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ABSTRACT 

 

Background and Purpose 

Pain, although necessary for survival, can become pathological affecting an estimated 1 in 5 

adults globally. It is also the most common reason people seek medical attention. Mu opioid 

receptor (MOPr) agonists, such as morphine, are the gold standard treatment for pain. 

Although these drugs have excellent analgesic properties, adverse effects such as addiction, 

tolerance and respiratory depression make their use problematic. An estimated 10,000 New 

Zealanders are addicted to prescription opiates, highlighting the need for better drugs to 

treat pain. Kappa opioid receptor (KOPr) agonists have analgesic properties and, unlike 

MOPr agonists, are also anti-addictive. Unfortunately, adverse effects such as sedation and 

dysphoria, have limited their therapeutic potential. The discovery of KOPr agonists that have 

analgesic properties without inducing adverse effects can allow for better, more efficient 

treatments of pain. We are the first to report the analgesic potential of novel Salvinorin A 

(Sal A) analogues: Tetrahydropyran Salvinorin A (THP Sal A) and Mesyl Salvinorin B (Mesyl 

Sal B). 

 

Experimental Approach and Compounds Tested 

This study uses animal behavioural models to characterise the analgesic, anti-oedematous, 

sedative and hypothermic effects of a structurally new class of KOPr agonists including Sal A, 

THP Sal A and Mesyl Sal B. The known peripherally restricted KOPr agonist, ICI 204,448, was 

used to evaluate the peripherally mediated analgesic mechanisms of KOPr agonists. The tail-

flick and intradermal formalin test were used to assess acute central and peripheral pain 

processes respectively. Sedative effects were monitored via rotarod performance test; 

thermoregulatory effects were also recorded. 
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Key Results 

ICI 204,448 attenuated inflammatory pain at a dose of 1 mg/kg (P<0.05, 30 min) and 2 

mg/kg (P<0.001, 30-35 min). Although it showed no centrally mediated analgesic effects, it 

was found to be sedative at a dose of 2 mg/kg (P<0.01, 15-60 min). Sal A (2 mg/kg) 

attenuated inflammatory pain (P<0.01, 25-35 min) at the same dose it was sedative (P<0.01, 

2-15 min). Although it treated acute thermal pain at a non-sedative dose (1 mg/kg, P<0.001, 

10-15 min), it has a short duration of action (~15 min). THP Sal A attenuated both thermal 

and inflammatory pain. Unfortunately, it was also sedative at both 1 mg/kg (P<0.01, 15-45 

min) and 2 mg/kg (P<0.001, 15-90 min). Mesyl Sal B significantly attenuated both central 

(1mg/kg, P<0.01, 30-60 min) and peripheral (2 mg/kg, P<0.01, 30 min) pain processes. 

Although Mesyl Sal B was found to have a weak analgesic effect in all pain assays, it was not 

sedative.  

 

Conclusions and Implications 

KOPr agonists attenuate acute nociceptive and inflammatory pain. Structural modification 

of Sal A at the C-2 position alters its analgesic effects in vivo.  Substitution with a 

tetrahydropyran group greatly improves central analgesic effects; however, sedative effects 

were also observed. Although substitution with a mesylate group produced no sedative 

effects, it had reduced effects on central and peripheral pain processes. The lack of sedation 

by Mesyl Sal B makes it a good target for future research in pain. Its longer duration of 

action compared to Sal A suggests it has a better metabolic profile. The creation of more 

soluble KOPr compounds would allow for better dose-testing to evaluate therapeutic 

potential of KOPr analgesics. 
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1. Introduction 

 

Pain is defined by the International Association of Pain as “an unpleasant sensory and 

emotional experience associated with actual or potential tissue damage” (Basbaum et al., 

2009; Merskey & Bogduk, 1994). It provides sensation of, and protection from destructive 

influences, such as noxious heat, cold, electrical, mechanical and chemical stimuli. Although 

pain is necessary for survival (Nagasako et al., 2003), it can become pathological or exist as a 

symptom of a pathological condition. It is estimated to affect 1 in 5 adults globally (Goldberg 

& McGee, 2011), making it the most common reason people seek medical attention 

(Fishman, 2007). Today, the treatment of pain contributes to a global multibillion dollar 

industry, while, in the United States, the economic costs due to the absence of pain-related 

work is as high as $635 billion per year (Gaskin & Richard, 2012). Studies show that 50-80% 

of Australians suffering from pain are undertreated (Cousins, 2012), and 72.9% of Canadians 

waiting at pain clinics report pain as interfering with their normal work (Choiniere et al., 

2010). There are a variety of pharmacological and non-pharmacological ways in which pain 

can be treated. Conventional pharmacological treatment by mu opioid peptide receptor 

(MOPr) agonists such as morphine and fentanyl remain the gold-standard for the 

management of acute pain in the emergency department and also in the treatment of more 

persistent pain (Kalso et al., 2002), particularly in cancer sufferers (Radbruch et al., 2002). 

Although MOPr agonists have excellent analgesic effects, adverse effects include nausea 

and vomiting, tolerance, addiction, constipation and respiratory depression (Madadi et al., 

2013; Schug et al., 1992; Shapiro et al., 2005); making them less than ideal for long term 

use. Abuse of prescription opioids, such as morphine, is a major problem. The Centre of 

Disease Control and Prevention in the U.S. found that 73.8% of the 20,044 prescription 

overdose related deaths in 2008 where due to prescription opioids – an amount greater 

than the number of deaths due to cocaine and heroin combined (Chakravarthy et al., 2012). 

In Australia, the number of patients treated for poisoning by prescription opioids increased 

almost three-fold (from 605 patients in 1998/1999 to 1700 in 2007), while poisoning from 

heroin fell by similar proportions (from 1712 patients to 446), possibly suggesting a 

deviation of addictive behaviour from illicit opioids to prescription opioids (Huxtable et al., 

2011). It is estimated that an average of one person dies every fortnight in New Zealand due 
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to opiate overdose. A 2008 report by the Ministry of Health in New Zealand surveyed 97 

known opiate addicts and found that 32.2% of them reported morphine as their injected 

drug of choice (Deering et al., 2014). There is continual reporting of increased rates of 

addiction every year in New Zealand, Australia, Canada and the U.S. due to prescription 

opioid medication (Birnbaum et al., 2011; Blanch et al., 2014; El-Guebaly, 2014; Ling et al., 

2011). The burden on society due to adverse effects from conventional pain-treatment and 

reduction in quality of life due to undertreated pain, highlights the need for better and more 

efficient treatments for pain. 

Another class of opioid receptors found in the human body with analgesic effects are the 

kappa opioid peptide receptors (KOPr). Traditional KOPr agonists such as Trans-3,4-dichloro-

N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide (U-50, 488H), was found to 

have analgesic effects (Piercey et al., 1982b) without causing physical dependence (Lahti et 

al., 1982). KOPr agonists, such as the recently discovered Salvinorin A (Sal A), was found to 

have analgesic effects in animal models testing for acute and chronic pain due to 

inflammation (Aviello et al., 2011; Guida et al., 2012). Bremazocine, another KOPr agonist, 

was found to attenuate acute thermal pain (Tseng & Collins, 1991) without causing 

respiratory depression (Freye et al., 1983) or addiction (Nestby et al., 1999), common 

adverse-effect of MOPr agonists (Contet et al., 2004; Shapiro et al., 2005). Unfortunately, 

side-effects such as sedation, dysphoria and hallucinations have limited the therapeutic use 

of KOPr agonists (Barber & Gottschlich, 1997). Over the last 20 years, there have been 

considerable efforts in discovering KOPr agonists capable of producing analgesic effects with 

little or no side-effects. Similar to MOPr agonists (Florez et al., 1968; Oldendorf et al., 1972), 

many of the adverse-effects of KOPr agonists were found to be mediated via central 

mechanisms. As the transmission and modulation of pain mechanisms is possible via central 

(Mason, 1999; Urban & Gebhart, 1999) and peripheral mechanisms (Stein et al., 2009), 

studies have focused on discovering KOPr agonists with peripherally restricted properties 

(Cunha et al., 2012; Riviere, 2004). The KOPr agonist, CR845 - currently under phase 2 

clinical trials, was found to attenuate pruritus, acute and chronic pain; and was well 

tolerated in 300 patients receiving single or multiple doses intravenously. The therapeutic 

potential of CR845 is claimed to be due to its limited access to the central nervous system 
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(CNS) (Nielsen et al., 2009). For recent reviews on the therapeutic potential of peripherally 

restricted KOPr agonists, see  Stein and Küchler (2013); Kivell and Prisinzano (2010). 

Although opioid pain therapy with MOPr agonists, such as morphine, has helped treat 

painful conditions since the 1850s (Brownstein, 1993), it does not come without serious 

adverse effects. The lack of selectivity towards anti-pain pathways among conventional 

opioid treatments to date is turning out to be a significant cause for encouraging addictive 

behaviour while also reducing standard of life. Studies on the opiate system point out that 

MOPr (Whiteside et al., 2004) and KOPr agonists (Nielsen et al., 2009; Binning et al., 2011) 

with limited access to the CNS allows for better selectivity for clinically relevant anti-pain 

mechanisms. Furthermore, KOPr agonists are anti-addictive in nature (Bruchas et al., 2010). 

This illustrates the therapeutic potential of KOPr agonists in the treatment of pain.  
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1.1 Types of Pain 
 

Pain is a complex process to study. Many classifications are predominantly based on 

anatomy and etiology involved in the pain experienced (Nagasako et al., 2003; Price et al., 

2009). Woolf et al. (1998) criticised the etiology-based pain classification, arguing that a 

mechanism-based classification of pain would be more relevant, both diagnostically, and in 

the field of pain-research. Their classification took into account that the mechanism for the 

development of pain is similar across different disease states. For example, the mechanism 

for pain development in post-operative patients and those with inflammatory arthritis is 

similar in that the pain is due to the process of inflammation. Anti-inflammatory agents may 

thus be used to treat pain in both post-operative (Viscusi et al., 2004) and inflammatory 

arthritis (Stein et al., 1999). This method of classifying pain is becoming more widely 

accepted (Finnerup & Jensen, 2006; O'Sullivan & Beales, 2007; Schafer et al., 2014). It is 

highly relevant to the present study because it allows us to discern the mechanism of 

analgesic action of drugs on known animal behavioural models of pain.  

Pain is known to manifest either acutely (short in duration) or chronically (> 3 to 6 months in 

humans). Acute pain in animal behavioural models can be anywhere between one hour to 

one week, reviewed by Le Bars et al., (2001). Woolf et al., (1998) identified three basic types 

of pain: nociceptive, inflammatory and pathological pain. Nociceptive pain is associated with 

the direct stimulation of sensory fibres following tissue injury due to noxious heat, cold, 

chemical and mechanical stimuli. It is responsible for the initial voluntary or reflexive 

withdrawal reaction from noxious stimuli and is protective in nature. It is characterised by 

its quick onset and short duration, and is mediated by only central processes; reviewed by 

Woolf (2010). Inflammation plays an important role in peripheral mechanisms of pain 

transmission that help alert the organism to injury. Inflammatory pain classically appears 

after nociceptive pain; it is longer in duration and can increase pain sensitivity (Andrew & 

Greenspan, 1999). Due to its persistent nature, clinically relevant painful conditions such as 

post-operative pain (Smith & Nielsen, 2006) occur as a result of inflammatory processes 

(Shavit et al., 2006). Pathological pain is not a symptom of a disease, but rather a disease-

state of the nervous system. It can be further classified into neuropathic pain, caused by a 

lesion or dysfunction of sensory pathways; and dysfunctional pain, which is present without 
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any tissue damage or inflammation. The classical triad of neuropathic pain includes neurons, 

immune cells and glia (Scholz & Woolf, 2007); therefore modulation of immunoregulatory 

pathways also present as targets for the treatment of this type of pain (Wagner et al., 1998). 

