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ABSTRACT 
 

Global change is increasingly impacting coastal marine systems. Organisms inhabiting the intertidal 

zone may be especially vulnerable to additional anthropogenic influences, which augment the naturally 

stressful, highly variable conditions to which they are already subjected and may lead to the 

manifestation of artificially severe carry-over effects (COEs). In marine invertebrates with complex life 

histories, COEs can occur between life stages, when the conditions experienced by one stage influence 

the characteristics or performance of the next, as well as trans-generationally, in which case the 

environment experienced by a parental generation affects offspring. Most of the existing literature 

surrounding COEs focuses only on those between life stages or generations, seldom both 

simultaneously, and do so with the implementation of only a single stressor. In nature however, 

organisms may be affected by both forms of COE, since the presence of one does not preclude the other, 

and are invariably subjected to multiple co-occurring stressors that can interact in complex ways. 

Consequently, how trans-generational COEs might impact the propagation of stress through offspring 

life stages remains unclear, and how these processes operate in a global change context is little 

understood. It was here aimed to elucidate the role of COEs under ongoing global change by addressing 

these common literature imitations and taking the novel approach of examining how the effects of 

multiple, global change-associated stressors carry-over from a parental generation through their 

offspring’s life stages in order to provide a more realistic representation of the conditions under which 

COEs manifest in the field. 

 

This was done using Siphonaria australis, an intertidal pulmonate limpet that deposits benthic egg 

masses, from which hatch planktonic veliger larvae. Adult S. australis were subjected to one of four 

treatments for 4h/day over four weeks to induce trans-generational COEs: a no-stress control, a 

pollution treatment with added copper (5.0μg/L), a “climate change” treatment with elevated 

temperature (25°C) and UVR (1.7W/m2), and a full global change treatment incorporating all three 

stressors. At the end of this period, the egg masses laid under each of these adult treatments were 

subjected to further experimentation for two weeks by being redistributed among the same four 

treatments again, so as to produce 16 unique treatment histories of adult-to-egg mass stress. Of these, 

11 provided successfully hatching larvae, which were reared and observed for COEs between life stages 

(from egg to larva) under ambient conditions (ie. no added stressors) for 27 days. 

 

In adult S. australis survivor size, the size of egg masses laid and the size of individual eggs varied in 

complex ways over time and across treatments, while the number of survivors was unaffected by stress. 

Egg masses were unaffected in terms of hatching time but displayed strong responses to parental and 

developmental stress exposure through hatching success, and the percentage of viable eggs per egg 

mass, with the latter clearly declining according to adult treatment severity and both showing trans-
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generational COEs. Larval characteristics were extremely varied across treatment histories and highly 

context-dependent as hatching size, size reached by 27 days, growth rate, and size at death all showed 

evidence of COEs between generations and life stages, as well as interaction between both types of 

COE, with the number of survivors again being the only unaffected response variable. Overall, trans-

generational COEs were slightly more common than those between life stages. 

 

These results show that both forms of COE, each triggered by exposure to multiple stressors in 

progenitors and developmental stages, interact to form highly context-dependent legacies of mostly 

impaired performance in S. australis larvae. This implies that COEs may become more prominent with 

worsening stressors in the future and suggests that the role of COEs in the persistence of marine 

invertebrates under ongoing global change may so far have been underestimated by the existing 

literature. 
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CHAPTER 1 

General Introduction 
 

 

1.1 Global Change and Coastal Habitats 

 

“Global change” describes the collective effects of anthropogenic climate change and other 

compounding disturbances such as pollution. This modern phenomenon threatens not only to 

compromise the ecological integrity of coastal marine systems but also to undermine their socio-

economic value (Harley et al., 2006). Marine habitats stretching from the intertidal to the continental 

shelf provide tens of trillions of dollars per year in ecosystem goods and services, such as food and 

nutrient cycling (Costanza et al., 1997). Consequently, marine environments and their responses to 

global change are the focus of an extensive literature that began to increase rapidly after a pair of seminal 

reviews was published in the early 1990s. Fields et al. (1993) and Lubchenco et al. (1993) both focused 

on increasing temperature as causing widespread shifts in distributions according to the thermal 

tolerances of organisms. Crucially however, such initially envisioned consequences are now regarded 

as too simplistic.  

 

Coastal habitats in particular, are under increasing pressure due to the high proportion of human 

populations living near shorelines, whose activities impinge on these ecosystems directly as well as on 

broader scale climate drivers (Halpern et al., 2008). In addition to temperature, other stressors now of 

concern in coastal marine systems include elevated ultraviolet radiation (UVR), decreases in pH, 

pollution, eutrophication and sedimentation. Such stressors are capable of inducing modifications to 

innumerable aspects of ecosystem functioning, such as food availability, disease, reproduction, 

competition, community structure and population connectivity (Munday et al., 2009). These effects will 

not manifest evenly throughout the marine environment, because some habitats and ecosystems are 

more vulnerable than others. In particular, the impacts of global change will be magnified in habitats 

that are already subjected to a relatively high degree of “natural” stress, such as the rocky intertidal 

zone. This is because although organisms inhabiting this zone are comparatively robust, they lack the 

propensity to further optimise their physiology to any great extent. As a result, intertidal organisms may 

suffer from a limited ability to adjust to additional anthropogenic stress (Tomanek & Somero, 1999; 

Stillman, 2002).  

 

Generally, organisms of the rocky intertidal may not be able to adapt rapidly enough to cope with 

ongoing global change, and instead many will shift to areas where stress is less severe or remain in the 

areas they currently occupy and suffer the consequences, which may ultimately lead to local extinction 

(Clarke, 1996). For example, increasing sea temperatures may be a chief driver of range shifts towards 
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higher latitudes (Thompson et al., 2002). Conversely, “hot spots”, areas where low tides routinely 

coincide with stressful daytime conditions, are predicted to cause local extinctions of intertidal 

organisms through aerial exposure and elevated desiccation risk as air temperatures continue to rise 

(Helmuth et al., 2002). Accompanying this warming is elevated UVR exposure reaching levels with 

which intertidal organism are behaviourally and physiologically ill-prepared to cope (Beardall et al., 

1998), sea-level rise causing a reduction in the vertical extent of rocky shores (Thompson et al., 2002), 

and an increase in storm-associated wave action leading to reduced biodiversity (Ricciardi & Bourget, 

1999).  

 

The intertidal zone is also prominently associated with the effects of oil spills, which although sporadic 

and relatively rare, range in impact from catastrophic acute damage to chronic alterations to intertidal 

ecosystems (Peterson, 2001). Other chemical pollution such as heavy metals and endocrine disrupters 

represent a far more common source of stress that are capable of inducing equally detrimental and high-

profile effects such as imposex (Depledge & Billinghurst, 1998). Yet more challenges to intertidal 

organisms posed by global change include eutrophication, largely through toxic algal blooms (Nixon, 

1995), and greater sedimentation (Airoldi, 2003) by for example inhibiting filter feeding. Clearly, rocky 

intertidal habitats will be affected by ongoing global change in innumerable ways. However, much like 

the rocky intertidal was identified as a particularly vulnerable coastal habitat, so too can rock pools be 

labelled as an aspect of the intertidal zone that is especially prone to global change. This is because rock 

pools offer a refuge to intertidal organisms from aerial exposure and can thus harbour many species, 

while on the other hand exposing these organisms to extreme levels of certain stressors (Thompson et 

al., 2002). 

 

 

1.2 Stress in Rock Pools -  

A Closer Examination of Temperature, UVR and Copper 

 

Rock pools are dynamic environments that experience dramatic fluctuations in a myriad of physico-

chemical parameters over diel, tidal and seasonal time scales (Ganning, 1971; Morros & Taylor, 1983). 

This includes natural stressors such as high water temperature and UVR exposure, which are most 

limiting to rock pool inhabitants when low tides coincide with hot, clear weather during summer. These 

parameters may be natural, but such conditions are expected to become more common with ongoing 

anthropogenic climate change (Helmuth et al., 2002; Kemp, 2009), and for this reason elevated 

temperature and UVR exposure were selected as representative of climate change stressors in the 

experiments conducted for this thesis.  
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However, man-made stressors such as pollution must also be considered as part of the fluctuating 

parameters of the rocky intertidal. For example, the accumulation of runoff polluted with copper (Cu) 

in rock pools can be severe after rain (Stoffers et al., 1986). Because Cu pollution is directly related to 

human activity and because coastal populations continue to grow, it is likely that pollutants such as Cu 

will play an increasing role in future intertidal stress regimes. Therefore, Cu pollution was selected as 

representative of direct anthropogenic stress in the intertidal. Together, high temperature, UVR 

exposure and Cu pollution are herein intended to illustrate the stress brought about by global change, 

both by its climate change aspect (temperature and UVR) and by the influence of compounding factors 

(Cu). 

 

Of all stressors afflicting intertidal organisms in rock pools, high water temperature is probably the most 

ubiquitous. To understand why high temperatures can pose a problem, it is important to recognise that 

marine organisms generally occur near their upper thermal tolerance threshold. Exceeding this threshold 

can lead to protein damage and adversely affect vital physiological processes such as membrane fluidity 

and organ function (Somero, 2002). Moreover, this form of thermal stress is far from rare. In temperate 

waters for example, ambient summer sea temperatures may be around 18°C, yet at low tide, rock pools 

may be heated to over 30°C by the sun (Kemp, 2009). Again, it must be emphasised that such wide 

temperature shifts are natural and that most intertidal organisms can tolerate rare or brief instances of 

this kind. Crucially however, global change is expected to increase the frequency of these occurrences 

(Harley et al., 2006). In response to more frequent, more severe or prolonged stress exposure, intertidal 

organisms have been demonstrated to suffer negative effects in terms of mortality, development, growth 

rate, fecundity and many other traits (review by Przeslawski et al., 2008). 

 

The sun heats rock pools, and so, in this habitat high water temperatures occur almost invariably in 

concert with high UVR exposure. Solar UVR (wavelengths of 280-400nm), principally short wave-

length UV-B (280-315nm), can negatively affect aquatic organisms through DNA damage, increased 

mutation rates, elevated disease risk and impaired or abnormal development (Sinha & Hader, 2002; 

Przeslawski et al., 2005; reviews by Day & Neale, 2002; Paul & Gwynn-Jones, 2003). Surface UV-B 

levels correspond strongly with historical losses of stratospheric ozone (McKenzie et al., 2003). Yet, 

despite the success of the Montreal Protocol in curbing this ozone depletion, climate change indirectly 

facilitates the continued increase of UV-B exposure through a number of mechanisms, such as raising 

the average number of annual sunshine hours around the globe (Hofmann & Pyle, 1999).  

 

This ongoing increase in UVR exposure has been masked by large-scale seasonal and geographic 

variability (Solomon, 2004), causing a delay in its recognition as a legitimately worsening stressor 

(review by Hader et al., 2007). This is especially true for parts of the southern hemisphere (eg. New 

Zealand) where UVR exposure is accentuated relative to the northern hemisphere (McKenzie et al., 
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1999). Furthermore, any increase in UVR exposure in temperate latitudes may have more profound 

ecological consequences than in equatorial regions because temperate organisms lack the mitigating 

repair mechanisms and behavioural strategies found in taxa that evolved under the normally high UVR 

levels of the tropics (Beardall et al., 1998).  

 

Similar to high temperature and UVR, metals occur naturally in the intertidal, but their levels have been 

exaggerated by global change. Trace amounts of copper and other metals are natural components of the 

biosphere that are necessary for the growth and correct development of marine organisms, but which 

nonetheless become toxic at certain levels (Bryan, 1971). Copper is a common contaminant in coastal 

systems throughout the world, originating from urban or agricultural runoff, industrial discharge, and 

leaching from anti-fouling paints (Johnston et al., 2002). Intertidal communities may be particularly 

vulnerable to copper pollution because they exist close to its source, namely coastal human activity.  

 

Copper exposure has an array of severe effects in diverse marine taxa. This includes physiological 

effects such as immune system suppression in mussels (Pipe et al., 1999), heart rate reduction in 

gastropods (Marchan et al., 1999) and impaired digestion in echinoderms (Chen et al., 2002), alterations 

to behaviour such as reduced clamping tenacity in limpets (Cartwright et al., 2006), as well as impaired 

reproduction, development and growth in organisms across a range of taxa from bacteria and algae to 

fish (Mayer-Pinto et al., 2010). Of course, apart from these sub-lethal effects, copper can also directly 

cause mortality, as it is generally considered to be one of the three most toxic metals along with mercury 

and silver (Bryan, 1971). Together, these lethal and sub-lethal effects of copper on individual organisms 

can alter ecological processes throughout their surrounding community, such as competition and 

predator-prey relationships, by changing the relative abundances of highly susceptible and more robust 

species and the ways in which different species interact (Ramos-Jiliberto et al., 2012).  Despite the large 

scope this element possesses for influencing marine organisms, it has long been acknowledged that the 

toxicity of heavy metals like copper is highly variable and depends to a considerable extent on other 

environmental factors. This includes UVR exposure and the salinity, pH and temperature of water 

(McLusky et al., 1986). Therefore, a clear need exists to evaluate the interactions between these co-

occurring stressors, and how they will be altered by ongoing global change.  
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1.3 Stressor Interactions 

 

Global change “stressors” are environmental and biotic factors that exceed their natural range of 

variation due to recent human activity (Sanderson et al., 2002; Halpern et al., 2007). Many stressors 

have been found to strongly affect organisms when examined individually, since this is how research 

in this field began. Although research focused on the cumulative and interactive effects of multiple 

stressors is increasing, it remains rare compared to the high number of studies on single stressors (review 

by Crain et al., 2008). This is despite the prevailing consensus that natural systems are almost always 

subjected to multiple human-derived stressors simultaneously (Halpern et al., 2008). It is not surprising 

therefore, that the need to better understand the effects of co-occurring stressors has been cited as one 

of the most pressing issues of modern ecology for more than a decade (Sala et al., 2000).  

 

Theoretical and applied research commonly assumes the effects of multiple stressors to be additive, 

meaning that the impacts of single stressors simply combine (Ban & Alder, 2008). However, multiple 

stressors may also exacerbate their respective negative impacts. A well-studied example is that of 

phototoxicity, where UVR greatly enhances the deleterious effects of toxins (review by Pelletier et al., 

2006). This is known as a synergistic interaction between stressors. In contrast, the effect of multiple 

stressors may also be less than would be expected by their individual impacts, perhaps even to the point 

where the presence of one stressor mitigates the effects of another. Such stressor interactions are known 

as antagonistic (Folt et al., 1999). An example is the possible alleviation of UVR damage by nutrient 

enrichment (Wulff et al., 2000). Clearly, a great diversity of stressor combinations and interactions can 

occur throughout a broad range of ecological settings. Rather worryingly, meta-analyses suggest that 

synergistic interactions (the most severe) are by far the most common (review by Crain et al., 2008).  

 

Interestingly, studies incorporating elevated UVR as a stressor, particularly when paired with elevated 

temperature and toxin exposure, produce almost exclusively synergistic interactions (Crain et al., 2008). 

However, it is important to understand that the majority of such studies are carried out under laboratory 

conditions, and that laboratory experiments tend to produce more strongly synergistic interactions than 

field studies (Crain et al., 2008). This may be because laboratories cannot replicate the conditions under 

which organisms would experience these stressors in nature with full realism. It is also true that 

laboratory-based experiments often specifically target those stressor combinations that are deemed 

likely to produce significant results. Thus, a degree of bias towards “high-profile” stressors such as 

UVR, reduced pH and elevated temperature does exist in the literature. Many other possible 

combinations remain virtually ignored. These reasons expose a need for caution when extrapolating the 

effects of laboratory-derived stressor interactions to “the real world” (Mayer-Pinto et al., 2010). 
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Additionally, higher order interactions complicate the prediction of cumulative effects in general 

(Billick & Case, 1994). For instance, the properties of stressors themselves may shift with interaction, 

such as toxin solubility varying according to temperature (Crain et al., 2008). This insight renders many 

inferences made from individual stressors difficult to interpret (Hoffman et al., 2003). Responses to 

stressors may also be context dependent, because the way an organism responds to one stressor may be 

changed by the presence of another, or by the presence of other organisms (Crain, 2008). Lastly, stressor 

responses may be highly species-specific, being determined by an organism’s evolutionarily and 

ecologically derived tolerances. Therefore, data drawn from single-species experiments may not 

accurately reflect wider community responses (Vinebrooke et al., 2004).  

 

However, it may be that such experiments can sensibly be used as a proxy for other species if they are 

closely related or share a similar ecological niche. Ultimately, research on the effects of global change 

will continue to heavily rely on predictions made from simplified laboratory settings, at least for the 

foreseeable future. Further, work on single species is also intrinsically valuable when species of 

exceptional ecological “importance” are considered. For example, many species of intertidal gastropods 

regulate and structure their ecosystems through activities such as grazing (Underwood, 1979). Perhaps 

responses to global change in single species of ecological significance, like certain gastropods, may 

therefore be used to infer repercussions at community or ecosystem levels. 

 

 

1.4 Carry-Over Effects between Life Stages  

 

Whatever the wider implications of stress on any one species may be, studies examining the effects of 

stress commonly concentrate on one life stage at a time (ie. either adults or larvae). This belies the fact 

that vulnerability to stress occurs throughout the life cycles of these animals, rather than being exclusive 

to one particular life stage. It is this oft-ignored procession through various life stages that is truly 

pivotal in understanding how organisms respond to stress, since stress exposure in one stage can 

profoundly influence stress responses in others (Marshall & Morgan, 2011).  

