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ABSTRACT  

Outdoor thermal comfort is key to creating vibrant outdoor urban spaces.   The built form is 

able to modify solar radiation and wind.  However, there is currently no way of considering 

the effect of the built form on thermal comfort when designing a new development based 

on the environmental factors – wind, solar radiation, and ambient temperature.  Current 

practice for designing outdoor thermal comfort is based on simple design guidelines, and 

knowledge of local wind and sun patterns.     

A Process for Predicting Outdoor Thermal Comfort has been developed.  This predicts 

thermal comfort based on solar radiation, wind, and ambient temperature using The 

Wellington Comfort Index.  The process is able to predict comfort at a single point within a 

proposed urban development using specialised computer programs.  Through predicting 

how the combination of solar radiation, wind, and ambient temperature will affect comfort, 

improvements can be made to comfort during the design phase.   

The aim of this thesis project is to develop the Process for Predicting Outdoor Thermal 

Comfort into a Comfort Tool for use at the preliminary design stage of a development.  The 

intended users of the tool are professionals working in urban planning and architecture, 

such as designers and consultants who have experience with three-dimensional modelling 

and simulation programs.  

A case study research approach was used to test The Comfort Tool’s ability to inform 

design changes through communicating thermal comfort across a proposed development.  

A range of case studies were selected with different built forms. This was to test if The 

Comfort Tool can predict comfort in case studies with different levels of solar radiation and 

wind at pedestrian level due to the variations in the built forms.  

This research confirmed that a tool can be developed for predicting comfort across a 

proposed development, which can also test proposed design changes for their success 

during the design phase. However, further investigation is needed to determine whether 

The Wellington Comfort Index can be used in other cities.   
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1. OUTDOOR THERMAL COMFORT – CONTEXT AND SCOPE OF THE STUDY  

Outdoor thermal comfort is often an accidental outcome of other design decisions.  

Without comfort assessments in the preliminary design stage of a project, thermal comfort 

issues may only become evident after a building has been constructed.  Comfort in this 

context is defined as not feeling any thermal discomfort, otherwise interpreted as feeling 

thermally neutral (Givoni et al., 2003, p. 78).  Since the 1970s it has been acknowledged that 

outdoor thermal comfort is the combined effect of solar radiation, wind, and ambient 

temperature (Isyumov & Davenport, 1977, p. 407).  Urban planners and designers currently 

use a number of techniques for assessing wind and solar radiation across an urban area.  

These include wind tunnel testing and computerised assessments of solar radiation at 

pedestrian level.  Techniques generally focus on one environmental factor, rather than the 

combined effect of solar radiation, wind, and ambient temperature on outdoor thermal 

comfort.  Common practice is to assess wind or solar radiation for a single point in time, or 

selected days which represent the hottest or coolest days of the year.  

Some urban plans include information to encourage designers to consider the effect that a 

new building may have on solar radiation and wind at pedestrian level.  These vary from 

general guidelines or objectives, to specific by-laws or requirements which need to be met.  

Guidelines or objectives may include zoning within a city to restrict building heights.  An 

example of this is the Central City Development Unit’s plan for Central Christchurch 

(‘Planning and Consents’, 2013).  Cities such as Wellington and Boston have specific wind 

requirements for buildings over a specified height.  Wind tunnel tests can determine 

whether a proposed building meets the requirements such as wind gusts being below a 

specified speed at pedestrian level (Boston Development Authority, 2006, p. 45; Wellington 

City Council, 2007, p. 14).   

A tool which facilitates the analysis of outdoor thermal comfort during the design stage of a 

development would represent a significant advance in urban planning and impact the 

quality of outdoor spaces.  As wind, ambient temperature, and solar radiation are the three 

environmental factors which influence people’s comfort it is important that a thermal 
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comfort tool is based on a comfort index which assesses comfort based on the combined 

effect of these environmental factors on outdoor thermal comfort, as one can offset the 

others (Gaitani, Mihalakakou, & Santamouris, 2007, p. 318; Givoni et al., 2003, p. 77; 

Marialena Nikolopoulou & Steemers, 2003, p. 95)..   

  

 CONTEXT OF THE STUDY 1.1.

A comfort index, referred to in this thesis project as The Wellington Comfort Index was 

developed from 569 survey results collected in parks and urban malls in Central Wellington.  

The Wellington Comfort Index combines solar radiation, wind, and ambient temperature to 

predict the degree people would need to change their behaviour to maintain their comfort 

levels (Walton, Dravitzki, & Donn, 2007, p. 3173).  These behavioural changes may include 

changing their clothing level, moving in or out of the wind or sun, or changing their activity 

level.  This was then developed into a Process for Predicting Outdoor Thermal Comfort.   

This Process for Predicting Outdoor Thermal Comfort is able to predict how comfortable a 

single point within a proposed development will be for each hour of the year.  The Process 

uses computer programs to calculate wind and solar radiation in the surrounding areas of a 

proposed urban development, with ambient temperature measured at a regional weather 

station.  When design changes are made to a built form, the impact of these design 

changes on thermal comfort can be compared to the original design for the same point 

(Figure 1.1). 

Difference in Thermal Comfort for two Built Form Options 

 

 

Proposed Built Form  

Alternative Built Form  

 Percentage of Summer time hours 

Figure 1.1 shows that the proposed built form has more hours where it is considered thermal ly 
neutral. Whereas, the alternative built form has more hours of the year where it is considered 
warm (pink) and hot (red).  

This Process was tested by calculating thermal comfort at a single point within a proposed 

development.  The buildings in the North and South of the development were then 
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switched to determine if the Process for Predicting Outdoor Thermal Comfort could 

capture the change in thermal comfort from switching of the buildings (Figure 1.2). 

 

Figure 1.2 shows the urban form of the proposed development, w ith arrows indicating how the 
buildings were switched to test the Process for Predicting Outdoor Thermal Comfort .  Thermal 
comfort was calculated at a single point in this test (red diamond).     

This thesis project develops the Process for Predicting Outdoor Thermal Comfort into a 

tool for predicting thermal comfort.  The development of a tool for predicting outdoor 

thermal comfort includes creating criteria which assist consultants and designers in 

selecting their own computer programs for calculating wind; developing a way of 

automatically communicating thermal comfort levels across a development, rather than at 

a single point; and testing whether The Wellington Comfort Index on which the Process for 

Predicting Outdoor Thermal Comfort is based is applicable to cities outside of Wellington.      

The Process for Predicting Outdoor Thermal Comfort cannot be used for urban planning 

and architecture without these improvements.  This is because the computer program used 

in the Process for Predicting Outdoor Thermal Comfort for calculating wind has not been 

tested for its accuracy independently (U.S. Department of Energy, 2011).  This means that 

the thermal comfort results from the Process for Predicting Outdoor Thermal Comfort may 

be misleading.   
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 MOTIVATION AND SIGNIFICANCE OF THE STUDY   1.2.

The 2010 and 2011 Canterbury Earthquakes caused significant damage within Central 

Christchurch.  This had a large impact on New Zealand, with more than eighty-percent of 

the buildings in the central business district being demolished  (Clark, 2012).  This provides 

a unique opportunity to plan the new city centre in a way which will improve outdoor 

thermal comfort through its urban planning.    

Even before the Canterbury Earthquakes, Christchurch City Council had plans for the 

existing city to become more resilient and lively through the Christchurch Revitalisation 

Strategy and Project Central City (Christchurch City Council, 2006b, p. 1).  The core goals 

were to create “A vibrant, fun, exciting, safe and sustainable heart of Christchurch. A heart 

whose economy, environment, culture and society are healthy and strong” (Christchurch 

City Council, 2006a, p. 3).  The plans included increasing the population living within Central 

Christchurch from 6,000 to 30,000 by 2026 (Christchurch City Council, 2006a, p. 10, 2006b, 

p. 1).  The Lanes Design Guide was issued by the Christchurch City Council which focused on 

creating lanes through the city to improve pedestrian-ways (Christchurch City Council, 

2006b, p. 14).   

After the earthquakes, the Christchurch Central Recovery Plan was developed through the 

Central City Development Unit (CCDU).  Its core goals are similar to the Project Central City 

core goals stated above. However, there is additional emphasis on creating a compact core 

with a stronger built identity. Providing a tool that reliably reports the impact of building 

design on outdoor thermal comfort would contribute to these plans and support their core 

goals of improving vitality and liveability (Canterbury Earthquake Recovery Authority, 

2012).  
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 AIM AND SCOPE OF THE STUDY  1.3.

The aim of this thesis project is to develop the Process for Predicting Outdoor Thermal 

Comfort into a tool for use at the preliminary design stage of a development.    The 

intended use is for designers and consultants who have experience with three-dimensional 

modelling and computer programs for calculating wind and solar radiation.  

The purpose of a comfort tool is assessing thermal comfort in urban areas where people are 

likely to spend time outdoors. Typical examples include lanes with cafés or bars opening 

onto them, or urban seating areas such as city malls.  

A comfort tool’s use is aimed at the preliminary design phase of a project.  This allows for 

design decisions such as the size and location of buildings within a site to be tested for their 

effect on outdoor thermal comfort. Other preliminary design decisions which will impact 

thermal comfort levels include the orientation of lanes, building footprints, and the height 

of buildings.  Focus on preliminary design is important because once a building is under 

construction or is complete, there are fewer options for improving outdoor thermal comfort 

through the built form (Donn, Selkowitz, & Bordass, 2012, p. 188).   
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 RESEARCH QUESTIONS 1.4.

Research questions have been defined to frame the development of the Process for 

Predicting Outdoor Thermal Comfort into a tool.  These questions combined test the 

hypothesis that a tool for predicting thermal comfort can be developed which can inform 

design changes through communicating thermal comfort across a proposed development. 

The purpose of this thesis project is to test whether it is possible to develop the Process for 

Predicting Outdoor Thermal Comfort into a tool which can inform and test design changes. 

A secondary objective is to test the applicability of The Wellington Comfort Index to cities 

outside of Wellington.  

 

The research approach is guided by four research questions:   

1. Are the results from a comfort tool able to inform design changes?   

It is important that the tool developed is able to communicate the information needed to 

inform design decisions.  This will be tested by examining whether the tool can 

communicate thermal comfort levels across a development, and can highlight areas of 

thermal discomfort.  It should allow designers and consultants to test design solutions for 

mitigating issues with discomfort and compare their performance to the original design.   

Four case studies will be used to understand if a comfort tool can inform design decisions.  

The results of these case studies are presented in Section 4.2 ‘Are the results from a Comfort 

Tool able to Inform Design Changes?’ 

2. Can the Process for Predicting Outdoor Thermal Comfort be developed into a tool for use at 

the preliminary design stage? 

The Process for Predicting Outdoor Thermal Comfort needs to be improved before it can be 

used as a tool for predicting thermal comfort in the preliminary design stage.  Currently the 

Process for Predicting Outdoor Thermal Comfort uses a computer program for calculating 

wind which has not been tested for its accuracy, and it is unknown if there are other wind 

analysis programs which are able to also be used as well. 

 

To assist consultants and designers in selecting wind analysis programs, criteria will be 

developed which allows for wind analysis programs to be tested for their accuracy and 



pg. 16 

 

ability to calculate wind speeds in a format which can be used in The Process for Predicting 

Outdoor Thermal Comfort.   

The techniques used to develop the criteria for selecting wind analysis programs are 

presented in Section 3.2 ‘Can the Process for Predicting Outdoor Thermal Comfort be 

developed into a tool for use at the preliminary design stage’. 

3.  Can thermal comfort be automatically communicated across a development?  

Currently the Process for Predicting Outdoor Thermal Comfort needs to be repeated for 

each point where comfort is being tested within a development. This means that 

calculating thermal comfort across a whole development would be time consuming as the 

Process for Predicting Outdoor Thermal Comfort needs to be repeated hundreds of times 

on a grid across the development.  Without an automated process it would be difficult for 

designers and consultants to understand the relative level of thermal comfort in different 

areas of a development.      

A way for the Process for Predicting Outdoor Thermal Comfort to calculate thermal 

comfort for a number of points across a case study simultaneously will be developed.  It is 

important that the application selected for calculating thermal comfort across a case study 

can also be applied to other case studies.  The Process for Predicting Outdoor Thermal 

Comfort will also be automated, allowing for consultants to simply enter the required data, 

then for the tool to calculate and display the outdoor thermal comfort results.    

The techniques used to develop a way of automating of the Process for Predicting Outdoor 

Thermal Comfort are in Section 3.2 ‘Can the Process for Predicting Outdoor Thermal Comfort 

be developed into a tool for use at the preliminary design stage’. The success of the tool at 

automatically calculating thermal comfort across a development are displayed in Section 4 

‘Are the Results from a Comfort Tool able to Inform Design Changes?’ 
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4.  What is the applicability of The Wellington Comfort Index to cities outside of Wellington? 

Before The Wellington Comfort Index can be used in cities outside of Wellington, it needs 

to be tested to see whether it is applicable to other cities.  The Wellington Comfort Index is 

the basis of the Process for Predicting Outdoor Thermal Comfort.  It includes four 

environmental factors, mean and maximum wind, ambient temperature, and mean radiant 

temperature.  Each has a different degree of importance in predicting thermal comfort.  

However, it is unknown if these four environmental factors have the same degree of 

importance in cities outside of Wellington.    

The techniques used for calculating The Wellington Comfort Index for Christchurch, and the 

results are discussed in Section 3.4 ‘What is the Applicability of The Wellington Comfort Index 

to Cities Outside of Wellington?’ 
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 OVERVIEW OF THE STUDY  1.5.

This thesis consists of five further chapters within three main parts. Chapter Two situates 

the current study within related literature. The theoretical underpinnings of outdoor 

thermal comfort are discussed.  This includes a critical review of the relevant literature.  

This review provides context, and understanding of current practice for quantifying outdoor 

thermal comfort within urban planning and architecture. 

 

Chapter Three defines and justifies the techniques which are used for developing the 

Process for Predicting Outdoor Thermal Comfort.  This includes discussing the 

considerations for the criteria for selecting wind analysis programs, and techniques for 

communicating thermal comfort across a development. Techniques used to test the 

application of The Wellington Comfort Index to cities outside of Wellington are also 

discussed. The results of testing The Wellington Comfort Index on cities outside of 

Wellington are included in this chapter.  

Chapters four and five are the concluding chapters.  In Chapter Four the results of the 

developed tool are presented. Chapter Five concludes this thesis project with a summary of 

conclusions for each of the research questions, including how thermal comfort can be 

communicated across a whole development, and whether the results of the tool are able to 

inform design changes.  Chapter Six is the future development chapter which identifies 

ways the developed tool could be improved, but are outside the scope of this thesis project.    
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2. PREDICTING OUTDOOR THERMAL COMFORT 

Cities with thermally comfortable outdoor spaces can attract people to spend more time 

outdoors, as well as increase vitality and resilience (Lian Chen, Edward Ng, 2011, p. 120).  

However, designing thermally comfortable outdoor spaces is complex as there are no set 

rules to follow.  It is the combination of solar radiation, wind, and ambient temperature 

which determines thermal comfort. Therefore, understanding this dynamic relationship is 

key before a tool can be developed to assist designers and consultants with creating 

thermally comfortable outdoor spaces.  

 

This chapter introduces thermal comfort broadly, as well as specifically for the outdoors.  

This is followed by a brief historical overview of assessing and quantifying thermal comfort, 

and current techniques for predicting outdoor thermal.  This provides context for 

understanding the importance of the development of a tool for predicting thermal comfort, 

for use within urban planning and architecture.   
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 DEFINITION AND PERCEPTION OF THERMAL COMFORT  2.1.

Thermal comfort for indoor and outdoor environments can be described as when people 

feel thermally neutral or the point where people feel satisfied with their thermal conditions.  

Indoor comfort is defined as a “condition of mind in which satisfaction is expressed with the 

environment” (American Society of Heating, Refrigerating and Air-Conditioning Engineers, 

1985).    Air quality, humidity, radiation exchange with the environment, and convective 

heat exchange affect people’s thermal comfort in the indoors and outdoors.  Indoors these 

can be controlled using mechanical heating, ventilation, and air-conditioning more easily to 

ensure people feel satisfied with their thermal conditions.  However, in the outdoors, solar 

radiation and wind also affect thermal comfort (Gaitani et al., 2007, p. 318; Givoni et al., 

2003, p. 77; Marialena Nikolopoulou & Steemers, 2003, p. 95). 

In the outdoors, thermal comfort is also described as an absence of any thermal discomfort, 

or when people feel neither hot or cold (Givoni et al., 2003, p. 81; Marialena Nikolopoulou & 

Steemers, 2003, p. 98).  This definition has expanded to include environmental stimulation 

through variations in wind, solar radiation, and shade (Givoni et al., 2003, p. 78; Marialena 

Nikolopoulou & Steemers, 2003, p. 98).  It is these variations in the climate which attract 

people to spend time outdoors (Marialena Nikolopoulou & Steemers, 2003, p. 98).    
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Although wind, solar radiation, and ambient temperature determine if a microclimate is 

thermally comfortable, the perception of what is thermally comfortable varies between 

individuals. Microclimate for this thesis project is defined as the climate within or 

surrounding a city block or development.  It can be designed through changing the form of 

buildings, landscaping, and shading to allow or block wind or solar radiation at pedestrian 

level.   Thermal Comfort in a microclimate is measured using the same parameters as the 

general climate: solar radiation, wind, and ambient temperature.  It is these parameters 

which a tool for predicting comfort should be calculating thermal comfort upon.   

An individual’s perception of thermal comfort can be influenced by an individual’s thermal 

history or experience, time spent outdoors, perceived control of their thermal comfort, or 

their sense of place.  Individuals may find different levels of gust and mean wind speed, 

solar radiation, and ambient temperature thermally comfortable based on their personal 

perception of thermal comfort (Marialena Nikolopoulou & Steemers, 2003, p. 101; 

Thorsson, Lindqvist, & Lindqvist, 2004, p. 149).  If people feel they have control of their 

thermal comfort, they are likely to feel more comfortable than if they do not have control 

(Marialena Nikolopoulou & Steemers, 2003, p. 97).   

People’s perception and adaption to the microclimate can be defined through  

understanding how people’s bodies regulate changes in microclimate, or understanding 

what influences people’s perception of thermal comfort (Eliasson, Knez, Westerberg, 

Thorsson, & Lindberg, 2007, p. 73; Höppe, 2002, p. 661; Marialena Nikolopoulou & 

Steemers, 2003, p. 95).  People generally adapt to a climate physically in the short term, 

and psychologically over a period of time (Marialena Nikolopoulou & Steemers, 2003, p. 

97).   

Physical adaption may include a person increasing or decreasing their exposure to the wind 

or solar radiation, changing their level of clothing, or increasing or decreasing their level of 

activity to improve their thermal comfort.  This allows individuals to change their behaviour 

to maintain their personal thermal comfort levels in the microclimate.  This is based on 

their perception of thermal comfort for a point in time. This is the theory that The 

Wellington Comfort Index was developed around. It quantifies the degree people will need 

to change their behaviour to maintain their thermal comfort (Walton et al., 2007, p. 3166).    
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Psychological adaption directly influences an individual’s perception of thermal comfort. It 

is influenced by experience, time of exposure, perceived control, and expectations 

(Marialena Nikolopoulou & Steemers, 2003, p. 95).  An example of psychological adaption is 

acclimatisation when an individual moves to a new country or city with a different climate.  

When wind patterns, ambient temperature, and solar radiation levels are different than an 

individual is used to, the new conditions may feel less thermally comfortable until they 

adapt to the new climate.  This may be as little as two weeks, but tends to take longer when 

adapting to cold climates.  Age, body mass, and metabolic rate may also affect the time it 

takes to acclimatise (Folk, 2015).      

 

Psychological adaption also includes experience.  An example of this is when the perception 

of thermal comfort is based on their expectations of a season.  This may change between 

seasons based on the previous season.  For example, spring is generally perceived as 

warmer than autumn, as people have just experienced winter.  Whereas, in autumn, people 

have been in summer so perceive autumn as cooler than spring (Marialena Nikolopoulou & 

Steemers, 2003, p. 97).  This experience and the associated expectations mean that 

people’s perception of thermal comfort varies between seasons, making it challenging to 

design an outdoor urban area that is perceived as thermally comfortable for all seasons.  

However, through basing a tool for predicting thermal comfort on an index which surveyed 

people over a range of seasons these experiences which affect people’s perceived thermal 

comfort are captured in the index (Lykoudis & Nikolopoulou, 2006, p. 1456).     

 

A person’s sense of place or familiarity may also influence their perception of thermal 

comfort, through increased positive thoughts or feelings towards a particular location 

(Knez, 2005, p. 208; Knez & Thorsson, 2006, p. 259). This is interconnected with how 

people perceive outdoor thermal comfort, so is difficult to assess individually.  
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2.1.1. MICROCLIMATE AND OUTDOOOR THERMAL COMFORT 

Wind has a large influence of whether an outdoor space is perceived as thermally 

comfortable due to its cooling effect, known as wind chill. Wind chill is the perceived 

decrease in ambient temperature due to the flow of air on exposed skin (Parsons, 1997, p. 

145).  However, depending on the climate, it may be the cause of thermal comfort or 

discomfort.  In cooler climates or seasons, wind may increase the feeling of thermal 

discomfort.  Whereas, in a warm climates or seasons, wind causes air movement and may 

have a cooling effect on people, making them feel more thermally comfortable.  The 

temperature of the wind can also influence thermal comfort. In a warm season or climate, 

when the wind travels over a mountain range and across the countryside, it may become a 

hot and dry wind.  This could either increase the perceived temperature of the wind to a 

thermally comfortable level, or beyond to a thermally uncomfortable level.  Lack of air 

movement may also cause thermal discomfort when ambient temperature is high or when 

someone is in direct solar radiation.  

The larger the ratio between the gust and mean wind speeds, the more noticeable the wind 

(John Zacharias, Ted Stathopoulos, Hanging Wu, 2001, p. 213). Whereas, when this ratio is 

lower, the wind is less noticeable (Lykoudis & Nikolopoulou, 2006, p. 1468; Walton et al., 

2007, p. 3174).  This may be a cause of thermal discomfort either due to the annoyance of 

the wind, or the cooling effect of the wind (Givoni et al., 2003, p. 78; Lykoudis & 

Nikolopoulou, 2006, p. 1468).   

It is often the solar radiation or ambient temperature which attracts people to use an 

outdoor space, or encourages people to spend more time in an outdoor area than they 

anticipated (Marialena Nikolopoulou & Lykoudis, 2007, p. 3706).  Solar radiation and 

ambient temperature within an urban area have a close relationship with the sun’s annual 

patterns.  Closer to the summer-solstice, the solar radiation levels are higher, increasing the 

feeling of warmth than in winter time.  Cloud cover is also a factor as it may diffuse the solar 

radiation, making its warming effect less noticeable.   

However, ambient temperature is not as predictable as solar radiation.  This is 

demonstrated through comparing the typical ambient temperatures recorded over a year 

for three cities (Figure 2.1).  These cities, Bangkok, Vancouver, and Christchurch, were 

selected as they have different climates, and are located in different areas of the world.  In 
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Bangkok the temperature varies by a few degrees each day as shown by the blue line, 

whereas in Christchurch as Vancouver there can be large variations between ambient 

temperatures each day as shown by the grey and orange lines.     

 

Figure 2.1 shows that some climates have large variations in ambient temperature between 
neighbouring days (orange and grey line). Whereas, other climates have fairly consistent 
temperatures between days (blue line) (‘TMY Weather Data’, 2013) . 

This is often determined by the topography and amount of rainfall which affects air 

movement and the cooling or warming of the earth’s surface.  Ambient temperature may 

also be higher in urban areas than open areas, such as the countryside, known as the heat 

island effect.  This is due to cities having more traffic and air conditioning systems in a 

condensed areas which release their warm ‘exhaust air’ into the streets.  Another reason is 

that buildings and roads are able to absorb heat, and slowly release it over time due to their 

thermal mass (2005 ASHRAE Handbook Fundamentals, 2005, p. 449).     

Humidity levels may also be a factor in people’s outdoor thermal comfort.  When humidity 

levels are too high or too low, people are likely to feel thermally uncomfortable, especially 

when temperature levels are also high (Lykoudis & Nikolopoulou, 2006, p. 1459).  Unlike 

solar radiation, wind, and ambient temperature, humidity is not always included in indices 

for quantifying thermal comfort.  This is due to studies which develop comfort indices often 

focusing on temperate climates where humidity is not a factor affecting  thermal comfort 

(Sangkertadi, Reny Syafriny, 2012, p. 59) 
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 QUANTIFYING THERMAL COMFORT USING COMFORT INDICES   2.2.

Thermal comfort indices were initially developed for the assessment of indoor 

environments where the conditions are controlled, often known as steady-state comfort 

indices.  They are called steady-state as they make assumptions about people’s metabolic 

rate and clothing level being consistent.  When used to assess thermal comfort levels in a 

proposed building they assume all people are wearing the same level of clothing and have 

the same level of activity.  

Until the 1980s, indoor thermal comfort was typically quantified using a formula based on 

an energy budget.  The energy budget calculates energy exchanged between a person and 

their surrounding environment (Brown & Gillespie, 1995, p. 65). The most established 

thermal comfort index based upon this theory is Fanger’s Predicted Mean Vote (PMV), 

which gives a rating scale between thermally comfortable and thermally uncomfortable (J 

Hoof, 2008, p. 182).  Other thermal comfort indices based on the energy budget are the 

New Effective Temperature (ET*), developed  by Gagge et al. in the early 1970s, and the 

Standard Effective Temperature (SET*), which also included clothing level (clo-value), and 

level of activity (Honjo, 2009, p. 43).  As these indices are based on energy balance, they 

assume that people are able to reach thermal equilibrium through being exposed to an 

ambient climatic environment (Lian Chen, Edward Ng, 2011, p. 119).   

Traditional thermal comfort theories such as Fanger’s PMV studies, and ASHRAE’s 

Fundamentals Handbook suggest that these thermal comfort indices can be applied to 

outdoor environments without modification (Jacket, Walton, & Cleland, n.d., p. 1).  

Although, Honjo has acknowledged that the outdoor environment is much more complex 

than the indoor environment, their study still states that the PMV, SET and PET steady-

state comfort indices for the indoors have also proven suitable for outdoors (Honjo, 2009, 

p. 43).  However, Spanolo and de Dear have highlighted that this assumption cannot be 

made without further testing as it is likely that the thermally neutral point, and the 

temperature band considered thermally comfortable changes for the outdoors compared 

with the indoors (Spagnolo & de Dear, 2003, p. 721).   

Steady-state comfort indices have been further developed into adaptive thermal comfort 

models as naturally ventilated buildings have become more common.  Adaptive models 
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assume that people play an active role in maintaining their thermal comfort (de Dear & 

Schiller Brager, 2001, p. 101).  This is due to naturally ventilated buildings, or buildings with 

a combination of mechanical and natural ventilation having a larger variations in 

temperature. However, the temperature range in which people feel thermally comfortable 

is larger. Adaptive models exclude assumptions about clothing level, and a wider range of 

metabolic rates are assumed (de Dear & Schiller Brager, 2001, p. 107).  

However, there is much debate surrounding the approach of using thermal comfort indices, 

which were initially developed for the indoors, for quantifying thermal comfort outdoors.  

Theories range from indoor thermal comfort indices being able to be applied directly to the 

outdoors, to steady-state comfort indices not being applicable to the outdoors, even with 

modification (Honjo, 2009, p. 43).  

The idea that indoor thermal comfort indices can be applied to the outdoors has been 

tested.  The Actual Sensation Vote (ASV) and Predicted Mean Vote (PMV) were both 

created for the indoors, and have had their applicability to the outdoors tested. This 

concludes that the ASV and PMV cannot be applied outdoors, as they suggested people 

would feel thermally uncomfortable even when the participants in the tests felt thermally 

comfortable (Marialena Nikolopoulou & Steemers, 2003; Marialna Nikolopoulou, Baker, & 

Steemers, 2001, p. 231). This is because the thermal comfort indices created for the 

indoors, do not include solar radiation and wind which are key factors influencing thermal 

comfort in the outdoors (Marialena Nikolopoulou, Baker, & Steemers, 2001, p. 231).  Indoor 

environments have fewer changes, such as temperature and air movement, so occupants 

can dress in a similar way each day.  However, in the outdoors these assumptions cannot be 

made.   

