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Abstract

For a diverse range of applications in machine vision from social media
searches to robotic home care providers, it is important to replicate the
mechanism by which the human brain selects the most important visual
information, while suppressing the remaining non-usable information.

Many computational methods attempt to model this process by follow-
ing the traditional model of visual attention. The traditional model of atten-
tion involves feature extraction, conditioning and combination to capture
this behaviour of human visual attention. Consequently, the model has in-
herent design choices at its various stages. These choices include selection
of parameters related to the feature computation process, setting a condi-
tioning approach, feature importance and setting a combination approach.
Despite rapid research and substantial improvements in benchmark per-
formance, the performance of many models depends upon tuning these
design choices in an ad hoc fashion. Additionally, these design choices
are heuristic in nature, thus resulting in good performance only in certain
settings. Consequentially, many such models exhibit low robustness to
difficult stimuli and the complexities of real-world imagery.

Machine learning and optimisation technique have long been used to
increase the generalisability of a system to unseen data. Surprisingly, arti-
ficial learning techniques have not been investigated to their full potential
to improve generalisation of visual attention methods.

The proposed thesis is that artificial learning can increase the general-
isability of the traditional model of visual attention by effective selection
and optimal combination of features.

The following new techniques have been introduced at various stages



of the traditional model of visual attention to improve its generalisation
performance, specifically on challenging cases of saliency detection:

1. Joint optimisation of feature related parameters and feature importance weights
is introduced for the first time to improve the generalisation of the tradi-
tional model of visual attention. To evaluate the joint learning hypoth-
esis, a new method namely GAOVSM is introduced for the tasks of
eye fixation prediction. By finding the relationships between feature
related parameters and feature importance, the developed method
improves the generalisation performance of baseline method (that
employ human encoded parameters).

2. Spectral matting based figure-ground segregation is introduced to
overcome the artifacts encountered by region-based salient object
detection approaches. By suppressing the unwanted background in-
formation and assigning saliency to object parts in a uniform man-
ner, the developed FGS approach overcomes the limitations of region
based approaches.

3. Joint optimisation of feature computation parameters and feature impor-
tance weights is introduced for optimal combination of FGS with comple-
mentary features for the first time for salient object detection. By learning
feature related parameters and their respective importance at mul-
tiple segmentation thresholds and by considering the performance
gaps amongst features, the developed FGSopt method improves the
object detection performance of the FGS technique also improving
upon several state-of-the-art salient object detection models.

4. The introduction of multiple combination schemes/rules further ex-
tends the generalisability of the traditional attention model beyond
that of joint optimisation based single rules. The introduction of fea-
ture composition based grouping of images, enables the developed
IGA method to autonomously identify an appropriate combination



strategy for an unseen image. The results of a pair-wise ranksum
test confirm that the IGA method is significantly better than the de-
terministic and classification based benchmark methods on the 99%
confidence interval level. Extending this line of research, a novel
relative encoding approach enables the adapted XCSCA method to
group images having similar saliency prediction ability. By keeping
track of previous inputs, the introduced action part of the XCSCA
approach enables learning of generalised feature importance rules.
By more accurate grouping of images as compared with IGA, gener-
alised learnt rules and appropriate application of feature importance
rules, the XCSCA approach improves upon the generalisation per-
formance of the IGA method.

5. The introduced uniform saliency assignment and segmentation qual-
ity cues enable label free evaluation of a feature/saliency map. By ac-
curate ranking and effective clustering, the developed DFS method
successfully solves the complex problem of finding appropriate fea-
tures for combination (on an-image-by-image basis) for the first time
in saliency detection. The DFS method enables ground truth free
evaluation of saliency methods and advances the state-of-the-art in
data driven saliency aggregation by detection and deselection of re-
dundant information.

The final contribution is that the developed methods are formed into
a complete system where analysis shows the effects of their interactions
on the system. Based on the saliency prediction accuracy versus computa-
tional time trade-off, specialised variants of the proposed methods are pre-
sented along with the recommendations for further use by other saliency
detection systems.

This research work has shown that artificial learning can increase the
generalisation of the traditional model of attention by effective selection
and optimal combination of features. Overall, this thesis has shown that it



is the ability to autonomously segregate images based on their types and
subsequent learning of appropriate combinations that aid generalisation
on difficult unseen stimuli.
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Chapter 1

Introduction

Humans are exquisitely efficient in selecting the most important visual
information from a scene and suppressing the remaining non-usable in-
formation. The means by which the brain prioritises the incoming infor-
mation is called “selective attention”. Replicating this ability in machines
would foster a diverse range of applications from social media searches to
robotic home care providers. However current machine vision techniques
do not exploit this ability to its full potential and need improvement.

1.1 Scope

Machine vision encompasses the design and implementation of systems
that allow machines to recognise objects and transform the incoming in-
formation, such that it is adequate for tasks typically requiring human
vision. It includes detecting salient objects in a scene/image.

Most of the applications in machine vision have to deal with large
amounts of data, so the computational complexity related to image inter-
pretation in such applications is high [131]. Despite active research in ma-
chine vision and robotics, many real-world tasks such as object of interest
detection and search, which are easily performed by humans, are still chal-
lenging for machines. In order to deal with these demands, researchers

1
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in computer vision, machine vision and graphics have investigated the
exploitation of concepts from human selective attention to prioritise infor-
mation. This reduces the processing of irrelevant data and hence improves
the computational load of subsequent algorithms. The usage of artificial
systems that attempt to mimic human selective attention has led to the
development of computational models of visual attention.

The majority of current methods introduced for modelling visual atten-
tion follow the traditional model of visual attention [66]. These methods
compute multiple features at the first stage of processing and subsequently
integrate them to obtain a so-called saliency map that highlights objects or
regions in the input image. Despite intense research and substantial im-
provements in benchmark performance, the performance of many models
depends on tuning of parameters in an ad hoc fashion. Additionally, the
design choices are heuristic in nature, often resulting in good performance
in only certain settings. Occasionally, the poor performance of heuris-
tic methods may be attributed to the expectation that a heuristic will fit
to all situations. Consequentially, many such models exhibit low robust-
ness to difficult stimuli and struggle to generalise to challenging cases of
saliency detection, such as similar foreground and background, cluttered
background and multiple salient objects.

Machine learning and optimisation technique have long been used to
increase the generalisability of a system to unseen data [142]. Surprisingly,
artificial learning techniques have not been investigated to their full poten-
tial to improve generalisation of visual attention methods. Therefore, new
methods are needed to incorporate artificial learning at various stages of
the visual attention model in order to extend its generalisability to chal-
lenging cases in machine vision.
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1.2 Motivation

There are a number of factors that affect the performance of a computa-
tional method for visual attention. On a broad scale these factors include,
important parameters of the feature computation process, the functions
chosen to condition features, assignment of importance to features and
the function chosen to combine features, have a great influence on the
overall performance of a saliency model. A general structure of the tra-
ditional computational model of visual attention that was introduced by
Itti et al. [66] is shown in Figure 1.1. It has three stages as labelled in
the figure. The first stage involves feature extraction (along with choice of
feature related parameters), the second stage performs feature condition-
ing using a normalisation function and the final stage is responsible for
weighted combination of the feature maps to construct the saliency map.
Many methods that follow the traditional model of Figure 1.1, employ hu-
man encoded parameters and region based feature computation at stage
1, a fixed normalisation function at stage 2, neglect relative feature impor-
tance and adopt a heuristic combination function at stage 3. These fixed
and heuristic choices often lead to poor generalisability in current meth-
ods.

The traditional computational model of attention requires numerous
design choices, such as the number of layers in the image pyramid, types
of image pyramids, number and parameters of orientation filters, designa-
tion of centre and surround levels, feature importance weights, etc. These
parameters greatly affect the performance of the overall computational
method for visual attention. One important question is therefore how to
learn the best suited options for these various design choices, as this has
been not been systematically investigated in previous work.

For the first two stages of processing, the traditional computational
model of visual attention employed a 5×5 filter size to compute the image
pyramid (Figure 1.1). In contrast, Frintrop [43] found a 3 × 3 convolution
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Figure 1.1: The traditional computational model of visual attention pro-
posed by Itti et al.[66]. The factors that influence performance are high-
lighted at each stage. The normalisation function in stage 2, weights
(w1, w2, w3) and the integration function in stage 3 constitute a combina-
tion scheme.

filter to be more useful in her experiments, while in another study Frin-
trop et al. [44] found a filter size of 15 × 15 pixels to work well. Itti et
al. proposed the use of nine spatial scales for the image pyramid, while
Klein and Frintrop [77] found 8 spatial scales to work well in their experi-
ments. For the orientation channel, the traditional computational model of
attention [66] employed four orientations for the filters (0o, 45o, 90o, 135o).
Wischnewski et al. [141] found five orientations (0o, 36o, 72o, 108o, 144o) to
be more useful, while Bian and Zhang [112] proposed unique orientations,
i.e. 0o, 4o, 8o, 16o.

At the final stage of the saliency computation process (see Figure 1.1),
Zhao et al. [153] found the orientation feature to be more informative than
intensity and colour features for eye fixation prediction. Judd [71] reported
colour to be a better predictor of human eye fixations than several other
features, while Cerf et al. [23] found that people looked more at faces (in
their experiments), making the face channel more important than inten-
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sity, colour and orientation features.

The large number of design choices and complex interactions between
various parameters of the model cause the search space to grow enor-
mously. In most cases, it becomes impractical to exhaustively sweep through
the entire search space and an efficient search approach appears to be
necessary to address this problem. A few methods [65, 72] attempt to
learn the feature importance to improve generalisation. However these
methods use human encoded parameters for the majority of the design
choices. As these methods employ classification techniques to learn fea-
ture importance, it is not feasible for them to perform parameter search. By
only learning feature importance, they neglect the importance of param-
eter tuning and fail to capture the interactions between the different pa-
rameters that may help in improving generalisation. Genetic Algorithms
are global optimisation methods that can jointly search the important pa-
rameters and the feature importance such that the difference between the
model’s prediction and the target output is minimised (please see sec-
tion 1.2.1 for further details.). The optimised parameters can then be em-
ployed by the model to increase generalisation on unseen images.

An important related question is, which features can best enable the
system to generalise on challenging cases of saliency detection. A vast va-
riety of bottom-up and top-down features have been investigated for eye
fixation prediction and found to be very useful. In the case of salient object
detection, comparatively fewer features are proposed and region based
approaches strongly dominate. Region based approaches refer to those
techniques that divide the image by grouping its pixels into small homo-
geneous regions before saliency computation. The shortcomings of these
models are that they fail to uniformly highlight the salient (target) object
and can completely miss parts of the salient objects in the final saliency
map. Dividing the images into regions before saliency computation is
the cause of these undesired artifacts where object boundaries are not re-
spected and objects are cut into pieces. The recent approach of Ming et al.
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[26], termed as SIA, attempted to overcome the problem of non-uniform
saliency assignment by replacing hard object boundaries with soft image
abstractions. The approach of Ming et al. groups initial hard clusters into
more semantically meaningful clusters without specifying the number of
clusters. The final clusters are formed based on the underlying image dis-
tribution. However, the response of SIA is still subject to non-uniform
saliency assignment when the regions resulting from soft abstractions also
fail to respect object boundaries.

A potential solution to the non-uniform saliency inside objects can be
inspired by image matting. Matting is the process of blocking out un-
wanted information in the visual scene and only allowing important infor-
mation to appear in the output. The concept of matting can be employed
to salient object detection where only the salient object information is al-
lowed to pass to the output, while the unwanted background information
is blocked. Matting can be performed by computing the matting compo-
nents of an image, which can span any foreground and background com-
ponents of an image. The fundamental problem in employing matting
components to salient object detection is to identify and select only those
matting components that belong to the foreground salient object and sub-
sequently combine them to form the foreground object saliency.

The question of how to normalise and combine features (coming from
different modalities) into a saliency map is vital for good performance.
Harel et al. [50] obtained improved results by iteratively conditioning their
final map in different cases. Prior works have also observed that different
conditioning and combination strategies work for different types of im-
ages [65, 103]. For instance, the feature conditioning required for images
having simple backgrounds will be different from those for images with
cluttered backgrounds. However, none of the previous methods have investi-
gated image specific learning of combination schemes to increase generalisation.
A previous method [100] also acknowledged that performance of saliency
methods varies with images and learned to combine the images so that
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performance gaps between different models are minimised. However, it
did not learn which normalisation and conditioning would suit a partic-
ular type of image and only relied on feature importance to minimize the
gaps amongst model performance. The choice of normalisation and con-
ditioning can be encoded as variables in a genetic algorithm framework
along with feature importance, such that the parameters that maximize the
agreement between model’s output and the target output can be searched.
In addition, the niching property of a Learning Classifier System (LCS)
can be employed to perform image specific learning of feature combina-
tion schemes. An LCS can learn an image specific mapping of each image
type to different feature combination strategies and autonomously iden-
tify the suited combination scheme to an image type.

Recent approaches in semi-supervised image classification and image
retrieval require a small amount of labelled data and in contrast a large
amount of unlabelled data [53, 156]. For visual saliency applications to
aid computer vision approaches in such scenarios, there is a need to rank
saliency results without the availability of ground truth data. This is also
desirable in cases where a single best performing saliency map is preferred
over all other maps for every image as the final output of the method.
Moreover, in some saliency scenarios, it may be desirable to detect a noisy
feature and exclude it from the combination to avoid unnecessary back-
ground noise. While there is not much previous work in this domain, a
handful of related approaches have been introduced that attempt to select
a single best performing map from a group of maps [27, 49, 56]. These ap-
proaches work well with a wide variety of images, however they can not
handle difficult image types and cases where more than three features are
involved. This is because these techniques select a map based on a few
general properties associated with a good saliency map on the basis of
prior knowledge. These simple observations do not generally hold on dif-
ficult image types (for visual examples, please see chapter 8 and chapter
9). Hence there is a need for devising cues that can determine the quality
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of feature maps without the target label data. Such cues, once determined
can be combined to form a robust quality measure of a feature/saliency
map that can assist in dynamic selection of good quality features.

1.2.1 Why Genetic Algorithm?

Genetic Algorithm (GA) is an effective evolutionary technique for global
optimisation and search. It is deemed suitable to address the global opti-
misation of important parameters of the visual attention model due to the
following reasons:

1. Several efficient constrained optimisation techniques have been pro-
posed in the literature to address problems with integer constraints
[12, 16]. These techniques work well for a class of problems that
are convex in nature, however when applied to non-convex prob-
lems, they might exclude the global optimum while constraining
the search space. A class of such methods requires domain knowl-
edge about the optimisation problem. While an alternative approach
transforms the optimisation problem into a convex equivalent. Evo-
lutionary computation techniques are competitive in large search
spaces. Moreover, they do not require any prior knowledge of the
search space and does not restrict the search space in the absence of
constraints to be convex.

2. Evolutionary approaches such as genetic programming [81] and par-
ticle swarm optimisation [74] are also well suited for integer con-
straint based global optimisation and have proved valuable in ad-
dressing such problems. Several justifications for specifically con-
sidering a GA for this work are as follows:

(a) GAs provide a natural way to encode the real and integer pa-
rameters in a vector.
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(b) The integer handling can also be easily encoded in the GA and
appropriate integer handling operators have been investigated
in the past and are well-established [32].

(c) GAs are easy to implement and have fewer parameters as com-
pared with several EC techniques.

The main contribution of this work is the introduction of joint learning
framework in the traditional computational model of visual attention, in
order to increase its generalisability and not the comparison of the best
suited optimisation technique.

1.2.2 Why Learning Classifier Systems?

Learning Classifier Systems (LCSs) are well known evolutionary machine
learning algorithms that learn a population of classifier rules, which collec-
tively address a problem. LCSs are a suitable method for learning feature
combination in saliency detection for the following reasons:

1. LCSs are suited to image-specific learning of feature combination
schemes, as they autonomously divide the search space into niches,
so that a specific classifier in LCS can cover images of an identified
type.

2. LCSs are highly flexible in terms of encoding of condition and action
parts as compared with other rule based EC and non-EC techniques,
which enables them to address multiple image types.

3. Due to their if condition then action rules, LCSs have the ability to
autonomously learn and select the appropriate combination scheme
based on the type of input image (if image features then combination
scheme).
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1.3 Thesis Statement

The proposed thesis is that artificial learning can increase the generalis-
ability of the traditional model of visual attention by effective selection
and optimal combination of features.

1.4 Thesis Goals

The overall goal of this thesis is to improve the generalisation of the tra-
ditional model of visual attention on unseen images and improve adapt-
ability to data driven saliency applications. This goal is divided into the
following sub-goals/objectives:

1. Develop a method to learn the various design choices of the com-
putational model of visual attention for increased generalisation to
unseen images. To achieve this goal the following research objectives
have been set.

(a) Develop a new method that maximises the agreement between
predicted saliency and the ground truth fixations for joint learn-
ing of feature importance and search for important parameters.
The introduced method will be compared against the baseline
method that employs fixed design parameters on the task of hu-
man eye fixation prediction.

2. Investigate novel features that seek to partition the image into fore-
ground and background regions. These features will model saliency
computation as a figure-ground segregation problem for accurate
foreground background segmentation. To achieve this goal, the fol-
lowing research objective has been identified.

(a) Devise a new matting based feature that can mitigate the ad-
verse affects of region based saliency computation such as in-
appropriate annotation and non-uniform saliency assignment.
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Inappropriate object annotation and non-uniform saliency as-
signment are undesired characteristics of a saliency map. In the
former, background regions are falsely highlighted, while in the
latter, notably different saliency is assigned to various salient
object regions. It is anticipated that the new feature will be able
to uniformly highlight the salient object and generate saliency
maps with minimal background noise. The proposed feature
will be compared with well-known region based saliency meth-
ods on the task of salient object detection and segmentation.

3. Develop an approach that enables joint learning of feature related
parameters and feature importance weights for the combination of
complementary features for salient object detection. It is hypothe-
sised that joint learning of feature related parameters by optimisa-
tion of an object detection based objective, the generalisability of the
salient object detection method can be improved. To achieve this
goal the following research objectives have been set.

(a) Develop a novel method for joint learning of important param-
eters by minimising the difference between predicted saliency
and the ground truth segmentations for the task of salient ob-
ject detection and segmentation.
It is anticipated that the proposed method will obtain better fea-
tures than features obtained through fixed parameters and com-
bine them more efficiently than the baseline method.

4. Develop methods to autonomously identify a suitable combination
scheme based on image type. It is anticipated that by learning mul-
tiple combination schemes and employing the best-suited scheme
based on each autonomously identified image type will improve the
generalisability of the traditional visual attention model on unseen
image types. The following research objectives have been formu-
lated to achieve these goals.
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(a) Develop a new multiple GA based approach for learning mul-
tiple feature combination schemes based on semi-autonomous
identification of image types. The proposed method will be
compared with classification based benchmark learning meth-
ods and other state-of-the-art methods on the task of salient ob-
ject detection.

(b) Develop a novel computed action based Learning Classifier Sys-
tem (LCS) for learning multiple feature importance rules through
autonomous identification of image types. It is anticipated that
the LCS based technique will be able to learn maximally general
feature importance rules by natural division of the images into
niches. The developed method will be evaluated on the task
of salient object detection using the standard evaluation proce-
dures [3].

5. Investigate label free evaluation1 of feature/saliency maps to select
discriminative features based on their quality. It is hypothesised that
quality based feature/saliency selection will improve the adaptabil-
ity of the proposed approach to complementary feature selection and
saliency aggregation tasks (for details of these tasks, please see the
background chapter). The following research objective is defined to
achieve this goal.

(a) Develop unique cues to measure a feature/saliency map’s qual-
ity without the knowledge of ground truth in order to autonomously
identify discriminative features for appropriate feature combi-
nations. It is envisioned that the developed system will be able
to select features with high saliency prediction capability and
deselect unimportant features during combination. The result
will be an improved saliency output with improved adaptabil-

1Label free evaluation of feature/saliency maps refers to measuring the quality of
maps without any ground truth data.
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ity to tasks such as complementary feature selection and saliency
aggregation. The introduced system will be evaluated by its
performance comparison with well known saliency detection
methods on the tasks of feature selection and saliency aggrega-
tion. Further evaluation of the proposed system will be con-
ducted by comparing its salient object detection performance
with the state-of-the-art salient object detection models.

Finally, these sub-goals/objectives will be brought together to analyse the
effect of each contribution on the complete system.

1.5 Thesis Contributions

This thesis contributes to the following important issues in the field of
machine vision in general and specifically in the field of salient object de-
tection.

1. Joint optimisation of feature related parameters and feature impor-
tance weights was introduced to improve the saliency detection per-
formance of the traditional visual attention model. Important pa-
rameters of the feature computation process and feature importance
weights were learned by optimising a task specific objective func-
tion for human fixation prediction. By maximising the agreement
between predicted saliency and the target (human fixations), the pro-
posed GAOVSM method improved upon the performance of eight
deterministic state-of-the-art saliency detection techniques on the task
of human fixation prediction.

2. Spectral matting was employed for the first time in saliency predic-
tion to combat the artifacts of region-based approaches for salient
object detection. A novel saliency method for figure-ground segrega-
tion (termed as FGS) was introduced that employed matting compo-
nents to construct smooth, uniform and accurate saliency maps. The
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FGS method was able to overcome the artifacts of regions-based ap-
proaches by assigning uniform saliency to object regions while sup-
pressing unwanted background information. As supported by the
quantitative performance on salient object detection, the proposed
FGS approach improved upon several state-of-the-art techniques.

3. Joint optimisation of feature computation parameters and feature
importance weights was introduced for optimal combination of FGS
with complementary features. Feature related parameters and their
respective importance was learned at multiple segmentation thresh-
olds by maximising the area under the precision-recall curve as an
objective. The developed FGSopt method improved the object de-
tection performance of the FGS technique and improved upon sev-
eral state-of-the-art salient object detection models by considering
the performance gaps amongst features.

4. Semi-Autonomous identification of image type was introduced to learn
multiple feature combination schemes. Multiple combination schemes
were learned from distinct image groups using multiple Genetic Al-
gorithms (GAs). Images were placed into distinct groups using a
semi-autonomous method that relied on their feature composition.
By employing a suitable combination scheme for each unseen im-
age type, the proposed image based GA (IGA) approach exhibited
better generalisation as compared with a baseline GA that learned a
single combination scheme. The IGA method also exhibited signifi-
cantly better performance as compared with two classification based
benchmark methods and three state-of-the-art models on the task of
salient object detection.

5. Introduced autonomous identification of image types for learning mul-
tiple feature importance rules in order to increase the generalisabil-
ity of the system on unseen image types. A supervised XCS based
method was introduced that divided the search space into niches in
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order to learn effective feature importance rules. This was achieved
by employing a novel encoding scheme and a suitable action com-
putation function. The proposed XCS based method improved upon
the performance of the previously proposed multiple GA based method
by obtaining a set of generalised feature importance rules.

6. Novel cues were established for dynamic feature selection in order
to advance the current state of complementary feature selection and
feature/saliency aggregation. Saliency quality measuring cues were
introduced to seek discriminative features for appropriate combina-
tions. Label free measurement of feature quality enabled the pro-
posed feature selection method to improve upon the state-of-the-art
in complementary feature selection and saliency aggregation. The
proposed DFS based object detection method also improved upon
seven state-of-the-art salient object detection methods.

1.6 Thesis Organisation

The rest of the thesis is organised as follows: chapter 2 presents the related
work and background information. Chapter 3 to chapter 8 present major
contributions of this thesis to achieve the corresponding goals listed out
in this chapter. Figure 1.2 presents the general structure of these contri-
butions chapters. Chapter 9 presents discussion on the interaction of the
proposed approaches, while chapter 10 presents the main conclusions and
highlight future directions.

Chapter 2, presents an introduction of the general structure of the tradi-
tional model of visual attention and gives an overview of the various avail-
able design choices. Important related work proposed for salient object de-
tection is reviewed with important shortcomings highlighted, which form
the motivation for the work presented in this thesis. Background infor-
mation about the machine learning methods introduced in this thesis, i.e.
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Figure 1.2: General structure of the contributions chapters.
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Genetic Algorithms and Learning Classifier Systems are also presented.

In chapter 3, the traditional model of visual attention is equipped with
the ability to learn important parameters through joint optimisation of fea-
ture related parameters and feature importance. By utilising the learned
parameters, the resulting method is able to exhibit better generalisation as
compared with the baseline counterpart and other benchmark methods.

The extended traditional model introduced before is not anticipated to
work well on the task of salient object detection due to its simplistic fea-
tures. The existing region-based feature computation approaches face in-
herent unwanted artifacts of region-based processing. A spectral matting
based figure-ground segregation system (FGS) is introduced in chapter 4
to overcome the artifacts encountered by region-based salient object detec-
tion approaches. By suppressing the unwanted background information
and uniform saliency assignment to object parts, the FGS approach im-
proves upon several state-of-the-art salient object detection approaches.

In chapter 5, the generalisation performance of the FGS approach is
improved by optimal combination of FGS with complementary features.
The feature related parameters and importance are learned by considering
the gaps between individual feature performance. The resulting method
improves the generalisation performance of the FGS approach on unseen
images for salient object detection. The improved figure-ground segrega-
tion approach also shows better performance as compared with several
current state-of-the-art salient object techniques.

In chapter 6, multiple feature combination schemes each suited to a
particular image type are introduced to further enhance generalisation of
the saliency method. A semi-autonomous strategy is introduced to group
images according to their types. By application of appropriate combi-
nation strategies to unseen image types, the resulting method improves
the generalisability of a single combination scheme based method, while
exhibiting better performance as compared with two classification based
benchmark methods and several deterministic state-of-the-art models for
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salient object detection.
In chapter 7, a fully autonomous grouping technique is introduced to

overcome the limitations of the semi-autonomous approach of chapter 6
and to further enhance generalisation. The images are grouped into niches
according to image type and multiple feature importance rules are learned
each suited to a particular image type. By more accurate grouping of im-
ages and appropriate application of feature importance rules, the result-
ing method improves upon the performance of the semi-autonomous ap-
proach.

In chapter 8, a method is introduced to autonomously select the best
feature maps for combination while neglecting undesired features on an
image-by-image basis. To detect best performing maps and deselect the
unwanted ones, novel feature quality measurement cues along with a clus-
tering technique are introduced. The ability to judge features dynamically
aids the benchmark methods to neglect unwanted redundant features and
improve salient object detection performance.

Chapter 9 discusses the interconnections between the proposed ap-
proaches, the interaction of proposed systems in terms of a unified model
and recommendations for future salient object detection models.

Chapter 10 presents the achieved objectives and major contributions of
the thesis along with suggesting open questions for future research.



Chapter 2

Background

This chapter starts with an introduction to the general structure of the tra-
ditional model of visual attention and gives an overview of the available
design choices. Section 2.2 introduces important methods proposed for the
task of salient object detection, highlights their shortcomings, forming the
motivation for the work presented in this thesis. Section 2.3 provides an
overview of the machine learning methods adapted in this thesis to over-
come the limitations of the previous methods by improving generalisation
in salient object detection.

2.1 Computational Methods of Visual Attention

Inspired by the efficiency of the human visual attention system, researchers
in computer vision, human-computer interaction, robotics and computer
graphics are exhibiting increased interest in a mechanism that selects the
most relevant information from a huge amount of input visual data. The
objective of making such an approach is to improve vision systems and to
understand human visual perception. The desired output for such mecha-
nisms is a 2D map of the real world where a numerical value is associated
with each location that is the likelihood of attending to it. Generally, these
methods are similar in structure but have some variation in the details.

19
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2.1.1 General Structure of Computational Models

The general structure followed by the majority of visual attention models
is depicted in Figure 2.1. The model is adopted from Feature Integration
Theory of Attention [130] and Guided Search model [143]. The first algo-
rithmic implementation of the model appeared in the work of Koch and
Ullman [79]. Since the first computational model of Koch and Ullman,
many computational models have been introduced in the literature, many
of which are extensions of the baseline Itti model [66]. In this chapter,
the details of the specific model by Itti et al. [66] are discussed due to
its validity as demonstrated by its applications for theoretical understand-
ing of human attention and its practical applications for attention based
systems. Furthermore, it has been adapted by many previous studies for
understanding human selective attention [65, 107, 134, 153, 154].

The basic idea of the model is to find the regions of the input that differ
from their surroundings. The computational model of attention employs
three basic features; colour, intensity and orientation. By choosing these
three particular features, the contrast is restricted to these domains.

The original image I is subjected to linear filtering and sub-sampling
to obtain an image pyramid with l levels. An image pyramid consists of
a number of filtered images where the number is defined by the levels l.
Each level is obtained by convolving the input image received from the
previous level by convolution with a separable Gaussian filter and deci-
mation by a factor of two. Each map of the intensity pyramid is subjected
to the following operation to obtain an intensity pyramid MI(l)

MI = mean(R,G,B), (2.1)

where R, G, and B are red, green and blue values of the colour image.
The idea of mapping the colour to opponency axes is to cover the entire

visible light [58], while the specific transformation is to eliminate the in-
fluence of illumination. For this purpose, red-green (RG) MRG(l) and blue
yellow (BY) MBY (l) pyramids are obtained by subjecting each level of the
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Figure 2.1: The general feature-based computational model of visual at-
tention.
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image pyramid to the following colour opponency transformation.

MRG =
R−G

max(R,G,B)
,MBY =

B −min(R,G)

max(R,G,B)
(2.2)

Local orientation pyramids Mθ(l) are obtained by Gabor filtering of the
intensity pyramid levels using the convolution operation:

Mθ(l) = ‖MI(l) ∗Gψ1(θ)‖+ ‖MI(l) ∗Gψ2(θ)‖ , (2.3)

where the Gabor filter is expressed as:

Gψ(x, y, θ) = exp

(
− x̂

2 + γ2ŷ2

2δ2

)
cos

(
2π
x̂

λ
+ ψ

)
x̂ = x cos θ + y sin θ

ŷ = −x sin θ + y cos θ.

(2.4)

Here in (2.4), γ represents the aspect ratio, δ represents the standard de-
viation, wavelength of the filter is λ, orientation θ represents four local
orientations θ1,θ2,θ3,θ4, and phase ψ represents the two phases ψ1,ψ2.

Figure 2.2 illustrates the effects of varying the wavelength (λ) and elon-
gation (γ) on the Gabor filter kernel, while Figure 2.3 depicts the effect of
varying orientations (θ) and phase (ψ). All other parameters are kept fixed.
It can be observed that increasing γ increases the ellipticity and support of
the Gabor function, while increasing the wavelength has an obvious effect
on the visible parallel excitatory and inhibitory stripe zones. The param-
eter θ changes the orientation of the normal to the parallel stripes of the
Gabor function, which in turn affects the specific orientations captured
during the filtering operation. The change in ψ correspond to symmetric
and anti-symmetric functions imitating the “centre-on” and “centre-off”
functions of the human visual system as depicted in Figure 2.3.

Centre-surround visual receptive fields are implemented by across scale
subtraction (	) between centre (c) and surround (s) levels to obtain feature
maps. Levels in the pyramids are designated as centre (c) and surround
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Wavelength (λ) = 5

Elongation (γ) = 0.6

Wavelength (λ) = 10

Elongation (γ) = 0.8

Wavelength (λ) = 15

Elongation (γ) = 1

Figure 2.2: Effects of the wavelength (λ) and elongation (γ) on the support
of the Gabor filter kernel.

levels (s) based on their position in the pyramid. The centre-surround op-
erations capture the within contrast of the maps by comparing the average
value of the centre region (c) to the average value of the surround region
(s)

FC,I,O = N (|M(c)	M(s)|),

∀M(l) ∈ {MI(l)} ∪ {MC(l)} ∪ {MO(l)}, (2.5)

where MC(l) = {MRG(l)}∪{MBY (l)},
MO(l) = {Mθ1v(l)}∪{Mθ2v(l)}∪{Mθ3v(l)}∪{Mθ4v(l)} and N (.) is a simple
normalisation operator used to scale the values in feature maps to a fixed
range [0,M]. Other complex forms of normalisation operations that are
commonly employed to eliminate any differences between non compara-
ble modalities (extracted using different extraction mechanisms) are dis-
cussed below.
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Orientation = 0

Phase = 0

Orientation = 45

Phase = 180

Orientation = 90

Phase = −90

Figure 2.3: Effect of varying orientations and phase on the Gabor filter
kernel.

For each feature from (2.5), the feature maps are combined using across-
scale addition (⊕), across centre-surround (c-s) scales and the results are
normalized again to the same range:

F
′

C,I,O = N (FC,I,O(c)⊕ FC,I,O(s)). (2.6)

Conspicuity maps are then computed by summing all the sub-features for
each general feature and subsequent normalization.

CI = FI (2.7)

CC = N (FRG + FBY) (2.8)

CO = N (Fθ1 + Fθ2 + Fθ3 + Fθ4) (2.9)

Finally, all conspicuity maps are weighted and combined linearly to pro-
duce the saliency map S.

S =
1

3
(wICI + wCCC + wOCO) (2.10)
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The saliency map S is a gray-scale image that depicts the level of impor-
tance of a pixel by its brightness.

The saliency map is the final output of most computational models,
however, some applications require attending to more than one salient re-
gion to mimic human saccades. The salient regions are the local maxima
in the saliency map and are attended to in a sequential fashion using a
winner-take-all (WTA) approach [78]. A notion of inhibition of return (IOR)
[115] is implemented to ensure that the focus of attention does not remain
fixated at the most salient location. As this thesis is concerned with salient
object detection in static images, the final saliency output of the saliency
detection system is of concern but any subsequent processes of attending
to a location and generation of a saccades are out of the scope.

An important aspect in any attention system is determining the relative
importance of the various features during fusion. Usually a weighting
function is applied to each map before fusion. Additionally, as the maps
come from non-comparable modalities, it is important to eliminate any
differences before their combination. Finally, the choice of integration of
the maps to form the final saliency map carries utmost importance. It is
worth highlighting that the issues concerning the relative importance of
features and choice of integration are not considered by the model of Itti
et al. [66]. However they greatly influence the performance of the visual
attention system. The following sections provide details regrading these
processes.

Feature Weighting

The weight assigned to a feature quantifies its relative importance in pre-
dicting saliency. Each feature map is multiplied by its corresponding weight
during the combination process to control its relative contribution to the
final saliency map. These weights represent the top-down information
based on prior information about the features that are important for a
given task. A class of methods try to find suitable values for this top-down
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information in order to optimise the behaviour of the saliency method.

Normalisation

As various feature maps come from different modalities and dynamic ranges,
they are not immediately commensurate. Therefore, a scheme is required
that promotes feature maps with a small number of strong peaks of activ-
ity (“odd man out”), while suppresses maps exhibiting comparable peak
responses at numerous locations in the visual scene. This is achieved
through normalisation normalisation1, which is a crucial step in feature
combination. Some normalisation functions reported in the literature are
global and iterative [65]; identity, exponential and logarithmic [103], and a
selection can be expressed as follows:{

x, exp(x),
−1

log(x)
,

1

1 + exp(−x)
, x(M − m̄), x+ x ∗ DoG

}
, (2.11)

where DoG is the difference of Gaussian filter and ∗ denotes convolution.
M is the global maximum of the feature map and m̄ represents the local
minimum of the feature map.

Figure 2.4 demonstrates the importance of applying appropriate nor-
malisation scheme as per the input type. Two different examples are se-
lected for illustration purposes. The first row presents a synthetic feature
map containing numerous strong peaks, while the second row features a
real retina image considered here as a feature map with intensity repre-
senting saliency in both cases. The second column in Figure 2.4 plots the
3D profiles of the input feature maps, while the third and fourth columns
present the profiles after subsequent normalisations. The applied normal-
isation scheme in Figure 2.4 is DoG. The difference of Gaussians DoG is an
approximation of Laplacian of Gaussians and allows for relatively simpler
and faster computation [82].

1The normalisation function used in the context of saliency detection methods is more
general than the linear scaling understood for the conventional normalisation function.
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Input
Original Filtered (iterations=3) Filtered (iterations>7)

Input

Original Filtered (iterations=3) Filtered (iterations>7)

Figure 2.4: Importance of the normalisation scheme suited to input type.
The red arrows are drawn to highlight the strong activation peaks. Plots
in column 2 and 3 of the second row are rotated for better visualisation of
the strong peaks.

It can be observed that for the first row map, the filtering operation
uniformly suppresses all the activation peaks up to three iterations. Going
beyond three normalisation iterations, a few peaks are disproportionately
suppressed, while several others appear as strong peaks in the output.
This behaviour of the applied normalisation scheme suggests that it is not
suited for maps that have several equal strong peaks in their landscape.
In contrast, the 3D profile of the retina map (in the second row) appears
to have one strong activation peak surrounded by several weaker ones
that constitute the noise in the map. Conversely, on the retina image, the
DoG based normalisation is highly effective in suppressing the noisy peaks
and aid the strong peak to stand out. Notably, increasing the number of
iterative normalisations for the second row map results in complete sup-
pression of the unwanted noise, while strengthening of the strong peak.

The illustration of Figure 2.4, stresses the importance application of



28 CHAPTER 2. BACKGROUND

Figure 2.5: Choice of integration operation depending upon the types of
input features.

appropriate normalisation scheme depending upon the input map type.
No prior investigation has been conducted into which of the schemes is
best suited to various types of images and settings.

Integration

The mathematical operation that combines the feature maps to produce
the final saliency output is termed the integration function. Addition of
feature maps has been typical for most methods [13, 72, 153, 154]. How-
ever, Klein et al. used element-wise multiplication [77] and Gazit et al.
used the harmonic mean [52] to integrate the feature maps. These integra-
tion functions can be expressed as follows:

n∑
i=1

xi,
n∏
i=1

xi,

(
1

n

n∑
i=1

1

xi

)�1
 . (2.12)

The simple summation of the features is not necessarily the best choice
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as a high value falsely assigned to a background pixel by a feature can cor-
rupt the final saliency response. Element-wise multiplication may seem a
better choice as multiple feature maps have to predict a pixel as salient for
it to be considered salient in the final response. However, this approach
has the potential of producing saliency maps with low recall. The har-
monic mean of maps is only suited to features containing outliers; mean-
ing background pixels falsely predicted as salient. Conversely, on features
with fewer outliers, it may negatively affect the strong salient peaks in the
feature maps.

As an example, Figure 2.5 illustrates the importance of appropriate in-
tegration scheme selection as per map type. The input stimulus is a syn-
thetic psychological pattern employed in pop-out search tasks. The ob-
jects having different shapes orientation or colour are likely to pop-out
in a search task, while the similar shape and colour objects are distrac-
tors. Feature maps F1, F2 and F3 are created to illustrate the importance of
choice of integration based on feature type. Several feature combinations
are depicted in the second row of Figure 2.5.

It can be observed that the addition of F1 and F2 results in a good out-
put map. The reason for this result is that F1 and F2 are highly uncor-
related capturing totally different subsets of the input. Conversely, the
element-wise multiplication of F1 and F2 results in an all zeros, as they do
not have anything in common. In contrast the addition of F1 and F3 results
in including several distractors, while their product results in a better map
containing a subset of the target objects. The reason for this result is that
F1 and F3 are correlated in terms of including the same target objects.

2.1.2 Choice of Parameters to be Optimised

The performance of computational models of visual attention heavily de-
pends upon tuning several design parameters discussed in the previous
sections. A few examples are:
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1. Choosing the type (Gaussian or Laplacian) and levels of image pyra-
mids.

2. Optimal modelling of visual receptive fields, difference of Gaussian
filters (for non oriented features) or Gabor filters (for oriented fea-
tures) [65].

3. Appropriate application of normalisation and integration schemes,
depending upon the input type.

4. Optimal weighting parameters.

Each of these design choices have a profound effect on the final saliency
output of the computational model. They are also interconnected and are
affected by each other [75]. Moreover, it can be intuitively realised that the
quality of computed features will affect the relative feature importance
weights.

Despite the introduction of methods to learn feature weightings (sec-
tion 2.2.1), no previous method has been discovered that can jointly opti-
mise the important parameters and the feature importance weights. Addi-
tionally, no prior effort has been made to identify appropriate normalisa-
tion and integration schemes, depending upon the type of input imagery.

