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Abstract

Web service composition has become a promising technique to build pow-
erful enterprise applications by making use of distributed services with
different functions. In the age of big data, more and more web services are
created to deal with a large amount of data, which are called data-intensive
services. Due to the explosion in the volume of data, providing efficient
approaches to composing data-intensive services will become more and
more important in the field of service-oriented computing. Meanwhile,
as numerous web services have been emerging to offer identical or simi-
lar functionality on the Internet, web service composition is usually per-
formed with end-to-end Quality of Service (QoS) properties which are
adopted to describe the non-functional properties (e.g., response time, ex-
ecution cost, reliability, etc.) of a web service. In addition, the executions
of composite web services are typically coordinated by a centralized work-
flow engine. As a result, the centralized execution paradigm suffers from
inefficient communication and a single point of failure. This is particu-
larly problematic in the context of data-intensive processes. To that end,
more decentralized and flexible execution paradigms are required for the
execution of data-intensive applications.

From a computational point of view, the problems of QoS-aware data-
intensive web service composition and execution can be characterised as
complex, large-scale, constrained and multi-objective optimization prob-
lems. Therefore, genetic programming (GP) based solutions are presented
in this thesis to address the problems. A series of simulation experiments
are provided to demonstrate the performance of the proposed approaches,

and the empirical observations are also described in this thesis.



Firstly, we propose a hybrid approach that integrates the local search
procedure of tabu search into the global search process of GP to solving the
problem of QoS-aware data-intensive web service composition. A math-
ematical model is developed for considering the mass data transmission
across different component services in a data-intensive service composi-
tion. The experimental results show that our proposed approach can pro-
vide better performance than the standard GP approach and two tradi-
tional optimization methods.

Next, a many-objective evolutionary approach is proposed for tack-
ling the QoS-aware data-intensive service composition problem having
more than three competing quality objectives. In this approach, the orig-
inal search space of the problem is reduced before a recently developed
many-objective optimization algorithm, NSGA-III, is adopted to solve the
many-objective optimization problem. The experimental results demon-
strate the effectiveness of our approach, as well as its superiority than ex-
isting single-objective and multi-objective approaches.

Finally, a GP-based approach to partitioning a composite data-intensive
service for decentralized execution is put forth in this thesis. Similar to
the first problem, a mathematical model is developed for estimating the
communication overhead inside a partition and across the partitions. The
data and control dependencies in the original composite web service can
be properly preserved in the deployment topology generated by our ap-
proach. Compared with two existing heuristic algorithms, the proposed
approach exhibits better scalability and it is more suitable for large-scale

partitioning problems.
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Chapter 1
Introduction

Service-oriented architecture (SOA) [63] is a widely accepted and engaged
paradigm for the realization of complex business processes. The aim of
SOA is to implement business processes covering different organisations
and computing platforms in a dynamic and loosely-coupled manner. As a
promising technology to implement such a service-oriented architecture,
web services encapsulate software functions and make them available to
anyone in the world over the network via standard interfaces and pro-
tocols (e.g., SOAP and WSDL). The advent of web services has boosted
the creation of business applications by reusing existing resources on the
network, rather than building new applications from scratch to fulfill busi-
ness functional requirements.

Web services are self-contained and self-describing modular applica-
tion components deployed on the Internet, which follow certain technical
standards such as Simple Object Access Protocol (SOAP), Web Services
Description Language (WSDL), and Universal Description, Discovery and
Integration (UDDI) [78]. In recent years, many software functions have
been published over the Internet or the Cloud in the format of web ser-
vices, which enable better integration, scalability and availability for busi-
ness. As a distributed computing technology, web services allow their

functionalities to be available to anyone in the world. For example, the
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2 CHAPTER 1. INTRODUCTION

information about weather in New Zealand could be published through
a web service that, given a ZIP code, will provide the weather informa-
tion for that ZIP code. A sketchy example of how a web service works is
illustrated in Figure 1.1.

Servicerequest:

Get weather information
for ZIP code 6011

Client Web Service

Service response:
Cloudy periods. Strong
gusty northerlies.

Figure 1.1: An example of a weather information web service

However, a web service itself has a limited functionality and when no
single web service is able to respond to the user’s request, it is necessary
to compose a range of existing services together in order to provide new
value-added and complex functionality, which is referred to as web ser-
vice composition, and the aggregated web service becomes a composite web
service. A typical scenario of web service composition is an online travel
agent shown in Figure 1.2 that is composed of three tasks for flight book-
ing, hotel reservation and car rental. In other terms, the user needs to ex-
ecute each of these corresponding web services manually and these tasks
can be time and effort consuming. For that reason, how to compose a
number of web services automatically without user interference or inter-
vention attracts a lot of interest. On the other hand, today, a large number
of web services on the Internet offer identical or overlapping functionality
but present various non-functional characteristics which are called quality
of service (QoS) properties such as response time, execution cost and relia-
bility. Therefore, how to select a suitable web service that satisfies user’s
requirements still remains an open question, and the non-functional QoS
factors become significant criteria that need to be considered in web ser-

vice composition. To select web services among a great number of candi-



date services to meet global end-to-end QoS requirements while fulfilling
the functional requirements is called the problem of QoS-aware web service
composition.

Sequence

A4

Flight Booking :::::vation Car Rental

Figure 1.2: An example of an online travel agent system

Aside from business processes, the service-oriented approach using
web services is also of great interest for the implementation of data inten-
sive processes such as data mining and image processing. Such web ser-
vices are defined as data-intensive services that generally have large amounts
of data as their inputs and outputs [22]. For example, as depicted in Fig-
ure 1.3, a facial recognition solution for video and image content could be
published through a web service that, given a set of original images, will
provide a set of processed images with identified facial features. Over the
recent years, the amount of data generated by humanities, scientific activ-
ities, as well as commercial applications from a diverse range of fields has
been increasing exponentially. Data volumes used in the fields of sciences
and engineering, finance, media, online information resources and so on,
are expected to double every two years over the next decade and further
[84]. There is no doubt in the industry and research community that the
importance of data-intensive computing has been raising and will con-
tinue to be the foremost research field. As a result, data-intensive services
based applications have become the most challenging type of applications

in SOA. Also, data-intensive service composition has become an appealing
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research area in academia and industry.

Service request:
a collection of original images

Face recognition

User . )
web service

Service response:
a collection of processed images

Figure 1.3: An example of a face recognition web service

1.1 Research Problems

1.1.1 Motivations

With the increasing presence and adoption of web services on the World
Wide Web, the composition strategy of a variety of services provides max-
imal flexibility when designing and implementing data-intensive applica-
tions. On the other hand, with the tremendous growth of identical or sim-
ilar services, QoS is usually employed to describe the non-functional char-
acteristics of web services. For traditional web service compositions, the
time and cost of data transmission among component services are negli-
gible compared with the execution time of component services. However,
as a considerable amount of data needs to be exchanged between the com-
ponents in a composite data-intensive service, the movement of mass data
has a great influence on the overall performance of the composite web ser-
vice. Therefore, it becomes inevitable to take into account non-functional
properties (e.g., response time, execution cost, reliability, etc.) during the
dynamic process of data-intensive service composition, especially atten-
tion should be drawn to the transfer time and transfer cost of mass data
transmission between collaborating web services.

A survey on QoS-aware web service composition reveals that most re-

search on automated or semi-automated service composition falls in realm
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of single-objective optimization. In this approach, different performance
objectives are combined into a single objective according to a certain unity
function then a particular optimization technique such as genetic algo-
rithm is applied to optimize the objective. In the situation where the user’s
preference information is completely unknown, the methods in such a cat-
egory are difficult to apply because each quality dimension needs to be
assigned a weight which is not well known a priori. Also different di-
mensional qualities may conflict with one another in the real world. For
example, quicker response and lower price are highly demanded, but in
practice they are typically in conflict. As more quality dimensions are con-
strained by the user, the aforementioned problem becomes more compli-
cated. Therefore, it is unlikely to find an optimal solution in one dimen-
sion of the objectives without causing unnecessary suffering to another.
This is referred to as the problem of many-objective QoS-aware web service
composition in this work. However, limited work has focused on this prob-
lem for data-intensive service compositions when more than three quality

dimensions are considered simultaneously.

Typically, a composite web service is executed by a single coordinator
node which receives service user’s request, makes necessary data trans-
formations and invokes each component service. As the name implies, the
coordinator node is responsible for the coordination of all the data and
control flow between the component services, and hence becomes a po-
tential performance bottleneck. This execution mode of composite web
services is referred to as centralized orchestration [14]. As depicted in Fig-
ure 1.4, all data is transferred between various component services via
the coordinator node instead of being transferred directly from the point
of generation to the point of consumption, which may cause unnecessary
network traffic overloading. In addition, it is possible for a component ser-
vice to produce a lot of data that is irrelevant to the desired function of the
composite web service. However, the data will be still transferred to the

coordinate node, thereby resulting in increased workload on the network
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as well as the increase of response time. This is particularly problematic
for data-intensive service compositions in which huge collections of data

are transferred.

AddressBook1
name2
| AddressBook2

% address2

RoadMap

Figure 1.4: An example of centralized orchestration

5

User

Centralized
composite
service

From a computational point of view, the problems of QoS-aware data-
intensive web service composition and execution have proven to be NP-
hard. Genetic programming (GP) [48] which is inspired by the process of
natural evolution has been successfully applied in a wide range of prob-
lem domains [48] such as building electronic circuits or control systems
to solve complex, large-scale, constrained and multi-objective optimiza-
tion problems. The past successful applications of GP motivate our selec-
tion of GP to address the problems presented in this thesis, which are also
characterized as complex, large-scale, constrained and multi-objective op-

timization problems.

1.1.2 Objectives

Based on the above motivational discussion, the overall objective of this
thesis is to develop efficient and scalable GP-based approaches to finding
a data-intensive web service composition and realizing decentralized ex-
ecution of the composite web service found, with the ability to deal with
many and often conflicting quality dimensions. To be specific, this objec-

tive is decomposed into three separate objectives that are to be addressed



1.2. MAJOR CONTRIBUTIONS 7
in this thesis, and they are described as follows.

e determining how to efficiently compose a set of data-intensive ser-
vices by considering the non-functional attributes of the composite
web service, especially paying attention to the time and cost gener-
ated by mass data access and transfer,

e solving the problem of QoS-aware data-intensive service composi-
tion for the situation where users are not certain about the impor-
tance of each quality criterion, and many and often conflicting qual-

ity objectives are considered,

e coping with the poor scalability and performance degradation such
as unnecessary network traffic overloading and increased response

time raised by centralized orchestration.

1.2 Major Contributions

In the field of QoS-aware data-intensive web service composition and ex-
ecution, the key contributions of this thesis are three-fold. Firstly, the data
transmission among the components in data-intensive service composi-
tions is taken into consideration when selecting and composing a number
of data-intensive web services. So far, the existing literature has neglected
the time and cost spent on mass data transmission between data-intensive
web services. As data transmission has a great influence on the overall per-
formance of data-intensive service compositions, approaches without con-
sidering it cannot satisfy users’ non-functional requirements accurately.
Our work overcomes this issue by proposing a mathematical model to
measure the communication time and cost between the components in a
composite data-intensive service, and a hybrid GP-Tabu approach is pro-
posed to address the service composition problem. The simulation experi-

ments demonstrate that the hybrid approach outperforms GP, tabu search
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and integer linear programming in finding more satisfying data-intensive
service compositions. A research paper [93] containing this work has been
published in the Tenth International Conference on Simulated Evolution
And Learning (SEAL 2014).

Secondly, we propose a many-objective evolutionary approach named
F-MOGTP to solving the service composition problem when preference in-
formation is not well known a priori, which fills the gap in the literature on
QoS-aware data-intensive web service composition depending on evolu-
tionary many-objective optimization algorithms. The two-phase F-MOGP
approach starts with a search space reduction strategy in order to reduce
the huge search space of a complex problem. The experimental results
show that the search space can be significantly reduced by the proposed
search space reduction algorithm, which leads to a dramatic reduction of
the computation time required by the optimization phase. By perform-
ing a comparative study of the performance of two existing EMOs (i.e.,
NSGA-II and SPEA2) based on large datasets, we reach the conclusion
that our approach demonstrates better performance when more than three
quality objectives are considered in the search process for a data-intensive
service composition. A research paper [94] about this contribution has
been published in the 2015 IEEE Congress on Evolutionary Computation
(CEC2015).

The third contribution of this thesis is a GP-based approach that is pro-
posed to split a data-intensive BPEL process into a set of sub-processes
for decentralized execution of composite data-intensive web services. The
partitioning process takes the data communication overhead occurred in-
side a partition and across the partitions into consideration. Compared
with two state-of-art methods which are MDU [61] and PGM [61] respec-
tively, the proposed approach is scalable with respect to the size of data-
intensive service compositions. In other terms, for large-scale partition-
ing problems, our approach requires less computation time to generate

higher-quality partitioning execution plans compared with the two exist-
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ing methods. A research paper has been submitted to the IEEE Interna-
tional Conference on Web Services (ICWS).

1.3 Organisations

The remainder of this thesis is organized as follows. The background of
our research problems and an overview of recent research efforts are pre-
sented in the following chapter. Chapter 3 gives a description of our hy-
brid GP-Tabu approach to QoS-aware data-intensive web service compo-
sition, meanwhile a series of experiments are conducted to evaluate the ef-
fectiveness and efficiency of the proposed approach. In Chapter 4, the ser-
vice composition problem is solved using a many-objective evolutionary
approach named F-MOGP, and simulation experiments are performed to
evaluate and compare the performance of the approach and two popular
EMOs. Chapter 5 presents a GP-based approach for distributed execution
of composite data-intensive web services and a set of experiments demon-
strate that the proposed approach has better scalability than two existing
heuristic algorithms. At the end of the thesis, conclusions are made for

our research work, and future perspectives are described.
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Chapter 2

Literature Survey

2.1 Background

In recent years, web services that encapsulate the functions of application
components have been rapidly developed and play an increasingly im-
portant role in implementing a service-oriented architecture. To make full
use of single web services which provide limited functions only, web ser-
vice composition that aims to integrate multiple services into workflows in
order to supply value-added and complex functions, has become a pop-
ular research focus. In web service composition, functional requirements
are concerned with the functionalities of a composite web service, e.g.,
given a flight booking task, the functional requirement is to purchase an
airline ticket based on the information provided by a user. In addition to
functional capabilities of web services, non-functional requirements (e.g.,
response time, throughout, availability) have to be matched to maximize
user satisfaction expressed as many objectives over a variety of QoS at-
tributes of services. An example of non-functional requirements for the
flight booking task is that the composite web service will respond within
a certain time period and charges less than a specific amount of money
with a preferred level of accuracy and reliability. Nowadays, due to the

explosive increase of web services that provide identical or overlapping

11
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functionality on the Web, quality of service namely QoS becomes a key
factor in distinguishing these functionally equivalent services.

