to M microphone

acoustic transfer functions.

Using the method of Lagrange multipliers this can be formulated as

L = wH [Rv + Rn] w + λ
(
1−wHψs

)
(2.55)

The beamformer solution can be found by taking the derivative of L with

respect to wH and setting this to zero

5wHL = [Rv + Rn] w − λψs = 0 (2.56)

w = λ [Rv + Rn]−1ψs (2.57)

The value of λ can be obtained by applying the distortionless constraint

wHψs = 1

1 = wHψs = λψH
s [Rv + Rn]−1ψs (2.58)

λ =
1

ψH
s [Rv + Rn]−1ψs

(2.59)

Thus, the MVDR solution is

w =
[Rv + Rn]−1ψs

ψH
s [Rv + Rn]−1ψs

(2.60)

Now suppose multiple transfer function vectors corresponding to either

desired signals or interferers were known. As before in the least squares

beamformer, the weight solution must satisfy a set of constraints,

ΨHw = c (2.61)
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where Ψ is an M × N matrix containing the N known transfer function

vectors, and c is a N × 1 vector containing the constraints to impose.

The LCMV beamforming weight problem can be specified as minimising

the interference/noise subject to the constraints given in (2.61)

min wH [Rv + Rn] w s.t. ΨHw = c (2.62)

where, as before, Rv is the interference spatial correlation matrix, and Rn is

the sensor noise spatial correlation matrix.

The Lagrangian can be defined as

L = wH [Rv + Rn] w + (cH −wHΨ)λ (2.63)

where λ is an N × 1 set of multipliers.

Differentiating L with respect to wH and setting to zero gives

5wHL = [Rv + Rn] w −Ψλ (2.64)

w =
(
[Rv + Rn]−1 Ψ

)
λ (2.65)

To satisfy the original constraint condition, λ must be chosen such that

ΨHw = c:

c = ΨHw =
(
ΨH [Rv + Rn]−1 Ψ

)
λ

λ =
(
ΨH [Rv + Rn]−1 Ψ

)−1
c (2.66)

Therefore the LCMV beamformer solution can be expressed as

w =
(
[Rv + Rn]−1 Ψ

) (
ΨH [Rv + Rn]−1 Ψ

)−1
c (2.67)
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2.3.4 Generalised Sidelobe Canceller

The generalised sidelobe canceller (GSC) [Griffiths and Jim, 1982; Buckley and

Griffiths, 1986] is a technique used to implement LCMV/MVDR beamformers

based on the concept of splitting the beamforming task into two beamformers:

the first a constraint space beamformer wc designed using known spatial

information (known source and interferer locations); the second an orthogonal

space beamformer wc⊥ designed to remove the unknown spatial information

(signals from unknown interferer locations).

wGSC = wc −wc⊥ (2.68)

In (2.48) a constraint equation was defined for the application of interference

suppression. The objective was to design a beamformer which directed the

response to the desired source while simultaneously blocking a set of known

interferers. The least squares solution was given as

wc =
(
ΨΨH

)−1
Ψc (2.69)

where Ψ is the M ×N constraint matrix describing the known N transfer

function vectors for the known desired source(s) and interferer(s), and c is the

constraint vector containing the N constraints for the corresponding transfer

function vector.

The orthogonal beamformer (in the frequency domain) is typically imple-

mented as an adaptive two-stage system (depicted in Figure 2.5)

wc⊥ = Bwad. (2.70)

where B is the M × (M −N) blocking matrix (whose columns are orthogonal

to those in Ψ), and wad. is an (M − N) × 1 adaptive filter vector, which
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B

wc

wad.

wc⊥ = Bwad.

Figure 2.5: A simple example of a generalised sidelobe canceller.

is updated over time for each frequency index (in the short time-frequency

domain) as [Griffiths and Jim, 1982; Van Trees, 2004]

w+
ad. = wad. + µ

(
wH

c x−wH
ad.(Bx)

)
x (2.71)

where µ is the adaptive filter step-size. The blocking matrix prevents the

signals aligned with the constraint matrix from travelling down the lower path

of Figure 2.5, allowing (in free-field conditions, ignoring reverberation) just

unknown signals to pass through. The unknown signals may also be partly

aligned with the constraint matrix contributing to unwanted interference/noise
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in the upper path output. The adaptive filter in the lower path is able to

compensate for this by removing the correlated components between the two

paths.

A technique (but not the only technique) for computing the orthonormal

blocking matrix is to perform singular value decomposition (or eigenvalue

decomposition) on the M ×M Hermitian spatial correlation matrix

Rc = ψψH

= UΣVH (2.72)

where U is an orthonormal N × N matrix of left-singular vectors, Σ is a

diagonal matrix containing the singular values, and V is an orthonormal

matrix of right-singular vectors. As Rc is Hermitian, the U and V matrices

are identical.

The blocking matrix can be formed as column matrix populated using

the singular vectors in U corresponding to the zero-valued diagonal entries of

Σ. It should be noted that if Rc is full-rank, no orthogonal blocking matrix

exists — and the least squares solution in (2.50) is already optimal.

In practice, the blocking matrix formulation is difficult to design as it relies

on perfect constraint matrix knowledge, which is an unrealistic assumption in

most scenarios. If the blocking matrix does not perfectly null a desired signal,

it will leak into the blocking path resulting in desired signal attenuation, as the

adaptive filter is designed to remove the correlated components between the

upper and lower parts in Figure 2.5. In order to accurately obtain the blocking

matrix, additional processing steps are required: for example identifying the

directional of arrival of the desired source (or interferers), or voice/signal

activity detection methods [Ramirez et al., 2004] used to obtain the blocking
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matrix during signal silence periods.

2.3.5 Multichannel Wiener Filtering

The MVDR and LCMV beamformer methods optimise the weights usually

to satisfy a distortionless response constraint to the desired source. Further

optimisation of SINR can be achieved by relaxing the distortionless response

criteria and considering a complete least squares solution — the previous

MVDR/LCMV solutions in (2.60, 2.67) only considered the transfer func-

tion information; here we will consider the actual desired/interferer signal

information along with the spatial information.

Defining the error function (at a single frequency) as

ε = wHx− d (2.73)

where w is the beamformer weight vector to be obtained, x is the vector of

signals received at the array, and d denotes the desired (reference) signal. The

reference signal is usually taken as the desired signal received at one of the

microphones in the array.

A least squares weight solution for this problem can be found by minimising

the cost function

J = E{|ε|2} = (wHx− d)(xHw − d∗) (2.74)

= wHE{xxH}w − 2E{dwHx}+ E{dd∗} (2.75)

The weight vector which minimises J can be obtained by differentiating J

with respect to wH and finding the minimum gradient solution

5wH J = 2Rxw − 2rdx (2.76)
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where

Rx = E{xxH} (2.77)

denotes the array input correlation matrix and

rdx = E{dx} (2.78)

denotes the array input to the desired signal cross-correlation vector. Assum-

ing the desired signal and interference are uncorrelated, the cross-correlation

can be expressed as

rdx = σ2
sψs (2.79)

The multichannel Wiener filter [Van Trees, 2004] solution is therefore

wMWF = R−1
x rdx (2.80)

This can be shown be decomposable into two parts: the MVDR beamformer

plus a single channel Wiener filter post-processor.

Assuming the desired source transfer function vector is deterministic, the

array input correlation matrix can be expanded as

Rx = σ2
sψsψ

H
s + Rv (2.81)

Noting that the desired signal component is a rank-1 update, the Sherman-

Morrison formula [Hager, 1989; Van Trees, 2004] can be used to derive a more

useful form of the inverse

R−1
x = R−1

v −
R−1

v σ2
sψsψ

H
s R−1

v

1 + σ2
sψ

H
s R−1

v ψs

(2.82)

Defining

λ2 = ψH
s R−1

v ψs (2.83)
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(2.82) becomes

R−1
x = R−1

v −
R−1

v σ2
sψsψ

H
s R−1

v

1 + λ2σ2
s

(2.84)

Inserting (2.84) into (2.80) gives

wMWF = σ2
sR
−1
v ψs

(
1− λ2σ2

s

1 + λ2σ2
s

)
(2.85)

The bracketed term can be simplified as follows

wMWF = σ2
sR
−1
v ψs

(
1 + λ2σ2

s

1 + λ2σ2
s

− λ2σ2
s

1 + λ2σ2
s

)
(2.86)

= σ2
sR
−1
v ψs

(
1

1 + λ2σ2
s

)
(2.87)

= σ2
sR
−1
v ψs

(
1

λ2

1

(λ−2 + σ2
s)

)
(2.88)

= λ−2R−1
v ψs

(
σ2
s

λ−2 + σ2
s

)
(2.89)

=
R−1

v ψs

ψH
s R−1

v ψs

(
σ2
s

σ2
s + λ−2

)
(2.90)

The vector term is the MVDR beamformer as previously derived in an

earlier section, and the scalar term is equivalent to the single channel Wiener

filter [Jeub and Vary, 2010], where the λ−2 term denotes the output interferer

power after MVDR beamforming. This can be demonstrated by considering

only the MVDR portion applied to the array outputs

wH
MVDRx = d

ψH
s R−1

v ψs

ψH
s R−1

v ψs

+
ψH

s R−1
v v

ψH
s R−1

v ψs

(2.91)

Squaring and taking the expectation

E{wHxxHw} = σ2
s +

ψH
s R−1

v E{vvH}R−1
v ψs(

ψH
s R−1

v ψs

)2 (2.92)

Noting that

Rv = E{vvH} (2.93)
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the output power after MVDR beamforming is

E{wHxxHw} = σ2
s +

ψH
s R−1

v RvR
−1
v ψs(

ψH
s R−1

v ψs

)2 = σ2
s +

λ2

λ4
= σ2

s + λ−2 (2.94)

where σ2
s denotes the expected desired signal variance, and λ−2 denotes the

expected output interference variance.

It can be seen after further factorisation that the single channel Wiener

filter (SWF) can be computed if the interference/noise to signal ratio (or one

over the signal to interferer/noise (SINR)) is known.

SWF =
σ2
s

σ2
s + λ−2

=
σ2
s

σ2
s

1

1 + λ−2

σ2
s

=
1

1 + SINR−1 (2.95)

The multichannel Wiener filter can be computed provided the location of

the desired signal (providing the transfer function vector ψs), the interference

correlation matrix Rv, and MVDR beamformed output SIR/SINR are known.

2.3.6 Maximum SINR Beamforming

An alternative optimal beamformer can be derived by considering the weights

required to maximise the signal to interferer plus noise ratio (SINR). The

output of a beamformed array can be expressed as

y(i, k) = s(i, k)wH(i, k)ψs(k) + wH(i, k)v(i, k) + wH(i, k)n(i, k) (2.96)

Omitting time/wavenumber indexing for clarity, the expected output power

of the beamformed array can be expressed as

E{yy∗} = σ2
s w

HE{ψsψ
H
s }w + wHE{vvH}w + wHE{nnH}w (2.97)

assuming the desired signal, interferers and noise are uncorrelated.
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The maximum SINR beamformer [Shahbazpanahi et al., 2003] can be

described as a set of beamforming weights w which maximises

SINR =
wHE{ψsψ

H
s }w

wHE{vvH}w + wHE{nnH}w (2.98)

where we have ignored the desired signal variance as in general this is not

known in advance.

The weights can be solved for by minimising the output interference plus

noise power such that the desired signal power is equal to some arbitrary

constraint:

min wH [Rv + Rn] w s.t. wHRsw = α (2.99)

where Rs = E{ψsψ
H
s } denotes the desired source spatial correlation matrix,

Rv = E{vvH} denotes the interference spatial correlation matrix, and Rn =

E{nnH} denotes the sensor noise spatial correlation matrix.

Equation (2.99) can be solved using the Lagrange multiplier method

L = wH [Rv + Rn] w + λ
(
α−wHRsw

)
(2.100)

Differentiating L with respect to wH ,

5wH L = [Rv + Rn] w − λRsw (2.101)

A solution for w can be obtained by setting the gradient 5wHL to zero.

Re-arranging (2.101) leads to the generalised eigenvalue equation

[Rv + Rn] w = λRsw (2.102)

where the beamformer solution w is attained by choosing the eigenvector

associated with the largest eigenvalue.
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Discussion

The maximum SINR beamformer formulation, as it will be seen in later

chapters, can be a powerful method for designing spatially robust beamformers

if the desired signal spatial correlation matrix Rs is designed appropriately.

The formulation also easily leads to the design of robust blocking beamformers

(nullformers) — either by switching Rs for Rv in (2.102), or selecting the

eigenvector associated with the smallest eigenvalue.

2.3.7 Spatial Correlation Modelling

Most of the beamforming algorithms in previous subsections rely on knowledge

of the interference correlation matrix Rv. A simple and common model to

use is to assume that the interference is fixed, i.e., is not time/space varying.

In this model it is possible to pre-compute estimated correlation matrices

relatively easily.

Isotropic Interference

A simple assumption for fixed beamformer design is to assume that interference

arrives at the array evenly from all possible directions. This assumption is

commonly used to model high levels of reverberation [Schwarz and Kellermann,

2015], where large numbers of reflections can be approximated as an isotropic

distribution of sources.

A spatial correlation function due to a source at some distant position

(r, θ, φ) incident on two sensors located at (ra, θa, φa) and (rb, θb, φb), close to

the coordinate origin, can be defined as

Rv[a, b] = ψa(r, ra,Ω,Ωa)ψ
∗
b (r, rb,Ω,Ωb) (2.103)
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where Ω denotes shorthand for the angles (θ, φ) the ψ functions are defined

using the near-field point source description in (2.15) as

ψa(r, ra,Ω,Ωa) =
eik|ra−r|

4π|ra − r|
(2.104)

The ψ functions can be described in terms of spherical Bessel functions and

spherical harmonics using the spherical Bessel function addition properties

[Abramowitz and Stegun, 1964, (10.1.45, 10.1.46)]

eikR

4πR
= ik

∞∑
n=0

(2n+ 1)jn(kra)hn(kr)Pn(cos Ω0) (2.105)

where

R =
√
r2 + r2

a − 2rra cos Ω0 (2.106)

cos Ω0 = cos θ cos θa + sin θ sin θa cos(φ− φa) (2.107)

The spherical harmonic addition theorem [Clapp, 1970]

(2n+ 1)

4π
Pn(cos Ω0) =

n∑
m=−n

Y m
n (Ω)Y m∗

n (Ωa) (2.108)

can be used to expand (2.104) into

ψa = ik

∞∑
n=0

n∑
m=−n

jn(kra)hn(kr)Y m
n (Ω)Y m∗

n (Ωa) (2.109)

Extending the correlation function to an infinite number of sources over a

spherical volume gives the integral expression

Rv[a, b] =

∫
vol.

ψa(r, ra,Ω,Ωa)ψ
∗
b (r, rb,Ω,Ωb) dV (2.110)

A simple model of isotropic interference is to assume that the interferers are in

the far-field, i.e., at some fixed distance r much greater than the microphone
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radii ra and rb. In this case, the volume integral can be reduced to a surface

integral. Substituting (2.109) for the ψ functions in (2.110) leads to the

expression

Rv[a, b] = k2
∑
na,nb

∑
ma,mb

jna(kra)jnb(krb)hna(kr)h
∗
nb

(kr)

Y ma∗
na (Ωa)Y

mb
nb

(Ωb)

∫
Ω

Y ma
na (Ω)Y mb∗

nb
(Ω) dΩ (2.111)

Using the orthonormality property of the spherical harmonics∫
Ω

Y m1
n1

(Ω)Y m2∗
n2

(Ω) dΩ = δn1,n2,m1,m2 (2.112)

the quad summation in (2.111) reduces to the simpler form

Rv[a, b] = k2
∑
n

∑
m

jn(kra)jn(krb)hn(kr)h∗n(kr)Y m∗
n (Ωa)Y

m
n (Ωb) (2.113)

where n and m are the common order and degree terms arising from the

orthogonality relation in (2.112). If the interference is assumed to originate

from a distance r much greater than the microphone radii, the spherical

Hankel function approximation [Williams, 1999, (6.68)]

hn(kr) ' in
eikr

kr
for kr � 1 (2.114)

can be substituted into (2.113) to obtain

Rv[a, b] =
1

r2

∑
n

∑
m

jn(kra)jn(krb)Y
m∗
n (Ωa)Y

m
n (Ωb) (2.115)

The spherical harmonic addition theorem in (2.108) can be used to simplify

further to

Rv[a, b] =
1

4πr2

∑
n

(2n+ 1)jn(kra)jn(krb)Pn(cos Ωa,b) (2.116)
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where

cos Ωa,b , cos θa cos θb + sin θa sin θb cos(φa − φb) (2.117)

Using the spherical Bessel function addition theorem [Abramowitz and Stegun,

1964, (10.1.45)], the correlation function can be expressed as

Rv[a, b] =
j0(kra,b)

4πr2
(2.118)

where 4πr2 is a simple interferer distance normalisation factor, and ra,b denotes

the distance between the elements of the microphone pair. In the literature,

the isotropic correlation function is usually given without the normalisation

factor as [Piersol, 1978; Schwarz and Kellermann, 2015]

Rv[a, b] = j0(kra,b) =
sin(kra,b)

kra,b
(2.119)

Anisotropic Interference

An anisotropic interferer distribution can be modelled by modifying (2.110)

to include some kind of selection function or probability density function,

Rv =

∫
vol.

p(r,Ω)ψa(r, ra,Ω,Ωa)ψ
∗
b (r, ra,Ω,Ωb) dV (2.120)

In Chapters 4 and 5, various correlation functions are derived for anisotropic

interference and/or desired source distribution modelling.

2.3.8 Beamforming Issues

All of the interference cancelling methods outlined in the previous subsections

rely on some knowledge of the transfer functions (or their statistics) from

the interferers to the array and/or precise knowledge of the desired source

to array transfer functions. In many scenarios the desired source to array
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transfer functions can be estimated reasonably easily as the position of the

desired source may be well known, for example, a microphone array in a

cellphone could make a reasonably safe assumption that the user’s mouth

would normally be on the front-side and near the bottom of the phone;

similarly, a microphone array built into a laptop computer could be designed

to respond to input directly in front of the screen. Additionally, methods

which estimate the relative transfer function [Cohen, 2004; Talmon et al.,

2009] (just the propagation between the microphones) of the desired source

can and have been used to adaptively optimise the beamformer [Gannot et al.,

2001; Gannot and Cohen, 2002] under certain conditions.

In good SIR/SINR environments, voice activity detection can be used to

detect gaps in speech which provides an opportunity to compute the interferer

correlation matrix and/or SINR. This method is commonly used to implement

the adaptive versions of MVDR [Ba et al., 2007; Chen and Benesty, 2011;

Cauchi et al., 2014], LCMV [Chen and Benesty, 2013], GSC, multichannel

Wiener filters [Van den Bogaert et al., 2009] and similar algorithms [Doclo and

Moonen, 2002]. The drawback of this technique is the requirement of a good

voice activity detector, i.e., one with good voice/signal detection (few false

positives/negatives) and robustness to high noise environments. Additionally,

voice activity detection has the disadvantage of assuming there is only one

talker, which may be an unrealistic assumption for many speech applications,

where there may be one or more ‘interfering’ talkers near the microphone

array.
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2.3.9 Beamformer Robustness

Spatial Robustness

For the intended application of this thesis, the beamformer designs must be

spatially robust. That is, the designs should assume imperfect knowledge of

the target position relative to the array, and be able to tolerate this scenario.

Similarly to the interference modelling in Section 2.3.7 (2.120), a spatially

robust beamformer can be designed by assuming a distribution of possible

target directions/locations, and designing spatial correlation functions as

appropriate. The maximum SINR beamformer in Section 2.3.6 provides a

method for designing the spatially robust beamformers once the correlation

functions have been computed.

Numerical Robustness

An important issue in beamformer design is numerical robustness — the ability

to tolerate random errors in the system, such as microphone calibration errors,

and sensor noise.

The white noise gain [Cox et al., 1986] of an array is a measure of its

robustness to intrinsic microphone errors (array position error, frequency

response, etc.), modelled as white noise:

WNG =
wHRsw

wHw
(2.121)

Low white noise gain is indicative of sensitivity to errors, and conversely high

white noise gain indicates the ability to tolerate these errors, which is a useful

property for practical arrays.

Improvements to numerical robustness of the beamformer solutions can be
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achieved by increasing the sensor noise variance used to design the diagonal

sensor noise spatial correlation matrix.

2.4 Blind Source Separation

Blind source separation algorithms are a class of signal processing algorithms

which attempt to blindly identify mixtures of signals, where the mixing process

between the source(s) and the microphones is unknown or limited knowledge

is available. The mechanism for identifying the separation filters is often

based on the concept of minimising mutual information between the output

signals.

The classic problem which introduces BSS is the cocktail party problem

in which there are multiple simultaneous talkers and listeners [Haykin and

Chen, 2005] and the objective is to extract a desired speech signal from the

mixture.

Starting with a basic instantaneous model, the problem can be stated as
x1(t)

x2(t)
...

xM(t)

 =


a1,1 a1,2 ... a1,M

a2,1 a2,2 ... a2,M

...
. . .

...

aM,1 aM,2 ... aM,N




s1(t)

s2(t)
...

sN(t)

+


n1(t)

n2(t)
...

nN(t)

 (2.122)

x(t) = As(t) + n(t) (2.123)

where x is the set of sensor observations, A a matrix describing the signal to

sensor mixture model, s the set of signals (speech for example), and n the

sensor noise.

The objective can be stated as finding some demixing matrix (transform)

B which separates the mixed signals. This demixing matrix can be obtained
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through various techniques such as Principal Component Analysis (PCA)

[Jolliffe, 2002] and Independent Component Analysis (ICA) [Hyvärinen et al.,

2004]. In PCA, the objective is to find some transform which decorrelates the

outputs, under the assumption that the original sources are not correlated (and

have zero mean). In ICA the objective is to find some transform which makes

the outputs statistically independent, usually by assuming non-Gaussianity,

non-whiteness, and/or non-stationarity of the sources.

The PCA transform can be computed by constructing an input data

covariance matrix

Rxx = E{xxH} (2.124)

= QΛQH (EVD) (2.125)

= UΣ2UH (SV D) (2.126)

and computing either the eigenvalue decomposition or singular value decom-

position to extract the eigenvector/singular-vector matrix which when applied

to x, separates the original signals.

s̃ = QHx (EVD) (2.127)

= UHx (SV D) (2.128)

The ICA transforms such as JADE (Joint Approximation Diagonalization

of Eigen-matrices) [Cardoso and Souloumiac, 1993] and FastICA [Hyvärinen

and Oja, 1997; Hyvärinen, 2001] typically utilise PCA, to decorrelate the

inputs, followed by processing using higher order statistics (such as kurtosis)

to design filters which minimise the Gaussianity of the outputs.

In FastICA for example, the ICA transform is computed by pre-whitening

the input data using PCA

x̃ = QHx (2.129)
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and finding a set of demixing filters — column vectors of a matrix W which

when applied to the whitened input, separates out the original signals.

The demixing filters can be found by minimising/maximising some cost

function which approximates, for example, the kurtosis of the demixed signal.

J = E{(wH
i x̃)4} − 3E{(wH

i x̃)2}2 (2.130)

A gradient descent/ascent method can be used to find the minimum/maximum

kurtosis value. Taking the gradient of (2.130) with respect to wH
i gives

J = E{wH
i x̃x̃Hwiw

H
i x̃x̃Hwi} − 3E{wH

i x̃x̃Hwi}2 (2.131)

5wH
i
J = E{x̃x̃Hwiw

H
i x̃x̃Hwi} − 3wiw

H
i wi (2.132)

5wH
i
J = E{x̃(wH

i x̃)3} − 3wi (2.133)

where it has been assumed that the demixing filters are of unit norm (wH
i wi =

1), and the whitening process diagonalises E{x̃x̃H}.
The weights for each demixing filter, corresponding to each output signal,

can be computed iteratively as

wi+ = wi − µ
(
E{x̃(wH

i x̃)3} − 3wi

)
(2.134)

where µ denotes the gradient ascent/descent parameter.

