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Abstract 

Autism Spectrum Disorder is a complex neurodevelopmental disorder which is often 

associated with increased anxiety and deficits in cognitive ability. The present research 

investigated a potential gene*environment interaction between two factors previously 

implicated in ASD in a rat model; prenatal exposure to valproate (VPA) and genetic 

reduction of the serotonin transporter (SERT). Wildtype and heterozygous SERT knockout 

rats prenatally exposed to VPA or saline on gestational day12.5 (G12.5) were assessed on 

measures of anxiety: elevated plus-maze and novelty suppressed-feeding and cognitive 

ability: prepulse inhibition and latent inhibition. A significant main effect was found for VPA 

exposure in all paradigms, showing increased anxiety-typical behaviour and abnormal 

cognitive ability. However, no significant effect of genotype or interaction was observed. 

Results from the present study do not confirm gene*environment interaction between 

prenatal VPA and heterozygous SERT knockout but this may be due to several factors that 

are discussed within the thesis. In any case, this study represents a starting point for further 

studies investigating other combinations of genetic and environmental factors as models of 

ASD pathogenesis. 

Keywords: Valproate, Serotonin Transporter knockout, Autism Spectrum Disorder, 

Gene*Environment.  
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The Effect of Prenatal Valproate Exposure in Serotonin Transporter Knockout Rats On 

Anxiety and Cognition: A Gene*Environment Interaction Model of Autism Spectrum 

Disorder 

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder arising 

from the interaction of an as yet unknown number of genetic and environmental components 

(Miyazaki, Narita, & Narita, 2005; Persico & Bourgeron, 2006; Volkmar & Pauls, 2003). It is 

characterized in the Diagnostic and Statistical Manual of Mental Disorders, 5
th 

edition, by a 

dyad of impairment: social interaction/communication and repetitive/repetitive behaviour 

(American Psychiatric Asociation, 2013), with cognitive rigidity and increased anxiety also 

often present. A recent survey found rates of ASD to have now reached one in 91 children 

being affected (Kogan et al., 2009) with the prevalence being four times higher in males 

(Fombonne, 2003). As yet, there is no ‘cure’, and current therapies and pharmacological 

treatments have only limited success. When factoring in increasing prevalence rates (Herbert, 

2010a) and increasing health care costs (Leslie & Martin, 2007) of ASD it becomes even 

more apparent that investigating underlying causes is hugely important.  

The effect of ASD on the family environment as well as for society in general is 

substantial (DiCicco-Bloom et al., 2006). Definitive financial impacts of ASD have proven 

difficult to ascertain, but it has been estimated on a broad level that health care costs for 

individuals with ASD exceeds $35 billion US dollars annually in America (Ganz, 2007). 

British estimates put the health costs of children with ASD at £2.7 billion pounds and adult 

health care exceeding £25 billion pounds per annum (Knapp, Romeo, & Beecham, 2009). 

High financial impacts have also been shown at the family level, with studies showing 

increased financial burden and time costs associated with rearing a child diagnosed with ASD 

(Jarbrink & Knapp, 2001). In addition to the substantial economic impact, there is a 

significant escalation in caregiver burden. In one study looking at family stress in recently 

diagnosed children with ASD it was shown that increased symptom severity lead to increased 

levels of individual and family burden (Stuart & McGrew, 2009). Taken together, these 

growing social and financial costs highlight the increasing importance of studying ASD.  

Confounding the progress in etiological investigation and the efficacy of psychosocial 

rehabilitation is the high comorbidity burden within those diagnosed with ASD (Matson & 

Nebel-Schwalm, 2007). In a recent study, it was found that 70% of young people with ASD 
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also met the criteria for at least one comorbid disorder and over 40% had two or more 

(Simonoff et al., 2008). Of these, the most prevalent co-occurring disorders were social 

anxiety disorder (29.2%) and attentional deficit/hyperactivity disorder (28.2%) (Simonoff et 

al., 2008). Furthermore, in one of the largest exploratory retrospective prevalence studies to 

date, Kohane et al (2012) examined the recorded comorbidity rates within 14,000 individuals 

diagnosed with ASD. It was found that there were remarkably higher rates of cranial 

anomalies (12.45% cf. 1.19%), epilepsy (19.44% cf. 2.19%), Schizophrenia (2.43% cf. 

0.24%) and bowl disorders (11.74% cf. 4.5%) in patients diagnosed with ASD compared to 

matched samples without ASD (Kohane et al., 2012).  

The serotonin (5-HT) system has long been implicated in ASD because, along with its 

role as a neurotransmitter, 5-HT has a major role in brain development (Whitaker-Azmitia & 

Azmitia, 1986). Serotonin is crucial in temporally sensitive synaptogenesis, migration and 

apoptosis (programmed cell death) with research suggesting this system is significantly 

altered in ASD (Whitaker-Azmitia, 2001). Studies have reliably shown that the serotonergic 

system is altered in patients with ASD with asymmetrical synthesis of 5-HT observed in the 

frontal cortex, thalamus and dentate nucleus compared to healthy controls (Chugani et al., 

1997). This is of particular note as these three areas are integral to verbal communication and 

sensory integration; both of which are domains altered in ASD. Hyperserotonemia (50% 

increase of 5-HT in blood cf. normal) is also common in ASD and is widely recognized as 

one of the first biomarkers of ASD identified (Veenstra-VanderWeele et al., 2012).Based on 

these findings, altered 5-HT homeostasis is often implicated as a potential mechanism of 

ASD (Veenstra-VanderWeele et al., 2012).  

In further support of the involvement of 5-HT in ASD, is the early development and 

its widespread nature within the brain, and its interactions with other neurotransmitter and 

hormone pathways (Whitaker-Azmitia, 2005). Serotonin neurons project throughout the 

brain; innervated to such an extent that they play a role in the many key functions, both 

behavioural and physiological. This diverse area of effect, including a wide range of 

functions outside of the central nervous system, is proposed to explain at least part of the 

variability and pleiotropic nature of behaviours stemming from alterations to serotonergic 

development (Berger, Gray, & Roth, 2009). Furthermore, 5-HT is known to have direct 

effects on behaviour through’ regulation of mood and basic functions, such as hunger and 

body temperature. Through impacts on hormone systems such as oxytocin, 5-HT is linked 
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with sexual behaviours, arousal and a host of other functions (Lam, Aman, & Arnold, 2006). 

Based on the countless brain and behaviour systems impacted by 5-HT, coupled with the 

broad pattern of impairment observed in ASD, alterations to the serotonergic system present a 

sound target for research into the pathogenesis of ASD. 

Due to the critical role of 5-HT during brain development, any prolonged alterations 

to its availability early in life is likely to lead to disturbed neural development through 

interference with temporally and concentration sensitive pathways (Veenstra-VanderWeele et 

al., 2012). It has been found that exposure to prolonged higher, or lower, than normal levels 

of 5-HT during early development can increase risk of ASD and anxiety (Veenstra-

VanderWeele et al., 2012; Yang, Tan, & Du, 2014). Extracellular levels of 5-HT are largely 

controlled by the 5-HT transporter (SERT), but it can also (to a much lesser extent) bind with 

some other neurotransmitter transporters, such as Norepinephrine (Daws, 2009). Serotonin 

transporter binding has been shown to be altered in specific brain regions in people with 

ASD, with indications this is underpinned by lower numbers of serotonergic nerve terminals 

(Makkonen, Riikonen, Kokki, Airaksinen, & Kuikka, 2008).  

Using single-photon emission computed tomography; Makkonen et al (2008) found 

that in patients with ASD, SERT binding is decreased in the Medial Frontal Cortex 

(Makkonen et al., 2008). This finding is of particular interest as the Medial Frontal Cortex is 

known to have a role in recognizing and understanding the intentions of others; a trait 

noticeably impaired in ASD (Frith & Frith, 1999). This reduction in binding belies either a 

decrease in 5-HT synapses, reduced overall amounts of SERT proteins, or a combination 

thereof (Makkonen et al., 2008). In addition, SERT is the site of action of Selective Serotonin 

Reuptake Inhibitors which have been shown to lessen some behavioural symptoms of ASD, 

with studies showing that 5-HT depletion exacerbates symptoms (McDougle et al., 1996). 

Thus, disruptions to the 5-HT system have been strongly implicated in the pathology of ASD 

with specific focus on the SERT.  

The focus to-date on the serotonin system has stimulated much research into proposed 

mechanisms underlying the HSN coupled with low brain 5-HT often present in instances of 

ASD (McNamara, Borella, Bialowas, & Whitaker-Azmitia, 2008). The serotonergic system 

possesses the ability to autoregulate during development; a trait which is often implicated as a 

mechanism of ASD. During neural development high levels of serotonin elicits negative 
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feedback causing a decline in the number of serotonin terminals and therefore SERT present 

later in life (Whitaker-Azmitia & Azmitia, 1986). Evidence for autoregulation causing long-

term changes is accumulating; experiments have demonstrated that rats exposed to serotonin 

agonists in utero (Whitaker-Azmitia, 2001), as well as ASD children with HSN (Croen, 

Grether, Yoshida, Odouli, & Hendrick, 2011), develop lower numbers of serotonin neurons.  

Much research has implicated the permeability of the blood-brain barrier of the developing 

foetus, ambient prenatal serotonin levels and the ability of 5-HT to autoregulate as 

contributing factors for ASD (Kahne et al., 2002; McNamara et al., 2008; Whitaker-Azmitia, 

2005).  

Early on in pregnancy the blood-brain barrier of the foetus is still permeable to 5-HT, 

such that 5-HT present in the blood can enter into the brain which is not possible later on in 

development (Hadjikhani, 2010; Whitaker-Azmitia, 2005). During the earliest stages, 

placental serotonin provided by the mother has a robust impact on brain development. Bonnin 

et al (2011) were able to show that 5-HT synthesized by the placenta accounts for the level of 

5-HT present in the developing forebrain during early embryogenesis before the endogenous 

serotonergic system innervates; thus, suggesting a viable pathway for prenatal exposure to 

teratogens to cause systemic alterations (Bonnin et al., 2011; Veenstra-VanderWeele & 

Blakely, 2012). This dependence shifts later in development to serotonin produced by the 

foetus (Bonnin & Levitt, 2011). In this manner, impacts on environmental 5-HT from the 

mother and endogenous 5-HT from the developing brain can influence pathophysiology. It is 

thus suggested that higher than normal levels of blood 5-HT during this critical period in 

pregnant mothers can cause the loss of 5-HT terminals in the foetus through autoregulation 

and negative feedback, thereby playing a significant role in the disruption of normal 

serotonergic growth (Kahne et al., 2002; Whitaker-Azmitia, 2005). 