2.1.1 Atomic Web Service vs. Composite Web Service

A composite web service is made up of a collection of single web services
each of which is referred to as atomic web service. The goal of a service
composition is to generate the desired outputs given a set of available in-
puts that are described by semantic concepts. Assume the task scenario is
to search for an appropriate flight as well as the weather forecast for the
destination based upon the given departure date, return date, departure
city and arrival city. In other terms, a web service is requested to take
{departure date, return date, departure city, arrival city} as inputs in order
to produce {flight information, weather forecast} as outputs. However, an
atomic web service itself has limited functionality which is not sufficient
to respond to the user’s request. A composite web service that consists of
multiple atomic web services is needed to accomplish the task. A valid
service composition must guarantee that the inputs of any atomic web
service are available either from the outputs of its ancestors or from the

original inputs (i.e., from the user).

2.1.2 Quality of Service

QoS can be characterized according to various non-functional properties
of web services called QoS attributes such as response time, execution cost,
availability and reliability. Based on a selection of relevant characteristics
in the field of web services, the QoS attributes considered in this research
work are latency, execution cost, availability and accuracy all of which are
defined as follows.

e latency L measures the expected delay in seconds between the mo-
ment when a request is sent and the moment when the results are

received.
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e cxecution cost C'is the amount of money that a service requester has

to pay for executing the web service.

o availability A is the probability that a web service is accessible.

e accuracy R is the measurement of the degree to which the real results

produced by the web service match the desired results.

Amongest the above four QoS attributes, latency and execution cost
are decreasing measures with respect to QoS. In other terms, the grades of
these measures increase as their values decrease. In contrast, availability
and accuracy are increasing measures of which the grades decrease as their

values decrease.

The four basic control structures shared by web service composition
languages such as OWL-S and BPEL4WS are sequence, parallel (flow),
choice (switch) and loop. In the figures below, each rectangle denotes a
component service that defines either a composite service or an atomic
service, and the circles on the left and right represent its functional inputs
and outputs, respectively. The workflow structures and the aggregation
functions are described in the following subsections. Note that all the ag-

gregation functions are recursive.

Sequence Construct

For a sequence workflow of tasks, as shown in Figure 2.1, a number of
component services (WS, ..., WS, ..., WS,,) are executed in a sequential
order. The outputs of a component service are part of the inputs of its
subsequent service. The aggregation functions of latency L and execution
cost C' are additive, while the availability A and accuracy R functions are

multiplicative.
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L=>) 1, C:icn, A:ﬁan, R:ﬁrn
n=1 n=1

n=1

Figure 2.1: Sequence Construct

Parallel Construct

As shown in Figure 2.2, two or more paths are executed in parallel to pro-
duce different outputs. Except that for latency L, where the aggregated
value is the maximum of the latency of component services, the aggrega-
tion functions for the other QoS attributes (i.e., execution cost, availability
and accuracy) are the same as the ones in the sequence structure.

WS4

WS3

WS

L=MAX {lJn€{1,...,m}}

C:ilcn, A:f[lan, R:f[lrn

Figure 2.2: Parallel Construct
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Choice Construct

Figure 2.3 shows a choice workflow of tasks, where the same outputs can
be obtained through multiple different paths, but only one path will se-
lected and executed. Assume the choice structure has m branches, and the
percentage for each branch to be selected is p;,...,p,,,, where

m

n=1

Therefore, all QoS attributes are evaluated as a sum of the multiplication

of the attribute value of each component service and its corresponding

percentage.
WSy
p
P2 ws,
Prm
WSm

L:ipn*lna C:ipn*cn
n=1 n=1

A:zm:pn*ana R:zm:pn*rn
n=1 n=1

Figure 2.3: Choice Construct

Loop Construct

In Figure 2.4 that shows a loop construct, one or more component services
are executed repeatedly until a given condition is verified. Assume the

number of iterations is &, then the aggregation functions for latency L and
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execution cost C' are t - k and c - k respectively. For availability A and
accuracy R, the aggregation functions are the kth power of the value of
one iteration, i.e., * and r*. Here, [, ¢, a and r denote the latency, execution
cost, availability and accuracy, respectively, of a composite service of each
cycle within the loop.

\_/ "

T =kxt, C=kxc, A=ad" R=rF

Figure 2.4: Loop Construct

QoS reflects the non-functional properties of web services which in
turn have an influence on user satisfaction, thereby the QoS factors have
become significant criteria that cannot be overlooked in web service com-
position. The problem of QoS-aware service composition denotes selecting a
number of atomic web services while obtaining the highest possible QoS
of the service composition and satisfying the global constraints posed by
the user. Here, global constraints define an upper or lower bound for the
aggregated QoS values of a composite service. To optimize the quality of a
service composition, a method must be applied to estimate the QoS of the
service composition from its constituent services. This estimation is called
QoS aggregation, and the QoS aggregation formulas defined for the above
four basic composition patterns and major QoS attributes are summarized
in Table 2.1.

2.1.3 Single-Objective, Multi-Objective and Many-Objective
Optimization

Single-objective optimization refers to the optimization problems in which

there is a single objective function. In practical problems, more than one
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Table 2.1: Aggregation formulae for each pair QoS attribute - workflow

structure
QoS attribute Sequence Parallel (Flow) Choice (Switch) Loop
Latency L=Y7_l; | L=MAX{lilie{1,....5}} | L=X0_,pi*li | L=kxl
Execution cost | C = 23:1 ¢ C = Z{:l c; C= Zgzl pixcy | C=kxc
Availability | A =TT/_, a; A=TT_ A=Y)_pi*xa; | A=adF
Accuracy R= ngl i R= szl T R= 25:1 Di T R=rk

objective is naturally involved, and there does not exist a single solu-
tion that simultaneously optimizes each objective. In that case, multi-
objective optimization is performed to find a number of Pareto-optimal (i.e.,
non-dominated) solutions. Many evolutionary multi-objective optimiza-
tion (EMO) algorithms such as NSGA-II [19] and SPEA2 [103], have been
proposed and successfully applied for tackling two-objective and three-
objective problems. However, it has been widely accepted that these ex-
isting EMO algorithms may lose their effectiveness for many-objective opti-
mization problems in which more than three objectives arise. A few many-
objective optimization algorithms have been introduced to overcome the
known disadvantages of EMO algorithms until recently.

Pareto Dominance

A multi-objective search space is partially ordered in the sense that there is
no longer a strict linear ordering of solutions. Instead, two arbitrary solu-
tions are related to each other in two possible ways: either one dominates
the other or neither dominates. Individual A Pareto dominates individual
B if and only if A is at least as good as B in all objectives, and is superior
to B in at least on objective. In Figure 2.5, for example, individual A dom-
inates (is better than) individual B along the y axis, but B dominates A
along the x axis. Thus there is no simple ordering between them. The in-
dividual marked 2, however dominates B on both axes and would thus be
considered strictly better than B. All individuals that are not dominated

by any other individual of a given set are called nondominated regarding
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this set.

Pﬂ:\cy Front

Non dominated
points
2

Figure 2.5: Two-dimensional example of Pareto optimality and the Pareto
front, where the goal is to maximise along both the x and y axes.

Pareto-Optimal Set and Pareto-Optimal Front

The goal of EMOs is to identify a set of solutions which are non-dominated
with respect to each other in the search space. Therefore, the set of solu-
tions cannot be improved in any objective without causing a degradation
in at least one other objective. In other terms, these solutions are optimal
in the wider sense that no other solutions in the search space are superior
to them when all objectives are considered.

The set of non-dominated solutions within the entire search space con-
stitutes the so-called Pareto-optimal set or Pareto-optimal front. Ideally, one
would want to find the Pareto front, i.e., the set of all non-dominated solu-
tions in the search space. However, this is often unrealistic, as the size of
the Pareto front is often limited only by the precision of the problem rep-
resentation. If z and y in Figure 2.5 are real-valued, for example, and the
Pareto front is a continuous curve, then it contains an infinite number of

points, making a complete enumeration impossible.

Non-dominated Sorting Genetic Algorithm Version II (NSGA-II)

Over the past decade, a number of EMO algorithms that have the abil-

ity to find multiple Pareto-optimal solutions in one single run, have been
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suggested. NSGA [71] is a popular non-domination based genetic algo-
rithm for multi-objective optimization. Despite being a very effective al-
gorithm, it has been mainly criticized for its high computational complex-
ity, lack of elitism and need for specifying the optimal parameter value for
the sharing parameter [21]. In order to address these issues, Deb, et al.
[21] developed a fast elitist multi-objective optimization algorithm called
Non-dominated Sorting Genetic Algorithm Version II (NSGA-II) which is
a much improved version of NSGA. In the following part, NSGA-II is de-
scribed in detail.

The evolutionary process shown in Algorithm 1 initially starts from
generating a random population F, of size n which is sorted based on
non-domination level. Each individual in the population is assigned a fit-
ness equal to its non-domination rank (1 is the best level). Subsequently
a child population @) is created by performing binary tournament selec-
tion, simulated binary crossover and polynomial mutation. A combined
population R, is then formed from the parent P, and offspring ; popu-
lations which is ranked according to the non-domination relation, and a
set of non-dominated fronts F' are obtained. The new population P,; is
generated by adding the individuals from the first front and the follow-
ings until it exceeds the population size n. Finally, a new child population
()i11 is created by applying selection, crossover and mutation to the parent
population P, ;. The preceding procedure is repeated until the maximum

number of generations are reached.

In the procedure of NSGA-II, a new parameter value called crowding
distance is assigned to all the individuals in the population once the non-
dominated sort is complete. The crowding distance is a measure of how
close an individual is to its neighbours. Large average crowding distance
will result in better diversity in the population. As shown in Algorithm 1,
individuals are selected from the population by using binary tournament

selector based on non-domination rank and crowding distance.
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Algorithm 1 The NSGA-II procedure
Generate an initial population F, of size n

Rank and sort P, based on non-domination level
Apply selection, crossover and mutation to create a child population @)
of size n
sett =0, T = number of generations
while ¢ < T do
R, =P U Qt
Partition R; into fronts Fy, I5, ...
Set Py1=0,i=1
while | P, ; | <ndo
Calculate crowding distance in F;
if| F; | +| Py1 | <nthen
Pii=P UF
else
Sort elements of F; by crowding distance in decreasing order
P,y = P11 U the first (n - | P,y |) elements of F;
end if
i=1+1
end while
Calculate crowded comparison operator Vi € P,
Create a new population @), of size n by applying crossover and
mutation to parents selected via binary tournaments on P4
t=t+1;

end while
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Improved Strength Pareto Evolutionary Algorithm (SPEA2)

As one of the most important EMOs that use elitism approach, Zitzler, et
al. [106] proposed the modified Strength Pareto Evolutionary Algorithm
namely SPEA2 as an improved version of SPEA [105] in 2001. A brief
summary of the SEPA2 algorithm is given in Algorithm 2.

The evolutionary process of SPEA2 starts with an initial population F,
and an empty archive (external set) ). After fitness values are assigned
to both archive and population members, all non-dominated individuals
in the population and archive are copied to the updated archive P/ . If
the size of the updated archive P}, ; exceeds the predefined size n/, further
archive members are removed by means of the truncation operator. The
next step represents the mating selection phase where individuals from
the union of population and archive are selected by means of binary tour-
naments. Finally, after crossover and mutation the old population F; is
replaced by the resulting offspring population P, ;. The preceding steps
are performed per generation until the maximum number of generations
is reached.

In contrast with SPEA, SPEA2 uses a fine-grained fitness assignment
strategy. Each individual is assigned a raw fitness calculated based on the
strength value of solutions who dominate it. Additionally, it incorporates
density information to discriminate between individuals having identical
fitness value. After fitness evaluation, all non-dominated individuals from
current population and external population are passed into the next gener-
ation. If the number of these individuals is less than population size then
the next population is filled with dominated individuals from current and
external populations.

The size of archive that consists largely of the Pareto front of non-
dominated individuals discovered so far is fixed. Whenever the number
of non-dominated individuals is less than the predefined archive size, the
archive is filled up by dominated individuals. For diversity preservation,

SPEA2 utilizes a truncation procedure to replace the clustering technique
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Algorithm 2 The SPEA2 procedure
Generate an initial population F, of size n, and create an empty archive

(external set) F} of size n’
sett = 0, T = number of generations
whilet < T do
Calculate the fitness values of individuals in P, and P/
Copy all non-dominated individuals in P, and P/ to P/,
if | P/, | > n’ then
Reduce P/ | by means of the truncation operator
else
Fill P/, with dominated individuals in P, and P/
end if
Perform binary tournament selection with the replacement on P}, in
order to fill the mating pool
Apply crossover and mutation to the mating pool and create a new
population P,
t=t+1;
end while
Return a non-dominated set represented by the non-dominated individ-

3 /
ualsin P},
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which SPEA uses when the non-dominated front exceeds the archive limit.