After discussing the general structure of computational model of vi-
sual attention and the need for effective search of design choices, the next
section will discuss the task of salient object detection. Important compu-
tational methods built for the task of salient object detection as reported in
the literature will be discussed.

2.2 Salient Object Detection

Most computational methods of attention were built for human fixation
prediction inspired by human perception [13, 72, 106]. Recently, visual
saliency has attracted much computer vision research, giving rise to a new
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Figure: T,L

Salient object: L

Figure 2.6: Difference between salient object detection and figure-ground
segmentation. For the first two images, a salient detection algorithm is
expected to segment out the red pin in the first image and only the pink
region in the second image (both depicted by blue contours). Contrarily,
a figure-ground segmentation is likely to segment the regions inside the
green contours as foreground. On the physiological pattern in the right
corner, the figures should be perceived as all the letters, while a salient
object detection algorithm will only consider L as important.

subdomain known as salient object detection. In salient object detection,
the task is to detect the salient, attention grabbing object(s) in a scene.
In essence, salient object detection is similar to the problem of figure-
ground segmentation as both seek to separate foreground objects from
background. The suttle differences between the two fields are depicted
in Figure 2.6. Salient object detection also differs from the traditional seg-
mentation problem, where the task is to partition the image into perceptu-
ally homogeneous regions. It is a difficult problem in computer vision as
natural scenes can have objects with cluttered backgrounds (making it dif-
ficult to distinguish the object from background) and can contain multiple
ambiguous salient objects. The next section explores a few important ap-
proaches to salient object detection, groups them into different categories
and highlights their shortcomings paving the way for the methods intro-
duced in this work.
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2.2.1 Important Computational Methods for Salient Object

Detection

The methods introduced in the literature for the task of salient object de-
tection can be generally categorised as follows:

Deterministic Methods

Based on their computation style, the methods belonging to this domain
can be further categorised as block-based and region-based methods. Block-
based methods employ image blocks as their visual subsets. These are
usually the early methods in salient object detection history, while region-
based approaches employ the increasingly popular superpixel algorithms
to obtain their visual sets.

A few block based methods have been introduced in the past that uti-
lize cues extracted from blocks of images. Goferman et al. [46] intro-
duced a method termed as CA2 that used the distinctiveness of image
patches as compared to their most similar patches, while considering the
spatial distances between patches. Achanta and colleagues introduced
three influential block based methods for salient object detection. The
first method termed as AC [2] employed local contrast of image blocks in
terms of colour and luminance features to determine its saliency. The sec-
ond method, termed as FTS [3], introduced a frequency-tuned approach
that measures saliency as the contrast between the filtered features and the
arithmetic mean of features by treating a pixel as the centre and the whole
image as the surround. The third method by Achanta and colleagues [5],
termed as MSSS, replaces the centre-surround approach of FTS that treats
the whole image as the surround by a symmetric surround with respect
to each pixel. In comparison to FTS, the symmetric surround approach
of MSSS allows more local surround at the image borders. Margolin et

2The techniques that follow will be utilised as benchmark approaches so will be
termed with short names for later reuse in the results chapters.
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al. [101] introduced a method, termed as PCA, to measure the uniqueness
of a block by its distance from the average block in the high-dimensional
space. The unique or more salient blocks must be more scattered than the
non-distinct patches.

For block based approaches, the inter-block contrast is very low when
operating inside the salient object contours and comparatively high at
salient object edges. Therefore a common shortcoming of all of these block
based methods is that high contrast edges are usually highlighted instead
of the salient object. A plethora of region based approaches have recently
been proposed to overcome these limitations of the block based methods.

The regional contrast method of Ming et al. [28] (termed as RC), mea-
sures the saliency of a region as its global contrast to all other regions in the
image. Hence, regions having high global contrast with respect to other
regions will be assigned high saliency values according to RC [28]. In con-
trast to the global contrast measure of Yan et al. [147] (termed as HS) em-
ployed local region-based contrast to capture a region’s saliency, where
each region is an outcome of a watershed-like operation on the input im-
age [147]. The approach of Zhu et al. [157] termed as MND captured the
perceptual similarity of regions by combining the benefits of both local
and global saliency. MND clusters similar regions to identify the distinct
regions that are likely to be salient object parts using its global saliency,
while it uses a local saliency cue to highlight regions that stand out from
their surroundings.

The work of Yang et al. [148] termed as MR, proposed a two stage
saliency computation framework by manifold ranking of regions using
an undirected weighted graph. During the first stage, a saliency score for
each region is computed based on it relevance from the pseudo-background
regions. Based on the saliency scores for regions from the first stage of
processing, foreground regions are estimated and used as queries to fur-
ther refine the saliency scores of regions. Similar to MR, the work of Li
et al. [91] termed as DSR, formulated the saliency computation prob-
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lem for a region as the dense and sparse reconstruction error from the
pseudo-background regions. The reconstruction errors are propagated on
to each pixel at multiple scales. Finally, multi-scale information is fused
together to form the final saliency map using Bayesian inference. On sim-
ilar grounds the approach of Jiang et al [67] termed as MC computes the
saliency of a region as the absorbed time from the transient node (i.e. re-
gions belonging to the image centre) to the absorbing nodes (i.e. regions
along the image border).

Despite the recent popularity and success of the region based methods,
the shortcomings of these methods are that they fail to uniformly highlight
the salient object and can completely miss parts of the salient objects in
the final saliency map. These shortcomings are generally a consequence
of the hard decision boundaries of superpixels3, which do not necessarily
respect object boundaries. The recent approach of Ming et al. [26] termed
as SIA, attempted to overcome the problem of non-uniform saliency as-
signment to salient objects by replacing hard boundaries by soft image
abstractions. However, the response of SIA is still subject to non-uniform
saliency assignment when the regions with soft image abstractions fail to
respect object boundaries.

The shortcomings of the region-based approaches are depicted in Fig-
ure 2.7. The rationale for choosing the first test image is that the fore-
ground object shares colour and intensity features with numerous back-
ground regions, which makes the discrimination between foreground and
background regions difficult when the regions are predetermined as a pre-
processing step. The first row presents the various segmentation levels
employed by the multi-level saliency computation approach of DRFI [68].
It can be observed that the object starts to appear coherently with the de-

3The term superpixel is widely accepted in the segmentation literature to define a
collection of similar pixels in the image. Lately, it has been rigorously employed by salient
object detection methods as a pre-processing step to segment the image into perceptually
homogeneous regions.
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Decrease in number of regions

Figure 2.7: The artifacts of region based processing. The first row shows
the effect of various segmentation levels employed by the multi-level
saliency response of DRFI. The second row presents outputs of four
region-based benchmark methods, including DRFI [68], LRK [123], MR
[148] and DSR [91]. The example images presented here are selected to
best depict the artifacts of a region based pre-processing step commonly
employed by benchmark methods. Please refer to text for details.
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crease in the number of regions, however, further decrease in the number
of regions completely loses the object. Such maps, as depicted in the first
row, column four of Figure 2.7, can corrupt the overall output response of
DRFI. The second image is chosen as it contains an object composed of var-
ious regions with different colour and textural properties (e.g. windows,
doors and tyres of the beetle car). The second row shows a representa-
tive car image along with the characteristic region-based response of four
benchmark methods. It can be observed that LRK and MR literally break
the object (i.e. the car) into pieces, resulting in non-uniform saliency as-
signment. The saliency outputs of MR and DSR also fail to capture part of
the car and miss the front tyre.

A major issue with deterministic methods is that they employ ad hoc
strategies at various stages of feature combination. Representative exam-
ples include the complementary local and global saliency maps of the
MND method, where element-wise multiplication of maps is employed
to obtain the final saliency map. The element-wise multiplication scheme
ensures that no background information is falsely included in the final re-
sponse at the cost of saliency maps with non-uniformly highlighted salient
objects and at times partly highlighted salient objects. Another instance of
the use of element-wise multiplication of maps is reported at the first stage
of MR, where the saliency maps obtained from each of the four pseudo-
background regions are combined through element-wise product. This
process also leads to loss of salient information, when some part of the
salient object overlaps with one of the four background regions.

Learning Based Methods

There is an abundance of deterministic methods for salient object detec-
tion, which employ ad hoc feature weighting, normalisation and integra-
tion strategies. However, there are also limited number of studies that
explore the potential of supervised learning to determine better feature
combination strategies. Several methods that employ supervised learning
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for feature combination for salient object detection and are directly related
to the proposed work of this thesis are discussed here. These methods are
used for benchmarking and comparison purposes in the result chapters of
this thesis.

The method of Judd et al. [72] termed as LSVM used a support vec-
tor machine (SVM) to train their method for learning feature importance
weights. Linear kernel was adopted in their method due to its superior
performance as compared with non-linear counterparts. The drawback of
the SVM based methods is that they can only learn feature weights as the
joint learning of feature related parameters with feature weights can not
be easily incorporated in their objective functions.

The recent work of Jiang [68] termed as DRFI performs multiple seg-
mentations of the input image and learns a regressor that directly maps
the raw features for each region to a saliency score. The learned regres-
sion method is then employed at the test stage to predict the saliency
scores for each region and the final saliency is computed by fusing saliency
maps computed over multiple segmentations. DRFI exhibits robust per-
formance on multiple datasets and all salient object detection benchmarks
at the cost of computing an immense 93-dimensional feature vector for
each image adding to its computational time and limiting scalability. Al-
though DRFI exhibits robust saliency response in general, it can contain
artifacts of non-uniform saliency assignment, which is attributed to the
regional contrast feature of DRFI (see Figure 2.7). In scenarios where fea-
ture performance is heavily dependent upon important feature related pa-
rameters, joint optimisation of such parameters can not be easily incorpo-
rated into the automatic feature integration process of DRFI. Additionally,
on difficult scenes with cluttered background and multiple salient objects,
the multi-level saliency computation stage of DRFI can include redundant
saliency information during fusion, resulting in an undesired response.

The work of Shen and Wu [123], termed as LRK, combines low and
high level features into a feature matrix that is decomposed into two parts,
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the low-rank matrix and the sparse matrix with the assumption that non-
salient background information will be captured by the low-rank matrix,
whereas the salient regions are indicated by the sparse noise. Although,
LRK attempts to separate salient regions from the background informa-
tion, the low rank information can not be effectively separated from the
sparse information in general and background information is included in
the characteristic response of LRK.

In summary, the learning approaches do not investigate the application
of appropriate normalisation and integration schemes as per input type.
Moreover, the entirety of learning based approaches assume that a single
learned strategy can suffice for all different types of image classes.

Feature Selection Based Methods

Prior works have proposed complementary saliency features for the task
of salient object detection [27, 49, 56, 69]. A subset of such methods that
compute complementary saliency maps choose an individual (best per-
forming) map to act as the final saliency output on an image-by-image ba-
sis. The process of finding and selecting the best feature map for a partic-
ular scene is termed as complementary feature selection. The few studies
that have explored complementary feature selection for improving salient
object detection are briefly reviewed here.

Gopalakrishnan et al. [49] modelled the distributions of colour and ori-
entation to construct two complementary saliency features, namely, colour
saliency framework (CSF) and orientation saliency framework (OSF). They
proposed a new measure termed as the saliency index (SI), which selects
the feature with the lowest variance in the spatial domain as the final out-
put of their saliency method. SI assigns a usefulness measure to a fea-
ture map F depending upon the compactness and the connectedness of
its segmented output. The compactness cue provides a measure of spatial
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variance SVF for F defined by

SVF = SV p1
F + SV p2

F (2.13)

=

∑
p (p1 − µp1)

2 .F (p)∑
p F (p)

+

∑
p (p2 − µp2)

2 .F (p)∑
p F (p)

,

where p is a vector of dimensions l (l = 2 here) used for indexing a feature
map4, and SV p1

F , SV p2
F are the spatial variances and µp1 , µp2 are the spatial

means for F in the p1 and p2 directions, respectively.
The connectedness cue CF̂ for a segmented feature map F̂ measures

the average number of non-zero pixels in a neighbourhood

CF̂ =

∑
p2P

∑
p2Np

1P(p)

|P|
, (2.14)

where 1P(p) =

{
1 if p ∈ P
0 if p /∈ P ,

whereP is a set of coordinates of non-zero pixels in F̂ , |P| is the cardinality
of the set P and Np is the neighbourhood of p.

The saliency index (SI) for feature map, according to Gopalakrishnan
et al. [49] is given as:

SI =
CF̂
SVF

. (2.15)

The method is termed as SISal for the rest of the thesis. SISal performs
good complementary feature selection using the SI measure and shows
competitive performance on a benchmark dataset [94]. However its se-
lection measure is biased towards compact orientation maps as compared
with spatially distributed colour saliency maps [49].

Recently Cheng et al. proposed the complementary global saliency
cues of colour spatial distribution (CSD) and global uniqueness (GU), which

4For consistency, as an abuse of notation, we use p for indexing both vectors and
images.
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Figure 2.8: Shortcomings of the previous feature selection approaches,
namely SISal and GC. Both the SISal and GC methods prefer features that
are compact and are less varied in the spatial domain. From left to right:
input image, ground truth (GT), an outlier feature and normalised spatial
variance of the features. The GT is considered here as an input feature to
test the feature selection performance of the methods. The boxes depict
the selected features by both SISal and GC. The spatial variances of the
features reveal that both the SISal and GC methods falsely select the out-
lier features (instead of the GT), due to the more compact nature of the
outlier features.
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were computed using soft image abstractions instead of hard segmenta-
tions [27]. Following the work of Gopalakrishnan et al. [49], the global
cues (GC) method of Cheng et al. employed the compactness measure
(termed as SV) of [49] to select one of its complementary features on an
individual image basis. They achieved promising results on the FT bench-
mark [3]. However, a few cases are falsely predicted as the SI measure
is focused on the compactness of the features irrespective of their salient
object prediction capability.

Both SISal and GC heavily rely the compactness of features as a selec-
tion criteria. The shortcoming of the compactness measure is illustrated
by a simple example in Figure 2.8. Two features for each of the representa-
tive example are shown. The second column includes the ground truth for
the input images, which are considered here as features to test the feature
selection capability of the compactness measure. The maps in the third
column are representative outlier features that capture part of the salient
objects. The last column shows the profiles of spatial variance (computed
according to (2.14)) for both features. When SISal and GC were tested on
these maps, they both selected the outlier features as their output, due to
their high compactness. This result is explained by the spatial variance
profiles of the features, which show that the ground truth feature is more
spatially varied for both the cases, implying less compactness.

Hu et al. [56], introduced a measure, termed as CSI, based on spatial
compactness (SC) and saliency density (Dsaliency) to measure the usefulness
of a feature for dynamically selecting features on an image-by-image basis.
The composite saliency indicator (CSI) [56] measure employed the spatial
compactness (SC) of the salient region and the density of the salient region
of a feature map to judge its usefulness. Salient points are first extracted
from the salient region as described by a feature map. Afterwards the
convex hull of these salient points is constructed. The area enclosed by the
convex hull of the salient regions gives SC.
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Saliency density Dsaliency for a feature map F is computed as:

Dsaliency =

∑
p2S

∑
q∈Np

jF (p)�F (q)j
jNpj

|S|
, (2.16)

where F (p) is the intensity at location p, Np is the set of neighbouring
points of p and S is the set of salient points. In (2.16), q is an index vector
similar to p used for the neighbouring locations of p. The features are then
selected based on the cues SC and Dsaliency.

The evaluation process employed by Hu et al. [56] is unique as com-
pared with the standard salient object detection evaluation procedure. To
evaluate the final saliency output of the method, the polygon obtained by
the salient points of the final saliency output is employed and only a vi-
sual comparison with the state-of-the-art is presented. Results from a user
study are also reported to compare the performance of methods. The pro-
cess of CSI based feature selection shows good performance in general,
however, the process is highly sensitive to the polygon obtained by the
convex hull and false inclusion of non-salient points can negatively affect
the salient feature selection performance of the CSI measure.

CSI is more sophisticated than SI as it assigns a qualitative measure to
the features rather than judging them with respect to their compactness
only. However, the selection of maps based on the area of the convex hull
makes CSI unrealistic on scenes containing large salient objects.

Saliency Aggregation Based Methods

Saliency aggregation is the task of combining the best response of saliency
methods. The need for saliency aggregation arises due to the fact that dif-
ferent saliency methods are tuned to capture different aspects of saliency
for different images. From this arises the need to combine the better as-
pects of various saliency methods for a more general saliency system.
Recently, a data-driven approach for aggregating the saliency outputs of
state-of-the-art saliency methods was presented in [100]. Three different
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methods were proposed for combining individual saliency maps by min-
imizing the performance gaps. The details of only one of their methods
called the pixel-wise saliency aggregation (termed as PW), which employs
logistic regression is described here as it is the only method used in subse-
quent investigation. They aggregate the results of various saliency meth-
ods pixel-wise by learning the appropriate weights (combination) using
training data. The PW method is reported to outperform all the individual
saliency methods. However, low performing methods degrade the overall
results more than they aid in improving.

The approach of [68] also involve saliency aggregation to combine its
multi-level saliency maps in order to obtain the final saliency map. DRFI
employed a least square estimator to learn the weights for the multi-level
saliency maps to perform saliency aggregation. Although, the DRFI method
produces state-of-the-art results on benchmark datasets, the multi-level
saliency fusion process is shown to degrade the overall performance of the
system often by including unnecessary (redundant) saliency maps urging
the need for selecting only the appropriate maps for combination (see Fig-
ure 2.7).

2.3 Machine Learning Methods

Numerous evolutionary approaches have been employed for computer vi-
sion tasks including genetic programming [7, 80] and particle swarm op-
timisation [95]. A plethora of EC techniques have also been applied to
feature selection for classification tasks using different problem domains
[145, 146]. This work employs genetic algorithms and learning classi-
fier systems based upon their specific features described in chapter 1 sec-
tion 1.2.
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2.3.1 Genetic Algorithms

Genetic algorithms (GAs) are search based heuristic methods based on the
principle of natural selection [51]. GAs encode the decision variables of
a search task into finite-length strings of certain cardinality [120]. These
strings are composed of alphabets. The strings being candidate solutions
to the search problem are termed as chromosomes, the alphabets of the
string are called genes and the value of genes are termed as alleles. For
instance, in the well-known travelling salesman problem, a chromosome
represents a route and a city may be represented by a gene. Contrary to
traditional optimisation schemes, GAs work with coding of parameters,
rather than parameters themselves [47].

To evolve good solutions, a fitness measure is utilised by the GA to
guide the evolution of solutions. In contrast to traditional search methods,
GAs rely on a population of candidate solutions. User defined popula-
tion size is one of the most important factors affecting the performance
and scalability of GAs. For example, small population sizes may lead to
premature convergence leading to substandard solutions, while large pop-
ulations might lead to wastage of computational resources and time [120].
GAs evolve solutions to the search problem using these steps:

1. Initialization. The initial population is usually generated randomly
across the search space but incorporating domain-specific knowledge or
some other information is also permitted.

2. Evaluation. After population initialization, the fitness of all candidate
solutions is evaluated.

3. Selection. Selection imposes survival-of-the-fittest strategy on can-
didate solutions and allocates offspring of solutions with higher fitness
value. The main idea of selection is to prefer better solutions over worse
ones. Many selection procedures are proposed in literature including roulette-
wheel selection, stochastic universal selection, ranking selection and tour-
nament selection [47]. Tournament selection, which is used in this study
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is explained below.

In tournament selection [47], s solutions are chosen at random and en-
tered into a tournament. The fittest individual wins the tournament and
selected as parent. Most widely used value of s is 2. Using this selection
procedure a total of n tournaments are required to choose n individuals.

4. Recombination or crossover. Recombination or crossover combines
two or more parental solutions to create new, possibly better solutions.
Performance of methods proposed in literature is dependent on design of
recombination mechanism. The offspring produced as a result will not re-
semble any particular parent but will combine parental traits [48]. A brief
introduction of the special crossover operator (Laplace crossover) used in
this study is presented here.

The Laplace crossover operator is self-adaptive and places the offspring
proportional to the ranking of parents. If parents are close in the solution
space, then the offspring have a high probability of being clustered and if
parents are far the offspring are expected to be scattered [34]. This strategy
favours such problems when there is not enough a priori knowledge about
the relation of decision variables, therefore placing the offspring with re-
spect to parents (which are the best individuals in the population) gives
better chances of maintaining the schema.

5. Mutation. Unlike crossover, mutation locally modifies a solution.
Most of the proposed methods usually perform a random walk in the
vicinity of the parent solution. A brief introduction of the special muta-
tion operator (power mutation) used in this study is included here.

The power mutation operator proposed in [33] is parent-centric and
generates the offspring in close neighbourhood to the parent solution us-
ing a random variable that follows the power distribution.

6. Replacement. The new population generated by selection, crossover
and mutation replaces the original population.

7. Steps 2-6 are repeated until a terminating condition is met.

GA’s have been widely adapted for solving unconstrained and con-
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strained optimisation problems. GA’s have also proven to be useful for
solving mixed integer programming problems where a few or all decision
variables are integers [33]. The decision variables may also have bound
constraints. In this thesis, the joint learning of feature related parameters
and the feature importance is formulated as an optimisation problem with
integer and bound constraints on decision variables. A GA based frame-
work is proposed as a solution (please see chapter 3 and chapter 5) due
to its promising performance in similar optimisation problems related to
other engineering domains [33]. Additionally a multiple GA based formu-
lation is introduced in this work to learn multiple feature importance rules
(see chapter 6).

2.3.2 Learning Classifier Systems

Traditionally, a Learning Classifier System represents a rule-based agent
that incorporates evolutionary computing and machine learning to solve
a given task by interacting with a previously unknown environment. Af-
ter observing the current state of the environment, the agent performs an
action and the environment provides a reward. The generalization prop-
erty in LCS allows a single rule to cover more than one state provided that
the action-reward mapping is similar.

XCS [137] is a formulation of LCS that uses accuracy-based fitness to
learn the problem by forming a complete mapping of states and actions
to rewards. Accuracy based XCS system computes the fitness measure
by utilising the accuracy of rules’ prediction of expected payoff to create a
map of the whole problem space rather than the traditional search for only
high payoff rules. In XCS, the learning agent evolves a population [P ] of
classifiers, where each classifier consists of a rule and a set of associated
parameters estimating the quality of the rule. Each rule is of the form ‘if
condition then action’. Traditionally, the condition is represented by a fixed
length bit-string defined over the ternary alphabet {0, 1,#} where ‘#’ is
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the ‘don’t care’ symbol which can be either 0 or 1; and the action is repre-
sented by a numeric constant. Each classifier has three main parameters:
1) fitness f , which provides a measure of classifier’s usefulness; 2) pre-
diction error ε, error between the predicted payoff and the actual received
reward; 3) prediction p, which provides an estimate of the expected payoff
from the environment, if the classifier’s action is executed. Each classifier
also keeps track of the number of times it has been updated using the ex-
perience parameter exp and also the number of copies of a classifier in the
population, denoted by n.

The system has two modes of operation namely explore (training) and
exploit (application). In the explore mode, the system performs the fol-
lowing operations:

1. observes the current state s ∈ S from the environment, where S is
the set of all possible states.

2. creates a match setM by selecting the classifiers that match the cur-
rent state s.

3. if action ai is not present in M, a random classified is generated
which matches state s and also advocates ai.

4. a prediction array P (ai) is generated that estimates the payoff given
an action ai is executed.

5. action a is selected for exploration and all the classifiers in M are
selected and placed in the action set A.

6. after performing the action a, the reward r received from the envi-
ronment is used to update the parameters of all classifiers in A.

7. When deemed necessary, new classifiers are introduced into the pop-
ulation by rule discovery (usually genetic algorithm) in the action set
A.
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In the explore mode, the agent performs the action with the best predicted
payoff, instead of searching for new information.

Various richer encoding schemes have been investigated to represent
high level knowledge in LCS in an attempt to obtain compact classifier
rules [31, 62, 63], to solve overlapping problems [59, 64], to approximate
functions [19, 139], to develop useful feature extractors [6], to tackle prob-
lems involving large number of discrete actions [96, 84], to compute con-
tinuous actions [140, 129, 61], and to identify and process building blocks
of knowledge [20, 60].

The following XCS-based classifier system, i.e. XCSCA (XCS with Com-
puted Action) [84], is directly related to the work to be presented here.

XCS with Computed Action

XCSCA [84] is a supervised learning system, which computes action map-
pings using the input message x and a weight vector w. XCSCA borrows
the idea of supervised learning from UCS [11]5, and the idea of action map-
pings from XCSF [139]6. In XCSCA, classifiers have no prediction since, as
in UCS, there is no incoming reward. This is because XCSCA does not
produce a complete action map, rather it only evolves the correct output
function.

The classifiers have similar parameters as in XCS [137] with an addi-
tional parameter vector w, which is used to compute a discrete classifier
action. XCSCA works similar to UCS for building the match set. In cover-
ing, classifier conditions and parameters are initialized as in XCS, whilew
is in with zero values. XCSCA employs two modes of operation: learning

5UCS is the extension of XCS to supervised learning for multi-class problems and
problems with unbalanced classes, proposed developed by Bernado et al. [11]. It evolves
a more efficient action map and replaces the reinforcement learning scheme of XCS with
a supervised learning scheme.

6XCSF extends XCS by introducing computed prediction for learning approximations
of functions, developed by Wilson [139]. It adds a weight vector to the classifiers and
replaces the scalar prediction with a computed prediction.
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mode and testing mode. During learning similar explore and exploit phases
are executed as in XCS. During test mode, XCSCA computes the discrete
action a for each classifier inM. For each action a for the classifiers inM,
XCSCA computes the classification accuracy of a for the input x. Finally,
the action with the highest classification accuracy is selected.

The framework introduced in this work utilises XCSCA to learn mul-
tiple feature importance rules by grouping input images into niches using
a novel input matching scheme (please see chapter 7).

2.4 Chapter Summary

The majority of the saliency detection techniques introduced in literature
for salient object detection have limited generalisability as they employ ad
hoc techniques for feature normalisation, weighting and integration [72].
Previous learning based methods [13, 72] approach the problem of feature
importance learning using traditional classifiers. However, the problem
of learning feature importance and related parameters is an optimisation
problem in its essence, where the bounds on the parameters are the con-
straints to be taken into account. Genetic Algorithms are highly compet-
itive constrained optimisation methods that are best suited for searching
the optimal solution using the whole population. Due to their inherent
formulation for constrained optimisation and effective search capabilities,
they can be readily employed for joint learning of feature importance and
related parameters.

Despite of the limited efforts to increase generalisation of the saliency
detection methods [13, 68, 72], no investigation has been reported for learn-
ing multiple feature importance rules each suited to a type of image to in-
crease generalisation to unseen image data. Multiple genetic algorithms
are to be employed for the first time to learn multiple feature combina-
tion schemes and a new grouping scheme is introduced to group similar
images (chapter 6). Moreover, the inherent property of XCS to divide the
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search space into niches is to be employed to group images and learn mul-
tiple feature combination rules (chapter 7).

A few methods have been introduced for selecting the best features
during fusion and discarding the irrelevant features [49, 27]. However,
they are limited in terms of judging true quality of features for salient ob-
ject detection hence select false features during fusion. A new dynamic
feature selection method based on novel feature quality measurement cues
is introduced in the work presented in this thesis (chapter 8).

Additionally as most methods are region-based, non-uniform high-
lighting of the salient object is a common artifact of saliency responses
[26]. A matting components based method inspired by spectral clustering
approaches is introduced in this work to overcome the limitation of region
based methods (chapter 4).



Chapter 3

Optimizing System Parameters of
the Visual Attention Model for
Human Fixation Prediction

3.1 Introduction

The previous chapter presented a detailed review of the feature integra-
tion theory and the traditional model of visual attention. It also cov-
ered design and details of features that have been proposed by various
techniques for different visual saliency applications. An introduction was
presented about the various tunable design parameters of the traditional
model of attention and the choice of suitable values for these parameters
in accordance with prior work. Moreover, techniques for dealing with
the non-trivial problems of feature conditioning and feature combination
were discussed.

The traditional computational model of visual attention [66] has tun-
able parameters as depicted in Figure 3.1. The filter parameters inside the
dashed box are employed by the orientation feature channel to compute
the orientation feature maps. The set of weights {wCv, wIv, wOv} are used
to assign importance to the colour, intensity and orientation features re-

51
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Figure 3.1: Computational model of visual attention [66]. Tunable param-
eters are shown. M , F and C represent the raw maps, feature maps and
the conspicuity maps, respectively.

spectively. The tunable parameters at the feature computation stage and
the feature importance parameters at the combination stage are jointly de-
fined as system parameters.

Previous works such as the work of Itti et al. [66] and the work of
Walther and Koch [134] employed human encoded values for the tunable
filter parameters and assigned equal importance to all the features. Due to
human chosen parameters these methods are subject to low generalisation
as these parameters require tuning in an ad hoc fashion to work well. To the
best of author’s knowledge, there has been no prior effort to jointly learn
the tunable parameters at the feature computation stage and the feature
importance weights at the combination stage.

It is hypothesised that the joint learning of the feature computation pa-
rameters and the feature importance parameters can improve the saliency
detection performance of the traditional model of visual attention through
optimization of a task-specific objective function1. The basis of this hy-

1Task-specific objective function here refers to an objective function designed espe-
cially for a specific saliency detection task, such as eye fixation prediction or salient object
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pothesis is that suitable values for feature related parameters improve the
saliency detection performance of the features, hence the feature impor-
tance needs to be reinforced accordingly. The problem of searching for
the best feature computation parameters along with appropriate feature
importance weights can be naturally formulated as an optimisation prob-
lem. Given an appropriate training set, the best suited parameters and
weights are expected to increase the generalisation of the system on un-
seen images. Previous works have formulated the problem of learning
features weights as a classification problem by employing support vec-
tor machines SVMs [72] and AdaBoost [13]. However, these classification
methods are not adaptable for the above-mentioned problem due as it in-
volves additional parametric search along with weight learning. Thereby,
a technique is needed that has the ability to effectively encode parame-
ters with different modalities and is able to competitively search the fea-
sible solution space that is defined by the bounds on the parameters. Ad-
ditionally, the optimisation method must have the ability to incorporate
objective functions that directly encode important performance measures
related to saliency detection such as area under the precision recall curve
(AUCPR). instead of objective functions that incorporate indirect perfor-
mance measures such as class separability.

Amongst other optimisation techniques, Genetic Algorithms (GA) are
inherently a good choice, as they have the ability to deal with the large
search space constituted by the system parameters, are competitive in large
populations and they also provide the flexibility to encode unique tasks as
their objective function.

It is worth mentioning that GA is not necessarily the only feasible so-
lution to this problem and other optimisation methods may prove to be
equally competitive. The main contribution of this work is the introduc-
tion of joint learning framework in the traditional computational model of
visual attention. Therefore no specific investigation is conducted on find-

detection.
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ing the best optimisation method for the problem at hand.

Following the above discussion, the goal of this chapter is to develop
a GA based optimization framework that is able to extend the traditional
model of attention by learning system parameters for the task of human
fixation prediction. To achieve this goal, a new GA based framework is
developed by designing an objective function that searches for suitable
values for the system parameters by maximizing the agreement between
the predicted saliency map and the human fixation ground truth. The de-
signed GA framework is deployed to search for optimal2 parameters for
a baseline saliency method. Specifically, the first objective of this chapter
is to compare the performance of an optimised feature set (that employs
learned parameters) with the unoptimised feature set (that uses human
encoded parameters) for human fixation prediction task. The second ob-
jective is to compare the performance of the optimised visual attention
method against the unoptimised baseline method for the task of fixation
prediction.

3.1.1 Chapter Organisation

The remainder of the chapter is organised as follows: Section 3.2 details
the proposed GA based algorithm and details the implementation of the
visual attention method for the proposed method. Section 3.3 presents the
design of experiments. Section 3.4 presents and discusses the obtained
results, before the final section summarises the findings of this chapter.

2The term optimal is used in this thesis to describe the best possible solution given
constraints on computational time and power available to search. This may not be the
global optimum. The methods employed in this work do not ensure global optimum on
the search space.
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3.2 The Proposed Genetic Algorithm Optimised

Visual Saliency Method (GAOVSM)

In this section, the details of the visual attention method implemented in
this study are first presented, including a description of the tunable pa-
rameters that need to be searched. Next, the details of the new genetic al-
gorithm designed to learn optimal solutions for these parameters, termed
as Genetic Algorithm optimised visual saliency method (GAOVSM), are
presented.

3.2.1 The Visual Saliency Method

The visual saliency method implemented in this study follows the stan-
dard Itti-Koch saliency model [66]. The efficacy of the model has been ex-
tensively tested in prior works as demonstrated by its recent application
in eye fixation prediction, such as guiding fixations [14] and gaze learn-
ing [110]. Other recent practical applications include keypoint detection
[40] and assistive technologies for the visually impaired [125]. Specifically,
the simple implementation from the work of Walther and Koch [134] is
adapted in this work. This implementation was chosen, because a primi-
tive implementation is most suitable for this work as compared with other
implementations [66, 50] that include several add-ons and complex func-
tionality.

The implementations details of the method are the same as discussed
in the background chapter. There are multiple tunable parameters of the
orientation channel as depicted inside the dashed box in Figure 3.1. These
features include aspect ratio (γv), standard deviation (δv), wavelength (λv),
orientations (θ1v, θ2v, θ3v, θ4v) and the phases (ψ1v, ψ2v). Suitable values for
these parameters are searched during the optimisation process at the train-
ing stage, while the test stage employs the learned values.

The complete parameter set φ to be learned during the optimisation
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stage is given as follows:

φ = {γv, δv, λv, θ1v, θ2v, θ3v, θ4v, ψ1v, ψ2v, wCv , wIv , wOv} , (3.1)

where the subscript v is employed to depict that these parameters are
to be searched for optimal values.

3.2.2 Genetic Algorithm

A new implementation of a genetic algorithm (GA) is introduced in this
work to learn optimal solutions for the parameter set given by equation (3.1)
(which also defines the dimensionality of the search space). A real-coded
implementation for the GA is employed to avoid the Hamming Cliff prob-
lem3 and the processing time overhead of the binary-coded GAs [33]. The
parameters constitute the decision variables and are encoded as integers
in the real coded representation. This is achieved by enforcing integer
restrictions on every individual after crossover and mutation operations.
As sufficient knowledge of the solution is not available a priori, a random
initial population is created with the parameter values drawn from a uni-
form distribution. It is ensured that the population is bounded by the
constraints on the variables. As the objective function (see section 3.2.2)
returns a fitness in the range [0,1], rank scaling is employed to facilitate
the selection process by enhancing the discriminability between the solu-
tions. Elitism is utilised to ensure good solutions are present to guide the
search throughout the evolutionary process. Laplace crossover and power
mutation functions are employed in order to drive the search in a parent-
centric fashion (for details please see sections 3.2.2 and 3.2.2). The number
of generations and a tolerance value for average change in fitness value

3The hamming distance between two consecutive binary strings is the number of bits
that must be converted from one to another in order to make the two strings equal. In
binary representation for GAs, large hamming distances between two consecutive binary
strings are referred as “hamming cliffs” as the GA must alter numerous bits simultane-
ously to obtain a transition between such strings.
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over a defined number of generations constitute the stopping criteria. De-
tails of the design choices for the parameters and GA methods are now
presented.

Parameter Encoding

The chromosomes are encoded using a real coded representation. In com-
mon with other approaches, rounding off of real variables is used to han-
dle integer constraints on decision variables. The ranges of the decision
variables are based on the widely employed ranges for these parameters
and are inspired by past studies [57, 70, 132].

The aspect ratio of the filter γv determines the ellipticity of the receptive
field and is defined as:

γv ∈ [0.5, 1] . (3.2)

The standard deviation of the Gaussian δv and the wavelength λv deter-
mine the bandwidth B of the filter. The bandwidth of the filter determines
how the Gabor filters cover the visual field in the frequency space. In this
study, the range of standard deviation and wavelength is set to limit the
bandwidth B of the filter from 0.2 to 4.0 octaves according to prior work
[132]

δv ∈ [δv,min, δv,max]

λv ∈ [λv,min, λv,max]
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The range of the bandwidth is decided according to physiological stud-
ies on Macque visual cortex, which can be generalised to human vision as
claimed by Valois et al. [132]. The lower and upper ranges of the parame-
ters δv and λv are set as to satisfy equation 3.3.

Previous approaches generally use four fixed orientation scales only
e.g. 0o, 45o, 90o, 135o to construct the orientation pyramids. Based on some
previous approaches such as [112, 141], which make use of various dis-
crete orientations like 0o, 4o, 8o, 16o and 0o, 36o, 72o, 108o, 144o respectively;
the orientations θ1v, θ2v, θ3v, θ4v are allowed to vary from 0o to 180o.
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Based on past works [57], the range for the phases ψ1v, ψ2v of the Gabor
filters is set as following:

ψ1v, ψ2v ∈ [−180 · · · 180] . (3.4)

Finally, the weights for the intensity, colour and orientation features are
bounded as follows and encoded as real values in the GA;

wIv , wCv , wOv ∈ [0, 1] . (3.5)

Objective Function

To quantify the fitness of a computed saliency map, its objective evaluation
in terms of its agreement with target fixation locations is needed. This is
achieved by employing the saliency map as a classifier (via thresholding).
All the points which are above a particular threshold value are classified as
targets (fixations) and all other as background (no fixations). The fraction
of real targets classified as targets for a particular threshold value define
the true positive rate, while the fraction of background points classified
as targets give the false positive rate. A receiver operating characteris-
tic (ROC) curve is generated by utilizing multiple thresholds as operating
points. The obtained area under ROC curve AUCComputed is then utilised
to compute the fitness value as:

F (φ�) = arg min
φ

(AUCIdeal − AUCComputed), (3.6)

where AUCIdeal is 1.

Selection

Binary tournament selection [47] is employed to select the individuals for
subsequent generations. In our experiments a selection pressure provided
by a tournament size of two puts sufficient selection pressure on the most
fit individuals. Choosing the better solutions as parents and parent-centric
crossover and mutation operators helps in maintaining the best schema.
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Crossover

Due to lack of a priori information about the relationship of decision vari-
ables, a parent-centric crossover operator as proposed in [33] is employed.
The Laplace crossover operator is self-adaptive and places the offspring
proportional to the position of parents. If parents are close, then the off-
spring have a high probability of being clustered and if parents are very
different then the offspring are also expected to be scattered [33]. This
strategy favours the problem at hand as there is not enough a priori knowl-
edge about the relation of decision variables, therefore placing the off-
spring with respect to parents (which are the best individuals in the pop-
ulation) gives better chances of converging to the optimum.

Using Laplace crossover [32], parents ů(1) =
(
ů

(1)
1 , ů
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n

)
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are used to generate two offspring v̊(1) =
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)
. A random number Γ is generated based on

a uniformly distributed random number ξ ∈ [0, 1]. Γ follows the Laplace
distribution given as inverse function of the Laplace distribution:

Γ =

a− b loge(ξ), ξ 6 1
2
,

a+ b loge(ξ), ξ > 1
2
,

(3.7)

where a and b are the location and scale parameters of the Laplace distri-
bution. The offspring are then computed as follows:
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i

∣∣∣ . (3.9)

Mutation

On similar grounds, the mutation process needs to be guided by the posi-
tion of the parent solution. Therefore, the power mutation operator pro-
posed in [35] is employed. This approach is also parent-centric and gen-
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erates the offspring in close proximity to the parent solution. Given uni-
formly distributed random variables ψ, ϕ ∈ [0, 1] and a random variable Ξ,
which follows the power distribution, the mutated solution is computed
as follows [32]:

ů =

v̊ − Ξ(̊v − vl), ψ < ϕ,

v̊ + Ξ(vu − v̊), ψ ≥ ϕ,
(3.10)

where ψ = v̊�vl
vu�vl and vl, vu are the lower and upper bounds of the decision

variable.