When assessing thermal comfort outdoors Hoppe has determined that, a thermal comfort 

index needs to consider how people’s behaviour may change, in order to maintain their 

thermal comfort when there are changes in their microclimate  (2002, p. 661). A universal 

thermal comfort index, known as the Universal Thermal Comfort Index (UTCI) has been 

developed for use in the indoors and outdoors for all climates.  However, it has been 

concluded for a better assessment of outdoor thermal comfort there needs to be more 

detailed measurements and considerations than the UTCI includes.  Although the aim of 
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this UTCI is to be applied globally, more work is also required before this can happen 

(Honjo, 2009, p. 47; Spagnolo & de Dear, 2003, p. 738).  

A number of attempts have been made to generate an index which is able to quantify 

outdoor thermal comfort.  These often take into account both environmental factors such 

as solar radiation, wind, ambient temperature, and the ‘human dimension’ of how people 

perceive the combined effect of the environmental factors on thermal comfort.  The index 

is then able to measure the relationship between each environmental factor to understand 

the degree of thermal comfort. The rationale behind such attempt is to understand and 

quantify the relationship between each environmental factor and the degree of thermal 

comfort,  as well as how people may change their behaviour to maintain their thermal 

comfort (Givoni et al., 2003; John Zacharias, Ted Stathopoulos, Hanging Wu, 2001; Wu & 

Kriksic, 2012).  Therefore, these indices cannot be validated within controlled conditions 

such as a laboratory.  This is because the indices require the unpredictability of outdoor 

conditions where people’s responses cause them to change their behaviour to maintain 

thermal comfort.    

When assessing outdoor thermal comfort, the level of activity, seating location, clothing 

level, and the length of time people spend outdoors should be considered (Gaitani et al., 

2007, p. 318; Walton et al., 2007, p. 3167).  Wind, solar radiation, and temperature may 

change within hours or even minutes, so people need to be able to readily change their 

behaviour to maintain their thermal comfort level (Thorsson et al., 2004, p. 155).  People 

can change their clothing level to control their personal thermal comfort. It allows people to 

feel the same degree of thermal comfort in all seasons if they are dressed appropriately 

(Walton et al., 2007, p. 3167).  As people perceive thermal comfort differently, people’s level 

of clothing is different, and may change throughout the day.  People also have the ability to 

move in and out of the solar radiation or wind to maintain their thermal comfort relative to 

the seating available, and their purpose for staying outdoors.   

Further work has been recently completed to develop thermal comfort indices specifically 

for the outdoors which consider people’s behavioural changes to maintain their thermal 

comfort (Givoni et al., 2003, p. 79; Walton et al., 2007, p. 3171). Field surveys are used for 

understanding and quantifying these behavioural changes. These match a participant’s 
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survey responses with wind, solar radiation, and temperature for the geographic location a 

participant completed a survey   (Fiala, Lomas, & Stohrer, 2001, p. 143; Jendritzky, Maarouf, 

& Staiger, 2001; Shimazaki et al., 2011, p. 1716; Tokunaga & Shukuya, 2011, p. 2220).  

Questions to determine variables such as how people perceive thermal comfort, their 

clothing levels, and the length of time they are outside are measured through a survey.  

This provides insight into how people perceive outdoor thermal comfort, as well as how 

they change their behaviour to adjust to changes in the microclimate. It is unknown 

whether these thermal comfort indices are applicable to climates other than those they 

were developed for because it is unknown how people perceive wind, solar radiation, and 

ambient temperature differently in different climates (Walton et al., 2007, p. 3173).     

Currently there are two thermal comfort indices which could be used as the basis of a tool 

for predicting comfort.  Each predicts thermal comfort in a different way.  Givoni et al.’s 

formula (Equation 1) calculates thermal sensation which is the perception of heat or cold 

(Givoni et al., 2003, p. 78). It includes ambient temperature, wind, and solar radiation 

(Givoni et al., 2003, p. 80).  Walton et al.’s approach (Equation 2) attempts to quantify 

behavioural changes to maintain thermal comfort. Walton’s formula includes mean and 

maximum wind, ambient temperature, and mean radiant temperature.  These are both 

multiple-linear regression formulas which were developed through surveying people about 

their perception of wind, solar radiation, and temperature while they were outdoors, rather 

than in a laboratory.  

Equation 1 is Givoni et al.’s formula (Givoni et al., 2003, p. 80):  

Thermal Sensation = 1.2  

+ 0.1115 x Ambient Temperature 

+ 0.0019 x Solar Radiation - 0.3185 x  Wind Speed 

 

Equation 2  is Walton et al.’s formula (Walton et al., 2007, p. 3171): 

Behavioural changes to maintain thermal comfort =  25.52  

+ 10.65 x Mean Wind –  5.77 x Maximum Wind  

+  0.85 x Mean Radiant Temperature(exposed) 

+ 0.53 x Ambient Temperature   
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 URBAN PLANNING AND THERMAL COMFORT   2.3.

Current practice in the urban planning and architecture for assessing thermal comfort in 

outdoor areas is typically based on simple guidelines.  Tools have been developed for 

predicting outdoor thermal comfort which encourage urban planning to move from simple 

guidelines to considering solar radiation and wind.  However, these tool have their 

limitations.  These tools are often based on steady-state comfort indices, or do not consider 

the combined effect of solar radiation, wind and ambient temperature to predict the 

thermal comfort.  However, with advances in thermal comfort indices which predict 

people’s response to the microclimate, it is now possible to develop a tool for predicting 

thermal comfort for use within urban planning and architecture.   

 

2.3.1. CURRENT PRACTICE WITHIN THE INDUSTRY 

Some city plans do include basic design guidelines which consider wind or solar radiation.  

However, improving thermal comfort is often excluded from urban design.  In a temperate 

climate, basic design guidelines include orientating roads to maximise solar radiation at 

pedestrian level, or defining a proportion of open area around a proposed building where 

there must be direct solar radiation at pedestrian level (Christchurch City Council, 2011; 

John Zacharias, Ted Stathopoulos, Hanging Wu, 2001, p. 299). These design guidelines are 

often blanket rules for the Northern or Southern Hemisphere (Brown, 2011, p. 373).  

However, the success of these guidelines is unknown.  Simulation programs can be used to 

assess solar radiation, although, are often only used to test the worst case scenarios, 

typically the summer and winter solstice (Brown & Gillespie, 1995, p. 373).  

Wind is often neglected by urban planners, even though it is often the largest cause of 

thermal discomfort (Reiter, 2010, p. 857).  This leaves major issues to be mitigated once a 

project is complete, or in the final design phase when it is often too late to make changes 

(Bottema, 1999, p. 4009).   If these assessments were carried out earlier in a design project, 

then the urban form itself could be used to mitigate local wind speeds, or to increase solar 

radiation at pedestrian level (Reiter, 2010, p. 857).  This would allow outdoor thermal 

comfort to be designed rather than being mitigated once a development is complete, and 

the issues with thermal comfort have been revealed.  This is key in creating thermally 
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comfortable urban areas as the urban form can alter wind patterns drastically, changing  

the microclimate within as little as a few metres (2007, p. 318; 2001, p. 298). 

 

2.3.2. DEMAND FOR A TOOL FOR PREDICTING OUTDOOR THERMAL COMFORT 

Over the last twenty years studies have been conducted which analyse the relationship 

between outdoor thermal comfort and activities within an outdoor area (Lian Chen, Edward 

Ng, 2011, p. 120).  Areas where outdoor thermal discomfort has been mitigated and the 

microclimatic conditions have been improved have attracted more business, residents, and 

revenue (Marialena Nikolopoulou et al., 2001, p. 227).  Additional benefits also include the 

increased use of active and public means of transport, as well as benefitting the overall-

image of a city (Marialena Nikolopoulou et al., 2001, p. 227).  

With the advances in technology, combined with the creation of indices for predicting 

people’s response to the microclimate, it is now possible to develop a tool for predicting 

thermal comfort (Givoni et al., 2003, p. 80; Walton et al., 2007, p. 3171).  This means that 

urban design can be informed by the predicted thermal comfort levels within a space, 

rather than basic design guidelines.  It is important that an in-depth thermal comfort 

assessment specific to a development is carried out for different times of the day and year 

(Cheng & Ng, 2006, p. 421).   

Until recently the technologies have not existed to predict people’s response to thermal 

comfort levels within an urban area.  However, with the advances in technology such as 

Computational Fluid Dynamics (CFD) wind analysis programs (which can predict wind 

around a proposed development using a three-dimensional model) it is now possible to 

develop a tool for predicting thermal comfort (Houda, Zemmouri, Hasseine, Athmani, & 

Bensalem, 2012, p. 1).  

This has the ability to bridge the gap between urban design and the creation of 

microclimates (Brown, 2011, p. 373).  For architects, planners, and urban designers design 

possibilities are also enriched through a greater understanding of how thermally 

comfortable a space is once it is constructed (Marialena Nikolopoulou & Steemers, 2003, p. 
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95).  This allows designers to test how a change in design detail will change people’s 

thermal comfort (Givoni et al., 2003, p. 77).    

It is important that this tool is used in the preliminary design phase of a project when it is 

possible to modify the built form.  This varies from current practice of assessing wind levels 

around proposed buildings using wind tunnels.  As wind tunnel testing is expensive, 

assessments of wind are often conducted in the final design stage of a project.  However, 

by this point it is generally too late to modify the built form to improve wind levels at 

pedestrian level (Bottema, 1999, p. 4009).   

 

2.3.3. EXISTING TOOLS 

There are a number of tools marketed for assessing outdoor thermal comfort.  However, 

these are often based on a steady-state comfort index, such as the Predicted Mean Vote.  

They are also often time consuming and costly to use (Goshayeshi, Shahidan, Khafi, & 

Ehtesham, 2013, p. 518).  These are outlined below, as well as their intended purpose (Table 

2.1).   

Table 2.1 shows the current tools marketed for predicting thermal comfort.  It shows that 
although they model environmental factors, they do not necessarily pro duce results which can 
inform design changes.   

Tools for Predicting Outdoor Thermal Comfort  What does it model?  

TownScope  

(Teller & Azar, 2001) 

Thermal comfort using solar radiation as a predictor. 

Rayman Model - Predicted Mean Vote 

(Matzarakis, 2007) 

Models radiation fluxes and mean radiant 

temperature.   

ENVI-met - Predicted Mean Vote, Physiological 

Equivalent Temperature, or Universal Thermal 

Climate Index 

(Bruse, 2010; Bruse & Fleer, 1998) 

Flow around and between buildings, exchange 

processes at the ground surface and at building 

walls, building physics, impact of vegetation of the 

local microclimate, bioclimatology, and pollutant 

dispersion using ambient temperature, wind, and 

humidity.  

SOLWEIG (Lindberg et al., 2008) Spatial variations of  three-dimensional radiation 

fluxes and mean radiant temperature 
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It is important that a tool for assessing the microclimate includes wind, solar radiation and 

ambient temperature through the use of a thermal comfort index.  This is because wind, 

solar radiation, and ambient temperature have been identified as the key factors affecting 

outdoor thermal comfort in a temperate climate.  Therefore, if one of these is not included, 

then the complexities of quantifying how thermally comfortable a space will be will not be 

captured. It is also important that a tool for predicting outdoor thermal comfort gives an 

understanding of people’s responses to the microclimate. This human dimension will allow 

for changes to be made based on how people may feel thermally, allowing for design 

changes to be made in response to areas of thermal discomfort within a proposed 

development.        
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This chapter has identified that there is currently no tool for quantifying outdoor thermal 

comfort based on a comfort index which can predict the degree people will need to change 

their behaviour to maintain their thermal comfort.  As introduced in the Section ‘1.1 

Context of the Study’, although requiring further development, a Process for Predicting 

Outdoor Thermal Comfort does exist. It is based on a comfort index which predicts thermal 

comfort based on the degree people will need to change their behaviour to maintain 

thermal comfort.  This process allows for proposed urban areas to be assessed for thermal 

comfort at the design stage. 

This chapter has also established the complexities of quantifying outdoor thermal comfort, 

in terms of wind, solar radiation, ambient temperature, and the psychological aspect of 

thermal comfort.  It is important that a tool for measuring outdoor thermal comfort 

includes these factors, allowing for the results to be informative, and reflective of the 

people within a city where a proposed development is located.   

The next chapter outlines the methodology used to develop the Process for Predicting 

Outdoor Thermal Comfort into a comfort tool and introduces the case studies which will be 

used to test whether a comfort tool can be developed to inform design changes.   
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3.  DEVELOPING THE COMFORT TOOL – METHODOLOGY  

This chapter creates a methodology for developing the Process for Predicting Outdoor 

Thermal Comfort into a tool, known as The Comfort Tool. This Process for Predicting 

Outdoor Thermal Comfort is based on an index for predicting how people will change their 

behaviour to maintain their thermal comfort levels, known as The Wellington Comfort Index.  

As discussed in Section 2.2. ‘Quantifying Thermal Comfort Using Comfort Indices’ there 

were two comfort indices which could have been used to calculate comfort in The Comfort 

Tool. Walton et al.’s formula (The Wellington Comfort Index) was selected as it was already 

the basis of the Process for Predicting Outdoor Thermal Comfort.  It was also selected as it 

included maximum wind speed, along with mean wind speed, ambient temperature, and 

mean radiant temperature.  However, Givoni et al.’s formula only included mean wind 

speed.  It is important when predicting thermal comfort that both the maximum and mean 

wind speeds are included as the larger the ratio between the mean and maximum wind 

speeds, the more thermal discomfort the wind may cause (John Zacharias, Ted 

Stathopoulos, Hanging Wu, 2001, p. 213).  The Wellington Comfort Index was also selected 

as it is based on the survey results of 649 participants. Whereas, Givoni et al.’s formula was 

based on the survey responses of six participants (Givoni et al., 2003, p. 78).   

As discussed in the introduction, the Process for Predicting Outdoor Thermal Comfort 

exists that is able to predict thermal comfort for a single point in a development, calculating 

wind and solar radiation in computer programs around a three-dimensional model of a 

proposed development.  These solar radiation and wind results for a single point within an 

area are then used to calculate the thermal comfort levels for a single point in a proposed 

development.  The thermal comfort levels are based on The Wellington Comfort Index. The 

aim of this thesis project is to develop the Process for Predicting Outdoor Thermal Comfort 

into a tool for use at the preliminary design stage of a development. 

The hypothesis is that a tool for predicting outdoor thermal comfort can be developed 

which can predict thermal comfort across a proposed urban development allowing for 

design changes to be informed. 
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The primary research approach is a case study research approach.  The process for The 

Comfort Tool’s development is framed by the four key research questions outlined in the 

introduction: 

1. Are the results from a comfort tool able to inform design changes? 

2. Can the Process for Predicting Outdoor Thermal Comfort be developed into a tool for use at 

the preliminary design stage? 

3. Can thermal comfort be automatically communicated across a development?  

4. What is the applicability of The Wellington Comfort Index to cities outside of Wellington? 

This chapter is in three sections.  The first section introduces the case study area where 

case studies were selected for testing The Comfort Tool.  The second part of this chapter 

develops the Process for Predicting Outdoor Thermal Comfort into The Comfort Tool.  The 

final section of this chapter tests the applicability of The Wellington Comfort Index The 

Comfort Tool is based on for cities outside of Wellington, using Central Christchurch as a 

case study.  
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 SELECTION OF CASE STUDIES FOR TESTING THE COMFORT TOOL  3.1.

 

A case study research approach has been selected for testing the hypothesis that a tool for 

predicting outdoor thermal comfort can be developed which can inform design changes.  

Four case studies were selected based on the differences in their built form.  

 

The first case study was selected to test The Comfort Tool’s ability to calculate thermal 

comfort across a case study.  This case study also tested if the comfort results 

communicated the variations in thermal comfort, and if these variations could be used to 

inform design decisions.  This case study was a large development of 8500m2, which 

covered half a city block.  It had a large internal courtyard surrounded by tiered buildings, 

designed to allow for solar radiation at pedestrian level.  It also had lanes linking the 

internal courtyard to footpaths to the North, South, and West of the case study. 

The three other case studies were selected based on the differences in their built form.  

These case studies helped to understand if the results from the first case study was a 

specific coincidence, or whether The Comfort Tool has the same degree of success for other 

case studies. The case studies were selected based on variations in their design from one 

another and how this may affect the wind and solar radiation at pedestrian level.  These 

variations include: 

 Site size 

 Area of central courtyards 

 Orientation 

 Building layout within the boundaries of the development site 

 Heights of buildings 
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3.1.1.  CASE STUDY AREA: CENTRAL CHRISTCHURCH   

Central Christchurch was selected as a case study area to develop and test The Comfort 

Tool.  It has been selected as Central Christchurch is currently in the process of being re-

designed and constructed as eighty-percent of their central city has been demolished after 

the 2010 and 2011 Canterbury Earthquakes.  This provided a unique opportunity to test The 

Comfort Tool on numerous developments which were in the design phase.  

The case study survey area is located within Central Christchurch (Figure 3.1).  This is where 

a case study weather station was located for testing the applicability of The Wellington 

Comfort Index to cities outside of Wellington, using Central Christchurch as the case study 

area.  This case study weather station was also used to calculate the gust co-efficient which 

is required as part of The Comfort Tool for calculating the gust co-efficient from the mean 

wind speed in the Typical Meteorological Year (TMY) weather file.   

The location and a brief overview of each case study development is below (Figure 3.1). 

Design details of each case study, and the effects these design details may have on solar 

radiation and wind levels are outlined in Section 4.2 ‘Testing The Comfort Tool’.   

 

Figure 3.1 shows the location of the four case studies  outlined in blue, within the case study area – 
Central Christchurch.  The case study weather station is indicated (green circle).   The case study 
survey area is outlined (black).  The case study survey area had to be selected within Central 
Christchurch as the weather data measured at the case study weather station was required.  

 

 

Case Study Four: 
Was selected as 
it faces West.  Its 
central courtyard 
is small so 
potentially has 
limited solar 
radiation. 

Case Study One: 
Was selected to 
test if The 
Comfort Tool 
automatically 
predict thermal 
comfort across a 
case study.  

Case Study Three: 
Was selected as its 
primary use is in the  
evenings when only 
wind and ambient 
temperature 
influence comfort.  

Case Study Two:  
Was selected as it 
faces the 
predominant wind, 
and all buildings are 
of similar height 
which may 
contribute to 
increased wind 
levels. 
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 CAN THE PROCESS FOR PREDICTING OUTDOOR THERMAL COMFORT BE 3.2.

DEVELOPED INTO A TOOL FOR USE AT THE PRELIMINARY DESIGN STAGE? 

This section develops the Process for Predicting Outdoor Thermal Comfort into The 

Comfort Tool for use in urban planning and architecture. The Process for Predicting 

Outdoor Thermal Comfort is currently able to quantify thermal comfort based on 

microclimate conditions (mean and maximum wind, ambient air temperature, and mean 

radiant temperature) for each hour of the year.  It is able to predict thermal comfort 

through solar radiation and wind being calculated in areas surrounding a three-dimensional 

computer model of a proposed development.  These surrounding areas include courtyards, 

lanes, and neighbouring streets.   

This section develops criteria to assist consultants in selecting a wind analysis program, 

automates the Process for Predicting Outdoor Thermal Comfort for a single point in a 

development to hundreds of points across a proposed development, and develops a way of 

communicating variations in thermal comfort across a development. The success of The 

Comfort Tool is tested in Section 4.2 ‘Evaluating The Comfort Tool for Different Urban 

Design Scenarios’.   
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3.2.1. MANUAL MEASUREMENTS TO COMPUTER PROGRAMS  

There are four environmental factors in The Comfort Tool: mean radiant temperature (°C), 

ambient temperature (°C), mean wind speed (m/s), and maximum wind speed (m/s). When 

The Wellington Comfort Index was developed these environmental factors were measured 

manually.  However, for The Comfort Tool to predict thermal comfort in areas surrounding 

a proposed building which is not yet constructed, computer programs were used to 

calculate wind and solar radiation around a three-dimensional model of a proposed 

development. Ambient temperature was used from a weather file for Christchurch (Figure 

3.2).   

 

Weather Data 

 
 

Transitional 

Calculations 
 

Inputs for The 

Comfort Tool 

 

 

 

 

Figure 3.2 shows the summary table for the process of calculating the inputs for The Comfort Tool 
from the typical meteorological year weather  file. 

The height of 1.2m represents the average height of someone seated (Walton et al., 2007, 

p. 3168).  Therefore, the environmental factors included in The Comfort Tool are converted 

to 1.2m.  This is also the same height used as the participant height for the development of 

The Wellington Comfort Index, which is the basis of The Comfort Tool (Walton et al., 2007, 

p. 3168).     

 

 

  

Ambient temperature 

(TMY weather file) 
n/a Ambient temperature  

Solar radiation and 
ambient temperautre 

(TMY weather file)  

Black Globe Temperature 

(Equations 3 & 4)  

Mean Radiant 
Temperature 

(Equation 5) 

Wind speed measured at 
regional weather station 

(TMY weather file) 

Wind reduction factor 
calculated in wind 
analysis programe  

Mean wind speed at 
1.2m high within a 

proposed development 

Mean wind speed at 
1.2m high within a 

proposed development 

Gust co-efficient 

(Equation 7)  
Maximum wind gust 
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Ambient Temperature  

The ambient temperature is the air temperature measured with a thermometer or 

thermocouple (Walton et al., 2007, p. 3168).  It does not take into account humidity or the 

wind chill factor.  The ambient temperature is based on historical weather data from a 

Typical Meteorological Year (TMY) weather file.  This weather file is based on thirty years of 

data measured at a regional weather station (Gates, Liley, & Donn, 2011, p. 1600).  A 

statistical algorithm is used to select the most typical weather months from thirty years of 

weather data (Parsons, 1997, p. 523).   

These TMY weather files are available for eighteen locations within New Zealand, and more 

than two-thousand internationally. For each location, it contains meteorological 

information such as ambient temperature, wind speed and patterns, and solar radiation.  

The height that this weather data is measured varies between regional weather stations.  

However, for Christchurch it is measured at a height of thirty seven metres.  This type of 

weather file was selected as it represents the weather of a typical year, rather than weather 

data for a specific year which may contain unseasonable weather extremes.   

As Central Christchurch is the case study area for The Comfort Tool, the ambient 

temperature for The Comfort Tool is directly from the TMY weather file measured at the 

Christchurch International Airport.  The ambient temperature does not need adjusting from 

the TMY weather file measured at the Christchurch International Airport (37m) for use in 

The Comfort Tool as temperature only changes slightly with a decrease in height.  This 

temperature change is approximately 0.03°C for each ten metre change in height  (Stoffel, 

2005, p. 8).  Therefore, there would only be a change in temperature of 0.1°C when 

converting the ambient temperature from a height of thirty-seven metres to pedestrian 

height (1.2m).   

 

Mean Radiant Temperature  

Mean radiant temperature is described as the influence of the temperature of a surface 

radiating on to an individual (Parsons, 1997, p. 134).  This was measured using a 

thermocouple in a 150mm globe thermometer placed in direct sunlight during the survey 

used to develop The Wellington Comfort Index (Walton et al., 2007, p. 3168). However, the 
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mean radiant temperature cannot be calculated using a computer program and is not 

included in a TMY weather file.  For this reason, it was calculated from the black globe 

temperature.  The black globe temperature was calculated from the solar radiation and 

ambient temperature recorded in the TMY weather file for Christchurch.  

To convert the solar radiation and ambient temperature to the black globe temperature, 

two formulae were used (Equation 3 and Equation 4).  This measured the ambient 

temperature, humidity, and wind at a central weather station.  These measurements were 

then used to generate models for estimating black globe temperature.  The variables which 

contribute to the black globe temperature were then identified using simple correlation 

models (Turco et al., 2008, p. 2).  This developed two models for calculating black globe 

temperature, one for the day, and one for the night time. Day and night periods are defined 

by the level of solar radiation.  

Equation 3 is used for calculating black globe temperature during the day  (Turco et al., 2008, p. 5): 

𝐵𝐺𝑇𝑑 =  (1.360 𝑇𝑎𝑖𝑟 𝑑 − 2.358) 𝑥 (0.075 𝑙𝑛(𝑅𝑠) − 0.562)  

Equation 4 is used for calculating black globe temperature at night  (Turco et al., 2008, p. 5): 

𝐵𝐺𝑇𝑛 =  (0.942 𝑇𝑎𝑖𝑟 𝑛 ) 

 
Where: 

𝐵𝐺𝑇𝑑  = day-time black globe temperature (°C) 

𝑇𝑎𝑖𝑟 𝑑  = day-time air temperature (°C) 

𝐵𝐺𝑇𝑛 = night black globe temperature (°C)  

 𝑇𝑎𝑖𝑟 𝑛 = night-time air temperature (°C) 
 𝑅𝑠 = solar radiation (W/m

2
) 

 

This black globe temperature was then converted to the mean radiant temperature for use 

in The Comfort Tool (Walton et al., 2007, p. 3169).  It was converted using the following 

equation (Equation 5). 
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Equation 5 is used for calculating the mean radiant temperature from the black globe temperature  
(Walton et al., 2007, p. 1369): 

𝑔𝑡𝑚𝑟 =  √
1.10 𝑥 108 𝑣𝑎

0.6 

𝜀𝐷0.4

4

(𝑡𝑔 − 𝑡𝑎) + (𝑡𝑔 + 273)
4

− 273 

 

Where: 
𝑔𝑡𝑚𝑟 = mean radiant temperature (°C) 
        𝜀 = emissivity of the globe (0.95) 
       𝐷 = diameter (0.15 m) 
      𝑡𝑔 = globe thermometer temperature (°C) 

      𝑡𝑎 = ambient temperature (°C) 

     𝑣𝑎 = air velocity (m/s) 
 

Mean Wind Speed  

For The Comfort Tool, the mean wind speed at pedestrian height (1.2m) was calculated by 

applying a wind reduction factor to the mean wind speed in the TMY weather file for 

Christchurch.  The wind reduction factor was calculated using a wind analysis program for 

each individual case study.  It takes into account how the wind speed reduces with height 

(Figure 3.3) as well as  how the buildings and terrain reduce the wind speeds using the 

power law (Hussin, 2002, p. 468; Spera & Richards, 1979, p. 1).  The power law includes the 

mean wind speed and the terrain-roughness co-efficient which is a function of the type of 

terrain the wind is travelling across (Equation 6).   

Equation 6 is the power law for calculating wind at different heights and different terrains  
(Gandemer & Guyot, 1976, p. 20): 

�̅�𝑧

�̅�𝐺

=  (
𝑧

𝑧𝐺
)

𝛼

 

 

Where: 
Ūz = Mean wind speed at site (m/s) 
ŪG = Mean wind speed at gradient boundary layer (m/s) 
   z = Measurement height at case study area (4m) 
 zG = Height of local regional weather station located 2km from case study area  
   α = Terrain-roughness co-efficient (0.35 for small density city) 
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Figure 3.3 shows the terrain-roughness co-efficient (α) for different terrains . ‘Lac-plaine’ is terrain 
between a lake and a plain, ‘forêt-banlieue’ is terrain between a forest and a suburb, and ‘c entre-
ville’ is the centre of a town (Gandemer & Guyot, 1976, p. 20).  

The wind analysis programs also takes into account how the wind speed is reduced or 

accelerated based on the built form of the individual case study.  This built form includes 

the size, orientation, and widths of lanes (Figure 3.4).  The wind reduction factor was 

calculated for eight wind directions: North, North-east, East, South-east, South, South-

west, West, and North-west, for 121 measurement points across each case study.    
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Figure 3.4 shows a plan view of eight city blocks with a central open area.  This is an example of 
how wind speeds in an exposed area (one-hundred-percent of prevailing wind speed) would 
reduce through the eight city blocks into the central open area for each wind direction.     