 

Gastropods such as snails, limpets and abalone are enthusiastically studied in laboratories around the 

world for two key reasons. Firstly, it is worth highlighting once more that adult gastropods often play 

important ecological roles in intertidal ecosystems (Underwood, 2000). Therefore, any manifestation 

of stress relating to global change in these animals is likely to affect their entire communities. Secondly, 

gastropods often possess complex life cycles. For example, a complex life cycle in an intertidal 

gastropod may commence with encapsulated embryos that are deposited as egg masses, followed by 

hatching larvae that pass through a series of planktonic forms before finally settling back in the intertidal 

as juveniles (Wilbur, 1980). Critically, this sequence of separate, morphologically and ecologically 
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distinct life stages allows for the occurrence of “carry-over effects”, whereby the conditions experienced 

by one stage can influence the characteristics or performance of the next (O’Connor et al., 2014).  

 

This definition is relatively new and represents the most recent interpretation of a phenomenon that is 

extremely diverse and widespread. This can be appreciated when the historical evolution of the field of 

carry-over effects (abbreviated to COEs) is briefly examined. The idea of COEs was initiated through 

medical research on humans in the 1960s, when clinicians became aware that effects from one treatment 

can “carry over” into another (Wallenstein & Fisher, 1977). The ecological study of COEs originated 

with migratory animals (see Norris, 2005), where they were defined as events or processes occurring in 

one “season”, that alter how an organism transitions between seasons, and thus alter performance in 

subsequent seasons (Harrison et al., 2011). For the purposes of examining marine invertebrates, “life 

stage” has simply been supplemented in favour of “season” (O’Connor et al., 2014).  

 

COEs have been studied intensively in terrestrial settings, but the literature is comparatively limited for 

the marine environment, where benthic invertebrates comprise the bulk of research subjects. While 

other taxa such as coral reef fish are beginning to emerge as prone to COEs (Reusch, 2014), many have 

been identified in invertebrates. In this group, exposure to salinity (Pechenik et al., 2001), temperature 

(Delorme & Sewell, 2014) nutrition (Phillips, 2002; Phillips, 2004; Emlet & Sadro, 2006) and pollution 

(Ng & Keough, 2003) stress in larval stages is already known to produce legacies of poor juvenile 

survival and growth that in some cases stretch even into adulthood, where reduced fitness is incurred.  

 

Larval forms are generally more vulnerable to stressors than adults or juveniles, and COEs can be 

induced when larvae are experimentally subjected to stress (Kurihara, 2008; Byrne et al., 2010; 

Talmage & Gobler, 2011; Davis et al., 2013). Interestingly, gametes and fertilised zygotes in the form 

of eggs, are sometimes robust to environmental stressors (Byrne, 2011). However, results that directly 

contradict this have also been obtained, showing that eggs and early embryos in particular can be highly 

sensitive to stress (Przeslawski, 2004; Russell & Phillips, 2009; Russell & Phillips, 2009b), as well as 

evidence that fertilisation itself can be impaired under climate change scenarios in diverse taxa (Parker 

et al., 2009; Parker et al., 2010). While the relative vulnerability of life stages may therefore show some 

variation from species to species, ecologists generally regard the transitions between these stages as 

important in the propagation of stress effects through an animal’s life. In other words, metamorphosis 

does not present “a new beginning” (Pechenik, 2006). 

 

In stark contrast to this modern ecological perspective, metamorphosis has traditionally been considered 

as providing an “adaptive decoupling”, leaving each life stage to evolve more or less independently 

from other stages and the selection pressures they experience (Wilbur, 1980; Moran, 1994; Parichy, 

1998). While ecological evidence mounted for strong COEs that transcend the metamorphic boundary, 
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a long debate ensued among evolutionary biologists regarding the existence and adaptive significance 

of COEs (see Schluter et al., 1991; De Block & Stoks, 2005; Podolsky & Moran, 2006). Only recently 

has a consensus accepting the reality of COEs been reached in the evolution-focused literature. 

Unfortunately, this amounted to little more than “patterns of performance across life-history stages are 

complex” (Crean et al., 2011). Furthermore, practically nothing is known about the genetic basis of 

COEs (Johnson et al., 2010). All this acts to underline the lack of understanding that persists in this 

area, particularly with regard to the true mechanisms of how complex life cycles function ecologically 

and how they initially evolved. This subject can justly be called nebulous, but yet more complicating 

factors are to follow. From the above incorporation of genetics and evolution into the mechanisms of 

COEs, it follows that these effects must necessarily be capable of influencing multiple generations.  

  

 

1.5 Carry-Over Effects between Generations 

 

“Trans-generational” carry-over effects, also known as parental effects (Agrawal et al., 1999), are 

defined as influences on offspring phenotype that cannot be attributed to offspring genotype or the 

offspring’s environment (Lacey, 1998). This means that parental effects represent avenues for non-

genetic inheritance (Bonduriansky, 2012; Bateson, 2014), by acting as conduits through which 

environmental factors occurring in the parental generation can manifest as manipulations of offspring 

phenotype (Badyaev & Uller, 2009; Bonduriansky & Day, 2009; Wolf & Wade, 2009). COEs between 

generations have also been labelled as a form of “trans-generational phenotypic plasticity”, where 

offspring phenotype is regulated by the parental phenotype and/or environment rather than that of the 

offspring itself (Mondor et al., 2004).  

 

Importantly, trans-generational COEs do not represent “inheritance of acquired characteristics”. In this 

long-defunct theory, characteristics acquired by somatic cell lineages during an organism’s life were 

thought to somehow be capable of being represented in the germ-line and thus be genetically inherited 

(Bonduriansky, 2012). This is certainly not assumed by modern COE researchers. But clearly something 

is in fact being “passed on” from parents to offspring when COEs occur. If this “something” is not 

genetic, then what is it? Unfortunately, the underlying molecular mechanisms of trans-generational 

COEs are not yet understood. Nonetheless, evidence for the existence of novel mechanisms mediated 

by substances found in gametes at conception as well as by parental glandular and somatic donations to 

offspring is mounting (Bonduriansky & Day, 2009). Trans-generational COEs are now a matter of 

discussion in the emerging field of epigenetics (Youngson & Whitelaw, 2008), and have been 

acknowledged for some time as potentially major modifiers of evolutionary trajectories (Kirkpatrick & 

Lande, 1989).  
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In an ecological context, trans-generational COEs are characterised by a long history of research 

focusing on terrestrial taxa such as insects (Franzke & Reinhold, 2012) and plants (Holeski et al., 2012), 

with intense interest in marine systems building only after the early 1990s (reviews by Roach & Wulff, 

1987; Mousseau & Dingle, 1991; Mousseau & Fox, 1998).  In marine invertebrates, trans-generational 

COEs are thought to be predominantly mediated maternally rather than paternally. This is because most 

species are anisogamous, with females having to invest in larger gametes than males. As a result, the 

two sexes may influence offspring phenotype disproportionately and most of the literature utilises the 

term “maternal effects” to express the dominant role of mothers in this process (Marshall et al., 2008). 

Note however, that recent research has begun to indicate that paternal effects may be equally common 

(Crean et al., 2013; Ritchie & Marshall, 2013).  

 

Maternal effects can be further differentiated according to whether they benefit or disadvantage 

offspring. Maternal effects may increase offspring fitness and/or performance, in which case they are 

termed “anticipatory maternal effects” (AME) (Bernardo, 1996; Agrawal, 2001). This form of maternal 

effect may buffer offspring against the negative impacts of environmental heterogeneity if mothers are 

able to adjust the phenotype of their offspring to correspond with the environment that they are likely 

to experience (Fox et al., 1997). Existing examples of AMEs in marine invertebrates include increased 

tolerance to pollutants (Plautz et al., 2013) and enhanced predator avoidance (Krueger & Dodson, 1981) 

in offspring. This can also result in consequences for population dynamics (Benton et al., 2001), and 

has been linked to enhanced population persistence in the face of climate change (Chevin & Lande, 

2010). 

 

Conversely, maternal effects can also decrease offspring performance (Bayne et al., 1975; Rossiter, 

1996) through “selfish maternal effects” (SME) (Marshall & Uller, 2007). SMEs are known to be 

triggered by competition (McCormick, 2006), pollution (Cox & Ward, 2002; Marshall, 2008), ocean 

acidification (Parker et al., 2012) and nutritional stress (George et al., 1991) on adult marine 

invertebrates of various groups. Because of the existence of both positive (AME) and negative (SME) 

impacts on offspring generations, there has been debate over the true adaptive significance of maternal 

effects (see Heath & Blouw, 1998). Current opinion indicates that both types can be adaptive (Marshall 

et al., 2008; Burgess & Marshall, 2011). 

 

It is easy to recognise the adaptive significance of AMEs, where parents increase their own reproductive 

fitness by increasing that of their offspring. Similarly, in SMEs, parents increase their own fitness by 

temporarily producing inferior offspring in order to conserve energy which can later be utilised to 

produce higher quality offspring when conditions become more favourable (Marshall & Keough, 2004). 

This shows how the respective interests of the parent and offspring generations can conflict, and may 

in fact only occasionally align to a common benefit (Trivers, 1974). One may justifiably be concerned 
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that anthropogenic global change will prevent conditions from becoming favourable for extended 

periods of time, forcing mothers to be perpetually “selfish” and trade poor offspring survival chances 

for an increase in their own. This possibility has not so far been raised by other authors. Judging from 

the fact that more examples of SME’s (negative effects) than AMEs (positive effects) currently exist in 

the literature, and the overall tendency for complex negative effects to increase in frequency under 

global change conditions (see section on synergistic stressor interactions in 1.3 above), this may indeed 

one day be the case. 

 

Another form of trans-generational COEs is “maternal investment”. This can best be described as a 

special case of “maternal effects”. Maternal investment is essentially the parent-centric compliment to 

the more offspring-centric study of maternal effects. Specifically, maternal investment is the amount of 

energy that a female invests in her offspring, and much of the research focuses on the reasons for this 

investment and the scales over which it varies, including trade-offs between the size and number of 

offspring (Stearns, 1992). The energy that mothers put into reproduction has been found to dramatically 

affect virtually all stages of offspring life history both positively (as in AMEs) and negatively (as in 

SMEs) in diverse marine taxa (Chambers & Leggett, 1996; Marshall & Keough, 2008).  

 

Because maternal investment is a foundational component of much COE research, it offers a wide range 

of examples of the kinds of effects that one generation can cause in another. For example, maternal 

investment leading to larger eggs, such as in response to food or salinity stress (Guisande et al., 1996; 

Gimenez & Anger, 2001), may cause longer development times in subsequently hatching larvae 

(Marshall & Bolton, 2007), greater larval longevity (Isomura & Nishimura, 2001) and longer settlement 

site-selection periods (Marshall & Keough, 2003).  Larger eggs can lead to larger larvae, and this in 

turn can cause greater feeding ability, longer feeding period duration, and ultimately augmented post-

metamorphic size (Hart, 1995; McEdward, 1996). Simultaneously, large size may render larvae the 

preferred targets of predation (Chambers & Leggett, 1996; Heath & Blouw, 1998; Allen et al., 2006), 

or offer a size refuge (Rivest, 1983; Segers & Taborsky, 2012). Conversely, small eggs and larvae may 

be produced by old or small mothers (Jones et al., 1996; Ito, 1997; Sakai & Harada, 2001), as well as 

by those in poor-quality environments (Baynes & Howell, 1996; Moran & Allen, 2007) where this may 

lead to greater dispersal ability (Krug, 1998). Irrespective of the initial reasons, larval size also 

corresponds with survival, growth and reproduction rates in later juvenile and adult life stages (Moran 

& Emlet, 2001; Marshall et al., 2003). 

 

Clearly, the existing literature documents a bewildering array of trans-generational COEs. Yet in the 

future, this heavy focus on effects between parents and offspring is likely to give way to studies 

examining the possibility of COEs spanning multiple generations (eg. from grandparent to grand-

offspring). Extensive evidence for this has been collected in the biomedical and epidemiological 
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literature (Susser et al., 2012), but has so far been elusive in ecology (Burton & Metcalfe, 2014). 

Undoubtedly, the literature surrounding COEs has suffered from widespread confusion, not only 

because of the amount and inconsistent use of terminology, but also due to having been suffused with 

contradictory evidence, debate, and a lack of communication between budding sub-fields as indicated 

throughout the above. 

 

In conclusion, trans-generational COEs are intrinsically tied to those occurring between life stages. 

There is no reason why the fate of a given individual should be determined either solely by the 

experiences and environments of parents or by earlier stages. In the real world both will play a role, 

although this is seldom replicated by experimenters. The occurrence of both types of COEs is closely 

allied. Further, COEs in general are intricately tied to the ways in which stressors interact, the particular 

effects of prominent stressors (in this case high temperature, UVR and copper), and the ways in which 

global change will affect coastal habitats. It is these factors that dictate the nature of any observed carry-

over effects. Unfortunately, it is rare for all these elements to be considered simultaneously, and this 

was key in formulating the aims of this thesis. 

 

 

1.6 Aim 

 

Carry-over effects (COEs) are natural and occur in response to normal environmental variability. 

However, the severity of certain stressors is augmented by ongoing anthropogenic global change. 

Elevated water temperature, high UVR exposure and copper pollution are likely to increasingly impact 

intertidal invertebrates in the future, particularly their vulnerable early life stages, by initiating new or 

exacerbating existing carry-over effects. Yet this global change aspect is lacking in most studies of 

COEs, which also tend to focus only on COEs between life stages or between generations, seldom both. 

Finally, most incorporate only one stressor and fail to take into account the complex stress interactions 

that manifest in nature.  

 

These common limitations mean that realistic patterns of stress exposure, varying throughout an 

organism’s life cycle, are rarely replicated in experimental settings. Consequently, our understanding 

of how carry-over effects will influence marine organisms in the face of ongoing global change remains 

rudimentary. In light of this, I aimed to elucidate the role of carry-over effects by addressing these 

common limitations and examining how the effects of multiple stressors relating to global change 

(temperature, UVR and copper) carry over from a parental generation through the life stages of their 

offspring.  
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CHAPTER 2 

Trans-Generational Carry-Over Effects Caused by Stress Exposure in Adults  

and Egg Masses of Siphonaria australis  
 

 

 

2.1 Abstract 

 

Ongoing anthropogenic global change is threatening rocky intertidal systems by subjecting 

invertebrates to elevated levels of stress. Early life stages, such as embryos contained within benthic 

egg masses, are particularly vulnerable, yet their responses can be highly dependent on stress 

experienced by the parental generation through trans-generational carry-over effects. This phenomenon 

is rarely studied using multiple stressors simultaneously. Here, adult Siphonaria australis were 

subjected to one of four treatments: a no-stress control, a pollution treatment with added copper 

(5.0μg/L), a climate change treatment with elevated temperature (25°C) and UVR (1.7W/m2), and a full 

global change treatment incorporating all three of these stressors. Stress levels were selected to represent 

maximum readings for rock pools during low tide in Wellington, New Zealand. Adults were stressed 

4h/day for four weeks, and at the end of this period, the egg masses they laid were collected and 

subjected to further experimentation. Egg masses were taken from each of the four adult treatments and 

redistributed among the same four treatments again, so as to produce 16 unique treatment histories of 

adult-to-egg mass stress. Adults were largely unaffected by stress in terms of the number of survivors, 

but survivor size, the size of egg masses laid and the size of individual eggs varied in complex ways 

over time and across treatments. Egg masses were unaffected in terms of hatching time but displayed 

strong responses in hatching success and the percentage of viable eggs per egg mass. In particular, 

copper limited hatching success, prevented hatching when augmented with other stressors, and reduced 

viability to a greater extent than high temperature and UVR exposure. Parental treatment also strongly 

influenced egg masses; copper-treated egg masses failed to hatch if adults were exposed to all three 

stressors, and viability declined according to the severity of the parental treatment. Egg mass viability 

was lowest when laid by parents subjected to all stressors, followed by those that were copper-stressed, 

then temperature and UVR-stressed and finally unstressed parents. This is clear evidence that trans-

generational carry-over effects can mediate offspring responses to global change-type stress.  
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2.2 Introduction 

 

Global change threatens coastal marine environments by subjecting resident organisms to elevated 

levels of stress that exceed their tolerance thresholds (Harley et al., 2006). The rocky intertidal zone is 

particularly vulnerable as it already experiences a relatively high degree of natural stress, which when 

augmented by climate change and other anthropogenic interference renders its inhabitants potentially 

unable to cope, possibly leading to local extinctions (Clarke, 1996). Here, elevated water temperature, 

UVR exposure and concentrations of heavy metals are becoming more common with ongoing global 

change (Depledge & Billinghurst, 1998; Helmuth et al., 2002; Hader et al., 2007). Critically, the early 

life stages of intertidal invertebrates, like developing embryos, can be highly sensitive and are likely to 

suffer more severe consequences of direct stress exposure than adults (Thorson, 1950), but the ways in 

which adult stress affect that of developing offspring through trans-generational carry-over-effects is 

increasingly recognised as fundamental to evaluating the persistence of marine invertebrates to ongoing 

global change (Chevin & Lande, 2010). Nevertheless, studies examining this in marine systems remain 

rare. 

 

Many marine organisms are free-spawning with embryos developing in the plankton, but mixed 

developmental strategies are also common, especially among gastropods. In these species, embryonic 

development takes place in gelatinous or capsular egg masses that are deposited on the benthos, and 

from which hatch veliger larvae that then enter the plankton to feed and grow before settling in their 

adult habitat (Przeslawski, 2004). Such egg masses are able to buffer developing embryos from abiotic 

and biotic stress to some extent (Pechenik, 1979), such as the effects of salinity fluctuations, heat, 

desiccation (Pechenik et al., 2003), UVR (Przeslawski et al. 2005), predation and disease (Rawlings, 

1990). However, egg masses cannot escape prevailing conditions, and this makes them vulnerable to 

extreme levels of stress in harsh environments such as the rocky intertidal. 