Prenatal exposure to drugs which increase levels of 5-HT in blood, such as cocaine 

(Davis et al., 1992), alcohol (Aronson, Hagberg, & Gillberg, 1997), SSRIs (Croen et al., 

2011), and VPA (Kinast, Peeters, Kolk, Schubert, & Homberg, 2013), is associated with 

significantly increased risk of ASD; contributing to Developmental Hyperserotonemia (DHS) 

as a proposed mechanism of ASD. Likewise, genetic alterations in SERT are likely to lead to 

increased levels of 5-HT. The corresponding asymmetric decrease of serotonergic neurons 

throughout parts of the brain is suggested as an explanation for the wide variety of 

behavioural and cognitive aberrations seen in ASD and is known as the DHS model of ASD 
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(Hadjikhani, 2010; McNamara et al., 2008).The DHS model accounts for the intuitively 

dissonant characteristics commonly associated with ASD; high blood serotonin coupled with 

decreased serotonin in specific brain regions (McNamara et al., 2008).  

One way in which Developmental Hyperserotonemia has been posited to 

detrimentally affect emotional regulation and social behaviour is through its implication in 

the disruption of normal functioning in the hypothalamo-pituatary axis, amygdala and 

oxytocin regulation (Whitaker-Azmitia, 2005). Oxytocin is a pro-social hormone which is 

involved in social recognition and alongside 5-HT is often associated with ASD (Whitaker-

Azmitia, 2005). Developmental Hyperserotonemia has been shown as a causative factors in 

decreasing levels of oxytocin present in the paraventricular nucleus of the hypothalamus as 

well as an increased concentration of calcitonin gene-related peptide in the amygdala, 

specifically the central nucleus; both of which are linked with social interactions and shown 

to be disturbed in ASD (Yang et al., 2014). 

Of all neuropsychiatric disorders, ASD is known to have the strongest genetic 

component (Levy, Mandell, & Schultz, 2009) with a 92% concordance rate between 

monozygotic twins and 10% between dizygotic twins for a broad spectrum of ASD 

phenotypes (Le Couteur et al., 1996). However, because the concordance rate is less than 

100%, it suggests that environmental factors play a role in the development of ASD and may 

alter penetrance of phenotypic expression (Bill & Geschwind, 2009). As it stands, less than 

10% of cases can be directly attributed to a specific cause, genetic or medical (Fombonne, 

1999).  

The hunt for underlying contributing factors has led to multiple types of genetic 

variation being investigated for their possible role in ASD development; variable number 

tandem repeats (VNTRs), single nucleotide polymorphisms (SNPs), as well as haplotypes 

which are sets of genes often inherited together (Levy et al., 2009).  Thus far, very few 

definitive genes of high impact have been identified. More often, genes are implicated as 

contributing risk factors of only moderate effect. One estimate has placed the number of 

genes which are in involved in the development of ASD between 5 and 20 (Stokstad, 2001). 

Thus, many researchers have turned towards a model of genetic complexity with gene-gene, 

gene networks and gene-environment models now under investigations. Furthermore, many 

genes with systemic effects are now being investigated (Herbert et al., 2006).  
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Numerous diverse regions of the genome, specific gene variants and protein processes 

are currently under investigation to assess their viability as candidates contributing to ASD 

(Persico & Napolioni, 2013). Genome-Wide Linkage studies (GWLS) identify areas of 

genetic risk by comparing gene sequences of people with ASD and their family members 

without ASD. Genome-Wide Association studies (GWAS) compare genetic regions and 

variants across a single population and are proposed to have a higher efficacy when compared 

to similar sized linkage studies (Yang & Gill, 2007). In a literature review of ASD risk 

regions identified by GWLS 16 different chromosomal regions were specified as harbouring 

susceptibility genes by at least three separate studies. A total of 18 loci spanning 14 

chromosomal regions were identified by a GWAS, and of these seven regions converged with 

those highlighted by GWLS.  

Special emphasis has been put on the investigation into common polymorphisms 

identified as susceptibility genes which are known to effect transmission pathways and 

cortical development, as they present a potential neurodevelopmental pathway to ASD 

(Persico & Napolioni, 2013). So far, genes implicated in ASD pathogenesis are involved in a 

varied array of systems; including hormonal pathways, neurotransmitter regulation and cell 

adhesion molecules (Persico & Napolioni, 2013). OXTR which encodes the receptor for the 

hormone Oxytocin has also been consistently replicated in previous GWAS as containing 

common polymorphisms associated with ASD. Cell adhesion proteins have been targeted in 

ASD investigation, for example ITGB3, which encodes Integrin beta 3.Another example, the 

gene RELN responsible for encoding Reelin; a secreted extracellular matrix protein important 

for neuronal migration as part of brain development, has been investigated and has been 

found to harbour common polymorphisms linked with susceptibility to ASD (Persico & 

Napolioni, 2013). However, gene expression studies and candidate gene studies have also 

highlighted the genomic region containing SLC6A4, which encodes SERT, as a particularly 

likely susceptibility region and worthy of further investigation ( Yang & Gill, 2007). 

The serotonin system, in particular SERT, represents a point where findings from 

genetic research, neurochemistry and pathology intersect (Veenstra-VanderWeele et al., 

2012; Yang & Gill, 2007) and therefore is an ideal candidate for further investigation if we 

are to understand the etiology of ASD.  Much of the research into the physiological 

underpinnings of ASD has focused on functional changes in the 5-HT pathway, with the 

strong evidence pointing towards differences in the SERT in specific (Levy et al., 
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2009).Given the above mentioned crucial role of 5-HT and the SERT, many researchers have 

focused on the SERT gene, SLC6A4 genomic location in cytogenetic band 17q11.2, which is 

associated with ASD and extracellular concentrations of 5-HT in the brain and the blood 

(Veenstra-VanderWeele et al., 2012). Commonplace polymorphisms located in the upstream 

promoter region of this gene (5-HTTLPR); caused by a 44-base pair insertion/deletion, alter 

the overall number of SERT proteins by moderating transcription efficiency (Holmes, 

Murphy, & Crawley, 2003). The shorter variant of this polymorphism, the “s” allele, 

demonstrably leads to a reduction of the SERT protein and has been recognized as a risk 

factor for developing depression, anxiety and ASD (Olivier et al., 2008; Veenstra-

VanderWeele et al., 2012). There are at least nine other known SNPs located on SLC6A4, 

along with the 5-HTTLPR (Ramoz et al., 2006). However, because SERT polymorphisms are 

only a risk-factor, it suggests that environmental factors play a role in ASD development 

(Nijmeijer et al., 2010).  

Environmental factors are now being accredited as at least partially responsible for the 

increasing prevalence of ASD (Herbert, 2010b). A wealth of research is now implicating not 

only gene-gene, but also gene-environment interactions and environmentally vulnerable 

genes in the development of ASD (Herbert, 2010a). One of the most interesting 

environmental risk factors is Valproic Acid (VPA; also referred to as Valproate), an 

antiepileptic and mood stabilizing drug which has been repeatedly linked to increasing risk of 

developing ASD if prenatal exposure occurs (Rasalam et al., 2005).  Prenatal exposure, 

especially in the first trimester of pregnancy during a critical period of organogenesis, 

increases risk of ASD (Williams et al., 2001) with symptom severity occurring in a dose 

dependent manner (Mawhinney et al., 2012). In one of the original investigations into the 

correlation between VPA and ASD, Moore et al (2000) found that 11% of children born from 

women taking VPA during pregnancy developed ASD, which is significantly higher than the 

rate in the general population (Moore et al., 2000). In line with this, high doses of prenatal 

VPA in rats creates gender specific changes, with males showing more signs of ASD 

(Schneider et al., 2008) such as increased repetitive behaviour (Markram, Rinaldi, La 

Mendola, Sandi, & Markram, 2008), increased anxiety and decreased exploration in novel 

environments (Schneider & Przewlocki, 2005), HSN, abnormal 5-HT neuronal placement 

and migration (Narita et al., 2002), and impaired cognitive function (Narita et al., 2010). 

However, because not all children prenatally exposed to VPA develop ASD, it suggests that it 

interacts with a pre-existing vulnerability. 
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Relatively large doses of VPA are required in order to produce therapeutic effect and 

it is known to exert effects on intracellular signaling pathways, extracellular 

neurotransmitters and epigenetic changes (Lagace, O'Brien, Gurvich, Nachtigal, & Klein, 

2004). It has been shown that VPA moves into and out of the central nervous system via both 

the cerebrospinal fluid barrier and the blood-brain barrier. One of the mechanisms by which 

VPA causes long term changes and possibly alters development is by inhibiting histone 

deacetylases (HDACs) which are enzymes that suppress gene transcription long term 

(Grunstein, 1997). Therefore, VPA inhibits natural repression of gene expression which has 

long lasting behavioural effects (Kataoka et al., 2013).  

In a mouse model investigation into the effects of VPA and Valpromide, an analog of 

VPA lacking HDAC inhibitory activity, it was found that behavioural changes in response to 

anxiety were only displayed by animals prenatally exposed to VPA (Kataoka et al., 2013). 

This provides compelling evidence that in utero VPA exposure leads to long lasting 

behavioural changes due to its’ epigenetic effects. VPA inhibition of HDACs has been noted 

in both humans and rodents allowing for comparative research across species in this regard 

(Göttlicher, 2003; Kim et al., 2011). Interestingly, VPA has also been associated with 

changes in methylation states on genes, potentially leading to transcription of previously 

inactive genes (as cited in (Lagace et al., 2004). Furthermore, the glutaminergic modulation 

of excitatory neurotransmission is also affected by VPA along with increased in gamma-

aminobutyric acid (GABA, an inhibitory neurotransmitter) (Lagace et al., 2004).The 

enkephalinergic system, an endogenous opioid peptide system involved in anxiety and 

emotional response, is also altered in the VPA rat model as shown by decreased 

proenkephalin mRNA expression in specific brain regions (Schneider, Ziolkowska, Gieryk, 

Tyminska, & Przewlocki, 2007). Taken together, these long last alterations in brain due to the 

varied effects of VPA can be associated with numerous behavioural changes noted in ASD. 