Nociceptive and inflammatory types of pain have been shown to be attenuated by KOPr 

agonists via central and peripheral mechanisms. (Aviello et al., 2011; Guida et al., 2012) 

Understanding the mechanisms of pain transmission has helped us create more generic 

treatments for pain symptoms that are commonly present alongside acute injuries and 

disease-states.  
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Figure 1.1 Nociceptive and Inflammatory Types of Pain. (A) Nociceptive Pain is centrally mediated via spinal 

pathways after a direct stimulation of peripheral nociceptive neurons by noxious stimuli. This type of pain is 

brief, and marks the initial reaction to noxious stimuli that may be either potentially tissue damaging or non-

tissue damaging. (B) More persistent stimuli that potentially damage tissue causes the release of intracellular 

components, such as adenine triphosphate (ATP), calcium (Ca²⁺) and potassium (K⁺) ions. This can give rise to 

the recruitment of inflammatory cells, such as neutrophils, monocytes/or macrophages that release pro-

algesic inflammatory mediators, such as histamine, bradykinin and interleukins. This process leads to the 

peripherally mediated and clinically relevant type of pain that exists in both acute and chronic conditions. 
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1.2 Physiology of Pain 
 

Nociception is the biochemical and biophysical process that is transmitted via 1st, 2nd and 

3rd order neurons in the transmission of noxious stimuli that is interpreted by the brain as 

‘pain’ (Basbaum et al., 2009). Pain is a complex process and its manifestation can depend on 

many variables, including emotional state (Villemure et al., 2003), gender (Aloisi, 2003), 

genetics (Cheung, 2010), previous experiences with pain (Bierman, 2011) and environmental 

factors (Karjalainen et al., 2013); for a recent review on the complexity of pain see Belfer 

(2013). Injury and inflammation of peripheral tissue stimulates the electrical activity of 

specialised sensory dorsal root ganglion (DRG) neurons known as nociceptors (Gold & 

Gebhart, 2010; Woolf & Ma, 2007). The reception, relay and perception of nociceptive and 

inflammatory pain require a three-neuron chain mechanism (Steeds, 2009). Thermal, 

chemical and mechanical stimuli are sensed by transducer proteins, which are ion 

channels/receptors on nociceptor terminals of peripheral nerves (1st order neurons). In 

response to noxious stimuli, they generate depolarising currents via sodium and calcium ion 

entry (Geffeney & Goodman, 2012). If these currents are sufficient enough to generate an 

action potential, the message is relayed to the spinal cord. This process of action potential 

generation is referred to as transduction. Transducer proteins on peripheral nociceptor 

terminals allow for action potentials to reach the CNS, the perception of which is subject to 

modulatory mechanisms. This is done through a fine balance between intrinsic excitatory 

and inhibitory pain pathways in the CNS and periphery (Marchand, 2008). Pain pathways 

should therefore not be seen as a direct link between noxious stimulus-detecting receptors 

and the subsequent activation of pain networks in the brain. They are rather a complex 

summation of simultaneous ascending and descending influences, both centrally and 

peripherally. Pain is thus experienced when the summation of these influences tips in favour 

of excitatory nociceptive signal transmission.  
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1.2.1 Nociception at the Periphery 

 

Nociceptors are widely found in almost all tissue types in the human body and can be 

directly stimulated via acute thermal, chemical, mechanical and inflammatory stimuli 

(Almeida et al., 2004). The cell bodies of nociceptors are located in the dorsal root ganglion 

(DRG) for somatic innervations and the trigeminal ganglion for facial innervations. Both have 

peripheral and central axonal branches that innervate their target organ and spinal cord 

respectively. Nociceptors are typically characterised according to the type of stimulus they 

are able to detect. Noxious thermal, chemical and mechanical stimuli are detected by high-

threshold nociceptors that contain transducer proteins capable of detecting these stimuli. 

Polymodal nociceptors are capable of detecting a variety of noxious stimuli, while 

silent/sleeping nociceptors activate only during certain conditions, such as that during 

inflammation; reviewed by Marchand (2008). These nociceptors are recognised to have two 

different types of axons - Aδ and C-fiber axons (Lawson, 2002) – which are commonly 

referred to as Aδ and C-fiber nociceptors. 

Aδ nociceptors are fast conducting myelinated sensory neurons that are associated with 

transmitting the initial, more rapid thermal and mechanical nociceptive pain (Georgopoulos, 

1976). They are associated with sharp and well-localized pain sensations in rodents 

(Basbaum et al., 2009). C-fibres are a very heterogeneous group of neurons that can handle 

many different forms of sensory input, referred to as being polymodal in nature (Schmelz et 

al., 2003; Watanabe et al., 2002). These nociceptive neurons are well established as 

conveyers of noxious heat, chemical and mechanical stimuli in rodents, non-human 

primates and humans (LaMotte & Campbell, 1978; Shir & Seltzer, 1990; Torebjork et al., 

1984). Furthermore, C-fibres have been implicated in the transmission of inflammatory pain 

induced by noxious chemical substances, such as formalin (Dickenson & Sullivan, 1987). 

mRNA of transducer proteins of the transient-receptor-potential (TRP) family of cation 

channels, such as TRPV-1 and TRPA-1, have been identified on Aδ and C-fibre nociceptors in 

rats (Kobayashi et al., 2005). TRP channels are implicated in the transduction of noxious 

input from thermal, chemical, mechanical and inflammatory stimuli; reviewed by Levine and 

Haber (2007). Noxious thermal stimuli (∼46.5°C to 56°C) such as that used in the tail-flick 

test, an animal behavioural model of nociceptive pain, was found to activate TRPV-1 and -2 
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ion channels (Rau et al., 2007). Formalin was identified to activate TRPA-1 ion channels 

(McNamara et al., 2007). Aδ and C-fibre nociceptors, and their transducer proteins, are thus 

implicated in the transmission of nociceptive impulses from the periphery to the spinal cord, 

as assessed by animal behavioural models of pain.  

Persistent or tissue damaging noxious stimuli, such as that produced by sunburns 

(Matsumura & Ananthaswamy, 2004) or intradermal administration of chemical toxins 

(Murray et al., 1988; Aceto et al., 1990) can initiate inflammatory processes. Tissue injury 

can compromise the integrity of the plasma membrane, resulting in the release of 

intracellular substances, such as adenine triphosphate and potassium ions. Intracellular 

components can either directly activate nociceptors to produce pain or cause the release of 

cytokines and chemokines that serve to attract leukocytes, such as neutrophils, to the area 

of injury (Kataoka et al., 2014). The release of vasoactive amines and peptides, such as 

histamine, serotonin, bradykinin, substance P and calcitonin-gene-related peptide, via 

nociceptors and mast cell degranulation (Basbaum et al., 2009) contribute to increased 

vasodilation and permeability of blood vessels, and causes inflammatory pain (Ottosson & 

Edvinsson, 1997). This is accompanied by oedema formation that is triggered by vasoactive 

mediators that elicit an exudative response composed of plasma proteins and leukocytes. 

Excessive accumulation of interstitial fluid is generally viewed as detrimental to tissue 

function because oedema formation increases the diffusion distance for oxygen and other 

nutrients, compromising cellular metabolism in the swollen tissue (Jerome et al., 1994). The 

physiological effects of persistent noxious stimuli are manifested as pain and swelling in the 

injured area. These effects can be measured and quantified in animal behavioural models of 

pain, including the intradermal formalin test in rodents (Hunskaar & Hole, 1987). 
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Figure 1.2 Bidirectional Communication between the CNS and Periphery. Brief or persistent noxious heat, 

chemical and inflammatory stimuli can activate Transient Receptor Potential family of ion channels, such as 

TRPV-1 and TRPA-1 on 1st order neurons. This gives rise to the centrally mediated nociceptive pain that is 

transmitted via 2nd and 3rd order neurons and perceived in the brain as pain. In response to this, areas in the 

brain, such as the Periaqueductal Grey (PAG) and Rostroventral Medulla (RVM) contribute to the descending 

modulation of nociceptive processes. Noxious stimuli that are potentially tissue damaging can give rise to 

inflammatory processes and the congregation of molecules, such as substance P, bradykinin, endorphins and 

dynorphins. The resulting “inflammatory soup” allows for both nociceptive and antinociceptive impulses to be 

transmitted via peripheral 1st order neurons. This, along with nociceptive and antinociceptive mechanisms of 

the spinal cord and brain allow for bidirectional communication between the periphery and the central 

nervous system (CNS). Mu opioid peptide and kappa opioid peptide receptors (MOPr & KOPr) have been 

identified in these crucial areas of pain transmission, perception and modulation in 1st, 2nd and 3rd order 

neurons. 
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1.2.2 Nociception in the Spinal Cord and Brain 

 

Regulation of nociceptive signals in the spinal cord is a complex process requiring the 

integration of peripheral and supraspinal controls (Maier, 2003). Aδ and C-fibre nociceptors 

from the periphery predominantly terminate in the dorsal horn of the spinal cord (Woolf & 

Fitzgerald, 1986). The spinal cord relays nociceptive signals from the periphery to the brain, 

while being capable of facilitating and inhibiting these signals via ascending or descending 

spinal tracts. This allows for bidirectional communication between supraspinal centres and 

the periphery (Leak et al., 1988; Porreca et al., 2002) (Figure 1.2). Nociceptive specific 

neuronal cells in the dorsal horn synapse with Aδ and C-fibre terminals, creating action 

potentials upon noxious peripheral stimulation (Cervero et al., 1976). Established 

mechanisms of nociceptive signal transmission in the spinal cord include those involving 

glutamatergic receptors (Hartmann et al., 2004; Chaplan et al., 1997) and the neurokinin 

receptor agonist - substance P (Abbadie et al., 1996). In vivo pain-related studies on rodents, 

such as the tail-flick test and intradermal formalin model, have implicated these spinal 

processes in the production of thermal and inflammatory mediated nociceptive mechanisms 

(Baamonde et al., 2011; Lutfy et al., 1997; Malmberg & Yaksh, 1993; McCarson, 1999; Willis, 

2001). fMRI studies of the human brain show different brain-regions are responsible for 

pain anticipation, perception and relief. The nucleus accumbens, mid-cingulate and anterior 

insula corresponds to pain anticipation; the anterior cingulated, mid and posterior insula, 

and the dorsal striatum for pain perception; and finally the locus coeruleus (Tsuruoka & 

Willis Jr, 1996) periaqeductal grey (PAG) and rostroventral medulla (RVM) (Ploghaus et al., 

1999) area were found to be involved in pain relief. 

