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ABSTRACT 

 

Significant opportunities exist in both the scientific and industrial sectors for the 

development of novel multi-functional materials that combine the inherent properties of all 

precursor components in a synergistic manner, thereby providing new products and 

opportunities.  Processes that add value to natural materials in a facile and refined manner are 

particularly sought after.  Thus this research combines useable substrates, notably natural 

protein fibres and minerals with gold or silver nanoparticles, producing high value, multi-

functional materials that display the strength, softness and shine (of the protein fibres), or 

high surface area and dispersibility (of the minerals) with the high value and wealth 

associated with the noble metal nanoparticles, their broad spectrum of intense colours, anti-

microbial, insecticide and anti-static properties.  This adds significant worth to the substrates, 

transforming them from commodities to valuable materials. 

 

Silk, merino wool and crossbred wool were the natural fibres employed kaolinite and 

halloysite clays the minerals.  They were combined with gold and silver nanoparticles of 

various sizes and shapes (and hence colours) producing the following composite materials: 

 Gold nanoparticle-merino wool composites 

 Gold nanoparticle-crossbred wool composites 

 Gold nanoparticle-silk composites 

 Silver nanoparticle-kaolinite composites 

 Silver nanoparticle-halloysite composites 

 

The most successful method for producing silver nanoparticle-clay composites involved the 

external preparation of silver nanoparticles and their subsequent attachment to the clay 

substrates by means of a layer-by-layer deposition approach, which capitalised on 

electrostatic interactions between oppositely charged polyelectrolytes capping the 

nanoparticles and bound to the clay surfaces.   
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Three general approaches were employed in the production of the gold nanoparticle-natural 

fibre composite materials.  The nanoparticles were either synthesised ex-situ and 

subsequently attached to the fibres, or the natural fibres were utilised as redox active 

biotemplates in which the wool or silk absorbed and subsequently reduced Au
3+

 to 

nanoparticulate Au
0
 on and within the fibres.  Thirdly, a seed mediated growth approach was 

employed in which additional Au
3+

 was reduced to nanoparticulate Au
0
 on the surface of 

gold nanoparticles already bound to the fibres.  This was facilitated by an external reductant. 
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1. INTRODUCTION 

 

1.1 Background 

 

The development of new multi-functional materials based on the immobilization of 

nanostructures on the surface of numerous substrates has recently received growing interest 

from industry and academia.[1-3]  Today a wide range of nanoparticles and nano-structures 

(materials with at least one dimension < 100 nm) can be produced, and immobilized on 

substrates, introducing new properties to the end product.[4-8]  Particular emphasis has been 

placed on the production of self-cleaning materials by means of surface modification with 

self-cleaning, anti-stain or anti-microbial coatings.  Self-cleaning surfaces have been 

designed through the use of titanium dioxide nanoparticles which have the ability to act as 

photocatalysts under ultra violet light.[1]  Anti-stain coatings have been prepared by the 

deposition of a fluorinated surface layer,[9] or a coating whose roughness mimics the well-

known lotus flower effect.[10, 11]  Anti-microbial composites that utilize silver nanoparticles 

have also been prepared, and are abundant in the consumer market place in the form of anti-

microbial clothing, wound dressings and water filtration systems.[2, 8, 12, 13] 

 

Numerous methods have been employed for the inclusion of nanoparticles onto useable 

substrates including blending of nanoparticles in a polymeric matrix before spinning into 

synthetic fibres,[14, 15] or attaching nanoparticles to substrates by means of a linker 

molecule, such as polyethylene imine.[16, 17]  Alternatively, layer-by-layer deposition 

methods, known as polyelectrolyte multi-layers, have been employed in which successive 

layers of oppositely charged polyelectrolytes (one of which acts to stabilise the desired 

nanoparticles) are absorbed onto the substrate surface.[2, 18]  The immobilization of the 

polyelectrolyte layers generally occurs via electrostatic and/or hydrophobic interactions. 

 

A significant challenge in the production of hybrid materials containing nanoparticles is 

combining the various components in such a way as to either retain the desirable properties 

of all precursor components, or express them in a synergistic manner.  Often one or more of 
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the properties inherent to these materials are lost; for example the broad spectrum of colours 

inherent to gold and silver nanoparticles.[8]  Additionally, the majority of composite 

materials containing nanoparticles comprise synthetic fibres such as nylon, rayon or spandex, 

or minerals such as montmorillonite.  There has been very little research into the production 

of composite materials containing nanoparticles and natural fibres, or the more common 1:1 

alumino silicate minerals.  Thus in this research it is proposed to produce composite 

materials of natural fibres (merino wool, crossbred wool and silk) and alumino silicate 

minerals (kaolinite and halloysite) with gold and silver nanoparticles. 

 

Gold and silver are both valued precious metals, gold in particular has a rich and varied 

history and represents quality and worth within society, occupying a premier position in the 

world economy.  Silver has a similar standard, however at a lesser value than gold.  

Traditionally both metals have been utilized in monetary, ornamental and jewellery 

applications in their respective yellow and white lustrous bulk metallic forms.  However as 

the particle size of gold or silver is reduced to nano-dimensions (at least one dimension < 100 

nm), visible absorptions take place and their traditional metallic colours are no longer 

observed.  Instead gold and silver nanoparticles exhibit a variety of brilliant hues.  The 

emitted colours are due to the well documented, classical effect, surface plasmon resonance 

(section 1.3.1) and are largely dependent upon the size and shape of the nanoparticles.  Thus 

by controlling the formation of the nanoparticles, the resultant colour maybe specifically 

tuned. 

 

Additionally, silver, and to a lesser extent gold, are known to actively inhibit the growth of 

microbes (sections 1.3.4.1 and 1.3.4.2).  Nanoparticles of these materials exhibit increased 

chemical and anti-microbial activities due to their large effective surface areas and 

crystallographic surface structures.[12, 19]  This research intends to exploit these properties 

in the production of composite materials of gold and silver nanoparticles with natural fibres 

and minerals, with the metallic nanoparticles acting as simultaneous high-value colourfast 

colourants and anti-microbial agents.  In doing so, the high-value and prestige associated 

with gold and to a lesser extent silver, will be transferred to the substrates, thereby linking the 

wealth associated with these metals to the natural fibres and minerals. 
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The following introductory chapter provides a background to the various components that 

have been incorporated into composite materials throughout the course of this research. 

 

1.2 Substrates 

1.2.1 Mineral Substrates 

 

The majority of research and development of composite materials containing clay minerals 

utilize montorillonite (MMT) as the substrate.  MMT is a 2:1 alumino silicate, consisting of 

two-dimensional layers (or lamellae), which can easily be swollen (disaggregated), allowing 

for intercalation of numerous functional entities (conducting polymers, nanoparticles etc) 

between the lamellae, making these materials popular in the production of composite 

materials containing clays.  Very little scientific literature exists on the use of common 1:1 

alumino silicate minerals in composites containing nanoparticles.  Hence kaolinite (section 

1.2.1.1) and halloysite (section 1.2.1.2) which are inexpensive, readily available and posses 

reasonably high surface areas, have been chosen as the substrates with which to prepare 

silver nanoparticle composites. 

 

1.2.1.1 Kaolinite 

 

Kaolinite (Al2Si2O5(OH)4) is a common alumino silicate formed through the weathering of 

aluminium rich silicate minerals such as feldspars.  Kaolinite is classified as belonging to the 

silicate class, phyllosilicate subclass and more generally belonging to the clay group.[20]  It 

is characterized by high reflectivity, inertness, fine particle size and low fluid viscosity.  

Because of these properties it has many industrial applications, notably in paper filling, the 

production of plastics, porcelain, ceramics and paint.[21] 

 

Kaolinite is composed of silicate sheets (SiO2) tightly bound to aluminium oxide/hydroxide 

layers (Al(OH)6) otherwise known as gibbsite, with a basal (d001) spacing of ~7 Å.[22]  The 

silicate layer comprises SiO4
4-

 tetrahedra (Figure 1.1 [I][23]), arranged so that in a plane, one 



 

 

4 

oxygen atom is bound to two silicon atoms, forming a sheet of silicon tetrahedron (Figure 1.1 

[II][23]). 

 

          

                                             I                                       II 

Figure 1.1: (I) SiO4
4-

 tetrahedra. (II) Sheet of silicon tetrahedron.[23] 

 

The gibbsite layer is based on the aluminium octahedral unit (Figure 1.2),[23] with the 

aluminium atom sharing + 0.5 of its charge with each surrounding oxygen atom, resulting in 

a net charge of - 1.5.  This charge is balanced as each corner oxygen is shared between two 

aluminium atoms, and the remaining oxygen atoms bond with hydrogen to form surface 

hydroxyl groups.  Expansion of this arrangement in three dimensions forms the mineral 

gibbsite. 

 

 

Figure 1.2: Gibbsite.[23] 

 

Rather than balancing the charge in gibbsite with hydrogen atoms on each side, one hydroxyl 

layer can be replaced by a silicon tetrahedral layer, as is the case in kaolinite.  This results in 
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the apical oxygens of the tetrahedral layer also residing in the octahedral layer, forming a 1:1 

kaolinite unit (Figure 1.3).[23] 

 

 

Figure 1.3: Combination of gibbsite and silicon tetrahedral layers.[23] 

 

These 1:1 units come together through hydrogen bonding between the apical hydrogens of 

the gibbsite layer and the basal oxygens of the silicate later, resulting in the basic structure of 

kaolinite as shown in Figure 1.5.[23]  Kaolinite is classed as a nanomaterial as it has one 

dimension less than 100 nm in diameter.  Electron microscopy images illustrate the 

hexagonal plate-like structure typical of kaolinite (Figure 1.4). 

 

 

Figure 1.4: Scanning electron microscopy (SEM) micrograph of kaolinite. Characteristic hexagonal 

platelets are evident. 

100 nm 
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Figure 1.5: Kaolinite.[23] 

 

1.2.1.2 Halloysite 

 

The structure and chemical composition of halloysite is similar to that of kaolinite, however 

the unit layers are separated by a monolayer of water molecules (Figure 1.6).[22]  As a result, 

hydrated halloysite (known as halloysite-(10 Å)) has a basal (d001) spacing of 10 Å, 

approximately 3 Å larger than that of kaolinite.[22]  The water molecules in the interlayer 

spacings are only weakly held and can readily and irreversibly dehydrate to give the 

corresponding halloysite-(7 Å).[24]  Halloysite has the same theoretical chemical 

composition as kaolinite except for a higher water content, with the ideal formula for 

halloysite-(10 Å) and halloysite-(7 Å) being Al2Si2O5(OH)4nH2O where n = 2 and 0 

respectively.[22] 
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Figure 1.6: Crystalline structure of halloysite-(10 Å).[22] 

 

Particles of halloysite can adopt various morphologies, notably spherical (Figure 1.7 a),[25] 

tubular (Figure 1.7 b)[26] or plate-like (comparable to kaolinite (Figure 1.4)),[27] the most 

common of which is tubular.  These tubules may be long and thin, short and stubby or 

emerge from other tubes, with lengths ranging from 0.02 to > 30 μm, and widths from < 0.05 

μm to 0.2 μm.  Small tubules (<0.08 μm wide) commonly posses central cylindrical pores of 

between 5 to 20 nm, whilst bigger tubules (> 1 μm wide) are largely filled so that there are 

virtually no cylindrical pores.[28] 

 

 

Figure 1.7: Transition electron microscopy (TEM) micrographs of various morphologies of halloysite; a) 

spherical and b) tubular.[22] 
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Bates et al.[26] and Bailey[29] postulated that the tubular form of halloysite arises due to a 

misfit between the octahedral and tetrahedral sheets making up the 1:1 aluminosilicate layers.  

They suggested that in kaolinite there is tetrahedral rotation of the basal oxygens of the 

silicate sheets compensating for this mismatch, whereas in halloysite this rotation is blocked 

by water molecules absorbed in the interlayer.  This tubular form of halloysite remains even 

after dehydration and removal of the interlayer waters, suggesting that tetrahedral rotation is 

also blocked by physical constraints.[30]  Therefore in a very approximate way, the chemical 

properties of the outermost surface of halloysite can be associated with the properties of 

SiO2, and the properties of the inner surface of the cylindrical core with Al(OH)3.[31-34] 

 

1.2.2 Fibrous Substrates 

 

1.2.2.1 Wool 

1.2.2.1.1 Background 

 

The history of the New Zealand wool industry has been heavily influenced by New Zealand‘s 

climate, terrain, and world demand for sheep products.  Consequently a wide range of wools 

are produced, suitable for a variety of end products. 

 

Merino were the first permanent flock of sheep to be introduced to New Zealand, established 

on Mana Island, Wellington, by James Bell Wright in 1834.[35]  It remained New Zealand‘s 

dominant breed until the late 19
th
 century, when it was replaced by the hardier Romney.  In 

2008 the number of sheep, of all breeds in New Zealand totalled approximately 38 million; 

with merino comprising an estimated 5 %,[36] and strong crossbred approximately 50 %.[37] 

 

Merino is a specialty fine wool breed, providing a source of natural protein fibres that are 

utilized in numerous applications including clothing and interior furnishings within the 

textile industry.  Strong crossbred wool comprises a group of thicker diameter wools (> 35.4 

µm), and finds application in carpet manufacture and coarse textiles.  New Zealand is the 
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largest exporter of crossbred wool, and second only to Australia in the export of all wools.  

The New Zealand wool sector accounts for approximately 1.3 % of New Zealands total 

merchandise exports, however this figure has seen a significant decrease over the past years 

(Table 1.1),[36] with this trend continuing today.  This is likely attributable to a reduction in 

sheep numbers due to an increase in the profitability of alternative types of farming, notably 

dairy and beef. [36, 38] 

 

Table 1.1: New Zealand Wool Exports to the year ending September 2009 ($NZ Million FOB).[36, 38] 

Year 
Ending 

September 

Total Wool 
Exports 

Total Merchandise 
Exports 

Wool Sector as % of Total 
Merchandise Exports 

1995 1,478.7 20,065.3 7.4 % 

2001 1,170.8 30,985.7 3.8 % 

2002 1,115.0 31,111.7 3.6 % 

2003 1,121.4 28,241.6 4.0 % 

2004 726 30,048 2.4 % 

2005 663 30,770 2.2 % 

2006 685 33,868 2.0 % 

2007 625 34,591 1.8 % 

2008 613 41,973 1.5 % 

2009 528 39,667 1.3 % 

 

The current situation in the New Zealand wool industry presents an opportunity to add value 

to New Zealand wool, in particular premium merino, through the use of innovative science 

based on nanotechnology. 

 

1.2.2.1.2 Chemical Composition 

 

Wool belongs to a family of fibrous proteins known as α-keratins.  Keratins are common to 

higher vertebrates (reptiles, birds and mammals) and exercise a protective function.  Wool 

fibres are over 90 % keratin, with the remainder comprising lipids, waxes and saccharides.  
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Keratin fibres have a characteristically high sulfur content, mainly present as the disulfide-

containing amino acid cystine.  Twenty other amino acids, in various combinations 

depending on the breed and diet of the sheep, are found in wool (Table 1.2).[39]  Depending 

on their side chains, these amino acids are either hydrophilic or hydrophobic, acidic or basic.  

In its ionized state, a deprotonated carboxylic acid group may be regarded as being basic, and 

a protonated amino group acidic, with the proportion of acidic and basic groups being 

approximately equal (800-850 µmol/g of fibre of each).[39, 40] 

 

Table 1.2: Amino acid composition of merino wool.[41] 

 

Individual polypeptide chains are joined together to form proteins by a variety of covalent 

bonds, called crosslinks, and non-covalent physical interactions (Figure 1.8).[42]  The most 

important crosslinks in terms of strength are disulfide bonds formed between adjacent cystine 
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groups (Figure 1.8).  A second type of crosslinks are isopeptide bonds formed between 

glutamic or aspartic acid residues and lysine residues.  In addition to covalent crosslinks, 

polypeptide chains are joined by hydrophobic and ionic bonds, due to interactions between 

amino acids with hydrocarbon side chains and acidic and basic side chains respectively 

(Figure 1.8). 

 

 

Figure 1.8: Diagram showing the numerous bonds liking adjacent polypeptide chains in wool keratin, 

notably intermolecular disulfide crosslinks, isopeptide crosslinks and hydrophobic and ionic 

interactions.[42] 

 

In addition to proteins, wool contains about two percent internal and external lipids.  The 

latter are commonly termed woolgrease and are almost completely removed by scouring and 

refined to produce lanolin.  Internal lipids consist mainly of cholesterol, fatty acids and polar 

lipids.[39] 

 

1.2.2.1.3 Physical Properties 

 

Merino and other fine wool fibres contain two types of cells, notably flattened external 

cuticle cells and long, polyhedral cortical cells.  In coarse wool fibres, such as seen in the 

New Zealand Drysdale, there is a third cellular component called the medulla.  In medullated 

fibres, the cortex has a hollow core of cell remnants which runs through the centre of the 
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fibre.  These may either be fragmented (sporadic), interrupted, or continuous (Figure 

1.9).[43]  Medullated fibres are lower in density than non-medullated fibres, and as such take 

up dye in an irregular fashion, deeming them unsuitable for end use in apparel and high 

quality textiles.  However they have found applications in carpet manufacture, where uniform 

dyeing is not always imperative.[35] 

 

Figure 1.9: Image showing types of medulla that can occur in wool fibres. a) Fragmental, b) interrupted 

and c) continuous.[35] 

 

The physical structure of the wool fibre is very complex, as shown in Figure 1.10.[39]  The 

centre of the fibre comprises the cortex, which is divided into two sections called the para- 

and orthocortex.  The paracortex possesses more sulfur than the orthocortex, and as such it is 

more highly crosslinked and tougher.  The proportion of paracortical cells in crossbred wools 

is approximately 40–10 %, and orthocortical cells 60–90 %.  Conversely, in merino wool 

fibres the paracortex is approximately 50-30 % of the total amount of the cortex, increasing 

with increasing fibre diameter.[44, 45]  The structure within each cortical cell is intricate.  

Throughout each are remains of the cellular apparatus of once living cells, termed nuclear 

remnants.[46]  In addition, there are successively smaller structural units, notably 

macrofibrils, microfibrils, protofibrils and twisted molecular chains (α-helices) of protein. 
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Figure 1.10: Structure of fine wool. Note, coarse wool may also contain a medulla, not shown here.[39] 

 

The ortho- and paracortex can be approximated as hemicylinders (Figure 1.11),[47] wound 

around each other helically in phase with the crimp of the fibre.[48]  This arrangement, 

which occurs during the growth of the fibres, produces a regular wave or crimp.  The 

orthocortex is more absorbent than the paracortex, and as such, when moisture is absorbed 

the orthocortex is always found on the outside edge of the crimp curvature (Figure 1.12).[49] 

 

 

Figure 1.11: Light micrograph of cross sections of merino wool fibres stained to show the bilateral 

differentiation of the orthocortex (O; darkly stained) and paracortex (P; lightly stained).[46] 
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                                                 I                                             II 

Figure 1.12: Schematic representation of the cortical structure and crimp of merino wool fibres; (I) side 

view and (II) cross sectional end view.[49] 

 

The cuticle is the outermost layer of wool fibres, and consists of at least four layers, the 

epicuticle, the A- and B-layer of the exocuticle and the endocuticle.  Both cuticle and cortical 

cells are separated from each other and the cortex by a cell membrane complex consisting of 

non-keratinous proteins and lipids.[49]  Compared to the cortical cells, cuticle cells have a 

higher proportion of cystine, proline, serine and valine residues.[50]  In merino wool, the 

cuticle cells are approximately 20 μm x 30 μm x 0.7 μm.[51]  Cuticle cells overlap in the 

longitudinal direction of the fibre in a manner similar to that of roof tiles (Figure 1.13).  A 

key function of cuticle cells is to both secure the fibres to the skin of the animal and keep it 

free of foreign objects.  The scale edges always point outward from the root towards the tip 

(distal end) of the fibre, resulting in the coefficient of friction being less in the root to tip 

direction that than in the tip to root direction.[52]  This directional friction effect acts as a 

self-cleaning mechanism, expelling dirt and vegetable matter lodged in the fibres of an 

animal.[46, 53]  It is also the source of felting and shrinkage seen in wool.[35, 54] 

 

 

Figure 1.13: Scanning electron micrograph of a merino wool fibre. Overlapping cuticle cells are evident 

on the fibre surface. 

10 µm 
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The A-layer (the outer layer of the exocuticle) is sulfur rich, consisting of 35 % S, and is 

characterised by a high degree of crosslinking via disulfide and isopeptide bonds.  There is a 

high portion of the protein loricrin (65–70 %) which is rich in glycine, serine and cystine.  

The B–layer contains 20 % S and is correspondingly less cross-linked than the A-layer.  

Conversely, the endocuticle is very low in S, is more permeable and is the usual diffusion 

pathway for water and other reagents.[39] 

 

The epicuticle is the outermost membrane of the cuticle, and is resistant to acids, alkalis, 

oxidizing agents and enzymatic attack.[55]  It contains little or no phospholipids,[48] limiting 

the number of molecules that can diffuse through into the fibres.  Because of its location on 

the exterior of the fibre, the epicuticle exerts a major influence on the surface properties of 

merino wool.  

 

The epicuticle consists of approximately 75 % protein and 25 % lipid.[55-57]  The protein 

component contains around 12 % cystine,[57] and the lipid component a mixture of fatty 

acids, predominantly 18-methyleicosanoic acid (18-MEA) covalently bound to the protein 

most likely by means of a thio-ester bond through cysteine residues.[58]  The presence of the 

fatty acid imparts a hydrophobic nature to the fibre surface, which can be very problematic in 

many important textile procedures such as dye uptake and polymer adhesion.[59, 60] 

 

Alcoholic alkali treatment has been shown to reduce the hydrophobic nature of the epicuticle 

(wool surface) by means of removal of the bound fatty acid.[49, 55, 58, 60, 61]  Comparisons 

of the treatment of merino wool with potassium t-butoxide in t-butanol (a surface-selective 

reagent),[55] and potassium hydroxide in methanol (a non-surface-selective reagent),[61] 

resulted in the former treatment removing only 65 % fatty acid compared to the latter.  This 

suggests that the fatty acid surrounds each individual cuticle cell, and that the overlap of cells 

and hindrance by the cell membrane complex makes it difficult for the bulky alkali to reach 

the bound fatty acid on the underlying cuticle surface.  Alcoholic alkali treatment also results 

in partial oxidation of the fibre surface.[62] 
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The epicuticle membrane is 5-7 nm thick, and 18-MEA is approximately 2.8-3 nm long.[57, 

63, 64]  Negri [55] proposed a model for the epicuticle in which the protein matrix is studded 

with fatty acid chains orientated in the lowest energy configuration, directed away from the 

fibre (Figure 1.14).[55]  This model was supported by x-ray photoelectron spectroscopy, 

which detected a very high proportion of carbon in the outer 30 Å of the cuticle cells,[56] and 

secondary ion mass spectroscopy, which yielded almost exclusively hydrocarbon fragments 

on the fibre surface.  The protein component was proposed to be an ordered structure in 

which a repeating amino acid sequence is folded as a β-pleated sheet, arranged in such a way 

as to present an abundance of cysteine residues at the protein surface, which would be 

available for acylation.[55] 

 

Figure 1.14: Model for the epicuticle of keratin fibres. Diagram represents a slice of the outer 100 Å of a 

cuticle cell. The protein matrix is heavily acylated with 18-MEA, which forms a hydrophobic surface.[55] 

(Note: diagram is not drawn to scale). 
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1.2.2.1.4 Wool Processing 

 

There are three main systems for processing wool from fibre into yarn; notably the worsted, 

semi-worsted and woollen systems.  There are a number of processes common to all three 

systems including blending of the wool types to be processed, scouring to remove impurities 

such as dirt, grease and vegetable matter, carding to disentangle the fibres and further remove 

impurities, and spinning of the fibres into a yarn.  The type of processing route employed, 

and hence the attributes of the produced yarn depend largely on the properties of the wool.   

 

Fine wools, such as merino, which are destined for high quality apparel, are commonly 

processed via the worsted system.  This route involves the most steps and is the most 

complex of the three systems, producing a fine, smooth and strong yarn.  To achieve the 

requisite yarn quality there are generally stringent requirements on the raw material, notably 

wool with good length and strength.  Alternatively, the woollen system, which is the most 

common route for coarser wools, such as crossbred wools, is tolerant of wide variations in 

wool quality, especially length.  The resultant woollen yarn has markedly different properties 

to a typical worsted yarn.  It is a relatively coarse, less regular yarn with a bulky, soft handle.  

Woollen yarns are well suited for carpets and heavy apparel.  Between these two routes is the 

semi-worsted system.  This is essentially a shortened version of the worsted route, and 

produces a yarn that is intermediate in properties between worsted and woollen yarns.[65] 

 

Throughout these processing steps lubricants are required to improve processing efficiency 

and reduce fibre damage and breakage.  The three different processing routes have different 

requirements in terms of lubrication.  The worsted processing route utilises the largest 

amount of lubricants (of different types) as it is the most complex route, involving the most 

steps.  The lubricants are commonly poly alkylene glycols, ethoxylated fatty acids and fatty 

acid esters combined with oxidation stabilisers.  In contrast, the woollen and semi-worsted 

routes often use only one lubricant, typically ethylene oxide polymers or ethylene 

oxide/propylene oxide block co-polymers.[66]  These lubricants are applied in 0.8 – 3 wt %, 

and unless the wool is re-scoured following processing, they remain on the wool surface.  

This affects the surface properties of the processed wool, and hence wools which have been 
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processed via the woollen, semi-worsted or worsted systems may differ in their surface 

chemistry. 

 

1.2.2.1.5 Surface Treatments 

 

The most widely used surface specific treatment for wool is the chlorine Hercosett process 

(Cl/H), invented by CSIRO in the 1950‘s.[67]  This procedure reduces felting by lowering 

the directional frictional difference between the fibres, rendering them shrink resistant.[51]  It 

is an oxidative process in which fibres are exposed to chlorine gas, generated in-situ from 

sodium hypochlorite and sulfuric acid, or chlorine gas dissolved in water; resulting in the 

oxidation of cystine moieties and hydrolysis of peptide bonds within the exocuticle.[68, 69]  

The treatment is surface specific as the reaction with the exocuticle takes place in less than 

10 seconds.[70]  Following surface oxidation, the fibres are treated with an aqueous base to 

neutralise the positive surface charge, and a cationic polymer is applied.  This polymer is 

Hercosett 125, a polyamide epichlorhydrin type polymer (Figure 1.15) which is capable of 

crosslinking via condensation reactions through primary and secondary amino groups in the 

polyamide backbone. 
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Figure 1.15: Hercosett 125, a polyamide epichlorhydrin type polymer employed in shrink resistant 

treatment of wool. 

 

Hercosett films undergo considerable increases in volume when immersed in water.  The 

volume when wet is approximately ten times that of the air-dry volume.[71, 72]  This 

characteristic is a result of the highly cationic character of the polymer and its low degree of 

crosslinking.  The significant swelling prevents the scales edges of adjacent fibres from 

interacting and causing felting (shrinkage) during washing. 
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1.2.2.2 Silk 

 

1.2.2.2.1 Background 

 

Silk and the production of silk, (sericulture), originated in China more than 4,000 years ago 

with the Chinese utilising silk in luxury clothing, decorations and musical instruments.  For 

more than 2,000 years China kept the secret of sericulture to itself; it wasn‘t until the opening 

of the Silk Road that the West was introduced to this luxurious natural fibre.  In spite of 

competition from the development of man-made fibres, which have taken over many of silk‘s 

former established uses (hosiery, parachutes etc) silk has retained its supremacy in the 

production of luxury apparel and specialised goods of the highest quality, with world silk 

production approximately doubling over the last thirty years.[73]  Silk is harvested from 

cocoons produced by the larvae of a variety of insects and spiders of the phylum Arthropoda.  

Worldwide, the larvae of the domesticated mulberry silkworm Bombyx mori (B. mori), are 

the most widely exploited and most important source of silk.[74]  Today the major countries 

involved in sericulture are China and India, producing 54 and 14 % of the total worldwide 

raw silk production respectively.  Japan, Brazil and Thailand are also key contributors.  New 

Zealand does not produce silk.[75] 

 

1.2.2.2.2 Chemical Composition 

 

The raw silk thread, obtained from the cocoon of silk producing larvae such as B. mori, has a 

―sheath around two cores‖ composite structure.  It is comprised of two fibroin filaments 

(brins) embedded in a protein gum called sericin, forming a singular thread (bave) which has 

a diameter of 15-25 µm.  Both fibroin and sericin are proteins, with the former accounting for 

approximately 70–80 wt % of the raw silk thread.  Other minor components are waxes and 

fats (~ 1.5 wt %), carotenoid pigments and mineral components (~ 1 wt %) which occur 

exclusively in the sericin layer. 
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Fibroin constitutes the core of the silk fibre, however it is not a single protein, rather it is 

divided into two major polypeptide components, a heavy component (H-chain) and a light 

component (L-chain).  Additionally there is a third component, P25, which has been 

suggested to act as a chaperone assisting in the transport and secretion of H-fibroin from B. 

mori.[76]  P25 associates with the H- and L-fibroin via non-covalent (largely hydrophobic) 

interactions.[77]  H-fibroin, L-fibroin and P25 are thought to be assembled in the ratio of 

6:6:1.[78]  All of the fibroins possess a high content of the amino acids glycine (44.6 mol %), 

alanine (29.4 mol %), serine (12.1 mol %) and tyrosine (5.17 mol %), which together 

comprise more than 90 mol % of the total residues in B. mori.[79]  On average, the total 

acidic groups in fibroin is two to three times that of basic groups.   

 
Table 1.3: Functionality and concentration of side groups in the amino acids of silk fibroin and 

sericin.[80] 

Amino Acid g amino acid per 100 g protein 

 Fibroin Sericin 

INERT   

Glycine 44.6 8.8 

Alanine 29.4 4.0 

Valine 3.2 3.1 

Leucine 0.8 0.9 

Isoleucine 1.4 0.6 

Phenylalanine 1.5 0.6 

ACIDIC   

Aspartic acid 3.0 16.8 

Glutamic acid 2.0 10.1 

BASIC   

Lysine 0.9 5.5 

Arginine 1.1 4.2 

Histidine 0.5 1.4 

HYDROXYL CONTAINING   

Serine 12.1 30.1 

Threonine 1.5 8.5 
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Amino Acid g amino acid per 100 g protein 

 Fibroin Sericin 

Tyrosine 5.1 4.9 

SULFUR CONTAINING   

Cystine 0.3 1.4 

Cysteine 0.1 0.2 

Methionine 0.2 0.1 

MISCELLANEOUS   

Proline 1.5 0.5 

Tryptophan 0.5 0.5 

 

Sericin is the protein constituent that glues the two fibroin filaments together when they are 

spun by the silkworm to form the cocoon.  It not only plays an important role in the structure 

of the cocoon but also assists in binding filaments together during the reeling of silk through 

the filature (silk producing gland of the silkworm).  It constitutes about 20-30 wt % of the 

cocoon proteins, is soluble in hot water and gels upon cooling.  In composition, sericin is 

distinctly different from fibroin.  It is rich in serine, glycine and aspartic acid, which together 

comprise about two-thirds of the total residues.  It is also a lot richer in cystine.[81, 82]  

About 60 % of the amino acids in sericin possess hydroxyl groups, 30 % acidic groups, and 

10 % basic groups.  The hydrogen bonding ability of these hydroxyl groups is considered 

responsible for the glue like properties of sericin (Table 1.3).[77] 

 

1.2.2.2.3 Physical Properties 

 

As mentioned, silk from the mulberry tree silkworms, B. mori, is composed of two protein 

fibroins (brins) embedded in a gluelike sericin coating, forming a bave.[76, 83, 84]  A similar 

structure has been observed for silk from other silkworm silks.[85]  The fibroin filaments 

comprise bundles of filaments, approximately 5 nm in diameter, with a bundle diameter of 

around 100 nm.[84]  The nanofibrils are orientated parallel to the axis of the fibre, and are 

thought to interact strongly with each other.[82]  A schematic representation of the structure 

of B. mori thread is offered in Figure 1.16.[76] 
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The two major polypeptide components, the H- and L-chain can be separated by reductive 

cleavage, and have been shown to be linked via disulfide bonds.[81, 86, 87]  Until the work 

of Schroeder and Kay,[88] which was later confirmed by Zuber et al.[89] it was assumed that 

cystine and methionine (S containing amino acids) were absent from the fibroins.  This was 

likely due to their extremely small quantities (~ 0.3 and 0.5 M % respectively) and to their 

partial destruction during degumming (the removal of sericin).[90]  Cystine is considered to 

play a small but vital role in the secondary structure of fibroin by forming interchain 

disulfide links between the H- and L-chains.[81, 86, 87, 91]  L-fibroin polypeptides contain 

three cystine residues.  Two of which form an intra-molecular disulfide bridge, whilst the 

third, in position 172 binds with cystine-C20 (20 residues from the C terminus) of H-fibroin to 

form the intermolecular disulfide bridge which connects the two main fibroin 

polypeptides.[82] 

 

 

Figure 1.16: The structure of B. mori silk thread.[76] 

 

Silk fibroin are repetitive AB block copolymers, with alternating hydrophobic (crystalline) 

and less hydrophobic (non-crystalline) regions.[92]  The H-chain makes up the crystalline 

region and has been identified as rigid, tightly packed anti-parallel β-pleated sheets.[93]  The 

β-pleated sheets are either poly-alanine (poly-Ala), or poly-glycine-alanine (poly-Gly-Ala) 

repeat units, each interlocking with adjacent chains via hydrogen bonding (Figure 1.17).[76, 
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94]  The sheets are assembled through hydrophobic interactions and are orientated in such a 

way that in any one sheet, all of the glycine side chains (-H) project from the same side, and 

the alanine (-CH3) side chains from the other.  The sheets then stack together so that the 

methyl and hydrogen groups interact to form inter-sheet stacking in the crystals.[77]  The 

non-crystalline domains of fibroin are poorly orientated, randomly coiled sections of the 

peptide, and are considered amorphous.[95] 

 

 

Figure 1.17: Schematic showing the interactions of the two different β-sheet regions in silk fibroin.[76] 

 

As mentioned in section 1.3.2.2.2, the sericin coating consists 20-30 wt % of the B. mori silk 

fibre.  Sericins are known to have several extraordinary properties: they are anti-bacterial, 

UV resistant, and can easily absorb and release water.[76, 96]  These properties are valuable 

in the protection of silk from microbial degradation, animal digestion and other detrimental 

processes.  Although sericin is advantageous to the silk fibre whilst part of the cocoon, from 

an aesthetic point of view it is not.  Silk with sericin intact does not possess the shine and 

softness for which silk is renowned.  The gummy sericin imparts a harsh handle and must be 

removed in order to bring out the typical shine, lustre, soft handle and drape highly 

appreciated by consumers. 

 

The removal of sericin from silk is termed degumming.  It is a simple but important process 

usually employing hot dilute soap or alkaline solutions and occasionally dilute acids,[97] and 

usually occurs before dyeing and finishing processes.  Degumming has a great influence on 
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dyeing silk.  Often, defects found in the final dyed product (for example non-uniform colour) 

can arise due to incomplete removal of sericin, or fibre damage produced by over harsh 

degumming conditions.[77]  However in some cases, partial degumming may be desired; 

souple and crude (ecru) silks are obtained in this way.  Although degummed silk has a degree 

of whiteness, it is often necessary to bleach in order to obtain a pure white material, and this 

is generally achieved through oxidation by hydrogen peroxide. 