During convergence, the filter is orthogonalised with respect to the other

filters in the demixing matrix W, using the Gram-Schmidt process for exam-

ple.

The iterative steps continue until the filter has converged, which can be

determined by computing the inner product of the current and previous filter

vectors. Convergence occurs when the inner product is 1 (or within some

tolerance ε).
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Once the demixing matrix has been computed, the separated signals can

be obtained by calculating

y = WHx (2.135)

The outputs after applying the PCA/ICA transform exhibit channel

ordering and scaling ambiguities related to the fact that the mixing matrix

and order of the original signals are unknown.

The channel-order and scaling ambiguities lead to issues when attempting

to use ICA on convolutive mixtures. Convolutive mixtures require performing

multiple instantaneous demixing units, one for each frequency bin of a chosen

transform size corresponding to the length of the convolution, which introduces

these permutation and scaling errors for each frequency band. Due to the

permutation ambiguity in particular, using a frequency bin-wise ICA algorithm

is unusable for wideband signals.

Attempts have been made to correct these permutation problems [Sawada

et al., 2004] by looking at correlations between the demixing matrices for

neighbouring frequency bins, however these methods require introducing an

additional analysis step after the demixing matrices have been constructed,

increasing the computational cost. Additionally, the method specified in

[Sawada et al., 2004] requires the use of a direction of arrival process which

may not work in high noise environments where the desired signal exhibits

less power than the interferers, a focus of this thesis.

2.4.1 TRINICON

TRINICON (Triple-N independent component analysis for convolutive mix-

tures) [Buchner et al., 2004a; Buchner et al., 2004b; Kellermann et al., 2006] is
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a framework of separation algorithms based on three signal properties — non-

gaussianity, non-whiteness and non-stationarity. The objective is to find a set

of demixing filters which minimises the Kullback-Leiber distance (equivalent

to minimising the mutual information) between the original signals and the

output of the demixing system [Buchner et al., 2004b]. This measure requires

knowledge of the source probability density functions, which in general are

not known in advance. One simplification which can be used [Aichner et al.,

2005] is to assume Gaussian signals, simplifying the filter update equations at

the cost of demixing performance.

Considering the output auto/cross-correlation matrix

Ryy = WHRxxW =


E{Y1Y

H
1 } E{Y1Y

H
2 } ... E{Y1Y

H
N}

...
. . . ...

...

E{YNYH
1 } E{YNYH

2 } ... E{YNYH
N}

 (2.136)

where Yi is a Toeplitz matrix of time-domain samples for the ith output

channel; the input auto/cross-correlation matrix Rxx is defined as

Rxx =


E{X1X

H
1 } E{X1X

H
2 } ... E{X1X

H
N}

...
. . . ...

...

E{XNXH
1 } E{XNXH

2 } ... E{XNXH
N}

 (2.137)

(where Xi is a Toeplitz matrix of time-domain samples for the ith channel);

and the BSS filter matrix is defined as a matrix of input-output Sylvester

structure convolution demixing filter submatrices

W =


W1,1 W1,2 ... W1,N

...
. . .

...

WN,1 WN,2 ... WN,N

 (2.138)
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The demixing filters are computed through minimising an appropriate

output cross-correlation reduction cost function using a gradient descent

method

W = W − µ4W (2.139)

where µ is the gradient descent/ascent parameter and4W is the filter update

equation.

The update equation at a time-block index m corresponding to the cost

function for the second order statistics case is given in [Buchner et al.,

2004a; Buchner et al., 2004b] as

4W = 2
∞∑
i=0

β(i,m)W[offDiag(Ryy(i)) blockDiag−1(Ryy(i))] (2.140)

where β represents a window function describing the type of update in

operation, and i denotes a previous time-block index. In [Buchner et al.,

2004b] three types of update operations are described as offline updates, where

the entire signal is processed at once; online, where the filters are continually

updated for new samples arriving; and block-online, which combines the two by

processing the signal block-wise (as for the update equation given in (2.140)).

The blockDiag and offDiag operators are defined as the block-diagonal and

off-diagonal matrix operators which select the respective submatrices.

The overall technique described in [Buchner et al., 2004b] from the outset

looks to be a computationally intractable problem. For any practical system,

the filter lengths required to demix signals would lead to matrix equations

involving multiplications with millions of entries to be computed. However,

the structure of the matrices described earlier represent convolutions, which

can be efficiently computed in the frequency domain via the fast Fourier

transform [Aichner et al., 2005].
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More recent work using this algorithm has involved efforts to fix the

channel ordering permutation problem inherent in blind source algorithms by

exploiting partial knowledge of the system to demix. If the source position

or direction is known, constraints [Zheng et al., 2009] can be introduced to

restrict the filters to essentially beamform towards (or away from) a known

source. In this thesis, a similar method in which the beamforming stage

occurs before the BSS stage (as opposed to during) is proposed in Chapter 6.

2.5 Conclusions

The various beamforming methods detailed in Sections 2.3.1 to 2.3.6 provide

a set of algorithms to enhance signals from a known direction/position. The

majority of the existing beamformer techniques rely on (ideally the precise)

knowledge of the desired source direction/position to perform well. The

maximum SINR beamformer solution presented in Section 2.3.6 provides an

optimal general solution provided the desired signal and interferer spatial

correlation matrices can be accurately modelled.

Blind source methods provide interesting solutions to speech enhancement

by providing mechanisms for blindly identifying signals in mixtures. The

disadvantages of these class of techniques is that they require post-processor

identification techniques to correct permutation ambiguity issues which can

be difficult to implement. Beamformer-type correction methods are relatively

simple to implement and work well in solving channel ordering permutations.

The proposed method in Chapter 6 combines spatially robust beamform-

ing/nullforming and 2-channel blind source separation to produce an adaptive

interference/noise reduction system. The (assumed to be) non-optimal beam-
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former and interference reference nullformer are further processed using the

TRINICON algorithm to remove cross-correlations between the two channels.



Chapter 3

Estimated Wiener Filter

3.1 Outline

This chapter describes a simple, novel method for estimating the single

channel Wiener filter using two spatially robust beamformers — one directed

towards the expected location of the desired source, and the other designed

to produce a robust null directed towards the desired signal (the nullformer).

The nullformer output is used to provide an instantaneous estimate of the

interferer statistics, which can be used to derive a simple estimate of the

single channel Wiener filter.

49
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3.2 Estimated Multi-channel Wiener Filter

3.2.1 Introduction

The multichannel Wiener filter (MWF) is often presented as an optimal

technique for interference/noise reduction in many areas of signal processing

[McCowan and Bourlard, 2003; Van Trees, 2004]. The technique involves

designing a set of filters (w) which minimises the mean squared error between

the desired signal (s) and the filtered noisy signal received at a sensor array for

each wavenumber/frequency k and time index t in the short time-frequency

domain, expressed as

wH [k, t]x[k, t] = wH [k, t] (s[k, t]ψs[k] + v[k, t] + n[k, t]) (3.1)

where k denotes the wavenumber (k = 2πf/c0 — where f is the frequency

in Hertz, and c0 is the speed of sound), ψs describes the acoustic transfer

function from the desired source location to each of the M microphones in

the array, v represents the interference received at the array, and n denotes

sensor noise. Using the mean squared error minimisation criteria, the Wiener

filter solution can be expressed as (2.80):

w[k, t] = Rx[k, t]
−1rsx[k, t] (3.2)

where Rx is generated recursively as

Rx[k, t] = αRx[k, t− 1] + (1− α)x[k, t]xH [k, t] (3.3)

and rsx is the cross correlation between the array output and the desired

signal.
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This can be factorised into the well known MVDR (Minimum Variance

Distortionless Response) beamformer plus a single channel Wiener filter post-

processor, as seen in the previous chapter (2.90) — with the addition of a

sensor noise/regularisation matrix Rn.

w =
σ2

s

σ2
s + σ2

v

R−1
v ψs

ψH
s [Rv + Rn]−1ψs

(3.4)

In most practical scenarios, the signal or interference statistics (σ2
s or σ2

v)

are not available and must be estimated. Existing estimation techniques

in speech enhancement involve the use of voice activity detection (VAD) to

generate speech and interference statistics by detecting pauses during speech.

Issues with VAD include false positives/negatives where interference may be

falsely detected during a speech utterance or vice versa, the likelihood of which

increases as the signal to interference ratio decreases [Catic et al., 2010]. In

this chapter a technique is presented for estimating the interference statistics

(σv) and filtering an arbitrary noisy signal, where the approximate position

of the desired signal is known and exploited to produce two beamformers, a

primary directed at the source, and a secondary designed to suppress sources

from a specified region enclosing the assumed source location.

The generalized sidelobe canceller (GSC) [Griffiths and Jim, 1982; Van Trees,

2004] attempts to perform a similar task by constructing two beamformer

outputs — the first an LCMV (linearly constrained minimum variance)

beamformer directed towards the source; the second an adaptive least mean

squares/regularised least squares (LMS/RLS) beamformer derived from an

orthogonal blocking matrix, a set of beamformers which null the source sig-

nal. The performance of the GSC system depends on the formulation of the

blocking matrix [Griffiths and Jim, 1982; Gannot et al., 2001; Gannot and
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Cohen, 2002] and the convergence performance (speed and filter accuracy)

of the adaptive filter. The blocking matrix formulation achieves its aim of

suppressing the desired signal by producing a set of precise null generating

beamformers, however these are typically not robust to errors in the desired

source position which can lead to desired signal leakage into the adaptive

filter, reducing performance.

The Wiener filter estimation method presented in this chapter provides

a (near) instantaneous estimate of the interference power spectra which can

be used to find an estimate of the signal power, allowing a single channel

Wiener filter estimate to be produced quickly without the issues of optimal

blocking matrix design and LMS/RLS convergence issues present in GSC

based designs.

3.2.2 Filter Estimation

The method can be summarised as designing two beamformers to collect

two signals, one of which represents an estimate of the interference in the

environment. The first beamformer would use the MVDR algorithm to receive

the desired signal (plus residual interference), and the second beamformer is

designed to receive only interference, by placing a null directed at the desired

signal position.

The MVDR beamformer is widely used in situations where the direction of

arrival (far-field) or position (near-field) of the desired source is known. The

beamforming weight solution is given as the right hand side of (3.4). In most

practical scenarios, the interference correlation matrix Rn is unknown and

the total signal input correlation matrix Rx is used in its place [Van Trees,

2004; Lorenz and Boyd, 2005; Ba et al., 2007]. The output of this type
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of MVDR system is the original desired signal plus attenuated interference.

Dropping the frequency/time indices for clarity, the output is

y = wHx = s+
ψH

s R−1
x [v + n]

ψH
s R−1

x ψs

(3.5)

To use the single channel Wiener filter post-processor, an estimate of

the interference statistics is required. Our method obtains this by designing

a complementary beamformer (or nullformer) to remove the desired signal,

leaving behind only interference. The interference estimate is obtained by

finding a beamforming solution (v) which directs a null towards the expected

location of the desired source. This can be achieved through adaptive and

non-adaptive methods by maximising the interference to signal ratio of the

output of the nullformer.

3.2.3 Fixed Nullformer

The simplest method of obtaining nullforming weights is to design a non-

adaptive system, where the beampattern has a fixed null directed at the

desired source and the main lobe directed to maximise the response elsewhere.

Assuming a distribution of interference which can be modelled using the

well known isotropic interference correlation function, where the ath row

and bth column can be expressed using the distance between the ath and bth

elements (ra,b) and the wavenumber k from (2.119) as

Rv[a, b] = j0(kra,b) (3.6)

the nullformer can be designed by optimising the Rayleigh quotient represent-

ing the interference to signal (ISR) ratio of the output of the array

ISR =
vHRvv

vHRsv
(3.7)
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A solution can be obtained by considering the equivalent problem of minimising

the signal content of the output subject to maintaining the total interference

component of the output of the array to some constant level, similar to the

maximum SINR solution detailed in Section 2.3.6. The nullformer weights can

be obtained through the generalised eigenvalue equation (2.102), and selecting

the eigenvector associated with the smallest eigenvalue (corresponding to the

minimum SINR solution).

3.2.4 Adaptive Nullformer

In most practical scenarios the interferer sources do not remain fixed in

both intensity and position relative to the microphone array. As a result

the fixed nullformer may not optimally detect moving sources with varying

intensity. For this reason, an adaptive nullformer is desirable. This allows

the nullformer to track changing interference statistics leading to improved

interference estimates for the Wiener filter. The fixed design solution can be

converted to an adaptive nullformer design by replacing the assumed fixed

inteference correlation matrix Rv in (2.102) with the continuously updated

input correlation matrix Rx, and again selecting the eigenvector solution

associated with the smallest eigenvalue as in the previous subsection.

This eigenvector approach to computing an interference estimate produces

the optimal nullforming solution to minimise signal received, whereas a full

set of orthogonal beamformers as formulated using a GSC-like technique may

lead to signal leakage in the blocking matrix path.

An instantaneous estimate for the interference variance at each frequency

can be obtained by computing an equalised output of the nullformer. The

equalisation is performed by computing the relative expected interference
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power ratio of the primary beamformer and nullformer.

σ̂2
v,instant. = ‖wH

nullx‖
√(

wH
MVDRRvwMVDR

wH
nullRvwnull

)
(3.8)

A long term smoothed estimate can be obtained by recursively updating σ2
v.

σ̂2
v[t] = βσ̂2

v,instant. + (1− β)σ2
v[t− 1] (3.9)

The parameter 0 < β < 1 controls the smoothness of the filter updates, a

large value results in a rapidly responding filter estimate, a smaller value a

longer term estimate.

The signal power can be estimated from the output power of the primary

beamformer and the long term interference estimate. In a manner similar to

(3.9), a smoothing parameter can be introduced to prevent the filter estimate

from rapidly fluctuating.

σ2
s [t] ' σ2

x[t]− σ̂2
v[t] (3.10)

3.2.5 Desired Source Correlation

The source correlation matrix (Rs) can be modelled by considering the

expected location of the desired source. In many practical scenarios, the

location of the desired source is approximately known. For example, when

designing an array for a cellphone, a reasonable assumption to make would

be that the users mouth is located close to the microphones on the bottom of

the device. Like the MVDR beamformer, an exact location can be assumed in

which case the correlation matrix can be obtained from the acoustic transfer

function vector ψs

Rs = σ2
sψsψ

H
s (3.11)
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However this formulation presents a major problem: the matrix Rs fails

to take into account positional error. As nulls tend to be precise in nature, a

position mismatch between the expected location and the actual location of the

source would lead to errors in the interference spectra estimate for the Wiener

filter, degrading the output signal quality. A more robust technique is possible

by requiring the source correlation matrix Rs to represent a distribution of

possible desired source locations.

In [Teal et al., 2002b], the authors describe a correlation function for

any general distribution of far-field sources by using a spherical harmonic

description of plane waves and present a number of results for various types

of angular source position distributions. This allows the computation of a

source correlation matrix for a far-field scenario which would be useful for

distant talker applications. In this chapter it is assumed that the desired

source is located close enough to the array to require a near-field treatment

incorporating source-array distance information.

3.2.6 Near-field Source Correlation

Of interest to many speech applications and for this work in particular, is the

near-field source correlation. The far-field assumption may not be valid for

certain scenarios such as hand-held cellphone usage for example, where the

distance between the microphone array and the desired source is comparable

to or less than the wavelength of sound. In this scheme, the wave fronts

from the source to the microphone array are spherical, which is not modelled

accurately using far-field assumptions.

The authors in [Dam et al., 2004; Davis et al., 2005] present a beamforming

technique in which a probabilistic near-field source distribution is used to
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generate a source correlation matrix used to help design the beamforming

solution. In this paper, the correlation matrix is applied to the problem of

producing a robust null rather than a robust primary beamformer — since it

is assumed that the MVDR solution for a compact array exhibits intrinsic

robustness to positional mismatch.

For near-field sources the variation in source distance needs to be consid-

ered in addition to angular position. In 3D using the spherical coordinate

system, the correlation function between the ith and jth microphones can be

described as

Rs[a, b] =

∫
r

∫
θ

∫
φ

ρ(r, θ, φ)ψaψ
∗
b r

2 dr dΩ, (3.12)

where the ψ terms represent the near-field acoustic transfer function. For

example, the point source transfer function can be decomposed in terms of

spherical harmonics as [Colton and Kress, 1998]

ψa = ik
∞∑
n=0

n∑
m=−n

jn(kr)hn(kra)Y
m
n (Ωa)Y

m∗
n (Ωa) (3.13)

where r denotes the source radius, ra the microphone radius, jn denotes the

spherical Bessel function of order n, hn denotes the spherical Hankel function

of order n, the Y m
n (Ω) terms denote the spherical harmonic functions for a

given angular position, and Ω = (θ, φ).

The integral (3.12) has no simple solution for a Gaussian-like distribution

of source locations. The correlation function can be approximated through

numerical integration by substituting in the appropriate source position

distribution function. In this chapter, the position distribution is assumed

to be a spherically symmetric Gaussian distribution centred close to the

microphone array. In Section 4.3.3, an analytic approximation for (3.12) is

developed and could be used as an alternative to numerical integration.
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3.2.7 Simulation Setup

Simulations were conducted to compare the estimated Wiener filter technique

with solely MVDR beamforming and a perfect multichannel Wiener filter

derived from perfect signal and interference information. The estimated

Wiener filter was evaluated by placing the desired source at a fixed location

30cm from the centre of the microphone array and the interferers evenly

distributed 1m from the centre of the array. The microphone array used was a

4 omnidirectional element circular array with a radius of 1cm. The audio was

sampled at 8kHz and the plane-wave (far-field) and point-source (near-field)

models of sound used to generate the acoustic transfer function vectors (ψ).

The sources were placed in a lightly reverberant 3D room to simulate diffuse

interference, which was generated using the image source method [Allen and

Berkley, 1979]. The wall reflection coefficients were set to 0.3 and up to 4th

order reflections were generated. The FFT block size used for computing the

MVDR filters was set to 128. The target signal to interference ratio was set

to 0 dB.

The near-field correlation matrix was derived by assuming a 3D Gaussian

distribution of sources centred on (0.30m, 0m, 0m) with a variance of 5cm.

This represented a potentially moving desired source which was predominantly

located within 2 standard deviations of the centre, a model chosen to represent

head movement relative to some fixed array location. The nullformer weights

were derived by inserting a regularisation matrix into the source correlation

matrix in order to improve robustness at low frequencies. The sensor noise

correlation matrix was set as Rn = 10−8 × I, where I is the M ×M identity

matrix.
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3.2.8 Results

The performance of the estimated Wiener filter was evaluated for both far-field

and near-field speech sources using three criteria: SINR, signal distortion

and perceptual quality (using the ITU P.862 PESQ standard [ITU-T, 2002]).

The estimated filter was compared with the ideal filter, derived from perfect

signal and interference knowledge. This represented the best case scenario

for a voice activity detector based system with zero false positives/negatives.

The estimated filter produced an output which closely matched the ideal

filter during speech utterances with an average improvement in SINR of close

to 17dB (5dB on top of the MVDR beamformer) for the near-field simulation

(Figure 3.1). The estimated filter shows a slight apparent improvement over

the ideal filter in some regions of audio, however this is due to imperfections

in the filter design resulting in errors in the signal and interference spectra

estimates, which leads to the filter aggressively removing both speech and

interference in some frequency bands resulting in a higher SINR. The side effect

of this aggressive filtering is an increase in signal distortion during the speech

utterances relative to the perfect filter (Figure 3.2), which degrades the relative

signal quality. The aggressive filtering arises primarily from conditioning

problems in the solution for the beamforming weights. The solution to

the eigenvalue problem (2.102) remains ill-conditioned at low frequencies,

requiring regularisation (increasing the value of the diagonal entries of Rn)

for a numerically stable solution. This results in reduced accuracy in the

interference spectra estimate for the Wiener filter. Despite these limitations,

the estimated filter performs well for the task of improving speech intelligibility

where the simulations have shown a significant improvement in perceptual
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Figure 3.1: SINR of a short utterance of speech for the near-field method

comparing the input, MVDR, MVDR plus estimated filter and MVDR plus

perfect filter

quality as evaluated using the PESQ standard (Table 3.1).

3.2.9 Discussion

The main deficiency of the proposed method against the traditional VAD based

methods is the inability to filter out interferers which lie in the direction of

the spatial null created by the nullformer. In most practical implementations,
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Figure 3.2: Signal distortion measures for a short utterance of speech for the

near-field method comparing the MVDR plus estimated filter and the MVDR

plus perfect filter

Score

Input 1.1

MVDR 1.7

MVDR + Est. Filter 2.2

MVDR + Perf. Filter 2.7

Table 3.1: PESQ scores
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the limited number of microphones and aperture width will result in this

problem as the null size is restricted by these parameters. However, unlike

VAD based methods, this technique does not require detection of speech

which can be difficult in low SINR environments. This makes the proposed

approach well suited for many practical scenarios. Additionally, although

this has been presented as a speech enhancing method, no assumptions other

than the location of the desired signal have been made, making it well suited

for other signal filtering operations where the position of the desired source

is known. For the specific example of speech enhancement, the imperfect

estimated filter performs reasonably well against the best case scenario where

the Wiener filter can be perfectly estimated.



Chapter 4

Spatially Robust Beamforming

4.1 Outline

This chapter covers beamformer spatial robustness; it is assumed that the

desired source location can vary with some angle (far-field) or position (near-

field) from the given location. The far-field section focuses on using the

von Mises(-Fisher) distribution to model angle variance to design robust

beam/nullformers. The near-field section presents two formulations to model

position variance — a uniform probability distribution (equal probability

within a volume), and a radial Gaussian model.

63
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4.2 Far-field Beamforming

4.2.1 Introduction

An issue of interest in the field of beamforming is spatial robustness. Beam-

forming solutions such as the minimum variance distortionless response

(MVDR) and its related algorithms are often presented in the literature.

In these methods, the signal to interference plus noise (SINR) ratio is opti-

mised given an exact source location and precise interference/noise statistics.

In some situations the actual location of a desired source may not match

the assumed location used to derive the beamformer solutions. This may lead

to reduced SINR gain when a mismatch occurs. Existing approaches to this

problem include target tracking, where voice activity detection (VAD)/signal

detection and non-stationarity assumption methods are commonly used to

train the steering vectors and/or interference and noise statistics [Gannot

et al., 2001; Gannot and Cohen, 2002].

Previous approaches to the spatial robustness problem include generalised

eigenvalue (GEVD) based beamformers [Shahbazpanahi et al., 2003; Dam

et al., 2004], which can be used to design solutions optimised for a particular

region of interest. In these methods, the correlation functions are computed by

integrating the correlation between two microphones for a region of possible

desired source directions.

Additionally, it may be desirable to design blocking beamformers (nullform-

ers) which suppress signals originating from a particular direction. Typical

null designs such as those used in LCMV and GSC beamforming [Van Trees,

2004] result in very narrow suppression angular regions which are sensitive

to direction mismatch between the actual and estimated direction of arrival.
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For example the generalised sidelobe canceller (GSC) algorithm relies on a

set of orthogonal blocking beamformers (suppressing the desired source) to

control adaptation. If a misalignment occurs, there can be significant desired

signal leakage into the blocking path, leading to reduced performance. In a

manner similar to many implementations of the MVDR beamformer, training

methods such as VAD can be used to correct the steering vectors.

VAD-based methods used to adapt the steering vectors and/or interfer-

ence and noise statistics are not robust in noisy environments [Davis et al.,

2005; Catic et al., 2010]. In low SINR conditions, the probability of false

positives/negatives increases which leads to incorrect steering vector and/or

interference/noise estimation.

In this section, a method for designing robust microphone beamformers

is presented based on the use of distribution modelling of the desired source

direction of arrival. A simple analytic result for the spatial correlation function

due to a distribution is used to design the beamformers — a technique which

greatly reduces the computational complexity of the beamformer weight

solutions.

4.2.2 Robust Maximum Eigenvalue Beamforming

A method of introducing directional robustness into deriving the beamforming

weights is rather than assuming a single steering direction, to design the

weights to account for multiple possible steering directions. The maximum

SINR beamformer solution (2.102) introduced in Section 2.3.6 provides a

framework for designing robust beamformers.