 

1.3 Sedation and Hypothermia 
 
Sedation is one of the most common side-effects of opioid analgesics (McCaughan & 

Miaskowski, 2001).The process of opioid induced sedation, or sedation in general, remains 

elusive. Studies with anaesthetics were shown to cause sedation via modulation of gamma 

aminobutyric acid (GABA) receptors in the CNS (Nelson et al., 2002). There is also evidence 

of reduced dopamine levels in the mouse brain to give rise to sedative effects (Chiara et al., 
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1976). In the clinic opioid induced sedation is measured by determining alertness, attention, 

information processing and motor skills (Devlin et al., 1999; Sessler et al., 2002). The 

subjective nature of these responses and the elusive mechanism of sedation make it hard to 

translate into animal models. Motor coordination is relatively less subjective and easier to 

monitor. Hence, motor coordination is frequently used in animal behavioural models, such 

as the rotarod performance test, to assess opioid induced sedative effects (Hayes et al., 

1985; Rogers et al., 1992). 

Impulses from warm and cold stimuli travel via Aδ and C-fiber afferents to reach the 

hypothalamus, which in turn regulates processes such as vasodilation, vasoconstriction, 

shivering and non-shivering thermogenesis that modulate core-body temperatures (Rev by 

Andrea Kurz, 2008). A reduction in core body temperature is referred to as hypothermia, 

and an increase as hyperthermia. These effects can be monitored by a simple measurement 

of rectal body temperature with the use of a rectal probe. 

 

1.4 Animal Models of Pain 
 
There are many animal behavioural models relevant to the study of pain in humans (Le Bars 

et al., 2001). However, no single model on its own is good enough to be representative of 

nociceptive processes. As pain is a very complex process, studies use multiple animal pain 

models to discern the antinociceptive potential of analgesics. The principle rationale behind 

the use of such models is that the sources and mechanisms of brief nociceptive pain differ 

significantly from those of persistent inflammatory pain (Dubuisson & Dennis, 1977a; Aceto 

et al., 1990). In this study we focus on animal models representing acute pain, such as that 

produced by brief thermal, chemical and inflammatory stimuli. 

Assessment of the centrally mediated effect of analgesics is commonly assessed by the tail-

flick or hot-plate test, where a brief (<10-15 s) thermal stimulus (50-55°C) is applied to 

either the tail or the paw to illicit a withdrawal response. While the tail-flick test is useful in 

assessing nociceptive process in the spinal cord (Basbaum & Fields, 1984; Bjorkman, 1995); 

the hot-plate test is used for the assessment of supraspinal processes (Casey et al., 1996; F 

Porreca et al., 1984). Autoradiographic localization of opioid receptors in the rat spinal cord 

found KOPr binding sites to be highly concentrated in the superficial layers of the dorsal 
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horn in the spinal cord (Gouardères et al., 1985), where many Aδ and C-fiber nociceptors 

terminate. The same study identified the lumbar-sacral portion of the spinal cord to be 

enriched with KOPr compared to the thoracic or cervical segments. The lumbar-sacral spinal 

segment is responsible for receiving sensory input from the tail of rodents (Bonnot et al., 

2002). While there are a variety of tail-flick assays that use different sources of thermal 

stimuli on the tail, such as radiant heat, light and hot-water; the latter was found to be more 

representative of acute thermal pain, reviewed by Le Bars et al., 2001. This is because rapid 

tail-immersion into a hot-water bath of 50-55°C was found to immediately trigger thermal 

transducer proteins, such as TRPV-1, as opposed to the slower heat 

conduction/transduction methods via radiant heat. The hot water tail-flick assay was thus 

chosen for this study to assess the cenrally mediated analgesic effects of KOPr agonists on 

acute nociceptive (thermal) pain.  

The assessment of peripheral mechanisms of pain is carried out by inducing inflammation 

via intradermal administration of substances such as formalin, carageenan, capcasin or 

complete Freud’s adjuvant. Each substance has a characteristic duration of action (Aceto et 

al., 1990) that is used to model different disease states. Substances such as carageenan or 

complete Freud’s adjuvant are more commonly used to model arthritic conditions due to 

long lasting inflammatory responses (Committee on Recognition and Alleviation of Pain in 

Laboratory Animals, 2009). Formalin induces acute responses to pain due to inflammation. 

This is good in modelling relevant clinical conditions that give rise to acute inflammatory 

pain, such as post-operative pain or acute injuries. Using formalin concentrations of >1% has 

been found to trigger both nociceptive and inflammatory types of pain (Rosland et al., 1990) 

that present as a biphasic pain-response (Shibata et al., 1989). This early phase (phase 1) 

represents central processes of nociceptive pain transmission; the late phase (phase 2) 

represents peripheral mechanisms of inflammatory pain (Tjølsen et al., 1992) (Fig 1.1). This 

model has been used extensively to investigate the central and peripheral mechanisms of 

analgesia of KOPr agonists (Binder et al., 2001; Dubuisson & Dennis, 1977b; Lamb et al., 

2012).  
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Table 1.1. Comparison of KOPr agonists on animal behavioural models of pain. 

Behavioural 

Model 

Acute Stimulus Physiological 

Effect Tested 

 

KOPr Agonist MOPr Agonist 

   Dynorphin 

 

U-

504,448H 

 

Salvinorin 

A 

 

ICI 204,448 

 

Morphine 

 

Tail-flick 

 

Thermal 

 

Spinally 

mediated 

thermal 

response time 

 

+ 

(Han & Xie, 

1987;) 

+ 

(Piercey et 

al., 1982a) 

+ 

( McCurdy et 

al., 2006) 

nd + 

(Abbott et al., 

1982) 

Hot-plate 

 

Supraspinally 

mediated 

thermal 

response time 

 

+ 

(Baumeister 

et al., 1987) 

+  

(F. Porreca 

et al., 1984) 

+ 

(McCurdy et 

al., 2006) 

nd + 

(Hunskaar et al., 

1986) 

Intradermal 

formalin test  

(Phase 1) 

Chemical Central pain 

mechanisms 
+  

(Tan-No et 

al., 1996) 

+ 

(Pelissier et 

al., 1990) 

+ 

(Aviello et 

al., 2011) 

         - 

A Barber et 

al., (1994) 

+  

(Abbott et al., 

1982) 

Intradermal 

formalin test  

(Phase 2) 

Inflammatory 

 

Peripheral pain 

mechanisms 

 

+ 

(Ossipov et 

al., 1996) 

+ 

(Idänpään-

Heikkilä et 

al., 1994) 

+ 

(Aviello et 

al., 2011) 

+ 

A Barber et 

al., (1994) 

+ 

Abbott et al., 

1982) 

Temperature nil Rectal 

temperature 

 

 

↓ 

 

(Handler et 

al., 1992) 

 

 

↓ 

 

(Bhargava, 

et al., 1989) 

 

↓ 

 

(Ansonoff et 

al., 2006) 

 

↓ 

 

(S. M. Rawls, 

Ding, Gray, & 

Cowan, 

2005) 

 

↑ 

(Low dose) 

 (Cox et al., 1976) 

↓ 

(High dose) 

(Warwick & Craig 

Schnell, 1976) 

Rotarod 

 

nil Sedation/motor 

coordination  

 

+ 

(Stevens & 

Yaksh, 1986) 

+ 

(Hayes et al., 

1985) 

nd - 

(Rogers et 

al., 1992) 

+ 

(Cartmell et al., 

1991) 

+, Effect present; -, Effect absent; nd, not determined;  ↑, Hyperthermia; ↓, Hypothermia 
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1.5 The Opiate System 
 
KOPr, MOPr and delta opioid peptide receptors are the three main opioid receptors 

identified (Wood et al., 1982). These G-protein coupled opioid receptors have been 

demonstrated to show 63-73% homology (Pogozheva et al., 2008). They are capable of 

forming homo and/or heterodimers, which was found to modulate receptor function 

(Jordan & Devi, 1999). Although opiate receptors differ in anatomical distribution and 

behavioural properties; reviewed in Benarroch (2012), studies have found considerable 

overlap between KOPr and MOPr immunoreactivity, and mRNA in anatomical locations 

implicated in the modulation of pain. These areas include the PAG and RVM, supraspinally 

(Gutstein et al., 1998), superficial dorsal horn of the spinal cord (Mansour et al., 1994), DRG 

of peripheral nerves (Ji et al., 1995; Werz et al., 1987) and leukocytes (L. F. Chuang et al., 

1995; T. K. Chuang et al., 1995) (Fig. 1.1). Dynorphins and endorphins, the respective 

endogenous ligands of KOPr and MOPr, are also expressed in these locations (Basbaum & 

Fields, 1984; Cabot et al., 1997; Cabot et al., 2001; Hassan et al., 1992; Mousa et al., 2001).  

Despite these similarities, studies using KOPr and MOPr knockout models have found 

considerable differences in the perception of thermal, chemical and inflammatory pain. For 

example, MOPr knockouts showed significant reduction in noxious chemical pain 

perception, as assessed by abdominal constriction assays in mice (Sora et al., 1999). KOPr 

knockouts however, showed significantly increased sensitivity to pain by noxious chemical 

stimuli in the same assay but not in the intradermal formalin test (Simonin et al., 1998). 

Furthermore, immunohistochemistry techniques have revealed differential distribution of 

KOPr and MOPr in the rat gastrointestinal tract (Bangnol et al.,1997); suggesting a possible 

reason for the inhibition of intestinal transit by morphine but not by KOPr agonists such as 

U-50,499H (Shook et al., 1989). This illustrates that KOPr and MOPr systems share 

biochemical and anatomical differences and similarities that add to their unique analgesic 

and side-effect profiles.  
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1.5.1 Kappa Opioid Receptor Agonists 
 

KOPr agonists are able to attenuate nociceptive processes via central and peripheral 

mechanisms. Studies with U-50,488H found serotonergic (Vonvoigtlander et al., 1984) and 

GABAergic pathways (Nemmani & Mogil, 2003) to have a role in KOPr induced analgesic 

effects against thermal stimuli. KOPr agonists, such as bremazocine, GR89,696 (Caudle et al., 

1994; Eliav, 1999; Ho et al., 1997), dynorphin-A, U-69,593 and U-50,488H (Chang et al., 

1989; Randic et al., 1995; Xin et al., 1997) were found to attenuate nociceptive processes via 

modulation of NMDA, AMPA and substance P related biochemcial processes in the CNS. Sal 

A and U-50,488H were found to attenuate peripheral pain processes as assessed by the 

abdominal constriction test (Craft et al., 1995; Labuz et al., 2007; McCurdy et al., 2006) and 

intradermal formalin test (Hong & Abbott, 1995; Aviello et al., 2011). Aside from central and 

peripheral antinociceptive effects, KOPr stimulation is also known to play a role in motor 

coordination (Ukai et al., 1984), temperature regulation (Cavicchini et al., 1988); addictive, 

dysphoric and stress-related behaviour, reviewed by Bruchas et al. (2010); pruritis (Kumagai 

et al., 2010); cardiovascular and respiratory function (Hassen et al., 1984); neuroprotection 

(Zeynalov et al., 2006); and angiogenesis (Yamamizu et al., 2014). 