These wind reduction factors (eight wind directions, at 121 measurement points across 

each case study) were applied to the mean wind speed in the TMY weather file for 

Christchurch.  The mean wind speed in the TMY weather file was converted from the 

measurement height of thirty-seven metres to a height of one-hundred and twenty metres.  

This is because the wind reduction factors calculated in the wind analysis programs 

calculate the wind reduction factor based on wind at a height of one-hundred and twenty 

metres above ground level.   
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Maximum Wind Speed 

The maximum wind speed, otherwise known as gustiness, cannot be calculated in a wind 

analysis program and is not included in the TMY weather file. However, a gust co-efficient 

can be used to calculate the maximum wind speed based on the mean wind speed. The gust 

co-efficient is represented as a percentage of the relative size of standard deviation to the 

mean wind speed (Rofail, 2007, p. 4).  The gust co-efficient is different in each city, as it is 

governed by the terrain-roughness within the city (Blocken & Carmeliet, 2004, p. 111; 

Walton et al., 2007, p. 3174).   

Although some wind analysis programs state that they can calculate the maximum wind 

speed or gustiness, the definition of maximum wind speed or gustiness may be different.  

However, it can be calculated from the mean and maximum wind speeds measured within a 

case study area.    

For the case study the gust co-efficient was calculated from the mean and maximum wind 

speed measured at the case study weather station.  Three-second wind data is typically 

used to calculate the gust co-efficient specific for a location (Groen & Wever, 2009, p. 20). 

However, the case study weather station was only able to measure the mean and maximum 

wind speed for each sixteen-second period.  For this reason, the gust co-efficient was 

calculated based on the hourly data measured at the case study weather station (Jamieson, 

Carpenter., & Cenek, 1992, p. 2303; Rofail, 2007, p. 1).  The justification of the gust co-

efficient being calculated using hourly data is that the gust co-efficient was applied to the 

hourly data in the TMY weather file for Christchurch which reports the data hourly.   

Equation 7 is the equation used to calculate the gust co-efficient (Rofail, 2007, p. 4): 

𝑔 =  
(𝑈𝑚𝑎𝑥) − �̅�

𝜎𝑢
 

 

Where:  
       𝑔 = gust co-efficient  
𝑈𝑚𝑎𝑥  = maximum wind gust (m/s) 
       𝑈 = average wind speed (m/s) 
     𝜎𝑢 = the standard deviation of a 3 s average wind speed (m/s) 
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The gust co-efficient was calculated using a linear regression analysis to quantify the 

relationship between the mean and maximum wind speeds in the case study area.  For the 

case study area, the gust speed can be calculated from the mean wind speed in the TMY 

weather file using the formula:  

𝐺𝑢𝑠𝑡 =   2.1 𝑥 �̅�  +  0.94.  

However, before the gust co-efficient was applied to the mean wind speed in the TMY 

weather file, it was converted to pedestrian height (1.2m) using the power law (Equation 6).  

The gust co-efficient was then applied to the mean wind speed at pedestrian height.  See 

Appendix 8.1.2. ‘Calculating the Gust Co-Efficient’ for the linear regression analysis.    

 

Maximum Wind Speed for Outdoor Thermal Comfort 

At an unknown wind speed, no matter what the ambient temperature and solar radiation 

levels, people will no longer be able to change their behaviour to maintain their thermal 

comfort.  Considerations for this threshold include the length of time people are stationary 

and their level of activity before they sat down.  It also depends on the frequency of wind 

gusts, the magnitude of the gusts, and the length of time the gust is experienced (Blocken 

& Gualtieri, 2012; Bottema, 2000, p. 1; He & Song, 1999, p. 299; Mochida & Lun, 2008; 

Tominaga et al., 2008; Yoshie et al., 2007).  It is important that this point where people can 

no longer change their behaviour to maintain their thermal comfort, is communicated in 

The Comfort Tool.  

A threshold of 5m/s has been set for Christchurch.   This is defined on the Extended Land 

Beaufort Scale as a moderate breeze (Met Office U.K., n.d.).  This value is based on 

previous studies which attempted to understand the maximum comfortable wind speeds 

for different activities (Table 3.1).  In these studies, the threshold generally changed based 

on the level of activity.  For example, for people sitting for a long period, a threshold of 2.4 

m/s was set (Willemsen & Wissse, 2007, p. 1541).  Whereas, the general threshold for all 

activities the threshold is set to 5 m/s (Bottema, 2000, p. 6; He & Song, 1999, p. 299; 

Willemsen & Wissse, 2007, p. 1545).  The reason 5 m/s was selected was because this is the 

maximum threshold in which people can change their behaviour to maintain their thermal 

comfort which is applied to all seasons.  If this threshold was set lower, then The Comfort 
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Tool may identify areas of a case study as too windy for people to maintain their thermal 

comfort, even when thermal comfort levels can be maintained.  

Table 3.1 shows the maximum wind speeds which are thermally comfortable for different 
activities defined by different studies  

Author/Study Activity 
Wind Speeds 
(Threshold of 

Thermal Comfort)  

Extended Land 
Beaufort Scale 

Description 

 A method for optimisation of wind 
discomfort criteria (Bottema, 2000, p. 
2) 

Pedestrian 
thermal 
discomfort  

6 m/s  Moderate breeze 

A method for optimisation of wind 
discomfort criteria (Bottema, 2000, p. 
6) 

All activities  5 m/s  Gentle Breeze 

Design for wind comfort in The 
Netherlands Procedures, criteria and 
open research issues - code NEN 8100 
(Willemsen & Wissse, 2007, p. 1545) 

All activities  
(including sitting)   

5 m/s  Gentle Breeze 

Design for wind comfort in The 
Netherlands Procedures, criteria and 
open research issues (Willemsen & 
Wissse, 2007, p. 1541) 

Sitting for a long 
period 

2.4 m/s Light Breeze 

Design for wind comfort in The 
Netherlands Procedures, criteria and 
open research issues (Willemsen & 
Wissse, 2007, p. 1541) 

Sitting for a short 
period of time 

3.9 m/s  Gentle Breeze 

Evaluation of pedestrian winds in 
urban area by numerical approach  
(He & Song, 1999, p. 299) 

All activities  5 m/s Gentle Breeze 

Building Research Translation 
Discomfort Due to Wind Near 
Buildings Aerodynamic Concepts 
(Gandemer, 1978, p. 10)  

All activities U̅ + σ ≤ 6m/s*  
 

 
 

Depending on 
activity 

*Where: U̅ = mean wind speed; σ = standard deviation between mean and gust wind speeds 
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3.2.2. CRITERIA FOR SELECTING WIND ANALYSIS PROGRAMS 

In the Process for Predicting Outdoor Thermal Comfort the local wind speeds were 

calculated at a single point in the development.  The local wind speeds were calculated by 

applying a wind reduction factor for each wind direction to the mean wind speed in the 

TMY weather file.  The wind reduction factors were calculated next to a three-dimensional 

computer model of a case study using a wind analysis program.  However, as part of the 

development of the Process for Predicting Outdoor Thermal Comfort into The Comfort 

Tool there needs to be a greater understanding of wind analysis programs, their accuracy, 

and their ability to calculate wind reduction factors which can easily be used in The Comfort 

Tool.  To achieve this, criteria were developed. These criteria aim to assist consultants and 

designers in selecting wind analysis programs through the creation of criterion which 

identify considerations when selecting a wind analysis program.      

The criteria was developed through using a number of wind analysis programs to calculate 

wind in areas surrounding a standard test for testing the accuracy of wind analysis 

programs and calibrating wind tunnels, known as The Simple City.  This process identified 

where a user of the wind analysis program would be required to make a decision or change 

a setting.  This was then added to the criteria.  The criteria includes:  

a. Can the three-dimensional model of a proposed development be imported or 

constructed in the wind analysis program? 

b. Is it able to work on Microsoft operating systems? 

c. Is it a text based wind analysis program?  

d. Can the wind be calculated locally, or is it required to be simulated in the cloud? 

e. Can the terrain-roughness be specified? 

f. Can the size of the computational domain be changed? 

g. Can a numerical solution be selected which is suitable for calculating wind in urban 

areas? 

h. Is the mesh automatically adjusted?  

i. Is the convergence calculated to allow for accurate results?  

j. Can the wind reduction factor be calculated by the wind analysis program? 

k. Can the results be accessed for a specific point? Can they be exported or is this a 

manual process?  
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Each criterion is discussed in detail in the next section.   

This criteria is important as the use of wind analysis programs is currently not standard 

practice within urban planning and architecture.  The skills and understanding required for 

wind analysis programs is not widely taught within universities, and on the occasions when 

wind analysis programs are used within urban planning and architecture, the skills are often 

self-taught.   

The criteria considers both the ease of operation of a wind analysis program for use within 

The Comfort Tool, and how easily the wind reduction factors can be copied into The 

Comfort Tool.  

The Standard Test – The Simple City  

The Simple City Test is a standard wind pattern test (Figure 3.5) used for both wind tunnels 

and wind analysis programs (Jamieson et al., 1992, p. 2302; Yoshie et al., 2007, p. 1562).  

For this project, the wind tunnel results for The Simple City Test were used to benchmark 

the results of wind analysis programs.  This is because wind tunnel tests are considered the 

most accurate way of simulating wind patterns (Yoshie et al., 2007, p. 1571).  The 

development and understanding of wind tunnels is also further advanced than wind 

analysis programs.  Although datasets also exist for calibrating wind tunnels which could be 

used to validate the wind analysis programs, wind analysis programs are more commonly 

calibrated and validated against wind tunnel data.   

 

Figure 3.5 shows The Simple City. Left: Uniform Simple City (all city blocks thirty metres in 
height). Right: Non-uniform Simple City (Central City Block sixty metres in height) 
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The Criteria  

A prerequisite of a wind analysis program being tested against the criteria was whether it 

could calculate the wind reduction factor for a single point within a The Simple City for each 

wind direction. As discussed earlier, the wind reduction factor determines how a single 

point within an urban development is sheltered from wind in each direction (Figure 3.4).  It 

is the percentage of the wind at an exposed location, experienced in an urban area. 

The criteria is separated into three key parts; Ease of Accessibility of the computer 

programs, Wind Analysis Program Settings, and the Outputs from the wind analysis 

program.  The criteria is in three parts to assist with the understanding of what 

considerations are important for each phase of the process for analysing wind.      

Criteria Part One: Ease of accessibility       

a) Can the three-dimensional model of a proposed development be imported or 

constructed in the wind analysis program?  

Depending on the wind analysis program, a three-dimensional model of a 

proposed urban development may be able to be modelled in the wind analysis 

program or can be imported from a three-dimensional modelling program.  One 

obstacle of this may be the file types. The wind analysis program may only accept 

particular file types, and a three-dimensional modelling program may only be able 

to export particular file types – are these compatible?  

 

b) Is it able to work on Microsoft operating systems? 

Microsoft Windows is the most commonly used operating system in urban 

planning and architecture, followed by Macintosh.  This is important as some wind 

analysis programs (for example OpenFOAM) only work on Linux, a less common 

operating system.   
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c) Is it a text based wind analysis program?  

Some wind analysis programs are text based, meaning specialist coding skills are 

required to operate them.  This makes them inaccessible to people without these 

skills, limiting the consultants or designers who can use them.  

 

d) Can the wind be calculated locally, or is it required to be simulated in the cloud? 

Wind modelling programs can require a large amount of computational resources.  

The size of the urban area modelled, as well as the number of data points where 

the wind reduction factor is being calculated determine how long the calculations 

take.  If there is an option for completing the wind analysis in the cloud, then 

results may be completed in less time, or in more detail.   

 

Criteria Part Two: Wind Analysis Program Settings  

These are the settings for calculating the wind flow (turbulent flow) within urban areas.  

e) Can the terrain-roughness be specified? 

The terrain-roughness defines the terrain the wind has travelled across from where 

the wind was measured (TMY weather file) to the location of the case study, and 

how this reduces wind speed. The terrain-roughness depends on many factors 

such as the topography and density of a city or if the wind flows across lakes or 

rivers (Blocken, Janssen, & Hooff, 2012, p. 16).  

 

 For this criterion, it is recommended that the terrain-roughness used in the wind 

analysis program is the same as the type of topography the wind travels across 

from the regional weather station where the TMY weather data is collected as the 

area where a proposed development is located.  
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Table 3.2 shows the terrain-roughness which determines the terrain the wind has travelled over 
between the regional weather station and the site where a case study is located.  

Terrain Category  Terrain-roughness (α)  

Terrain between a lake and a plain (Gandemer & 

Guyot, 1976, p. 20). 

α = 0.14 

Terrain between a forest and a suburb (Gandemer & 

Guyot, 1976, p. 20). 

α = 0.25 

Low density city – buildings and trees are small and 

widely spaced (Grimmond & Oke, n.d., p. 1283). 

α = 0.35-0.5 

Medium density city – Buildings are between two 

and four storeys, there are mature trees (Grimmond 

& Oke, n.d., p. 1283).  

α = 0.55-0.7 

High density city – Buildings and trees are close 

together and are of similar heights (Grimmond & 

Oke, n.d., p. 1283). 

α = 0.6-0.85 

High rise city – scattered or clustered tall towers of 

different heights jut out of dense urban 

surroundings (Grimmond & Oke, n.d., p. 1283). 

α = 0.5-0.7 

 

f) Can the size of the computational domain be changed? 

The computational domain contains a building or proposed development for the 

wind reduction factors to be calculated around (Figure 3.6). It should be large to 

avoid artificial accelerations of the wind flow (Blocken et al., 2012, p. 18).  The 

height of the computational domain should be at least five times the height of the 

tallest building, and ten times the height in front and behind the site or building 

where the wind is being assessed  (Tominaga et al., 2008, p. 1751).  In some wind 

analysis programs this computational domain is automatic.  However, it is 

important that the automatic computational domain is adjusted to be the 

recommended size (five times the height of the tallest building, and ten times the 

height in front and behind).  
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Figure 3.6 shows the computational domain (blue) around The Simple City (black)  

 

g) Can a numerical solution be selected which is suitable for calculating wind in urban 

areas? 

The fundamental equations for fluid motion have been known since the 19th 

century which can be solved using a number of numerical solutions (Blocken & 

Gualtieri, 2012, p. 1).  These numerical solutions attempt to solve the fundamental 

equation. However, numerical solutions can be suited to different applications and 

involve different levels of computer intensity.  For example, calculating wind 

around a building would use a different numerical solution than calculating air or 

fluid flow through a heating, ventilation, and air conditioning system. The 

numerical solutions required for calculating wind patterns in an urban area are 

classed as part of Environmental Fluid Mechanics (EFM). In EFM, the numerical 

solutions are attempting to solve turbulence flows, meaning that the flows (the 

wind) have irregular fluctuations with their magnitude and direction. There are 

three main numerical solutions for solving these turbulent flows, Direct Numerical 

Simulation (DNS), Large Eddy Simulation (LES), and Reynolds-Averaged Navier 

Stokes (RANS) (Blocken & Gualtieri, 2012, p. 3).   

 

Direct Numerical Simulation (DNS) solves the exact Navier-Stokes equation in 

detail.  However, due to the level of detail it is computationally demanding.  

Therefore, less detailed Navier-Stokes equations are more suitable for the 

application of simulating wind in urban areas.  
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Large Eddy Simulation (LES) resolves only the large turbulence flows to reduce the 

computational intensity. However, the smaller turbulent flows are still estimated.  

This reduces the computational intensity, although can still be computationally 

intensive (Yoshie et al., 2007, p. 1577). Therefore, is only suited when the 

computational power is available (Mochida & Lun, 2008, p. 1520).  

 

Reynolds-Averaged Navier Stokes (RANS) only calculates the average flow of wind 

at the different levels of turbulence. This is less computationally intensive as it still 

includes the smaller turbulent flows. RANS models, such as the k –epsilon (k – ε) 

model are commonly used for solving turbulent flows in urban areas (Blocken et 

al., 2012, p. 17; Fadl & Karadelis, n.d., p. 367; Tominaga et al., 2008, p. 1750).  There 

are a number of variations of this model, including the standard k -epsilon (k-ε) 

model, modified k -epsilon (modified k-ε) model or the Differential Second-

Moment (Reynolds-stress) turbulence model.   The modified k-ε model gives more 

accurate results when higher wind speeds are calculated. However, the accuracy is 

less in areas with lower wind speeds.  It is the most commonly used numerical 

solution for calculating wind in urban areas  (Blocken & Gualtieri, 2012; Fadl & 

Karadelis, n.d., p. 367; Franke et al., 2004). 

 

For this criterion, it is recommend that a RANS model is used, such as the k –

epsilon model, as it requires less computational power than the other numerical 

solutions, while still producing accurate results.  
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h)  Is the mesh automatically adjusted?  

The accuracy of the results across an urban 

development depends on the detail of the 

analysis (Franke et al., 2004, p. 7).  This can be 

referred to as the mesh resolution (Figure 3.7). 

The mesh is a series of shapes over the surface 

of a building, which the numerical solution is 

calculated across.  There needs to be a 

balance with mesh resolution, as the finer the 

mesh the more detailed the results, however, 

this increases the computational period.  

Some wind analysis programs allow for a 

combination of mesh size. For example, where 

wind patterns are more complex around 

corners, a more detailed mesh may be 

applied. 

    

The mesh resolution recommend for resolving the numerical solution for wind in 

urban areas varies between studies.  However, the mesh is generally 

recommended to be between a coarse and medium mesh for urban applications 

(Blocken et al., 2012, p. 27; Franke et al., 2004, p. 4).  

 

For this criterion, it is recommended that the sensitivity of the mesh is tested. Each 

wind analysis program may apply mesh differently, so a mesh size cannot be 

defined. However, testing the sensitivities of the mesh can define the detail of the 

mesh (Tominaga et al., 2008, p. 1753).  Once a reduction in mesh size only results in 

a slight change in wind reduction factors (less than 1%), then the mesh is the 

correct coarseness for the application.  

 

  

 

 

 

Figure 3.7  show a demonstration of 
mesh or mesh resolution.  Top: 
Coarse mesh. Middle: Medium 

mesh. Bottom: Fine mesh (Blocken 
et al., 2012, p. 27) . 
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i) Is the convergence calculated to allow for accurate results?  

The convergence of a wind analysis program tells the user if the numerical solution 

has been resolved.  Wind modelling programs repeat a numerical solution until 

further iterations do not improve the wind reduction factors.  Depending on the 

wind analysis program, the number of iterations may be automatically set to 

infinite; whereas, in others the number of iterations has to be set.  It is important 

that the number of iterations is high so that the numerical solution can be resolved 

before the wind analysis program stops running any further iterations.   

 

Criteria Part Three: Outputs  

j) Can the wind reduction factor be calculated by the wind analysis program? 

The wind reduction factor can either be an automatic output from a wind analysis 

program, or it may be calculated manually based on the reference wind speed. The 

reference wind speed is the wind entering the computational domain based on the 

terrain-roughness co-efficient.  The wind speed measured at specified points 

within a proposed urban development is then divided by the reference wind speed. 

For example, if the wind speed calculated by the wind analysis program is 2m/s, 

and the reference wind speed is 10m/s, then the wind reduction factor is twenty-

percent. 

 

k) Can the results be accessed for a specific point?  

It is important that the wind reduction factor for a single point within a proposed 

development can be generated as a numerical value, rather than only an image 

(Blocken & Carmeliet, 2004, p. 122).  As wind reduction factors may be calculated 

for a series of points across a proposed urban development, it is important that 

these results can be accessed or even exported in a file to make the process of 

putting the wind reduction factors for each measurement point into The Comfort 

Tool less time consuming.       

 

  



pg. 59 

 

Identifying the Usefulness and Accuracy of Wind Analysis Programs  

Once the criteria was complete, three wind modelling programs were tested against it, 

using a three-dimensional model of The Simple City as the urban form the wind reduction 

factors were calculated around.  This had three purposes.  These were to use the criteria to 

select a wind analysis program for calculating wind reduction factors in an urban 

application; to identify if the wind modelling programs were able to produce results that 

could be used in The Comfort Tool; and to test the accuracy of these wind modelling 

programs.  

Initial exploration identified six wind analysis programs which could be tested against the 

criteria.  However, three of the programs did not meet the prerequisites of being able to 

calculate the wind reduction factors for each wind direction at a specified point.  Two of the 

programs were not able to calculate the wind reduction factor for each wind direction at a 

single point within the areas surrounding The Simple City, and one of the programs could 

not be installed. For these reasons, these three programs were excluded from this thesis 

project.  

The results of testing the three remaining wind analysis programs against the criteria are 

below.  The results of the accuracy based on The Simple City Test are in Section 3.2.2 

‘Criteria for Selecting Wind Analysis Programs’.  
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Wind Analysis Program One: UrbaWind 

UbaWind is a wind analysis program developed by Meteodyn specifically for modelling 

flows in an urban environment. It is able to calculate the wind reduction factor for each 

wind direction.  It has been validated against wind tunnel testing and on-site 

measurements (U.S. Department of Energy, 2011). 

a) Can the geometry of a proposed urban development be imported or constructed? 

Yes The geometry can be imported as an STL file, which can be created in a three-dimensional 
modelling program such as SketchUp. 

b) Is it able to operate on Microsoft Windows operating system? 

Yes Microsoft only.  

c) Is it a text based program?  

No It has a dashboard interface. 

d) Can the wind be calculated locally, or is it required to be simulated in the cloud?   

Yes, both Locally or in the cloud. 

e) Can the terrain-roughness be specified? 

Yes The terrain-roughness can be set for a high density city, small density city, water, or the open 
country. A file can also be imported which allows for different terrain-roughness’ in each 
direction of a case study. 

f) Can the size of the computational domain be changed? 

Yes The automatic computational domain is 120m in height, and has approximately 90m in each 
direction between the site of the proposed urban development being assessed and where 
wind enters the computational domain.  

g) Can a numerical solution be selected which is suitable for calculating wind in urban area? 

No The numerical solution considers the relationship between wind changes and the mean wind 
speed gradients, similar to the k-ε model (‘Meteodyn FAQ’, 2010).   Although it is not an 
exact specified numerical model, it is trusted due to the results of The Simple City Test for 
UrbaWind and the wind tunnel tests being similar.    

h) Is the mesh automatically adjusted? 

Yes The mesh is generated with refinement near ground level and around buildings 
automatically.  The number of mesh cells is directly proportional to the amount of memory 
space on the computer available.  As the mesh is calculated for the whole computational 
domain, it is important that the computational domain is not too large as the detail of the 
mesh may be reduced to adapt to the memory on the computer.  This may lead to the results 
not being as detailed as they could have been. 

i) Is convergence calculated to allow for accurate results?  

Yes The iterations continue until convergence is met.  Where there are some uncertainties, in 
covergence UrbaWind highlights the wind directions which did not reach 100% convergence.  
This allows for these wind directions to be calculated again.  

j) Can the wind reduction factor be calculated by the wind analysis program? 

Yes The wind reduction factor is the direct output for UrbaWind.    

k) Can the results be accessed for a specific point?  

Yes The results can be accessed for a specific point, and exported as a comma-separated values 
(CSV) file.  This allows for the wind reduction factors for each wind direction to be easily 
copied into The Comfort Tool.  
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Wind Analysis Program Two: Simulation CFD – By Autodesk 

Simulation CFD is a multiple-use general application fluid and air analysis program 

(Autodesk, 2015).  It has not been designed specifically for calculating wind in urban areas. 

The mean wind speed is able to be measured at specified points throughout an urban area, 

which can then be used to calculate the wind reduction factor.  At the time wind analysis 

programs were assessed against the criteria, Simulation CFD had not been validated.   

a) Can the geometry of a proposed urban development be imported or constructed? 

Yes Geometry can be constructed in Revit or through Autodesk Inventor and opened directly into 
Simulation CFD.  

b) Is it able to operate on Microsoft Windows operating system? 

Yes It is also able to operate on a Macintosh operating system. 

c) Is it a text based program? 

No It has a dashboard interface.  

d) Can the wind be calculated locally, or is it required to be simulated in the cloud?   

Yes Simulations can either be completed locally or in the cloud. 

e) Can the terrain-roughness be specified? 

No This is not a setting in Simulation CFD.  

f) Can the size of the computational domain be changed? 

Yes The computational domain is not automatic in Simulation CFD. However, the computational 
domain can be created manually.  The computational domain is known as an ‘exterior 
volume’ in Simulation CFD. One end of the exterior volume has to be set as the boundary 
inlet, and the opposite end needs to be set as a pressure outlet (set as zero pressure to act as 
the boundary outlet).     

g) Can a numerical solution be selected which is suitable for calculating wind in urban areas? 

Yes The k-ε numerical solution is included.   

h) Is the mesh automatically adjusted? 

Yes Mesh generation is automatic. The user is also able to manually refine the mesh in areas 
where the wind patterns may be more complex, such as the corners of buildings.  

i) Is convergence calculated to allow for accurate results?  

Yes The number of iterations is set manually.  This means that the number of iterations is set too 
low, then the wind flows in areas surrounding a proposed development might not be fully 
calculated before the wind analysis program stops.   

j) Can the wind reduction factor be calculated by the wind analysis program?  

Yes The wind reduction factor is not a direct output.  However, when assessing Simulation CFD 
against the criteria the wind speed was set to 10 m/s at a height of 120m as this is the same 
wind scenario which was used in the wind tunnel tests.  The wind speeds (m/s) calculated by 
Simulation CFD were then divided by 10 m/s to calculate the wind reduction factor.     

k) Can the wind reduction factors be accessed for a specific point?  

Yes The results can be accessed through manually selecting a point for the wind speeds to be 
displayed. 
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Flow Design by Autodesk – Plugin for Revit 

Flow design is a virtual wind tunnel which is able to simulate wind flows around buildings.  It 

is designed as a user-friendly wind analysis program for people who do not have experience 

with wind analysis programs.  There are two versions, a plugin for Revit, and a standalone 

version.  However, only the plugin for Revit is able to calculate the wind reduction factor for 

a specified point for each wind direction.  It works through Revit, a three-dimensional CAD 

program used within urban planning and architecture.  At the time the wind analysis 

programs were assessed against the criteria, validation for Flow Design had only been 

completed through a comparison with another wind analysis program.  This concluded that 

Flow Design is able to simulate wind patterns in a similar way to Fluent (‘Flow Design 

Preliminary Validation Brief’, 2014, p. 6).   

a) Can the geometry of a proposed urban development be imported or constructed? 

Yes  It can be constructed in Revit or Inventor which are both Autodesk programs.   

b) Is it able to operate on a Windows operating system?  

Yes Yes, as well as Macintosh.  

c) Is it text based? 

No It has a dashboard interface.  

d) Can the wind be calculated locally, or is it required to be simulated in the cloud?   

Yes, both Simulations can be either completed locally or in the cloud 

e) Can the terrain-roughness be specified? 

No The terrain-roughness cannot be set.  However, the boundary conditions can manually be 
set.  The automatic boundary conditions are uniform and do not take into account the wind 
travelling across terrain before it reaches The Simple City at a height of 120m before it enters 
the computational domain.  However, these can be manually calculated using the power law.   

f) Can the size of the computational domain be changed? 

Yes The size of the computational domain is automatic, but can be altered manually as well. 

g) Can a numerical solution be selected which is suitable for calculating wind in urban environments? 

Yes The numerical solution used is a simplified version of Smagorinsky Large Eddy Simulation 
(LES).  It has been adapted to be more tolerable to geometry to increase the ease of using 
the program and simulating wind fast.  However, it is unknown in which way the numerical 
solution was simplified.     

h) Is the mesh automatically adjusted? 

No The mesh can be applied and adjusted manually to be as coarse or fine as required.   

j) Is convergence calculated to allow for accurate results?  

Yes The user is notified once the model has stabilised.  However, it is unknown how Flow Design 
determines that the results have stabilised.     

k) Can the wind reduction factor be calculated by the wind analysis program? 

Yes Although the wind reduction factor is not directly calculated by Flow Design, it can be 
calculated by setting the wind speed to 10 m/s (to align with the wind tunnel test results for 
The Simple City), the dividing the calculated wind speed by 10 m/s to calculate the wind 
shelter factor. 

l) Can the results be accessed for a specific point?  