The desired source spatial correlation matrix can be derived by considering



66 CHAPTER 4. SPATIALLY ROBUST BEAMFORMING

multiple possible steering vectors weighted by some probability.

Rs =
1

N

N∑
n=1

pnψnψ
H
n (4.1)

where pn denotes the probability weighting for the nth source, and ψn denotes

the transfer function vector from the source to the microphone.

This can be extended to a far-field continuous distribution in a 2D plane

by integrating over a circle. The entries of the Rs matrix can be expressed as

Rs[a, b] =

∫
φ

p(φ, φ0)ψa(φ, φa)ψ
∗
b (φ, φb) dφ (4.2)

where p(φ, φ0) denotes the probability that the desired source is located in

the direction φ given a central angle φ0, ψa denotes the steering coefficient

from the desired source to the ath microphone (and similarly for the bth

microphone). Similarly a far-field 3D description is expressed as

Rs[a, b] =

∫∫
Ω

p(Ω,Ω0)ψa(Ω,Ωa)ψ
∗
b (Ω,Ωb) dΩ (4.3)

where the Ω vectors are shorthand descriptions of the inclination and azimuth

angles (θ, φ), and dΩ = sin θ dθ dφ.

In general the interference spatial correlation matrix is unknown for many

scenarios. A reasonable assumption in reverberant environments is to assume

that the interference is isotropic in nature [Ward and Elko, 1997]. The 2D or

3D isotropic interference spatial correlation functions [Teal et al., 2002b] can

be used to provide an estimate for the correlation matrix. The 2D function

can be expressed as

Rv[a, b] = J0(kdab) (4.4)

where J0 denotes the zeroth order cylindrical Bessel function, k the wavenum-

ber, and dab the distance between the ath and bth microphones in the array.
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The 3D isotropic function is similarly (from Section 2.3.7)

Rv[a, b] = j0(kdab) (4.5)

where j0 denotes the zeroth order spherical Bessel function.

In situations where more knowledge on the environment is available,

alternative interference correlation matrices can be substituted.

The integral formulation for the desired source spatial correlation function

poses a computational complexity problem when designing the beamformer.

The integral typically does not have a simple analytic solution, meaning costly

numerical integration techniques are required to compute the correlation ma-

trix. However, certain probability distribution functions exhibit mathematical

properties which can lead to analytical solutions to the integrals in (4.2 and

4.3).

4.2.3 Robust Nullforming

In some applications it may be desirable to suppress rather than enhance an

source arriving from some direction. Again we assume that the target source

lies within an uncertain region. For the robust beamformer the optimisation

criterion for designing weights was defined as finding weights which maximised

the SINR. In robust null design the optimisation criteria can be defined as

doing the opposite, i.e., maximising the interference to signal ratio. The

GEVD equation (2.102) to derive the nullformer weights is similar to the

beamformer, with the desired source and interference correlation matrices

exchanged. The nullformer solution can be obtained by finding the eigenvector

(w) associated with largest eigenvalue (λ) in the equation[
Rs + σ2

nI
]
w = λRvw (4.6)



68 CHAPTER 4. SPATIALLY ROBUST BEAMFORMING

As in the robust beamformer case, this formulation allows for a spatially

robust solution depending on the design of the target source correlation matrix

Rs.

4.2.4 von Mises Distribution based Beamformer

Two Dimensional Modelling

The correlation between two microphones due to a plane-wave source origi-

nating from angle φ can be expressed as

ψa(φ, φa)ψ
∗
b (φ, φb) = eik·rae−ik·rb = eik·rab (4.7)

where k = k [cosφ sinφ]T denotes the wavevector describing the wave originat-

ing from a source direction φ, ra = ra [cosφa sinφa]
T denotes the microphone

position vector, and rab = ra − rb denotes the vector between the two micro-

phones. In terms of Bessel functions, (4.7) can be expressed as

ψa(φ, φa)ψ
∗
b (φ, φb) =

∞∑
n=−∞

inJn(krab)e
in(φab−φ) (4.8)

The von Mises distribution [Teal et al., 2002a] provides a suitable model

for describing the variation in direction of arrival of a sound source. The von

Mises density function is

p(φ, φ0) =
eκ cos(φ−φ0)

2πI0(κ)
(4.9)

where κ describes the shape of the distribution, and is analogous to the pa-

rameter σ of the normal distribution, φ0 denotes the centre of the distribution

— the look direction of the beamformer in this application, and I0 is the

zeroth-order modified cylindrical Bessel function.
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The authors of [Teal et al., 2002a] derive the correlation function result as

Rs[a, b] =
1

I0(κ)

∞∑
n=−∞

inJn(krab)In(κ)ein(φab−φ0) (4.10)

In Section 4.2.9, (4.10) is derived and it is demonstrated that it can be

simplified to a simple novel ratio function by exploiting the properties of the

modified Bessel functions.

Rs[a, b] =
J0(z)

I0(κ)
(4.11)

where

z =
√

(krab)2 − κ2 − 2iκkrab cos(φab − φ0) (4.12)

is a complex number which is related to the non-isotropy of the sound field.

If κ is zero, the correlation function is that of an isotropic field — the

(krab)
2 term dominates. When κ becomes large, the field becomes more

directional — the κ2 term dominates. This behaviour can be parametrised

by considering the ratio

η =
(krab)

2

‖z‖2
(4.13)

which is equal to 1 if the field is isotropic (κ = 0) and approaches zero as κ

tends to infinity.

The distribution shape for varying values of κ is demonstrated in Figure

4.1. Smaller values of κ correspond to a broader distribution, larger values

correspond to a more compact localised distribution. For the uniform dis-

tribution case (κ = 0), the correlation function becomes the 2D isotropic

interference correlation function in (4.4).

Using this correlation function, it is possible to design spatially robust

beamformers/nullformers using the generalised eigenvalue solution, described
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Figure 4.1: The von Mises probability density function centred at φ0 = 180◦

for varying values of κ.

in Sections (4.2.2 and 4.2.3), by inserting the appropriate spatial correlation

matrices.

Three Dimensional Modelling

In [Mammasis and Stewart, 2010], the authors describe a similar correlation

function for the 3D von Mises-Fisher distribution. Like the 2D case, the

correlation function can be computed using a series solution for the integral

in (4.3).

The 3D von Mises-Fisher distribution is defined as [Fisher, 1953]

p(Ω,Ω0) =
κ

4π sinhκ
eκ[cos θ cos θ0+sin θ sin θ0 cos(φ−φ0)] (4.14)
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In [Mammasis and Stewart, 2010] the authors derive the correlation

function using the spherical harmonic description of plane waves as

Rs[a, b] =
4π

i0(κ)

∞∑
n=0

∞∑
m=−n

injn(krab)ιn(κ)Y m
n (Ωab)Y

m∗
n (Ω0) (4.15)

where ιn denotes the nth order modified spherical Bessel function, Y m
n denotes

the (n,m) order spherical harmonic function, Ωab denotes the solid angle

between the ath and bth microphones, and Ω0 denotes the target direction.

In Section 4.2.10 the result in (4.15) is derived and it is shown that a

further simplification is possible by exploiting the properties of the (modified)

spherical Bessel functions, analogous to those of the cylindrical Bessel func-

tions. The result is a novel simple ratio function involving only the zeroth

order (modified) spherical Bessel functions.

Rs[a, b] =
j0(z)

ι0(κ)
(4.16)

where

z =
√

(krab)2 − κ2 − 2iκkrab cos(Ψ) (4.17)

is a complex quantity relating to the (non)isotropy of the sound field similar

to (4.12), and

cos Ψ = cos θab cos θ0 + sin θab sin θ0 cos(φab − φ0) (4.18)

is the cosine of the angle between the centre of the source distribution and

the vector connecting the ath and bth microphones.

Analogous to the 2D case, the uniform distribution (κ = 0) results in the

well known 3D isotropic interference correlation function in (4.5).
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4.2.5 Results

The robust method was compared with the existing MVDR solution by

generating a set of beamformers using different values of κ corresponding to

wide (small values) or narrow (large values) main lobes. The theoretical SINR

improvement (due to isotropic noise) and white noise gain were computed as

performance measures. Three frequencies were compared for each microphone

array layout — 550Hz, 1.1kHz and 2.6kHz. Three arrays were designed —

a compact 4 microphone array, a small teleconferencing array, and a large

teleconferencing array.

Compact Array

Using a distribution based approach to designing the beamforming weights

results in broad main lobes in the resulting array response beam-patterns if

a small value of κ is selected (corresponding to a broad distribution). The

compact array with few microphones exhibited a slight broadening when

using low values of κ compared with the MVDR solution, as seen in Figure

4.2. The main lobe width, defined in terms of a greater than 0 dB SINR gain

— where the signals originating from this region are enhanced relative to the

background, increased by up to 15.2◦ (Table 4.1) when using κ = 0.2. As

the parameter κ shrinks, the SINR gain of the background noise decreases

substantially (as much as 10 dB) in exchange for a slight decrease in SINR

gain for sources originating from the expected location.

At higher frequencies, the array response is similarly broad, due to the

limited aperture and number of microphones. The distribution-based approach

still results in a similar level of improvement in spatial robustness, however
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Table 4.1: Compact array main-lobe width increase in radians (degrees)

compared with MVDR using κ = 0.2

Freq. MVDR Robust (κ = 0.2) Width Increase

550Hz 1.641 (94.0) 1.877 (107.5) 0.236 rad. (13.5◦)

1100Hz 1.641 (94.0) 1.871 (107.2) 0.230 rad. (13.2◦)

2600Hz 1.651 (94.6) 1.917 (109.8) 0.266 rad. (15.2◦)
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Figure 4.2: Theoretical SINR improvements at 1.1kHz using different values

of κ for a 4-element 2cm radius microphone array.

for this particular array size this is unlikely to be necessary as the MVDR

solution appears to be spatially robust. The distribution-based approach

does lead to improved noise rejection outside the main-lobe which may be

advantageous in some scenarios.
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Figure 4.3: Nullformer performance at 1.1kHz for the 4-element 2cm radius

array.

The nullformer designed with the robust formulation shows an immediate

advantage over the precise null, seen in Figure 4.3. The robust null is able to

attenuate signals from the target direction of arrival by at least 50 dB over a

angle range of roughly 60◦, compared with the precise null produced using

the classical design.

Larger Teleconferencing Arrays

Using more microphones and larger apertures results in narrower main lobes

when using the MVDR beamformer. For these arrays it becomes more critical

that the look direction is accurate for the MVDR solution to operate well.

Two larger arrays were tested, the first having 8-elements, 5 cm radius; the
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Table 4.2: Small teleconferencing array main-lobe width increase in radians

(degrees) compared with MVDR using κ = 0.2

Freq. MVDR Robust (κ = 0.2) Width Increase

550Hz 1.173 (67.2) 1.503 (86.1) 0.330 rad. (18.9◦)

1100Hz 1.023 (58.6) 1.259 (72.1) 0.236 rad. (13.5◦)

2600Hz 1.037 (59.4) 1.289 (73.8) 0.252 rad. (14.4◦)
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Figure 4.4: Theoretical SINR gain for the 32-element, 10 cm radius array at

1.1kHz.

second 32-elements, 10 cm radius.

For the 5 cm radius array, the robust formulation improves the robustness

by a similar amount to the compact array, increasing the main-lobe width by

between 13.5 and 18.9◦ (Table 4.2).
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Table 4.3: Large teleconferencing array main-lobe width increase in radians

(degrees) compared with MVDR using κ = 0.2

Freq. MVDR Robust (κ = 0.2) Width Increase

550Hz 0.801 (45.9) 1.075 (61.6) 0.274 rad. (15.7◦)

1100Hz 0.601 (34.4) 0.811 (46.4) 0.210 rad. (12.0◦)

2600Hz 0.595 (34.1) 0.877 (50.3) 0.282 rad. (16.2◦)

Similar gains in main-lobe width are achieved with the larger array, with

a typical improvement of at least 0.2 radians (Table 4.3, Figure 4.4).

Three Dimensional Array

A simple example of a three dimensional system is presented in Figure 4.5,

where a 25-element 5 cm radius array is beamformed to a target originating

from the negative y direction (0, -1, 0). The robust formulation shows a larger

angular range of SINR improvement compared with the MVDR response. Like

the 2D case, the side-lobes decrease in intensity (although this is not easily

visible in the figure), indicating greater off-target noise rejection compared

with the MVDR solution.

Numerical Robustness

As noted in Section 2.3.9, white noise gain (WNG) is an important measure

of the ability of the microphone array to tolerate intrinsic errors: sensor

noise, calibration errors and so on. In these simulations, σ2
n was set to 10−6,

modelling a 0.1% error in the beamformer weight vectors.
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Figure 4.5: SINR gain (in dB) for the a) 3D von Mises-Fisher beamformer

(κ = 0.2) and b) 3D MVDR beamformer at 1.1kHz, with a target direction of

(0, -1, 0).
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Figure 4.6: White Noise Gain against frequency for the compact array beam-

formers designed using MVDR and the robust formulation for the 4-element

2 cm radius array.

For the nullformer designs, the white noise gain parameter is redefined as

WNGnull =
wHRvw

wHw
(4.19)

Similarly, nullformer numerical robustness is improved by increasing σ2
n.

The robust formulation, seen in Figures 4.6 and 4.7, exhibits improved

white noise gain at low frequencies, by as much as 20 dB when using a regulari-

sation parameter of 10−6. This indicates that the spatially robust beamformer

is capable of tolerating greater errors in microphone mismatch (array calibra-

tion errors and/or intrinsic microphone properties) at low frequencies than

the MVDR beamformer. However the robust formulation, like MVDR, does
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Figure 4.7: White Noise Gain against frequency for the compact array null-

formers designed using perfect direction knowledge and the robust formulation

for the 4-element 2 cm radius array.

still have poor white noise gain at low frequencies, indicating that significantly

more regularisation of the sensor noise correlation matrix (2.54) is required

to ensure robustness to intrinsic microphone/array position/mismatch errors.

In Figure 4.8 a simple demonstration of the effect of error on the beam-

former response is presented for a low frequency scenario where numerical

robustness could be problematic. In this simulation, a 0.1% error was intro-

duced into the weight solution vector w, simulating sensor noise. The noisy

sensors exhibit degraded performance as expected, which results in reduced

background interference suppression, particularly when using the MVDR
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Figure 4.8: Beamformer SINR gain with noiseless sensors (top), and noisy

(bottom). 4-element, 2 cm radius array at 250Hz. 95% confidence intervals

are displayed for the noisy results.
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Figure 4.9: Nullformer SINR gain with noiseless sensors (top), and noisy

(bottom). 4-element, 2 cm radius array at 250Hz. 95% confidence intervals

are displayed for the noisy results.
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solution in these simulations. Using the same assumed noise parameters

in the beamformer design (σ2
n = 10−6), the von Mises correlation derived

beamformer performs significantly better when a broad distribution parameter

is chosen. Over 1000 trial runs, in which the weight vector w was perturbed

by a small error, the von Mises derived beamformer showed on average better

SINR gain when directed at the target source. Additionally, the background

interference is suppressed significantly better (up to 5 dB) compared with the

MVDR beamformer.

A simple nullformer example is presented in Figure 4.9, where the weights

have been distorted by a small (0.1%) random perturbation. The spatially

robust formulation still produces a broad null near the expected direction of

arrival (originating from 180◦), however it exhibits reduced signal suppression,

rising from −50 dB to approximately −40 dB. The result of this is an increase

in signal leakage which in some applications may be undesirable. The spatially

robust solution still shows a huge advantage over the precise null solution,

which shows poor suppression of the target signal at this particular frequency

due to its poor white noise gain characteristics.

4.2.6 Application: Simple Adaptive Filtering vs. GSC

An application of the nullforming technique is the implementation of an adap-

tive filtering system similar to the GSC beamformer (using the time-domain

equivalent of (2.71)). For this application, the objective is to emulate the

GSC structure by replacing the blocking matrix (multiple perfect nullformers)

with a single robust nullformer. The performance was evaluated by placing

two non-stationary sources (speech and music, sampled at 44.1 kHz) opposite

each other 1 m away from a 4-element, 1 cm radius circular array. The mean
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input SINR was set to 0 dB. Adaptation of the simple and GSC methods was

achieved using 1024-tap time-domain LMS filters and a step-size parameter

µ = 10−4 (found through trial and error to maximise SINR). The 1024-tap

fixed-MVDR and fixed-robust beamformers were designed using (2.60 and

2.102) with a 2D diffuse interference correlation matrix, representing a worst-

case scenario where no knowledge of the interferer(s) is assumed. The desired

source spatial correlation matrix for the robust beamformers was designed

using (4.11) using the parameter κ = 700.

In Table 4.4 the SINR after processing with the simple adaptive filter,

GSC, and only fixed-robust/MVDR beamforming is presented. The simple

method outperformed the GSC beamformer with an increasing margin (2

to 3 dB) as the location error increased. It was found that the theoretically

perfect nulls, designed by constructing vectors orthogonal to the expected

transfer function vector, did not perfectly cancel the desired signal even

when no location mismatch occurred. This was due to minor arithmetic

rounding errors arising from the eigenvalue decomposition method used to

derive the blocking matrix, and the corresponding poor white noise gain of

the nullformers. This is not unexpected as it was seen in Figure 4.9, that the

introduction of a small amount of random noise resulted in almost complete

failure of the perfect null design.

4.2.7 Discussion

As κ tends to large values, the resulting beamformer approaches the same

performance as the MVDR beamformer. This results from the limiting

behaviour of the modified Bessel functions in (4.10) and (4.15). In the limit

as κ approaches infinity, the modified cylindrical/spherical Bessel functions
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Table 4.4: SINR comparison between the simple adaptive filter system, GSC,

fixed robust, and fixed-MVDR beamformers. Input SINR was set to 0 dB.

Mismatch AF (dB) GSC (dB) Fixed-Beam (dB) Fixed-MVDR (dB)

0◦ 11.2 9.5 9.7 9.5

5.7◦ (0.1 rad.) 11.1 9.2 9.6 9.4

11.5◦ (0.2 rad.) 10.6 8.5 9.2 8.9

17.2◦ (0.3 rad.) 9.8 7.4 8.4 8.2

22.3◦ (0.4 rad.) 8.7 6.0 7.3 7.1

28.6◦ (0.5 rad.) 7.1 4.2 5.7 5.5

approach [Abramowitz and Stegun, 1964]

In(κ) ≈ eκ√
2πκ

(4.20)

and the ratio in the summations in (4.10) and (4.15)

In(κ)

I0(κ)
,
ιn(κ)

ι0(κ)
(4.21)

approaches 1. In this case the summations in (4.10) and (4.15) simplify to

the correlation function due to a single source at a specific angle φ0/Ω0 and

this case the correlation matrix Rs can be derived as the outer-product of

the vector describing the transfer function from the source to each of the

microphones (ψs in (2.46)).

Rs = σ2
sψsψ

H
s (4.22)

The GEVD beamformer solution (from (2.102), again neglecting σs for sim-

plicity) is

(Rv + Rn) w = λψsψ
H
s w (4.23)
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Figure 4.10: Response to a signal located at the mean angle of the source dis-

tribution in the presence of sensor noise. A distortionless response corresponds

to 0 dB. 95% confidence intervals are displayed as the dashed curves.

Noting that ψH
s w is 1 to satisfy the distortionless constraint, the GEVD

equation reduces to

(Rv + Rn) w = λψs (4.24)

The solution for the weights is therefore

w = λ (Rv + Rn)−1ψs (4.25)

The distortionless constraint implies

λ =
1

ψH
s (Rv + Rn)−1ψs

(4.26)

which is the MVDR beamforming solution.
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As noted in Section 4.2.5, the spatially robust beamformer design also ex-

hibits improved white noise gain characteristics compared with the traditional

MVDR beamformer. The robust design has not been explicitly designed for a

distortionless response, however the beamforming weights can be normalised

such that the response to the mean source angle is undistorted. An interesting

comparison between the MVDR and robust beamformers is the response to a

source originating from the mean angle of the distribution when sensor noise

is present.

In Figure 4.10, the response to the centre of the source distribution is

presented for the noisy microphone simulations. Both methods achieve near-

distortionless response (less than 1.5 dB difference from the ideal response)

throughout the frequency range for the given noise level (0.1%) and matrix

regularisation (10−6). The robust method exhibits slightly more consistent

response than the MVDR method when the weight vectors are perturbed, as

apparent from the confidence intervals in Figure 4.10, a consequence of better

white noise gain characteristics.

4.2.8 Conclusion

Modelling a sound source distribution using either the 2D or 3D von Mises(-

Fisher) density functions results in simple novel analytic expressions for

computing the correlation between microphones, which can be used to design

spatially robust beamformers/nullformers capable of tolerating uncertainty

in microphone array to source direction. The data in Tables 4.1, 4.2, and

4.3, demonstrate that the broad distribution is capable of tolerating an

additional error in the expected direction of arrival subject to an increase

in SINR. The spatially robust formulation is particularly well suited for the
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application of signal suppression, where the distribution approach allows

for a easily specified broad region of suppression — useful for applications

where there is uncertainty in the blocking direction. Beamformers based

on the distribution approach presented are also more numerically robust

than standard beamforming methods, indicating greater tolerance to sensor

errors/mismatch.

4.2.9 Proof of 2D von Mises-based Correlation Func-

tion

The 2D von Mises density function in (4.9) can be expressed in terms of

modified cylindrical Bessel functions, using [Abramowitz and Stegun, 1964,

(9.6.34)], as

p(φ, φ0) =
1

2πI0(κ)

[
I0(κ) + 2

∞∑
n=1

In(κ) cos(n(φ− φ0))

]
(4.27)

Using Euler’s identity and the modified Bessel function property [Abramowitz

and Stegun, 1964, (9.6.6)],

In(x) = I−n(x) (4.28)

(4.27) can be expressed as

p(φ, φ0) =
1

2πI0(κ)

∞∑
n=−∞

In(κ)ein(φ−φ0) (4.29)

Inserting (4.29) and (4.8) into (4.2), and using the orthogonality of the

complex exponential functions, the correlation function can be expressed as

Rs[a, b] =
1

I0(κ)

∞∑
n=−∞

inJn(krab)In(κ)ein(φab−φ0) (4.30)
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which is equivalent to the result in [Teal et al., 2002a].

The modified Bessel functions have the property [Abramowitz and Stegun,

1964, (9.6.3)]

In(x) = e−in
π
2 Jn(ix) = i−nJn(ix) (4.31)

Noting that

in = ein
π
2 (4.32)

(4.30) can be expressed as

Rs[a, b] =
1

I0(κ)

∞∑
n=−∞

Jn(krab)Jn(iκ)ein(φab−φ0) (4.33)

Using [Abramowitz and Stegun, 1964, (9.1.79)] and Euler’s identity, the

summation is reduced to a single term, leading to the simple correlation

function

Rs[i, j] =
J0(z)

I0(κ)
(4.34)

where z =
√

(krab)2 − κ2 − 2iκkrab cos(φab − φ0).

4.2.10 Proof of 3D von Mises-Fisher-based Correlation

Function

Equation (4.14) can be defined in terms of modified spherical Bessel functions

using [Abramowitz and Stegun, 1964, (10.2.36)]

p(Ω,Ω0) =
1

4πι0(κ)

∞∑
n=0

(2n+ 1)Pn(cos Ψp)ιn(κ) (4.35)

where

cos Ψp = cos θ cos θ0 + sin θ sin θ0 cos(φ− φ0) (4.36)
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and

ιn(κ) =

√
π

2κ
In+ 1

2
(κ) (4.37)

denotes the nth order modified spherical Bessel function.