Adverse-effects of KOPr agonists, such as dysphoria and hallucinations, are known to 

manifest via central pathways. Therefore restricting KOPr agonists to act in the periphery 

(like CR-845) increases their therapeutic potential in the treatment of pain. Another, more 

recently employed rationale for improving the therapeutic potential of KOPr agonists, is the 

identification of functionally selective KOPr agonists. Functional selectivity refers to the 

ability of a ligand to be biased towards a particular intracellular pathway it activates, such as 

pathways mediating analgesia over dysphoria. For example, U-69,593 based triazole and 

isoquinolinone probes with KOPr affinity, were found to selectively prefer G-protein coupled 

pathways over β-arrestin-2 recruitment. This attenuated dysphoric behaviour while 

maintaining analgesic potential to thermal stimuli in the mouse tail-flick test (Zhou et al., 

2013). The discovery of KOPr agonists that are peripherally restricted in the targets they 

stimulate, or functionally selective towards antinociceptive pathways, may improve 

therapeutic potential in the treatment of pain. 
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This study focuses on four KOPr agonists: the known peripherally restricted compound, S-N-

[2-(N-methyl-3,4-dichlorophenylacetamido)-2-(3-carboxyphenyl) ethyl]pyrrolidine, ICI 

204,448; the non-nitrogenous diterpene, Sal A, and its novel analogues: Tetrahydropyran 

Salvinorin A (THP Sal A) and Mesyl Salvinorin B (Mesyl Sal B). ICI 204,448 and Sal A have 

been shown previously to have analgesic effects in behavioural models of pain (Table 1.1). 

THP Sal A is a novel compound and has not been assessed by behavioural pain models prior 

to this study. In vivo and in vitro studies on Mesyl Sal B have recently been performed by our 

laboratory (Simonson et al., 2014). In this study I showed that Mesyl Sal B had central 

analgesic effects. The source and structures of these compounds are shown in Figure 1.3. 

KOPr binding and efficacy properties are outlined in Table 1.2. 
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Table 1.2. Comparison of binding and efficacy properties between KOPr agonists 

 

Radioactive KOPr 

ligand 

[ᶟH] Bremazocine [ᶟH] U-69,593 [¹²⁵I] OXY 

ICI 204,448 IC₅₀ = 33.2 ±14.7 nM   

Sal A  Kᵢ = 4 ±1 nM 

EC₅₀ = 46 ±8 nM 

Kᵢ = 1.9 ±0.2 nM 

EC₅₀ = 40 ±10 nM 

THP Sal A  Kᵢ = 6.21 ±0.4 nM  

EC₅₀ = 60 ±6 nM 

 

Mesyl Sal B   Kᵢ = 2.3 ±0.1 nM 

EC₅₀ = 30 ±5 nM 

IC₅₀, Inhibitory concentration (binding potency) EC₅₀, Effective concentration (binding 

potency); Kᵢ, binding affinity to KOPr 
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Figure 1.3 Kappa Opioid Compounds. ICI 204,448, the known peripherally restricted kappa opioid peptide 

(KOPr) agonist, is derived from ICI 199,441 by a modification to its central phenyl ring at the 3-position with a 

carboxymethyl ether. Salvinorin A is extracted from the Mexican sage, Salvia Divinorum. Substitution of the 

acetate group on the C-2 terminal of Salvinorin A with a tetrohydropyran moiety results in Tetrahydropyran 

Salvinorin A; substitution with a mesylate group results in Mesyl Salvinorin B. 
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2. Methods  

 

2.1 Animals  
 

Adult male B6-SJL protein tyrosine phosphatase receptor type c allele a (ptprca) mice 

weighing 23-30 g were bred within the animal facilities of Malaghan Institute of Medical 

Research and Victoria University of Wellington. All in vivo experiments were approved by 

the Victoria University Animal Ethics Committee and carried out in accordance with their 

guidelines for animal care. Animals were housed within, Victoria University of Wellington 

animal facility, in a room maintained at 21 °C with an alternating 12-hour light/dark cycle 

(7am-7pm). Food and water were available ad libitum. All tests were conducted in the light 

phase. 

 

2.2 Drugs and Solutions 
 

Salvinorin A was isolated from Salvia divinorum leaves as previously described by Giroud et 

al. (2000) and purified by chromatography (courtesy of Thomas E. Prisinzano, University of 

Kansas, USA). Tetrahydropyran Salvinorin A and Mesyl Salvinorin B were synthesised from 

Salvinorin A (courtesy of Thomas E. Prisinzano, University of Kansas, USA). ICI 204,448 was 

purchased from TOCRIS.  

Vehicle solutions were trialled to measure the solubility of KOPr agonists without mediating 

sedative effects. Preliminary tests were conducted with vehicle, 75% Dimethyl sulfoxide 

(DMSO) and 25% of 10 x phosphate buffered saline (PBS) solution (NaCl, KCl, Na2HPO4, KH2PO4, 

distilled water, adjusted to pH 7.4). Sedation was observed in mice after this vehicle was 

delivered, IP, and affected initial results with Sal A. This seemed to be correlated with 

increased DMSO concentrations. Since this study was the first to report the analgesic effects 

of novel Sal A analogues, a vehicle capable of fully dissolving our KOPr agonists had not been 

reported. We based our study on the vehicle used to dissolve Sal A by McCurdy et al., 

(2006). They used 90% propylene glycol and 10% DMSO. We found full dissolution of all 

KOPr agonists with 80% propylene glycol and 20% DMSO (dissolving at a concentration of 2 

mg/ml). The resulting solution was made up to dosages of 1 or 2 mg/kg for 23-30 g mice 
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using 10 x PBS solution. The resulting vehicle was 80:20, PG:DMSO, with PBS corrected to 

mouse weight. Drug solutions were stored at 2°C and used within 8 days. All KOPr agonists 

(1 and 2 mg/kg) were given IP (200 μl) via 29 gauge syringes (BD, Auckland, NZ). 

 

2.3 Assessment of Nociceptive Behaviour 

 

2.3.1 Tail-Flick Test 

 

The tail-flick test was performed according to methods of Horan et al., (1992). Mice were 

restrained in custom made restrainers (School of Biological Sciences Workshop, Victoria 

University of Wellington), which permitted free tail motion, and allowed to habituate for 10 

min. Following this, vehicle or drug was administered IP, and mice placed back in the 

restrainer. The distal 2 cm of the tail was submerged into a 50°C (±1°C) hot-water bath. The 

time it took for mice to withdrawal their tails was recorded by a stopwatch. Baseline tail-

withdrawal latencies for each mouse were recorded on 3 separate occasions (3 min apart) 

before experimenting and averaged. Mice with baseline latencies between 1-4 s were 

chosen for experimentation. A cut-off of 10 s was used to minimise tissue damage. KOPr 

agonists were administered IP and tail-withdrawal latencies recorded at 1, 5, 10, 15, 30, 45, 

60, 90 and 120 min. The maximum possible analgesic effect (MPE) was calculated according 

to previously published protocols (Horan et al., 1992; Martin, Tsou, & Walker, 1998), using 

the following formula:  

%MPE = 100 x (Test Latency - Control Latency)   

     (10 - Control Latency) 

 

2.3.2 Intradermal Formalin Model and Paw Oedema 

 

The intradermal formalin model was carried out according to the methods of Hunskaar and 

Hole (1987). Testing apparatus is illustrated in Fig. 2.1. Mice were allowed to habituate to 

the test environment for 15 min before testing was carried out. Mice were given KOPr 

agonist or vehicle, IP, and placed back into the test chamber for 5 min. The height of the 
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hind paw of the mouse was measured by 0-150 mm digital callipers (Whitworth, Inspec Inc., 

Michigan, USA) and 20 μl of formalin (2%) injected intradermally into the dorsal surface of 

the right paw. Mouse pain behaviour was then recorded via digital cameras (Bosch, 

Stuttgart, Germany) for 60 min. Paw height was measured again at 60 min (±10 min) to 

determine change in oedema formation. Assessment of pain behaviour was based on 

protocols developed by Dennis and Dubuisson (1977), using weight bearing score criteria. A 

score of 0 to 3 was given according to the following behavioural outcomes: 0 – full weight 

bearing where the mouse walks normally (no pain), 1 – partial weight bearing where the 

mouse is limping but able to sustain part of its weight (mild pain), 2 – no weight bearing 

where the mouse paw is raised (moderate pain), 3 – paw flinching and licking. Pain 

behaviour scores were assigned at 5 s intervals for 60 min by an observer blinded to the 

treatment groups. Additionally, time-dependent oedema formation was assessed at 10, 20, 

30, 40, 50 and 60 min post intradermal formalin. Following pain behavioural recording and 

paw measurements, mice were euthanized by asphyxiation with CO₂ and the right hind paw 

excised for tissue processing to determine the presence of inflammatory markers by other 

researchers in Dr Kivell’s laborarory. 
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Figure 2.1 Intradermal Formalin Test. Nociceptive behaviour of mice were assessed by recording pain 

behaviour by administration of intradermal formalin (2%). Mice were kept in a wooden box (27.5 x 18.5 x 30) 

with an open top and bottom surface, placed on a transparent glass surface. Pain behaviour was recorded with 

a help of a mirror, kept at an angle of 45° below the mouse, and a camera positioned perpendicular to it. 
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2.4 Assessment of Side-Effects 
 

2.4.1 Motor Coordination by Rotarod Performance Assay 
 

This test was carried out according to the methods of Joanna L. Stanley et al. (2005). Mice 

were trained to run on a rotarod (Harvard Apparatus, Massachusetts, U.S.) (dimension: 60 

mm width, 30 mm diameter) at 10 rpm for 120 s. Mice unable to successfully complete 2 

out of 3 consecutive trials without falling were excluded from the study. Able mice were 

administered 200 μL of either vehicle or KOPr agonist (IP) and immediately placed on the 

rotarod. The time at which they fell off the rod was recorded. This test procedure was 

carried out at 0, 15, 30, 45, 60, 75 and 90 min intervals. 

 

2.4.2 Core Body Temperature Measurements 

 

Baseline core body temperatures of mice were measured via rectal probe (Acorn series, 

Singapore). The probe was inserted 2 cm into the anal canal of mice and held in place until 

temperatures stabilised (not more than 10 s). After IP administration of KOPr agonist or 

vehicle, core body temperatures were measured at 10 min intervals for 60 min. Mice were 

housed in separate cages during the experiment. 

 

2.5 Data Analysis and Statistics  
 

Data was analysed using Prism v5.0c (GraphPad Prism Software Inc., La Jolla, CA, USA) and 

Microsoft Excel (Microsoft Corp., Redmond, WA, USA). Two-way Repeated Measures 

ANOVA followed by Bonferroni post-tests were used for analysing significance compared to 

controls in the tail-flick test, intradermal formalin model, rotarod test and core body 

temperature measurements. Two-way ANOVA followed by Dunnet’s Multiple Comparison 

test was performed to compare treatments to controls for measurements of oedema. One-

way ANOVA followed by Dunnet’s Multiple Comparison test was used to assess significance 

compared to controls for oedema formation following 60 min formalin exposure. Results 

were considered significant when P≤0.05.  
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3. Results 
 

3.1 Analgesic Effects of KOPr Agonists in the Tail-Flick Test 
 
The hot water tail-flick test was used to assess the centrally mediated duration of analgesic 

effects of KOPr agonists. The dose dependent (1 and 2 mg/kg) analgesic effect of ICI 

204,448, Sal A, THP Sal A and Mesyl Sal B towards nociceptive thermal (50°C) pain are 

shown in Figure 3.1. The peripherally restricted KOPr agonist, ICI 204,448, did not increase 

tail-withdrawal latencies at either 1 or 2 mg/kg (Figure 3.1 A). Sal A (1 mg/kg) significantly 

increased tail-withdrawal latencies at 5 (P<0.05), 10 and 15 min (P<0.001) following IP 

administration; Sal A (2 mg/kg) was significant at 5 (P<0.05) and 10 min (P<0.01) (Figure 3.1 

B).  