 

Due to the combination of extensive hydrogen bonding, high levels of crystallinity, and the 

general hydrophobic nature of silk fibroin, silk proteins are insoluble in most solvents, 

including water and dilute acid and alkali.  The alkali resistance of silk is much more 

pronounced compared to that of wool, due to its small number of cystine linkages. 

 

 

1.3 Metal Nanoparticles 

 

1.3.1 Background 

 

A nanoparticle, by definition, is a particle with at least one dimension less than 100 nm.  

Metal nanoparticles, in particular gold and silver in the form of colloids or sols, have a rich 

history as colourants, dating back to the Middle Ages, where they were unknowingly 

implemented throughout Europe and China as colourants of stained glass windows and 

ceramics (Figure 1.18).[98] 
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Figure 1.18: Implementation of metal nanoparticles as colourants for stained glass windows, which was 

common practice throughout the Middle Ages.[98] 

 

In the seventeenth century, ―Purple of Cassis‖, a colloid of heterocoagulated tin dioxide and 

gold nanoparticles, became a popular colourant of glass.[99]  Additionally, gold 

nanoparticles, combined with smaller amounts of both silver and copper nanoparticles were 

famously used as colourants of the Lycurgus cup from the fourth century AD.[100]  However 

it was not until 1857, that the notion that these gold sols contained small metallic particles 

was expressed.  Michael Faraday reported a systematic study of the optical properties of thin 

films prepared from dried colloidal gold solutions.[101]  He postulated that the colour of 

gold containing glass, such as ruby red glass, arose due to the presence of finely divided gold 

particles, and presented a mechanism for the formation of colloidal metals.[101] 

 

It was not until the work of Mie in 1908, that the colour reflected by very small metal 

particles was first explained theoretically to be due to strong visible absorptions known as 

surface plasmon resonances (SPR‘s).[102]  SPR is correlated to the interaction between the 

collective oscillation frequency of conduction band electrons in small particles with the 

electromagnetic field of incoming light.  Metal nanoparticles, of sizes intermediate between 

the size of a small molecule and that of the bulk metal display electronic structures governed 

by quantum mechanical rules.[103]  When the de Broglie wavelength of the valence 
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electrons is of the same order as the size of the particle itself, a quantum size effect is 

invoked.  The particles behave electronically as zero-dimensional quantum dots relevant to 

quantum-mechanical rules.  Freely mobile electrons are trapped in such boxes and show a 

characteristic collective oscillation frequency, termed surface plasmons.[104] 

 

The intense colour of noble metal nanoparticles is due to the SPR band, a broad absorption in 

the visible region, occurring at approximately 520 nm in red-coloured spherical gold colloids.  

SPR bands occur when incoming light (with a wave vector comparable to the wavelength of 

surface plasmons), transfers energy to the nanoparticle, inducing a dipole.  A restoring force 

in the nanoparticle tries to compensate for this, resulting in the formation of a unique 

resonance wavelength (a surface plasmon).  The coupling of the incident light to the surface 

plasmons results in a loss of energy, and therefore a reduction in the intensity of reflected 

light.[104] 

 

The oscillation wavelength, and hence emitted colour, depends on a number of factors, 

among which particle size and shape, as well as the nature of the surrounding medium, are 

the most important.[104, 105]  For non-spherical, elongated nanoparticles, such as nanorods 

and ellipsoids, the resonance wavelength also depends on the orientation of the electric field 

with respect to the nanoparticles.  Therefore two electron oscillations, longitudinal and 

transverse are possible.[106]  The longitudinal oscillation is very sensitive to the aspect ratio 

of the nanoparticles, so that slight deviations from spherical geometry can lead to impressive 

colour changes.[107]  Figure 1.19 illustrates the effect of the interaction of the 

electromagnetic field of light with both spherical and anisometric metal nanoparticles. 

 

The unique optical and electrical properties of metal nanoparticles has led to a huge amount 

of interest and research activity within the scientific community, as they have the potential to 

be utilised in many applications, ranging from controlled drug delivery devices to biological 

sensors, amongst others.[108] 
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Figure 1.19: Schematic drawing of the interaction of the electromagnetic field of incoming light with a) 

spherical nanoparticles, and b) nanorods. A dipole is induced in the spherical nanoparticles that oscillates 

in plane with the electric field of incoming light, whilst both transverse and longitudinal oscillations are 

evident in the metal nanorods.[106] 

 

1.3.2 Preparation of Metal Nanoparticles 

 

The preparation of metal nanoparticles generally involves the chemical reduction of a metal 

salt in an aqueous, organic or two-phase system.  The high surface energy of metal 

nanoparticles make them extremely reactive, and most systems undergo aggregation without 

protection or passivation of their surfaces due to attractive van der Waals forces.  Typically, 

metal nanoparticles are prepared by chemical reduction of the corresponding metal salt in the 

presence of a stabiliser which binds to the surface of the formed nanoparticles, imparting 

high stability and the desired charge and solubility properties.[109]  Some of the commonly 

used methods for surface passivation include encapsulation in the aqueous pools of reverse 

microemulsions,[110] dispersion in polymeric matrixes [111] and protection by self-

assembled monolayers, the most popular being citrate [112] and thiol-functionalised organic 

molecules.[113] 

 

The synthesis of gold nanoparticles by reduction of gold(III) derivatives was first introduced 

by Turkevitch and co-workers in 1951.[114]  They reported on the production of uniform 

gold nanospheres, approximately 20 nm in diameter, through the reduction of gold 

tetrachloride in a boiling sodium citrate solution.  The average particle diameter can be tuned 

over quite a large range (approximately 10 – 100 nm) by varying the concentration ratio 
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between the gold salt and sodium citrate.[112]  The same procedure can be utilised to reduce 

silver, but particle size control is very limited.[106]  This method is often used when a loose 

shell of ligands is required around the gold core, in order to produce gold nanoparticles with 

varying surface functionalities.  Addition of an alternative stabiliser, (for example 

polyvinylpyrrolidone, sodium 3-mercaptopropionate) simultaneously with tri-sodium citrate 

can result in replacement of the citrate stabilisers.[115] 

 

An alternative procedure for the synthesis of metal nanoparticles (in particular gold) is the 

two-phase reduction method developed by Brust and co-workers.[116, 117]  This involves 

dissolving a metal salt, for example gold tetrachloride in water, and subsequently 

transporting it into an organic phase such as toluene by means of a phase transfer agent such 

as tetraoctylammonium bromide.  The toluene solution containing the gold salt is then 

thoroughly mixed with an aqueous solution of sodium borohydride, in the presence of 

thioalkanes or aminoalkanes, which readily stabilise the resultant gold nanoparticles.  By 

varying the ratio of gold salt, reductant and stabiliser (Au
3+

 : thiol : amine) the size of 

produced nanoparticle can be tuned to between approximately 1-10 nm. 

 

Microemulsions,[117] co-polymer micelles,[118] reversed micelles [117] and surfactants 

have also been employed in the synthesis of gold nanoparticles.  The syntheses generally 

involve a two-phase system with surfactants that cause the formation of the microemulsions 

or micelles, maintaining favourable microenvironments into which the metal ions from the 

aqueous phase are extracted.  Uniform colloids of spherical gold nanoparticles of the order of 

4 nm have been prepared in this way.[119] 

 

The use of UV irradiation, generally in collaboration with surfactants, is a further procedure 

by which to produce metal nanoparticles, with UV light inducing a photochemical reduction 

of the metal salt.  The irradiation of aqueous solutions containing equi molar concentrations 

of silver nitrate and polymethacrylic acid with UV light causes the formation of silver 

nanospheres, of the order of 20 nm in diameter.  Varying both the UV exposure time and 

ratio of silver ions to stabiliser results in the formation of nanoparticles with sizes varying 

between 10–60 nm.[2] 
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UV radiation has also been reported to convert spherical nanoparticles into truncated 

triangular nanoparticles.[120-122]  Exposure of citrate stabilised spherical silver 

nanoparticles, with an average diameter of 15 nm, to UV light results in the formation of 

truncated triangular nanoparticles, with diameters varying between 40-100 nm.  This shape 

change induces a colour change from yellow to green.[120] 

 

1.3.3 Gold and Silver Nanoparticles 

 

As previously mentioned the colour reflected by noble metal nanoparticles is largely 

dependent upon particle size and shape, as varying these factors shifts the surface plasmon 

band of the nanoparticles.  Increasing the diameter of spherical gold nanoparticles from 

approximately 10 to 100 nm progressively changes the colour of the resultant colloid from 

wine red to blue.  Silver nanospheres show a similar trend.  Varying the aspect ratio of 

anisotropic nanoparticles of both gold and silver results in intense colour changes, as these 

particles exhibit both transverse and longitudinal Plasmon bands (Figure 1.20).[106] 

 

Figure 1.20: Left TEM images of a) gold nanorods, and c) silver nanoprisms and truncated triangles. 

Right pictures of colloidal dispersions of b) gold nanorods of increasing aspect ratio and d) silver 

nanoprisms with increasing lateral size.[106] 

 

Examples of gold and silver anisotropic particles, such as nanorods and triangular 

nanoprisms have appeared in the scientific literature for many decades.  There have been 

numerous mechanistic explanations for the formation of such particles, with the proposed 
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mechanisms falling into two general categories.  One uses the presence of organic molecules 

to poison or accelerate the addition of adatoms to specific crystal faces (the surface 

modification model),[123-125] whilst the second group of explanations propose that soft 

templates such as micelles formed by high concentrations of surfactants, physically direct 

crystal growth through shape confinement (the physical constraint model).[126, 127] 

 

A review of the literature on the production of anisotropic colloidal particles reveals both the 

surface-modification model and the physical constraint model have difficulty explaining 

several observations.[128]  Foremost is the apparent difficulty in producing a high yield of 

anisotropic particles of a specific shape.  Even when reaction conditions are highly 

homogeneous, a diverse range of shapes are produced, with the reaction products generally 

consisting of a mixture of isotropic particles (spheres etc), with a small portion of anisotropic 

particles (Figure 1.21).  Additionally, the two models cannot explain why nearly identical 

crystal shapes are produced with thoroughly different synthesis environments and techniques. 

 

 

Figure 1.21: SEM micrograph taken from Lofton et. al.[128] Illustrates the diversity of colloid shapes 

synthesised in a homogeneous reaction environment, including tapes, rods, platelets, tetrahedra and 

isotropic particles. 
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In light of these observations, Lofton and co-workers proposed an alternative mechanism for 

the growth of anisotropic gold and silver colloids, in which [111] twin planes in silver and 

gold nanoparticles direct the shape of the particles to become anisotropic.  This occurs 

through the formation of re-entrant grooves that are favourable sites for adatom (additional 

metal ion) attachment, reducing the nucleation energy required to form a new atomic layer in 

these areas.  Twin planes readily form in silver halides, as well as in silver and gold, where 

the stacking fault energy is lower than most metals, decreasing the energy required to form a 

twin plane.[129, 130]  Due to the sixfold symmetry of the face centred cubic (fcc) system, 

these twinned crystals form hexagonal-shaped nuclei.  The stacking fault of the twin plane 

causes {111} faces to form in alternating concave and convex orientations, A- and B-type 

sides respectively (Figure 1.22).  On a B-type side, an adatom has limited stabilisation energy 

due to the presence of only three nearest atomic neighbours.  This makes the probability of 

dissolution of the adatom back into the solution likely, and therefore growth of these surfaces 

is very slow.  Conversely, the concave nature of the A-type sides creates a re-entrant groove, 

a self-perpetuating ledge that increases the number of nearest neighbours for an adatom, 

increasing the stabilisation energy of these adatoms and greatly accelerating the growth of A-

type sides.  As the A sides are bounded on each side by slow growing B sides, the A sides 

quickly grow themselves out of existence, producing a triangular prism of a size defined by 

the size of the original twinned particle.[128] 

 

 

Figure 1.22: Schematic showing a single twin plane. Alternating A- and B-type faces with re-entrant 

grooves of A-type faces causing rapid growth that stops when the face grows itself out, resulting in a 

triangular prism.[128] 

 

The formation of particles with multiple twin planes results in the production of alternate 

anisotropic nanoparticles such as rods or wires.[128, 131]  It is unclear why certain 
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nucleation events promote single or multiple twinning events, however methods can be 

altered so that such twinned seed particles are produced in a high yield.  Following the initial 

nucleation event in which a distribution of seed particles with different twinning structures 

occurs a competitive growth stage can be set up in which seeds are allowed to ripen without 

additional metal salts so that the twinned seeds consume the un-twinned seeds.  Once the 

desired seeds are obtained, metal salt addition below the concentration required for 

nucleation promotes growth of the seeds over new nucleation events, generating the desired 

particle shape in high yield.[128] 

 

For example, Lofton and co-workers altered a polyol synthesis for gold particles (which 

originally produced gold nanoparticles in a range of morphologies), to yield a high 

percentage of gold platelets (Figure 1.23).  This was achieved by initially adding a 

percentage of the total reductant employed in the synthesis, and allowing the reaction mixture 

to sit for approximately 20 minutes before adding a surfactant followed by the slow addition 

of the resultant seed particles to the remaining reductant.  Lofton postulated that the gold 

seeds initially formed contained parallel twin planes that would later define their shape.  

Slow addition of these colloidal seeds to the remaining reductant was thought to keep the 

concentration of adatoms in solution (unreduced Au
3+

) low, favouring growth of seeds over 

new nucleation events.  Once the supply of gold chloride was exhausted, the growth of 

particles would occur only at the expense of other particles dissolving.  In other words, by 

changing the degree of supersaturation of gold in solution, Lofton and co-workers were able 

to discourage the growth of un-twinned particles, instead encouraging the growth of twinned 

particles resulting in nearly the entire quantity of gold to form as platelets.[128] 

  
Figure 1.23: TEM micrographs of gold produced via a polyol method (left) and altered polyol method 

(right).[128] 
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1.3.4 Anti-microbial Properties 

 

The medicinal properties of metals have been recognised throughout the ages, and have 

represented some of the most fundamental breakthroughs in medicine.[132]  Two of the most 

exploited metals in health care throughout history have been silver and gold. 

 

1.3.4.1 Silver 

 

The anti-microbial properties of silver have been known for centuries.  Silver and its salts, 

typically silver nitrate, were commonly used during the nineteenth century in the treatment of 

skin ulcers, compound fractures and suppurating (draining pus) infected wounds.[133]  

Perhaps the most memorable use of silver in medicine came about in 1884, with the 

instillation of dilute solutions of silver nitrate into the eyes of new born children to offset 

infantile blindness (opthalmia neonatorum).[133]  Silver ions, and silver based compounds 

have been shown to be highly toxic to microorganisms,[134] showing strong biocidal effects 

on as many as sixteen species of bacteria including Escherichia coli (E. coli), Staphylococcus 

aureus[135] and the human immuno-deficiency virus (HIV).[136]  However silver has been 

shown to be non toxic to human cells, and appears to be biocompatible.[137]  Thus silver 

ions, as an anti-bacterial component, have been used in the formulation of dental resin 

composites,[138] ion exchange fibres,[139] municipal water systems,[140] wound dressings 

[141] and in coatings for medical devices.[142-144] 

 

Several proposals have been developed to explain the bacterial inhibitory effect of silver 

materials.  It is suggested that silver ions interact with nucleophilic amino acid residues in 

proteins, and attach to sulphydryl, amino, imidazole, phosphate and carboxyl groups of 

membrane or enzyme proteins, thus leading to protein denaturation and cell death.[145-147]  

Silver is also known to inhibit a number of oxidative enzymes such as yeast alcohol 

dehydrogenase [148] and the respiratory chain of E. coli, as well as causing metabolic efflux 

[149] and interfering with DNA replication.[142, 150]  Silver has been shown to associate 

with the cell wall,[151] cytoplasm and cell envelope,[152] and there is a general consensus 

that surface binding and damage to membrane function are the most important mechanisms 
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for the killing of bacteria by silver, with only low levels of silver, approximately 5-10 ppm, 

required to induce cell death.[12, 132, 150]  The anti-microbial action of silver metal is 

thought to arise due to the formation of a surface oxide layer and/or the release of silver 

ions.[136] 

 

Recent advances in facile syntheses of silver nanoparticles with a narrow size distribution 

have seen increased research into the use of nanoparticles in various biomedical applications.  

It is expected that due to their high specific surface area and high fraction of surface atoms, 

nanoparticles should display a greater effective anti-microbial activity relative to the bulk 

metal.  Several studies comparing the anti-microbial activity of silver nanoparticles to that of 

silver ions and silver metal have shown this to be the case, with nanoparticles effecting a 

much greater anti-microbial activity than their bulk counterpart, with nano-molar and micro-

molar concentrations required respectively.[136, 153] 

 

Electron microscopy studies on the anti-microbial activity of silver nanoparticles against E. 

coli revealed the mode of action to be very similar to that of silver metal and silver ions, with 

nanoparticles targeting cell walls and membranes, resulting in the seepage of intracellular 

substances, and cell death.[154]  Figure 1.24 shows the surface morphology of both native 

(un-treated) E. coli, and E. coli treated with silver nanoparticles.  The treated cells are 

significantly changed, and show major damage, evident as ‗pits‘ in the cell walls.  

 

 

Figure 1.24: a) SEM micrographs of native E. coli cells and b) cells treated with 50 μg ml of silver 

nanoparticles.[154] 
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TEM analysis confirmed the presence of silver nanoparticles in the membrane, with some 

seen to penetrate into the cells, causing leakage of intracellular substances (Figure 

1.26).[154] 

 

Silver nanoparticles have been immobilised onto various substrates through numerous 

procedures in order to impart their anti-microbial properties.[2, 8, 13, 155-158]  Synthetic 

textile fibres with silver nanoparticles have been prepared by blending nanoparticles into the 

polymer matrix before spinning,[3] or by immersing the substrate in a solution of silver ions, 

which are then reduced inside the substrate.[8, 13]  Such examples include dispersing fine 

cellulose fibres in a silver nitrate solution, followed by a sodium borohydride solution, 

resulting in a dispersion of silver nanoparticles throughout the three-dimensional network of 

cellulose.[13]  Additionally, silver ions have reportedly been reduced in the interlayer 

spacings of kaolinite, by firstly disaggregating the kaolinite lamellae with dimethyl sulfoxide 

(DMSO), and introducing the expanded clay to a solution of silver nitrate, followed by 

sodium borohydride (Figure 1.26).[8]  This resulted in a grey black coloured powder. 

 

 

Figure 1.25: TEM micrograph of an E. coli cell treated with 50 μg ml of silver nanoparticles.[154] 
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Figure 1.26: Schematic illustration of the preparation of silver nanoparticles in the interlayer spacings of 

kaolinite.[8] 

 

Alternatively nanoparticles can be prepared separately and attached to the substrate by means 

of a chemical linker.  Dubas and co-workers reported on the immobilisation of silver 

nanoparticles on nylon and silk fibres through utilisation of a layer-by-layer deposition 

process.[2]  This involved the sequential dipping of nylon or silk fibres in dilute solutions of 

poly(diallyldimethylammonium chloride) (PDADMAC) and silver nanoparticles capped with 

polymethacrylic acid (PMA), resulting in a layered polymeric multi-composite textile (Figure 

1.27). 
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Figure 1.27: Layer-by-layer deposition of silver nanoparticles capped with anionic PMA onto fibres 

coated with the cationic polymer PDADMAC. 

 

To the best of our understanding the use of silver nanoparticles as both anti-microbial agents 

and colourants for fine powders has not been reported, thus presenting an opportunity gap 

that we would like to fill with the production of silver nanoparticle–clay hybrids. 

 

1.3.4.2 Gold 

 

Gold, in a variety of forms, has been used in medicine throughout the history of 

civilisation.[159, 160]  Its earliest medical use can be traced back to the Chinese in 2500 BC.  

In medieval Europe alchemists produced the reputably therapeutic elixir aurum potabile.  

During the 17
th

 century gold colloids were employed in the treatment of aliments such as 

fainting, fevers and melancholy, and later in the 19
th
 century a mixture of gold tetrachloride 

and sodium chloride was used to treat syphilis.  The predominant use of gold in modern, 20
th

 

century medicine was the use of gold complexes in the treatment of rheumatoid arthritis, 

culminating in the introduction of the oral drug Auranofin in 1985.[161]  Additionally, gold 

complexes demonstrated anti-tumour properties, with the development of a series of di-gold 

phosphine complexes, the lead complex being [dppe(AuCl)2] (Figure 1.28).[161, 162] 
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Figure 1.28: Anti-tumour gold complex [dppe(AuCl)2].[161] 

 

Gold complexes have also demonstrated anti-microbial activities,[163] the more common 

complexes containing either Au(III) or (I).  The anti-microbial activity of Au(III) complexes 

is thought to arise due to the instability of Au(III) in a biological environment.  Many Au(III) 

complexes are strong oxidants, able to be reduced to Au(I) (or indeed Au(0)) by biologically 

occurring reductants such as thiols (-SH) or disulfides (-S-S-), which are themselves 

oxidised, inhibiting processes essential to cellular survival.[161]  However it is not only gold 

complexes that display anti-microbial activities.  Gold nanoparticles have also been shown to 

be highly toxic to numerous Gram-positive and Gram-negative bacteria ((Escherichia coli (E. 

coli, ATCC 8739), Staphylococcus aureus (S. aureus, ATCC 6538), Bacillus subtilis (B. 

subtilis, ATCC 21332), and Klebsiella mobilis (K. mobilis, ATCC 13048)) and fungi 

(Aspergillus niger (A. niger, ATCC 16404) and Penicillium citrinum (P. citrinum, ATCC 

10499)), inhibiting up to approximately 98 % of growth at 2.8 µg / mL (2.8 ppm).  Similarly 

to silver, the anti-microbial action of these nanoparticles is suggested to arise due to their 

strong binding to electron donating groups in the bacterial cells.[163]  With smaller diameter 

nanoparticles exhibiting increased anti-microbial activities due to their increased surface area 

to volume ratio, with more metal atoms available on the surface to interact with bacteria and 

fungi.  It is not clear whether the anti-microbial action of the gold nanoparticles arises due to 

Au(0) or Au(I) on the surface of the nanoparticles, however due to the reported anti-

microbial nature of Au(I), the latter is more likely. 
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1.4 Research Objectives 

 

It was proposed that gold and silver nanoparticles be combined in a synergistic manner with 

inexpensive particulate (kaolinite and halloysite clays) and fibre substrates (merino wool, 

crossbred wool and silk fibres), thus producing novel hybrid materials that could be 

incorporated into commercial products or act alone as high-value multi-functional entities. 

 

Incorporation of silver nanoparticles into hybrids with clays has the potential to yield a novel 

suite of attractively coloured materials processing anti-microbial activities, thus giving rise to 

applications requiring the inhibition of microbial growth.  It was envisaged that silver 

nanoparticles could be incorporated into hybrid materials containing clays through two main 

processes.  Firstly silver nanoparticles would be prepared separately and attached to the clay 

through means of a linker molecule.  Alternatively a dual reductant/stabiliser would be 

deposited onto the surface of the clay substrates, acting both to reduce ionic silver and 

subsequently bind the resultant nanoparticles through bonding to the clay surface.  The 

rationale for attaching silver nanoparticles to clays was to produce attractively coloured, anti-

microbial powders.  As such, we were interested in retaining both the optical and anti-

microbial properties of the nanoparticles.  

 

It was proposed that gold nanoparticles be incorporated into silk, merino and crossbred wool 

fibres in much the same way.  The nanoparticles will be produced ex-situ and subsequently 

attached to the fibre substrates by means of a linker molecule, or simply through their 

capping agents.  Alternatively the natural fibres were to be utilised as redox active 

biotemplates in which the wool or silk absorbs and subsequently reduces Au
3+ 

ions to Au
0
 

nanoparticles.  Gold nanoparticles were to act as colourfast colourants of the natural fibres, 

linking the wealth associated with this precious metal to silk, merino and crossbred wools, 

producing a novel suite of multi-functional, high quality textiles based on nanotechnology.  It 

is envisaged that these materials will primarily be utilised in high-value, niche markets such 

as high-quality textiles for use in high-end fabrics and fashions.  They also have the potential 

to be used as multi-functional textiles capitalising on the anti-microbial or insecticide and 

anti-static nature of gold nanoparticles. 
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It was proposed that characterisation of the hybrid materials be undertaken through various 

methods.  The morphology of the materials were studied with scanning electron microscopy, 

energy dispersive spectroscopy, transmission electron microscopy and scanning transmission 

electron microscopy.  The optical properties were measured by ultra violet visible 

spectroscopy.  X-ray dispersive, X-ray photoelectron, infra-red and Raman spectroscopy 

were utilised in determining the nature of the interaction between the nanoparticles and 

substrate.  The anti-microbial properties of the composites were also measured.  The colour 

stability to light, washing and rubbing of the gold nanoparticle-wool and silk materials were 

evaluated.  Leaching tests were undertaken in which atomic absorption would be utilised to 

study the amount of gold leached from the gold nanoparticle-wool and silk materials 

following washing.  Association with AgResearch Ltd, Lincoln, will assist in the industry 

certified testing of the physical properties of gold nanoparticle-wool and silk composite 

materials. 

 

The new knowledge developed in this research will provide essential information for the 

scale-up of gold nanoparticle-fibre composites.  The optimum synthesis procedures and 

conditions determined by this research will be employed in the large scale production of said 

materials, enabling market evaluation and the potential commercialisation of the high quality 

multi-functional textiles in high end apparel or luxury carpets. 
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2. EXPERIMENTAL METHODS 

 

2.1 Materials 

 

100 % merino wool, untreated semi-worsted, and worsted gilled sliver and combed top 

respectively were supplied by Ashford Handicrafts Ltd Ashburton.  Chlorine Hercosett 

treated semi-worsted sliver and untreated crossbred wools were supplied by AgResearch 

New Zealand Ltd, whilst silk fibres were provided by Commercio Laniero Italiano, Italy.  

Kaolinite and halloysite were obtained from Pure Science Ltd.  All substrates (fibres and 

minerals) were used as received unless otherwise stated.  

 

All chemicals employed were of analytical grade unless otherwise stated.  Gold tetrachloride 

trihydrate (HAuCl4.3H2O (99%)) was sourced from Sigma Aldrich, and silver nitrate from 

Scientific and Chemical Supplies.  Sodium borohydride, trisodium citrate, tannic acid, 

sodium metabisulfite, polyethyleneimine, polymethacrylic acid, cetyl trimethylammonium 

bromide, polydiallyldimethylammonium chloride and poly(vinylpyrrolidone) were all 

sourced from Sigma Aldrich. 

 

Hydroxylamine and ascorbic acid were sourced from Merck, whilst sodium chloride and 

sodium bromide were supplied by Unilab.  Potassium phosphate dibasic, potassium 

phosphate monobasic, acetic acid, potassium hydroxide, sodium hydroxide, hydrochloric 

acid, tris(2-carboxyethly)phosphine and maleic acid were sourced from BDH Chemicals Ltd 

and ethanol, methanol, and n-heptane were provided by Pure Science Ltd.  Distilled water 

was employed unless otherwise stated. 
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2.2 Preparation 

 

2.2.1 Preparation of Silver Nanoparticle–Clay Composites 

 

The preparation of silver nanoparticle–clay composites included three general methods as 

outlined below.  Preparation of silver nanoparticles, and subsequent attachment to the clay 

substrate using a linker molecule (section 2.2.1.1); preparation of silver nanoparticles in the 

presence of the clay substrate with in-situ binding of nanoparticles to the substrate (section 

2.2.1.2); and the reduction of silver ions to metallic silver nanoparticles by a reductant bound 

to the clay substrate (section 2.2.1.3). 

 

2.2.1.1 ex-situ Preparation of Silver Nanoparticles and Subsequent Attachment to the 

Clay Substrate 

 

Numerous methods were employed to produce silver nanoparticles so that a range of colours 

were produced through the production of nanoparticles of different sizes and shapes.  These 

methods involved the reduction of ionic silver (silver nitrate) by various reductants, 

surfactants and reaction conditions, as outlined in Table 2.1.  (Note: occasionally there was 

no need for the inclusion of a surfactant, as the reductant also acted to stabilise the produced 

nanoparticles.  Such materials included polyethyleneimine (PEI) and polymethacrylic acid 

(PMA)).  Once produced, the clays were dispersed in the nanoparticle colloids in the aim of 

attaching the nanoparticles to the clay substrate either directly through the surrounding 

capping agents, or through the use of an ionic linker of opposite net charge to the stabiliser 

used in the production of the nanoparticles.  For example, when using PMA as a stabiliser, 

the produced nanoparticles were surrounded by an anionic polymer, and as such a cationic 

linker such as polydiallyldimethylammonium chloride (PDADMAC) would be utilised. 
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Table 2.1: Preparation of silver nanoparticles and subsequent attachment to clay substrate by a linker 

molecule. 

Reference Reducing 

Agent 

Stabilising 

Agent 

Reaction     

Conditions 

Linker Colloid 

Colour 

Successful 

Attachment* 

Frens et 

al.[112] 

TSC ─ Heat at 90 °C ─ Orange 

to blue 

X 

Sun et 

al.[115]  

NaBH4 PVP React at RT PDADMAC Yellow X 

Sun et 

al.[115] 

NaBH4 PVP React at RT 

followed by 

irradiation 

with broad 

spectrum light 

PDADMAC Green X 

Sun et 

al.[115] 

NaNH4 PMA React at RT PDADMAC Yellow √ 

Sun et 

al.[115] 

NaBH4 PMA React at RT 

followed by 

irradiation 

with broad 

spectrum light 

PDADMAC Green X 

Dubas et 

al.[2] 

PMA PMA Irradiate with 

broad 

spectrum light 

PDADMAC Yellow, 

orange 

and red 

√ 

*  Successful attachment was determined optically by a colour development on the clays and a loss of 

colour in the colloid.  

As can be seen from Table 2 .1 , the reduction of ionic silver and subsequent 

stabilisation of the produced nanoparticles by trisodium citrate (TSC) was unsuccessful 

in producing clay-silver nanoparticle hybrid materials.  This is likely due to electrostatic 

repulsions between the TSC capped silver nanoparticles and clay surfaces.  The TSC 

capped silver nanoparticle colloidal solutions have a pH of approximately 7 .5 , which is 

higher than the pKa values of TSC,[164] kaolinite and halloysite,[165] and as such 

both the nanoparticles and clays would exhibit a net negative surface charge and thus 

electrostatically repel each other.  However the use of a linker molecule, of opposite 
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net charge to that of the stabilising agent resulted in the production of attractively 

coloured silver nanoparticle-clay composite materials, and this method is discussed in 

greater detail in section 2.2.1.1.2 below. 

 

2.2.1.1.2 Attachment of Silver Nanoparticles to Clay Substrate through a Linker 

Molecule of Opposite Net Charge to the Nanoparticles 

 

This method was the most successful in producing silver nanoparticle-clay composite 

materials.  It involved absorbing the anionic polymeric linker molecule, PDADMAC, to 

the clay surfaces, followed by subsequent attachment of silver nanoparticles capped 

with the cationic polymer PMA via an electrostatic interaction (Figure 1 .27 ). 

 

Silver nanoparticle colloids capped with the cationic polymer PMA were prepared via two 

methods.  Firstly, aqueous solutions of silver nitrate (10 ml, 10 mM) and PMA (10 ml, 10 

mM) were combined and irradiated (at room temperature) with a broad spectrum light, upon 

which the UV component of the light reduced Ag
+
 to Ag

0
 nanoparticles via a photo induced 

reduction.[2]  PMA acted as a capping agent (stabiliser) to the produced nanoparticles.  By 

varying the molar ratio between silver nitrate and PMA, and also irradiation time, silver 

nanoparticle colloids ranging in colour from yellow to orange, and pink to red were 

produced.  Alternatively, silver nanoparticles capped with PMA were produced through the 

reduction of silver nitrate by sodium borohydride in the presence or TSC and PMA.  This 

synthesis involved the addition of aqueous solutions of TSC (0.5 ml, 30 mM), silver nitrate 

(1 ml, 5 mM) and freshly prepared sodium borohydride (0.5 ml, 50 mM) to 47.5 ml de-

oxygenated Millipore water under vigorous stirring at room temperature.[115]  The solution 

was stirred for a further 30 seconds, then either poly(vinylpyrrolidone) (PVP) or PMA (0.5 

ml, 5 mg/ml) was added and the reaction left to proceed under constant stirring at room 

temperature for 30 minutes.  This produced a yellow colloidal solution of spherical silver 

nanoparticles.  Prolonged exposure (~ 1 week) of this colloid to sunlight resulted in a photo 

induced conversion of nanospheres to triangular nanoplates, producing a green coloured 

colloidal solution.[115]  Attachment of nanoparticles capped with PVP to the clays through a 
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linker molecule was unsuccessful, which is likely attributable to the fact that PVP does not 

exhibit a net charge, and therefore is not electrostatically attracted to the ionic linker 

molecules. 

 

Once produced, the PMA capped silver nanoparticles were attached to the clay substrates via 

an electrostatic interaction with PDADMAC adsorbed onto the clay surfaces.  PDADMAC 

was attached to kaolinite or halloysite by dispersing the clays in an aqueous solution of 

PDADMAC (0.2 g clay per 20 ml, 1 mM PDADMAC solution).  The pH of the solution was 

adjusted to 6.5 so that the surface Al-OH and edge Si-OH groups were deprotonated, 

increasing the electrostatic attraction between the cationic polymer and clay substrate.  (Note, 

the basal silicate layers in both kaolinite and halloysite possess a net negative charge 

regardless of pH due to the replacement of a selection of Si
4+

 atoms with Al
3+

 atoms).  The 

solution was stirred for 24 hours, upon which it was filtered and the resultant clay-

PDADMAC materials were collected and added to PMA capped silver nanoparticle solutions 

(0.1 g clay per 2 ml nanoparticle colloid) and stirred vigorously for 5 minutes after which 

time the solutions were centrifuged (1200 rpm, 5 minutes) and the supernate decanted.  The 

solid was re-dispersed in an aqueous PDADMAC solution (2 ml, 1 mM), stirred for 5 

minutes, re-centrifuged, then re-dispersed in the silver nanoparticle suspensions.  This layer-

by-layer deposition process (PMA-Ag nanoparticle deposition followed by a layer of cationic 

PDADMAC) was repeated at least four times to ensure an adequate deposition of 

nanoparticles onto the clays and hence colour development.   

 

2.2.1.2 Silver Nanoparticles Formed in the Presence of the Clay Substrate Using an 

External Reducing Agent With In-Situ Binding of Nanoparticles to Substrate 

 

Clays were dispersed in silver nitrate solutions and the Ag
+
 to Ag

0
 reduction was attempted 

through the addition of various reductants (Table 2.2).  It was hoped that by varying reaction 

time, temperature and reactant concentrations, a range of colloidal solutions of different 

colours would be obtained. 
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Table 2.2: Preparation of silver nanoparticles by external reductants in the presence of clay substrate 

with in-situ binding of nanoparticles to clay. 

Reducing 
Agent 

Stabilising 
Agent 

Reaction Conditions Composite 
Colour 

Successful 
Production 

TSC ─ Soak clay in a AgNO3 
solution at 90 °C, add TSC 

Grey X 

TA ─ Soak clay in a AgNO3 
solution at 90 °C, add TA 

Grey X 

NaBH4 ─ Soak clay in a AgNO3 
solution at 90 °C, reduce 
temperature, add NaBH4 

Grey X 

NaBH4 PVP Soak clay in a AgNO3 
solution at 60 °C, filter, add 
to solution containing 
NaBH4, TSC and PVP 

Pale 
cream/yellow 

X 

 

None of the methods outlined in Table 2.2 above were successful.  The resultant materials 

were grey in colour, suggesting agglomerations of nanoparticles and the formation of silver 

oxide.  This suggests that combined with the clays, TSC, TA and PVP did not impart 

sufficient stabilisation to the resultant nanoparticles.  This may be due to TSC, TA and PVP 

interacting preferentially with the clay substrates rather than the nanoparticles.  As such, 

these methods were not pursued. 