3.3 Design of Experiments

3.3.1 Data Set

The work described in this chapter uses human eye-tracking data from
three challenging data sets of the ImgSal database [90]. The ImgSal database
comprises of 235, 480 x 640 pixel images collected from Google and other
literature sources, which are divided into six categories. The datasets con-
tain fixation data from 19 naı̈ve subjects who were just asked to observe the
images with no specific instructions. Unlike other databases, ImgSal takes
into account the difficulty in analysing images by classifying images into
the following categories: images with both large and small salient regions,
images with cluttered background and images with repeated distractors.
A good saliency method should perform well in all the above conditions
[90].

For the aforementioned reason, the three most challenging categories
form the saliency database termed as Cat1, Cat2 and Cat3, respectively,
are employed in this work. Cat1 contains 50 images with large salient re-
gions. Cat2 contains 15 images with cluttered background. Cat3 contains
15 images with both large and small salient regions.
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3.3.2 Ground Truth Data

Ground-truth fixation maps are also provided by ImgSal [90]. The fixation
maps are of the same resolution (480x680) as the original images. The fixa-
tion maps contain processed fixation data, where each location represents
a number, which is the count of fixations from all participants for that
particular location. For qualitative comparison, the fixation maps were
blurred using the standard Gaussian filtering procedure and heat maps
were created to represent the human eye fixation data. The standard pa-
rameters from the literature were used for Gaussian filtering [72].

3.3.3 Performance Measures

In this study we have used three performance metrics namely area un-
der the Receiver Operating Characteristics (ROC) curve (AUC), a simi-
larity measure S [126] and Normalised Scanpath Saliency (NSS) [114] as
described below. As AUC is involved in the fitness computation for the
proposed approach, the two independent performance metrics namely S
and NSS are also employed to effectively evaluate performance without
any bias. These measures provide an extra dimension to the AUC evalu-
ation measure by measuring how similar are the distributions of the pre-
dicted saliency and ground truth, and a measure of agreement between
the human scanpath and the predicted map.

The similarity measure (S) is adapted from a recent study [126] and is
used to evaluate the similarity of two distributions. Both the distributions
are normalised so that they sum to one. Afterwards S is computed by
summing the minimum values at each point in the distributions [126]. If
S is evaluated to be 1, it implies that the distributions are the same, while
an S score of 0 indicates that the distributions are entirely different [126].

NSS gives a measure of agreement between human fixation locations
and method predictions [114]. A score greater than 0 means a higher corre-
spondence, 0 means no correspondence and a score less than 0 shows anti-
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correspondence between method predicted output and human scanpaths.
It is calculated by normalizing the saliency map of the method to have a
zero mean and unit standard deviation. Afterwards, a human subject’s
scanpath is used to access the corresponding normalised saliency values
at each point. The mean of the extracted normalised salience values gives
the NSS score [114].

3.3.4 Experimental Settings for the Genetic Algorithm

The population size for the GA was set to 100 and the GA was run for
20 generations for each experiment. Increasing population size beyond
100 individuals resulted in slowing down the convergence rate without
any significant increase in performance. Similarly running the evolution-
ary process for more than 20 generations also did not improve the perfor-
mance. The crossover rate was set to 0.8 and the mutation rate was set to
0.01 after empirical testing.

The first experiment was performed on Cat1 images with large salient
regions. The data set of 50 images was divided into 35 training and 15
testing images. 30 runs were repeated with different random seeds and
the GA was trained to search for the optimal solution that enhances the
performance.

The second experiment was performed using Cat2 images that have a
cluttered background. The data set contains 15 images in total. It was di-
vided into 11 training images and four testing images. All the parameters
of the GA were kept the same. Again, the average of 30 runs of the GA
was evaluated to search for optimal solutions for this dataset.

The third experiment was performed on Cat3 images with both large
and small salient regions. The Cat3 data set consists of 15 images in total
divided into 11 training and 4 testing images as Cat2. As above, the same
parameters were used in this experiment.

The datasets used for validation are small but are used in standard
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practice for the evaluation of saliency methods [90]. The training and test-
ing sets chosen in this work are also small, however have been employed
for evaluation in similar settings by prior works [92].

3.3.5 Selected Visual Attention Methods for Comparison

The performance of the proposed GAOVSM approach is compared with
eight state-of-the-art methods including RARE [117], AIM [108], Hou and
Zhang (HZ) [54], Seo and Peyman (SP) [121, 122], Torralba [128], SUN
[152], Achanta [3] and STB [134]. These methods are chosen because of
multiple reasons 1) almost all of them are heuristic and do not involve
learning and optimisation in contrast to the proposed GAOVSM. It is noted
that comparison of a learning based method with heuristic methods is
against the norm, it is performed here to asses whether the incorporation
of learning improves the performance over traditional heuristic methods.
2) All of the compared methods were primarily developed for the task of
fixation prediction; 3) Saliency maps for these models are either available
online or could be generated easily from the author provided implemen-
tations.

3.4 Results and Discussion

In this section, firstly the performance of the orientation feature when
computed with human encoded parameters is compared with its perfor-
mance when computed using the optimisation based learned parameters
in section 3.4.1. Next, an analysis of the evolved solutions is presented to
reveal an insight into the improvements of the proposed method. Finally,
quantitative and qualitative comparison of the proposed approach with
heuristic state-of-the-art methods is reported in section 3.4.3.
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3.4.1 Performance Comparison of Orientation Feature, Learned

Versus Human Encoded Parameters

The performance of orientation feature computed using learned param-
eters as compared with its performance using human encoded parame-
ters is shown in Figure 3.2. Figure 3.2 (a) shows the average ROC curves
on images from all three categories for optimised and human encoded
parameters. The orientation feature with optimised parameters outper-
forms the feature computed with human encoded parameters according to
our initial hypothesis. The yellow region shows the gain in performance
achieved by the orientation feature with optimised parameters over its
counterpart. Figure 3.2 (b) shows the performance comparison in terms
of additional evaluation measures such as average AUC, similarity and
NSS for individual image categories. The average results obtained for the
unoptimised orientation feature are 0.6118, 0.2184 and 0.7087 in terms of
AUC, similarity and NSS, respectively. The orientation feature with opti-
mised parameters improves upon the unoptimised feature with average
measures of 0.7499±0.0130, 0.3865±0.0068 and 1.0660±0.1433. The figures
after the ± sign represent the 99% confidence interval on the mean.

3.4.2 Analysis of Evolved Solutions

Representative parameter sets φ� produced by the GA after optimization
through successive generations for the three image categories are shown
in Table 3.1. For all categories, the optimised standard deviation δ? and
wavelength λ? parameters were selected by the proposed GAOVSM ap-
proach to provide a low bandwidth. This choice of δ? and λ? corresponds
to narrow-bandwidth filters for object background discrimination in clut-
tered scenes. This result is in agreement with a previous study, which used
narrow-bandwidth filters for discriminating objects from background in
cluttered scenes [17]. The optimised aspect ratio γ� is found to be rela-
tively high for all categories, representing a receptive field tuned to elon-



3.4. RESULTS AND DISCUSSION 65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
ti

v
ie

 R
a
te

 

 

Orientation feature (human encoded)

Orientation feature (optimised)

Performance improvement (gain)

(a)

(b)

Figure 3.2: (a) Average ROC curves for the orientation feature (human en-
coded (green) vs optimised parameters (black)) on all three categories of
ImgSal.(b) AUC, similarity and NSS scores for the orientation feature (hu-
man encoded vs optimised parameters) for all three categories of ImgSal.
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gated contours of objects.

Table 3.1: Representative optimised parameters φ� evolved by the GA for
all categories.
Sr.No. Parameter Name Optimised

Values Cat1
Optimised
Values Cat2

Optimised
Values Cat3

1 Aspect Ratio γ? 0.65 0.95 0.95

2 Standard Deviation δ? 7.93 6.95 7.57

3 Wavelength λ? 6 6 6

4 Orientation1 θ?1 3o 40o 42o

5 Orientation2 θ?2 77o 87o 84o

6 Orientation3 θ?3 92o 104o 100o

7 Orientation4 θ?4 135o 169o 138o

8 Phase1 ψ?1 −150o 18o −173o

9 Phase2 ψ?2 −169o 109o −103o

10 Weight Colour WC? 0.27 0.43 0.33

11 Weight Intensity WI? 0.10 0.05 0.24

12 Weight Orientation WO? 0.88 0.70 0.94

Optimised orientations θ?2 and θ?3 are found to be favouring the vertical
orientation. This result corresponds to the oblique effect [89]. According to
the oblique effect, there is a bias in the human visual cortex for horizontal
and vertical orientations as compared with the oblique ones. Orientations
θ?1 and θ?4 are found to be consistent with the human encoded values in
general.

For Cat2 images, the optimised phases ψ?1 and ψ?2 are found to be sym-
metric. This is a reasonable result as symmetric filters have been applied
in the past for object detection in presence of clutter [116]. For Cat1 and
Cat3, the optimised phases were found to be mixtures of asymmetric fil-
ters. This is an inherent fit for Cat1 and Cat3 (containing images with
different object sizes), as the mixtures of asymmetric filters are sensitive to
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Figure 3.3: Effect of parameters on the orientation feature conspicuity
maps for three representative images from Cat1. For each image four maps
are computed using the parameter settings shown in the fourth row. The
red boxes are bounded boxes for the high intensity regions in the ground
truth fixation maps.

object sizes in images.

Finally the orientation feature is most heavily weighted as compared
with the other features. This results confirms a previous study reported in
[153]. It is worth noting that the orientation channel is also tuned in the
proposed optimisation framework in contrast to the other channels.

To further analyse the effect of optimised parameters, Figure 3.3 shows
the visual response of the orientation feature computed using four dif-
ferent parameter sets. The first parameter set contains human encoded
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values. The second parameter set contains similar values to the human
encoded values except for the phase values. The phases are set as anti-
symmetric in contrast to symmetric values. The third set also includes
similar values to human encoded values, where only the aspect ratio is
decreased and bandwidth of the filters is increased. The final set contains
the optimised parameter values.

It can be observed that visual response for the human encoded param-
eters tend to capture the edges of object contours (specifically for the first
two images of Figure 3.3), while neglecting the conspicuous high contrast
edges inside objects. This results in low agreement with the ground truth
fixation maps. For the second set of parameters with antisymmetric phase
values, the visual response is again similar to the human encoded one in
that it also captures the object contours. Noticeable changes in the visual
response can be observed, which can be attributed to the change in sym-
metry of the filters. For the third parameter set, the low aspect ratio and
the high bandwidth results in a dispersed response. This response exhibits
greater agreement with the ground truth as compared with the response
of the first and second parameters sets. However this is achieved at the
cost of including more background noise. In contrast to these parameter
settings, it can be clearly observed that the visual response of the opti-
mised feature set shows the best agreement with the ground truth. This
was achieved by tuning the receptive field to be highly elliptical, with nar-
row bandwidth, preferring the vertical orientation (similar to the visual
cortex) and employing asymmetric mixtures for phases.

3.4.3 Comparison of GAOVSM with State-of-the-art

The average ROC curves for all categories is shown in the first row of Fig-
ure 3.4. To provide a better picture of method rankings, the area under
the ROC curves is shown in the second row of Figure 3.4 along with ad-
ditional independent measures, i.e. S and NSS. The error bars on the bar
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graphs show the 95% confidence level on the mean.

Firstly, we present the comparison of the proposed GAOVSM method
with the baseline method of Walther and Koch [134], termed as STB. It is
worth noting that the difference in performance of the proposed method
in comparison to STB is substantial, despite having similar features and
implementation. This result can be attributed to two key factors 1) the
learned parameters of the proposed method are responsible for notewor-
thy gain in performance. This result is also supported by the performance
gains achieved by the learned parameters regarding feature level evalua-
tions; 2) the equally weighted feature maps in STB promote the chances
of a poor feature map corrupting the final saliency response. Another fac-
tor which is noted in our experiments and results is that the feature maps
of STB are subjected to excessive normalisation, resulting in a highly con-
servative final saliency map (for specific visual examples, please refer to
Figure 3.5), which in turn causes STB to completely miss the highlighted
regions in the ground truth map for certain images.

The proposed GAOVSM and the benchmark RARE method exhibit
higher true positive rates for all the operating points on the ROC curve
as compared with other methods, while showing similar performance to
each other. For all the operating points in the ROC curve in terms of the
thresholds, SP and HZ show similar true positive rates for corresponding
false positive rates.

In terms of AUC, the proposed GAOVSM method shows better per-
formance than all the other state-of-the-art methods, which is further sup-
ported by smaller deviation from the mean. This performance can be at-
tributed to the newly designed objective function of the proposed method,
which specifically optimises the AUC. In terms of S, the AIM method
shows comparable performance as compared with GAOVSM, while GAOVSM
outperforms all the other state-of-the-art methods. With reference to the
NSS measure, RARE generally performs better than the other methods,
however, GAOVSM shows more confidence and smaller deviation from
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Figure 3.4: Performance comparison of methods on all image categories.
The left column results show the average ROC curves for methods. The
right column shows the results for average AUC, S and NSS measures for
methods on all the image categories.



3.4. RESULTS AND DISCUSSION 71

mean NSS. The reason for the high NSS score by the RARE method is that
its internal normalisation already outputs maps with zero mean, therefore
they are highly suited to the NSS measure, which performs similar nor-
malisation as a pre-processing step before comparing it with the human’s
scanpath.

Examples of the visual output of the GAOVSM with the other state-
of-the-art methods along with human fixation maps is shown in Fig. 3.5.
A single image selected from each image category along with the corre-
sponding visual response of attention methods is shown. For a method to
perform well qualitatively, it must acknowledge the regions in the human
fixation maps where the strongest activity is concentrated, shown by dark
red colour in heatmaps. A few methods employ human encoded parame-
ters during saliency computation. Specific examples of such methods are
STB and SP. The highly sparse response of STB can be clearly observed,
which may be attributed to the human encoded parameter that defines
the amount of normalisation required. It can be observed from Figure 3.5
that the high saliency regions in the sparse STB maps do not overlap with
the salient regions of the ground truth fixation maps.

SP employs human encoded values for its smoothing parameter and
fall-off parameter in order to compute local steering kernels and self-resemblance,
respectively. At the cost of false positives, SP manages to achieve consid-
erable overlap with the ground truth human fixations as depicted by its
quantitative performance in Figure 3.5.

The visual response of the AIM method exhibits maximum overlap
with the ground truth fixation maps in areas of high saliency at the cost
of including a considerable number of false positives. The SUN method
efficiently matches the ground truth for images with easier background as
can be seen from its response on the airplane image. However, for clut-
tered background images it exhibits an undesirable response by including
background noise.

Although, the visual response of the RARE method highlights salient
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object regions with high intensity blobs, it does not tend to capture high
saliency regions from the eye fixation ground truth on all the representa-
tive images.

Although the visual output of GAOVSM is not very definitive in terms
of defining objects as compared with some of the other methods, GAOVSM
efficiently detects the main blobs of interest in the human eye-tracking
data.

3.5 Chapter Summary

The goal of this chapter was to equip the traditional model of visual at-
tention with the ability to learn the best suited values for its important
parameters for improved performance. To achieve this goal, a new ge-
netic algorithm was proposed to search for optimal values for the impor-
tant parameters of the visual attention model. The objective function of
the proposed GA was designed to maximise the agreement between the
saliency output and the desired ground truth fixations by minimizing the
difference between computed and ideal area under the ROC curve. The
proposed method was able to show considerable feature and system level
improvements as compared with its baseline counterparts. Additionally,
the method exhibited comparable performance to several state-of-the-art
saliency methods. The important findings of this chapter are:

It was shown that learning suitable values for important parameters
of the feature computation process can yield substantial feature level per-
formance improvements. At the feature level, quantitative improvements
of 22.5%, 77% and 50% in terms of AUC, S and NSS measures were ob-
served on average. The 99% confidence intervals on the mean suggests
that the optimised features always substantially improve upon the perfor-
mance of the baseline features for all runs. Additionally, it was shown
that the optimised feature set produces maps that better match the desired
ground truth at pixel level, as compared with the baseline method in order
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Figure 3.5: Qualitative comparison of visual attention methods for all cat-
egories.



74 CHAPTER 3. LEARNING VISUAL ATTENTION

to achieve qualitative improvements.
Notable improvements were shown by the proposed method as com-

pared with the baseline method. The analysis of evolved solutions indi-
cated that the prediction performance of the baseline orientation feature
was greatly improved by the optimised parameters. The performance im-
provements are likely to be due to the proposed method weighting the
orientation feature more heavily as compared with other features. This is
in contrast to the baseline method, which employed unity weights for all
features. The proposed GAOVSM performed better than several state-of-
the-art methods and exhibited comparable performance to two high per-
formance saliency methods, i.e. RARE and AIM.

This chapter was focused on the choice of system parameters in order
to improve the performance of the traditional attention model on the task
of human fixation prediction. The reason for choosing human fixation pre-
diction as a task for evaluation is that the traditional model of attention is
inherently better suited to fixation prediction, as it was originally designed
for the task of human saccade generation.

The optimisation based attention method presented in this work is not
expected to exhibit huge gains when tested on the task of salient object
detection. This is anticipated due to the simple features employed by the
traditional model of attention. Hence, the next chapter aims at developing
new features that are more suited to salient object detection, and devising
ways to incorporate them in a similar attention method.



Chapter 4

Spectral Matting Based Salient
Object Detection

4.1 Introduction

During its infancy, visual saliency detection was limited to human fixation
prediction. Recently the field has been extended to the identification of
important regions in the scene containing a salient object [94], known as
salient object or salient region detection. Salient object detection differs
from the task of fixation prediction (discussed in chapter 3) in that the
desired output is required a labelling of each pixel belonging to the salient
object as foreground and the rest as background.

Studies of the human visual attention system have demonstrated that
visual saliency is related to rarity, surprise and uniqueness of image re-
gions. Such regions can be discriminated by their primitive signature fea-
tures such as colour, texture and shape. Recently a plethora of techniques
have been proposed that attempt to extract salient regions by computation
of region-based contrast (in terms of primitive features) in a local or global
fashion using either single or multiple scales [67, 91, 127, 147, 148, 157].
Such approaches initially segment the image into perceptually homoge-
neous elements before region based saliency computation. The saliency of

75
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a region is then computed as a contrast with respect to any primitive fea-
ture, either by comparing a region with its surrounding superpixels [25],
by computing the global contrast [101] or using a combination of both lo-
cal and global contrast [157].

Before discussing the shortcomings of regions based approaches, a few
important terminologies must be defined. The property of objects to be
composed of multiple parts is termed as object composition. The term
inappropriate annotation can refer to two undesired characteristics of a
saliency map: 1) a saliency map falsely highlights background regions; 2)
a saliency map highlights only some parts of the salient objects. The term
non-uniform saliency assignment defines another undesired characteristic
of a saliency result where notably different saliency values are assigned to
different regions of the salient object.

Region based methods ignore important object properties such as ob-
ject boundaries, shapes and composition resulting in inappropriate anno-
tation and non-uniform saliency assignment. In an attempt to counteract
these problems such methods often include multi-scale saliency maps or
pixel level smoothing operations. However, after the first stage of process-
ing using super-pixels based regions, it becomes cumbersome to retain the
characteristics of proto-objects. These common problems associated with
existing approaches are illustrated in Figure 4.1, along with the intuition
that a technique is needed that can extract the complete salient object(s) by
accurately separating it from the background.

Based on the above discussions, a technique is required that can assign
uniform saliency inside object contours, has the ability to cover all distinct
parts of the foreground salient object(s) and can effectively suppress back-
ground noise. It is noted that such a technique is based on the observation
that foreground objects are characterised by their homogeneous nature,
therefore uniform saliency inside foreground regions is desired. It is also
acknowledged that for some applications, such as a medical tumour di-
agnosis, the heterogeneity of the foreground and the homogeneity of the
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Inappropriate object annotation: the two red boxes in the upper image present a case of falsely highlighted

background regions, while the red box in the lower image shows missing part of an object

Non uniform saliency assignment: Green and magenta regions present cases, where considerably different saliency is assigned to two 

different parts of a salient object. The sub-regions outlined with blue colour show examples of considerably different saliency 

assignment with in object parts.

Figure 4.1: Illustration of inherent artifacts of the region based approaches.
The first column presents the representative input images, columns 2-5
present examples of non-uniform saliency assignment, the sixth column
depicts inappropriate object annotation and the last column shows the de-
sired response. The saliency maps shown in this figure are computed by
recent state-of-the-art region based approaches from the work of Zhu et al.
[157] (column 5), that employs multivariate normal distribution termed as
MND here, and the work of Yan et al. [147] (column 6) that proposed
hierarchical saliency detection, termed as HS in this work.
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background facilitates the classification of the tumour. Therefore, it will
be an interesting future direction to investigate ways in which the desired
uniform saliency based approach can be adapted to such tasks by chang-
ing the notion of foreground and background.

Digital image matting approaches seek effective foreground estimation
to accurately segment the foreground from the background [87, 88]. These
approaches model the observed image I , as a convex combination of fore-
ground image F and a background image B by utilizing an alpha matte
α, such that I = αF + (1 − α)B. Therefore, α defines an observed pixel
as definite foreground when α = 1), as definite background when α = 0

or mixed otherwise. For image matting, α can assume values in the range
[0,1]. However, if α is constrained to only two values, i.e. 0 and 1, the mat-
ting problem condenses to the classical binary foreground/background
segmentation problem, in which each pixel can either belong to the fore-
ground or to the background. Even in its continuous form, the objective
of matting is to reduce the number of mix pixels by investigating that
whether they belong to the foreground or the background. Hence, the
matting approaches aim to label all the pixels belonging to the foreground
similarly as definite foreground, while ensuring similar labels for the back-
ground pixels, i.e. definite background. This is highly coupled with the
task of salient object detection, in which the task is to label all the pixels
belonging to the salient object(s) as salient and all the remaining pixels as
background, whereas it is in high contrast with the region based salient
object detection approaches that could assign different values to different
pixels of the salient object (as an artifact of their processing). Based on the
above discussion, it is arguable that whether the region based approaches
more closely follow the actual formulation of the salient object detection
problem as compared with the matting approaches.

One of the most promising approaches for digital matting employs
matting components of a matting Laplacian matrix to accurately sepa-
rate the foreground from the background [88]. The matting Laplacian is
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a matrix that represents the pixels of an image using a graph in order to
find important relations between them. The eigenvectors of the Laplacian
matrix are employed to find partitions in the data with the objective of
obtaining a single partition that separates the foreground from the back-
ground. A linear transformation of these eigenvectors yield the matting
components, which contain the low level building blocks of semantically
meaningful foreground objects. For each pixel of the image, every element
of a matting component holds a value in the range [0,1] that represents the
membership of that pixel (.i.e foreground, background or mixed). How-
ever, the matting components span all the segments of an image including
background segments. Hence, a method that can select the matting com-
ponents containing only foreground information is of utmost importance
for accurate segregation of foreground from background.

Despite the potential of benefiting a saliency application, the formu-
lation employed by the image matting techniques have not been investi-
gated in salient object detection literature. It is hypothesised that matting
components have the ability to span all the distinct regions of the fore-
ground salient object(s) and the capability of effectively suppressing the
background noise. The hypothesis is based on prior works from the spec-
tral matting literature [88, 87]. However, identifying those matting com-
ponents, which are likely to contain foreground salient object(s) is a highly
challenging task. Additionally, matting components of the matting Lapla-
cian matrix are difficult to adapt for salient object detection, due to their
high computational load.

4.1.1 Chapter Goals

The goal of this chapter is to devise a technique that can quickly compute
accurate matting components and employ them to construct effective fore-
ground object saliency (through robust selection of foreground matting
components) for salient object detection. The detailed objectives required
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to achieve this goal are:

1. Devise a method for accurate computation of matting components
with reduced computational time, thus making them adaptable to
salient object detection.

2. To introduce novel matting component selection cues to identify the
matting components that contain either a part or whole foreground
salient object(s).

3. To introduce a method for coarse region of interest detection (i.e. a
region with high probability of containing the salient object) to aid
the matting component selection cues.

The anticipated outcome is a figure-ground segregation (FGS) method
that can detect the whole salient object and suppress the unwanted back-
ground noise.

4.1.2 Chapter Organisation

The remainder of this chapter is organised as follows: Section 4.2 presents
the implementation details of the proposed FGS method. Section 4.3 presents
the design of experiments. Section 4.4 reports and discusses the results ob-
tained. The final section presents a summary of important findings of this
chapter.

4.2 Matting based Figure-ground Segregation (FGS)

Method

The system model for the FGS method is presented in Figure 4.2. The final
output of the FGS method is a foreground object saliency feature depicted
by the symbol fo (see section 4.2.4). The details of the individual compo-
nents of the FGS method are discussed below.
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Figure 4.2: System model of the proposed FGS approach. The process
depicted with a dot enclosed by a circle symbol in the ROI(s) detection
block implies per element-wise multiplication of the CSD (RGB) and CSD
(Lab) features.

4.2.1 Colour Spatial Distribution

The distribution of colours in space is a highly important cue in saliency
detection. The idea is that a colour, which is widely distributed in an
image is not likely to belong to a salient object [94]. The colour spatial
distribution (CSD) feature is employed in the region(s) of interest ROI(s)
detection step of foreground object saliency feature section 4.2.4.

The most suitable way of capturing the colour spatial distribution cue
is to cluster colours of an image and model each colour as a component of
a Gaussian Mixture Model (GMM) [26, 94, 157]. Thereby, a GMM based
representation of the colours in the image is utilised in this work, where
each pixel colour Iq is represented by several GMM components.

The GMM algorithm involves expectation maximization (EM) of the
log-likelihood function. The stopping criteria for the EM algorithm is de-



82 CHAPTER 4. SPECTRAL MATTING BASED OBJECT DETECTION

fined as: ∣∣∣∣∣ log
(
wN

(
I|θt

) )
log
(
wN

(
I|θt�1

) ) − 1

∣∣∣∣∣ < Lτ , (4.1)

where Lτ is the log-likelihood threshold andw is a vector containing prior
probabilities of the GMM components. The parameter set θt includes the
colour centres (µt) and the covariance matrix

(
Σt
)

of the GMM compo-
nents of the image I for the current iteration t, while θt�1 holds the cen-
tres and covariance matrix for the previous iteration. The log-likelihood
threshold Lτ is an important parameter as it influences the learned param-
eters of the GMM.

As directly employing GMM based clustering of colours ignores spatial
correlation amongst individual components [26], a message-passing based
clustering technique is employed based on such relationships [42], such as
used in related works [26, 157]. The message-passing based clustering is
employed to cluster the GMM components. This approach groups data
points into clusters using message passing between data points and the
preferred cluster centres. Real valued preferences are given as input to the
affinity propagation approach, which specify preferred cluster centres. To
associate a point to a cluster centre, similarities between data points must
also be supplied as input to the message passing method. In this work,
similarities for the data points (i.e. the GMM components) are obtained by
finding pairwise correlation between the GMM components [26]. Prefer-
ences for cluster centres share a similar value in our implementation as all
GMM components are supported to be potential cluster centres. The mes-
sage passing process [42] clusters the GMM components based on their
pairwise correlations resulting in more homogeneous clusters, without the
need of defining the number of clusters beforehand.

The CSD feature fcsd for an image is computed as a measure of spatial
variance of its colours (in the horizontal and vertical directions), weighted
by the distance of its pixels from the image centre. The intuition behind
this is that the colours that vary less in the spatial domain are less likely
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to belong to the salient object. Similarly colours that are distant from the
image centre are less likely to be salient.

4.2.2 Eigenvectors of the Matting Laplacian

The sparse matting components of the matting Laplacian are shown to
be formed by linear combinations of the smallest eigenvectors of the mat-
ting Laplacian by Levin et al. [88]. Therefore, the smallest eigenvectors
are computed in this work by designing the following affinity function to
capture the structural information of an image [88]. Each element A for
the affinity matrixA ∈ RN is given as:

A =
1

|W|
∑
p2W

(
1 + (Ip − µ)

(
Σ +

ε

|W|
U

)�1

(Ip − µ)T

)
, (4.2)

whereW represents an image window centred around pixel p, consisting
of a set of pixel coordinates. The cardinality of the set W is |W|, Σ is a
3× 3 covariance matrix in the windowW and µ is a 3x1 vector containing
the mean of colour values in the windowW . Given r as the radius of the
window W , the kernel size is given as |W| = (2r + 1)2 and U is a 3 × 3

identity matrix. Ip is a vector of image pixel values having the same size as
µ. Given A, the degree matrix is D = diag {d11, · · · , dNN}, where each of
its elements is given as d =

∑
q,i a

i
q, ai is the ith row ofA and q is an index

to each element of the vector ai. The matting Laplacian is then computed
asL = D−A. The smallest eigenvectors of the matting Laplacian are then
computed.

4.2.3 Matting Components from Eigenvectors

The sparse matting components (introduced in the work of Levin et al.
[88]) span all the fine-grained foreground and background regions of an
image. The process of computing the sparse matting components from
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the smallest eigenvectors of the matting Laplacian has a high computa-
tional load thus making its application difficult in saliency detection. The
process of matting components computation is accelerated by neglecting
the inappropriate ones. Additionally, image downsampling is employed
to reduce the computational load. Moreover, identifying the foreground
components from the set of all matting components is a highly challenging
problem, as it requires finding an approximate location of the foreground
object. The identification of the foreground components and their fusion
results in a novel foreground object saliency (see section 4.2.4).

The matting components of L can be recovered by a linear transfor-
mation of the eigenvectors of L. Given the eigenvectors matrix V =[
v1, . . . ,vO

]
of size N ×O, the goal is to find a set of O linear combination

vectors to form G that minimizes a non-convex cost described by Levin
et al. [88] as

∑
k

∣∣m(k)
∣∣δ +

∣∣1−m(k)
∣∣δ. Once G is known the kth matting

component can be computed as m(k) = V g(k), where g(k) is a row vector
of G. The above cost is referred to as the sum of sparsity scores and is a
robust measure of the sparsity of the computed matting components.

The sum of sparsity scores cost is optimized using Newton’s method
as in [88] by computing a sequence of second-order approximations of the
sum of sparsity cost given as V T

∣∣m(k)
∣∣δ�2

+ V T
∣∣1−m(k)

∣∣δ�2. As intro-
duced before, the matting components aim to assign a definite member-
ship to each of their elements, which essentially means that they ideally
desire to assign definite foreground or definite background to each ele-
ment. Therefore, the objective of the optimisation process is to ensure that
each element is close to a definite membership and the number of unde-
fined (mix) elements is reduced. Higher order terms of the second order
optimisations are approximated by the matting Laplacian and its eigen-
vectors. A reweighting procedure is applied to pull the entries of a mat-
ting component towards definite membership, i.e. 0 (or 1), in order to
aid the optimisation process. This is achieved by employing the weighted
eigenvectors and the eigenvalues of the matting Laplacian. Putting it all
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together,G is updated as

G =
V T

∣∣m(k)
∣∣δ�2

+ V T
∣∣1−m(k)

∣∣δ�2
+ p̈

2
(
V TV w +E

) (4.3)

and the matting components matrix is updated as

M = V G. (4.4)

In (4.3), p̈ is the approximation of higher order terms given by p̈ =
∑
q,i e

i
q,

where ei is the ith row of P = V TL and q is an index. The denominator
in (4.3) constitutes the weighting term, where V w is a weighted eigenvec-
tors matrix. The weights are computed by linear combination of the kth
matting component.

The optimal solution for the above optimisation problem can be ob-
tained by binary matting components. However, as the matting compo-
nents are restricted to be linear combination of eigenvectors, they can not
hold all binary values in practice. As the goal of the optimisation process
is to make the binary components as close to binary vectors as possible,
the optimisation process amounts to iterative update of G and M using
(4.3) and (4.4), with the number of iterations as the stopping criterion. The
choice of the number for iterations is based on the sum of sparsity scores
for the computed matting components. The optimisation process tends to
reduce this sum in every iteration. The suitable number of iterations was
searched empirically in this work as detailed below.

A total of 100 images were randomly sampled from the MSRA dataset
[94] (see section 4.3). For each image, a total of 100 iterations were evalu-
ated and the average of the sparsity scores (which is equivalent to normal-
ized sum of sparsity scores) of all matting components were computed.
The computed normalized sum of sparsity scores for all the images were
averaged over the 100 iterations to obtain the mean sparsity score as de-
picted in Figure 4.3. The shaded area shows the standard deviation of the
normalized sum of sparsity scores from the mean sparsity scores. Two im-
portant observations are noted from Figure 4.3: 1) the rate of change in
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Figure 4.3: Convergence plot for the mean sparsity score of the matting
components. The shaded area shows the standard deviation from the
mean. ∆1 and ∆2 are the rate of change of mean sparsity score from it-
erations 1 to 25 and 26 to 100, respectively.

the mean sparsity score for the first 25 iterations (given by ∆1) is triple the
rate of change for the rest of the iterations (given by ∆2). This encourages
trading off the slow rate of change in the total sparsity score at the cost
of saving additional computational time after 25 iterations; 2) addition-
ally, substantial increase in the standard deviation from the mean sparsity
score is observed after 25 iterations. This result suggests that the optimi-
sation does not tend to remain effective for all images after 25 iterations.
Therefore, the number for iterative updates is empirically set to 25 in this
work.

To initializeM during the optimisation process, the k-means algorithm
[41] is applied on the eigenvectors of the matting Laplacian. To speed up
the initialization process, VL k-means algorithm from the VLFeat library1

is employed. Default settings are used for VL k-means with k-means++ to
initialize the cluster centres.

The optimisation process is sped up by neglecting those matting com-

1http://www.vlfeat.org/index.html
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Figure 4.4: (a) Mean absolute error (MAE) for various image sizes. (b) Tim-
ing information (in seconds) for two selected image sizes. Image-size(1-4)
represents original image downsampled by the ratios 1,0.7,0.3 and 0.1 re-
spectively for each image-size. Both MAE and time are shown in sorted
form. Mean MAE and time values are also shown. This figure is best
viewed in colour.

ponents that have majority of their values in close vicinity of 0.5 as they
negatively affect the optimisation. Such matting components make the
sum of sparsity scores high, thereby slowing the optimisation process.
They are detected by their characteristic high sparsity score, which is higher
than 1.2, for the value of δ used in our implementation.

In order to reduce the heavy computational load of eigenvectors and
matting components, image downsampling is investigated. To show the
affect of image downsampling on the computed matting components and
the downsampling ratio used in this work, four representative image sizes
are presented in Figure 4.4.

A total of 100 images were randomly sampled from the MSRA dataset
to compute matting components for each image using various image sizes.
To judge the quality of matting components produced corresponding to a
particular size, the selected matting components were combined accord-
ing to the procedure described in section 4.2.4 to form a foreground object
saliency feature, whose quality reflects the quality of the matting compo-
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nents. The quality of the foreground object saliency feature is measured
by its mean absolute error (MAE) [113] given as

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)−G(x, y)|, (4.5)

where W and H are the respective width and height of the saliency S and
ground truth G. MAE measures how well the saliency maps correctly
identifies the background pixels and is a formal measure of figure-ground
segregation quality. Therefore, it well suits the task at hand, which is to
assess the figure-ground segregation ability of the matting components.
The process of selecting and combining individual matting components
(detailed in section 4.2.4) does not create any bias in our experiments as it
is an independent operation common to all image sizes.

The plot on the left of Figure 4.4 shows the MAE for the representa-
tive image sizes (i.e. ratios: 1, 0.7, 0.3, 0.1), while the plot on the right
shows the computational time in seconds for ratios 0.7 and 0.3 for the 100
representative images. Notably, the MAE for image ratios 1 and 0.3 are
similar based on the average MAE, while 0.1 suffers pronounced increase
of 43.7%. This advocates the use of ratios 0.7 and 0.3. However, based
on the timing information, a noteworthy speed up of 4.7 times is achieved
when using image ratio 0.3. Based on this observation, downsampling ra-
tio of 0.3 is used in this work reducing the number of operations from N2

to 0.3N2 for matting components computation.

4.2.4 Foreground Object Saliency From Matting Compo-

nents

The foreground object saliency is computed from the matting components.
It aids the proposed FGS method to combat the undesired effects of the in-
appropriate object annotation and non-uniform saliency assignment that
are common to region based visual saliency approaches. The proposed
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foreground object saliency overcomes the problem of inappropriate anno-
tation by employing the sparsity property of the matting components and
taking assistance from the proposed foreground matting component se-
lection cues. The problems of missing part of an object and non-uniform
saliency assignment to object parts are tackled by ensuring maximum cov-
erage of object regions. This is achieved by computation of accurate mat-
ting components that span all the foreground object regions.

To obtain the foreground object level saliency from matting compo-
nents, an unsupervised technique is required that can sift through the mat-
ting components and identify the matting components that belong to the
foreground object. The purpose of this sifting process is to ensure that all
those matting components that contain accurately segmented foreground
regions are selected and that all the noisy matting components are dis-
carded. To achieve this, two newly designed cues are implemented, i.e.
mean activity inside the region(s) of interest cue and surroundedness cue.
The former cue ensures that only those matting components are selected
that have mean activity inside the region(s) of interest greater than outside
the region(s) of interest, while the latter ensures that no matting compo-
nent is selected that contains a foreground region occupying more than
one edge of an image. The foreground object saliency can then be com-
puted as:

fo =
∑
k

β(k)m(k), (4.6)

where β(k) (termed as foreground label) is the kth column of β, which is
a K-dimensional binary vector. The ith location of the foreground label
vector β is set to one for a foreground component and zero to specify a
background component. Each element of β is computed by employing
a mean activity inside regions of interest cue in conjunction with a sur-
roundedness cue. The process of regions of interest detection is explained
next.
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Region(s) of Interest Detection

Region of interest (ROI) detection has been employed in prior works [144,
93] to localize fine saliency regions. However due to outlier points of
interest, background regions often get included in the region of interest,
leading to a loss in performance. In contrast to previous work, only fine
saliency regions are captured. First the RGB based colour spatial distri-
bution feature (CSD) fR

csd and Lab based CSD feature fL
csd are computed

using RGB and Lab based input images according to the process described
in section 4.2.1. Next, the CSD feature maps are fused by per element wise
multiplication (◦) to promote regions that are labelled as salient by both
CSD features

f csdC = fR
csd · fL

csd. (4.7)

The combined CSD feature f csdC ensures that it only captures the re-
gions that are voted to be salient by both the CSD maps. Afterwards, f csdC

is segmented to obtain the ROI(s).

The proposed f csdC is generally robust to background noise and the
foreground saliency feature is not highly sensitive to regions(s) of interest
unlike previous approaches [144, 93]. Therefore, adaptive threshold based
segmentation is employed in this work. A suitable value for the adaptive
threshold that generalizes to unseen images is empirically sought, where
the objective is to select the value that provides the best foreground ob-
ject saliency performance. Based on past works [55, 3], the candidates for
adaptive threshold values are set as multiples of the mean intensity of the
f csdC and the best value that corresponds to the best foreground object
saliency performance is searched. The best value for the adaptive thresh-
old was empirically found to be twice the mean intensity of f csdC in this
work.
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Mean Activity Inside Region of Interest Cue

The mean activity inside the ROI(s) (µin) and the mean activity outside the
ROI(s) (µout) is computed as:

µin =
1

|pI|
∑
q

pI
q, µout =

1

|pO|
∑
q

pO
q , (4.8)

where pI represents the vector of pixel intensities inside the ROI(s) and
pO is the vector containing pixels intensities outside the ROI(s).

∣∣pI
∣∣ and∣∣pO

∣∣ are the number of elements in the vectors pI and pO, respectively. The
mean activity inside the ROI(s) µin, must be greater than the mean activity
outside the ROI(s) µout for a component to belong to the foreground.

Surroundedness Cue

The Gestalt principle of surroundedness is employed for figure-ground
segregation [109]. According to the principle of surroundedness: in am-
biguous situations with two distinguished regions, when one region sur-
rounds the other, the surrounded regions are always perceived as figures
[109]. Zhang and Sclaroff [151] used the principle of surroundedness to
produce an attention map from segmented colour channels of an image.
They use the surroundedness principle in conjunction with a flood fill ap-
proach to condition the Boolean feature maps to obtain an attention map.
Drawing on their approach [151], this work uses the Gestalt principle of
surroundedness to identify matting components that belong to the fore-
ground object.