2.1.4 Genetic Programming

Evolutionary computation (EC) involves a family of approaches called
evolutionary algorithms (EAs) which mimic the biological evolutionary
process to resolve optimization problems. This kind of evolutionary pro-
cess, as illustrated in Figure 2.6, is population-based and involves both
competitive and cooperative mechanisms during the evolution of the pop-
ulation. Genetic programming (GP) as a commonly used EA was devel-
oped and popularized by John Koza [48] over 20 years ago. In GP, a can-
didate solution to an optimization problem is represented by a computer
program (which normally is a tree structure). GP has been successfully
applied to a wide range of problem domains. For example, GP has been
used to evolve solutions to problems which has not previously been man-
ually solved by humans [48]. Due to its good global search capability, GP
is employed to solve the problem in this work.

In GP, the term population refers to a collection of candidate solutions
called individuals to an optimization problem. The term chromosome typ-
ically refers to one candidate solution to a problem, which can be repre-
sented as a tree that is the most commonly used representation. The major
variations of GP include the terminal and function sets. The terminal set
consists of the variables and constants of the programs to be constructed.
The function set consists of the functions of the programs. In the exam-
ple of symbolic regression, the terminal set would contain two variables,
x and y, and the function set would be composed of different mathemati-
cal functions, such as addition, subtraction and division. In addition, GP
requires a fitness function to evaluate each individual in current popula-
tion. The fitness function measures the ability of the encoded individual

to solve the problem.

Conventional GP derives new solutions from existing solutions using
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Figure 2.6: The generic evolutionary process for an evolutionary algorithm
(EA)

three types of genetic operators which are explained as follows.

e Selection. A number of individuals in the population are selected to
breed a new generation. Individuals selection is a fitness-based pro-
cess, where fitter individuals are typically more likely to be selected

for reproduction.

e (Crossover. The crossover operator takes two parents and replaces a
randomly chosen part of one parent with another randomly chosen
part of the other in order to produce two new offsprings (see Figure
2.7).

e Mutation. The mutation operator takes one parent and replaces a
randomly selected part of that parent with a randomly generated
sequence of code (see Figure 2.7).

A typical GP framework for solving an optimization problem is de-

picted in Figure 2.8. At the start of an evolutionary run, a population is
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initialized to be filled with a group of randomly generated candidate so-
lutions to the problem. The solutions are then evaluated using a fitness
function to determine their relative ability to solve the problem and each
candidate solution is assigned a respective fitness value. Following that, a
selection mechanism is applied to the population, and genetic operations
(i.e., crossover and mutation) are performed on the selected solution to
generate new candidate solutions for the new population. Therefore, the
new population consists of only relatively fit solutions from the initial pop-
ulation and their derivatives. Accordingly, it is expected that the average
fitness of the population will have increased. This generational process is
repeated over and over again until the number of generations exceeds the
specified limit, or any other stopping criteria are satisfied (e.g., an optimal
solution is found).

Parent 1 Parent 2 Offspring 1 Offspring 2

OO0 QO = () (1)

Parent Offspring

Mutation

© @ — OO
OM® ® OO ©

Figure 2.7: An example of crossover and mutation for the symbolic regres-

sion problem
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Figure 2.8: The typical procedure used by GP to solve an optimization
problem



2.2. QOS-AWARE WEB SERVICE COMPOSITION 27

2.2 An Overview of QoS-Aware Web Service Com-

position

The procedure for web service composition basically comprises three phases.
As illustrated in Figure 2.9, a critical step of web service composition is to
select proper web services for composition in order to satisfy users’ re-
quests. However, in the presence of numerous web services with equiva-
lent functionality, web services are described and discriminated in terms of
both functional capabilities and non-functional (i.e., QoS) properties (e.g.,
response time, execution cost, availability, etc). Nowadays, web service
composition is therefore usually combined with end-to-end QoS require-
ments, which is QoS-aware web service composition. The goal of QoS-aware
web service composition is to discover the best composition of web ser-
vices that meet these end-to-end QoS requirements, while fulfilling the
functional requirements. As an example, a user may require to minimize
the response time meanwhile satisfying certain constraints in terms of ex-
ecution cost and reliability, while another user may give more importance

to execution cost than to response time.

A typical scenario of web service composition is a “Travel Planner”
system depicted in Figure 2.10 that is composed of three tasks for flight
booking, hotel reservation and car rental, and concrete services need to
be selected for each abstract task. As a result, web services are combined
with some workflow patterns (e.g., sequence, parallel, choice, etc), and
the eventual composite service can be constrained by some end-to-end
QoS requirements. In most of the existing approaches, solving the QoS-
aware service composition problem starts with a predefined workflow for
a composite web service which contains a set of abstract tasks, and for
each abstract task there are a number of available concrete services which
provide identical functionality but present different QoS properties. In
general, two different optimization strategies could be applied to solve

this service composition problem. One of them is the so-called local op-
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timization where an optimal concrete service is selected for each abstract
task independently and the performance of each task is assured. The ad-
vantage of this approach is its efficiency as the time complexity of the
approach is linear with respect to the number of abstract tasks and con-
crete services. However, local optimization cannot guarantee the global
QoS constraints posed by the user (i.e., minimized total response time and
execution cost). Another optimization strategy, called global optimization,
considers QoS constraints and user’s preferences globally which aims to
obtain the optimal overall QoS of a service composition. However, this
strategy introduces a tradeoff between global optimization and increased
complexity. Most of the existing research separates the process of gener-
ating a service composition from the process of selecting optimal concrete
web services for the given service composition. However, this separation
restricts the space of finding optimal service composition solutions. In our
study, the generation of a service composition is combined together with

concrete service selection.

2.3 Related Work

QoS-aware web service composition introduces a global optimization prob-
lem with multiple constraints, and it has received much interest in the past
few years. Finding an optimal combination of atomic web services among
a large number of possible solutions takes significant computation efforts.
A variety of approaches have been put forward to solve the QoS-aware
service composition problem. These approaches can be grouped into two
categories: approaches based on evolutionary algorithms such as genetic
programming (GP), particle swarm optimization (PSO) and ant colony op-
timization (ACO) and approaches based on non-evolutionary algorithms
such as integer programming (IP), graph theory. Each of these approaches
is shown in Figure 2.11 and described briefly in the following sections.
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Figure 2.11: Two categories of approches to QoS-aware web service com-

position problem

2.3.1 Conventional (Non-Evolutionary) Approaches

Over the past decade, there has been a lot of research efforts addressing
the end-to-end QoS constraints in web service composition. In [50, 92], the
problem of QoS-aware web service composition is regarded as a multiple-
choice knapsack problem (MCKP) in which the service composition rep-
resents the knapsack and each candidate service represents one item that
can be put into the knapsack. The goal of the algorithm is to identify the
optimal selection of web services which maximises the value while keep-
ing the constraint on the limited weight capability of the knapsack that is
represented by the QoS constraints. However, the time complexity of the
algorithms is exponential which makes the MCKP model not suitable for
large scale service composition problems. The service composition prob-
lem can also be modeled as a graph based on graph theory. In [53], the
node in the graph denotes a web service and the edge denotes the in-
teraction between services, whereas in [55], the authors use the node to
represent a service orchestration, the edge to represent a web service and
each path in the graph to represent a complete service composition. The

problem is then transformed into finding the order of nodes in the graph
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to generate an executable workflow to satisfy users’ requests. Similarly,
the graph model is confronted with the same exponential time complexity
problem as the MCKP model.

Since local QoS optimization cannot guarantee the global optimiza-
tion of QoS, some researchers have proposed global QoS optimization ap-
proaches that use global planning algorithm and integer linear program-
ming (ILP) to solve the QoS-aware web service composition problem.The
authors of [25] put forward a global planning approach, and quality con-
straints and preferences are assigned to a composite service rather than to
the individual tasks involved in the composite service. Service selection
is then formulated as an optimization problem and a linear programming
method is applied to compute the optimal service execution plans for the
service composition. ILP is adopted in [25, 26] to optimally select concrete
services in which the objective function is defined as a linear composi-
tion of multiple QoS constraints. However, the shortcoming of the ILP
technique is that the objective functions and constraints are required to
be linear which limits the practicality of the approach. Moreover, linear
increase in the size of the service composition problem leads to exponen-
tial growth of the algorithm’s computational time. If non-linear integer
programming is adopted, scalability is still a problem [10]. To overcome
these disadvantages, evolutionary approaches have been applied to find
the (near)-optimal service composition.

2.3.2 Single-Objective Evolutionary Approaches

Recently evolutionary computation (EC) methods have been more active
to overcome the drawbacks of traditional optimization methods. A genetic
algorithm (GA) based approach, as a powerful tool to solve combinato-
rial optimization problems, is proposed in [99] for QoS-aware web service
composition. Compared with ILP, GA is able to scale well with respect to

the number of web services. The authors of [99] adopt a one-dimensional
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chromosome-encoded method in which each gene of the chromosome rep-
resents a candidate service. As a consequence, the length of the chromo-
some increases as the number of tasks and candidate services increases.
A revised encoding method is put forward in [11], where each gene of
the chromosome represents an abstract task of a composite service, and
its value represents a candidate service. However, this encoding schema
cannot reflect the relationships between component services in a compos-
ite service efficiently. Therefore, a tree-based GP approach is developed
in [95] which makes it easier to understand and interpret the relationships
between component services. In addition, an adaptive strategy is applied
to the search parameters of GP in order to prevent the premature con-
vergence of GP. Yang, et al. [88] use the combination of ACO and GA to
tackle the service composition problem. The problem is solved by ACO,
however, there are some important parameters in ACO that have great ef-
fect on the algorithm. Therefore, they use GA to set the key parameters of
ACO in order to obtain a great efficiency. Chen, et al. [58] solve the service
composition problem by using DPSO (Discrete Particle Swarm Optimiza-
tion) which is a variant of standard PSO. In this method they regard each
particle as a solution and each particle has a position and velocity. The
positions of particles are updated based on their last best position and the
best position that has been seen so far. These EC-based methods simply
assume that multiple quality criteria, no matter whether they are compet-
ing or not, can be combined into a single criterion to be handled by the
weighted sum approach. In practice, when users are not certain about
the importance of each quality dimension, the weighted sum approach is
very difficult to apply because weights are not well known a priori. Fur-
thermore, the weighted sum approach largely depends on the formulation
(i.e., the weighted formula of the objectives), which has to be readjusted

and computed again when the scenario changes.

Although various approaches have been presented to solve the QoS-

aware web service composition problem, there is limited work in the lit-
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erature for data-intensive service composition [10, 83, 84, 101]. The au-
thors of [10, 101] consider the data intensity of service compositions, but
they overlook the communication cost of mass data transfer and its ef-
fects on the performance of business processes with different structures.
An ant colony based method is proposed in [83, 84] to find the cost min-
imized data-intensive service composition by considering the access cost
and communication cost of mass data transfer. However, the approach
focuses on minimizing the cost only without reflecting other important
quality dimensions (e.g., availability and reliability).

2.3.3 Multi-Objective Evolutionary Approaches

Despite the multi-objective character of the QoS-aware web service com-
position problem, EMOs are less used than single-objective algorithms. As
discussed before, single-objective optimization approaches have some in-
herent limitations in solving QoS-aware web service composition. There-
fore, several multi-objective heuristics have been proposed. Taboada et al.
[73] employ EMO algorithms to provide a set of optimal solutions with dif-
ferent levels of trade-offs for the QoS-aware service composition problem.
In [16, 52, 89], the authors resolve the service composition problem using a
multi-objective genetic algorithm called NSGA-II [21], without assigning
any weight to any quality criterion, and a solution is encoded in the form
of an integer vector. The experimental results reveal that NSGA-Il is a rea-
sonably good fit in solving the QoS-aware service composition problem
with satisfied convergence and distribution properties. Similarly, Li, et al.
[51] adopt another EMO algorithm called SPEAZ2 to solve the service com-
position problem in which three performance criteria (i.e., response time,
execution cost and availability) are considered. The same type of genome
encoding, namely integer vector based, is used. Since the experiments
are conducted based on different datasets and different number of objec-

tives, it is impossible for us to compare the performance of the two EMO
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algorithms for solving QoS-aware web service composition. Cremene, et
al. [18] apply both EMO algorithms (i.e., NSGA-II and SPEA?2) to the ser-
vice composition problem, however, mere two quality criteria (i.e., time
and cost) are considered in the simulation experiments. As a result, it is
not convincing enough to demonstrate the performance differentiation of
the two algorithms. The experiments presented in the preceding literature
[16, 18, 51, 52, 89] use a small number of abstract tasks and some of them
also use a small number of candidate services. Therefore, it is not obvious
how scalable these approaches are. Claro et al. [17, 91] also discuss the ad-
vantages of two popular EMO algorithms, NSGA-II and SPEA?2 in finding
optimal service compositions. In contrast to single-objective optimization
approaches, these EMO based approaches do not require user to prioritise,
scale, or weight objectives in advance, which is more realistic and reliable.
Moreover, reformulating the solutions is not required if there is a change
(e.g., the change of the user’s preferences). However, existing methods
consider two or three quality objectives only due to the limitations of cur-
rent EMO algorithms in higher dimensional objective space.

2.3.4 Decentralized Execution of Composite Web Services

In recent years, many researches have been emerging to address the prob-
lem of decentralized execution of composite web services. A top down ap-
proach for integrated process modelling and distributed process execution
is proposed in [68] without considering data dependencies. In the Mentor
project [86], a workflow is partitioned for decentralized execution based
on rules and state charts into a set of sub-workflows which are then en-
acted by a number of distributed workflow engines. Khalaf et al. [44, 45]
present a method for partitioning a business process so that each parti-
tion can be enacted by a different participant and a corresponding BPEL
process along with necessary deployment information is created for each
participant. Yildiz et al. [90] propose a method for deriving distributed
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processes of a centralized process with respect to their information flow
policies. Nanda et al. [61] review previous approaches and introduced
two novel heuristic algorithms which are Merge-by-Define-Use (MDU)
and Pooling-and-Greedy-Merge (PGM), respectively. They support auto-
matic process partitioning based on an analysis of a program dependence
graph generated for the process. However, all of the above approaches
do not consider the communication overhead induced by data-flows in
the context of data-intensive processes, which in turn has a significant im-
pact on the degree of customer satisfaction. In [75], a dynamic workflow
model fragmentation algorithm is proposed to partition a centralized pro-
cess model into fragments step by step while the process is executed. Al-
though data-intensive tasks are considered in the work, experiments are

not conducted to assess the effectiveness and efficiency of the approach.