THP Sal A did not have significant analgesic effects at 1 mg/kg. At 2 mg/kg however, it 

significantly attenuated acute thermal stimuli at 5, 10, 15 min (P<0.01) and 30 min (P<0.05) 

time-points (Figure 3.1 C). Mesyl Sal B (1 mg/kg) significantly increased tail-withdrawal 

latencies at 15 (P<0.05), 30, 45, 60 (P<0.01) and 90 min (P<0.05) time-points; however at 2 

mg/kg, it was only significant at 60 min (P<0.05).  
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Fig. 3.1 Tail-Flick Test showing dose related (1 and 2 mg/kg, IP) and time-course effects of KOPr agonists on 

tail-flick latencies to acute thermal (50°C) stimuli. Vehicle (n=9) (A) Salvinorin A (n=5-9) (B) ICI 204,448 (n=6) 

(C) Tetrahydropyran Salvinorin A (n=6) (D) Mesyl Salvinorin B (n=6-8). Percentage of maximum possible effect 

(%MPE) at each time-point was calculated based on pre-drug latencies and results expressed as mean ± SEM. 

Two-way Repeated Measures ANOVA found increased tail-withdrawal latencies due to Sal A [F (2, 200) = 9.39, 

P = 0.0013]; Mesyl Sal B [F (2, 200) = 8.66, P = 0.0020]; THP Sal A [F (2, 180) = 7.29, P < 0.0048] but not ICI 

204,448 [F (2, 180) = 0.86, P = 0.4390]. Bonferroni post-test were done to compared KOPr agonist treated mice 

with vehicle, *P<0.05, **P<0.01, ***P<0.001. 
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3.2 Total Analgesic Effect in the Tail-Flick Test  
 
Total analgesic effect of KOPr agonists, every 30 min in the tail-flick test, was evaluated 

using area under the curve (AUC) based on tail-withdrawal latencies. ICI 204,448 was not 

found to have any analgesic effect. Sal A (1 mg/kg) had a significant analgesic effect for the 

first 30 min (P<0.001). Similarly, THP Sal A (2 mg/kg) significantly increased withdrawal 

latencies within 30min (P<0.001). There was no analgesic effect by Sal A and THP Sal A 

beyond this point. Mesyl Sal B (2 mg/kg) had a significant overall analgesic effect 30-120 min 

(P<0.05) post IP administration. 
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Figure 3.2 Total Analgesic Effect in the Tail-Flick Test shows the overall analgesic effects of KOPr agonists (1 

and 2 mg/kg) on tail-withdrawal latencies every 30 min. (A) ICI 204,448 (B) Salvinorin A (C) Tetrahydropyran 

Salvinorin A (D) Mesyl Salvinorin B. One-way ANOVA followed by Dunnett’s test to compare with vehicle. 

*P<0.05, **P<0.01, ***P<0.001 
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3.3 Analgesic Effects of KOPr Agonists in the Intradermal Formalin Test 
  
The intradermal formalin test was used to assess the analgesic effects of KOPr agonists on 

formalin-induced phase 1 (0-10 min) and phase 2 pain (20-60 min) (Fig. 3.3). Analgesic 

effects of ICI 204,448, Sal A, THP Sal A and Mesyl Sal B were compared to positive pain 

controls (vehicle IP followed by intradermal formalin). Positive pain controls, compared to 

negative pain controls, showed significant pain scores at 5, 10, 25, 30, 35, 40, 45, 50, 55 and 

60 min (P<0.001) post intradermal formalin administration. ICI 204,448 did not have an 

effect on phase 1 pain; however it reduced phase 2 pain at 30 min with 1 mg/kg (P<0.05) 

and 25-35 min with 2 mg/kg (P<0.001) (Fig. 3.3 A). Sal A (1 mg/kg) did not significantly 

reduce either phase 1 or 2 pain, however it showed an insignificant trend of reducing phase 

2 pain. Sal A (2 mg/kg) significantly attenuated phase 1 pain at 5-10 min (P<0.001), and 

phase 2 pain at 25-35 min (P<0.01), (Fig. 3.3 B).   

THP Sal A (1 mg/kg) reduced phase 1 pain at 10 min (P<0.01) and phase 2 pain at 40, 45 and 

60 min (P<0.05). At 2 mg/kg, it attenuated phase 1 pain at 5 min (P<0.001) and phase 2 pain 

at 25-40 min (P<0.001) (Fig. 3.3 C). Mesyl Sal B (1 mg/kg) significantly reduced phase 1 pain 

at 10 min (P<0.05) and phase 2 pain at 60 min (P<0.05). At 2 mg/kg, it only reduced phase 2 

pain at 30 min (P<0.01) (Fig. 3.3 D).  
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Fig. 3.2 Intradermal Formalin Test showing dose related (1 and 2 mg/kg, IP) and time-course of analgesic 

effects of KOPr agonists on phase 1 (0-10 min) and phase 2 pain (20-60 min). Results are mean ± SEM of 

nociceptive behaviour scores, determined every 5 min (n=6 for each group). (A) ICI 204,448; (B) Salvinorin A; 

(C) Tetrahydropyran Salvinorin A (D) Mesyl Salvinorin B. Two-way Repeated Measures ANOVA revealed a time-

dependent analgesic action for Sal A [F (11, 220) = 15, P<0.0001]; ICI 204,448 [F (11, 220) = 11.37, P<0.0001]; 

Mesyl Sal B [F (11, 220) = 33.22, P<0.0001]; THP Sal A [F (11, 220) = 17.89, P<0.0001]. Bonferonni post-test 

compared to +VE Pain, *P<0.05, **P<0.01, ***P<0.001; -VE Pain, vehicle treated mice with intradermal PBS; 

+VE Pain, vehicle treated mice with intradermal Formalin (2%)  
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3.4 Total Analgesic Effect in the Intradermal Formalin Test 
 

 
 
Total analgesic effect of KOPr agonists on phase 1 and phase 2 pain was evaluated 

separately by area under the curve (AUC), based on pain behaviour scores. ICI 204,448 was 

not found to have any overall analgesic effect at either phase 1 or 2 of the intradermal 

formalin test. Sal A (2 mg/kg) significantly attenuated phase 1 (P<0.001) and Phase 2 pain 

(P<0.001); at 1 mg/kg it was only found to attenuate phase 2 pain (P<0.05). THP Sal A 

significantly reduced phase 1 pain at 1 and 2 mg/kg (P<0.01); at 2 mg/kg it was further able 

to significantly attenuate phase 2 pain (P<0.01). Mesyl Sal B was only able to significantly 

attenuate phase 1 pain at 1 mg/kg (P<0.01). 
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Figure 3.4 Total Analgesic Effect in the Intradermal Formalin Test shows the overall analgesic effects of KOPr 

agonists on phase 1 (left panel) and phase 2 pain (right panel). (A) ICI 204,448 (B) Salvinorin A (C) 

Tetrahydropyran Salvinorin A (D) Mesyl Salvinorin B. One-way ANOVA followed by Dunnett’s test to compare 

with +Ve pain control. *P<0.05; **P<0.01; ***P<0.001. –Ve Pain, vehicle treated mice with intradermal PBS; 

+Ve Pain, vehicle treated mice with intradermal formalin (2%). 
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3.5 Anti-Oedematous Effect of KOPr Agonists 
 
Paw swelling (mm) was evaluated before and after the intradermal formalin tests. Mice 

administered vehicle (PBS) intradermally into the hind paw showed a 53.1% decrease (37.99 

to 68.20 of 95% CI, P<0.001) in paw swelling compared to mice administered formalin (2%). 

Significant reduction of paw swelling was seen at a dose of 2 mg/kg with ICI 204,448 

(15.78%, 1.806 to 29.74 of 95% CI, P<0.05) and Sal A (13.54%, 0.2112 to 26.87 of 95% CI, 

P<0.05) (Figure 3.5 A, B). Although THP Sal A and Mesyl Sal B showed insignificant trends in 

attenuating oedema, the effect was not considered significant (Figure 3.5 B, C). THP Sal A (1 

mg/kg) reduced paw swelling by 15.01% (-2.891 to 32.92 of 95% CI, P>0.05). Mesyl Sal B 

reduced paw swelling at 1 mg/kg (15.21%, -3.812 to 34.23 of 95% CI, P>0.05) and 2 mg/kg 

(17.5%, -1.516 to 36.52 of 95% CI, P>0.05). 

Salvinorin A and ICI 204,448 (2 mg/kg) were further evaluated for time-course anti-

oedematous effects (Firgure 3.5 E). There was significant paw swelling in mice administered 

intradermal formalin compared to vehicle in the footpad from 10-20 min (P<0.05) and 30-60 

min (P<0.001). Sal A significantly reduced swelling from 30-60 min (23.97 to 25.51%, 

P<0.05); ICI 204,448 attenuated swelling at 30 min (25.23%, P<0.05). Two-way ANOVA tests 

revealed significant overall anti-oedematous effects [F (2, 42) = 29.97, P<0.0004] that was 

significantly time-dependent [F (6, 42) = 12.18, P<0.0001]. Bonferonni post-tests were done 

to compare against controls. 
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Fig. 3.5 Effect of KOPr agonists on paw swelling. Dose dependent (1 and 2 mg/kg; IP) effect of KOPr agonists 

on formalin (2%) induced paw swelling. Results are mean ± SEM of percentage change in paw height for each 

group. +VE Pain (2% Formalin, n=17), -VE Pain (PBS, n=12) (A) Salvinorin A (B) ICI 204,448 (C) Tetrahydropyran 

Salvinorin A (D) Mesyl Salvinorin B. One-way ANOVA followed by Dunnet’s Test to compare against +Ve Pain. 