Using the spherical harmonic addition theorem [Clapp, 1970, (1.1)] the

probability density function in (4.35) can be expressed as

p(Ω,Ω0) =
1

ι0(κ)

∞∑
n=0

n∑
m=−n

ιn(κ)Y m
n (Ω)Y m∗

n (Ω0) (4.38)

Plane-waves in 3D can be described as

eik·ra = 4π
∞∑
n=0

n∑
m=−n

injn(kra)Y
m
n (Ωa)Y

m∗
n (Ω) (4.39)

The correlation between two microphones can similarly be described as

eik·rae−ik·rb = eik·rab = ψaψ
∗
b

= 4π
∞∑
n=0

n∑
m=−n

injn(krab)Y
m
n (Ωab)Y

m∗
n (Ω) (4.40)

Inserting (4.40) and (4.38) into (4.3),∫∫
Ω

4π

ι0(κ)

∞∑
n1=0

∞∑
n2=0

n1∑
m1=−n1

n2∑
m2=−n2

in1jn1(krab)ιn2(κ)

Y m1
n1

(Ωab)Y
m2∗
n2

(Ω0)Y m1∗
n1

(Ω)Y m2
n2

(Ω)dΩ (4.41)

Using the orthogonality property of the spherical harmonics,∫∫
Ω

Y m∗
n (Ω)Y m

n (Ω)dΩ = δn1n2,m1m2 (4.42)

(4.41) reduces to

Rs[a, b] =
4π

i0(κ)

∞∑
n=0

∞∑
m=−n

injn(krab)ιn(κ)Y m
n (Ωab)Y

m∗
n (Ω0) (4.43)
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which matches the result in [Mammasis and Stewart, 2010].

Using the spherical harmonic addition theorem, the correlation function

can be simplified to

Rs[a, b] =
1

i0(κ)

∞∑
n=0

(2n+ 1)Pn(cos Ψ)injn(krab)ιn(κ) (4.44)

where

cos Ψ = cos θab cos θ0 + sin θab sin θ0 cos(φab − φ0) (4.45)

In a manner similar to the 2D case, it can be shown that the 3D correlation

function can be described without a summation as a simple function. The

modified spherical Bessel functions can be expressed as

ιn(x) = e−in
π
2 jn(ix) (4.46)

and so (4.44) can be expressed as

Rs[a, b] =
1

ι0(κ)

∞∑
n=0

(2n+ 1)Pn(cos Ψ)jn(krab)jn(iκ) (4.47)

The summation in (4.47) can be expressed using [Abramowitz and Stegun,

1964, (10.1.45)] as

j0(z) =
∞∑
n=0

(2n+ 1)Pn(cos Ψ)jn(krab)jn(iκ) (4.48)

where z =
√

(krab)2 − κ2 − 2iκkrab cos Ψ.

The simplified correlation function in 3D is therefore

Rs[a, b] =
j0(z)

ι0(κ)
(4.49)
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4.3 Near-field Beamforming

4.3.1 Introduction

This section extends the robust beamforming technique to include near-field

distributions of source locations (as opposed to directions). Two distribution

models are used to develop the spatial correlation functions: the first of

which is a radial Gaussian model; the second of which is a uniform volume

distribution.

4.3.2 Source Probability Distribution

The objective is to find a spatial correlation function for the signal received

from a distribution of possible source positions centred at the coordinate

origin located close to a sensor array rather than assuming a single fixed

source position. If it is assumed that the source is located near the coordinate

origin then the correlation function for sensors at points ra and rb can be

obtained by integrating a weighted pair of source to sensor near-field transfer

functions over a spherical volume [Grbic et al., 2003].

Rs[a, b] =

∫
vol.

ζa(r, ra)ζ
∗
b (r, rb)p(r, θ, φ)dV (4.50)

where p denotes the probability distribution function, ζa denotes the near-field

acoustic pressure at microphone a due to a source at radius r, and the volume

element dV is

dV = r2 dr sin θ dθ dφ (4.51)

Now assume the source distribution is spherically symmetric, i.e., varying

only with radius

p(r, θ, φ) = pr(r) (4.52)
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The normalisation conditions require that∫ ∞
0

∫ π

0

∫ 2π

0

pr(r) r
2 dr sin θ dθ dφ = 1 (4.53)

The Gaussian-like function

pr(r) =
1√

8π3σ3
exp

(
− r2

2σ2

)
(4.54)

is a valid solution and meets the imposed criteria to model the probability

distribution of the source.

4.3.3 Spatial Correlation Function: Gaussian Distribu-

tion

The point source in free space can be expressed in terms of spherical basis

functions as [Colton and Kress, 1998] [Williams, 1999]

ζa(r, ra) = −ik
∞∑
n=0

n∑
m=−n

γn(kr)ηn(kra)Y
m
n (θ, φ)Y m∗

n (θa, φa) (4.55)

where γn represents the source term, ηn the sensor term, Y m
n the spherical

harmonic functions of order n,m, and the source/sensor elevation and azimuth

angles are defined as (θ, φ) and (θa, φa) respectively. The source and sensor

terms are defined depending on the radii of the source (r) and sensor (ra)

locations from the co-ordinate origin [Colton and Kress, 1998] [Williams,

1999],

γn(kr)ηn(kra) =

jn(kr)hn(kra) if r < ra

jn(kra)hn(kr) if r ≥ ra

(4.56)

where jn denotes the spherical Bessel function of nth order, and hn denotes

the spherical Hankel functions of nth order.
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We define the radial component of (4.55), using the conditions in (4.56) as

Λ1
n(kr, kra) = jn(kr)hn(kra) if r < ra (4.57)

Λ2
n(kr, kra) = hn(kr)jn(kra) if r ≥ ra (4.58)

and the angular component as

Θn(Ω,Ωa) =
n∑

m=−n

Y m
n (Ω)Y m∗

n (Ωa) (4.59)

where Ω = (θ, φ).

The point source equation (4.55) can be compactly expressed as

ζa(r, ra,Ω,Ωa) = −ik
∞∑
n=0

Λn(kr, kra)Θn(Ω,Ωa) (4.60)

with the appropriate superscript of the Λ function depending on the source

and sensor radii.

Inserting (4.60) into (4.50) results in an integral with three defined regions

corresponding to the cases with sources having radii less than the smallest

sensor radius, sources having radii between those of the two sensors, and

sources having radii greater than both of the sensors.

Rs[a, b] =
∞∑

na=0

∞∑
nb=0

{∫ rmin

0

f (1)
na,nb

r2 dr +

∫ rmax

rmin

f (2)
na,nb

r2 dr

+

∫ ∞
rmax

f (3)
na,nb

r2 dr

}∫
Ω

Θna(Ω,Ωa)Θ
∗
nb

(Ω,Ωb) dΩ (4.61)

where the f
(1)
na,nb , f

(2)
na,nb , and f

(3)
na,nb terms can be derived using the Λ1,2

n defini-

tions in (4.57) and (4.58) to give

f (1)
na,nb

= pr(r)hna(kra)h
∗
nb

(krb)jna(kr)jnb(kr) (4.62)

f (2)
na,nb

= pr(r) jna(kra)h
∗
nb

(krb)hna(kr)jnb(kr) (4.63)



94 CHAPTER 4. SPATIALLY ROBUST BEAMFORMING

f (3)
na,nb

= pr(r) jna(kra)jnb(krb)hna(kr)h
∗
nb

(kr) (4.64)

None of the integrals over r in (4.61) is known to have a simple analytical result.

A close approximation is possible if the probability distribution is compact

enough such that the correlation function can be represented using only the

f
(1)
na,nb functions. In order to attain an analytical solution the integration

limit is extended from rmin to ∞ under the assumption that the additional

contribution when integrating from rmin to ∞ is insignificant. That is, we

assume that

p(r > rmin) ' 0 (4.65)

which if true implies that∫ rmin

0

f (1)
na,nb

r2 dr +

∫ ∞
rmin

f (1)
na,nb

r2 dr '
∫ rmin

0

f (1)
na,nb

r2 dr (4.66)

since it is assumed that the probability of the source location being greater

than rmin is approximately zero. In Section 4.3.6 it is demonstrated that this

assumption holds for compact distributions of sources near the sensors. The

approximate correlation function can therefore be expressed as

Rs[a, b] '
∞∑

na=0

∞∑
nb=0

∫ ∞
0

f (1)
na,nb

r2 dr

×
∫

Ω

Θna(Ω,Ωa)Θ
∗
nb

(Ω,Ωb) dΩ (4.67)

The angular component∫
Ω

Θna(Ω,Ωa)Θ
∗
nb

(Ω,Ωb) dΩ (4.68)

can be expanded using (4.59) as

na∑
ma=−na

nb∑
mb=−nb

∫
Ω

Y ma
na (Ω)Y mb∗

nb
(Ω)Y ma

na (Ωa)Y
mb∗
nb

(Ωb) dΩ (4.69)
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The orthogonality of spherical harmonics∫
Ω

Y ma
na (Ω)Y mb∗

nb
(Ω) dΩ = δnanb,mamb (4.70)

can be used to simplify (4.69) to

n∑
m=−n

Y m
n (Ωa)Y

m∗
n (Ωb) (4.71)

The spherical harmonic addition theorem [Abramowitz and Stegun, 1964]

n∑
m=−n

Y m
n (Ωa)Y

m∗
n (Ωb) =

1

4π
(2n+ 1)Pn(cos Ωab) (4.72)

can be used to further simplify the angular components (where Pn de-

notes the Legendre polynomials of order n and cos Ωab = cos θa cos θb +

sin θa sin θb cos(φa − φb) represents the solid angle between the ath and bth

sensors in the array).

The approximate correlation function in (4.67) can now be expressed as

Rs[a, b] '
1

4π

∞∑
n=0

(2n+ 1)Pn(cos Ωab)

∫ ∞
0

f (1)
n,n r

2 dr (4.73)

Using the definition of the f
(1)
n,n function in (4.62) and defining

αn = (2n+ 1)hn(kra)h
∗
n(krb)Pn(cos Ωab) (4.74)

leads to the expression for the approximate correlation function

Rs[a, b] '
k2

√
128π5σ3

∞∑
n=0

αn

∫ ∞
0

exp

(−r2

2σ2

)
j2
n(kr) r2 dr (4.75)

In [Gradshteyn and Ryzhik, 2007, (6.633)] a similar integral solution in

terms of cylindrical Bessel functions is given as∫ ∞
0

exp(−β2r2)Jn(λr)Jn(µr) r dr =
1

2β2
exp

(
−λ

2 + µ2

4β2

)
In

(
λµ

2β2

)
(4.76)
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where In denotes the modified cylindrical Bessel functions of order n.

The spherical Bessel functions can be expressed in terms of cylindrical

Bessel functions as follows

jn(kr) =

√
π

2kr
Jn+ 1

2
(kr), (4.77)

The integral in (4.75) can therefore be expressed as

π

2k

∫ ∞
0

exp

(
− r2

2σ2

)
J2
n+ 1

2
(kr)rdr (4.78)

which can be solved analytically using (4.76).

Inserting the appropriate constants from (4.78) into (4.76) gives the

integral solution
πσ2

2k
exp

(
−k2σ2

)
In+ 1

2

(
k2σ2

)
(4.79)

Collecting the terms gives the correlation function

Rs[a, b] '
k√

512π3σ2
exp

(
−k2σ2

) ∞∑
n=0

αnIn+ 1
2
(k2σ2) (4.80)

The modified cylindrical Bessel function can be expressed in terms of the

modified spherical Bessel function as follows

In+ 1
2
(k2σ2) =

√
2k2σ2

π
ιn(k2σ2) (4.81)

Substituting into (4.80) gives the simplified correlation function expression

Rs[a, b] '
k2

16π2
exp

(
−k2σ2

) ∞∑
n=0

αnιn(k2σ2) (4.82)

Equation (4.82) is presented as an infinite summation over the αnιn(k2σ2)

terms. In practice, only a few terms are required to compute the correlation

function [Li and Duraiswami, 2007], as the higher order Bessel terms require
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large values of kra to contribute to the sum. For an audio application for

example, a compact sensor array (rarray = 2 cm) for speech (up to 4 kHz)

would require just 2 terms to compute an accurate correlation function, using

a guideline of nmax = dkrarraye (refer to the spherical Bessel function activation

plot Fig. 1b in [Rafaely, 2005], for example).

4.3.4 Spatial Correlation Function: Uniform Distribu-

tion

In this section, the near-field source distribution is now assumed to be uniform

over some specified volume. The probability distribution in this case is defined

as a constant value over some fixed volume defined by a maximum source

radius rs.

pr(r) =
3

4πr3
s

(4.83)

Inserting (4.55) and (4.83) into (4.50), and simplifying through the use of the

spherical harmonic addition theorem and orthogonality properties leads to

the expression,

Rs[a, b] =
3k2

16π2r3
s

∞∑
n=0

αn

∫ rs

0

j2
n(kr) r2 dr, (4.84)

where αn is defined as in (4.74).

The integral ∫ rs

0

j2
n(kr) r2 dr, (4.85)

can be evaluated by substituting the definition of the spherical Bessel functions

in terms of the cylindrical Bessel functions and evaluating the indefinite

integral [Gradshteyn and Ryzhik, 2007, (5.54)] between the integration limits.

π

2k

∫
J2
n+ 1

2
(kr) r dr =

r2π

4k

[
J2
n+ 1

2
(kr)− Jn− 1

2
(kr)Jn+ 3

2
(kr)

]
, (4.86)



98 CHAPTER 4. SPATIALLY ROBUST BEAMFORMING

Re-expressing the integral result in terms of spherical Bessel functions gives∫ rs

0

j2
n(kr)r2dr =

r3
s

2

[
j2
n(krs)− jn−1(krs)jn+1(krs)

]
(4.87)

provided the source distribution radius does not exceed either of the micro-

phone radii. Inserting this result back into (4.84) results in the simplified

correlation function

Rs[a, b] =
3k2

32π2

∞∑
n=0

αn
[
j2
n(krs)− jn−1(krs)jn+1(krs)

]
(4.88)

Similarly to (4.82), only a few terms of the summation are required for

most practical applications.

4.3.5 Infinitesimally Small Distributions

An interesting case to test the derived spatial correlation functions is the

result when the source distribution is infinitesimally small at the coordinate

origin, i.e., for the Gaussian derived result, σ is set to zero; for the uniform

result, the source distribution radius is infinitesimally small.

Setting σ to zero in (4.82) gives the correlation function

Rs[a, b] =
k2

16π2

∞∑
n=0

αnιn(0) (4.89)

The modified spherical Bessel function evaluated at zero is

ιn(0) =

1 if n = 0

0 if n > 0

(4.90)

Inserting this into the correlation function and evaluating α0 = h0(kra)h0(krb)
∗,

gives the simple solution

Rs[a, b] =
k2

16π2
h0(kra)h

∗
0(krb), (4.91)
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which can be recognised as the correlation due to a single point source, located

at the coordinate origin, near the two sensors [Williams, 1999, (6.73)].

The uniform distribution result derived in Section 4.3.4 can also be reduced

to the single point source result. Starting with (4.88), consider the zeroth

order term, as the higher order terms evaluate to zero for infinitesimally small

values of krs,

R(0)
s [a, b] =

3k2

32π2
α0

[
j2

0(krs)− j−1(krs)j1(krs)
]

(4.92)

Note that the j−1(krs) term can be expressed as −y0(krs) [Abramowitz

and Stegun, 1964, (10.1.12)] and that for small values of krs, the spherical

Bessel functions can be approximated [Abramowitz and Stegun, 1964, (10.1.4,

10.1.5)] as

jn(kr) =
(kr)n

(2n+ 1)!!
, (4.93)

and

yn(kr) = −(2n− 1)!!

(kr)n+1
, (4.94)

where

(2n− 1)!! = (1× 3× 5× 7× 9 ... 2n− 1) (4.95)

denotes the double factorial. The square bracket term in (4.92) can be

approximated as[
j2

0(krs)− y0(krs)j1(krs)
]

= 1− 1

krs

krs
3

=
2

3
(4.96)

Substituting in α0 = h0(kra)h0(krb)
∗, the zeroth order spatial correlation

function can therefore be expressed as

Rs[a, b] =
3k2

32π2

2

3
h0(kra)h

∗
0(krb) =

k2

16π2
h0(kra)h

∗
0(krb) (4.97)

which again is equal to the expected spatial correlation function due to a

single point source.
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4.3.6 Simulation Results

The approximate correlation function for a Gaussian source distribution and

the exact correlation function for a uniform source distribution were compared

with numerically integrated results to establish whether the solutions were

sensible; in particular, whether the approximate Gaussian solution in (4.82)

was valid for small variance distributions. The correlation functions between

two in-line sensors spaced 2 cm apart were computed for a range of source

distribution variance (Gaussian) and radius (uniform) values, and source-

centre to array-centre distances. The numerically integrated solutions were

computed using MATLAB’s inbuilt ’integral’ function, and we approximated

infinity in (4.61) as 100 m for the Gaussian method, due to floating-point

inaccuracies which occur in MATLAB’s inbuilt Bessel functions for large

values of r.

Gaussian Distributed Source Model

In Figure 4.11 the approximate Gaussian-model correlation function is com-

pared to the numerically integrated solution for a sensor spacing of 2 cm

and sensors in line with respect to the coordinate origin (cos Ωab = 1). The

approximate model matches the integrated solution for σ values up to 4 cm,

after which the difference between the approximate model and the numerical

solution becomes significant. As noted in Section (4.3.3), this was an expected

result, because the source distribution begins to have a significant chance of

overlapping (and/or exceeding) the sensor array. In Figure 4.12, a simple

top-down plot of 10,000 randomised source locations is presented using a

standard deviation one fifth (σ = 4 cm) of the expected source to array-centre
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distance (20 cm) — corresponding to the approximate value for which the ex-

pression holds with high precision. It can be seen that there are few instances

where the randomised source location lies beyond the radius of the sensors in

the array, suggesting that the error in the correlation expression should be

minimal. As the distribution broadens, the approximation no longer holds

and the error in the expression increases.

In Figure 4.13, correlation functions are computed for a range of mean

source to array-centre distances. It can be seen that in general, the analyti-

cal solution in (4.82) accurately models source distributions with standard

deviations up to around one fifth the mean source to array-centre distance.

Uniform Distributed Source Model

Using the same sensor spacing parameters as the Gaussian case (in-line 2 cm

spacing, cos Ωab = 1), the uniform model shows excellent agreement with

the numerical method (Fig. 4.14) — this was expected as this result is an

exact solution for the correlation function. Divergence from the numerical

integration result occurs when the distribution overlaps the microphone array,

as seen towards the right-hand side of Fig. 4.14. This is an expected result

as the correlation function in (4.88) is only valid for source distribution radii

up to the radius of the smallest source to microphone distance. For the

correlation function computed for Figure 4.12, this occurs at 19 cm, which is

where the divergence occurs.

Like the Gaussian case, the uniform distribution correlation function was

tested for various mean source to array-centre distances to verify that the

analytical solution matched the numerically integrated solutions. In Figure

(4.15) the analytical result is compared with the numerically integrated result
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Figure 4.11: Absolute correlation due to Gaussian distributed set of sources

computed using (4.82) compared with the numerically integrated result

(dashed lines), using a mean source-to-array distance of 20 cm.

for various source-to-array distances. It can be seen that the analytical

solution matches the numerical result provided the distribution does not

overlap any of the sensors in the array.

4.3.7 Numerical Stability

The solution for the Gaussian distribution presented in (4.82) exhibits a

computational problem when calculating the correlation function for high
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Figure 4.12: An example Gaussian distribution of source locations for σ =

0.04 cm and a mean source to array-centre distance of 20 cm. A simple 2-

sensor line array is pictured to highlight the low probability of source-sensor

overlap using a compact distribution.

frequency/wave-number and/or broad distributions. If k2σ2 exceeds ≈ 700,

the exp(−k2σ2) evaluates to exactly zero in standard 64-bit floating point

arithmetic, and the modified spherical Bessel functions, which grow exponen-

tially with increasing k2σ2, evaluate to infinity. It is possible to evaluate the

correlation function for large k2σ2 using the series expansion of the modified

spherical Bessel functions and Stirling’s approximation [Nemes, 2010] for large
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Figure 4.13: Absolute correlation due to a Gaussian distributed set of sources

(with wavenumber k = 10) using mean source to array-centre distances (d) of

10, 20, 50 and 100 cm. The solid curves represent the analytical function; the

dashed curves represent the numerically integrated solution.

factorial/gamma function values.

The series expansion of ιn(x) =
√
π/2x In+ 1

2
(x) is given in [Abramowitz

and Stegun, 1964, (9.6.10)] as

ιn(x) =

√
π

2x

∞∑
l=0

1

l!Γ(l + 1
2

+ n+ 1)

(x
2

)2l+ 1
2

+n

(4.98)
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Figure 4.14: Correlation between two sensors due to a uniform distribution of

sources. The solid curves represent the solutions given by (4.88), the dashed

curves represent the numerically integrated results. Using a source-to-array

mean distance of 20 cm.

(4.98) can be expressed as a sum of exponential functions,

ιn(x) =
∞∑
l=0

eβl (4.99)

Defining µ = l + n+ 3
2
, ν = 2l + n+ 1

2
, and substituting k2σ2 for x, the
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Figure 4.15: Absolute correlation between two sensors as a function of dis-

tribution radius due to a uniform distribution of sources (with wavenumber

k = 10) located 10, 20, 50 and 100 cm from the centre of the sensor array.

The solid curves denote the analytical solution, the dashed curves denote the

numerically integrated solution.

exponents of each summation term in (4.99) can be computed as follows,

βl =
1

2
log
( π

2k2σ2

)
+ ν

(
log(k2σ2)− log(2)

)
− (log(l!) + log(Γ(µ))) (4.100)

where the factorial and gamma functions can be computed using Stirling’s

approximation.
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The product of the decaying exponential function and the modified spher-

ical Bessel function can be approximated as

e−k
2σ2

ιn(k2σ2) =
∞∑
l=0

eβl−k
2σ2

(4.101)

Using this method, it is possible to very rapidly and reliably compute the cor-

relation function for very high frequencies and/or large distribution variances.

4.3.8 Application: Microphone Beamforming

A simple application of the spatial correlation result is the design of a ro-

bust microphone beamformer [Martinez et al., 2015] or target suppressing

nullformer (used for example, to estimate background noise [Anderson et al.,

2015a]). Using the generalised eigenvalue beamformer described in [Ander-

son et al., 2015a] [Shahbazpanahi et al., 2003], both robust maximum and

minimum SINR beamformers can be designed.

The maximum/minimum SINR beamformers can be designed by max-

imising/minimising the Rayleigh quotient representing the expected output

SINR of beamformed signals, described in Section 2.3.6. Repeating the SINR

definition in (2.98) here as

SINR =
wHRsw

wH [Rv + Rn] w
(4.102)

where w denotes a vector of narrowband beamformer weights to solve for, Rs

is the source spatial correlation matrix with entries defined using (4.82) or

(4.88); Rv the interference correlation matrix — which under a 3D diffuse

interference assumption has entries defined earlier in (2.119) as

Rv[a, b] = j0(kra,b) (4.103)
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where k is the wavenumber and ra,b is the inter-element distance; and Rn the

sensor noise correlation matrix — which is usually defined as

Rn = σ2
s I (4.104)

The minimum/maximum SINR beamformer solution can be attained by

solving (2.102) restated here as

[Rv + Rn] q = λRsq (4.105)

where (λ,q) are the solution eigenvalue/vector pairs. The maximium SINR

beamformer can be found by selecting the eigenvector associated with the

largest eigenvalue; the minimum SINR beamformer can be found by selecting

the eigenvector associated with the smallest eigenvalue.

In Figures 4.16 and 4.17, beam/nullformer response patterns for a simple

compact 4-element, 2 cm radius circular microphone array with an expected

source-to-array centre distance of 20 cm and varying values of distribution

variance/width are presented. Using the spatial correlation functions from

(4.82) and (4.88) in the generalised eigenvalue beamformer formulation, results

in improved spatial robustness, in particular when designing a nullformer

(as seen in the x-y plane in Figures 4.18 and 4.19), compared with the cases

where the variance/source radius is zero. The result is similar to previous

work in robust far-field beamforming in Section 4.2, in which improvement in

spatial robustness for the beamformers corresponds to improved suppression

of background diffuse interference outside the region of interest. Of note is

the asymmetry of the nullformer responses in Figures 4.16 and 4.17 — these

result from the poor conditioning of the Rs matrix in (4.105). The similar

patterns for the nullformer responses is a result of the choice of σ and rs
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chosen for evaluation. The Gaussian method does tend to produce a slightly

deeper and narrower suppression region compared with the uniform method.