2.4 Summary

In summary, very few efforts about QoS-aware data-intensive web service
composition have been made. The majority of the existing research over-
looks the data intensity involved in data-intensive service compositions
and the most recent research studies examine the communication cost of
mass data transfer only without investigating other important quality di-
mensions. Meanwhile, as the number of quality objectives increases, the
past single-objective and multi-objective optimization approaches are not
able to solve the service composition problem with such a high-dimensional
objective space. Therefore, there exists a demand for finding an efficient
approach which has the ability to cope with the preceding issues. Further-
more, although the decentralized execution of composite web services has
been widely studied in the past few years, there is still lack of research on
finding an efficient execution plan for data-intensive service compositions

in a reasonable time frame.
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Chapter 3

A Hybrid GP-Tabu Approach to
QoS-Aware Data-Intensive Web

Service Composition

As discussed earlier, few efforts have been made so far to investigate the
problem of QoS-aware data-intensive web service composition. To the best
of our knowledge, the use of genetic programming in data-intensive ser-
vice composition was not examined in the past research. This chapter is
devoted to presenting a GP-based solution to our first research problem of
the thesis, i.e., the problem of QoS-aware data-intensive service composi-

tion.

3.1 The Problem

With the increasing presence and adoption of web services on the World
Wide Web, the composition strategy of a variety of services provides max-
imal flexibility when designing and implementing data-intensive applica-
tions. On the other hand, with the presence of numerous web services with
equivalent functionality, web services are described and discriminated in

terms of both functional capabilities and non-functional (i.e., QoS) prop-
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erties (e.g., response time, execution cost, availability). As a considerable
amount of data needs to be exchanged between the components in a com-
posite data-intensive service, the movement of mass data influences the
performance of the whole composite web service. Therefore, it becomes
inevitable to take into account non-functional properties during the dy-
namic process of data-intensive service composition, especially attention
should be drawn to the access cost and transfer cost of the data between
collaborating web services. Therefore, the goal of data-intensive service com-
position is to find the best composition of data-intensive services that meet
these non-functional requirements, while fulfilling the functional require-
ments. As an example, a user may require to minimize the response time
meanwhile satisfying certain constraints in terms of execution cost and re-
liability, while another user may give more importance to execution cost

than to response time.

In this chapter, we present a hybrid GP-Tabu approach to the problem
of QoS-aware data-intensive service composition. Tabu search (TS) [30]
as a meta-heuristic local search is integrated into the evolutionary process
of genetic programming (GP) [48] in order to overcome the downsides of
GP such as its prematurity and proneness to trap in local optima. The
main contributions of this chapter are two-fold. First, a QoS-aware math-
ematical model is developed to take into account the effect of mass data
transfer. Second, a hybrid approach that combines the use of GP and TS
is proposed to address the QoS-aware data-intensive service composition
problem. The experimental results demonstrate the effectiveness and effi-
ciency of the approach, especially it offers better performance than tradi-

tional optimization techniques.

The rest of this chapter is organized as follows. Section 3.2 discusses
the time and cost aware model used in the context of data-intensive ser-
vice composition. In Section 3.3, the details of the proposed approach are
explained, and Section 3.4 reports on the experimental results. Finally, the
conclusions are drawn in Section 3.5.
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3.2 A Time and Cost Aware Model for Data In-

tensive Services

Since a data-intensive service s; is provided by a service provider and de-
ployed on a server, a data-intensive service composition SC' that consists
of a set of m service servers and certain composition patterns can be de-
noted by SC = {S;, Sy, ..., S,}. Each atomic data-intensive service s; is
associated with a QoS vector Q; = [I;, ¢;, i, a;] where [;, ¢;, r;, a; represents
the latency, execution cost, accuracy and availability of the service. As-
sume that a data-intensive service s; requires a set of data denoted by D;
to form part of its inputs. The latency /; for the service s; is made up of
three parts: the queue time g;, the processing time p; and the transfer time
ti, as shown in Equation 3.1.

li = qi + pi(D;) + t:i(D;, S5, 5;) (3.1)

where ¢; is the time spent in waiting in the queue for the data D, to be
processed by the server, p;(D;) is the actual time used to process the set
of data D;, and ¢,(D;, S;, S;) is the data transfer time for transferring the
data set D; from the server hosting the service s; to the server hosting the
service s;.

To be detailed, the queue time ¢; depends on server load, i.e., the cur-
rent request queue length on the server, while the processing time p; and
the transfer time ¢; can be calculated using Equation 3.2 and 3.3.

pi(D;) = size(D;)/pr(S;) (3.2)

tz(Dz, Sj, Sz) = szze(Dl)/bw(Sj, Sz) + SZZ€(Dz)/U)S(SZ> (33)

where size(D;) is the size of the data set D;, pr(S;) denotes the process-
ing rate of the server S;, bw(S;, ;) is the network bandwidth between the
server S; and the server S;, and ws(S;) is the disk write speed of the server

S;. To sum up, as described in the above equations, the processing time
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depends on the processing capacity of the server, and the data transfer
time is determined by the network bandwidth and the amount of data to
be transferred between two service servers. As each server has many re-
quests at the same time and it serves only one request at a time, the current
service request needs to wait until all requests prior to it in the queue have
completed.

In addition to time, the costs generated by data-intensive services as
well as the movement of mass data have a significant impact on the total
cost of a service composition. Consider a data-intensive service s;, simi-
larly its execution cost ¢; consists of three parts: the data access cost ac;, the
data transfer cost tc;, and the service related cost sc;. As can be seen from
Equation 3.4, the data access cost ac; is the price to be paid for writing the
data D; to the server that hosts the service s; and reading the data in order
to invoke the service. The data transfer cost tc; is proportional to the size
of the data set D;, which depends on the available network bandwidth be-
tween two service servers. The service related cost sc; expresses the cost
to provision the service s; as well as the cost to process the service request

including data processing.

C;, = (ICZ'(DZ') + tCi<Di7 Sj, SZ> + SCZ'(DZ') (34)
ac;(D;) = size(D;) x wcost(S;) + size(D;) * rcost(S;) (3.5)
tei(D;, S;,S;) = size(D;) * tcost(S;, S;) (3.6)
sci(D;) = peost(S;) + size(D;) * dcost(S;) (3.7)

where size(D;) denotes the size of the data set D;, wcost(S;) is the cost of
writing per unit of data to the server S;, rcost(S;) is the cost of reading
per unit of data from the disk on the server S;, tcost(S;, S;) is the transfer
cost from the service server S; to the service server S; for per unit of data,
pcost(S;) is the price charged to use the service s; which is usually specified
by service provider, and dcost(S;) is used to represent the expenditure for

processing each unit of data on the server S;.
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For each data-intensive service, the other two QoS attributes (i.e., ac-
curacy and availability) are supposed to have fixed values which can be
collected from service providers. Therefore, the QoS-aware data-intensive
service composition can be regarded as an optimization problem. Clearly
the goal of the optimization problem is to minimize the latency and ex-
ecution cost that have been defined in Equations 3.1 and 3.4, meanwhile
achieving the maximum possible accuracy and availability for a composite

web service.

3.3 The Hybrid GP-Tabu Approach

Artificial intelligence techniques have been widely used to solve many op-
timization problems. In recent years, GP has become increasingly popular
as an alternative to more classical techniques in science and engineering
disciplines. As another powerful optimization procedure, TS is capable
of escaping local optimum trap by employing a flexible memory system,
and it has been successfully applied to a diverse range of combinatorial
optimization problems. These methods seem to be promising and are still
evolving. Next, the TS method is briefly reviewed before the proposed
hybrid approach is presented.

3.3.1 An Overview of Tabu Search

TS [30] is a meta-heuristic that guides a local heuristic search procedure
to explore a problem’s solution space with the goal of avoiding local op-
timum and ultimately finding the desired solution. The basic principle
of TS is to avoid cycling back to previously visited solutions and allow
non-improving moves whenever a local optimum is encountered. This is
achieved by using a short-term memory that records the recent history of
the search to prevent investigating the solution space that has been visited
before. However, in some situations, TS permits backtracking to previ-
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ous solutions which may ultimately lead to better solutions via a different
direction. The two main components of TS are the tabu list and the aspi-
ration criteria of the solution associated with the recorded moves.

e Tabu list. Certain forbidden moves (trial solutions) are maintained
in the list to prevent cycling when moving away from local opti-
mum through non-improving moves. As a result, the search is not
allowed to return to a recently visited point in the search space, that
is, a recent move is not allowed to be reversed. Usually the tabu list
stores a fixed or fairly limited quantity of information. Empirically,
the size of the list that provides good results often grows with the
size of the problem, and stronger restrictions are generally coupled

with smaller list size.

o Aspiration criteria. A key issue for tabu list is that it is sometimes so
powerful to prohibit attractive moves, even cycling cannot occur, or
they may lead to an overall stagnation of the search process. Hence,
aspiration criteria are used to allow for exceptions from the tabu list,
if such moves lead to promising solutions. The simplest and most
commonly used aspiration criterion, found in almost all TS imple-
mentations, allows a tabu move when it results in a solution with an
objective value better than that of the current best-known solution

(since the new solution has obviously not been previously visited).

3.3.2 The Proposed Hybrid Approach

In order to determine a solution to the QoS-aware data-intensive service
composition problem, we propose a new hybrid approach where the evo-
lutionary process of GP works along with the local TS search procedure.
To be specific, the proposed hybrid approach adopts the neighbour so-
lutions found by TS to generate part of a new population in the global
search process of GP. The major steps of our approach are described in

Algorithm 3. The approach starts from a randomly initialized population
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after setting up the necessary variables for GP and Tabu. The individu-
als in the current population are then evaluated using the specific fitness
function. Crossover and mutation are performed on the selected individ-
uals to produce next generation. For every ¢t generations, the m best in-
dividuals (i.e., service compositions) in the population are selected as the
initial solutions of the TS procedure. As a result, n neighbour solutions
are generated by mutating a random node in the tree representation of a
candidate service composition solution, and the n worst individuals in the
current population are replaced. The above process is repeated until the
maximum number of iterations is reached.

Algorithm 3 GP-Tabu for QoS-aware data-intensive service composition

Require: available inputs, required outputs, QoS constraints and a service
repository
Ensure: a service composition that meets both functional and non-

functional requirements

1: Initialize the parameters of GA and TS, and set g=1

2: Generate an initial population P randomly

3: Evaluate each individual 7 in P using the fitness function

4: while g < ¢4 do

5. Select two parents from the population P. Perform crossover with
rate F,, and perform mutation with rate P, to generate a new pop-
ulation P’

6: if g mod k = 0 then

7: Choose the m best individuals from the current population, and

apply the TS algorithm to generate n neighbours to substitute the
worst n individuals in the new population P’
8 end if
9:  Evaluate each individual 7’ in P’ using the fitness function
10:  Set g=g+1
11: end while
12: return the individual with the best fitness
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In our approach, the fitness function introduced to measure the perfor-
mance of each individual 7 in the gth generation of the evolution process
is defined as follows.

(wlRi + ’lUgAl) * ('LU5L + U)6OZ)

fi - ’LUgLi + ’LU4CZ'

(3.8)

where R;, A;, L; and C; denote the aggregated accuracy, availability, la-
tency and execution cost of a composite data-intensive service, each of
which can be calculated using the formulae described in Table 2.1 and the
equations proposed in Section 3.2. For example, the aggregated latency
for a sequence workflow structure is L = Zle [;. In the function, w;, w,,
w3, wg, ws and wg are real and positive weights. A larger weight means
that that particular QoS attribute is considered more important than oth-
ers from the point of view of users. Note that the fitness function can be
easily adapted to user’s requirements, i.e., adding or removing QoS at-
tributes without affecting the performance of our approach. /; and O; that
indicate the degree to which a valid solution has been found are presented
in Equation 3.9.

I linput,| 0, = |output, () outputy| (39)

- linputy | input, | v |outputy|

where input, is the list of inputs available for a composite service solution,
input, is the list of inputs required by the solution, output, is the list of
outputs desired by a composition task, output, is the list of outputs that
are actually produced by the solution, and |.| represents the size of the list.

To guarantee incommensurable QoS attributes have fair impact on the
calculation of fitness, the value of each QoS attribute is to be normalized in
the interval [0,1]. All the weights utilized in the fitness function also falls
within the range [0, 1]. As illustrated in Equation 3.8, QoS-aware data-
intensive service composition is converted to a maximization problem, i.e.,

greater fitness denotes more satisfying solution.
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3.4 Experimental Studies

3.4.1 Test Cases

For the purpose of evaluation, we carry out a set of experiments using the
test cases provided by the public benchmark datasets, WSC2008 [7] and
WSC2009 [47]. Each dataset consists of a great number of web services
associated with randomly generated inputs and outputs. However, QoS
attributes are not included in neither datasets. Therefore, the QoS values of
web services are generated based on the data collected in another public
dataset called QWS [2]. Each test case is made up of available inputs,
required outputs, and a service repository. The complexity of the test cases
is diverse in terms of the number of atomic web services and the number

of workflow structures involved.

3.4.2 Parameter Configurations

The experiments are conducted with the population size of 200 for max-
imum 100 generations (i.e., g.,;=100). The crossover probability P.=0.9,
the mutation probability P,,=0.2, and the size of the tabu list is 7. In our
experiments, the top 10% individuals in the current population (i.e., m=20)
will be selected for applying TS for every 10 generations (i.e., t=10), so
the 20 worst (i.e., n=20) individuals will be replaced with the new neigh-
bour solutions. Assume that availability and execution cost are considered
more important than accuracy and latency. The weights defined in the fit-
ness function are w; = 0.2, wy, = 0.3, w3 = 0.2, wy = 0.3, ws = 0.5 and
we = 0.5 which can give better performance indicated by a large number
of empirical trials. Since our approach is non-deterministic, 30 indepen-
dent runs are performed for each test case.