 

Within tolerable levels, increasing water temperature usually corresponds with a decrease in the 

development time of encapsulated embryos of gastropods (Spight, 1975), as well as other marine 

invertebrates (Caveriviere et al., 1999). Despite this, developing embryos are particularly vulnerable to 

mortality caused by high temperatures, as it has long been known that their thermal tolerance thresholds 

are generally lower than those of adults (Thompson, 1958). UVR co-occurs with high water temperature 

in the intertidal, and causes stunted development, deformities and direct mortality in gastropod egg 

masses, particularly at early stages (Biermann et al., 1992), while the shells possessed by adult 

gastropods impart a certain degree of immunity to its adverse effects (Vermeij, 1971). Although some 

species deposit their egg masses in sheltered locations, which may mitigate UVR damage, many others 

do not and instead often deposit their egg masses in full exposure to sunlight (Benkendorff & Davis, 

2002), including this study’s focal species Siphonaria australis (Russell & Phillips, 2009).  
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S. australis (Quoy & Gaimard, 1833) is a small pulmonate limpet found throughout the intertidal zones 

of rocky shores in New Zealand (Fig. 2.1 A; B). It is abundant around Wellington, New Zealand and 

deposits benthic, gelatinous egg masses in the rocky intertidal zone throughout the year (Fig. 2.1 A; C), 

particularly between September and March (Russell & Phillips, 2009). These hatch after between 1 and 

2 weeks into feeding veliger larvae that live as plankton for several weeks before settling back in the 

intertidal and metamorphosing into juveniles (Creese, 1980). It has previously been shown by Russell 

& Phillips (2009) that tide-pool conditions, including high UVR and water temperature, can cause 

severe embryo mortality in the egg masses of S. australis. Fisher & Phillips (2014) reaffirmed this by 

documenting embryo hatching success rates as low as 24% in experimentally stressed egg masses. 

Clearly, reproduction in S. australis can be affected by global change conditions. Fisher & Phillips 

(2014) then proceeded to also stress hatching larvae, and found that those coming from previously 

stressed egg masses showed more stunted growth and lower survival. This clearly demonstrates a carry-

over effect (COE) from the embryo to larval life stage by showing that previous experience can 

influence stress vulnerability. 

 

The current study is based on Russell & Phillips (2009) and Fisher & Phillips (2014), but extends this 

body of work by examining the link between early life stage vulnerability to stress and parental 

experience through “trans-generational” COEs, whereby the environment experienced by a parental 

generation influences the characteristics or performance of offspring (Bonduriansky & Day, 2009). This 

has not yet been explored in S. australis. Further, this study expands on Russell &Phillips (2009) and 

Fisher & Phillips (2014) by adding copper (Cu) as a stressor, to represent the compounding effects of 

pollution on the climate change-associated stressors of UVR and high temperature to represent a fuller 

picture of global change conditions. 

 

Cu affects gametogenesis in adult marine invertebrates and early development of their offspring, 

particularly in bivalves, sea urchins, sponges and ascidians, causing deformity, reduced settling ability 

and direct mortality (review by Mayer-Pinto et al., 2010). However, the existing literature deals almost 

universally with planktonic embryos and larvae, and the effects of copper on benthic egg masses are 

rarely considered. Adult responses to metal contaminates are varied. For example, some barnacles 

(Morillo et al., 2005) and polychaetes (Olla et al., 1988) simply accumulate metals in their tissues 

without showing any ecological responses, while other organisms are emerging as highly vulnerable to 

copper as adults, even more so than indicator species used to assess maximum “safe” levels of such 

contaminates (Brown et al., 2004).  

 

The ways in which this adult stress affects offspring also appears to be species specific, as gastropod 

that juveniles produced by Cu-exposed parents can be more tolerant to this metal than juveniles whose 

parents did not experience Cu pollution (Untersee & Pechenik, 2007). However, this is a rare example 
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of a positive trans-generational COE. The majority of COEs that have been documented in marine 

invertebrates, arising from parental exposure to abiotic stressors, are detrimental to offspring. For 

example, Cu stress can induce lowered maternal investment in egg production, leading to poorer quality 

offspring (Marshall, 2008). Similarly, temperature stress in parents has been linked to smaller offspring 

size (Burgess & Marshall, 2011). Crucially however, it is rare for more than one such stressor to be 

examined simultaneously in COE research. This, combined with the fact that stressors tend to act 

synergistically and thus exacerbate one another’s effects (Crain et al., 2008), suggests that deleterious 

effects in coastal marine systems resulting from trans-generational COEs may be underestimated by the 

existing literature.  

 

This study is novel because it combines an examination of COEs between life stages (the subject of 

Chapter 3) with trans-generational COEs, and does so with the implementation of multiple stressors 

that cover both the climate change aspect (UVR and high temperature) of anthropogenic global change 

as well as the influence of compounding factors (Cu). This chapter aims to examine trans-generational 

COEs from adult S. australis to their offspring in the egg mass stage, manifesting through the interaction 

of temperature, UVR and Cu stress exposure in both generations. It was hypothesised that adult S. 

australis would be minimally affected by stress exposure but that egg mass responses to stress would 

reflect parental experience.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1 Siphonaria australis: A) Adult with freshly deposited egg mass at Victoria University 

Coastal Ecology Laboratory (VUCEL); B) side view of adult at VUCEL; C) Egg mass exposed during 

low tide on Wellington south coast. Scale bar applies to all three images.  

1 cm A 

B C 
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2.3 Methods 

 

2.3.1 Specimen Collection 

Adult S. australis (n=120) were collected during low tide from rock pools on the Wellington south coast 

adjacent to Houghton Bay (41°20’51.9"S 174°47’29.0"E) on January 21st, 2015. These adults ranged 

in shell length from 0.5cm to 3cm. Additionally, ~60kg of rocks were collected from tide pools at this 

site to serve as substrate for the limpets during captivity. Rocks were selected to offer a range of sizes, 

shapes and algal growth for limpets to cling to and feed on. Limpets were carefully removed from the 

benthos using a scalpel and transported to the Victoria University of Wellington Coastal Ecology 

Laboratory (VUCEL) in seawater.  

 

2.3.2 Experimental Stress Exposure in Adult S. australis  

Adult S. australis were held at VUCEL for the duration of the experiment. Limpets were maintained in 

twelve 10L buckets, each containing 10 specimens that were evenly distributed among buckets so as to 

ensure that each bucket contained a similar range of sizes. Mean shell length per bucket ranged from 

15 to 15.3mm. Each bucket was furnished with ~5kg of the collected rocks and connected to a 

continuous supply of filtered seawater (15µm mesh size). All buckets were placed under two fluorescent 

T8 30W PowerGlo© daylight bulbs designed for aquarium use, to allow algal growth to occur and thus 

offer a food supply to the limpets. Prior to experimental treatment, the adult limpets were acclimated in 

this set-up for four weeks. During this time adequate feeding was confirmed by the presence of faecal 

material in buckets. The condition of all buckets was examined, and removal of excess algal growth 

and detritus was carried out daily. 

 

Adults were subjected to four experimental treatments for another four weeks immediately following 

acclimation. Each of the four treatments consisted of three replicate buckets. Treatments included a “no 

stress” control with ambient levels (in laboratory) of all stressors, a “climate change” treatment with 

elevated levels of temperature and UVR, a pollution treatment featuring added Cu only, and an “extreme 

stress” treatment with elevated levels of all stressors (Table 2.1). Limpets were exposed to these 

treatments for four hours each day during the four-week experiment. This was done to approximate the 

duration of low tide, at which time limpets would be most vulnerable to these stressors in rock pools. 

During these four hours of treatment exposure, buckets were disconnected from their seawater supply. 

Additionally, depending on the treatment, aquarium heaters were placed in buckets to raise water 

temperature, UV bulbs were installed, and Cu was added daily to commence the daily stress period. 

After the four hours had elapsed, buckets were reconnected to the seawater supply and returned to 

ambient conditions. Food-grade Teflon® buckets were used to ensure that no Cu was absorbed and that 

limpets would not be exposed to Cu residue outside of stressing times, as this material is commonly 
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used in laboratory studies on the vulnerability of marine invertebrates to metal pollutants (eg. Bellas et 

al., 2004). 

 

Ambient water temperature varied from 14°C to 18°C with an average over the four-week experimental 

period of 16°C. Elevated temperature treatments were heated to 25°C at the beginning of daily stressing. 

Treatments were designed to always pair elevated temperature with elevated UVR, and conversely, 

ambient temperature with ambient UVR (Table 2.1). This was done for two reasons. Firstly, in rock 

pools elevated temperature is unlikely to occur in the absence of elevated UVR and vice versa, since 

both stressors are derived from sun exposure. Secondly, identifying the effects of each of these stressors 

individually was not a goal of this research. In effect, temperature and UVR herein represent a collective 

single stressor, namely, climate change.  

 

Buckets treated with ambient UVR remained under daylight bulbs during daily four-hour stressing. For 

buckets treated with elevated UVR, one daylight bulb was replaced with a Philips TL40W/03RS UV 

bulb. Lighting was suspended 30cm above the buckets’ water surface. UV bulbs were wrapped in clear 

PVC foil to eliminate extremely short wavelength UV-C. This ensured that the amount of UVR reaching 

the water surface in buckets was 1.7W/m2 UVB radiation. This value was chosen as it represents the 

average daily maximum value for Wellington rock pools at low tide during clear weather in summer, 

as measured on several cloudless days in January 2015 using a Skye SpectroSense2+ UV-B sensor 

radiometer (Kessel, unpublished data). By comparison, buckets treated with ambient UVR received 

only 0.08W/m2, the constant level of daytime UVR found inside VUCEL without augmentation by UV 

bulbs. Finally, buckets treated with elevated Cu were dosed with 50μl of a copper stock solution (copper 

sulphate: CuSO4.5H2O) to achieve a concentration of 5.0μg/L. Again, this represents a maximum 

common reading for Wellington sea water (Stoffers et al., 1986). Buckets dosed with Cu were stirred 

to ensure the pollutant was distributed evenly throughout the water available to the limpets.   

 

Table 2.1. Details of the four experimental treatments, including a description of each treatment’s 

purpose, and a list of stressors and their levels for each treatment. Experimentally elevated stressors 

appear in bold. Note that Temp and UVR are always both ambient or both elevated. Both adults and 

egg masses of S. australis were subjected to these treatments. 

Treatment Stressors Stressor Values 
 

No Stress (Ambient Control) 

 

None 

 

~16°C; 0.087W/m2; 0μg/L 

(ambient) 
 

Climate Change Stress 

 

Temp/UV 

 

25°C; 1.7W/m2; 0μg/L 
 

Pollution Stress 
 

Cu  
 

~16°C; 0.087W/m2; 5.0μg/L 
 

Extreme Stress (Full Global Change Scenario) 
 

Temp/UV/Cu  
 

25°C; 1.7W/m2; 5.0μg/L 
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2.3.3 Stress Exposure in Egg Masses 

All egg masses laid by the adult limpets during the four-week experiment were collected daily and 

preserved with 5% buffered formalin for later analysis. However, those egg masses laid on the last day 

of, and up to two days after, the adult stress experiment were transferred to dishes (one egg mass per 

dish containing 100ml of filtered seawater) for further experimentation. These egg masses were 

subjected to the same four treatments as adults (Table 2.1) for around two weeks until hatching 

occurred, again for four hours per day. Egg masses were dosed with 0.5μl of copper stock solution to 

achieve the same concentration as above, and because aquarium heaters could not be placed in dishes, 

dishes were instead placed on water-filled trays in which the heaters were immersed (although 

temperature was checked in dishes). The aim was to obtain all possible combinations of treatments 

under which eggs were laid (ie. adult treatments) and under which they would develop and hatch (ie. 

egg mass treatments). Because four treatments were devised for both adults and the eggs, this equates 

to a maximum of 16 possible adult-to-egg treatment histories (4 adult treatments x 4 egg treatments). 

Each of these 16 treatment histories consisted of three replicate dishes, for a total of 48 dishes.  

 

2.3.4 Data Collection 

At the end of the four weeks of adult exposure to stress treatments, surviving adults were counted and 

their shell lengths measured. Egg masses collected during this time were examined using microscopy, 

and the sizes of individual eggs were measured. Subsequently, egg masses that failed to hatch by the 

end of the two-week egg mass stress period, as well as pieces of ~5mm removed from successful egg 

masses upon hatching, were preserved (Figure 2.2; 2.3). Additionally, the number of days taken until 

hatching was recorded for successful egg masses. Preserved egg masses that failed to hatch (not those 

collected during the four weeks of adult stress exposure) were then observed and the percentage of 

abnormal or deformed embryos was estimated for each (by examining 50 random embryos per egg 

mass). The illustrations of Siphonaria developmental stages by Ocana & Emson (1999) were used as a 

guide, and because abnormalities were severe, abnormal embryos were deemed inviable (Figure 2.2). 
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Figure 2.2 A) S. australis eggs containing viable blastulae; B) Failed eggs containing inviable blastulae. 

This appearance was typical of egg masses that failed to hatch. Scale bar applies to both images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 S. australis eggs containing veliger larvae ready to hatch under A) low magnification and 

B) high magnification. 
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2.3.5 Data Analysis  

 

All data analysis was carried out using IBM SPSS 22. All data were explored and the assumptions for 

each statistical procedure were tested prior to analysis. This included the use of Kolmogorov-Smirnov 

and Shapiro-Wilk tests for normality, Levene’s test for homogeneity of variance, and diagnostic graphs. 

Non-parametric tests were used where data failed the assumptions of parametric tests. 

 

2.3.5.1 Size and Number of Surviving Adult S. australis 

Data on pre-treatment adult size, as well as survivor size (shell length in mm) (n=90 limpets measured) 

and the number of survivors (n=12 buckets containing survivors) at the end of the four-week adult stress 

period departed from normality and homogeneity of variance. Therefore, Kruskal-Wallis tests were 

used (non-parametric equivalent of one-way ANOVA; Dytham, 2011) with adult treatment as a factor 

(4 levels). A post-hoc Mann-Whitney U test was also performed on survivor size data for pairwise 

comparisons between adult treatments. 

 

2.3.5.2 Number of Egg Masses Laid 

To examine the effects of adult treatment on the number of egg masses laid over time, a Sheirer-Ray-

Hare test was performed (the non-parametric equivalent of 2-way ANOVA; Dytham, 2011) because 

normality and homogeneity of variance were not met by data (n=48 observations of the number of egg 

masses laid since last count in a given bucket). Here adult treatment (4 levels) and week of adult 

treatment (4 levels) were used as factors. The number of egg masses laid is the mean laid since the 

previous week’s observation (eg. no. at week 2 = mean no. laid since week 1).    

 

2.3.5.3 Sizes of Egg Masses and Eggs 

Egg mass size data (length x width in mm) were log10 transformed, but nonetheless departed from 

homogeneity of variance. Because the test is considered relatively robust to this departure (Dytham, 

2011), a 2-way ANOVA was nevertheless performed with week (4 levels) and adult treatment (4 levels) 

as factors (n=76 measured egg masses). The size of eggs within egg masses was then also analysed 

using a two-way ANOVA, although these data also departed from normality, using the same factors. 

Because egg masses rather than individual eggs are in this case considered as replicates, mean egg size 

was calculated for each egg mass (using 50 randomly selected eggs per egg mass) (n=76 egg masses). 

 

2.3.5.4 Hatching Success 

Because data failed normality and homogeneity of variance assumptions, and due to small sample size, 

Binary Logistic Regression was used to analyse the association between treatments and hatching 

success, using yes/no as categories (n=48 egg masses observed). Those egg masses deemed 

unsuccessful (ie. in the “no” category) did not hatch within 2 weeks of transfer to dishes. The test was 
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carried out three times, once taking into account total treatment history (16 levels), once only adult 

treatment (4 levels), and once only egg mass treatment (4 levels) 

 

2.3.5.5 Hatching Times 

Only successfully hatching egg masses were considered in hatching time analyses. Hatching time here 

equates to the number of days taken from egg masses being laid to their first hatching. Again, because 

of departures from normality and homogeneity of variance, a Kruskal-Wallis test was used (n=30 egg 

masses measured for hatching time), with total treatment history as factor (11 levels; not 16 because 

some treatment histories failed to hatch). Spearman’s rank-order correlation was then used to assess the 

relationship between hatching time and egg mass size. 

 

2.3.5.6 Egg Viability 

These data also departed from normality and homogeneity of variance, and a Kruskal-Wallis test was 

used again. This was done excluding failed egg masses (n=30 successful egg masses), with total 

treatment history as factor (11 levels). Post-hoc Mann-Whitney U tests were also performed for pairwise 

comparisons between treatment histories. These pairwise comparisons were then used to ascertain 

whether trans-generational COEs occurred. This was done by comparing viability in egg masses of the 

same egg mass treatment, but different parental treatments. When these differed, a trans-generational 

COE was indicated. All treatment histories that showed at least one significant difference indicative of 

a COE were then simply counted to determine how many of the possible trans-generational COEs that 

could have occurred did indeed manifest in terms of egg viability. 

 

 

2.4 Results 

 

2.4.1 Size and Number of Surviving Adult S. australis 

No significant difference was found between treatment containers in mean shell lengths of adult limpets 

prior to actual experimentation (Kruskal-Wallis Chi-square= 2.534; df=3; p= 0.469). However, mean 

shell length of surviving limpets, at the end of the four-week adult stress phase, did differ significantly 

between the four treatments (Kruskal-Wallis Chi-square=7.896; df=3; p=0.048), with surviving limpets 

that had been exposed to Cu significantly smaller than those under no or Temperature/UV stress (Figure 

2.4; Table 2.2;). The number of adult survivors (Figure 2.5) did not differ significantly between 

treatments (Kruskal-Wallis Chi-square=2.543; df=3; p=0.468). 