To employ the surroundedness principle for foreground component
detection, segmented matting components are used to capture their fig-
ure and ground proposals. According to the principle of surroundedness,
the matting components that have a part of the figure present at their
boundaries can not provide good figure-ground proposals. Specifically, it
is noted that an object will rarely occupy more than one edge of an image.
Based on this observation all the matting components having part of the
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figure present on more than one of their sides are considered as outliers.
The kth matting component is binarised as follows:

b(k) = thresh(m(k), θ), (4.9)

where θ is the segmentation threshold set as twice the mean intensity of
the matting component. The threshold is set high to determine whether
any part of the definite foreground is present at the boundary. Next, the
boundary pixels membership sets Bt,Bb,Bl,Br are computed, which con-
tain all the non-zero pixels present at the components top, bottom, left and
right boundaries respectively. Then, the boundary pixels membership sets
are used for all the components to obtain a K-dimensional binary vector
η, where each of its elements are inspected to ensure that at least three
of the boundary membership sets are empty for each component b(k) (i.e.
η(k) = 1 iff at least three of the boundary membership sets are empty).

It is hypothesised that the surroundedness cue will not be highly ben-
eficial in identification of foreground components if used in isolation, as it
only helps in detecting outlier matting components (in cases where neither
of the regions surrounds the other). It is anticipated that employing it in
conjunction with the mean activity (MA) inside ROI(s) cue will greatly im-
prove the overall salient object detection performance. Therefore it utilised
as a complementary cue to the MA inside ROI cue, for determining if a
component is to be selected as a foreground component or not.

Identifying Foreground Components by Defining β

To detect the foreground components and form the foreground label β,
the mean activity inside ROI(s) based selection is coupled with surround-
edness based outlier detection. The foreground label for the kth matting
component can be evaluated using MA inside ROI(s) and surroundedness
cue as:

β(k) =

1 if µin > µout, η
(k) = 1

0 otherwise.
(4.10)
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This process is repeated for all matting components to form β.

4.3 Design of Experiments

4.3.1 Dataset

The ImgSal database employed in Chapter 3 can not be used to evalu-
ate salient object detection methods. Therefore, a database that can thor-
oughly evaluate the performance of salient object detection methods is
required. MSRA-B [94] is a subset of the MSRA salient object dataset con-
taining 5000 images collected mainly from the Internet. Recently Jiang et
al. [68] provided pixel accurate segmentations for the whole database.
MSRA includes images containing objects belonging to a wide variety
of classes, while most of the images contain a single salient object. This
dataset is widely used to measure the generalisability of methods due to
the large number of available images. Due to its variety of image classes
and extensive use for benchmarking the state-of-the-art, it is employed in
this chapter for performance evaluations.

4.3.2 Parameter Settings

The dimension N of the eigenvectors matrix V and the matting compo-
nents matrix M is defined as the number of pixels in the input image.
Two important design parameters of the proposed FGS method are the
number of smallest eigenvectors O and the corresponding number of mat-
ting components to be computed. During the initial experimentation, 10
matting components were found to provide reasonable coverage in terms
of spanning the distinct regions of foreground object(s) for images drawn
from the MSRA benchmark dataset. For this reason, 10 matting compo-
nents were computed throughout this work. To obtain accurate matting
components, the number of eigenvectors O must be greater than the num-
ber of matting components to be computed. After experimenting with
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different values, the use of the 50 smallest eigenvectors were found to be
a good choice for computing the matting components.

4.3.3 Evaluation Benchmarks

The standard benchmark for salient object detection, which performs fixed
(naı̈ve) thresholding of the saliency map at thresholds within the range
[0, 255], is employed in this work for evaluation of the performance [3].
Precision and recall are computed at each threshold to make a precision
recall (PR) curve. The area under the PR curve (AUCPR) is then used as a
measure of performance for comparing methods.

4.4 Results and Discussion

A quantitative and qualitative comparison of the proposed FGS approach
with 10 state-of-the-art recently proposed saliency methods is presented.
The methods include: MND [157], DSR [91], MR [148], MC [67], BSM [144],
CS [45], LRK [123], SIA [26], HS [147] and DRFI [68]. These methods are
included based on relevance to this thesis, recency and availability of their
saliency maps.

Figure 4.5 shows the quantitative comparison of the proposed FGS ap-
proach with the state-of-the-art methods according to the fixed threshold-
ing benchmark. It can be observed from the AUCPR scores that the pro-
posed FGS method is ranked 3rd of the 10 state-of-the-art methods. It
can also be observed that at lower thresholds and higher recall values, the
proposed FGS approach maintains higher precision as compared to all the
compared methods except DRFI. This demonstrates the ability of the pro-
posed FGS approach to suppress background noise.

Figure 4.6, demonstrates the effectiveness of the proposed FGS ap-
proach as compared with the selected best performing state-of-the-art method.
The best performing methods are selected based on their quantitative per-
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Figure 4.5: Quantitative comparison of the proposed FGS method with
selected region based methods in terms of PR curves.

formance. The red annotations show the undesired artifact of inappropri-
ate object annotation, which is a characteristic response by a few top per-
forming state-of-the art methods. DRFI includes unwanted background
noise for the first two images, while the response of HS is corrupted with
background noise for each representative image. The MND method effec-
tively suppresses the background noise, however, it exhibits non-uniform
saliency assignment for all representative images. In contrast to the top
performing state-of-the-art methods, the proposed FGS method success-
fully suppresses the background and assigns uniform saliency inside ob-
ject contours for all representative images.

4.4.1 Discussion of FGS results

This section demonstrates that maximum coverage of object regions helped
the proposed FGS approach in overcoming the problem of non-uniform
saliency assignment. It also shows that effective selection of sparse mat-
ting components aided FGS to overcome the problem of inappropriate ob-
ject annotation.
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Figure 4.6: Visual comparison of the proposed FGS technique with se-
lected state-of-the-art methods on representative images from the MSRA
dataset. From left to right: image, ground truth, MND [157], HS [147],
DRFI [68] and the proposed FGS method.

Figure 4.7 demonstrates the object coverage ability of the matting com-
ponents computed according to the proposed approach. It can be ob-
served that different parts of an object with different object properties are
effectively covered by the object proposals obtained by the proposed mat-
ting components, resulting in uniform saliency assignment and appropri-
ate highlighting of all foreground object parts.

Figure 4.8 demonstrates the procedure of neglecting unwanted noisy
matting components and promoting sparser foreground components by
the proposed matting component selection cues detailed in section 4.2.4. It
can be observed that the selected components, shown inside green boxes,
have greater mean activity inside the ROI(s) and also have surrounded
foreground objects according to the definition of section 4.2.4. All the un-
desirable matting components with background noise are neglected by the
selection cues. The matting component in the red box is neglected despite
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Figure 4.7: Object proposals by the matting components covering various
parts of the foreground object. Only representative matting components
are presented here. The colour boxes contain input image, desired ground
truth and four representative matting components providing object pro-
posals.
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Figure 4.8: Selecting noise free sparse matting components by employ-
ing the proposed selection cues (section 4.2.4). The green boxes present
the selected matting components, while the red box shows an unwanted
matting component, which is deselected by both the cues. The figures in
red depict the mean activity inside the ROI(s), while the figures in yellow
show mean activity outside the ROI(s). The boundaries of the foreground
objects are overlaid in pink for all matting components.

its sparse response, as it has greater activity outside the ROI and also does
not satisfy the property of surroundedness.

4.5 Chapter Summary

The proposed FGS method was shown to be able to combat the unde-
sired artifacts of saliency inherent to region based approaches, resulting in
smoother and more pleasing saliency maps as compared with the region
based state-of-the-art approaches. It was also shown that by suppression
of the undesired background noise and through uniform saliency assign-
ment to object parts, the proposed approach was able to improve upon
several state-of-the-art approaches in terms of quantitative performance.
Despite, this promising performance of the proposed FGS method, care-
ful analysis of the FGS results revealed that in rare cases, noisy matting
components are falsely selected by the proposed selection cues, thereby
corrupting the FGS output. As the proposed selection cues are adaptive
and unsupervised, they are limited in terms of robustness due to lack of
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Figure 4.9: From left to right: input, ground truth (GT), fR
csd, fL

csd, columns
5-7 show the first three smallest eigenvectors ofL and column 8 shows f o.

prior information or any supervisory input. Incorporating supervisory
techniques or any prior knowledge can lead to high computational costs
and is not desirable, given the heavy computational load of matting com-
ponent computation.

On further analysis, it was revealed that in such scenarios, accurate
saliency solutions can be obtained by the smallest eigenvectors of the mat-
ting Laplacian, as they are used to compute the matting components. Ad-
ditionally, as the matting components exploit the colour information on
a local scale using image windows, adding global colour features can aid
the foreground object saliency in such scenarios. A representative example
of such a case is presented in Figure 4.9, where one of the three smallest
eigenvector of the matting Laplacian (columns 5-7) provides an accurate
saliency solution and the global colour spatial distribution features in RGB
and Lab space (columns 3-4) also provide good saliency solutions to aid
the corrupted foreground object saliency. Further examples and analysis
regarding the utility of eigenvectors and colour spatial distribution fea-
tures in aiding the foreground object saliency feature is provided in chap-
ter 5.

Based on the aforementioned hypothesis, the next chapter will evalu-
ate the performance of the proposed FGS method when its final output re-
sponse fo is aided by the complementary smallest eigenvectors and global
colour features.
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Chapter 5

Improving the Figure Ground
Segregation System By Learning
Complementary Feature
Combination

5.1 Introduction

The previous chapter introduced the FGS method, which was able to over-
come the problems of inappropriate annotation and non-uniform saliency
assignment by accurate computation and selection of matting components.
Despite promising performance of the FGS method, a limitation in fur-
ther performance improvement was found to be the noisy matting com-
ponents that are falsely detected by the proposed unsupervised compo-
nent selection cues. Potential solution to improve the component selection
technique is to introduce supervised learning, but at the cost of additional
computational time. As the computational overhead of the feature com-
putation stage of the FGS methods is already high, it is not desirable to
devise a technique that adds to the overall computation time.

101
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Further analysis of the aforementioned problem revealed that the small-
est eigenvectors of the matting Laplacians can contain accurate saliency
solutions in such scenarios. As eigenvectors are required to compute the
matting components, hence, they will not add any extra computational
time to the method. Moreover, it was uncovered that adding global colour
information to the local colour information exploited by the matting com-
ponents can benefit the foreground object saliency feature. Favourably, as
these features are already computed as part of the FGS method, they add
no overhead to the computational time of the method.

The inclusion of multiple features in the proposed approach reflects
the need for considering feature importance during combination (see sec-
tion 5.2.1). Moreover, experimentation with a range of parameters (for
details, see section 5.2.1) revealed that the parameters related to the fea-
ture computation process considerably affect the salient object prediction
capability of the features. To improve upon the salient object detection
performance of the FGS method, important parameters must be searched
in conjunction with feature importance weights. Hence, the problem at
hand can be formulated as an optimisation or search problem, where the
parameters of the feature computation process and feature weights must
be searched with the objective of improving the salient object detection
performance.

Most methods in the literature employ ad hoc feature combination schemes
for salient object detection [157, 101, 52]. These integration rules are fragile
with poor generalizability due to their ad hoc tuning. A few learning-based
salient object detection approaches have been proposed in the literature
[133, 13, 72], which learn feature importance by formulating the salient
object detection problem as a classification problem. These techniques are
generally classification based methods, therefore parameter search can not
be easily incorporated into their formulation. The recent work by Jiang et
al. [68], on discriminative regional feature integration (DRFI), employs
regression to automatically select and integrate features. However, in sce-
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narios where feature performance is heavily dependent upon important
feature related parameters, it is not feasible to incorporate joint optimisa-
tion of parameters into the automatic feature integration process of DRFI.

As the decision variables have bound constraints and a few decision
variables are integers, the optimisation problem condenses to optimisa-
tion of a performance based objective function along with constraint han-
dling for decision variables. The majority of traditional constrained opti-
misation methods [12] transform the optimisation problem into a convex
equivalent [16] and also require domain knowledge. As the integer and
bound constraints make the optimisation problem non-convex, the latter
class of methods may not be directly adapted for this task. Hence, a system
is needed that can perform efficient optimisation in a large search space,
does not require prior knowledge of the search space and has the ability to
encode performance metrics as its objective function. Amongst other op-
timisation approaches, a Genetic Algorithm (GA) is a competitive search
technique in large search spaces. Furthermore, it does not require any
prior knowledge of the search space and has the ability to handle integer
and bound constraints on decision variables. Moreover, the GA has the
ability to encode salient object performance metrics directly as its objec-
tive function.

5.1.1 Chapter Goals

The goal of this chapter is to devise a method for fusion of the foreground
object saliency (fo) (see chapter 4) with the smallest eigenvectors of the as-
sociated matting Laplacian and the CSD features, by joint optimisation of
the feature parameters and feature importance. The following objectives
are set to meet this goal:

1. To investigate whether the proposed FGSopt method can benefit the
foreground object saliency fo, by improving its salient object detec-
tion performance.
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2. To develop a baseline unoptimised method that uses human encoded
parameters and assigns equal importance to all features. It will then
be compared with the FGSopt method to investigate whether it is
the optimised parameters that benefit fo or solely the unoptimised
complementary features.

3. Quantitative and qualitative comparison of the proposed FGSopt
approach with the state-of-the-art learning and non-learning based
salient object detection methods.

5.1.2 Chapter Organisation

The remainder of this chapter is organised as follows: Section 5.2 provides
the implementation details for the proposed FGSopt method. Section 5.3
presents the design of experiments. Section 5.4 presents and discusses
the results obtained. The final section presents an overview of important
findings of this chapter.

5.2 Method

The system model for the proposed FGSopt method is depicted in Fig-
ure 5.1. The FGSopt approach has two operating modes, namely offline
optimisation and saliency computation. During the offline optimisation
mode, the important parameters of the feature computation and weight-
ing process are searched by a Genetic Algorithm and stored in an optimal
parameter vector λ. In the saliency computation mode, fo is fused with
additional complementary features, i.e. the smallest eigenvectors of the
matting Laplacian and colour spatial distribution (CSD) according to the
learned parameters λ to compute the final saliency sf . The implementa-
tion details of fo, smallest eigenvectors of the matting Laplacian and the
CSD features are discussed in the previous chapter.
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Figure 5.1: System model of the proposed FGSopt approach. Complemen-
tary features are computed using training images to form a feature matrix
FM , which is fed into the optimisation block. After offline optimisation,
the learned parameter set λ is used to compute the final saliency map for
all images in the saliency computation mode.
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5.2.1 Optimisation Framework for Feature Combination

The visual results of the proposed saliency features using representative
images are shown in Figure 5.2 to illuminate the rationale behind learn-
ing the feature importance during feature fusion. From the top row im-
age it can be observed that the second smallest eigenvector of L and fo

better capture the salient object (i.e. the jumping boy) as compared with
the other features and hence should be given more importance during
the feature combination process. Conversely, for the second row image,
the Lab based CSD feature fL

csd and the second smallest eigenvector of
L produce comparatively better saliency maps and therefore, should be
weighted highly as compared with the other features. This necessitates
the task of weighting features to quantify their relative importance. A
wide class of methods have addressed this issue by learning the optimal
weights [133, 158, 13, 72]. While these methods achieve statistically good re-
sults on publically available benchmarks, they only focus on optimising feature
combination neglecting the optimisation of bottom-up parameters.

Levin et al. [88] used human encoded values for the parameters in-
volved in bottom-up computation such as window size r and the regular-
ization term ε in (4.2). However the quality of segmentation is a function
of window size |W| and varying |W| will affect the captured similarity
and proximity of the neighbouring pixels in the window [88]. Also, ε con-
trols the trade-off between noise and smoothness in the final solution and
affects the quality of the resulting eigenvectors in terms of their ability
to capture true image segments [88]. To observe the effect of varying r

and ε on the quality of segmentation (at the first stage of foreground ob-
ject saliency computation), 10 images from the MSRA-B dataset [94] were
sampled and their corresponding mean absolute error (MAE) [113] pro-
files plotted in Figure 5.3. The MAE profile for varying r with a fixed ε

is shown on the left (top row) and the profile for varying ε with fixed r is
shown on the right (top row) of Figure 5.3. To generate these profiles for
each image, nv smallest eigenvectors of L were used. The average MAE
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Figure 5.2: Rationale for learning feature importance during feature com-
bination. From left to right: input, ground truth (GT), fR

csd, fL
csd, columns

5-7 show the first three smallest eigenvectors of L and column 8 shows
fo. It can be clearly observed that different features obtain different level
of accuracy in capturing the salient object. Hence, the technique must as-
sign different importance to features having high accuracy for a particular
image as compared to the features that obtain lower accuracy. It is also
noted that individual feature accuracy also varies on image-by-image ba-
sis, therefore the relative importance of features must be learned for effec-
tive feature combination on unseen images.

and the standard deviation from mean MAE (depicted by the error bars)
for specific values of r and ε are shown. It can be observed that varying r
and ε in isolation (while one of them fixed) causes considerable variance in
the quality of eigenvectors for each image and significant variance in MAE
can be observed when considering all the images. A general trend for the
average minimum MAE can be seen at r = 2 and r = 3 for the window
radius profile. Similarly the lowest average minimum MAE is recorded
for ε = 1e− 4 and ε = 1e− 5 for the regularization parameter profile.

However, it is not plausible to generalise these values over the whole
set of images. Optimal values for these parameters that generalise over the
whole dataset are therefore needed. To show the effect of simultaneously
varying r and ε over a grid of values, the MAE profile (bottom row of Fig-
ure 5.3) for the top row image (jumping boy) in Figure 5.2 is also plotted.
As can be seen, this is not a simple unimodal trade-off surface. Although
locating the minimum in this case is not cumbersome, the generalization
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over multiple images would not be practical. Hence, the suitable values
for these parameters of the bottom-up process must be searched in con-
junction with the feature importance to improve performance.

Formulation of the Optimisation Problem

Given a set of training examples T =
{
t(1), t(2), · · · , t(Q)

}
with the corre-

sponding annotations A =
{
a(1),a(2), · · · ,a(Q)

}
, the goal is to learn a pa-

rameter vector λ =
[
r, ε, nv, Lτ ,w

]
by minimizing the difference between

the predicted saliency set S =
{
s(1), s(2), · · · , s(Q)

}
and the annotations A

in terms of the positive predictive value (precision) p̂ and the hit rate (re-
call) r̂. Given precision p̂ = {p1, p2, · · · , pn} and recall r̂ = {r1, r2, · · · , rn}
on a set of thresholds ta such that r1 ≤ r2 ≤ · · · ≤ rn holds, let pmaxi , pmini be
the largest maximum and minimum sample precision values correspond-
ing to ri, respectively. The objective function maximises the area under the
PR curve (AUCPR) by minimizing the following:

λ� = arg min
λ

(
1−

n�1∑
i=1

pmini + pmaxi+1

2
(ri+1 − ri)

)
. (5.1)

The thresholds are defined as ta = [0 . . . 255] according to the bench-
mark reported in [3]. For computational efficiency, ta is downsampled
using a step size of four. During downsampling it is ensured that the sam-
ples are enough for a reasonable approximation of area under the curve
using trapezoidal estimation [1]. The accuracy of area under the curve ap-
proximation may have pronounced effects on instances that are very close
in the PR operating space. Given a thresholded saliency map ŝ and the cor-
responding annotation a, the precision for the ith threshold is computed
according to (5.2).

p̂(ti) =

∑
q aq · ŝq(i)∑

q aq · ŝq(i) +
∑
q(1− aq).ŝq(i)

(5.2)
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Figure 5.3: Rationale for learning important parameters of bottom-up
saliency computation. Top row: effect of W and ε on the eigenvectors
of L, bottom row: combined effect of jointly varyingW and ε for the rep-
resentative jumping boy image in top row of Figure 5.2. I1-10 represents
the image number here for the selected representative images. This figure
is better viewed in colour.
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The recall for the ith threshold is given as:

r̂(ti) =

∑
q aq · ŝq(i)∑

q aq
, (5.3)

where ŝq(i) represents a segmented saliency map at the ith threshold in
(5.2) and (5.3).

Genetic Algorithm (GA) Implementation

A real-coded Genetic Algorithm (R-GA) is employed to model the opti-
misation problem given by (5.1). The proposed GA algorithm creates a
random initial population that is drawn from a uniform distribution, such
that it satisfies the constraints on integer variables. A real-coded repre-
sentation is used to encode the population and rounding is used to ensure
integer constraints. The bounds on the decision variables are based on
prior knowledge of the sensible variable ranges. The tolerance on the av-
erage change in fitness value along with the number of generations define
the termination criteria for the GA.

r, ε and nv, are encoded as integer variables in the proposed GA based
optimisation framework.

r ∈ Z : rL ≤ r ≤ rU

ε ∈ Z : εL ≤ ε ≤ εU

nv ∈ Z : nLv ≤ nv ≤ nUv . (5.4)

Lτ from (4.1) is encoded as

Lτ ∈
[
1× 10�3, 9× 10�3

]
⊂ R, (5.5)

where the bounds are based on prior information from past work [94].
Finally the weights of the features w ∈ R are encoded in the following

range:

w ∈ [0, 1] . (5.6)
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For each saliency output s, its segmented version ŝ is compared with
the corresponding ground truth annotation a to compute the respective p̂
and r̂. The fitness for each s is then computed using the objective function
in (5.1).

Binary tournament selection [47] is used to choose a pool of quality so-
lutions by exerting high selection pressure. In combination, parent-centric
recombination operators (i.e. Laplace cross-over operator and power mu-
tation [32]) are employed in the anticipation that placing children in prox-
imity with the parents can provide us with good solutions throughout the
evolutionary process.

For the selection, crossover and mutation operators, the implementa-
tions described in chapter 4 are again used.

5.2.2 Final Saliency Computation

To compute the final saliency output sf for an image, all the computed
features are concatenated into a feature matrix FM = [fR

csd,f
L
csd,V nv ,f

o],
where V nv contains nv smallest eigenvectors of L as its columns. Then the
final saliency sf is computed as

sf =
∑
i

w(i) · f (i)(λ̂), (5.7)

where w(i) is the learned weight for the ith feature and f (i) represents the
ith column of FM .

5.3 Design of Experiments

5.3.1 Datasets

As this chapter introduced the first method for joint learning of feature
parameters and importance for salient object detection, several benchmark
datasets were employed for thorough evaluation of the method. This was
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to ensure that the performance is truly reflective of wide variations that
can occur in the data.

The MSRA-B [94] dataset is employed in this work due to the reasons
explained in chapter 4. That chapter also discussed specific details of the
dataset.

SED1 [9] is a subset of the segmentation evaluation database contain-
ing 100 single salient object images. Pixel accurate segmentations from up
to three different users are provided in this dataset.

SED2 [9] is also a part of the segmentation evaluation database having
a total of 100 two salient object images with pixel accurate annotations
similar to SED1. Due to two salient objects per image, it is difficult for
methods to achieve optimum results on this dataset.

SOD [103] is a subset of the Berkeley Segmentation Database [102] con-
taining 300 images. Scenes containing multiple salient objects with com-
plex object and background appearance makes it a difficult dataset for
most saliency methods. Seven subjects were asked to label the foreground
object, where each subject can label more than one salient object in an im-
age. A confidence score is provided for each labelled object, however a
single foreground mask is not provided by the authors as the ground truth
[103]. Thereby, the approach used in [136] is followed to generate the pixel
accurate ground truth masks.

The PASCAL-VOC2012 dataset (named as VOC) is a collection of im-
ages used in the PASCAL-VOC challenge since 2007. It has a total of 11,540
images. This work employs 2,913 images out of the total images, which
have segmentation ground truth available. It contains the most difficult
images for salient object detection having objects of more than 20 image
classes with multiple salient objects. The pixel accurate ground truth seg-
mentations provided for the object detection task are used in our evalua-
tions.

A total of 2500 images are randomly sampled from the MSRA and the
VOC datasets as training examples for the proposed optimisation frame-
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work. Test performance is evaluated using all remaining images.

5.3.2 Parameter Settings

After searching for suitable values, the population size for the GA was set
to 200 and the number of generations to 50. A crossover fraction of 0.8
and mutation rate of 0.01 were found to be suitable for the experiments
with four elite individuals retained each generation. Optimal values for
the parameters of the bottom-up process (r, ε, nv, Lτ ) are searched during
the optimisation procedure. The optimal values found after optimisation
are r� = 3, ε� = 1e − 6, n�v = 6 and L�τ = 7 × 10�3, which are employed to
compute saliency for all unseen images.

5.3.3 Evaluation Benchmarks

Two standard benchmark methods as reported in [3] for saliency segmen-
tation are employed during the performance evaluation. The first bench-
mark is the same as employed in chapter 4. It performs fixed (naı̈ve)
thresholding of the saliency map to generate a precision recall curve.

The second benchmark employs adaptive thresholding of saliency maps.
According to [3], the image is segmented by using the mean shift seg-
mentation algorithm [30] and only those segments are retained in the bi-
nary segmented saliency map for which the saliency value is higher than
twice the mean saliency of the saliency map. Average precision and recall
are computed by comparing the segmented binary map with the corre-
sponding ground truth. Average F-measure is then computed according
to Achanta et al.[3] as:

Fβ =
(1 + β2).Precision.Recall
β2.Precision + Recall

(5.8)

Similar to [3], β = 0.3 is employed to give more importance to precision
as compared with recall.
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5.4 Results and Discussion

This section primarily compares: the performance of the proposed FGSopt
method with the FGS method, then with the baseline unoptimised method
to gauge any performance improvements and finally presents a rigorous
comparison of the proposed FGSopt method with 10 state-of-the-art meth-
ods including MND [157], DSR [91], MR [148], MC [67], BSM [144], CS [45],
LRK [123], SIA [26], HS [147] and DRFI [68]. These methods are included
based on relevance to the proposed work, recency and availability of their
saliency maps.

5.4.1 Comparison with the FGS method

Figure 5.4 shows the feature level performance as compared with the com-
bined performance of the proposed FGSopt method. It can be noted that
the proposed FGSopt method considers the performance gaps between
individual features to improve upon the FGS performance. By optimally
combining the FGS output with the complementary features, the overall
performance of the FGS method is improved. The FGSopt method also im-
proves upon FGS performance in the F-measure space as can be observed
by the F-measure contours on the PR curve in Figure 5.4.

5.4.2 Comparison with the Baseline Unoptimised method

This section investigates the effects of the optimised method parameters
on the overall saliency detection performance of the proposed FGSopt
method. For comparison, a baseline method is implemented that em-
ploys human encoded values for all the variables in the parameter vector
λ̂ = [r, ε, nv, Lτ ]. The weights vector for the baseline method is popu-
lated with ones for all features to assign equal importance to all features.
The feature and method level comparison of the proposed FGSopt method
with the baseline method is presented in Figure 5.5 and Table 5.1. Fig-
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Figure 5.4: Comparison of the feature level performance with the overall
proposed FGSopt method.

ure 5.5 (a) presents the method level comparison of the proposed method
with the unoptimised baseline method, while Figure 5.5 (b), (c) and Ta-
ble 5.1 show the feature level performance comparison of both the meth-
ods.

For the smallest eigenvector features, the optimised parameters were
found to suppress the background noise as compared to the baseline fea-
tures that employ human encoded values. Representative examples of this
behaviour are shown in Figure 5.5 (b) for the second smallest eigenvector
of the matting Laplacian. The reason behind this behaviour is that the
baseline eigenvector features tend to divide the image into many distinct
clusters, whereas the optimised eigenvector features tend to minimize the
number of clusters to only two clusters, i.e. the foreground and the back-
ground. This is clearly suggested by the top row flowers image in Fig-
ure 5.5 (b). Moreover, the quantitative performance evaluation shown in
Table 5.1 on the MSRA dataset confirm the superior performance of the
proposed optimised eigenvector features over the baseline unoptimised
features.

Both the optimised RGB and Lab based colour spatial distribution fea-
tures show minimal improvements over their baseline counterparts. This
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Figure 5.5: Comparison of the proposed FGSopt method with the base-
line unoptimised method. (a) PR curves for the baseline and the proposed
FGSopt method on the MSRA dataset. The shaded region signifies the per-
formance improvement. (b) Effect of parameter optimisation on the sec-
ond smallest eigenvector of the matting Laplacian. (c) Effect of parameter
optimisation on fo.
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AUCPR Baseline Proposed
Percentage
increase

Combined
eigenvectors

0.6719 0.6978 3.7%

CSD (RGB) 0.708 0.715 1%
CSD (Lab) 0.7412 0.7510 1.3%
Foreground object
saliency feature

0.8042 0.8399 4.4%

Table 5.1: Feature level performance enhancements by the optimised pa-
rameters on the MSRA dataset.

result suggests that the log-likelihood threshold does not greatly affect the
saliency detection performance of the CSD feature when used in conjunc-
tion with complementary features.

The first row Figure 5.5 (c) shows the ground truth, baseline foreground
object saliency and the optimised foreground saliency feature of a repre-
sentative image. The second row of Figure 5.5 (c), shows the one dimen-
sional (1D) profile of the images presented in the first row, where the red
line overlayed on top row images shows the slice used to generate the
1D profiles. The red and green horizontal dotted lines plotted on the 1D
profile depict the respective thresholds of the proposed and unoptimised
feature maps, computed as twice their mean intensity as per the evalua-
tion benchmark [3]. It can be clearly observed from the top row results
that the proposed f o feature suppresses the unwanted background noise
present in its baseline unoptimised counterpart. This result is also reiter-
ated by the 1D profile, where the proposed f o more closely matches the
ground truth profile as compared to its baseline unoptimised counterpart.
The superior performance of the optimised fo as compared to the base-
line feature is also confirmed by considerable performance enhancements
of 4.4%.

Figure 5.5 (a) shows the substantial improvement of 16.2% achieved
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by the optimised parameters of the proposed FGSopt method in compar-
ison to the baseline method. Considering the 99% confidence limits of
the multiple runs of the FGSopt method, the performance improvements
range from 12.4% to 20%. This is a reasonable result considering the indi-
vidual feature level enhancements obtained due to the optimised features
and also taking into account the important factor that all the features are
given equal importance in the baseline method. Due to equal importance
assignment to all features in the baseline method, highly conspicuous fea-
ture maps are suppressed by noisy features, thereby affecting overall gen-
eralization.

5.4.3 Comparison with the State-of-the-art methods

Segmentation Using Fixed Thresholding

The saliency maps are segmented using the fixed thresholding benchmark
(section 5.3.3) to compute the PR curves presented in Figure 5.6. Figure 5.6
(a)-(e) show the PR curves of methods on individual datasets, while Fig-
ure 5.6 (f) shows the average performance of methods on all the datasets.
In Figure 5.6 (f), the average performance of MND is reported for only
four datasets excluding the VOC dataset, due to the unavailability of its
saliency results for the VOC dataset. The decrease in threshold from 255 to
0 (to compute the precision and recall values) corresponds to the increase
in recall values from 0 to 1. As it can be observed that at Tf = 0 when
all the pixels are retained after segmentation (considered as foreground),
all the methods have precision values between 0.2 to 0.4. This indicates
that on average 20% to 40% pixels belong to the annotated salient regions
for all datasets. At the other extreme, the precision values at the mini-
mum recall values for the proposed technique are higher on average than
the other methods (with pronounced increase on the difficult BSD and
VOC datasets), depicting smoother saliency maps and uniform saliency
saliency assignment inside object contours achieved by maintaining more
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true positives at higher thresholds. The PR curve for CS [45] shows a rapid
descent at minimum recall values. This suggests that the number of correct
predictions drops at high thresholds. A possible reason for this behaviour
is that a few background pixels are assigned higher saliency values as com-
pared to the foreground pixels.

The proposed FGSopt approach shows performance improvements on
SED1 and VOC datasets as compared with the best performing state-of-
the-art methods in terms of AUCPR. The DRFI [68] method exhibits better
performance as compared with the proposed FGSopt method on MSRA,
SED2 and BSD datasets. However, the proposed method shows equivalent
average performance as compared with DRFI (Figure 5.6 (f)). It is hypothe-
sized that the substantial improvements of the proposed FGSopt approach
as compared with several state-of-the-art methods on this benchmark are
complemented by the optimisation of AUCPR as part of the objective func-
tion (5.1) of the proposed FGSopt approach.

Segmentation Using Adaptive Thresholding

Using the adaptive segmentation benchmark, the average precision, recall
and F-measure values are reported in Figure 5.7 and the visual results of
segmentation on representative images are shown in Figure 5.8. Figure 5.7
(a)-(e) show the precision, recall and F-measure results of methods on in-
dividual datasets, while Figure 5.7 (f) shows the average performance of
methods on all the datasets. Again for MND [157], average results are re-
ported for four datasets, excluding VOC. The proposed FGSopt method
exhibits performance improvements for two of the five datasets on this
benchmark. An anticipated reason for this improvement can be attributed
to two important artifacts of the saliency maps produced by the proposed
method: 1) Due to feature computation on downsampled images, fore-
ground pixels are incorrectly predicted for a few cases, which results, in
the loss of foreground pixels during segmentation. A representative ex-
ample is shown in the first row image of Figure 5.8. 2) For a few specific
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Figure 5.6: PR curves for all methods using fixed thresholding. (a) MSRA,
(b) SED1, (c) SED2, (d) SOD, (e) VOC and (f) Combined performance on
all datasets. AUCPR for each PR curve is also shown. MND* in (f) implies
that the results reported for MND are average results for only four datasets
excluding the VOC dataset. This figure is best viewed in colour.
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cases, background noise from low-level features (eigenvectors of L) is in-
cluded in the final saliency. A representative example for this scenario is
shown in the second row image of Figure 5.8.

However such cases discussed above are dominated by instances where
the proposed FGSopt method produces fine saliency maps that produce
accurate segmentation. Representative examples are shown in the third
and fourth rows of Figure 5.8 and further are shown in Figure 5.9. The last
row of Figure 5.8 shows the robustness of the proposed FGSopt approach
to a challenging case of saliency detection.

5.4.4 Interpretation of Results

The evaluations on the fixed thresholding benchmark show that none of
the methods outperform all others across all datasets. However, the ro-
bustness of the proposed FGSopt approach can be observed by the aver-
age results on all datasets in Figure 5.6 (f). We believe that our highly dis-
criminative features (specifically fo) in coupling with the ability to learn
to segregate the figure from ground at multiple thresholds, helped the
proposed technique to overcome the inherent limitations of the state-of-
the-art methods (i.e. non-uniform saliency assignment and inappropriate
object annotation). With respect to the average precision, recall and F-
measure plots in Figure 5.7, again none of the methods outperform all the
other methods on all datasets. Figure 5.7 (f) shows that DRFI [68] and MC
[67] exhibit slightly better average performance than the proposed FGSopt
method, with our proposed method ranked as the third best on average
across all datasets. However, the difference in the performance of the top
three ranked methods is minimal as can be seen by the average F-measure
values plotted above the methods in Figure 5.7 (f). It is anticipated that the
drop in performance of the proposed FGSopt method in terms of adaptive
thresholding is due to the artifacts of our saliency map discussed in sec-
tion 5.4.3.
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Figure 5.7: Average precision, recall and F-measure for the compared
methods on all five benchmark datasets. (a) MSRA, (b) SED1, (c) SED2,
(d) SOD, (e) VOC and (f) Combined performance on all datasets. The re-
sults are sorted with respect to the F-measure score of the methods. The
error bars show the standard deviation from the mean value. MND* in (f)
implies that the results for MND does not include its results for the VOC
dataset.
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Figure 5.8: From left to right (columns): Input, Ground truth (GT), the
proposed saliency maps and the corresponding segmentations performed
according to the adaptive thresholding benchmark.
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The substantial contribution of this work, which is to overcome the
problems of inaccurate object annotation and non-uniform saliency as-
signment is clearly evident from the visual comparisons of the methods on
representative images in Figure 5.9. HS [147] employs local region-based
contrast to capture a region’s saliency, where each region is an outcome
of a watershed-like operation on the input image [147]. As the watershed
segmentation does not consider the object boundaries during segmenta-
tion and HS [147] only computes the local contrast of regions, the saliency
output of HS only manages to capture parts of the salient object as shown
in the 3rd and the 12th rows of Figure 5.9.

MC, MR and DSR are graph based saliency approaches that rely greatly
on the boundary prior to compute saliency. These methods capture sim-
ilarities between regions dominated by the colour cue. Due to over seg-
mentation before saliency computation, these methods struggle in scenar-
ios where the boundary regions share similar colour with the salient object
or in cases when a part of the salient object is present at the image border.
This results in characteristic responses such as inappropriate annotation
or non-uniform saliency assignment to different parts of the salient object.
Representative examples of such complex cases for the quoted methods
are depicted in rows 3rd, 9th, 12th and 13th of the Figure 5.9.

MND [157] captures the perceptual similarity of regions. It mainly em-
ploys the colour contrast cue, which is similar to the proposed approach.
MND clusters similar regions to identify the distinct regions that are likely
to be salient object parts using its global saliency, while it uses a local
saliency cue to highlight regions that stand out from their surroundings.
The characteristic non-uniform saliency response of MND can be seen in
the 6th, 8th and 12th rows of Figure 5.9. For MND global and local cues
capture fine aspects of region-level saliency at both scales. However the
simplistic feature fusion scheme using super-pixel multiplication affects
the final saliency output, where the regions inside the salient object are
not properly highlighted as compared with the background regions and
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non-uniform saliency assignment can be observed by the representative
saliency outputs of MND shown in Figure 5.9.

Heuristic feature selection approaches such as CS and SIA sometimes
annotate unwanted background information as salient object due to in-
appropriate feature selection. LRK learns to separate the foreground in-
formation from background based on bottom-up and top-down features,
instead of optimally combining the features. This results in inclusion of
background noise in scenes with cluttered background.

DRFI [68] performs multiple segmentations of the input image and
learns a regressor that directly maps the raw features for each region to a
saliency score. The learned regression method is then employed at the test
stage to predict the saliency scores for each region and the final saliency
is computed by fusing saliency maps computed over multiple segmenta-
tions. DRFI exhibits robust performance on multiple datasets and on both
benchmarks at the cost of computing an immense 93-dimensional feature
vector for each image adding to its computational time (see Table 5.2).

DRFI’s background information features and generic region properties
features generally suppress background regions alleviating inappropriate
object annotation as can be seen by a few visual examples in Figure 5.9.
However, as is common to all region based approaches, the non-uniform
saliency response of DRFI can be clearly observed from 5th, 9th, 10th and
12th rows of Figure 5.9. This response can be attributed to the regional
contrast features of DRFI, which do not respect object composition and
assign considerably different saliency to different scales. It is evident from
the visual response of DRFI that the properties of proto-objects are not
retained in the final saliency, despite inclusion of multiple scales.

The above-mentioned cases show that over-segmentation of images,
without respecting important object properties as an initial step in saliency
computation occasionally produces unsatisfactory results for saliency meth-
ods. Performing object aware segmentations to produce fine-grained ob-
ject candidates enables the proposed approach to overcome these limita-
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Figure 5.9: Visual comparison with the state-of-the-art approaches. From
left to right (columns): Input, ground truth, MND [157], DSR [91], MR
[148], MC [67], BSM [144], CS [45], LRK [123], SIA [26], HS [147], DRFI
[68] and the proposed FGSopt method. A pattern filled box is shown in
column three of Figure 5.9 for the last four rows. This box signifies the
unavailability of the saliency maps for MND [157] method for the VOC
dataset.
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tions. Additionally, optimal combination of features with joint optimisa-
tion of important parameters boosts its over all performance.

The timing comparison of the FGSopt method with three learning based
benchmark methods is presented in Table 5.2.

Table 5.2: Timing comparison with learning based benchmark methods.
The standard deviation results are also included with a ± sign.