 

2.2.1.3 Preparation of Silver Nanoparticle-Clay Composites by a Reductant Bound to 

the Clay Substrate 

 

The clay surfaces were modified by incorporation of polyethyleneimine (PEI), a polymer 

capable of reduction and stabilisation of silver in its ionic and metallic states respectively.  

The amino groups present in this polymer have previously been reported to be capable of 

reducing ionic silver to metallic silver nanoparticles.[16]  It is cationic in character and as 

such will have a strong affinity towards both the anionic silicate layers in kaolinite and 

halloysite, and the surface hydroxyl groups following de-protonation.   
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This production involved dispersing the clay (10 g) in an aqueous PEI solution (30 mM, 1 

dm
3
 water) with rapid stirring.  The pH of the solution was adjusted to 6.5 with 0.1 M HCl.  

(At this pH PEI will be partially protonated, and the surface Si-OH and Al-OH groups of the 

clays de-protonated (pKa of PEI and clays approximately 9 and 6 respectively)).[166, 167]  

As such absorption of PEI onto the clay surface will be facilitated by the electrostatic 

interaction between the cationic PEI and anionic clays.  The resultant clay-PEI materials 

were filtered and washed well with water, after which they were added (0.5 g) to an aqueous 

silver nitrate solution (50 ml, 3.8 x 10
-5

 – 2.28 x 10
-4

 M) and stirred at 30 °C for 1 hour, upon 

which a colour change from cream to a very faint pink was noted.  As the colour change 

denoting the formation of silver nanoparticles was very minimal, this method was not 

pursued. 

 

2.2.2 Preparation of Gold Nanoparticle–Natural Fibre Composites 

 

The preparation of gold nanoparticle-natural fibre composites was attempted via the 

following four main methods: 

 Au
3+

 was reduced to nanoparticulate Au
0
 ex-situ by an external reducing agent and 

subsequently attached to the fibrous substrates through their capping agents (section 

2.2.2.1). 

 The reduction of Au
3+

 to nanoparticulate Au
0
 was carried out in the presence of the 

fibre substrates (section 2.2.2.2). 

 The natural fibres were utilised as redox active templates, in which the wool or silk 

absorbs and subsequently reduces Au
3+ 

to Au
0
 nanoparticles (section 2.2.2.3). 

 A seed mediated growth approach was employed in which gold nanoparticle-fibre 

composites catalysed the reduction of Au
3+

 by NH2OH to nanoparticulate Au
0
 

(section 2.2.2.4). 
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2.2.2.1  ex-situ Preparation of Gold Nanoparticles and Subsequent Attachment to 

Merino Wool Fibres 

 

Similar to the ex-situ production of silver nanoparticles (section 2.2.1.1), various methods 

were employed to produce gold nanoparticles so that a range of colours were produced 

through the production of nanoparticles of different sizes and shapes.  This was achieved 

through the reduction of gold(III) (typically as a 4 wt % Au
3+

 solution made from 

HAuCl4.3H2O dissolved in 0.1 M HCl) by various reductants, stabilising agents and reaction 

conditions, as outlined in Table 2.3 below. 

 

Table 2.3: ex-situ preparation of gold nanoparticles and subsequent attachment to wool fibres. 

Reference Reducing 
Agent 

Stabilising 
Agent 

Reaction 
Conditions 

Colloid 
Colour 

Composite 
Colour 

Successful 
Attachment* 

Turkevitch 
et al.[114] 

TSC ─ Heat at 90 
°C 

Pale 
yellow to 
wine red 

Pale yellow 
to grey 

√ 

 TA ─ Heat at 90 
°C 

Light pink 
to wine red 

and 
orange 

Murky pale 
pink to 
purple 

√ 

Murphy et 
al.[125, 

168] 

NaBH4, 
ascobic 

acid 

CTAB 3 step 
seeded 

growth, RT 

Not re-
producible 

─ X 

Huang et 
al.[169] 

NaBH4, 
Ascorbic 

acid 

CTAB Seeded 
growth, RT 

Yellow ─ X 

* Successful attachment was determined optically by a colour development on the fibres and a loss of 

colour in the colloid.  

The synthesis of gold nanoparticles by the reduction of Au
3+

 (in the form of AuCl4
-
) follows 

the method outlined by Turkevitch and co-workers.  Au
3+

 solutions (160 ppm, 40 µL 4 wt % 

Au
3+

 added to 10 ml distilled water) were heated to 90 °C under rapid stirring.  Once at 90 

°C, TSC or TA was added, and heating continued for a further 10 minutes.  Colloids in a 

range of colours were produced by varying the ratio of Au
3+

:TSC or TA.  This was achieved 

through the addition of different amounts of reductant (10, 20 or 50 µL of 1 or 10 wt % TSC 

or TA).  Once produced, the colloids were cooled to room temperature, and merino wool was 

added (0.1 g wool per 10 ml colloid).  The reaction mixtures were gently agitated at room 
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temperature from 10 minutes to 24 hours to facilitate in the adsorption of TSC or TA capped 

Au nanoparticles.  The resultant merino wool-TSC or TA capped gold nanoparticle materials 

were washed thoroughly with water and air dried under ambient conditions. 

 

In an attempt to increase the colour range of gold nanoparticle-merino wool materials, the 

synthesis of gold nanorods was undertaken.  Various procedures were employed however the 

methods that were the most amenable to the production of gold nanoparticle-merino wool 

materials are the two based on those reported by Murphy et al.[125]
 
and Huang et al.[169] 

summarised in Table 2.3.  Both of these methods are seed-mediated approaches and involve 

the reduction of Au
3+

 with a strong reducing agent to produce Au
0
 seed particles (average 

diameter 4 nm) followed by the subsequent reduction of additional Au
3+

 ions with a weak 

reducing agent (ascorbic acid (Vit C)), in the presence of the seed particles and a structure 

directing agent cetyl trimethylammonium bromide (CTAB). 

 

When employing the Murphy method, gold seeds were produced by adding, HAuCl4.3H2O 

(0.5 ml, 10 mM) and TSC (0.5 ml, 10 mM) were to Millipore water (18 ml) and stirring 

(Figure 2.1 (1)).  Freshly prepared NaBH4 was added (0.5 ml, 0.1 M) and stirring was 

stopped.  The solution was left undisturbed for two hours.  For gold nanorod growth from the 

produced seeds, three growth solutions, A, B and C were prepared (Figure 2.1 (2)).  Growth 

solutions A and B consisted of CTAB (9 ml, 0.1 M), HAuCl4.3H2O (0.25 ml, 10 mM) 

ascorbic acid (50 µL, 0.1 M) and NaOH (50 µL, 0.1 M).  (For nanorods with an aspect ratio 

of ~ 20, heptane was added to make a final heptane concentration of 0.1 M, and ~ 25, the 

volume of NaOH was doubled to 100 µL).  Growth solution C consisted of CTAB (90 ml, 

0.1 M) HAuCl4. 3H2O (2.5 ml, 10 mM), ascorbic acid (0.5 ml, 0.1 M) and NaOH (0.5 ml, 0.1 

M).  The growth protocol consisted of adding 1 ml
 
of the seed solution to growth solution A, 

shaking growth solution A for 3-5 seconds and then adding 1 ml of A to B.  B was then 

shaken for 3-5 seconds upon which all of B was added to growth solution C (Figure 2.1 (3)).  

C was left to react at room temperature overnight.[125, 168] 
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Figure 2.1: Murphy et al. Seed-mediated method for the production of gold nanorods of controlled aspect 

ratio.[125, 168] 

 

In a typical proceduce reported by Huang and co-workers,[169] gold seeds were produced 

through the addition of aqueous HAuCl4.3H2O (0.25 ml, 10 mM) to a CTAB solution (7.5 

ml, 0.1 M), followed by the addition of freshly prepared, ice cold NaBH4 (0.6 ml, 0.01 M) 

with rapid stirring for 2 minutes.  The reaction vessel was immersed in water and maintained 

at a constant temperature of 25 °C for 2 hours.  To produce gold nanorods, CTAB (4.75 ml, 

0.1 M), HAuCl4.3H2O (0.2 ml, 10 mM) and AgNO3 (30 µL, 10 mM) were combined.  

Ascorbic acid was added to this reaction mixture (10-40 µL, 0.1 M), and finally 10 µL of the 

seed solution was added and the reaction mixture was stirred gently for 10 seconds before it 

was left to react at room temperature for at least 3 hours.[169] 

 

2.2.2.2 Gold Nanoparticles Formed in the Presence of Wool by an External Reducing 

Agent with in-situ Binding of Nanoparticles to Fibres 

 

Merino wool (0.1 g) was dispersed in aqueous gold tetrachloride solutions (10 ml) and the 

reduction of Au
3+

 to Au
0
 nanoparticles was facilitated by the addition of various reductants 
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(Table 2.4).  Alternatively, merino wool was dispersed in aqueous solutions of various 

reductants, followed by the addition of gold tetrachloride.  It was hoped that through 

variation of the ratio between the reductants and Au
3+

, gold nanoparticles of different sizes 

and hence different colours would be produced.  Additionally, gold nanoparticle-merino 

wool composites (prepared through utilisation of the redox active nature of merino) were 

added to a solution containing additional Au
3+

 ions, a mild reducing agent and a structural 

directing agent in the hope of synthesising gold nanorods. 

 
Table 2.4: Preparation of gold nanoparticles in the presence of merino by an external reductant with in-

situ binding of nanoparticles to fibre. 

Reference Reducing 
Agent 

Stabilising 
Agent 

Reaction Conditions Composite 
Colour 

Successful 
Production* 

 TSC  ─ Soak merino in a HAuCl4 
solution, add TSC 

─ X 

 TSC ─ Soak merino in a TSC 
solution, add HAuCl4 

X X 

 Na2S2O5 ─ Soak merino in a HAuCl4 
solution, add Na2S2O5 

X X 

 Na2S2O5 ─ Soak merino in a Na2S2O5 
solution, add HAuCl4 

Pale to 
steely grey 

Partial 

Huang et 
al.[169] 

Ascorbic 
acid 

CTAB Soak a merino-gold 
material in a gold solution 
containing CTAB and 
AgNO3, add ascorbic acid 

Light pink 
to deep 
purple 

Partial 

Liu et 
al.[170]  

Ascorbic 
acid 

CTAB Soak a merino-gold 
material in a gold solution 
containing CTAB, add 
ascorbic acid 

Purple/Grey Partial 

* Successful attachment was determined optically by a colour development on the fibres.  

Dispersing merino wool in a gold solution for various times (1, 5 or 360 minutes) at a range 

of temperatures (room temperature, 50 or 90 °C) followed by addition of a reductant (TSC or 

Na2S2O5) was unsuccessful in the production of merino wool-gold nanoparticle composites.  

However when the opposite approach was taken, and merino was dispersed in an aqueous 

solution containing the reductant Na2S2O5, followed by the addition of HAuCl4 gold 

nanoparticle-merino wool composites of attractive colours, ranging from light grey to bluey 

grey and finally steely grey were produced, however this method was unreliable and not 

reproducible.  This synthesis method is outlined in section 2.2.2.2.1 below.  Utilising TSC in 
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place of Na2S2O5 was unsuccessful in the production of gold nanoparticle-merino wool 

composites, with little to no Au
3+

 being reduced to Au
0
.  This suggests that TSC may be a 

stronger reductant than Na2S2O5, reducing the wool and becoming oxidised, and therefore 

being unable to execute the reduction of Au
3+

 to nanoparticulate Au
0
. 

 

2.2.2.2.1 in-situ Preparation of Gold Nanoparticles by Sodium Metabisulfite in the 

Presence of Merino Fibres 

 

Merino wool (0.1 g) was added to an aqueous solution of Na2S2O5 (50 µL 10 wt % in 10 ml 

distilled water) and heated at 90 °C for 10 minutes.  Following this, HAuCl4 was added with 

gentle agitation (10 µL 4 wt % Au
3+

).  The reaction mixture was removed from the heat and 

agitated at room temperature for 30 minutes, upon which the produced S2O5
2-

 capped gold 

nanoparticles were absorbed onto the wool surface.  The resultant materials were washed 

well with distilled water and dried under ambient conditions.  The volume of 4 wt % Au
3+

 

was varied between 10-40 µL in the aim of producing composite materials of different 

colours.  As mentioned above this method was not reproducible as the colour of the resultant 

materials varied, even when great precion was used in their preparation.  As such this method 

was not pursued. 

 

2.2.2.2.2 in-situ Preparation of Gold Nanorods 

 

In an attempt to extend the colour range of the gold nanoparticle-merino wool composites, 

particularly to green, the in-situ preparation of gold nanorods was undertaken.  These 

syntheses were based on reports from Huang [169] and Liu.[170]  The first involved the 

addition of aqueous ascorbic acid (0, 10, 20, 30 or 40 µL of 0.1 M) to an aqueous solution 

containing CTAB (4.75 ml, 0.2 M), AuCl4
-
 (19.66 µL of 4 wt %) and AgNO3 (30 µL of 0.01 

M).  Following this, a gold nanoparticle-wool composite (prepared via the in-situ method 

outlined in section 2.2.2.3 and Table 2.6 below) was added to the reaction mixture and left to 

react for at least 3 hours at RT.  
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Alternatively, a ‗growth solution‘ was prepared through the addition of CTAB (6 g) to an 

aqueous gold solution (200 ml, 250 µM) at 60 ° C.  This was then left to cool and reaction 

solutions were prepared through the addition of ascorbic acid (5, 50 and 500 µL, 10 mM) to 

three volumes of ‗growth solution‘ (0.2, 20 and 200 µL).  A gold seed (seed 1 or 2 from 

Table 2.5) was added to the reaction solution containing 5 µL ascorbic acid and 0.2 µL 

growth solution, and the two remaining solutions (the 20 and 200 μL growth solutions 

containing 50 and 500 μL of Ascorbic acid respectively)  were added, (in order of increasing 

volume) at 1 minute intervals.  The reaction mixtures were left to react, with gentle agitation, 

for 72 hours at room temperature. 

 

Table 2.5: Preparation of gold nanoparticle-merino wool materials used as a seed source for the 

preparation of gold nanorods. 

Seed Gold Concentration 
(ppm) 

Soak Time 
(RT, hours) 

Age Time 
(50 °C, hours) 

1 80 24 24 

2 160 24 24 

3 160 24 168 

 

2.2.2.3. in-situ Preparation of Gold Nanoparticles Utilising Wool and Silk as 

Redox Active Biotemplates 

 

It has been established by ourselves [171] that the proteins found in merino wool are capable 

of facilitating the reduction of Au
3+

 to nanoparticulate Au
0
, with in-situ binding of the 

produced nanoparticles to the fibre, resulting in the deposition of gold nanoparticles on the 

surface, and throughout the fibre centre.  This technology has also been successfully 

extended to crossbred wools and silk (see sections 6 & 7). 

 

The typical procedure involved dispersing the fibre (0.1 g) in an aqueous gold tetrachloride 

solution (160 ppm, 40 µL 4 wt % Au
3+

 to 10 ml distilled water) with gentle agitation at room 

temperature (0-48 hours) to facilitate the absorption and subsequent diffusion of Au
3+

 or 
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AuCl4
-
.  Following this, the reaction mixture was ‗aged‘ through heating (50, 80 or 100 °C) 

for 1-168 hours, during which time the Au
3+

 to Au
0 
nanoparticles reduction occurred. 

 

Numerous factors were altered to both optimise this process and produce a broad range of 

attractively coloured composite materials, with a primary aim of minimising the amount of 

gold used.  These variations included: fibre pre-treatment, soaking solution composition, gold 

uptake (soaking time), ageing (heating) solution composition and ageing time and are 

summarised in the following sections (2.2.2.3.1 – 2.2.2.3.3). 

 

2.2.2.3.1 Fibre Pre-Treatment 

 

Merino wool (semi-worsted gilled sliver, worsted combed top or woven fabric), crossbred 

wool (slubbing) and silk (top) were either used as received or pre-treated as follows.  Fibres 

(1 g) were dispersed in the requisite treatment solution (10 ml, 0.1 M HCl, 0.1 M 

CH3CHOOH, 0.01-1 M KOH, 0.001 mM-1M NaCl at room temperature) for times ranging 

from 5-30 minutes.  These pre-treatments were employed in an attempt to change the surface 

chemistry of the fibres, and to investigate the effect of such changes on the production of the 

gold nanoparticle-merino wool composite materials. 

 

Alcoholic alkali pre-treatments were also undertaken in the aim of removing the fatty acid 

layer bound to the wool surface.  This involved dispersing wool (1 g) in KOH dissolved in 

methanol (100 ml, 0.1 M) for 5-30 minutes at room temperature.  Alternatively the wool was 

cleaned by Soxhlet extraction in a 2:1 chloroform : methanol solution for 5 hours to remove 

surface contaminants such as processing lubricants.[172] 

 

Chlorine Hercosett treated merino wool supplied by AgResearch Ltd Lincoln was also used.  

As mentioned in section 1.2.2.1.5, the chlorine Hercosett treatment renders fibres shrink 

resistant through oxidation and chlorination of the fibre surface (by chlorine gas generated 

in-situ from sodium hypochlorite and sulfuric acid) and subsequent application of the 

cationic Hercosett polymer. 
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Additionally the disulfide bonds of cystine in merino wool were reduced to thiol groups (-

SH) through exposure of wool (1 g) to tris(2-carboxyethly)phosphine (TCEP) (1 mM) in a 

pH 4.5 acetate buffer (40 ml, 0.4 M) for 3 hours at room temperature.  Following this, the 

reduced wool was alkylated to prevent re-oxidation of the thiol groups.  This involved 

soaking the reduced wool (1 g) in a pH 8 phosphate buffer solution (50 ml, 0.4 M) containing 

the alkylating agent maleic acid (10 mM) and n-propanol (50 ml) for 1 hour at room 

temperature. 

 

Silk fibres (1 g in top form) were heated, under reflux, in an aqueous Na2CO3 solution (10 

ml, 0.1 M) for 1 hour, with the aim of removing any residual sericin not previously removed 

during degumming.  Following treatment, all pre-treated fibres were washed thoroughly with 

distilled water and dried under ambient conditions prior to use. 

 

2.2.2.3.2 Soaking Solution 

 

The effect that the soaking solution had on the uptake of Au
3+

 ions by the fibres, and 

subsequent reduction to Au
0
 nanoparticles was studied by varying the soaking time and 

soaking solution composition (Table 2.6) (or compositions, as on particular occasions the 

fibres were soaked in one solution and then transferred to another (Table 2.7)).  All soaking 

took place at room temperature, with gentle agitation.  The fibrous substrate (silk, merino or 

crossbred wool, 0.1 g) was added to the soaking solution and stirred to ensure an even 

‗wetness‘ of fibres.  Glass or plastic rods were used in place of metal spatulas when stirring 

the gold soaking solutions to prevent the reduction of Au
3+

 to Au
0
 by the stainless steel 

spatulas, and subsequent deposition of Au
0
. 
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Table 2.6: Single soaking solution. Soaking time and soaking solution composition. 

Single Soaking Solution   

Vol. 4 wt % Au
3+

 
(µL) 

Solvent pH Soaking Time 
(RT) 

10-50  4-10 ml distilled 
water 

2.7-12 10 min–48 hours 

40 10 ml 0.1 M NaCl 2.7-9 24 hours 

40 10 ml 0.1 M NaCl, 
NaBr, MgCl2, 
K2HPO4 or 
KH2PO4 

2.7-8 24 hours 

40 10 ml distilled 
water 

2.7 for first hour, 
6.5-8 for remaining 
23 hours 

24 hours 

 
Table 2.7: Multiple soaking solutions. Soaking times and soaking solution compositions. 

Multiple Soaking Solutions 

Soaking Solution I Soaking Solution II  

Vol. 4 wt % 
Au

3+
 (µL) 

Solvent pH Soaking 
Time (RT) 

Vol. 4 wt % 
Au

3+
 (µL) 

Solvent pH Total Soaking 
Time (RT) 

40  10 ml distilled 
water 

2.7 6 or 18 
hours 

─ Distilled water 7 24 or 48 hours 

40  10 ml distilled 
water 

2.7 6 or 18 
hours 

─ 0.1 M acetate 
buffer 

2.7 24 or 48 hours 

40  10 ml distilled 
water 

2.7 6 hours ─ 0.1 M NaCl 7 48 hours 

50-80 10 ml distilled 
water 

2.7 5-15 mins ─ Distilled water 7 24 hours 

50-80 10 ml distilled 
water 

2.7 5-15 mins ─ 1 mM NaCl 7 24 hours 

60 10 ml distilled 
water 

2.7 10 mins ─ 0.1-1 M NaCl 7 24 hours 

60 10 ml distilled 
water 

2.7 10 mins ─ 0.1 M NaCl in 
10 ml 0.1 M 
HCl 

1 24 hours 

60 10 ml distilled 
water 

2.7 10 mins ─ 0.4 mM NaCl 7 24 hours 

60 10 ml distilled 
water 

2.7 10 mins ─ 0.4 mM HCl 7 24 hours 

20-40 4-7.5 ml 
distilled water 

2.7 1 min-6 
hours 

─ 0.1 M NaCl 7 24 hours 
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The standard soaking solution contained Au
3+

 (40 µL, 4 wt % Au
3+

 (typically 0.8g 

HAuCl4.3H2O was weighed into a glass jar and made up to 10 g with 0.1M HCl to obtain the 

desired concentration)) in distilled water (10 ml) to produce a 160 ppm, or 8.13 x 10
-4

 M, 

gold solution.  The gold concentration was altered through both the addition of more or less 

gold (10-50 µL 4 wt %), or through changing the solvent volume (4-10 ml).  The pH of these 

solutions was approximately 2.7. 

 

The composition of the soaking solution was varied through the addition of Au
3+

 to aqueous 

solutions of NaCl, NaBr, MgCl2, K2HPO4 or KH2PO4 (10 ml, 0.1 M) in place of distilled 

water.  In addition the pH of the soaking solution was adjusted (pH 4-12) through the 

addition of 0.1 M KOH.  Wool was either added directly to these altered solutions, or firstly 

soaked in a normal Au
3+

 solution (40 µL 4 wt % Au
3+

 added to distilled water) for 5 minutes 

to 18 hours (in order to absorb the gold) before being transferred to the altered soaking 

solutions (thus investigating the effect the soaking solution had on the diffusion of gold 

through the fibres and the reduction of Au
3+

 to Au
0
). 

 

2.2.2.3.3 Ageing Solution 

 

Similarly to the soaking solution, the effect of the ageing solution on the reduction of Au
3+

 to 

nanoparticulate Au
0
 was studied through variation of the ageing time, temperature and ageing 

solution composition.  The reduction of Au
3+ 

to Au
0
 nanoparticles was facilitated by heat. 

 

Ageing was carried out in the original soaking solution at 50, 80 or 100 °C for 1-168 hours.  

Also the pH of the original soaking solution (now the ageing solution) was altered (pH 4-12), 

or the wool soaked in gold was transferred to an alternate ageing solution containing extra 

electrolytes (NaCl, NaBr, MgCl2, K2HPO4 or KH2PO4) or simply aged in distilled water 

(Table 2.8). 
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Table 2.8: Ageing solution composition 

Ageing Solution 

Composition pH Age Temperature (°C) Age Time (hours) 

Original soaking solution Unchanged 50, 80 or 100 1-168 

Original soaking solution 4-12 50 24-168 

Distilled water 7 50 24-168 

0.1 M pH 3 acetate buffer 3 50 24-168 

0.1 M NaCl 7 50 24-168 

0.4 mM HCl 3.4 50 24-168 

0.4 mM NaCl 7 50 24-168 

 

2.2.2.3.4 Gold Uptake 

 

During the production of the gold nanoparticle-fibre composites, the uptake of Au
3+

 by the 

fibres was quantitatively determined by atomic absorption spectroscopy (see section 2.3.4).  

Sample preparation was achieved as follows.  0.1 g of fibre (merino wool, silk or crossbred 

wool) was dispersed in the Au
3+

 solution under analysis, for various amounts of time (5, 10 

or 30 mins, 1, 2, 5 or 24 hours) and agitated at RT, 50 or 80 °C.  Following this time the 

samples were removed and squeezed to displace any residual solution, which was then 

filtered on sintered glass crucibles (previously rinsed with aqua regia) to remove any residual 

fibres that could potentially block the aspirator tube of the spectrometer, and analysed by 

atomic absorption spectroscopy (section 2.3.4). 

 

2.2.2.3.5 Chloride Concentration 

 

During the production of the gold nanoparticle-merino wool composites, prepared through 

utilisation of the redox active nature of merino, the concentration of chloride in the reaction 

solutions (during the uptake and subsequent reduction of Au
3+

) was quantitatively followed.  

0.1 g of merino was dispersed in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 5 minutes to 24 

hours, and then heated at 50 °C for 5 minutes to 168 hours (Table 2.9), after which the fibres 

were removed and the concentration of chloride in the residual solutions determined (section 

2.3.5). 
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Table 2.9: Sample preparation for the determination of the chloride concentration. 

Soak Time (RT) Heat Time (50 ° C) Soak Time (RT) Heat Time (50 ° C) 

5 mins ─ 24 hours 30 mins 

10 mins ─  1 hour 

30 mins ─  3 hours 

1 hour ─  6 hours 

2 hours ─  24 hours 

3 hours ─  48 hours 

24 hours ─  72 hours 

   168 hours 

 

2.2.2.4 Seeded Growth of Gold Nanoparticles by an External Reductant Employing 

Gold Nanoparticle-Fibre Composite Materials as a Seed Source 

 

In an attempt to produce grey coloured gold nanoparticle-fibre materials, a seeded growth 

approach was employed.[173]  This involved dispersing gold nanoparticle-fibre composites 

in a solution containing additional Au
3+

, followed by the addition of a weak reductant 

(hydroxylamine, NH2OH ).  NH2OH is thermodynamically capable of reducing Au
3+

 to Au
0
, 

although the reaction is slow.  Introducing a gold surface dramatically increases the rate of 

reduction.  As such, under the reaction conditions employed, no new gold particle nucleation 

should occur in solution, and all additional Au
3+

 will go into the growth of the existing gold 

nanoparticles in the gold nanoparticle-fibre composites. 

 

In this approach, various gold nanoparticle-fibre composites (0.1 g), termed seed sources 

(Table 2.10), were added to aqueous Au
3+

 solutions (8 or 5 ml) followed by the drop-wise 

addition of NH2OH (2 or 1 ml to 8 or 5 ml Au
3+

 solutions respectively) under rapid stirring.  

The mixture was then left to react at room temperature for at least three hours.  Varying the 

seed source, Au
3+

 concentration and [Au
3+

]:[NH2OH] molar ratio altered the colour of the 

resultant composite materials (Table 2.11).  
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Table 2.10: Hydroxylamine seeded growth. Seed preparation.
* 

Fibrous 
Substrate 

Gold Solution 
(Vol 4 wt % Au

3+
 added) 

Soak Time 
(RT, hours) 

Heat Time 
(50 ° C, hours) 

Merino 40 μL → 10 ml pH 3 6 — 

 20 µL → 10 ml
 
pH 3

 
24 24 

 20 µL → 10 ml
 
pH 3 24 72 

 20 µL → 10 ml
 
pH 3 24 168 

 40 µL → 10 ml
 
pH 3 24 24 

 40 µL → 10 ml
 
pH 3 24 72 

 40 µL → 10 ml
 
pH 3 24 168 

 40 µL → 6 ml
 
pH 3 24 24 

Merino 50 µL → 6 ml
 
pH 3 24 24 

 60 µL → 6 ml
 
pH 3 24 24 

Silk 40 μL → 10 ml pH 3 or 9.5 — 1-5 h 

 40 μL → 10 ml pH 3 or 9.5 1 24 h 

 40 μL → 10 ml pH 3 or 9.5 1-6 — 

* Refer to Table 8.1 and Table 8.8 for details. 

Table 2.11: Hydroxylamine seeded growth. 

Gold Solution (volume of 
4 wt % Au

3+
 added to 

distilled water) 

NH2OH added Final Gold 
Concentration 

(M) 

[Au
3+

]:[NH2OH] 

7.7 µL → 8 ml 2 ml of 1.25 mM 2.50 x 10
-4
 1:1 

15.4 µL → 8 ml
 

 4.80 x 10
-4
 2:1 

30.8 µL → 8 ml
 

 9.60 x 10
-4
 4:1 

61.5 µL → 8 ml
 

 1.92 s 10
-3

 M 8:1 

12.3 µL → 8 ml 2 ml of 1.25 mM 2.50 x 10
-4

 M 1:1 

 2 ml of 2.5 mM  1:2 

 2 ml of 5.0 mM  1:4 

 2 ml of 10 mM  1:8 

 2 ml of 20 mM  1:16 

 2 ml of 40 mM  1:32 

 2 ml of 80 mM  1:64 
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Gold Solution (volume of 
4 wt % Au

3+
 added to 

distilled water) 

NH2OH added Final Gold 
Concentration 

(M) 

[Au
3+

]:[NH2OH] 

 2 ml of 160 mM  1:128 

12.3 µL → 5 ml
 

1 ml of 40 mM 4.20 x 10
-4

 M 1:16 

 1 ml of 80 mM  1:32 

 1 ml of 160 mM  1:64 

 1 ml of 320 mM  1:128 

20 µL → 5 ml
 

1 ml of 65 mM 6.77 x 10
-4

 M 1:16 

 1 ml of 130 mM  1:32 

 1 ml of 260 mM  1:64 

 1 ml of 520 mM  1:128 

30 µL → 5 ml
 

1 ml of 98 mM 1.02 x 10
-3

 M 1:16 

 1 ml of 196 mM  1:32 

 1 ml of 392 mM  1:64 

 1 ml of 783 mM  1:128 

40 µL → 5 ml 1 ml of 127 mM 1.35 x 10
-3

 M 1:16 

 1 ml of 259 mM  1:32 

 1 ml of 518 mM  1:64 

 1 ml of 1.037 M  1:128 

 

2.2.2.5 Leaching 

 

The amount of gold leached from all gold nanoparticle-fibre composites, prepared by an 

external reductant or through the redox active nature of the fibres during stimulated 

washability tests was determined.  Samples (0.1 g) were agitated in 0.1 wt % dishwashing 

detergent solutions (10 ml) for various amounts of time (0.5, 1, 2, 5 or 24 hours) at RT or 80 

°C, following which they were removed and squeezed to displace any excess solution.  The 

washing solutions were then filtered and the amount of gold leached was determined through 

atomic absorption analysis of the solutions (see section 2.3.4). 
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2.3 Characterisation 

 

2.3.1 Scanning Electron Microscopy 

 

Scanning electron microscopy (SEM) is an important characterisation technique for studying 

the morphology of the base fibres and minerals, and for drawing comparisons between the 

base substrates and the produced composite materials.  Individual fibres or small amounts of 

the clay minerals were mounted on stepped aluminium stubs using double sided carbon tape, 

and coated twice with 7 nm of carbon by a Jeol JEC-560 carbon coater.  Images were taken 

at various positions throughout the samples in order to obtain an accurate representation of 

the materials surface morphology.  Backscatter conditions were employed in which the gold 

and silver nanoparticles were more apparent due to their high molecular weight.  Imaging 

was carried out on a JEOL 6500 F field emission gun scanning electron microscope.   

 

Energy dispersive spectroscopy (EDS) showed the elemental distribution across the fibre and 

mineral surfaces.  Additionally, the correlation between gold or silver and other elements was 

noted.  The penetration of gold into the centre of fibres, was studied by cross sectional SEM 

and EDS analysis.  Fibres were aligned between two sections of double sided carbon tape and 

frozen with liquid nitrogen.  The frozen carbon tape encased fibres were then cut (orthogonal 

to the direction of the fibres) with a clean, sharp scalpel, and mounted on the vertical face of 

a stepped aluminium stub, exposing a surface of cross sectional fibres. 

 

2.3.2 Transmission Electron Microscopy 

 

High resolution transmission electron microscopy (HR TEM) and scanning transmission 

electron microscopy (STEM) are complementary techniques to SEM and EDS, however they 

offer increased spatial resolution, allowing for more accurate elucidation of nanoparticle size, 

shape and composition.  Micrographs were recorded on a JEOL 2010 instrument with a LaB6 

filament operated at a 200 keV accelerating voltage.  Silver nanoparticle-clay composites 

were slurried in ethanol and a drop of the slurry was placed on a carbon coated copper grid 
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(200 mesh) and the ethanol was left to evaporate under a heat lamp.  Due to the organic 

nature of the fibres, the fibre composites required dehydration and embedding in a resin 

(54:32:12:1 Procure 812:NMA:DDSA:BDMA composition) to enable TEM analysis, and 

were prepared as follows.  Samples were dehydrated in ascending ethanol solutions, 20 

minutes in each (70 %, 80 %, 90 %, 95 % and 100 % ethanol).  This was then followed by 

two soak periods (1 hour) in propylene oxide.  The composite materials were then infused 

with a 1:1 propylene oxide:resin mixture for 24 hours followed by infusion by resin (soaked 

overnight).  The materials were then transferred to a mould containing resin and cured in an 

oven at 80 °C for 48 hours.  Semi-thin (1-2 µm) sections of the composites embedded in 

resin were prepared using a glass knife on the Reichert-Jung Ultracut E microtome, and then 

ultra-thin (70-90 nm) sections were cut using a Diatome diamond knife.  These sections were 

mounted on copper grids (200 mesh) and coated with 7 nm of carbon by a Jeol JEC-560 

carbon coater to minimise charging. 

 

2.3.3 Determination of Colour 

 

The colour of the gold nanoparticle-fibre composites was determined by measuring their 

spatial reflectance.  Measurements were carried out in the visible region using a HunterLab 

ColourQuest spectrophotometer, and values for L*, a*, b* and 457 and 580 nm brightness 

were recorded.  Values for L*, a* and b* are coordinates depicting colour (Figure 2.2).  L* is 

the measure of lightness, with L*=0 being black and L*=100 white.  Positive values of a* 

and b* denote a red and yellow colour respectively, whilst negative a* values denote green 

and negative b* blue.  The 457 and 580 nm brightness values represent the TAPPI and ISO 

brightness respectively.  For each sample analysed, a set of values for each coordinate are 

given, so that when comparing samples very slight changes in colour can be detected. 
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Figure 2.2: L*, a*, b* colour sphere. 

 

2.3.4 Atomic Absorption 

 

Flame Atomic Absorption spectroscopy (AA) was employed to quantitatively determine both 

the uptake of gold by the fibrous substrates during the in-situ preparation methods, and also 

the leaching of gold from all produced gold nanoparticle-fibre composites (see sections 

2.2.2.3.4, and 2.2.2.3.5 respectively).  The gold uptake and leaching solutions were analysed 

on a GBC 906AA spectrometer, according to manufacturer recommended methods, 

employing light with a wavelength of 242.8 nm, and referenced to 3.5, 7.5, 10, 12 and 14 

ppm Au
3+

 standards.  The detection limit of the spectrometer used was 0.2 ppm, and 

combined with the percentage uncertainties of the glassware used in the synthesis of the 

samples and standards, all AA results were accurate to ± 0.5 ppm. 

 

2.3.5 Determination of Chloride Concentration 

 

During the production of the gold nanoparticle-merino wool composites, prepared through 

utilisation of the redox active nature of merino, the concentration of chloride in the reaction 

solutions was quantitatively analysed with a consort solid state chloride ion selective 

electrode (ISE24B, with a combination epoxy body) attached to a EUTECH EcoScan pH 

5/6/Ion meter.  The ionic strength of all analysed samples was adjusted with 5M NaNO3. 
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2.3.6 X-ray Photoelectron Spectroscopy 

 

X-ray photoelectron spectroscopy (XPS) is a non-destructive surface sensitive technique that 

provides information about the composition and electronic state of the surface region (top 10 

nm) of a sample.  As such it was utilised in elucidating the nature of the chemical bonding 

between the substrates and nanoparticles in all of the produced composite materials.  