 

2.4.2 Number of Egg Masses Laid 

No significant difference in the number of egg masses laid was found between adult treatments 

(F=1.183; df=3; p=0.0237) or week (F=0.330; df=3; p=0.757), and there was no significant interaction 

(F=0.315; df=9; p=0.947; Figure 2.6).  
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2.4.3 Sizes of Egg Masses and Eggs 

A significant difference in the size of egg masses laid by adults was found among weeks of the adult 

stress period (F=12.029; df=3; p<0.001), but not among treatments (F=2.408; df=3; p=0.076), and a 

significant interaction among week and treatment was found (F=3.437; df=9; p=0.002). Egg masses 

tended to be larger in week 4 than at any other time, particularly for adults under Temp/UV and no 

stress, while adults under extreme stress laid the largest of all egg masses in week 2 (Figure 2.7). In 

terms of the size of individual eggs within egg masses, a significant difference was found among weeks 

(F=9.439; df=3; p<0.001) and treatments (F=10.614; df=3; p<0.001), as well as a significant interaction 

between these factors (F=16.740; df=9; p<0.001). The sizes of eggs were highly specific depending on 

the treatment-week combination, with all treatments showing considerable variation over the four-week 

experiment (Figure 2.8). 

 

2.4.4 Hatching Success 

A significant relationship was found between hatching success and egg mass treatment (S.E.=0.293; 

df=1; p=0.039), but not between hatching success and adult treatment (S.E.=0.270; df=1; p=0.806) or 

hatching success and total treatment history (S.E.=0.069; df=1; p=0.088). None of the egg masses 

subjected to extreme stress hatched, none exposed to Cu from extremely stressed parents hatched, and 

one each of the remaining treatment histories where eggs were exposed to Cu also failed to hatch 

(Figure 2.9). In total, 18 of 48 egg masses failed. All failed egg masses were composed entirely of 

inviable early blastulae (see Figure 2.2 B), with no other developmental stages present. 

 

2.4.5 Hatching Times  

No significant difference in hatching time was found among total treatment histories (Kruskal-Wallis 

Chi-square=11.969; df=10; p=0.287), and no significant correlation was found between egg mass size 

and hatching time (rs = 0.240; df=28; p=0.21). Egg masses tended to hatch between 6 and 9 days after 

being laid, regardless of treatment history (Figure 2.10). 

 

2.4.6 Egg Viability 

A significant difference between the percentage of viable eggs per egg mass was found among total 

treatment histories (Kruskal-Wallis Chi-square= 28.298; df= 10; p<0.001). Viability tended to decrease 

according to egg mass treatment in the order No Stress > Temp/UV > Cu, and according to adult 

treatment in the order No Stress > Cu > Temp/UV > Temp/UV/Cu (Figure 2.11; Table 2.3). Failed egg 

masses all contained 0% viable eggs, and those subjected to extreme stress with extremely stressed 

parents constituted the only treatment history whose egg masses contained ~5% egg capsules 

completely devoid of embryos. Lastly, trans-generational COEs were displayed by every treatment 

history (ie. 11 of 11 possible times) (Table 2.3). 
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                                                                       Adult Treatment 
 

Figure 2.4 Mean shell length (mm; +/- 95% C.I.) of adult S. australis before (n=120 limpets) and after 

(n=90) 4 weeks of experimental stress exposure.  

 

 

                                                   
                                                                       Adult Treatment 
 

Figure 2.5 Mean number of surviving adult S. australis out of 10 (+/- 95% C.I.)  after 4 weeks of 

experimental stress exposure (n=12 buckets). 

 

 

Table 2.2 Survivor size pairwise comparisons. Results of post-hoc Mann-Whitney U tests showing 

pairwise comparisons of adult treatment, performed after Kruskal-Wallis test examining the effect of 

adult treatment (4 levels) on the  size of surviving limpets (n=90). Differences significant at the α=0.05 

level appear in bold. 
 

Pairwise Comparison 
  

No Stress 
 

       

      Temp/UV               
   

 Cu 
         

         Temp/UV/Cu 

No Stress - 0.893 0.006 0.115 

Temp/UV - - 0.047 0.154 

Cu - - - 0.933 

Temp/UV/Cu - - - - 
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                                                                        Adult Treatment 

                                                                                                         
 

Figure 2.6 Mean number of egg masses laid by adult S. australis (+/- 95% C.I.) during each of the 4 

weeks of adult stress across treatments (n=48 observations). 

 

 

                                                                      Adult Treatment 

                
Figure 2.7 Mean sizes of egg masses laid by adult S. australis (+/- 95% C.I.) during each of the 4 weeks 

of adult stress across treatments (n=76 egg masses). 
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                                                                       Adult Treatment 

                           
 

Figure 2.8 Mean sizes of individual eggs in egg masses laid by adult S. australis (+/- 95% C.I.) during 

each of the 4 weeks of adult stress across treatments (n=76 egg masses). 

 

 

                                                                  Egg Mass Treatment 

               
                                                                    Adult Treatment 
 

Figure 2.9 The % of successfully hatching egg masses. Each bar represents one of the 16 treatment 

histories, composed of an adult treatment (x axis) and an egg mass treatment (colours), and shows % 

out of 3 replicate egg masses (n=48). Effects of egg mass treatments can be seen by comparing the 

heights of the differently coloured bars (eg. blue vs. orange). Adult treatment effects, and therefore 

trans-generational COEs, can be seen by comparing the clusters of bars in each adult treatment. Note 

that no error bars are displayed because graphed data does not represent mean %, but the absolute % of 

egg masses that hatched out of the 3 replicate egg masses. 
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                                                                   Egg Mass Treatment 

             
Figure 2.10 Mean hatching time of egg masses (+/- 95% C.I.) as the number of days from egg masses 

being laid to first hatching (n=30 hatched egg masses). Each bar represents one of the treatment histories 

from which larvae successfully hatched, composed of an adult treatment (x axis) and an egg mass 

treatment (colours). 

 

 

                                                                    Egg Mass Treatment 

                                                                                       
Figure 2.11 Mean % of viable eggs per egg mass (+/- 95% C.I.). Each bar represents one of the 

successfully hatching treatment histories, composed of an adult treatment (x axis) and an egg mass 

treatment (colours) (n=30). 
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Table 2.3 Egg viability pairwise comparisons. Results of post-hoc Mann-Whitney U tests performed 

after Kruskal-Wallis test examining the effect of treatment history (11 levels) on the % of viable eggs 

per egg mass (n=30). Each treatment history incorporates an adult (parent) treatment, named first, 

followed by an egg mass treatment. Differences  significant at the α=0.05 level appear in bold (p-

values). Pairwise comparisons are also labelled according to whether a trans-generational COE would 

be indicated by a significant difference (“GEN”). 
 

 

 

Pairwise Comparisons 

between Treatment 
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(parent treatment – egg mass 
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No Stress - No Stress - 0.037 

 

0.043 

 

0.037 

GEN 

0.037 0.043 0.034 

GEN 

0.037 0.043 0.037 

GEN 

0.037 

No Stress - Temp/UV - - 0.139 0.376 0.040 

GEN 

0.033 0.046 0.040 

GEN 

0.033 0.040 0.040 

GEN 

No Stress - Cu - - - 0.248 0.050 0.021 

GEN 

0.050 0.043 0.021 

GEN 

0.040 0.040 

Cu - No Stress - - - - 0.040 0.043 0.046 0.040 0.043 0.040 

GEN 

0.040 

Cu - Temp/UV - - - - - 0.043 0.072 0.077 

GEN 

0.043 0.040 0.040 

GEN 

Cu - Cu - - - - - - 0.046 0.083 0.221 

GEN 

0.543 0.043 

Temp/UV - No Stress - - - - - - - 0.046 0.046 0.046 

GEN 

0.046 

Temp/UV - Temp/UV - - - - - - - - 0.050 0.050 0.040 

GEN 

Temp/UV - Cu  - - - - - - - - - 0.374 0.043 

 

Temp/UV/Cu - No Stress - - - - - - - - - - 0.050 

 

Temp/UV/Cu - Temp/UV - - - - - - - - - - - 
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2.5 Discussion 

 

These results demonstrate trans-generational COEs by showing that parental environment, or parental 

experiences, can influence the development of benthic egg masses in S. australis when both are exposed 

to intertidal stressors. Additionally, the conditions experienced by egg masses themselves play a crucial 

role, interacting with parental history to produce a high diversity of responses to stress during embryonic 

development. This is despite the fact that adult S. australis appeared to be virtually unaffected by 

experimental stress exposure in terms of survival. 

 

2.5.1 Effects of Stress on Adult Limpets 

 

The limpets that survived four weeks of adult stress exposure were generally similar in size and number 

regardless of treatment, although there was a marginally significant effect on survivor size where those 

exposed to Cu were around 12% smaller than those of No Stress and Temp/UV treatments. Because 

there was no difference in the initial sizes of limpets and mean size was greater at the start of the 

experiment, this small effect must be due to selective mortality of larger individuals in those treatments. 

Combined with the non-significant trend for limpets under extreme stress (Temp/UV/Cu) to experience 

slightly lower survival than others, this suggests that treatments were on the cusp of negatively affecting 

the performance of adult limpets and that increased exposure duration or experiment time may have 

resulted in stronger direct effects. For example, De Pirro & Marshall (2005) found similar Cu 

concentrations caused mortality in adult patellid limpets after at least 48 hours of continuous exposure.  

 

Generally however, copper concentrations of 5.0μg/L and exposure times as brief as four hours per day, 

are rarely sufficient to cause mortality among adults of any taxonomic group. Even sensitive freshwater 

animals such as daphnids, amphipods snails and salmonid fishes, as well as aquatic plants, commonly 

require at least 96 hours of continuous exposure to similar concentrations as used in this study before 

suffering significant mortality (review by Hodson et al., 1979). Marine taxa appear more robust, with 

some of the most Cu-sensitive marine organisms yet documented, including copepods, clams and 

flounders, showing significant mortality only after exposure for 96 hours to concentrations as high as 

28 to 39μg/L (review by Eisler, 1997). However, in mussels for example, synergistic interactions of Cu 

and other stressors, particularly high water temperature, are known to reduce the exposure time 

necessary for mortality to occur (Weber et al., 1992). Such synergistic effects are a likely cause for the 

apparent trend of reduced survival among extreme stress adults in this study. 
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In contrast to direct mortality, Cu routinely triggers a myriad of sub-lethal effects across a broad 

spectrum of aquatic animals at low concentrations and short exposure times. For example, sub-lethal 

effects on the growth, reproductive effort, feeding efficiency and behaviour of molluscs and arthropods 

frequently manifest at concentrations as low as 1μg/L (review by Bryan & Langston, 1992). While 

limpets here were not assessed for these sorts of responses, it is possible that some sub-lethal effects 

did occur, particularly a reduction in heart rate, which has been documented in limpets under prolonged 

Cu stress (Marchan et al., 1999). However, gastropods in general are relatively robust to high 

temperatures (Thompson, 1958; Helmuth et al., 2006) and sunlight (including UV) exposure (Vermeij, 

1971), and adult Siphonaria limpets specifically are particularly resistant to Cu (De Pirro & Marshall, 

2005). This offers a good explanation for the lack of difference in mortality between the control and 

Temp/UV or Cu-only treatments. 

 

The reasons for the observed size-selective mortality favouring the survival of smaller individuals in 

response to Cu, are however more difficult to corroborate with the existing literature. Phytoplankton 

cultures are well known to respond to high Cu concentrations (>20μg/L) with a shift towards smaller 

size (Perez et al., 2006), and invertebrates, such as daphnids, also do so in response to various other 

pollutants, but not copper (Agatz et al., 2012). Fish on the other hand commonly respond to pollutants 

in the opposite way, with elevated mortality of small individuals (Yeom et al., 2007). Ultimately, the 

occurrence and nature of size-selective mortality is highly pollutant and species specific (Mayer-Pinto 

et al., 2010). The physiological mechanisms that rendered larger individuals more vulnerable herein 

remain unclear, especially when one considers that small individuals of bivalves can contain relatively 

higher concentrations of Cu in their tissues than those of greater body size (Cossa et al., 1980). 

 

Similarly, no clear patterns emerged in terms of the reproductive characteristics of adult limpets. In 

intertidal gastropods the number of egg masses laid and the size of egg masses generally decreases with 

parental stress, including pollutants, high temperature, food stress and other perturbations, while the 

size of individual eggs tends to increase (review by Przeslawski, 2004). This is not reflected by results 

herein. Egg mass number did not respond to stress at all, and the interaction of treatment and week for 

egg mass size is driven almost exclusively by the anomalously large size of those laid by extremely 

stressed adults in week 2. The size of individual eggs is equally dependent on specific week-treatment 

combinations, and no clear link can be observed between a reduction in size and stress of any kind. This 

is despite the fact that both Cu and high temperature are known to cause smaller egg size in diverse 

taxa, from ascidians (Burgess & Marshall, 2011) to fish (Chambers & Leggett, 1996).  
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Crucially however, egg size can also vary substantially between individual mothers without any 

environmental stress, as has been shown in mussels (Phillips, 2007), and this has been linked to traits 

such as maternal size and age (review by Marshall et al., 2008) with smaller mothers tending to produce 

smaller eggs among intertidal gastropods (Ito, 1997). It is thus clear that the size of eggs can be as 

dependent on maternal as on environmental characteristics, and it is here more likely that the intricate 

patterns of egg mass and egg size reflect this individual variability among mothers rather than responses 

to stressful conditions. Ultimately, these findings largely support the hypothesis that adults would be 

minimally affected by stress exposure. 

 

2.5.2 Effects of Stress on Egg Masses 

 

Egg masses were much more vulnerable to stress than adults, with hatching success largely determined 

by egg mass treatment. Cu exposure in egg masses was the main factor that either limited hatching 

success when it was the only stressor, or prevented hatching entirely when paired with elevated 

temperature and UVR under the extreme stress treatment. This is consistent with the general literature, 

which documents taxonomically wide-spread vulnerability to metal pollution at early life stages 

(Mayer-Pinto et al., 2010), particularly when paired with other stressors (Crain et al., 2008). This also 

reaffirms the notion that egg masses do not possess protective adaptations against such pollutants 

(Conrad, 1988), in contrast to thermal and UVR stress, as discussed below. Since all failed egg masses 

contained only inviable blastulae, Cu is likely to have interfered with cell division and entirely halted 

proper embryonic development (Bryan, 1971). 

 

The lack of response to high temperatures also mirrors the wider literature, since the encapsulated 

embryos of intertidal gastropods are generally robust to this common stressor provided it occurs at non-

lethal levels (Dehnel & Kong, 1979). This may be achieved through the presence of thermally protective 

proteins (Podolsky & Hoffmann, 1998), although their presence has not yet been substantiated for 

Siphonaria limpets. However, UVR is highly deleterious to embryos contained within gelatinous egg 

masses of marine gastropods in general, being capable of causing deformity and mortality at similar 

levels to those incorporated here (Biermann et al., 1992). The fact that all Temp/UV-treated egg masses 

hatched successfully is nonetheless unsurprising, since Siphonaria limpets routinely deposit their egg 

masses in full sunlight (Benkendorff & Davis, 2002) and may consequently have evolved protective or 

repair mechanisms that mitigate effects of UVR. However, although UV-B absorbing compounds have 

been identified in some other gastropods (Rawlings, 1996; Shick & Dunlap, 2002), they appear to play 

no role in the Siphonaria species so far examined (Wraith et al., 2006), and S. australis egg masses can 

indeed suffer high UVR-induced embryonic mortality (Russell & Phillips, 2009). Ultimately, it must 

be acknowledged that “yes/no” hatching success is a coarse response variable, and that egg masses can 

still be defined as successful even if many individual larvae fail to hatch. 
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Crucially, despite no significant difference in hatching success among adult treatments, all Cu-treated 

egg masses failed to hatch if, and only if, their parents were exposed to extreme stress. Under all other 

adult treatments, Cu-treated egg masses hatched 2/3 of the time. This is a clear difference in offspring 

hatching success that can only be attributed to the different treatments their parents experienced. This 

is therefore good evidence for a trans-generational COE, in which extreme stress in adults prevents 

hatching if offspring encounter Cu, highlighting a complex interaction between parental and offspring 

experiences. Importantly, the other Cu-treated egg masses hatched at the same rate regardless of 

whether their parents experienced Cu stress or not, showing that the apparent tolerance to Cu of adults 

discussed above did not convey any evident resistance to offspring. This contrasts most previous studies 

of COEs in which parents exposed to various toxicants have been demonstrated to produce offspring 

that are themselves at least initially resistant in diverse taxa (Lin et al. 2000; Vidal & Horne 2003), 

including to Cu in gastropods (Untersee & Pechenik, 2007), but supports others that found reduced 

offspring quality (Marshall, 2008). 

 

Furthermore, it is interesting to note that empty egg capsules were found only in those egg masses that 

were treated with extreme stress themselves as well as being laid by adults under extreme stress. Empty 

egg capsules may be attributable to failed fertilisation due to stress in adults affecting gamete quality 

(Ritchie & Marshall, 2013). Here however, this was observed only in this one specific treatment history, 

meaning that egg mass stress exposure must also have somehow played a role in the development of 

empty egg capsules. The mechanism for this is unknown, but the presence of empty egg capsules in the 

Temp/UV/Cu-Temp/UV/Cu treatment history represents a clear interaction between adult and offspring 

environment in determining egg mass characteristics, and therefore a trans-generational COE. 