To simulate the time and cost for data access and transfer in our ex-
periments, the amount of input data for an atomic data-intensive service

is randomly generated in the interval (0, 30]MB, and the amount of out-
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put data is determined by multiplying by a random factor of 0~10. For
the sake of simplicity, the queue time required by a service server is be-
tween 0~10s, all server’s data write speed (i.e., ws(S;)) and process rate
(i.e., pr(S;)) are both 10MB/s, the transfer rate between two service servers
(i.e., bw(S;, S;)) is BMB/s, and all other costs such as data access cost and
transfer cost for per unit of data are all 1.

3.4.3 Experimental Results and Analysis

The experimental results for the test cases are presented in Table 3.1. Each
row in the table shows the fitness of the solutions found by GP and GP-
Tabu for each test case. To demonstrate the superiority of our approach
over the simple GP method, a significance test (z-test) is conducted to com-
pare the solutions found by the two approaches. Asillustrated in the table,
for simple composition tasks (i.e., WSC2008-1, WSC2008-2 and WSC2008-
4), both GP and GP-Tabu are able to make the same optimal service compo-
sition to achieve the high-level task. However, it is observed that for more
complicated test cases, the GP-Tabu approach is capable of finding better
compositions of services indicated by a significant improvement on the
titness. In summary, our hybrid approach was successful in computing a
solution to each of the service composition tasks, and the results showed
that it is much more effective for complicated tasks.

Further Analysis

To further study the effectiveness and efficiency of our approach, here
we conduct a set of experiments with the same test cases on two tradi-
tional optimization methods, i.e., TS and integer linear programming (ILP)
[11]. In order to evaluate the quality of the solutions found by different
optimization methods, a unity function that adopts the simple additive
weighting approach is used as shown in Equation 3.10.

USC)=w-R4+wy-A4+ws-L+wd-C (3.10)
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Table 3.1: The results of the test cases for GP and GP-Tabu. (1 denotes

significantly better)

Test case GP GP-Tabu
WSC2008-1 | 0.9167 + 0.0000 0.9167 £ 0.0000
WSC2008-2 | 0.9206 + 0.0000 0.9206 £ 0.0000
WSC2008-3 | 0.9025 + 0.0017 | 0.9114 + 0.00091
WSC2008-4 | 0.8668 + 0.0000 0.8668 £ 0.0000
WSC2008-5 | 0.8126 + 0.0014 | 0.8135 + 0.00081
WSC2008-6 | 0.8461 4+ 0.0003 | 0.8556 + 0.000271
WSC2008-7 | 0.8988 + 0.0008 | 0.9052 + 0.001371
WSC2008-8 | 0.8825 4 0.0011 | 0.8857 4+ 0.00071
WSC2009-1 | 0.8276 4+ 0.0002 | 0.8311 + 0.00067
WSC2009-2 | 0.8844 4+ 0.0001 | 0.8982 + 0.001171
WSC2009-3 | 0.7846 4+ 0.0023 | 0.7931 %+ 0.00091
WSC2009-4 | 0.7024 + 0.0006 | 0.7546 + 0.001971
WSC2009-5 | 0.7290 + 0.0008 | 0.8449 + 0.002371

where w;, wy, w3, and w, remain the same as described in Section 3.4.2. 1
and O are not included in the function as they are specified as constraints
in all the optimization methods, that is, the solution found must be able to
generate the desired outputs given the available inputs.

The simulation results of the experiments are shown in Table 3.2. The
last three columns of the table present the fitness of the solutions found by
GP-Tabu, ILP and Tabu, respectively. As can be observed from the table,
the ILP method cannot find a valid solution for most of the service com-
position tasks except for tasks WSC2008-1, WSC2008-2, WSC2008-4 and
WSC2008-5, and the significance test demonstrates the superiority of the
GP-Tabu approach over ILP in this problem domain. In contrast, the TS
method is able to find a service composition solution for each task, espe-
cially when the tasks (i.e., WSC2008-1, WSC2008-2, WSC2008-3, WSC2008-
4, WSC2008-5 and WSC2009-2) are relatively simple. However, in most
situations where the service composition request is very complex, our GP-
Tabu approach is recommended due to its better performance implied by

the significant improvement from the statistical test.



48

Table 3.2: The results of the test cases for GP-Tabu, ILP and Tabu. (| de-
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notes significantly worse, and 1 denotes significantly better)

Test case GP-Tabu ILP Tabu search
WSC2008-1 | 0.5946 £ 0.0000 | 0.5849 4+ 0.0014) | 0.5916 4+ 0.0019)
WSC2008-2 | 0.4997 £ 0.0000 | 0.4654 + 0.0006J | 0.5108 4+ 0.00071
WSC2008-3 | 0.4588 £ 0.0005 n/a 0.4836 4+ 0.0008%
WSC2008-4 | 0.4738 £ 0.0000 | 0.4531 4+ 0.0013) | 0.4876 4+ 0.00067
WSC2008-5 | 0.4888 4 0.0007 | 0.3626 4+ 0.0027{ 0.4884 £+ 0.0010
WSC2008-6 | 0.4212 4+ 0.0003 n/a 0.4192 4+ 0.0014]
WSC2008-7 | 0.4177 + 0.0006 n/a 0.3791 4 0.00064,
WSC2008-8 | 0.5146 4+ 0.0009 n/a 0.5033 4+ 0.00124
WSC2009-1 | 0.6666 + 0.0008 n/a 0.5779 4+ 0.00074
WSC2009-2 | 0.4447 + 0.0015 n/a 0.4441 4+ 0.0009
WSC2009-3 | 0.5612 + 0.0008 n/a 0.5531 4+ 0.0004.,
WSC2009-4 | 0.4623 + 0.0006 n/a 0.3145 4+ 0.0011,
WSC2009-5 | 0.4844 4+ 0.0019 n/a 0.3487 4+ 0.0023)

3.5 Summary

In this chapter, a novel combination of genetic programming and tabu
search for solving the problem of QoS-aware data-intensive service com-
position has been presented. A time and cost aware mathematical model
was developed for describing the effect of the movement of mass data. In
the proposed approach, the local search procedure employed by TS was
integrated into the global search process of GP, in order to avoid prema-
ture convergence and getting stuck in local optima. To verify the effective-
ness and efficiency of the proposed hybrid approach, it was successfully
applied to two public benchmark datasets, i.e., WSC2008 and WSC2009,
each of which consists of a large variety of web services as well as diverse
service composition tasks. Compared to the simple GP and two traditional
optimization methods, the analysis of the experimental results showed the
superiority of our approach in finding more satisfying service composi-

tions.



Chapter 4

F-MOGP: A Novel
Many-Objective Evolutionary
Approach to QoS-Aware
Data-Intensive Web Service

Composition

Conventional optimization techniques for solving QoS-aware web service
composition have been criticised due to their scalability bottlenecks [72,
96]. To that end, genetic programming based and genetic algorithm based
methods [12, 15, 41, 93] from the evolutionary computation field have
emerged recently for efficiently exploring a huge search space. However,
the majority of these methods avoid the complexities involved in the many-
objective QoS-aware web service composition problem and transform many
objectives into a single-objective function. Likewise, our previously pro-
posed hybrid approach in Chapter 3 simply aggregates multiple (and of-
ten conflicting) quality objectives into a higher scalar function for fitness
calculation based on a weight mechanism. This approach is suitable for

experienced users who have a clear idea about the importance of each
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quality objective. However, for the other users who are unsure about the
importance of each QoS dimension, the aggregation methods such as the
weighted sum approach are very difficult to apply because utility func-
tions or weights are not well known a priori. Therefore, the aim of this
chapter is to describe how to address the problem of many-objective QoS-
aware data-intensive web service composition which is listed as the sec-

ond objective of this thesis in Chapter 1.

41 The Problem

In the past few years, evolutionary multi-objective optimization (EMO)
algorithms such as NSGA-II [19] and SPEA2 [103] have been proposed to
overcome the aforementioned shortcomings. Compared with returning
only a single best solution per run, EMO algorithms are able to simulta-
neously optimize multiple and often competing objectives and find a set
of Pareto-optimal solutions. However, these EMO algorithms suffer from
their ability to handle the optimization problems having more than three
objectives. The primary reason is that almost all the solutions in the pop-
ulation become non-dominated as the number of objectives increases. In
real life situations, on the other hand, it is not uncommon that at least
four quality objectives will be considered for a task of QoS-aware service
composition. That said, QoS-aware web service composition is intrinsi-
cally a “many-objective” optimization problem. Despite all the previous
efforts, an efficient many-objective approach is still highly demanded to
address the QoS-aware service composition problem. In addition, today
data-intensive services based applications have become the most challeng-
ing type of applications in service-oriented paradigm. However, the prob-
lem of QoS-aware web service composition has not been widely studied
in the context of data-intensive workflows. In particular, traditional meth-
ods [84, 83] overlook the communication time delay and the communica-

tion cost in mass data transfer. As a consequence, these methods have an
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inaccurate measure on the performance of the service compositions found.

In order to tackle the QoS-aware service composition problem with
four or more quality objectives in the context of data-intensive workflows,
a many-objective evolutionary approach named F-MOGP is proposed in
this chapter. Based on a reduced space searching strategy, FFMOGP em-
ploys a recently developed many-objective optimization algorithm, NSGA-
III [20], to find and return a set of optimal service compositions accord-
ing to the restrictions on various QoS attributes. The experimental results
show its effectiveness and ability to exhibit the trade-offs between differ-
ent solutions in satisfying different objectives.

The rest of this chapter is organized as follows. Section 4.2 presents the
implementation details of the proposed F-MOGP approach. Experimental
studies are described in Section 4.3, and finally, conclusions are outlined
in Section 4.4.

4.2 The Proposed F-MOGP for Many-Objective
QoS-Aware Data-Intensive Service Compo-
sition

In this chapter, we propose a filter-based many-objective evolutionary ap-
proach, named F-MOGP, to find a set of data-intensive service composi-
tions which have the optimal values for each quality objective, and offer
the option to assess the trade-offs between different solutions. For exam-
ple, a user can choose the service compositions with high latency and low
cost, or the ones with low latency and high cost.

Amongst the four QoS attributes described in Chapter 2, latency and
execution cost are negative quality criteria. In other terms, the grades of
these criteria increase as their values decrease. In contrast, availability and
accuracy are positive quality criteria for which the grades increase as their

values increase. Since different QoS attributes are not commensurable to
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some extent, the value of each attribute ¢ for a service composition sc is
standardized according to Equation 4.1.

Qmaz_ ) LR . . .
Q—W_ffjfn , for positive quality criteria
qnormal(sc) _
( )7szn . . . .
Qq—j;,Qmm , for negative quality criteria
= max SC .= mln scC 4.1
Qmaz = 02 (5¢), Qmin = min q(sc) 1)

where S denotes the set of all service compositions found so far. With
normalization, the objectives of all the four QoS-based quality dimensions
(i.e., latency, execution cost, availability and accuracy) are to be minimized
and we assume that all the objectives are equally important in this work.
That said, the goal of many-objective QoS-aware data-intensive service
composition is to simultaneously optimize all the objectives and obtain
the lowest possible QoS for a service composition sc while satisfying the
functional requirements, as shown by the objective vector in Equation 4.2.
The aggregated values of each QoS attribute can be calculated using the
same mathematical model proposed in Chapter 3.

Lnormal (SC) Cmormal (SC)
) ;

minimaize Anormal( ) Rnormal( )
sc), sc

(4.2)

4.2.1 Search Space Reduction

The size of the search space is exponential to the number of web services
available, which has become a challenging problem that limits the per-
formance of many existing methods. To enhance the performance of our
proposed approach, as an initial step of E-MOGP before applying global
optimization, an algorithm is developed to prune the search space to a
reasonable size. This search space reduction algorithm originates from an
idea that are relevant to the dependencies between web services, which
are defined in Definitions 1 and 2.
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Definition 1 Given two data-intensive services s; and s;, assume the outputs of
s; are O; and the inputs of s; are 1;. If Vi € I;, 1 € O, service s; is then said to
be fully dependent on service s;, denoted by s; = s;.

Definition 2 Given two data-intensive services s; and s;, assume the outputs of
s; are O; and the inputs of sj are I;. If 31 € I;, i € O;, service s; is then said to
be partially dependent on service s;, denoted by s; — s;.

In Algorithm 4, I and O denote the available inputs and the desired
outputs for a service composition task respectively, and R contains a set
of data-intensive services available in this task. Initially the services in
R that could take I as inputs are fed into Syyunq¢ and they are removed
from R to avoid multiple visits. I is then updated to include the outputs
generated by all the services in Sy, During the following iteration, if a
service in R is fully or partially dependent on any of the services in Stound,
it will be added to Sy,unq and removed from R. Finally, when the members
of Sfouna NO longer change, R* which has the same services as Syouna is
returned as the output of the algorithm. By examining the dependencies
among web services in the original search space using Definitions 1 and 2,
we eventually reach a smaller space which contains the web services only

related to a given service composition task.

4.2.2 Many-Objective Optimization Based on NSGA-III

After the reduction of the search space, the second phase of F-MOGP is to
apply an optimization algorithm to the minimization problem described
before. Due to its effectiveness in high dimensional objective space, NSGA-
III [20] is adopted as the basis of our proposed many-objective evolution-
ary approach. However, instead of the chromosome representation, a tree-
based structure is adopted as the representation of a service composition
in our approach. Web services are denoted by leaf nodes and workflow

patterns (e.g., sequence) are expressed by intermediate nodes. The advan-
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Algorithm 4 The algorithm for reduction of the search space
Require: 1,0, R
Ensure: R*
R* <0, Stound < 0
for each s € Rdo
if Sippue C I then

Sfound = Stound U 8
end if
end for
while S¢oynq s changed do
R* <= R* U Stound
R < R\ Sfound
for each s € Syouna do
I =T U sputput
end for
for each s € R do
for each s* € Sfouna do
if s = 5% or (s = 8™ and Sinput \ Shyipur C 1) then
Stound = Stound U 8
end if
end for
end for
end while

return R*
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tage of representing a service composition as a tree is that understand-
ing and interpreting the relationships between constituent services in a
composite web service become easier and more effective. For example,
as illustrated in Figure 4.1, it is clear to see that web services WS, and
WSy are executed sequentially, and W S5, and WS, are executed in paral-
lel. The inputs of W.S;, W5 and WS, come from a user directly, while
WS, also relies on the outputs of W.S;. Finally the composition of WS,
WSy, WSs and WSy produces the required outputs based on the given
inputs and return them to the user. Based on this tree-like structure, the
crossover operation is performed on two stochastically selected individu-
als (i.e., service compositions in our case). If the individuals contain two
nodes that represent compatible inputs and outputs, the two nodes along
with their subtrees are then swapped between these two individuals. This
guarantees that the offspring generated is feasible. The mutation operator
randomly selects a node of a service composition and it is then replaced
with a new generated one that has compatible inputs and outputs.

e e
. . ‘\‘ Parallel .
Inputs - inputs o
Sequence WS, ws, |°
WS, .