Method Time (seconds)

DRFI [68] 13.23±1.31

LRK [123] 14.50±1.22

BSM [144] 24.64±1.62

FGSopt 7.30±1.29

The timings reported here were computed using an i7 vpro 3.2 GHz
processor with 8 GB of RAM for 100 randomly sampled test images from
the MSRA dataset. It can be observed that FGSopt can achieve compara-
ble quantitative performance and better qualitative performance with low
computational overhead as compared with other learning based bench-
mark methods. Several reasons that add to the computational time of the
benchmark methods as compared with the proposed FGSopt method are
as follows:

1. DRFI includes high dimensional features at multiple scales and eval-
uates a regressor for each input image.

2. LRK computes 53 dimensional features followed by mean shift seg-
mentation for feature vector representation. Moreover, the low rank
matrix (background and the sparse matrix (salient regions) are re-
covered by Robust PCA, which is the most time consuming step for
LRK.

3. BSM employs Laplacian subspace clustering and solves an online
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constrained minimisation problem for every image, adding to its
computational time.

In contrast, the proposed FGSopt computes nine dimensional features and
perform weighted combination of features to obtain the final saliency. As
the weights are learned offline, the computational overhead at test stage is
low.

5.5 Chapter Summary

This chapter introduced a framework for fusion of the FGS output with
the smallest eigenvector and the CSD features, by joint optimisation of the
feature parameters and feature importance.

The proposed FGSopt method elevated the performance of the FGS
method by combining it with complementary features and taking into ac-
count the performance gaps amongst individual methods. Quantitative
improvements of 3.8% were obtained (in terms of AUCPR) by the pro-
posed FGSopt over the FGS method by taking aid from the eigenvectors
and the CSD features. The confidence limits on average AUCPR confirmed
that FGSopt improved upon the performance of the FGS method for all the
runs.

In terms of comparison of the proposed FGSopt with the baseline un-
optimised method, substantial improvements were obtained at feature level.
The reason for this substantial improvement can be partially attributed
to the improved features, while the major attributable reason behind this
performance is the feature importance weights of the FGSopt method in
comparison to the uniformly weighted features employed by the baseline
method. The proposed FGSopt method was shown to outperform several
state-of-the-art methods on benchmark datasets. Specifically, it showed
performance improvements of 1.36%, 4.85%, 5.5% and 2.33% over the best
performing state-of-the-art methods in terms of AUCPR on the MSRA,
SED1, SOD and VOC datasets, respectively.
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This chapter and chapter 3 focused on learning a single set of weights
to determine feature importance. The learned single set of weights was
employed to weigh the features for all test images. The use of a single
set of feature weights limit the generalisation capability of the proposed
method to unseen image types. As different features might be important
for different images, it is anticipated that learning multiple feature weights
depending upon the feature composition of images could lead to better
generalisation to unseen images. Additionally, suitable feature condition-
ing and integration approaches (see chapter 1 and 2) were not explored
in conjunction with learning feature importance in this chapter and chap-
ter 3. Therefore, the next two chapters will focus on learning multiple
feature importance rules along with suitable feature conditioning and in-
tegration approaches for an image with specific feature composition.

It is noteworthy that a random forest regressor may also prove useful
for feature combination. An advantage of a random forest regressor is its
flexibility to encode a solution using multiple decision trees. However, as
all the decision trees are averaged to obtain the final solution in a random
forest regressor, learning of multiple combination schemes, each suited to
an image type and autonomous selection of a scheme (suited to an image
type) can not be formulated in a random forest regressor framework.
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Chapter 6

Genetic Algorithm Based Feature
Combination for Autonomously
Identified Image Types for Salient
Object Detection

6.1 Introduction

The previous two chapters were focused on learning various design choices
of the computational model of visual attention including important fea-
ture related parameters and feature importance. A single set of solutions
was learned given the training set. This set of learned weights was then
applied to unseen test images to measure the generalisation performance
of the saliency detection methods. For a single learned solution to achieve
good generalisation on unseen data, an important underlying assumption
made by the previously proposed methods is that the images in the test set
must not have a high degree of variation in comparison to the images in
the training set. In practice this assumption does not always hold, due to
the highly varying nature of real world scenes, consequential variance in

131
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the performance of features on an image-by-image basis and rarely when
the data splitting results in unbalanced train and test sets. To handle such
variations in feature performance on image-by-image basis and improve
the generalisation of the method on unseen data, learning of multiple fea-
ture combination schemes1, each suited to a particular image type, is pro-
posed in this chapter. To identify the type of an image and group images
having a common type, a semi-autonomous grouping strategy is intro-
duced, based on a feature composition oriented nearest neighbour search
in the feature space. A semi-autonomous grouping is employed for plac-
ing images into groups for training the proposed method. At the test stage,
the proposed method is capable of selecting an appropriate combination
scheme by autonomous identification of image type. The images types
are defined explicitly by the feature composition of images. For example,
the images having cluttered background will presumably have features
highlighting background noise and will constitute a unique type in this
paradigm. Hence images could be categorised into various types such as
cluttered background, multiple salient objects, one salient object, simple
background, large and small salient objects etc.

The goal of the work in this chapter is to compare the generalisation
performance of a single combination scheme with the performance of mul-
tiple learned schemes (each suited to a particular image type) on unseen
image data. The following objectives are identified to achieve this goal:

1. To design a baseline genetic algorithm (GA) that is capable of search-
ing for the optimal combination of feature importance, normalisation
and integration schemes.

2. To devise a method for semi-autonomous grouping of images that
belong to the same image type. Here semi-autonomous means that
the placement of images into groups involves no human interven-

1A feature combination scheme is defined as the concatenation of feature weights,
normalisation operation and the integration scheme.
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tion, however, the number of images that can be held by a group is
fixed.

3. To train multiple baseline GAs using different image and ground
truth groups, in order to identify the optimal combination scheme
that is best suited to a particular image type.

4. To compare the quantitative and qualitative performance of the pro-
posed method (utilizing multiple learned solutions-one for each im-
age type) with the baseline approach (with single learned solution-
one for each image type) on unseen image data.

6.2 Rationale for Learning Multiple Feature Com-

bination Schemes Suited to Image Type

It is intuitively desirable to group those images that have features with
similar saliency prediction performance. This follows from the observa-
tion that a single combination scheme can suffice for multiple feature com-
binations, when the features show similar performance. On an individual
feature level, this essentially means that if a particular feature has good
saliency prediction ability on one of the images in a group then it will
likely be able to maintain similar performance on all other images in that
particular group. However, the problem becomes multifaceted when it is
desirable to match the performance of all the features of a particular image
to all the features of another image in the group.

A key observation is that the computed saliency features in the pro-
posed scheme explicitly encode information about the foreground and the
background. The saliency prediction features are scaled in the range [0,1],
where a “0” represents definite background, while a “1” represents a defi-
nite foreground. A histogram of computed features for a particular image
is thus desired to be binary implying that it encodes the foreground and
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the background information at its extreme peaks, i.e. “0” and “1”. There-
fore, for continuous feature maps, the height of the bins in the middle
portion of the histogram is a strong indicator of feature performance and
the amount of background noise2 included in the features. It follows that
bin by bin distance between two such histograms should be able to rep-
resent their respective performance in terms of capturing the foreground
and background regions. Hence, two histograms separated by a greater
distance will have a greater difference in their respective saliency detec-
tion performance (using the same saliency detection performance mea-
sure) as compared with histograms having a smaller distance between
them. Therefore, grouping images that have a smaller distance in the fea-
ture space is a reasonable approach to group similar image types. The
benefit of searching for the best feature combination scheme for a particu-
lar group (covering a particular image type) is increased generalisation on
unseen images that belong to the same image type.

An illustrative example is shown in Figure 6.1. The images in the
groups are plotted along with their respective feature histograms. The
histograms are created by concatenating the pixel by pixel values of all
the computed features employed in this work (For details of the features,
please see section 6.3.1). The saliency detection performance of the fea-
ture group is evaluated in terms of mean absolute error (MAE) (for de-
tails on MAE, please see 4.2.3) and displayed along with the images. It
can be clearly observed that the histograms of the images in image group
one share high similarity both at the peaks with specifically low values in
the middle region. This indicates good performance as the peaks indicate
highlighting of the salient objects and low values in the mid region depicts
low background noise. Being a measure of correct background prediction,
the MAE reflects good performance for both the images in group one. The
histogram of the image in image group two has more mass in the mid-

2Background noise means pixels belonging to the background are assigned high in-
tensity making them salient



6.2. RATIONALE FOR LEARNING MULTIPLE SCHEMES 135

F1 F2 F3 F6F5F0 F8F7F4

Example Feature Vector

Figure 6.1: Rationale for grouping features before learning feature com-
bination schemes for each image type. The scale depicts the intensity of
the features between the range [0,1]. ED represents the Euclidean distance
between the histograms in feature space, while MAE is the mean absolute
error of the feature vector after comparison with the ground truth.



136CHAPTER 6. GENETIC ALGORITHM FOR FEATURE COMBINATION

dle as compared with the images in group one, which is correspondingly
reflected by its higher MAE. The point to be noted is that this difference
in performance due to feature composition is accurately reflected by the
Euclidean distance (ED) between the features in feature space, where the
distance between the image features in image group one is considerably
lower than the distances between the images in group one and group two.
The Euclidean distance between the histograms is computed as bin-by-bin
standard sum of differences. A simplistic distance measure is employed
to estimate how the histograms differ specifically in their middle sections,
in order to segregate good and bad performing features. Our experiments
demonstrate that a bin-by-bin Euclidean distance measure performs well
in grouping nearest neighbours based on their performance and a stan-
dard distance measure such as Kullback-Leibler or Bhattacharya is not
likely to have an improved impact on the performance. Chapter 7 inves-
tigates a more sophisticated grouping scheme and a more sophisticated
distance measure known as Earth Mover’s Distance to observe any per-
formance improvements.

An example of the computed feature vector employed in this work for
one of the images is shown in Figure 6.1. The features are scaled between
[0,1] and plotted in 2D with same size as the image. The intensity shows
the magnitude of the value for a pixel and is a reflection of the respective
saliency of a pixel, where dark red represents a “1” and blue represents a
“0” as also depicted by the colour bar.

6.3 Proposed Methods

The overall architecture of the proposed method termed as image depen-
dent Genetic Algorithm (IGA) is shown in Figure 6.2. It consists of three
major steps namely, feature extraction, then image grouping, followed by
independent GA based optimisation to learn multiple combination schemes.
The process of feature extraction will be detailed in section 6.3.1 and is
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Figure 6.2: System model of IGA. Feature extraction process is defined
in section 6.3.1. The process of autonomous grouping is defined in Algo-
rithm 1.

used to extract features for the training image set G. The procedure for au-
tonomous grouping is depicted in Algorithm 1. The specific details of the
proposed Genetic Algorithm are described in 6.3.2. The outputs of mul-
tiple GA methods having independent feature and ground truth sets as in-
puts are connected to multiple independent memory sets

{
M1,M1, . . . ,MN

k

}
.

The memory sets hold the learned unique solutions
{
λ1,λ1, . . . ,λN

k

}
and

the corresponding feature groups
{
F1,F1, . . . ,FN

k

}
. For detailed infor-

mation on the method and the used notation, please refer to section 6.3.3.

6.3.1 Feature Extraction

The features that have been demonstrated to correlate with visual atten-
tion in prior works and are well-suited for the task of salient object de-
tection are employed for this work. The prime objective of a learner in a
feature combination task is to bridge the performance gaps amongst the
individual features to enhance the overall combined performance. There-
fore, in order to thoroughly evaluate the learning performance of methods,
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features having a high degree of variability in performance were chosen
such that there is a considerable difference in performance of the lowest
performing feature to the highest one.

A total of nine low and mid-level features were extracted from the raw
image and are re-sized to 200x200 pixels. The features were resized to re-
duce the amount of feature data for large datasets. The following features
were extracted for each image:

• F 0: One global feature that assigns low saliency to colours that vary
a lot in the spatial domain, which is based on the work of Liu et
al. [94]. To compute the spatial variance of the colours of an im-
age, all the colours in the image are modelled by Gaussian mixture
models (GMM). Afterwards, each pixel in the spatial domain is as-
signed to a colour component of the GMM. Next, horizontal and ver-
tical variances of each colour component of the GMM are calculated
and added to obtain the total variations of colours in the spatial do-
main. Finally, the colours having high total variance are assigned
low saliency, while the colours exhibiting low variance in the spatial
domain are assigned high saliency values.

• F 1: One global feature that captures the contrast between clusters
obtained through k-means segmentation, inspired by the work of Fu
et al. [45]. The contrast cue of a cluster is computed by accumulating
its distance to all other clusters, where the distance is actually mea-
sured as the distance between cluster centres in feature space using
theL2 norm. The cluster centres are mean pixel features in Lab space.

• F 2: One global feature computing the spatial distribution of pixels
in a cluster with respect to the image centre, inspired by the work
of Fu et al. [45]. The global spatial distribution of pixels in a cluster
from the image centre is measured as the mean of Euclidean distance
between pixels in a cluster to the image centre.
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• F 3: One region based feature that computes the global contrast be-
tween spatial neighbouring regions only [29]. The image is first seg-
mented using graph-based image segmentation. Next, a quantised
colour histogram is constructed for each region. Afterwards, saliency
for each region is computed as its weighted colour contrast to all
other regions in the image. The weights are the number of pixels
contained by a region to emphasize contrast to larger regions, while
the contrast itself is measured by the colour distance metric between
the two regions.

• F 4: One mid-level feature that uses the objectness of image windows
to highlight salient objects, based on the work of Alexe et al. [8]. The
objectness measure for a window is based on four image cues. The
first cue is multi-scale image saliency based on the work of Hou et
al. [55]; the second cue is the colour contrast of a window from its
surrounding regions, computed as the Chi-square distance between
the Lab histograms of the window and its surrounding superpixels;
the third cue is computed by measuring the edge density inside a
window; finally, the last cue counts the number of superpixels that
have their pixels both inside and outside the boundary of the win-
dow. The number of such superpixels that have their pixels both
inside and outside the window boundary must be low for a window
having a high probability of containing the object(s).

• F 5: One feature that groups regions based on their objectness score.
Similar regions in terms of objectness scores are merged to form a
larger region. For each region, its difference from all other regions is
computed in terms of objectness scores to form a difference matrix,
whose size is equal to the square of the number of regions. From
the difference matrix a global threshold is calculated by finding the
smallest differences that exist between neighbours. Afterwards, a
local process compares regions only with their neighbouring regions
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and groups those having a difference less than the global threshold
by assigning them the same objectness.

• F 6,7: Two low-level region-based colour features adopted from the
work of Naqvi et al. [105]. One colour feature for each region is
computed by accumulating the earth mover’s distance (EMD) of its
Lab histogram from the histograms of all other regions in the image,
while the other one is computed by measuring EMD between the
histograms of a region and its neighbouring regions only.

• F 8: One feature that highlights salient patterns based on the work
of Naqvi et al. [105]. The salient patterns are determined by finding
any outstanding patches that have a large distance from neighbour-
ing patches. Match distance is employed to compute the histogram
distance between patches due to its ability to capture cross-bin simi-
larities/dissimilarities.

6.3.2 Genetic Algorithm

Real-coded representation of chromosomes is used as the majority of the
decision variables in the parameter vector λi (refer to the next subsection
for details) are real. The normalization and integration functions are en-
coded as integers in the Genetic Algorithm (GA), while the feature weights
are encoded as real numbers. Roulette wheel selection is employed, which
imposes a trade-off between convergence rate and the quality of individ-
uals retained. As the focus of this work is to improve quantitative per-
formance improvement with low emphasis on the computational time re-
quirements, roulette wheel selection is employed to increase the chances
of fitter solutions to stay in the optimisation process and improve the qual-
ity of final solutions. Uniform crossover and a custom mutation function
is used to compute the next generation (for details please refer to the next
subsection). The iterations of the GA solely depend upon the number of
generations set by the user.
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Example Pattern

Figure 6.3: A pattern of the phenotype and specific example of an indi-
vidual in the proposed GA population. Possible parameters and functions
that can be encoded are shown by the example pattern.

Encoding Decision Variables

The chromosomes use real-coded representation with integer constraints.
A pattern of the phenotype and a specific example of an individual is de-
picted in Figure 6.3.

The weighting parameters for the features are encoded in the range
[−1, 1]. Each weight is set as in (6.1).

w ∈ [−1, 1] . (6.1)

Six different normalization schemes are encoded as follows. Each inte-
ger represents a different normalization operation.

N ∈ [1 . . . 6] . (6.2)

The three integration schemes used in this work are encoded in (6.3).
Each integer represents a single integration function.

� ∈ [1 . . . 3] . (6.3)

The ith optimal parameter vector to be searched, denoted by λi can be
obtained by concatenating the weight vector w, normalization operation
N and the integration function�. Section 6.3.3 explains the methods used
to learn multiple such parameter vectors that are employed in this work.
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Objective Function

The problem of saliency learning is modelled as a binary classification
problem, as in previously reported methods [13, 154]. The goal of the ob-
jective function is to maximize the classification accuracy of the method.
To achieve this goal, the objective function is set as to minimize the dif-
ference between the ideal classification accuracy and the computed clas-
sification accuracy. In order to compute the classification accuracy of a
particular saliency map, the saliency map output for the method is first
computed as follows:

S = �ni wiNFi. (6.4)

Afterwards, the saliency map is segmented using a threshold. Based
on prior works, a suitable value for the threshold is empirically searched
as a multiple of the mean pixel value of the saliency map [55, 3]. The seg-
mented saliency map is then compared with a binary ground truth map
and the number of correct (TP and TN) and incorrect (FP and FN) predic-
tions are accumulated to compute the classification accuracy. The fitness
is expressed as

O(λi) = 1− TP + TN

TP + FP + TN + FN
. (6.5)

Crossover

During the initial experiments, both blend crossover [38] and uniform
crossover [47] operators were tested. While the blend crossover thoroughly
mixes the parents’ traits, it is easier to encode and enforce integer con-
straints in the uniform crossover. Moreover, the uniform crossover func-
tion was found to converge to better solutions in our experiments. To this
end, the constraints arising from the bounds on decision variables are in-
corporated.
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Mutation

To traverse the search space and find optimal solutions, it is desirable to
mutate our individuals, where a function is randomly replaced by another
function or a weighting parameter is replaced by a random weight. Un-
like crossover, the next solution is searched by adaptation based on the last
successful or unsuccessful generation. The random search directions and
step size take into account the bounds on variables. This is achieved by
ensuring that the mutated solutions generated after the incorporation of
search vectors are within the bounds defined on the variables. A combina-
tion of step size s, scale sc and a direction vector u are added to the parent
chromosome p to compute the offspring. This procedure is depicted as

o = p+ s× sc× u. (6.6)

The variable sc defines the scaling of the variables. Direction vector
u and the step size s account for the search directions, keeping the search
within the bounds on variables. The step size is adapted based on the ratio
of successful generations to the total number of generations. The step size
determines the probability of mutating a variable and the size of changes
for each mutated variable. The direction vector takes into account the step
size and computes the specific variations that are to be added or subtracted
from each individual gene of a mutated solution.

6.3.3 Image Dependent GA Based Approach

Notation : The training image set is denoted as G =
{

G1,G2, . . . ,GN
k

}
,

where the ith image group is represented by Gi ⊆ G. The complete feature
set for the training images is denoted by F =

{
F1,F2, . . . ,FN

k

}
. F ∈

RM�N , where M is a product of D2 and n. D is the dimension of a single
feature (D=200 here), n is the number of features (n=9 here) and N is the
number of images in the dataset. The ith feature set for the ith image group
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Gi is denoted asFi ⊆ F and is given as {f 1,f 2, . . . ,fk}, where i ∈
[
1 · ·N

k

]
.

f i ∈ RM is a feature vector and k is the number of nearest neighbours.

The complete ground truth set for the training set G is denoted by
G =

{
G1,G2, . . . ,GN

k

}
. The ith ground truth set for the ith image group

is denoted by Gi ⊆ G, i ∈
[
1 · ·N

k

]
. The optimal parameter set is denoted by

P =
{
λ1,λ2, . . . ,λN

k

}
, where λi ⊆ P is the ith optimal parameter vector

for the ith image group. The ith memory set represented as Mi ⊆ M is
comprised of a feature set Fi and a parameter vector λi. HereM is the set
of all memory setsMi. For a particular image in the test phase, the opti-
mal parameter vector is found by searching for the closest image group in
the feature space and is denoted by λ?.

The procedure for the training process of the IGA is depicted in Al-
gorithm 1. The images are autonomously placed into groups depending
upon their feature composition. The process starts by searching for k near-
est neighbours for an image based on its distance to other images in feature
space. The metric used for the k nearest neighbour search employed in
this work is the Euclidean distance. The image features and ground truth
along with its nearest neighbours are assigned to the current groups Fi
and Gi and deleted from the complete feature set F and the ground truth
set G, respectively. This process is repeated until the number of features
in the complete feature set F falls below the nearest neighbours k. Af-
ter the images are divided into groups, multiple GA methods are trained,
each with corresponding features and ground truth from different groups.
The resulting optimal parameter vector λi obtained from an independent
GA and the corresponding feature set Fi for the ith group is stored in the
corresponding memory setMi.

During the testing phase of the IGA, the feature vector f t for each test
image is computed. For the ith feature set Fi, the sum of Euclidean dis-
tances (denoted by d), between its feature vectors f i and the test feature
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Algorithm 1: Training Process of IGA
Data: F ,G
Result:M
// Sub Procedure for Autonomous Grouping
while |F| ≥ k do

Find k nearest neighbours for the first element of the set F ;
Assign the feature vectors for the current element and nearest
neighbours to the set Fi;
Assign the ground truth for the current element and nearest
neighbours to the set Gi;
F \ Fi, G \ Gi;
i++;

// Sub Procedure for Training Multiple Genetic Algorithms
for i← 1 to |Fi| do

Train each GA according to the settings described in section 6.3.2;
Find the optimal parameter vector λi for each independent GA;
Create a memory setMi = {λi,Fi} for each independent GA;
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vector f t are computed according to

d =

jFij∑
i=1

‖f i − f t‖ . (6.7)

The sum of distances for all groups are concatenated to form a vector
d =

[
d1, d2, . . . , dN

k

]
. The shortest distance D between the test vector and a

feature set is computed as D = min(d). D is then used to access the corre-
sponding memory set and the optimal parameter vector λ?. Afterwards,
the saliency is computed and thresholded to yield a binary saliency map.
The binarised saliency is employed to compute the precision and recall at
the test stage. This process is depicted in Algorithm 2.

Algorithm 2: Testing Process of IGA
Data:M
Result: ˆPrec, ˆRecall

Compute feature vector f t;
for i← 1 to |Fi| do

Compute D as discussed above;
Use D to find the corresponding λi = λ?;
Compute saliency using the learned parameters according to
(6.4);
Segment the saliency map and compute ˆPrec = TP

TP+FP
;

Compute ˆRecall = TP
TP+FN

;

6.4 Design of Experiments

6.4.1 Datasets and Experimental Setup

The feature comparison based grouping strategy of the multiple combi-
nation schemes presented in this work can be effectively tested on two
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classes of images: 1) images where the foreground and background re-
gions share similar features 2) scenes with multiple salient objects. There-
fore, this work uses real world images from the challenging Weizmann
segmentation evaluation database (SED) [9]. The database contains 200
images (of varying aspect ratio) in total, divided into two datasets (100 im-
ages for each dataset), namely SED1 and SED2. The two datasets include
one and two foreground objects respectively. Unlike other databases, SED
includes images with cluttered background and multiple salient objects,
resulting in increased difficulty of segmentation.

The pixel wise ground truth segmentations are also provided by the
SED database [9]. The segmentations contain two classes for one object
images and three classes for the two object images. The ground truth seg-
mentations have the same dimensions as the input images and are ob-
tained by manual segmentations by three different human subjects. The
individual annotations are processed to obtain the ground truth segmen-
tations according to the method prescribed by [9]. The binary ground truth
segmentations for both two and three class images are acquired by thresh-
olding the votes from each human subject for each foreground pixel. If
there exists at least two votes for a particular foreground pixel, then it is
assigned “one” and the remaining pixels are assigned “zero”.

To evaluate the robustness of a saliency map, the standard benchmark
method that is reported in [3] and is known as fixed or naive thresholding
is employed. According to fixed thresholding, the continuous saliency
map is thresholded at a fixed threshold Tf within [0, 255]. To compare the
saliency response from different methods, this threshold is varied from 0
to 255 to produce a precision-recall (PR) curve. In order to induce accurate
segmentations, the continuous saliency map must be able to preserve a
high precision as well as a high recall. Therefore an F-measure curve is
also plotted by varying the thresholds in the same range, i.e. [0, 255] in
order to measure the salient object segmentation quality of the methods.
F-measure is computed using Equation 5.8 as discussed in the previous
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chapter. The F-measure curves of the methods reflect the quality of the
salient object segmentation capability of their saliency maps.

The images for both SED1 and SED2 datasets are randomly split into
train and test sets using the ratio reported in past works [22, 9]. A number
of values were experimented with to find suitable values for the popula-
tion size and the number of generations for the GA. Initial experiments
were conducted with a large population size of 1000 and with high num-
ber of generations, i.e. 200. However, further experimentation revealed
that reducing the population size to 200 and the number of generations to
50 yields similar solutions. After ensuring that the best solutions are re-
tained in every generation by keeping six elite individuals, the crossover
fraction is set high with a value of 0.8 with the expectation of finding better
individuals.

6.4.2 Selected methods for Comparison

In relation to the goals of this chapter, the GA method discussed in sec-
tion 6.3.2 was selected as the baseline method in comparison with the pro-
posed IGA method. The IGA method employs multiple GA methods to
learn multiple combination schemes and has the ability to select a suitable
combination scheme depending upon image type at the test stage.

In addition, two benchmark learning methods, namely Linear Support
Vector Machine (SVM) [72] and Non-linear SVM [13] were included for
comparison due to their state-of-the-art performance and learning ability
for achieving generalisation on unseen images. The major difference in
the proposed approach and these benchmark methods proposed in prior
works [72, 13] is that they only learn feature weights. Therefore, following
the prior works [72, 13], features are integrated by simple linear summa-
tion without any normalisation. Learning of the most suitable normali-
sation and integration schemes is not easy to formulate in the framework
used by the SVMs, so was not included in the test. The implementations
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Figure 6.4: Effect of the number of nearest neighbours k on grouping per-
formance.

details for these benchmark methods are the same as reported in section
4.3.4.

Three deterministic state-of-the-art methods namely AC [2], FTS [3]
and MSSS [5] are also included for a more thorough comparison of the
proposed approach. The methods are selected as they are specialised for
the task of salient object detection.

6.4.3 Training Experiments

The baseline GA method is trained using the training sets for both the
SED1 and SED2 datasets in order to learn distinct solutions per dataset.
Cross-validation is not employed, as standard data splitting is used [22, 9].
To find a single representative solution from 30 independent runs of the
GA for each dataset, the Euclidean distance between each of the 30 solu-
tions and mean solution is searched and the solution that has the mini-
mum distance is selected as the final representative solution.

The most important parameter of the IGA method is the number of
nearest neighbours k. To determine a suitable value for k, a quantita-
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tive measure for evaluation of a grouping is required. Considering the
rationale behind grouping, a group is considered to be good if the images
contained by it have highly similar salient object detection performance.
Therefore, the problem of finding a suitable value for k is formulated as
finding k that results in minimum mean absolute error (MAE)3 variance
across groups by sweeping k for various values. The minimum MAE vari-
ance is obtained by finding the variance for each group and selecting the
minimum. Figure 6.4 plots the minimum MAE variance for a range of
values for k. It can be clearly observed that there is a decrease in mini-
mum MAE variance until k reaches 10, where it starts to increase. It is
also worth noting that decreasing k results in more image groups, which
in turns require more independent GA’s to be trained. With this in mind,
the number of nearest neighbours k is set to 10 for the proposed method.
This choice of k results in seven image groups for the training phase. For
each training image group, an optimal solution is searched using the base-
line GA implementation. Each training experiment for a single GA run
takes approximately 2.7 hours with the GA settings defined previously.
The training time for the GA is considerably higher than the SVM based
benchmark methods due to the evolutionary process. However, both the
GA and SVM based techniques take similar time at the test stage for a
single image.

6.5 Results and Discussion

6.5.1 Comparison of IGA with the Baseline GA

In this section, the performance of the baseline GA approach is compared
with the proposed IGA method in terms of average PR and F-measure
curves, plotted in Figure 6.5. The results for the baseline GA are plotted
in black, while the results of the proposed IGA method are shown in red.

3For details of MAE, please see section 4.2.2.
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Figure 6.5: Quantitative comparison of the baseline GA method with
the proposed IGA method. Top row: average PR curve and average F-
measure curve on the SED1 test set. Bottom row: same set of results for
the SED2 test set.

The proposed IGA method obtains moderate improvements in terms of
AUCPR and substantial improvements in terms of AUF over the baseline
GA method on the SED1 and SED2 test sets. From the PR curves, it can be
observed that the proposed IGA method maintains high precision values
against very low recall values. This result suggests that the saliency maps
produced by the proposed IGA approach are smoother and assign higher
saliency inside object contours as compared to the baseline GA.

From the discussion in section 6.4.1, it follows that the F-measure curves
signify the quality of induced segmentation of a saliency map. Therefore,
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the substantial improvements achieved by the IGA in terms of AUF sup-
port the hypothesis of superior segmentation quality of the saliency maps
produced by IGA. This result is confirmed by the visual saliency results in
Figure 6.7 and specifically by their corresponding salient object segmenta-
tions in Figure 6.8.

6.5.2 Comparison of IGA with Existing Work

This section presents a quantitative comparison of the proposed IGA method
with learning based benchmark methods namely, LSVM [72] and NLSVM
[13], and selected state-of-the-art methods. Figure 6.6 plots the perfor-
mance of the methods in terms of PR and F-measure curves for the SED1
and SED2 test sets.

The proposed IGA method achieves considerable improvements in terms
of AUCPR and immense performance gains in terms of AUF as compared
to the best performing state-of-the-art methods on the SED1 and SED2 test
sets. It is worth noting that the performance enhancements obtained by
the proposed approach in terms of AUF are even higher than the perfor-
mance gains achieved over the baseline GA. This result signifies that de-
spite achieving reasonable performance on the fixed thresholding bench-
mark, the compared methods do not perform well on the task of salient
object segmentation as reiterated by their respective segmentation outputs
in Figure 6.8. Possible reasons for this poor saliency prediction behaviour
of the compared state-of-the-art methods are discussed in the next section.

LSVM and NLSVM exhibit similar performance in terms of both AUCPR
and AUF measures on both test sets. This is in accordance with our ini-
tial experiments to find suitable parameters for SVM with linear and non-
linear kernels.

Pairwise two-sided rank sum test were performed to investigate the
statistical significance (if any) of the proposed IGA method in comparison
with the other methods. Table 6.1 shows the p-values for pairwise com-
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Figure 6.6: Quantitative comparison of the proposed IGA method with
learning based benchmark methods and state-of-the-art methods. Top
row: Average PR and F-measure curve on the SED1 dataset. Bottom row:
Similar set of results for the SED2 dataset. These figures depict the perfor-
mance of all the methods only on the test images.

Table 6.1: Statistical comparisons of IGA with other methods. The first row
shows p-values for AUCPR comparison, while the second row presents
the values for AUF comparison.

GA LSVM NLSVM AC FTS MSSS
AUCPR 0.005 0.0027 0.0001 4.69E-08 9.06E-08 2.68E-06

AUF 0.0003 0.0015 0.0004 5.97E-09 2.38E-07 1.73E-07
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parison of the IGA method with other methods. It can be clearly observed
that the IGA method is statistically different from benchmark methods (i.e.
GA, LSVM and NLSVM) and a high statistical difference is observed as
compared with the deterministic methods (AC, FTS and MSSS) at the 0.01
level.

6.5.3 Qualitative Comparison

Figure 6.7 shows the visual comparison of the saliency output of several
methods. The deterministic methods especially FTS [3] and MSSS [5], per-
form well by assigning low saliency to background but struggle in assign-
ing high values inside salient object contours. As the methods are based
on filtering, they can filter out important salient information that lies in the
same band with the background information. LSVM and NLSVM mostly
highlight object boundaries and can not appropriately weigh features that
score higher inside salient object contours. The baseline GA method per-
forms better than other state-of-the-art methods, but misses important
salient information in some cases. The proposed IGA method produces
the best saliency maps as compared with other methods, highlighting the
salient object and suppressing the background. For example, it effectively
captures the neck and head region in third row image of Figure 6.7, which
is effectively missed by all other approaches.

6.5.4 Analysis of Evolved Solutions

Table 6.2 shows the set of representative solutions learned by the proposed
IGA method. The first three rows of Table 6.2 present the learned solu-
tions for three representative image groups from the SED1 dataset, while
the last three rows present the learned solutions for three representative
image groups from the SED2 dataset, respectively. Table 6.3, shows the
representative solutions learned by the baseline GA method for SED1 and
SED2 datasets, respectively.
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Figure 6.7: Visual comparison of methods on representative test images
from both datasets. From left to right: Input, GT, AC, FTS, MSSS, NLSVM,
LSVM, GA, IGA. Our GA and IGA methods are shown in the red box.

Table 6.2: Representative learned solutions by the proposed IGA method
for representative image groups from both SED1 and SED2 datasets.

Parameter Set

w0 w1 w2 w3 w4 w5 w6 w7 w8 N ◦

SED1

0.14 0.26 0.50 0.82 -0.26 0.98 0.30 0.30 0.67 5 3

0.15 -0.42 0.07 0.29 0.07 0.79 0.82 0.22 0.31 1 1

-0.18 0.00 -0.05 0.08 0.32 0.34 0.06 0.97 -0.01 1 1

SED2

0.12 0.07 -0.01 0.98 0.30 -0.01 0.52 0.03 0.17 6 1

0.48 0.38 -0.03 0.95 0.02 0.27 0.45 0.07 0.01 1 1

0.12 0.07 -0.01 0.98 0.30 -0.01 0.52 0.03 0.17 6 1
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Figure 6.8: Salient object segmentation induced by saliency methods on
representative test images from the SED1 and SED2 datasets. From left to
right: Input, AC, FTS, MSSS, NLSVM, LSVM, GA and the proposed IGA.
The baseline GA method and the proposed IGA methods are shown by
the red box.
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Table 6.3: Representative learned solutions for the SED1 and SED2
datasets by the baseline GA approach.

Parameter Set

w0 w1 w2 w3 w4 w5 w6 w7 w8 N ◦

SED1 0.03 0.01 -0.01 0.95 0.91 0.90 0.98 0.36 -0.01 1 1

SED2 -0.01 0.92 0.07 0.41 0.02 0.23 0.99 0.10 -0.11 6 1

For the SED1 dataset, the baseline GA method finds no normalisation
in the final solution. This can be explained by considering the simple na-
ture of most SED1 images, where no feature conditioning is generally re-
quired. This result is consistent with the learned normalisation for two of
the representative image groups by the proposed IGA method. However,
the proposed IGA method found global normalisation to be effective on
one of the groups. Also for one of the groups in SED1, the effective nor-
malisation scheme was found to be iterative similar to two groups for the
SED2 dataset. Iterative normalisation means multiple filtering operations
of a map with a difference of Gaussian filter. The anticipated reason for
this result is that a few images in the SED1 dataset and quite a few be-
longing to the SED2 dataset result in features that contain a high degree
of falsely highlighted background. This result can be attributed to the dif-
ficult background for a few SED1 images, and to the presence of multiple
salient objects in addition to difficult background for the SED2 images.

The favoured integration type was found to be linear summation for
both the baseline GA and the proposed IGA method. This result will nega-
tively affect the generalisation performance of the baseline GA method as
inappropriately conditioned and weighted features can corrupt the final
saliency output. However, in case of IGA, appropriate conditioning and
weighting promotes complementary features, thus making linear summa-
tion a suitable choice. Element-wise multiplication of complementary fea-
tures would promote robust suppression of background noise but at the
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Figure 6.9: Explanation of multiple learned weights by the proposed IGA
method. Feature numbers and the learned weights of the baseline GA
method for the SED1 dataset are shown above the dotted line. The mean
feature maps for the two groups are shown below the dotted line with the
learned feature weights overlayed on top. Solutions 1 and 2 signify that
the weights are two independent solutions of the IGA method.

cost of substantially decreasing the number of true positives. The har-
monic mean was found to be a suitable choice for only one of the image
groups indicating that most of the outlier features were removed by ap-
propriate feature conditioning.

In order to elaborate the importance of multiple learned feature weights,
a total of 10 images were randomly selected from the SED1 test set and cor-
responding autonomously identified feature combination schemes were
sought. It turns out that the selected images were covered by two of the
solutions that were learned from the SED1 dataset by the proposed IGA
method. The images favouring the two solutions are placed into two dis-
tinct groups covered by distinct solutions. Figure 6.9 plots the mean fea-
ture maps for each of the groups with their autonomously identified solu-
tions (feature weights) overlayed on top. The feature weights learned by
the baseline GA method for the SED1 dataset are shown above the dot-
ted line. The last column of Figure 6.9 shows the mean ground truth map
computed using the ground truth maps of the selected test images.
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Figure 6.10: Effects of the learned normalisation scheme on representative
images.

It can be clearly observed from Figure 6.9, that the weights learned for
different feature groups help in generalisation to different image types.
The mean feature maps for F 5 and F 6 show maximum overlap with the
corresponding mean ground truth map in the first row of Figure 6.9. The
good performance of features F 5 and F 6 (for these selected scenes) is
rightly captured by solution 1 as it assigns high importance to these feature
maps. Similarly, undesirable saliency detection results of features F 1, F 2

and F 4 are assigned low or negative importance by the learned solution
1 of the proposed approach. It is to be noted that the mean feature maps
for feature F 6 that are covered by solution 2, exhibit high disagreement
with the corresponding mean ground truth, in contrast to its performance
for the images covered by solution 1. This high variation in performance
is truly captured by the low importance assigned to F 6 by solution 2. A
similar contrast is found between the weights assigned to feature F 7 by
solution 1 and solution 2, respectively. The above examples confirm that
the weights assigned to features for different groups in the proposed IGA
method help in natural generalisation to unseen images. It can be easily
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observed by Figure 6.9 that unlike the proposed IGA, the single feature
importance solution learned by the baseline GA can not adapt to the vari-
ation exhibited by the unseen test images.

Figure 6.10, shows the effects of normalisation on two representative
images from the SED1 dataset. For the two images, the first row shows the
actual features, while the second row shows the feature results after global
and iterative normalisation, respectively. It can be clearly observed from
Figure 6.10 that unlike no normalisation in the first row, the global normal-
isation results in the second row highlight the salient object (i.e. the leaf)
with higher intensity and also suppress the background noise. Important
results are highlighted by dashed boxes. Similarly, for the bird image, the
iterative normalisation scheme aid in neglecting a high proportion of false
background, for a few features highlighted by the dashed boxes.

6.6 Chapter Summary

The goal of this work was to compare the saliency detection performance
of the single optimal combination scheme learned from all the training
images with performance of the proposed multiple combination schemes,
where each combination is learned for a specific image type. To achieve
this goal, an autonomous image grouping technique was introduced that
groups images of the same type based upon their Euclidean distance in the
feature space. Subsequently, the image groups were used to train a mul-
tiple GA based optimization framework that searches multiple optimal
solutions, while each learned solution is particularly suited to a particu-
lar image type. The multiple combination schemes and their autonomous
identification based upon the image type, helped the proposed method to
achieve better quantitative and qualitative performance on unseen images
as compared with the baseline single combination scheme. The important
findings of this chapter are as follows:

The proposed multiple scheme based method exhibited notable im-
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provements in terms of AUCPR and substantial improvements in terms of
AUF over the baseline GA approach on unseen test images from the SED1
and SED2 datasets, respectively. The substantial improvements achieved
by the proposed IGA method in terms of AUF were shown to be due to
superior segmentation quality of the saliency maps produced by the pro-
posed IGA method.

It was shown through analysis of the optimal solutions of the proposed
method that the feature combinations learned by the proposed approach
adjust according to image types of the unseen test instances, thereby achiev-
ing better generalisation as compared with the fixed baseline optimal com-
bination scheme, which fails to adjust according to the varying nature of
unseen images.