 

It is somewhat surprising that there was no correspondence between treatment history and hatching 

time, as the duration of embryonic development among marine gastropods is well known to vary greatly 

in response to prevailing environmental stressors (review by Przeslawski, 2004). Generally, among 

invertebrates the presence of heavy metals, such as Cu, slows development (Bryan, 1971), while 

increasing temperature accelerates it (Caveriviere et al., 1999), particularly in gastropods (Spight, 

1975), including siphonarid limpets (review by Hodgson, 1999).  

 

In contrast, UVR is usually associated only with causing mortality and deformity (Biermann et al., 

1992), and not with altered rates of development. However, the deleterious effects of UVR are 

dampened by higher temperatures in algae and amphibians (Hoffman et al., 2003; Searle et al., 2010). 

This mitigating effect between these two stressors may be mirrored by results herein, as temperature 

and UVR were elevated together, making it possible that the accelerating effects of high temperature 

may have been counteracted by the decelerating effects of UVR, thus causing no differences in hatching 

time to be detected. This would illustrate an antagonistic stressor interaction (Folt et al., 1999) that 
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contrasts the broader literature, which documents an overwhelming majority of synergistic effects of 

increased severity between high temperature and UVR (Crain et al., 2008). Additionally, trans-

generational COEs failed to manifest in hatching times. This is in keeping with the general literature, 

where hatching time does not vary with parental Cu, temperature or UVR stress. When hatching time 

has been affected by a parental generation, this has been mainly through maternal investment strategies 

leading to either large or small eggs or egg masses, which then alters the duration of development 

(Marshall & Keough, 2008), also not evident here. 

 

Trans-generational COEs are however highly conspicuous through the percentage of viable eggs in 

successfully hatching egg masses. Unstressed adults tended to lay egg masses with higher viability than 

Cu-stressed adults, which were in turn higher than those laid by Temp/UV-stressed adults, with adults 

under extreme stress producing the least viable egg masses. This clearly shows that offspring viability 

suffered according to parental treatment. The very low viability of eggs laid by extremely stressed adults 

also indicates a synergistic effect between climate change (Temp/UV) and pollution (Cu) stress in 

parents on their offspring. Synergistic trans-generational effects such as this have previously been 

documented only in plants (Lau et al., 2008; Pias et al., 2011).  

 

Furthermore, phototoxicity describes the tendency for UVR to enhance the deleterious effects of 

pollutants (review Pelletier et al., 2006), and the observed synergistic effect of parental Cu and UVR 

exposure on offspring, offers perhaps the first evidence for this phenomenon occurring trans-

generationally. This is despite the lack of a strong response to Cu observed in adults. Nonetheless, this 

pollutant must have had some effect in the parental generation to account for the above patterns, 

particularly the lower viability of egg masses laid by Cu-exposed parents than unstressed parents. 

Perhaps this can be explained by the Cu to which adults were exposed affecting fertilisation or the 

formation of gametes, as this took place in the adult enclosures. Such impairments to reproduction have 

been observed in response to numerous metals, including Cu (Mayer-Pinto et al., 2010). Similarly, high 

temperature showed no response in adults but produced trans-generational effects, with eggs laid by 

Temp/UV-treated parents displaying similar to slightly lower viability than those coming from Cu-

stressed parents. This was somewhat expected, since parental temperature may influence offspring 

response to temperature in polychaetes (Massamba-N’Siala et al., 2014), copepods (Vehmaa et al., 

2012) and fish (Salinas & Munch, 2012), and because gastropods breed even at temperatures lethal to 

developing embryos (Thompson, 1958). 

 

Finally, egg mass treatment also played a role in determining embryonic viability through complex 

interactions with adult treatments. This is evident in Table 2.3, which shows that nearly all treatment 

histories produced unique viability values. Generally, unstressed egg masses tended to produce more 

viable embryos than Temp/UV stressed egg masses, which produced greater embryonic viability than 
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Cu-stressed egg masses. Firstly, this reaffirms the results of Russell & Phillips (2009) and Fisher & 

Phillips (2014), who also documented reduced embryonic viability in S. australis egg masses with 

temperature and UVR stress. Secondly, this shows that developing embryos are particularly vulnerable 

to metal pollution, supporting the general literature, which considers exposure to heavy metals to be 

particularly disastrous during early development (review by Eisler, 1997). The 0% viability of failed 

egg masses exposed to all stressors also indicates dramatic developmental synergism between climate 

change stress (high temperature and UVR) and pollution that is similar to previously documented 

responses in other taxa (Crain et al., 2008) but has not yet been observed in benthic egg masses in this 

way. 

 

More importantly, this pattern of decreasing viability according to egg mass treatment holds true 

regardless of parental experience, but at progressively lower values according to adult treatment, 

resulting in the step-like pattern in Figure 2.11. Therefore, at least for the egg masses of S. australis, 

parental effects are not the single most dominant determinant of offspring performance, contrary to the 

notion that this is often the case (Wade, 1998). However, while not necessarily stronger than offspring 

experience, the fact that parental environment can be an exceedingly common influence on offspring 

under global change-type scenarios is underlined by the fact that trans-generational COEs were found 

in all 11 treatment histories from which larvae successfully hatched. This supports the initial hypothesis 

that offspring stress vulnerability reflects parental experience, and implies that trans-generational COEs 

may become more prominent with ongoing global change in the future, a prospect of undoubtedly 

profound ecological consequence, but one which has not yet been raised by other authors.  
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CHAPTER 3 

Parental and Embryonic Stress Causes Carry-Over Effects in Larvae of 

Siphonaria australis  
 

 

 

3.1 Abstract 

 

The performance or characteristics of marine invertebrates with complex life histories can be influenced 

by carry-over effects (COEs) between life stages and between generations. COEs may be an important 

factor determining the persistence of certain organisms with ongoing global change, particularly for 

those depositing benthic egg masses in the intertidal. However, there is currently a lack of studies that 

examine COEs over more than one generation and life stage simultaneously. Consequently, the ways 

in which COEs from parent to offspring might impact the propagation of stress through offspring life 

stages remains unclear, especially in the context of global change. Here, Siphonaria australis larvae 

were produced from 11 successfully hatching treatment histories that combined parental and egg mass 

exposure to stress (ambient, elevated Temperature + UVR, Copper, and elevated Temperature + UVR 

+ Copper). These larvae were subsequently reared under ambient conditions (ie. no added stressors) for 

27 days. This was done to allow COEs from stress that occurred during the egg mass stage and from 

the parental generation, as well as any interaction between these, to be clearly observable in larvae. 

Treatment histories differed significantly in larval hatching size, size reached by 27 days, growth rate, 

and size at death. All these response variables showed evidence of COEs between generations and life 

stages, as well as interaction between both types of COE, causing larval characteristics to be extremely 

varied and highly context-dependent. Generally, copper exposure during the egg mass stage appeared 

to be most deleterious to larvae. The number of survivors was the only variable that was not significantly 

affected by treatment histories. Overall, trans-generational COEs were slightly more common than 

those between life stages, a result that has not been demonstrated before. It is suggested that the existing 

ecological literature, especially that focusing on effects of global change and anthropogenic stress, has 

so far underestimated the diversity of factors that can contribute to shape the performance or 

characteristics of a given organism at a given time, as these can be heavily dependent on conditions that 

prevailed during earlier life stages or even during previous generations. 
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3.2 Introduction 

 

Traditionally, the separate life stages of marine invertebrates with complex life histories were 

considered to be adaptively decoupled by metamorphosis, and the performance of each stage was seen 

as independent from the experiences of the last (Wilbur, 1980). However, it is now becoming 

increasingly recognised that conditions during one life stage can significantly influence the performance 

or characteristics of subsequent stages (Schluter et al., 1991; Podolsky & Moran, 2006). These effects 

comprise carry-over effects (COEs) between the life stages of one generation (O’Connor et al., 2014). 

COEs occurring between early stages can take the form of a variety of lethal and sub-lethal effects and 

can influence recruitment, reproductive rates and other population dynamics, as has recently been 

shown in beetles (Van Allen & Rudolf, 2013). Because in marine invertebrates these processes are often 

heavily dependent on stress-prone larval stages (Roughgarden et al., 1988), COEs may play an 

important role in population persistence with ongoing global change.  

 

The manifestation of COEs between life stages is taxonomically wide spread, common under many 

circumstances, and capable of affecting a broad range of characteristics (review by Pechenik, 2006). 

Nutritional stress in larvae, for example, has depressive effects on juvenile growth in gastropods 

(Pechenik et al., 1996), echinoderms (Miller & Emlet, 1999), bivalves (Phillips, 2002; 2004) and 

polychaetes (Qian & Pechenik, 1998). Similarly, embryonic osmotic stress causes increased larval 

mortality in barnacles (Qiu & Qian, 1999), and reduced juvenile growth and survival in polychaetes 

(Pechenik et al., 2001). In response to low egg mass oxygen availability gastropod larvae hatch at 

smaller sizes with slower swimming speeds (Chan et al. 2008), and declines in survival and growth 

occur in bryozoan colonies if larvae are exposed to copper (Cu) (Ng & Keough, 2003). The pulmonate 

limpet Siphonaria australis has already been shown by Fisher & Phillips (2014) to suffer COEs in the 

form of increased larval mortality, reduced growth, and smaller feeding structures due to UVR and high 

temperature stress during embryonic development in benthic egg masses. Beyond marine invertebrates, 

photoperiod constraints during development reduce adult mating success in insects (De Block & Stoks, 

2005), salmon display reduced survival and growth in response to embryonic crude oil exposure (Heintz 

et al., 2000), and amphibian larvae show an increased frequency of developmental abnormalities when 

embryos are exposed to UVR (Pahkala et al., 2001). Similarly, in plants growth was compromised by 

drought conditions experienced by seedlings (Lof & Welander, 2000).  

 

Clearly, experiences from separate life stages can interact to form highly context dependent 

vulnerability (review by Marshall & Morgan, 2011). However, conspicuous knowledge gaps remain. 

Most marine species with complex life cycles possess exclusively planktonic development (Stearns, 

1992), and consequently the majority of studies examining COEs between life stages in marine taxa do 

so by focusing on transitions from larvae to post-metamorphic juveniles or from juveniles to adults. By 
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contrast, in organisms with mixed development, such as many gastropods, embryos may be deposited 

in benthic egg masses or brooded, and these species thus effectively pass through an additional stage 

that will experience drastically different environments than subsequent planktonic stages (Przeslawski, 

2004). COEs from embryos still contained within benthic egg masses to later stages, as examined in 

Fisher & Phillips (2014), are rarely demonstrated. This is despite the generally accepted notion that 

conditions experienced during early development are critical to the fitness of later stages (Crean et al., 

2011).  

 

Furthermore, in the field, anthropogenic global change will invariably affect organisms through 

multiple stressors, which can interact to dramatically alter their respective effects (Crain et al., 2008). 

The presence of high temperature, for example, often ameliorates the influence of other stressors 

through antagonistic interactions by increasing larval survivorship, whereas most stressor interactions 

exacerbate one another’s impacts and occur synergistically through deleterious sub-lethal effects 

(review by Przeslawski et al., 2015). Notwithstanding, only around a third of marine studies relating to 

climate change conducted between 2000 and 2010 were multifactorial in design (Wernberg et al., 2012). 

Crucially, it is rare for studies examining COEs across life stages to incorporate multiple stressors. This 

study takes the approach of inducing COEs through both climate change stress combining high UVR 

and temperature (as in Fisher & Phillips, 2014), and the compounding factor of pollution in the form of 

copper (Cu) exposure, to implement a more holistic global change-type scenario than has so far been 

offered by the existing literature.   

 

Moreover, marine invertebrates with complex life histories are not only subjected to trans-generational 

influences and direct effects on developing embryos, as established in Chapter 2. For those individuals 

that survive the embryonic phase, the conditions experienced during development can continue to play 

a significant role throughout the larval stage by causing legacies of poor performance that may persist 

even into adulthood (Marshall & Morgan, 2011). COE studies tend to examine only effects between 

life stages or between generations, seldom both (but see Marshall, 2008). Consequently, the effects of 

trans-generational COEs on the ways in which COEs propagate through life stages remains unknown 

under global change scenarios. This paucity of studies examining both types of COEs simultaneously 

is surprising, since virtually all stages of offspring life history can be affected by parental stress (review 

by Marshall et al., 2008).  

 

Here, it was aimed to extend the knowledge gained by Fisher & Phillips (2014), who examined COEs 

from S. australis egg masses to larvae, by adding a stressed parental generation and thus a trans-

generational influence. In this chapter, larvae of S. australis are examined for COEs triggered by climate 

change-type (elevated temperature and UVR) and pollution (Cu) conditions experienced during 

embryonic development within egg masses (ie. COEs between life stages), and by the parental 
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generation (trans-generational COEs), as covered in Chapter 2. It was hypothesised that effects 

manifesting in larvae would be the result of interactions between parental and embryonic conditions, 

and thus highly context-dependent.   

 

 

3.3 Methods 

 

3.3.1 Rearing of Larvae 

Larvae were obtained from the combinations of parental and egg mass stress treatments described in 

Chapter 2. Upon hatching from these treatments, 500 larvae were individually transferred from each 

egg mass dish (described in Chapter 2) into one 800ml plastic container (FSW, mesh size = 15µm), 

giving a stocking density of one larva per 1.6ml. Because not all egg masses hatched, only 11 of the 16 

treatment histories are included in this chapter. Since 18 egg masses failed, 30 rather than 48 larval 

containers were used. Note that some of the treatment histories were only able to be represented by two 

rather than three replicates as a result of hatching failure.  

 

All larval containers were sealed with a lid, placed in trays filled with water and reared in the absence 

of stress under ambient conditions identical to those described in Chapter 2 (water temperature at 

~16°C, UVR exposure at 0.087W/m2, and 0μg/L of Cu) so that any carry-over effects manifesting in 

the characteristics and performance of larvae could be clearly identified. Additionally, cetyl alcohol 

granules were sprinkled liberally across the water surface of these containers, where they floated and 

acted to break up the surface tension, which may otherwise entrap larvae and cause mortality 

(Strathmann, 1987). Water changes (80%) were carried out every three days, after which alcohol 

granules were renewed. Larvae were fed after each water change with a 50:50 mixture of two algal 

species, Isochrysis galbana and Pavlova lutheri (cultured at VUCEL), at a concentration of 20,000 cells 

per ml. All containers were stirred daily to resuspend algal cells and hinder the formation of flocculent 

detritus. Larvae were reared for 27 days. 

 

3.3.2 Data Collection 

Upon hatching and every three days subsequently, to coincide with water changes, a sample of larvae 

was taken from each container and observed under a microscope. The shell length of 30 larvae was 

measured. Of these larvae, 15 were preserved with 5% buffered formalin, while all others were returned 

to their containers alive. At 27 days, the surviving larvae in each container were counted and all dead 

shells were collected and preserved. The shell lengths of up to 30 survivors were also measured, while 

preserved dead shells (100 per container) were measured later.  
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3.3.3 Data Analysis 

All data analyses were carried out using IBM SPSS 22, and the assumptions for each statistical 

procedure were tested prior to analysis through Kolmogorov-Smirnov and Shapiro-Wilk tests for 

normality, Levene’s test for homogeneity of variance, and diagnostic graphs. Data that departed from 

the assumptions of parametric tests were analysed using non-parametric methods where stated. Note 

that because some of the combinations of parental and egg mass stress did not hatch, the design is no 

longer fully crossed, and each combination is therefore treated as a level within the single factor 

“treatment history”.   

 

3.3.3.1 Hatching Size 

Hatching size was averaged for each treatment using mean size per container. Because data departed 

from normality and homogeneity of variance, a Kruskal-Wallis test (the non-parametric equivalent of a 

one-way ANOVA; Dytham, 2011) was carried out to test for differences between treatment histories 

(11 levels) in larval hatching size (n=30 larval containers). Additionally, the coefficient of variation 

(CV = standard deviation ÷ mean) was calculated for the hatching size of each container and also 

analysed using a Kruskal-Wallis test. This was done to regain information on size variability otherwise 

lost through the implementation of non-parametric techniques, namely the inability to use a nested 

design and incorporate 30 larvae per container in the analysis rather than merely a mean for each 

container.   

 

Post-hoc Mann-Whitney U tests were used for pairwise comparisons of treatment histories after both 

analyses. These pairwise comparisons were used to identify whether trans-generational or between-life-

stage (ie. embryo to larva) COEs occurred. Treatment histories were counted as displaying a trans-

generational COE if they showed at least one significant difference indicative of such a COE, namely, 

between another treatment history of the same egg mass treatment but a differing parental treatment. 

Treatment histories displayed a COE between life stages if they showed at least one significant 

difference between another treatment history that included the same parental treatment but a different 

egg mass treatment. Note that each treatment history can be counted as having been influenced by both 

types of COE, since one does not preclude the other.  

 

Note that the Bonferroni Correction was not used for any post-hoc pairwise comparisons because of its 

oft-criticised disadvantage of reducing statistical power when a high number of comparisons are made 

by increasing the probability of false negatives (Rothman, 1990; Savitz & Olzhan, 1995; Garcia, 2004). 

Using the technique would, with the 55 pairwise comparisons employed herein, cause the critical p-

value to drop from 0.05 to an exceedingly stringent 0.0009, causing some treatment histories that clearly 

differ when graphed to be labelled insignificant. It is therefore reasonable to reject the use of this 

multiple comparison adjustment on the basis that the number of comparisons being made is too high 
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for any detection of false positives to outweigh the effect of false negatives created through the use of 

the Bonferroni Correction.  