Figure 4.1: A tree-based representation of a service composition.



56 CHAPTER 4. F-MOGP

As shown in Algorithm 5, the optimization procedure starts with mul-
tiple reference points and a randomly initialized population with N ser-
vice compositions. The reference points can be supplied by user based on
the preference information. However, we assume that all objectives are
equally important and are all to be minimized. Therefore, a set of refer-
ence points are generated using Das and Dennis’s systematic approach as
described in [20] for our optimization problem. At the ¢ generation, an
offspring population ), is produced from its parent population P, using
binary tournament selection, crossover and mutation. P, and (); are then
combined into a new population R; of size 2N. The values of the four
quality objectives are calculated and normalized for each service composi-
tion in R,, then these service compositions are sorted into different levels
(F1, F» and so on) based on usual domination principle. As the last ac-
cepted level, only part of the members in F; will be selected and added to
the population S, for next generation. To maintain the genetic diversity
among individuals, the reference point that has the smallest number of
associated service compositions will be used to select members from F; to
S;. The above process is repeated until the termination criterion is satisfied

and a set of Pareto optimal service compositions are eventually found.

4.3 Experimental Studies

4.3.1 Test Cases

To assess the performance of our proposed approach, we carried out a set
of experiments using the same datasets as the ones used in Chapter 3. Each
test case in the datasets is comprised of available inputs, required outputs,
and a service repository which consists of a large number of web services
associated with randomly generated inputs and outputs. The complexity
of the test cases is diverse in terms of the number of web services available

and the number of workflow structures involved.
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Algorithm 5 The framework for optimization of many (conflicting) objec-

tives
Initialize multiple reference points R, and a random population of size
N
t=1,1=1

while termination criteria is not met do
Q) < selection, crossover and mutation on P,
R, + P, U(Q;
Calculate and normalize each objective value for every scin R,
(F1, F5, ...) = non-dominated-sort(R;)
while ||S:|| < N do
S;=S;UF,andi=17+1

end while

if |.S;|| = N then
Pt+1 = St

else

Find the reference point R,,;, having the smallest number of asso-
ciated sc
Choose (N — ||St|| — || F1]]) sc that are associated with R,,;, from the
last front F; to construct P, 4
end if
t=t+1
end while
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4.3.2 Parameter Configurations

To simulate the time and cost for data access and transfer in our exper-
iments, the amount of input data for an atomic data-intensive service is
randomly generated in the interval (0, 30]MB, and the amount of out-
put data is determined by multiplying by a random factor of 0~10. For
the sake of simplicity, the queue time required by a service server is be-
tween 0~10s, all servers’ data write speed (i.e., ws(s;)) and process rate
(i.e., pr(s;)) are both 10MB/s, the transfer rate between two service servers
(i.e., bw(sj,s;)) is 3BMB/s, and all other costs such as data access cost and
transfer cost for per unit of data are all 1. For the extra parameters of
F-MOGTP, the population size is 200 and the maximum number of genera-
tions is 500. The crossover probability is 0.9 and the mutation probability
is 1/200 = 0.05. Our approach was repeated 30 times independently on
each test case, and the performance statistics (z-test with a 95% confidence
level) for the 30 runs are reported.

4.3.3 Experimental Results and Analysis
Search Space Reduction

In order to evaluate the performance of our search space reduced algo-
rithm on the datasets with a large number of web services, we applied F-
MOGTP to all the test cases supplied by WSC2008 and WSC2009. The num-
ber of web services before and after the search space reduction for every
test case are reported in Table 4.1. It can be observed that the search space
can be significantly reduced by our algorithm. For example, the number
of web services was reduced from 608 to 64 for the test case WSC2008-2,
which in turn saves considerable time for the following optimization pro-
cess as indicated by Table 4.1.

Clearly, Table 4.1 shows that all the test cases present a vast original
search space and the evaluation of each candidate solution including in-

feasible solutions requires a significant amount of computing time which
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Table 4.1: The number of web services before and after search space reduc-

tion for every test case

Test case Before | After Test case Before | After
WSC2008-1 208 192 WSC2008-8 8169 91
WSC2008-2 608 64 WSC2009-1 622 68

WSC2008-3 654 111 WSC2009-2 4179 200
WSC2008-4 1091 80 WSC2009-3 8188 158
WSC2008-5 1140 78 WSC2009-4 8352 162
WSC2008-6 3148 407 WSC2009-5 | 15261 214
WSC2008-7 4163 52 — — —

Table 4.2: The computation time (ms) required for every test case with and
without search space reduction (1 denotes significantly better)

Test case Without search space reduction | With search space reduction
WSC2008-1 5039 £ 67 2333 + 541
WSC2008-2 13299 + 46 2172 £ 401
WSC2008-3 249728 + 3605 176596 £ 21731
WSC2008-4 10436 £ 93 2359 £ 647
WSC2008-5 48056 £ 161 7422 + 431
WSC2008-6 329196 + 9368 58286 £ 4157
WSC2008-7 419786 £ 7381 22069 £ 3327
WSC2008-8 839967 £+ 15665 39782 £ 54371
WSC2009-1 828398 + 83 5023 £ 457
WSC2009-2 397962 + 4695 24086 £ 1991
WSC2009-3 625619 + 11685 19442 + 1871
WSC2009-4 4599843 £ 30595 105578 £ 295371
WSC2009-5 3044367 £ 14619 93458 £ 7811

cannot give us a realistic computation time. For example, for the test case
WSC2009-4 in Table 4.2, it takes approximate 76 minutes to find a near op-
timal service composition in searching in the original space. In contrast,
by reducing the search space, the computation time has been significantly
reduced to 2 minutes. In summary, with the previous search space reduc-
tion stage, there is a two-fold reduction in the volume of the search space
for the worst case. Meanwhile, for most of the test cases, the computation
time has dropped at least 50%, and even more than an order of magnitude

(over 10 times) for 7 out of 13 test cases.
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Many-Objective Optimization

Next, we provide more insight into the performance of the service com-
positions found when four conflicting quality objectives are considered.
Figure 4.2 shows the distribution of the evolved service compositions for
the test case WSC2009-4 as an example to demonstrate the effectiveness
of the proposed F-MOGP approach. This figure is a scatter plot matrix
containing all the pairwise scatter plots of the four objectives. The ser-
vice compositions obtained by a single-objective GP-based approach [93]
which transforms the four quality objectives into a single-objective fitness
function are also plotted in this figure (as +) for comparison purposes. Due
to the page restriction, we do not present the experimental results for the
other test cases in this chapter as they all repeat a similar pattern like the

one seen in Figure 4.2.

It can be seen from Figure 4.2 that the service compositions found by
F-MOGP cover a much wider range and dominate the solutions obtained
by the single-objective GP-based approach. As shown in the figure, there
is a strong correlation between latency and execution cost, i.e., latency
can be increased but with substantial deterioration on execution cost, and
vise versa. In addition, the measures of availability and accuracy will be
affected by the changes of latency and execution cost. This observation
clearly suggests that users could pay more to get better data-intensive ser-
vices with higher availability and accuracy. Another interesting observa-
tion from this figure is the trade-offs between availability and accuracy.
The correlation is only obvious when the value of accuracy is low, that is,
when the value of accuracy becomes large, it is possible to increase accu-
racy further without significant deterioration on availability. This makes
sense since a high quality service with high accuracy is potential to deliver
high availability.
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Figure 4.2: Distribution of service compositions on the evolved Pareto
front for WSC2009-4
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Further Analysis

The preceding experimental studies indicate that the proposed approach
is efficient and effective in evolving towards a set of Pareto-optimal ser-
vice compositions and decision makers would benefit greatly from under-
standing the potential trade-offs in the evolved Pareto-front. In this sec-
tion, the performance of two well-known EMO algorithms i.e., NSGA-II
[19] and SPEAZ2 [103], is compared with our approach on the same four-
objective problem to further demonstrate the superiority of F-MOGP in
tackling many-objective QoS-aware data-intensive service composition.

To investigate the performance of different optimization approaches,
a performance metric, i.e., the inverse generational distance (IGD) [20], is
employed to provide a combined information about the convergence and
diversity of the obtained service compositions. Since the ideal targeted
Pareto-front is known in our problems, IGD is used to measure the aver-
age distance from the set of non-dominated points S obtained by each ap-
proach to the known set of Pareto-optimal points 7" in the objective space,
as described in Equation 4.3.

7|

151 ,
IGD(S,T) = |T|me Ld(ti, s5) (4.3)

where d(t;,s;) is the Euclidean distance between the point ¢; in the tar-
geted Pareto-front and the point s; in the set of non-dominated points
found by the approach. Clearly, a smaller IGD value represents a set of
higher-quality service compositions. For a meaningful comparison, the
parameter settings for different approaches are the same, and the results
are obtained after 30 independent runs. The comparisons, in particular, are
performed based upon the shrinked benchmark datasets the size of which
has been reduced utilizing the search space reduction algorithm discussed
in Section 4.4.

Table 4.3 reports the best, mean and worst IGD values for each ap-

proach. In order to draw sound conclusions, tests for statistical signifi-
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Table 4.3: Best, mean and worst IGD values for every test case obtained by
F-MOGP, NSGA-II and SPEA2. Best performance is shown in bold and

denotes significantly better

Test case F-MOGP NSGA-II SPEA2

best 3.751 x 10~* 2.674 x 1072 | 3.465 x 10—*
WSC2008-1 | mean | 5.303 X 10~4 | 2.873 x 1072 | 5.362 x 10~*
worst 8.881 x 10~4 4.315 x 102 | 8.859 x 10— %
best 6.132 x 10~% | 7.388 x 1072 | 9.761 x 10~4
WSC2008-2 | mean | 7.406 X 10~41 | 7.474 x 102 1.097 x 103
worst | 9.846 x 10—4 | 7.658 x 10~2 2.914 x 1073
best 8.751 x 10~% | 6.119x 1072 | 9.877 x 10~4
WSC2008-3 | mean | 5.028 x 10—31 | 1.555 x 10~1 | 7.222 x 103
worst | 6.985 x 10~3 | 6.312 x 10~ 8.913 x 1073
best 6.129 X 10~% | 1.455 x 10~ | 4.086 x 10~3
WSC2008-4 | mean | 5.213 x 10—3 | 1.505 x 10~1 5.360 x 10~3
worst 9.147 x 10—3 1.652 x 10~1 | 8.394 x 103
best 3.179 x 10—3 | 2.903 x 10~} 3.530 x 1073
WSC2008-5 | mean | 3.837 x 10—3 | 3.194 x 10~! 3.845 x 1073
worst | 5.189 x 10—3 | 4.481 x 10~ 1.697 x 102
best 2.255 x 10~3 | 3.945 x 10~ | 4.262 x 1073
WSC2008-6 | mean | 3.978 x 10~34 | 7.269 x 10~! | 4.357 x 103
worst | 8.049 x 10—3 | 9.046 x 10~ 1.123 x 10~2
best 9.749 x 10~* 1.082 x 10~ | 8.857 x 10—4
WSC2008-7 | mean 3.273 x 1073 4.816 x 10~1 | 3.188 x 10—3
worst | 5.083 x 10~3 | 6.434 x 107! 7.168 x 10~3
best 2.058 x 10—3 | 3.092 x 10~} 5.294 x 1073
WSC2008-8 | mean | 3.970 x 10—3¢ | 8.277 x 10~! 5.937 x 1073
worst | 5.316 x 10~3 | 9.235 x 10~1 8.076 x 1073
best 9.116 x 10~4 8.361 x 102 | 8.047 x 10—*
WSC2009-1 | mean | 1.208 x 10~31 | 8.728 x 102 1.794 x 10~3
worst | 1.880 x 10—3 | 1.097 x 10~ 3.669 x 1073
best 2.553 X 10—3 | 2.092 x 10~! 9.849 x 1073
WSC2009-2 | mean | 6.807 x 10—31 | 3.384 x 10~! 2.018 x 1072
worst | 4.083 X 10—2 | 4.321 x 10~! 4.322 x 10~2
best 3.624 x 10~3 | 3.496 x 107! 2.097 x 10~2
WSC2009-3 | mean | 3.973 x 10—34 | 5.677 x 10~! 2.468 x 10~2
worst | 5.346 x 1073 | 8.849 x 10~ 3.188 x 10~2
best 3.384 x 10~3 | 6.336 x 10! 6.028 x 10—2
WSC2009-4 | mean | 5.479 X 10—31 | 9.677 x 10~1 8.676 x 102
worst | 1.366 X 102 1.415 1.228 x 10~1
best 5.751 x 10~3 | 5.198 x 10~} 1.733 x 1071
WSC2009-5 | mean | 7.264 x 10—31 | 8.713 x 10~! 1.949 x 101
worst | 1.176 x 10—2 | 9.828 x 10! 2.141 x 1071
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cance (z-test with a 95% confidence level) is further conducted on the av-
erage IGD values obtained by the three approaches for every test case. The
performance of our F-MOGP approach is significantly better than NSGA-
IT on all the test cases and SPEA2 on 9 out of 13 test cases. For the remain-
ing test cases (i.e., WSC2008-1, WSC2008-3, WSC2008-6 and WSC2008-7),
F-MOGTP present similar performance compared with SPEA2. However,
in some cases (e.g., WSC2008-3), F-MOGTP still obtains the smallest average
IGD value without showing statistical significance. In addition, NSGA-
IT consistently exhibits poor performance for all the test cases indicated
by the relatively large IGD values. Since the IGD metric provides a com-
bined information about convergence and diversity, the results in Table
4.3 clearly show that our F-MOGP approach offers the best overall perfor-
mance for solving many-objective QoS-aware data-intensive service com-
position compared with state-of-the-art methods.