This is due to the greater assumed source location density near the target

position for the Gaussian design.

4.3.9 Application: Simple Adaptive Filtering vs. GSC

As in Section 4.2.6, a simple adaptive filtering scheme was compared to the

GSC beamformer to evaluate performance with location mismatch errors. A

desired source (speech) was placed 30 cm away from a 4-element 1 cm radius

circular array, with an interferer (non-stationary speech/music) placed 1 m

away from the array directly opposite the desired source. The mean input

SINR was set to 0 dB and sample rate was 44.1 kHz. The adaptive filter

lengths were set to 1024 taps, and a step-size parameter of µ = 10−4 was used

to control adaptation of the simple filter and GSC designs.

As in the far-field case, the perfect information GSC structure had issues

with the blocking matrix design, with the theoretically perfect nullformers in

practice not suppressing the target sufficiently well to prevent desired signal

distortion effects, which led to a reduction in SINR compared with the robust

method — as seen in Table 4.5. However, compared to the far-field example,

the GSC structure did tend to always improve SINR over simple fixed beam-

forming due to near-field gain effects (exploiting relative attenuation between

microphones). These effects led to improved nullformer/blocking matrix

performance compared with the far-field case, which partly counteracted the

numerical accuracy issues with the perfect GSC blocking matrix. Overall,

the simple robust method delivered a substantial performance advantage (3-

5 dB) over the GSC beamformer due to its improved spatial (and numerical)
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Figure 4.16: Beamformer and nullformer responses in the x-y plane at a

distance of 20 cm designed using the Gaussian spatial correlation function

with a design frequency of 2.5 kHz.
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Figure 4.17: Beamformer and nullformer responses in the x-y plane at a

distance of 20 cm designed using the uniform spatial correlation function with

a design frequency of 2.5 kHz.
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Figure 4.18: Nullformer responses at 2.5 kHz for varying values of σ using the

Gaussian distribution correlation method. The target expected location was

(-0.2 m, 0 m).

robustness for this simple example.

4.3.10 Discussion

Initially, an assumption was made that the radial Gaussian source position

distribution would not likely overlap and exceed the sensor array. This

assumption was primarily made to ensure an analytical result was possible,

but also to reflect potential applications of the derived correlation function. In

beamforming for example, the correlation function would be useful to design
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Figure 4.19: Nullformer responses at 2.5 kHz for varying values of rs using

the uniform distribution correlation method. The target expected location

was (-0.2 m, 0 m).

a spatially robust beamformer. In such a scenario, the assumption restricts

the target source from being inside or behind (opposite the expected location)

the sensor array — the first example is unrealistic for many compact array

applications (corresponding to the source having some probability of being

inside the array); the second corresponds to an increasingly diffuse source

scenario, since the source distribution would have a significant probability

of surrounding the array, which can be described by the well known sinc

function [Teal et al., 2002b].
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Table 4.5: SINR comparison between the simple adaptive filter system, GSC,

fixed robust, and fixed-MVDR beamformers.

Mismatch AF (dB) GSC (dB) Fixed-Beam (dB) Fixed-MVDR (dB)

0 cm 14.3 11.1 9.6 9.7

3 cm 14.2 10.9 9.5 9.6

6 cm 13.9 10.1 9.2 9.2

9 cm 13.4 8.8 8.6 8.6

12 cm 12.6 7.4 7.8 7.8

15 cm 11.5 5.8 6.7 6.7

In the simulation results section, we used simple geometry to compare

the spatial correlation function solutions and existing numerical methods.

The sensor spacing was set to 2 cm and they were placed in-line with the

coordinate origin (cos Ωa,b = 1). For values of cos Ωa,b significantly less than 1

(for example, when using larger arrays), we found that the accuracy of the

Gaussian solution reduces with respect to numerical methods, compared to

the cos Ωa,b = 1 case, when modelling large source location variances (greater

than one-fifth the expected source-to-array distance), this is not a significant

issue however, since we have made the compact distribution assumption in

order to obtain an analytical result for the spatial correlation function. The

uniform spatial correlation solution is exact, as long as the distribution does

not overlap the array, and as such does not have any issues.
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4.3.11 Conclusion

A pair of spatial correlation functions for spherical distributions of near-field

source locations for a Gaussian radial distribution and uniform distribu-

tion have been derived without requiring computationally costly numerical

integration calculations. It can be seen in one particular application, micro-

phone beamforming, that incorporating these correlation functions into the

beamformer design can result in improved spatial robustness, which can be

beneficial when there is uncertainty in the source location relative to a sensor

array.
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Chapter 5

Beamforming with Scatterers

5.1 Outline

This chapter introduces a more realistic acoustic transfer function formulation

incorporating scattering and diffraction effects due to a spherical head model.

117
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5.2 Spherical Scatterer Beamforming

5.2.1 Introduction

Scattering by nearby objects is an often neglected issue in beamforming,

which may have a significant effect on the performance of beamforming

algorithms. A significant number of applications of audio beamforming involve

targeting mouths close to a microphone array: phones, notebooks/tablets

with integrated webcam/microphone arrays, teleconferencing equipment, and

so forth.

Solid sphere scattering/diffraction models have been used in the literature

to design microphone beamformers for applications such as headsets [Laugesen

et al., 2003] and hearing aids [Merks et al., 2014]. In the latter example, the

authors found there was little improvement in the directivity index (equivalent

to signal to diffuse interference ratio) when using a scattering model compared

with a free-field design. Directional interference, and frequency distortion of

the desired signal, introduced by scattering, were not considered in either

paper.

In this chapter, the isotropic diffuse interference correlation function

is derived for the spherical scatterer model. Additionally, an anisotropic

interference correlation function using the von Mises-Fisher distribution is

derived. Using these correlation functions, optimal signal to interference plus

noise (SINR) beamformers are designed and compared with their free-field

equivalents, using SINR and frequency distortion as performance measures.

These measures show small improvements over free-field designs.
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Figure 5.1: Example of near-field sources near a solid sphere. 1) the source

outside the microphone radius, 2) the source inside the microphone radius,

and 3) a source located on the sphere.

5.2.2 Near-field Source Description

In Figure 5.1 the three scattering scenarios to be considered are presented.

The first scenario is the case where a source is located at some radius rs

greater than the sensor radius r in the presence of a solid sphere with radius

rh, which will be used to compute the (non-)isotropic interference correlation

functions; the second scenario is the case where the source lies between the
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sphere and the sensor; and the third scenario is an extension of the second,

in which the source is located on the surface of the sphere.

In general, the equation describing wave propagation from a source to

a sensor located in the presence of a solid sphere can be expressed as the

combination of a direct path and scattered path.

ψ(k, r, rs,Ω,Ωs) = ψdir + ψsca (5.1)

The direct components can be expanded in terms of spherical harmon-

ics/spherical Bessel functions as either

ψdir(k, r, rs,Ω,Ωs) =
∑
n,m

Amn (k, rs,Ωs)jn(kr)Y m
n (Ω) (5.2)

for the case where the source radius is greater than the sensor radius (scenario

1 in Figure 5.1) [Williams, 1999, (6.140)], and

ψdir(k, r, rs,Ω,Ωs) =
∑
n,m

Amn (k, rs,Ωs)hn(kr)Y m
n (Ω) (5.3)

for the case where the source radius is less than the sensor radius (scenario 2

in Figure 5.1) [Williams, 1999, (6.92)]. Here, jn denotes the spherical Bessel

function of the first kind, hn denotes the spherical Hankel function, Y m
n the

spherical harmonics of order n and degree m, k = 2πf/c0 the wavenumber

(defined using the frequency f and speed of sound c0), r the sensor radius, rs

the source radius, Ω the sensor angles (θ, φ), and Ωs the source angles (θs, φs).

The double sum ∑
n,m

≡
∞∑
n=0

n∑
m=−n

has been contracted to improve equation clarity.
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The scattered components can be expressed as outgoing waves

ψsca(k, r, rs,Ω,Ωs) =
∑
n,m

Bm
n (k, rs,Ωs)hn(kr)Y m

n (Ω) (5.4)

For a solid sphere, the scattering coefficients Bm
n can be found by enforcing

a zero radial velocity condition on the surface of the sphere [Williams, 1999].

∂

∂r
|r=rh (ψdir(k, r, rs,Ω,Ωs) + ψsca(k, r, rs,Ω,Ωs)) = 0 (5.5)

Relating Amn and Bm
n , this condition gives

Bm
n (k, rs,Ωs) = −Amn (k, rs,Ωs)

j
′
n(krh)

h′n(krh)
(5.6)

Point Source Description

The equation describing a near-field point source in free-field (ignoring time-

dependence) is

ψdir =
eik|r−rs|

4π|r− rs|
(5.7)

has the spherical harmonic expansion [Abramowitz and Stegun, 1964, (10.1.45,

10.1.46)]

ψdir = −ik
∑
n,m

jn(kr−)hn(kr+)Y m
n (Ω)Y m

n (Ωs)
∗ (5.8)

where the r− and r+ terms correspond to the smaller and larger radii of r

and rs. Equating (5.8) to (5.2) or (5.3) gives the direct path expressions for

the scenarios presented in Figure 5.1.

5.2.3 Sources outside microphone radius

Equating (5.8) with (5.2), the direct path coefficients, Amn , for sources outside

the sensor radius can be expressed as

Amn (k, rs ≥ r,Ωs) = −ikhn(krs)Y
m
n (Ωs)

∗ (5.9)
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The scattering coefficients Bm
n can be found using (5.9) and (5.6) to give

Bm
n (k, rs,Ωs) = ikhn(krs)

j
′
n(krh)

h′n(krh)
Y m
n (Ωs)

∗ (5.10)

The expression for the total field is therefore

ψ(k, r, rs,Ω,Ωs) = −ik
∑
n,m

[
jn(kr)− j

′
n(krh)

h′n(krh)
hn(kr)

]
hn(krs)Y

m
n (Ω)Y m

n (Ωs)
∗

(5.11)

Sources inside the microphone radius

The Amn coefficients for sources inside the sensor radius can be expressed as

Amn (k, rs < r,Ωs) = −ikjn(krs)Y
m
n (Ωs)

∗ (5.12)

and the scattering coefficents are given by (5.10).

The expression for the total field is therefore

ψ(k, r, rs,Ω,Ωs) = −ik
∑
n,m

[
jn(krs)−

j
′
n(krh)

h′n(krh)
hn(krs)

]
hn(kr)Y m

n (Ω)Y m
n (Ωs)

∗

(5.13)

Sources on the sphere

Finally we consider the specific case of (5.13) corresponding to a point source

located on the sphere. Setting rs to rh in (5.13) gives the expression

ψ(k, r, rh,Ω,Ωs) = −ik
∑
n,m

[
jn(krh)− j

′
n(krh)

h′n(krh)
hn(krh)

]
hn(kr)Y m

n (Ω)Y m
n (Ωs)

∗

(5.14)

The term inside the square brackets can be related to the Wronksian of

the spherical Bessel functions of first and second kinds [Abramowitz and
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Stegun, 1964, (10.1.6)]

W{jn(x), hn(x)} = jn(x)h
′

n(x)− j ′n(x)hn(x)

= jnj
′

n + ijny
′

n − j
′

njn − ij
′

nyn

= iW{jn(x), yn(x)}

=
i

x2
(5.15)

Using the Wronskian identity in (5.15), equation (5.14) can be simplified to

ψ(k, r, rh,Ω,Ωs) =
1

kr2
h

∑
n,m

hn(kr)

h′n(krh)
Y m
n (Ω)Y m

n (Ωs)
∗ (5.16)

5.2.4 Beamforming

As in the previous chapters, the maximum SINR beamformer method de-

scribed in Section 2.3.6 can be used to design robust beam and nullformers.

As before, the beamformers are found by solving generalised eigenvalue beam-

former solution (2.102) restated here as

Rsw = λ [Rv + Rn] w (5.17)

and selecting the maximum SINR solution (or minimum SINR solution for

nullforming).

The next two sections derive the interference spatial correlation matrices

used to design the scattering-based beamformers.

5.2.5 Isotropic Far-field Interference

In highly reverberant environments, the interference received at the micro-

phone array can be modeled as a diffuse isotropic field [McCowan and Bourlard,
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2003]. The correlation function for a diffuse field originating at some far

distance (rs � r) from the sensor array in the presence of a solid sphere

scatterer can be derived using the transfer function equation (5.11) in Section

5.2.2. The correlation function between two sensors can be expressed as

Rv[a, b] =

∫
Ωs

ψaψ
∗
b dΩs (5.18)

where dΩs = sin θs dθs dφs.

Splitting the components of the transfer function into radial and angular

components

ψ(r, rs) = −ik
∑
n,m

ρn(r, rs)Y
m
n (Ω)Y m

n (Ωs)
∗ (5.19)

Expanding,

Rv[a, b] = k2
∑
na,ma

∑
nb,mb

ρna(ra, rs)ρnb(rb, rs)
∗

×
∫

Ωs

Y ma
na (Ωa)Y

ma
na (Ωs)

∗Y mb
nb

(Ωb)
∗Y mb

nb
(Ωs) (5.20)

Using the orthogonality of spherical harmonics,∫
Ωs

Y ma
na (Ωs)

∗Y mb
nb

(Ωs) dΩs = δnanb,mamb (5.21)

and the spherical harmonic addition theorem [Whittaker and Watson, 1996, (p.

395)],
n∑

m=−n

Y m
n (Ωa)Y

m
n (Ωb)

∗ =
2n+ 1

4π
Pn(cos Ωa,b) (5.22)

where

cos Ωa,b = cos(θa) cos(θb) + sin(θa) sin(θb) cos(φa − φb) (5.23)

denotes the angle between sensors a and b, the correlation function (5.20)

simplifies to

Rv[a, b] =
k2

4π

∞∑
n=0

ρn(ra, rs)ρn(rb, rs)
∗(2n+ 1)Pn(cos Ωa,b) (5.24)
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Assuming the interference is far-field (rs � r), the source-related spherical

Hankel functions in (5.11) simplify to

hn(krs) ≈ in
eikrs

krs

(5.25)

leading to the simplified radial component expression:

ρn(r, rs) = in+1 e
ikrs

krs

[jn(kr)− γn(krh)hn(kr)] (5.26)

Inserting (5.26) into (5.24) and defining

γn(krh) ≡ jn
′(krh)

h′n(krh)
(5.27)

the correlation function can be expressed as

Rv[a, b] =
1

4πr2
s

∞∑
n=0

(2n+ 1)Pn(cos Ωa,b)

× [jn(kra)jn(krb)− γn(krh)hn(kra)jn(krb)

− γn(krh)∗jn(kra)hn(krb)
∗ + ‖γn(krh)‖2hn(kra)hn(krb)

∗]

(5.28)

5.2.6 Directional Far-field Interference

In many scenarios, the interference is directional in nature. The interference

correlation function can be modelled by applying a non-uniform probability

weighting for each angle

Rv[a, b] =

∫
Ωs

p(Ω0,Ωs)ψaψ
∗
b dΩs (5.29)

where p(Ω0,Ωs) is some probability distribution centred at Ω0.

The von Mises-Fisher distribution [Mammasis and Stewart, 2010] describes

a Gaussian-like distribution of sources located on a sphere. The expression of
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the probability density function in terms of the distribution spread (κ) and

mean direction of arrival (Ω0) is given by

p(Ωs,Ω0) =
1

ι0(κ)

∑
n,m

ιn(κ)Y m
n (Ωs)Y

m
n (Ω0)∗ (5.30)

where ιn denotes the modified spherical Bessel functions of order n.

The interference correlation function can be computed in a manner similar

to the method in (5.18), with the addition of the probability density function

term.

Rv[a, b] =
1

ι0(κ)

∑
na,ma

∑
nb,mb

∑
np,mp

ρna(ra, rs)ρnb(rb, rs)
∗ιn(κ)×

Y m1
n1

(Ωa)Y
mb
nb

(Ωb)
∗Y mp

np (Ω0)∗
∫

Ωs

Y ma
na (Ωs)Y

mb
nb

(Ωs)
∗Y mp

np (Ωs) dΩs

(5.31)

The triple spherical harmonic product integral has a solution in terms of

Clebsch-Gordan coefficients [Shabtai and Rafaely, 2014].∫
Ωs

Y ma
na (Ωs)Y

mb
nb

(Ωs)
∗Y mp

np (Ωs) dΩs

=

√
(2na + 1)(2np + 1)

4π(2nb + 1)
C0,0,0
na,nb,np

Cma,mp,mb
na,np,nb

(5.32)

The Clebsch-Gordan coefficients have analytic solutions detailed in [Shabtai

and Rafaely, 2014, (25)] [Abramowitz and Stegun, 1964, (27.9.1)] as

Cma,mb,mp
na,nb,np

= δmp,ma+mb

√
2np + 1

×
[

(np + na − nb)!(np − na + nb)!

(na + nb + np + 1)!(na −ma)!

(na + nb − np)!(np +mp)!(np −mp)!

(na +ma)!(nb −mb)!(nb +mb)!

] 1
2

×
∑
l

(−1)l+nb+mb

l!

(nb + np +ma − l)!
(np − na + nb − l)!

(na −ma + l)!(na −ma + l)!

(np +mp − l)!(l + na − nb −mp)!

(5.33)
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for each integer l such that (nb + np +ma − l), (np − na + nb − l), (na −ma +

l), (na −ma + l), (np +mp − l), and (l + na − nb −mp) are all greater than

zero.

5.2.7 Results

Isotropic Interference

An important beamformer application is suppressing reverberation, which is

commonly modelled as diffuse interference [McCowan and Bourlard, 2003].

Using the beamformer solution in Section 5.2.4 targeting a source located on

the sphere and the spatial correlation matrix from Section 5.2.5, the optimal

beamformer for suppressing diffuse interference can be obtained.

Using a compact 3D open sphere microphone array consisting of 4-elements

with a radius of 1 cm the optimal beamformer (incorporating scattering

information) was compared with the standard free-field solution prevalent in

the literature. The source to microphone array centre distance was 20 cm and

the sphere radius was set to 8.75 cm.

The source correlation matrix Rs was computed as the outer product of

the direct transfer function vector describing the point source to microphone

array propagation:

Rs = ψψH (5.34)

The sensor noise correlation/regularisation matrix Rn described in (2.54)

was designed under both relatively noiseless (σ2 = 10−9) and noisy (σ2 = 10−2)

conditions.

The results in Figure 5.2 show that including the scattering information

provides no significant (< 0.1 dB) improvement in SINR for the scenario
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Figure 5.2: SINR Gain (excluding near-field gain) for the scattering infor-

mation and free-field beamformer designs, for an array in-plane with the

source.

of beamforming towards a source located on the sphere (using a source to

microphone array distance of 20 cm). This result is similar to the equivalent

directivity findings in the literature [Merks et al., 2014].

As identified in Section 2.3.9, white noise gain is a useful measure of

beamforming robustness to sensor noise/calibration errors. In Figure 5.3

it can be seen that the WNG improves with increased regularisation. The

beamformers designed using a higher sensor noise assumption perform better

in terms of WNG as a result.

The beamformers designed using the free-field and scattering formulations

were designed to ensure a distortionless response for the desired source under
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Figure 5.3: White Noise Gain measures for the scatterer-based and free-field

beamformer designs, for an array in-plane with the source.

the respective assumed interference conditions. The results in Figure 5.4

demonstrate that using a free-field beamformer design, despite providing the

same SINR gain, will introduce a small amount of frequency distortion for the

desired source, particularly at low frequencies. This indicates that including

the scattering information, although not significantly advantageous in terms

of SINR, may be important for applications where a perfectly distortionless

signal response is desired. For speech applications however, this distortion

would not likely be an issue.
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Figure 5.4: Desired signal response for the scattering information and free-field

beamformer designs. A distortionless response corresponds to 0 dB.

Directional Interference

For the scenario where interference consists of a directional distribution

of sources, the beamformer incorporating scattering information provides

significant improvement in SINR, depending on the distribution characteristics

(spread and mean direction of arrival). As in the isotropic case, the microphone

array was a compact 4-element spherical array with a radius of 1 cm. The

interference distribution was centred at (θ0 = 90◦, φ0 = 60◦) in plane with the

centre of the microphone array and desired source on the sphere.

In Figure 5.5 a comparison of SINR gain is presented for four interferer

distributions ranging from near isotropic (the half-power beamwidth α = 225◦)

to near point-like (α = 6◦). It can be seen that for isotropic-like distributions
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(α = 61◦, 225◦) there is no significant advantage to including scattering

information, as before. For more directional distributions, a significant

performance gap between the scatterer-based and free-field designs emerges.

The scatterer-based design is capable of an additional 10-20 dB boost in SINR

compared with the free-field design for a significant part of the frequency

range tested. In Figures 5.6 and 5.7 the far-field response patterns are

compared between the two methods. It can be seen that the scatterer-based

design produces a deep (> 40 dB attenuation), well-defined null at 60◦, which

corresponds well to the expected distribution of interferers. The free-field

design by contrast produces some attenuation centred at this angle, however it

is significantly weaker (20 dB vs. 40 dB) and broader than the scatterer-based

design.

5.2.8 Discussion

In the isotropic interference case, the beamforming solution using scattering

information provides no significant SINR performance gain over the free-

field design if the source is located 180◦ in-plane relative to the microphone

array. This is not an entirely unexpected result as the sphere provides both

shadowing effects and competing reflective effects. For example, an interferer

located behind the sphere (relative to the microphone array) lies within the

shadowing zone of the sphere and is attenuated as a result; while interference

originating from in front of the sphere is enhanced by a strong close reflection

from the sphere.

For anisotropic interference, the beamformer solution including the scat-

tering information performs significantly better than a free-field design when

suppressing a source originating from an approximately known direction. Null
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Figure 5.5: SINR improvements for the scattering-based and free-field beam-

former designs in the presence of anisotropic interference with a mean direction

of 60◦.
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Figure 5.6: Far-field response for the scatterer-based design for a range of

frequencies. Interference is centred at 60◦ with a distribution parameter

κ = 500.

design is sensitive to transfer function mismatch. The spherical scatterer

introduces a frequency dependent perturbation to the free-field transfer func-

tion. Since the free-field design does not take into account this perturbation,

the beamformer solution does not perform as well as the scatterer-based

design. This potentially has implications for beamforming algorithms relying
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Figure 5.7: Far-field response for the free-field design for a range of frequencies.

Interference is centred at 60◦ with a distribution parameter κ = 500.

on perfect null creation (such as LCMV and related GSC beamforming) —

failure to account (or adapt) for the reflections off the head may lead to

degraded performance for these types of algorithms.
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5.2.9 Conclusion

The spherical scatterer was introduced as a proxy for modelling the effects of a

human head on sound wave propagation. The results for beamforming in the

presence of isotropic interference confirm findings of little SINR improvement

compared with free-field design. However, the isotropic scenario does benefit

from scatterer knowledge to provide distortion compensation to ensure a

distortionless response for the desired signal. For the anisotropic interference

case, the scatterer information leads to significant improvements in SINR.

It has been suggested that the sphere model is not the most accurate for

approximating the effects of a human head [Huopaniemi et al., 1999; Duda

et al., 1999], and that a prolate spheroidal model more accurately models

scattering effects at higher frequencies (above 2 kHz). However, prolate

spheroidal models are considerably more difficult to compute, thus difficult

to analyse. As such, we only considered the sphere in this thesis. Future

work would include analysis of the prolate model on isotropic and anisotropic

interference to see if there are any further advantages over the free-field model.

It would be expected that a prolate spheroid beamformer would similarly

perform well with anisotropic interference, and may provide a useful base

for a robust beamformer design for modelling head related transfer functions

(HRTFs) rather than using precise measurements, which in general will differ

for each person, and as such may have issues with robustness.
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Chapter 6

BSS and Beamforming

6.1 Outline

This chapter describes a complete system utilising dual robust beamformers,

which can be designed using any of the techniques from the previous chap-

ters, and a blind source separation post-processor based on the TRINICON

algorithm.