(E) Results are mean ± SEM of percentage change in paw height every 10 min for n=6 for each group. +VE Pain 

(2% Formalin, n=2), -VE Pain (PBS, n=2). Two-way ANOVA followed by Dunnet’s Test to compare against +Ve 

Pain, *P<0.05, ***P<0.001. –Ve Pain, vehicle treated mice with intradermal PBS; +Ve Pain, vehicle treated mice 

with intradermal formalin (2%). 
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3.6. Effect of KOPr Agonists on Motor Coordination in the Rotarod Performance Test 
 

KOPr agonist (1 and 2 mg/kg) effect on motor coordination was assessed based on the 

latencies of mice to fall off the rotarod (Figure 3.6). ICI 204,448 (1 mg/kg) did not affect 

motor coordination; however at 2 mg/kg, showed significant motor impairment 15-60 min 

(P<0.01) post IP administration (Fig. 3.6 A).  Sal A (1 mg/kg) had no significant effect on fall-

off latencies; at 2 mg/kg it showed significant motor impairment from 2-15 min (P<0.01) 

(Figure 3.6 B). THP Sal A (1 mg/kg) caused significant motor impairment 15-45 min (P<0.01); 

at 2 mg/kg, it showed significant sedation within 2 min of IP drug administration (P<0.05) 

and from 15-90 min after (P<0.001; n=4) (Fig. 3.6 C). Mesyl Sal B did not cause motor 

impairment at 1 or 2 mg/kg (Fig. 3.5 C).  
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Fig. 3.6 Rotarod Performance Test showing dose-related (1 and 2 mg/kg; IP) and time-course effect of KOPr 

agonists on motor coordination. Results are mean ± SEM of fall-off latencies of mice (n=4 to 7 per group) (A) 

Salvinorin A (B) ICI 204, 448 (C) Tetrahydropyran Salvinorin A (D) Mesyl Salvinorin B. Two-way ANOVA 

Repeated Measures revealed sedative effects for Sal A [F (2, 108) = 6.79, P<0.0063]; ICI 204,448 [F (2, 102) = 

23.52, P<0.0001]; THP Sal A [F (2, 84) = 35.66, P<0.0001] but not Mesyl Sal B [F (2, 96) = 0.23, P<0.7986]. 

Bonferonni post-test to compare to vehicle, *P<0.05, **P<0.01, ***P<0.001 
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3.7 Hypothermic Effects of KOPr Agonists 
  
The effect of KOPr agonists on core body temperature was examined using a rectal probe. 

No compound produced significant changes in body temperature except Sal A (2 mg/kg) at 

20 and 40 min (P<0.05). Two-way ANOVA revealed a significant hypothermic effect by Sal A 

[F (2, 54) = 25.14, P<0.0001], although this effect was not consistent through the 

experiment [F (12, 54) = 1.17, P<0.3259]. ICI 204,448 (2 mg/kg) did not show a significant 

effect on body temperature [F (2, 66) = 2.73, P<0.1091] although there was a trending 

interaction between hypothermic effect and time [F (12, 66) = 1.71, P<0.0855; Fig. 3.6 B]. 

Mesyl Sal B [F (2, 66) = 1.69, P<0.2299] and THP Sal A [F (2, 30) = 0.25, P<0.0.7895] did not 

show any significant effect in temperature change.  
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Fig. 3.7 Time-Course Effect of KOPr Agonists on Rectal Temperature (°C). Results are mean ± SEM of change in 

core body temperature in mice; Vehicle (PBS) (A) Salvinorin A (B) ICI 204, 448 (C) Tetrahydropyran Salvinorin A 

(D) Mesyl Salvinorin B. Two-way ANOVA Repeated Measures followed by Bonferonni post-test, *P<0.05. 
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4. Discussion 
 

KOPr agonists, like MOPr agonists, have analgesic properties. However, centrally mediated 

side-effects such as sedation, dysphoria and hallucinations restrict them from being used 

therapeutically as analgesics. There are a variety of ways in which the therapeutic analgesic 

potential of opioid compounds may be exploited. Previous studies have shown that 

targeting both KOPr (by U-69,593) and MOPr (by fentanyl) may reduce abuse potential in 

rhesus monkeys, without reducing analgesic effects relative to selective MOPr agonists 

given alone (Neguset al.,  2008). Other ways in which the therapeutic potential of KOPr 

agonists have been re-evaluated recently include the development KOPr agonists that are 

restricted in their ability to cross the blood brain barrier. Restricting KOPr agonist action to 

the periphery has been shown to reduce the predominantly centrally mediated side-effects. 

Examples of this include the KOPr agonist CR-845 (Arendt-Nielsen et al., 2009), ICI 204,448 

(Barber et al., 1994), FE 200665 and FE 200666  (Rivière, 2004). A further strategy is to 

evaluate the functionally selective nature of KOPr agonists for antinociceptive pathways 

over pathways activating side-effects (Rives et al., 2012; Zhou et al., 2013). Recently, Sal A 

analogues have been shown to have fewer side effects in preclinical models as a 

consequence of functionally selective mechanisms (Fichna et al., 2009; Lamb et al., 2012).  

In the present study we evaluate the analgesic properties of a known KOPr agonist with 

predominantly peripheral effects, ICI 204,448. In addition, we evaluate Sal A and its novel 

analogues THP Sal A and Mesyl Sal B using pre-clinical models of acute pain. Although the 

analgesic actions of these novel analogues have not been reported previously, we have 

recently shown that Mesyl Sal B has a longer duration of action compared to Sal A in the 

tail-flick test (Simonson et al 2014).   
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Table 4.1 Summary of Anitnociceptive Effects 

 

 

KOPr Agonist  
(1 and/or 2 mg/kg) 

ICI 204,448 Sal A THP Sal A Mesyl Sal B 

Time of effect in  
tail-flick test (min) 

nil 5-15 5-15 15, 25-30, 40-45, 
90 

 

Time of 
effect in 
intradermal 
formalin test 
(min) 

Phase 1  5-10 10 10 

Phase 2 25-35 25-35 25-60 30, 45 

 

 

 

Table 4.2 Summary of Side-Effects 

KOPr Agonist  
(1 and/or 2 mg/kg) 

ICI 204,448 Sal A THP Sal A Mesyl Sal B 

Time of effect in 
rotarod test (min) 

25-35 2-15 2-90 Nil 

 

Time of hypothermic 
effect 

Nil 20, 40 Nil Nil 
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4.1 Antinociceptive Effects of KOPr Agonists  
 

4.1.1 ICI 204,448 
 

There is evidence to support that ICI 204,448 has limited entry into the CNS. Initial ex vivo 

studies on mice, 30 min after subcutaneous (SC) administration of ICI 204,448 (50 mg/kg), 

estimated to accumulate in brain tissue at a concentration of 435 pg/mg. The estimation 

was based on ex vivo and in vitro [ᶟH]-bremazocine displacement curves in treated and 

untreated mice, giving it a CNS penetration index of 8.7 (compared to 328.1 of U50,488H) 

(Shaw et al., 1989). This has resulted in studies using this compound for evaluating 

peripheral effects of KOPr agonists (Inan & Cowan, 2004; Trigub et al., 2014). Salas et al. 

(2007) showed that ICI 204,448 had a dose-dependent analgesic effect in rat models of 

neuropathic pain after SC, intrathecal and PAG administration. The analgesic effect due to 

SC administration were partially blocked by a broad opioid receptor antagonist (naloxone) 

delivered SC but not intrathecally. This suggests that ICI 204,448 is capable of producing 

analgesia by KOPr selective mechanisms both centrally and peripherally; it shows exclusive 

peripheral mechanisms of analgesic action following systemic delivery.  

To the best of our knowledge, the analgesic effects of ICI 204,448 have not been determined 

utilising the tail-flick test. Figures 3.1 A & 3.2 A show that ICI 204,448 does not have 

potential in attenuating central processes of pain transmission as assessed by the tail-flick 

test. This supports results from other studies showing ICI 204,448 has limited effects in the 

CNS following systemic administration. In addition, we found ICI 204,448 attenuated phase 

2, but not phase 1 pain in the intradermal formalin test. However, this analgesic effect was 

short-lived and only significant at 30 min with 1 mg/kg, and 25-35 min with 2 mg/kg (Figure 

3.3 A). Barber et al., (1994) constructed a bell-shaped dose response curve with ICI 204,448 

(0.003-30 mg/kg) in mice and concluded that it could attenuate phase 1 nociceptive pain at 

an inhibitory dose (ID₅₀) of 18.9 mg/kg (lower limit 7.3 mg/kg) and phase 2 inflammatory 

pain at an ID₅₀ of 12.6 mg/kg (lower limit 8.4 mg/kg) using the intradermal formalin (3%) 

model. Pain induced by the abdominal constriction test, a model of inflammatory pain, was 

reduced by an ID₅₀ of 1.9 mg/kg (lower limit 0.6 mg/kg), suggesting better potential in 

attenuating inflammatory pain over nociceptive pain. Our study was consistent with these 
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results in observing prevalent analgesic effects during phase 2 pain, as opposed to phase 1 

and thermal nociceptive pain, at 1 and 2 mg/kg (Figure 3.1 A, 3.3 A). The overall analgesic 

effect was assessed by area under the curve (AUC) of tail-withdrawal latencies in the tail-

flick test, and behavioural pain scores in the intradermal formalin test (Figure 3.2 A, 3.4 A). 

These results show that ICI 204,448 does not modulate nociceptive pain (thermal and phase 

1 pain) or phase 2 inflammatory pain (Figure 3.2 A, 3.4 A), suggesting limited analgesic 

potential at 1 and 2 mg/kg. 

The attenuation of phase 2 pain between 25-35 min by ICI 204,448 (2 mg/kg) (Figure 3.2 A) 

correlates with its capacity to significantly reduce oedema formation at 30 min (Figure 3.6). 

This suggests that ICI 204,448 has an onset of action in the modulation of peripheral 

inflammatory processes ~30 min post IP administration. Barber et al. (1994) used a 30 min 

pretreament time as opposed to 5 min by this study. Since phase 2 pain only manifests 15-

20 min after intradermal formalin administration, a pretreatment time of 30 min would 

require ICI 204,448 to be active 45-50 min after formalin administration. At this time-point 

the phase 2 analgesic effect of ICI 204,448, in the intradermal formalin test, was found to 

have subsided (Figure 3.3 A). This may explain the higher doses required to attenuate phase 

2 pain by Barber et al., (1994). Our study also found ICI 204,448 (2 mg/kg) significantly 

reduced paw oedema at 60 min following the intradermal formalin test. Flow cytometry 

results (Unpublished data, 2013), done by a colleague in the Kivell lab, found ICI 204,448 (1 

and 2 mg/kg) significantly attenuated neutrophil migration induced by intradermal formalin. 

These results suggest ICI 204,448 has potential for attenuating nociceptive processes, 

oedema and inflammatory cell recruitment as a result of inflammation due to tissue 

damage. However, at a dose of 1 and 2 mg/kg, there is limited potential for it to be an 

effective analgesic. The therapeutic potential of this compound was further evaluated with 

the rotarod performance test (discussed below, section 4.2.1). 

 
4.1.2 Tail Flick Test: Sal A, THP Sal A & Mesyl Sal B 
 

Unlike ICI 204,448, Sal A is known for its central (Grilli et al., 2009; Imanshahidi & 

Hosseinzadeh, 2006); and peripheral analgesic effects (Gabriella Aviello et al., 2011) via 

KOPr selective mechanisms. We found Sal A (1 and 2 mg/kg) significantly increased tail-
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withdrawal latencies 5 to 15 min post IP administration (Figure 3.1 B). This suggests a rapid 

onset and short duration of central action towards thermal stimuli. Studies utilising tail-flick 

tests with systemic administration (SC) of Sal A found it had a short-acting (~20 min) and 

dose-dependent (1-4 mg/kg) effect on tail-withdrawal latencies in mice (McCurdy, 2006). 