 

3.3.3.2 Growth Rate 

Data departed from normality and homogeneity of variance, not allowing for the use of repeated 

measures ANOVA. Larval growth rate (as µm per day) was calculated for 3 time periods, from hatching 

to day 9, from day 9 to day 18, and from day 18 to the end of the larval rearing period at day 27. A 

Kruskal-Wallis test was used for each of these with treatment history at 11 levels, and with post-hoc 

Mann-Whitney U tests used to identify COEs as above. This was done to observe any changes in growth 

rate between early, middle and late phases of the 27-rearing period. Growth was calculated for each 

period by subtracting the mean shell length at the first day from that of the final day in each period and 

dividing this by 10 (the number of days in each of the three periods). This was done for each larval 

container separately (n=30). 

 

3.3.3.3 Size After 27 Days 

Again, data departed from normality and homogeneity, and a Kruskal-Wallis test was used with 

treatment history as factor (11 levels; n=30 containers) for both mean size and CV per container, 

followed by post-hoc Mann-Whitney U tests for pairwise comparisons of treatment histories. This was 

again used to identify the occurrence of COEs as described above. 

 

3.3.3.4 Size at Death 

Data departed only from normality, and since it is considered robust to violations of this assumption 

(Dytham, 2011), a one-way ANOVA was used in this case to examine the difference between treatment 

histories (11 levels) in mean size at death of larvae (n= 30 containers). This was followed by a Tukey 

test employed in the same way as post-hoc tests described above.   

 

3.3.3.5 Survivorship 

Because data departed from normality and homogeneity of variance, a Kruskal-Wallis test was used to 

test for a difference between treatment histories (11 levels) in the number of surviving larvae at 27 days 

out of the initially stocked 500 per container (n=30 containers).  
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3.4 Results 

 

3.4.1 Hatching Size 

A significant difference in hatching size was found across treatment histories (Kruskal-Wallis Chi-

square=353.534; df=10; p<0.001). Mean hatching size ranged from ~120µm in larvae coming from 

unstressed parents and Cu-stressed egg masses, to ~150µm in larvae from Temp/UV-stressed parents 

and unstressed egg masses. Larvae from most treatments hatched at 140-145µm on average (Figure 

3.1). Overall, there was a high degree of variation in hatching size (Table 3.1), with trans-generational 

COEs occurring in all 11 treatment histories. COEs between life stages (ie. from embryo to larva) 

occurred in 9 treatment histories and were absent from Temp/UV/Cu-No Stress and Temp/UV/Cu-

Temp/UV, as these did not differ significantly. Of 55 pairwise comparisons, 37 showed a significant 

difference. 

 

A significant difference in the coefficient of variation (CV) was also found across treatment histories 

(Kruskal-Wallis Chi-square=20.592; df=10; p=0.024). Most treatments showed a CV of ~0.03-0.05, 

with No Stress-Cu displaying by far the highest at ~0.11 (Figure 3.2). COEs between generations were 

evident in 6 treatment histories (absent from No Stress-No Stress, Cu-No Stress, Cu-Cu, Temp/UV-No 

Stress, and Temp/UV/Cu-No Stress), and those between life stages in 5 treatment histories (absent from 

No Stress-Temp/UV, Cu-No Stress, Cu-Temp/UV, Cu-Cu, Temp/UV/Cu-No Stress, and Temp/UV/Cu-

Temp/UV) (Table 3.2). Significant differences were found in 25 of 55 pairwise comparisons.  

 

3.4.2 Growth Rate  

A significant difference in larval growth rate was found between treatment histories in all examined 

periods of larval rearing, from hatching to day 9 (Kruskal-Wallis Chi-square=25.616; df=10; p=0.004), 

from day 9 to day 18 (Kruskal-Wallis Chi-square=26.000; df=10; p=0.004), and from day 18 to day 27 

Kruskal-Wallis Chi-square=25.868; df=10; p=0.004). For the growth period between hatching and day 

9 (Figure 3.3), 9 treatment histories showed evidence of COEs between generations (absent from Cu-

Temp/UV and Temp/UC/Cu-Temp/UV, and 6 between life stages (absent from all treatment histories 

featuring no stressors or all simultaneously), with 33 of 55 pairwise comparisons being significant 

(Table 3.3). For the period between days 9 and 18 (Figure 3.4), all 11 treatment histories showed trans-

generational COEs and 9 showed COEs between life stages (absent from Temp/UC/Cu-No Stress and 

Temp/UC/Cu-Temp/UV), with 38 significantly different pairwise comparisons out of 55 (Table 3.4). 

For the last period between days 18 and 27 (Figure 3.5), trans-generational COEs manifested in 10 

treatment histories (only absent from Cu-Cu), and COEs between life stages in 7 (absent from Cu-Cu, 

Temp/UV-Cu, Temp/UC/Cu-No Stress, and Temp/UC/Cu-Temp/UV), with 26 of 55 pairwise 

comparisons yielding a significant difference (Table 3.5).  
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3.4.3 Size After 27 Days 

A significant difference was found across treatment histories in the size that larvae reached after 27 

days of rearing (Kruskal-Wallis Chi-square=142.430; df=10; p<0.001). The mean size that larvae 

reached by day 27 ranged from the smallest at ~180µm in larvae coming from Cu-stressed parents and 

egg masses to ~220µm in those from Temp/UV-stressed parents and unstressed egg masses. Most other 

treatment histories produced larvae of 190-210µm (Figure 3.6). A high degree of variation in larval 

size was revealed by pairwise comparisons (Table 3.6), as trans-generational COEs occurred in 10 of 

11 treatment histories. COEs between life stages were evident in 6 treatment histories, and absent from 

all that included parental No Stress and Temp/UV/Cu treatments. Of 55 pairwise comparisons, 24 

showed a significant difference.  

 

A significant difference in the coefficient of variation (CV) for size at 27 days was also found (Kruskal-

Wallis Chi-square=24.441; df=10; p=0.007). Overall size variability was greater than at hatching, with 

most treatment histories showing a CV of ~0.9-1.1 (Figure 3.7). Trans-generational COEs were found 

in 7 treatment histories (absent from No Stress-Cu, Cu-Cu, Temp/UV-Cu, and Temp/UV/Cu-No 

Stress), and COEs between life stages in 8 (absent from Temp/UV-Cu, Temp/UV/Cu-No Stress, and 

Temp/UV/Cu-Temp/UV (Table 3.7). Of 55 pairwise comparisons, only 17 showed a significant 

difference. 

 

3.4.4 Size at Death 

A significant difference in mean larval size at death was found between treatment histories (F= 145.72; 

df=10; p<0.001). Larvae died at average shell lengths between ~145 and ~205µm. Overall larvae tended 

to die according to adult treatment at progressively smaller sizes in the order No Stress > Cu > Temp/UV 

> Temp/UV/Cu, and at progressively smaller sizes according to egg mass treatment in the order No 

Stress > Temp/UV > Cu (Figure 3.8). A clear exception to this is the treatment history Cu-Temp/UV, 

which shows the largest of all mean sizes at death. Trans-generational COEs occurred in all 11 treatment 

histories (Table 3.8), and COEs between life stages in 9 (absent from Temp/UV/Cu-No Stress and 

Temp/UV/Cu-Temp/UV). Of 55 pairwise comparisons, 44 showed a significant difference. 

 

3.4.5 Survivorship  

No significant difference was found among treatment histories in terms of the number of surviving 

larvae at 27 days (Kruskal-Wallis Chi-square=14.662; df=10; p=0.145). Survivor numbers were highly 

variable and varied from <10 (beyond the 30 that were sampled), with treatment histories incorporating 

Cu-stressed egg masses tending to be the lowest, to ~80 as by far the highest number in Cu-Temp/UV, 

while most were ~20-45 (Figure 3.9).  
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                                                                  Egg Mass Treatment 

                        
Figure 3.1 Mean shell length (µm) at hatching (+/-95% C.I.) of S. australis larvae across treatments 

(n=30). Each bar represents one of the 11 successfully hatching treatment histories, composed of an 

adult treatment (x axis) and an egg mass treatment (colours).  

 

 

                                                                    Egg Mass Treatment 

            
Figure 3.2 Mean coefficient of variation (CV) for shell length at hatching of S. australis larvae (+/-

95% C.I.) across treatments (n=30). Each bar represents one of the 11 successfully hatching treatment 

histories, composed of an adult treatment (x axis) and an egg mass treatment (colours).  
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                                                                      Egg Mass Treatment 

           
Figure 3.3 Mean growth rate (µm per day) of S. australis larvae from hatching to day 9 of rearing 

period (+/-95% C.I.) across treatments (n=30). Each bar represents one of the 11 successfully hatching 

treatment histories, composed of an adult treatment (x axis) and an egg mass treatment (colours).  
 

                                                                    

                                                                    Egg Mass Treatment 

         
Figure 3.4 Mean growth rate (µm per day) of S. australis larvae from day 9 to day 18 (+/-95% C.I.) 

across treatments (n=30). Each bar represents one of the 11 successfully hatching treatment histories, 

composed of an adult treatment (x axis) and an egg mass treatment (colours).  
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                                                                 Egg Mass Treatment 

                 
Figure 3.5 Mean growth rate (µm per day) of S. australis larvae from day 18 to day 27 (+/-95% C.I.) 

across treatments (n=30). Each bar represents one of the 11 successfully hatching treatment histories, 

composed of an adult treatment (x axis) and an egg mass treatment (colours).  

 

                                                                    Egg Mass Treatment 

     
Figure 3.6 Mean shell length (µm) at 27 days (+/-95% C.I.) of S. australis larvae across treatments 

(n=30). Each bar represents one of the 11 successfully hatching treatment histories, composed of an 

adult treatment (x axis) and an egg mass treatment (colours). 
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                                                                     Egg Mass Treatment 

                
Figure 3.7 Mean coefficient of variation (CV) for shell length of S. australis larvae at 27 days (+/-95% 

C.I.) across treatments (n=30). Each bar represents one of the 11 successfully hatching treatment 

histories, composed of an adult treatment (x axis) and an egg mass treatment (colours).  

 

                                                                     Egg Mass Treatment 

               
Figure 3.8 Mean shell length (µm) at death of S. australis larvae (+/-95% C.I.) across treatments (n=30). 

Each bar represents one of the 11 successfully hatching treatment histories, composed of an adult 

treatment (x axis) and an egg mass treatment (colours).  
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                                                                    Egg Mass Treatment 

                     
Figure 3.9 Mean number of surviving S. australis larvae (out of 500) at 27 days (+/-95% C.I.) across 

treatments (n=30). Each bar represents one of the 11 successfully hatching treatment histories, 

composed of an adult treatment (x axis) and an egg mass treatment (colours).  
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Table 3.1 Hatching size pairwise comparisons. Results of post-hoc Mann-Whitney U tests performed 

after Kruskal-Wallis test examining the effect of treatment history (11 levels) on hatching size of larvae 

(n=30). Each treatment history incorporates an adult (parent) treatment, named first, followed by an egg 

mass treatment. Differences significant at the α=0.05 level appear in bold (p-values). Pairwise 

comparisons are also labelled according to the type of COE that would be indicated by a significant 

difference (“GEN” = trans-generational COE; “STGE” = COE between egg mass and larval life stages). 

No label is present where this distinction cannot be made. 
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No Stress - No Stress - 0.0852 

STGE 
<0.001 

STGE 

0.992 

GEN 
<0.001 0.999 <0.001 

GEN 

<0.001 0.973 0.143 

GEN 
<0.001 

No Stress - Temp/UV - - <0.001 

STGE 

0.181 <0.001 

GEN 

0.900 <0.001 <0.001 

GEN 

0.174 <0.001 <0.001 

GEN 

No Stress - Cu - - - <0.001 <0.001 <0.001 

GEN 

<0.001 <0.001 <0.001 

GEN 

<0.001 <0.001 

Cu - No Stress - - - - 0.049 

STGE 

0.781 
STGE 

<0.001 

GEN 

<0.001 0.900 0.800 
GEN 

0.004 

Cu - Temp/UV - - - - - <0.001 

STGE 

<0.001 <0.001 

GEN 

0.256 0.929 0.900 

GEN 

Cu - Cu - - - - - - <0.001 

 

<0.001 0.703 
GEN 

0.031 <0.001 

Temp/UV - No Stress - - - - - - - <0.001 

STGE 

<0.001 

STGE 

<0.001 

GEN 

<0.001 

Temp/UV - Temp/UV - - - - - - - - <0.001 

STGE 

<0.001 <0.001 

GEN 

Temp/UV - Cu  - - - - - - - - - 0.973 

 

0.054 

Temp/UV/Cu - No Stress - - - - - - - - - - 0.536 
STGE 

Temp/UV/Cu - Temp/UV - - - - - - - - - - - 
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Table 3.2 Hatching size CV pairwise comparisons. Results of post-hoc Mann-Whitney U tests 

performed after Kruskal-Wallis test examining the effect of treatment history (11 levels) on the 

coefficient of variation (CV) for hatching size of larvae (n=30). Each treatment history incorporates an 

adult (parent) treatment, named first, followed by an egg mass treatment. Differences significant at the 

α=0.05 level appear in bold (p-values). Pairwise comparisons are also labelled according to the type of 

COE that would be indicated by a significant difference (“GEN” = trans-generational COE; “STGE” = 

COE between egg mass and larval life stages). No label is present where this distinction cannot be 

made. 
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No Stress - No Stress - 0.127 

STGE 
<0.001 

STGE 

0.077

GEN 

0.083 0.050 0.827

GEN 
<0.001 0.050 0.513

GEN 

0.513 

No Stress - Temp/UV - - <0.001 
STGE 

0.827 0.827

GEN 

0.248 0.275 0.050

GEN 

0.083 0.083 0.827

GEN 

No Stress - Cu - - - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

GEN 

<0.001 <0.001 

Cu - No Stress - - - - 0.827 

STGE 

0.083 

STGE 

0.127

GEN 
0.015 0.050 0.083

GEN 

0.513 

Cu - Temp/UV - - - - - 0.083 

STGE 

0.275 0.015

GEN 

0.050 0.513 0.513

GEN 

Cu - Cu - - - - - - 0.083 0.043 0.900

GEN 

0.564 0.083 

Temp/UV - No Stress - - - - - - - <0.001 

STGE 

0.043 

STGE 

0.513

GEN 

0.827 

Temp/UV - Temp/UV - - - - - - - - 0.015 

STGE 

0.050 0.050

GEN 

Temp/UV - Cu  - - - - - - - - - 0.248 0.043 

 

Temp/UV/Cu - No Stress - - - - - - - - - - 0.513 

STGE 

Temp/UV/Cu - Temp/UV - - - - - - - - - - - 
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Table 3.3 Hatching to day 9 growth rate pairwise comparisons. Results of post-hoc Mann-Whitney U 

tests performed after Kruskal-Wallis test examining the effect of treatment history (11 levels) on larval 

growth rate (n=30). Each treatment history incorporates an adult (parent) treatment, named first, 

followed by an egg mass treatment. Differences significant at the α=0.05 level appear in bold (p-values). 

Pairwise comparisons are also labelled according to the type of COE that would be indicated by a 

significant difference (“GEN” = trans-generational COE; “STGE” = COE between egg mass and larval 

life stages). No label is present where this distinction cannot be made. 
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No Stress - No Stress - 0.184 
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0.083 
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0.077
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0.127 <0.001 <0.001

GEN 

<0.001 <0.001 <0.001

GEN 

<0.001 

No Stress - Temp/UV - - 0.083 

STGE 

0.184 0.513

GEN 
<0.001 <0.001 <0.001

GEN 

<0.001 <0.001 <0.001
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No Stress - Cu - - - 0.564 0.900 <0.001

GEN 
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Cu - No Stress - - - - 0.827 
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Temp/UV - Cu  - - - - - - - - - <0.001 <0.001 

 

Temp/UV/Cu - No Stress - - - - - - - - - -  0.513 
STGE 

Temp/UV/Cu - Temp/UV - - - - - - - - - - - 
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Table 3.4 Day 9 to 18 growth rate pairwise comparisons. Results of post-hoc Mann-Whitney U tests 

performed after Kruskal-Wallis test examining the effect of treatment history (11 levels) on larval 

growth rate (n=30). Each treatment history incorporates an adult (parent) treatment, named first, 

followed by an egg mass treatment. Differences significant at the α=0.05 level appear in bold (p-values). 

Pairwise comparisons are also labelled according to the type of COE that would be indicated by a 

significant difference (“GEN” = trans-generational COE; “STGE” = COE between egg mass and larval 

life stages). No label is present where this distinction cannot be made. 
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No Stress - No Stress - 0.083 
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<0.001 <0.001 0.827

GEN 
<0.001 0.046 <0.001

GEN 

<0.001 

No Stress - Temp/UV - - <0.001

STGE 
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GEN 

0.043 0.050 <0.001

GEN 

0.767 <0.001 <0.001

GEN 

No Stress - Cu - - - 0.083 <0.001 <0.001

GEN 

0.043 <0.001 0.012

GEN 

<0.001 <0.001 

Cu - No Stress - - - - <0.001
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STGE 

0.513
GEN 
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GEN 
<0.001 
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<0.001 0.275

GEN 
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GEN 
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STGE 
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STGE 

<0.001

GEN 

<0.001 

Temp/UV - Temp/UV - - - - - - - - 0.012 

STGE 

0.121 0.827
GEN 

Temp/UV - Cu  - - - - - - - - - <0.001 <0.001 

 

Temp/UV/Cu - No Stress - - - - - - - - - -  0.268 
STGE 

Temp/UV/Cu - Temp/UV - - - - - - - - - - - 
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Table 3.5 Day 18 to 27 growth rate pairwise comparisons. Results of post-hoc Mann-Whitney U tests 

performed after Kruskal-Wallis test examining the effect of treatment history (11 levels) on larval 

growth rate (n=30). Each treatment history incorporates an adult (parent) treatment, named first, 

followed by an egg mass treatment. Differences significant at the α=0.05 level appear in bold (p-values). 