137
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6.2 Combined BSS and Beamforming System

6.2.1 Introduction

When applying beamforming for signal extraction, a common objective is to

minimise interference while maintaining (ideally) a distortionless response

to some desired source. The narrowband signal received at an array of M

microphones in the short time frequency domain can be expressed as

x[k, t] = s[k, t]ψs[k, t] +
I∑
i=1

vi[k, t]ψv,i[k, t] + n[k, t], (6.1)

where k = 2πf/c0 is the wavenumber (where f is the frequency in Hertz,

and c0 is the speed of sound), s and v the desired and interfering signals,

ψs and ψv the M × 1 acoustic transfer function vectors describing the wave

propagation from the desired and interfering positions to the microphone

locations, and n represents the sensor noise for each microphone. Ideally,

the output of a beamformed system is the undistorted desired signal plus

suppressed interference plus noise:

y[k, t] = s[k, t] + wH [k, t]

[
I∑
i=1

vi[k, t]ψv,i[k, t] + n[k, t]

]
(6.2)

Assuming the desired signal, interferers and noise are uncorrelated, and of

zero mean, the MVDR (Capon) beamformer [Capon, 1969] can be used to

generate a beamformer which optimally minimises interference plus noise

while maintaining an undistorted response to the desired source location.

Dropping the wavenumber and time indexing for clarity, the MVDR solution

is given as (as derived in Section 2.3.3)

wMVDR =
[Rv + Rn]−1ψs

ψH
s [Rv + Rn]−1ψs

, (6.3)
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where Rv + Rn denotes the interference plus noise spatial correlation matrix.

In most practical scenarios, ψs and particularly Rv are not known pre-

cisely and must be estimated to design the beamformer weights. To handle

uncertainty in the desired source position, an alternative beamforming solu-

tion based on a statistical model of possible desired source locations can be

used. The noise spatial correlation matrix is usually estimated by collecting

statistics when the desired signal is inactive, which typically involves the use

of a voice activity detector for speech applications [Catic et al., 2010]. Noise

estimation is usually difficult in low SINR environments, and with multiple

non-stationary interferers, so it is sometimes more suitable to use a simpler

model of noise spatial correlation to generate the beamformer. In reverberant

environments with multiple interferers, an isotropic noise assumption is often

appropriate.

More advanced beamforming algorithms attempt to remove residual noise

remaining in the output. In Generalised Sidelobe Cancelling (GSC) [Van Trees,

2004] (described in Section 2.3.4), a practical implementation of the MVDR

beamformer, a set of orthogonal blocking beamformers, through which the

desired signal is suppressed, are used to identify an adaptive filter designed to

remove the residual noise. The multichannel Wiener filter, which is equivalent

to an MVDR beamformer plus a single-channel Wiener filter post-processor

[Van Trees, 2004] (described in Section 2.3.5) is also frequently presented as

an optimal method in terms of minimum mean squared error method for noise

reduction. Both of these techniques rely, for optimal performance, on precise

knowledge of desired signal and/or noise statistics, including the precise

location of the desired source. Implementations of these types of algorithms

typically rely on training procedures [Gannot et al., 2001; Gannot and Cohen,
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2002] to collect the noise correlation statistics. This can be problematic,

especially in non-stationary high noise environments [Catic et al., 2010].

In this chapter, an alternative method of noise reduction is presented

in which a multiple sensor array is processed via two fixed spatially robust

beamformers, a primary beamformer designed to maximise the desired signal

to noise ratio, and a second blocking beamformer designed to minimise the

desired signal to noise ratio, which are further processed using the TRINICON

(Triple-N Independent Component Analysis for Convolutive Mixtures) [Buch-

ner et al., 2004a] blind source separation algorithm as an adaptive processor

to correct for inaccurate steering vector and noise statistics assumptions made

in the initial design. Previous similar approaches include [Parra and Alvino,

2002], where the authors design a geometrically constrained source separation

algorithm, with assumed known precise signal locations. Kumatani et al. [Ku-

matani et al., 2007] proposed a minimum mutual information-based GSC

system for speech separation which avoids the typical signal leakage issues

in least squares GSC designs, however their technique also relies on precise

target tracking to generate the primary beamformers in their algorithm. This

chapter focuses on a spatially fixed simple robust beamforming approach

designed to enhance a single desired signal with an uncertain location with

uncertain noise correlation statistics. The second-order-statistics version of

TRINICON-BSS removes cross-correlations in the output channels, avoiding

the target signal cancelling issues inherent in GSC algorithms.

6.2.2 Dual Beamformer Design

The inputs to the TRINICON-BSS system are produced by utilising two

beamformers — a primary beamformer which maximises the expected SINR,
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and a secondary blocking beamformer which minimises the SINR

SINR =
wHRsw

wH [Rv + Rn] w
(6.4)

where Rs is the target source spatial correlation matrix, [Rv + Rn] is the

interference plus noise spatial correlation matrix, and w is the beamforming

weight vector to be derived. The beamformer weights can be solved using

(2.102) and the appropriate spatial correlation function matrices corresponding

to desired signal, interference, and sensor noise.

The optimal beamformer can be designed with the desired source correla-

tion matrix constructed as

Rs,opt = σ2
sψsψ

H
s (6.5)

and the noise correlation matrix constructed using the expected correlation

of the inputs minus the direct desired signal component

Rv+n,opt = E
{
xxH

}
−Rs,opt (6.6)

which incorporates all interferers, reverberant paths and sensor noise.

Robust beamformers can be generated by utilising probability distribution-

based spatial correlation matrices [Dam et al., 2004; Davis et al., 2005]. This

formulation assumes that the desired source can be located at any position,

with an associated probability distribution. For an arbitrary distribution in

spherical coordinates, the spatial correlation matrix entries can be computed

using a volume integral

Rs[a, b] =

∫
V

p(r, θ, φ)ψa(r, θ, φ)ψ∗b (r, θ, φ) dV (6.7)

where p(r, θ, φ) denotes the source location probability distribution function,

and the ψa functions denote the wave propagation function from the source to
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the ath microphone. For the proposed method, the source location distribution

is assumed to be at some fixed distance from the microphone array, sufficient

for the far-field source assumption to hold, using a von Mises-Fisher angular

distribution to generate the correlation matrix, and assuming free-field ane-

choic plane wave propagation. From Section 4.2, the desired source spatial

correlation matrix can be generated using (4.16). The interference spatial

correlation matrix was based on the assumption of isotropically distributed

noise sources, including reverberation. Unless specific knowledge of noise

distributions in the environment is available, this is a reasonable assumption.

For a 3D far-field isotropic case this is given in (2.119) as

Rv[a, b] = j0(krab), (6.8)

where j0 denotes the zeroth order spherical Bessel function.

Typically a Tikhonov regularisation term is included in the noise spatial

correlation matrix to improve numerical robustness (corresponding to white

noise gain robustness [Cox et al., 1986]), particularly at low frequencies. A

regularisation parameter of 10−6 was used for the Rn and Rv+n,opt matrices.

The primary beamformer (wmax) does not benefit significantly from the

robust formulation if the number of microphones and/or array aperture is

small — if kr ≤ 1, where r is the radius of a circular/spherical array for

example. From Figure 6.1(a), using the MVDR solution in (6.3) with an

assumed mean direction shows almost identical performance to the robust

formulation. However, the robust formulation would become quite useful for

applications with a large array with a larger number of microphones where

the typical MVDR response produces a narrow main lobe.

On the other hand, the use of a distribution of locations is particularly
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beneficial in designing the blocking beamformer. In Figure 6.1(b) the ex-

pected SINR gain is demonstrated for a perfect null beamformer and a robust

nullformer designed using (2.102). It is apparent that sufficient attenuation is

only obtained for very small angular regions, whereas the robust method is

capable of tolerating a significant uncertainty in the desired source direction.

Blocking beamformers used in methods such as the conventional generalised

sidelobe canceller (GSC) [Van Trees, 2004] rely on precise nulls, which are not

robust to movement. To tolerate perturbations in the desired source direction,

GSC implementations require various methods to adapt and track the desired

source direction [Gannot et al., 2001; Gannot and Cohen, 2002] which may

be unsuitable for high noise environments and/or be computationally expen-

sive. Alternatively, robust GSC implementations such as those presented

in [Hoshuyama et al., 1999; Herbordt and Kellermann, 2001] can be used

to track the desired source, provided the SINR can be estimated efficiently.

The robust nullformer used for the proposed method does introduce some

desired signal leakage into the blocking channel, which could lead to filtering

issues if they were to be used in GSC-type implementations, which operate

by removing correlated components in the blocking path from the primary

beamformer channel. The proposed method uses an alternative approach to

minimum mean squared error reduction to remove residual noise from the

primary beamformer path.

6.2.3 TRINICON-BSS Integration

In Sections 4.2 and 4.3, beamformers were derived using models of signal

location and interference correlation. The beamformers were derived using

assumptions on the desired signal and interference statistics based on a best
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Figure 6.1: Example of a) Expected SINR gain for the robust and perfect

MVDR beamformers, and b) Expected SINR gain for the robust and (typical)

perfect blocking beamformers

guess of the unknown acoustic scenario. As these assumptions may not

accurately represent the scenario, the beamformer performance should be

expected to be suboptimal. Integrating a blind source separation algorithm

into the system should provide a method for compensating for the assumptions

made in the initial beamformer design by exploiting the statistical properties

of the beamformer output signals.

The second-order statistics (SOS) version of the TRINICON-BSS algo-

rithm [Aichner et al., 2005] is used to process the beamformer outputs. This

BSS algorithm presents many advantages over other frequency-domain BSS

algorithms [Hyvärinen, 2001], including the lack of the internal permutation

problem — in which the output channel ordering for different frequency bin

may not be consistent. The SOS version of TRINICON-BSS also features

low computational complexity and can be implemented easily as a real-time

algorithm on low-cost, low-power hardware [Aichner et al., 2005; Anderson

et al., 2014a].

The cost function for a given block index n in SOS TRINICON-BSS is
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given in [Aichner et al., 2005] as

J(n) =
∞∑
i=0

β(i, n) [log det bdiag(Ryy(i))− log det Ryy(i)] , (6.9)

where β denotes the block weighting function to incorporate non-stationarity

into the algorithm design by including information from the previous blocks (i),

Ryy denotes the block-wise output auto/cross-correlation matrix computed

from the BSS output channels, and the bdiag operator selects the block

diagonal matrices of Ryy. This cost function is designed to quantify the

level of cross-correlations in the output channels. The gradient-type adaptive

filter which minimises this cost function, corresponding to minimising the

cross-correlation between the two output channels over all time lags in each

block, is specified in [Aichner et al., 2005] as

W+
BSS(n) = WBSS − µ

∞∑
i=0

β(i, n)

×WBSS [Ryy(i)− bdiag(Ryy(i))] bdiag−1Ryy(i), (6.10)

where WBSS denotes a Sylvester matrix of filter coefficients, and µ denotes

the gradient descent step-size parameter. The Sylvester structure of the

filter update and Toeplitz structure of the correlation matrices leads to an

efficient frequency domain vector implementation of the algorithm [Aichner

et al., 2005; Anderson et al., 2014a]. The implementation used in this chapter

uses the block-online design presented in [Aichner et al., 2005], where the

β function is approximated by a recursive online function dependent on the

parameter λBSS, set to 0.25, and a block-offline component which iterates the

filter update equations five times using the step-size parameter µ set to 0.005.

50% block overlap is used for the BSS algorithm, with the total number of
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samples per block (N) set to 3072. The BSS filter length (L) was set to

1024 taps, corresponding to an algorithmic delay of 128 ms when using an

8 kHz sample rate. The regularisation parameters (δ) used in the Ryy block

diagonal inverse estimates in (6.10) were set to 10−10.

In the beamformer design, a trade-off was made between desired signal

leakage and the angular width for the target suppressing beamformer, in-

troducing desired signal correlation between the two beamformer output

channels. The filter updates in the SOS version of TRINICON-BSS (6.10)

are designed to remove cross-correlations between the output channels of the

overall system, therefore the desired signal leakage should be minimised as

part of the separation process.

6.2.4 Simulation Setup

For our experiments, the image source method [Allen and Berkley, 1979] was

used to simulate a 6 m× 5 m× 4 m reverberant room with surface reflection

coefficients of 0.7, and up to third order reflections used. Four mechanical noise

interferers (pump and engine noise) were placed in a circle of radius 3 m centred

on the microphone array to simulate isotropic interference. The microphone

array was a four-element circular array with 2 cm radius placed in the centre

of the room. The desired source, a 30 second sample of speech sampled at

8kHz, was located 1 m from the microphone array. The beamformers were

designed for 8kHz wideband signals, with 64-taps for both the robust and

optimal beamformers. The implementation of the SOS TRINICON-BSS

used in this chapter is identical to that in [Anderson et al., 2014a] using the

parameters specified in Section 6.2.3. 50 trials were conducted in which the

desired source direction φs = 180◦ was perturbed by a normally-distributed
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Figure 6.2: Monte Carlo simulation of source positions, interferer locations,

and microphone layout

Table 6.1: Mean SINR (dB) results during speech utterances

Peak Input SINR -6.00 -3.00 0.00 3.00 6.00

Mean Input SINR -16.94 -13.93 -10.92 -7.91 -4.90

Beamformer -3.24 -0.24 2.77 5.78 8.79

BF + BSS -2.07 0.89 3.85 6.81 9.76

Perfect BF -2.49 0.48 3.44 6.39 9.34

random angle with a standard deviation of σ = 14◦ (Figure 6.2). A further

simulation to test channel ordering robustness was conducted in which the

desired source position was located at a known fixed location, and the four

noise sources allowed to vary position randomly within the room. As in the

first case, 50 trials were conducted using the same TRINICON-BSS algorithm

parameters in the previous section.
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Table 6.2: Mean signal distortion (dB) measures during speech

Peak Input SINR -6.00 -3.00 0.00 3.00 6.00

Mean Input SINR -16.94 -13.93 -10.92 -7.91 -4.90

BF + BSS SDR -25.00 -25.22 -25.49 -25.79 -26.11

6.2.5 Results

The robust beamformer typically results in an improvement of at least 13 dB

in terms of SINR for the simulated examples of a peak input SINR of between

-6 to 6 dB speech in diffuse noise, as seen in Table 6.1. The inclusion of the

blind source separation step improves the mean SINR by up to an additional

3-5 dB during certain speech utterances in the simulations, and on average

by 1-1.5 dB over all speech utterances, indicating that this method is able

to improve the performance of the array by compensating for some of the

assumptions made in the initial beamformer design.

Compared with the perfectly designed (perfect interferer and desired source

knowledge) MVDR beamformer, the pre-processed TRINICON system is able

to match and sometimes exceed the performance in terms of the SINR gain.

The slight performance disadvantage the perfect beamformer exhibits can be

attributed to the regularisation introduced into the noise spatial correlation

matrix, required for numerical stability, which slightly degrades performance.

The magnitude-squared coherence (MSC)

MSC(k) =
|Px1,y1(k)|2

Px1,x1(k)Py1,y1(k)
(6.11)

where Px1,y1 is the cross power spectra density, Px1,x1 is the input (beamformer

channel) power spectra density, and Py1,y1 is the output (expected speech

channel) power spectra density; is a useful measure of separation performance
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for BSS algorithms [Fancourt and Parra, 2001]. An MSC value of 1 indicates

perfect coherence, while a value approaching zero indicates that the input and

output are orthogonal. The modified measure used to evaluate separation

performance in this chapter was to take an average of the MSC values for each

frequency bin, using a FFT-block size of 3072 samples. The MSC measures

in Table 6.3 showing the coherence between the robust beamformer outputs,

and the BSS outputs, indicate that there is a reduction in coherence after

processing the beamformer outputs through the BSS algorithm. This is an

indicator that the BSS algorithm is separating the mixtures. Combined with

the SINR results, this suggests that the algorithm is reducing noise in the

output channel containing the target signal.

The SINR figures in Table 6.1 show only a small improvement over the

robust beamformer, which can be attributed to the negligible improvement in

mid to high frequency bins. The robust beamformer is effective at improving

the SINR for high frequencies, but performs poorly at low frequencies due

to the limited aperture and number of microphones. BSS is able to identify

filters which produce a super-directive beamforming effect at low frequencies,

however a side-effect of this is that these can be sensitive to microphone

position and/or response errors.

The signal distortion measures (the normalised difference in desired signal

spectra between the input and output of the system) show that the com-

bined beamforming and BSS algorithm exhibits relatively low desired signal

distortion as seen in Table 6.2, with a typical mean value of -25 dB during

speech utterances. The BSS process introduces signal distortion, from the

on-average undistorted beamformer inputs, into the system by mixing the two

beamformer outputs using the BSS filters. There is a small trend towards less
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Table 6.3: Integrated MSC measures between the beamformer outputs, and

BSS outputs

Peak Input SINR -6.00 -3.00 0.00 3.00 6.00

Mean Input SINR -16.94 -13.93 -10.92 -7.91 -4.90

BF Outputs 0.438 0.414 0.390 0.373 0.365

BF + BSS Outputs 0.312 0.281 0.253 0.234 0.225

distortion as the input SINR increases, which is expected as the BSS filters

perform less work to decorrelate the outputs. This is also reflected in the

SINR results in Table 6.1, where the SINR improvement decreases slightly

with increasing input SINR.

In the second simulation designed to test channel ordering robustness, the

beamformer plus BSS design exhibited no ambiguity in the output channel

ordering. The desired signal was detected consistently in the same first output

channel, for the 50 trials. This was an expected result from including the

beamformer stage in the system.

6.2.6 Conclusions

A spatially robust adaptive noise reduction algorithm based on spatially robust

beamforming and the second-order-statistics version of the TRINICON-BSS

algorithm has been presented and compares favourably with a perfect knowl-

edge MVDR beamformer while tolerating significant errors in the assumed

desired signal location. By processing the outputs of a robust beam/nullformer

pair through BSS, it is possible to compensate for assumptions made in the

fixed beamformer design. The algorithm features low signal distortion, fast
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convergence and did not exhibit channel ordering ambiguities common in

BSS-type algorithms. In addition, the algorithm avoids signal leakage issues

common with GSC-type algorithms while maintaining low computational

complexity, and does not require speech activity detection, SINR estimation

or interference source direction information unlike the existing methods in

the literature.

As the method proposed is robust to channel ordering issues, a Wiener

filter based post-processor designed using the outputs of the BSS-system, as

described in the work in [Reindl et al., 2013], can be easily used to remove

residual diffuse noise in the system, leading to a semi-blind multichannel

Wiener filter implementation.
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Chapter 7

Real-time Implementations

7.1 Outline

This chapter covers real-time implementations of the algorithms developed

in the previous chapter. First, a scalable high performance blind source

separation system for multiple microphone pairs in described. Next, a com-

plete implementation of the beamforming plus BSS system described in the

previous chapter is developed, using a version of the high performance BSS

code developed in the first section.

153



154 CHAPTER 7. REAL-TIME IMPLEMENTATIONS

7.2 GPU-Accelerated Blind Source Separation

7.2.1 Introduction

In recent years, graphical processing units (GPUs) have transformed from de-

vices which focus purely on specific tasks relating to 3D graphics processing to

general purpose mathematical processing. The advantage that GPUs present

over regular CPUs is the ability to process a large amount of data in parallel.

A typical GPU provides access to hundreds of processing threads, compared

with 2 or 4 in a typical CPU. Signal processing algorithms often involve

large filtering operations which are ideal for execution on a massively parallel

device. Existing signal processing algorithms which have been modified to run

using GPUs include adaptive filtering [Schneider et al., 2012] and Independent

Component Analysis (ICA) [Mazur and Mertins, 2011; Foshati and Khunjush,

2013], each of which has demonstrated that significant gains in processing

speed are achieved using massively parallel processing. Prior work using GPU

acceleration in the field of blind source separation/independent component

analysis have focused on algorithms that use frequency bin-wise separation.

These algorithms exhibit scaling and permutation problems, limiting their use

in audio processing unless repair mechanisms are implemented [Sawada et al.,

2004] — which can impair the parallelisation of the algorithms. In addition,

little work exists showing the impact of parallelisation and in particular

GPU-based algorithms on the accuracy of filter calculations and the resulting

effects on separation performance.

One potential application of GPU processing is implementing a quasi-

distributed blind source separation system where pairs of microphones (nodes)

communicate their audio signals to a centralised computer for processing.



7.2. GPU-ACCELERATED BLIND SOURCE SEPARATION 155

Using a GPU on a central computer may be advantageous if the overheads

associated with distributed nodes — efficiencies gained through parallelism,

power consumption or CPU time per node compared with the centralised

approach, for example, were significant.

7.2.2 Two-Channel BSS Based on TRINICON

TRINICON is a framework for separating convolutive mixtures of signals by

exploiting three (assumed) signal properties: non-stationarity, non-whiteness

and non-Gaussianity [Buchner et al., 2004b; Aichner et al., 2005]. The

objective is to find a set of filters (W) which minimises the cost function

imposed by the three signal properties.

Using the formulations given in [Buchner et al., 2004b; Aichner et al.,

2005], a two-input/two-output separation example can be given as

[
Y1 Y2

]
=
[
X1 X2

]W11 W12

W21 W22

 , (7.1)

where the Yi terms are the output channel matrices, Xi the input channel

matrices and the Wij terms are the separation filter matrices. Each of Xi, Yi

and Wij are Toeplitz matrices representing time domain samples and filter

taps. The Toeplitz structure of the matrices allows for an efficient vectorised

implementation, as detailed in [Aichner et al., 2005].

If the non-Gaussian property assumption is dropped, a second-order

statistics-based filter update rule can be utilised to compute the separation

filters efficiently. The second-order statistics-based cost function is given

in [Aichner et al., 2005] as

W+ = W − µW
[
offDiag(Ryy)blockDiag−1(Ryy)

]
, (7.2)
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where µ denotes the gradient descent control parameter, blockDiag is an

operator selecting the block diagonal submatrices, offDiag is an operator

selecting the off diagonal submatrices and the output correlation matrix Ryy

is defined as

Ryy =

Ryy11 Ryy12

Ryy21 Ryy22

 = YHY = WHRxxW, (7.3)

where Rxx is the input correlation matrix computed from the outer product

of
[
X1 X2

]T
. The inverses of the Toeplitz diagonal submatrices of Ryy can

be approximated as [Aichner et al., 2006]

R−1
yyii
' 1

σ2
i + δi

I, (7.4)

where σ2
i is the variance of the ith output channel and δi is a regularisation

parameter to prevent inversion errors.

In [Aichner et al., 2005], the authors implemented an efficient second-order

statistics version of this algorithm by exploiting the redundant information

in the matrices involved in the equations. The L-length FIR filters in the

matrix W exhibit a Sylvester structure (Figure 7.1) where the columns of

each submatrix are diagonally shifted versions of the first column (i.e., time

delayed versions of the first column). The submatrices in Ryy also exhibit

Toeplitz structure and an approximate inverse can be used for the inverses of

the block diagonal terms Ryyii . Their implementation reduces the complexity

substantially, allowing real-time separation on low-cost hardware, as the

large matrix operations have been replaced by significantly simpler and more

memory efficient vector operations.

The fast algorithm is detailed in Table 1 of [Aichner et al., 2005] and

summarised as follows, the input time-domain samples are collected as over-
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lapping length-N vectors for each channel, windowed and transformed into a

frequency-domain vector using the FFT

xi = FFT{
[
xi[t] xi[t+ 1] ... xi[t+N − 1]

]T
} (7.5)

The input autocorrelation vectors (representing the first column of each

submatrix in Rxx) are calculated as element-wise multiplications of the

transformed input channels

rxxij = xi ◦ x∗j , (7.6)

where the ◦ symbol denotes element-wise multiplication (Hadamard product).

The offline update iteration component can be summarised as the following

set of operations: first the current length-L filters are zero-padded to length

N and transformed into the frequency domain vector

wij = FFT{
[
wij[0] ... wij[L− 1] 0 ... 0

]T
} (7.7)

In this implementation, the diagonal filters wii are initialised to the unit

impulse wii =
[
1 0 ... 0

]
. The off diagonal filters are initialised to zero.

The algorithm below operates by altering the off diagonal filters while retaining

the diagonal filters as unit impulses — a consequence of the unit impulse

initialisation.