4.4 Summary

In this chapter, QoS-aware data-intensive service composition is modeled
as a many-objective optimization problem and we present a novel filter-
based many-objective evolutionary approach named F-MOGP to finding
a set of Pareto-optimal data-intensive service compositions. To the best
of our knowledge, this is the first attempt to apply a many-objective op-
timization algorithm to this problem. The experimental results show that
the computation time of our approach is reduced dramatically by apply-
ing the search space reduction algorithm as the first step in the whole pro-
cess. The service compositions found by our approach are also helpful
to support decision makers by providing them with interesting trade-offs
among different objectives. The further comparisons demonstrate that the
solutions produced by our approach have better quality than the ones pro-

duced by existing single-objective and multi-objective approaches.



Chapter 5

A Genetic Programming
Approach to Decentralized
Execution of Data-Intensive Web

Service Compositions

The problem of “QoS-aware data-intensive web service composition” has been
widely studied in the previous chapters where a hybrid GP-Tabu approach
and a many-objective evolutionary approach were proposed to efficiently
compose a set of atomic data-intensive services into a composite web ser-
vice. With the emergence of web services technology, data-intensive appli-
cations can be designed and built from creating composite data-intensive
web services. Today, however, the execution of these composite services
still faces the issues of performance, throughput and scalability. This chap-
ter is therefore concerned with efficient execution of such data-intensive

applications.
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5.1 The Problem

Typically, a composite web service is executed by a single coordinator
node which receives service user’s request, makes necessary data trans-
formations and invokes each component service. As the name implies,
the coordinator node is responsible for the coordination of all the data
and control flows between the component services, and hence becomes a
potential performance bottleneck. This execution paradigm of composite
web services is referred to as centralized orchestration [14]. As depicted in
Figure 5.1, all data is transferred between various component services via
the coordinator node instead of being transferred directly from the point
of generation to the point of consumption, which may cause unnecessary
network traffic overloading. In addition, it is possible for a component ser-
vice to produce a lot of data that is irrelevant to the desired function of the
composite web service. However, the data will be still transferred to the
coordinate node, thereby resulting in increased workload on the network
as well as the increase of response time. This is particularly problematic
for data-intensive service compositions in which huge collections of data

are transferred.

AddressBook1

name2
O FindRoute AddressBook2
address2

Centralized
User i

composite

service

RoadMap

Figure 5.1: An example of centralized orchestration

In summary, such a highly centralized execution paradigm could lead

to several potential drawbacks.
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e The execution of a composite web service generates a large volume
of unnecessary network traffic due to the fact that all intermediate re-
sults have to be sent back to the central workflow coordinator before
the following web services can be invoked. In most cases of data-
intensive processes, this consumes valuable bandwidth and causes a
performance bottleneck.

e The scalability and reliability of this centralized execution paradigm

cannot be guaranteed as there can be a single point of failure.

e The overall performance of a composite web service can be affected
by the number of service requests on the central workflow coordina-

tor and available resource capacity of the server.

As one of the most popular languages for web service compositions,
Business Process Execution Language (BPEL) [5] is often adopted to de-
fine how a composite web service will be executed by expressing a com-
posite web service as an end-to-end process flow. A simple business pro-
cess written in the BPEL language is described in Figure 5.2. In this work,
the problem of distributed execution of data-intensive web service com-
positions is regarded as the problem of partitioning data-intensive BPEL
processes where a data-intensive BPEL process is partitioned into several
sub-processes which will be deployed and executed on separate workflow
engines, in order to improve the performance of the whole workflow.

The problem of partitioning BPEL processes was firstly introduced by
Nanda et al. [61] as follows.

e A BPEL process consists of a set of statements (i.e., activities) which
can be categorized into fixed activities and mobile activities. A fixed
activity such as receive, reply and invoke must be deployed and exe-
cuted on a particular workflow engine, while a mobile activity such

as send, assign and i f can be assigned to any workflow engine.
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Pl Recetve(client, req)

Ifireqamt < 100007
grisk=10

Elze
rrisk=1invoke(31, req)
grisk=rrisk

End-If

P2

b.risk =g risk
b.amt =req.amt
Flow

invoke(B32 b, b1

F3

mnvole(33, b, b2
End-Flow
Ifih1 rate < b2 rated
resrate=bl rate
rez schetme="b1.scheme
Else
resrate =bZ rate
res scherme=null
End-If

PS Reply(client, res)

Figure 5.2: An example of a business process expressed in the BPEL lan-

guage
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There are two different types of dependence, i.e., data dependence
and control dependence, between two activities. Control dependence
is a situation in which an activity executes if the previous activity
evaluates in a way that allows its execution. For example, as shown
in Figure 5.2, the activity “g.risk=0" is control dependent on “if(req.amt
<10000)” as the execution of the first activity is conditionally guarded
by the second one. A data dependence is concerned about two activ-
ities which access or modify the same resource. For example, the ac-
tivity “if(req.amt<10000)” is flow dependent on “Receive(client, req)”
since the first activity needs the data from the second one which has
execution precedence. In addition, activities with different control
dependence cannot be placed into the same partition unless their
control activities are in the same partition. In order to guarantee
that all the BPEL sub-processes can be coordinated correctly to per-
form the overall process execution, the preceding dependencies con-
straints must be properly preserved by the partitions.

A partition of a BPEL process (i.e., a BPEL sub-process) is made up

of exactly one fixed activity and zero or more mobile activities.

Based on the above descriptions, the problem of partitioning a BPEL

process can be formally defined as a quadruple BPEL = {F, M, D, C}

where

F denotes a set of fixed activities { f1, fo, ..., fu},
M denotes a set of mobile activities {my, mo, ..., M, },

D represents a set of data dependencies existing between any two
activities {(a;, a;) | a; is data dependent a; },

and C represents a set of control dependencies existing between any
two activities {(a;, a;) | the execution of a; is conditionally guarded

by G/i}
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Given a BPEL process, different partitioning execution plan of the same
process will give rise to different execution performance. Finding an opti-
mal distribution (i.e., partitioning) of the process is dependent on a num-
ber of influential factors such as communication overhead. Due to the un-
derlying high complexity of a process, the problem of partitioning BPEL
processes is an optimization problem with a high-dimensional search space
and it has proven to be NP-hard [1]. Therefore, how to effectively parti-
tion BPEL processes is still a challenging issue today, especially taking into

account the data-intensity involved in a process.

A few heuristics [14, 26, 76, 87] have been put forth to address the above
drawbacks of centralized execution paradigm. Most of the research work
in this field splits a workflow into several sub-workflows, each of which
can be deployed and executed on a separate workflow engine for decen-
tralized execution of a composite web service. However, most of existing
proposals do not take data intensity into consideration when splitting a
data-intensive workflow (i.e., a data-intensive web service composition).
Moreover, these approaches focus on reducing the communication costs
only, and their scalability is not evaluated. In this chapter, we present a
genetic programming based approach to decentralized execution of data-
intensive web service compositions. The main contributions of this chap-
ter are three-fold. First, a mathematical model is developed to describe the
communication overhead including latency and costs when partitioning a
data-intensive workflow. Second, the semantics (i.e., data and control de-
pendencies) of the original workflow can be properly preserved by our
approach. Last, our approach proves to have better scalability than two

existing methods based on experimental observations.

The rest of this chapter is organised as follows. Section 5.2 presents
the model used to estimate the communication overhead during the par-
titioning process of a data-intensive workflow. In Section 5.3, the details
of the proposed approach are explained, and Section 5.4 reports on the

experimental results. Finally, the conclusions are drawn in Section 5.5.
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5.2 A Model for Estimating Communication Over-
head

The execution plans of partitioned data-intensive BPEL processes are ex-
pected to have the least communication overhead in terms of latency and
costs. During the execution process, communication overhead could take
place inside a partition and across two partitions. A mathematical model
is therefore needed to estimate the communication overhead under the

two circumstances mentioned above.

5.2.1 Inside A Partition

To measure the data communication overhead inside a partition, we need
to work out the sum of the communication overhead produced by all the
invoke activities within the partition. In other terms, as shown in Equation
5.1, the communication overhead is equal to the sum of the total latency
and total costs due to mass data transfer between the partition and the
data-intensive web services to be invoked by the partition.
J
communication_overhead = Z(latencyi + costs;) (5.1)
i=1

where j denotes the total number of invoke activities in the partition, and
latency; and costs; can be calculated using Equations 5.2 and 5.5 respec-
tively.

latency = numFEzec(a) x (¢ + p(ds) + t(ds, p, s) + t(d,, s,p)) (5.2)

where ¢ is the time spent in waiting in the queue for the service s to be
invoked, p(d;) is the actual time used by the service to process the set of
data d, t(ds, p, s) is the data transfer time for transferring the data set d;

from the partition p to the service s, and t(d,, s, p) is the data transfer time
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for transferring the processed data set d, from the service s back to the
partition p. Since an activity may be executed more than once, the exe-
cution times of a particular invoke activity a, i.e., numEzec(a), depends
on its parent control-flow patterns. If a is involved in a sequence or par-
allel control-flow, then it will be executed exactly once. However, if a is
involved in a choice control-flow which has a branching probability of p,
then the activity will be executed p times. For a loop control-flow that has a
repeat probability of ¢, the execution times of the activity a willbe 1/(1—q).
Therefore, the average execution times of the activity a is determined by
the probabilities of the choice and loop control-flows which appear in the
path from the root of the BPEL process to a. Note that control-flow pat-
terns can be nested so when a choice control-flow with probability p is
traversed, the number of executions of a is multiplied by p, while a loop
control-flow with probability ¢ is traversed the number of executions is
multiplied by 1/(1 — ¢q).

For the remaining parts of Equation 5.2, the queue time ¢ depends on
the server load, i.e., the current request queue length on the server, the
processing time p depends on the processing capacity of the server that
provides the service, and the data transfer time ¢ is determined by the
network bandwidth and the amount of data to be transferred between two

servers, as defined in Equations 5.3 and 5.4.

p(d) = size(d)/pr(s) (5.3)

t(d, z,y) = size(d) /bw(z,y) + size(d) /ws(y) (5.4)

where size(d) is the size of the data set d, pr(s) denotes the processing
rate of the server hosting the service s, bw(z, y) is the network bandwidth
between the server x and the server y, and ws(y) is the disk write speed of
the server y.

The communication costs inside a partition is the sum of data access
cost, data transfer cost, and service related cost as shown in Equation 5.5.

The data access cost ac(ds, s) is the price to be paid for writing the data
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ds to the server that hosts the service s and reading the data in order to
invoke the service. The data transfer cost tc is proportional to the size of
the data set, which depends on the available network bandwidth between
two servers. The service related cost sc expresses the cost to provision the
service s as well as the cost to process the service request including data
processing.

cost = numFExec(a) x (sc(s) + te(ds, p, s) + ac(ds, s) + te(d,, s, p) + ac(d,, p))

(5.5)

ac(d,y) = size(d) * wcost(y) + size(d) * rcost(y) (5.6)
te(d, z,y) = size(d) * tcost(zx,y) (5.7)

sc(s) = pcost(s) + size(d) * dcost(s) (5.8)

where size(d) denotes the size of the data set d, wcost(y) is the cost of
writing per unit of data to the server y, rcost(y) is the cost of reading per
unit of data from the disk on the server y, tcost(z,y) is the transfer cost
from the server z to the server y for per unit of data, pcost(s) is the price
charged to use the service s which is usually specified by service provider,
and dcost(s) is used to represent the expenditure for processing each unit
of data on the server hosting the service s.

5.2.2 Between Two Partitions

As the size of the messages carrying control-flows information between
two partitions is small in a data-intensive process, we only consider the
data communication overhead when there is a data dependence between
two partitions. The equations are defined in a similar way as those in 5.2.1
except that the transfer time and costs need to be calculated only once
due to the unidirectional data-flow. Due to the similarities, the details of
estimating the communication overhead between pairs of partitions are
not discussed in this chapter.
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5.3 The GP-Based Partitioning Approach for Data-

Intensive Processes

In this chapter, we propose a GP-based approach to partitioning a BPEL
data-intensive process so as to overcome the shortcomings of centralized
execution paradigm. Our proposed approach follows a standard genetic
programming framework which has been described in Chapter 2. The ap-
proach starts with taking a BPEL process workflow and information about
the data and control dependencies between pairs of activities as inputs, as
presented in Algorithm 6. Then, a certain number of partition solutions
are randomly produced to form an initial population. This is done by
randomly assigning every fixed activity to a partition and every mobile
activity to a fixed activity. The quality of each candidate solution in the
population is evaluated based on the fitness function explained in Section
5.3.4. Afterwards, two partition solutions are stochastically selected from
the current population to perform crossover and mutation in order to gen-
erate new offsprings for next generation. The preceding steps are repeated
until the maximum number of generations, i.e., g,u.., have been reached.
Eventually, the output of the algorithm is a single optimal partition solu-

tion to a given data-intensive BPEL process.