Pairwise comparisons are also labelled according to the type of COE that would be indicated by a 

significant difference (“GEN” = trans-generational COE; “STGE” = COE between egg mass and larval 

life stages). No label is present where this distinction cannot be made. 
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No Stress - No Stress - <0.001 

STGE 

0.005 

STGE 

0.005

GEN 

0.005 0.248 0.184

GEN 
<0.001 0.197 0.050

GEN 

0.197 

No Stress - Temp/UV - - 0.083 

STGE 
<0.001 0.827

GEN 

0.083 <0.001 0.827

GEN 
0.005 0.127 0.050

GEN 

No Stress - Cu - - - <0.001 0.564 0.221

GEN 
<0.001 0.139 <0.001 

GEN 

0.564 

 

0.083 

Cu - No Stress - - - - <0.001 

STGE 

0.083 
STGE 

0.050 

GEN 

<0.001 0.076 <0.001 

GEN 

<0.001 

Cu - Temp/UV - - - - - 0.248 

STGE 
<0.001 0.513

GEN 
0.007 0.275 0.050

GEN 

Cu - Cu - - - - - - 0.083 0.083 0.102
GEN 

0.248 0.900 

Temp/UV - No Stress - - - - - - - <0.001 

STGE 

0.554 

STGE 
<0.001 

GEN 

0.007 

Temp/UV - Temp/UV - - - - - - - - <0.001 
STGE 

0.275 0.050

GEN 

Temp/UV - Cu  - - - - - - - - - 0.050 0.076 

 

Temp/UV/Cu - No Stress - - - - - - - - - -  0.077 
STGE 

Temp/UV/Cu - Temp/UV - - - - - - - - - - - 
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Table 3.6 Size at day 27 pairwise comparisons. Results of post-hoc Mann-Whitney U tests performed 

after Kruskal-Wallis test examining the effect of treatment history (11 levels) on size of larvae at day 

27 (n=30). Each treatment history incorporates an adult (parent) treatment, named first, followed by an 

egg mass treatment. Differences significant at the α=0.05 level appear in bold (p-values). Pairwise 

comparisons are also labelled according to the type of COE that would be indicated by a significant 

difference (“GEN” = trans-generational COE; “STGE” = COE between egg mass and larval life stages). 

No label is present where this distinction cannot be made. 
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No Stress - No Stress - 0.318 

STGE 

0.997 
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0.900 

GEN 

0.720 <0.001 <0.001 

GEN 

0.900 <0.001 0.900 

GEN 

0.387 

No Stress - Temp/UV - - 0.976 

STGE 

0.059 <0.001 

GEN 

<0.001 0.387 0.073 

GEN 
<0.001 0.108 <0.001 

GEN 

No Stress - Cu - - - 0.890 0.221 <0.001 

GEN 

0.031 0.914 <0.001 

GEN 

0.952 0.076 

Cu - No Stress - - - - 0.982 
STGE 

<0.001 

STGE 

<0.001 

GEN 

0.900 0.015 0.900 
GEN 

0.847 

Cu - Temp/UV - - - - - <0.001 

STGE 

<0.001 0.973 

GEN 

0.290 0.943 0.900 

GEN 

Cu - Cu - - - - - - <0.001 <0.001 0.280 
GEN 

<0.001 <0.001 

Temp/UV - No Stress - - - - - - - <0.001 

STGE 

<0.001 

STGE 

<0.001 

GEN 

<0.001 

Temp/UV - Temp/UV - - - - - - - - 0.012 

STGE 

0.900 0.809 
GEN 

Temp/UV - Cu  - - - - - - - - - 0.007 

 

0.575 

Temp/UV/Cu - No Stress - - - - - - - - - - 0.720 
STGE 

Temp/UV/Cu - Temp/UV - - - - - - - - - - - 
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Table 3.7 Size at day 27 CV pairwise comparisons. Results of post-hoc Mann-Whitney U tests 

performed after Kruskal-Wallis test examining the effect of treatment history (11 levels) on the 

coefficient of variation (CV) for larval size at 27 days (n=30). Each treatment history incorporates an 

adult (parent) treatment, named first, followed by an egg mass treatment. Differences significant at the 

α=0.05 level appear in bold (p-values). Pairwise comparisons are also labelled according to the type of 

COE that would be indicated by a significant difference (“GEN” = trans-generational COE; “STGE” = 

COE between egg mass and larval life stages). No label is present where this distinction cannot be 

made. 
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0.083 
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0.513

GEN 
0.050 0.083 0.050

GEN 

0.050 0.564 0.513

GEN 

0.127 

No Stress - Temp/UV - - 0.050 

STGE 

0.050 0.050

GEN 

0.900 0.050 0.127

GEN 

0.083 0.050 0.050

GEN 

No Stress - Cu - - - 0.248 0.248 0.121

GEN 

0.564 0.043 0.439

GEN 

0.564 0.043 

Cu - No Stress - - - - 0.050 

STGE 

0.083 

STGE 
0.050

GEN 

0.275 0.083 0.248
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0.127 

Cu - Temp/UV - - - - - 0.050 
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0.275 0.050
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GEN 

0.083 0.083 
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0.248 

STGE 

0.275

GEN 
0.050 

Temp/UV - Temp/UV - - - - - - - - 0.083 

STGE 

0.083 0.127

GEN 

Temp/UV - Cu  - - - - - - - - - 0.564 0.083 

 

Temp/UV/Cu - No Stress - - - - - - - - - - 0.275 

STGE 

Temp/UV/Cu - Temp/UV - - - - - - - - - - - 
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Table 3.8 Size at death pairwise comparisons. Results of post-hoc Tukey tests performed after one-way 

ANOVA examining the effect of treatment history (11 levels) on mean size at death of larvae (n=30). 

Each treatment history incorporates an adult (parent) treatment, named first, followed by an egg mass 

treatment. Differences significant at the α=0.05 level appear in bold (p-values). Pairwise comparisons 

are also labelled according to the type of COE that would be indicated by a significant difference 

(“GEN” = trans-generational COE; “STGE” = COE between egg mass and larval life stages). No label 

is present where this distinction cannot be made. 

 

 

 

Pairwise Comparisons 

between Treatment 

Histories  
(parent treatment – egg 

mass treatment) 

N
o

 S
tr

es
s 

- 
N

o
 S

tr
es

s 

N
o

 S
tr

es
s 

- 
T

em
p

/U
V

 

N
o

 S
tr

es
s 

- 
C

u
 

C
u

 -
N

o
 S

tr
es

s 

C
u

 -
 T

em
p

/U
V

 

C
u

 -
 C

u
 

T
em

p
/U

V
 -

 N
o

 S
tr

es
s 

T
em

p
/U

V
 -

 T
em

p
/U

V
 

T
em

p
/U

V
 -

 C
u

 

T
em

p
/U

V
/C

u
 -

 N
o

 S
tr

es
s 

T
em

p
/U

V
/C

u
 -

 T
em

p
/U

V
 

No Stress - No Stress - <0.001 

STGE 

<0.001 

STGE 

<0.001 

GEN 

0.251 <0.001 <0.001 

GEN 

<0.001 <0.001 <0.001 

GEN 

<0.001 

No Stress - Temp/UV - - <0.001 

STGE 

0.900 <0.001 

GEN 

<0.001 <0.001 <0.001 

GEN 

<0.001 <0.001 <0.001 

GEN 

No Stress - Cu - - - <0.001 <0.001 <0.001 

GEN 

0.762 0.538 0.008 

GEN 

0.103 <0.001 

Cu - No Stress - - - - <0.001 

STGE 

<0.001 

STGE 

<0.001 

GEN 
<0.001 <0.001 <0.001 

GEN 
<0.001 

Cu - Temp/UV - - - - - <0.001 

STGE 
<0.001 <0.001 

GEN 
<0.001 <0.001 <0.001 

GEN 
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STGE 
<0.001 

STGE 
<0.001 

GEN 
<0.001 

Temp/UV - Temp/UV - - - - - - - - 0.681 
STGE 

0.998 0.051 
GEN 

Temp/UV - Cu  - - - - - - - - - 0.988 0.988 

 

Temp/UV/Cu - No Stress - - - - - - - - - - 0.431 
STGE 

Temp/UV/Cu - Temp/UV - - - - - - - - - - - 
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3.5 Discussion 

 

COEs between generations and between life stages are both demonstrated by these results, which show 

that characteristics of S. australis larvae can be significantly influenced by global change-type intertidal 

stressors experienced by progenitors and during embryonic development in egg masses. Trans-

generational influences were detected slightly more often than effects between life stages. Generally 

however, treatment histories displayed an interaction between both types of COE, whereby trans-

generational effects altered the ways in which stressors during development affected larvae, and 

conversely, effects from egg masses to larvae altered the ways in which stress effects from parent to 

offspring were manifested. Consequently, all examined larval responses, except survivorship, were 

highly context-dependent and based on specific parental and egg mass treatment combinations.   

 

Hatching size of larvae showed a high degree of variation, with the smallest mean hatching size up to 

~20% lower than the largest. There were clear COEs between the benthic egg mass and planktonic 

larval stage, as larvae from egg masses treated with Cu or Temp/UV tended to have smaller hatching 

sizes relative to unstressed egg masses for each parental treatment. Decreases in hatching size are 

commonly seen in metal toxicity tests (Johnson et al., 2007), as Cu decelerates embryonic growth rates 

in many organisms, even at concentrations lower than those used here (Bryan, 1971). In contrast, 

similarly high temperature is mostly associated with an increase in embryonic growth in molluscs 

(Spight, 1975; Caveriviere et al., 1999) and should thus be expected to yield larger hatchlings. This is 

not evident here, and it is likely that UVR exposure, which is highly deleterious to developing embryos 

at identical levels to those used here (Fisher & Phillips, 2014) counteracted any potential positive effects 

of high temperature through synergistic interaction as described by Crain et al. (2008). Small hatching 

size is usually considered disadvantageous as it increases susceptibility to starvation and predation 

during later larval stages (Moloney et al., 1994). Note however, that small hatching size may confer 

advantages through enhanced dispersal, which would allow larvae to escape local stressors (Krug, 

1998), and that small hatching size may not necessarily represent a negative COE.  

 

No clear patterns based on parental treatment alone were found for hatching size. Instead, COEs 

between life stages interacted with trans-generational COEs in complex ways. For example, egg masses 

stressed with Cu had larger hatching larvae when laid by stressed adults. When parents were unstressed, 

developmental Cu exposure caused the smallest of all mean hatching sizes. Thus parental stress 

evidently modified how embryos coped with exposure to Cu. Larger size may in this case be indicative 

of an anticipatory maternal effect (AME) that rendered offspring resistant to stress previously 

experienced by the parental generation and able to grow larger before hatching (Bernardo, 1996). There 

is support for such an interpretation, as AMEs have been recorded in response to various pollutants in 

diverse aquatic taxa, including cadmium in fish (Lin et al. 2000), mercury in annelid worms (Vidal & 
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Horne, 2003), and Cu in gastropods (Untersee & Pechenik, 2007). Interaction between the two types of 

COE was widespread and the remainder of its consequences cannot easily be generalised as most 

treatment histories differed from most others (37 significantly different pairwise comparisons). 

 

The coefficients of variation (CV) calculated for hatching size was on the other hand more uniform 

among treatments (only 25 significant pairwise differences), which means that although most treatment 

histories differed in mean hatching size, most showed similar degrees of variation in size. The most 

notable exceptions are No Stress-Cu and Temp/UV-Temp/UV, which displayed a CV twice as high or 

more than others, as well as the lowest mean hatching sizes. Although high within-brood offspring size 

variation such as this has been linked to increased maternal fitness through bet-hedging in highly 

stressful or variable environments (Marshall et al., 2008b), the parents of No Stress-Cu larvae were 

unstressed, and this interpretation can therefore not be applied in this case. It is likely that the growth-

decelerating effects of Cu mentioned above, while reducing growth of all larvae in this treatment history 

when applied to egg masses, did so to a greater extent in some individuals than others. Similarly, for 

Temp/UV-Temp/UV larvae, some individuals may have been more heavily impacted by the growth-

accelerating effects of high temperature, and some more so by the deleterious effects of UVR, causing 

the presence of both relatively large and somewhat stunted embryos prior to hatching. The fact that 

other egg masses treated with either Cu or Temp/UV did not show comparable size variation again 

serves to underline the high degree of parent-embryo stress interaction resulting in very context-

dependent larval traits.    

 

Growth rate also showed interaction between the two types of COE through high variability among 

treatment histories. Growth rate between days 9 and 18 was the most context-dependent, followed by 

that between hatching and day 9 and finally between days 18 and 27 (with 38, 33 and 26 significantly 

different pairwise comparisons respectively). Two notable patterns emerged through larval growth 

rates. Firstly, larvae from No Stress-Cu egg masses, which hatched as the smallest but became some of 

the largest, were distinct from other larvae stressed with Cu as embryos in having an extremely high 

growth rate between days 9 and 18. This indicates a strong response to release from stress, perhaps 

mediated by a form of selection. Because these larvae were the offspring of unstressed parents, no 

AMEs can account for this elevated growth rate. It is therefore possible that these larvae represent very 

robust individuals, as weak embryos may have been prevented from completing development 

successfully by Cu exposure. Subsequently, when transferred to the ambient conditions of rearing 

containers, these strong individuals were unimpeded and may have thus been able to exceed other larvae 

in growth rate, at least for the middle phase of rearing. Ritter et al. (2010), described a similar scenario 

in algae, where only resistant individuals survived Cu exposure, and suggested that this metal acts as a 

selective force that can lead to the formation of adaptively resistant strains. 
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Secondly, the observed growth rates of larvae from Temp/UV-treated egg masses, somewhat contradict 

results obtained by Fisher & Phillips (2014), who demonstrated reduced larval growth (in stressed and 

unstressed larvae) over the first 10 days after hatching in response to these egg mass stressors. However, 

larvae in the current study responded in this way only between days 9 and 18. Relative to larvae from 

unstressed egg masses, their growth rates were virtually identical from hatching to day 9, and actually 

tended to be greater between days 18 and 27. Additionally, size at day 27 was also similar between 

larvae from Temp/UV and unstressed egg masses, while Temp/UV-treated egg masses tended to 

produce slightly smaller hatching size. Together, these results imply that larvae were able to recover 

from the high impact of temperature and UVR stress during embryonic development (also shown by 

Fisher & Phillips, 2014), provided that the larval phase was devoid of stress. In contrast, recovery 

appears not to be the case for larvae that experienced Cu stress during development, except for larvae 

of the No Stress-Cu treatment history discussed above, which reaffirms the notion that heavy metals 

constitute a particularly strong stressor during early development (Bryan, 1971). 

 

By day 27, larvae from Cu-exposed egg masses showed opposite trends to size at hatching, now being 

substantially smaller if their parents had been stressed. This may indicate that their initially large size 

at hatching may not in fact have conferred an advantage as they were overtaken in size by almost all 

other larvae during the rearing period. This is confirmed by their low growth rates throughout. Thus 

results here closely mirror those by Marshall (2008), who found bryozoan offspring to initially show 

positive results in response to parental Cu exposure, but suffer a delayed performance reduction. This 

is evidence not only for an interaction between both types of COE, but also for the effects of this 

interaction to vary as the affected organism grows.  

 

Further, because fewer COEs of both types were found for size at day 27 than hatching size, this 

indicates that larvae were most strongly affected by COEs immediately upon hatching, and that this 

influence diminished over time. This is in contrast to “latent” responses, which are also often recorded 

but manifest later rather than sooner in the life history of organisms and often not at all until adulthood, 

particularly for effects between life stages (review by Pechenik, 2006). However, this trend remains 

speculative for S. australis as post-metamorphic stages were not examined, and it is possible that later 

life stages would display stronger COEs.  

 

Overall, although the smallest and largest mean sizes varied by ~30% by day 27, larval size was more 

uniform than at hatching, as only 24 pairwise comparisons yielded significant differences. This is 

supported by the lowest growth rate context-dependency being found towards the end of the rearing 

period, and very low context-dependency in larval size variation at day 27 (only 17 significantly 

different pairwise comparisons). This means that larval sizes converged during rearing from initially 

disparate starting points at hatching. This is most likely the result of compensatory growth rather than 
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size-selective mortality, as all treatment histories showed higher coefficients of variation at day 27 than 

at hatching. Although the opposite trend would be expected under size-selective mortality in surviving 

larvae, the mean sizes of recovered dead shells do suggest that treatments influenced size at death.  

 

Mean size at death was partly determined by COEs between life stages, as larvae from unstressed egg 

masses tended to die at larger sizes than those of Temp/UV treated egg masses, followed by those 

exposed to Cu, with the exception of Cu-Temp/UV larvae, which died at a very large size. They were 

also the result of trans-generational COEs, whereby larvae of unstressed parents died larger than those 

of Cu, followed by Temp/UV and lastly Temp/UV/Cu-stressed parents. This is reminiscent of the 

pattern seen for embryo viability in Chapter 2, and shows that size at death decreased according to both 

parental and developmental influences. This illustrates again that trans-generational COEs interacted 

with COEs between life stages to determine size at death, as larvae died according to egg mass treatment 

in a similar pattern under each adult treatment, but at progressively smaller sizes. Size at death was also 

the larval character seemingly most influenced by this interaction as it showed the highest context-

dependency with 44 significantly different pairwise comparisons.  

 

Furthermore, control larvae from the No Stress-No Stress treatment history, as well as those from Cu-

Temp/UV, showed mean sizes at death that were almost identical to their mean size reached at day 27. 