The input-output cross-correlations (representing the intermediate step

Rxy = RxxW) can be computed from the input autocorrelation and the

current filters and then be used to compute the output autocorrelations

rxy =

rxx11 + w12 ◦ rxx21 rxx12 + w12 ◦ rxx22

rxx21 + w21 ◦ rxx11 rxx22 + w21 ◦ rxx12

 (7.8)
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ryy =

rxy11 + w∗12 ◦ rxy21 rxy12 + w∗12 ◦ rxy22

rxy21 + w∗21 ◦ rxy11 rxy22 + w∗21 ◦ rxy12

 (7.9)

The filter updates can be computed efficiently as

w = w − µ

 0 r−1
yy22
◦ ryy12

r−1
yy11
◦ ryy21 0

 , (7.10)

where the regularised approximate inverses [Aichner et al., 2006] of ryyii are

computed by element-wise divisions

r−1
yyii

=
1

ρryyii + (1− ρ)σ2
i + δi

, (7.11)

with ρ set as a weighting factor and σi = 1
N

rHyyiiryyii . The online filter update

is computed as

wonline = (1− λ)wonline + λw, (7.12)

where λ is the exponential forgetting factor.

The output channels are computed by convolving the demixing filters with

the input channels using the overlap-add FFT convolution method

y =

x1 + w12 ◦ x2

x2 + w21 ◦ x1

 (7.13)

7.2.3 CUDA

CUDA (Compute Unified Device Architecture) [NVIDIA, 2013], a program-

ming framework for developing GPU-accelerated software for computers with

NVIDIA graphics hardware, was chosen for the GPU implementation. The

CUDA framework includes a parallel implementation of the FFT similar

in style to the fftw [FFTW, 2013] library available for CPUs. All of the
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Figure 7.1: Illustration of the reduction of complexity through the Sylvester

structure of the filter updates. Each column of the output is identical, meaning

only the first column needs to be computed.

mathematical operations of the second-order statistics TRINICON algorithm

presented in Section 7.2.2 are examples of parallelisable operations, with vary-

ing degrees of complexity. The elements in the correlation function vectors

(Equations 7.6, 7.8 and 7.9) are independent from one another, i.e., frequency

bin 1 of rxx11 has no relation to frequency bin 2, allowing the element-wise
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Figure 7.2: Structure of the parallel inner-product, an example of a divide-

and-conquer algorithm

multiplication (and addition) to occur in separate operating threads without

leading to synchronisation issues typical to multi-threaded programming.

Similarly, the filter update operation (7.2) and the convolution operation to

calculate the output channels (7.13) can be multi-threaded easily due to the

same independence property. Computing r−1
yyii

(7.11) requires implementing

the vector inner product which implies accumulating N intermediate element-

wise products into a single output — leading to synchronisation and memory

contention issues. The operation can be parallelised by reformulating the

algorithm as a divide-and-conquer binary tree (Figure 7.2), which allows pairs

of elements to be summed in parallel.

Current GPUs favour single-precision floating-point arithmetic over double-
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precision, particularly on consumer-level GPUs, due to the costs associated

with dedicated double-precision hardware. The single-precision performance,

in terms of execution time, of GPUs can be up to 24 times greater than

double-precision, which was the case with the GPU used in these investigations

(NVIDIA GT650M). One of the objectives of this section was to investigate

the viability of GPU processing for a large number of separation units using

single-precision arithmetic for maximum efficiency. The resulting effects on

separation accuracy were investigated to ensure that separation performance

was not compromised significantly.

7.2.4 Simulation Setup

The implementation was evaluated by simulating two talkers in a highly

reverberant three-dimensional room of dimensions 6.0m by 4.0m by 4.0m.

The desired signal was located at (2.0m, 2.0m, 2.0m) and the interferer was

located at (4.0m, 1.0m, 2.0m). The image source method [Allen and Berkley,

1979] was utilised to generate up to 4th order reflections from the 4 walls,

with reflection coefficients set to 0.7. The two microphones were placed at

(1.0m, 2.05m, 2.0m) and (1.0m, 1.95m, 2.0m), giving an array separation of

10cm. The block length (N) used in the TRINICON algorithm was set to

3072 samples and the separation filters (L) were set to 1024 taps. As input

data, ten seconds of speech sampled at 16kHz were used. The input and filter

vectors were zero padded to 4096 (the next nearest power of two) samples for

efficient processing on the GPU. The regularisation parameter and weighting

factors δ and ρ in (7.11) were set to 10−10 and 0.5 respectively. The online

filter update forgetting factor in (7.12) was set to 0.25.

The computational performance was evaluated using a notebook computer
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with an Intel i7-3635QM 4 core/8 thread CPU with a single threaded clock

rate of up to 3.2GHz and an NVIDIA GT650M GPU with 384 threads

running at a clock rate of 900MHz. The CPU reference implementation was

single-threaded and implemented in both MATLAB using 64-bit floating-

point arithmetic, as the accuracy reference, and native C code using 32-bit

floating-point arithmetic using the fftw [FFTW, 2013] library to compute the

FFT, as the computational performance reference.

7.2.5 Results

An unexpected result of the implementation was the increase in separation

performance compared with the CPU-MATLAB reference code (Figure 7.3).

As noted in Section 7.2.2, the implementation was coded using single-precision

arithmetic, which was expected to adversely affect the separation performance

by introducing greater rounding errors into the filter updates. The approx-

imation used to compute R−1
yyii

in the filter update equation was suspected

to be the source of the mismatch, involving the inverse of an inner product.

After investigating the implementation carefully, the parallel inner-product

was found to be the source of the discrepancy between the CPU-MATLAB

and GPU separation performance. The serial implementation of the inner

product can lead to significant rounding errors accumulating if there is a

large dynamic range of values in the vectors. The parallel code by contrast,

operates by summing pairs of values, which at each stage of computation,

are independent from each other. As the pairs operate independently, the

rounding errors are also independent, preventing a large rounding error in one

pair swamping the other pairs. The result of this is that the overall rounding

error in the sum is lower, leading to more accurate filters despite the lower
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Figure 7.3: Signal to interferer ratio improvement

precision arithmetic. In [Yablonski, 2011] the author describes the effects of

parallel algorithms and CPU/GPU instructions on accuracy of mathematical

operations and demonstrates that the accuracy can be improved by exploiting

parallel algorithms and/or special CPU/GPU instructions.

A modification to the CPU-MATLAB reference code verified the effect of

the parallel inner product structure as the cause of the discrepancy (Figure

7.4). With the modification to the CPU code, the single-precision GPU im-

plementation is comparable to the modified double-precision CPU-MATLAB

code, differing only slightly in terms of both signal to noise power ratio

improvement and signal distortion, which can be attributed to using lower



164 CHAPTER 7. REAL-TIME IMPLEMENTATIONS

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

20

Block Index

S
N

R
 Im

pr
v.

 (
dB

)

 

 
CPU (64−bit FP)
GPU (32−bit FP)

Figure 7.4: Signal to interferer ratio improvement with the CPU code modified

to use a similar parallel structure for the dot-product

precision arithmetic. These modifications were tested using multiple data

sets.

The signal distortion, the difference between the original undistorted

speech and the desired speech after processing, closely matches the CPU-

MATLAB implementation once the difference in inner product implementa-

tions are accounted for, as demonstrated in Figure 7.5. The computational

performance of the GPU implementation is shown in Table 7.1. The simple

two channel case, representative of a single-node in a distributed system,

shows roughly an order of magnitude increase in performance over a C im-



7.2. GPU-ACCELERATED BLIND SOURCE SEPARATION 165

10 20 30 40 50 60 70 80 90 100
−24

−22

−20

−18

−16

−14

−12

−10

Block Index

S
ig

. D
is

t. 
(d

B
)

 

 

CPU (64−bit FP)

GPU (32−bit FP)

Figure 7.5: Signal distortion measure comparison between the CPU and GPU

implementations

plementation running on a CPU. The single-node case, however, does not

show the full potential of the GPU in accelerating the algorithm due to

parallelisation limits in the FFT and inner product algorithms. A further

simulation was conducted to evaluate the performance of the implementation

operating on a large number of audio pairs to verify its potential in processing

audio signals from a distributed set of microphones. A set of tests operating

on 8, 16, 32 and 64 pairs of audio mixtures similar to the single demixer test

were conducted.

The results presented in Table 7.2 show that additional gains in perfor-

mance can be achieved by increasing the workload assigned to the GPU.

Limitations of parallelism of the inner product and fast Fourier transform
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Time (ms) Realtime (x) Improv. (x)

CPU-MATLAB 2580 3.88 1

CPU-C 935 10.69 2.76

GPU 136 73.53 18.97

Table 7.1: Performance results for a single separation unit comparing single

precision CPU-MATLAB, CPU-C and GPU implementations when separating

a 10 second mixture.

Units Time (ms) Real-time (x) Real-time/unit (x)

8 1262 23.78 190.24

16 2140 14.02 224.32

32 3898 7.70 246.40

64 7544 3.98 254.72

Table 7.2: Performance results for multiple simultaneous separation units

present themselves for small numbers of separation units. Both operations rely

on a binary-tree decomposition as exhibited in Figure 7.2, which introduces

two bottlenecks to the algorithm. The FFT and inner-product operations

effectively reduce the number of operating threads to one in some portions

of the algorithm. This limitation can be overcome by increasing the number

of separation units to process, as each unit can be processed independently

from one another. As seen in Table 7.2, the processing capability of the card

appears to increase in terms of pairs per unit time, which demonstrates the

advantages of processing multiple pairs of audio using the same device. The

overall result shows that the card used in these simulations is theoretically
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capable of processing more than 250 pairs in real-time, a substantial increase

over the 10 pairs which can be processed using the single-threaded CPU

implementation.

7.2.6 Discussion

The performance results demonstrated in Section 7.2.5 show the effective-

ness of GPU acceleration for the TRINICON-BSS algorithm. Substantial

increases in performance relative to the CPU-C implementation are attain-

able by offloading highly parallel portions of the algorithm to the GPU with

counter-intuitively positive effects on the quality of the output compared

with the double-precision CPU-MATLAB implementation. In addition, the

GPU implementation is capable of processing a very large number of audio

pairs in real-time on modest low-power hardware, demonstrating that it is

potentially well suited as part of a quasi-distributive beamforming and blind

source separation system. This GPU-accelerated algorithm is expected to

be applicable to BSS-based signal extraction algorithms, such as the method

described in [Reindl et al., 2013].
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7.3 Real-time Robust Beamforming and BSS

7.3.1 Introduction

One of the primary motivations for this thesis was the issue of computational

performance, particularly focussing on algorithms which could feasibly be

implemented in real-time on a low power device. The beamforming methods

covered in this thesis have been designed primarily for fixed-beamformer

design, where the beamforming filters are designed offline and implemented as

simple FIR filters with fixed coefficients. An adaptive system is constructed by

using dual complementary fixed beamformers fed into an adaptive blind source

separation system based on the TRINICON framework, which provides some

ability to compensate for direction/position mismatch between the expected

desired source location and the actual location. This implementation is a

complete implementation of the algorithms described in Chapter 6.

7.3.2 System Design

The implementation consists of two stages, the first of which is the beamform-

ing stage where the microphone inputs are filtered using the beam/null-formers

designed using any of the methods described in previous chapters. The out-

puts of the beamforming stage are fed into a 2x2 second-order statistics

implementation of the TRINICON framework, which was developed in the

previous section.

In the beamforming stage, the samples are collected and windowed before

transforming into the frequency domain. Each channel vector is then element-

wise multiplied with the corresponding frequency domain beamforming filter
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y2 = ṽ
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Figure 7.6: Overview of the implementation design.

to give the two intermediate inputs (the beam/null-formed data).

y1 =
N∑
n=1

wmax,n ◦ xn (7.14)

y2 =
N∑
n=1

wmin,n ◦ xn (7.15)

These intermediate inputs are then processed by the TRINICON stage to

remove any mutual information between them, i.e., speech leaking into the

nullformed channel, and/or interference leaking into the beamformed channel.

The BSS filter updates are described in Chapter 6 (equations 7.6 through

7.12). Once the BSS filters have been updated for the current block, the

signal and interference estimates are computed as

s̃ = y1 + wBSS,12 ◦ y2 (7.16)

ṽ = y2 + wBSS,21 ◦ y1 (7.17)

The signal and interference estimates are then transformed back into the

time-domain and output through headphones/speakers or to disk.
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The implementation was coded in C using compiler intrinsics to exploit

the CPU single instruction multiple data (SIMD) vector instructions (AVX

on Intel [Intel, 2015], and NEON on the ARM platforms [ARM, 2015b]) to ac-

celerate vector addition, subtraction, multiplication, division, and summation

operations. The AVX instructions allow the computation of 8 single precision

floating-point operations per clock cycle, and the NEON instructions allow

either 2 or 4 single precision floating-point operations per cycle (depending

on the version of ARM processor).

7.3.3 Computational Performance

Computational performance was evaluated by processing pre-recorded 4-

channel array signals through the program writing to disk rather than playing

in real-time. The performance was evaluated by processing a pre-recorded

demo multiple times to obtain a mean runtime for each processor tested. The

objective was to find out whether the algorithm was feasible on low-power

ARM devices with similar power to smartphones manufactured between 2012-

2015. The three processors tested were a laptop processor: (Intel i7-3635QM,

3.2GHz peak clock rate); 2015 Raspberry Pi 2 [Raspberry Pi Foundation,

2015] (ARM Cortex-A7, 900MHz clock rate); and a 2015 ODROID-XU4 [Hard

Kernel, 2015] (ARM Cortex-A15, 1.7GHz clock rate).

In Table 7.3 the mean performance times for the algorithm were compared

for the various platforms and levels of processing. The objective was to achieve

a real-time value of greater than 1 for the combined beamforming and BSS

method, preferably much more to account for processor overhead associated

with the operating system audio stack. The laptop could easily process the

dual 4-channel beamformers and BSS system and provide glitch free audio
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Table 7.3: Algorithm performance for the beamforming plus BSS system

(and only beamforming or BSS) on various platforms using a 11.7 s length

demonstration sampled at 44.1 kHz.

Processor Time (s) Realtime (x)

Intel i7-3635QM (3.2GHz) 0.43 27.21

2× 4-ch Beamforming 0.19 61.58

2-ch BSS 0.24 48.75

ARM Cortex A15 (1.7GHz) 2.38 4.91

2× 4-ch Beamforming 1.00 11.7

2-ch BSS 1.38 8.48

ARM Cortex A7 (900MHz) 10.01 1.17

2× 4-ch Beamforming 5.30 2.21

2-ch BSS 4.71 2.48

when played in real-time. Of the ARM processors, only the ODROID could

manage real-time glitch free audio; the Raspberry Pi could process the data

in real-time but was unable to play the audio glitch free, however it should be

possible to use the algorithm at a lower sample rate. Currently the software is

not well optimised (other than simple SIMD vector operations), nor is it multi-

threaded to exploit CPU-core parallelism, and as such there may be significant

processing improvements within reach. An interesting observation was that

the 2-channel BSS system requires a comparable amount of processing power

as the dual 4-channel beamformers. If the dual beamformers were extended to

a full GSC implementation, i.e., 4 simultaneous 4-channel beamformers, the
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processing requirements would be similar to the proposed system, assuming

the adaptive filter after the GSC blocking matrix had negligible performance

impact. A GSC implementation would likely require some kind of additional

repair mechanism to ensure desired signal leakage was minimal, which would

require additional processing steps.

7.3.4 Interference/Noise Reduction Performance

A simple demonstration of the implementation was conducted using a 4-

element rectangular electret-microphone array, as laid out in Figure 7.7, fed

into an XMOS USB Audio2 Interface multichannel sound card attached to a

notebook computer. The speech source used was a 60-second example from

the TIMIT [Garofolo et al., 1993] database played through a KEMAR head

and torso simulator. The demonstration took place in a highly reverberant

office/laboratory with significant levels of background interference — diffuse

air conditioning, and with people talking and walking around. In addition,

there was significant electrical noise present from the pre-amplifier sitting be-

tween the microphones and sound card. The microphones were not calibrated,

and the flexible wire mounting resulted in errors in the measured positions of

the microphones used to design the beamformer filters, i.e., moving the array

tended to slightly shift the microphone positions relative to each other.

The three beamforming techniques developed in Chapters 4 and 5 were

tested using the rectangular array. The 3D far-field beamformer was designed

using (4.16) and setting the von Mises-Fisher coefficient κ = 500; the near-

field beamformer was designed using the radial Gaussian method (4.82) with

σ = 0.04 m; and the scatterer-based design used a head radius of rh = 0.0875 m,

and a robust source design assuming a von Mises-Fisher distribution of sources
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Figure 7.7: Layout of the rectangular array relative to the head and torso

simulator.

on the head with a distribution parameter of κ = 500. The microphone array

was placed 20 cm from the mouth of the head and torso simulator — although

this is not far-field, the far-field beamformer design performed fairly similarly

to the near-field/scatterer designs. The far-field designs are unable to exploit

the wave amplitude differences between microphones in the array, but are able

to use phase information to partially align signals. In practice, this meant that

the beamforming channel performed similarly to the near-field/scatterer-based

designs with only a small performance penalty in terms of SINR before post-

processing. The far-field nullformer channel however did behave significantly

differently compared with the near-field/scatterer-based designs, and as a

result did not optimally collect background interference. The beamformer

filter length was set to 1024-taps with a low-pass cut-off set to approximately

6 kHz to prevent spatial aliasing issues from occurring — the interference/noise

level above 6 kHz was too little for the low-pass filter in the beamformer to

have a significant interference/noise reduction effect on its own. The BSS

configuration used was as in Section 6.2.3. The recording sample rate was



174 CHAPTER 7. REAL-TIME IMPLEMENTATIONS

44.1 kHz. σ2
n used to design the sensor noise spatial correlation matrix was

set to 10−3 to simultaneously tolerate the array imperfections detailed above,

and to improve the eigenvalue/vector solution (2.102) stability.

In Figure 7.8, the waveforms for the raw microphone data (the highest

SINR channel is presented), far-field design output, near-field design output,

and scatterer-design output are presented. All three beamforming methods

resulted in significant improvement in SINR, which improved from the unpro-

cessed value of between 10-15 dB during the speech utterances to between

25-30 dB after processing using beamforming and BSS (Table 7.4). In Figure

7.9 a small subset of data is shown. It can be seen that all three beamformer

designs are extremely effective at filtering the low-mid frequency noise (be-

low 1.5 kHz). The far-field design had a small issue with a band of noise

present at about 4.2 kHz which is successfully filtered by the near-field and

scatterer-based designs, this was due to the signals received in the far-field

nullformer channel — which did not include the band of noise compared

with the other designs and thus was not filtered out of the primary channel.

This is due to suboptimal null design when applying the far-field design to a

near-field problem. The near-field and scatterer-based designs perform nearly

identically with no significant differences between the two techniques. As

found in Chapter 5, this was not unexpected as the diffuse interference (air

conditioner) was the dominant interference source, and as the simulations

showed in Section 5.2.7, the performance of the scatterer-based design did

not differ significantly from the free-field design under isotropic interference

conditions.

The BSS post-processor performed as intended, removing the desired

speech component from the nullformer channel, and removing both the tran-
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Figure 7.8: Comparison between the unprocessed microphone signal and the

beamformer plus BSS processed output for a real array using the robust

far-field, near-field, and scatterer beamformer designs.
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Table 7.4: Peak SINR improvement for the speech in diffuse interference

real-world example

Beamformer Peak SINR Improvement (dB)

Far-field 10.25

Near-field 14.83

Scatterer 14.18

sient background footsteps/secondary talkers and some of the air conditioning

noise from the primary beamformer channel. The post-processor provided a

roughly 5 dB improvement in SINR over just using the beamformer.

7.3.5 Conclusions

In this section it was demonstrated that the algorithm developed in Chapter 6

can be feasibly implemented on a low-power device and run in real-time using

a four-channel microphone array. The beamforming techniques developed in

this thesis perform well in terms of interference/noise reduction in conjunction

with the BSS-based post-processor when tested with an imperfect microphone

array.

The simple proof-of-concept demonstration did not fully test the inter-

ference/noise reduction performance of the algorithm. Further testing with

calibrated, properly positioned microphones (in a 3D configuration) in a

controllable environment would be the obvious next step.



7.3. REAL-TIME ROBUST BEAMFORMING AND BSS 177

Figure 7.9: Short speech utterance from the demo data. From top to bottom:

the raw input data (input channel with the best SINR); far-field beamformer;

near-field beamformer; and scatterer-based beamformer. The spectrogram

generated using Audacity [Audacity Team, 2015] used a Hamming window

with a size of 2048 samples.
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Chapter 8

Conclusions

8.1 Outline

This chapter highlights the conclusions and outlines a number of potential

future research areas.

179
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8.2 Conclusions

In Chapter 3, a robust beamformer formulation, using numerical integration

to solve the correlation function, was used to derive a simple Wiener filtering

technique. The robust method was quite effective for estimating approximate

interference/noise statistics which led to an effective single channel Wiener

filter solution. In Chapter 4, the robust beamforming technique was developed

further by deriving a set of correlation functions for the specific applications

of 2D/3D far-field, and 3D near-field beamforming. The far-field solutions

derived reduced a computationally expensive integral solution to a pair of

very simple analytic solutions for the correlation functions. The near-field

solutions derived similarly reduced the complexity of the integral solution

to a simpler summation solution. These correlation functions were found to

be particularly useful in the design of robust nullformers used to estimate

interference/noise signals.

In Chapter 5, a simple scattering model of sound propagation was con-

sidered in which the idealised point source was placed onto a solid sphere

in order to approximate the effect a head has on wave propagation. It was

found that this theoretical model delivers no significant improvements for

highly reverberant scenarios, but may provide quite significant improvements

for the application of directional interference blocking.

In Chapter 6, the dual beamformer and blind source separation algorithm

was developed as a solution for interference/noise reduction in high noise

environments. The method combined two fixed complementary beamformers

designed to enhance and suppress a desired signal with an approximately

known location relative to a multichannel microphone array. The blind
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source separation system acted as a post-processor to minimise the mutual

information between the beamformer outputs which provided some correction

for errors in the assumptions used to design the front-end beamformers. The

algorithm performs comparatively well against perfect information MVDR

beamforming in diffuse noise, and can feasibly be implemented on a low-cost,

low-power ARM platform, making it well suited for a number of mobile

applications. The robust beamforming methods developed in Chapters 4 and

5 allow for a range of possible scenarios for far and near-field applications,

including more realistic applications where scattering and diffraction are

significant issues, which has been a neglected issue in the literature.

Including the BSS post-processor was intended to emulate the effect of a

generalised sidelobe canceller design without signal leakage issues resulting

from imperfect beamformer information (imperfect knowledge of the desired

source location and/or interference/noise information). In Chapter 7, Section

2, it was observed that for the simple demonstration of the algorithm, all three

beamformer designs (far-field, near-field, and scatterer) performed reasonably

similarly when using the post-processor. This suggests that the BSS system is

capable of refining the beamformers in order to improve SINR in the primary

output channel, and improve the interference/noise reference in the secondary

channel. Only limited testing occurred however, and there is scope to extend

this work by testing the algorithm in a number of different interference/noise

scenarios, different microphone array configurations and beamformer design

parameters, and exploring BSS algorithms further.
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8.2.1 Discussion

The correlation functions developed in Chapters 4 and 5 were found to

be particularly useful for designing robust target suppressing nullformers.

Existing techniques commonly used in the literature are extremely sensitive

to even minor errors in the assumed source position knowledge and/or wave

propagation model. The method presented in those chapters, while being

technically sub-optimal, in practice may perform better for scenarios where

target suppression is the objective.

Limited testing of the model developed in Chapter 5 showed that in-

cluding scattering information produced no real benefit (nor downside) in

terms of noise reduction compared with a near,free-field design. Designing

beamformers using this method is computationally more expensive than the

free-field designs, and combined with the minimal SINR performance advan-

tage, suggests that this may not be a particularly useful design for many

applications.

The proposed solution in Chapter 6 still requires an initial estimate of

desired source position for the beamforming stage, and as such may not be

suitable for applications where this is unavailable. The intended application

for this solution is hand held devices in which the desired source position

is expected to be approximately known. For other applications such as

teleconferencing or hearing-aids, alternative strategies using direction of

arrival estimation may be required in order for the algorithm to be useful.
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8.2.2 Future Work

A number of avenues of future work have been identified which may improve

on the performance of the algorithm developed during this thesis.