5.3.1 Representation

In our approach, a partitioning execution plan for a BPEL process work-
flow is represented as a tree structure, as depicted in Figure 5.3. The func-
tion set is made up of fixed activities denoted by rectangular nodes in the
tree, and the terminal set consists of mobile activities denoted by circle
nodes. Each function node can have zero or more terminals as its children
which means that the fixed activity and its children (i.e., mobile activities)
are assigned to the same partition. To capture the executional ordering

of the activities within a BPEL program, each node in the tree is associ-
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Algorithm 6 A GP-based algorithm for splitting a BPEL process for opti-

mally decentralized execution

Require: a data-intensive BPEL process, data and control dependencies

information in the process

Ensure: a feasible and optimal partitioning execution plan

1:
2:

SANES L

*®

10:
11:

Set g =1 // the current generation
Generate an initial population P filled with partition solutions ran-
domly
Evaluate the quality of each partition solution in the population using
the fitness function
while ¢ < g, do
while |P'| < |P| do
Select two candidate partition solutions from the current popula-
tion P
Perform crossover and mutation on the selected solutions and add
the offsprings produced to the new population P’
end while
Evaluate each partition solution in P’ using the fitness function
end while

return partitioning execution plan having the best fitness value
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ated with a line number indicating the position of the activity in the orig-
inal BPEL program. In addition, each node stores the information about
its data and control dependencies which are visualized by solid lines and
dotted lines, respectively in Figure 5.3.

According to the requirements of the BPEL program partitioning prob-
lem defined in Section 5.2, a feasible partitioning execution plan such as
the one illustrated in Figure 5.3 must guarantee that activities with differ-
ent control dependence cannot be assigned into the same partition unless
their control activities are in the same partition. Also, there exists no cyclic

data dependence among the partitions.

5.3.2 Selection

Tournament selection [57] as one of the most popular selection methods in
GP, is adopted by the approach to select individuals from a population to
generate new offsprings for next generation. This method holds a tourna-
ment among k individuals which are randomly selected from the original
population. The winner of the tournament, i.e., the individual with the
highest fitness among the & tournament competitors, is used to form the
basis of the next generation. In general, tournament selection is expected

to produce more diverse populations [57].

5.3.3 Crossover and Mutation

Crossover and mutation as the main genetic operators in GP are performed
on the individuals selected by the selection method described in the pre-
vious section, so as to produce the next generation. Figure 5.4 shows an
example of the crossover operation where two mobile activities in the two
trees are randomly selected and they are swapped between the two trees.
To apply the mutation operator, as illustrated in Figure 5.4, a mobile ac-
tivity in the tree is randomly selected. The activity is then moved from the
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fixed activity which it currently belongs to, to another randomly selected
tixed activity.

5.3.4 Fitness Function

A fitness function in GP is used to measure how close a particular solu-
tion is to the problem’s required outputs. In this work, the fitness func-
tion mainly focuses on the measurement of the communication overhead
incurred during the execution of a partitioning plan. As mentioned pre-
viously, our approach starts with potentially infeasible solutions and we
need to guide the search towards feasible solutions. In fact, exploiting in-
feasible search space tends to yield an optimal solution more efficiently.
Therefore, the approach allows the movement over infeasible regions of
the search space but applies a penalty to their fitness values. The com-
plete fitness function is shown in Equation 5.9 where num(d) and num(c)
reveal the quantities of violations on data and control dependencies of a
particular partitioning execution plan. It can be noted that an infeasible
solution which violates more data and control dependencies will be pe-

nalized more.

1
communication

fitness = + penalty * (num(d) + num(c)) (5.9)

where communication represents the communication overhead during the
execution process of a partitioning plan, and this can be estimated accord-
ing to the model proposed in Section 5.3.

A tree is a particularly natural structure for representing a BPEL pro-
cess, which also simplifies the checking for data and control dependencies
violations by a partitioning execution plan. According to the data and con-
trol dependencies information obtained from the original BPEL program,
the dependency constraints can be verified easily through traversing the
tree.
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As it can be observed from Equation 5.9, the first component of the fit-
ness function is expected to be maximized while the second component is
expected to be minimized. That is, the BPEL program partitioning prob-
lem is converted to a maximum optimization problem, the objective of
which is to find a feasible partitioning execution plan that has the maxi-

mum fitness value.

5.4 Experimental Studies

In order to assess the performance of the approach presented in this chap-
ter, we conduct a set of experiments based upon a number of randomly
generated data-intensive BPEL processes. Our approach is also compared
with two existing methods named MDU [61] and PGM [61] to further
demonstrate the scalability of the approach.

5.4.1 Test Cases

To the best of our knowledge, there exists no benchmark tool or frame-
work for the problem of partitioning data-intensive BPEL processes based
on EC approaches. Therefore, we generate 8 test cases randomly each of
which is a data-intensive BPEL process. Table 5.1 summarizes the hypo-
thetical data-intensive BPEL processes used to evaluate the proposed ap-
proach and they have been designed to cover various degree of complex-
ity. As can been seen in Table 5.1, each test case contains different num-
ber of fixed activities and mobile activities, as well as different number of
control branches. The complexity of the process increases as the number
of activities and the level of control dependencies increase. The rationale
behind such a design is to demonstrate the effectiveness of the approach
regardless of the complexity.
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Table 5.1: Hypothetical test cases used in the experiments.

Test case | No. of control branches | No. of fixed activities | No. of mobile activities
1 0 6 6
2 1 15 13
3 2 19 16
4 3 22 19
5 4 31 24
6 5 56 43
7 6 63 54
8 7 82 67

5.4.2 Parameter Configurations

The experiments are conducted on a personal computer with 3.0 GHz CPU
and 3.7 GB RAM. The population size of GP is 100, and the maximum
number of generations ¢,,,4, is 200. The crossover probability is 0.9 and the
mutation probability is 0.01 as we found that this combination can produce
good results.

To calculate the communication overhead presented in the model in
Section III, all necessary variables used in the calculations are generated
in our experiments as follows. The amount of input data for an atomic
data intensive service is randomly generated in the interval (0, 300]MB,
and the amount of output data is determined by multiplying by a random
factor of 0~10. For the sake of simplicity, the queue time required by a
service server is between 0~10s, all server’s data write speed (i.e., ws(s))
and process rate (i.e., pr(s)) are both 10MB/s, the transfer rate between
any two servers (i.e., bw(x,y)) is 3MB/s, and all other costs such as data
access cost and transfer cost for per unit of data are all 1.

5.4.3 Experimental Results and Analysis

To compare the performance of the three approaches, each approach is
applied on each test case shown in Table 5.1. Since our approach is non-
deterministic, 30 independent runs are performed for each test case. By
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contrast, the MDU and PGM algorithms are only performed once for each
test case due to the deterministic nature of the two algorithms. The aver-
age computation time and the average best fitness values obtained by each
approach for each test case is recorded and presented in Table 5.2.

Table 5.2: The average computation time and the average fitness values
obtained by the three approaches for the test cases (1 denotes significantly

better).
Test case | GP MDU PGM
time(s) | fitness time(s) | fitness time(s) | fitness

1 23.31 0.818 £+ 0.023 2.14 0.886 £ 0.000 | 1.52 0.869 + 0.000
2 27.84 0.815 + 0.025 3.31 0.865 £ 0.000 | 2.44 0.865 + 0.000
3 38.92 0.824 +£0.0127 | 26.77 0.813 £0.000 | 17.39 0.813 + 0.000
4 43.76 0.843 £0.0267 | 796.28 | 0.758 £0.000 | 75.67 0.758 £ 0.000
5 61.09 0.744 £0.0171 | — — 477.61 | 0.701 + 0.000
6 87.98 0.757 £0.0091 | — — - -

7 139.42 | 0.813 £0.0221 | — — - -

8 154.18 | 0.712 £0.0161 | — - — -

As it can be observed from Table 5.2 and Figure 5.5, the computation
time required by MDU and PGM exhibits exponential growth as the com-
plexity of the test case increases. For the first three test cases, the PGM
algorithm spends the least computation time in finding a solution among
the three approaches. The MDU algorithm also spends much less com-
putation time than our approach in finding a solution. However, starting
from test case 4 with 22 fixed activities, 19 mobile activities and 3 control
branches, both MDU and PGM require more time than our approach. For
example, our approach spends 43.76s in searching for an optimal solution
but the MDU algorithm needs 796.28s. When the test case becomes more
complex, neither the MDU algorithm nor the PGM algorithm is able to
tind a solution within a reasonable time period. In contrast, our GP-based
approach is always able to find a solution within 155s for all the test cases
and the computation time depicted in Figure 5.5 presents a slow increase
as the complexity of the test case increases.

In addition, we also apply the fitness function used by our approach
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Figure 5.5: The comparisons of the average computation time used by our
GP-based approach, MDU and PGM for the test cases

to the solutions found by the MDU and PGM algorithms for a meaningful
comparison of the qualities of the solutions found by the three approaches.
In order to draw sound conclusions, tests for statistical significance (z-test
with a 95% confidence level) is further conducted on the average fitness
values obtained by the three approaches for every test case. As shown
in Table 5.2, MDU and PGM can find better solutions than our approach
for the first two simple test cases. However, for the remaining test cases
in which the processes are complex, our GP-based approach outperforms
both MDU and PGM implied by the significant improvement on the qual-
ities from the statistical test.

The analysis of the preceding experimental results indicates that our
proposed approach exhibits better scalability than the other two existing
approaches. In practice, our approach is recommended for complex data-
intensive BPEL processes partitioning problems. However, the MDU and
PGM algorithms are still preferred for simple partitioning problems due

to their quick convergence and high-quality solutions.



84 CHAPTER 5. GP FOR DECENTRALIZED EXECUTION
5.5 Summary

Traditional centralized orchestration of composite web services delegates
the responsibility for coordinating the execution of a composite service to
a single workflow engine, which results in potential performance bottle-
neck and a single point of failure. Such problems could be resolved by
decentralizing execution of composite web services, however, this raises
the issue of how to partition a composite service in an efficient and effec-
tive manner. In this chapter, we propose a genetic programming based ap-
proach to realizing decentralized execution of data-intensive web service
compositions. This is achieved by splitting a data-intensive BPEL process
into a set of sub-processes which will be deployed and executed on sepa-
rate workflow engines. The data intensity of the process is considered by
adopting a mathematical model to estimate the data communication over-
head during the decentralized execution process. Compared with two ex-
isting heuristic algorithms (i.e., MDU and PGM), the experimental results
show the good scalability of our proposed approach and the superiority
of the approach over the two algorithms in solving complex problems.



Chapter 6
Conclusions

At present more and more software capabilities are delivered and con-
sumed over the Internet or the Cloud as web services which form a core
component of service-oriented architecture. In most cases, instead of a
single service, a range of web services are required to be composed to-
gether in order to provide new value-added and complex functionality.
On the other hand, in the face of tremendous web services offering iden-
tical or overlapping functionality, quality of service (QoS) characteristics
(e.g., latency, execution cost, availability) need to be considered for service
composition. In general, in addition to functional requirements, end users
have certain non-functional requirements as well for the resulting com-
posite service. For example, the latency and execution cost of a composite
service are preferred to be minimized meanwhile can achieve a relatively
high availability and reliability. Furthermore, with the exponential growth
of the amount of data generated by humanities, scientific activities, as well
as commercial applications from a diverse range of fields, it has been real-
ized that the service-oriented approach using web services is also of great
interest for the implementation of data-intensive processes such as data
mining and image processing. Due to the sustainable growth of data vol-
umes used in the fields of sciences and engineering, finance, media, online

information resources and so on, data-intensive service composition has be-

85
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come the foremost research area in academia and industry. Therefore, the
overall goal of this research work is to find an effective approach to QoS-
aware data-intensive web service composition and execution, in order to
address the effect of data intensity and realize distributed execution of
composite web services. This goal has been successfully achieved by the
proposed approaches presented in this thesis.

In this thesis, we firstly proposed a hybrid GP-Tabu approach to solv-
ing the QoS-aware data-intensive web service composition problem. In or-
der to cope with the intrinsic data-intensive nature of data-intensive web
services, a mathematical model has been proposed to estimate the commu-
nication time and costs spent on the data transfer between data-intensive
services. The approach was successfully applied to two public benchmark
datasets, both of which contain a large number of web services. The exper-
imental results showed that our new approach outperformed the simple
GP and two traditional optimization methods (i.e., TS and ILP) in finding

more satisfying data-intensive service compositions.

Next, we proposed a many-objective evolutionary approach to the prob

lem of QoS-aware data-intensive web service composition in order to ef-
ficiently optimize four conflicting quality dimensions simultaneously and
generate a set of Pareto-optimal service compositions when users are not
certain about the importance of each quality dimension. A search space re-
duction strategy was firstly applied to reduce the original search space of
the problem. Then a NSGA-III based algorithm was adopted to solve the
many-objective optimization problem. Two important evolutionary multi-
objective algorithms (i.e., NSGA-II and SPEA2) were compared with our
approach based on the same simulation experiments in order to evaluate
the effectiveness and efficiency of the proposed approach. We found that
our approach was computationally efficient due to the search space re-
duction, and it was more suitable for many-objective service composition

problems with high-dimensional objective space.

Finally, because of the drawbacks of centralized execution paradigm of
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composite web services, we proposed a GP-based approach to partition-
ing a data-intensive BPEL process which represents a data-intensive web
service composition, into a set of sub-processes that can be deployed and
executed on separate workflow engines for decentralized execution. The
data communication overhead between pairs of the resulting partitions
was also properly measured according to a mathematical model. The ex-
perimental results revealed that the proposed approach offered better scal-
ability than two existing heuristic algorithms (i.e., MDU and PGM), and it
could generate better partitioning execution plans with the least commu-

nication overhead for large-scale problems.

6.1 Future Work

Future work includes examining the effectiveness and efficiency of the
proposed many-objective evolutionary approach on the QoS-aware data-
intensive web service composition problems having higher-dimensional
objective space (i.e., more than four objectives to be optimized). The ap-
proach will also be compared with other powerful algorithms proposed
in the literature such as MOEA /D [100] to further demonstrate the supe-
riority of the approach. Furthermore, a decision making process will be
developed to assist a decision maker to compare the quality of the service
compositions in the Pareto-front evolved and find the best solution to a
given service composition problem. Finally, all the approaches presented
in this thesis will be applied in real life situations so the variables used
for estimating communication time and costs (e.g., queue time, processing
time, transfer time, etc.) can be measured with real values so as to demon-
strate the performance of the proposed approaches in solving real-world
problems.
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