Comparing any changes between the original base fibres and the composites also provided 

insight into the role of the natural fibres in the reduction of Au
3+

.  XPS spectra were obtained 

by loading samples into a specially designed holder (Figure 2.3) and irradiating the sample, 

under vacuum, with a beam of aluminium or magnesium x-rays whilst simultaneously 

measuring the kinetic energy and number of core electrons that were consequently emitted 

from the top 10 nm of sample.  As there is a characteristic binding energy associated with 

each atomic orbital for every element, shifts in binding energy peaks in an XPS spectrum 

provide information about the chemical environment of all materials on the sample surface.   

 

 

Figure 2.3: Samples loaded into sample holder in preparation for XPS analysis. 

 

XPS analysis was undertaken at the Surface Science Department located at the University of 

Auckland with the assistance of Dr Colin Doyle.  Measurements were performed on a Kratos 

Axis Ultra system with an aluminium anode operating at 10 mA and 15 kV, using the Kα 

line.  Charging from samples was minimized by the charge neutraliser, a thoria coated 

filament with tunable current, filament voltage and bias settings of 1.95-2.1 A, 2.9-3.3 V and 

1.1-1.3 V respectively.  The pass energy for the wide survey scans was 160 eV and 20 eV for 

the narrow scans.  The sample area was 300×700 µm.   
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Gaussian lorentzian (70:30) peaks were fitted to the recorded spectra using the CasaXPS 

Version 2.3.13 program.  The binding energies were calibrated using the C–C 1s 

photoelectron peak centred at 285.0 eV.  This involved primarily defining peak regions and 

removing the background spectrum using a Shirley line functionality.  Literature was 

consulted to provide information on the regular peak positions of functional groups that were 

expected to be present.  Peaks of comparable full widths at half maximum were then fitted at 

these specified positions.  Quantitative estimations of elemental compositions were made 

using a built in function of the CasaXPS program.  This employed sensitivity factors of 0.278 

(C 1s), 0.477 (N 1s), 0.780 (O 1s), 0.979 (S 2p), Ag 3d (18.04) and 8.56 (Au 4f), and the 

equation: [174] 

 

where Cx is the atomic fraction of component x in sample C, n is the number of atoms 

present, Ix is the peak area of x, and S is the relative sensitivity factor for the particular 

instrument under defined operating conditions.  These quantified values possess error values 

of ± 10 %,[175] whilst the binding energy values were accurate to ± 0.2 %.[176-179] 

 

2.3.7 Electrical Conductivity 

 

The DC-conductivities of individual fibres, or groups of fibres of the gold nanoparticle-fibre 

composites were analysed through implementation of the linear four point probe method 

(Figure 2.4).  Fibres were aligned so that they were in even contact with every electrode.  

Source potentials were set at 2, 5 and 10 V, and the potential (P) current (I) was measured at 

each.  The thickness (t) of the fibres or group of fibres was similarly measured. 
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Figure 2.4: Linear four point probe for measuring the conductivity of fibres. 

The resistivity (R) of the samples was calculated using the following formula: 

R = 2× π × t × P / I 

After calculating the resistivity of the samples via either of the two methods described above, 

the conductivity (C in S cm
-1

) was calculated by taking the inverse of the resistivity. 

C = 1 / R 

 

2.3.8 X-ray Diffraction 

 

X-ray diffraction (XRD) provides information about a material‘s crystal structure and helps 

to identify crystalline compounds.  As such it was utilised in determining the structural 

relationship between the silver nanoparticles and clays.  XRD powder diffraction patterns 

were measured on a Philips PW 3170 mpd controlled spectrometer; anode material Cu, λ = 

1.54060 Å.  Comparisons of the XRD patterns of both kaolinite and halloysite before and 

after inclusion of silver nanoparticles provided information as to whether the nanoparticles 

were been incorporated into the interlayer spacings of the clays, or simply dispersed on the 

surface of individual platelets or tubules respectively. 
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2.3.9 Infra Red Spectroscopy 

 

Infra red (IR) spectroscopy is a subset of spectroscopy that deals with the infra red region of 

the electromagnetic spectrum (~400–4000 cm
-1

).  By comparing slight changes in the IR 

spectra of the base substrates to those of the composites, insight into the nature of the 

interaction between the nanoparticles and substrates were obtained.  Samples (both minerals 

and fibres) were homogeneously mixed with KBr, in a ratio of approximately 1:1000 parts 

sample to KBr and pressed into disks.  Spectra were recorded on a PerkinsElmer Spectrum 

One FT-IR Spectrometer 

 

2.3.10 Ultra Violet Visible Spectroscopy 

 

Ultra violet visible (UV/Vis) spectroscopy was used to characterise all of the produced 

hybrid materials.  By comparing the UV/Vis spectra of colloidal nanoparticle solutions to the 

corresponding composite materials (excluding the in-situ method that utilised the redox 

active nature of the natural fibres) it was possible to approximately compare the size of the 

nanoparticles in solution to those in the composite materials, and also between various 

composites, evidenced by either a shift of the absorption maxima, or a broadening of the 

absorption peaks.  Absorption and reflectance UV/vis (the latter incorporating Kubelka-

Munk transformations) were performed on a Varian Cary 100 scan spectrometer.  The 

Kubelka-Munk theory is generally used for analysis of diffuse reflectance obtained from 

weakly absorbing samples.  It provides a correlation between reflectance and absorbance, and 

is expressed as follows: 

 

Where R is the absolute reflectance of the sampled layer, k is the molar absorption coefficient 

and s is the scattering coefficient.[180]  This transformation was carried out by software 

included in the spectrometer‘s analysis program. 
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2.3.11 Raman Spectroscopy 

 

Raman spectroscopy is a form of molecular spectroscopy that is based on the inelastic 

scattering of light, and provides information about the internal structure of a material such as 

the functional groups present.  The Raman spectroscopic signal is often enhanced by noble 

metal nanoparticle such as silver or gold.  This occurs through a surface sensitive process 

termed surface enhanced Raman spectroscopy (SERS), with the Raman signal of molecules 

in close proximity to the nanoparticles having the potential to be enhanced by a factor of up 

to 10
14

 – 10
15

.  The Raman spectra of the base samples were compared to those of the 

composite materials, and any differences, including signal enhancements, (suggesting the 

proximity of certain functional groups to the nanoparticles and hence providing potential 

bonding information) or the appearance or loss of certain signals (providing information on 

the reducing nature of the natural fibres) were noted.  Single fibres of the fibrous samples 

were mounted on microscope slides, and irradiated with 514 or 633 nm laser light. 

 

2.3.12 Solid State NMR 

 

27
Al and 

29
Si solid state NMR was utilised to provide information about the nature of the 

interaction between the silver nanoparticles and clay substrates in the composite materials.  

Comparing the spectra of the clay substrates to that of the composite materials highlights any 

changes in the coordination environment of both aluminium and silicon, and hence may 

provide information on the bonding between the clays and nanoparticles.  The spectra were 

acquired at a magnetic field of 11.7 T on a Varian Unity 500 spectrometer under the 

following conditions.  The 
27

Al spectrometer frequency was set at 130.224 MHz using a 1s 

(π/10) pulse with a 1s delay.  A 4mm Doty MAS probe was spun at 10-12 kHz and the 

spectra referenced to Al(H2O)6
3+

.  The 
29

Si spectrometer frequency was 99.926 MHz, using a 

6μs (π/10) pulse with a 30s delay.  A 5mm Doty MAS probe wsa spun at 5-6 kHz.  All 

spectra were referenced to tetramethylsilane. 
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2.3.13 Anti-microbial Testing 

 

The anti-microbial properties of all composite materials were testing at the PTA 

Microbiology Laboratory of Capital and Coast Health, Wellington Hospital.  Samples were 

pressed into pellets and incubated for 24 hours on agar plates containing Staphylococcus 

aureus (ATCC 25923).  All samples were tested against reference samples.  Following 

incubation, the samples were photographed and analysed visually and under an optical 

microscope and the zones of inhibition (microbial free areas surrounding the samples) were 

measured. 

 

2.3.14 Insecticide Testing 

 

The gold nanoparticle-wool composite materials were tested for insect resistance against 

moth and beetle larvae (Tineola bisselliella (T. bisselliella) and Anthrenocerus flavipes 

respectively) (Wools of New Zealand Test Method 25. Tineola bisselliella and 

Anthrenocerus flavipes).  This testing was undertaken at the Textile Chemistry Section of 

AgResearch Ltd, Lincoln.  A pass rate for these tests was based on the ratio of sample mass 

loss to larval mortality rate.  To exert resistance to the growth of moth or beetle larvae a 

sample must exhibit a mass loss of 15 mg or less, or a mortality rate of greater than 90 %.  If 

this mortality rate is achieved the mass loss is irrelevant, and losses of over 15 mg are 

acceptable. 

 

2.3.15 Light Fastness, Washability and Wearability 

 

The feasibility of the application of the gold nanoparticle-fibre composites in consumer 

products was determined through the testing of the materials light fastness, colourfastness to 

rubbing and washing and colourfastness to chlorinated swimming pool water.  These tests 

were undertaken at AgResearch Ltd Lincoln, under industry certified standards. 
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Colour fastness to rubbing tests (Australian/New Zealand Standard 2111.19.1), involved the 

use of a testing device consisting of a rectangular rubbing finger measuring 19 mm x 25 mm, 

which is able to be moved in a line along a 103 mm track, with a downward force of 9 N.  

The finger is mounted with the longer dimension 90° to the rubbing direction.  The sample 

(dry or wet) is placed on the base of the device.  Ten complete turns of the crank are used to 

rub the sample and it is then evaluated for colour change by visual comparison with a set of 

greyscale fabrics at 20°C and 65% relative humidity.  Values of 1 to 5 are obtainable, with 1 

being poor and 5 excellent. 

 

In colourfastness to washing testing (Australian/NZ Standard 2111.19.2), samples are placed 

in a flat-bottomed dish and covered with two pieces of undyed cloth, then covered with 

shampoo solution (consisting of sodium dodecyl benzene sulphonate (1 g/l) and lauric 

monoisopropanolamide (0.2 g/l) at pH 7.5) preheated to 40°C.  A smooth glass plate is 

placed on top of the cloths and sample, and weighed down with a 5 kg weight.  After 15 

minutes, the weight-piece is removed and the dish placed in an oven at 40°C for 1.5 hours, 

following which the sample is removed from the dish, hydroextracted, dried, conditioned, 

and the evaluated for colour change by visual comparison with a set of greyscale fabrics, 

with a value of 1 denoating poor colourfastness to washing and 5 excellent. 

 

Colourfastness to chlorinated swimming pool water (Australian Standard 2001.4.5) tests 

involved placing the test sample (50 mm x 50 mm) into a 500 ml cylinder containing 300 ml 

solution of sodium hypochlorite (with 25 mg/L available chlorine) and rotating the cylinder 

end over end at 40 rpm for one hour in a water bath maintained at 25 ° C.  The sample is then 

removed, squeezed, rinsed in cold water, dried and colour changes are assessed by 

comparison to greyscale fabrics.  Grades of grades 1 (poor) to 5 (excellent) are obtainable.  

Washability tests were undertaken by agitating samples (0.1 g) in a 0.1 wt % detergent 

solution (10 ml) for 10 minutes to 168 hours at room temperature or 50 °C.  

 

During the lightfastness tests (ISO test Method 105 BO2:1994), samples are exposed to a 

Xenon arc lamp operating at 300 – 400 nm, with a correlated colour temperature of 5500 – 

6000 K.  The sample temperature is maintained close to 50 ° C.  The colour changes of the 
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samples are compared to the colour changes of a set of eight reference samples of varying 

degrees of lightfastness, with possible lightfastness grades of 1 to 8, with 1 being poor and 8 

excellent. 



 

 

73 

3. SILVER NANOPARTICLE-CLAY COMPOSITES 

 

3.1 ex-situ Preparation of Nanoparticles and Subsequent Attachment to Clay 

Substrates 

 

A successful production method of silver nanoparticle-clay composites resulted in the 

production of vibrantly coloured powders, in which the colour arose due to the surface 

plasmon reasonances of the silver nanoparticles.  As outlined in section 2.2.1.1.2 the most 

successful production method involved the synthesis of polymethacrylic acid (PMA) capped 

silver nanoparticles with their subsequent attachment to the clay substrate through the 

cationic polymeric linker polydiallyldimethylammonium chloride (PDADMAC).  The PMA 

capped nanoparticles were characterised prior to attachment to the clay substrates, and the 

results are outlined in sections 3.1.1.1 and 3.1.1.2 below. 

 

3.1.1 PMA Stabilised Silver Nanoparticles 

 

3.1.1.1 PMA Stabilised Silver Nanoparticles Prepared via a Photo Induced Reduction 

 

PMA capped silver nanoparticles (Ag-PMA) were produced through the photo induced 

reduction of Ag
+
 to nanoparticulate Ag

0
 in an aqueous solution of PMA.  The reaction has 

been proposed to occur through the photolysis of water and the formation of solvated radicals 

(OH·(aq), H·(aq)) and electrons,[181-183] with the electrons acting as the potential reductants.  

 

Depending on the concentration ratio of silver nitrate to PMA, exposure of the reaction 

mixture to broad spectrum UV light induced a colour change from colourless to yellow, faint 

pink and finally red after several hours of irradiation (Figure 3.1 (top to bottom)).  With 

silver nitrate to PMA ratios of 3:1 or larger, unstable colloids were produced and these 

precipitated from solution almost immediately (Figure 3.1 (left to right)).  This was likely 
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attributable to agglomeration of the particles arising as a result of Ostwald Ripening, 

occurring as there was insufficient PMA to passivate the surfaces of produced nanoparticles. 

 

 

Figure 3.1: PMA reduced and stabilised silver nanoparticles. Increasing [AgNO3]:[PMA] (left to right) 

and increasing irradiation time (top to bottom). 

 

The development of silver nanoparticles in these systems was monitored by ultra violet 

visible (UV/Vis) spectroscopy.  When the particles form, an intense visible absorption a 

surface plasmon band appears.  The position of this plasmon band is dependent upon the size 

and shape of the nanoparticles, and also the dielectric constant of the surrounding medium, 

and is generally centered between 320-500 nm (see section 1.3.1).  Figure 3.2 shows the 

absorption spectra of silver nanoparticles prepared from a silver nitrate/PMA mixture with a 

1:1 concentration ratio, whilst Table 3.1 offers the corresponding λmax values.  Increasing the 

irradiation time from 10 minutes to 3 hours resulted in both an increase in intensity and 

broadening of the plasmon band centered at 510 nm, and a slight blue shift.  The peak 

broadening suggests inhomogeneity in particle size and shape (confirmed by transmission 

electron microscopy (TEM) analysis, see below), whilst the slight blue shift and increase in 

intensity suggests the formation of additional smaller nanoparticles.   
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Figure 3.2: UV/Vis absorption spectra showing an increase in peak intensity and a shift to lower 

wavelengths with increasing irradiation time. 

 
Table 3.1: UV/Vis λmax values for the absorption spectra of silver nanoparticles prepared with a 

[AgNO3]:[PMA] of 1:1. 

Irradiation Time (min) λmax 

10 520 

30 516 

60 511 

120 509 

180 480 

 

The change in colloid colour associated with increasing the silver nitrate to PMA ratio from 

1:5 to 2:1 was also reflected in UV/Vis spectroscopy (Figure 3.3), and is associated firstly 

with an increase in intensity of the surface plasmon band, followed by a subsequent shift to 

higher wavelengths.  This suggests an increase in the proportion of similarly sized 

nanoparticles and the subsequent production of larger nanoparticles.  When the ratio of silver 

nitrate to PMA was 1:5 (120 minutes irradiation), the produced colloid possessed a slight 
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yellow tinge, and this was reflected by a weak absorption band centered at approximately 

425 nm.  Increasing the silver nitrate to PMA ratio to 1:3 produced a deeper yellow coloured 

colloid which was accompanied by an increase in intensity of the 425 nm plasmon band.  

When the silver nitrate to PMA ratio was 1:2 the surface plasmon band began to shift to 

approximately 510 nm, suggesting a change in particle size.  This shift was complete when 

the ratio of silver nitrate to PMA was 1:1, decreasing in intensity with a ratio of 2:1.  As 

mentioned above, higher ratios of silver nitrate to PMA resulted in unstable colloids for 

which particles precipitated from solution almost immediately. 

 

 
Figure 3.3: UV/Vis absorption spectra showing an increase in peak intensity and shift to higher 

wavelengths with an increasing [AgNO3]:[PMA] ratio. 

 
Table 3.2: UV/Vis λmax values with an irradiation time of 120 minutes and increasing [AgNO3]:[PMA] 

values. 

[AgNO3]:[PMA] λmax 

1:5 425 

1:3 425 

1:2 425, 510 

1:1 510 

180 510 
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Considering the intensity of colour, and stability of the colloids, a silver nitrate to PMA 

concentration ratio of 1:1, with an irradiation time of 2 hours was chosen to produce PMA 

capped silver nanoparticles for inclusion in silver nanoparticle-clay composite materials 

(section 3.1.2).  TEM analysis of the colloids produced via this method revealed the silver 

nanoparticles to be predominantly spherical in morphology (~10-25 nm in diameter) (Figure 

3.4 a).  Alternate forms, notably hexagonal platelets (~25 nm in diameter) (Figure 3.4 b), 

particles with five fold twinning (~30 nm in diameter) (Figure 3.4 c) and truncated triangles 

(~25nm in diameter) (Figure 3.4 d), were also present, however in much lower 

concentrations. 

 

  

  

Figure 3.4: TEM micrographs showing the range of morphologies present in PMA stabilised silver 

nanoparticles prepared via a photo induced reduction. Predominantly nanospheres (a), and to a lesser 

extent hexagonal platelets (b), five-fold twinned particles (c) and truncated triangles (d) 

 

X-ray photoelectron spectroscopy (XPS) confirmed the produced silver nanoparticles to be 

capped with PMA, and the results are summarised in Table 3.3.  Examination of the 

deconvoluted high resolution Ag 3d peaks of an evaporated colloidal solution showed the 
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asymmetrical 5/2 and 3/2 peaks of zero valent, nanoparticulate silver at 368.80 and 374.85 

respectively (Figure 3.5 a).[184, 185]  A second pair of smaller peaks, attributed to Ag
+
,
 
were 

seen at 369.7 and 375.7 eV.  The O 1s spectrum of these silver nanoparticles shows that these 

peaks are not due to Ag2O, as the peak indicative of this oxide, centred at 529.0 eV is absent 

(Figure 3.5 c).[186]  Both the Ag
0
 and Ag

+
 sets of peaks have shifted to slightly higher 

binding energies relative to bulk silver and Ag
+
 in silver nitrate,[184] indicating an 

interaction of Ag
+
 with PMA and confirming the role of the cationic polymer in the 

stabilisation of the produced silver nanoparticles.  Comparing the O 1s high resolution 

spectra of PMA (Figure 3.5 b) to that of the nanoparticles (Figure 3.5 c) confirms this 

interaction, as it shows a shift in the position of both C=O and –COO
-
 in the nanoparticles 

relative to PMA from 531.50 and 533.20 eV to 531.30 and 532.80 eV respectively.  This 

suggests a bonding interaction between the C=O and –COO
-
 groups of PMA with the silver 

nanoparticles.  Considering this, these particles are likely to be present as nanoparticles with 

a Ag
0
 core surrounded with a layer of Ag

+
 ions which interact with PMA.  Additionally, a 

peak centred at 536.11 eV is evident in the O 1s spectra of both PMA and Ag-PMA colloids.  

There is very little data available on this peak, however it may be due to a pi-pi* type 

interaction between C=O groups of PMA.[187] 
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Figure 3.5: Deconvoluted high resolution Ag 3d spectrum of a) PMA capped silver nanoparticles, b) O1s 

spectrum of PMA and c) O1s spectrum of PMA capped silver nanoparticles. Peak positions are 

summarised in Table 3.3. d) Wide scan. 

 

Table 3.3: XPS assignments of PMA and PMA capped silver nanoparticles produced via a photo induced 

reduction method. 

  PMA Ag-PMA 

  BE (eV ± 0.2 eV) BE (eV ± 0.2 eV) 

Ag 3d Ag
0
5/2 ─ 368.80 

 Ag
0
3/2 ─ 374.85 

 Ag
+

5/2 ─ 371.10 

 Ag
+

3/2 ─ 377.00 

O 1s C=O 531.50 531.30 

 COO
- 

533.20 532.80 
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3.1.1.2 PMA Stabilised Silver Nanoparticles Prepared via NaBH4 Reduction 

 

An alternate production method of Ag-PMA nanoparticles involved the reduction of silver 

nitrate with sodium borohydride (scheme 3.3), in the presence of trisodium citrate (TSC) and 

later PMA (section 2.2.1.1.2). 

 

Ag
+

(aq) + e
-
    →    Ag(s) (3.1)[188]

 

BH4
-
(aq) + 8OH

-
(aq)   →    BO2

-
(aq) + 6H2O(l) + 8e

-
  

8Ag
+

(aq) + BH4
-
(aq) + 8OH

-
(aq)   →    8Ag(s) + 

BO2
-
(aq) + 6H2O(l) 

 

 

In this solution phase synthesis, silver nanoparticles with a loose shell of TSC ligands were 

initially produced, which were subsequently displaced by polymeric PMA.[104]  Colloidal 

solutions of the resultant Ag-PMA nanoparticles were yellow in colour (Figure 3.6 left), and 

showed a moderately sharp absorption peak in the visible region, centred at 400 nm (Figure 

3.7, line a). 

 

 

Figure 3.6: Left: NaBH4 reduced and PMA stabilised silver nanoparticles. Right: NaBH4 reduced and 

PMA stabilised silver nanoparticles following irradiation. 
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Figure 3.7: a) UV/Vis absorption spectrum of yellow silver nanoparticles colloids and b) green silver 

nanoparticles colloids. 

 

TEM analysis revealed these nanoparticles to be spheres, approximately 2-5 nm in diameter 

(Figure 3.8 a).  These nanoparticles were considerably more monodisperse than those 

produced via the photo induced reduction of Ag
+
 to Ag

0
.  Exposing these colloidal solutions 

to sunlight induced a transformation from nanospheres to triangular nanoplates (~30 nm in 

diameter), and resulted in a colour change from yellow to green (Figure 3.6).  This colour 

change was accompanied with a change in the surface plasmon band of the particles, 

indicated by the disappearance of the peak at 400 nm and the appearance of two new peaks at 

460 and 640 nm in the UV/Vis absorption spectrum, corresponding to the transverse and 

longitudinal plasmon bands of the triangular nanoplates respectively (Figure 3.7, line 

b).[115] 

 

The mechanism for the transformation of spherical silver nanoparticles to triangular 

nanoplates is discussed in section 1.3.3.  The UV portion of visible light is thought to induce 

the slow dissolution of silver atoms from the initially formed spherical nanoparticles, with 

subsequent re-attachment of these ions onto seed particles containing twin plane defects.  

Particles with such defects were observed in colloidal solutions of Ag-PMA prior to irradiat- 
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Figure 3.8: TEM micrographs of NaBH4 reduced and PMA stabilised silver nanoparticles. a) Yellow 

colloids (before irradiation) and b) green colloids (following irradiation). 

 

Figure 3.9: TEM micrograph of NaBH4 reduced and PMA stabilised silver nanoparticles, arrows show 

the position of twin plane defects. 

 

ion (Figure 3.9).  As discussed in section 1.3.3 these twin plane defects act as re-entrant 

grooves that are favourable sites for ion attachment, reducing the nucleation energy required 

to form new atomic layers in these areas.  As such, faces containing these re-entrant grooves 

grow at a faster rate than those that do not, resulting in the formation of anisotropic particles 

such as triangular platelets.  The concentration of the dissolved silver never reaches that 

necessary for nucleation, and therefore no new particles are formed, rather all of the silver 

atoms go into the growth of the triangular nanoplates.  Evidence for the dissolution and re-

precipitation of silver from such particles, in similar reaction conditions have been reported 

in the literature (also see section 1.3.3).[121, 189-191]  Unfortunately these triangular silver 

nanoplates could not be produced in a large yield, and as such they were unable to be 

incorporated into composite materials. 
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3.1.2 PMA Stabilised Silver Nanoparticle-Clay Composites 

 

When utilising broad spectrum UV light to facilitate the reduction of Ag
+
 to metallic silver 

nanoparticles, the resultant silver nanoparticle-clay (Ag-PMA-clay) composites were purple 

in colour, whilst composites incorporating NaBH4 produced nanoparticles were yellow 

(Figure 3.10). 

 

 

Figure 3.10: Range of silver nanoparticle-kaolinite (top) and halloysite (bottom) composite materials 

produced, incorporating Ag-PMA nanoparticles prepared via a photo induced reduction (left) and 

NaBH4 reduction (right). 

 

3.1.2.1 Physical Characterisation and Morphology 

 

The morphologies of the resultant Ag-PMA-clay composites were analysed by electron 

microscopy.  Comparing low magnification SEM micrographs of the kaolinite substrate and 

its silver nanoparticle analogue (prepared via a photo induced reduction of Ag
+
 to Ag

0
) 

revealed the presence of a substantial amount of organic matter in the composite (Figure 3.11 

a and b respectively).  This organic matter appeared to act as an adhesive, causing individual 

platelets of kaolinite to clump together.  As this is absent in kaolinite alone, it is likely to be a 

combination of PMA and PDADMAC.  This is confirmed in IR spectroscopy, with the peak 

centred at approximately 1565 cm
-1

 indicative of COO
-
 stretching (see section 3.1.2.4).   
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Increasing magnification micrographs further confirmed the presence of silver nanoparticles 

on the kaolinite substrate (Figure 3.11 c), and due to the relatively high molecular mass of 

silver, these were increasingly evident under back scatter conditions (Figure 3.11 d and f).  It 

is difficult to accurately ascertain the size of the silver nanoparticles on the surface of the 

kaolinite platelets due to the resolution of the SEM and slight charging of the materials.  

However it does show the nanoparticles to be present predominantly as isolated particles, 

with small populations of clumping.  The nanoparticles also appear to be encapsulated in the 

organic matter coating the kaolinite platelets (Figure 3.11 f), verifying the role of PMA and 

PDADMAC as capping and linking agents respectively.  This organic matter encapsulating 

the nanoparticles follows the surface morphology of the kaolinite, suggesting that the 

nanoparticles are bound to the clay through PMA and PDADMAC, rather than simply 

dispersed throughout the platelets. 

 

   

   

Figure 3.11: SEM micrographs of kaolinite (a) and increasing magnifications of a Ag-PMA-kaolinite 

composite (photo induced reduction) (b-f). The position of some nanoparticles are indicated by arrows. 

 

Additionally, Ag-PMA-kaolinite composites incorporating nanoparticles prepared with 

NaBH4 do not appear to have as great a coating of organic matter (Figure 3.12 a).  This is to 

be expected as their production method employed approximately five times less PMA.  

Additionally, there is a much lower concentration of nanoparticles on the kaolinite surface 

100 nm 

100 nm 100 nm 100 nm 

1 µm 1 µm 
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(Figure 3.12 b-c), which can also be attributed to the synthesis of the nanoparticles, as this 

process employed approximately twenty times less silver nitrate than the alternate photo 

induced production. 

 

   

Figure 3.12: Increasing magnification SEM micrographs of a Ag-PMA-kaolinite composite (NaBH4 

reduced). Nanoparticle positions indicated by arrows. 

 

Similar morphological trends were observed in the Ag-PMA-halloysite composites.  There is 

a substantial amount of organic matter present in the composite materials incorporating 

nanoparticles produced via the photo induced reduction method (Figure 3.13 a-c), and there 

appear to be less nanoparticles on the composites incorporating colloids produced via the 

NaBH4 reduction method (Figure 3.13 d-f).  However in both cases there are markedly less 

nanoparticles in the halloysite composites relative to the corresponding kaolinite materials.  

This is likely due to the morphological differences of the two clays.  The tubular morphology 

of halloysite presents the potential for PDADMAC to be absorbed into the centre of the tube 

where it could electrostatically interact with the deprotonated Al-OH groups of this inner 

surface.  This would decrease the amount of PDADMAC available to interact with the 

negatively charged outer SiO2 halloysite surface, in turn limiting the amount of PMA-Ag 

nanoparticles attracted to, and subsequently deposited onto the tubule surface.  The inner 

cylindrical pores of halloysite are approximately 15–20 nm in diameter, so therefore it is 

feasible that a portion of small PMA-Ag nanoparticles (diameters less than approximately 15 

nm) may have been deposited inside the tubes rather than on the surface, which would also 

account for the lower amount of nanoparticles evident on the halloysite composite surface 

relative to the corresponding kaolinite materials.  The smaller quantity of nanoparticles on 

the surface of halloysite relative to kaolinite would account for the less intense colour of the 

silver nanoparticle-clay composites incorporating halloysite or kaolinite respectively. 

1 µm 1 µm 100 nm 
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Figure 3.13: Increasing magnification SEM micrographs of a Ag-PMA-halloysite composite, prepared via 

photo induced (a-c) or NaBH4 reduction (d-f). Nanoparticles circled. 

 

TEM offers increased spatial resolution thus allowing for a more precise determination of the 

size and shape of the Ag-PMA nanoparticles incorporated into the produced composites.  

Analysis of the Ag-PMA-kaolinite materials (employing nanoparticles produced via a photo 

induced reduction) showed a relatively high concentration of nanoparticles, ranging in size 

from approximately 10-40 nm in diameter (Figure 3.14 a-c).  These were predominantly 

spherical in morphology.  The hexagonal platelets, truncated triangles and five fold twinned 

nanoparticles that were present in the colloidal solution were not immediately apparent in the 

composites.  This may be due to an increase in organic matter upon incorporation of 

PDADMAC and also the thickness of kaolinite, which makes viewing these materials 

difficult.  The composites incorporating nanoparticles produced by NaBH4 reduction were 

also spherical in morphology, however as with their analogous colloidal solutions, they were 

a lot smaller (approximately 5 nm in diameter) and monodisperse. 

 

Similar trends are observed in the Ag-PMA-halloysite composites.  TEM analysis confirmed 

the tubular morphology of halloysite and the incorporation of nanoparticles on its surface and 

also in its cylindrical pores.  The silver in the composites employing nanoparticles produced 

via a photo induced reduction are predominantly spheres, approximately 10-40 nm in 

1 µm 100 nm 100 nm 

100 nm 1 µm 1 µm 
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diameter, and are thus similar to their corresponding kaolinite composites (Figure 3.15 a-c).  

Similarly, the composites incorporating nanoparticles produced by NaBH4 reduction were 

comparable to the kaolinite materials in that the nanoparticles in these composites appeared 

spherical in morphology.  Additionally they were and a lot smaller (approximately 5–10 nm 

in diameter) and monodisperse than those produced via a photo induced reduction (Figure 

3.15 d-f). 

 

TEM also suggested that as proposed above, silver nanoparticles may be incorporated inside 

the cylindrical pores of halloysite.  Figure 3.16 and Figure 3.17 offer large TEM micrographs 

of Ag-PMA-halloysite composites prepared via both synthesis methods.  These micrographs 

clearly show small nanoparticles, (approximately 5 nm in diameter) incorporated inside the 

halloysite tubes, particularly near the ends/openings of these tubes.  It is difficult to say 

whether these nanoparticles are incorporated right through the length of the tubes. 

 

   

   

Figure 3.14: Increasing magnification TEM micrographs of Ag-PMA-kaolinite composites, prepared via 

photo induced (a-c) and NaBH4 reduction (d-f). 
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Figure 3.15: Increasing magnification TEM micrographs of Ag-PMA-halloysite composites prepared via 

photo induced (a-c) or NaBH4 reduction (d-f). 

  

Figure 3.16: Increasing magnification TEM micrographs of of Ag-PMA-halloysite composites prepared 

via photo induced reduction. Arrows indicate the location of nanoparticles inside the cylindrical pores of 

halloysite. 
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Figure 3.17: Increasing magnification TEM micrographs of of Ag-PMA-halloysite composites prepared 

via or NaBH4 reduction. Arrows indicate the location of nanoparticles inside the cylindrical pores of 

halloysite. 

As seen in these TEM and the corresponding SEM micrographs of all composites produced, 

the nanoparticles follow the morphology of the clay substrates, suggesting that the silver 

nanoparticles are attached to the clays rather than simply dispersed throughout.  Relative to 

the amount of the clay, these nanoparticles are present in very low concentrations, however 

they still manage to impart colourant properties owing to the strong plasmon resonances of 

the nanoparticles. 

 

3.1.2.2 Confirmation of Silver 

 

The presence of silver in the Ag-PMA-clay composites was confirmed by both energy 

dispersive spectroscopy (EDS) and x-ray photo electron spectroscopy (XPS), and verified the 

trend noted above, in which composite materials incorporating nanoparticles prepared via a 

photo induced reduction contained a larger proportion of silver than those incorporating 

NaBH4 produced nanoparticles. 

 

EDS provides information about the elemental composition on the surface of a material, and 

as such confirmed that when viewed under back scatter conditions, the bright white dots 

evident in SEM micrographs were silver.  Figure 3.18 offers typical high resolution SEM 

micrographs of the produced Ag-PMA-clay composites and their corresponding silver maps, 

where high concentrations of silver are shown in bright white (Figure 3.18 a, b) or pink 
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(Figure 3.18 c, d).  EDS is able to define areas of high silver concentrations in composites 

incorporating silver nanoparticles prepared via a photo induced reduction, however it is 

unable to do so in those incorporating NaBH4 produced nanoparticles.  This is likely due to 

the fact that the nanoparticles in the latter are too small to be distinguishable, whilst the in 

former group of composites they are much larger and in closer proximity to each other. 

  

  

  

  

Figure 3.18: SEM micrographs and corresponding silver EDS maps of Ag-PMA-kaolinite composites 

produced via a photo induced (a) kaolinite, c) halloysite) or NaBH4 reduction (b) kaolinite and d) 

halloysite). 
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XPS was utilised to provide quantitative estimations of the composites surface silver content.  

Kaolinite and halloysite composites incorporating nanoparticles prepared via a photo induced 

reduction contained 1.07 and 0.63 % silver respectively (Figure 3.19 a and c), whilst the 

alternate kaolinite and halloysite materials prepared with NaBH4 produced nanoparticles 

possessed markedly lower silver contents, 0.11 and 0.04 % respectively (Figure 3.19 b and 

d).  Complementary to SEM and TEM analysis, XPS shows there to be less silver on the 

surface of the halloysite composites relative to the kaolinite composites. 

 

  

  

Figure 3.19: Wide XPS scans. a) and b) Ag-PMA-kaolinite and Ag-PMA–halloysite composites 

incorporating nanoparticles produced via a photo induced reduction. c) and d) Ag-PMA-kaolinite and –

halloysite composites incorporating nanoparticles produced via a NaBH4 reduction. 

 

Examination of the high resolution Ag 3d spectra of the produced Ag-PMA-clay composites 

revealed the asymmetric 5/2 and 3/2 peaks of zero valent silver centred at approximately 368 

and 374 eV respectively.  Additionally, two smaller peaks centred at approximately 369 and 

375 eV, representative of Ag
+ 

were also present.  Actual values are provided in Table 3.4 
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below.  These peaks confirm the presence of silver nanoparticles in the produced composites.  

Their composition is discussed in further detail in section 3.1.2.4 below. 