Timing is a determining factor in the degree of penetrance of ASD-like behaviour 

caused by prenatal VPA exposure. Much research into VPA and development in ASD points 

to a vulnerable period during early development when the nervous system and developing 

foetus are most susceptible to environmental insults (Rice & Barone, 2000). By correlating 

ASD with comorbid conditions with known temporal origins of errors, systemic alterations 

and neural developmental changes, it was shown that ASD arises in a stage of early 

development called organogenesis (Ploeger, Raijmakers, van der Maas, & Galis, 2010). 
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Furthermore, Rasalam et al (2005) found that aberrations in the migration and 5-HT neuronal 

placement were more severe in rats if VPA was administered on day 11 of gestation (G11) as 

opposed to day 9. Gestational day 11 also happens to coincide with the time of neural tube 

closure in rat fetuses (Rasalam et al., 2005). Interestingly, 5-HT neurons are first detectable in 

rats around 12 days after conception (McNamara et al., 2008), which coincides perfectly with 

the time period for prenatal VPA exposure linked with the most severe expression of ASD-

like behavioural and physiological changes. At the macro level, prenatal VPA exposure on 

G12.5, which is around the time when 5-HT neurons are first detectable, produces 

abnormalities in multiple brain regions such as the brain stem and cerebellar (Ingram, 

Peckham, Tisdale, & Rodier, 2000) which are in line with findings from brain imaging 

studies and autopsy results of humans with ASD (Bauman & Kemper, 2005).  

There has been much research has been conducted to investigate the behavioural, 

immunological and neurodevelopmental alterations present in the VPA rat model of ASD. In 

line with the sexual disparity in prevalence, effect of sex in the pervasiveness of these 

behavioural and neurological alterations, with males being disproportionately impaired as in 

humans; pointing to divergent reactions to VPA in early neurodevelopment (Schneider et al., 

2008). Behavioural changes documented in male VPA rats include decreased exploratory 

activity and an increase in behaviours associated with anxiety, such as investigating new 

environments (Schneider et al., 2008).  Consistent with aberrations seen in human patients 

with ASD, prenatal VPA exposure during early neurodevelopment (gestational day 9-12) 

alters development of the serotonergic system via changes to neuronal differentiation and 

migration and postnatally induces HSN. It is also known to increase basal levels of 5-HT in 

the hippocampus and Frontal Cortex of rats (Dufour-Rainfray et al., 2010). Further support 

comes from findings of neuroendocrine and immunological changes in male VPA rats, 

consistent with findings in humans with ASD (Schneider et al., 2008).  

 “A gene-environment interaction occurs when the effect of exposure to an 

environmental pathogen on a person’s health is conditional on his/her genotype” (Caspi & 

Moffitt, 2006). Building off research implicating both heritable genetic and environmental 

factors in the etiology of ASD, Pessah and Lein (2008) suggest that these factors interact 

through converging to interfere with the same developmental pathway (Pessah & Lein, 2008). 

Such gene-environment (G*E) interactions have already been reliably identified in other 

neurodevelopmental disorders such as Schizophrenia (Clarke, Tanskanen, Huttunen, Murray, 
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& Cannon, 2009). A heritable aberration in interconnectivity between neurons in foetuses at 

risk of ASD would then be particularly responsive to environmental insults, such as VPA, 

which act on the same neurotransmitter networks culminating in disrupted neuronal 

development and therefore ASD. Thereby, one of more genetic factors with minimal 

individual effect can amplify of be exacerbated by exposure to an environmental insult during 

crucial periods of development such as organogenesis (Pessah et al., 2008). This theory 

accounts for the varying severity of ASD and range of symptoms displayed by patients 

(Veenstra-VanderWeele & Blakely, 2012); allowing for combinations of heritable ASD risk 

factors and varied environmental insults which interact uniquely but affect the same system 

(Pessah et al., 2008). Sex hormones are also a mitigating factor in this model as ASD and 

potentially mediate the degree of expressivity through epigenetics modifications (Kaminsky, 

Wang, & Petronis, 2006).  

The existence of G*E interactions is not a recent discovery, but the field is currently 

burgeoning. Furthermore, it is not confined to the realms of neuropsychiatric disorders; much 

research has also gone into investigating G*E interactions in the physiological world. Moffitt 

et al (2006) mention several relatively recent studies implicating environmental factors whose 

impact on a person is contingent on their genetic make-up, and vice versa (Moffitt, Caspi, & 

Rutter, 2005). They make mention of research implicating gene-reliant effects of 

environmental events, such as the increased likelihood of developing psychotic symptoms 

following cannabis use based on the polymorphism of the catechol O-methyltransferase gene 

a person posessed (Caspi et al., 2005). Likewise, they recount research indicating a link 

between genotpye and the likelihood of a smoker developing a cronary heart disease 

(Humphries et al., 2001).  

There is much research to be done in this burgeoning field of gene-environment 

interactions as a causative factor for the development of ASD. With both VPA and SERT 

strongly linked with ASD their interaction is of particular interest. The current study will look 

at responsiveness to VPA as an environmental factor conferred by varied numbers of SERT 

present due to genotype and assess the phenotypic penetrance on cognitive function and 

anxiety using a relevant animal model.  

The rat has long been used as a species to model psychiatric, behavioural and medical 

conditions in humans. Through the use of N-ethyl-N-nitrosourea (ENU) targeted mutagenesis 
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a premature stop codon was produced in SLC6A4 which renders the SERT protein 

nonfunctional and signals the resulting mRNA for nonsense mediated decay, thereby creating 

a strain of SERT knockout (KO) rats (Homberg et al., 2007; Smits et al., 2006). Through 

careful measurement of citalopram binding Homberg et al (2007) concluded that 

heterozygous animals (HZ/SERT
+/-

)
 
showed a gene-dose effect regarding SERT prevalence 

providing subsequent researchers with a means to explore the effect of the 5-HTTLPR as a 

genetic predisposition in the aetiology of autism (Homberg et al., 2007; Wohr & Scattoni, 

2013).  

The utility of the rat animal models of comes from the ability to create paradigms 

designed to quantify and assess aspects and behaviours associated with neuropsychiatric 

disorders. Rat animal models are interesting in that they allow for assessment of anxiety and 

cognitive behaviours (Wohr & Scattoni, 2013) while maintaining control of independent 

variables; holding conditions constant which would be impossible to ethically and 

scientifically attempt in humans such as genotype and environmental conditions. In essence, 

rat models allow us to draw conclusions based on causality rather than simply correlation.  

Previous research conducted by Olivier et al (2008) into the behavioural phenotype of 

the SERT KO rat has already indicated its potential as an animal model for investigating 

human genetic susceptibility to anxiety and depression (Olivier et al., 2008). It was found that 

on numerous measures of depression-like- and anxious behaviour homozygous SERT KO 

rats displayed significantly different patterns of behaviour than their wildtype (WT) 

counterparts. In the Novelty Suppressed Feeding paradigm (NSF), male homozygous SERT 

KO rats showed increased latency to begin eating; indicative of increased level of anxiety. 

Furthermore, they spent significantly more time in the closed arms of the Elevated Plus-Maze 

(EPM), again indicating higher levels of anxiety.  With regards to depression-typical 

behaviour homozygous SERT KO rats displayed decreased preference for sucrose, signifying 

anhedonia (Olivier et al., 2008). 

Perturbations in anxiety have long been associated with ASD, since the first 

characterization of the pervasive developmental disorder (Kanner, 1943; White, Oswald, 

Ollendick, & Scahill, 2009). While it is not recognized as a core deficit, it is often present and 

is thought to exacerbate social impairment (White et al., 2009). Levels of anxiety have been 

found to be significantly higher in people with ASD compared to controls subjects, a 
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phenomenon which has been replicated and reliably found in studies looking specifically at 

anxiety and comorbidity in ASD (White et al., 2009). This pattern of increased anxiety is 

echoed in animal models such as the prenatal VPA rat model of ASD which has consistently 

shown behaviours indicative of increased anxiety (Schneider & Przewlocki, 2005; Schneider, 

Turczak, & Przewlocki, 2005; Schneider et al., 2007). It has been posited that the behaviours 

observed in VPA rats point to a disruption in the systems responsible for regulating reaction 

to stressful stimuli (Schneider et al., 2007). Behaviour robustly associated with increased 

levels of anxiety has been shown by VPA rats on the elevated plus-maze (Schneider et al., 

2007). The present study will therefore assess anxiety behaviour through use of the elevated 

plus-maze, and the novelty suppressed feeding paradigm, which elicit natural avoidance of 

open spaces; both of which have been successfully used to this effect in the past.  

Cognitive impairment is often referred to in the diagnosis of ASD (American 

Psychiatric Association , 2013). Precise facets of cognitive ability reported perturbed in ASD 

include: executive function which incorporates aspects of memory and inhibition (Hill, 

2004), learning (McLaren & Mackintosh, 2000) and sensorimotor gating (Perry, Minassian, 

Lopez, Maron, & Lincoln, 2007). Latent inhibition refers to the subsequent stunting of 

association-based learning due to pre-exposure to a stimulus (McLaren & Mackintosh, 2000). 

Associative learning has been demonstrated to be impaired in ASD (Preissler, 2008), and LI 

will be assessed using a conditioned taste-aversion paradigm. Conditioned taste aversion 

usually develops rapidly after only one pairing with LiCl following exposure to a novel 

stimulus; resulting from the negative physiological state induced by the LiCl (Yamamoto, 

Shimura, Sako, Yasoshima, & Sakai, 1994). Sensorimotor gating will be analysed through 

assessment of acoustic prepulse inhibition (PPI), habituation and startle response. Prepulse 

inhibition occurs when exposure to a weak stimulus immediately antecedent to a strong 

startle stimulus, usually of the same type, attenuates subsequent response. A particular 

strength of PPI measurement is that it easily transferrable across species with similar patterns 

of performance in both human and rat models of ASD (McAlonan et al., 2002). 