Our results were consistent with these findings. However, we found that Sal A at 1 mg/kg 

increased tail-withdrawal latencies compared to vehicle treated mice by 28.8%, compared 

to 18.3% at 2 mg/kg (Figure 3.1 B). McCurdy et al. (2006) found the opposite dose-related 

effects with Sal A (2 > 1 mg/kg); they did however find lower doses better attenuated acute 

thermal, chemical and inflammatory stimuli in mouse behavioural pain models, including 

the tail-flick test (2 > 4 mg/kg), hot-plate test (1 > 2 mg/kg) and in abdominal constriction 

assays (0.5 > 2 mg/kg).   

THP Sal A showed a similar pattern of attenuating nociceptive pain in the tail-flick test as Sal 

A (Figure 3.1 B, C). It had a rapid onset (5 min) and short duration of central action (30 min) 

at 2 mg/kg. Despite similarities, its dose-related effects were contrary to Sal A, attenuating 

pain only at 2 mg/kg and not at 1 mg/kg (Sal A: 1 > 2 mg/kg). AUC indicated better potential 

in attenuating thermal nociceptive pain than Sal A within the first 30 min of IP 

administration (Figure 3.2 B, C). It’s therefore possible that THP Sal A is rapidly converted 

into a metabolite that is incapable of producing analgesia, similar to Sal A (t½ = ~8 min in 

non-human primate brains) (Hooker et al., 2008). The therapeutic potential of THP Sal A was 

further evaluated for sedative and thermoregulatory effects (discussed below, section 

4.2.2). 

In contrast to THP Sal A, Mesyl Sal B (1 mg/kg) was found to have a later onset (15 min) and 

longer duration of action (60 min) than Sal A and THP Sal A in the tail-flick test (Figure 3.1 B, 

C, D). AUC analysis revealed significant analgesic effects, 30-120 min at 1 mg/kg but not at 2 

mg/kg. Its overall potential in reducing thermal pain at 1 mg/kg was lower than Sal A within 

the first 30 min, but greater than Sal A and THP Sal A from 30-120 min (Figure 3.2 B, C, D). 

This suggests that Mesyl Sal B may have a better metabolic profile than Sal A and THP Sal A 

due to its more sustained analgesic effects. However, its overall potential in treating 

nociceptive thermal pain is compromised. Future experiments in determining the analgesic 

potential of Mesyl Sal B at higher and lower doses would better elucidate its dose-

dependent central mechanisms of producing analgesia. 
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4.1.3 Intradermal formalin Test: Sal A, THP Sal A & Mesyl Sal B 
 

Time-course analysis on formalin induced pain behaviour showed that Sal A (2 mg/kg) 

significantly attenuated phase 1 (at 5-10 min) and phase 2 pain (at 25-35 min) (Figure 3.2 B). 

At 1 mg/kg, no significant analgesic effects were observed at any single time-point. 

However, AUC analysis found Sal A to significantly attenuate phase 2 pain at 1 mg/kg and 

both phase 1 and 2 pain at 2 mg/kg (Figure 3.4 B). Sal A also attenuated formalin induced 

oedema from 30 to 60 min at 2 mg/kg (Figure 3.5 B; 3.6). Aviello et al., (2012) found 

systemic delivery (IP) of Sal A (1-2 mg/kg) significantly reduced phase 1 and 2 pain in a dose-

dependent and antagonist (NorBNI) sensitive manner. This suggests KOPr selective 

mechanisms in the attenuation of formalin induced nociceptive and inflammatory pain. The 

same study reported Sal A (0.5-2 mg/kg) to significantly attenuate paw oedema, induced by 

carageenan and lipopolysaccharide. The antioedematous effect was found to be greatest at 

the lowest administered dose (0.5 mg/kg, 2-6 hours).  

Studies within our laboratory, investigating inflammatory processes using  flow cytometry 

and histological techniques on paw tissue, were carried out 60 min (± 15 min) after 

intradermal formalin administration (Unpublished data, 2013). Results from this analysis 

showed significant attenuation of neutrophils in paw tissue of Sal A (2 mg/kg) treated mice 

compared to controls. Indeed, Sal A has been shown to modulate pain-related inflammatory 

processes, such as reducing tumour necrosis factor α, interleukins and nitrite levels in 

lipopolysaccharide induced intraperitoneal mouse macrophages in vitro (Aviello et al., 

2011). Guida et al. (2012) showed that a 2 mg/kg repeated treatment with Sal A (IP) 

attenuated inflammatory processes within the CNS by reducing spinal astrocytes, microglia 

and interleukin-10 in spinal tissue between 3-7 days. This suggests that Sal A has analgesic 

and anti-inflammatory properties at both central and peripheral sites. There are however 

discrepencies between specific does-related effects with administering Sal A IP, as shown by 

results with this study and those done by McCurdy et al., (2006) and Aviello et al., (2011). 

Conversely, studies employing intrathecal or intracerebroventricular administration of Sal A 

have not reported these dose-related discrepancies (John et al. 2005; Ansonoff et al., 2006). 

It is speculated that these differences are due to different peripheral or central target 
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preferences by different drug dosages, although further studies are needed to clarify this 

unintuitive effect. 

THP Sal A was found to have a similar pattern in attenuating phase 1 and 2 pain as Sal A 

(Figure 3.3 B, C). Time-course analysis of formalin induced pain found it to reduce phase 1 

pain at both 1 and 2 mg/kg (Figure 3.3 C; 3.4 C). Similarly, phase 2 pain was reduced at 1 

mg/kg (at 40, 45, 60 min) and 2 mg/kg (25-45 min). However, AUC analysis showed THP Sal 

A to reduce phase 2 pain at only 2 mg/kg (Figure 3.4 C). These results suggest that, 

compared to Sal A, THP Sal A has similar potential in reducing chemically induced 

nociceptive pain; it may have a similar half-life in the CNS as Sal A. THP Sal A has a longer 

duration of action in reducing inflammatory pain.  

Time-course analysis of formalin induced pain found Mesyl Sal B to attenuate both phase 1 

(1 mg/kg, 10 min) and phase 2 pain (1 mg/kg, 60 min; 2 mg/kg, 30 min) (Figure 3.3 D). This 

suggests potential for Mesyl Sal B in attenuating both nociceptive and inflammatory pain. 

However, AUC analysis assessing overall analgesic effects did not find Mesyl Sal B to 

attenuate phase 1 or 2 pain at either 1 or 2 mg/kg. This shows that although Mesyl Sal B has 

analgesic potential through CNS and peripheral targets, it is weaker in comparison to Sal A 

and THP Sal A. Just as in the tail-flick test, it would be worth assessing higher doses of Mesyl 

Sal B in the intradermal formalin model to further evaluate its dose-related analgesic 

potential in the CNS and periphery. 
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4.2 Side-Effect Profile 
 

4.2.1 ICI 204,448 

 

As far as we know, ICI 204,448 has not been tested for sedative effects in mice using the 

rotarod performance test. We found ICI 204,448 to be significantly sedative (33-50% ±SEM 

with n=7) from 15-60 min at a dose of 2 mg/kg, as assessed by the rotarod performance 

test. Studies using rotarod and elevated plus maze tests on rats however, found no 

locomotor effects post SC (Barber et al., 1994) or intragastric (Alexeeva et al., 2012) 

administration (30 min pretreatment time), respectively. It was only found to be sedative at 

a dose of 52 mg/kg (SC) in the platform sedation test in mice (Kumar et al., 2005); at 30 

mg/kg (SC), it neither prolonged hexobarbitone-induced sleeping time in mice (A. Barber et 

al., 1994) nor was it active in the rotarod performance test in rats (Rogers et al., 1992). It 

was however, found to produce a concentration-dependent displacement of (ᶟH)-

bremazocine from guinea-pig cerebellum membranes after SC administration (30 min 

pretreatment time) (A. Barber et al., 1994). This suggests that systemic delivery of ICI 

204,448 may stimulate KOPr in the cerebellum, a crucial region in the mediation for motor 

coordination (Morton & Bastian, 2004), although in vivo results in rodents have not been 

suggestive of sedative effects. We are the first to report sedative effects of ICI 204,448 at a 

dose of 2 mg/kg in mice using the rotarod performance test. Although this effect may be a 

consequence of centrally penetrative effects of ICI 204,448, there is a chance of it being 

mediated via peripheral mechanisms. KOPr expression and dynorphins have been detected 

in the inner ear of guinea pigs (Jongkamonwiwat et al., 2006). The vestibular system of the 

inner ear is known to contribute to balance and sense of spatial orientation. It is therefore 

possible that these locomotor effects are a consequence of KOPr activity in these peripheral 

regions, although more studies are needed in elucidating these effects.                

We did not find any hypothermic effects with ICI 204,448 at 1 mg/kg, although a 

hypothermic trend, however insignificant, can be noticed at 2 mg/kg (Figure 3.6 A). ICI 

204,448 has been suggested to produce hypothermia via peripheral mechanisms. Rawls et al 
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(2005) showed that ICI 204,448 (SC) produced significant hypothermia at doses ≥ 5 mg/kg in 

cold exposed (5°C) rats but not in rats exposed to warmer temperatures (20-30°C). The 

hypothermic effect was attenuated by intracerebroventricular administration of the KOPr 

selective antagonist, NorBNI, making it unlikely to be caused by KOPr activity it the CNS. This 

suggests peripheral mechanisms of hypothermia.  

ICI 204,448, although known to be peripherally restricted, can penetrate the CNS at high 

doses. As most studies employ 30 min pretreatment times, the level of central penetration 

in vivo is not known before this time-point. As peripheral mechanisms of KOPr-dependent 

sedation have not been fully elucidated, studies using this compound as a positive control 

for suggesting peripherally mediated effects (Inan et al., 2004; Trigub et al., 2014) may need 

further evidence. This may be achieved by imaging techniques (de Lange & Danhof, 2002) or 

coadministration with intrathecal or intracerebroventricular NorBNI. Although ICI 204,448 

shows therapeutic potential of having analgesic and anti-inflammatory effects without 

causing sedation at 1 mg/kg, these effects are short-lived. Peripherally restricted properties 

of KOPr agonists, such as CR-845, may prove to be more effective in the treatment of pain, 

although this study did not find ICI 204,448 to be an effective analgesic. 

 

4.2.2 Sal A, THP Sal A & Mesyl Sal B 

 

Results from the rotarod performance test with Sal A in this study were consistent with 

results from the tail-flick test (Figure 3.1 B; 3.7 B). It was found have a fast onset (~33.6% 

±29% within 2 min) and short-acting (2-15 min) sedative effect in mice at a dose of 2 mg/kg 

(Fig. 3.3 B); this effect was not observed at a dose of 1 mg/kg. Sal A has been shown to 

induce sedation and dysphoria in rodents, humans and non-human primates (Butelman et 

al., 2004; Chavkin et al., 2004; Fantegrossi et al., 2005). PET scans in primates using [¹¹C]-Sal 

A, found that it rapidly crossed the blood-brain-barrier and reached 3.3% of the injected 

dose within 40 s, and cleared to half of its peak by 8 min (Hooker et al., 2008). Persistent 

radioactive carbon concentrations were found in the spine; its highest level in the brain was 

observed in the cerebellum – a critical area for balance and locomotion (Morton & Bastian, 

2004). Fantegrossi et al. (2005) found Sal A (0.5-2 mg/kg) to cause significant sedation and 
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decreased motor coordination within the first 5 min of IP administration (5 min 

pretreatment time). It was shown to do this in a KOPr selective manner in the inverted 

screen task in mice, a behavioural model for assessing sedation and muscle strength. These 

results suggest that, like the central antinociceptive effects of Sal A, the sedative effects 

have a fast onset and brief duration of action. Furthermore, Sal A (1-3.2 mg/kg) was found 

to decrease dopamine levels in the brain (Carlezon et al., 2006; Zhang et al., Ho, & Kreek, 

2005) in a KOPr selective manner. As decreased extracellular dopamine has been linked to 

sedative effects in mice (Chiara et al., 1976), interplay between KOPr and dopamine 

mechanisms may be responsible for the sedative nature of this KOPr agonist.  