Yes They can be accessed for a specified point by manually selecting the point. These results 
cannot be exported.    
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Through testing these three wind analysis programs it was found that criteria could be 

developed for selecting a wind analysis program.  It was able to highlight the strengths and 

weaknesses of each program.  Out of the three wind analysis programs tested, UrbaWind 

was able to meet most of the requirements of a wind analysis program set by the criteria.  

As the angle of the wind in Simulation CFD is a manual process through the three-

dimensional modelling program, it would be time consuming to use this for calculating the 

wind reduction factors for eight wind directions.  Therefore, UrbaWind and Flow Design 

have the most potential for calculating the wind reduction factors for The Comfort Tool, 

depending on their accuracy.  The next section compares these programs for their accuracy 

against wind tunnel test results.     
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Testing the Accuracy of the Wind Modelling Programs 

The Simple City Test was used to test the accuracy of these three wind analysis programs.  

It was selected as it was a standard test which could be conducted in each of the programs.  

The results were compared to The Simple City results for the wind tunnel tests as they are 

considered the most accurate way of calculating wind in urban areas (Fadl & Karadelis, n.d., 

p. 363; Reiter, 2010, p. 858; Tominaga et al., 2008, p. 1756). The Simple City Test was also 

selected as the wind tunnel results for The Simple City are available to compare the wind 

analysis program results.  

The Simple City has two variations.  The Uniform Simple City has nine city blocks, each 

sixty-by-sixty metres, which are thirty metres in height (Figure 3.5).  There are thirty metre 

wide roads between each city block.  Whereas, the Non-uniform Simple City’s central block 

is sixty metres in height (Jamieson et al., 1992, p. 2302; Kepa, 2010, p. 49; Yoshie et al., 

2007, p. 1553).   

To allow for the results of the wind modelling programs to be compared against the wind 

tunnel results, the height where the wind entered the computational domain; the wind 

speed and angles; and the terrain-roughness had to align between the wind analysis 

programs and wind tunnel tests for The Simple City.  This was so that the wind reduction 

factors generated by each program were based on the same assumptions as the wind 

tunnel test, allowing for the wind reduction factors to be comparable (Table 3.3).   

Table 3.3  shows how the wind tunnel and wind analysis program settings were aligned so the 
results are comparable 

 Wind Tunnel UrbaWind Flow Design - Revit Simulation CFD 

Wind Speed 10 m/s n/a 10m/s 10m/s 

Inlet Boundary 
Conditions Height 

120m 120m 120m 120m 

Wind Angles 
Tested 

360° (North) 
45° (North-east) 

360° (North) 
45° (North-east) 

360° (North) 
45° (North-east) 

360° (North) 
 

Height wind 
reduction factor 
was measured from 
street level 

Two metres Two metres Two metres Two metres 

Terrain-roughness 
0.35 

(small density 
city) 

0.35 
(small density city) 

Power law (using 
terrain-roughness) 
used to calculated 

the boundary 
conditions 

Not a setting in 
Simulation CFD 
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Results of Simple City Tests 

The wind reduction factors were calculated in sixteen locations within The Simple City for 

each wind modelling program.  There was a total of sixteen measurement points, eight 

were one metre from the Central City Block, and eight were in the centre of the roads 

between the Central City Block, and the Outer City Blocks (Figure 3.8).  

  

Figure 3.8 shows the sixteen measurement points.  The eight were one metre from the base of the 
Central City Block.  The other eight were fifteen metres from the Central City Block.  

Once a wind analysis programs had been compared against the criteria, it was then used to 

calculate the wind reduction factors for each of the sixteen points around the Central City 

Block in The Simple City.  These wind reduction factors were then compared to the results 

of the wind tunnel tests for the same sixteen points in The Simple City (Figure 3.8).  This 

allowed for the accuracy of the wind analysis programs to be tested.   
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Results for the Uniform Simple City – North-easterly Wind 

   Figure 3.9 shows that Flow Design (blue) 
pattern is symmetrical.  However, does not 
align with the wind tunnel test results 
(orange).  UrbaWind (grey) follows the wind 
tunnel test results the most closely.  
However, there is a still ten percent 
difference in their wind reduction factors.  

Figure 3.10 shows the wind tunnel test results 
(orange) and the UrbaWind (grey) results 
follow a similar pattern between the North-
west to the South-east directions when the 
wind is from a North-easterly direction. 

 

For the wind reduction factors measured centrally in the lanes (Figure 3.9) from a North-

easterly direction Flow Design (blue) and UrbaWind (grey) did not follow a similar pattern.  

The wind tunnel (orange) results were similar in all wind directions (between twenty-

percent and thirty-percent), with a slightly lower wind reduction factor calculated in the 

West and South directions. Urbawind followed the wind tunnel tests the most closely.   

Figure 3.10 shows the wind tunnel test results (orange) for the eight points around the 

Central City Block, and the UrbaWind results (grey). Between the North-west and South-

east direction, the shelter factors for UrbaWind and the wind tunnel tests were similar, 

calculating the wind reduction factors as thirty-percent of the wind speed at an exposed 

location at the height of 120 metres.  However, for points in the West and South, the wind 

tunnel calculated smaller wind reduction factors than UrbaWind. Flow Design (blue) did not 

follow a similar pattern to UrbaWind or the Wind Tunnel Tests.  Simulation CFD was unable 

to calculate the shelter factors for a North-easterly direction (45° degree angle) without 

manually changing the angle in the geometry modelling program.     
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Figure 3.11 shows that the wind tunnel test 
results (orange) and UrbaWind (grey) do 
not follow a similar pattern in a Northerly 
wind.  Simulation CFD (yellow) and Flow 
Design (blue) patterns are not 
symmetrical, which suggests that they are 
not taking into account the built form’s 
effect on the wind.   

Results for Uniform Simple City– Northerly  

 

 

 

 

When the wind was at a Northerly (360° angle), none of the wind analysis programs 

followed the same patterns as the wind tunnel tests for the measurement points taken at 

the base of the Central City Block (Figure 3.11).  The wind tunnel tests (orange) had a 

twenty-percent wind reduction factor for the points in the North-West, North, and North-

East directions, and a ten-percent wind reduction factor at the points in the East, South and 

West directions.  However, the UrbaWind (grey) results were indicating a twenty-percent 

wind reduction at the points in all directions except for the North and South which had wind 

reduction factors of zero. Despite the results being different between the UrbaWind and 

wind tunnel tests, the results were still symmetrical this indicates that the city blocks were 

taken into account in the calculation of the wind reduction factors.  Simulation CFD (yellow) 

and Flow Design (blue) did not follow any similar patterns with the wind tunnel tests.  

UrbaWind was more familiar to the user in these tests than the other wind analysis 

programs as it had been used in the development of the Process for Predicting Outdoor 

Thermal Comfort.   

 

Figure 3.12 shows that none of the wind 
analysis programs followed a similar 
pattern as the wind analysis program.  
UrbaWind (grey) and Flow Design follow a 
similar pattern.  
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Results for Non-Uniform Simple City – Northerly  

  

Figure 3.13 shows the wind reduction factors 
for the Non-uniform Simple City. None of the 
wind analysis programs follow the same 
pattern as the wind tunnel tests.  However, 
there is only a twenty-percent difference in 
wind reduction factors. 

Figure 3.14 shows the wind reduction factors 
for the Non- uniform Simple City.  Although 
UrbaWind (grey) and the wind tunnel tests 
(orange) follow a similar pattern, there is still 
a forty-percent difference in the wind 
reduction factors.    

 

For the Non-uniform Simple City Flow Design (blue) and UrbaWind (grey) had symmetrical 

results in the centre of the laneways for a Northerly wind when the Central City Block was 

twice the height of the surrounding blocks (Figure 3.13).  For these wind tunnel test results, 

they were not symmetrical (orange).  Simulation CFD’s results (yellow) were more similar 

than The Simple City when all city blocks were the same height.  However, did not follow 

the same pattern as the wind tunnel results. The UrbaWind (grey), Simulation CFD (yellow) 

and the wind tunnel results (orange) calculated different wind reduction factors.  However, 

the difference between these wind reduction factors was less than twenty-percent for the 

majority of the measurement points.  

When the measurement points were at the base of the Central City Block for a Northerly 

wind (360°) UrbaWind (grey) and the wind tunnel tests (orange) had the most similar 

shelter factors (Figure 3.14).  However, there was a large difference in the wind reduction 

factors for some wind directions.  In the North-westerly direction, and the North-easterly 

direction the shelter factors for UrbaWind were seventy-percent of the wind measured at 

an exposed location.  Whereas, the wind tunnel results were only thirty percent of the wind. 
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Results for the Non-uniform Simple City – North-easterly  

  

Figure 3.15 shows UrbaWind and the wind 
tunnel test results followed a similar pattern 
with the greatest difference in wind reduction 
factors of twenty-percent in the South-east 
and North-west directions.  

 

Figure 3.16 shows that UrbaWind and the wind 
tunnel tests follow a similar pattern.  Ther e is 
a difference of twenty-percent in wind 
reduction factors in the West and South 
directions.   

 

When the wind reduction factors were calculated for a North-easterly wind at the base of 

the Central City Block the wind tunnel results (orange) and UrbaWind (grey) followed a 

similar pattern (Figure 3.15).  The greatest difference between the wind reduction factors 

was a twenty-percent difference.  Flow Design (blue) did not follow the pattern of the wind 

tunnel results.  

When the wind reduction factors were calculated for the Non-uniform Simple City in the 

centre of the lanes the wind reduction factors for Urabwind (grey) and the wind tunnel 

results (orange) followed a similar pattern (Figure 3.16).  At the most there was a twenty-

percent difference in wind reduction factors in the West and the South directions.    
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This concluded that the wind reduction factors measured in UrbaWind followed the wind 

reduction factors from the wind tunnel results the most closely.  Flow Design’s results were 

symmetrical when the measurement points were located centrally in the lanes.  However, 

when the wind reduction factors were calculated at the base of the Central City Block, the 

wind reduction factors did not follow a pattern, and were not symmetrical.  The wind 

direction was not able to be changed in Simulation CFD to a 45° angle (Northerly), so it was 

only tested for calculating the wind reduction factors for a Northerly wind (360 °).   

This exercise also identified that although there are a number of wind assessment 

programs available to people within urban planning and architecture, it is important that 

their accuracy is tested using a standard test.  

The wind analysis program selected is independent of The Comfort Tool.  However, a wind 

analysis program is still part of the process for using The Comfort Tool.   For this reason, the 

wind tunnel test results are included in Appendix 8.1.1. ‘Simple City Test Results for 

Assessing Wind Analysis Programs for their Accuracy’.  This allows for consultants and 

designers to select a wind analysis program that is available to them, and test it for its 

accuracy. 
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3.2.3. SELECTING SOLAR RADIATION PROGRAMS  

EnergyPlus was used to demonstrate how a computer program for calculating solar 

radiation would be used as part of The Comfort Tool.  It has been selected as it is able to 

calculate the solar radiation (W/m2) for selected measurement points across a case study, 

and export the solar radiation levels for each hour of the year to a comma separated values 

(CSV) file.  This CSV file allows the results to easily be copied into The Comfort Tool using 

excel.   

EnergyPlus has been validated against the International Energy Agency’s Building Energy 

Simulation Test (BESTEST).  This is a standard test developed between the International 

Energy Agency Solar Cooling and Heating Programme Implementing Agreement (IEA SHC) 

and the American Society of Heating, Refrigerating and Air-Conditioning Engineers to test 

building simulation programs for their accuracy (‘DOE Sponsored Tools — Building Energy 

Simulation Test (BESTEST)’, 2011).  

Only one program for calculating solar radiation was used as the calculations are less 

complex than wind analysis programs as they are simply calculating where a three-

dimensional model of a building will cast a shadow based on the TMY weather file, and the 

longitude and latitude which determines when the sun will rise and set for each day of the 

year.   

Although there are not many programs available for calculating solar radiation, the practice 

is more common within urban planning and architecture than wind analysis programs.  

However, when selecting a computer program for calculating solar radiation it must be 

acknowledged that many CAD programs are only able to illustrate the time that an area 

may be in the direct sunlight, rather than the actual solar radiation.  

When selecting a program for calculating solar radiation, it is important that it is able to 

calculate the solar radiation at a selected point within a development for each hour of the 

year.  It is also important that the solar radiation calculated can be exported, or easily 

copied into The Comfort Tool.  This is because there may be solar radiation calculations for 

each hour of the year for hundreds of measurement points across a case study.  
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 CAN THERMAL COMFORT BE AUTOMATICALLY COMMUNICATED ACROSS A 3.3.

DEVELOPMENT?  

This section develops a way of automating the Process for Predicting Outdoor Thermal 

Comfort for a single point in a development to calculate thermal comfort across a proposed 

development.  This will allow for the thermal comfort results to be calculated and 

communicated automatically.   

For thermal comfort to be calculated for a number of points across a development, solar 

radiation and wind also had to be calculated at each of these points.  The closer together 

these points were located, the more detailed the analysis.  However, due to the limitations 

of the computer programs, the measurement points could not be closer than ten metres 

together.  

UrbaWind was selected as the wind analysis program used as a demonstration of a wind 

analysis program being used in conjunction with The Comfort Tool.  It was selected as the 

shelter factors calculated in UrbaWind using The Simple City test were the closest to the 

wind tunnel results for The Simple City Test.   

Although UrbaWind could calculate the wind reduction factors at more than 121 

measurement points, it took between two and three hours to calculate the wind reduction 

factors for each of the eight wind directions, depending on the size and detail of the three-

dimensional model of the case study.  This meant that the calculation of the wind reduction 

factors were taking up to a day to complete for this thesis project. However, in the future, it 

is likely that this time will reduce due to the advances in technology.     

EnergyPlus, the computer program used for calculating solar radiation was able to measure 

the solar radiation at 121 measurement points within the case study developments. 

However, it aborted if any more than 121 measurement points were selected for calculating 

solar radiation.   

For calculating thermal comfort across the four case studies, a ten-by-ten metre grid was 

laid out evenly across the case studies in the solar radiation and wind analysis programs.  

This allowed for solar radiation and wind to be calculated at a sufficient number of points to 

provide detail in the thermal comfort results without it taking days for the wind to be 
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calculated, or the computer program aborting due to there being too many measurement 

points.  

When the case studies were put into the computer programs, the lanes and courtyards 

within each case study did not often align with the ten-by-ten metre grid.  This meant that 

the rows of measurement points for solar radiation and wind had to be moved manually by 

one or two metres to align with the lanes and courtyards (Figure 3.17).   

  

Figure 3.17 show the measurements points for solar radiation (Left) and wind reduction factors 
(right) for Case Study One. 

Once the wind and solar radiation had been calculated for each of these measurement 

points, these were copied into The Comfort Tool.  The Comfort Tool then used a 

macroinstruction, also known as a macro to automatically copy the solar radiation and wind 

reduction factor into the correct cells in The Comfort Tool, for each hour of the year. This 

process was repeated 121 times until thermal comfort was calculated across the whole case 

study.  This was then displayed across a plan view of the case study as shown in Figure 3.18 

diagram (1).  
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1) 

 

2) 

 

3) 

 

4) 

 

5) 

 

6) 

 

Figure 3.18 shows the interpolation technique used which takes the 121 measurement points 
where solar radiation and wind reduction factors were measured.  The Comfort Tool then 
automatically averaged the surrounding cells for each point systematically (rows, columns, 
between rows and columns) until the whole area was shaded communicating the thermal comfort. 

A linear interpolation technique was then used to interpolate the thermal comfort results 

for the 121 measurement points out to show thermal comfort across the whole case study. 

This interpolation technique averaged the thermal comfort results between two points in 

rows (2), columns (3), between the rows and columns (4), in all directions (5).  This then 

displayed the thermal comfort across a development, rather than just for the 121 

measurement points where thermal comfort was calculated (Figure 3.18).   

Although the measurement points had to be moved manually one or two metres to align 

the lanes and courtyards, this interpolation technique averaged the thermal comfort results 

across more than ten metres.  This allowed for the measurement points in the solar 

radiation and wind analysis programs to be moved one or two metres, and for the comfort 

results to still be communicated.  
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 WHAT IS THE APPLICABILITY OF THE WELLINGTON COMFORT INDEX TO CITIES 3.4.

OUTSIDE OF WELLINGTON?  

This section develops a methodology for testing whether The Wellington Comfort Index 

can be applied to cities outside of Wellington, using Christchurch as a case study.  The 

applicability of The Wellington Comfort Index to other cities is unknown (Walton et al., 

2007, p. 3173).  However, the methodology used to develop The Wellington Comfort Index 

was proven to be accurate (Walton et al., 2007, p. 3173).  This was tested through separating 

the sample used to create The Wellington Comfort Index into two groups, and conducting a 

regression analysis on each group to test the strength of the relationships between the 

variables (Field, 2013, p. 882).  This concluded that there were similar relationships within 

the two groups between the variables (Walton et al., 2007, p. 3170).  

In Section 3.2 ‘Can the Process for Predicting Outdoor Thermal Comfort be developed into a 

tool for use at the preliminary design stage?’ the Process for Predicting Outdoor Thermal 

Comfort was developed into The Comfort Tool through creating criteria to assist 

developers and consultants in selecting wind analysis programs.  The Process for Predicting 

Outdoor Thermal Comfort was automated from calculating thermal comfort for a single 

point in a development to calculating thermal comfort at a number of points across a case 

study.  These results were automatically displayed on a plan view of the case study.  

However, The Wellington Comfort Index (a multiple-factor regression formula) behind The 

Comfort Tool has not been tested to determine if it is able to predict thermal comfort for 

cities outside of Wellington.  

This process for testing The Wellington Comfort Index’s applicability to cities outside of 

Wellington has three keys steps: conducting the same survey that was used to develop The 

Wellington Comfort Index in Central Christchurch, the case study area; calculating the 

comfort index for Christchurch, known as The Christchurch Comfort Index from the survey 

responses for Christchurch; and analysing the two thermal comfort indices to determine if 

the predictors of thermal comfort (mean wind, solar radiation, mean radiant temperature, 

and maximum wind) in Christchurch are the same as in Wellington.  

The Wellington Comfort Index was developed from surveys and observations recorded in 

the three urban parks and malls.  It measures people’s ability to change their behaviour to 
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maintain thermal comfort in outdoor urban areas (Walton et al., 2007, p. 3166).  The survey 

period was over a nine month period to capture variances in the climate between seasons.  

649 people were surveyed, while simultaneously measuring the gust and mean wind speed 

(m/s), and the mean radiant temperature in the shade and in the direct sun (°C) (Walton et 

al., 2007). The survey results of participants were matched with the mean wind speed; 

mean radiant temperature (exposed and shaded); and the ambient temperature measured 

at a temporary weather station in the survey area at a height of 1.96 metres.  The mean 

wind speed was also measured next to each participant.  This was to understand the wind 

speeds and temperatures each participant was experiencing while taking part in the survey.  

The final Wellington Comfort Index includes mean wind speed, maximum gust speed, mean 

radiant temperature, and ambient temperature as the predictors of thermal comfort.   

Equation 8 shows The Wellington Comfort Index  

Behavioural changes to maintain thermal comfort =  25.52  

+ 10.65 x Mean Wind –  5.77 x Maximum Wind  

+  0.85 x Mean Radiant Temperature(exposed) 

+ 0.53 x Ambient Temperature   

 

 

The results of The Wellington Comfort Index are able to predict thermal comfort through 

calculating the degree people will need to change their behaviour to maintain their thermal 

comfort.  The results of The Wellington Comfort Index is a number for each hour of the year 

between one and one hundred, known as a thermal comfort score. These fall along a 

continuum, with fifty as the mid-point.  It is stated in the study used to calculate The 

Wellington Comfort Index “Thus above and below the comfort index mean score of 50 

there are values one would appropriately describe as ‘uncomfortable’” (Walton et al., 2007, 

p. 3173).  Therefore, the number is fifty means that it is thermally comfortable.  Whereas, 

the closer the number is to one or one-hundred, the more people will need to change their 

behaviour to maintain their thermal comfort (Figure 3.19).  
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Thermal Comfort 
Scores 

 
One Fifty One-hundred  
More change is required Thermally Neutral More change is required 

Figure 3.19 shows the interpretation of The Wellingt on Comfort Index.  Red indicates that people 
will need to change their behaviour to maintain their comfort. W hereas, the neutral colour shows 
that people will feel thermally neutra l.  

Central Christchurch has been selected as the case study for testing The Wellington 

Comfort Index’s applicable to cities outside of Wellington. This decision was based on the 

climate being different than in Wellington.  In the TMY weather file for Christchurch the 

temperature typically range is larger than Wellington’s temperature range. In Christchurch 

temperatures reach as low as -5°C in winter, and as high as 31°C in summer.  Whereas, in 

Wellington the temperature reaches as low as 2°C in winter, and as high as 26°C in summer. 

As discussed in Section 3.2.1 ‘Manual Measurements to Computer Programs’ TMY weather 

files are representative of the typical weather for each month based on thirty years of data; 

rather than containing the weather data for a specific year (Gates et al., 2011, p. 1599). 

 

3.4.1. DEVELOPING THE CHRISTCHURCH COMFORT INDEX 

The methodology used to develop The Wellington Comfort Index was deconstructed to 

determine how it would need to be adapted when the same survey was conducted in 

Christchurch to calculate The Christchurch Comfort Index.  A key difference between the 

development of The Wellington Comfort Index and The Christchurch Comfort Index 

included using smartphones or tablets to collect the data in Christchurch, rather than 

manual surveys.  

Survey Area and Accessibility of the Online Mobile Survey 

In Wellington, the survey area included three urban parks and malls (Walton et al., 2007, p. 

3168).  However, in Central Christchurch only one urban area was used as the survey 

collection area. This area was selected as it is the only outdoor area of Central Christchurch 

which currently has a group of shops and cafés to attract people.  There are often 

performances, street markets, and buskers in this area as well.  Locals and visitors to 

Christchurch and New Zealand spend time in this area.  It was assumed that these 

responses would be representative of people undertaking similar activities to people 

surveyed in Wellington’s parks and urban malls.     
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For Christchurch, the survey could be accessed anywhere due to it being an online mobile 

survey accessible on tablets and smartphones. However, only the survey results from 

participants within this case study survey area were used to calculate The Christchurch 

Comfort Index, as the case study weather station was located centrally in the case study 

survey area (Figure 3.1).  

Controls were put in place to prevent people taking part in the survey who were not 

outdoors.  If a participant attempted to open the survey on their desktop or laptop 

computer a message popped-up which prevented them from taking part in the survey.  This 

message explained that the participant would need to use a smartphone or tablet, and be 

situated outdoors. 

If a smartphone or tablet was unable to access a participant’s Global Positioning System 

(GPS) location, the participant was notified.  This is because the participant’s GPS location 

was required so that the metrological data measured at the case study weather station 

could be matched to their survey responses.  Permission to gain participant’s GPS location 

was required before they could take part in the survey.  

This was to ensure that participant’s GPS location was from their smartphone or tablet.  If it 

could not be found, it would be estimated from the mobile-data or Wi-Fi network signals. 

This may have been inaccurate, and it would have been difficult to separate actual GPS 

data from an approximate location based on mobile-data or Wi-Fi network signals. 
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Figure 3.20 shows the local regional weather station (red circle), and the case study weather 
station (green circle) located centrally in the case study survey area (black).  The location of the 
case studies in relation to the case study survey area are indicated (white and blue).  

‘Automating’ the Survey Conducted in Wellington 

The survey used to develop The Wellington Comfort Index was a manual survey.  Surveyors 

approached potential participants in set areas of Wellington city, and asked if they would 

like to take part in the survey.  The survey responses for each participant were matched 

with the mean wind speed; mean radiant temperature (exposed and shaded); and ambient 

temperature measured at a local weather station located centrally in the survey area at a 

height of 1.96 metres.  This was to understand the microclimate conditions the participant 

was experiencing while taking part in the survey.   

For Christchurch, an online mobile version of the original survey accessible on tablets and 

smartphones was developed.   This online mobile survey was selected as it allows for the 

Wellington survey to be conducted in Christchurch, without the need for surveyors being 

present.  The online mobile survey also allowed for people to complete the survey on any 

day within the survey period.  Whereas, for the Wellington survey people could only take 

part in the survey when a surveyor was present.  This would have not affected the 

comparison of the predictors of comfort in The Wellington Comfort Index and The 

Christchurch Comfort Index.      



pg. 80 

 

As sixty-four percent of New Zealanders between the ages of fifteen and sixty-five owned a 

smartphone as of December 2013, it is unlikely that this data collection technique biased 

the survey results (Frost & Sullivan, 2013). It was unknown if this data collection technique 

biased the results between people from different socio-economic groups, but it is unlikely 

that it biased the final results.  This assumption is based on it being unlikely that people of 

different socioeconomic groups would perceive thermal comfort differently than one 

another.   

 

Survey Period  

For Wellington, the survey period was thirteen days over a nine month period to include a 

range of microclimatic conditions (Walton et al., 2007, p. 3168).  For Christchurch, The 

survey period was between October 2014 and January 2015. This period included a range of 

microclimatic conditions (Figure 3.21).  The temperatures ranged from less than 0°C to 

more than 30°C.  This covered the range of temperatures typically experienced in 

Christchurch.  However, as shown in Figure 3.21, participants took part in the survey when 

temperatures were between 13°C and 24°C.  The mean wind speeds ranged from 0 m/s to 

6.5 m/s. This range of climatic conditions is important as if the participants all took part in 

the survey when the climatic conditions were similar, then this would have biased The 

Christchurch Comfort Index.   For the complete range of ambient temperatures of the 

survey period, See Appendix 8.2.3 ‘Temperatures During the Survey Period’. 
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Figure 3.21 shows the ambient temperature 
measured at the case study weather station 
(blue) when participants were taking part in the 
survey.  Temperature ranged from 13 °C and 
24°C.  

 

Figure 3.22 shows the mean wind speed while 
participants took part in the survey (blue). Four 

of these measurements (blue and red) were 
taken from the local regional weather station 

2km from the case study area as the case study 
weather station had missing data.  Wind speeds 

were between 0 m/s and 6.3 m/s.    

 

In Wellington, surveyors handed out the surveys between 11am and 3pm (Walton et al., 

2007, p. 3168).  As the online mobile survey could be accessed at any point in time in 

Christchurch, this could not be controlled.  However, twenty-four of the survey results in 

Christchurch were between 11am and 3pm, with six between 3pm and 4pm.  These survey 

responses were included in The Christchurch Comfort Index. This would have not biased the 

survey results as the response of these participant’s to the Modified Bedford Scale question 

“rate how warm or could you feel” were similar to the participants who completed the 

survey between 11am and 3pm.  See Appendix ‘8.2.7 Survey Results: Raw Data of The 

Christchurch Comfort Index’.  

Meteorological Data Collection 

For the development of The Wellington Comfort Index a temporary weather station was 

located centrally in the survey area.  For the development of The Christchurch Comfort 

Index a case study weather station was located centrally in the case study area.  It was 

mounted to the roof of a single storey temporary structure which was located in the case 

study survey area.  The weather station was high above the temporary building’s roof to 
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limit the effect of wind passing over the roof, as this would have changed the wind patterns 

and resulted in inaccurate wind measurements.  This weather station measured the 

meteorological data over the survey period.  This meteorological data included solar 

radiation (W/m2), mean and maximum wind speed (m/s), and ambient temperature (°C).  

The data was measured for every ten minute period, which allowed the survey results of 

each participant to be paired with the meteorological data for the closest ten minute 

period. In the Wellington Survey, this data was measured at a temporary weather station at 

the height of 1.96 metres.  However, for the development of The Christchurch Comfort 

Index, it was measured at the height of four metres due to the risk of vandalism.  This is 

because the case study weather station was located in the survey period overnight when 

surveyors were not present. 

The black globe temperature was measured in the study for developing The Wellington 

Comfort Index then converted to the mean radiant temperature.  However, the black globe 

temperature could not be measured by the case study weather station in Central 

Christchurch.  For this reason, the ambient temperature and solar radiation from the case 

study weather station were used to calculate the mean radiant temperature, which was 

then converted to the black globe temperature (Equation 3 and Equation 4).   