Although age at death is unknown, this nonetheless suggests that in these treatment histories, large 

numbers of larvae probably died within a short space of time near the 27-day mark at a late stage of 

growth. This may be indicative of mortality due to a lack of settlement opportunity and delayed 

metamorphosis, since 27 days represents an unusually long larval duration for Siphonaria limpets 

(Hodgson, 1999). Control larvae may thus have been ready to settle sooner than most other treatment 

histories, for which the interaction between parental and developmental stage stress postponed their 

reaching of the point of competence. This is in keeping with the results of other studies, which found 

early life stage stress, particularly high temperature, to delay metamorphosis (Diaz-Perez & Carpizo-

Ituarte, 2011), and maternal stress to extend settlement-site selection periods in marine invertebrates 

(Marshall & Keough, 2003). In contrast, Cu-Cu constituted the only treatment history in which larvae 

tended to die at very small sizes, very close to those at which they hatched. When considered in 

conjunction with this treatment’s poor growth rate, this shows that a combination of parental and 

developmental Cu stress represented the most deleterious of all observed COEs and that resistance was 

not imparted by the parental generation, again supporting Marshall (2008). 

 

Despite the highly context-dependent responses of larva size and growth, survivorship was universally 

low and did not vary significantly, with most treatment histories retaining only ~5% of their initial larval 

stock by the end of the rearing period. S. australis larvae have never been kept alive under laboratory 

conditions for longer, and never in numbers as high as in this study. Therefore, this high mortality may 
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be explained by the relative fragility of S. australis larvae. However, it may also be the case that high 

mortality was seen in different treatment histories for different reasons, and that this can be attributed 

to settlement prevention in control larvae (as discussed above) and to stress-induced COEs in others, 

since larval mortality has been shown to increase due to developmental (Fisher & Phillips, 2014; review 

by Pechenik, 2006) and parental stress (review by Marshall et al., 2008) in diverse marine taxa. 

However, it must be acknowledged that replication in terms of the numbers of egg masses that provided 

larvae for each treatment was low (2-3). Consequently, some of the variability discussed for the various 

larval responses may be due to genetic differences between parents rather than treatment, as maternal 

effects unrelated to stress exposure can also be significant determinants of larval characteristics (review 

by Marshall et al., 2008).  

 

Finally, these results allow for the first assessment of the relative frequency of the two types of COE to 

be made. Trans-generational effects were slightly more common than effects between the egg mass and 

larval stage in all examined response variables. Therefore, trans-generational effects played a 

proportionately greater role in determining larval characteristics relating to growth and size than 

developmental stress. This is somewhat surprising since the literature surrounding effects between life 

stages is more extensive and more advanced in terms of theoretical considerations of ecological and 

evolutionary significance than that covering trans-generational effects (reviews by Pechenik, 2006; 

O’Connor et al., 2014), which remains the scene of much debate (reviews by Youngson & Whitelaw, 

2008; Bonduriansky, 2012; Bateson, 2014; Burton & Metcalfe, 2014). The hypothesis of highly-context 

dependent larval characteristics due to interaction between the two types of COE was nonetheless 

clearly supported throughout.  

 

Ultimately, this extends the conclusion reached in Chapter 2, namely that COEs between generations 

may become more common under ongoing anthropogenic change, by highlighting that the same applies 

to COEs between life stages. Most importantly, it is shown that both forms of COE, each triggered by 

multiple global change-associate stressors, interact to negatively affect the performance of an unstressed 

life stage in highly complex ways. Because more than one stressor, generation and life stage have not 

previously been employed simultaneously to demonstrate results like these, the existing literature may 

be underestimating the role of COEs in the persistence of marine invertebrates under ongoing global 

change.  
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CHAPTER 4 

General Discussion 

 

Global change is increasingly impacting coastal marine systems (Harley et al., 2006; Halpern et al., 

2008). Of particular concern are organisms inhabiting the intertidal, which may be especially vulnerable 

because they are already subjected to naturally stressful, highly variable conditions that may exceed 

their tolerance limits when augmented by additional anthropogenic influences (Clarke, 1996; Tomanek 

& Somero, 1999; Stillman, 2002). Ongoing climate change and historical ozone depletion are 

conspiring to routinely raise water temperature and UVR exposure in tide pools to levels that are lethal 

or capable of causing severe sub-lethal effects (Thompson et al., 2002). In addition, increasing human 

populations and activities along coastlines cause marine organisms to come into contact with pollutants 

more frequently, such as the heavy metal copper (Cu) (Stoffers et al., 1986).  

 

Despite growing interest in predictive models of ecosystem responses, accurate forecasts of even single-

species responses have so far been hampered by a dearth of realistic empirical data. In nature, organisms 

are invariably subjected to multiple co-occurring and interacting stressors, yet most global change-

related studies use only a single stressor (Crain et al., 2008). Further, it is now understood that organisms 

with complex life histories incur profound costs in a given life stage based on their performance or 

stress exposure in previous stages through carry-over effects (COEs) that transcend metamorphic 

boundaries. Yet most experiments examine the responses of only a single stage (Pechenik, 2006). 

Perhaps most importantly, organisms are also subjected to poorly understood, non-genetic trans-

generational influences, and again, these are often ignored (Marshall, 2008). Because of these 

limitations, the true consequences of stress exposure for a given organism at a given point in its life 

history may be underestimated and much more far-reaching than generally acknowledged.   

 

Although awareness of synergistic stressor interactions and the use of multifactorial designs is 

increasing (Wernberg et al., 2012), comparatively little attention has been given to how stress 

propagates through the often dramatically disparate life stages of marine organisms or how it’s effects 

are passed through to successive generations, especially in a global change context. The current study 

examined all of these key considerations simultaneously. First, adults of the pulmonate limpet 

Siphonaria australis and their egg masses were subjected to different combinations of high water 

temperature, elevated UVR and Cu pollution, all at realistic levels (Chapter 2). Subsequently the 

hatching larvae were reared in the absence of stress in order to ascertain how they were affected by 

stress experienced during embryonic development and by the parental generation (Chapter 3). Through 

this novel approach, it was hoped that more realistic insights into COEs would be gained than have been 

experimentally achieved to date.  
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4.1 Summary of Findings 

 

Adult S. australis showed responses that can be directly attributed to treatment only in terms of survivor 

size, where those exposed to Cu experienced size-selective mortality favouring smaller individuals, as 

can occur in other taxa (Perez et al., 2006; Agatz et al., 2012). In contrast, the number of egg masses 

laid, the size of these egg masses, and the size of the individual eggs they contained varied in complex 

ways over the adult treatment period and most likely reflect maternal variability among adult limpets 

(Ito, 1997; Phillips, 2007; Marshall et al., 2008), while the number of adult survivors was relatively 

uniform. These results suggest that the parental generation suffered relatively minor direct effects due 

to their greater tolerance of stress compared to early life stages. Generally, low levels of stress or short 

exposure times (as were used here) rarely invoke strong responses in adults of most taxa (Hodson et al., 

1979; Eisler, 1997; De Pirro & Marshall, 2005). Despite minimal effects in adults, the stress levels used 

clearly initiated legacies of mostly impaired performance that persisted throughout the observed lives 

of offspring. 

 

Although hatching time was unaffected in egg masses, they were much more vulnerable to identical 

stress levels than adults, and displayed strong responses in hatching success and embryo viability that 

are directly attributable to egg mass treatment, as described by Russell & Phillips (2009) and Fisher & 

Phillips (2014), as well as to trans-generational COEs originating in the treatment of adult limpets. All 

egg masses treated with extreme stress failed to hatch, Cu alone reduced hatching success to two thirds 

and, crucially, Cu also prevented hatching when parents experienced extreme stress, illustrating a highly 

specific trans-generational COE. This reaffirms the critical role of heavy metal exposure during 

development in egg masses (Conrad, 1988; Mayer-Pinto et al., 2010) and its capacity to interact 

synergistically with other stressors (Crain et al., 2008), but in this case contradicts studies that have 

found parental toxin exposure to impart resistance to offspring (Lin et al. 2000; Vidal & Horne 2003; 

Untersee & Pechenik, 2007). This context-dependency was mirrored by the viability of embryos, which 

declined according to complex interactions between egg mass and parental stressors. Here, trans-

generational COEs manifested widely, since parental treatment was identified as influencing embryo 

viability in all 11 treatment histories. This offered strong support for the hypothesis that offspring 

vulnerability reflects parental experiences.  

 

In larvae, there continued to be highly context-dependent results due to complex interaction between 

the two types of COE, as each treatment history performed differently from almost all others in all 

examined traits except survivorship. Hatching size was reduced by egg mass stress of all kinds, most 

likely due to synergistic interaction between high temperature and UVR for the Temp/UV treatment 

(Crain et al., 2008; Fisher & Phillips, 2014), and the decelerating effects on embryonic growth of heavy 
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metals for the Cu treatment (Bryan, 1971: Johnson et al., 2007). Importantly, the decrease in hatching 

size also partly depended on parental treatment. Most notably, Cu-stressed egg masses produced larger 

hatchlings when parents were also under some form of stress, potentially revealing an anticipatory 

maternal effect similar to those observed under heavy metal stress in other taxa (Lin et al. 2000; Vidal 

& Horne, 2003; Untersee & Pechenik, 2007).  

 

Similarly complex responses accrued throughout the larval period. By day 27, the initial advantage of 

large size in hatchlings of Cu-stressed egg masses and stressed parents disappeared, as these larvae 

suffered low growth rates and became some of the smallest. This shows a delayed performance 

reduction based on parental Cu exposure that has previously been demonstrated in other taxa (Marshall, 

2008). Overall, larval sizes differed less by day 27 than upon hatching, showing that the influence of 

COEs diminished during the course of the larval rearing period through strong effects on growth rate, 

particularly between days 9 and 18. This does not illustrate latent effects but instead supports the notion 

that COEs have greater influence early in successive life stages rather than late (review by Pechenik, 

2006). In the case of the anomalously high growth rate displayed by larvae from unstressed parents and 

copper-stressed egg masses, this may be the consequence of selective pressures acting on still 

developing embryos within egg masses, leading to an adaptive toxin resistance akin to that commonly 

found in algae (Ritter et al. 2010). Growth rate in larvae from Temp/UV-treated egg masses was 

surprisingly high, attaining levels equal to those of larvae from unstressed egg masses, and contradicted 

the high vulnerability documented by Fisher & Phillips (2014) under identical egg mass stress. This 

implies that unstressed larvae are capable of recovering from certain stressors experienced during 

embryonic development, namely high temperature and UVR, but not others, in this case Cu, and 

reaffirms this stressor’s reputation as particularly harmful for the early life stages of marine 

invertebrates (Bryan, 1971). 

 

Size at death closely recalled the step-like pattern first observed in embryo viability, both of which 

demonstrate a hierarchy of influence among the stressors.  Interestingly, this hierarchy differed slightly 

between the two forms of COEs. Trans-generational influences were most negative when adult limpets 

were subjected to all stressors, followed by Temp/UV, then Cu and finally No Stress. COEs between 

life stages on the other hand, were most negative when egg masses were exposed to Cu, and less so 

when treated with Temp/UV. This disparity in influence of Cu and Temp/UV between adult and 

embryonic S. australis is supported by the wider literature, which notes that heavy metals are 

disproportionately deleterious in very early life stages (Bryan, 1971; Eisler, 1997). Overall, almost all 

treatment histories showed smaller sizes at death than control larvae, which indicates that any form of 

stress experienced either by parents or during development, and not necessarily both, has negative 

influences on larvae and a potential propensity to increase larval duration and postpone the point of 
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competence, although this remains speculative. In this respect, larvae herein emulated trends already 

observed in other taxa (Marshall & Keough, 2003; Diaz-Perez & Carpizo-Ituarte, 2011). Larvae whose 

parents and egg masses were exposed to copper died at sizes very close to that at which they hatched, 

and thus probably young. In addition, synergistic stressor interactions were observed through the low 

values of hatching viability and larval size at death for the parental Temp/UV/Cu treatment, and the 

absence of successful hatching for egg masses treated with Temp/UV/Cu. Thus when combined, climate 

change stress (temperature and UVR) and pollution were more deleterious than when occurring alone 

in these instances. 

 

Finally, trans-generational COEs manifested more frequently than those between life stages, and were 

thus somewhat more influential in determining larval characteristics. Such an assessment of the relative 

frequency of the two types of COE has not been made before. Considering the more exhaustive and 

advanced literature surrounding COEs between life stages, the apparent prominence of parental 

influences in S. australis is surprising. However, due to the wide-spread interaction between both types 

of COEs observed herein, and the particularly conspicuous role of developmental Cu exposure in many 

treatment histories, effects between generations should not be described as more “important” than 

effects between life stages, as other authors have done (Wade, 1998). This study has demonstrated that 

multiple, realistic, global change-associated stressors affecting a parental generation of S. australis and 

its offspring’s development, can continue to influence planktonic larvae in complex ways. Overall, the 

limpet’s legacy under global change stressors is one of impaired performance. The key implication is 

that existing research has so far underestimated the true scope of global change-induced COEs.  

 

4.2 Further Directions for COE Research 

 

This research highlights a need for the previous history of individuals as well as that of their progenitors 

to be incorporated into predictions of responses to global change. While the COE literature is extensive, 

it is largely restricted to studies examining either COEs between life stages or between generations and 

experimental designs utilising only single stressors despite previous calls for a more integrative 

approach (Padilla & Miner, 2006). Since consideration of both forms of COEs simultaneously and in 

conjunction with multiple stressors is undoubtedly a more realistic representation of the conditions 

under which COEs manifest in the field, this approach will need to be applied more widely in order to 

accurately gage the role of COEs under ongoing global change. This means applying a similar 

methodology as herein to more species, particularly representatives of other ecosystems and taxonomic 

or functional groups. Siphonarid limpets are particularly stress tolerant compared to other intertidal 

gastropods (Hodgson, 1999), especially to copper exposure as adults (De Pirro & Marshall, 2005) and 

to UVR during development in egg masses (Wraith et al., 2006). In less tolerant species it is unknown 

whether the influence of COEs may be somewhat diminished by higher rates of immediate mortality, 



64 
 

or on the other hand, whether COEs may be more pronounced and occur with greater severity than in 

S. australis. It would therefore be of interest to compare the relative importance of stress-induced COEs 

and direct effects between robust and fragile taxa. 

 

More stressors will also need to be examined for their capacity to trigger COEs, especially biotic rather 

than abiotic factors, such as predation pressure or disease, which are rarely considered in discussions of 

COEs. It is also recommended that research subjects for which metamorphosis-inducing procedures 

have been established, such as for example abalone (Williams & Degnan, 2009), should be used for 

future COE studies since settlement of S. australis larvae was unfortunately not achieved. This would 

allow for examination of COEs in offspring into adulthood and to reproductive maturity, and should be 

complemented with considerations of more diverse response variables. This is because by this time, the 

observed CEOs on growth or size of larvae may even out and be of little consequence, while other 

characters, such as size of feeding apparatus (Fisher & Phillips, 2014), may influence individuals even 

late in life. Moreover, multi-generational experiments that are facilitated by such an approach are 

already increasing in frequency, and this likely represents the next major trend in COE research (Shama 

& Wegner, 2014). 

 

Given the strong links between global change and COEs discussed throughout, it may also be necessary 

in the future to discern regional patterns of COE susceptibility, since some areas may experience certain 

stressors more severely. For example, New Zealand intertidal marine organisms may be particularly 

prone to COEs due to high summer UVR (McKenzie et al., 1999). It is likely that COEs will in the 

future gain recognition as a major factor in species and population persistence in the face of 

anthropogenic disturbance (Chevin & Lande, 2010), and a global context of this phenomenon will 

therefore need to be established. COEs, by affecting the performance of organisms, have also been 

suggested as capable of impacting population dynamics, community composition and ecosystem 

functioning (Benton et al., 2001; Emlet & Sadro, 2006). The current study and the cited literature 

demonstrate that COEs do take place in laboratory settings, but in the field other factors are likely to 

dominate. For example, the vast majority of marine invertebrate larvae succumb to predation or poor 

settlement site selection (Keough & Downes, 1982) regardless of parental and previous life stage 

experiences. Therefore, COEs in the real world are likely to be of lesser importance to organisms than 

laboratory studies may suggest. In any case, the circumstances under which COEs are negligible and 

under which they are significant, remains a conspicuous knowledge gap. Ultimately, the wider 

ecological implications of COEs are poorly understood and can only be elucidated once large-scale and 

long-term field studies of natural populations are attempted from a COE perspective.  
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Beyond global change, a more detailed understanding of COEs, which can of course also occur in 

response to natural stress, nonetheless has the capacity to contribute to a wide range of fields. For 

example, an appreciation of COEs may become invaluable to management of marine living resources 

such as fisheries stocks. This is because through COEs, the vulnerability of a given organism at a given 

time can be linked to its own experiences at an earlier life stage, which may have occurred at a different 

location far away, or those of its parents, which may have lived at a different time under very different 

conditions. This implies that effective management may be hindered where the manifestation of COEs 

is not accounted for. Finally, the mechanisms behind the transmission of COEs from one generation to 

the next undoubtedly represents the least well understood of all facets of COE research. Advances in 

this fundamental aspect of COEs are currently being made in an epigenetics and gene expression 

context, and may in the near future contribute to paradigm shifts in an array of disciplines ranging from 

our understanding of evolutionary processes (Youngson & Whitelaw, 2008; Bonduriansky & Day, 

2009; Bonduriansky, 2012; Bateson, 2014) to the ways in which heart disease risk (Ho, 2014) and the 

effects of nicotine consumption (Leslie, 2013) are assessed in humans. 
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