The aim of this research is two-fold; to investigate the interaction between genetically 

determined SERT prevalence and prenatal exposure to VPA in rats, and the utility of the 

construct as an animal model of cognitive function and anxiety-liked behaviour typical of 

ASD. The SERT-/- phenotype is an extreme one, and a human case is yet to be reported to 

the best of this author’s knowledge. Therefore the present study is going to assess interaction 
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between VPA and SERT genotype through investigation of HZ SERT KOs. While past 

experiments have shown that HZ SERT genotype does not present with a severe phenotype in 

general they most closely translate to the genetic susceptibility identified in the 5-HTTLPR in 

people with ASD. Furthermore, this research will focus predominantly on anxiety and 

cognition as both of these aspects are strongly implicated in ASD and are affected by VPA, 

SERT or hypothetically both. 

The hypotheses of this research are threefold. Firstly, it is hypothesized that there will 

be significant differences noted overall between prenatal treatment groups; with VPA treated 

animals displaying reduced cognitive ability and increased portrayal of anxiety-related 

behaviour compared with saline-treated groups. Secondly, it is expected that with genetically 

reduced levels of SERT, the SERT
+/-

 rats will display significantly poorer performance on 

measures of anxiety and cognitive ability compared to genetic WTs (SERT
+/+

) However, as 

SERT
+/-

 still retain 50% of the SERT proteins and the central nervous system has a strong 

capacity to compensate, it is possible that the behavioural phenotype of SERT
+/-

 is very mild. 

Finally, it is hypothesized that there will be a gene-environment interaction noted in the VPA 

treated HZ animals, such that they will perform significantly worse on the measures of 

cognitive  function and also display behaviour typical of increased anxiety compared to the 

saline treated SERT
+/-

 cohort and the VPA SERT
+/+

.   
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Method 

Animals 

SERT
+/- 

and SERT
+/+

 Wistar males were mated with SERT
+/- 

females to produce 

SERT
+/+

, SERT
+/- 

and SERT
-/-

 offspring. Pairs were mated overnight and the presence of a 

vaginal plug was taken as a sign of successful conception and counted as Gestational Day 1 

(GD1). On GD12.5 half the pregnant females were subcutaneously injected with 400mg/kg of 

VPA with the remaining half injected with saline 1mg/kg. As a result, six groups were 

produced, of which four were used; VPA/ SERT
+/-

, VPA/ SERT
+/+

, SAL/ SERT
+/-

 and SAL/ 

SERT
+/+

. Only male offspring were utilized in experiments. The rats were kept on 12hr 

light/dark cycles with free access to food and water aside from during specific cognitive 

experiments which required food restriction (85-90% of free-feeding weight).  

Elevated Plus-Maze 

 A robust and well used method for measuring anxiety in rats, the elevated plus-maze 

(EPM) consists of four arms of equal length (50cm X 10cm), with two opposing arms 

enclosed by opaque walls (closed arms) and the remaining arms having only a shallow raised 

transparent lip (open arms). The entire apparatus sits one meter off the ground. Thirty six 

saline prenatally treated rats were used (14 SERT
+/+

 and 22 SERT
+/-

) along with thirty one 

VPA treated (12 SERT
+/+

 and 19 SERT
+/-

) were used in this paradigm. The rats were handled 

for the two days prior to the experiment to habituate them to pre-test stressors (home-cage 

movement and removal from home cage) (Hogg, 1996). Immediately before placement into 

the EPM the rats were placed in an open field for five minutes to encourage exploratory 

behaviour (Pellow, Chopin, File, & Briley, 1985).  

At the onset of the experiment the rat was placed in one of the closed arms and its 

movements were recorded by Ethovision XT9® from Noldus for five minutes. The recording 

is then analysed to assess the latency to first emerge from the entry arm, frequency and 

durations of entry into each subsequent arm, as well as overall percentage of time spent in 

either open or closed arms. Total distance moved and velocity was also noted. Entry into an 

arm was defined as all four paws crossing into the arm. Comparison of results shows level of 

anxiety across groups (with faster latency to emerge from the entry arm, increased time spent 

and entries into open arms, showing lower anxiety).   

Novelty Suppressed Feeding 
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 Using the conflict between hunger and trepidation of the unknown to measure 

anxiety, the Novelty Suppressed feeding paradigm entailed depriving the rats of food for 24 

hours prior to commencing the experiment (with water still freely available), to increase food 

seeking behaviour. Nineteen saline prenatally treated rats were used (9 SERT
+/+

 and 10 

SERT
+/-

) along with twenty three VPA treated (11SERT
+/+

 and 12 SERT
+/-

) were used in this 

paradigm. The experiment begun as the rat was placed near the wall in a well-lit circular 

open-field (50cm radius) and its movements were digitally recorded. A food pellet was 

placed in the center of the test arena on a 3cm radius circle of filter paper and the latency 

until the rat began eating was recorded as an indication of the level of anxiety as the rat must 

leave their preferred area of the wall and venture into the center of the open field (Lira et al., 

2003). 

Latent Inhibition 

 A Conditioned Taste Aversion paradigm aimed to investigate an aspect of cognitive 

performance, especially the ability to filter out irrelevant information. It consisted of three 

stages spanning five days; pre-exposure (3 days), conditioning (1 day) and testing (1 day). 

Six groups were used in this analysis; prenatal treatment group (VPA or Saline), Genotype 

(WT or HZ) and finally pre-exposure group (non- or pre-exposed to sucrose solution). The 

water bottles were removed from all cages 24 hours before the beginning of the experiment in 

order to increase drinking behaviour during experimentation. Pre-exposure lasted for three 

days, with the individual animals given 30 minutes of free access to either a 5% sucrose 

solution (pre-exposure group) or water (non-pre-exposure group). During conditioning, all 

the subjects were given free access to the sucrose solution for 30 minutes immediately 

followed by an intraperitoneal injection of 75mg/kg Lithium Chloride (10mg/ml). On the 

testing day animals were individually given free access to both the sucrose solution and water 

for 30 minutes. The bottles were weighed immediately before and immediately after the 30 

minute time period to ascertain the amount of each fluid consumed.  

Prepulse Inhibition 

 The startle response and PPI was measured using standard startle equipment (SR Lab, 

San Diego Instruments). The rats were placed in transparent cylinders which sit atop a piezo-

electrical element measuring movement of the rat as an indication of startle response. The 

sounds attenuating chamber emits a background of white noise (70dB) and rats were subject 

to a five minute habituation period to adjust. After this time brief increases in sound intensity 
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(120dB, 20ms) served as the startle stimuli. The experiment consisted of three trial blocks. 

The first comprises of five presentations of the startle stimuli (120dB). The second and 

largest block contains 61 data points; startle stimuli, no stimuli or various prepulse bursts, 

randomly delivered with 10-20 second inter-trial intervals. On select trials, prepulse bursts 

preceded the startle stimuli by 100ms at varying levels (72, 74, 76, and 82dB, 20ms). The 

final block again consists only of startle stimuli.  

Average displacement during the first block consisted of five 120dB startle stimuli 

was calculated to represent basal startle response. Percentage startle habituation denotes the 

change in average from the first and second blocks of 120dB startle stimuli. Finally, 

accumulated PPI intensities were averaged and divided by the mean of the median startle trial 

block to give an overall PPI value.  

 Statistics  

Data collected from all paradigms was submitted to factorial Analyses of Variance to 

determine statistically significant differences. All statistical tests were completed using IBM 

SPSS Statistics 20. A p-value ≤ .05 was considered to be significant.  
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Results 

Elevated Plus-Maze 

Valproate prenatally treated animals spent significantly less time in the open arms of 

the EPM compared to saline animals (F(1, 61)=12.97, p=.001, see fig 1), but no difference 

was found in the number of entries made (p= .227). No other significant results were found. 

The main effect of genotype was non-significant (p=.519) as was the treatment*genotype 

interaction (p=.343). The other key indicator of anxiety, number of entries made into the open 

arms, showed no statistically significant differences between the cohorts: prenatal treatment 

(p= .227), genotype (p= .471) or an interaction (p= .501). 

Latency to first emerge from the closed arm initially placed in was nearing 

significance for prenatal treatment, F(1, 61)= 3.78, p=.056, while genotype and the 

interaction were not (p= .945, p= .911, respectively).  There was no significant differences in 

the total distance moved for prenatal treatment (p=.950), genotype (p=.390) or the interaction 

(p=.119). No statistically significant differences were found in cumulative distance moved or 

velocity (data not shown).  

 Please refer to table 1 for average percentage of entries made into open arms and 

latency to first emerge from initial arm.   

Novelty Suppressed Feeding 

Animals prenatally treated with VPA had an increased latency to begin eating in the 

NSF paradigm (see fig 2). A statistically significant main effect was again seen for prenatal 

treatment in the latency to begin eating, F(1, 40)= 5.22, p= .028, with a longer average time 

observed for the VPA prenatally treated rats compared to those treated with saline. The main 

effect for Genotype and the interaction were again non-significant (p=.678 and p= .124, 

respectively).   

Latent Inhibition 

The test of latent inhibition showed the anticipated statistically significant main effect 

for pre-exposure (F(1, 53)= 16.50, p< .001). As expected, animals pre-exposed to sucrose 

solution consumed a higher proportion of sucrose on the test day compared to those who 

were not previously exposed (see fig 3). Furthermore, prenatal treatment also showed a 

statistically significant main effect, F(1, 53)= 7.64, p= .008, with those exposed to VPA 

consuming higher percentage of sucrose solution than those prenatally exposed to saline. 

However, there was no prenatal treatment * pre-exposure interaction, suggesting that prenatal 
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valproate decreased sucrose intake both in the pre-exposed and non-pre-exposed animals. 

Genotype did not show a statistically significant main effect (p= .139) and nor was any 

significant interaction between genotype & prenatal treatment group evident (p= .853). No 

other interactions between any of the three independent variables (genotype, prenatal 

treatment or sucrose pre-exposure group) were significant. However, the interaction between 

genotype and sucrose pre-exposure group was trending towards significance (p= .115, see 

figure 3).  