The mean wind speed, ambient air temperature, and solar radiation were being used to 

calculate The Christchurch Comfort Index, were measured at the case study weather 

station.  This was then compared to the data measured at the local regional weather 

station, located approximately 2km from the case study survey area (Figure 3.20).  This was 

to test if the case study weather station’s data was accurate, based on the local regional 

weather station maintained by the National Institute of Water and Atmospheric Research.    

Before the wind speeds could be compared, the wind speeds measured at the local regional 

weather station had to be converted from six metres to four metres.  This was because the 

wind in the local regional weather station was measured at a height of six metres. Whereas 

the case study weather station was measured at a height of four metres.  

To convert the wind speeds at the local regional weather station from six metres to four 

metres, the power law was used (Equation 6).  The terrain-roughness co-efficient for a low 

density urban area of 0.35 was used for this calculation (Grimmond & Oke, n.d., p. 1283).  
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This comparison shows that the wind speeds are generally lower in the case study survey 

area than at the local regional weather station (Figure 3.23).  The wind at the local regional 

weather station has a more distinctive pattern which suggests that it is sheltered from 

some of the primary wind directions.  The wind speeds measured from the case study 

weather station were generally lower.  This may be because the weather station is more 

sheltered as it is located in a higher density area of the city.      

 

Figure 3.23 shows a comparison of the mean wind speeds at the case study weather station, and 
the wind speeds measured at a local regional weather station located 2km from the case study  
survey area.  This comparison of wind speeds is over a ten day period.  
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Solar radiation and ambient temperature measured at the local regional weather station 

and the case study weather station were not converted due to the differences in height 

between the two weather stations.  This is because it is unlikely that the two metres 

difference in height would affect the solar radiation and ambient air temperatures 

measured.  

However, the solar radiation measured at the local regional weather station was converted 

from MJ/m2 to W/m2 allowing it to be comparable with the case study weather station 

(Equation 9).   

Equation 9 is used for calculating solar radiation (W/m
2
) from MJ/m

2 
(NIWA, 2015a): 

𝑊/𝑚2  =  𝑀𝐽/𝑚2 𝑥 
1,000,000

600
 

 
Where: 
        1,000,000 = Joules to Watts 
        600 = number of seconds in a ten minute period  

 

The solar radiation measured at the two weather stations follows a similar pattern with less 

than 100W/m2 between the solar radiation measured at each of the weather stations 

(Figure 3.24).  As this variation is not consistently occurring, it is likely not due to the 

weather stations being calibrated differently.  It may be due to atmospheric conditions such 

as differences in cloud cover between the two weather stations (‘Chapter 3: What 

influences the amount of solar radiation?’, 2014).     
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Figure 3.24 shows a comparison of the solar radiation measured at the case study weather station 
(blue) and the solar radiation measured at the local regional weather station (orange).  These 
followed a close pattern with less than 100W/m

2
 between the measurements.  

Ambient temperature was directly comparable between the local regional weather station 

and the case study weather station as they both measure the ambient temperature in 

degrees Celsius.  The ambient temperature at the two weather stations followed a similar 

pattern.  However, there was more than 3°C variation between the two weather stations 

approximately twenty-percent of the time (Figure 3.25). It is unknown what was causing 

this difference in temperature. It may have been due to the weather stations not being 

calibrated. Another reason may be the urban heat island effect, or the case study weather 

station being located two metres closer to street level than the local regional weather 

station. In the case study survey area the ambient temperature may have been slightly 

higher due to the thermal mass of the surrounding buildings, footpaths, and roads as these 

hold the heat from solar radiation.  This is in comparison to the local regional weather 

station which is in a suburban area with mostly timber houses, and is located next to a large 

park.  Therefore, there is less thermal mass surrounding this weather station to absorb and 

release the heat.    
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Figure 3.25 shows the ambient temperature measured by the case study weather station (blue) 
and measured at the local regional weather station (orange).   The temperature was higher at the 
case study weather station.  As the differences in temperature are not the same for each point in 
time, this suggests that it is not due to the calibration of the weather station s, but is due to a 
local factor.  This may be the case study weather station being surrounded by more thermal mass.  
Whereas, the local regional weather station is in an open area.      

In total, four-hundred and twenty measurements were compared between the case study 

weather station and the local regional weather station, over nine days.  This focused on a 

reduced number of measurements covering more than a week, rather than comparing four 

months of ten minute data.  This was to focus on the relationships between the case study 

weather station and the local regional weather station.  If four months of ten minute data 

was compared it would be more difficult to identify the relationships due to the large 

amount of data. 

As commonly experienced with experimental data, the case study weather station 

malfunctioned.  It intermittently did not measure the weather data in the case study survey 

area.  It is unknown what caused this on occasions.  These points where data was not 

measured are indicated (Figure 3.25).  See Appendix 8.2.4 ‘List of Equipment, Accuracy, and 

Specifications’ for the specifications and accuracy of the case study and local regional 

weather stations.  
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In the study that developed The Wellington Comfort Index, the surveyor also measured the 

wind speed next to each participant at a height of 1.2 metres (Walton et al., 2007, p. 3168).  

To calculate the wind speed at each participant for the Christchurch survey, the location 

within the survey area where the participant completed the survey was measured as part of 

the survey using GPS.   

The GPS allowed for the wind reduction factor to be calculated using UrbaWind for each 

participant.  UrbaWind has been tested for its accuracy as discussed in Section ‘3.2.2. 

Criteria for Selecting Wind Analysis Programs’.   This concluded that the wind reduction 

factors calculated by UrbaWind followed the most similar pattern as the wind tunnel test 

than the other wind analysis programs.  For the North-easterly wind (45° angle) the wind 

reduction factors followed the wind tunnel results closely on the windward side of the 

Central City Block, with approximately a ten percent difference in wind speeds for the 

leeward side of the Central City Block.  However, for the Northerly wind (360° angle) there a 

ten percent difference in the wind reduction factors, and the relationship between 

UrbaWind and the wind tunnel tests did not mirror one another.  

The wind reduction factors for each participant were calculated in UrbaWind within a three-

dimensional model of the case study survey area. These wind reduction factors were then 

applied to the wind measured at the case study weather station for the same ten minute 

period a participant started the survey.  However, before this could be done, the mean wind 

measured at the case study weather station had to be converted to a height of one-

hundred and twenty metres. This is because the wind reduction factors calculated in 

UrbaWind are calculated for the wind speed at this height.  

The wind speed measured at the case study weather station may have been fairly accurate 

in representing the wind speed each participant was experiencing while taking the survey.  

However, an item in The Wellington Comfort Index is the difference in wind speed between 

a participant, and the wind speed in an exposed location (measured at the case study 

weather station).  Therefore, the wind speed at the participant was calculated based on a 

wind reduction factors calculated in UrbaWind for each participant. If this had not been 

done, there would be no difference in wind speeds between the participant and the wind 

speeds measured in the exposed location.  The wind speeds measured at the case study 
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weather station were converted to the height of 

one-hundred and twenty metres before the wind 

reduction factors were applied.  

For quality assurance, the survey also recorded the 

accuracy of the GPS location recorded in metres. 

This allowed for survey results with more than a ten 

metre accuracy to be excluded from the study.  This 

was because participants’ location could not be 

determined accurately.  Therefore, the wind speeds 

they were experiencing as they were taking the 

survey could not be determined.  This excluded 

fifteen participants in total.   

Where the GPS location indicated that a participant was within a construction site, or was 

on top of a building, their position was moved into the case study survey area (Figure 3.26).  

The distance they were moved was by the GPS accuracy their GPS indicated (black).  

However, some of the participants were shown as being on top of buildings (green) in 

Google Maps.  Often this was because a building had been demolished since Google Maps 

had been updated.  Therefore, the participant was in the case study survey area, not inside 

a building.   

In the development of The Wellington Comfort Index, surveyors recorded the time they 

handed out the survey so that the survey responses could be matched with the 

meteorological data.  For The Christchurch Comfort Index the meteorological data was 

matched with the time the participant started the survey.  As the survey period was usually 

below ten minutes, this meant that the participant completed the survey before the wind, 

ambient temperature, and solar radiation measurements at the case study weather station 

changed.  However, on occasion the survey completion time was twenty minutes.  On these 

occasions the weather data for the starting time was also used as it was likely that they had 

completed the survey as all the survey results were answered, but had not closed the 

survey.  

Figure 3.26 shows the locations where 
participants took part in the survey 
based on their GPS location.  
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Wind, ambient temperature, or solar radiation was occasional missing from the data 

measured at the case study weather station. It is unknown why the case study weather 

station did not record data for every ten minute period.  This may be due to the weather 

station having a wireless connection to the computer where the weather data was stored.  

Therefore, there may have been interference between the weather station and the 

computer.  Another reason may have been the computer being turned off for periods of 

time.  

As commonly experienced with experimental data, at times the equipment malfunctions. 

Rather than lose the responses from these times, processes have been developed for filling 

in the gaps.  These have been tested to ensure they do not add further error through 

comparing the solar radiation, ambient temperature, and wind measured at local regional 

weather station and the case study weather station. 

When there was missing data for a period that a participant took part in the survey, the 

data from the local regional weather station was used.  Although the comparison of the 

solar radiation and ambient temperature show similar patterns, the wind patterns did not 

show a pattern.  The wind data was used from the local regional weather station for four of 

the thirty survey results used to calculate The Christchurch Comfort Index after being 

converted to four metres to align with the case study weather station. Therefore, it is 

unlikely this biased the results as this converted wind data only represented twelve percent 

of the survey responses.  

 

Sample Size  

For the development of The Wellington Comfort Index, 649 participants took part in the 

survey.  For development of The Christchurch Comfort Index, a total of total fifty-two 

people completed the survey.  Of these, the results of thirty participants were used.  This is 

because twenty-two participants had missing GPS data, or some of their survey results 

were missing.  

Where there were missing survey results for a participant, their survey results were 

excluded from the study.  It is unknown if this was the same technique used for developing 

The Wellington Comfort Index.  However, as the statistics program (IBM SPSS Statistics) 



pg. 90 

 

used to calculate The Wellington Comfort Index automatically exclude participants who 

have missing data (Field, 2013, p. 108).  This decision was made to keep the methodology 

the same between the development of The Wellington Comfort Index and The Christchurch 

Comfort Index to maintain the reliability of the process.  

Once the participants with missing GPS or survey responses were excluded, there was a 

total of thirty participants.  Of these sixteen males took part, and fourteen females.  Based 

on the central limit theorem this is a large sample size (Field, 2013, p. 54).  Therefore, the 

sampling distribution is considered normal (Field, 2013, p. 54).  

 

Survey Questions for the Christchurch Survey 

Although thirty-three questions were included in the survey conducted in Wellington, The 

Wellington Comfort Index was only based on the responses to thirteen of the questions.  

Out of the thirty-three questions: the majority were about the environment (warmth, 

sunlight, wind, wetness, noise, air humidity, air quality); three were about the location the 

participant had chosen to sit; three were regarding the participants preference to warmth; 

and two were about the participants use of the location/reasoning for selecting the 

location.   There were also two distractor questions included.   

For The Wellington Comfort Index, a principal component analysis was conducted on the 

thirty-three questions to identify the components with a linear relationship to reduce the 

variables to be included in The Wellington Comfort Index, while maintaining as much 

information as possible (Field, 2013, p. 882). Any item which had a regressed value of less 

than r 0.30 was removed as this suggests that the inclusion of this survey question does not 

add any more depth to The Wellington Comfort Index (Walton et al., 2007, p. 3170).  

The calculation of The Christchurch Comfort Index was only based on these thirteen 

questions which were classed as important in the component analysis for Wellington.  If the 

Christchurch survey included the full thirty-three questions this would been validating The 

Wellington Comfort Index. This would not be testing if the same predictors of thermal 

comfort which were important in The Wellington Comfort Index were also important in The 

Christchurch Comfort Index as more factors would be introduced.   
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Fifteen items in total were included in The Wellington Comfort Index.  Thirteen of these 

were direct responses to the survey questions.  The other two items included whether the 

participant was wearing sunglasses or not (part of the clo-value question) and the 

difference in wind speed at the participant in relation to the wind speed at the case study 

weather station.  This determined how sheltered the participant was in comparison to the 

case study weather station.     

For the development of The Christchurch Comfort Index the thirteen questions which were 

included in The Wellington Comfort Index were included in the Christchurch survey. 

Although including the complete thirty-three questions may have given more insight to 

quantifying thermal comfort in Christchurch, this would have discouraged people taking 

part in the survey, known as respondent burden (Bradburn, 1978, p. 1).  This would have 

also not met the aim of determining if the predictors of comfort in Christchurch were the 

same as in Wellington.  A survey with the full thirty-three questions would have been 

validating The Wellington Comfort Index only including the fifteen items, based on thirteen 

questions are the predictors of comfort.     

Table 3.4 shows the questions included in the Christchurch survey  used to calculate The 
Christchurch Comfort Index.   

Question  Purpose for inclusion in survey 

1) Rate how warm or cold you 
feel (Much too Warm, Too 
Warm, Comfortably Warm, 
Neutral, Comfortably Cool, Too 
Cool, Much too Cool 

Modified Bedford Scale 
This determined, on the Modified Bedford Scale how the 
participant is feeling thermally  

2) “Rate your impression of the 
wind level” (Much too windy, 
Too windy, Comfortably windy, 
Neutral, Slightly too cool, Too 
still, Much too still) 

Subjective effect of wind force  
This determined whether a participant perceives that the wind is 
strong.   

3) “Rate how warm or cold your 
surroundings are” (Hot, Warm, 
Slightly too warm, Neutral, 
Slightly too cool,  Cool, Cold) 

Subjective effect of heat of surroundings 
This determined whether a participant feels there is heat radiating 
from materials surrounding them, such as concrete, a park bench, 
or grass.   

4) “Rate your impression of the 
cool effect of the wind” (Far too 
chilly, Too chilly, A little too 
chilly, Tolerable, Not 
noticeable) 

Subjective effect of wind chill 
This determined whether a participant feels it is cold due to the 
wind.   

5) “In exposed places, the wind 
is ………….?” (Far too strong, 
Too strong, A little too strong, 
Tolerable, Not noticeable) 

Subjective effect of wind strength 
This determined whether a participant feels it is a windy day.  The 
participant’s perceived thermal comfort could be at any point on 
the modified Bedford scale, even if they feel it is a windy day 

6) “Today the wind is annoying” Subjective effect of annoyance of the wind 
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(Strongly agree, Agree, Neither 
agree nor disagree, Disagree, 
Strongly disagree) 

This determined whether a participant feels that the wind is 
annoying.  However, even if the wind is annoying, they may still 
feel ‘warm’ based on the modified Bedford scale. 

7) “Today is a really good day to 
be outside in this sort of 
location” 

Agreement whether it is a great day to be outside. This 
determined whether a participant feels that the current 
conditions are good to be in or not.   

8) This was not a question, but 
the difference in wind speed 
from where the participant was 
sitting and the wind speed at 
the case study weather station 
when they were completing the 
survey 

Wind speed (relative to central location) to determine if they were 
sitting in an exposed location or a sheltered location while 
completing the survey.  Exposure is based on the comparison with 
the case study weather station located in an exposed area of the 
case study survey area. 
 

9) Your “Clo” Value: the value 
of your clothing’s insulation 
(please tick next to items you 
are current wearing) 

Estimated clo-value (clothing value) 
As the clo-value determined how the participant is dressed.  The 
higher their clo-value the more clothing they are wearing.      

10) “Seating position: How 
exposed are you in relation to 
the wind?” (Facing, Turned 
against, Side on, Partially 
sheltered, Fully sheltered, No 
wind/cannot tell) 

This question determined if they allowed themselves to be 
exposed to the wind, or whether they were trying to limit the 
effect of the wind on their thermal comfort.  

11)“Seating position: How 
exposed are you in relation to 
the sun?” (Facing, Turned 
against, Side on, Partially 
shaded, Fully shaded, No 
wind/cannot tell) 

This question determined if they allowed themselves to be 
exposed to the sun, or whether they were trying to limit the effect 
of the sun on their thermal comfort. 

12) Are you wearing 
sunglasses? (Yes, No)  

This was part of the level of clothing (clo) question.  

13) Approximately how long 
have you been here? (0-5, 6-15, 
15-30, 30-60, 60) 

Time exposed 
This determined whether a participant feels it is thermally 
comfortable or not (more exposure = more thermal comfort?) 
 

14) How much longer do you 
intend to stay here? (0-5, 6-15, 
15-30, 30-60, 60) 

Exposure time preferred could determine their thermal comfort 
levels (more time = more thermal comfort?)  
 

15) Before you sat down, how 
long did you expect to stay 
here? (0-5, 6-15, 15-30, 30-60, 
60) 

Exposure time anticipated could determine their thermal comfort 
levels (more time = more thermal comfort?) 
 

16) “Are you a visitor to New 
Zealand?”    

This question was asked to allow flexibility in the survey data 
analysis.  If there was a large sample size, it could be separated 
into two groups: visitors and locals to provide more detail in The 
Wellington Comfort Index’s applicability to cities outside of 
Wellington.  

17) “Are you a visitor to 
Canterbury?” 

This question was asked to allow flexibility in the survey data 
analysis.  If there was a large sample size, it could be separated 
into two groups: visitors and locals to provide more detail in The 
Wellington Comfort Index’s applicability to cities outside of 
Wellington. 

18)  Please indicate your gender This question was asked to allow flexibility in the survey data 
analysis.  If there was a large sample size, it could be separated 
into two groups: males and females to understand the variations 
between each sex and how they may perceive thermal comfort.  
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19)  Please indicate your age This question was asked to allow flexibility in the survey data 
analysis.  If there was a large sample size, it could be separated 
into age groups to understand how at different ages people 
perceive thermal comfort differently.  

 

See Appendix 8.2.1 ‘Wellington Survey Questions’ for the full Wellington Survey.  The 

demographic questions included in the survey in Christchurch are in Appendix 8.2.2 

‘Demographic Questions Included in the Christchurch Survey’. Human ethics was gained 

through Victoria Universities Ethics Committee before the survey period began.  

Factors which may have influenced the Results of the Survey  

A list of clothing items and their corresponding insulation value, known as a clo-value was 

included in the survey.  The participant was asked to select all items of clothing they were 

wearing at the time they completed the survey.  However, the actual clo-value of the items 

of clothing they were wearing may differ from the items of clothing they selected from the 

list provided.  

An example of this is a short-sleeve knit sport shirt and a short-sleeved dress shirt.  A 

participant may be wearing a short-sleeve knit shirt (clo-vlaue of 0.17), but indicate in their 

survey response that they are wearing a short-sleeved dress shirt (clo-value of 0.19).  

Therefore, once their total clo-value was calculated, it may have been slightly different than 

the actual clo-value they were wearing.  

In the study which developed The Wellington Comfort Index, the clo-value for winter coats 

and rain coats were not included. For these two items the clo-values from in ASHRAE 55-

2012 were used (ASHRAE, 2013, p. 3).  See Appendix 8.2.5 ‘ASHRAE Clo-values’ for the 

ASHRAE clo-values.  

There are some aspects of the survey conducted in Christchurch which could not be 

understood or controlled as easily due to a surveyor not being present in the case study 

survey area when a participant was taking the survey.  

In the study for developing The Wellington Comfort Index, the surveyors noted down the 

surface each participant was sitting on.  However, there was no surveyor present for the 

survey used to develop The Christchurch Comfort Index.  For this reason a question was 

included in the survey which asked about the heat or cold radiating from the surfaces 
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around the participants.  This will have no effect on The Christchurch Comfort Index, as the 

surveyors observations of the surface a participant was sitting on was not included in in The 

Wellington Comfort Index.  

In the study which developed The Wellington Comfort Index, the surveyor noted the 

participant’s exposure to the wind.  However, there was no surveyor present for the survey 

used to develop The Christchurch Comfort Index.  For this reason this was included as a 

question in the Christchurch survey.  The participant could select their exposure to the wind 

as Facing, Turned Against, Side On, Partially Sheltered, Fully Sheltered, No Wind/Can’t Tell.  

As this question is perception based, this would have had the same degree of impact on 

The Wellington Comfort Index and The Christchurch Comfort Index whether it was the 

surveyor or the participant was selecting the exposure of the participant to the wind.  

Similar as the exposure to the wind, the surveyor in Wellington also noted the participant’s 

exposure to the sun.  However, as there was not a surveyor present for the survey used to 

develop The Christchurch Comfort Index, this was included as a question in the 

Christchurch survey.  The participant could select their exposure to the sun as Facing, 

Turned Against, Side On, Partially Shaded, Fully Shaded, No Sun.  This would have had the 

same degree of impact on The Wellington Comfort Index and The Christchurch Comfort 

Index whether it was the surveyor or the participant selecting the exposure participant’s to 

the sun.     

In the study to develop The Wellington Comfort Index, it was assumed that the 

participant’s activity level was constant due to them needing to be stationary to complete 

the survey.  This assumption was also made for the development of The Christchurch 

Comfort Index as the participant was completing the survey on a smartphone or tablet 

which would be difficult to do if they were moving around.  This would have no effect on 

The Christchurch Comfort Index as this is not a factor in either the Wellington or 

Christchurch Comfort Index.  

In the Wellington study, no surveys were completed on days when it was raining.  There 

was less control over this in the Christchurch study, as a surveyor was not present while a 

participant was completing the survey.  However, the case study weather station measured 

precipitation, so could identify the days where it was raining.  This had no impact on The 
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Christchurch Comfort Index as no one completed the survey on days when the case study 

weather station indicated it was raining.   

Factors which may have Influenced the Participant’s Response 

A number of variables may have affected the survey responses, but were not of primary 

interest in the study use to develop The Christchurch Comfort Index (Field, 2013, p. 15).  

Some of these could have been clarified through addressing them in the survey questions.  

However, as these questions were not included in the study conducted in Wellington, they 

were not included for the study in Christchurch.  

It was unknown how recently the participant had eaten. If a participant had eaten, this have 

increased their digestive system activity and make them feel warmer.  This had no impact 

when comparing the predictors of comfort in The Wellington Comfort Index and The 

Christchurch Comfort Index as this was unknown for both studies.   

It was unknown whether the participant understood the questions.  The way the questions 

are understood may vary between participants.  This may be due to some participants not 

having English as their first language.  This had no effect when comparing the predictors in 

The Wellington Comfort Index and The Christchurch Comfort Index as this was unknown 

for both studies.    

It was unknown if the participant could read the survey.  Participants may of also had 

impaired eyesight, or an issue with their eye sight which is not known.  This could affect 

their responses through them randomly selecting the answers, or accidently selecting a 

different answer than they were intending.  This had a limited effect when comparing The 

Wellington Comfort Index and The Christchurch Comfort Index as this would have 

influenced both surveys to the same degree.     
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3.4.2. CALCULATING THE CHRISTCHURCH COMFORT INDEX   

The methodology used to calculate The Christchurch Comfort Index was the same as was 

used to calculate The Wellington Comfort Index. However, when part of the methodology 

was unknown, assumptions were made based on common statistical practice for 

calculating a multiple-linear regression formula (Field, 2013).  

As outlined above, there were fifteen items included in The Wellington Comfort Index, 

based on thirteen questions: 

1. “Rate how warm or cold you feel” (7 point scale) 

2. “Rate your impression of the wind level” (7 point scale) 

3. “Rate how warm or cold your surroundings are” (7 point scale) 

4. “Rate your impression of the cool effect of the wind” (5 point scale) 

5. “In exposed places, the wind is …?” (5 point scale)  

6. “Today the wind is annoying” (5 point scale) 

7. “Today is a really good day to be outside in this sort of location” (5 point scale) 

8. Wind speed relative to a central location (difference in wind speed between 

participant and case study weather station) 

9. “Your “Clo” Value: the value of your clothing’s insulation” (answer in ‘Clo’) 

10. “Seating position: exposure to the sun” (5 point scale?) 

11. “Seating position: exposure to the wind” (5 point scale?) 

12. Wearing of sunglasses (yes or no) 

13. Time exposed (in minutes) 

14. Exposure time preferred (in minutes) 

15. Exposure time anticipated (in minutes) 
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Re-coding of Multiple-choice Questions 

In the survey for calculating The Christchurch Comfort Index, some of the multiple-choice 

questions were changed to simplify the re-coding of the questions for calculating The 

Christchurch Comfort Index. In Wellington, for items asking the participants how long they 

had been sitting in a location, or how long they intended to stay in that location, the 

response was a continuous value.  This meant a participant could write down how many 

minutes they had been there as a number.  However, in Christchurch, this was replaced 

with class intervals (for example, 0-5 minutes, 6-10 minutes etc.).  This decision was made 

to simplify the re-coding of the data before the regression analysis was completed.  This 

would not have made a difference to the conclusions reached by this analysis at this 

process followed common statistical practice for converting the continuous values to class 

intervals (Field, 2013, p. 10).   

Re-coding of Survey Responses  

It is unknown how the data was re-coded before the calculation of The Wellington Comfort 

Index.  Although the authors of the original paper noted that the data was re-coded, they 

were unable to remember how they had re-coded the survey responses. However, it was 

stated that “Thus above and below the comfort index mean score of 50 there are values one 

would appropriately describe as ‘uncomfortable’” (Walton et al., 2007, p. 3173).  This 

definition of the interpretation of the results of The Wellington Comfort Index can be 

displayed on a continuum (Figure 3.27).  

Thermal comfort 
Scores 

 
One  Fifty One-hundred  
More change is required Thermally Neutral More change is required 

Figure 3.27 shows how The Wellington Comfort Index is interpreted.  T he red indicates people 
would need to change their behaviour to maintain their comfort. Whereas, the neutral colour 
indicated where people would not need to change their behaviour to maintain their comfort.  

The Wellington Comfort Index’s results predict the degree people would need to change 

their behaviour to maintain their comfort on a scale between one and one-hundred.  The 

midpoint, fifty represents thermally comfortable, and a number closer to one or one-hundred 

represents thermally uncomfortable.  Therefore, the survey responses in Wellington would 

have been arranged to mirror this index.  
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As an example the question “rate how warm or could you feel” is on a seven point scale, 

with four as the thermally neutral point, and one and seven representing thermally 

uncomfortable.  Whereas, the question “in exposed places the wind is….?” the scale is a five 

point scale from “far too strong” representing thermally uncomfortable to “wind not 

noticeable” representing thermally comfortable. Therefore, the thermally comfortable and 

thermally uncomfortable scales of these two questions were arranged differently than one 

another (Figure 3.28).     

“rate how warm or could you feel” (7 point scale) 

1 2 3 4 5 6 7 

Much too warm Neutral Much too cold 

 
“in exposed places the wind is…?” (5 point scale) 

1 2 3 4 5 

Far too strong A little too strong Wind not noticeable 

 

Figure 3.28 shows two of the questions from the survey, each with different scales.  

For the calculation of The Christchurch Comfort Index the scales for each question were 

aligned with one as thermally comfortable midpoint of the scale, and a three, four, or five 

representing thermally uncomfortable at either end of the scale.   

As an example two questions are displayed below to show how they were re-coded to align 

with the scale of The Wellington Comfort Index:   

Survey 
Response 

“rate how warm or could you feel” (7 point scale) 

1 2 3 4 5 6 7 

Much too warm Neutral Much too cold 

Re-coded 

“rate how warm or could you feel” (7 point scale) 

4 3 2 1 2 3 4 

Much too warm Neutral Much too cold 

 

Survey 
Response 

“in exposed places the wind is…?” (5 point scale) 

1 2 3 4 5 

Far too strong A little too strong Wind not noticeable 

Re-coded 

“in exposed places the wind is…?” (5 point scale) 

5 4 4 2 1 

Far too strong A little too strong Wind not noticeable 
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All survey responses on a Likert Scale were re-coded with thermally comfortable as a one 

and a number closer to three, four, or five representing thermally uncomfortable.  Questions 

which were not on a Likert Scale were not re-coded.  The questions not re-coded include 

included the clo-value of the clothing a participant was wearing, whether they were 

wearing sunglasses, and the wind speed relative to the case study weather station.  See 

Appendix 8.2.6 ‘Re-Coding of Questions’ for the list of re-coded survey responses. The raw 

dataset for the Christchurch survey is included in Appendix 8.2.7 ‘Survey Results: Raw Data 

of The Christchurch Comfort Index’.  