This chapter proposed a semi-autonomous solution for grouping im-
ages to learn multiple combination schemes. The constraint imposed by
the number of nearest neighbours in the proposed framework for group-
ing images could lead to scenarios where two uncorrelated images are
erroneously placed in the same group under the same image type. For
fully autonomous placement of images into groups, a relative encoding
scheme with adaptive condition matching on an image-by-image basis
is required. As one possible approach to avoid these problems, the next
chapter explores the adaptive classifier conditions of a Learning Classi-
fier System for autonomous matching and placement of input images into
groups. Moreover, as Learning Classifier Systems (LCSs) are reported to
be more competitive in niches as compared with the traditional GAs, the
next chapter explores the potential of an LCS in searching for multiple fea-
ture importance rules in comparison with the proposed GA based solution
of this chapter.
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Chapter 7

Learning Classifier Systems Based
Multiple Feature Combination
Schemes for Salient Object
Detection

7.1 Introduction

The previous chapter introduced the IGA method for learning multiple
feature combination schemes, each suited to a particular image type. The
IGA method employed a semi-autonomous scheme for grouping images
and the placement of images in a group was limited by the number of near-
est neighbours k. The number of nearest neighbours k was determined
a priori for the grouping process based on empirical evidence. Also the
histogram distance based scheme compared images based on the collec-
tive performance of all the features (feature composition) and did not take
into account individual feature level performance variations. To account
for the variable group size and also consider the individual feature level
variations, a flexible system is required for image grouping through nat-

163
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ural division of the search space. The flexible system should be able to
simultaneously cater for feature level variations by matching individual
features to autonomously identified image categories. Learning classifier
systems (LCSs) have the inherent capability of dividing the search space
into niches, complemented with their competitive search ability inside the
niches. Additionally, the classifier condition part of the LCSs provides a
natural approach to feature level input matching. Therefore, an LCS is
proposed in this work to learn multiple feature importance rules.

The goal of this chapter is to compare the generalisation performance
of the fully autonomous image grouping scheme with the previously pro-
posed semi-autonomous image grouping scheme on unseen images. It
is anticipated that the fully autonomous image grouping scheme will con-
sider individual feature level variations in contrast to the semi-autonomous
image grouping scheme proposed in the previous chapter. The following
objectives are formulated to achieve this goal:

1. To introduce a relative encoding scheme in the condition portion of
the classifiers that is able to match the input at feature level and au-
tonomously place images into groups.

2. To compare and analyse the performance of the fully and semi-autonomous
image grouping schemes in terms of grouping similar images.

3. Quantitative and qualitative performance comparison of the proposed
LCS method with the IGA method for salient object detection.

7.2 Salient Object Detection Using Learning Clas-

sifier Systems

For a balanced comparison with the previously discussed IGA method, a
supervised approach, similar to XCSCA [84] is adopted in this work. For
the supervised approach, the target saliency map (i.e. the ground truth) is
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also provided along with the input image during training. The goal of LCS
is to evolve saliency maps for each input image such that the error between
the computed saliency map and the target ground truth is minimal. The
error term used in this work is given in Equation 7.1:

ε = 1− TP + TN

TP + FP + TN + FN
, (7.1)

where TP and TN are the number of correctly classified positive and
negative pixel values between the computed saliency map and the ground
truth. FP and FN represents the falsely classified pixels. The learnt rules
can then be applied to assign appropriate importance to feature maps for
previously unseen test images.

Instead of matching the input image at pixel-level against conditions of
classifier rules, nine saliency-based features are computed for each input
image, where each feature is a two-dimensional real-valued matrix. The
same features as employed by the IGA method, are used in this work for
a fair comparison with the IGA method. These features are adapted due
to their high degree of variability in performance, in order to thoroughly
evaluate the learning performance of methods. For details of the nine fea-
tures, please refer to chapter 6.

If a classifier’s conditions in an LCS are matched directly to the com-
puted image features, then it will be hard to evolve any generalised clas-
sifier rules due to the large-sized two-dimensional image features [83].
Therefore, in order to enable generalisation, a novel relative encoding scheme
is introduced to match an input image against classifier conditions. In this
encoding scheme, each computed image feature F i will be encoded as a
real-valued variable di to be matched against the classifiers’ conditions.
The real-valued variable for a feature is computed using earth mover’s
distance (EMD) [118] from a two-dimensional reference artificial feature.
EMD is defined as the minimum cost for transforming one histogram into
the other such that there exists a ground distance between the features.1

1The fast implementation of EMD with thresholded ground distances based on the
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Figure 7.1: The novel encoding scheme to match an input image against
the classifier population in order to enable generalisation in classifier rules.

The reference artificial feature consists of all “1s”. As the real-valued fea-
tures are in the range [0,1], the ground distance between features and the
reference feature acts as a relative measure of inter-feature distance in fea-
ture space. A relative performance measure of every feature is recorded
in contrast to the histogram based distance strategy employed in the IGA
method (please refer to chapter 5). Consequently, conditions in classifier
rules will be encoded as a concatenation of real-valued intervals so that
the method can evolve generalised classifiers, see Figure 7.1. The condi-
tion part of the classifiers are composed of intervals with lower and up-
per bounds on the real-valued variable di to match input features. The
conditions are validated such that smaller lower bounds are ensured as
compared to upper bounds of the intervals.

Usually an LCS evolves rules having one fixed set of actions. However,
in the problem domains having large number of discrete actions and/or

work of Pele and Werman [111] is employed in this work.
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continuous actions, it is beneficial to compute actions instead of mapping
actions [61, 84]. In this work, a linear combination function is employed
to compute the action, i.e. the saliency map, in a classifier rule, similar
to XCSCA [84] that used a linear combination function to compute dis-
crete classifiers actions. The linear combination function learns the feature
importance by learning the feature weights.

Computing Saliency using Linear Combination Functions

(XCSCA)

A saliency map is computed as a linear combination of the features of the
input image and a weight vector w. In this function, the computed two-
dimensional features are linearly combined with the evolved weights to
produce the required saliency map for the matched input image, as given
in Equation 7.2. Here x0 denotes a constant input parameter utilised in the
update process of recursive least square.

S = w0x0 +
∑

wi+1F i; i = 0, 1, 2...8. (7.2)

Updating classifier weights using recursive least square is shown to
be useful for improving the generalisation and convergence of XCS based
systems [85]. Therefore, weights are evolved using recursive least square,
according to the procedure described by Lanzi et al. [85]. For updating
classifier weights, the error function defined by (7.1) is employed.

7.3 Experimental Design

7.3.1 Data Set

To evaluate the multiple combination schemes on a widely accepted stan-
dard benchmark for saliency evaluation, this work employs the MSRA
salient object database [94] using the labelled ground truth from [3]. The
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MSRA data set is comprised of 25,000 images in total, a common bench-
mark dataset in the field and represents many types of datasets as it con-
tains many classes of images. The MSRA data set includes ground truth
annotations in the form of labelled rectangles from multiple users. These
ground-truth annotations classify multiple objects as a single object by an-
notating them with a single rectangle and also do not cater for pixel-wise
accuracy. To remedy these effects, a set of 1000 images were manually
segmented by a single user to obtain binary masks [3]. These ground
truth masks consider the effect of pixel-wise accuracy and multiple ob-
jects (the details about the ground truth database can be found in [3]), and
is widely accepted in the field of computer vision as a standard bench-
mark for saliency evaluation. The data set includes examples having the
following classes of images increasing its diversity and making it difficult
for techniques that use a single set of learned parameters: (1) images with
cluttered background, (2) images with multiple objects, (3) images with
large salient objects, (4) images with small salient objects, and (5) images
with faces, persons, objects and text.

The standard fixed thresholding benchmark method reported in [3] is
used to generate the precision-recall (PR) and F-measure curves. As the
performance of saliency methods also depends upon the number of cor-
rectly classified (salient/background) pixels as compared with the total
number of pixels of an image, a curve for the classification accuracy is
also included as a performance measure. The curve for the accuracy is
also computed using the fixed thresholding benchmark. The area under
the PR, F-measure and classification accuracy curves denoted by AUCPR,
AUF and AUACC, respectively, are also reported for quantification of the
results.
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7.3.2 Experimental Setup

A covering classifier is generated by using the following steps: a classi-
fier condition is created and validated, weight vector w is initialised with
zeros, while all other parameters are assigned according to [21]. During
classifier update, the classifier error is updated by Equation 7.1, weight
vector is updated according to the action function [85], while the classifier
fitness is updated from the classifier error and numerosity as in [137]. For
rule discovery, the GA works as in [18, 138].

The XCSCA method use the parameter values suggested by Butz and
Wilson in [21] that are commonly used in the literature: learning rate
β = 0.2; fitness fall-off rate α = 0.1; error threshold ε0 = 10; fitness expo-
nent ν = 5; threshold for GA application in the action set θGA = 25; two-
point crossover with probability χ = 0.8; mutation probability µ = 0.01;
experience threshold for classifier deletion θdel = 20; fraction of mean fit-
ness for deletion δ = 0.1; classifier experience threshold for subsumption
θsub = 20; reduction of the fitness fitnessReduction = 0.1; parameters
for integer conditions r0 = 0.7;, m0 = 0.5; and the selection method is
tournament selection with tournament size ratio 0.4. GA subsumption is
activated whereas action set subsumption is deactivated. The number of
classifiers used is 2000 and the number of training instances is 20, 000, in
all the experiments conducted here. Explore and exploit problem instances
are alternated. The constant input parameter x0 = 0.5 is set at centre of the
input features range, i.e. [0,1]. As the initial parametrisation is uncertain,
a high value of δrls = 100 is employed to ensure a fast initial update rate.

For the IGA method, a suitable value for the most important parame-
ter, i.e. the number of nearest neighbours k, was empirically determined
to be 30. For the GA method employed in the IGA method, the settings
described in chapter 5 were found to be suitable and used in all the exper-
iments.
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Figure 7.2: Training process of the XCSCA method for detecting salient
objects.

7.4 Results and Discussions

The performance of the XCSCA method for detecting salient objects in the
training process is shown in Figure 7.2. In Figure 7.2, the X-axis is the
number of problem instances used as training examples, the Y-axis is the
performance measured as the percentage of correct classification during
the last 50 exploit problem instances.

The XCSCA method exhibited quick learning in the early stages and
reached approximately 96% performance within the first 5000 instances.
The error bars show the standard deviation of the 30 runs and confirm the
consistency and confidence in performance of the XCSCA method.

The performance comparison of the XCSCA method with the IGA method
for detecting salient objects in the testing process is shown in terms of PR,
F-measure and classification accuracy curves in Figure 7.3. At recall = 1 in
Figure 7.3 (a), when all the pixels are considered as foreground after seg-
mentation, both the methods have a precision of 0.2. This suggests that on
average 20% pixels belong to the annotated salient regions for the test set
of ASD. At the other extreme of the PR curve, where maximum threshold
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Figure 7.3: Comparison of the XCSCA method with the IGA method in
terms of PR, F-measure and accuracy curves. AUCPR, AUF and AUACC
results are also reported for comparison.

Figure 7.4: Visual comparison of the saliency maps. From left to right:
input image, ground truth, IGA and XCSCA.
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is applied, the XCSCA method maintains slightly higher precision values
than the IGA method. This result suggests that the saliency maps of the
XCSCA method are smoother than that of the IGA method inside object
contours. Figure 7.3 (b) suggests that the saliency maps produced by the
XCSCA method can induce better segmentations than the IGA method.
Figure 7.3 (c) shows that the IGA approach falsely highlights some back-
ground pixels on lower thresholds as compared with the XCSCA method,
which maintains high number of correct predictions.

On average performance improvements of 3.5%, 13% and 5.7% were
observed in terms of area under PR, F-measure and classification accu-
racy curves by the XCSCA method. Results of a two-sided t-test produced
p-values of 0.0022, 0.0004 and 0.0014 for the three performance measures
demonstrating the statistical significance of the results. The t-test was per-
formed after confirming the normal distribution assumptions.

Figure 7.4 presents the visual comparison of saliency maps generated
by the XCSCA and the IGA methods. Higher intensity values mean higher
saliency and vice versa. The XCSCA method suppresses the background
noise that is visible in the IGA saliency maps for the first three row im-
ages. For the last row image with plain background, the IGA method has
smoother saliency inside the object contour.

7.5 Analysis of Evolved Solutions

Table 7.1 shows three representative solutions learned by the independent
GA methods of the IGA method. The independent GA methods were
trained using different image and ground truth groups. It can be observed
that features F 4 and F 8 are heavily weighted by all the three representa-
tive solutions, due to their good saliency detection performance on most
images. It is also worth noting that features F 6 and F 7 are generally given
low importance with negative weights on a few occasions. This is a reason-
able result as these features frequently highlight false background regions.
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Notably, a few features that carry a negative weight for one group are as-
signed a positive weight for another group. This is subject to the feature
variability for different image groups. This ability aids the IGA method to
assign feature importance depending upon image type.

Table 7.1: Three representative solutions learned by the independent GA
methods of the IGA method using unique image groups.

No. Weight Vector
w0 w1 w2 w3 w4 w5 w6 w7 w8

1 0.02 0.20 0.15 0.36 0.85 0.21 -0.40 -0.16 0.98
2 0.30 0.22 0.34 0.60 0.96 0.98 0.19 -0.18 0.73
3 0.06 -0.40 0.28 0.50 0.39 0.32 0.33 0.25 0.97

A sample of the experienced and accurate classifier rules evolved in a
typical run of the XCSCA method are shown in Table 7.2. The linear com-
bination based method evolved weights for each feature in each classifier,
see Table 7.2. It is to be noted that there are 10 weights in each classifier,
the first on the left side corresponding to the constant input x0 and the re-
maining nine corresponding to the nine computed saliency features. The
classifier conditions are real valued, where each bracket contains two real
values separated by a comma. The comma separated real values act as
upper and lower bounds on the features’ earth movers distance from the
reference map and are matched for each input image to decide its cover-
ing rule. From Table 7.2, it can observed that features F 4 and F 8 are again
heavily weighted by the XCSCA method similar to IGA. It is also worth
noting that features given high importance from one of the rules are also
found to be negatively weighted by another rule, thereby adding to the
generalisation power of the XCSCA method to unseen images.
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7.6 Analysis of Grouping Schemes

In contrast to the fixed grouping scheme employed by IGA, the XCSCA
method groups the images by dividing them into niches. To quantitatively
evaluate the grouping obtained by the two approaches, the minimum in-
ter group variance (for all groups) in terms of mean absolute error (MAE),
is sought for a varying number of image groups. The rationale behind
evaluating grouping quality in terms of MAE variance is that a high qual-
ity grouping will place similar images in terms of their MAE performance
together in the same group, thus reducing the inter group MAE variance.
Figure 7.5 presents a comparison of the XCSCA based grouping and the
IGA based grouping strategy. The number of image groups corresponds
to the number of solutions in the XCSCA method, while it is a function of
the number of nearest neighbours k in the IGA method. For each number
of image groups, varying between 3 and 30, a single value for the variance
of the MAE is computed by comparing the inter group variance of all the
image groups and selecting the smallest one. As can be seen by Figure 7.5,
the minimum inter group variance is dependent upon the number of solu-
tions for the XCSCA method, while on the number of nearest neighbours
for the IGA method.

It can be clearly observed in Figure 7.5 that there is a decreasing trend
followed by the minimum MAE variance as the number of groups in-
crease. The latter is true for both the compared approaches. This is a
reasonable result, as an increase in the number of image groups naturally
increases the possibility of more similar images being placed in the same
group, thereby decreasing the overall inter group MAE variance. An ideal
grouping strategy will form image groups with same MAE performance
for all the images in a particular group. It is evident from Figure 7.5 that
the XCSCA method groups more similar images into a niche as compared
to an image group of the IGA method as shown by the minimum variance
of the XCSCA method in terms of MAE.
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Figure 7.5: Comparison of minimum inter group MAE variance of im-
ages between XCSCA and IGA methods. The plot on the left shows the
minimum MAE variance with respect to the number of solutions for the
XCSCA method. The plot on the right shows variation in the minimum
MAE variance as the number of nearest neighbours k is varied. Note that
the scale ranges are different between plots. The number of image groups
are displayed on the top of x-axis for both plots.
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It is to be noted that there is a steady decrease in the MAE variance
for the IGA groupings, while the results for the XCSCA method show a
sudden decrease from 10 to 15 groups. A possible reason for this result is
that the number of images in a group are steadily decreased in each group
for the IGA method, thereby resulting in a steady variance decrease. In
contrast there is no constraint in terms of the number of images per group
in the XCSCA method and images are adaptively grouped based on their
relative performance. Therefore, a sudden decrease in variance is expected
depending upon the quality of newly added solutions and the coverage
provided by them in terms of capturing similar image types in the same
group.

To further explain the image grouping results in Figure 7.5, an illustra-
tive result is presented in Figure 7.6. F1 and F2 represent a set of feature
matrices and the individual features are labelled with feature symbols.
The numbers shown below a few features in square brackets are the classi-
fier conditions required to match these features. The features for which no
conditions are explicitly shown means that they share the same classifier
conditions. The IGA method placed the corresponding images to F1 and
F2 in the same image group based upon the Euclidean distance between
their respective histograms as shown in Figure 7.6. Although the over-
all performance of the two feature matrices is very similar in terms of the
extreme peaks as judged by the histogram based approach of the nearest
neighbour scheme , the contrast in terms of features F 1, F 2 and F 8 is still
clearly evident. To differentiate between the potentially different feature
matrices, the XCSCA method has two different overlapping rules, where
the classifier conditions are the same for most of the features and differ-
ent for the features that are in contrast to each other, as can be seen from
Figure 7.6 conditions.

Although, the XCSCA based grouping method successfully captures
the subtle differences in the respective performances of the features F 1,
F 2 and F 8, it still struggles to identify the very difficult to detect differ-
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Figure 7.6: Explanation of the intergroup variance results in Figure 7.5.

ence between the features F 7 of the two feature vectors. As can be seen
from Figure 7.6, that the feature F 7 of F1 captures part of the object and
clearly suppresses the background. On the other hand, the feature F 7 of
F2 falsely highlights the background while completely missing the ob-
ject. Such types of difference in performance of the features can not be
easily captured by the relative condition matching strategy of the XCSCA
method. To detect such differences, a technique that either relies on prior
knowledge or additional cues is required and is therefore a prospect for
future consideration.

7.7 Further Discussions

To perform a comprehensive comparison of the performance of both the
methods, a categorical comparison of methods is performed by isolating
the images on which one of the techniques specifically performs better
than the other in terms of AUCPR. On analysis of the categorical results,
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Figure 7.7: Categorical results of the IGA and XCSCA methods on simple
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it was revealed that the IGA method explicitly performs better than the
XCSCA method on images with a simple background2, while the XCSCA
method specifically shows better performance than the IGA method on
scenes with difficult backgrounds3, in addition to other image classes.

Figure 7.7, presents a comparison of methods on simple and difficult
background images. The first three rows of Figure 7.7 shows the compar-
ison on scenes with simple background, while the last three rows present
difficult background cases. The intuitive reason behind this result is that,
the feature performance on simple background images is highly similar.
The absolute histogram based grouping scheme of the IGA method can
effectively exploit this fact for simple background images as compared
with the relative scheme of the XCSCA method. On the other hand, the
relative grouping scheme of XCSCA is more effective in handling varying

2Simple background means that it does not contain distractor objects, rich textures or
higher colour contrast.

3Difficult background implies background containing distractor objects, rich texture
or sharing similar colour with the salient object.



180CHAPTER 7. LEARNING CLASSIFIER SYSTEMS BASED COMBINATION

performance of features on images with a difficult background, thereby
achieving considerably better performance. This observation is clearly ex-
plained by Figure 7.7, where the highly similar feature performance for
simple background images translates into slightly better overall perfor-
mance by the IGA method as compared with the XCSCA method both in
terms of AUCPR and visual results. For highly varying feature perfor-
mance for the difficult background images, it can be clearly observed that
the relative scheme of the XCSCA based method enable it to achieve con-
siderable performance enhancements over the IGA method both in terms
of AUCPR and visual results.

7.8 Chapter Summary

The goal of this work was to compare the performance of the proposed
fully autonomous grouping of images and learned multiple feature impor-
tance rules with the previously proposed semi-autonomous approach for
leaning multiple rules. To achieve this goal, a supervised XCSCA method
was introduced that was able to learn multiple combination schemes based
on computation of an action. The XCSCA method was able to autonomously
place images into groups and divide the search space into niches for effec-
tive learning of multiple importance rules. The quantitative performance
of the XCSCA method on unseen images was found to be better than the
previously proposed IGA method on the task of salient object detection.
The important findings of this chapter are:

Performance improvements of 3.5%, 13% and 5.7% were observed in
terms of area under PR, F-measure and classification accuracy curves by
the XCSCA method. A two-sided t-test resulted in p-values of 0.0022,
0.0004 and 0.0014 for AUCPR, AUF and AUACC, respectively, demon-
strating the statistical significance of the results.

Analysis of the grouping schemes revealed that the images placed in
the same group by the XCSCA method, exhibit lower variance of the mean
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absolute error (MAE) performance metric, as compared with the MAE
variance of grouping obtained by the IGA method. It is anticipated that
grouping similar performance images together resulted in more gener-
alised feature importance rules for the XCSCA method. Analysis of the
grouping results revealed that the IGA method grouped two features with
varying performance on feature level solely based on their distance in fea-
ture space. On the other hand, the XCSCA method covered the same im-
ages with different rules, where the classifier conditions were found to be
same for similar performing features and different for the features that
show contrasting performance.

On analysing the visual results obtained from the two approaches, it
was revealed that the IGA method shows better performance on images
with simple background, while the XCSCA method exhibits notably bet-
ter saliency response on difficult background images. For detailed perfor-
mance and timing comparison of the IGA and XCSCA methods, please
refer to chapter 9.

This chapter and chapter 6 were focused on finding suitable combina-
tion schemes for combining various feature modalities. Multiple combi-
nation schemes were proposed to increase the generalisation performance
on unseen image types. The next chapter of this thesis investigates how to
select the best features for combination and neglect the unnecessary infor-
mation that negatively affects the final saliency response.
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Chapter 8

Feature Quality Based Dynamic
Feature Selection for Improving
Salient Object Detection

8.1 Introduction

The last chapter discussed the idea of learning multiple combination rules
through autonomous grouping of images using an XCS based method.
The motivation was to group similar images based on their feature com-
position and learn a customised weight vector for each image group. A
novel relative encoding scheme was introduced within the XCS frame-
work, which was able to autonomously group images having similar im-
age composition. Although the XCS method was able to identify feature
level differences for two feature sets, there was an outlier feature case
which could not be detected by the proposed XCS based method. The spe-
cific example from chapter 7 is recalled here in Figure 8.1 for discussion.
The green boxes show the features successfully identified to be different by
the proposed XCS method, while the red box shows the features that could
not be differentiated by the relative encoding scheme of the proposed XCS
method. If both the features in the red box are assigned similar weights

183
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Figure 8.1: Comparison of image features using XCS’s encoding scheme.
Green boxes depict the features effectively differentiated by the XCS
method, while the red box highlights outlier features, which can not be
differentiated by the XCS encoding.

and included in the combination for final saliency output, the bottom row
feature will inversely affect the final saliency output, contrary to the first
row feature. It follows that discarding the bottom row outlier feature dur-
ing the combination process will yield better saliency output as compared
with the output when it is included in the combination.

The above example urges a need for a system that can identify the
goodness or badness of a feature/saliency map, discard outlier features
and combine the best performing ones on an image-by-image basis. Once
devised, such a system, can be employed within the multiple learner frame-
work proposed in the previous chapter to perform selective feature com-
bination for all image types.

8.1.1 Chapter Goals

Following the above discussion, the main goal of this work is to compare
the performance of autonomously identified unique feature/saliency map
combinations (that are obtained by selecting the best performing features
for optimal fusion) with the optimal combination of all feature/saliency
maps.

To enable such autonomously identified unique combinations, a dy-
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namic system is required that can measure the quality of feature/saliency
maps in an unsupervised fashion on an image-by-image basis. The desir-
able system should then be able to select the best performing discrimina-
tive feature/saliency maps based on their quality and optimally combine
them to obtain the final saliency output on individual image basis. This
allows extraneous maps to be neglected.

To realize such dynamic feature selection, the following objectives need
to be fulfilled:

1. To devise special feature quality measurement cues that can measure
the quality of feature maps in an unsupervised fashion.

2. To devise a clustering method that can cluster good performing and
outlier features into distinct clusters.

3. To determine if combining only the best performing features/saliency
maps for each image improves upon the performance achieved by
combining all the maps.

4. To test the quality measurement ability of the devised features by
measuring their ranking ability against ground truth ranking.

8.1.2 Chapter Organisation

The rest of this chapter is organised as follows: Section 8.2 briefly reviews
the fundamentals of graph based manifold ranking to leverage the un-
derstanding of the new graph based formulation for foreground approx-
imation proposed in this work. Section 8.3 explains the implementation
details of the dynamic feature selection method proposed in this work.
Section 8.4 details the experimental settings. Section 8.5 presents and dis-
cusses the obtained results. Finally the last section summarises the impor-
tant findings of this chapter.
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8.2 Graph Based Manifold Ranking

A comprehensive review of graph based saliency techniques is presented
by [97]. In this section, a brief review of graph-based object saliency is
presented and specific details required for better understanding of our
new graph-based formulation for foreground prediction are described.
All graph-based saliency approaches begin by mapping an image on to
a graph G = (V,E) of M nodes, where a node vi represents the ith image
location (a pixel, patch or a superpixel) and an edge eij is the link between
nodes i and j. Provided initial saliency estimates for all nodes, the goal is
to obtain object saliency for all nodes o ∈ RM by saliency diffusion along
the graph.

The initial saliency estimates (saliency seeds) are denoted by s. The
edges eij are characterized by weights (depending upon the node similari-
ties), which make up the affinity matrixW . Saliency seeds are propagated
based on the affinities between nodes, which is defined by a propagation
matrix P . The propagation matrix [37] governs the process of saliency
diffusion. A thorough review on the use of various transition matrices
for diffusion in the context of image retrieval is presented by [37]. Out-
put saliency nodes o�i are assigned saliency values based on their affinities
with seed nodes s�i . Generally the optimal solution is sought as: o� = Ps.

8.3 Dynamic Feature Selection (DFS) method

In this section, the proposed method for measuring feature/method qual-
ity termed as dynamic feature selection (DFS) method is presented. DFS
dynamically selects the features/saliency maps on an image-by-image ba-
sis by measuring their quality using high-level cues. The goal is to select
only the maps that can boost the overall performance after combination,
while discarding the remainder during the fusion process.
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8.3.1 System Model

The system model for the introduced DFS method is shown in Figure 8.2.
Given an image I , a set ofm feature/saliency maps is computed. Each fea-
ture map F i is then subjected to two separate operations; foreground ap-
proximation (section 8.3.2) and feature quality measurement (section 8.3.3)
to compute a vector of feature qualities t. Afterwards, the best perform-
ing features are selected by hierarchical clustering based on feature qual-
ities ti (section 8.3.4) to form a set of selected features Fs. The selected
features from Fs are then fused together using the methods described in
section 8.3.6 to compute the final saliency output of our DFS method.

The feature quality ti for a feature map F i is computed using four mid-
level cues, i.e., feature density fD, sparse reconstruction error εs, feature
induced segmentation quality sQ and Gestalt contour energy econtour (sec-
tion 8.3.3) with assistance from foreground approximation FG.

8.3.2 Foreground Approximation

A foreground approximation leading to a robust figure ground proposal
is needed to facilitate cues such as feature density, reconstruction error
and inter-region contour energy (see section 8.3.3) for measuring feature
quality. Most saliency methods rely on a simple contrast of regions to
compute saliency. However, it is highly difficult to tackle scenes with a
cluttered background and/or multiple salient objects by only utilizing re-
gional contrast. Therefore, such methods can not be directly adapted for
this task.

A few object candidate generation approaches such as constrained para-
metric min-cuts (CPMC) and multiscale combinatorial grouping (MCG)
[10, 22] can be adapted to this task. However, these techniques require
accurate ranking of object candidates to obtain high quality in terms of
object hypothesis. Object ranking is a cumbersome task and efficiency im-
provements are beyond the scope of this work.
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The previous success of graph-based diffusion schemes in approach-
ing the problem of saliency without favouring a certain feature [149, 97]
encourages the design of a new graph-based approach for computing the
foreground approximation.

Superpixel Segmentation

To over-segment the input image I , the simple linear iterative clustering
(SLIC) algorithm [4] is employed to obtainM regionsxi. Each region (a su-
perpixel) is represented by the mean colour features in the CIE Lab colour
space and the image is described as a feature matrix [x1,x2, · · · ,xM ] ∈
R3�M .

Saliency Seed Prediction

Choosing the right set of seeds s is a critical task for proper saliency prop-
agation during the diffusion process [97]. Yang et al. [149] used boundary
nodes as seeds for ranking. This makes their method vulnerable for im-
ages including objects at their boundaries. Seed learning methods such as
the recent work of Lu et al. [97] are promising, however high computa-
tional time makes it unsuitable for the proposed method. For this work,
the regional backgroundness descriptor of Jiang et al. [68] is adapted as
opposed to the approach of Yang et al. [149], for initializing seeds in the
diffusion process. Although, the backgroundness descriptor also utilise
the boundary region to determine seeds, the richness of it high dimen-
sional features and the generalisability of a random forest regressor, makes
the backgroundness descriptor a highly discriminative feature for predict-
ing high quality seeds.

The backgroundness descriptor of [68] uses 29 features including aver-
age values of colour, histograms of colour, hue, saturation, texton and re-
sponse of Leung-Malik (LM) filter bank [86], computed region-wise. The
LM filter bank consists of first and second derivatives of Gaussian filters
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at multiple scales and orientations, constituting 36 filters, 8 Laplacian of
Gaussian filters and 4 Gaussian filters. This LM filter bank is highly spe-
cialised to detect textures. The backgroundness descriptor feature ma-
trix B ∈ RM�29 contains a unique column for each of the features. For
the ith feature the corresponding column vector in B is computed as the
difference between its feature vector fRi and the corresponding pseudo-
background region feature vector fBi . The difference for a simple feature
is computed as ||fRi − fBi ||2. While the difference between a histogram-
based feature is computed as χ2(hRi ,h

B
i ), where hRi and hBi are histograms

of the ith superpixel region (node) and the ith pseudo-background region,
respectively. The seed vector s ∈ RM is then obtained by applying the
learned random forest regressor of [68] to the backgroundness descriptor
feature matrix B. A random forest regressor is an ensemble method that
fits a group of decision trees to random sub-samples of the dataset. The
output is computed by averaging of decision trees to improve accuracy
and prevent over-fitting.

Graph Construction

Given M superpixels regions {xi}i21..M as nodes, a single layer graph
G = (V,E) is constructed where V represents a set of nodes (with each
node representing a superpixel) and E is the set of undirected edges. A k-
regular graph structure is used to exploit the spatial relationship between
neighbouring pixels.

Similar to Zhou et al. [155], the affinity matrix W ∈ RM�M is con-
structed by using the following weighting function for two nodes, where
µi and µj are the mean of superpixels nodes i and j in the CIE Lab colour
space and σ is a constant used to control the strength of the edge weight

wij = exp

(
−
∥∥µi − µj∥∥

2σ2

)
. (8.1)

The affinity matrixW is employed to formulate the propagation matrix
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A ∈ RM�M as
A = (D − λW )�1, (8.2)

whereD is a diagonal matrix, dii =
∑

j wij and λ is a balancing parameter
in the regularization function of (8.2).

Saliency from seeds is then propagated to the foreground approxima-
tion vector fG = As. The foreground approximation vector fG is seg-
mented using a threshold of 2

M

∑M
i=1 f

(i)
G to yield the segmented foreground

approximation vector f̂G. The saliency information in each row of fG and
f̂G is then assigned to the pixels belonging to the corresponding regions to
obtain the original and segmented pixel-level foreground approximation
maps FG and F̂G.

8.3.3 Cues for Measuring Feature Quality

As the desired response of a salient object detection result is to segment
out the complete salient object, a good salient object detection result must
ensure two important properties: 1) it must be able to assign uniform
saliency inside object contours and cover all parts of the salient object;
2) it must be able to preserve salient object boundaries and ensure high
intensity contrast at locations where there is a high feature contrast in the
image (mainly the colour feature in this work). Based on these properties,
the following feature quality measurement cues are introduced to ensure
uniform saliency and high segmentation quality.

Feature Density

To induce high quality salient object segmentation, a saliency output must
ensure that the average density of the pixels inside the salient region(s)
must be considerably higher than the average intensity of any other region
of the saliency map. This motivates us to propose a unique cue termed fea-
ture density (fD) that measures the quality of a saliency map based on its
intensity density inside a predicted foreground region as compared with
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its intensity density for the rest of the map. The predicted foreground re-
gion is obtained by the formulated foreground approximation detailed in
the previous section. If the foreground approximation is accurate enough
to localize the foreground object then the quality of the feature can be esti-
mated by its pixels’ intensity ratio inside and outside the foreground seg-
mented area and the pixels’ density inside the foreground segmented area.

The proposed feature density fD is formulated as follows:

fD =

∑
p2P F (p)∑
p2M F (p)︸ ︷︷ ︸

Intensity ratio

+

∑
p2P F (p)

|P|
.︸ ︷︷ ︸

Density term

(8.3)

In (8.3),M is a set of coordinates corresponding to all the pixels in (the
feature map)F . To be consistent with previous notation,P ⊂M is defined
as the set of coordinates of non-zero pixels in the segmented foreground
approximation map F̂G. The first term in fD ensures that the intensity of
F inside the region defined by F̂G is higher than the overall intensity of
F . The second term verifies that the portion of F in agreement F̂G has a
higher feature density as compared with rest of the map.

The first row of Figure 8.3 shows an evaluation example of the pro-
posed feature density cue. It can be noted that despite M1 assigning low
intensity to the salient object as compared with the falsely highlighted
background region, saliency index (SI) [49] and compactness (SV) [27]
measures1 rank it first due to its low spatial variance and high connect-
edness. On the other hand the proposed fD cue ranks M2 first, which is in
agreement with the F-max performance measure (for details of F-max, see
section 8.4).

Sparse Reconstruction Error Based Feature Quality

A good quality saliency map must be able to appropriately highlight all
regions of the image that belong to the salient object. Predicting parts of

1These measures are defined in the background section.
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Figure 8.3: Rationale for feature density fD and sparse reconstruction er-
ror εs cues. From left to right: input image, example saliency maps and
saliency map ranking. The red box depicts first rank for the respective
map, while the green box depicts the second rank. M1 and M2 denote
the saliency maps being assessed. Images are taken from the MSRA10K
dataset (section 8.4).
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the salient object as background results in undesirable object segmenta-
tion. This property of a saliency map is termed as salient object coverage,
which is the number of total correctly predicted pixels that belong to the
salient object. In this work, the extent to which a saliency map correctly
covers all pixels of the salient object is measured by introducing a new fea-
ture quality measure based on the sparse reconstruction error between the
saliency based predicted regions and the foreground approximation based
predicted regions that were discussed in section 8.3.2.

The rationale behind the proposed measure is that it will discriminate
between a saliency map that has a higher salient object coverage and an-
other map having a lower coverage by assigning a lower total reconstruc-
tion error to the latter. Sparse reconstruction error has been used before
by the Bayesian formulation of Li et al. [91] for constructing a saliency
map, where the boundary nodes of an image were used for sparse repre-
sentation. In this work it is employed to measure how well a saliency map
highlights all the pixels belonging to the salient object.

To obtain the reconstruction error, each of the M regions is represented
by mean colour features and pixel coordinates asxi = [R,G,B, L, a, b, x, y]T

and the image is described as a feature matrix [x1,x2, . . . ,xM ] ∈ R8�M .
Each feature based predicted segment is then extracted using its segmented
version to construct a feature prediction set P = [p1,p2, . . . ,pN ]. The fore-
ground approximation FG based predicted segments S = [s1, s2, . . . , sN ]

form the bases for the sparse representation. The reconstruction error for
the ith segment εsi can then be computed as:

εsi = ‖pi − αiS‖
2
2 , (8.4)

where αi is the reconstruction coefficient given as:

αi = arg min
αi

‖pi − αiS‖
2
2 + δ ‖αi‖1 , (8.5)

for δ a regularization coefficient as in (8.5). The combined sparse recon-
struction error εs is then computed as εs =

∑M
i εsi .
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Figure 8.3 shows an evaluation example of the total sparse reconstruc-
tion error εs introduced in this work. The second row result shows a case,
where the map M1 covers a small part of the salient object as compared
with M2, which almost covers the whole salient object. Due to low spatial
variance and high connectedness of M1, both SI and SV measures favour
it by assigning it the first rank. The proposed total sparse reconstruction
error εs measure ranks M2 higher because of its higher coverage of the
salient object as compared with M1. Consequently, the ranking of the pro-
posed εs measure is in accordance with the F-max measure.

Quality of Feature Induced Segmentation

To induce a good segmentation result, a saliency map must be able to cap-
ture the high contrast between the “to be segmented region” and the rest
of the map. To measure this property of a saliency map, a feature induced
segmentation quality sQ is introduced, which is inspired by the energy
function of the ratio cut image segmentation method [135]. According
to ratio cut, the segmentation should minimise the inter-region similarity,
which is formulated in terms of the affinities at the segments boundaries
as

sQ =

∑
p2P,q2Q

⋂
Np
wpq∑

p2P,q2Np
1Q(q)

, (8.6)

where P ⊂ M is the set of coordinates of zero pixels and 1Q(q) is the
indicator function defined as

1Q(q) =

{
1 if q ∈ Q
0 if q /∈ Q.

(8.7)

In (8.6),Np is the set of coordinates of neighbouring pixels to p and wpq
is the colour and spatial affinity between neighbouring pixels accessed by
coordinates p and q.
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To this end the affinity between neighbouring pixels is defined by [94]

wpq = exp(−β ‖Ip − Iq‖)

for β =

(
2E
(
‖Ip − Iq‖2))�1 (8.8)

The notation Ip in (8.8) represents the colour values of a pixel at the
location p in the image I . Following from (8.6) and (8.7), equation (8.8)
assumes that the affinities are only computed between neighbouring pix-
els such that the pixel at p belongs to P and that at q belongs to Q. ‖·‖
represents the L2 norm. The β term in (8.8) computes the expectation over
the selected pixel set (defined by (8.6) and (8.7)) in terms of colour contrast
between neighbouring pixels.

In past work, Mai and Liu [99] used normalized cut as the energy func-
tion to measure the segmentation quality of a saliency map. In this work
the energy function is designed to follow the ratio cut in contrast to nor-
malized cut, due to its ability to judge a segmentation better than normal-
ized cut as reported in [22] on the PASCAL VOC2009 training set. Further-
more, Wang and Mark demonstrate its superiority [135].

Gestalt Laws of Contours for Feature Quality

As the introduced segmentation quality measure, sQ, judges the boundary
preserving capability of the segmentation result induced by the saliency
map, a complementary measure is required that can measure the edge pre-
serving quality of the saliency map. To this end the inter-region contour
energy econtour is computed according to Gestalt properties for contours
with assistance from the proposed foreground approximation. The nor-
malized sum of edge energies along the boundary of the contour is cap-
tured, which is a highly discriminative feature [22].

The inter-region contour energy econtour can be expressed as follows:

econtour =

∑
p2BEI(p)

|B|
, (8.9)
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Figure 8.4: Comparison of the inter-region contour energy econtour measure
with fB [99]. From left to right: image from the MSRA10k dataset (sec-
tion 8.4), edge mapEI , segmented foreground approximation F̂G, selected
saliency maps with overlayed boundaries and their respective rankings.
Red, green and blue boxes represent first, second and third rank respec-
tively.

where B = BS
⋂
BF with BS and BF being the set of locations of bound-

ary pixels of the saliency map and the foreground approximation, respec-
tively and EI is the edge map of image I computed using the approach
of Dollár and Zitnick [36]. The approach of Dollár and Zitnick introduced
random forests to learn structured class labels. Multiple forests are em-
ployed, where each predicts labels for a patch of edge pixels. The pre-
dicted labels are aggregated across the image to compute the final edge
map.