Prepulse Inhibition 

Since there were no interaction effects of either prenatal treatment or genotype and 

prepulse intensity, the prepulse data were collapsed into one average prepulse value (see fig 

4). A significant main effect was found in percentage of prepulse inhibition (PPI) for prenatal 

treatment, F(1,48)=6.49, p= .014, see figure 4. No main effect for genotype (p= .283) or any 

interaction (p= .631) was observed in PPI. Basal startle response and percentage of 

habituation yielded no significant main effects for prenatal exposure (p=.087 and p= .379) or 

genotype (p=.589 and p= .670), nor any interaction (p=.887 and p=.711, startle response and 

percent habituation respectively). Please refer to table 3 for group average startle response 

and percent habituation, standard deviations and sample sizes.  
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Discussion 

The results from the present study corroborate previous literature that prenatal 

exposure to a single dose of VPA (400mg/kg) exposure at G12.5 leads to statistically 

significant long-term alterations in anxiety-related behaviour and cognitive performance on a 

range of paradigms; supporting the first hypothesis of this research. The hypothesis that 

genotype would have an impact on performance, specifically that the HZ animals would 

perform worse than the WT cohort was not supported by the results obtained as there was no 

statistically significant difference between groups. Furthermore, there were no significant 

results obtained which could support the presence of a G*E interaction; contrary to the third 

hypothesis of this research that HZ animals prenatally exposed to VPA would perform 

significantly worse than any other group.  

In line with previous research, animals prenatally exposed to VPA spent a 

significantly smaller percentage of time in the open arms of the EPM compared to their saline 

counterparts. Interestingly, Schneider et al (2005) reported that the average percentage of 

time spent in the open arms for adult male rats prenatally exposed to VPA was ~5%, (cf. 

~30% for saline treated animals) which is significantly lower than the averages found in the 

present study (see fig 1). This finding was echoed in other similar studies on the effects of 

prenatal VPA exposure (Schneider & Przewlocki, 2005). However, in their paradigm 

experimental animals were exposed to 600mg/kg of VPA which is a substantially larger dose 

than that administered in the current research (400mg/kg). It is possible that the single larger 

dose of VPA was sufficient to produce a stronger display of anxiety in their animals than that 

demonstrated presently. This may explain why the pattern of behaviour is the same but to a 

less dramatic degree and could be taken as a potential indication of a dose sensitive effect 

during critical period of development. Indeed this dose-response relationship has been 

identified in clinical studies showing increased risk and behavioural phenotype following 

higher daily doses of VPA administration during pregnancy (Roullet, Lai, & Foster, 2013).  

Different protocols for the same paradigm may also explain the differences in 

averages reported by the present research and that of previous studies. For example, 

Schneider et al (2007) used a different protocol which spanned two days when running EPM. 

In the 2007 study, time spent in open arms of the EPM for animals prenatally treated with 

VPA did not breach 15% for day 1 or 10% for day 2 compared to roughly 25% and 19% for 

saline treated animals. In addition it is well known that (even subtle) differences in lighting in 



VPA & SERT KO: THE EFFECT ON ANXIETY & COGNITION 21 

the room have a very strong effect of the percentage of time exploring the open arms of a plus 

maze. It is thus difficult to compare absolute levels of anxiety-like behavior across 

laboratories. 

Currently the novelty suppressed feeding paradigm appears absent from the VPA rat 

model literature, a gap which has been addressed by the present research. To further 

corroborate the anxiety-like profile of VPA rats, we found that in the NSF paradigm, VPA 

rats showed an increased latency to start feeding in a novel environment. Like the EPM, the 

NSF paradigm is in essence a conflict paradigm; in this case between the drive to eat and fear 

for a novel environment.  

Longer latency to begin eating food placed in the center of a brightly lit open field, as 

in the NSF paradigm, is reliably linked to increased anxiety in rats (Lira et al., 2003). In 

previous research, it was found that rats with a complete genetic deletion of the SERT also 

showed an increase latency to start eating (Olivier et al., 2008). In line with performance on 

the extensively documented paradigm in VPA rat model literature, the EPM (Schneider & 

Przewlocki, 2005; Schneider, Turczak, & Przewlocki, 2005); rats prenatally exposed to VPA 

had a significantly longer latency to begin feeding than the saline cohort in the present study. 

These results are also congruent with studies linking ASD with increased anxiety (White et 

al., 2009).  In the NSF paradigm, there was a small non-significant effect observed in the HZ 

SERT KO rats prenatally treated with saline, which was also seen in the EPM. While not 

significant it is indicative of a slightly stronger anxiety-like response and given that a 

complete deletion of the SERT leads to significant increase in anxiety (Olivier et al., 2008). 

This trend suggests that 50% reduction is not strong enough to produce the anxious 

phenotype.  

While not ideal due to inherent differences across species, behaviour of the HZ 

genotype when not exacerbated by other developmental stressors, has been shown to be 

intermediary between that of homozygous SERT KO and WT in mouse models (Joeyen-

Waldorf, Edgar, & Sibille, 2009). In the EPM, no statistical differences on most measures 

between HZ and both other genotypes were seen (Kalueff, Fox, Gallagher, & Murphy, 2007). 

While a significant difference was seen for total time spent in the closed arms of the EPM 

between homozygous and WT SERT KO genotypes, the HZ showed an intermediate score 

but did not reach significance (Kalueff et al., 2007). However, in another study HZ SERT KO 

mice performed similarly to WTs in the open field test, another measure of anxiety, but more 
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closely related to the homozygous KO genotype in the EPM (Joeyen-Waldorf et al., 2009). 

These mixed results suggest that HZ produces a transitional behaviour pattern between 

homozygous and WT but also that this display is contingent on the paradigm used to 

investigate anxiety.  This pattern of behaviour in the SERT KO mouse model suggests that 

while HZ is functionally the closest genotype to that in humans, HZ alone is not enough to 

consistently produce the anxiety-related phenotype displayed in ASD.   

A conditioned taste-aversion paradigm was used to investigate the potential effect of 

prenatal VPA and SERT genotype on the latent inhibition phenomenon. Conditioned taste-

aversion (CTA) refers to the cognitive association which forms following presentation of a 

neutral or appetitive stimulus with exposure to an aversive stimulus (Yamamoto et al., 1994). 

A type of associative learning, LI is thought to represent the ability to filter out irrelevant 

information after pre-exposure to stimuli (McLaren & Mackintosh, 2000).   Because no 

interaction was observed between prenatal VPA treatment or genotype and sucrose pre-

exposure it does not appear to be impaired in this study. Under usual circumstances, when 

previously exposed to the novel stimulus/solution, the association between LiCl and sucrose 

solution is lessened (Yamamoto et al., 1994). Results from the present experiment displayed 

the typical pattern of animals pre-exposed to sucrose consuming proportionately more during 

testing than those not previously exposed (see figure 3).   

Rather than an effect on latent inhibition per se, it appears that VPA prenatal 

treatment at G12.5 has a general effect on sucrose consumption; indicative of a lesser 

association with a negative stimulus (LiCl) which could signify impairment in associative 

learning or a decreased susceptibility to the LiCl conditioned taste aversion paradigm. These 

data are in line with previous research on associative learning and VPA in rat models 

(Schneider et al., 2007). In a conditioned place aversion paradigm, VPA prenatally treated 

rats demonstrated a significantly reduced naloxone induced place aversion compared to 

control animals when injected with 0.2 or 0.5mg/kg. However, no significant difference was 

found between the groups when exposed to 1mg/kg of naloxone, meaning that VPA animals 

displayed decreased sensitivity to lower doses/ needed higher doses to lead to the same 

degree of conditioned place aversion as their control counterparts (Schneider et al., 2007). No 

corresponding deficit was found in measures of learning and memory included in their study 

of spontaneous non-matching to sample, so it was concluded that this was not due to any 

overarching impairment in learning (Schneider et al., 2007).  
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No significant effect of genotype was observed in the CTA test of LI however there 

was a trend towards lower sucrose consumption in all groups, except HZ SERT KO rats 

prenatally treated with VPA and not previously exposed to the sucrose solution. While not 

disparate enough to be statistically significant, this may indicate a trend towards increased 

CTA compared to the genetically WT rats. The behavioural pattern of the HZ SERT KO rats 

in the present study echo findings in children with low functioning autism; where associative 

learning is found to be significantly altered compared to healthy controls (Preissler, 2008). 

However, because the CTA paradigm has not previously been researched using SERT KO 

rats, it remains unclear whether this is a reliable trend which could become significant using 

the homozygous genotype.   

Prepulse Inhibition of acoustic startle response allows quantification of sensorimotor 

gating and processing (Swerdlow, Geyer, & Braff, 2001). It has been repeatedly 

demonstrated to be deficient in both ASD patients and VPA animal models of ASD and 

performance is regulated by the FC, limbic system and other key structures known to be 

perturbed during development by VPA exposure (Swerdlow et al., 2001). In line with VPA 

rat models previously reported following exposure on G12.5, the present findings show 

significant reductions in overall PPI, indicating a reduced ability to dampen startle response 

to an intense acoustic stimuli following immediate pre-exposure to a weaker stimuli 

(prepulse)(Markram et al., 2008; Schneider & Przewlocki, 2005; Schneider et al., 2005). The 

lack of significant differences produced for startle response and habituation in the present 

study also echoes previous research cited. However, not all studies have produced the same 

pattern (Dendrinos, Hemelt, & Keller, 2011).  This pattern of impairment demonstrated by 

rats prenatally exposed to VPA corresponds with what has often, but not always,  been 

observed in people with ASD; with decreased PPI but no corresponding significant difference 

in base startle response or overall habituation (Kohl et al., 2014). 

While not all research teams have been able to replicate these findings in people with 

ASD it is suggested that this lack of consistent association may be dependent on differences 

between phenotypically separate groups- high vs. low function ASD (Orekhova et al., 2008).   

In a study investigating the sensorimotor pattern of impairment in adults with Autistic 

Disorder using an acoustic paradigm, a significant difference in PPI but not startle response 

was found (Perry et al., 2007). In a study investigating startle response in patients with 

Asperger’s Syndrome it was found that in trials with high intensity prepulses, a reduction in 

inhibition was found compared to control subjects with no indication of significant 
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differences in basal startle response (McAlonan et al., 2002). However, other studies have 

found the opposite pattern in adults with high functioning ASD (Kohl et al., 2014)  or no 

significant difference in either measure in children with ASD (Oranje, Lahuis, van Engeland, 

van der Gaag, & Kemner, 2013). Age has been suggested as a confounding factor and may be 

applicable in future rat model studies too (Oranje et al., 2013). Indeed, in a longitudinal VPA 

rat study abnormal startle response was found in juvenile rats but not adults prenatally treated 

with either one or two administrations of VPA; along with no significant impairment in PPI 

for any group except single dose VPA juveniles rats (Dendrinos et al., 2011). 