 

Standardisation of the Survey Responses  

As with the development of The Wellington Comfort Index, the survey responses for each 

participant were standardised to achieve scale uniformity (Equation 10).  This is because 

some responses were on a 1-5 scale, and some were on a 1-7 scale.  Questions not on a 

Likert Scale were also standardised. This is standard practice in a generalised linear model 

to have survey responses on different scales and in different units (Field, 2013, p. 916). 

Equation 10 is the equation used to standardised the survey responses (Field, 2013, p. 31): 

𝑍= 
(𝑋−𝜇)

𝜎
 

 
Where: 
        𝜇 = mean  
        𝜎 = standard deviation of the survey responses for each question  
        𝑋 = score (survey response) 
         𝑍 = standardised score (standardised survey response) 
 

Kaiser-Meyer-Olkin Score – Relationships between Variables 

For the Wellington study, a Kaiser-Meyer-Olkin score was calculated to understand if the 

correlations between the variables were sufficient to create The Wellington Comfort Index 

(Walton et al., 2007, p. 3170) .  This results in a number between zero and one. A value 

closer to one indicates that there are significant correlations between the variables.  

Therefore, The Wellington Comfort Index could be created from these variables.  However, 

a number closer to zero indicates that there is a limited relationship between the variables.  

Therefore The Wellington Comfort Index would not be able to predict thermal comfort 
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(Field, 2013, p. 877).  For Wellington, the Kaiser-Meyer-Olkin score was .807.  This suggests 

that there is a good relationship between the variables (the 15 items) to create The 

Wellington Comfort Index.  

This step was excluded for Christchurch as it was likely that the fifteen items used to create 

The Christchurch Comfort Index would have an equally as strong relationship as in The 

Wellington Comfort Index.  This is because the same fifteen items were included in The 

Christchurch Comfort Index.  

 

Principal Component Analysis – Identifying Patterns in a Dataset  

To understand if the variables which were included in The Wellington Comfort Index had 

the same importance in Christchurch, a principal component factor analysis was conducted 

for the Christchurch dataset. 

Although the study for developing The Wellington Comfort Index reported that there were 

fifteen items included in The Wellington Comfort Index, when the dataset for the 

Wellington study was examined closely, there were only thirteen items in the raw dataset.  

Seating position relative to the sun, and seating position relative to the wind were not in 

the dataset for Wellington.   

For this reason, the principal component factor analysis for Wellington and Christchurch 

only included the thirteen items which were available in both Wellington and Christchurch 

datasets.  This excludes the two questions about the participant’s relationship to the sun 

and the wind.   

In the study used to develop The Wellington Comfort Index, the principal component 

analysis showed that Component One represented 25.4% of the variation of the fifteen 

items used to create The Wellington Comfort Index (Walton et al., 2007, p. 3170).  However, 

as the dataset for Wellington was available, the principal component analysis was 

conducted again, using only the thirteen items which were included in the dataset. 
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The variance in the items which made up Component One were compared for Wellington 

and Christchurch (Table 3.5).  In Wellington, 31.112% of the variance was represented by 

Component One.  For Christchurch, 31.018% of the variance was represented by 

Component One.  

Table 3.5 shows the comparison of the variance in the survey responses represented by 
Component One between Wellington and Christchurch.  It is this component which determines 
the weightings which represent the importance of each item on predicting comfort .   

 Wellington: Total Variance Explained  Christchurch: Total Variance Explained 

Component Extraction Sums of Squared Loadings Extraction Sums of Squared Loadings 

Total % of 
Variance 

Cumulative 
% 

Total % of 
Variance 

Cumulative 
% 

1 4.045 31.112 31.112 4.032 31.018 31.018 

2 1.891 14.550 45.662 1.994 15.340 46.357 

3 1.125 8.654 54.315 1.716 13.199 59.557 

4    1.231 9.469 69.025 

Extraction Method: Principal Component Analysis. 

 

Different items have different weightings of importance within Component One when 

predicting thermal comfort.  Therefore these weightings need to be applied to the survey 

responses when calculating a single thermal comfort scale. The thermal comfort score 

represents a participant’s responses to the survey questions, represented as a single 

number.  It is the sum of a participant’s response to a survey question which has been 

standardised to achieve scale uniformity, and multiplied by the weighting for each question 

which makes up Component One (Table 3.6).  These weightings are automatically 

generated in the principal component analysis.  This process is completed for each 

participant’s survey responses, resulting in one number which represents each participant’s 

survey results.  In Christchurch there were a total of thirty thermal comfort scores, one for 

each participant.      

Table 3.6 shows the weightings which represent the importance of each question for 

quantifying how people will adapt to maintain their thermal comfort levels in Christchurch 

and Wellington.    

Question/Item 

Weighting from 
Component One:  

Christchurch 
dataset   

Weighting from 
Component One:  

Wellington dataset   

Q1 Rate how warm or cold you feel .260 .591 

Q2 Rate your impression of the wind level. .845 -.408 

Q3 Rate how warm or cold your surroundings -.009 -.653 

Q4 Rate your impression of the cooling effect of the wind .694 -.399 



pg. 102 

 

Q5 In exposed places, the wind is… .694 .332 

Q6 Today the wind is annoying .787 -.509 

Q7 Today is a really good day to be outdoors in this sort of 
area 

.208 -.695 

Q8 Wind relative to the central location (exposed)? -.375 .321 

Q9 Your “Clo” Value: the value of your clothing’s insulation .654 .383 

Q12 Sunglasses -.201 .749 

Q13 Approximately how long have you been here? -.081 .530 

Q14 How much longer would you like to stay here? .762 .470 

Q15 Before you sat down, how long did you expect to stay 
here? 

.655 .523 
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Calculating The Christchurch Comfort Index  

To follow the process for creating The Wellington Comfort Index, the weighted and 

standardised thermal comfort scores for the Christchurch survey were also adjusted to have 

a minimum value of one, and a maximum value of one-hundred.  This is so The Christchurch 

Comfort Index aligned with The Wellington Comfort Index.   

 

Figure 3.29 shows the sum of the weighted and standardised thermal comfort scores from the 
Christchurch survey for each participant.  Each point on the graph represents a participant’s 
response to the survey questions, as a single number.  

For the development of The Christchurch Comfort Index, a regression analysis was 

conducted.  The thermal comfort scores for each participant were the dependent variable 

(Figure 3.29).  The independent variables were the mean wind speed, maximum wind 

speed, mean radiant temperature, and ambient temperature measured at the case study 

weather station.  The regression analysis was to determine which environmental factors 

(mean wind speed, maximum wind speed, ambient temperature, and mean radiant 

temperature) were as statistically significant as when predicting outdoor thermal comfort 

in Christchurch.  Therefore, whether they should be included in The Christchurch Comfort 

Index or not.  

For the development of The Christchurch Comfort Index, any independent variable with a 

significance of 𝑝<0.1 was included in The Christchurch Comfort Index.  This suggests that 

there may be up to a ten percent chance that this sample is not representative of the 

greater population (Field, 2013, p. 69).  However, for The Wellington Comfort Index, there 
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were 649 participants who took part in the survey.  Therefore, The Wellington Comfort 

Index was based on independent variables which had a significance of 𝑝<0.05.  This is due 

to there being more certainty in the results due to the larger sample (Field, 2013, p. 69).  

Table 3.7 shows the significance of each independent variable is shown below.  Due to the small 
sample size, any variables with a significance of more  than p<0.1 were included in The 
Christchurch Comfort Index.  

Independent Variables Significance (𝑝) Regression Co-efficient (B)  

Constant 54.924 183.921 

Maximum wind .004 21.609 

Mean wind  .237 -8.393 

Mean radiant temperature  .239 5.321 

Ambient temperature  .053 -19.098 

  

 

Analysis For the use of The Wellington Comfort Index in other Cities 

Further investigation was required on whether The Wellington Comfort Index is applicable 

to other cities.  If the sample used to develop The Christchurch Comfort Index was larger, it 

would be possible that The Christchurch Comfort Index would have included the mean wind 

speed and mean radiant temperature (Field, 2013, p. 72).  This is because The Wellington 

Comfort Index is based on the responses of 649 participants.  Whereas, The Christchurch 

Comfort Index is only based on the responses of thirty participants.  If The Christchurch 

Comfort Index was based on a sample size similar to Wellington’s then the greater the 

ability to find the effect that mean wind speed, maximum wind speed, mean radiant 

temperature, and ambient temperature have on predicting how people would change their 

behaviour to become comfortable (Field, 2013, p. 72). This would create more certainty in 

the results of the regression analysis and increase the possibility that their significant value 

(p) would be below 𝑝<0.1.  Therefore, would be included in The Christchurch Comfort Index 

as well.   
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Equation 11 is The Christchurch Comfort Index:  

Behavioural changes to maintain thermal comfort = 183.92  

+ 21.61 x Maximum Wind  − 19.10 x Ambient Temperature  

 

Equation 12 is The Wellington Comfort Index (Walton et al., 2007, p. 3171): 

Behavioural changes to maintain thermal comfort =  25.52  

+ 10.65 x Mean Wind –  5.77 x Maximum Wind  

+  0.85 x Mean Radiant Temperature(exposed) 

+ 0.53 x Ambient Temperature   

 

 

Maximum wind speed and ambient temperature were included in The Christchurch 

Comfort Index as they had a significance value of 𝑝<0.1 (Equation 10).  However, mean 

wind speed and mean radiant temperature had high significance values of almost 𝑝>0.25 

which suggests there is a seventy-five-percent chance that these variables were only 

representative of this specific sample used to calculate The Christchurch Comfort Index.  
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This chapter has identified the methodology for developing the Process for Predicting 

Outdoor Thermal Comfort into The Comfort Tool.  This included the reasoning behind the 

case study research approach and case studies selected. As discussed in Section 3.1 

‘Selection of Case Studies for Testing the Comfort Tool’, the case studies were selected 

based on their variations in built form, orientation, and size.  Section 3.2 ‘Can the Process 

for Predicting Outdoor Thermal Comfort be developed into a tool for use at the preliminary 

design stage?’ developed criteria for selecting wind analysis programs and solar radiation 

programs which allow for consultants and designers to select their own software to use as 

part of The Comfort Tool.  Section 3.3 ‘Can thermal comfort be automatically 

communicated across a development?’ established how to display thermal comfort levels 

across a proposed development.   

This chapter also established in Section 3.4 ‘What is the applicability of The Wellington 

Comfort Index to cities outside of Wellington?’ that The Wellington Comfort Index may be 

applicable to cities outside of Wellington due to the ambient temperature and maximum 

wind speed being included in The Christchurch Comfort Index.   

The next chapter evaluates the success of The Comfort Tool at predicting thermal comfort 

through using The Comfort Tool to calculate the comfort across four case studies.  
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4. ARE THE RESULTS FROM A COMFORT TOOL ABLE TO INFORM DESIGN 

CHANGES?  

A case study research approach has been selected for The Comfort Tool’s development.  

The purpose of this chapter is to evaluate the success of The Comfort Tool at predicting 

thermal comfort.  This evaluation is based on two of the research questions: “Can thermal 

comfort be automatically communicated across a development?” and “Are the results from a 

comfort tool able to inform design changes?”  These research questions are the criteria which 

are used to test the success of The Comfort Tool.  If The Comfort Tool is able to do this, 

then these results prove that The Comfort Tool meets the aim of this thesis project which is 

to develop the Process for Predicting Outdoor Thermal Comfort into a tool for use at the 

preliminary design stage of a development. Three additional case studies were selected to 

evaluate whether The Comfort Tool can predict thermal comfort for a broad range of 

building types or whether the success of the first case study was a singular occurrence. This 

will determine if the success of the first case study was a specific coincidence, or whether 

The Comfort Tool has the same degree of success for other developments which have 

varying levels of wind and solar radiation at pedestrian level due to their variations in built 

form.    

The two research questions have a different purpose in testing The Comfort Tool’s ability to 

predict thermal comfort for use within urban planning and architecture. The first question: 

“Are the results from a comfort tool able to inform design changes?” is to investigate if the 

results communicated by The Comfort Tool provide information which can inform design 

changes. A design change may be moving a lane or changing the height of a building.     

The second research question: “Can comfort be automatically communicated across a 

development?” determines if The Comfort Tool can automatically calculate and 

communicate thermal comfort levels across a case study. This is contrary to the Process for 

Predicting Outdoor Thermal Comfort where thermal comfort could only be calculated at a 

single point within the case study at a time.  Therefore, to calculate thermal comfort across 

a whole development would be time consuming as the Process for Predicting Outdoor 

Thermal Comfort may need to be repeated hundreds of times.  Without this assessment of 
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comfort across a development, it would be difficult for designers and consultants to 

understand the level of thermal comfort in different areas of a development.      

As well as this, it gains an understanding of how thermal comfort is displayed for 

differences in urban forms.  For example, different angled and sized lanes and different 

sized courtyards may be displayed differently in The Comfort Tool than on the plans.  To 

test this, it was asked if the results displayed on the plan view resembled the plan view of 

the development. 

 MAPPING THERMAL COMFORT – DISCUSSION  4.1.

Before The Comfort Tool can be used to test the case studies against the criteria for testing 

the tool, a broader understanding of The Comfort Tool is required. As discussed in Section 

3.3 ‘Can thermal comfort be automatically communicated across a development?’ this 

equates to the thermal comfort being calculated for every ten metre point on a grid across 

a development.  The Comfort Tool is an excel based tool.  The solar radiation and the wind 

reduction factor for each of the 121 measurement points within a proposed development 

are all placed into a spreadsheet which allows for a macro to automatically go through the 

solar radiation measurement and wind reduction factor for each data point and calculate 

the thermal comfort using The Wellington Comfort Index for each hour of the year.   

The solar radiation and wind reduction computer programs cannot be linked automatically 

as the selection of these computer programs is decided on by the consultant or designer 

based on the criteria developed in Section 3.2.2 ‘Criteria for Selecting Wind Analysis 

Programs’.  This is to allow designers and consultants to select the wind analysis and solar 

radiation programs which are accessible to them.  See Section 3.2.3 ‘Selecting Solar 

Radiation Programs’ for discussion on solar radiation programs.    

Once The Comfort Tool has calculated thermal comfort for each point within the proposed 

development, there are numerous ways the thermal comfort data can be averaged.  In this 

thesis project, the data displayed is the average thermal comfort for approximately three-

hundred hours rather than for all 8760 hours of the year.  This is separated into four hour 

periods of the day, for each season separately.  However, the results of The Comfort Tool 
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can be adapted for each development, allowing for The Comfort Tool to focus on key times 

of the day for each development.  

If the thermal comfort results were displayed for the average of all hours of the year, the 

results could be misleading, and periods of thermal discomfort may be lost when averaged 

with a period where the thermal comfort levels may be considered comfortable.  Another 

approach could have been to assess the thermal comfort for a typical day in summer and 

winter.  However, if only these two days were selected, this would not give an adequate 

insight into the thermal comfort levels for a development which will be used all year 

around.  

The scale used to interpolate the results of The Comfort Tool is displayed under each set of 

outdoor thermal comfort results.  An in-depth explanation of each scale is contained 

following the glossary.  
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 EVALUATING THE COMFORT TOOL FOR DIFFERENT URBAN DESIGN 4.2.

SCENARIOS 

Case Study One was selected to test The Comfort Tool’s ability at informing design 

changes for improving outdoor thermal comfort. The characteristics of this case study are 

that it is a large development of 8500m2 with a central courtyard.  The buildings 

surrounding this courtyard are tiered to allow for more solar radiation at pedestrian level.  

There are lanes linking the central courtyard to the West, North, and South, which may 

cause issues with wind funnelling into this central area.  

Case Study One was also selected as a case study as it was used in a previous study for 

developing the Process for Predicting Outdoor Thermal Comfort to test the success of The 

Process. This decision was made as it allowed the improvements in The Comfort Tool to be 

compared with the Process for Predicting Outdoor Thermal Comfort. An example of this is 

the time it takes to calculate the wind reduction factors across a proposed development.  It 

was taking less than half an hour when wind was only being measured at one point within a 

proposed development.  However, when wind is calculated at 121 measurement points, it 

took a day or more to calculate the wind reduction factors.  This will make a difference in 

The Comfort Tool’s use within urban planning and architecture.  If using The Comfort Tool 

is costly (due to a lengthy process), then this may discourage developers from requesting 

an assessment of outdoor thermal comfort.    

Case Study Two tests if The Comfort Tool can predict thermal comfort across a 

development with high levels of wind.  Due to a large open courtyard which is surrounded 

by buildings of similar heights and lanes facing the East (the predominant wind direction) 

there may be issues with wind.  This is in contrast to Case Study One which faces away from 

the predominant wind, and has the buildings tiered around the central courtyard which 

directs the wind away from pedestrian level.  

Case Study Three tests if The Comfort Tool can show variations in thermal comfort for 

evening periods where there is no solar radiation.  Therefore, wind is the only influence on 

thermal comfort which can be mitigated to improve outdoor thermal comfort levels.  This 

case study also has narrow lanes.  
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Case Study Four tests if The Comfort Tool can predict outdoor thermal comfort levels on a 

small case study constructed around a small courtyard.  This may limit solar radiation in this 

courtyard due to the courtyard facing a neighbouring four storey building to the West of 

the case study site.    

4.2.1. CASE STUDY ONE  

Case Study One (Figure 4.1) was selected because it tests whether The Comfort Tool can 

predict outdoor thermal comfort results to help inform design changes for a large 

development.  The development is 8500m2, and covers half a city block.  It consists of six 

buildings, and has lanes in the North, South, East, and West directions.  The buildings 

around the central courtyard are tiered (blue rectangle) to allow for more solar radiation at 

pedestrian level.   

  

Figure 4.1 shows Case Study One.  A perspective view is shown on the left.   The blue rectangle 
shows the large central courtyard with the buildings tiered around it to allow for solar radiation at 
pedestrian level. A plan view is shown on the right.   

Can thermal comfort be automatically 

communicated across a development?  

As discussed in Section 3.3 ‘Can Thermal Comfort 

be Automatically Communicated Across a 

Development?’ the ten by ten metre grid had to 

be adjusted specifically for Case Study One so 

that the points where the solar radiation and 

wind reduction factors were calculated aligned 

with the lanes, courtyards, and surrounding 
Figure 4.2 shows the lane which The 
Comfort Tool showed as a straight 
lane. 
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footpaths.  However, once this data was in The Comfort Tool itself, thermal comfort was 

calculated automatically using a macro.  This meant that once the wind reduction factors 

and solar radiation measurements were in The Comfort Tool, there did not need to be any 

changes by the user.  

The Comfort Tool is able to display variations in thermal comfort across a development.  

This is shown in Figure 4.3 by some areas of the case study being shaded red and some 

areas being shaded a neutral colour.  The variations indicate areas which are thermally 

comfortable and areas where it is less comfortable. However, The Comfort Tool was not 

able to show the angled lane (blue rectangle, Figure 4.2), as it displayed it as a straight lane 

(Figure 4.3).   

 

Thermal Comfort for Case Study One  

Summer 
(11am – 3pm) 

Autumn 
(11am – 3pm) 

Winter 
(11am – 3pm) 

Spring 
(11am – 3pm) 

    
Thermal Comfort 
Assessment  

 
More change is required Thermally neutral More change is required 

Figure 4.3 shows the variances in thermal comfort across Case Study One automatically calculated 
and communicated by The Comfort Tool.  

Are the results of The Comfort Tool able to inform design changes?  

For Case Study One, the thermal comfort assessment was completed between 11am – 3pm 

for each season (Figure 4.3).  The results shown in Figure 4.3 show that The Comfort Tool is 

able to inform design changes by shading different areas of the case study red (thermal 

discomfort) or a neutral colour (thermally comfortable).  This indicates that The Comfort 

Tool can capture the variances in thermal comfort across the different seasons for the 

period of 11am – 3pm.  In summer, most of the lanes and the majority of the central 

courtyard would be considered thermally comfortable (Figure 4.3).  Therefore, people 

would not be required to change their behaviour to maintain their thermal comfort levels.  

However, The Comfort Tool also shows that along the Western footpath, Eastern area of 
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the courtyard, and one of the Western lanes people would need to change their behaviour 

to maintain their thermal comfort levels.   

These results also show that a hierarchy of importance needs to be created for each 

development based on the use of each area, as well as a hierarchy of importance for each 

season.  Although the Western footpath is the least thermally comfortable area of this case 

study in summer, it is the most thermally comfortable area in spring and autumn.  A 

designer or consultant would be required to decide whether it is more important to have 

the Western footpath less thermally comfortable in summer in exchange for it being more 

thermally comfortable in spring and autumn.   

The Comfort Tool is able to inform which areas of the case study are thermal comfortable 

or uncomfortable, but it does not inform designers and consultants what should be focused 

on to improve the thermal comfort.  The results of The Comfort Tool are vital as they 

illustrate the combined effect of wind, solar radiation, and ambient temperature on 

thermal comfort.  However, for The Comfort Tool to be able to inform design changes, 

consultants and designers need to know what to change to improve thermal comfort.  Do 

they need to shade from the sun, or design for less shade, reduce the wind, or increase the 

cooling effect of the breeze?  The combinations of design solutions are endless.  

To allow for the thermal comfort results to be used to inform design changes, the individual 

wind and solar radiation results across a case study were also incorporated into The 

Comfort Tool.  This allows for the primary environmental factor which may be influencing 

thermal comfort or discomfort to be identified.  
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Figure 4.5 shows a view of Case Study One.  
If a thermal comfort assessment focuses on 
the Western footpath, then the design 
features along this Western footpath can be 
analysed to determine potential 
improvements in design to mitigate issues 
with thermal comfort.   

    Thermal Comfort in Summer  
(11am – 3pm) 

Wind on a Summer  
11am – 3pm 

Solar radiation in Summer 
(11am – 3pm)  

   
Wind Assessment  

 
Predominant wind 
direction outside of the 
case study 

Low wind speeds (m/s) High wind speeds  
(greater than 5 m/s) 

Solar Radiation 
Assessment  

 
The least solar radiation The most solar radiation 

Thermal Comfort 
Assessment 

 
More change is required Thermally neutral More change is required 

Figure 4.4 shows that when the results of The Comfort Tool are next to one another  (thermal 
comfort, wind, and solar radiation) that the environmental factor which is causing the discomfort 
can be more easily identified.  

When the wind, solar radiation and thermal 

comfort results are next to one another, along 

with a plan or diagram of a case study (Figure 

4.5) then a deeper understanding of what is 

causing the thermal discomfort or comfort is 

gained.   

 

For example, if a designer or consultant wanted 

to improve thermal comfort along the Western 

footpath of Case Study One, the results of the 

solar radiation and wind can be assessed closely 

along the Western footpath (green rectangle, Figure 4.4).  This shows that there are high 

levels of solar radiation along the Western footpath. Although it is sheltered from the wind 

to the North and South of the Western footpath, there are high levels of wind in the central 

area where the lanes from the central courtyard link onto the Western footpath (green 

rectangle, Figure 4.4).  
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The inclusion of the individual wind and solar radiation results in The Comfort Tool can 

show the variations in wind speed and solar radiation for each season.  For example, a 

designer or consultant may be concerned with high wind levels along the Southern 

footpath next to Case Study One, and the affect that this has on comfort.  These seasonal 

differences can provide useful design information (green rectangle, Figure 4.6). 

 

 
 

Summer 
(11am - 3pm) 

Autumn 
(11am - 3pm) 

Winter 
(11am - 3pm) 

Spring 
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Wind Assessment  
 

Predominant wind 
direction outside of the 
case study 

Low wind speeds (m/s) High wind speeds  
(greater than 5 m/s) 

Solar Radiation 
Assessment  

 
The least solar radiation The most solar radiation 

Comfort 
Assessment 

 
More change is required Thermally neutral More change is required 

Figure 4.6 shows how a consultant can focus on areas where there is concern.  For example, there 
may be a concern with high wind speeds along the Southern footpath (green) then The Comfort 
Tool can be used to show the wind speeds, and how this effects comfort.   
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The Comfort Tool shows that although the wind speeds are high along this Southern 

footpath in summer and spring, it is still comfortable in summer and fairly comfortable in 

spring (green rectangles, Figure 4.6).  This may be because there is still solar radiation at 

pedestrian level during this assessment period.   

To test if The Comfort Tool can reveal differences in comfort when design changes are 

made, the original design of Case Study One was altered to improve the comfort levels 

along the Western footpath and the Northern lane.  The changes that were made were 

informed by the comfort results (Figure 4.6).    

Case Study One 
Case Study One with 

therm comfort improvments 

  

Case Study One 
Case Study One with 

thermal comfort improvments 

  
Figure 4.7 shows the design changes made to test if The Comfort Tool could inform designers how 
a change in design may effect a change in comfort.    

1. The offsets were removed from the Western footpath to prevent wind from passing 

under them, and also reduce shading onto the footpath below (yellow rectangle, 

Figure 4.7).  

2. The buildings next to the Northern lane have stepbacks at roof level to reduce the 

‘down wash’ effect from the buildings causing the wind to flow down the buildings 

and into the lane (blue rectangle, Figure 4.7).  
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3. Orientation of the Western lane was changed to face away from the North-westerly 

‘annoying wind’ to face the South-west, a less common wind direction.  This is to 

prevent the funnelling effect through the main hospitality lane into the central 

Courtyard (orange rectangle Figure 4.7).    

 

 Comparison of Case Study One  and Case Study One with Design Improvements 
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(11am - 3pm) 
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Comfort 
Assessment  

 
More change is required Thermally Neutral More change is required 

Difference in 
Comfort   

Decrease in comfort  No changes in comfort Increase in comfort 

Figure 4.8  shows how changes to the original case study ’s built form improved comfort along the 
Western footpath in summer, autumn, and spring.  However, the changes to the Northern lane to 
improve comfort resulted in little change.   

Areas in Figure 4.8 which are white (green rectangle) show that changing the angle of the 

Western lane, and removing the offsets improved comfort along the Western footpath in 

summer, spring, and autumn.  However, in winter there was a decrease in comfort.  This 

shows that The Comfort Tool is able to capture the effect that design changes have on 

comfort.  These design changes also caused an adverse effect on the comfort levels in the 

secondary lane (black rectangle).  Therefore, a thermal comfort trade-off would need to be 
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decided on between increasing comfort along the Western footpath in summer, spring, and 

autumn, and decreasing thermal comfort in the secondary lane in all seasons.  

When a designer makes a design change to address a specific environmental factor, they 

can cross reference their hypothesis with the results of The Comfort Tool.  As an example, 

the angle of the lane  (orange retangle, Figure 4.7) was changed to face away from the 

predominent wind.  It was predicted that this would decrease the wind speeds in this lane, 

and improve comfort.  However, this only slightly decreases the wind speed shown by the 

white shading (green retangle, Figure 4.9).   
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Wind Assessment  

 
Predominant wind 
direction outside of the 
case study  

Low wind speeds (m/s) High wind speeds  
(greater than 5 m/s) 

Difference in Wind 
 

Decrease in wind speed Increase in wind speed 

Figure 4.9 shows how the wind speeds decreased along the Southern and Northern footpath. 
However, increased in the Southern lane, as captured by The Comfort Tool.  
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A designer or consultant may also be concerned with the amount of solar radiation in an 

area of a development.  Along the Western footpath, the offsets were removed to prevent 

shading on the footpath below (yellow rectangle, Figure 4.7).  The Comfort Tool is able to 

test this hypothesis, to see if making this design change would increase the solar radiation 

along the Western footpath.  It did increase the solar radiation at one end of the Western 

footpath, but only slightly (black rectangle, Figure 4.10).   
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(11am - 3pm) 
Autumn 

(11am - 3pm) 
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Solar Radiation 
Assessment 

 

Areas with little solar radiation Areas with a lot of solar radiation 

Difference in Solar 
radiation 

 
Decrease in solar radiation Increase in Solar Radiation 

Figure 4.10 shows how The Comfort Tool can be used to test a design hypothesis, such as 
removing the setbacks (yellow rectangle, Figure 4.7) may increase solar radiation.  The Comfort 
Tool shows that this had little impact on the level of solar radiation.  Therefore, this change would 
not make a large change to comfort levels.     
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4.2.2. CASE STUDY TWO 

Case Study Two was selected to test if The Comfort Tool could reveal more about The 

Comfort Tool’s ability to predict comfort for a case study which is more exposed to the 

wind.  In contrast to Case Study One, this development faces the predominant wind (blue 

arrows, Figure 4.11), and has a large courtyard surrounded by buildings which are all the 

same height, indicated with the dotted lines.  This design may cause more issues with wind.  