 

Table 3.4: XPS peak assignments for the high resolution Ag 3d XPS spectra of Ag-PMA-clay 

composites.[184, 192] 

  Ag-PMA-Kaolinite Ag-PMA-Halloysite 

  Photo induced NaBH4 Photo induced NaBH4 

  BE (eV ± 0.2 
eV) 

BE (eV ± 0.2 
eV) 

BE (eV) ± 0.2 
eV 

BE (eV ± 0.2 
eV) 

Ag 3d Ag
0
5/2 367.94 367.72 368.1 367.70 

 Ag
0
3/2 373.95 373.75 374.1 373.70 

 Ag
+

5/2 368.67 368.31 368.81 369.02 

 Ag
+

3/2 374.67 374.14 374.83 375.10 

 

3.1.2.3 Colour 

 

The colour of the composite materials incorporating Ag-PMA nanoparticles, prepared via 

photo induced or NaBH4 reduction, were studied with UV/Vis spectroscopy.  As outlined in 

section 1.3.1 silver nanoparticles exhibit an intense visible absorption due to surface plasmon 

resonances, generally centred between 320-500 nm.[193]  As previously mentioned, this 

absorption spans a broad range as it is greatly influenced by the size and shape of the 

nanoparticles and also the dielectric function of the surrounding medium, with increasing 

particle sizes inducing a shift in the absorption band to longer wavelengths.  However when 

nanoparticles are sufficiently close together, interactions between neighbouring particles 

arise, so that models for isolated particles do not hold,[194] and the optical absorption of the 

aggregate is observed.   

 

Figure 3.20 shows the Kubelka Munk transformed (see section 2.3.10 for an explanation) 

UV/Vis reflection spectrum of Ag-PMA nanoparticles, prepared via a photo induced 
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reduction (line b).  Kubulka Munk transformed UV/Vis reflection spectra can be treated as 

absorption spectra.  This absorption is centred at 510 nm, and is slightly blue shifted with 

respect to the absorption spectrum of similarly sized silver nanospheres, (25 nm diameter) 

protected by a stabilising agent.[195]  The slight blue shift is likely due to the small 

proportion of different shaped nanoparticles.  Comparing this spectrum to that of a 

corresponding Ag-PMA-kaolinite composite sees a broadening of the peak centred at 510 nm 

(Figure 3.20 line a).  As mentioned, the full width at half maximum of the plasmon peak is 

dependent upon the extent of particle aggregation,[196] with broader peaks corresponding to 

more aggregated colloids.  TEM analysis of the produced Ag-PMA-kaolinite composites 

shows that upon inclusion into the composites, there is an increase in the average size of the 

nanoparticles, from approximately 10-25 nm in diameter in the colloid to 10-40 nm in the 

composite.  The broadness of the absorption peak of these composites suggests that the larger 

sized particles are formed as a result of agglomeration.  The broadening may also be an 

indication of a bonding interaction between the Ag-PMA nanoparticles and the PDADMAC 

on the kaolinite. 

 

 

Figure 3.20: Kubelka Munk transformed UV/Vis reflection spectrum of a) a Ag-PMA-kaolinite PMA 

composite (photo induced reduction) and b) a Ag-PMA colloid (photo induced reduction). 
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Similar results were obtained in the production of Ag-PMA-kaolinite composites 

incorporating nanoparticles produced via NaBH4 reduction (Figure 3.21).  However the 

plasmon peak of these nanoparticles and the corresponding composite materials have blue 

shifted relative to the colloids prepared via a photo induced reduction, and are now centred at 

401 and 406 nm respectively.  This shift in the plasmon peak is reflective of the difference in 

nanoparticle size between the two colloids.  The nanoparticles prepared via reduction with 

NaBH4 are much smaller, ~ 2-5 nm in diameter.  There is a slight red shift of this plasmon 

band (~ 5 nm) upon incorporation of the nanoparticles into the composite materials, and as 

with the materials incorporating nanoparticle prepared via a photo induced reduction, there is 

also a broadening of this peak, however it is not as extensive.  As there is no discernable 

change in particle size upon incorporation into the composite materials, this slight shift and 

broadening is likely to arise due to a change in the dielectric function of the surrounding 

medium (now a clay rather than water), and may also be indicative of a bonding interaction 

between the nanoparticles and clay.   

 

 

Figure 3.21: Kubelka Munk transformed UV/Vis reflection spectrum of a) a Ag-PMA-kaolinite 

composite (NaBH4 reduction) and b) a Ag-PMA colloid (NaBH4 reduction). 

 

Comparable results were obtained for the corresponding halloysite composites, with a 

broadening, and slight red shift in the plasmon band of the composite materials relative to the 
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colloids used in their production (Figure 3.22 and Figure 3.23).  However, relative to the 

kaolinite composites the colour of the corresponding halloysite materials was slightly less 

intense, which was shown when comparing the materials Kubelka Munk transformed UV/Vis 

reflection spectra; with the plasmon band of the halloysite materials being less intense than 

the kaolinite (Figure 3.24).  This is likely due to the decreased amount of nanoparticles on the 

surface of the halloysite composites. 

 

 

Figure 3.22: Kubelka Munk transformed UV/Vis reflection spectrum of a) a Ag-PMA-halloysite 

composite (photo induced reduction) and b) a Ag-PMA colloid (photo induced reduction). 
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Figure 3.23: Kubelka Munk transformed UV/Vis reflection spectrum of a) a Ag-PMA-halloysite 

composite (NaBH4 reduction) and b) a Ag-PMA colloid (NaBH4 reduction). 

 

Figure 3.24: Kubelka Munk transformed UV/Vis reflection spectra of a) a Ag-PMA-kaolinite composite 

(photo induced reduction) and b) a Ag-PMA-halloysite composite. Both prepared via a photo induced 

reduction. 
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3.1.2.4 Bonding of Nanoparticles to Clay Substrates 

 

Under the reaction conditions employed, (reaction pH of approximately 6.5) both kaolinite 

and halloysite possess a net negative charge.  The surface Al-OH and edge Si-OH groups 

(formed through the protonation of edge Si-O-Si species) of kaolinite have pKa values of 5.0 

and 6.0 respectively, and are thus deprotonated.  Additionally, the silicate planes of both 

kaolinite and halloysite carry a constant pH-independent negative charge, attributed to the 

very slight isomorphous replacement of Si
4+

 by Al
3+

.[165]  As the chemical composition of 

halloysite is similar to that of kaolinite, it exhibits comparable pKa values, however it is 

important to note that the chemistry of the outermost surface of halloysite can be associated 

with that of SiO2 and the inner cylindrical surface Al(OH)3 (see section 1.2.1.2). 

 

The proposed binding mechanism of Ag-PMA nanoparticles to the clay substrates is through 

a layer-by-layer deposition process.  This method capitalises on electrostatic interactions 

between oppositely charged polyelectrolytes, and as such a layer of the cationic polymer 

PDADMAC is initially absorbed onto the clay surface, followed by successive layers of 

negatively charged Ag-PMA nanoparticles and PDADMAC (as outlined in section 2.2.1.1.2).  

There are potentially two main ways by which PDADMAC, and consequently Ag-PMA 

nanoparticles could bond to the clay substrates; via electrostatic interactions between the 

negatively charged oxygen atoms of deprotonated surface and edge Al-O
-
 and Si-O

-
 groups, 

or with the anionic basal silicate planes in the interlayer spacing.  To determine the mode of 

bonding, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), infra-red 

spectroscopy (IR) and solid state NMR were employed. 

 

Analysis of the XRD diffraction patterns of kaolinite and the resultant Ag-PMA-kaolinite 

composites, incorporating Ag-PMA nanoparticles produced via photo induced or NaBH4 

reduction, revealed very slight changes in the basal spacing of the clay, from 7.06 to 7.09 and 

7.10 Å respectively (Figure 3.25).  These changes are very minimal, and may arise solely as a 

result of experimental uncertainties.  Comparable results were obtained with halloysite as the 

clay substrate.  The basal spacing of halloysite was recorded as 7.13 Å, and the 

corresponding Ag-PMA-halloysite composites, incorporating nanoparticles prepared via 
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photo induced or NaBH4 reduction as 7.16 and 7.15 Å respectively.  (The recorded basal 

spacing of halloysite, of 7.13 Å, (rather than the expected 10 Å) suggested that the clay had 

been dehydrated, an irreversible process that occurs at temperatures slightly higher than room 

temperature).[22]  This suggests that the PDADMAC, and later the Ag-PMA nanoparticles 

were deposited solely on the surface of both kaolinite and halloysite rather than incorporated 

into the interlayer spacings. 

 

XPS confirmed the bonding between PDADMAC and kaolinite or halloysite to be an 

electrostatic interaction between positively charged PDADMAC and the negatively charged 

surface of the clay‘s.  XPS peak positions are summarised in Table 3.5.  Examination of the 

high resolution O 1s spectrum of kaolinite both before and after inclusion of PDADMAC 

reveals large changes (Figure 3.26 b).  The peak representative of surface Al-OH groups of 

the clay is absent in the kaolinite-PDADMAC materials, and a new peak, centred at 531.72 

eV appears (Figure 3.26 a).  This peak is likely attributable to an electrostatic interaction  

 

 

Figure 3.25: XRD patterns of a) kaolinite, b) Ag-PMA-kaolinite (photo induced reduction) and c) Ag-

PMA-kaolinite (NaBH4 reduction). 
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between the positively charged quaternary nitrogens of PDADMAC and the negatively 

charged oxygens of deprotonated surface Al-O
-
 and edge Si-O

-
 groups of kaolinite.  A similar 

peak has been reported for PDADMAC embedded on silica.[197]  This is also evident in the 

high resolution N 1s spectrum of kaolinite-PDADMAC by a slight shift in the peak 

representative of the positively charged quaternary nitrogens of PDADMAC, and the 

appearance of the peak centred at 399.52 eV (Figure 3.27 c), which is absent in PDADMAC 

(Figure 3.27 d). 

 

  
Figure 3.26: High resolution O 1s XPS spectra of a) kaolinite-PDADMAC b) an overlay of kaolinite (red). 

 

  
Figure 3.27: High resolution N 1s XPS spectra of a) kaolinite-PDADMAC O 1s, b) an overlay of 

PDADMAC (red). 

 

This electrostatic interaction is confirmed when comparing the high resolution Al 2p and Si 

2p spectra of kaolinite and kaolinite-PDADMAC (Figure 3.28 c and d, e and f).  In the 

spectra of both of these elements, the peak representative of Al-OH and Si-OH is lost upon 

inclusion of PDADMAC, and new, lower energy peaks are formed, centred at 74.52 and 

102.62 eV (in the Al 2p and Si 2p spectrum respectively).   

a) 
b) 
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Figure 3.28: High resolution Al 2p (a) and Si 2p (c) XPS spectra of kaolinite-PDADMAC. b) and d) show 

an overlay of the corresponding Al 2p and Si 2p spectra of kaolinite (in red) respectively. 

Table 3.5: XPS assignments for kaolinite, kaolinite-PDADMAC and PDADMAC. 

  Kaolinite[198, 
199] 

PDADMAC Kaolinite-
PDADMAC 

  BE (eV ± 0.2 eV) BE (eV ± 0.2 eV) BE (eV ± 0.2 eV) 

O 1s Al-O 
Si-O 

532.49 ─ 532.52 

 Al-OH 
Si-OH

 
533.80 ─ ─ 

 Al-O
-
  

+
N 

Si-O
-
  

+
N 

─ ─ 531.72 

Al 2p Al-O 74.81 ─ 75.02 

 Al-OH 75.73 ─ ─ 

 Al-O
-
  

+
N ─ ─ 74.52 

Si 2p Si-O 103.30 ─ 103.42 

 Si-OH 104.68 ─ ─ 

 Si-O
-
  

+
N ─ ─ 102.62 

N 1s N
+ 

─ 402.19 402.23 

 N
+
  

-
O ─ ─ 399.52 
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As described in section 3.1.2.2, XPS confirmed the produced silver nanoparticles to be 

capped with PMA.  Deposition of these nanoparticles (produced via a photo induced or 

NaBH4 reduction) onto the kaolinite-PDADMAC surfaces induced very little change in the 

XPS spectra of kaolinite-PDADMAC (summarised in Table 3.6 below).  As the nature of 

bonding between the PMA capped nanoparticles and PDADMAC is likely to be similar to 

the bonding between PDADMAC and kaolinite, (notably electrostatic interactions through 

negative oxygen atoms and positive nitrogen atoms), this similarity is to be expected.  

Examination of the high resolution XPS spectra of the composites incorporating silver 

nanoparticles prepared via a photo induced reduction showed the only notable changes to be 

a shift to higher binding energy of the peak corresponding to Al-O and Si-O groups in the O 

1s spectra.  This was attributed to a combination of COO
-
 groups of PMA with Al-O and Si-

O groups of kaolinite (Figure 3.29 a-b).  Additionally, in the composite materials there was a 

slight downward shift in the peaks indicative of an O
-
–N

+
 interaction, seen in the Al 2p and 

Si 2p high resolution spectra (Figure 3.30 a-d).  This downward shift is likely attributable to a 

combination of the O
-
–N

+
 bonding interaction between PDADMAC and kaolinite and also 

PDADMAC and Ag-PMA.  The negatively charged PMA would impart more electrons to 

this interaction, resulting in an increased effective screening of the positive hole, which is the 

final state of the photoemission process, and hence the shift to lower binding energies.[200, 

201]  Additionally in the Ag-PMA-kaolinite composites, there is a decrease in relative peak 

area corresponding to Si-O in the clay (Figure 3.30 c-d).  The silicate groups are not on the 

surface of the clay, and would thus be obscured by the successive layers of PDADMAC and 

PMA employed in the synthesis of these composites.  Hence their signal intensity is 

decreased. 
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Figure 3.29: High resolution XPS spectra of a Ag-PMA-kaolinite composite (produced via a photo 

induced reduction) and an overlay of the corresponding kaolinite-PDADMAC materials (red lines) (a-b) 

O 1s and (c-d) N 1s. 

  

  
Figure 3.30: High resolution XPS spectra of a Ag-PMA-kaolinite composite (produced via a photo 

induced reduction) and an overlay of the corresponding kaolinite-PDADMAC materials (red lines) (a-b) 

Al 2p and (c-d) Si 2p. 

a) b) 

c) 
d) 
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Table 3.6: XPS assignments of Ag-PMA-kaolinite composites incorporating nanoparticles produced via a 

photo induced or NaBH4 reduction. 

  Kaolinite-
PDADMAC 

Ag-PMA-Kaolinite 

Photo induced NaBH4 

  BE (eV ± 0.2 eV) BE (eV ± 0.2 eV) BE (eV ± 0.2 eV) 

O 1s Al-O 
Si-O 
COO

- 

532.52 533.32 533.59 

 Al-OH 
Si-OH 

─ ─ ─ 

 Al-O
-
  

+
N 

Si-O
-
  

+
N 

531.72 531.96 531.78 

Al 2p Al-O 75.02 74.80 74.91 

 Al-OH ─   

 Al-O
-
  

+
N 74.52 74.20 74.28 

Si 2p Si-O 103.42 103.40 103.14 

 Si-OH ─   

 Si-O
-
  

+
N 102.62 102.60 102.48 

N 1s N
+ 

402.23 402.62 402.51 

 N
+
  

-
O 399.52 399.50 399.53 

 

As mentioned in section 3.1.2.2, examination of the high resolution Ag 3d spectrum of a Ag-

PMA-kaolinite composite (incorporating silver nanoparticles produced via a photo induced 

reduction) showed the asymmetric 5/2 and 3/2 peaks of zero valent silver at 367.94 and 

373.95 eV respectively (Figure 3.31 a), and two smaller peaks centred at 368.67 and 374.67 

eV, representative of the 5/2 and 3/2 peaks of Ag
+
.  Both sets of peaks have shifted to lower 

binding energies by 0.6 eV relative to the analogous Ag-PMA colloidal solutions (Figure 

3.31 b, Table 3.7).  This shift may be attributable to the increase in the nanoparticle size upon 

incorporation into the composite materials, as it is well known that smaller nanoparticles 

exhibit higher binding energies whilst larger behave more like the bulk material, thus their 

binding energies are closer to that of the bulk.[200]  However examination of the Ag 3d 

spectrum of a composite incorporating silver nanoparticles prepared via reduction with 

NaBH4 shows additional factors influenced the position of these peaks (Figure 3.31 c & d).  

The nanoparticles in these materials are on average a lot smaller, and as such the 5/2 and 3/2 

peaks of Ag
0
 should be centred at higher binding energies.  However they are not, they are 

centred at 367.72 and 373.35 eV respectively.  Therefore the shifts to lower binding energies 

relative to the analogous Ag-PMA colloids is likely attributable to a bonding interaction 
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between the Ag-PMA and PDADMAC and may also be due to the increase in organic matter 

surrounding the nanoparticles in the colloids, due to the successive layers of PMA and 

PDADMAC, which significantly changes the chemical environment of the silver 

nanoparticles.[200] 

 

Table 3.7: XPS assignments of Ag 3d in Ag-PMA-kaolinite composites incorporating nanoparticles 

prepared via photo induced or NaBH4 reduction. 

  Ag-PMA-Kaolinite 

Photo induced NaBH4 

  BE (eV ± 0.2 eV) BE (eV ± 0.2 eV) 

Ag 3d Ag
0
5/2 367.94 367.72 

 Ag
0
3/2 373.95 373.75 

 AgCl5/2 368.67 368.31 

 AgCl3/2 374.67 374.14 

 

  

  

Figure 3.31: High resolution Ag 3d XPS spectra of a Ag-PMA-kaolinite composite a) photo induced 

production and c) NaBH4 production. b) and d) overlay of Ag-PMA-kaolinite composites (in black) and 

their corresponding Ag-PMA nanoparticles (in red). 
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Figure 3.32: High resolution XPS spectrum of a Ag-PMA-halloysite (photo induced reduction) a) O 1s, c) 

Al 2p, e) Si 2p, and g) N 1s.  b), d) and f) are the O 1s, Al 2p and Si 2p spectra of halloysite (red) and the 

corresponding overlays of deconvoulted Ag-PMA-halloysite (black). h) overlay of N 1s spectrum of 

PDADMAC (red) and Ag-PMA-halloysite (black). 
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The binding of PDADMAC and subsequently Ag-PMA nanoparticles (produced via a photo 

induced or NaBH4 reduction) to halloysite was comparable to the bonding exhibited in the 

corresponding Ag-PMA-kaolinite composite materials, which was not surprising as the 

chemical composition of halloysite and kaolinite are similar.  Comparisons of the high 

resolution XPS spectra of a Ag-PMA-halloysite composite (incorporating silver 

nanoparticles produced via a photo induced reduction) to halloysite showed that the peaks 

indicative of Al-O and Si-O had shifted to lower binding energies, suggesting Al-O
-
–N

+
 (at 

the tubes inner surface), Si-O
-
–N

+
 (edges), and COO

-
–N

+
 interactions (COO

-
 from PMA) 

(Figure 3.32 a-f).  Additionally, a new peak centred at 399.5 eV in the N 1s spectrum, 

representative of an O
-
–N

+
 interaction also appeared (Figure 3.32 g and h).   

 

In comparison to the analogous Ag-PMA-kaolinite materials, higher binding energy peaks, 

(that are not observed in halloysite alone) arose in the Al 2p and Si 2p spectra of the 

halloysite composites (Figure 3.32 c-f).  These peaks are centred at 77.4 and 105.7 eV 

respectively, and may be indicative of hydrogen bonding, between either the hydrogens of 

edge Si-OH or Al-OH groups of halloysite with oxygen in the carboxylate group of PMA, 

between the nitrogen of PDADMAC with the Al-OH groups on the inner surface of the 

halloysite tubes, or simply the edge Si-OH or Al-OH groups of halloysite with water.[202]  

This interaction may have been increasingly apparent in the halloysite materials, compared to 

the corresponding kaolinite composites due to the structural difference between the two clay 

substrates.  As mentioned above, the tubular morphology of halloysite presents the potential 

for PDADMAC to be absorbed into the centre of the tube, decreasing the amount deposited 

on the surface, and thus the number of surface SiO2 and edge Si-OH and Al-OH groups 

involved in bonding with the polymer, leaving them free to hydrogen bond with the 

carboxylate groups of PMA.  However examination of the Al 2p and Si 2p spectra of a Ag-

PMA-halloysite material incorporating nanoparticles prepared with NaBH4 do not show these 

higher binding energy peaks (Figure 3.35).  This suggests that this sample contained a lot of 

absorbed water, with the peaks corresponding to hydrogen bonding interactions between the 

clay and water. 

 

The high resolution Ag 3d spectrum of Ag-PMA-halloysite (incorporating nanoparticles 

prepared via a photo induced reduction) showed the asymmetrical 3/2 and 5/2 peaks of zero 
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valent silver nanoparticles at 368.1 and 374.1 eV respectively, and smaller peaks at 369.9 and 

375.8 eV, representative of Ag
+
 (Figure 3.33).  As with the corresponding Ag-PMA-kaolinite 

materials, these peaks have shifted to lower binding energies relative to the analogous 

colloidal solutions, reflecting the increase in size of the nanoparticles upon incorporation into 

the composites.  It should be noted that the full width at half maximum differ significantly 

for the Ag
0
 and Ag

+
 species.  This is due to the increased variability of the chemical 

environment at the surface of the nanoparticles, therefore of Ag
+
. 

 

  

Figure 3.33: High resolution Ag 3d XPS spectra of a) Ag-PMA-halloysite (photo induced reduction) and 

b) overlay of Ag-PMA-halloysite (in black) and Ag-PMA (in red). 

 

The synthesis method did not appear to alter the bonding between the resultant Ag-PMA 

nanoparticles and clay substrates.  XPS revealed the bonding between the clay substrates and 

the nanoparticles prepared via reduction with NaBH4 to be very similar to that between the 

clays and nanoparticles prepared via a photo induced reduction, suggesting a comparable 

bonding mechanism between the nanoparticles and clay substrate.  Upon incorporation of 

nanoparticles prepared with NaBH4 to the clays, the peaks representative of Al-OH and Si-

OH were lost in the high resolution O 1s, Al 2p and Si 2p spectra of the composites, and new, 

lower binding energies peaks, indicative of electrostatic interactions between the positively 

charged PDADMAC, and negatively charged clay and PMA capped nanoparticles also 

appeared (Figure 3.34 and Figure 3.35, kaolinite and halloysite composites respectively). 
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Figure 3.34: High resolution XPS spectrum of a Ag-PMA-kaolinite composites (incorporating 

nanoparticles prepared by NaBH4) a) O 1s, c) Al 2p, e) Si 2p, and g) N 1s.  b), d) and f) are the 

corresponding overlays of O 1s, Al 2p and Si 2p spectra of kaolinite-PDADMAC (red) and deconvoluted 

Ag-PMA-kaolinite (black), h) overlay of N 1s spectrum of PDADMAC (red) and deconvoluted Ag-PMA-

halloysite (black). 
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Figure 3.35: High resolution XPS spectrum of a Ag-PMA-halloysite (NaBH4 reduction) a) O 1s, c) Al 2p, 

e) Si 2p, and g) N 1s.  b), d) and f) are the corresponding overlays of O 1s, Al 2p and Si 2p spectra of 

halloysite (red) and deconvoluted Ag-PMA-halloysite (black), h) overlay N 1s spectrum of PDADMAC 

(red) and deconvoluted Ag-PMA-halloysite (black). 
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As with the Ag-PMA-clay composites produced through the incorporation of nanoparticles 

prepared via a photo induced reduction, incorporating nanoparticles prepared with NaBH4 

resulted in a shift in the 3/2 and 5/2 peaks representative of metallic silver nanoparticles and 

Ag
+
 to lower binding energies relative to the analogous Ag-PMA nanoparticles (Figure 3.36).  

This indicates a bonding interaction between the PMA surrounding the nanoparticles and 

PDADMAC on the clay surface. 

 

   

  

Figure 3.36: High resolution Ag 3d XPS spectra of a) Ag-PMA-kaolinite and c) Ag-PMA-halloysite. Both 

prepared with NaBH4. b) and d) offer an overlay of a silver colloid prepared with NaBH4 (in red). 

 

Additionally IR was employed with the aim of further clarifying the mode of bonding 

between the Ag-PMA nanoparticles and clay substrates.  It was hoped that comparisons of 

the spectra of the composites and base clays would provide bonding information and confirm 

the role of Al-O and Si-O groups in this bonding.  The characteristic vibrations associated 

with kaolinite are seen in the spectra of all Ag-PMA-kaolinite composites, notably the bands 

at 3696–3620 cm
-1

 (O–H stretching), 1120–1000 cm
-1

 (Si–O stretching), 930–910 cm
-1

 (O–H 

bending) and 550–400 cm
-1

 (SiO2 bending regions) (Table 3.8).[21]  In addition, a strong 
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band around 3430 cm
-1

 and weaker bands at 1630 and 1618 cm
-1

 are present due to 

absorption of water by the clay (Table 3.8).  The Ag-PMA-halloysite composites exhibited 

similar vibrations due to their comparable chemical composition.  There were very little 

changes in the IR spectrum of both kaolinite and halloysite upon incorporation of the silver 

nanoparticles (prepared via photo induced or NaBH4 reduction).  Figure 3.37 offers a 

comparison between kaolinite and a Ag-PMA-kaolinite composite incorporating 

nanoparticles prepared via a photo induced reduction.  The spectrum of this material is 

representative of all composites produced.  The only notable difference between the two 

spectra was the appearance of the peak at approximately 1560 cm
-1

 in the composite.  This 

peak is indicative of COO
-
 asymmetrical stretching, and confirms the presence of PMA.  Due 

to the similarity of the clays and the resultant composite materials, IR provides little 

information about the bonding between the nanoparticles and clays.  This is likely due to the 

fact that IR is a bulk analysis technique, and as such is not particularly sensitive to the small 

amount of nanoparticles on the surface of the clays relative to the amount of clay present. 

 

Table 3.8:Vibrational assignments of Ag-PMA-clay composite materials. 

Transition (cm
-1

) Proposed Assignment 

3696-3920 O-H stretching [21, 30] 

1567-1560 COO
-
 stretching [203] 

1120-1000 Si-O stretching [21] 

930-910 O-H bending [21] 

550-400 SiO2 bending [21] 
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Figure 3.37: FT-IR spectra of kaolinite (black line) and a Ag-PMA-kaolinite composite (red line). 

 

Solid state NMR, however does provide information about the bonding between the 

nanoparticles and clays.  Analysis of the solid state 
27

Al NMR spectrum of kaolinite shows a 

single resonance centred at 3.15 ppm, which is representative of six-coordinate octahedral 

aluminum of kaolinite.[204]  Incorporation of Ag-PMA nanoparticles, prepared via a photo 

induced or NaBH4 reduction saw a shift to -0.37 and 0.51 ppm respectively (Figure 3.38).  

Similar results were obtained with halloysite, however upon incorporation of Ag-PMA the 

shift in position of this resonance was not as large, from 3.15 ppm in halloysite to 2.23 and 

2.27 ppm in those incorporating nanoparticles prepared via photo induced or NaBH4 

reduction respectively (Figure 3.39). 

 

The downfield shift of the signals in both kaolinite and halloysite upon incorporation of the 

Ag-PMA nanoparticles is likely to arise as a result of increased shielding imparted by the 

greater electron density arising due to successive layers of the polyelectrolytes PDADMAC 

and PMA.  These shifts substantiate the proposed theory in which Al-O groups are involved 

in bonding to PDADMAC and Ag-PMA, and support the XPS data discussed above. 
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Figure 3.38: Solid state 
27

Al NMR spectra of kaolinite and Ag-PMA-kaolinite composites (photo induced 

and NaBH4 production). Spinning side bands indicated by *. 

 

Figure 3.39: Solid state 
27

Al NMR spectra of halloysite and Ag-PMA-halloysite composites (photo 

induced and NaBH4 production). Spinning side bands indicated by *. 
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Similar results were obtained from solid state 
29

Si NMR.  The 
29

Si spectrum of the base 

kaolinite displays a single resonance at -91.1 ppm, which is consistent with previously 

published work.[204, 205]  Upon incorporation of Ag-PMA nanoparticles (both photo 

induced and NaBH4 produced) there was a broadening in this resonance peak and a very 

slight shift to -90.8 ppm.  Similar results were observed in the corresponding Ag-PMA-

halloyiste composites.  The 
29

Si spectrum of halloysite alone is not dissimilar to that of 

kaolinite.  There is a sharp resonance centred at -91.4 ppm, which is again consistent with 

previously published work on the 
29

Si NMR spectra of halloysite.[204, 206]  Additionally, 

minor signals representative of dehydroxylated halloysite and cristobalite impurities are seen 

at -102 and -107.6 ppm respectively.[206, 207]  As with kaolinite, incorporation of Ag-PMA 

nanoparticles (both photo induced and NaBH4 produced) induced a broadening of halloyistes 

signal width, and a very slight shift of 0.7 ppm to -91.1 ppm.   

 

In both the Ag-PMA-kaolinite and halloysite composites, the increased signal width is likely 

to correspond to a greater variation in the chemical environment of the silicon nuclei upon 

incorporation of PDADMAC and Ag-PMA, however as there are only extremely minimal 

shifts in the position of these signals, it is likely that the Si-O groups of kaolinite and 

halloysite do not play as great a role in bonding to PDADMAC and thus Ag-PMA as the Al-

O groups.  This is in agreement with the obtained XRD results which show minimal 

increases in d-spacing upon incorporation of PDADMAC and Ag-PMA, suggesting that in 

the kaolinite materials, bonding is primarily through the surface and edge Al-O and Si-O 

groups respectively rather than interlayer Si-O moieties.  The bonding in halloysite is likely 

to be similar, notably through Al-O groups inside halloysites cylindrical pores, and surface 

Si-O groups. 
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Figure 3.40: Solid state 
29

Si NMR spectra of kaolinite and Ag-PMA-kaolinite composites (photo induced 

and NaBH4 production). Spinning side bands indicated by *. 

 

Figure 3.41: Solid state 
29

Si NMR spectra of halloysite and Ag-PMA-halloysite composites (photo induced 

and NaBH4 production). Spinning side bands indicated by *. 
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3.1.2.5 Anti-microbial Testing 

 

The Ag-PMA-clay composites were tested for anti-microbial activity against the bacteria 

Staphylococcus aureus according to the procedure outlined in section 2.3.13 the results of 

these tests are summarized in Table 3.9 below.  To be classed as anti-microbial, these 

materials must actively hinder the growth of bacteria and exhibit a clear zone of inhibition.  

Alternatively, samples may resist microbial attack, whereby bacteria grow up to but not on 

the sample.  A negative test for anti-microbial activity is observed when bacteria grow over a 

sample.  Figure 3.42 and Figure 3.43 depict samples on agar plates that have been incubated 

with Staphylococcus aureus for 24 hours and sterilized.  The white hazy areas indicate 

bacterial growth, whilst the more transparent areas surrounding samples indicate bacteria free 

regions.    

 

The base clays and corresponding kaolinite and halloysite-PDADMAC materials exhibited 

no anti-microbial resistance (Figure 3.42, left), indeed bacteria appeared to grow over these 

samples (Figure 3.42, right).  Inclusion of Ag-PMA nanoparticles imparted increased anti-

microbial properties to the clays, with Ag-PMA-kaolinite and Ag-PMA-halloysite 

composites (incorporating nanoparticles produced via a photo induced reduction) exhibiting 

5 and 4 nm zones of inhibition respectively (Figure 3.43 a and b).  The anti-microbial activity 

of materials incorporating nanoparticles produced through reduction with NaBH4 was 

slightly less, with these kaolinite and halloysite composites presenting 3 and 2 nm zones of 

inhibition respectively (Figure 3.43 c and d). 
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Figure 3.42: Agar plates containing Staphylococcus aureus. Left a) kaolinite, b) kaolinite-PDADMAC, c) 

halloysite and d) halloysite-PDADMAC. Right, increased magnification image of halloysite on agar. 

 

Figure 3.43: Inhibition zones of Staphylococcus aureus microbial growth. a) Ag-PMA-kaolinite and b) 

Ag-PMA-halloysite, both incorporating nanoparticles prepared via a photo induced production. c) Ag-

PMA-kaolinite and d) Ag-PMA-halloysite composites incorporating nanoparticles prepared with NaBH4. 

 

It is evident that the anti-microbial properties of these samples arise from the presence of the 

silver nanoparticles.  Silver is thought to migrate from the surface of the Ag-PMA-clay 

composites, inhibiting the growth of microbes in its path, and therefore the samples with a 

higher silver loading would exhibit increased anti-microbial activities.  This is indeed the 

case with the Ag-PMA-clay composites, as the materials with the higher silver content 

(shown in TEM, EDS and XPS analysis), those incorporating nanoparticles prepared via a 

photo induced reduction, exhibited larger areas of inhibition compared to the analogous 

composites that incorporated nanoparticles prepared by reduction with NaBH4.   
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Table 3.9: Inhibition zones of Staphylococcus aureus by Ag-PMA-clay composites. 

Figure 
Sample 

Zone of Inhibition 
(mm) 

Figure 3.42 a Kaolinite 0* 

Figure 3.42 c Halloysite 0* 

Figure 3.42 b Kaolinite-PDADMAC 0* 

Figure 3.42 d Halloysite-PDADMAC 0* 

Figure 3.43 a Ag-PMA-kaolinite (photo induced 
production) 

4 

Figure 3.43 c Ag-PMA-kaolinite (NaBH4 reduction) 3 

Figure 3.43 b Ag-PMA-halloysite (photo induced 
production) 

5 

Figure 3.43 d Ag-PMA-halloysite (NaBH4 
reduction) 

2 

                                                                                       *Bacteria grew onto, and over the samples 

 

3.2 Conclusions 

 

The layer-by-layer deposition process in which kaolinite and halloysite were dispersed in 

successive solutions of the cationic polymeric linker PDADMAC and anionic PMA capped 

silver nanoparticles was successful in the production of silver nanoparticle-clay composite 

materials.  Depending on the preparation method of the Ag-PMA nanoparticles (prepared via 

a photo induced or NaBH4 reduction), the resultant silver nanoparticle-clay composites were 

purple or yellow in colour respectively. 

 

Electron microscopy showed that when employing Ag-PMA nanoparticles prepared via a 

photo induced reduction the silver nanoparticles in the resultant composites were 

predominantly spherical in morphology, ranging in size from approximately 10-40 nm in 

diameter.  Incorporating nanoparticles prepared via NaBH4 reduction produced composites 

with a much lower concentration of silver nanoparticles, and these were smaller, 

approximately 5 nm in diameter and monodisperse.  In all cases the nanoparticles appeared to 
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follow the morphology of the clays, suggesting they were attached to the clays rather than 

simply dispersed throughout.   

 

Relative to silver nanoparticle-halloysite composites, the analogous kaolinite composites 

appeared to possess a greater concentration of silver nanoparticles.  This was proposed to be 

due to the structural difference of the clays, with the tubular morphology of halloysite 

presenting the opportunity for PDADMAC and the Ag-PMA nanoparticles to absorb into the 

centre of these tubules, thus lowering the concentration of nanoparticles on the halloysite 

surface.   

 

XRD, XPS and solid state NMR suggested the bonding between the silver nanoparticles and 

clay substrates occurred through a layer-by-layer deposition process, which capitalised on 

electrostatic interactions between oppositely charged electrolytes, notably cationic 

PDADMAC, anionic Ag-PMA and the clay surfaces.  PDADMAC was initially bound to the 

clay substrates via electrostatic interactions occurring through the positively charged 

quaternary nitrogens of PDADMAC and the negatively charged Al-Oδ
-
 and Si-Oδ

-
 groups of 

the clays (located on the surface (Al-Oδ
-
) and edges (Si-Oδ

-
) in kaolinite and on the inner 

surface (Al-Oδ
-
) and edges (Si-Oδ

-
) of halloysite).  Once bound to the clays, PDADMAC 

electrostatically attracted the negatively charged Ag-PMA nanoparticles, with electrostatic 

interactions occurring through the positively charged nitrogens of PDADMAC and de-

protonated carboxyl groups of PMA capping the silver nanoparticles.  The mechanism by 

which the nanoparticles were synthesised did not affect the way by which they bound to the 

clays. 