Overall, the results of our present study are largely in agreement with previous 

research showing that prenatal VPA at GD 12.5 leads to significant alterations reminiscent of 

ASD, consistent in most of the paradigms used. However, our central hypothesis, namely that 

rats with genetically compromised SERT functioning would be more sensitive to the 

disruptive effect of VPA was not confirmed in the present experiments. There are several 

reasons why this might be the case. 

When treating patients, maintenance of VPA in therapeutically relevant doses requires 

daily administration (Birnbaum et al., 2004), and therefore the premise of using only one 

moderate dose exposure bares further consideration. Although in the present study the often 

used single administration paradigm was utilized, and indeed significantly altered behaviour 

in the offspring was found, repeated exposure to lower doses of VPA during the critical 

developmental period could lead to an interaction not observable in the current research. In a 

study designed to evaluate the impact of a single vs. multiple administrations of VPA in an 

animal model significant differences in behavioural markers was observed (Dendrinos et al., 

2011). Two moderate (200mg/kg) doses of VPA on G11 and G13 were compared with a 

single administration of 400mg/kg or 500mg/kg on G12.5 to investigate potential differences 

between single and multiple doses. Although the authors did not find any evidence for an 

accumulation of the two 200mg/kg doses (Dendrinos et al., 2011), this is not surprising given 

the 2.5 hour half-life of VPA in rats (cf. with 9-18hours in humans) (Loscher, 1999). 

However their administration schedule was not daily as in patients being treated for epilepsy 

or mood stabilization and also missed the day G12.5 which has previously identified as the 

critical window for developmental disruption in ASD (Rice & Barone, 2000).   

In order to adhere to more realistic administrations routines, Sabers et al (2014) 

chronically injected pregnant rats with different doses of VPA, 20mg/kg and 100mg/kg for 
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the last 9-12 days of pregnancy and continue to inject the dams throughout rearing until 

PND23, when neuronal growth was analysed (Sabers, Bertelsen, Scheel-Kruger, Nyengaard, 

& Moller, 2014). A significant increase in neocortical neurons was found after chronic VPA 

exposure compared to non-exposed pups. A dose related effect was found in frontal cortical 

thickness, with 100mg/kg leading to increase compared to 20mg/kg and controls signifying 

an overgrowth of neurons in the frontal lobes (Sabers et al., 2014).  As yet, effects on 

cognition and other core areas of impairment in ASD (including possible alterations in 5-HT) 

have yet to be investigated in this chronic VPA exposure model. Based on the findings of 

significant neurodevelopmental aberrations due to chronic prenatal VPA administration 

(Sabers et al., 2014), future research would benefit from investigating the long term 

behavioural effects of chronic VPA administration throughout development. It is possible that 

prolonged exposure to comparatively low doses may allow observation of an interaction with 

SERT genotype otherwise masked by high doses.   

The timing of exposure to prenatal VPA may also be important for potential 

interactions with SERT genotype due to different critical windows based on temporally 

sensitive divergences between behaviour and neuronal development. For instance, a single 

exposure to VPA on G9 led to significant alterations to synthesis, maturation and distribution 

of serotonergic neurons in rats (Miyazaki, Narita, & Narita, 2005), whereas exposure on 

G12.5 has been repeatedly used in behavioural studies (Bambini-Junior et al., 2011; Markram 

et al., 2008; Schneider & Przewlocki, 2005; Schneider et al., 2005; Schneider et al., 2007). 

Attempts to identify behavioural changes due to a single VPA exposure earlier than G12.5 

have met with mixed success. Kim et al (2011) found gradual decreases in social behaviour 

from time of prenatal VPA exposure G9 to peak at G12.5 (Kim, Kim, Jeon, Han, & Shin, 

2011). Inhibitory function was significantly decreased in rats administered VPA on G12.5 

compared to any other exposure time as identified by electroshock seizure threshold. This 

reduced threshold has been likened to the decreased inhibitory ability seen in patients with 

ASD (Kim et al., 2011).  

Alterations in the social behaviour of rats have been inconsistent across studies, with 

significant differences found compared to control found in some research (600mg/kg at G9), 

(Dufour-Rainfray et al., 2010) and not in others (800mg/kg at G9) (Narita et al., 2010). 

Furthermore, changes to reflexes and motor development have also produced contradictory 

results after VPA exposure on G9 (Dufour-Rainfray et al., 2010; Narita et al., 2010).  

Because of this apparent discrepancy between morphological changes in the serotonergic 
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system (seen especially after with GD9 administration) and behavioural changes (seen 

especially with GD12.5 administration), it would be interesting to see if VPA exposure in the 

earlier temporal window would show interaction with SERT genotype. Likewise, early 

exposure coupled with a more chronic administration of VPA (which would be more in line 

with the clinical situation) might lead to G*E interactive effects.  

Olivier et al (2008) found significant differences between performance of 

homozygous SERT KO rats and their WT counterparts on both the Elevated Plus-Maze and 

Novelty Suppressed Feeding paradigms; with homozygous SERT KO animals showing 

increased latency to begin eating on NSF, and decreased percentage of entries and time spent 

in open arms of the EPM compared to the WT rats (Olivier et al., 2008). Results from the 

present study replicates patterns of behaviour found on the EPM and NSF, but without the 

difference reaching statistical significance (see table 1 & 2). In the present set of experiments 

HZ animals were specifically chosen, to avoid a potential ceiling effect. However, it is 

possible that if homozygous rats had been used significant differences or an interaction with 

VPA exposure could have been found.  

So far, much of the research has focused on a comparison between homozygous 

SERT KO rats, which represents an extreme phenotype/genotype not found in humans, and 

control WT rats, neglecting the HZ genotype. Studies that have included HZ SERT KO 

genotype have done so in mice and have generally found a mild intermediate phenotype in 

measures of anxiety, rarely distinguishable in behaviour from WT animals (Adamec, Burton, 

Blundell, Murphy, & Holmes, 2006; Kalueff et al., 2007). The present study addresses the 

present gap in the rat literature by utilizing HZ genotype specifically as it represents the most 

translatable to humans. VPA and SERT showed no significant interaction but was trending 

that way in multiple experiments; in two specific behaviours on the EPM and also in NSF  

(p= 0.1), so potentially there is too mild of a genetic effect to produce a strong enough pattern 

of behavior without a substantially larger sample size. 

It is possible that due to system redundancy even with only 50% of SERT available in 

HZ animals it is enough to compensate for any deficits and explain why no genetic effect was 

observed.  The DHS theory of ASD pathogenesis (see introduction) focusses on the 

neurotrophic role of 5-HT early in development. As previously mentioned, 5-HT 

concentration is originally determined by maternal factors due to placental permeability and it 

is only later that fetuses’ genetics play more of a significant role (Bonnin & Levitt, 2011). All 
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rats used in the present study were conceived and reared by HZ dams which display relatively 

normal levels of 5-HT (Homberg et al., 2007). Given the role of maternal 5-HT concentration 

in early brain development it would be interesting to see whether the long-term behavioural 

changes in HZ pups depend on the maternal environment, i.e. whether pups are reared by 

dams of different genotypes (homozygous KO, HZ and WT) show exaggerated phenotypes. 

Assuming the behavioural deficits are larger in pups reared by homozygous SERT KO 

mothers, a potential G*E interaction with VPA might be uncovered. 

Conversely, genotype alone may not be the reason for the lack of interaction found 

between SERT and prenatal VPA. Previous research has found statistically significant 

associations between both the VNTR polymorphism in the promoter region 5-HTTLPR, and 

SNPs on SLC6A4, and ASD (Yang & Gill, 2007). However, genetic screening of the SLC6A4 

gene has yet to find any single mutation which reliably associates with ASD (Kim et al., 

2002). While it has been suggested that small sample sizes may be to blame for inconsistent 

association findings, Ramoz et al (2006) posit that defining specific phenotypic subsets may 

increase the likelihood of finding homogenous results. Sometimes called endophenotypes, 

specific traits such as age of first word and restricted repetitive behaviours can be used to 

increase statistical power (Bill & Geschwind, 2009).  

By isolating age of first word as an explicit endophenotype Alarcon et al (2008) 

identified CNTNAP2 as an Autism Susceptibility Candidate Gene (ASCG) through linkage, 

association and gene expression analysis (Alarcon et al., 2008). This is supported by the work 

of Buxbaum et al (2001) who found that using Phrase Speech Delay as a phenotypic subset 

led to the identification of chromosome 2q31 as a candidate gene region (Buxbaum et al., 

2001). Thus, definition of other specific phenotype clusters could be one way to further 

explore the SERT gene as a candidate for a component of G*E interaction. As the majority of 

the measures used in the present research were anxiety- and cognitive ability-centric, it is 

possible that a G*E interaction may exist in other areas of developmental delay that weren’t 

detectable in the paradigms used.  

Identification of specific traits may also be important for the converse reason. 

McCauley et al (2004) found a general over transmission of the “s” 5-HTTLPR allele in ASD 

families (families including members diagnosed with ASD) but no such association when 

looking at Rigid-Compulsive behaviour as a phenotypic subset (McCauley et al., 2004). 

When collating data from 352 ASD families Ramoz et al (2006) found no consistent link 
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between ASD and 5-HTTLPR polymorphism nor any of another nine SNPs located on the 

SLC6A4 gene, even when looking specifically at Rigid-Compulsive and Obsessive-

Compulsive Behaviours as phenotypic subsets (Ramoz et al., 2006). Taken together, this 

means that while there was a generally significant trend for 5-HTTLPR to be associated with 

ASD, specific traits weren’t automatically so.  