 
 

Figure 4.11 shows Case Study Two.  The predominate wind direction is indicated by the bl ue 
arrows.  The similar heights of the buildings may have an impact on the wind levels (blue shaded 
rectangle).  

Can comfort be automatically communicated across a development?  

For Case Study Two, the measurement points did not need to be moved to display comfort 

levels across the development in The Comfort Tool. It was able to show the variations in 

thermal comfort indicated by different areas of the development shaded in either a neutral 

or red colour (Figure 4.13). However, The Comfort 

Tool was unable to show the angled lane (blue 

rectangle, Figure 4.12) and displayed this as a straight 

lane (blue rectangle, Figure 4.13).  Although The 

Comfort Tool is unable to show the angled lane, it is 

still taken into account as the wind reduction factors 

and solar radiation were calculated in a three-

dimensional model of Case Study Two with an angled 

lane. 

   

Figure 4.12 shows the angled lane 
(blue rectangle) which The Comfort 
Tool showed as a straight lane.   
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Summer 
(8am – 11am) 

Autumn 
(8am – 11am) 

Winter 
(8am – 11am) 

Spring 
(8am – 11am) 

    
Thermal Comfort 
Assessment  

 
More change is required Thermally neutral More change is required 

Figure 4.13 shows how The Comfort Tool can show variences in thermal comfort across a case 
study.  

 

Are the results of The Comfort Tool able to inform design changes?  

For Case Study Two, the thermal comfort assessment was completed between 8am – 11am 

for each season (Figure 4.13).  This shows that The Comfort Tool is able to show variations 

in thermal comfort across the second case study with higher wind levels than Case Study 

One.  

In summer, the thermal comfort assessment shows that the central courtyard is more 

thermally uncomfortable (yellow rectangle, Figure 4.13) than the surrounding lanes.  

Therefore, this indicated that people within the central courtyard would need to change 

their behaviour to maintain their thermal comfort.  In contrast, in spring and autumn, it is 

the Western area of the central courtyard which is the most comfortable area (green 

rectangles, Figure 4.13).   
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Thermal Comfort in Autumn  
(8am – 11am) 

Wind in Autumn  
(8am – 11am) 

Solar Radiation in Autumn  
(8am – 11am) 

   
Wind Assessment  

 
Predominant wind 
direction outside of the 
case study 

Low wind speeds (m/s) High wind speeds  
(greater than 5 m/s) 

Solar Radiation 
Assessment  

 
The least solar radiation The most solar radiation 

Thermal Comfort 
Assessment 

 
More change is required Thermally neutral More change is required 

Figure 4.14 shows how the thermal comfort, wind, and solar radiation results can be assessed next 
to one another to determine which environmental factor is causing thermal comfort or 
discomfort.  These results suggest that it is solar radiation (blue rectangle) which is causing the 
central courtyard in Case Study Two to be thermal comfortable. 

 When the thermal comfort, wind, and solar radiation results from The Comfort Tool are 

placed next to one another, this suggests that it is the solar radiation which is having the 

largest influence on the thermal discomfort in the West end of the courtyard (blue 

rectangle, Figure 4.14). Therefore, limiting the solar radiation in summer at the West end of 

the courtyard, while still allowing it in other seasons would improve thermal comfort in 

summer, without reducing it in the other seasons.  

Comfort levels are lower along the Northern and Southern Footpaths (green rectangle, 

Figure 4.15). As there is excessive solar radiation, and the wind speeds are between low and 

medium, it is likely that it is the solar radiation which is causing the thermal discomfort 

along the Northern footpath. There may also be an issue with thermal discomfort in the 

Eastern lanes (black rectangle, Figure 4.15).  They do not receive much solar radiation at 

pedestrian level.  However, as wind levels are already low, it is likely not the wind which is 

causing the thermal discomfort.   
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Wind Assessment  

 
Predominant wind 
direction outside of the 
case study 

Low wind speeds (m/s) High wind speeds  
(greater than 5 m/s) 

Solar Radiation 
Assessment  

 
The least solar radiation The most solar radiation 

Thermal Comfort 
Assessment 

 
More change is required Thermally neutral More change is required 

Figure 4.15 shows that when the results of The Comfort Tool are next to one another that it can be 
identified that it is likely not the wind, but the lack of solar radiat ion which is causing thermal 
discomfort in the Eastern lanes (black).  
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A designer or consultant may want to test design changes to mitigate the issue with 

thermal discomfort along the Northern footpath in summer, and also reduce the wind 

funnelling into the Eastern facing lanes.  These design changes can be tested using The 

Comfort Tool.  

Case Study Two 
Case Study Two with thermal comfort 

improvments 

  

Case Study Two 
Case Study Two with thermal comfort 

improvements 

  
Figure 4.16 shows the design changes made to Case Study Two to test The Comfort Tool.  

As a demonstration, two design changes were made to Case Study Two to limit the wind:  

1. Verandas were added to the North, South, and East sides of Case Study Two, above the 

footpaths (Orange rectangle, Figure 4.16). This was to direct the wind away from the 

development, rather than allowing it to funnel into the lanes.    

2. An extra storey was added to a building to block the North-easterly wind from entering 

the courtyard (black rectangle, Figure 4.16).     
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 Comparison of Case Study Two  and Case Study Two with Design Improvements 
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Thermal Comfort 
Assessment  

 
More change is required Thermally neutral More change is required 

Comparison of 
proposed and 
alternative designs 

 
Decrease in Comfort  No changes in comfort Increase in Comfort  

Figure 4.17 shows the difference in thermal comfort between Case Study Two, and Case Study 
Two with design changes made to improve thermal comfort.  These changes improved thermal 
comfort in the central courtyard (red rectangle).  

These design changes improved thermal comfort in the central courtyard in summer and 

autumn (orange rectangle, Figure 4.17).  It had a minimal change in thermal comfort in the 

Eastern lanes (green rectangle, Figure 4.17).  This shows the importance of using The 

Comfort Tool to test design decisions, as the design decisions may not always have the 

expected outcome.  
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As these design changes were made to decrease the wind levels, The Comfort Tool was 

used to show the difference in wind levels between Case Study Two, and Case Study Two 

with thermal comfort improvements (Figure 4.18).  The Comfort Tool shows that these 

design changes decreased wind at the North-west corner of the courtyard in summer and 

spring (orange rectangle).  However, wind speeds increased in the Eastern lane (green 

rectangle).      
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Wind Assessment  

 
Predominant wind 
direction outside of the 
case study  

Low wind speeds (m/s) High wind speeds  
(greater than 5 m/s) 

Difference in Wind 
 

Decrease in wind speed Increase in wind speed 

Figure 4.18 shows the changes in wind speeds between Case Study Two, and Case Study Two with 
design changes made to improve thermal comfort.  These changes increased the wind speeds in 
the Eastern lane (green rectangle), but decreased wind speeds in th e Western area of the 
courtyard (orange rectangle).  
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Figure 4.20 shows the circular 
building which The Comfort Tool 
showed as a square.  

4.2.3. CASE STUDY THREE 

Case Study Three was selected to determine if The Comfort Tool could communicate 

thermal comfort levels for evening periods when solar radiation levels are low. Therefore, 

design changes to improve thermal comfort would focus on the wind. Although it is a large 

development which covers half a city block, the lanes and courtyard within the 

development are narrow (yellow rectangles, Figure 4.19).  These design features may cause 

wind to funnel into these areas within the development.  As the assessment time is from 

7pm until 11pm, there is potential for solar radiation to be at pedestrian level during 

summer.     

  

Figure 4.19 shows Case Study Three.  It  has narrow lanes (yellow rectangle).  This case study will 
be tested for evening periods where there is limited solar radiation.  

 

Can thermal comfort be automatically communicated 

across a development?  

The process for calculating thermal comfort was 

automatic for this case study once the data was in The 

Comfort Tool. However, The Comfort Tool was not able 

to show the angled facades or the circular building 

located centrally in the courtyard (blue rectangle, Figure 

4.20).    
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The Comfort Tool is able to show variations in thermal comfort for different seasons, as 

shown by the neutral and red shading (Figure 4.21).  However, there are no variations 

between thermal comfort levels in different areas of Case Study Three.   

Summer 
(7pm – 11pm) 

Autumn 
(7pm – 11pm) 

Winter 
(7pm – 11pm) 

Spring 
(7pm – 11pm) 

    
Thermal Comfort 
Assessment  

 
More change is required Thermally neutral More change is required 

Figure 4.21 shows the where the circular building is located (blue rectangle) which The Comfort 
Tool showed as a straight edges.  The Comfort Tool does not sh ow variance in thermal comfort 
across Case Study Three when there are low solar radiation levels.  However, it still shows the 
differences in thermal comfort between seasons.   

 Are the results of The Comfort Tool able to inform design changes?  

The Comfort Tool is only able to show changes in thermal comfort levels between seasons, 

but not variations in thermal comfort across a development for one season.  This is shown 

by the results of The Comfort Tool being shaded a solid colour across the development 

(Figure 4.21).  

In spring, winter, and autumn, the thermal comfort results are a solid red colour.  However, 

without the wind results, it is unknown if this is because the wind levels are uniform across 

the case study.  

  



pg. 130 

 

As shown by the wind rose in the right top corner of each season’s wind results, the 

predominant wind direction changes for each season.  The predominant wind speed in 

summer is from the South-east direction (black rectangle, Figure 4.22). Whereas, in spring 

there was no wind from this direction (blue rectangle).  

 

Summer 
(7pm – 11pm) 

Autumn 
(7pm – 11pm) 

Winter 
(7pm – 11pm) 

Spring 
(7pm – 11pm) 

    
Wind Assessment  

 
Predominant wind 
direction outside of the 
case study 

Low wind speeds (m/s) High wind speeds  
(greater than 5 m/s) 

Figure 4.22 shows the wind rose included in The Comfort Tool .  This allows for design changes to 
be made to limit the predominant wind speed for each season.  

To test if The Comfort Tool could show variations in thermal comfort even when wind was 

the only environmental factor which could be modified t0 improve thermal comfort levels, 

design changes were made to Case Study Three (Figure 4.23).  
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Case Study Three 
Case Study Three with thermal  

comfort improvments 

  

Case Study Three 
Case Study Three with thermal  

comfort improvments 

  
Figure 4.23 shows the design changes made to Case Study Three to improve the  thermal comfort 
levels based on the wind results.  

1. The Eastern lane was increased in width to prevent the wind funnelling down the 

narrow lane (yellow rectangle, Figure 4.23)  

2. Stepbacks were created near the entrance to the North facing lane to deflect the 

North to North-westen wind from funnelling down the Northern lane (blue 

rectangle, Figure 4.23) 

3. The height of the circular building was increased in height to encourage wind to flow 

around it, rather then down into the central courtyard (orange rectangle, Figure 

4.23) 

4. The North-east facing building had a  stepback built into the roof to deflect the wind 

away from the roof of the building, and down into the central courtyard (black 

rectangle, Figure 4.23). 
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 Comparison of Case Study Three and Case Study Three with Design Improvements 
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Thermal Comfort 
Assessment  

 
More change is required Thermally neutral More change is required 

Difference in 
Thermal Comfort   

Decrease in comfort  No changes in comfort Increase in comfort 

Figure 4.24 shows the differences in thermal comfort between Case Study Three and Case Study 
Three with design changes to improve thermal comfort.  This shows that The Comfort Tool can 
inform design changes even though the solar radiation levels are low (orange rectangles).   

These thermal comfort results show that The Comfort Tool is able to demonstraight how a 

change in design which focuses on only wind for the evening can show a change in thermal 

comfort.  However,  these design changes had a limited effect on thermal comfort  (Orange 

rectangle, Figure 4.24).  Therefore, for this scenario for evening periods when there is 

limited solar radiation, The Comfort Tool may be able to provide more insightful 

information when larger design changes are made.  An example of this may be the building 

footprints, the height of the buildings, and the location of the lanes and courtyards.      
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The Comfort Tool captured the reduction in wind speeds in the central courtyard (green 

retangle, Figure 4.25).  However, these design changes also increased the wind speed along 

the Northern lane and footpath (black rectangle).  These results would allow consultants 

and designers to make design changes based on a hierachy of which areas they would like 

to focus on reducing the wind, even if design changes increase wind speeds in another area.  

In Case Study Three, lowering the wind in the central courtyard may be the focus of design 

improvments as this is the location of a restaurant which will be used during evening 

periods (green rectangle).  Whereas, people will only be passing through the lane and 

Northern footpath (black rectangle).   
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Wind Assessment  
 

Predominant wind 
direction outside of the 
case study  

Low wind speeds (m/s) High wind speeds  
(greater than 5 m/s) 

Difference in Wind 
 

Decrease in wind speed Increase in wind speed 

Figure 4.25 shows the design changes decreased wind in the central courtyard and increased wind 
along the Northern footpath and Northern lane  
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4.2.4. CASE STUDY FOUR  

Case Study Four was selected to test The Comfort Tool as it is a small development which 

faces away from the sun (Figure 4.26).  There is also a six storey building situated next door 

(solid grey rectangle).  This is in contrast to Case Study One and Two which have large 

central courtyards, and Case Study Three which assessed thermal comfort for the evening 

period when there is limited solar radiation.    

 

 

Figure 4.26 shows Case Study Four, with the neighbouring building  (grey rectangle) which limits 
the solar radiation in the central courtyard.  

 

Can thermal comfort be automatically communicated across a development?  

Once the solar radiation and wind results 

were placed in The Comfort Tool, no 

changes were required in The Comfort Tool 

to produce the results for the thermal 

comfort assessment.  The thermal comfort 

results show that variations in thermal 

comfort across Case Study Four were 

captured by The Comfort Tool as the 

comfort results show areas of comfort and 

discomfort (Figure 4.28).  In winter, the results were solid red across the development, so 

design changes which focus on improving thermal comfort in winter could not be made 

based solely on these thermal comfort results.   

Figure 4.27 shows the underpass which The 
Comfort Tool did not show in the thermal 
comfort results.  
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Case Study Four has an angled underpass, sheltered by the level above (blue rectangle, 

Figure 4.27).  However, The Comfort Tool was unable to show this underpass (blue 

rectangle, Figure 4.28). 

Summer 
(11am – 3pm) 

Autumn 
(11am – 3pm) 

Winter 
(11am – 3pm) 

Spring 
(11am – 3pm) 

    
Thermal Comfort 
Assessment  

 
More change is required Thermally neutral More change is required 

Figure 4.28 shows that The Comfort Tool is not able to display the underpass  

 

Are the results from a comfort tool able to inform design changes?  

The Comfort Tool is able to show variations in thermal 

comfort across Case Study Four as shown by the red and 

the neutral shading (Figure 4.28). In summer between 

11am and 3pm, the thermal comfort levels are higher at 

the base of the buildings than in the middle of the 

courtyard (yellow rectangle, Figure 4.29).  The Comfort 

Tool shows that in autumn and spring it is more thermally 

comfortable further away from the building (green 

rectangle, Figure 4.28). However, without the solar 

radiation and wind results it is difficult to identify what is 

causing the thermal discomfort in the central courtyard in 

summer.  

  

Figure 4.29 shows the 
central courtyard which may 
receive limited solar 
radiation in Case Study 
Four. 
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Thermal Comfort in Summer 
(11am – 3pm) 

Wind in Summer 
(11am – 3pm) 

Solar Radiation in Summer 
(11am – 3pm) 

   
Wind Assessment  

 
Predominant wind 
direction outside of the 
case study 

Low wind speeds (m/s) High wind speeds  
(greater than 5 m/s) 

Solar Radiation 
Assessment  

 
The least solar radiation The most solar radiation 

Thermal Comfort 
Assessment 

 
More change is required Thermally neutral More change is required 

Figure 4.30 shows how The Comfort Tool can be used to identify what may be causing thermal 
comfort or discomfort.  Solar radiation is low, and wind speeds are fairly high in the central 
courtyard.  However, The Comfort Tool indicates that if solar radiation increased that this would 
increase thermal comfort (red rectangle).  

The Comfort Tool is able to identify that the solar radiation levels are low in summer in the 

central courtyard and the wind levels are high (yellow rectangle, Figure 4.30).  However, at 

a closer assessment, The Comfort Tool was able to show that the thermal comfort levels 

were neutral at the base of the building in the central courtyard where the solar radiation 

levels were higher (red rectangle, Figure 4.30).  This suggests that although the wind levels 

are high in the courtyard, that only a small amount of solar radiation would improve the 

comfort.  Therefore, by reducing the wind, the comfort levels may also increase.  The 

design changes aimed at reducing the wind as there was not much potential for design 

improvements for increasing solar radiation.         
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Case Study Four 
Case Study Four with thermal 

comfort improvements 

  

Case Study Four 
Case Study Four with thermal 

comfort improvements 

  
Figure 4.31 shows the design changes made to Case Study Four to improve thermal comfort.  

1. Verandas were added to the two Western wings of Case Study Four to direct any 

Easterly or North-easterly wind which comes across the roof of Case Study Four and 

down into the North to South lanes away from the development (orange rectangle, 

Figure 4.31).  

2. Stepbacks were incorperated into the West wings to encourage the wind to deflect 

away from Case Study Four (blue rectangle, Figure 4.31).  
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 Comparison of Case Study Four and Case Study Four with Design Improvements 
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Thermal Comfort 
Assessment  

 
More change is required Thermally neutral More change is required 

Comparison of 
proposed and 
alternative designs 

 
Decrease in Comfort  No changes in comfort Increase in Comfort  

Figure 4.32 shows that The Comfort Tool highlighted these design changes improved thermal 
comfort in the central courtyard (black rectangle).  

The Comfort Tool shows that these design changes improved outdoor thermal comfort 

across the development in summer, spring, and autumn (black rectangle, Figure 4.32).  In 

winter, The Comfort Tool shows that there was an improvement in thermal comfort in all 

areas of the case study.  In spring, summer, and autumn, these design changes decreased 

thermal comfort along the Eastern footpath (red rectangle, Figure 4.32).         
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Wind Assessment  

 
Predominant wind 
direction outside of the 
case study  

Low wind speeds (m/s) High wind speeds  
(greater than 5 m/s) 

Difference in Wind 
 

Decrease in wind speed Increase in wind speed 

Figure 4.33 shows that the wind results for Case Study four showed an increase in wind around 
Case Study Four.  Therefore, when The Comfort Tool is used for informing deigns changes, it 
could show when a design change will have an adverse effect on thermal comfort, rather than 
improving thermal comfort.   

When the wind results for Case Study Four, and Case Study Four with design changes are 

compared, it shows that there was an increase in wind in the central courtyard in summer, 

spring, and autumn (green rectangle, Figure 4.33).  These design changes had improved 

thermal comfort in the central courtyard (black rectangle, Figure 4.32), and there was 

minimal change in solar radiation at pedestrian level (red rectangle, Figure 4.34), The 

Comfort Tool suggests that these thermal comfort improvements are due to the increased 

solar radiation in the central courtyard.   
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Solar Radiation 
Assessment 

 

Areas with little solar radiation Areas with a lot of solar radiation 

Difference in Solar 
radiation 

 
Decrease in solar radiation Increase in Solar Radiation 

Figure 4.34 shows there was a slight increase in solar radiation from these design changes.  
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 ASSUMPTIONS AND CONSIDERATIONS OF THE COMFORT TOOL 4.3.

This section covers the modelling assumptions made when modelling the case studies 

within the case study area, as well as the assumptions made when using the solar radiation 

and wind analysis computer programs.  

4.3.1. MODELLING ASSUMPTIONS AND CONSIDERATIONS  

Each case study was modelled with a neighbouring building where there was an existing 

building before the Canterbury Earthquakes.  All surrounding buildings were modelled as 

twenty-eight metres in height, as this is the building height restriction defined by the 

Christchurch Central Recovery Plan for this area of Central Christchurch (Canterbury 

Earthquake Recovery Authority, 2012, p. 106).  The distance between a proposed 

development and a neighbouring building follows the site’s boundaries.  It has been 

assumed that the new buildings cover the same footprints as the existing city blocks, and 

there are no lanes.  This decision was made as the lane locations, widths and lengths, and 

orientation is unknown. The neighbouring buildings of each proposed development were 

modelled as they may affect the wind patterns and solar radiation in areas surrounding a 

case study.   

 

Figure 4.35 shows how the case studies were modelled in the wind analysis and solar radiation 
programs with twenty-eight metre high surrounding city blocks.  This is Case Study Three (green 
box).   
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The Comfort Tool’s results for each case study were used as demonstrations of The 

Comfort Tool’s ability at informing and testing design decisions.  However, once the new 

Central Christchurch is complete, these results may be invalid due to the surrounding 

buildings being different than the 28 metre high buildings modelled for this thesis project.  

Design changes between these assumptions and what may happen in reality include 

buildings not being twenty-eight metres in height, having additional lanes, courtyards, 

changing their orientation, or having variations in built form.   

 

The case studies were modelled without landscaping, and did not take into account the 

river which runs past two of the case studies, or the topography of the land.     

The three-dimensional model for each case study was used for calculating the solar 

radiation and wind reduction factors.  The three-dimensional models were modelled in 

SketchUp.   

 

Assumptions for UrbaWind 

It has been assumed that the case study area has a terrain-roughness of 0.35, defined as a 

small density city with large open areas (Grimmond & Oke, n.d., p. 1283). The mesh size 

was set to medium.  This assumption was made as this is the recommended mesh 

coarseness recommended by UrbaWind when calculating wind reduction factors in low-rise 

urban areas.  The wind reduction factors were calculated for eight wind directions (North, 

North-east, East, South-east, South, South-west, West, and North-west).  This assumption 

was made as this calculates the primary wind speeds in Christchurch – North-east, South-

west, and North-west (Figure 4.36).  
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Figure 4.36 shows the predominate winds based on an TMY weather file for Christchurch (‘TMY 
Weather Data’, 2013) .   

The wind reduction factors were calculated at the height of 1.2 metres.  This is based on the 

height of a person when they are seated.  This was the same height as the mean wind 

speed was measured in the study which developed The Wellington Comfort Index (Walton 

et al., 2007, p. 3168).     

 

Assumptions for EnergyPlus 

Solar radiation was calculated using EnergyPlus version 8.1.  It was measured at a height of 

1.2 metres, as this is the average height of a person when they are seated (Walton et al., 

2007, p. 3168).  An EPW weather file for Christchurch was used to for the solar radiation 

calculations.  This is representative of a typical meteorological year.  Therefore, does not 

include unseasonable weather conditions.     

 

Assumptions for the Ambient Temperature 

The solar radiation and wind reduction factors were calculated within each case study 

therefore took into account the effect each built form had on solar radiation and wind 

patterns.  However, the ambient temperature was measured at the Christchurch 

International Airport, rather than Central Christchurch and it is unknown how much the 

ambient temperature varies from Christchurch International Airport and Central 

Christchurch. The TMY weather file was only used to test if the ambient temperature in a 

TMY weather file could be used as part of The Comfort Tool.     
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5. DISCUSSION AND CONCLUSION 

This research began with the aim of developing the Process for Predicting Outdoor Thermal 

Comfort into a tool for use at the preliminary design stage of a development. The purpose 

of this thesis project was to test the hypothesis that a tool for predicting outdoor thermal 

comfort could be developed to inform design changes.  This section responds to each of the 

four research questions outlined in the introduction to frame the line of investigation for 

this thesis project.   

The research question “Are the results from a comfort tool able to inform design changes?”  

was used to identify if The Comfort Tool was able to communicate differences in thermal 

comfort across a development, allowing for the results to inform design changes.  This 

question was able to identify whether the aim of this thesis project had been met through 

developing the Process for Predicting Outdoor Thermal Comfort into a tool for predicting 

outdoor thermal comfort at the preliminary design stage of a project.  A case study 

research approach was selected to test The Comfort Tool.  The success of The Comfort Tool 

was based on two criteria: “Can thermal comfort be automatically communicated across a 

development?” and “Are the results from a comfort tool able to inform design changes?”.  Four 

case studies were selected.  These were selected on the differences in built form, and how 

these differences would affect solar radiation and wind levels at pedestrian level. 

The results showed that The Comfort Tool could communicate variations in thermal 

comfort across three of the case studies for each season.  The Comfort Tool also tested a 

case study for evening periods for each season when there was limited solar radiation.  The 

Comfort Tool was not able to show differences in thermal comfort across Case Study Three 

for each season.  However, variations in thermal comfort between seasons were identified.  

Through testing these case studies it was also revealed that The Comfort Tool needed to be 

able to provide sufficient extra information about the likely cause of thermal discomfort.  

This was important for assisting designers and consultants in identifying design changes 

likely to improve thermal comfort.  For this reason, solar radiation and wind assessments 

were also added to The Comfort Tool.  
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Through testing The Comfort Tool, the importance of thermal comfort trade-offs were also 

revealed.  For example, improving thermal comfort in one area of a case study may have an 

adverse effect on thermal comfort in another area of the case study.  Therefore, there could 

be a need for a hierarchy of design outcomes. This was demonstrated in Case Study One, 

where improving thermal comfort along the Northern footpath caused a decrease in one of 

the internal lanes.  

The answer to the second question “Can the Process for Predicting Outdoor Thermal Comfort 

be developed into a tool for use at the preliminary design stage?” a set of criteria were 

developed to assist designers and consultants in selecting their own wind analysis 

programs.  This was because the Process for Predicting Outdoor Thermal Comfort required 

specialist skills.  However, the criteria outlined what would be required from a wind analysis 

program for use with The Comfort Tool, as well as how to test if a wind analysis program 

could produce accurate results based on wind tunnel test results.  The criteria were tested 

on three wind analysis programs and were able to highlight the strengths and weaknesses 

of each program.  These criteria would allow designers and consultants with knowledge of 

three-dimensional modelling and simulation to understand what is required from a wind 

analysis program.  

The third research question “Can thermal comfort be automatically communicated across a 

development?” addressed the problem that the Process for Predicting Outdoor Thermal 

Comfort could only predict thermal comfort for a single point in a development at a time.  

For an assessment of a whole development, this point by point thermal comfort 

assessment is inadequate for the construction industry as it would be time consuming, as 

the process would need to be repeated hundreds of times for an assessment across a whole 

development.  In response to this research question, the Process for Predicting Outdoor 

Thermal Comfort was developed into The Comfort Tool which took wind and solar 

radiation data for 121 measurement points across a case study, and calculated thermal 

comfort for each of the points, automatically displaying the thermal comfort across each 

case study.  This was tested on four case studies and showed that thermal comfort can be 

communicated for different times of the day and seasons, with areas of thermal comfort 

and discomfort identified using The Comfort Tool.  However, these four case studies with 

different built forms identified the problem that The Comfort Tool was unable to accurately 
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represent diagonal lanes, and circular buildings.  These were displayed as straight lines. This 

means that The Comfort Tool provides useful information at the concept stage.  However, 

there are some limitations when displaying more complex designs such as, angled or non-

rectangular floor plans.     

The final research question asked “What is the applicability of The Wellington Comfort Index 

to cities outside of Wellington?”.  This question was asked as it was unknown if The 

Wellington Comfort Index was able to predict thermal comfort in cities outside of 

Wellington, or if it was only representative of Wellington.  It was unknown if mean wind 

speed, maximum wind speed, solar radiation, and ambient temperature were the 

environmental factors which needed to be considered when predicting comfort in cities 

outside of Wellington.  To understand the Wellington Comfort Index’s applicability to other 

cities, the survey conducted in Wellington to create the Wellington Comfort Index was 

conducted in another city, using Christchurch as a case study.  This allowed for the 

development of The Christchurch Comfort Index using the same methodology as was used 

to develop The Wellington Comfort Index.  Once The Christchurch Comfort Index was 

developed, the environmental factors which predict comfort in each city were compared.  