THP Sal A (2 mg/kg) had similar potential in being sedative as Sal A (~30%, ±SEM with n=4), 

having a fast onset of action within 2 min. It was sedative at both 1 mg/kg (15-45 min) and 2 

mg/kg (2-90 min). Although its duration of central action in the tail-flick test was similar to 

Sal A (30 min), it had a longer sedative effect than Sal A (Figure 3.7 B, C). This suggests that if 

these effects are in fact centrally mediated, then it may be due to differential KOPr 

stimulation in the CNS by THP Sal A. In contrast, Mesyl Sal B was not sedative at either 1 or 2 

mg/kg, suggesting better therapeutic potential in treating pain. Although Mesyl Sal B had 

central effects in the tail-flick test (Figure 3.1 D), it did not cause sedation. Unless these 

sedative effects are peripherally mediated, this suggests differential stimulation of KOPr in 

the CNS, by Mesyl Sal B, to produce analgesia without sedation/locomotor dysfunction. 

We found Sal A to be significantly hypothermic (P<0.05, -1°C, ±SEM with n=6) at 2 mg/kg, 20 

and 40 min post IP administration (Fig. 3.6 B). Ansonoff et al., 2006 used KOPr knockout 

mice to show Sal A had reduced potential in producing hypothermia in these models; Sal A-

induced hypothermia in wild-type mice lasted for 75-120 min post intracerebroventricular 

administration (50 μg). Wang et al. (2008) found that IP administration of high-dose Sal A 

(10 mg/kg) in rats had no hypothermic effects, although this study used a pretreatment time 

of 30 min. A significant part of Sal A action may have subsided after 30 min. As studies on 

Sal A have found it to have a very short half-life in the CNS (~ 8 min in non-human primates) 

(Hooker et al., 2008), whether the hypothermic effect of Sal A in our study was due to 

central or peripheral mechanisms is, like ICI 204,448, yet to be determined. In contrast, THP 

http://www.ncbi.nlm.nih.gov/pubmed?term=Ansonoff%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=16672569
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Sal A and Mesyl Sal B were not found to cause significant irregularities in thermoregulation 

at 1 and 2 mg/kg.  

 

 

4.4 Limitations 
 
It was recently reported that male human experimenters/observers, such as that used by 

this study, may contribute to significant alterations to nociceptive and thermoregulatory 

mechanisms in rodents as opposed to female human experimenters/observers (Sorge et al., 

2014). These effects were suggested to be due to increased levels of stress-induced 

androgens from exposure to male observers, since these effects were not replicated in 

castrated rodents, cats and dogs. Nociceptive processes, assessed by the tail-flick test in 

mice (sample size > 1000), revealed male observers to significantly increase mean base-line 

tail-flick latencies. Assessment of male-induced analgesia in the intradermal formalin test 

(1%) showed phase 1 pain was attenuated by minimal olfactory stimuli, such as a shirt that 

was previously worn by a male. Phase 2 pain was also reported to be attenuated by male 

observers entering the room 20 min post intradermal formalin injection. High dose formalin 

concentrations (5%) however was shown to require both visual and olfactory stimuli to 

attenuate phase 1 pain. Furthermore, the study also found male observers to induce 

significant hyperthermia in mice, 15-30 min after exposure. 

This study accounted for modulatory visual and audio stimuli by using a wooden box and 

white noise, respectively, to curtail exposure to confounding factors; alterations due to 

olfactory stimuli however, were not accounted for. The use of positive and negative controls 

may have standardised many of these effects as all tests were done by one male 

experimenter. It is however possible that the central and peripheral analgesic effects of 

KOPr agonists may have been potentiated by the stress-induced “male-observer” effect, 

whereas the hypothermic effect may have been attenuated by the same effect. The same 

study found that habituation to male T-shirts fully attenuated male observer inducer 

analgesic response within 30-60 min post-exposure. However the effect was not reduced 

with mice exposed to a male observer for 1 hour in a day or 30 min/day for 5 days, followed 
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by pain-assays the following day. These results mimic the scenario of mice exposed to male 

care-takers herein the case with this study.  

Apart from stress induced by the male-observer effect, there may have been significant 

stress induced analgesia in the tail-flick test due to the 10 min habituation period in the 

mouse-restrainers before experimentation. Mouse restrainers were found to contain urine 

(diuresis is a stress-response) after acclimatisation, which was wiped with only paper towels 

rather than ethanol or virkon to reduce alterations in pain-behaviour by inhaled substances. 

This stress induced effect may have been magnified by olfactory and visual cues by the male 

experimenter handling the transparent Plexiglas restrainers. Another limitation we 

experienced was the capacity for KOPr agonists (especially THP Sal A) to fully dissolve in the 

vehicle (PBS, PG, DMSO) at doses higher than 2 mg/kg. This limited our ability to test for 

behavioural effects at higher doses. 

 

4.5 Future Direction 
 
Mesyl Sal B displayed weak analgesic effects at 2 mg/kg without causing sedation or 

hypothermia. Further studies with larger doses would help determine the effective dose at 

which this compound is capable of producing maximum analgesic effects without side-

effects.  In contrast, THP Sal A, attenuated nociceptive and inflammatory pain at 1 mg/kg. 

However, sedative effects were also seen. Further dose-response tests with Mesyl Sal B and 

THP Sal A would allow for better evaluation of therapeutic potential in treating pain.  

In order to understand the cellular mechanisms of action of each KOPr agonist, 

investigations into KOPr signalling pathways are needed. The recruitment of proteins, such 

as beta-arrestin-2, have been implicated in the production of dysphoric effects of KOPr 

agonists. Pain behavioural tests followed by mass spectrometry studies to locate target 

proteins regulated by THP Sal A and Mesyl Sal B may help in the detection proteins that 

would permit or inhibit functionally selective mechanisms of analgesia. The assessment of 

further C-2 substituted Sal A analogues in vivo with combined proteomic studies may help in 

the determination of specific pathways of analgesia, while also adding to the database of 

KOPr agonists with therapeutic potential in treating pain.  
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ICI 204,448 has been used as a positive control by studies testing the peripherally restricted 

effects of KOPr agonists. Although sedation is still a rather elusive process, it is widely 

recognised to be mediated by CNS functions. The sedative effect of ICI 204,448 suggests 

peripheral mechanisms involved in the modulation of motor coordination, such as those in 

the vestibular apparatus of the ear. Conversely, ICI 204,448 was also found to activate KOPr 

in the cerebellum of guinea pigs, suggesting centrally penetrative effects. Without further 

studies in determining the cause of ICI 204,448 induced sedation, it may be necessary to use 

intrathecal or intracerebroventricular antagonist (NorBNI) challenge to claim peripherally 

restricted mechanisms of action. 

Recently, TOLL-like receptors (TLR) have been gaining popularity in the modulation of pain 

transmission (Lan et al., 2010; Nicotra et al., 2012) and itch (Liu et al., 2012) via immune 

pathways. Almost all identified TLR subtypes have been found to be expressed on 

neutrophils and shown to be involved in mediating chemotaxis (Hayashi et al., 2003). In 

vitro, in vivo and in silico techniques exploring opioid influence on TLR-4 signalling have 

suggested TLR-4 signalling activation can occur from MOPr agonists such as morphine 

(Hutchinson et al., 2010). Blocking TLR signalling pathways was found to potentiate 

morphine analgesia, suggesting interaction between the opiate system and TLR in the 

modulation of pain behaviour. As far as we know, there have been no studies done on KOPr 

interaction with TLR. It is possible that the peripheral antinociceptive mechanisms of KOPr 

are mediated via TLR pathways. ICI 204,448, having antipruritic (Inan et al., 2004) and anti-

inflammatory potential, may be a good compound to test this interaction by 

coadministration with TLR antagonists.    

KOPr have been shown to interact with other opiate and non-opiate receptors, giving rise to 

a variety of physiological and behavioural effects. TRP channels have been implicated in the 

transmission of noxious heat and chemical stimuli, such as those used in the tail-flick and 

intradermal formalin model. Local administration of KOPr agonists, such as U-50,488, have 

been documented to attenuate pain caused by the TRPV-1 agonist, capsaicin (Ko et al., 

2000). Capsaicin induces nociceptive processes by activating C-fibers and stimulating release 

of substance P and CGRP from peripheral nociceptors (Holzer 1991; Winter et al. 1995; 

Caterina et al., 1997; Kilo et al. 1997). Substance P plays an important role in the 

transmission of nociceptive signals (McCarson et al., 1999). KOPr stimulation can reduce 
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nociceptor excitability (Russell et al. 1987; Haley et al. 1990; Andreev et al. 1994) and 

release of substance P from peripheral nociceptors (Yonehara et al. 1992). Studies 

investigating substance P receptor (NK-1) internalisation in the dorsal horn due to Sal A and 

ICI 204,448, in the Kivell lab (Unpublished results, 2013), did not notice any effects; however 

tests with substance P release from peripheral nociceptors were not carried out. Icilin, a 

TRPA-1 agonist (Rawls et al., 2007), can induce a “wet-dog” shaking behaviour in rodents – 

an effect found to be attenuated by KOPr agonists such as U-50,488 and Nalfurafine 

(Werkheiser et al., 2007). This suggests a relationship between KOPr and TRP channels exists 

in the regulation of animal behaviours including pain. Studies using confocal microscopy to 

analyse neuronal cells expressing GFP-tagged KOPr and TRPV-1 or TRPA-1 channels after 

KOPr agonist administration may help elucidate the relationship between these receptor 

and ion channel systems. In vivo tests with systemic coadministration of KOPr agonists with 

TRPV-1 antagonists, such as capsaizocin, or TRPA-1 antagonists, such as A 967079, may also 

help determine the level of overall interaction of these receptors and ion channels in 

behavioural models of pain. 

 

5. Conclusion 
 

KOPr agonists show potential in attenuating acute nociceptive and inflammatory pain. 

Modification of the C-2 terminal of the central phenyl ring of Sal A alters its analgesic 

potential in vivo, giving rise to a different onset and duration of action. Substitution with a 

tetrahydropyran group greatly improves central analgesic effects; however, sedative effects 

were also observed. Substitution at the C-2 position with a mesylate group showed no 

sedative effects but reduced central and peripheral analgesic effects. The lack of sedation by 

Mesyl Sal B makes it a good target for future research in pain. Development of more soluble 

KOPr agonists may permit further dose-testing for better evaluation of therapeutic 

potential. This potential may be exploited with the discovery of compounds that have 

limited entry into the CNS, such as ICI 204,448 and CR-845; or by identifying compounds 

that exclusively target pathways giving rise to analgesic effects. 
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