It is possible that the current research, focusing on aspects of cognition and anxiety, 

may have focused on behaviours in which this particular G*E interaction is not a major 

contributing factor. Considering the previous research highlighting the importance of 

phenotypic subsets (Buxbaum et al., 2001; Ramoz et al., 2006), it is possible that other 

specific types of behaviours such as aberrant communication,  social behavior or repetitive 

behaviours would lead to a significant G*E interaction. A current enigma in the literature on 

the association between 5-HTTLPR and ASD is the overtransmission of “s” and “l” common 

VNTRs in different studies. As yet, no satisfactory conclusion has been reached on why some 

studies report overtransmission of the “l” allele (Devlin et al., 2005).One theory gaining 

momentum is that 5-HTTLPR polymorphisms may influence phenotypic expression of ASD 

rather than susceptibility to development, as one study showed that the two common VNTRs 

did not convey risk but rather modified severity of social and communication (Tordjman et 

al., 2001). The “s” and “l” alleles were associated with more and less severe patterns of 

impairment, respectively (Tordjman et al., 2001). Population ethnicity may also play a role in 

the development of ASD and the association with SLC6A4.  

In contrast to the substantial evidence implicating the SERT gene or the chromosomal 

region in which it resides as risk inducing (Veenstra-VanderWeele et al., 2012; Yang & Gill, 

2007) several studies have produced results failing to support this hypothesis (Ramoz et al., 

2006). Using family based association studies and detection of three SNPs located on 

SLC6A4, no association to ASD was found in Chinese Han population (Wu et al., 2005), 

although these authors did not include the 5-HTTLPR VNTR polymorphism in their analysis. 

Furthermore, no linkage disequilibrium was found in Japanese trios, which indicates no 

association between 5-HTTLPR polymorphisms and ASD (Koishi et al., 2006). Conversely, a 

linkage study comprised of 37 Sardinian families found an even split in the development of 

ASD and association between the Human Leukocyte Antigen and 5-HTTLPR loci variants 

(Guerini et al., 2006). When taken together, these studies suggest a strong population based 

difference in the susceptibility genes involved in ASD, varying across ethnicity suggesting 

that actualization or penetrance varies based on as yet unidentified genetic background.  
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In support of the critical role of gene-gene interaction in the demonstration of 

phenotype, anxiety- and depression-like behaviours in the SERT KO mouse model has shown 

to be contingent on co-occurrence of key genes (Holmes, Li, Murphy, Gold, & Crawley, 

2003). Serotonin Transporter KO mice were backcrossed onto two different genetic strains 

and when assessed for anxiety-like behavioural patterns, only the B6 congenic SERT KO 

mice demonstrated increased anxiety coupled with decreased 5-HT1A binding and function. It 

was suggested that the higher baseline anxiety displayed by the 129S6 congenic mice, 

compared to the B6 strain, masked the anxiogenic effect of the SERT KO genotype (Holmes, 

Li, et al., 2003). Therefore, while no significant interaction was observed between SERT 

genotype and prenatal VPA in the present study, perhaps a different genetic background may 

be necessary for phenotypic presentation.  

Because numerous genes of minor to moderate effect are thought to interplay to 

produce ASD, the presence or absence of different genes may obscure identification. Some 

genes only show effect if other specific polymorphisms are also present in the genome, 

likewise they may be interchangeable, in the sense that only alteration to certain systems is 

requisite; not the specific polymorphisms or genes (Bill & Geschwind, 2009). As an example, 

much like the development of cancer relies on very particular cell regulation systems to be 

impaired or altered but not any specific mutation in those systems (Evan & Vousden, 2001). 

However, cancer usually involves mutations of moderate effect in particular cells over time, 

rather than changes during development caused by the interaction of minor static genes as in 

ASD.  

Research testing candidate genes and gene expression studies emphasized seven 

chromosomal regions as areas of risk and deserving of further investigation; one of which 

17q11.1-q21.2, harbours SLC6A4 (Yang & Gill, 2007). However, while much convergent 

research in the past points towards at least partial involvement of the SLC6A4/SERT/5-HT 

system in development of ASD, the hypothesis that anywhere between five and 20 genes are 

involved in the pathology of ASD (Yang & Gill, 2007) confounds the ability to identify any 

clear link in a simple G*E investigation. Rather, minor interactions discovered through future 

research individually accounting for only a small proportion of the variation and phenotype 

observed in ASD, will accumulate to produce a more complete and realistic model of the 

etiology. 



VPA & SERT KO: THE EFFECT ON ANXIETY & COGNITION 30 

Changes in the regulation of the serotonin system per se may be the prerequisite to 

develop ASD rather than any particular polymorphism of SLC6A4 or 5-HTTLPR. Given the 

complexity of the serotonergic system (for instance there are at least 14 different serotonergic 

receptors (Hoyer, Hannon, & Martin, 2002)); divergent genotypes might produce similar 

overall changes in the serotonergic system. This would allow for numerous polymorphisms to 

be partially associated with ASD with none being found to be unequivocally associated; a 

phenomenon which has been repeatedly produced by numerous studies (Guerini et al., 2006; 

Ramoz et al., 2006; Wu et al., 2005). Any change which alters the 5-HT system leading to 

DHS or any long term change in 5-HT availability or concentration could increase risk of 

ASD and be phenotypically interchangeable even if the gene responsible was intrinsic to 

another neurotransmitter or hormonal system.  

Under usual conditions 5-HT uptake predominantly occurs via SERT with relatively 

small proportions binding with other neurotransmitter transporters. When SERT expression 

or function is reduced for any reason, be it genotype, epigenetic changes or drug actions, 5-

HT uptake can occur not only via the remaining SERTs  (indicating redundancy in the 

system) but also via these other neurotransmitter transporters (NTTs)(Daws, 2009). This has 

been referred to in the past as ‘transporter promiscuity’ and can present a confounding factor 

in the present study. Indeed, it has been shown that in the homozygous SERT KO rats, 5-HT 

is partly removed from the extracellular space by the Norepinephrine transporter (Homberg et 

al., 2007). Given the apparent significant degree of redundancy in the SERT system, it may 

be that the reduction in SERT due to the HZ genotype is not severe enough to elicit the 

deleterious behavioural phenotype and the overlap in 5-HT uptake with other 

neurotransmitter transporter may exacerbate this.  

Given the ‘promiscuity’ of NTTs (Daws, 2009), an aberration in function or 

regulation of at least one other NTT may be necessary for SERT HZ genotype to eventuate in 

deleterious behavioural consequences. Under this theory, the uptake of 5-HT via other NTTs,   

coupled with the high degree of redundancy in the SERT system could mask any behavioural 

effects otherwise observable in this G*E model. Without resorting to use of the homozygous 

SERT KO genotype, minor disruptions to other NTTs known to be bound by excess 5-HT, 

such as norepinephrine- transporters (Daws, 2009; Homberg et al., 2007), may be more 

successful in producing an interaction or main effect.  
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Autism Spectrum Disorder is recognized as a complex and pervasive developmental 

disorder and as such lends itself to the theory that multiple neurotransmitter, cellular and 

hormonal systems may converge in its production. If multiple genes of small effect all 

converge on neurodevelopment, then this would explain the inconsistencies found in previous 

genome-wide studies; no single gene of large effect is present but rather interchangeable 

genes of only moderate individual consequence which act on specific developmental 

pathways (Bill & Geschwind, 2009). Numerous genes from seemingly discreet pathways 

have been implicated as risks for the development of ASD; cell adhesion molecules, 

extracellular matrix proteins, and 5-HT (Persico & Napolioni, 2013), each of which is 

involved in neuronal development, function, migration or distribution (Cochrane, Tansey, 

Gill, Gallagher, & Anney, 2010; Whitaker-Azmitia, 2001; Zhang et al., 2002). Furthermore, 

environmental factors like VPA which have been linked to changes in neurotransmitter 

concentration and long term epigenetic alterations and thereby present a risk of disruption to 

proper neuronal development (Roullet, Lai, & Foster., 2013).  

Given the temporally and hormone/NT sensitive gradients crucial to proper neuronal 

synthesis, migration and distribution, exposure to any sufficient dose of VPA or other 

significant environmental factor (like an immune challenge) at a critical period of 

development could lead to an increased risk of ASD. Simply put, these systems are 

vulnerable to changes during critical periods of development (Rice & Barone, 2000) and 

during this temporal window any significant disruptions may cause long lasting impairment 

phenotypically classified as ASD even though causative factors may be dissimilar. This may 

also explain why there is individual variation in the experience and manifestation of ASD; 

because it is not caused by homogenous changes. Likewise, disruption to the 5-HT system 

may only represent a single (substantial) cog in the underlying machine causing development 

of ASD. 

One way to discern whether this hypothetical challenge has any merit aside from face 

value, would be for genome studies to account for gene-gene interactions/reliance by 

including more than one susceptibility gene in their analysis and using a so-called network 

approach; much like the congenic mouse model discussed previously (Holmes, Li, et al., 

2003). Thus, rather than looking at genes individually, using bio-informatics techniques, the 

relationship between genes and their resulting proteins are studied. This approach will 

become very helpful in identifying the functional commonalities of individual genetic 

changes. If any genes are found to interact to a significant extent, then animal models might 
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be developed with them in mind. For example, SERT KO rats bred with other genetically 

controlled animals and investigated for key ASD traits, behavioural and cellular. Combining 

consistent risk genes such as those identified by reviews, for example the list compiled by 

Yang & Gill (2007), with genome wide association or linkage studies may shed light on the 

validity of this theory (Yang & Gill, 2007).  

While the present study failed to find a statistically significant effect or interaction on 

measures of anxiety and cognitive function for SERT genotype, it still presents a clear risk 

factor in need of better understanding. When factoring the implication of SLC6A4 from 

GWLS, gene expression studies, previous testing as a candidate gene along with its role in 

neurodevelopment remains a salient target of further investigation (Yang & Gill, 2007). 

Coupled with previous research repeatedly linking SERT as a potential pathway for 

development in ASD, further study is required to define the degree and necessity of 5-

HTTLPRs’ contribution (Veenstra-VanderWeele & Blakely, 2012). 

An important shortcoming of most genetics studies, including previous literature that 

found no reliable association between SLC6A4 and 5-HTTLPR polymorphisms (Koishi et al., 

2006; Ramoz et al., 2006; Tordjman et al., 2001; Wu et al., 2005), is that in most studies no 

attention was paid to environmental factor. For instance the studies of Ramoz et al (2006) 

collated information from a large sample of ASD families and found no reliable link between 

the aforementioned genetic variants and ASD when looking at specific areas of 

developmental delay or abnormal behaviour, but did not factor environmental interaction into 

their analysis (Ramoz et al., 2006). If any environmental factors, such as VPA, acted as a 

mediating factor in the development of ASD then failing to include measures which would 

assimilate exposure to such chemicals could potentially obscure any genetic factors which 

may otherwise be detectable.  