 

The silver nanoparticles bound to the clays imparted anti-microbial properties to the resultant 

composites, with those incorporating a higher silver loading, notably the kaolinite and 

halloysite composites incorporating nanoparticles produced via a photo induced reduction, 

exhibiting increased anti-microbial properties compared to the analogous composites 

incorporating nanoparticles prepared by reduction with NaBH4. 
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With the intent of expanding the suite of composite materials, it was hoped that gold 

nanoparticle-clay composites could be produced, however at the time of research, such gold 

nanoparticle-clay composites, exhibiting both anti-microbial and optical (colourant) 

properties had already been produced by Chen and co-workers.[16]  As we did not want to 

re-produce materials with markedly similar properties to those already synthesized and 

reported on, the production of gold nanoparticle-clay composites was not pursued, and as our 

research group had had success in the production of silver nanoparticle-wool 

composites,[201] the direction of this research project was altered slightly, and the 

production of gold nanoparticle-natural fibre composites was pursued.  It was hoped that the 

gold nanoparticles in these materials would impart similar properties to the base fibre as the 

silver nanoparticles did to the clays, particularly optical (colourant) effects.  Discussions of 

the production and characterisation of such composite materials is provided in the following 

chapters. 
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4 GOLD NANOPARTICLE-MERINO WOOL COMPOSITES: EX-SITU 

PREPARATION OF GOLD NANOPARTICLES WITH SUBSEQUENT 

ATTACHMENT TO MERINO WOOL FIBRES 

 

4.1 Gold Nanoparticles Prepared with Trisodium Citrate or Tannic Acid  

 

As outlined in section 2.2.2.1, the ex-situ production and subsequent attachment of gold 

nanoparticles to merino wool fibres involving the reduction of Au
3+

 to nanoparticulate Au
0
 

was most successful when trisodium citrate (TSC) or tannic acid (TA) were employed as the 

reductants.  When using TSC, the resultant composites ranged in colour from pale yellow to 

grey, whilst TA produced murky light pink to purple coloured materials (Figure 4.1). 

 

 

Figure 4.1: Gold nanoparticle-merino wool composites prepared by the ex-situ reduction of Au
3+

 to Au
0
 

by TSC (top) or TA (bottom). 
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4.1.1 ex-situ Preparation of Gold Nanoparticles 

 

4.1.1.1 TSC Reduced and Stabilised Gold Nanoparticles 

 

One preparation of gold nanoparticles as colloids involved the reduction of Au
3+

 to Au
0
 in 

aqueous solutions containing 10, 20 or 50 µL of 1 or 10 wt % TSC (see section 2.2.2.1).  The 

reaction proceeded as outlined in scheme (4.1) below. 

                                   H2C—COOH           H2C—COOH 

                                         |                                 | 

                              HO—C—COOH    →        C=O        + CO2 (g)  + 2H
+

(aq)  + 2e
-
 

                                         |                                 |            

       Oxidation            H2C—COOH           H2C—COOH      

Reduction Au
3+

(aq) + 3e
-
  → Au

0
(s)  

Overall Reaction 3C6O7H8(aq)  +  2Au
3+

(aq)  →  3C5O5H6  +  2Au
0

(s)  +  

3CO2(g)  +  6H
+

(aq)  

(4.1)[114] 

 

Increasing the amount of TSC employed in the reduction of Au
3+

 resulted in the production 

of pale yellow to deep red wine coloured colloids (Figure 4.2).  This colour change occured 

due to the formation of nanoparticles and was reflected in the UV/Vis absorption spectrum of 

the colloids.  Similarly to silver nanoparticles, gold nanoparticles exhibit an intense visible 

absorption due to surface plasmon resonances.  Depending on the size and shape of the 

nanoparticles and also the dielectric function of the surrounding medium, this is generally 

centred between approximately 500–700 nm.[208] 

 

 
Figure 4.2: Gold nanoparticle solutions prepared with increasing amounts of TSC (left to right). 
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It has been well documented that the concentration ratio between a reductant or stabiliser, 

and the species to be reduced (eg. an ionic metal) greatly influence the size and shape of the 

resultant nanoparticles.[104, 114]  The citrate ion acts as a dual reductant/stabiliser and as 

such strongly influences the size of the resultant nanoparticles.  Tannic acid behaves in a 

similar manner.  The primary mode of action of citrate (or tannic acid) is to both reduce the 

metal, forming nanoclusters, and then stabilise the resultant nanoclusters through surface 

adsorption of citrate ions or the corresponding oxidation product.  Depending on the 

concentration of citrate present, the resultant nanoclusters will grow into nanoparticles via 

coalescence or through surface reduction of gold ions adsorbed onto the surface of the 

clusters. 

 

With low concentrations of citrate, a small number of nanoclusters are formed.  These then 

coalesce to form large, irregularly shaped nanoparticles.  However when the concentration of 

citrate is too low, an effective bi-layer of citrate surrounding the particles does not form, 

resulting in the continual aggregation of the nanoparticles producing large, microscale 

particles as a result of Ostwald Ripening.  Alternatively, if higher citrate concentrations are 

employed, greater numbers of nanoclusters form, due to the increased amount of reductant.  

Generally these are sufficiently stabilised with adsorbed citrate ions, and as such nanoparticle 

growth occurs through the reduction of metal ions adsorbed onto the nanocluster surface, 

resulting in the formation of smaller, and more monodisperse particles.  However, if the 

citrate concentration is too high, the particles may aggregate together due to the increased 

ionic strength of the solution, as at high ionic strengths, the repulsive electrostatic forces 

imparted by the adsorbed citrate ions can become screened, becoming overrun by attractive 

van der Waal forces between the particles,[209] resulting in the production of larger 

particles. 

 

Figure 4.3 shows the UV/Vis absorption spectra of colloidal gold solutions prepared with 

increasing amounts of TSC.  When 10 µL of 1 wt % TSC was used, there was an absorption 

maximum centred at 305 nm.  This has been reported to be due to charge transfer between 

the gold centre and chloro ligands,[210, 211] implying little to no Au
3+

 had been reduced.  

This was confirmed by TEM analysis of the solution, as there were no gold nanoparticles 

evident. 
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Figure 4.3: UV/Vis absorption spectra of TSC reduced and stabilised gold nanoparticles. 

 

Employing increasing amounts of TSC (50 and 10 μL of 1 and 10 wt% respectively) saw a 

decrease in the intensity of the AuCl4
-
 peak (λmax=305 nm), and the gradual formation of an 

extremely weak new peak centred at approximately 552 nm.  This peak is typical of 

nanoparticulate gold, suggesting that increasing amounts of TSC led to the reduction of more 

Au
3+

 to Au
0
 nanoparticles.  However the very low intensity and extreme broadness of the 

peak suggests that there was insufficient screening of the attractive van der Waals forces 

between any small clusters formed, resulting in coalescence/aggregation forming large, 

irregularly shaped particles.  However when 20 μL of 10 wt % TSC was used, this peak 

increased in intensity and the corresponding nanoparticle solution changed to a light red wine 

colour, indicating the formation of nanoparticles.  TEM showed these nanoparticles to be of a 

variety of morphologies including hexagonal (~ 50 nm diameter), triangular (including 

truncated triangles ~ 60 nm diameter) and planar, the most common form being five fold 

twinned particles (~ 20–25 nm in diameter) (Figure 4.4). 
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Figure 4.4: TEM micrographs of gold nanoparticles prepared with 20 μL of 10 wt % TSC. 

 

Employing 50 μL of 10 wt % TSC saw a blue shift of the absorption peak centred at 552 nm, 

indicating either the formation of smaller nanoparticles, or a more monodisperse system.  

This was confirmed in TEM, as the gold in these colloids was much more monodisperse, 

present largely as five-fold twinned particles, approximately 20–25 nm in diameter (Figure 

4.5).  This was likely to occur via the initial formation of an increased amount of 

nanoclusters, which were stabilised with a surrounding bi-layer of TSC resulting in growth of 

these clusters occurring predominantly via the reduction of gold ions adsorbed on the 

nanocluster surface rather than through aggregation.  Additionally, the faster initial reduct ion 

rate (due to the increased amount of TSC) forming a larger proportion of nanoclusters would 

decrease the concentration of Au
3+ 

in solution, making the formation of anisotropic 

nanoparticles via specific adsorption of gold ions onto areas with twin plane defects less 

likely (see section 1.3.3). 

 

100 nm 20 nm 20 nm 

20 nm 20 nm 
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Figure 4.5: Increasing magnification TEM micrographs of a gold nanoparticle colloid prepared with 50 

μL of 10 wt % TSC. 

 

4.1.1.2 TA Reduced and Stabilised Gold Nanoparticles 

 

Alternatively, gold nanoparticles were prepared through the reduction of Au
3+

 to Au
0
 

nanoparticles in aqueous solutions containing 10, 20 or 50 µL of 1 or 10 wt % TA (section 

2.2.2.1).  The reaction mechanism for this reduction is offered in scheme (4.2) below. 

 

Oxidation C76H52O46(aq) + 20OH
-
  →  C76H32O46 + 20H2O + 20e

- 
 

Reduction Au
3+

(aq) + 3e
-
  → Au

0
(s)  

Overall Reaction 3C76H52O46(aq) + 60OH
-
 + 20Au

3+
 (aq) → 3C76H32O46(aq) 

+ 60H2O(l) + 3Au
0

(s) 

(4.2) 

 

Increasing the amount of TA employed in the gold nanoparticle synthesis (from 10 μL of 1 

wt % to 50 μL of 10 wt %) saw a colour change in the resultant colloids from light pink to 

orange and finally wine red (Figure 4.6). 

 

 

Figure 4.6: Gold nanoparticle solutions prepared with increasing amounts of TA (left to right). 



 

 

127 

Similarly to the UV/Vis absorption spectra of nanoparticles prepared with TSC, peaks 

indicative of un-reduced AuCl4
-
, (λmax=305 nm), and the plasmon band of nanoparticulate 

gold, (λmax=approximately 596 to 528 nm), are evident in the UV/Vis absorption spectra of 

the TA reduced and stabilised gold nanoparticles (Figure 4.7).  Increasing amounts of TA 

employed from 1 to 50 µL of 1 wt % TA, saw a gradual decrease in intensity of the AuCl4
-
 

peak, which disappeared completely with 10 μL of 10 wt % TA.  The decrease (and 

subsequent loss) of this peak is accompanied by the formation and growth of a very broad 

peak, centred at approximately 596 nm, which has a shoulder towards higher wavelengths.  

The broadness of this peak suggests insufficient TA was present to stabilise any resultant 

nanoparticles formed, resulting in their coalescence to form either large particles or large 

‗clumps‘ of smaller nanoparticles.  TEM analysis of colloids prepared with 10 μL of 1 wt % 

TA reveal the presence of very small gold nanoparticles, approximately 2 nm in diameter, 

and also very large clusters of these nanoparticles (Figure 4.8). 

 

 

Figure 4.7: UV/Vis absorption spectra of TA reduced and stabilised gold nanoparticles 
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Figure 4.8: Increasing magnificantion TEM micrographs of a gold nanoparticle colloid prepared with 10 

μL of 1 wt % TA. 

 

Increasing the amount of TA to 20 μL of 10 wt % TA saw a blue shift in the peak at 596 nm 

to 528 nm, and a corresponding decrease in the full width half maximum.  As with the TSC 

system, the increase in TA concentration is likely to lead to a more comprehensive TA bi-

layer encapsulating the initially formed nanoclusters, with nanoparticle growth occurring 

through the reduction of gold ions adsorbed onto the nanocluster surface, rather than through 

coalescence/aggregation.  (A peak centred at approximately 368 nm also appears in the 

UV/Vis spectra of this colloid and that prepared with 50 µL of 10 wt % TA, this peak is 

likely an experimental uncertainty, arising when changing the light source from ultra violet to 

visible.)  The gold in these composites is present as a variety of nanoparticulate 

morphological forms including triangular (between approximately 20–50 nm in diameter) 

and hexagonal (approximately 60 nm in diameter) (Figure 4.9 left and centre respectively).  

However the majority of particles are five-fold twinned particles, approximately 25 nm in 

diameter (Figure 4.9 right). 

 

   

Figure 4.9: TEM micrographs of a gold nanoparticle colloid prepared with 20 μL of 10 wt % TA. 

 

It is interesting to note that when 50 μL of 10 wt % TA was used, the plasmon band of the 

gold nanoparticles increased in width.  As the width of the plasmon peak is directly related to 

200 nm 50 nm 10 nm 

20 nm 
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the extent of agglomeration, this suggests that there was increased agglomeration of the 

particles, most likely due to the increase in ionic strength of the solution, destabilising the 

repulsive forces between the TA capped nanoparticles.  TEM analysis confirms this, as on 

average the main morphological form of the nanoparticles, in this colloid, the five-fold 

twinned particles are slightly larger (approximately 20–35 nm in diameter (Figure 4.10 right). 

 

   

Figure 4.10: Increasing magnification TEM micrographs of a gold nanoparticle colloid prepared with 50 

μL of 10 wt % TA. 

 

4.1.2 TSC or TA Reduced and Stabilised Gold Nanoparticle-Merino Wool Composites 

 

4.1.2.1 Physical Characterisation and Morphology 

 

The morphology of the gold nanoparticle-merino wool composites, prepared by adsorbing 

TSC or TA prepared and stabilised gold nanoparticles onto the surface of the wool fibres 

were analysed by SEM.  The gold in these composites incorporating colloids produced with 

10 µL of 1 wt % TSC was present as very large particles, ranging in size from approximately 

100-500 nm (Figure 4.11 b and c).  These particles appear to be hexagonal and triangular in 

shape, residing preferentially at cuticle edges, and do not form a very uniform coating on the 

wool fibres (Figure 4.11 a).  As shown in section 4.1.1.1 10 µL of 1 wt % TSC was 

unsuccessful in reducing a large proportion of Au
3+

 to Au
0
 (to either nanoparticulate or bulk 

form).  Therefore the large gold particles observed in these composites may form due to a 

combination of TSC with the additional reductive nature of the wool fibres (section 5.6).  It is 

likely that the Au
3+

 ions in solution would bind to the sulfur groups of wool, due to the strong 

affinity of gold for sulfur, and then be reduced to Au
0
 by a combination of the redox nature 

of the wool fibres and the TSC in solution.  With large particles, rather than discrete 

200 nm 100 nm 20 nm 
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nanoparticles forming as a result of Ostwald Ripening, due to insufficient TSC present to 

stabilise the resultant particles. 

 

Increasing the amount of TSC employed in the production of the gold nanoparticles and thus 

the resultant composites saw both a decrease in the size and change in shape of the 

nanoparticles attached to the wool fibres, to approximately 30 nm diameter five-fold twinned 

particles, and an increase in amount of nanoparticles (Figure 4.11).  The size of the 

nanoparticles in these composites is not dissimilar to those in the colloids used in their 

production.  Again these particles appear to reside preferentially along the cuticle edges, 

suggesting that they are adsorbed primarily at these positions where surface tension is 

highest. 

 

   

   

   

Figure 4.11: Increasing magnification SEM micrographs of a gold nanoparticle-merino wool composite 

incorporating gold nanoparticles prepared with 10 µL of 1 wt % TSC (top), 20 μL of 10 wt % TSC 

(middle) and 50 μL of 10 wt % TSC (bottom). 

1 µm 1 µm 10 µm 

10 µm 1 µm 100 nm 

1 µm 100 nm 10 µm 
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Employing TA as the reductant imparted similar morphological characteristics to the 

resultant composites; however in these materials the gold nanoparticles were not as large 

(most likely due to the stronger reducing power of TA relative to TSC).  The gold in the 

composites incorporating colloids prepared with 10 µL of 1 wt % TA was present as small 

spherical nanoparticles (approximately 10-20 nm in diameter) larger trianglular 

(approximately 50-100 nm) and five-fold nanoparticles (approximately 20–25 nm in 

diameter) some of which agglomerated together (Figure 4.12 top and Figure 4.13 top).  

Increasing the amount of TA to 50 µL of 10 wt % saw an increase in the amount of 

nanoparticles on the surface of the fibres, however unlike the corresponding composites 

prepared with a similar amount of TSC, the size of the nanoparticles in these materials did 

not change (Figure 4.12 and Figure 4.13). 

 

   

   

Figure 4.12: Increasing magnification SEM micrographs of a gold nanoparticle-merino wool composite 

incorporating gold nanoparticles prepared with 10 µL of 1 wt % TA (top) and 50 µL 10 wt % TA 

(bottom). 

 

It is interesting to note that there were notably less gold nanoparticles present on the fibres 

when viewed under TEM compared to SEM.  It is likely that a large proportion of 

nanoparticles were dislodged from the fibres during TEM sample preparation, which as 

outlined in section 2.3.2 is quite harsh, employing numerous organic solvents and resins.  

1 µm 1 µm 100 nm 

100 nm 1 µm 10 µm 
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This is likely due to the relative instability of the bond between the nanoparticles and fibres, 

and also their location at the fibre surface. 

 

  

  

Figure 4.13: Increasing magnification TEM micrographs of a gold nanoparticle-merino wool composite 

incorporating gold nanoparticles prepared with 10 µL of 1 wt % TA (top) or 50 µL of 1 wt % TA 

(bottom). 

SEM and EDS revealed the gold in all of the composites to be present solely on the surface 

of the fibres, and not dispersed throughout the centres.  Figure 4.14 (left) offers a cross 

sectional SEM micrograph of a merino wool fibre that has been coloured with gold 

nanoparticles prepared with 10 µL of 1 wt % TSC.  Particles of gold are evident on the 

surface of the fibre (the bright white areas) but not in the centre.  The right hand image in 

Figure 4.14 is the corresponding EDS gold map, where high concentrations of gold are 

depicted in red and white areas.  A line profile of this micrograph, which provides 

information about elemental distribution across a defined area is shown in Figure 4.15.  

Again this showed gold to be present on the surface of the fibre and not in the centre.  As 

mentioned above, incorporating gold nanoparticles prepared with a greater amount of TSC 

saw the resultant composites to have an increased amount of nanoparticles on the fibre 

surface.  Cross sectional SEM and EDS analysis show these nanoparticles to remain 

predominantly on the fibre surface rather than in the centre (Figure 4.16 and Figure 4.17).  

Similar trends are observed in merino wool fibres coloured with TA reduced and stabilised 

gold nanoparticles (Figure 4.18 to Figure 4.21). 
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Figure 4.14: Left: A Cross sectional SEM micrograph of a gold nanoparticle-merino wool composite 

(incorporating nanoparticles prepared with 10 µL of 1 wt % TSC). Right: the corresponding gold EDS 

map. 

 

Figure 4.15: Left: Gold EDS map of a gold nanoparticle-merino wool composite (incorporating 

nanoparticles prepared with 10 µL of 1 wt % TSC), and right: the corresponding line profile showing 

higher concentrations of gold on the surface of the fibre than in the centre. 

10 µm 
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Figure 4.16: Left: A Cross sectional SEM micrograph of a gold nanoparticle-merino wool composite 

(incorporating nanoparticles prepared with 50 µL of 10 wt % TSC). Right: the corresponding gold EDS 

map. 

 

Figure 4.17: Left: Gold EDS map of a gold nanoparticle-merino wool composite (incorporating 

nanoparticles prepared with 50 µL of 10 wt % TSC), and right: the corresponding line profile showing 

higher concentrations of gold on the surface of the fibre than in the centre. 

  

Figure 4.18: Left: A Cross sectional SEM micrograph of a gold nanoparticle-merino wool composite 

(incorporating nanoparticles prepared with 10 µL of 1 wt % TA). Right: the corresponding gold EDS 

map. 

20 µm 
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Figure 4.19: Left: Gold EDS map of a gold nanoparticle-merino wool composite (incorporating 

nanoparticles prepared with 10 µL of 1 wt % TA), and right: the corresponding line profile showing 

higher concentrations of gold on the surface of the fibre than in the centre. 

  

Figure 4.20: Left: Left: A Cross sectional SEM micrograph of a gold nanoparticle-merino wool composite 

(incorporating nanoparticles prepared with 50 µL of 10 wt % TA). Right: the corresponding gold EDS 

map. 

 

Figure 4.21: Left: Gold EDS map of a gold nanoparticle-merino wool composite (incorporating 

nanoparticles prepared with 50 µL of 10 wt % TA), and right: the corresponding line profile showing 

higher concentrations of gold on the surface of the fibre than in the centre. 

10 µm 

10 µm 
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4.1.2.2 Colour 

 

As mentioned in section 4.1 above, when colouring merino wool with gold nanoparticles 

prepared with increasing amounts of TSC, the resultant composites changed colour from pale 

yellow to grey, whilst increasing amounts of TA produced light pink to purple/grey coloured 

materials (Figure 4.1).  The colour of the gold nanoparticle-merino wool composites were 

studied with UV/Vis spectroscopy and through analysis of their CIE L*, a* and b* values. 

 

The CIE L*, a* and b* values of the gold nanoparticle-merino wool materials (which are 

coordinates depicting colour), are offered in Table 4.1 below.  As outlined in section 2.3.3 L* 

values represent a materials degree of lightness, with L*=0 being black and L*=100 white.  

Increasing the amount of TSC or TA employed in the production of the nanoparticles saw a 

darkening of the resultant composites.  This was reflected by a general decrease in the L*, 

457 nm brightness and 580 nm brightness values of these materials.  The a* value indicates a 

sample‘s colour between red and green (positive and negative values respectively).  

Incorporating nanoparticles with an increased amount of TSC, from 10 µL of 1 wt % to 20 

µL of 50 wt %, saw a general increase in the values of a* of the resultant composites, 

mirroring the visual darkening of the materials.  However when 50 µL of 10 wt % TSC was 

employed, the composites showed a marked decrease in a*, from 4.5 to 0.5, corresponding to 

the materials‘ observed colour change (they were much less red in colour).  The a* values for 

the materials employing nanoparticles prepared with TA remain relatively constant, which is 

logical as these materials all exhibited a similar red tinge.  Additionally, the b* value 

specifies how yellow or blue a material is (positive b*=yellow, negative b*=blue).  As such, 

the observed colour change of the composites, from pale to deeper yellow, red/brown to 

purple/blue upon incorporating of colloids prepared with increasing amounts of TSC is 

reflected by an increase, followed by a sharp decrease, in the composites values of b*.  Using 

nanoparticles with an altered amount of TA did not visually change the resultant composites 

degree of yellowness or blueness, and as such the value of b* for these materials remained 

relatively constant. 
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This colour change, and the relationship between the colour of the composites and the size 

and shape of the gold nanoparticles bound to the fibre surfaces was also shown in SEM 

analysis and the UV/Vis absorption spectra of the composites, and appeared to be a function 

of nanoparticle size, shape and concentration (Figure 4.22). 

 

Table 4.1: L*, a*, b*, 457 nm brightness and 580 nm brightness values for gold nanoparticle-merino wool 

composites prepared by the ex-situ reduction of Au
3+

 to Au
0
 by TSC or TA. 

Sample L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

10 μL 1 wt % TSC 60.4 1.3 6.9 25 30 

20 μL 1 wt % TSC 60.9 2.3 6.9 25 31 

50 μL 1 wt % TSC 68.2 4.2 9.0 32 41 

10 μL 10 wt % TSC 57.0 4.0 8.6 21 27 

20 μL 10 wt % TSC 46.0 4.5 4.2 14 16 

50 μL 10 wt % TSC 48.5 0.5 -2.9 19 17 

10 μL 1 wt % TA 50.4 4.0 4.0 17 20 

20 μL 1 wt % TA 51.2 5.0 4.1 17 20 

50 μL 1 wt % TA 50.5 5.6 5.8 16 20 

10 μL 10 wt % TA 53.4 1.1 0.3 21 21 

20 μL 10 wt % TA 55.3 2.1 4.1 21 24 

50 μL 10 wt % TA 50.8 3.9 3.8 17 20 

 

  

Figure 4.22: SEM micrographs of gold nanoparticle-merino wool composites prepared with, left: 10 μL 

of 1 wt % TSC and right: 50 μL of 10 wt % TSC. Shows the relationship between the colour of the 

composites and the size and shape of the gold particles bound to the wool. 

100 nm 1 µm 
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As described in section 4.1.2.1, the gold in the composites prepared with 10 µL of 1 wt % 

TSC was present as large triangular or hexagonal particles, ranging in size from 100-500 nm 

in diameter.  These particles are too large to exhibit significant surface plasmon resonances, 

instead they would display optical properties closer to that of bulk gold, accounting for the 

very pale yellow tinge of the composites.  This was illustrated in their UV/Vis absorption 

spectrum with the absence of the surface plasmon band of gold, and a weak peak centred at 

approximately 500 nm (Figure 4.23).  This peak has been reported to be that of the transverse 

plasmon band of large gold nanoplates (see section 1.3.1 for discussions about transverse and 

longitudinal plasmon bands),[210] and as such it is likely to be representative of the large 

triangular and hexagonal gold particles observed in the SEM micrographs of these 

composites.  The colour of the composites did not change to a great extent until 20 µL of 10 

wt % TSC was used in the production of the colloids, with the composites appearing browny 

red in colour.  This colour change is reflected in the UV/Vis spectrum by the formation of a 

peak centred at approximately 560 nm, and another smaller peak at approximately 690 nm.  

There has been substantial literature confirming the first peak to be the plasmon resonance 

band of spherical or five-fold twinned gold nanoparticles,[17, 104, 107, 211, 212] and the 

later anisotropic gold particles such as triangular or hexagonal platelets.  SEM confirms the 

presence of these morphological forms, revealing the gold in the composites incorporating 

nanoparticles prepared with 20 µL of 10 wt % TSC to be predominately five-fold twinned 

particles, approximately 30 nm in diameter, with some large hexagonal (approximately 250 

nm in diameter) and truncated triangular (approximately 200 nm in diameter) particles 

(Figure 4.11 middle).  Incorporating nanoparticles prepared with 50 µL of 10 wt % TSC saw 

an increase in size or an agglomeration of these particles and hence a slight red shift in this 

peak, reflective of the colour change of the composite to a blue grey. 

 

The UV/Vis absorption peaks for the materials incorporating colloids prepared with 20 or 50 

µL of 10 wt % TSC are very broad in comparison to the corresponding nanoparticles, Figure 

4.24, suggesting either agglomeration of the nanoparticles on the wool fibre surface, or a 

bonding interaction between the nanoparticles and wool fibres. 
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Figure 4.23: Kubelka Munk transformed UV/Vis reflection spectra of gold nanoparticle-merino wool 

composites incorporating nanoparticles prepared with TSC. 

 

 

Figure 4.24: Kubelka Munk transformed UV/Vis reflection spectra of a) a gold nanoparticle colloid 

prepared with 20 µL of 10 wt % TSC, b) a gold nanoparticle-merino wool composite incorporating 

nanoparticles prepared with 50 µL of 10 wt % TSC and c) 20 µL of 10 wt % TSC. 
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The colour of the composites incorporating colloids produced with increasing amounts of TA 

appeared to be a function of nanoparticle concentration, and did not vary to a great extent.  

Increasing the amount of TA used in the production of the colloids (from 10 µL of 1 wt % to 

50 µL of 10 wt % TA) resulted in a higher concentration of nanoparticles of a similar size 

and shape on the surface of the fibres (Figure 4.25) and corresponded to a slight colour 

change of the composites from a mirky light pink to purple. 

 

  

Figure 4.25: SEM micrographs relating the colour of the composites to the size and shape of the 

nanoparticles on the fibre surface. Left) a gold nanoparticle-merino wool composite incorporating 

nanoparticles prepared with 10 µL of 1 wt % TA and right) 50 µL of 10 wt % TA. 

 

This minor colour change was mirrored in the UV/Vis absorption spectra of the composites 

with a small blue shift of the peaks centred at 500 and 540 nm (Figure 4.26).  The gold in 

these composites was present as a combination of spherical and triangular nanoparticles, 

approximately 10-20 and 50-100 nm in diameter respectively.  The broad peaks evident in 

the UV/Vis absorption spectrum are reflective of the transverse plasmon bands of anisotropic 

particles and nanospheres, and correspond to the gold triangles and spheres observed in the 

SEM micrographs of these materials.  This range of particle size and shape and hence 

plasmon resonances would account for the mirky pink to purple/grey colour of the materials.  

 

1 µm 1 µm 



 

 

141 

 

Figure 4.26: Kubelka Munk transformed UV/Vis reflection spectra of gold nanoparticle-merino wool 

composites incorporating nanoparticles prepared with TA. 

 

The colour of the gold nanoparticle-merino wool composites incorporating TSC or TA 

reduced and stabilised gold nanoparticles varied from the gold colloids employed in their 

production (Figure 4.27).  The composite materials were generally greyer and darker in 

colour relative to the colloids.  This colour variation is likely due to a number of factors, with 

the primary reason being the agglomeration of the nanoparticles on the wool fibre surface.  

Additionally, the volume density of nanoparticles in solution and on the wool fibres (in the 

colloid and composite respectively) differs, as the nanoparticles are spread over a much 

larger area in the composites compared to the colloids, and hence have a lower density.  The 

dielectric constant of merino wool and water is also different, and as surface plasmon 

reasonances and hence colours are influenced by the dielectric function of the nanoparticles 

surrounding medium, this change in dielectric function may also contribute to the difference 

in colour between the colloids and composites. 
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Figure 4.27: Comparison of the TSC and TA reduced and stabilised gold colloids and the gold 

nanoparticle-merino wool composites made from such materials. 

 

4.1.2.3 Confirmation of Gold 

 

The presence of gold in the gold nanoparticle-merino wool composites was confirmed by 

both energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS).  

EDS confirmed the bright white particles evident on the surface of the gold nanoparticle-

merino wool composites incorporating nanoparticles prepared with various amounts of TSC 

or TA to be gold.  The images on the right in Figure 4.28, Figure 4.30, Figure 4.32 and 

Figure 4.34 show SEM micrographs and corresponding gold EDS maps of the various 

composites, where high concentrations of gold are depicted as bright white or red areas.  

Additionally, Figure 4.29, Figure 4.31, Figure 4.33 and Figure 4.35 offer spectral snap shots 

of the areas under analysis, and substantiate the presence of gold due to the presence of the 

gold peaks. 
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Figure 4.28: Left: an SEM micrograph of a gold nanoparticle-merino wool composite (incorporating 

nanoparticles prepared with 10 μL of 1 wt % TSC), and right: the corresponding gold EDS map. 

 

Figure 4.29: EDS spectrum of the gold nanoparticle-merino wool composite shown in Figure 4.28. 
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Figure 4.30: Left: an SEM micrograph of a gold nanoparticle-merino wool composite (incorporating 

nanoparticles prepared with 50 μL of 10 wt % TSC), and right: the corresponding gold EDS map. 

 

Figure 4.31: EDS spectrum of the gold nanoparticle-merino wool composite shown in Figure 4.30. 
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Figure 4.32: Left: an SEM micrograph of a gold nanoparticle-merino wool composite (incorporating 

nanoparticles prepared with 10 μL of 1 wt % TA), and right: the corresponding gold EDS map. 

 

Figure 4.33: EDS spectrum of the gold nanoparticle-merino wool composite shown in Figure 4.32. 
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Figure 4.34: Left: an SEM micrograph of a gold nanoparticle-merino wool composite (incorporating 

nanoparticles prepared with 50 μL of 10 wt % TA), and right: the corresponding gold EDS map. 

 

Figure 4.35: EDS spectrum of the gold nanoparticle-merino wool composite shown in Figure 4.34. 

 

XPS, which combines elemental peak areas with relative sensitivity factors (Au 17.12, 

section 2.3.6) provided quantitative analysis of the elemental composition of the top 10 nm of 

the gold nanoparticle-merino wool composites.  All composites contained similar amounts of 
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gold.  Those incorporating nanoparticles prepared with 10 µL of 1 wt % or 50 µL of 10 wt % 

TSC contained 0.29 or 0.27 % gold respectively, whilst the corresponding materials 

incorporating TA reduced and stabilised nanoparticles contained 0.29 and 0.36 % gold 

(Figure 4.36). 

 

  

  

Figure 4.36: Wide XPS scans of gold nanoparticle-merino wool composites incorporating gold 

nanoparticles prepared with a) 10 µL of 1 wt % TSC, b) 50 µL of 10 wt % TSC, c) 10 µL of 1 wt % TA 

and d) 50 µL of 10 wt % TA. 

 

Examination of the deconvoluted, high resolution Au 4f spectra of the composites showed 

the materials incorporating nanoparticles prepared with a higher concentration of reductant to 

possess a higher percentage of Au
0
.  For example, 13.3 % of the gold in composites 

incorporating colloids prepared with 10 µL of 1 wt % TSC was Au
0
, with the unreduced Au

3+
 

accounting for 29.3 %.  Increasing the amount of TSC to 50 µL of 10 wt % saw an increase 

in the amount of Au
0
, to 27.9 %.  Similar trends were observed in composites incorporating 

TA prepared nanoparticles (Table 4.2), however there was a greater amount of Au
0
 in these 

materials relative to the analogous TSC composites.  This is likely due to the increased 

reduction strength of TA.[213]  The form of the gold in these materials is discussed in greater 

detail in section 4.1.2.4 below. 
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Table 4.2: Au 4f XPS assignments for gold nanoparticle-merino wool composites prepared with 10 or 50 

µL of 1 or 10 wt % TSC or TA. 

Sample % Au
0
 

± 10 % 
% Au

3+
 ± 

10 % 

10 µL 1 wt % TSC 13.3 29.3 

50 µL 10 wt % TSC 27.9 16.2 

10 µL 1 wt % TA 19.9 17.7 

50 µL 10 wt % TA 21.1 8.2 

 

4.1.2.4 Bonding of Nanoparticles to Merino Wool Fibres 

 

As described in section 1.2.2.1.2, keratin is the main constituent of merino wool fibres.  As 

such merino wool possess a multitude of functional groups to which the TSC and TA 

reduced and stabilised gold nanoparticles could potentially bind, the most likely being sulfur 

(thiol, disulfide), nitrogen (amine) or carboxylate containing groups.  To investigate the 

bonding between the gold nanoparticles and merino wool fibres, x-ray photoelectron 

spectroscopy (XPS) studies were undertaken. 

 

Comparing the high resolution XPS spectra of merino wool and gold nanoparticle-merino 

wool composites incorporating colloids prepared with various amount of TSC suggested the 

sulfur and nitrogen containing groups in wool displaced a large proportion of TSC 

encapsulating the gold nanoparticles, with bonding of the nanoparticles to the fibres 

occurring largely between the nitrogen and sulfur atoms of wool, and gold, and to a lesser 

extent through the TSC bi-layer surrounding the nanoparticles.  There have been several 

reports in the scientific literature of numerous groups, including sulfur containing groups 

displacing citrate surrounding gold nanoparticles.[104, 214-216]  Indeed, TSC is often used 

as a dual reductant/stabiliser when a loose shell of ligands is required around a gold core in 

order to prepare valuable gold nanoparticle based materials.[104] 

 

The direct C-N-Au bond was evident in the high resolution C 1s spectrum of a composite 

incorporating nanoparticles prepared with 10 µL of 1 wt % TSC.  This spectrum showed a 
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new peak centred at 283.29 eV, which was absent in merino alone (Figure 4.37 a and b 

respectively).  This peak has been reported to be representative of a C-N-Au bond.[201]  

SEM showed the gold in composites incorporating nanoparticles prepared with an increased 

amount of TSC to be a lot smaller.  As a result, these particles would have much larger 

surface areas, and as such they would be expected to form more Au-N bonds with the wool.  