The boundary quality measure of Mai and Liu [99] denoted as fB com-
pares the boundary map of the saliency map with its edge map. It can be
misleading in scenarios where the background boundaries captured by a
saliency map highly correlate with the image edge map. In contrast to Mai
et al. [99], in this work the edge energy is only measured at that boundary
of the saliency map that coincides with the boundaries predicted by the
proposed foreground approximation map, thereby promoting edge ener-
gies at salient object boundaries instead of the background.

The discriminative nature of the proposed inter-region contour energy
econtour measure as compared with the boundary quality measure of [99]
is depicted in Figure 8.4. It can be observed that the fB measure favours
M2 due to its high correlation with EI . In contrast, the proposed econtour
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measure promotes M1 (by taking assistance from F̂G), which effectively
captures the edges of the salient object and suppresses background edges.
The F-max measure validates the proposed econtour measure.

Systematic Evaluation of the Proposed Quality Measurement Cues

To investigate the ability of the proposed quality measurement cues to dis-
criminate between good and bad saliency maps, 8000 saliency maps were
computed using images from the MSRA10K dataset (section 8.4) and six
state-of-the-art saliency methods namely, AC [2], CA [46], FT [3], GBVS
[50], HC [28] and RC [28]. Next, the maps were divided into high perform-
ing (high) and low performing (low) categories based on their F-max mea-
sure. The proposed measurement cues were computed for both the high
and low performing maps and their respective distributions were plotted,
as depicted in Figure 8.5. Two-sided Wilcoxon rank sum tests were per-
formed to compare the high and low distributions. The distributions were
found to be highly statistically different with p-values < 0.0001 for all the
measurement cues.

8.3.4 Objective Function for Feature Quality

To get a collective assessment of quality of a map, information from all
the quality measurement cues must be into combined into a single objec-
tive function. As all feature quality cues are unnormalized, they are first
normalized to the range [0,1]. Afterwards, the objective function for com-
puting the quality of the ith feature is formulated as:

ti =
fD + econtour + sQ

εs
. (8.10)

The idea is that all the measures that must assume high values to in-
dicate a good salient object detection result are placed in the numerator
and the sparse reconstruction error that should be low to indicate a good
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Figure 8.5: Distributions of the proposed quality measurement cues for
high and low performing maps. The high and low performing maps are
segregated based on their F-max measure.
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salient object result is placed in the denominator. Other more sophisti-
cated objective functions including weighted combination were investi-
gated. However, it was observed that the seemingly simple quality mea-
sure as in (8.10) performs effectively as demonstrated by the results in sec-
tions 8.4, 8.6 and specifically the ranking evaluation 8.7. Also, the potential
gains from more complex approaches were questionable.

8.3.5 Feature Selection Algorithm

The proposed DFS method can be utilised in two different approaches of
operation for feature selection. While operating in the first approach, the
proposed DFS method selects the subset of best performing features on an
image-by-image basis as described by Algorithm 3. The feature maps set
F and quality vector t are computed for each image and passed as input
to the algorithm. nc is the number of clusters to be formed by hierarchical
clustering in our implementation. Fs is the set of selected features contain-
ing feature maps F s, while DFS is the saliency output for the proposed
DFS method.

The best features for the fusion process are selected by hierarchical
clustering of features based on their respective qualities given by the fea-
ture quality vector t, which contains sorted feature qualities predicted by
our feature quality measurement cues. The idea is to cluster the high qual-
ity features (having close proximity in terms of feature qualities) to form
the selected feature set Fs. Pairwise Euclidean distance is used to obtain
the agglomerative hierarchical cluster tree. The cluster tree is then used
to obtain two clusters based on a the specified number of clusters nc. The
cluster containing the highest accuracy is then selected to populate the se-
lected features set Fs.

The process of grouping good and bad features using agglomerative
hierarchical clustering for a representative case is depicted in Figure 8.6.
The process of hierarchical clustering is simple yet effective. It starts by as-
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Algorithm 3: Dynamic feature selection on an image-by-image basis.
Data: F = [f 1,f 2, . . . ,fN ] - feature/saliency method set

corresponding to an image, t = [t1, t2, . . . , tN ] - feature quality
vector

Result: DFS - DFS Saliency
Sort features f i ∈ F according to t in descending order ;
Compute distance matrixD for t using linkage ;
while nc > 1 do

Merge clusters having closest distance to form the hierarchical
clustering tree;
Use inter-cluster distances to reduce the dimension ofD ;

Create clusters by specifying the number of clusters required ;
Use the cluster label with higher accuracy to populate the selected
feature set Fs for the current image I ;
Optimally combine selected feature maps F s ∈ Fs to obtainDFS;
returnDFS ;
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Image GT

Figure 8.6: Example of an agglomerative hierarchical cluster tree for select-
ing appropriate features for combination. The red, blue and black colours
are assigned to group of nodes whose distance is less than a threshold.
The colour assignment is unique and random. The green lines depict the
points where the dendrogram is split into two distinct clusters.
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signing each object to a separate cluster followed by computation of pair-
wise distances between clusters. Euclidean distance is found to be highly
effective in our implementation and is therefore employed to evaluate dis-
tances. Using all distances, a distance matrix is constructed and pair of
clusters with shortest distance are sought. Next, such pairs are merged
and removed from the distance matrix. Matrix is updated by comput-
ing distances of all clusters from this newly created cluster. This process
is repeated until the distance matrix is reduced to a single element. In
Figure 8.6, the height of the “U” shapes depicts the euclidean distance
between objects, while the green lines signify joints from where the hierar-
chical tree is cut to separate good and bad features. The blue ellipses indi-
cate features that are selected by the dynamic feature selection method for
combination based on their quality. More examples of clustering features
for multiple combination schemes are presented in chapter 9.

In the second approach, the proposed DFS approach can be used by
saliency methods in an offline mode, and by large-scale feature integration
systems to identify such features that add to the computational load (of the
system) without improving performance.

8.3.6 Feature/Saliency Fusion

As the prime motivation for this work is feature selection, basic fusion
schemes from the literature are employed in this work instead of using
more sophisticated multiple learners approaches such as [100, 104]. For
details of these approaches, please refer to the background chapter.

To fuse the saliency maps, we adapt the pixel-wise saliency aggrega-
tion approach of Mai et al. [100]. Specifically a feature vector f p is formed
as [s1, s2, . . . , sm]T (considering m saliency methods; si is the saliency of
a pixel according to the ith method) with a corresponding binary label
vector lp to encode saliency of pixels. The final saliency sp for a pixel is
determined by finding the posterior probability of the pixel being salient
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or not. Specifically, the posterior probability is modelled using the logistic
method as follows:

P(lp = 1|fp;λ) = σ

( ∑
i=1..m

λisi + λm+1

)
, (8.11)

where σ(·) is the sigmoid function and λ is a vector containing model pa-
rameters [Note that this is different from the balancing parameter λ in-
troduced in section 8.3.2]. For learning model parameters λ, a non-linear
SVM with RBF-kernel is implemented using the publically available LIB-
SVM package [24]. These settings employed in this work are likely to be
different to the settings used in [100] as the authors do not report the pa-
rameters used.

In order to combine the multi-level saliency maps in the benchmark
DRFI method, a least square estimator is employed as reported in [68] to
learn the weights for saliency maps by minimizing the sum of the losses
over the training images.

8.4 Experimental Setup

Data Sets

The MSRA10k database [28] contains 10,000 real-world images and is a
subset of the MSRA salient object database [94]. Its prime feature is the
pixel-level ground truth masks, which allows finer grained evaluations
than the simpler bounding box annotations provided by MSRA. Due to its
large size and variety of image types, it can test the scalability of saliency
methods.

The ASD dataset [3] contains 1000 images with pixel-level ground truth
annotations. It is a subset of the MSRA10k dataset where most images con-
tain a single object with a simple background, which makes it a relatively
easier dataset.
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The BSD300 dataset [102] also known as SOD in prior works [15] is a
subset of the Berkeley segmentation dataset, containing 300 images in to-
tal, labelled by seven users as object boundaries. It will be referred as BSD
for the remainder of this chapter. This dataset is relatively more difficult
than MSRA10k and ASD as it contains images with unobtrusive objects
and cluttered background.

The SED2 dataset is a subset of the segmentation evaluation database
[9]. It comprises 100 images containing two objects and was originally
collected to evaluate image segmentation algorithms. Pixel-level ground
truth annotations from at most three users are also provided. The inclu-
sion of multiple objects per scene makes it challenging for most saliency
methods.

The PASCAL VOC 2012 consists of images obtained from the Flickr
website [39] for the PASCAL VOC challenge. The images are collected
over the years from 2007 for the challenging tasks of classification, de-
tection, segmentation, action classification and persons layout, including
20 object categories. This work employs 2,913 images out of the total
11,540 images, for which the segmentation annotations are made available.
Complete annotations are provided for the twenty classes with bounding
boxes and attributes specifying the objects, actions and layouts. Pixel-wise
ground truth is available for the segmentation task, where each pixel is an-
notated according to its object class level. Binary ground truth is obtained
for pixel-wise segmentation by assigning “one” to each pixel belonging to
any of the twenty object categories and assigning the rest of the pixels “ze-
ros”. PASCAL VOC is one of the most difficult benchmark dataset and is
used as a measure of assessing state-of-the-art performance in a competi-
tion since more than five years.

As this work presents the first feature selection method introduced in
this thesis, the MSRA10k, BSD and the SED2 datasets are employed to
thoroughly evaluate the performance of methods. In order to be consistent
with the results reported in [100], the ASD dataset is employed instead of
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the MSRA10k dataset for the saliency aggregation experiments and com-
parisons. For accessing the performance of DFS based salient object de-
tection method proposed in this work, the PASCAL VOC 2012 dataset is
employed (in section 8.6) to maintain consistency with prior works.

Evaluation Metrics

All methods are evaluated using the average precision-recall (PR) curves.
Using the FT benchmark [3], each saliency map is first subjected to seg-
mentation using thresholds in the range [0,255] and compared to the ground
truth annotation to compute the precision and recall at each threshold
level. The average precision and recall for all images are then used to
plot the PR curve. In addition to the PR curve, a segmentation inspired
measure termed as F-max is also included for comparison. It is included
as indirect measure of the quality of segmentation induced by the selected
features. It is computed as the maximum F-measure value when operat-
ing on the PR curve. F-measure is computed by the same Equation 5.8 as
before, where β is set to 0.3 to reflect the FT benchmark [3]. For limited
space in figure labels, F-max is denoted by the letter F only. The contours
for F are also plotted in the figures for better illustration.

Parameter Analysis

This sections presents an empirical analysis of various parameters of the
proposed method. There are three parameters in the foreground approx-
imation (FG) computation, number of regions M , strength of the edge
weight σ (6) and the balancing parameter λ (8.2). Figure 8.7 shows the
effects of these parameters on the quality and the computational speed of
FG. These results are computed by using 100 randomly sampled images
from MSRA10k dataset. In Figure 8.7 (a) the effect of M on the perfor-
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mance of FG is plotted in terms of F-max, mean absolute error2 (MAE)
[113] and computational time in seconds. It can be observed from Fig-
ure 8.7 (a) that with the increase inM , there is a gradual increase in compu-
tational time, while F-max and MAE do not exhibit considerable variation.
F-max and MAE show an increasing and decreasing trend till M = 200,
while computational time increases steadily. In contrast to the low varia-
tions in F-max and MAE on increasing M above 200, there is a noteworthy
increase in the computation time having a steeper slope than the curve be-
fore M=200. Therefore M is set to 200 to favour a balance between quality
and computational speed.

It can observed that varying σ2 and λ do not have a profound effect
on the computational time, while F-max and MAE both exhibit best scores
for σ2 fixed to 0.05 (corresponding to all λ values, see Figure 8.7 (b)-(d)).
Hence σ2 is fixed to 0.05, while λ is set to 0.99, as they result in the best
F-max and MAE.

In our experiments, δ = 0.03 is found to be a good value for estimat-
ing the reconstruction coefficient in (8.5). After performing a parametric
search on the grid the values of C and γ for the non-linear SVM, they were
fixed to two and eight respectively, due to their high cross-validation ac-
curacy. The number of clusters nc is set to two in our implementation as
ideally two clusters containing good and bad performing features are re-
quired.

8.5 Results and Discussion

This section presents the comparison of the results obtained by the unique
feature combinations obtained by the proposed DFS method as compared
with the optimal combination of all features using three different exper-

2MAE is an important performance measure that measures the correctness of back-
ground annotations in saliency maps, which is usually neglected by other benchmarks
[113].
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Figure 8.7: Effects of parameters on the foreground approximation F . (a)
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iments. Firstly, the performance of the proposed DFS method is evalu-
ated by employing it to autonomously select and combine the multi-level
saliency maps of the DRFI method. The performance of the proposed
DRFI method is compared with the multi-level saliency fusion of the DRFI
method, which combines all the saliency maps. Next, the saliency aggre-
gation performance of the proposed DFS method is compared with the
state-of-the-art saliency aggregation method, i.e. PW [100] to investigate
the benefit of unique saliency combinations as compared with the optimal
combination of all saliency maps. Finally, the performance of the proposed
DFS based salient object detection method (section 8.6) is compared with
the state-of-the-art salient object detection methods. A comparison of the
proposed DFS based method with the best selected map for each image
according to the DFS quality is also presented.

8.5.1 Saliency Map Selection for Regional Feature Integra-

tion

The performance of the proposed DFS method is computed by employing
it at the multi-level saliency stage of the DRFI method [68] to perform
autonomous saliency selection and fusion. For the DRFI method, its final
output after the multi-level saliency fusion stage is used. The MATLAB
implementation provided by the authors of DRFI [68] is employed in this
work.

The proposed DFS method automatically selected less up to five fea-
tures for each image of the MSRA10k and SED2 datasets and up to four
features for each image of the BSD dataset. Figure 8.8 shows the per-
formance of DRFI and the proposed DFS method along with the perfor-
mance for dynamically selected best and worst performing saliency maps.
In comparison with the DRFI method the proposed method shows simi-
lar performance on the MSRA10k dataset, slightly better performance on
the SED2 dataset and notably better results on the BSD dataset in terms
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of the PR curves. The results of the PR benchmark demonstrate that the
proposed DFS method improved the performance of the benchmark DRFI
method by discarding poor performing saliency maps at its multi-level
saliency fusion stage. Notably, the dynamically selected best map shows
better performance than baseline DRFI on two datasets in terms of PR
curves. In order to further quantify the results, the average area under the
ROC curve (AUC) with the statistical significance results of a paired, two
sided, Wilcoxon signed rank test are included. The results show that the
proposed DFS method performs significantly better than DRFI on the BSD
dataset with a p-value < 0.0001, while showing statistically similar per-
formance on the MSRA10k and the SED2 datasets with p-values of 0.7985
and 0.9288, respectively.

Figure 8.9 shows a visual comparison of the proposed DFS method
with the DRFI method. Figure 8.9 includes two representative saliency
maps from the set of 15 multi-level saliency maps of DRFI. The second
and third row images from the MSRA10k and SED2 datasets show that
the proposed DFS method and the baseline DRFI method perform sim-
ilarly (supporting the PR curves). The image in the first row from the
BSD dataset shows improvement of the proposed method over the base-
line DRFI method in that the DFS method uniformly highlights the salient
region (the flowers) including some background portion of the building,
while the DRFI method completely misses the salient region in the final
saliency output.

As the number of features selected on all datasets is less than or equal
to five, the results of the proposed DFS method suggest a potential speed-
up of approximately three times over DRFI. The overall results of the com-
parison suggests that the proposed DFS method either improves the per-
formance of DRFI or provides similar quantitative performance (on a few
datasets) with the potential of low computational cost that can be achieved
by discarding the outlier saliency maps.
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Figure 8.8: Top row: precision-recall curves for multi-level saliency fusion
on the MSRA10k and BSD datasets; bottom row: precision-recall curves
on the SED2 dataset and statistical comparison based on AUC. Best and
Worst represents the dynamically selected best and worst maps for each
image from the complete set. The proposed DFS method is shown in Red.
This figure is best viewed in colour.
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Figure 8.9: Saliency comparison results of two representative multi-
level saliency maps of DRFI (M1 and M2), DRFI and the proposed DFS
method on representative images taken from BSD, MSRA10k and the
SED2 datasets. Left to right: input, GT, M1, M2, DRFI and DFS.

8.5.2 Saliency Aggregation

The ten state-of-the-art saliency methods AC [2], CA [46], IT [66], MZ [98],
LC [150], FT [3], HC [28], GBVS [50], RC [28] and SR [55] are employed, as
in [100]. Specifically the FT benchmark [3] is utilised to generate saliency
maps for all the methods reported here. The proposed DFS method is
compared with the pixel-wise saliency aggregation method of Mai et al.
[100] (termed as PW) to investigate the potential of selective feature fusion
in comparison with the combination of all features.

The proposed DFS technique selected less than five saliency methods
from the 10 methods for every image belonging to all three datasets. Fig-
ure 8.10 shows the quantitative performance of methods, where the pro-
posed DFS method performs better than PW on all the three datasets,
achieving higher precision and recall on all thresholds as supported by
the statistical results on the AUC. The statistical results were obtained by
a paired, two sided, Wilcoxon signed ranked test.

Figure 8.11 presents the visual comparison for the task of saliency ag-
gregation. It can be noted that the proposed DFS method predicts better
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Figure 8.10: Top row: precision-recall curves for saliency aggregation on
the ASD and the BSD datasets; bottom row: precision-recall curves on the
SED2 dataset and statistical comparison based on AUC. The proposed DFS
method is shown in red. This figure is best viewed in colour.
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Figure 8.11: Saliency comparison of the proposed DFS with the PW
method and selected individual saliency maps. Left to right: input, GT,
GBVS, CA, FT, RC, PW and the proposed DFS.

saliency as compared with the PW method and all individual methods.

The results of the multi-level saliency fusion of the DRFI method (sec-
tion 8.5.1) and the results of the saliency aggregation of methods (sec-
tion 8.5.2) are in agreement with our initial hypothesis. This is because
the fusion of dynamically selected features by the proposed DFS method
improves upon the methods that have to use all the features. The obvious
reason for this improvement is the rejection of redundant saliency maps
by the DFS method.

8.6 Results of the DFS Based Saliency Aggrega-

tion Method for Salient Object Detection

This section introduces a DFS based saliency aggregation method for the
task of salient object detection. It employs five saliency methods namely,
FT [3], HC [28], RC [28], SR [55] and DRFI [68] that have been discussed
in section 8.5.2. Furthermore, two additional methods are included in the
design, i.e., GBMR [149] and PCA [101], due to their good performance on
benchmark datasets. Author provided implementations are used to obtain
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the saliency maps. The proposed DFS method is applied to dynamically
select and combine the best possible saliency maps on individual image
basis from the PASCAL VOC 2012 dataset.

Additionally, the sub-class(es) of images for which the proposed DFS
based saliency method is best suited is investigated. Figure 8.12 shows
the performance comparison of the proposed DFS saliency method with
the other saliency methods. Along with the performance of individual
saliency methods and the proposed DFS based saliency approach, the av-
erage performance of only the best saliency method (selected by DFS)
per image, termed as Best is also plotted. It can be observed from the
precision-recall curves (in the left column) that the proposed DFS based
saliency method achieves considerably better precision and recall as com-
pared with the benchmark learning based feature aggregation method, i.e.,
DRFI on all thresholds. The performance enhancement of the proposed
method over the state-of-the-art methods is pronounced as compared with
the lowest performing saliency method FT. Additionally it can be seen that
the proposed method achieves considerably better performance as com-
pared with Best, as it has the ability to select the set of best performing
maps depending upon image type and combine them optimally to achieve
the desired results.

8.6.1 Further Discussion

The precision-recall curve in the middle column of Figure 8.12 shows the
performance of methods on a subset of images, where the proposed DFS
based saliency method performs better than all the saliency methods. It
can be observed that the high performing methods, i.e, Best, DRFI, GBMR,
PCA and RC, and the low performing methods namely, FT, HC and SR are
tightly clustered on this subset of images in terms of their performance
with a considerable gap between the high and low performing methods.
It is hypothesized that the images that belong to this class are difficult
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Figure 8.12: Left: precision-recall graph for saliency aggregation on the
PASCAL VOC dataset. Middle: precision-recall curve for images on which
the proposed DFS based method outperforms all other saliency methods.
Right: precision-recall curve for images on which the proposed method is
not the best among methods.

images, hence there is a considerable difference between the performance
of low and high performing methods.

The precision-recall curve on the right of Figure 8.12 shows the perfor-
mance of methods on the subset of images where the proposed method
was not the best performer among all the methods. The uniform spread in
the performance of methods on this subset of images makes it difficult for
the DFS based saliency approach to differentiate between maps and select
the best set for combination.

Upon visual analysis of the images where the proposed approach per-
formed better than the benchmark methods, most of these images could
be categorised as either having cluttered backgrounds or multiple salient
objects. This is in agreement with our initial hypothesis. Representative
examples of images from both classes are shown in Figure 8.13. The first
three rows show images with cluttered backgrounds and the last three
rows provide example images with multiple salient objects. It can be ob-
served from the first and third row images that the proposed DFS based
saliency method selects and combines the best maps to appropriately high-
light the salient objects and capture their shape. For multiple objects,
the proposed method produced saliency maps covering more objects with
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Figure 8.13: Representative images are presented, where the proposed ap-
proach performed better than the benchmark methods. From left to right:
input, GT, DRFI, FT, GBMR, HC, PCA, RC, SR, the proposed DFS based
saliency and the precision-recall curve for each image. All images are
taken from the PASCAL VOC dataset.

uniform highlighting as compared with the individual saliency methods.
The pronounced response of the proposed DFS based saliency method on
multiple objects can be observed from the image in the last row.

8.7 Ranking Evaluation

To fulfil the final objective of this work, this section evaluates the perfor-
mance of the proposed DFS method in terms of its feature/saliency rank-
ing capability as compared with the ground truth ranking and other stan-
dard ranking measures. Two metrics have been employed in this work to
access the ranking results namely, Spearman’s rank correlation (ρ) [124]
and Kendall’s tau (τ ) [73].

Spearman’s rank correlation assesses individual rankings by finding
the degree of a monotonic relationship between the variables. To compute
Spearman’s rank, individual ranks are first normalized by replacing the
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rank for identical scores by the mean of ranks. The rank correlation is then
computed as:

ρ = 1− 6
∑

(xi − yi)2

n(n2 − 1)
, (8.12)

where xi and yi are the normalized ranks and n is the size of the sample.
ρ measures the correlation in rank order. A positive or negative value of ρ
corresponds to an increasing or decreasing monotonic trend between the
variables, respectively.

The Kendall’s τ measures the association between two random vari-
ables by penalizing discordant ranking pairs and promoting concordant
ranking pairs. Given two ranking functions ra and rb and sets of observa-
tions X = {xi}i=1..n and Y = {yi}i=1..n, the Kendall’s τ rank correlation is
given as follows:

τ = 1−
2

∑
(i,j)

δ

(
sgn

(
ra(xj)�ra(xi)

)
,sgn

(
rb(yj)�rb(yi)

))
n(n�1)

, (8.13)

where δ(·, ·) is the Kronecker delta function. The two sign functions and
the Kronecker delta ensure that all concordant ranking pairs ofX = {xi}i=1...n

and Y = {yi}i=1...n are accumulated resulting in an increase of τ .

As the methods are assessed by a precision-recall curve on the bench-
marks for salient object detection, the area under the precision recall curve
(AUCPR) score is the most suitable ranking measure. Therefore, it is em-
ployed as the ground truth (ideal) ranking measure. To compare the pro-
posed DFS based ranking results with other quantitative measures that
were previously employed by saliency methods to judge their results, the
area under the ROC (AUC) curve and the classification accuracy (CACC)
measures are used. The AUC measure is frequently used as a standard
measure to evaluate salient object detection results. For each saliency/feature
map, the AUCPR, AUC and CACC measures are computed as per the FT
benchmark [3]. The saliency/feature map is thresholded using multiple
thresholds and compared with the binary ground truth to compute the
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Figure 8.14: Ranking performance comparison of the proposed DFS
method with the ideal ranking (AUCPR), AUC and CACC in terms of
Spearman’s Rank Correlation (ρ) and Kendall’s tau (τ ).

precision-recall curve for AUCPR, the ROC curve for AUC and the clas-
sification accuracy curve for CACC. The area under the curves gives the
corresponding metrics. For the proposed DFS method, a feature/saliency
map is evaluated by the objective function for feature quality as in (8.10),
termed as DFSQ.

From the ranking results in Figure 8.14, it can be seen that the pro-
posed DFSQ is slightly better than CACC, with AUC performing the best

AUCPR = 0.287

AUC = 0.710

CACC = 0.624

DFSQ  = 0.224

AUCPR = 0.262

AUC = 0.605

CACC = 0.776

DFSQ  = 0.127

Figure 8.15: Representative visual example of ranking results. From left to
right: input image from the PASCAL VOC dataset, GT, RC and SR over-
layed with performance measures. DFSQ is normalized in the range [0,1].
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with lowest deviation from the mean. As CACC encodes the number of
correctly predicted pixels as compared with the total number of pixels, it
can be misleading for the task of salient object detection. Figure 8.15 shows
that CACC prefers the SR map (as the number of correctly predicted ex-
amples for SR are higher as compared with RC), ranking it higher than RC,
opposing the AUCPR and AUC measures. It is to be noted that the pro-
posed DFSQ correctly ranks RC higher than SR as the aim of the quality q
in the proposed DFS method is to assist salient object segmentation.

8.8 Chapter Summary

The aim of this chapter was to compare the salient object detection perfor-
mance of a method that can autonomously select and combine the best
performing maps with another method that combines all the maps for
computing the final saliency output.

To achieve this goal, a method for dynamic feature selection (DFS)
was introduced, which was able to measure the quality of a saliency map
based on novel cues. A clustering technique was devised to cluster the
best performing and unwanted maps. The performance of the proposed
DFS method that employed unique feature combinations was compared
against the performance of methods that combine all the maps. The re-
sults of the comparison suggested that the proposed method was able to
separate good and bad performing maps during combination and there-
fore improved upon the salient object detection performance of methods
that combined all the maps. Additionally, the proposed DFS based salient
object detection method exhibited better performance than both learning
and non-learning based state-of-the-art methods and also performed bet-
ter than the single best map for individual images. The important findings
of this work are as follows:

The results of the multi-level saliency fusion and the saliency method
aggregation experiments suggested that the proposed method was able to
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identify poor performing maps, which were falsely included in the fusion
schemes of DRFI and PW, thereby improving upon their salient object de-
tection performance.

The results of the DFS based salient object detection method revealed
that the best map selected by the proposed DFS quality measure performed
better than individual state-of-the-art methods supporting the feature se-
lection paradigm adopted in this work. Additionally, analysing the sub-
set of images on which the proposed DFS method performs better than
all state-of-the-art methods suggested that it is due to the clustering of
method performances on difficult images that helps the proposed method
achieve effective feature selection and obtain improved performance. Also
the visual analysis of that subset revealed that the difficult images on
which the proposed methods outperform the state-of-the-art can be cate-
gorised as scenes with cluttered backgrounds and/or multiple salient ob-
jects.
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Chapter 9

Discussions

A variety of methods to improve generalisation performance on unseen
difficult images for salient object detection have been developed (chap-
ters 3-8). These techniques include joint optimisation within a single com-
bination scheme, multiple feature combination schemes and the use of
dynamic feature selection before feature combination. The relationship
amongst the various proposed methods, how they improve the current
state-of-the-art and recommendations for incorporating them into current
and future salient object detection methods are provided in this chapter.
The overall structure of this work is presented in Figure 9.1.

The initial methods sought to combine all feature maps according to
the learned combination schemes. These methods effectively control the
contributions of features through assigned feature importance weights.
Specifically the multiple combination schemes are highly general in defin-
ing the contribution of features to the final saliency. However, in the case
of difficult images, undesired features exist that are better ignored during
feature combination. Hence a method is needed that can aid the learning
based combination methods by neglecting unwanted maps that may cor-
rupt the final output. The dynamic feature selection method (DFS) (intro-
duced in chapter 8) has the capability to select the best possible maps dur-
ing combination and discard the noisy ones. The DFS method is adopted

223
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Figure 9.1: Overview of the thesis structure. The interconnections between
the various methods introduced in this thesis are presented. For details
about new acronyms and symbols, please refer to the text in individual
sections.

to aid the learning based combination schemes, namely FGSopt, IGA and
XCSCA (introduced in chapters 5-7).

A region based foreground approximation was introduced in the DFS
method to complement the region based design of most benchmark saliency
methods (see chapter 8). In contrast, a matting based FGS method to im-
prove upon region based salient object detection approaches was intro-
duced in chapter 4. FGS was investigated as an alternative foreground
approximation for DFS in this chapter and trade-off between performance
improvements and computational time is discussed.

The FGS method was introduced to overcome the limitations of region
based benchmark methods (see chapter 4). The results suggested that the
FGS method was successful in overcoming the problems of non-uniform
saliency assignment and falsely highlighted background. This chapter
investigates that whether the smooth and uniform response of the FGS
method can aid the region based benchmark methods in overcoming their
inherent artifacts. The DFS method was demonstrated to benefit saliency
aggregation in chapter 8. However, whether it can benefit complementary
feature selection was not investigated. This chapter explores that how the
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DFS method can improve complementary feature selection in benchmark
methods.

Finally, a set of guidelines are presented and implementation aspects of
incorporating the proposed techniques in current and future salient object
detection methods are discussed. Depending upon the application and re-
quirements, it is discussed that how the variants of the proposed methods
can be incorporated into other salient object detection methods.

9.1 Dynamic Feature Selection in Learned Fea-

ture Combination

The learned combination based methods including FGSopt, IGA and XC-
SCA seek to combine all available feature maps after considering their ef-
fect on the final saliency output. Taking into account all three approaches,
this is achieved by proper feature conditioning, appropriate feature im-
portance assignment and suitable integration of features. Specifically, the
multiple rule based methods generalise well on a wide variety of image
types to ensure appropriate combination with effective suppression or
conditioning of noisy features. However, for difficult images, it becomes
cumbersome for even the multiple combination rule based methods to
properly condition and control the contribution of unwanted noisy fea-
tures. In such cases, the dynamic feature selection method proposed in this
thesis has the ability to aid the learned combination methods as discussed
in chapter 8. However, no investigation has previously been performed
on how the DFS method can aid the learned feature combination based
methods to ignore unwanted maps during combination. This section in-
vestigates the role of the DFS method when incorporated in the learning
based feature combination methods. Specifically, the DFS method is in-
vestigated in conjunction with the joint optimisation technique, i.e. FG-
Sopt (introduced in chapter 5) and the IGA method, which is chosen as
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Figure 9.2: (a) Comparison of FGSopt and FGSopt-DFS in terms of average
MAE on 1000 images of the ASD dataset. (b) Comparison of IGA and IGA-
DFS methods in terms of average MAE on the ASD dataset.

a representative of multiple combination rules based methods. The mod-
ified FGSopt method with DFS incorporated is termed as FGSopt-DFS,
while the modified IGA method with added dynamic feature selection ca-
pability is referred as IGA-DFS. It is anticipated that due to the ability of
the DFS method to exclude noisy features during combination, the back-
ground noise suppression ability of the combination techniques will be
improved. With this in mind, mean absolute error (MAE) is employed to
evaluate how well the models predict the background regions in compar-
ison with the foreground regions.

A total of 1000 images from the ASD dataset were used to thoroughly
evaluate the performance of the methods. For the modified methods, ap-
propriate maps are first selected by the DFS method before combination
using the learned combination scheme. The average MAE scores for orig-
inal and modified methods are presented in Figure 9.2 (a) and (b). The
results suggest that the FGSopt-DFS method successfully removed noisy
features to achieve a substantial performance gain of about 12%. The re-
sults of a two-sided Wilcoxon ranksum test confirmed that the MAE scores
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obtained by the methods are statistically different with a p-value = 2.17e-
04. It can also be observed that the MAE distribution of FGSopt-DFS is
more concentrated at lower MAE values. In the case of IGA, substantial
improvements of about 30% are observed after the introduction of DFS.
The reason for comparatively large improvements for IGA is that the fea-
tures employed by IGA are highly noisy on difficult images. Hence the
DFS method has more scope for improvement in case of IGA as compared
to the FGSopt method. The results of a two-sided Wilcoxon ranksum test
suggest that IGA-DFS is highly statistically different from the IGA method
as indicated by a p-value < 0.0001.

In order to explore a justification for these improvements, specific cases
of detection and rejection of outlier features are investigated. Figures 9.3
and 9.4 present example cases where noisy features are identified and ne-
glected and only appropriate features are selected for combination. The
process of grouping good and bad features using agglomerative hierar-
chical clustering is depicted. In Figures 9.3 and 9.4, the height of the “u”
shapes depicts the euclidean distance between objects. The green lines
signify joints from where the hierarchical tree is cut to separate good and
bad features. The blue ellipses indicate features selected by the dynamic
feature selection method for combination based on their quality.

Figure 9.3 depicts two scenarios where a set of high quality maps are
segregated from the noisy feature maps. It is not difficult to follow that the
sorting of features according to their quality makes the partitions obvious
and it becomes trivial to split the hierarchical tree into disjoint clusters.
These results signify the effectiveness of the feature discrimination prop-
erty of the DFS system.

The top row example in Figure 9.4 presents a case where every feature
excluding the selected features contain background noise that can poten-
tially corrupt the final saliency output. The bottom row presents a special
case, where only a single feature is selected as all other features are cor-
rupted with unwanted background information. This result highlights the
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Figure 9.3: Visualisation of dynamic feature selection based on quality
dependent hierarchical clustering of the DFS method. Both figures show
cases where multiple noisy features are neglected and only the appropriate
maps are included in the combination process. Learned feature weight-
ings, normalisation and integration functions are applied only on selected
features during combination. The red, blue and black colours are assigned
to group of nodes whose distance is less than a threshold. The colour as-
signment is unique and random. The green lines depict the points where
the dendrogram is split into two distinct clusters.
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Figure 9.4: Illustrations of the clustering process based on feature qual-
ity. The bottom figure presents a special case of DFS where only the best
quality feature is selected as all other features potentially induce noise in
the final saliency output. The red, blue and black colours are assigned to
group of nodes whose distance is less than a threshold. The colour assign-
ment is unique and random.
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ability of the DFS method to select the single best map in scenarios where
none of the other features is adding any useful information.

These improvements come at the cost of additional computational time
required for performing dynamic feature selection before combination. On
average 0.97 seconds are required to compute the quality of a feature and
about 0.77 seconds are required to compute the foreground approximation
and perform hierarchical clustering. The additional computational time
required for dynamic feature selection linearly scales with the number of
features.

Any additional overhead can be controlled by employing features with
low computational overhead. In addition, to reduce the computational re-
quirements, the best performing saliency feature can be employed as the
foreground approximation at the cost of decreasing saliency prediction ac-
curacy. Further discussions on saliency prediction accuracy versus com-
putational speed are presented in section 9.4.1.

9.2 FGS as Foreground Approximation

A new graph-based foreground approximation FG was introduced to as-
sist the proposed feature quality measurement cues in chapter 8. A re-
gion based approach was proposed due to its unbiased nature towards
any particular feature and to complement the region based state-of-the-art
approaches selected for saliency aggregation. Due to region based pro-
cessing, the proposed foreground approximation, denoted by FG, can lead
to inaccurate segmentation on difficult images. In contrast, a robust FGS
approach was introduced with the ability to suppress background noise in
images with cluttered background and induce accurate object segmenta-
tions (see chapter 4). The FGS method is now investigated as a foreground
approximation in comparison with FG.

The FGS approach is incorporated in the DFS based salient object de-
tection method as the foreground approximation to construct a DFS-FGS
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method. The performance of the DFS method was compared with the
modified DFS-FGS method on images from the ASD dataset. The com-
parison revealed notable improvements of about 4% and 3% in terms of
average AUCPR and F-measure, respectively. These improvements are
substantial given the already high detection accuracy of the DFS system.

The two major drawbacks of FG are elaborated with representative ex-
amples in Figure 9.5. The region based approximation is sensitive to im-
ages with distractor objects1 as shown by the first three examples of Fig-
ure 9.5. It can be observed that the objects in the first three rows share
spatial position and features with image boundaries as shown by the red
rectangles. As the graph based formulation of FG rely on boundary nodes
for saliency computation, background noise is included in its response,
resulting in inaccurate segmentation.

The second artifact of the region based approximation can be observed
in the last three rows of Figure 9.5. Due to a different contrast of the bound-
ary regions from the regions in the middle of the image, background re-
gions are falsely highlighted. In contrast, the unbiased FGS approach is
accurate in segregating the colours of the foreground and background re-
gions. Thereby, it results in smooth saliency maps with uniform highlight-
ing inside object contours and better background suppression.

This improved performance of the FGS approach as compared with
FG is reflected by the average AUCPR on the ASD dataset, shown in Fig-
ure 9.6 (a). The improvements are further quantified by the performance
enhancements on selected difficult images from the ASD dataset. Diffi-
cult images are selected by considering those images on which both the
approaches result in low AUCPR scores.

The timing comparison for the approaches is presented in Figure 9.7.
Figure 9.7 (a) compares the computational time in seconds for both the
approaches. It can be clearly observed that FG is multiple times faster as

1Distractor objects in this context refer to objects that share features with the boundary
regions.
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Figure 9.5: Visual comparison of the region based foreground approxi-
mation (FG) with the FGS based foreground approximation. From left to
right: input images taken from the ASD dataset, FG, segmented region
based approximation, FGS output and segmented FGS output.
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Figure 9.6: (a) Comparison of the foreground approximation approaches
in terms of average AUCPR on the ASD dataset. (b) Comparison on se-
lected difficult images from the ASD dataset.
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Figure 9.7: (a) Comparison of the foreground approximation approaches
based on their computational efficiency. (b) Comparison on selected
largest images from the ASD dataset.
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compared with the FGS method. This contrast in timing requirements of
methods is due to their region versus pixel based processing pipeline. On
selected largest images from the ASD dataset, the timing improvements
obtained by FG are further pronounced.

In many applications, computational time is important, even at the cost
of some reduction in accuracy. In most feature selection methods FG is
therefore a suitable choice for foreground approximation, due to its low
computational time without greatly compromising performance. How-
ever, in applications where the accuracy of the result is more important
than the computational time, such as image cropping and picture collage,
the FGS method may be the preferred choice for foreground approxima-
tion.

9.3 Proposed Techniques Improving State-of-the-

art Methods

A variety of methods were introduced to improve the generalisation for
salient object detection in this thesis (see chapters 4-8). The effectiveness of
these approaches was evaluated both by comparison amongst themselves
and by comparison with state-of-the-art methods. Although most of these
techniques were introduced to extend and improve previous salient ob-
ject detection methods, no investigation was done for incorporating them
in existing benchmark approaches and recording performance improve-
ments, if any. In this section, two of the proposed techniques in thesis, i.e.
FGS and DFS are incorporated in state-of-the-art salient object detection
methods to investigate any performance improvements.
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9.3.1 FGS Improving State-of-the-art Region Based Meth-

ods

In this section the, proposed FGS technique is incorporated into three re-
cent region-based benchmark methods. The aim is to investigate whether
the smooth and uniform response of the FGS method can aid the bench-
mark methods to overcome the artifacts of region-based processing. The
benchmark methods include DRFI [68], HDCT [76] and UFO [69]. These
methods are chosen due to their benchmark performance, recency and
region-based processing nature. DRFI employs regional contrast (RC), re-
gional property (RP) and regional backgroundness (RB) features to learn
a regressor. On difficult images, the response of DRFI becomes suscep-
tible to background noise due to its regional contrast feature. Hence, the
regional contrast feature of DRFI is replaced by the object-aware FGS tech-
nique to form DRFI-FGS method. Essentially the response of the FGS
method acts as an input feature in the feature processing pipeline of DRFI.
HDCT employed a region-based trimap for foreground background ap-
proximation. According to the discussion in section 9.2, FGS based fore-
ground approximation was found to be more accurate than a region-based
approximation. Therefore, FGS is incorporated into HDCT as its trimap to
form HDCT-FGS method. UFO combines the uniqueness (U), focusness
(F) and objectness (O) of regions to construct its output response. As the
FGS method captures accurate object saliency, it is employed in place of
the objectness feature in UFO to construct the UFO-FGS method.