• A first step would be to further develop near-field prolate spheroid

propagation models (such as those in [Barton et al., 2003]), which have

also been used in the closely linked head-related transfer functions

field [Jo et al., 2008] to model wave propagation around heads.

• This thesis has only focussed on idealised microphones (floating in

free-space with no physical dimensions) and while this approximation

worked surprisingly well during limited real-world testing, it obviously

is not optimal. Modelling an enclosure (a simple rectangular box for

example) using finite element methods [Reddy, 2006] could be a option

to explore.

• Although voice activity detection/signal detection was identified as

an issue, it would be expected that in the future, improved detec-

tion/recognition techniques (using video information for example [Joosten

et al., 2015]) would decrease the probability of false positives/negatives

in high noise environments. This would enable adaptive techniques

such as those typically used to implement the MVDR/LCMV and GSC

beamformers to identify desired source transfer function vectors and/or

signal statistics more accurately and improve noise reduction as a re-

sult. In this case, the existing MVDR/LCMV and GSC techniques

may become better solutions than the method proposed in this thesis,

presuming the sensor fusion method was computationally efficient.
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• The blind source separation component used a fixed value for the gradi-

ent ascent/descent filter adaptation (µ in (6.10)) which was selected as a

conservative guess which happened to work for all of the scenarios tested.

Ideally, this convergence parameter should be adaptive to allow rapid

adaptation of filters for low SINR conditions, and as SINR conditions

improve, decrease filter adaptation to ensure stability. In practice, it

was difficult to design a reliable adaptive step-size mechanism using

suggested methods from the literature (such as using covariance matrix

eigenvalue information [Widrow and Stearns, 1985], or cost function

minimisation measures [Aichner et al., 2005, (27)] for example) which

produced stable filters in a variety of scenarios. Further investigations

on optimal adaptive filter convergence could lead to improvements in

BSS filter performance, as well as other adaptive filtering algorithms.

• The low-power implementation did not fully exploit the hardware avail-

able, and there is scope for simple algorithm optimisations which would

improve performance significantly. For example, the FFT library used in

the implementation (fftw) is not the fastest algorithm currently available

on the ARM platform [Blake, 2012; ARM, 2015a]. Additionally, as part

of this thesis, a GPU accelerated implementation of the TRINICON-BSS

system was developed which should be feasible to implement on 2015-era

smartphones (or similar devices), which include increasingly powerful

graphics hardware, programmable through OpenCL [Khronos, 2015],

which are well suited for general signal processing algorithms. Shifting

parts of the implementation onto the graphics core would very easily

allow the algorithm to run on low-end hardware without a significant
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impact on other processing tasks the device may be performing.
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[Ba et al., 2007] Ba, D. E., Florêncio, D., and Zhang, C. (2007). Enhanced

MVDR Beamforming for Arrays of Directional Microphones. In Multimedia

and Expo, 2007 IEEE International Conference on, pages 1307–1310. IEEE.

[Barton et al., 2003] Barton, J. P., Wolff, N. L., Zhang, H., and Tarawneh,

C. (2003). Near-field Calculations for a Rigid Spheroid with an Arbitrary

Incident Acoustic Field. The Journal of the Acoustical Society of America,

113(3).

[Benesty et al., 2008] Benesty, J., Chen, J., and Huang, Y. (2008). Micro-

phone Array Signal Processing, volume 1. Springer Science & Business

Media.

[Benesty et al., 2007] Benesty, J., Chen, J., Huang, Y. A., and Dmochowski,

J. (2007). On Microphone-array Beamforming from a MIMO Acoustic

Signal Processing Perspective. Audio, Speech, and Language Processing,

IEEE Transactions on, 15(3):1053–1065.

[Blake, 2012] Blake, A. (2012). Computing the Fast Fourier Transform on

SIMD Microprocessors. PhD thesis, University of Waikato.

[Boll, 1979] Boll, S. F. (1979). Suppression of Acoustic Noise in Speech

using Spectral Subtraction. Acoustics, Speech and Signal Processing, IEEE

Transactions on, 27(2):113–120.



190 REFERENCES

[Buchner et al., 2004a] Buchner, H., Aichner, R., and Kellermann, W.

(2004a). Blind Source Separation for Convolutive Mixtures: A Unified

Treatment. In Benesty, J. and Huang, Y., editors, Audio Signal Processing,

chapter 10, pages 255–293. Kluwer Academic Publishers.

[Buchner et al., 2004b] Buchner, H., Aichner, R., and Kellermann, W.

(2004b). TRINICON: A Versatile Framework for Multichannel Blind Signal

Processing. In in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal

Processing (ICASSP), pages 889–892.

[Buckley and Griffiths, 1986] Buckley, K. M. and Griffiths, L. J. (1986). An

Adaptive Generalized Sidelobe Canceller with Derivative Constraints. An-

tennas and Propagation, IEEE Transactions on, 34(3):311–319.

[Capon, 1969] Capon, J. (1969). High-Resolution Frequency-Wavenumber

Spectrum Analysis. Proceedings of the IEEE, 57(8):1408–1418.

[Cardoso and Souloumiac, 1993] Cardoso, J.-F. and Souloumiac, A. (1993).

Blind Beamforming for Non-Gaussian Signals. In IEE Proceedings F (Radar

and Signal Processing), volume 140, pages 362–370. IET.

[Catic et al., 2010] Catic, J., Dau, T., Buchholz, J. M., and Gran, F. (2010).

The Effect of a Voice Activity Detector on the Speech Enhancement Per-

formance of the Binaural Multichannel Wiener Filter. EURASIP Journal

on Audio, Speech, and Music Processing, 2010(1):840294.

[Cauchi et al., 2014] Cauchi, B., Kodrasi, I., Rehr, R., Gerlach, S., Jukic, A.,

Gerkmann, T., Doclo, S., and Goetze, S. (2014). Joint Dereverberation

and Noise Reduction using Beamforming and a Single-channel Speech



REFERENCES 191

Enhancement Scheme. Reverb Challenge. IEEE Audio, Acoust., Signal

Process. TC.

[Chen and Benesty, 2011] Chen, J. and Benesty, J. (2011). A Time-Domain

Widely Linear MVDR Filter for Binaural Noise Reduction. In Applica-

tions of Signal Processing to Audio and Acoustics (WASPAA), 2011 IEEE

Workshop on, pages 105–108. IEEE.

[Chen and Benesty, 2013] Chen, J. and Benesty, J. (2013). On the Time-

Domain Widely Linear LCMV Filter for Noise Reduction with a Stereo

System. Audio, Speech, and Language Processing, IEEE Transactions on,

21(7):1343–1354.

[Clapp, 1970] Clapp, R. E. (1970). Generalized Addition Theorem for Spher-

ical Harmonics. Journal of Mathematical Physics, 11(1):1–4.

[Cohen, 2004] Cohen, I. (2004). Relative Transfer Function Identification

using Speech Signals. Speech and Audio Processing, IEEE Transactions on,

12(5):451–459.

[Colton and Kress, 1998] Colton, D. and Kress, R. (1998). Inverse Acoustic

and Electromagnetic Scattering Theory, pages 27–30. Springer.

[Cox et al., 1986] Cox, H., Zeskind, R., and Kooij, T. (1986). Practical

Supergain. Acoustics, Speech and Signal Processing, IEEE Transactions

on, 34(3):393–398.

[Dam et al., 2004] Dam, H. Q., Low, S. Y., Dam, H. H., and Nordholm, S.

(2004). Space Constrained Beamforming with Source PSD Updates. In



192 REFERENCES

Acoustics, Speech, and Signal Processing, 2004. Proceedings.(ICASSP’04).

IEEE International Conference on, volume 4, pages iv–93. IEEE.

[Davis et al., 2005] Davis, A., Low, S. Y., Nordholm, S., and Grbic, N. (2005).

A Subband Space Constrained Beamformer Incorporating Voice Activity

Detection. In Acoustics, Speech, and Signal Processing, 2005. Proceed-

ings.(ICASSP’05). IEEE International Conference on, volume 3, pages

iii–65. IEEE.

[Doclo and Moonen, 2002] Doclo, S. and Moonen, M. (2002). GSVD-based

Optimal Filtering for Single and Multimicrophone Speech Enhancement.

Signal Processing, IEEE Transactions on, 50(9):2230–2244.

[Duda et al., 1999] Duda, R. O., Avendano, C., and Algazi, V. R. (1999). An

Adaptable Ellipsoidal Head Model for the Interaural Time Difference. In

Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE

International Conference on, volume 2, pages 965–968. IEEE.

[Fancourt and Parra, 2001] Fancourt, C. L. and Parra, L. (2001). The Co-

herence Function in Blind Source Separation of Convolutive Mixtures of

Non-stationary Signals. In Neural Networks for Signal Processing XI, 2001.

Proceedings of the 2001 IEEE Signal Processing Society Workshop, pages

303–312. IEEE.

[FFTW, 2013] FFTW (2013). FFTW Home Page. http://www.fftw.org/.

[Fisher, 1953] Fisher, R. (1953). Dispersion on a Sphere. Proceedings of the

Royal Society of London. Series A. Mathematical and Physical Sciences,

217(1130):295–305.



REFERENCES 193

[Flanagan et al., 1991a] Flanagan, J., Berkley, D., Elko, G., West, J., and

Sondhi, M. (1991a). Autodirective Microphone Systems. Acta Acustica

united with Acustica, 73(2):58–71.

[Flanagan et al., 1985] Flanagan, J., Johnston, J., Zahn, R., and Elko, G.

(1985). Computer-steered Microphone Arrays for Sound Transduction in

Large Rooms. The Journal of the Acoustical Society of America, 78(5):1508–

1518.

[Flanagan et al., 1991b] Flanagan, J. L., Mammone, R., and Elko, G. W.

(1991b). Autodirective Microphone Systems for Natural Communication

with Speech Recognizers. In Proceedings of DARPA Speech and Natural

Language Workshop, pages 170–175.

[Foshati and Khunjush, 2013] Foshati, A. and Khunjush, F. (2013). A Novel

Implementation of Double Precision and Real Valued ICA Algorithm

for Bioinformatics Applications on GPUs. In Euro-Par 2012: Parallel

Processing Workshops, volume 7640 of Lecture Notes in Computer Science,

pages 285–294. Springer Berlin Heidelberg.

[Frost, 1972] Frost, O.L., I. (1972). An Algorithm for Linearly Constrained

Adaptive Array Processing. Proceedings of the IEEE, 60(8):926–935.

[Gannot et al., 2001] Gannot, S., Burshtein, D., and Weinstein, E. (2001).

Signal Enhancement Using Beamforming and Nonstationarity with Appli-

cations to Speech. IEEE Trans. Signal Processing, (49):1614–1626.

[Gannot and Cohen, 2002] Gannot, S. and Cohen, I. (2002). Speech Enhance-

ment Based on the General Transfer Function GSC and Postfiltering. In

IEEE Trans. Speech and Audio Processing.



194 REFERENCES

[Garofolo et al., 1993] Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus,

J. G., and Pallett, D. S. (1993). DARPA TIMIT acoustic-phonetic conti-

nous speech corpus CD-ROM. NIST speech disc 1-1.1. NASA STI/Recon

Technical Report N, 93:27403.

[Gradshteyn and Ryzhik, 2007] Gradshteyn, I. S. and Ryzhik, I. M. (2007).

Table of Integrals, Series, and Products. Table of Integrals, Series, and

Products Series. Elsevier Science.

[Grbic et al., 2003] Grbic, N., Nordholm, S., and Cantoni, A. (2003). Op-

timal FIR Subband Beamforming for Speech Enhancement in Multipath

Environments. IEEE Signal Processing Letters, 10(11):335–338.

[Griffiths and Jim, 1982] Griffiths, L. and Jim, C. (1982). An Alternative Ap-

proach to Linearly Constrained Adaptive Beamforming. IEEE Transactions

on Antennas and Propagation, 30:27–34.

[Habets et al., 2009] Habets, E. A. P., Benesty, J., Gannot, S., Naylor, P. A.,

and Cohen, I. (2009). On the Application of the LCMV Beamformer to

Speech Enhancement. In Applications of Signal Processing to Audio and

Acoustics, 2009. WASPAA’09. IEEE Workshop on, pages 141–144. IEEE.

[Hager, 1989] Hager, W. W. (1989). Updating the Inverse of a Matrix. SIAM

Review, 31(2):pp. 221–239.

[Hard Kernel, 2015] Hard Kernel (2015). ODROID-XU4.

http://www.hardkernel.com/main/ main.php.

[Haykin, 1991] Haykin, S. (1991). Adaptive Filter Theory, pages 396–399.

Prentice Hall.



REFERENCES 195

[Haykin and Chen, 2005] Haykin, S. and Chen, Z. (2005). The Cocktail Party

Problem. Neural computation, 17(9):1875–1902.

[Herbordt and Kellermann, 2001] Herbordt, W. and Kellermann, W. (2001).

Computationally Efficient Frequency-Domain Robust Generalized Sidelobe

Canceller. In Proc. Int. Workshop on Acoustic Echo and Noise Control,

pages 51–55.

[Hoshuyama et al., 1999] Hoshuyama, O., Sugiyama, A., and Hirano, A.

(1999). A Robust Adaptive Beamformer with a Blocking Matrix using

Coefficient-Constrained Adaptive Filters. IEICE TRANSACTIONS on

Fundamentals of Electronics, Communications and Computer Sciences,

82(4):640–647.

[Huopaniemi et al., 1999] Huopaniemi, J., Kettunen, K., and Rahkonen, J.

(1999). Measurement and Modeling Techniques for Directional Sound

Radiation from the Mouth. In Applications of Signal Processing to Audio

and Acoustics, 1999 IEEE Workshop on, pages 183–186. IEEE.

[Hyvärinen, 2001] Hyvärinen, A. (2001). Fast ICA by a fixed-point algo-

rithm that maximizes non-Gaussianity. Independent Component Analysis:

Principles and Practice, page 71.

[Hyvärinen et al., 2004] Hyvärinen, A., Karhunen, J., and Oja, E. (2004).

Independent Component Analysis, volume 46. John Wiley & Sons.

[Hyvärinen and Oja, 1997] Hyvärinen, A. and Oja, E. (1997). A fast fixed-

point algorithm for independent component analysis. Neural computation,

9(7):1483–1492.



196 REFERENCES

[Intel, 2015] Intel (2015). ISA Extensions Intel AVX.

https://software.intel.com/en-us/isa-extensions/intel-avx.

[ITU-T, 2002] ITU-T (2002). Perceptual evaluation of speech quality (PESQ):

An objective method for end-to-end speech quality assessment of narrow-

band telephone networks and speech codecs. Technical report, ITU.

[Jeub and Vary, 2010] Jeub, M. and Vary, P. (2010). Binaural Dereverbera-

tion based on a Dual-Channel Wiener Filter with Optimized Noise Field

Coherence. In Acoustics Speech and Signal Processing (ICASSP), 2010

IEEE International Conference on, pages 4710–4713. IEEE.

[Jo et al., 2008] Jo, H., Park, Y., and Park, Y.-s. (2008). Approximation

of Head Related Transfer Function using Prolate Spheroidal Head Model.

International Congress on Sound and Vibration, Proceedings of the, pages

2963–2970.

[Jolliffe, 2002] Jolliffe, I. (2002). Principal Component Analysis. Wiley Online

Library.

[Joosten et al., 2015] Joosten, B., Postma, E., and Krahmer, E. (2015). Voice

Activity Detection Based on Facial Movement. Journal on Multimodal

User Interfaces, pages 1–11.

[Kellermann et al., 2006] Kellermann, W., Buchner, H., and Aichner, R.

(2006). Separating Convolutive Mixtures with TRINICON. In Acous-

tics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006

IEEE International Conference on, volume 5, pages V–V. IEEE.



REFERENCES 197

[Khronos, 2015] Khronos (2015). The open standard for parallel programming

of heterogeneous systems. https://www.khronos.org/opencl/.

[Kumatani et al., 2007] Kumatani, K., Gehrig, T., Mayer, U., Stoimenov, E.,

McDonough, J., and Wolfel, M. (2007). Adaptive Beamforming With a

Minimum Mutual Information Criterion. Audio, Speech, and Language

Processing, IEEE Transactions on, 15(8):2527–2541.

[Laugesen et al., 2003] Laugesen, S., Rasmussen, K. B., and Christiansen, T.

(2003). Design of a Microphone Array for Headsets. In Applications of

Signal Processing to Audio and Acoustics, 2003 IEEE Workshop on., pages

37–40. IEEE.

[Li and Duraiswami, 2007] Li, Z. and Duraiswami, R. (2007). Flexible and

Optimal Design of Spherical Microphone Arrays for Beamforming. Audio,

Speech, and Language Processing, IEEE Transactions on, 15(2):702–714.

[Lorenz and Boyd, 2005] Lorenz, R. G. and Boyd, S. P. (2005). Robust

Minimum Variance Beamforming. Signal Processing, IEEE Transactions

on, 53(5):1684–1696.

[Mailloux, 2005] Mailloux, R. J. (2005). Phased Array Antenna Handbook.

Boston, MA: Artech House.

[Mammasis and Stewart, 2010] Mammasis, K. and Stewart, R. W. (2010).

Spherical Statistics and Spatial Correlation for Multielement Antenna

Systems. EURASIP Journal on Wireless Communications and Networking,

2010(1):307265.



198 REFERENCES

[Martinez et al., 2015] Martinez, J., Gaubitch, N., and Kleijn, W. B. (2015).

A Robust Region-Based Near-field Beamformer. In Acoustics, Speech and

Signal Processing (ICASSP), 2015 IEEE International Conference on, pages

2494–2498. IEEE.

[Mazur and Mertins, 2011] Mazur, R. and Mertins, A. (2011). A CUDA

Implementation of Independent Component Analysis in the Time-Frequency

Domain. In Proc. European Signal Processing Conference, Barcelona, Spain.

[McCowan and Bourlard, 2003] McCowan, I. A. and Bourlard, H. (2003).

Microphone Array Post-Filter Based on Noise Field Coherence. IEEE

Transactions on Speech and Audio Processing, 11(6):709–716.

[Merks et al., 2014] Merks, I., Xu, B., and Zhang, T. (2014). Design of a

High Order Binaural Microphone Array for Hearing Aids using a Rigid

Spherical Model. In Acoustics, Speech and Signal Processing (ICASSP),

2014 IEEE International Conference on, pages 3650–3654. IEEE.

[Moonen, 1993] Moonen, M. (1993). Systolic MVDR beamforming with

Inverse Updating. In Radar and Signal Processing, IEEE Proceedings for,

volume 140, pages 175–178. IET.

[Morse and Ingard, 1968] Morse, P. M. and Ingard, K. U. (1968). Theoretical

Acoustics. Princeton University Press.

[Morse et al., 1948] Morse, P. M., Morse, P. M., and Morse, P. M. (1948).

Vibration and sound, volume 2. McGraw-Hill New York.

[Nemes, 2010] Nemes, G. (2010). New Asymptotic Expansion for the Gamma

Function. Archiv der Mathematik, 95(2):161–169.



REFERENCES 199

[NVIDIA, 2013] NVIDIA (2013). CUDA Toolkit.

https://developer.nvidia.com/cuda-toolkit.

[Parra and Alvino, 2002] Parra, L. and Alvino, C. (2002). Geometric Source

Separation: Merging Convolutive Source Separation with Geometric Beam-

forming. Speech and Audio Processing, IEEE Transactions on, 10(6):352–

362.

[Piersol, 1978] Piersol, A. (1978). Use of Coherence and Phase Data Between

Two Receivers in Evaluation of Noise Environments. Journal of Sound and

Vibration, 56(2):215–228.

[Rafaely, 2005] Rafaely, B. (2005). Analysis and Design of Spherical Mi-

crophone Arrays. Speech and Audio Processing, IEEE Transactions on,

13(1):135–143.

[Ramirez et al., 2004] Ramirez, J., Segura, J. C., Benitez, C., De La Torre, A.,

and Rubio, A. (2004). Efficient Voice Activity Detection Algorithms Using

Long-term Speech Information. Speech communication, 42(3):271–287.

[Raspberry Pi Foundation, 2015] Raspberry Pi Foundation (2015). Rasp-

berry Pi 2 Model B. https://www.raspberrypi.org/products/raspberry-pi-

2-model-b/.

[Reddy, 2006] Reddy, J. (2006). An Introduction to the Finite Element

Method. McGraw-Hill series in mechanical engineering. McGraw-Hill.

[Reindl et al., 2013] Reindl, K., Zheng, Y., Schwarz, A., Meier, S., Maas, R.,

Sehr, A., and Kellermann, W. (2013). A Stereophonic Acoustic Signal



200 REFERENCES

Extraction Scheme for Noisy and Reverberant Environments. Computer

Speech and Language, 27:726–745.

[Sawada et al., 2004] Sawada, H., Mukai, R., Araki, S., and Makino, S. (2004).

A Robust and Precise Method for Solving the Permuation Problem of

Frequency-Domain Blind Source Separation. IEEE Transactions on Speech

and Audio Processing, 12(5):530–538.

[Schneider et al., 2012] Schneider, M., Schuh, F., and Kellermann, W. (2012).

The Generalized Frequency-Domain Adaptive Filtering Algorithm Imple-

mented on a GPU for Large-Scale Multichannel Acoustic Echo Cancellation.

In ITG Conference on Speech Communication, pages 1–4.

[Schwarz and Kellermann, 2015] Schwarz, A. and Kellermann, W. (2015).

Coherent-to-Diffuse Power Ratio Estimation for Dereverberation. Audio,

Speech, and Language Processing, IEEE/ACM Transactions on, 23(6):1006–

1018.

[Shabtai and Rafaely, 2014] Shabtai, N. R. and Rafaely, B. (2014). Gener-

alized Spherical Array Beamforming for Binaural Speech Reproduction.

Audio, Speech, and Language Processing, IEEE/ACM Transactions on,

22(1):238–247.

[Shahbazpanahi et al., 2003] Shahbazpanahi, S., Gershman, A. B., Luo, Z.-

Q., and Wong, K. M. (2003). Robust Adaptive Beamforming for General-

Rank Signal Models. Signal Processing, IEEE Transactions on, 51(9):2257–

2269.

[Talmon et al., 2009] Talmon, R., Cohen, I., and Gannot, S. (2009). Relative

Transfer Function Identification using Convolutive Transfer Function Ap-



REFERENCES 201

proximation. Audio, Speech, and Language Processing, IEEE Transactions

on, 17(4):546–555.

[Teal et al., 2002a] Teal, P. D., Abhayapala, T. D., and Kennedy, R. A.

(2002a). Spatial Correlation for General Distributions of Scatterers. Signal

Processing Letters, IEEE, 9(10):305–308.

[Teal et al., 2002b] Teal, P. D., Abhayapala, T. D., and Kennedy, R. A.

(2002b). Spatial Correlation in Non-isotropic Scattering Scenarios. In IEEE

International Confererence on Acoustics Speech and Signal Processing,

volume 3, pages III–2833. IEEE.

[Van den Bogaert et al., 2009] Van den Bogaert, T., Doclo, S., Wouters, J.,

and Moonen, M. (2009). Speech Enhancement with Multichannel Wiener

Filter Techniques in Multimicrophone Binaural Hearing Aids. The Journal

of the Acoustical Society of America, 125(1):360–371.

[Van Trees, 2004] Van Trees, H. L. (2004). Detection, Estimation, and Mod-

ulation Theory, Optimum Array Processing. John Wiley & Sons.

[Ward and Elko, 1997] Ward, D. B. and Elko, G. W. (1997). Mixed

Nearfield/Farfield Beamforming: a new Technique for Speech Acquisi-

tion in a Reverberant Environment. In Applications of Signal Processing

to Audio and Acoustics, 1997. 1997 IEEE ASSP Workshop on, pages 4–pp.

IEEE.

[Weninger et al., 2012] Weninger, F., Wöllmer, M., Geiger, J., Schuller, B.,
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