In Christchurch, the ambient temperature and maximum wind speed were important 

factors when predicting thermal comfort.  Mean wind speed and mean radiant temperature 

were not considered important when calculating people’s adaption to maintain comfort in 

The Christchurch Comfort Index.  However, as the sample size in Christchurch was less than 

ten percent of the sample size in Wellington, further investigation is needed.  It is unknown 

if a larger sample size in Christchurch would have resulted in mean radiant temperature and 

mean wind speed also being included in The Christchurch Comfort Index.   

This aim of this thesis project was to develop the Process for Predicting Outdoor Thermal 

Comfort into a tool for use at the preliminary design stage of a development.  The 

motivation of this study was the rebuilding of Christchurch after the Canterbury 

Earthquakes.  Through this thesis project, a tool has been developed which informs design 

changes to allow outdoor thermal comfort to be improved in the preliminary design stage.  

The Comfort Tool is able to assist designers and consultants working on the Christchurch 

rebuild in creating a new central city which has been designed with improved outdoor 

thermal comfort.  
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6. FUTURE DEVELOPMENT OF THE COMFORT TOOL 

This thesis project has developed the Process for Predicting Outdoor Thermal Comfort into 

a tool. However, there are ways The Comfort Tool could be improved for use within urban 

planning and architecture. These improvements are discussed below.  They include further 

testing of The Wellington Comfort Index.   

 

The Comfort Tool  

Currently the results of The Comfort Tool are in an excel spreadsheet with conditional 

formatting used to communicate the thermal comfort levels on two-dimensional plans.  For 

the results to be communicated in a more dynamic way, allowing for the user or client to 

feel as though they are within the development, a three-dimensional virtual environment of 

a proposed urban development could be created (Figure 6.1).  This could be developed as a 

‘walk-through’ allowing people to walk through a space virtually which visually shows the 

thermal comfort levels using colours or icons.  The virtual environment would be three-

dimensional, allowing for a feeling of being inside a propose development and 

understanding the comfort levels before it is even constructed.   

 

 

Figure 6.1 shows the virtual environment with the comfort displayed for one seaso n underneath 
Case Study One as an example. 
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Although The Comfort Tool can automatically calculate and display the comfort results for 

121 measurements points for 8760 hours of a year, data is lost when these 8760 hours are 

averaged into different periods of the day for each season.  Being able to look at one hour 

at a time through the use of a slider would allow for a much richer analysis.  

Although the wind reduction factors and solar radiation modelling programs take into 

account how the angled lanes and circular buildings affected wind and solar radiation, The 

Comfort Tool is unable to show diagonal lanes or circular buildings.    However, in the future 

the interoperation method used to communicate the data measured at 121 points across a 

development on a plan view could be improved to show angled lanes and circular buildings.   

The Comfort Tool displayed the average wind results for approximately three-hundred 

hours of data for each season. If all 8760 hours of wind data had been averaged, this may 

have been misleading as the hours with high wind speeds may be lost when averaged with 

periods of low wind speeds.  However, future development could include showing the 

difference in wind in the proposed development, and the development with design changes 

made to reduce wind speeds for a specific point (black dot, Figure 6.2).  The wind rose 

indicates that the wind speeds at the specific point (black dot) have reduced in the North 

direction.  This could be animated, so that the user of The Comfort Tool can indicate a point 

where they would like the wind speeds to be compared appearing on a wind rose.  

  

Figure 6.2 shows the difference in wind speeds for proposed development (left) an d a proposed 
development with design changes made to improve comfort (right) for a specific point.  The wind 
rose on the right has lower wind speeds in the North direction (pink) The predominant wind 
speeds outside of the development are also indicated (na vy blue).    
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The thermal properties of building materials within a development may influence the 

ambient temperature within an outdoor area.  This is due to construction materials such as 

concrete having a greater thermal mass than materials such as glass. Materials with a 

greater thermal mass absorb more heat from solar radiation and release it gradually.  This 

has not been included in The Comfort Tool.  However, further development of The Comfort 

Tool could include constructing the three-dimensional model of a development to include 

the thermal properties.  This may also include the roads, surrounding footpaths, lanes, and 

courtyards.  The three-dimensional model could then calculate the effect of the thermal 

properties of the construction materials on ambient temperature and include this ambient 

temperature, rather than the ambient temperature measured at the regional weather 

station in The Comfort Tool.  

Although The Comfort Tool was developed for assessing thermal comfort, it could be 

further developed to be a design tool. This could be through including design 

recommendations automatically generated depending on the thermal comfort results for a 

development.  For example, if wind is a cause of thermal discomfort at a corner café, a 

design recommendation automatically generated could be:  

1. Change the height of the buildings 

2.  Add a podium  

3. Increase or decrease the distance between buildings 

4.  Change the shape of the building (square corner, versus curved corners) 

5. Add a canopy or balconies 

6. Add breeze-ways 

7. Increase/decrease setbacks 

8. Include passageways/corridors 

9. Add  fences, screens  

10. Add vegetation 

11. Turn area into an arcade 

 

In the future, design changes could be optimised through the use of an optimisation 

program.  Currently these programs are available for assessing energy use in buildings 

which cycle through a range of options such as construction types, R-values of materials, 
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and glazing area and calculate the best combination of options for an energy efficient 

building. For outdoor thermal comfort, an example of this could be varying the height of 

each building within a development until the optimal combination of building heights for 

the most thermally comfortable outdoor area is calculated, while maintaining the net 

lettable area of the development.    

Currently The Comfort Tool does not include the topography of the site a development is 

on.  However, in cities which have hills or are surrounded by water, the topography may 

have an impact on the wind results calculated by the wind analysis program. 

The wind analysis program also did not include landscaping.  However, in developments 

which have a large amount of landscaping it is important that this is included in The 

Comfort Tool in the future as it may have an effect on both wind patterns and solar 

radiation within a development.   

 

The Wellington Comfort Index 

Through calculating The Christchurch Comfort Index, it was determined that only ambient 

temperature and maximum wind speed were the environmental factors which can be used 

to predict thermal comfort in Christchurch.  However, this sample only contained thirty 

people, which was ten percent of the sample size used to develop The Wellington Comfort 

Index.  For a deeper understanding, The Wellington Comfort Index should be calculated 

using the same methodology in cities other than Wellington with a sample size closer to 

what was used to develop The Wellington Comfort Index.  

The Wellington Comfort Index has been tested on another city with a temperate climate.  

However, for a deeper understating, the same methodology for calculating The Wellington 

Comfort Index should be conducted in cities with a radically different climate (M Salinger, G 

Griffiths, 2001).  This may include tropical climates where humidity affects thermal comfort 

more than in temperate climates.   Another climate may be an arid climate where outdoor 

thermal comfort design is focused on humidifying the air and cooling down outdoor areas.     

Humidity has not been included in The Wellington Comfort Index.  This is because it was 

found that humidity was not an important factor in outdoor thermal comfort for 
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Wellington, and The Christchurch Comfort Index was calculated based on the survey 

questions which were important in Wellington.  Christchurch and Wellington do not 

typically experience high levels of humidity.  However, for The Wellington Comfort Index to 

be used in cities which have higher humidity, then the survey should be repeated and 

include questions from the original survey asking about humidity.  

To make The Wellington Comfort Index more robust it should be recalculated for 

Wellington with the black globe temperature, instead of the mean radiant temperature.  

The Wellington Comfort Index was created using the black globe temperature as a 

solarimeter was unavailable, which was then converted to mean radiant temperature. 

However, the long term TMY weather data includes solar radiation, not black globe 

temperature. Therefore, it is important that The Wellington Comfort Index is recalculated 

with the black globe as this reduces the reliance on a two different formulae, one for 

calculating black globe temperature, and one for calculating mean radiant temperature 

which were derived from different studies (Turco et al., 2008; Walton et al., 2007).  This is 

especially important as the calculation used for converting solar radiation and ambient 

temperature to black globe was based on a small dataset in Brazil.  It is unknown if this 

formula works on a range of climates.   The recalculation of The Wellington Comfort Index 

to include black globe temperature instead of mean radiant temperature was not included 

as part of this thesis project as the full dataset for Wellington was not available.   

 

Other Future Development Areas of Outdoor Thermal Comfort  

There is a link between the vitality and the increased revenue for an area (Lian Chen, 

Edward Ng, 2011, p. 118).  However, there needs to be more research in this area to provide 

more evidence to support this link.  This would encourage developers to invest the extra 

time and money to ensure that a development has mitigated any issues with outdoor 

thermal comfort during the design phase.  
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8. APPENDICES 

These Appendices have been included to provide further evidence which supports the 

methodology used to develop The Comfort Tool, and The Christchurch Comfort Index. As 

The Comfort Tool does not specify the wind analysis program to be used as part of The 

Comfort Tool, there is also an appendix which contains wind tunnel test results for The 

Simple City Test.  
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 APPENDIX ONE: THE DEVELOPMENT OF THE COMFORT TOOL 8.1.

8.1.1. SIMPLE CITY TEST RESULTS FOR ASSESSING WIND ANALYSIS PROGRAMS FOR THEIR 

ACCURACY    

The results for the wind tunnel test for The Simple City have been included to allow 

designers and consultants to test wind analysis programs for their accuracy based on this 

Simple City Test.  This is important before a wind analysis program is used to calculate the 

wind reduction factors to be used in The Comfort Tool.     

Uniform Simple City 360° (Northerly wind) 
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Uniform Simple City 45° (North-easterly wind) 
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Non-uniform Simple City 360° (Northerly Wind)  
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Non-uniform Simple City 45° (North-easterly wind) 
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8.1.2. CALCULATING THE GUST CO-EFFICIENT   

As the wind analysis programs could not calculate the gust wind speed, a gust co-efficient 

was calculated based on data from the case study weather station.  This was conducted on 

ten minute data (Figure 8.2), and sixty minute data (Figure 8.1) using a linear regression 

analysis. The gust co-efficient was used for calculating the gust speed from the mean wind 

speed in the TMY weather file, as the TMY weather data is sixty minute data (‘TMY 

Weather Data’, 2013).   

 

Figure 8.1 shows the linear regression analysis for calculating the gust co -efficient on ten minute 
data 

 

 

Figure 8.2 shows the Equation linear regression analysis for calculating the gust co-efficient on 
sixty minute data. This gust co-efficient is the co-efficient used in The Comfort Tool  
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 APPENDIX TWO: DEVELOPMENT OF THE CHRISTCHURCH COMFORT INDEX  8.2.

8.2.1. WELLINGTON SURVEY QUESTIONS 

The survey questions below are from the Wellington survey. Although thirty-three 

questions were asked, the responses to only thirteen of these questions were included in 

The Wellington Comfort Index.  This was determined by a principal component analysis 

which showed which items (questions) were important in predicting the degree of 

behavioural change would be required for maintaining comfort.  
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8.2.2. DEMOGRAPHIC QUESTIONS INCLUDED IN THE CHRISTCHURCH SURVEY  

Below are the demographic questions which were include in the Christchurch survey.  

These allowed for flexibility in the data analysis if the survey responses from the survey 

were used for further analysis outside of this thesis project.  These demographic questions 

would allow for the survey responses to be separated into meaningful groups, such as how 

males change their behaviour maintain their thermal comfort compared with females.    

16) “Are you a visitor to New 
Zealand?”    

This question was asked to allow flexibility in the survey data 
analysis.  If there was a large sample size, it could be separated 
into two groups: visitors and locals to provide more detail in The 
Wellington Comfort Index’s applicability to cities outside of 
Wellington.  

17) “Are you a visitor to 
Canterbury?” 

This question was asked to allow flexibility in the survey data 
analysis.  If there was a large sample size, it could be separated 
into two groups: visitors and locals to provide more detail in The 
Wellington Comfort Index’s applicability to cities outside of 
Wellington. 

18)  Please indicate your gender This question was asked to allow flexibility in the survey data 
analysis.  If there was a large sample size, it could be separated 
into two groups: males and females to understand the variations 
between each sex and how they may perceive thermal comfort.  

19)  Please indicate your age This question was asked to allow flexibility in the survey data 
analysis.  If there was a large sample size, it could be separated 
into age groups to understand how at different ages people 
perceive thermal comfort differently.  
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8.2.3. TEMPERATURES DURING THE SURVEY PERIOD   

This graph shows the minimum and maximum ambient temperatures for the survey period.  

It is important that the survey period captures a variance in weather (Walton et al., 2007, p. 

3168).  The survey period covered temperatures ranging from less than 0°C and more than 

30°C (Figure 8.3).  This is covers the range of temperatures where people are likely to be 

spending time outside in Christchurch.   

 

 

Figure 8.3  shows the minimum and maximum temperatures over the survey period (NIWA, 2015b) 
.  
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8.2.4. LIST OF EQUIPMENT, ACCURACY, AND SPECIFICATIONS   

The case study weather station was a Radiance Wireless Weather Station.  Its accuracy was 

taken into account when comparing the data between the case study weather station and 

the local regional weather station.  The case study weather station had an accuracy of +/- 

1m/s when the wind speed is less than 5 m/s, and 10% when wind speed is above 5 m/s. 

Ambient temperature has an accuracy of +/- 1◦C.  No accuracy for the solar radiation 

specified.  The accuracy of the wind speeds were not compared as there was no defined 

pattern between the wind patterns and the case study weather station and the local 

regional weather station.      

 

Figure 8.4 shows the ambient temperature with the accuracy considered.  Th is shows that the 
location regional weather station and the case study weather station recorded similar ambient 
temperatures.  However, the case study weather station’s temperature lagged slightly.  This 
indicated that there is more thermal mass surroundin g the case study weather station which is 
causing the change in ambient temperature to take longer to have an effect on the 
measurements.  
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Radiance Wireless Weather Station Information (Frizzell Agricultural Electronics, 2014): 

Specifications: 

• Outdoor/indoor temperature: -40°C - 60°C / -40°F - 140°F 
• Outdoor/indoor humidity: 1%- 99% 
• Wind speed: 0-50m/s / 0-100mph -(km/h, knot, mph, bft, ft/s, m/s) 
• Wind gust: km/h, knot, mph, bft, ft/s, m/s 
• Wind direction: Degrees, cardinal directions 
• Wind chill: Yes C° / F° 
• Dew point: Yes C° / F° 
• Rain gauge: 0-9999mm, inch (Daily, weekly, monthly, yearly) 
• Rain rate: mm/hr, in/hr 
• Weather forecast symbols: Sunny, partly cloudy, cloudy, rainy, storm 

• Barometric pressure:300-1100hPA / 8.85-32.5inHg) hpa, in Hg, mm Hg (Absolute, Relative) 
• UV index: uW/cm2 
• Solar radiation (lux) meter: 0-400k Lux (W/mm2, lux, fc) 
• Time and date display (HH:MM:SS) 
• Mounting hardware: Pole, U bolts, clamps, nuts 
• Level indicator: Bubble 
• Display unit dimensions 195(W) x 138(H) x 20(D)mm 

 

Features: 

• Alarm clock 
• Display night switch 
• Includes 38MB Built-in memory 
• Records of all minimum and maximum values with time/date of recordings 
• Recording interval: 1 to 240 mins (tabulated and graphic with zoom) 
• Up to 100m line of sight wireless transmission range 
• Uses microSD Card memory (not included) for backup (can accept any capacity MicroSD card)   
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Local Regional Weather Station Information (NIWA, 2015b):  

 

Parameter  Indicator 

Agent Number 24120 

Network Number H3256F 

Name Christchurch, Kyle St Ews 

Lat (dec deg, S of equator is neg) -43.53074 

Longitude (dec deg, E of Greenwich is pos e.g. NZ) 172.60769 

Position Precision H 

Note: Position precision types are:  
"W" = based on whole minutes, "T" = estimated to tenth minute,  
"G" = derived from gridref, "E" = error cases derived from gridref, 
"H" = based on GPS readings (NZGD49), "D" = by definition i.e. grid points. 

 

Height above MSL in metres 6m 

Grid Reference (NZ Metric Map Series)  M35782417 

Start Date 30-Oct-2002 

End Date - 

Closed Indicator (Closed = 1) 0 

Stty Station Type C: Clitel 

Synoptic Number (World Met. Organisation Number) - 

WRA No 325615 

Observing Authority Niwa 

 

Current Indicators: 

Note: the following indicators show the current status for open stations. 
Closed stations may show no recorded parameters. 

Parameter  Indicator Parameter Indicator 

Rain X Evaporation - 

Surface Wind Dirn X Surface Wind Speed X 

Max Gust Dirn X Max Gust Speed X 

Solar Radiation X Sunshine Hours - 

10cm Earth Temp - 20cm Earth Temp - 

30cm Earth Temp - 100cm Earth Temp - 

Dry Bulb Temp X Wet Bulb Temp X 

Grass Min Temp X Weather Phenomonen - 

Max Temp X Min Temp X 

Visibility - Cloud Amount - 

MSL Pressure X   

Wind Run X   

Time Offset (from UTC) 12 dayl_daylight_area 02 
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8.2.5. ASHRAE CLO-VALUES 

The table below shows the ASHRAE clo-values for each clothing item.  When the clo-value 

was missing for one of the items included in the Wellington survey, the value for the 

clothing item was used from this table (ASHRAE, 2013, p. 3).  
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8.2.6. RE-CODING OF QUESTIONS 

The questions were re-coded so the Christchurch Comfort Index could be interoperated as 

fifty meaning thermally comfortable and a one or one-hundred indicating thermally 

uncomfortable.  This was to align the data with The Wellington Comfort Index. Thermally 

comfortable (neutral colour) and thermally uncomfortable (red colour) have been shaded to 

show how the scales have changed (Table 8.1). 

Table 8.1 shows how the raw data from the Christchurch survey was re-coded to make the index 
for predicting the degree of change of behaviour required to maintain comfort could be more 
easily interoperated.  

“Rate how 
warm or cold 
you feel” 

Much too 
Warm 

Too 
Warm 

Comfortably 
Warm 

Neutral Comfortab
ly Cool 

Too 
Cool 

Much 
too Cool 

Current 
numbers  

1 2 3 4 5 6 7 

Re-worked 
numbers 

4 3 2 1 2 3 4 

“Rate your 
impression of 
the wind level” 

Much too 
windy 

Too 
windy 

Comfortably 
windy 

Neutral Slightly 
too cool 

Too 
still 

Much 
too still 

Current 
numbers  

1 2 3 4 5 6 7 

Re-worked 
numbers 

4 3 2 1 2 3 4 

“Rate how 
warm or cold 
your 
surroundings 
are” 

Hot  Warm Slightly too 
warm 

Neutral Slightly 
too cool 

Cool Cold 

Current 
numbers  

1 2 3 4 5 6 7 

Re-worked 
numbers 

4 3 2 1 2 3 4 

“Rate your 
impression of 
the cool effect 
of the wind” 

Far too 
chilly 

Too chilly A little too 
chilly 

Tolerable Not 
noticeable 

    

Current 
numbers  

1 2 3 4 5     

Re-worked 
numbers 

5 4 3 2 1     

“In exposed 
places the wind 
is…” 

Far too 
strong 

Too 
strong 

A little too 
strong 

Tolerable Not 
noticeable 

    

Current 
numbers  

1 2 3 4 5     

Re-worked 
numbers 

5 4 3 2 1     

“Today the 
wind is 
annoying” 

Strongly 
agree 

Agree Neither 
agree nor 
disagree 

Disagree Strongly 
disagree 
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Current 
numbers  

1 2 3 4 5     

Re-worked 
numbers 

3 2 1 2 3     

“Today is a 
really good day 
to be outside in 
this sort of 
location”  

Strongly 
agree 

Agree Neutral Disagree Strongly 
disagree 

   

Current 
numbers  

1 2 3 4 5     

Re-worked 
numbers 

3 2 1 2 3     

Wind speed 
relative to the 
central location 

  
  
This was not on a scale, it was the difference in wind speed between the case study 
weather station and the local regional weather station.  Current 

numbers  

Clo-value    
  This was not on a scale, it was the sum of the clo-values each participant was wearing Current 

numbers  

“Seating 
position: How 
exposed are 
you in relation 
to the wind?” 

Facing Turned 
against 

Side on Partially 
sheltered 

Fully 
sheltered 

No 
wind/ 
cannot 
tell 

  

Current 
numbers  

1 2 3 4 5 6  

Re-worked 
numbers 

2 5 4 3 6 1   

“Seating 
position: How 
exposed are 
you in relation 
to the sun?” 

Facing Turned 
against 

Side on Partially 
shaded 

Fully 
shaded 

No 
wind/ 
cannot 
tell 

  

Current 
numbers  

1 2 3 4 5 6  

Re-worked 
numbers 

2 5 4 3 6 1   

Are you 
wearing 
sunglasses 

Yes No           

Current 
numbers  

1 0           

Re-worked 
numbers 

1 0           

“Approximatel
y how long 
have you been 
here?” 

0-5 6-15 15-30 30-60 60     

Current 
numbers  

1 2 3 4 5     

Re-worked 
numbers 

5 4 3 2 1     

“If you had no 
constraints on 

0-5 6-15 15-30 30-60 60     
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your time, how 
many minutes 
would you like 
to stay here?” 

Current 
numbers  

1 2 3 4 5     

Re-worked 
numbers 

5 4 3 2 1     

“Before you sat 
down, how 
long did you 
expect to stay 
here?” 

0-5 6-15 15-30 30-60 60     

Current 
numbers  

1 2 3 4 5     

Re-worked 
numbers 

5 4 3 2 1     
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8.2.7. SURVEY RESULTS: RAW DATA OF THE CHRISTCHURCH COMFORT INDEX  

The data below is the raw survey responses for each participant for each question, and 

how they were used to calculate the single thermal comfort score for each participant:   

1. They were rearranged to have a response of ‘one’ meaning comfortable/not 

noticeable/thermally neutral, and a response of ‘four’ in each direction indicating 

(see Appendix 8.2.6 ‘Re-Coding of Questions’ for how these were rearranged).  

2. These re-coded survey responses were standardised to achieve scale uniformity 

3. They were multiplied by the weighting of importance each question  has within 

Component One (based on the principal component analysis) 

4. The sum of this number (the recoded, standardised, and weighted number) was 

summed for each participant.   

5. These thirty thermal comfort scores (representing each of the thirty survey 

participants) were then used as the dependent variable in the regression analysis, 

with the mean wind speed, maximum wind speed, mean radiant temperature, and 

ambient temperature as the dependent variables.  The result of this is The 

Christchurch Comfort Index.    

 

The environmental data highlighted in red in this raw data are the values which the case 

study weather station had not recorded, so the values were used from the local regional 

station.   
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9. GLOSSARY  

Ambient temperature  Temperature of air indicated by an ordinary thermometer shielded 
from solar and long wave radiation (‘ASHRAE Terminology’, 2015). 

  

Black Globe Temperature  This is the temperature measured using a black globe thermometer.  

  

Case study weather station  The weather station located centrally in the case study area (Central 
Christchurch). 

  

Central Christchurch This is defined by the four avenues which form a frame around the 
central area.  The four avenues are Bealey, Fitzgerald, Moorhouse, and 
Deans Avenue). 

  

Local regional weather station  The weather station located 2km from the case study area  

  

Maximum gust  The maximum gust the maximum wind vector occurring during the 
period measurement is done (NIWA, 2015a). 

  

Mean Radiant Temperature  The mean radiant temperature is the temperature of an exposed 
surface in the environment (American Society of Heating, 
Refrigerating and Air-Conditioning Engineers, 1985, p. 134). 

  

Mean wind speed This is the mean wind speed occurring within a measurement period.  

  

Relative humidity  Ratio of the mole fraction of water vapour to the mole fraction of 
water vapour saturated at the same temperature and barometric 
pressure (‘ASHRAE Terminology’, 2015).  

  

Terrain-roughness The terrain-roughness takes into account the differences in 
topography between the meteorological site where the weather data 
was measured and the site of a proposed development (Blocken & 
Carmeliet, 2004, p. 115). 

  

The Comfort Tool The tool developed through this thesis project for predicting outdoor 
thermal comfort across a proposed development. 

  

The Christchurch Comfort Index The index for predicting comfort which was developed using the same 
methodology as was used to develop The Wellington Comfort Index 
(Walton et al., 2007, p. 1368).   

  

The Wellington Comfort Index Walton et al,’s formula for predicting the degree people would need to 
change their behaviour to maintain their comfort (measures adaptivity 
in outdoor spaces. (Walton et al., 2007, p. 3166). 

  

Turbulence Is caused by both steady wind and wind gusts (turbulence) (Blocken & 
Carmeliet, 2004, p. 110). 

  

Regional weather station  The weather station located at the Christchurch International Airport 
where the TMY weather file is measured. 

  
Solar radiation The transmission of radiant energy from the sun (‘ASHRAE 

Terminology’, 2015).  
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Scales for Interpreting the Results of The Comfort Tool 

The Comfort Tool’s results are displayed on a plan view of each case study (Figure 9.1).  

Areas which are considered thermally comfortable are a neutral colour.  Areas shaded red 

indicate the greater the degree that is required to maintain thermal comfort.      

Thermal Comfort 
Assessment 

 
More change is required Thermally neutral More change is required 

Figure 9.1 shows the scale for understanding the thermal comfort results of The Comfort Tool  

When a case study has changes made to improve thermal comfort, the results of these 

changes are able to be compared to the original design of the case study (Figure 9.2).  

There is an increase in comfort of 10 thermal comfort scores between ‘No changes in 

Comfort’ and ‘Increase in Comfort’ and 10 thermal comfort scores between ‘No changes in 

Comfort’ and ‘Decrease in Comfort’.      

Difference in 
Comfort   

Decrease in comfort  No changes in comfort Increase in comfort 

Figure 9.2 shows the scale for unstaining the difference in thermal comfort between the case 
study, and the case study with changes made to improve thermal comfort.  

The wind levels are displayed across a plan view of each case study.  Areas which are pink 

indicate the wind speeds are above 5m/s for this time of day in the season the results are 

displayed.  Whereas, white indicates that wind speeds are low.  There is a wind rose located 

in the top left of each wind speed graph.  This indicates the predominate wind speed in an 

open area outside of the case study for the season and time of day being assessed (Figure 

9.3).  

Wind Assessment  
 

Predominant wind 
direction outside of the 
case study 

Low wind speeds (m/s) High wind speeds  
(greater than 5 m/s) 

Figure 9.3 shows the scale for understanding the wind assessment as part of The Comfort Tool  
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When a case study has changes made to improve thermal comfort, the results of these 

changes on wind are able to be compared to the original wind results for each case study 

(Figure 9.4). There is a 2.5 m/s increase in wind between the neutral point in the scale and 

the ‘Increase in wind speed’ and a -2.5 m/s decrease in wind between the neutral point in 

the scale and the ‘Decrease in wind speed’.   

Difference in Wind 
 

Decrease in wind speed Increase in wind speed 

Figure 9.4 shows the scale for understanding the difference in wind between the case study, and 
the case study with changes made to improve thermal comfort.  

Solar radiation levels are displayed across a plan view of each case study.  Where areas a 

blue, this indicates that there is limited solar radiation.  Whereas, areas shaded red show 

that there is solar radiation access at pedestrian level (Figure 9.5).  

Solar Radiation 
Assessment  

 
The least solar radiation The most solar radiation 

Figure 9.5 shows the scale for understanding the solar radiation assessment as part of The  
Comfort Tool  

When a case study has changes made to improve thermal comfort, the results of these 

changes on solar radiation are able to be compared to the original wind results for each 

case study (Figure 9.6).  There is 100 W/m2 between the neutral point and the ‘Increase in 

solar radiation’ and -100 W/m2 between the neutral point and the ‘Decrease in solar 

radiation’.  

Difference in Solar 
radiation 

 
Decrease in solar radiation Increase in Solar Radiation 

Figure 9.6 shows the scale for understanding the difference in solar radiation between the case 
study, and the case study with changes made to improve thermal comfort.  

All scales are the same for each case study.  

 