The performance of the original and FGS based methods are compared
using four different measures including F-max, mean absolute error (MAE),
Fβ according to the adaptive thresholding benchmark [3] and average pre-
cision (AP). F-max and AP evaluate the robustness of the saliency response
to fixed thresholding [3], Fβ evaluates the saliency response for adaptive
threshold during region based segmentation, while the MAE measure eval-
uates how correctly the saliency output predicts the background regions.
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Figure 9.8: Performance comparisons of selected methods with their FGS
based improved versions using images from the BSD dataset. From top to
bottom: DRFI versus DRFI-FGS, HDCT versus HDCT-FGS and UFO ver-
sus UFO-FGS. The errorbars present the standard error of the mean. Four
performance measures including maximum F-measure (F-max), Fβ , aver-
age precision (AP) and mean absolute error (MAE) are employed. Large
values of F-max, Fβ and AP are desirable, while MAE (separated by the
dashed line in the plot) is to be minimised.
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Figure 9.8 shows the performance comparison of the original methods
with the FGS incorporated modified methods on images from the BSD
dataset. BSD is chosen for this evaluation as it contains a wide variety
of image classes with high detection difficulty. The top figure compares
the average performance of the DRFI method with the modified DRFI-
FGS method. The DRFI-FGS method improved upon the DRFI method
with noteworthy improvements of 4.1%, 6.8% and 7.8% in terms of F-max,
Fβ and AP measures, respectively. This improvement in the segmenta-
tion performance of DRFI can be attributed to the smooth and uniform
response of the FGS method. A more pronounced improvement of 14.5%
was observed in the background prediction capability of DRFI. This result
suggests that the noise suppression property of the FGS method helped
the DRFI method in discriminating foreground regions from background
regions on the noisy images of the BSD dataset. Notably, the saliency pre-
diction confidence of the DRFI method is also improved as depicted by
the lower deviation of the DRFI-FGS method from the mean performance
measures.

The middle plot shows the average performance of the HDCT approach
with the modified HDCT-FGS method. Nominal improvement of 2.8%
achieved in terms of MAE suggest that FGS does not substantially im-
prove the background prediction capability of HDCT. The reason for this
result is that despite the accurate prediction of the foreground and back-
ground regions by FGS, the region based features of the colour spaces
already include background noise, which appears in the final response.
Substantial improvements of about 6.8% and 8.9% in terms of F-max and
Fβ suggest that FGS helped the HDCT method to highlight more regions
inside object and assign them uniform saliency.

Notable improvements of greater than 10% were observed in terms of
F-max, Fβ and AP for UFO as shown in the bottom plot of Figure 9.8.
These improvements suggest that FGS improved the response of UFO by
replacing the region-based non-uniform saliency response with smooth
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uniform saliency inside object contours.

Two-tailed t-tests were performed to investigate the statistical signif-
icance of the measures after confirming the normal distribution assump-
tions. The results from the original and modified methods were found to
be highly statistically significant with p-values < 0.0001 for all the com-
parisons.

Figure 9.9 presents the visual comparison of the original and FGS in-
corporated benchmark methods on representative instances from the BSD
dataset. For DRFI and UFO, the input, ground truth, FGS response, orig-
inal and modified outputs are shown. The visual comparison for HDCT
also includes the trimaps generated by HDCT and FGS approaches. The
quantitative performance of the images presented in Figure 9.9 is shown
by Figure 9.10 with column 1 and column 2 depicting performance for
Image 1 and Image 2, respectively.

In the case of DRFI, the first image presents a scenario where back-
ground noise is included in the response of DRFI. The proposed FGS ap-
proach helps DRFI to discriminate between foreground and background
making the salient objects more prominent and smoothly highlighted. The
effect of uniform saliency assignment obtained by the DRFI-FGS method
can be observed by the segmentation quality measures for Image 1 as de-
picted by row one and column one of Figure 9.10. The noteworthy back-
ground suppression achieved is also evident by the decrease in respective
MAE measure in the same plot. The second representative image pro-
files the characteristic region based saliency assignment response of the
DRFI method. The FGS method helps DRFI by promoting similar saliency
values across different regions of the salient object and uniform saliency
assignment inside object contours. The result is reflected by better region-
wise segmentation quality as depicted by the enhanced Fβ measure in col-
umn two, row one of Figure 9.10.

For Image 1, Figure 9.10, the response of HDCT is corrupted by the par-
tial occlusion due to the bushes. It is an artifact of HDCT’s region based
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Figure 9.9: Comparison of the original and modified methods on repre-
sentative images from the BSD dataset.
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Figure 9.10: The columns present the quantitative results for Image 1 and
Image 2 respectively for each method. The lines between the (x) and (o)
depict the respective improvements achieved by the modified FGS based
methods as compared with the original methods. F-max, Fβ and AP are
maximised, while MAE separated by the line in the plot is to be min-
imised.
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trimap that labels part of the bush as definite foreground. In contrast, the
less noisy FGS based trimap better assists the combination of colour spaces
for HDCT-FGS, thereby improving upon HDCT. Image 2 presents an ex-
ample, where the trimap of HDCT completely fails in segregating true
foreground and background. The reason for this result is that the trimap
of HDCT mainly considers colour contrast of regions to discriminate fore-
ground and background regions. As there exists low contrast between
the salient object and part of the bush, it samples distinct regions from
the salient object and the bush as definite foreground in the trimap. In
contrast, the FGS methods separates foreground and background colours
globally in eigenvector space, thus it is able to find partitions between the
salient object and the background colours. The result is reflected by the
accurate trimap constructed based on the FGS method.

Finally, for UFO both Image 1 and Image 2 present cases where non-
uniform region-wise saliency assignment is observed in the UFO response.
The FGS method improves the UFO response by uniform assignment of
saliency inside object contours. A pronounced example of this scenario
can be observed by the saliency assignment to the persons head and body
in the respective responses of UFO and UFO-FGS methods in Image 2.

9.3.2 DFS Improving Complementary Feature Selection Meth-

ods

The proposed DFS method was employed for saliency aggregation for
salient object detection and notable improvements over state-of-the-art
methods were reported (see chapter 8). However, no investigation was
performed to evaluate its effectiveness for complementary salient feature
selection as attempted by methods in literature. In this section two ex-
periments are performed that employ the proposed DFS method for the
task of complementary feature selection. Experiment I compares the fea-
ture selection performance of the proposed DFS method with the com-
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pactness (SV) measure of Cheng et al. [27] for selection of the comple-
mentary global saliency cues of [27] (i.e. colour spatial distribution (CSD)
and global uniqueness (GU)). In experiment II, the feature selection perfor-
mance of the proposed DFS method is compared against the SI approach
of Gopalakrishnan et al. [49] (termed as SISal) using their complementary
saliency features, i.e. colour saliency framework (CSF) and orientation
saliency framework (OSF). Details of the methods used for comparison
are reported in chapter 2.

Experiment I

To obtain the global saliency cues of colour spatial distribution (CSD) and
global uniqueness (GU), the MATLAB implementation provided by the
authors [27] is used. The GC method of [27] uses the compactness measure
of [49] for feature selection, which is implemented in MATLAB for this
work. The performance comparison of the proposed DFS method with
GC is shown in Figure 9.11.

In the top row of Figure 9.11, the performance of the proposed DFS
shows slight improvement over GC on the MSRA10k dataset. It is antic-
ipated that this is due to the output of the individual features, which is
highly complementary in the case of MSRA10k and selecting the best fea-
ture is not a very difficult task. Hence DFS is able to produce only mod-
est improvements. Our hypothesis is supported by the noteworthy im-
provement obtained by the proposed method over the GC method on the
more difficult BSD and SED2 datasets. The proposed DFS method shows
improved performance on all thresholds with higher F-max on BSD and
SED2 datasets. It is to be noted that GU’s performance on the SED2 dataset
is substantially better than GC, due to the false feature selections made by
the GC method on the SED2 images.
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Figure 9.11: Top row (left to right): precision-recall curves for experiment
I on MSRA10k, BSD and SED2 datasets, respectively. Bottom row (left to
right): same set of results for experiment II. The proposed DFS method is
shown in red. Isolines on the plots show the contour for F-measure in the
range 0.1-0.9 in steps of 0.1.
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Experiment II

The goal of the second experiment is to select the best feature from the
complementary features, i.e. colour saliency framework (CSF) and orien-
tation saliency framework (OSF). The complementary nature of these fea-
tures is faithfully captured by implementing them according to the author
described settings [49]. The quantitative comparison results are presented
in the bottom row of Figure 9.11. It can be observed that the proposed
DFS method improves upon the performance of SISal on all three datasets
and on all thresholds. The DFS performance is substantially higher than SI
based selection scheme on these features as compared to the previous ex-
periment. This can be explained by the observation that the CSF feature is
less compact in most cases, but captures the salient object better than OSF,
resulting in high false selection rate by SISal. In contrast the proposed DFS
method is focused towards measuring the figure-ground proposal quality,
therefore selecting better performing features. It is also to be noted that
CSF has higher precision than SISal on both MSRA10k and SED2 on simi-
lar recall values.

Figure 9.12 presents the visual comparison of the proposed DFS ap-
proach with GC and SISal methods, respectively. The first and second row
images are taken from the MSRA10k dataset, the third and fourth row
images are taken from the BSD dataset, and the last row image is taken
from the SED2 dataset. It is to be noted that SISal favours the OSF feature
for all images, despite its inferior salient object prediction capability. The
reason for this response is the compactness and connectivity of the OSF
maps, which is preferred by SISal at the cost of low salient object detec-
tion and segmentation ability. Conversely, the spatial variance of the GC
method selects features having good figure-ground proposals for the third
and fourth row image. However less spatial variance in the horizontal and
vertical directions influences the GC method to select the OSF map for all
other images. The proposed DFS method in contrast uses its foreground
approximation and feature quality cues to select features that provide bet-
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Figure 9.12: Visual comparison of the proposed DFS method with the GC
and SISal methods on representative images from MSRA10k, BSD and
SED2 datasets. From left to right: input, ground truth (GT), features of
the GC and SISal methods and the respective saliency maps for GC, SISal
and the proposed method after complementary feature selection.
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ter figure-ground proposals. It can be observed that features selected by
the DFS method have higher density inside predicted salient objects, bet-
ter reconstruction capability, ability to induce better segmentation quality
and also higher edge energy.

9.4 Recommendations for Incorporating the Pro-

posed Techniques For Improved Salient Ob-

ject Detection

The following are a set of guidelines for current and future salient ob-
ject detection methods for improving their generalisation performance on
unseen difficult images based on the findings of this work. Figure 9.13
elaborates these guidelines. The diagram provides a simple version of the
effects of various contributions on the overall system. For descriptive pur-
poses, the dynamic feature selection and learned feature combination are
depicted as isolated processes. Other methods can employ the required
variant of the dynamic feature selection method and choose a learned
combination method for subsequent use. The choice of a feature selec-
tion variant and feature combination method depends upon the required
performance metric, i.e. generalisation/robustness versus computational
time and training overhead. A more holistic view of the effects of the con-
tributions on the overall system and their interaction is provided in the
text.

9.4.1 Recommendations for Incorporating Dynamic feature

Selection

Based on the results obtained in sections 9.1 and 9.3.2, it can be deduced
that DFS is beneficial for improving generalisation performance on unseen
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Figure 9.13: Guidelines for current and future salient object detection
methods for incorporating the methods proposed in this thesis. The gen-
eralisation versus time/overhead graph is not drawn according to scale
and the measures on the x-and y-axis are only for illustration.
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images. However, there is a trade-off between improved saliency predic-
tion accuracy and increased computational time.

For methods that require increased robustness and improved generali-
sation for non-real time applications, the DFS method can act as an off-the-
shelf method that can be readily incorporated into the feature processing
pipeline. For further improvements in saliency prediction accuracy for
difficult unseen images, it is advisable to use the proposed FGS method as
the foreground approximation.

Conversely methods that require modest improvements in generali-
sation without significant computational overhead are recommended to
employ reduced variants of the DFS method as discussed below.

The additional computational overhead imposed by the DFS method
can be divided into the time required to compute feature quality measure-
ment cues and the computation time for the foreground approximation.
To reduce the overhead for foreground approximation computation at the
cost of compromising accuracy, a feature with good performance and low
computational overhead may be employed as the foreground approxima-
tion.

To reduce the computational overhead of the feature quality cues, a
subset of cues depending upon the application can be employed. The cues
fD and εs judge a feature map’s ability to uniformity highlight a saliency
object and can be regarded as uniform saliency assignment cues. While
the sQ and econtour evaluate the segmentation quality of a feature map and
hence can be regarded as the segmentation quality cues. Therefore, if the
salient object method is designed for applications that require the result to
be segmented at a variety of thresholds, the uniform saliency assignment
cues should be applied in isolation. Whereas, if the target application
requires the output to induce quality segmentations at certain specified
thresholds, the segmentation cues may be used separately.

Furthermore, the per feature computation time required by the feature
quality cues is highly dominated by econtour as the time required by the
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other cues is merely a tenth of a second. The econtour cue is included in
the DFS method to provide completeness in covering the cue space and
provides small additional improvements as supported by the results in
section 9.3.2. Therefore, for significant reduction in additional computa-
tional time at the cost of insignificant loss in performance, the econtour cue
should not be included by the methods that require fast processing.

9.4.2 Recommendations for Incorporating Learning Meth-

ods

Comparison of the FGS and FGSopt methods

The FGSopt method improved the salient object detection performance
of the FGS method making it competitive with the best performing bench-
mark methods. An improvement over FGS of approximately 4% was achieved
in terms of area under the PR curve. This improvement was obtained at
the cost of additional computational time at the training and test stages.
With reference to the computational time at the test stage, the eigenvec-
tor features do not add any time as they have to be computed to obtain
the matting components in both methods. However, the CSD features add
more time at the test stage. For instance, for an image of size 300 × 400 it
increases the average time from 2.52±0.23s for FGS to around 7.30±1.29s
for FGSopt. This is still practical as the average time required by DRFI
(being the most robust model in terms of quantitative performance) in our
experiments for the same images is around 13.23±1.31s2. The processing
time of the FGSopt method is also better than the two recent benchmark
methods, LRK [123] and BSM [144].

2The timings reported here were computed using an i7 vpro 3.2 GHz processor with
8 GB of RAM for 100 randomly sampled images from the MSRA dataset. The same im-
ages and system settings are employed to compute all the timings reported in this section.
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Comparison of Joint Optimisation and the Multiple Combination Schemes
Based Methods

The formulation for joint optimisation introduced in chapter 5 is in princi-
ple different from the multiple combination schemes based methods dis-
cussed in chapters 6 and 7. The joint optimisation based single combina-
tion scheme is meant for methods that attempt to combine complemen-
tary features that are not highly varying in nature, and where it is not
highly challenging to assign relative importance to them. The significance
of this combination scheme relies in finding the relationship between vari-
ables and the features while combining them optimally. The latter task
requires extensive search to find the best single solution that fits the prob-
lem. This is in essence different from the multiple combination schemes
based methods, which are designed for features that are highly varying
in their performance and depend on the type of image operated upon.
These methods naturally require multiple solutions, each fitting a partic-
ular performance landscape of features. Therefore, though it is expected
that the multiple combination schemes might benefit FGSopt, it is not rec-
ommended to employ these approaches to a joint optimisation problem,
as discussed in chapter 5.

In addition to the problem at hand, other differences that drive the
choice of the learning schemes are the training procedures and the com-
putational time at the test stage. In general at the training stage, the prime
difference between single and multiple combination schemes is the gener-
alisation performance versus the training overhead. Specifically the com-
putational complexities of the objective functions at the training stage for
the single and multiple combination schemes are dependent upon the re-
spective problems they attempt to solve. For instance, the objective func-
tion employed for the single scheme in chapter 5 has a computational
complexity of O(4nζ), while the complexity of the objective function in-
troduced in chapter 6 is O(4n), i.e. (6.5). Here n is the number of pixels
of a saliency map and ζ represents the number of thresholds employed in
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the objective function of chapter 5, i.e. (5.1). The difference in the compu-
tational complexity of the objective functions is due to the different prob-
lems they attempt to address. For the joint optimisation, extensive search
is required to find the best fit solution. Hence accurate ranking of salient
object results is required to compute accurate fitness. Therefore, multi-
ple segmentation thresholds in the form of ζ are required to accurately
rank salient object detection results. In contrast, the objective function for
the multiple scheme based method does not require extensive search as
the best solution tailored to a single image type (in a niche) is required.
Hence, the accuracy of the objective function in judging a saliency map is
not as important as in the former case. Therefore, a single segmentation
threshold is employed, which implies ζ=1. Accordingly the complexity of
the objective function in (6.5) is less than the objective function of (5.1).

At the test stage, the FGSopt method spends less time on average as
compared with the computational times spent by the multiple schemes
based methods (for details see the next section). This is due to the FG-
Sopt method only requiring feature computation time at the test stage in
contrast to the multiple schemes based methods, which require additional
computational times as discussed in the next section.

Comparison of the IGA and XCSCA methods

When comparing the IGA and XCSCA methods, XCSCA obtained sub-
stantial improvements of 3.5% in terms of AUCPR around 5.6% in terms
of the classification accuracy. Additionally, the XCSCA method has better
generalisability as compared with the IGA method depicted by its better
identification of image type.

In terms of computational time at the test stage, on average the IGA
method requires 12.00±3.09s to process 100 randomly sampled images of
size 300 × 400 from the MSRA dataset. Whereas, on average the XCSCA
method requires 14.04±3.38s for the same set of images. The times spent
by the IGA and XCS methods on an image at the test stage are quite subjec-
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tive. As both the methods employ the same set of features, the time spent
for feature computation is the same. For the IGA method, the additional
time is spent in normalisation and integration schemes being applied. As
the normalisation and integration schemes can be quite different for each
image (depending upon image type with no normalisation and summa-
tion being one of the option), the time spent at test stage is subjective3.
In case of the XCSCA method, for each test input the classification accu-
racy is computed by the current action for all the classifiers in the match
set and the classifier with the maximum accuracy is selected. Hence, the
additional time at the test stage can be varying depending upon the classi-
fiers in the match set that support the action according to the input image
type.

The XCSCA method, despite of its additional computational time at
the test stage still would be the preferred choice for methods that require
multiple combination rules. However, searching for the appropriate nor-
malisation and integration schemes is not inherently best suited to an XCS
based method, as it is a niche based classification method rather than an
optimisation technique. Genetic Algorithms in contrast are competitive in
searching for such variables that are literally encoded as integers in the
chromosome. Therefore, for methods that require to search for the best
suited normalisation and integration scheme along with the feature im-
portance weights, the IGA method may be the preferred choice.

FGS in Multiple Combination Schemes Based Methods

Following from the above discussion, a related question is that how will
the FGS method affect the multiple combination schemes methods, if em-
ployed as a feature. The performance comparison of the FGS method with
the best performing feature of the multiple scheme methods, reveal perfor-
mance improvements of around 9% in terms of area under the precision-

3As the normalisation and integration schemes are quite simple, they do not add a
substantial amount of computational time.
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recall curve. These improvements are highly likely to substantially im-
prove the overall performance of the multiple learner methods. However,
incorporating FGS as a feature would not greatly affect the generalisa-
tion performance of the methods to unseen images. This is because it is
the learned combination schemes and the ability to accurately identify an
image type, which increase the generality of the methods. In terms of
computational time, the average time required to process an image of size
300 × 400 for the FGS method is 2.52±0.23s. This is less than the average
time required to compute the most computationally expensive feature of
the multiple learner methods, i.e. 3.30±0.37s. Notably, the computational
overhead added by the FGS method can be reduced by discarding a few
low performance features.
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Chapter 10

Conclusions and Future Work

The overall goal of this thesis was to increase the generalisation of the
traditional computational model of visual attention by utilising machine
learning methods to select and optimally combine appropriate features.
This goal was achieved by devising a number of new methods for learning
feature combination and feature selection before combination. The devel-
oped methods were evaluated using standard benchmarks for salient ob-
ject detection on benchmark datasets and extensive comparisons were per-
formed with state-of-the-art saliency methods. Where it was observed that
no features exist that can completely isolate the foreground regions from
the background, the matting based feature was introduced, which sup-
presses the background information to effectively segregate foreground
regions.

The rest of this chapter presents the achieved objectives, the main con-
clusions deduced from the results chapters and finally points out future
research directions that originate from this work.

10.1 Achieved Objectives

The following research objectives have been accomplished to achieve the
overall research goal.

255
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1. Joint optimisation of feature related parameters and feature impor-
tance weights was introduced to improve the saliency detection per-
formance of the traditional visual attention model. Important pa-
rameters of the feature computation process and feature importance
weights were learned by optimising a task specific objective func-
tion for human fixation prediction. By maximising the agreement
between predicted saliency and the target (human fixations), the pro-
posed GAOVSM method improved upon the performance of eight
deterministic state-of-the-art saliency detection techniques on the task
of human fixation prediction.

2. Spectral matting was employed for the first time in saliency predic-
tion to combat the artifacts of region-based approaches for salient
object detection. A novel saliency method for figure-ground segrega-
tion (termed as FGS) was introduced that employed matting compo-
nents to construct smooth, uniform and accurate saliency maps. The
FGS method was able to overcome the artifacts of regions-based ap-
proaches by assigning uniform saliency to object regions while sup-
pressing unwanted background information. As supported by the
quantitative performance on salient object detection, the proposed
FGS approach improved upon several state-of-the-art techniques.

3. Joint optimisation of feature computation parameters and feature
importance weights was introduced for optimal combination of FGS
with complementary features. Feature related parameters and their
respective importance was learned at multiple segmentation thresh-
olds by maximising the area under the precision-recall curve as an
objective. The developed FGSopt method improved the object de-
tection performance of the FGS technique and improved upon sev-
eral state-of-the-art salient object detection models by considering
the performance gaps amongst features.

4. Semi-Autonomous identification of image type was introduced to learn
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multiple feature combination schemes. Multiple combination schemes
were learned from distinct image groups using multiple Genetic Al-
gorithms (GAs). Images were placed into distinct groups using a
semi-autonomous method that relied on their feature composition.
By employing a suitable combination scheme for each unseen im-
age type, the proposed image based GA (IGA) approach exhibited
better generalisation as compared with a baseline GA that learned a
single combination scheme. The IGA method also exhibited signifi-
cantly better performance as compared with two classification based
benchmark methods and three state-of-the-art models on the task of
salient object detection.

5. Introduced autonomous identification of image types for learning mul-
tiple feature importance rules in order to increase the generalisabil-
ity of the system on unseen image types. A supervised XCS based
method was introduced that divided the search space into niches in
order to learn effective feature importance rules. This was achieved
by employing a novel encoding scheme and a suitable action com-
putation function. The proposed XCS based method improved upon
the performance of the previously proposed multiple GA based method
by obtaining a set of generalised feature importance rules.

6. Novel cues were established for dynamic feature selection in order
to advance the current state of complementary feature selection and
feature/saliency aggregation. Saliency quality measuring cues were
introduced to seek discriminative features for appropriate combina-
tions. Label free measurement of feature quality enabled the pro-
posed feature selection method to improve upon the state-of-the-art
in complementary feature selection and saliency aggregation. The
proposed DFS based object detection method also improved upon
seven state-of-the-art salient object detection methods.



258 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

10.2 Conclusions

10.2.1 Joint Optimisation of Important Parameters and Fea-

ture Importance

Joint Learning for the Traditional Model of Attention

Joint learning of feature related parameters and feature importance weights
was introduced in the traditional model of attention (see chapter 3). The
goal of learning important parameters of the traditional attention model
was successfully achieved by Genetic Algorithm based search for impor-
tant parameters by the introduced GAOVSM method. Learning suitable
values for important parameters of the feature computation process yielded
substantial feature level performance improvements of 22.5%, 77% and
50% in terms of average AUC, S and NSS measures. Moreover, the 99%
confidence intervals confirmed that the proposed optimised features al-
ways improve the performance of the traditional model of attention. This
is an important result as it demonstrates the importance of tuning param-
eters of the traditional model of visual attention. Additionally the visual
comparison of the unoptimised and optimised feature set revealed that the
optimised version better matches the desired ground truth at pixel level,
as compared with the baseline model.

Analysis of evolved solutions revealed important findings. Confirm-
ing previous studies [17], the optimised parameters resulted in narrow
bandwidth filters tuned to object background discrimination in cluttered
scenes. Also the receptive field was tuned to elongated contours of ob-
jects. The optimised orientations exhibited bias for vertical orientations
following the human visual cortex [89].

When the method with optimised parameters, i.e. GAOVSM was em-
ployed, notable improvements were obtained at the test stage as compared
with the unoptimised method. In agreement with prior studies [153], the
orientation feature was found to be heavily weighted as compared to the



10.2. CONCLUSIONS 259

colour and intensity features. The improved orientation feature in cou-
pling with its learned higher importance enabled the GAOVSM method
to generalise better on unseen images.

GAOVSM outperformed several benchmark methods in terms of AUC
and S score for unseen test images. In terms of the NSS measure, RARE
performs better than other methods including GAOVSM due to its extra
normalisation step on the saliency output. However, GAOVSM exhibited
more confidence and lower deviation from the mean in terms of NSS as
compared with RARE and showed comparable performance even with
the lack of a normalisation step.

Introduction of Figure-ground Segregation Based Feature

Despite the promising performance of the joint optimisation based tradi-
tional model on fixation prediction, it was not suitable for salient object de-
tection due to its simplistic features. The features employed by the bench-
mark methods produced undesired artifacts due to their region-based pro-
cessing. Therefore, a new matting based feature was introduced to com-
bat the artifacts of region-based processing. The feature was computed
by selecting only those matting components that are predicted to belong
to the salient object by the figure-ground segregation (FGS) method intro-
duced in chapter 4. The proposed FGS method overcame the problems
introduced by the region-based processing methods by uniformly high-
lighting complete salient objects and effectively suppressing background
noise. The FGS method was able to improve upon several benchmark
methods with an improvement of 2.6% as compared with the best per-
forming method amongst them.

With the help of examples it was shown that the recorded performance
improvements were due to the good object coverage of the matting com-
ponents and the capacity of the FGS method to reject unwanted noisy mat-
ting components.
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Improving FGS by Joint Learning of Parameters

A Genetic Algorithm based joint optimisation approach for optimal com-
bination of FGS with complementary features was investigated in chapter
5. The goal of searching for feature related parameters along with gener-
alised feature importance was successfully achieved by minimization of
the difference between predicted saliency and ground truth annotations.

The results of the FGSopt method confirmed that the complementary
features aid FGS in rare circumstances preventing loss in performance.

The performance of the optimised eigenvector features demonstrated
that they suppress background noise in contrast to the baseline eigenvec-
tors, due to their ability to partition the data into foreground and back-
ground clusters. The optimised eigenvectors also enabled the foreground
object saliency feature to more closely follow the ground truth profile as
compared with its unoptimised version.

The results of the FGSopt method demonstrated that it was able to find
suitable parameters and learn an appropriate importance rule to minimize
the performance gaps amongst individual features. FGSopt exhibited im-
provements of 3.8% over the FGS method and 16.2% over the unoptimised
method. The 99% confidence intervals on multiple runs of the FGSopt
method demonstrated that it always outperformed FGS and the unopti-
mised version.

The validity and effectiveness of the FGSopt method was further con-
firmed by the elevated performance of the FGS method up to a compet-
itive degree with the best state-of-the-art methods in terms of both fixed
and adaptive thresholding benchmarks. The FGSopt method also outper-
formed several state-of-the-art methods, exhibiting substantial improve-
ments.

The FGSopt method improves upon the FGS method in terms of quan-
titative and qualitative performance. These improvements are achieved at
the cost of an overhead in training and test time. The comparison between
FGS and FGSopt methods is a trade-off between added accuracy at the
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cost of additional computation time. The FGSopt method still requires less
computational time than DRFI (a top benchmark method) , while achiev-
ing competitive quantitative and better qualitative performance.

10.2.2 Multiple Combination Schemes Tailored to Image

Type

Image Based Genetic Algorithm (IGA)

Learning of multiple combination schemes each suited to a particular im-
age type was investigated by employing multiple Genetic Algorithms (see
chapter 6). A variety of normalisation and integration techniques reported
in past works were investigated to form unique combination schemes. The
goal of finding and applying a suitable combination scheme (depending
upon image type) was successfully achieved by semi-autonomous group-
ing of images and genetic search for multiple combination schemes by the
IGA method.

It was shown through analysis of the optimised solutions of the pro-
posed method that the feature combinations learned by IGA adjust accord-
ing to image types. This enables the IGA method to achieve better gener-
alisation than the fixed baseline combination scheme. The IGA method
also exhibited better quantitative and qualitative performance than the
SVM based benchmark methods employed for salient object detection by
prior works. Specifically, AUCPR improvements of 9.8% and 9.3% were
observed over the SVM and the NLSVM methods, while noteworthy im-
provements of 41.5% and 36.6% were recorded in terms of AUF.

The analysis of evolved solutions revealed that the favoured integra-
tion type was summation, suggesting appropriate feature conditioning be-
fore integration. Iterative and global normalisation schemes were found
to cover images with cluttered background and with distractor objects, re-
spectively.

The optimisation framework of the IGA method is designed for com-
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bination of complementary features that have high degree of variability in
performance on unique image types. In comparison to the single combina-
tion rule of the joint optimisation framework, it can offer improved gener-
alisation performance at the cost of added computational overhead at the
training stage and computational time at the test stage. When compared
with the XCS based method, it has the added advantage of encoding vari-
ous normalisation and integration approaches in its search formulation.

Learning Classifier System with Computed Action

An XCS based method was investigated for learning multiple feature com-
bination rules termed as XCSCA (see chapter 7). The goal of applying a
combination rule according to image type was successfully achieved by
autonomous identification of image type and learning of multiple feature
importance rules through computed action of an XCS.

Performance improvements of 3.5%, 13% and 5.7% were observed in
terms of area under PR, F-measure and classification accuracy curves by
the XCSCA method. The results of a two-sided t-test confirmed the statis-
tical significance of the results.

Analysis of the grouping schemes revealed that the images placed in
the same group by the XCSCA method exhibit lower spread in terms of
mean absolute error (MAE) performance metric, as compared with the
MAE spread of the grouping obtained by the IGA method. Grouping sim-
ilarly performing images resulted in more generalised feature importance
rules for the XCSCA method. Also the IGA method was not able to de-
tect individual feature level variations due to comparison of whole feature
vectors. On the other hand, the XCSCA method is capable of detecting in-
dividual feature level changes due to its relative encoding scheme.

Analysis of the categorical results revealed that the IGA method explic-
itly performs better than the XCS based method on images with a simple
background, conversely the XCS based method specifically shows better
performance than the IGA method on scenes with difficult backgrounds.
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The XCSCA method is more suitable for learning multiple combination
schemes as compared to the IGA method as it can provide more generali-
sation with less training and comparable test times. However, if the image
features employed require a search for appropriate normalisation and in-
tegration schemes, the IGA method may be preferred.

10.2.3 Dynamic Feature Selection (DFS)

Novel cues were introduced to dynamically select appropriate maps for
combination and neglect unwanted maps in chapter 8. The goal of dynam-
ically selecting only appropriate maps for combination was successfully
achieved by measuring feature quality based on new quality measuring
cues as proposed by the DFS method.

The DFS method advanced the current state-of-the-art in saliency ag-
gregation. The multi-level saliency fusion and the saliency model ag-
gregation experiments suggested that the proposed method was able to
identify redundant unwanted maps falsely included in the fusion schemes
of methods, thereby improving upon benchmark salient object detection
methods. Specifically, the introduction of DFS in the fusion scheme of
DRFI resulted in performance improvements of 2.8% in terms of maxi-
mum F-measure, while it improved the performance of PW method by
4.3% in terms of maximum F-measure.

The DFS based salient object detection method introduced in chapter 8
advanced the current state in salient object detection by improving upon
several methods. This was achieved by identifying and discarding noisy
features in difficult images with cluttered background and multiple dis-
tractor salient objects.

In addition to benefiting benchmark methods, the DFS method bene-
fited the FGSopt and IGA methods proposed in this thesis as discussed
in chapter 9. The DFS based improvements in feature combination come
at the cost of additional computational time spent by the DFS in judging
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features. However, various trade-offs between accuracy and time in terms
of DFS variants are presented (see chapter 9). The DFS variants do not
include computationally expensive cues for achieving computational effi-
ciency at the cost of decreased salient object detection accuracy. Therefore,
a variant of the DFS method must be chosen according to the desired ap-
plication task and specific accuracy and timing constraints.

10.3 Future Work

10.3.1 Matting Based Figure-ground Segregation

The FGS method employed various methods to speed up the optimisation
process and explored image down-sampling in order to achieve a practical
computation time. For real time operation of the FGS method, new meth-
ods are required to substantially accelerate the process of matting based
feature computation. Also, as the computation time is greatly influenced
by the window size of the affinity function, new affinity functions must be
explored to support window scaling.

The FGS method employed an unsupervised selection process of the
matting components to compute the matting based feature. Despite ro-
bust performance of the unsupervised selection process, in rare cases, cor-
rupted information is included in the final FGS response. Considering the
high object coverage of the matting components, a supervised method for
matting component selection is worthy of further investigation. Methods
to reduce the computational overhead of a supervised technique must be
explored in parallel.

10.3.2 Learning Multiple Combination Rules

The IGA method employed the euclidean distance metric to perform the
k-nearest neighbour search for semi-autonomous image grouping. The re-
sults revealed that the simple nature of feature grouping did not result
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in grouping highly similar features in terms of their performance as com-
pared with the XCSCA method. Therefore investigation of new and effec-
tive grouping schemes for the IGA method are suggested in future.

A computed action based XCS method was investigated to learn only
the feature importance weights. In contrast an XCS with code fragmented
action has the added capability to learn rules based on simple arithmetic
functions. As normalisation and integration schemes are composed of ba-
sic mathematical functions, it will be interesting to learn various normali-
sation and integration schemes with an XCS with code fragmented action.

Due to high computational overhead of training evolutionary meth-
ods such as multiple Genetic Algorithms and XCS, smaller benchmark
datasets are employed to evaluate these methods. It is an important fu-
ture direction to apply these learning methods to next generation large
scale image datasets such as ImageNet [119]1 for salient object detection
and related applications. A major issue to resolve would be to reduce the
computational overhead at the training stage in accordance with the in-
creased training set size.

10.3.3 Dynamic Feature Selection

The introduced DFS method has the ability to provide a robust measure
of feature quality based on the devised cues. The devised cues also at-
tempt to cover an approximately complete cue space. However the sys-
tem is not capable of detecting corner cases such as images containing no
salient object(s) and image having complex occlusions. Therefore it will
be interesting to explore further cues to extend the method to cover such
instances.

1ImageNet is a large-scale benchmark dataset win image recognition with around 1
million images and 1000 object categories. It is used in an international large scale visual
recognition challenge to access state-of-the-art methods since 2010.
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SCHÖLKOPF, B. Ranking on data manifolds. In NIPS (2003), pp. 169–
176.

[156] ZHOU, Z.-H. Learning with unlabeled data and its application
to image retrieval. In PRICAI 2006: Trends in Artificial Intelligence.
Springer Berlin Heidelberg, 2006, pp. 5–10.

[157] ZHU, L., KLEIN, D., FRINTROP, S., CAO, Z., AND CREMERS, A.
A multisize superpixel approach for salient object detection based
on multivariate normal distribution estimation. IEEE Trans. Image
Process. 23, 12 (2014), 5094–5107.

[158] ZHU, W., LIANG, S., WEI, Y., AND SUN, J. Saliency optimization
from robust background detection. In IEEE Conference on Computer
Vision and Pattern Recognition (2014), pp. 2814–2821.


	Introduction
	Scope
	Motivation
	Why Genetic Algorithm?
	Why Learning Classifier Systems?

	Thesis Statement
	Thesis Goals
	Thesis Contributions
	Thesis Organisation

	Background
	Computational Methods of Visual Attention
	General Structure of Computational Models
	Choice of Parameters to be Optimised

	Salient Object Detection
	Methods for Salient Object Detection

	Machine Learning Methods
	Genetic Algorithms
	Learning Classifier Systems

	Chapter Summary

	Learning Visual Attention
	Introduction
	Chapter Organisation

	GAOVSM
	The Visual Saliency Method
	Genetic Algorithm

	Design of Experiments
	Data Set
	Ground Truth Data
	Performance Measures
	Experimental Settings for the Genetic Algorithm
	Selected Visual Attention Methods for Comparison

	Results and Discussion
	Comparison of learned versus baseline features
	Analysis of Evolved Solutions
	Comparison of GAOVSM with State-of-the-art

	Chapter Summary

	Spectral Matting Based Object Detection
	Introduction
	Chapter Goals
	Chapter Organisation

	Figure-ground Segregation Method
	Colour Spatial Distribution
	Eigenvectors of the Matting Laplacian
	Matting Components from Eigenvectors
	Foreground Object Saliency

	Design of Experiments
	Dataset
	Parameter Settings
	Evaluation Benchmarks

	Results and Discussion
	Discussion of FGS results

	Chapter Summary

	Improving FGS
	Introduction
	Chapter Goals
	Chapter Organisation

	Method
	Optimisation Framework
	Final Saliency Computation

	Design of Experiments
	Datasets
	Parameter Settings
	Evaluation Benchmarks

	Results and Discussion
	Comparison with the FGS method
	Comparison with the Baseline Unoptimised method
	Comparison with the State-of-the-art methods
	Interpretation of Results

	Chapter Summary

	Genetic Algorithm For Feature Combination
	Introduction
	Rationale for Learning Multiple Schemes
	Proposed Methods
	Feature Extraction
	Genetic Algorithm
	Image Dependent GA Based Approach

	Design of Experiments
	Datasets and Experimental Setup
	Selected methods for Comparison
	Training Experiments

	Results and Discussion
	Comparison of IGA with the Baseline GA
	Comparison of IGA with Existing Work
	Qualitative Comparison
	Analysis of Evolved Solutions

	Chapter Summary

	Learning Classifier Systems Based Combination
	Introduction
	Salient Object Detection Using Learning Classifier Systems
	Experimental Design
	Data Set
	Experimental Setup

	Results and Discussions
	Analysis of Evolved Solutions
	Analysis of Grouping Schemes
	Further Discussions
	Chapter Summary

	Dynamic Feature Selection
	Introduction
	Chapter Goals
	Chapter Organisation

	Graph Based Manifold Ranking
	Dynamic Feature Selection (DFS) method
	System Model
	Foreground Approximation
	Cues for Measuring Feature Quality
	Objective Function for Feature Quality
	Feature Selection Algorithm
	Feature/Saliency Fusion

	Experimental Setup
	Results and Discussion
	Feature Selection for Feature Integration
	Saliency Aggregation

	Results of the DFS Based Aggregation
	Further Discussion

	Ranking Evaluation
	Chapter Summary

	Discussions
	DFS in Learned Combination
	FGS as Foreground Approximation
	Improving State-of-the-art Methods
	FGS improving benchmark methods
	DFS Improving Benchmark Methods

	Recommendations for Salient Object Detection Methods
	Incorporating Dynamic feature Selection
	Incorporating Learning Methods


	Conclusions and Future Work
	Achieved Objectives
	Conclusions
	Joint Optimisation
	Multiple Combination Schemes
	Dynamic Feature Selection (DFS)

	Future Work
	Matting Based Figure-ground Segregation
	Learning Multiple Combination Rules
	Dynamic Feature Selection