However examination of the C 1s spectra of such a composite saw a slight decrease in the C-

N-Au peak area, from 22.3 % to 17.2 % (Figure 4.37 c, d).  This decrease is likely 

attributable to the increased amount of TSC surrounding the nanoparticles in these materials, 

resulting in the incomplete displacement of TSC, suggesting that the wool may bond to the 

gold directly and also through the TSC bi-layer surrounding the particles. 

 

  

   

Figure 4.37: High resolution C 1s XPS spectra of gold nanoparticle-merino wool composites 

incorporating colloids prepared with a) 10 µL of 1 wt % TSC and c) 50 µL of 10 wt % TSC. b) and d) 

show the overlay of the C 1s spectra of merino (in red). 

 

The direct N-Au bond was also illustrated in the N 1s spectra of the composite materials, 

with the appearance of a peak centred at approximately 398.5 eV (Figure 4.38).  As in the C 

1s spectra, the N-Au peak area was larger in composites incorporating colloids prepared with 
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lower amounts of TSC (12.1 and 10.4 % in composites incorporating nanoparticles prepared 

with 10 µL of 1 wt % or 50 µL of 10 wt % TSC respectively).  Additionally, analysis of the 

high resolution S 2p sprectrum of the composites incorporating nanoparticles prepared with 

TSC showed that incorporation of the nanoparticles saw a decrease in area of the 3/2 and 1/2 

peaks representing the main sulphur containing groups of wool (cystine and cysteine) and a 

corresponding increase in peak area of cysteic acid (-SO3
-
) (the oxidised form of cystine).  

This suggests that once displaced from the gold nanoparticles, any oxidised TSC may oxidise 

the merino fibres.  The S 2p spectra of the composites also revealed the bonding between the 

gold nanoparticles and merino wool fibres not to be solely via a Au-N bond, as these spectra 

exhibited clear Au-S interactions, evidenced by the S3/2 peak centred at 162.00 eV (Figure 

4.39).[217] 

 

  

  

Figure 4.38: High resolution N 1s XPS spectra of gold nanoparticle-merino wool composites 

incorporating colloids prepared with 10 µL of 1 wt % TSC (a-b) or 50 µL of 10 wt % TSC (c-d). Figures 

(b) and (c) show an overlay of the corresponding N 1s spectra of merino wool (in red). 
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Figure 4.39: High resolution S 2p XPS spectra of gold nanoparticle-merino wool composites 

incorporating colloids prepared with 10 µL of 1 wt % TSC (a) or 50 µL of 10 wt % TSC (c). Figures (b) 

and (c) show an overlay of the corresponding S 2p spectra of merino wool (in red). 

 

The high resolution O 1s spectrum of the composites also shows a new peak that was absent 

in merino and merino-TSC.  This peak is centred at approximately 530 eV, with literature 

attributing it to various gold oxide, gold hydroxide or carboxylic species (Figure 4.40 c and 

d).[218, 219]  In this case however, it is likely to be representative of a Au-O bond resulting 

from TSC interacting with unreduced Au
3+

 ions present on the surface of the gold 

nanoparticles.  To verify this proposed assignment, it would be interesting to study the XPS 

spectra of gold nanoparticles prepared and stabilised by TSC, which is work that will be 

undertaken in the future. 
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Figure 4.40: High resolution O 1s (c, d) XPS spectra of gold nanoparticle-merino wool composites 

incorporating colloids prepared with (a, c) 10 µL of 1 wt % TSC and (b d) 50 µL of 10 wt % TSC. 

 

Examination of the deconvoluted, high resolution Au 4f spectra of a gold nanoparticle-

merino wool composite incorporating nanoparticles prepared with TSC confirms the bonding 

between the gold nanoparticles and merino wool to be through the nitrogen and sulfur atoms 

of wool.  The Au 4f spectra of a composite incorporating a colloid prepared with 10 µL of 1 

wt % TSC showed the asymmetric 7/2 and 5/2 peaks of zero valent gold at 82.80 and 86.40 

eV respectively (Figure 4.41 a).  These peaks are shifted to lower binding energies by 

approximately 0.6 eV relative to bulk gold.[220]  This downfield shift is believed to be due 

to nitrogen of the amino groups in wool binding to the gold, imparting a larger negative 

charge at the gold surface, in turn leading to a greater screening of the gold and hence a 

lower binding energy.  Similar effects have been reported in the bonding of polyethylene 

imine capped gold nanoparticles to wool [201] and in calcium screening of silicon in calcium 

silicates.[221]  In addition to the Au-N peaks, peaks indicative of a Au-S bond were apparent 

at 84.21 and 87.81 eV.  A final set of peaks were observed at 85.80 and 89.40 eV.  These 

have been reported to be representative of the 7/2 and 5/2 peaks of Au
3+

.[201, 218]  

Incorporating colloids prepared with a greater amount of TSC (50 µL of 10 wt %) saw a 

decrease in the relative area of the Au
3+

 peaks (Figure 4.41 b).  Relative to bulk gold, whose 

peaks have full widths at half maximum of approximately 0.8 eV, the full width at half 

maximum of these peaks is quite large, approximately 1.6 eV.  This is reflective of the 

variability in the bonding environment of the gold atoms in the nanoparticles. 
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Figure 4.41: High resolution Au 4f XPS spectra of gold nanoparticle-merino wool composites 

incorporating colloids prepared with a) 10 µL of 1 wt % TSC and b) 50 µL of 10 wt % TSC. 

 

It is likely that the nanoparticles prepared with various amount of TSC bind to the wool via 

both sulfur and nitrogen atoms, rather than simply through sulfur atoms, which is the case in 

the gold nanoparticle-merino wool composites prepared through utilisation of the redox 

active nature of merino (section 5.5), as a result of the surface charge of the gold 

nanoparticles.  The pKa values of the carboxylate groups of TSC are 2.90, 4.35 and 

5.65,[164] therefore under the reaction conditions employed (pH of 3), the TSC capped 

nanoparticles would possess a net negative charge.  Due to the presence of both amine and 

carboxylic acid groups, wool behaves in an amphoteric manner, with an isoelectric point of 

approximately 5 (scheme (4.3)).[222]  Thus at pH 3 it would have a net positive charge, due 

to protonated amine and carboxylic groups. 

(pH < 5) H3N
+
—COOH  ↔  (pH ≈ 5) H2N—COOH  ↔  H2N—COO

-
 (pH > 5)   (4.3) 

Therefore it is likely that the negatively charged gold nanoparticles would initially be 

attracted to the positively charged amine groups, with bonding occurring either through this 

electrostatic interaction between the wool and surrounding TSC, or directly via N-Au and S-

Au bonds, following displacement of TSC by N and nearby S atoms. 
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Table 4.3: XPS assignments for merino wool and gold nanoparticle-merino wool composites 

incorporating nanoparticles prepared with TSC. 

   Composite Materials 

  Merino Wool 10 µL 1 w % 50 µL 10 w % 

  Binding Energy (eV ± 0.2 eV) 

C 1s C-C, C-H 285.00 (63 %) 285.00 (48 %) 285.00 (52 %) 

 C-O, C-N, C-S 286.20 (27 %) 286.20 (21 %) 286.20 (21 %) 

 C=O 288.30 (10 %) 288.30 (9 %) 288.30 (11%) 

 C-N-Au — 283.29 (22 %) 283.74 (16 %) 

N 1s N-H, =N- 400.43 (88 %) 400.20 (51 %) 400.27 (63 %) 

 -N-O- 401.90 (12 %) 401.70 (12 %) 402.90 (14 %) 

 N-Au — 398.40 (37 %) 398.55 (23 %) 

O 1s Average O 
environment 

532.14 (86 %) 531.72 (56 %) 532.02 (68 %) 

 -OH 533.5 (14 %) 533.18 (16 %) 534.06 (14 %) 

 O-Au — 530.14 (28 %) 530.42 (18 %) 

S 2p Average S 
environment S3/2 

164.02 (62 %) 164.00 (36 %) 163.81 (45 %) 

 Average S 
environment S1/2 

165.20 (31 %) 165.20 (18 %) 165.00 (22 %) 

 SO3
-
3/2 168.44 (5 %) 168.00 (11 %) 168.00 (11 %) 

 SO3
-
1/2 169.62 (2 %) 169.18 (9 %) 169.18 (8 %) 

 S-Au3/2 — 162.00 (14 %) 162.20 (8 %) 

 S-Au3/2 — 163.18 (12 %) 163.38 (6 %) 

Au 4f Au
0
7/2 — 82.8 (11 %) 82.80 (14 %) 

 Au-S7/2 — 84.2 (17 %) 84.32 (30 %) 

 Au
3+

7/2 — 85.80 (31 %) 85.70 (10 %) 

 Au
0
5/2 — 86.4 (3 %) 86.40 (14 %) 

 Au-S5/2 — 87.81 (12 %) 87.93 (26 %) 

 Au
3+

5/2 — 89.40 (26 %) 89.30 (6 %) 

 

The bonding between nanoparticles prepared with TA and merino wool fibres was similar to 

that of the TSC colloids.  The XPS spectra showing these bonding interactions are provided 

in Figure 4.42, Figure 4.43, Figure 4.44 and Table 4.5 below.  The sulfur and nitrogen atoms 

of wool appeared to displace the bi-layer of TA encapsulating the nanoparticles, bonding 
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directly to the gold itself via N-Au and S-Au bonds.  Comparing the area of the peaks 

representing direct N-Au and S-Au bonds (seen in the C 1s, N 1s and S 2p spectra) saw a 

slight increase in area of all of these peaks upon incorporation of nanoparticles prepared with 

greater amounts of TA (Figure 4.42, Figure 4.43, Figure 4.44, Table 4.4).  The opposite was 

seen in the TSC systems.  In both systems increasing the amount of reductant (TSC or TA) 

used in the production of the nanoparticles resulted in an increased amount of gold 

nanoparticles present on the wool, which theoretically should result in an increased number 

of bonds between the wool and gold nanoparticles.  However as discussed above, with the 

TSC systems this was not the case, this was attributed to an electrostatic affinity of the wool 

for the TSC surrounding the gold nanoparticles.  The pKa of TA is approximately 10,[223] 

therefore under the reaction conditions employed (pH 3) the TA would be neutral and as such 

an electrostatic interaction between the wool and TA surrounding the gold nanoparticles 

would not exist.   

 

  

  

Figure 4.42: High resolution C 1s XPS spectra of gold nanoparticle-merino wool composites 

incorporating colloids prepared with (a)10 µL of 1 wt % TA and (c) 50 µL of 10 wt % TA. Figures (b) 

and (d) show an overlay of the corresponding C 1s spectra of merino wool (in red). 
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Figure 4.43: High resolution N 1s (a-d) and S 2p (e-h) XPS spectra of gold nanoparticle-merino wool 

composites incorporating colloids prepared with (a) and (e) 10 µL of 1 wt % TA and (c) and (g) 50 µL of 

10 wt % TA. Figures (b, d) and (f, g) show an overlay of the corresponding N 1s and S 2p spectra of 

merino wool (in red). 

a) b) 

c) 
d) 
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Figure 4.44: High resolution Au 4f XPS spectra of gold nanoparticle-merino wool composites 

incorporating colloids prepared with (a) 10 µL of 1 wt % TA and (b) 50 µL of 10 wt % TA 

 

Table 4.4: XPS assignments for gold nanoparticle-merino wool composites prepared with 1 µL of 1 wt % 

TA or 50 µL of 10 wt % TA. Showing peak N-Au and S-Au peak areas. 

  Peak Area (± 10 %) 

  1 µL 1 wt % 50 µL 10 wt % 

C 1s N-C-Au (~ 283.2 eV) 24 31 

N 1s N-Au (~ 389.5 eV) 30 37 

S 2p S-Au3/2 (~162.0 eV) 34 40 

 

Table 4.5: XPS assignments for merino wool and gold nanoparticle-merino wool composites 

incorporating nanoparticles prepared with TA. 

   Composite Materials 

  Merino Wool 10 µL 1 wt % 50 µL 10 wt % 

  Binding Energy (eV ± 0.2 eV) 

C 1s C-C, C-H 285.00 (63 %) 285.00 (57 %) 285.00 (48 %) 

 C-O, C-N, C-S 286.20 (27 %) 286.42 (10 %) 286.30 (10 %) 

 C=O 288.30 (10 %) 288.15 (9 %) 287.93 (11 %) 

 C-N-Au — 283.18 (24 %) 283.58 (31 %) 

N 1s N-H, =N- 400.43 (88 %) 400.15 (63 %) 399.80 (54 %) 

 -N-O- 401.90 (12 %) 401.84 (7 %) 401.33 (9 %) 

 N-Au — 398.40 (30 %) 398.45 (37 %) 

     

a) b) 
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   Composite 
Materials 

 

  Merino Wool 10 µL 1 wt % 50 µL 10 wt % 

  Binding Energy (eV ± 0.2 eV) 

O 1s Average O 
environment 

532.14 (86 %) 531.62 (60 %) 531.13 (53 %) 

 -OH 533.5 (14 %) 532.93 (18 %) 532.66 (15 %) 

 Au-O — 530.13 (22 %) 529.79 (32 %) 

S 2p Average S 
environment S3/2 

164.02 (62 %) 163.86 (34 %) 163.80 (30 %) 

 Average S 
environment S3/2 

165.20 (31 %) 165.04 (17 %) 164.98 (15 %) 

 SO3
-
3/2 168.44 (5 %) 167.90 (9 %) 167.90 (8 %) 

 SO3
-
1/2 169.62 (2 %) 169.08 (7 %) 169.08 (6 %) 

 S-Au3/2 — 162.00 (18 %) 162.37 (22 %) 

 S-Au1/2 — 163.18 (15 %) 163.55 (19 %) 

Au 4f Au
0
7/2 — 83.59 (12 %) 84.00 (10 %) 

 Au-S7/2 — 84.90 (36 %) 85.18 (39 %) 

 Au
3+

7/2 — 85.64 (10 %) 86.67 (5 %) 

 Au
0
5/2 — 87.19 (8 %) 87.60 (9 %) 

 Au-S5/2 — 88.50 (27 %) 88.78 (34 %) 

 Au
3+

5/2 — 89.24 (7 %) 90.27 (3 %) 

 

To summarise, the TSC and TA reduced and stabilised gold nanoparticles appear to bond to 

the merino wool fibres directly and also through the TSC or TA bi-layer encapsulating the 

nanoparticles, with bonding through the surrounding bi-layer more prevalent with the former 

nanoparticles.  The bonding to the wool fibres occurred through both nitrogen and sulfur 

atoms.   

 

4.1.2.5 Colourfastness to Washing 

 

The colour stability of the gold nanoparticle-merino composites is dependent upon the 

stability of the nanoparticle size.  In a solution environment metal nanoparticles are 
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extremely reactive, and without surface passivation most systems undergo aggregation due to 

Ostwald Ripening.  Immobilising the nanoparticles onto wool fibers removes them from a 

solution environment, decreasing their tendency to agglomerate.  In theory this should 

stabilise the nanoparticles and hence the colour of the resultant gold nanoparticle-merino 

wool composites. 

 

The stability of the bond between the gold nanoparticles and wool fibers, and hence the 

colour stability of the composites was investigated via a stimulated washability test (as 

outlined in section 2.3.15).  This involved agitating the samples in a 0.1 wt % detergent 

solution for 0.5-24 hours at room temperature or 50 ºC.  Composites incorporating gold 

nanoparticles prepared with 50 µL of 10 wt % TSC or TA were chosen as representatives of 

the two systems.  Figure 4.45 and Figure 4.46 offer photographs of samples that have been in 

the washing solutions from 0.5-24 hours.  It is apparent from these images that after only 0.5 

h washing both at room temperature or 50 ºC, there was a marked decrease in the colour 

intensity of the composites incorporating nanoparticles prepared with TA.  There was a slight 

colour change in those incorporating TSC prepared nanoparticles. 

 

 

Figure 4.45: Gold nanoparticle-merino wool composites (incorporating colloids prepared with 50 µL of 

10 wt % TSC) following simulated washability tests. 
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Figure 4.46: Gold nanoparticle-merino wool composites (incorporating colloids prepared with 50 µL of 

10 wt % TA) following simulated washability tests. 

 

The CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of the composites 

following washing are provided in Appendix I.  These values confirm the visual lightening or 

colour fading of the composites incorporating TA prepared nanoparticles following washing, 

with both a general increase in the L* and brightness values observed (Figure 4.47).  These 

increases occurred after only 30 minutes of washing at room temperature, with prolonged 

washing or increased washing temperatures not accentuating these changes.  The L* and 

brightness values of those incorporating TSC prepared nanoparticles do not change to such a 

great extent, reflective of their decreased colour change following washing (Figure 4.48).  

The mild conditions under which colour changes in the composites incorporating TA 

prepared nanoparticles were induced, suggested that the nanoparticles were easily dislodged 

from the merino wool fibres, which is likely due to the fact that they are present solely on the 

surface of the fibres, rather than dispersed throughout the centres.  Additionally, compared to 

their TSC analogoues, they may be less colourfast with respect to washing as TA is much 

larger than TSC, which may sterically hinder its displacement by the wool fibres during 

bonding of the nanoparticles to the fibres, thus resulting in a weaker bond between the TA 

stabilised nanoparticles and wool.  This ease in which gold appears to be dislodged from 

these composite materials presents significant potential hazards, as described in section 

4.1.2.6.  Future work is required to indentify the from of this leached gold.   
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Figure 4.47: Changes in L*, a*, b*, 457 nm brightness and 580 nm brightness values for a gold 

nanoparticle-merino composite (incorporating TA prepared nanoparticles) following simulated 

washability tests show the colour change due to washing. Washing at RT (black lines) or 50 ºC (red lines). 

 

Figure 4.48: Changes in L*, a*, b*, 457 nm brightness and 580 nm brightness values for a gold 

nanoparticle-merino composite (incorporating TSC prepared nanoparticles) following simulated 

washability tests show the colour change due to washing. Washing at RT (black lines) or 50 ºC (red lines). 
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The colour change of the composites following washing was also illustrated in their UV/Vis 

spectra with a decrease in the intensity of the plasmon resonance band at approximately 540 

nm (TA prepared) and 560 nm (TSC prepared).  Again this decrease was more pronounced in 

the composites incorporating TA prepared nanoparticles (Figure 4.49 and Figure 4.50) 

compared to those prepared with TSC (Figure 4.51 and Figure 4.52).  As such, these 

composites may not be viable materials for consumer applications, those incorporating TA 

prepared and stabilised nanoparticles more so. 

 

 

Figure 4.49: Kubelka Munk transformed UV/Vis reflection spectra of gold nanoparticle-merino wool 

composites (incorporating nanoparticles prepared with 50 µL of 10 wt % TA) following washing at RT. 
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Figure 4.50: Kubelka Munk transformed UV/Vis reflection spectra of gold nanoparticle-merino wool 

composites (incorporating nanoparticles prepared with 50 µL of 10 wt % TA) following washing at 50 

°C. 

 

Figure 4.51: Kubelka Munk transformed UV/Vis reflection spectra of gold nanoparticle-merino wool 

composites (incorporating nanoparticles prepared with 50 µL of 10 wt % TSC) following washing at RT. 
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Figure 4.52: Kubelka Munk transformed UV/Vis reflection spectra of gold nanoparticle-merino wool 

composites (incorporating nanoparticles prepared with 50 µL of 10 wt % TSC) following washing at 50 

°C. 

 

4.1.2.6 Leaching 

 

Currently there is increasing public interest in the long-term health and environmental 

impacts resulting from the inclusion of nanoparticles in consumer products.[224]  Due to the 

increased surface area to volume ratio exhibited by nanoparticles‘, the majority display 

increased chemical reactivity compared to materials with the same chemical composition 

synthesised at the macroscale.  As little is known of the long-term health and environmental 

effects of these nanoparticles, it is important to limit their leaching from consumer products. 

 

Quantitative analysis of the washing solutions (see sections 2.2.2.5, 2.3.4 and 4.1.2.5) was 

undertaken to determine the leaching of gold from the gold nanoparticle-merino wool 

composites during washing, and revealed the leaching of on average 0.9 ppm ± 0.5 ppm or 

1.5 wt % of the total gold loading (Table 4.6).  These amounts are very low, and do not 

reflect the observed colour change following washing.  Initially it was proposed that during 

washing, the nanoparticles may have undergone agglomeration, as a result behaving more 

like bulk gold and not exhibiting surface plasmons, therefore accounting for the diminished 
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colour of the washed composites.  However SEM analysis of a material that had been washed 

for 24 hours at 50 °C revealed this to be not the case (Figure 4.53).  There was no evidence 

of agglomerated particles following washing, and the washed material appeared to have a 

lower amount of gold deposited on the surface.  This suggests that the low colourfastness to 

washing of these materials was simply due to the dislodgement of weakly bound surface 

particles.  The form of this leached gold is unknown and will be clarified by future work.  

This gold may not have been detected by AA as the concentrations leached may have been at 

the limit of detection (approximately 0.2 ppm). 

 
Table 4.6: Gold leached from gold nanoparticle-merino wool composites (incorporating colloids prepared 

with TSC or TA) following simulated washability testing. 

Sample Washing 
Temperature 

Washing 
Time (hours) 

Gold Leached 
(ppm) ± 0.5 

ppm 

Gold Leached 
(% total gold 

loading) 

TSC 
prepared 

RT 0.5 0.4 0.2 

 1 0.7 0.4 

  2 0.4 0.3 

  5 0.5 0.3 

  24 0.7 0.5 

 50 ºC 0.5 0.7 0.4 

  1 0.8 0.5 

  2 0.7 0.5 

  5 1.0 0.6 

  24 1.4 0.9 

TA 
prepared 

RT 0.5 1.2 0.7 

 1 1.8 1 

  2 1.2 0.8 

  5 0.8 0.5 

  24 1.6 1 

 50 ºC 0.5 2.8 2 

  1 2.9 2 

  2 2.5 2 

  5 3.5 2 

  24 3.5 2 
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Figure 4.53: SEM micrographs of a gold nanoparticle-merino wool composite incorporating 

nanoparticles prepared with 50 µL of 10 wt % TSC both before (a, b) and after (c, d) washing at 50 °C 

for 24 h. 

 

4.1.2.7 Chlorine Hercosett Shrink Resistance Treatment 

 

To further ascertain the applicability of the gold nanoparticle-merino wool composites 

incorporating TSC or TA prepared nanoparticles in consumer applications, chlorine 

Hercosett (Cl/H) treatments were applied to the materials.  As mentioned in section 1.2.2.1.5 

the chlorine Hercosett treatment is one of the most common surface treatments applied to 

wool textiles.  It involves oxidation of the fibre surface followed by the application of the 

Hercosett 125 polymer, resulting in the reduction of felting between fibres during washing, 

rendering the materials shrink resistant. 

 

10 µm 

10 µm 1 µm 

1 µm 
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Figure 4.54 shows a gold nanoparticle-merino wool composite (incorporating nanoparticles 

prepared with 50 µL 10 wt % TSC) both before and after chlorine Hercosett treatment.  The 

treatment clearly had a detrimental effect on the colour of the composite, causing areas to 

turn a yellowy/gold colour.  As mentioned in section 1.2.2.1.5 during this process oxidation 

of the fibres occurs through exposure to chlorine gas.  As such, the observed discolouration is 

likely to be due to oxidation of the Au
0
 nanoparticles to Au

3+
 (scheme (4.4)), which 

subsequently combine with the generated Cl
-
 ions to form yellow AuCl4

-
 (scheme (4.5)).  To 

confirm whether this was the case, XPS studies of the resultant chlorine Hercosett treated 

composite materials will be carried out in the future. 

 

 

Figure 4.54: Left: a gold nanoparticle-merino wool composite (incorporating nanoparticles prepared 

with 50 µL of 10 wt % TSC). Right: the same composite material following chlorine Hercosett treatment. 

 

Cl2(aq) + 2e
-
  →  2Cl

-
(aq) (4.4) 

Au(s)  →  Au
3+

(aq) + 3e
-
  

3Cl2(g) + 2Au(s)  →  6Cl
-
(aq) + 2Au

3+
(aq)  

Au
+
 + 4Cl

-
  →  AuCl4

- 
(4.5) 

 

SEM showed the gold nanoparticles in these composites to reside solely on the surface of the 

fibres, rather than throughout the centres.  It is likely that the proximity of the nanoparticles 

to the fibre surface resulted in such an extensive discolouration of the composites, as this 

process is surface specific due to the short duration of exposure to chlorine gas.  

Additionally, following chlorine Hercosett treatment, composites in which the gold is spread 
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more uniformly through the fibres, rather than being present solely on the surface did not 

exhibit as great a colour change (section 5.10). 

 

4.2 ex-situ Preparation of Gold Nanorods 

 

In an attempt to extend the colour range of the gold nanoparticle-merino wool composites, 

the synthesis of gold nanorods was undertaken (section 2.2.2.1), which would then be 

attached to the wool fibres directly, or via a linker molecule.  The synthesis of gold nanorods 

involved the initial production of Au
0
 seed particles followed by the subsequent reduction of 

additional Au
3+ 

by the weak reductant ascorbic acid, in the presence of the pre-formed seed 

particles and the structural directing agent cetyl trimethylammonium bromide.[125, 168, 169]  

The colour of the resultant colloids produced via both of these methods varied widely (the 

majority being wine red, pink or yellow in colour), and reactions were not reproducible, even 

when great care was taken to replicate the procedures exactly with fresh reagents and 

glassware cleaned with aqua regia.  Similar irreproducibility was observed by Lofton and co-

workers,[128] who undertook a review of the syntheses of gold nanorods.  As such these 

approaches were not pursued. 

 

 

4.3 Conclusions 

 

The ex-situ preparation of gold nanoparticles by an external reductant, and the subsequent 

attachment of such nanoparticles to merino wool fibres was most successful when TSC or 

TA were employed as the reductants.  When using TSC, the resultant composites ranged in 

colour from pale yellow to grey, whilst TA produced murky light pink to purple coloured 

materials.  The preparation and subsequent attachment of gold nanorods to merino wool fibre 

was unsuccessful. 
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When colouring merino wool with gold nanoparticles prepared with increasing amounts of 

TSC, the resultant composites changed colour from pale yellow to grey.  This colour change 

arose due to a decrease in size and a change in shape of the nanoparticles bound to the 

surface of the wool fibres, from gold platelets, approximately 100-500 nm in diameter in the 

yellow coloured composites to spheres, approximately 30 nm in diameter in the grey 

materials.  Similarly, colouring merino with gold nanoparticles prepared with increasing 

amounts of TA changed the colour of the resultant composite materials from a light pink to a 

purple/grey.  However unlike the composites coloured with TSC, this colour change was due 

to a concentration effect, with the purple/grey coloured composite materials possessing a 

much greater surface coverage of gold nanoparticles of similar size and shape to the light 

pink coloured materials, notably small spherical nanoparticles (approximately 10-20 nm in 

diameter) larger trianglular (approximately 50-100 nm) and five-fold twinned nanoparticles 

(approximately 20 – 25 nm in diameter). 

 

In all gold nanoparticle-merino wool composites incorporating TSC or TA reduced and 

stabilised gold nanoparticles, the nanoparticles appeared to reside preferentially on the 

surface of the wool fibres (particularly along cuticle edges) rather than throughout the fibre 

centres.  XPS suggested bonding between these nanoparticles and the wool fibres occurred 

either through electrostatic interaction between the wool and surrounding TSC or TA bi-

layer, or directly via N-Au and S-Au bonds following displacement of the capping agent by 

N and S atoms.  Bonding through the bi-layer surrounding the gold nanoparticles appeared to 

be more prevalent in the TSC capped nanoparticles, as under the reaction conditions 

employed, TSC would possess a net negative charge whilst TA would be neutral, and hence 

exhibit decreased electrostatic interactions with the wool fibre. 

 

The composite materials incorporating TSC reduced and stabilised gold nanoparticles 

appeared to be relatively colourfast to washing, exhibiting only a slight colour change 

following washing.  However those incorporating TA reduced and stabilised gold 

nanoparticles experienced a severe change in colour, even after half an hour washing at RT.  

This suggests that the bond between the merino wool fibres and TA reduced and stabilised 

nanoparticles was much weaker than that to the TSC reduced and stabilised nanoparticles.  

XPS suggested there were a greater percentage of direct bonds between the wool fibres and 
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gold nanoparticles when employing TA rather than TSC as the dual reductant stabiliser in the 

production of the nanoparticles.  These bonds should be stronger than electrostatic 

interactions between the wool fibre and capping agent, making the composites incorporating 

TA reduced and stabilised gold nanoparticles more colourfast.  However as they are not, it is 

likely that even though less electrostatic interactions occur between the wool fibres and TA, 

more direct bonds do not occur, due to the much larger size of TA.   TA may sterically hinder 

is displacement by the wool fibres resulting in the formation of a smaller amount of direct 

bonds, and hence an easier displacement of the nanoparticles during washing. 

 

In addition to displaying average to poor colourfastness to washing properties, the gold 

nanoparticle-merino wool composites prepared through the incorporation of externally 

produced gold nanoparticles performed very badly with respect to chlorine Hercosett shrink 

resistant treatments.  The treatment clearly had a detrimental effect on the colour of the 

composites, causing areas to turn a yellow/gold colour, which was proposed to be due to re-

oxidation of Au
0
 nanoparticles to Au

3+
, and the subsequent formation of yellow AuCl4

-
.  In 

all, this method of producing gold nanoparticle-merino wool composite materials was not 

particularly successful. 
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5. GOLD NANOPARTICLE-MERINO WOOL COMPOSITES: IN-SITU 

PREPARATION OF GOLD NANOPARTICLES UTILISING THE REDOX 

PROPERTIES OF THE FIBRES 

 

Gold nanoparticle-merino wool composites were prepared without an external reducing agent 

according to the procedure outlined in section 2.2.2.3.  The proteins present in merino wool 

acted as a redox active biotemplate, facilitating the reduction of Au
3+

 to nanoparticulate Au
0
, 

with simultaneous binding of the produced nanoparticles both on the surface and within the 

centre of the fibres.  If not stated otherwise, the standard Au
3+

 solution was prepared through 

the addition of 40 μL of 4 wt % Au
3+

 to 10 ml distilled water, and a wool : Au
3+

 : solvent 

volume of 0.1 g : 160 ppm : 10 ml was maintained.   

 

5.1 Physical Characterisation and Morphology 

 

5.1.1 Woven Cloth 

 

In general, untreated merino wool in sliver (top) form, processed via the semi-worsted 

approach was employed as the merino wool substrate.  However initially, merino wool that 

had been spun into a yarn and subsequently woven into a fabric was used.  Utilising this form 

of merino wool proved to be unsuccessful as regardless of the reaction conditions employed, 

the resultant materials were very uneven in colour.  Figure 5.1 offers a picture of such 

samples.  These fabric samples (0.1 g) were soaked overnight at RT, in 80, 200 or 300 ppm 

(4.06 x 10
-4

, 1.01 x 10
-3

 and 1.52 x 10
-3

 M respectively, 10 ml) Au
3+

gold solutions, followed 

by heating/ageing at 50 °C for 3 or 6 hours.  The colour of these materials is very non-

uniform, suggesting an uneven diffusion of Au
3+

 through the merino wool cloth prior to its 

reduction to nanoparticulate Au
0
. 
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Figure 5.1: Gold nanoparticle-merino wool composites employing a woven cloth form of merino wool. 

Merino wool was soaked in the Au
3+

 solutions at RT, overnight, followed by ageing at 50 °C for 3 or 6 

hours. 

 

During the production of these composites difficulty in ‗wetting‘ the merino wool cloth was 

observed.  In an attempt to address the wetability of the cloth, with the aim of improving 

colour uniformity of the resultant composites, the merino wool cloth was soaked overnight in 

water at 50 °C, prior to being soaked overnight in the respective Au
3+

 solutions at RT, and 

heated at 50 °C for 3 hours.  Figure 5.2 offers a picture of such samples, and compared to 

those shown in Figure 5.1, (prepared without soaking in water prior to Au
3+

) the colour of the 

cloth is much more uniform.  However the loose fibres (formed from the fraying cloth) are 

much darker than the woven cloth itself, signifying a greater concentration of gold in these 

areas.  This suggests that the colour development is directly related to the diffusion of Au
3+

 

into and throughout the fibres.  Diffusion into the loose fibres would be increasingly facile 

compared to that into the woven fibres, resulting in a greater gold concentration, and hence a 

more intense colour development in such loose fibres.  Similar results were obtained when 

colouring the loose fibres themselves, with the ends of the fibres being much darker than the 

middle. 
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Figure 5.2: Gold nanoparticle-merino wool composites using a woven cloth form of merino wool. Merino 

wool was soaked in water at 50 °C overnight, followed by soaking in a gold solution overnight at RT and 

then ageing at 50 °C for 3 hours. 

 

To improve the colour uniformity of the gold nanoparticle-merino wool composites 

incorporating merino wool in cloth form, the frayed edges of the cloth could have simply 

been removed post colouring, leaving a relatively evenly coloured cloth.  However as one of 

the main requisites of this research was to use the lowest amount of Au
3+

 possible, discarding 

segments of the coloured cloth would be less than ideal.  As such, colouring merino wool in 

the cloth form was not pursued, and instead, as mentioned above, the majority of work into 

the production of gold nanoparticle-merino wool composites was carried out on merino wool 

in the top/sliver form, prepared via the semi-worsted processing route. 

 

5.1.2 Untreated Semi-Worsted Gilled Sliver 

 

In a typical reaction, the production of gold nanoparticle-merino wool composites, with 

merino wool in the top/sliver form involved dispersing fibres (0.1 g) in a Au
3+

 solution, (40 – 

1200 ppm (8.13 x 10
-4

-6.09 x 10
-3

 M, 10 ml)) at room temperature for 0-24 hours (termed 

soaking), followed by ageing at 50 °C for 24–168 hours.  As mentioned above, the colour, 

and colour intensity of the resultant composites can be changed by systematically altering the 

Au
3+

 concentration, soaking time, ageing time and ageing temperature.  Figure 5.3 offers a 

picture of a selection of gold nanoparticle-merino wool composites, illustrating the 

obtainable colour range. 
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Figure 5.3: An example of the obtainable colours of gold nanoparticle-merino wool composite materials 

prepared via the in-situ method. Various parameters were altered to achieve the different colours and 

these are discussed in detail in the chapter 5.    

 

5.1.2.1 Soaking Time 

 

In a typical production of gold nanoparticle-merino wool composites prepared through the 

redox active nature of merino, a soaking time of 24 hours was employed.  It is apparent from 

Figure 5.4 below that a soaking time of 24 hours, was required to produce clean, vibrant 

coloured composites.  Soaking times greater than 24 hours did not alter the colour of the 

materials (Figure 5.5).  However when soaking times of less than 24 hours were employed, 

the colour of the resultant materials was quite dirty and spectrally impure, suggesting 

agglomeration of nanoparticles on the fibre surface.  Additionally, whilst soaking, gentle 

agitation (not so much as to cause fibres to matt and felt together) was required to assure the 

uniform absorption and diffusion of Au
3+

 into and through the merino wool fibres, resulting 

in uniform colour development (Figure 5.5).  (See section 5.4 for the uptake of gold by the 

wool fibres). 
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Figure 5.4: Gold nanoparticle-merino wool composites prepared via the in-situ method. Merino wool 

soaked in a 160 ppm (8.13 x 10
-4

 M) gold solution for 0 or 24 hours at RT, followed by ageing at 50 °C for 

168 h. Shows the effect of soaking time on colour development. 