Only by including information about environmental exposures in large scale studies 

on information resourced from databases like the Autism Genetic Resource Exchange is it 

possible to get a more accurate picture on the role played by genes and environmental factors 

on the development of ASD. A prime example is the investigation into the interaction 

between the catechol O-methyltransferase (COMT) and 5-HTTLPR polymorphisms with 

maternal smoking on ASD symptoms in children diagnosed with ADHD. While no main 

effect was found for 5-HTTLPR s/s polymorphism or maternal smoking, a significant 

interaction was found and was associated with increased impairment in social interaction, low 
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birth weight and rigid behaviour (Nijmeijer et al., 2010). Furthermore, the Val/Val COMT 

polymorphism was found to interact with maternal smoking; an interaction which was 

associated with increased stereotyped behaviour, and again this was not accompanied by 

significant main effects of either factor (Nijmeijer et al., 2010). Therefore, not only were two 

G*E interactions found, but phenotypic expression of the comprising factors was entirely 

contingent on the presence of the other.  

Interestingly, the behaviours which were affected by the interaction between maternal 

smoking and COMT or 5-HTTLPR polymorphism were divergent (Nijmeijer et al., 2010). 

This suggests that the phenotypic effect of the maternal smoking risk factor is conditional on 

the susceptibility genes present, and also compounds the need to identify specific 

endophenotypes when investigating G*E interactions.     

While it is now generally acknowledged that both genes and environmental factors 

play key roles in the development of ASD and host of other neuropsychiatric disorders (Caspi 

& Moffitt, 2006; Caspi et al., 2005), the acceptance of this model presents us with an 

inescapable challenge: each factor may confound the discovery of the other. It is naïve to 

expect that something as complex ASD to be caused by a single G*E interaction. The 

numerous environmental factors suspected of influencing the emergence of ASD must be 

considered along with their potentially reliance on the complex interplay of genes of small 

effect which ultimately culminate in vulnerability and complicates the task of uncovering the 

etiology of ASD. Adding to the challenge is the as yet poorly understood mechanism by 

which genetic and environmental risks influence each other (Tsuang, Bar, Stone, & Faraone, 

2004). It has been suggested that any interaction may not necessarily be purely linear, but 

rather genetic vulnerabilities may alter not only susceptibility to environmental factors but 

also likelihood of exposure (Tsuang et al., 2004). Therefore, it is important not to write off 

potential G*E interactions too hastily, but rather expand theories to include additional factors, 

both genetic and environmental.  

Prenatal exposure to VPA is one of many environmental risk factors which have been 

identified. While no interaction was found in with HZ SERT KOs animals in the present 

study, there is no reason to expect that SERT would not interact with other environmental 

factors. Maternal infection during pregnancy has previously been linked with increased risk 

of ASD (Pardo, Vargas, & Zimmerman, 2005). Likewise, animal models of prenatal immune 

challenge through exposure to maternal immune activation (MIA) have shown impaired 



VPA & SERT KO: THE EFFECT ON ANXIETY & COGNITION 34 

patterns of behaviour and have been explored as models of both ASD and Schizophrenia 

(Patterson, 2009). While a return to the drawing board may be unavoidable, the inclusion of 

other environmental factors such as MIA and maternal smoking may need to be incorporated 

into the future G*E designs to make further progress in the discovery of the underlying 

contributors to ASD. Different combinations of genetic and environmental factors may 

interact potentially explaining the heterogeneity and varied symptomology typical of ASD. 

Inclusion of environmental factors and specific phenotypic subsets may hold the key 

to unraveling the next avenue of research to explore. At this juncture, there are numerous 

combinations of risks factors which could interact to produce ASD, and mounting evidence 

that there is likely more than one pathway to develop ASD (Geschwind, 2008).Along with 

the inclusion of environmental factors in gene association studies, the reverse is also a viable 

path to explore; factoring risk genes into studies of environmental effect on ASD 

pathogenesis. At this stage, while not painting the whole picture, identifying new 

combinations of risk factors which interact could provide valuable insight into the 

pathogenesis of ASD.  

The present study adds further validation to previous research showing significant 

changes to behaviour of animals prenatally exposed to VPA on the EPM and PPI as well as 

adding two more paradigms to the repertoire; contributing LI and NSF to the body of 

literature on the VPA rat model of ASD. The convergent findings of all four  paradigms 

suggests the validity of adding these two previously unused measures to the researchers tool 

boxes while investigating the development of ASD. These two new paradigms explore and 

expose different patterns of behaviour. Due to the nature of ASD as a complex 

neurodevelopmental disorder, every clue is integral. 

Autism Spectrum Disorder is a life-long pervasive developmental disorder with the 

potential to present severe behavioural, cognitive and affective challenges. The effect on 

quality of life for both individual and Whanau can be extensive, impacting the family unit 

both emotionally and financially. As rates of ASD are on the increase, with substantial 

impacts on society, both economic and social, it is imperative that the underlying contributing 

factors are investigated. Genes and environmental factors, interacting in numerous 

combinations, are thought to be causative in ASD; and when they are properly understood, 

the implications for prevention and symptom mitigating are boundless.  
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While no interaction between the prenatal VPA and HZ SERT KO rats on some 

measure of anxiety and cognitive ability in the present study, this by no means concludes this 

avenue of research. Each combination of likely risk factors investigated brings us one step 

closer to deciphering the ASD puzzle; in turn bringing us closer to effective treatment and 

better prevention.   

In summary, the present research further corroborates the existing literature that a 

single moderate in utero dose of VPA during the critical period of embryogenesis leads to 

long term aberrations in anxiety- and cognitive ability centric behaviour. No interaction was 

found between HZ SERT KO genotype and 400mg/kg G12.5 VPA on some measures of 

anxiety and cognition which was contrary to predictions. However, this study represents a 

starting point for subsequent research into the potential G*E interaction between SERT 

genetic reduction and prenatal exposure to teratogens. Numerous possible reasons exist for 

these interaction null results, including the genotype and genetic background, dose and 

administration schedule for the VPA, and also the specific behaviours measured. Future 

studies on different times of VPA administration, dose, genotype, phenotypic subsets and 

eventually different combinations of genetic and environmental factors.  
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Appendix 

 

Figure 1. Average percentage of time spent in the Open Arms of the Elevated Plus-Maze for 

rats prenatally exposed to Valproate (VPA) or saline with heterozygous (HZ) or wildtype 

(WT) serotonin transporter knockout genotypes. Data shows mean ± SEM.   
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Table 1 

Average Performance on the Elevated Plus-Maze for Rats by Prenatal Treatment and 

Genotype   

Note. Data shown represents average scores for heterozygous and wildtype serotonin 

transporter knockout rats prenatally treated with VPA or saline on gestational day 12.5 

(G12.5). Number of entries made into open arms is presented as a percentage of the total 

number of arms entered, both open and closed, while in the Elevated Plus-Maze. Latency to 

first emerge represents the time taken for the rat to first venture out of the initial arm it was 

placed in. M=Mean, SD= Standard Deviation, and n= group size.  

 VPA on G12.5  Saline on G12.5  

 M SD n 
 

M SD n 

Entries made into Open Arms        

        Wildtype 59.4% 45.7 12  73.8% 47.8 13 

        Heterozygous 59.8% 52.6 18  44.2% 31.2 22 

Latency to first emerge        

        Wildtype 37.9s 82.7 12  12.8s 4.2 13 

        Heterozygous 38.5s 76.8 18  10.3s 4.0 22 
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Figure 2. Average latency for rats prenatally exposed to Valproate (VPA) or saline, with 

Heterozygous (HZ) or wildtype (WT) serotonin transporter knockout genotypes, to begin 

eating in the Novelty Suppressed-Feeding test. Data shows the mean ± SEM.  
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Table 2 

Average Conditioned Taste-Aversion in Rats by Prenatal Treatment, Genotype and Pre-

exposure  

Note. Data shows average sucrose solution consumed for heterozygous and wildtype 

serotonin transporter knockout rats prenatally treated with Valproate (VPA) or saline on 

gestational day 12.5 (G12.5). Groups split into pre-exposed or not pre-exposed to sucrose 

solution during preconditioning. Average sucrose solution consumed is presented as the 

percentage consumed out of the total liquid consumed (water and sucrose solution) on the 

testing day. M= Mean, SD= standard Deviation, and n= group size 

 

 

 

 

  

 VPA on G12.5  Saline on G12.5 

 
M SD n  M SD n 

Wildtype        

        Pre-exposed to sucrose 46.5% 14.8 6  29.5% 15.6 7 

        Non pre-exposed 19.1% 6.1 6  13.4% 3.8 6 

Heterozygous        

        Pre-exposed to sucrose 30% 20.1 9  22.2% 9.3 9 

        Non pre-exposed 22.6% 23.8 9  10.6% 5.6 9 
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Figure 3. The percentage of sucrose solution consumed by rats prenatally exposed to 

Valproate (VPA) or saline, either pre-exposed to sucrose solution or not. Data shows mean ± 

SEM. 
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Table 3 

Average Startle Response and Habituation for Rats by Prenatal Treatment and Genotype 

Note. Data shows average basal startle response (P120) and total percent habituation for 

heterozygous and wildtype serotonin transporter knockout rats prenatally treated with 

Valproate (VPA) or saline on gestational day 12.5 (G12.5). Basal startle response shows the 

average displacement for the first block of startle stimulus presentation only trials. 

Habituation shows the percent decrease in startle response between the first and second 

blocks of startle stimulus only trials. M= Mean, SD= Standard Deviation, and n=group size.  

 

 VPA on E12.5  Saline on E12.5 

 M SD n 
 

M SD n 

P120        

        Wildtype 316.2 291.8 13  892.7 1199.2 15 

        Heterozygous 560.8 614.8 12 
 

917 1547.6 12 

Habituation (%)        

        Wildtype 57.7 38.8 13  51.3 39 15 

        Heterozygous 82.1 158.9 12 
 

45.6 33.9 12 
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Figure 4. Average percent prepulse inhibition to acoustic startle for rats prenatally exposed to 

Valproate (VPA) or saline, with heterozygous (HZ) or wildtype (WT) serotonin transporter 

knockout genotypes. Data shows the mean ± SEM. 
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