 

Figure 5.5: Gold nanoparticle-merino wool composites prepared via the in-situ method. Merino wool 

soaked in a 160 ppm (8.13 x 10
-4

 M) gold solution for 72-96 hours at RT, followed by ageing at 50 °C for 

48-168 h. Shows the effect of soaking time on colour development. 
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Figure 5.6: Gold nanoparticle-merino wool composite materials prepared by soaking untreated semi-

worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT without (left) and 

with (right) gentle agitation, followed by ageing at 50 °C for 168 hours. 

 

The presence of agglomerated nanoparticles on the fibre surface, forming when not soaking 

in Au
3+

 prior to ageing (denoted as a soaking time of 0 hours) was confirmed by SEM and 

TEM analysis.  Figure 5.7 offers a comparison of the SEM micrographs of composite 

materials prepared by soaking at RT, in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 0 and 24 

hours, followed by ageing at 50 °C for 168 hours.  In both materials the gold nanoparticles, 

(evident as bright white dots) are predominantly five-fold twinned particles, approximately 

20–30 nm in diameter (Figure 5.8), located primarily along cuticle edges where the 

propensity for bonding and surface tension is highest (Figure 5.7).  With 24 hours soaking 

time, these particles are largely isolated; however when the merino wool was not soaked in 

the Au
3+

 solution prior to ageing, the nanoparticles appeared to be agglomerated together 

(Figure 5.7 top (circled)).  This agglomeration would account for the less spectrally pure 

colour displayed by such materials. 

 

If the fibres are not soaked in Au
3+

 at RT prior to ageing, the diffusion of Au
3+

 into the fibres 

and the reduction of Au
3+

 to Au
0
 occur relatively simultaneously.  As such, when ageing and 

hence reduction begins, there is a much greater concentration of Au
3+

 both in solution, and at 

the fibre surface.  Therefore, more nanoparticles are formed at the surface of the fibres, rather 

than also in the centre, resulting in high concentrations of nanoparticles at the fibre surface.  

Due to the higher ratio of nanoparticles to wool, these nanoparticles may not be sufficiently 

stabilised by the proteins present in merino wool, resulting in their agglomeration as a 

consequence of Ostwald Ripening.  Cross sectional SEM and EDS analysis (where high 
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concentrations of gold are depicted by bright white or red areas) confirm that when merino 

wool was not soaked in Au
3+

 solutions prior to ageing, gold did not diffuse into the fibre 

   

   

Figure 5.7: Increasing magnification SEM micrographs of gold nanoparticle-merino wool composites 

prepared by soaking in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 0 (top) or 24 hours (bottom) at RT, 

followed by ageing at 50 °C for 168 hours. 

   

Figure 5.8: Increasing magnification TEM micrographs of a gold nanoparticle-merino wool composite 

prepared by soaking in a 160 (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C 

for 168 hours. Shows the nanoparticles on the surface of the fibre to be five fold twinned particles, 

approximately 20 – 30 nm in diameter. 

 

centres to a significant extent, rather high concentrations were evident at the surface (Figure 

5.9 top).  However the materials that had been soaked in Au
3+

 for 24 hours prior to ageing 

showed gold to have diffused through the fibres, and thus be present both on the surface and 

within the fibre centres (Figure 5.9 bottom). 

1 µm 

10 µm 1 µm 

1 µm 

1 µm 

100 nm 
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Figure 5.9: Cross sectional SEM micrographs (left), and corresponding Au EDS maps (right) of  

composite materials prepared from a 160 ppm (8.13 x 10
-4

 M) gold solution, with 0 h (top) or 24 h 

(bottom) soaking and 168 h ageing at 50 ° C. A line profile of each is offered. 
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Atomic absorption (AA) studies (section 5.4) showed that at RT, the absorption of gold by 

merino wool was largely complete after approximately 1 hour (depending upon the Au
3+

 

concentration, soaking solution composition and temperature).  However, as shown above if 

soaking times of less than 24 hours were employed, dirty, spectrally impure coloured 

composites were produced.  As such, not only is the absorption of Au
3+

 influential in colour 

development, but also the diffusion of the absorbed Au
3+

 through the fibres prior to 

nanoparticle formation. 

 

The formation of a large amount of nanoparticles at the fibre surface, and their subsequent 

agglomeration occurring when the merino wool was not soaked in Au
3+

 prior to ageing is not 

always undesirable, as it was possible to produce grey coloured gold nanoparticle-merino 

wool composites in this way.  Figure 5.10 offers a picture of such materials.  These were 

prepared by ageing untreated semi-worsted merino wool in high concentration Au
3+

 solutions 

(840–1200 ppm, or 4.26 x 10
-3

–5.89 x 10
-3

 M) at 50 °C for 24 hours. 

 

 

Figure 5.10: Gold nanoparticle-merino wool composites prepared by soaking untreated merino in an 840 

– 1200 ppm Au
3+

 (4.26 x 10
-3

 – 6.09 x 10
-3

 M) solution for 24 hours at 50 °C. 
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SEM analysis (Figure 5.11) showed the nanoparticles in the composites prepared with a 960 

ppm (4.87 x 10
-3

 M) Au
3+

 solution to be predominantly spherical or five-fold twinned in 

morphology, approximately 30–40 nm in diameter, existing both as isolated and 

agglomerated particles.  Triangular nanoplates and truncated triangular nanoplates, ranging in 

size from 50–100 nm in diameter were also apparent (circled).  These nanoparticles were 

spread across the fibre surface, however the greatest nanoparticle population occurred along 

the cuticle edges. 

 

   

  

Figure 5.11: Increasing magnification SEM micrographs of a gold nanoparticle-merino wool composite 

prepared by ageing in a 960 ppm Au
3+

 (4.87 x 10
-3

 M) solution for 24 hours at 50 ° C. 

 

Increasing the Au
3+

 concentration further to 1040 ppm (5.28 x 10
-3

 M) saw a darkening of the 

resultant composite materials and the formation of slightly larger spherical nanoparticles 

(approximately 50–60 nm in diameter) and a greater proportion of triangular nanoplates and 

truncated triangular nanoplates (approximately 100 nm in diameter) (Figure 5.12, circled).  

These nanoparticles were not as isolated as those in the composite prepared with a 960 ppm 

Au
3+ 

solution, instead existing predominantly as large agglomerates.  The range of particle 

sizes and shapes would give rise to broad absorptions in the visible region (see section 5.2), 

and hence the observed grey colour of these materials. 
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Figure 5.12: Increasing magnification SEM micrographs of a gold nanoparticle-merino wool composite 

prepared by ageing in a 1040 ppm Au
3+

 (5.28 x 10
-3

 M) solution for 24 hours at 50 ° C. 

 

It is likely that there were a higher percentage of anisotropic, triangular gold nanoparticles 

present in composites prepared with high Au
3+

 concentrations, as in these systems the ratio of 

reductant (wool) to Au
3+

 is high, and as such when the initial nucleation events take place, 

only a small percentage of the Au
3+

 would initially be reduced, leaving a relatively high 

concentration of Au
3+

 in solution.  It is probable that a percentage of these initially formed 

nanoparticles would contain twin plane defects, which as discussed in section 1.3.3 create 

favourable sites (grooves) for additional metal ions to adsorb and become reduced.  This 

results in specific sides of the particles growing faster than others, thus promoting the 

formation of anisotropic nanoparticles such as triangular nanoplates.  The unreduced Au
3+

 in 

solution may adsorb into these defects, thus forming triangular nanoplates or truncated 

triangular nanoplates, depending on the extent of growth.  Alternatively, the Au
3+

 in solution 

may form new nucleation sites, growing into spheres or five-fold twinned particles.  Such 

twinned particles could also be present in composite materials prepared with lower Au
3+

 

concentrations, however they may not grow into anisotropic particles as following the initial 

nucleation events the concentration of Au
3+

 in solution would be lower, and as such there 

would be less Au
3+

 available to adsorb onto such twinned particles forming triangular 

nanoparticles etc.  Due to the organic nature of the composite materials, it was difficult to 

obtain concise images of such twinned particles, however two TEM micrographs of a gold 

100 nm 100 nm 1 µm 

10 µm 1 µm 1 µm 
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nanoparticle-merino wool composite, prepared by soaking untreated semi-worsted merino 

wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 

50 °C for 24 hours, are offered in Figure 5.13 in which such defects are faintly apparent. 

 

  

Figure 5.13: TEM micrographs of gold nanoparticles in composite materials prepared by soaking in a 

160 ppm Au
3+

 (8.13 x 10
-4

 M) solution for 24 hours at RT, followed by ageing at 50 °C for 24 hours. 

Arrows indicate the position of the twin plane defects. 

 

5.1.2.2 Heating/Ageing Time 

 

In addition to the soaking time, the heating/ageing time also influenced the colour of the 

resultant gold nanoparticle-merino wool composites.  Increasing the heating/ageing time (at 

50 °C) from 24 to 72 hours saw a very gradual change in colour of the resultant gold 

nanoparticle-merino wool composites.  With a gold concentration of 160 ppm (8.13 x 10
-4

 

M), and a soaking time, at RT, or 24 hours, this colour change was from pale pink to pink 

(neither of which were very vibrant).  A major colour change was not observed until an 

ageing time of 168 hours was employed, with the development of a rich, regal purple 

coloured composite (Figure 5.14).  Increasing the ageing time further did not alter the colour 

of the resultant composite materials. 

 

 

Figure 5.14: Gold nanoparticle-merino wool composites prepared via the in-situ method. Merino wool 

soaked in a gold solution for 24 hours at RT, followed by ageing at 50 °C for 24 – 168 h. Shows the effect 

of ageing time on colour development. 

10 nm 5 nm 
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Figure 5.15 offers increasing magnification SEM micrographs of composites prepared with a 

Au
3+

 concentration of 160 ppm (8.13 x 10
-4

 M), soaking time of 24 hours and ageing times at 

50 °C varying from 24-168 hours.  At low magnifications it is difficult to discern any 

morphological differences between the materials prepared with different ageing times.  In all, 

the gold nanoparticles appear to reside preferentially at the cuticle edges where surface 

tension and free energy is highest.  However in the material that had been aged for 168 hours, 

the nanoparticles no longer appear to be confined to these regions, rather they spread slightly 

across the fibre surface. 

 

TEM, which offers increased spatial resolution was able to distinguish further morphological 

differences induced by increased ageing times.  Figure 5.16 offers increasing magnification 

TEM micrographs of a selection of samples prepared with increased ageing times (soaking in 

a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours followed by ageing at 50 °C for 24, 72 

or 168 hours (top to bottom)).  It is apparent from the low magnification micrographs that the 

nanoparticles located on the fibre surface reside preferentially along cuticle edges, 

confirming the SEM observations made above.  The size of the nanoparticles on the fibre 

surface remains relatively constant following prolonged ageing, with these nanoparticles 

being predominantly five-fold twinned particles, approximately 20-25 nm in diameter.  

However closer examination of the centre of the fibres shows the formation of small 

spherical nanoparticles, appearing solely with ageing times greater than 72 hours (Figure 

5.17).  These spheres are approximately 5-10 nm in diameter and are relatively 

monodisperse. 

 



 

 

184 

   

   

   

   

Figure 5.15: Increasing magnification SEM micrographs of gold nanoparticle-merino wool composites 

prepared by soaking in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours followed by ageing at 50 °C 

for 24, 48, 72 or 168 hours (top to bottom). 
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Figure 5.16: Increasing magnification TEM micrographs of gold nanoparticle-merino wool composites 

prepared by soaking in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours followed by ageing at 50 °C 

for 24, 72 or 168 hours (top to bottom). 

   

Figure 5.17: Increasing magnification TEM micrographs of nanoparticles located in the fibre centre of 

composites prepared by soaking in a 160 ppm (8.13 x 10
-4
 M) Au

3+
 solution for 24 hours followed by 

ageing at 50 °C for 168 hours. 

 

Although gold nanoparticles were only evident in the centre of fibres that had been prepared 

with extended ageing periods, cross sectional EDS analysis showed that regardless of the 

ageing times, there were high concentrations of gold in the centre of all composites prepared 

by soaking in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours followed by ageing at 50 

°C for 24-168 hours (Figure 5.18 below and Figure 5.9 above).  This suggested that in all 
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samples, gold had diffused through to the centre of the fibres, however it was only reduced to 

nanoparticulate Au
0
 in those heated for longer than 72 hours. 

 

 

Figure 5.18: Cross sectional SEM micrograph (left), and corresponding Au EDS map (right) of a 

composite material prepared from a 160 ppm (8.13 x 10
-4

 M) gold solution, with 24 h soaking and 24 h 

ageing at 50 ° C. A line profile is offered (bottom) showing higher gold concentrations at the fibre surface 

relative to the centre. 

 

5.1.2.3 Soaking and Heating/Ageing Solution Compositions 

 

As mentioned in section 5.1.2.1 and elaborated in section 5.4, the absorption of gold by 

merino wool at RT was largely complete after 1 hour, however a soaking time of 24 hours 

was required for optimum colour development.  The composition of this soaking solution 

was influential on colour development.  Figure 5.19 offers a picture of gold nanoparticle-
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merino wool composites that had been soaked in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 

1 hour at RT to ensure the absorption of gold, after which they were transferred to 10 ml 

aqueous solutions containing 40 µL of 0.1 M HCl or NaCl, soaked at RT for an additional 23 

hours, and subsequently aged at 50 °C for 24-168 hours.  (These solutions were chosen as 

they are close representatives of the original Au
3+

 solutions, which comprise 40 µL of 4 wt % 

Au
3+

 prepared by dissolving the requisite amount of HAuCl4.3H2O in 0.1 M HCl), and 

exhibit a pH of approximately 2.7.  This does not change throughout the course of the 

reaction).  Comparing these materials to those whose soaking (and therefore ageing) solution 

had not been altered shows that changing the soaking (and therefore ageing) solution 

influenced the colour of the resultant composites, producing materials that were much less 

intense in colour than those utilising the original Au
3+

 soaking solution as the ageing 

solution.  Comparable results were obtained when transferring the merino wool fibres to 

Millipore water or a 0.1 M, pH 3 acetate buffer (Figure 5.20). 

 

 

Figure 5.19: Gold nanoparticle-merino wool composites prepared by soaking untreated semi-worsted 

merino in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 1 hour at RT, after which the fibres were 

transferred to alternate solutions (top and middle) and soaking continued for a further 23 hours and then 

heated at 50 °C for 24-168 hours. 
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Figure 5.20: Gold nanoparticle-merino wool composites prepared by soaking untreated semi-worsted 

merino in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 1 hour at RT, after which it was transferred to: 

middle: Millipore water or right: a pH 3 buffer, and soaked for a further 23 hours, and heated at 50 °C 

for 48 hours. The soaking solution of the sample on the left was not altered. 

 

In addition to changing the composition of the soaking solution, changing the composition of 

the ageing solution alone also influenced the colour of the resultant composite materials.  

Figure 5.21 offers a picture of gold nanoparticle-merino wool composites that had been 

soaked in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing in 

various solutions at 50 °C for 24-168 hours.  Ageing in Millipore water, or solutions of 

similar pH and Cl
-
 concentrations (10 ml aqueous solutions containing 40 µL of 0.1 M HCl 

or NaCl) again produced materials that were much less intense in colour than the analogues 

aged in the original Au
3+

 soaking solutions.  This decreased colour is likely reflective of the 

formation of less Au
0
 nanoparticles (as evidenced in SEM studies of similarly coloured 

composites). 

 

The increased pH of the system is not likely to adversely affect the formation of 

nanoparticles and hence colour development, as discussed in section 5.1.2.7 below.  

Increasing the pH of the ageing solution acts to increase the Au
3+

 to Au
0
 reduction rate and 

hence colour development.  Therefore it could be thought that less nanoparticles form due to 

the lower ionic strength of the ageing solution, resulting in a decrease in electrolytes present 

to facilitate the transfer of electrons from the reducing and oxidising species in the reaction 

mixture (the proteins in merino wool and Au
3+

 respectively).  Aqueous solutions containing 

40 µL of 0.1 M HCl or NaCl should possess similar ionic strengths as the original Au
3+

 

solution, and as such should produce similarly coloured gold nanoparticle-merino wool 

composites.  The fact that they don‘t, suggests that during the absorption of gold, other ions 
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(for example Ca
2+

 or Na
+
) may be displaced from the wool into the soaking solutioon, 

increasing the ionic strength of the original Au
3+

 solution, and hence the ease at which the 

Au
3+

 to Au
0
 reduction occurs. 

 

 

Figure 5.21: Gold nanoparticle-merino wool composites prepared by soaking untreated semi-worsted 

merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours, transferring to an alternate ageing 

solution and ageing at 50 °C for 24-168 hours. 

 

To investigate whether the decreased colour intensity of the gold nanoparticle-merino wool 

composites prepared in alternate ageing solutions was a result of fewer electrolytes, the 

original Au
3+

 ageing solution was replaced with aqueous NaCl solutions (0.1 M, 10 ml).  The 

resultant composite materials prepared with 24 hours soaking at RT and 24 hours ageing at 

50 °C were more vibrant pink in colour, suggesting the formation of a greater amount of 

nanoparticles, occurring due to the increased ionic strength of the ageing solution.  However 

prolonged ageing decreased the spectral purity of this pink colour (Figure 5.22), which even 

with 168 hours ageing at 50 °C, did not develop into the deep, regal purple colour attained 

when ageing in the original Au
3+

 soaking solution. 
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Figure 5.22: Gold nanoparticle-merino wool composites prepared by soaking untreated semi-worsted 

merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C in 

a 0.1 M NaCl solution (top) or the original soaking solution (bottom) for 24-168 hours. 

 

Examination of the SEM micrographs of the gold nanoparticle-merino wool composites 

prepared with 0.1 M NaCl ageing solutions revealed slight differences in the morphologies of 

composites aged in the original soaking solutions (Figure 5.23), confirming that the more 

vibrant colours arose due to the formation of an increased number of nanoparticles.  Ageing 

for 24 hours appeared to produce composites in which the nanoparticles were slightly more 

abundant and smaller (approximately 10-20 nm in diameter (Figure 5.24)), than those present 

on composites aged in the original soaking solution.  Additionally, these nanoparticles were 

not confined to the cuticle edges to such a great extent, rather spreading slightly across the 

fibre surface.  This is likely to account for the brighter, more vibrant colour of these 

materials.  Increasing the ageing time to 168 hours saw the formation of more nanoparticles, 

some of which were slightly larger in size, approximately 20-30 nm in diameter (Figure 

5.24).  Agglomerations of a small percentage of particles also appeared, which would likely 

account for the less spectrally pure colour of these materials. 
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Figure 5.23: Increasing magnification SEM micrographs of gold nanoparticle-merino wool composites 

prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 

24 hours at RT, followed by ageing at 50 °C in a 0.1 M NaCl solution for 24 or 168 hours (row a and c 

respectively) or the original soaking solution for 24 or 168 hours (row b and d respectively. 
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Figure 5.24: Increased magnification SEM micrographs of gold nanoparticle-merino wool composites 

prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 

24 hours at RT, followed by ageing at 50 °C in a 0.1 M NaCl solution for 24 (top) or 168 (bottom) hours. 

 

Additionally, cross sectional SEM analysis of the gold nanoparticle-merino wool composites 

prepared with 0.1 M NaCl ageing solutions showed that compared to the composites utilising 

the original Au
3+

 soaking solutions as the ageing solutions in which nanoparticles were found 

right throughout the fibre centre, the nanoparticles were located predominantly on the fibre 

surface and within the cuticle cells (Figure 5.25).  There were however high concentrations 

of gold right throughout the fibre (as shown by cross sectional EDS analysis), (Figure 5.26).  

As the regal purple colour of the gold nanoparticle-merino wool composites corresponds to 

materials in which nanoparticles are found both on the surface and within the centre of the 

fibres, this lack of nanoparticles located in the fibre centre may account for the spectrally 

impure pink rather than purple colour of the materials aged in NaCl for 168 hours. 
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Figure 5.25: Cross sectional SEM micrograph of a gold nanoparticle-merino wool composite prepared 

with a 0.1 M NaCl ageing solution. 

  

Figure 5.26: Cross sectional SEM and corresponding Au EDS map of a gold nanoparticle-merino wool 

composite prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 

solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours in a 0.1 M NaCl solution. 

 

It is likely that more vibrantly coloured gold nanoparticle-merino wool composites are 

initially produced when soaking or ageing in a 0.1 M NaCl solution as the increased 

concentration of electrolytes facilitates the transfer of electrons from the reductant to the 

oxidant, forming a greater number of nanoparticles in a shorter period of time.  The fact that 

the deep regal purple colour is not produced, even with prolonged ageing at 50 °C, may also 

be related to the increased electrolyte (Cl
-
) concentration.  Cross sectional EDS analysis of 

composites prepared with 0.1 M NaCl ageing solutions showed there to be relatively high 

concentrations of Cl
-
 inside the wool fibre, markedly more so than in composites prepared by 

soaking and ageing in the original Au
3+

 solution (Figure 5.28).  Analysis of the reaction 

1 µm 1 µm 

1 µm 
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mixtures employing the original Au
3+

 soaking solution as the ageing solution showed that the 

Cl
-
 concentration fell dramatically during the first three hours of soaking, after which it 

slowly increased (Figure 5.27).  This suggests that chloride is absorbed in the form of AuCl4
-
, 

and then as the reduction of Au
3+

 to Au
+
 occurs (see section 5.6), Cl

-
 ions diffuse out into the 

reaction mixture.   Increasing the chloride concentration by soaking and or ageing in NaCl 

solutions is likely to impede the desorption of Cl
-
 ions as with an increased Cl

-
 concentration, 

the concentration gradient between the fibre and solution would be less, lowering the driving 

force for the diffusion of Cl
-
 ions back out of the fibre. 

 

 

Figure 5.27: Concentration of chloride in the reaction mixture against time. 

 

The chloride ions located inside the fibre centre may hinder the formation of Au
0
 

nanoparticles in the centre of the fibres by obstructing Au
3+

 or AuCl4
-
 ions converging and 

nucleating.  This effect may be more apparent in the fibre centre rather than surface due to 

the increased steric hindrance imparted on the Au
3+

 or AuCl4
-
 ions in the fibre centre.  

Additionally, as AA studies (see section 5.4) suggest that gold is absorbed in the form of 

AuCl4
-
 rather than Au

3+
, and as the reaction mixture has a pH of approximately 3 thus 

imparting a predominantly positive charge to the proteins in the wool fibre (due to 

protonation of the amine groups), the formation of Au
0
 nanoparticles may be assisted by the 

destabilisation of the AuCl4
-
 complex.  This could occur through the cationic quaternary 
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amines of the wool fibre protein attracting the Cl
-
 ions initially complexed to the gold.  With 

high concentrations of Cl
-
 a greater percentage of these cationic sites would already be 

passivated, preventing the attraction of Cl
-
 ions complexed to the gold and thus increasing the 

energy required to break the AuCl4
-
 complex and reduce Au

3+
 to Au

0
.  However if this latter 

theory is correct, it is unclear as to why reduction still occurs at the fibre surface. 

 

  

  

Figure 5.28: Cross sectional SEM and corresponding Cl EDS maps of gold nanoparticle-merino wool 

composites prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 

solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours in a 0.1 M NaCl solution (top) or 

the original soaking solution (bottom). 

 

In addition to ageing in 0.1 M NaCl, soaking in the same solution also influenced the colour 

of the resultant gold nanoparticle-merino wool composites.  Figure 5.29 offers a picture of 

such materials.  These were prepared by soaking in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution 
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for 1 hour at RT, after which they were removed and soaked at RT in a 0.1 M NaCl solution 

for a further 23 hours before being transferred back to the original soaking solution and aged 

at 50 °C for 24-168 hours.  As with ageing in a 0.1 M NaCl solution, ageing these materials 

for 24 hours produced a much more vibrant pink coloured composite, with increased ageing 

decreasing the spectral purity of the materials, rather than producing a deep regal purple 

coloured composite.  This suggests that when soaking in a 0.1 M NaCl solution, the Cl
-
 ions 

penetrate into the fibre and remain there during the ageing process, thus increasing the ionic 

strength of the ageing solution and facilitating the reduction of Au
3+

 to nanoparticulate Au
0
 

on the fibre surface, however the Cl
-
 ions hinder the formation of such nanoparticles in the 

fibre centre. 

 

 

Figure 5.29: Top: gold nanoparticle-merino wool composites prepared by soaking untreated semi-

worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 for 1 hours\ at RT followed by soaking at RT in a 

0.1 M NaCl solution for a further 23 hours, and ageing in the original gold solution for 24-168 hours at 50 

°C. Bottom: The corresponding composite materials prepared by soaking and ageing in the same gold 

solution. 

 

Similar results were obtained when soaking or ageing in alternate aqueous electrolyte 

solutions such as 0.1 M MgCl2, KCl, NaNO3, KNO3, Na2SO4 and K2SO4 (with a pH of 

approximately 2.7).  Figure 5.30 shows an example of such composites, prepared by altering 

both the soaking and ageing solution or solely the ageing solution. 
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Figure 5.30: Top: gold nanoparticle-merino wool composites prepared by soaking untreated semi-

worsted merino wool in a 160 ppm (8.13 x 10
-4

M) Au
3+

 solution for 1 hours at RT, followed by soaking in 

a 0.1 M MgCl2 solution for 23 hours at RT, and ageing at 50 °C for 24 or 168 hours. Bottom: gold 

nanoparticle-merino wool composites prepared by soaking untreated semi-worsted merino wool in a 160 

ppm (8.13 x 10
-4

M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C in a 0.1 M MgCl2 

solution for 24 or 168 hours. 

 

5.1.2.4 Heating/Ageing Temperature 

 

In addition to the soaking and ageing times, the heating/ageing temperature also influenced 

the colour of the resultant gold nanoparticle-merino wool composites.  An ageing 

temperature of 50 °C was determined to be the optimum temperature, as higher temperatures, 

notably 80 °C, produced slightly murky, spectrally impure coloured materials that were not 

as intense in colour relative to their analogues produced at 50 °C (Figure 5.31, Figure 5.32). 

 

SEM analysis revealed the gold nanoparticles in these materials to be present both on the 

surface, and within the centre of the fibres (Figure 5.33 and Figure 5.34).  These 

nanoparticles appear to be similar in size to those in the composites prepared at 50 °C, 

approximately 20–25 nm in diameter on the surface, and 10 nm in the centre, however the 

nanoparticles on the surface are not as isolated, instead existing as agglomerates.  These 

agglomerates would account for the less spectrally pure colour of the materials prepared at 80 

°C.  It is likely that agglomerates rather than isolated particles form at 80 °C, as the higher 

temperature would increase the Au
3+

 to Au
0
 reduction rate, forming more nanoparticles in a 

shorter time period.  The larger density of nanoparticles may have resulted in agglomerations 

of nanoparticles due to insufficient stabilisation by the wool fibres. 
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Figure 5.31: Gold nanoparticle-merino wool composites prepared by soaking in a 160 ppm (8.13 x 10
-4

 M) 

gold solution for 24 hours, followed by ageing at 80 (top) or 50 °C (bottom) for 24, 48, 72 or 168 hours 

(left to right). 

 

Figure 5.32: Gold nanoparticle-merino wool composites prepared by soaking merino wool in a gold 

solution for 0 or 24 hours at RT, followed by ageing at 80 °C for 24 – 168 h. Shows the effect of soaking 

time and ageing (ageing) temperature on colour development. 
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Figure 5.33: Increasing magnification SEM micrographs of a gold nanoparticle-merino wool composite 

prepared by soaking in a 160 ppm (8.13 x 10
-4

 M) gold solution for 24 hours, followed by ageing at 80 °C 

for 24 hours (top) or 168 hours (bottom). 

   

Figure 5.34: Cross sectional SEM micrographs of a gold nanoparticle-merino wool material prepared by 

soaking in a 160 ppm (8.13 x 10
-4

 M) gold solution for 24 hours, followed by ageing at 80 °C for 168 

hours. 

 

5.1.2.5 Gold Concentration 

 

The Au
3+

 concentration also influenced the colour of the resultant gold nanoparticle-merino 

wool composites.  A concentration of at least 3.05 x 10
-4

 M Au
3+

 was required to achieve 

colour development.  Employing lower concentrations produced materials that were not 

dissimilar in colour to untreated merino wool (Figure 5.35).  In general, 160 ppm (8.13 x 10
-4

 

M) was the highest Au
3+

 solution employed.  Increasing the gold concentration to 160 ppm, 

100 nm 

100 nm 

1 µm 

1 µm 

10 µm 

10 µm 

1 µm 1 µm 100 nm 



 

 

200 

through the addition of more gold did not appear to alter the hue of the resultant materials to 

a great extent; rather it intensified their colour (Figure 5.36). 

 

 

Figure 5.35: Gold nanoparticle-merino wool composites prepared by soaking in gold solutions of various 

concentrations for 24 hours at RT, followed by ageing at 50 °C for 24 or 168 hours. 
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Figure 5.36: Gold nanoparticle-merino wool composites prepared by soaking in 80, 120 or 160 ppm Au
3+

 

(4.06 x 10
-4

, 6.09 x 10
-4

  or 8.13 x 10
-4

 M respectively) (top to bottom) for 24 h at RT, followed by ageing at 

50 °C for 24-168 hours. 

 

SEM analysis of gold nanoparticle-merino wool composites prepared with various amounts 

of Au
3+

 showed that increasing concentrations resulted in the production of greater amounts 

of similarly sized nanoparticles (Figure 5.37), with both of these factors accountable for the 

production of deeper coloured composites. 

 

The concentration of dissolved Au
3+

 in relation to the surface area of the wool fibre is 

important, and influences the colour of the resultant gold nanoparticle-merino wool 

materials.  In much the same way as increasing the Au
3+

 concentration through the addition 

of more Au
3+

, increasing the concentration through the use of smaller solvent volumes 

(whilst keeping the ratio of the amount of Au
3+

 to wool fibre constant) intensified the colour 

of the resultant composites.  This was discovered during a scale up production of the gold 

nanoparticle-merino wool materials.  In a typical procedure, the ratio of Au
3+

 : wool : 

solution volume is maintained at 40 µL 4 wt % Au
3+ 

: 0.1 g wool : 10 ml water, however in 

the initial scale up, the ratio of Au
3+

 : wool was keep constant and the solution volume varied 

(due to the capacity of the reaction vessel), so that a ratio of 40 µL 4 wt % Au
3+

 : 0.1 g wool : 

15 ml water was employed, effectively decreasing the Au
3+

 concentration from 8.13 x 10
-4

 M 

to 5.41 x 10
-4

 M.  This resulted in the production of a lighter, more mauve coloured 

composite (Figure 5.38). 
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Figure 5.37: Increasing magnification SEM micrographs of gold nanoparticle-merino wool composites 

prepared by soaking in a 80 or 160 ppm Au
3+

 (4.06 x 10
-4 

or 8.13 x 10
-4

 M respectively) (top and bottom) 

for 24 h at RT, followed by ageing at 50 °C for 168 hours. 

 

Figure 5.38: Gold nanoparticle-merino wool composite materials prepared by soaking untreated semi-

worsted merino wool in a left: 107 ppm (5.41 x 10
-4

 M) Au
3+

 solution (40 µL 4 wt % Au
3+

:0.1 g wool:15 ml 

H2O) or right: a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution (40 µL 4 wt % Au
3+

:0.1 g wool:10 ml H2O) for 24 

hours at RT, followed by ageing at 50 °C for 168 hours. 

 

Through the production of gold nanoparticle-crossbred wool composite materials (chapter 6), 

the colour difference occurring with different Au
3+

 concentrations was found to be related to 
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the ratio of the Au
3+

 concentration and specific surface area of the wool fibres.  The average 

fibre diameter of crossbred wool is greater than merino wool; approximately 35 µm 

compared to 20 µm, and as such the specific surface area of crossbred wool is much lower 

than merino.  Therefore for the same ratio of Au
3+

 : wool : solution volume, there is a higher 

density of absorbed Au
3+

 at the surface of the crossbred wools, producing more intense and 

darker coloured composites relative to the finer fibres (discussed in further detail in section 

5.6 below).   

 

A desirable consequence of this is that the same colour can be achieved by using a higher 

concentration of Au
3+ 

in solution but a reduced solution volume in relation to the amount of 

wool fibre and hence a reduced amount of Au
3+

 to overall weight of wool (keeping the ratio 

of the concentration of Au
3+ 

: wool constant) (Table 5.1).  For example, increasing the 

concentration of Au
3+

 by decreasing the solution volume produces more vibrant coloured 

composites, and decreasing both the amount of Au
3+

 and solution volume, (thus keeping the 

ratio between the Au
3+

 concentration and amount of wool constant), also produces the same 

coloured composites (Figure 5.39).  This yields more favourable economic conditions, as less 

Au
3+

 is required to produce the desired colour.   

 

Table 5.1: Au
3+

 solutions employed when increasing the concentration of Au
3+

. All systems were used 

with 0.1 g untreated semi-worsted merino wool. 

Au
3+

 conc. 
(M) 

Au
3+

 conc. 
(ppm) 

Volume 4 wt % 
Au

3+
 (µL) 

Solution 
Volume (ml) 

1.08 x 10
-3
 213 40 7.5 

1.35 x 10
-3 

267 40 6 

1.62 x 10
-3 

320 40 5 

2.03 x 10
-3 

400 40 4 

1.22 x 10
-3 

240 30 5 

1.52 x 10
-3
 300 30 4 

8.13 x 10
-4 

160 40 10 
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Figure 5.39: Gold nanoparticle-merino wool composites prepared by soaking untreated semi-worsted 

merino wool in various Au
3+

 solutions for 24 hours at RT, followed by ageing at 50 °C for 24-168 hours.  

Illustrates the effect of the ratio between the Au
3+

 concentration and amount of wool has on colour 

development. 

 

For the same soaking and ageing conditions and times, the colour of the resultant gold 

nanoparticle-merino wool composites is a function of the Au
3+

 solution concentration, the 

volume of solution and the surface area of wool.  It is likely that similar coloured composite 

materials are produced when the ratio of the concentration of Au
3+

 to wool fibre is kept 

constant, even when less Au
3+ 

is used, as with the same Au
3+

 concentrations, there is a 

similar density of Au
3+

 at the fibre surface, inducing the same amount of collisions between 

Au
3+

 ions, and hence nucleations; forming a similar amount of Au
0
 nanoparticles.  XPS has 

shown that even after 168 hours ageing at 50 °C, not all of the Au
3+

 is reduced (section 5.3), 

and therefore employing a lower amount of Au
3+

 would not be detrimental as generally it is 

not all converted to nanoparticulate Au
0
, and therefore should lead to the formation of a 

similar amount of nanoparticles. 
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5.1.2.6 Production of Light Pink Coloured Composites 

 

The pink colour observed in composites prepared with ageing times of less than 168 hours 

was relatively dull, and lowering the Au
3+

 did not produce pink coloured composites, rather it 

decreased the purple colour of the materials, making them appear less vibrant and spectrally 

pure.  In an attempt to rectify this, and produce vibrant pink coloured gold nanoparticle-

merino wool composites, procedures were altered in the aim of reducing Au
3+

 to 

nanoparticulate Au
0
 preferentially at the fibre surface.  This involved soaking untreated semi-

worsted merino wool in Au
3+

 solutions of increased concentrations (200-320 ppm, achieved 

through the addition of more Au
3+

 (Table 5.2)) for shorter periods of time (5-15 minutes 

depending upon the Au
3+

 concentration employed), followed by ageing in alternate solutions 

(Millipore water, aqueous dilute HCl) at 50 °C for 24-168 hours.  As the concentration of 

Au
3+

 was higher in these systems, the concentration gradient of Au
3+

 or AuCl4
-
 across the 

solution/fibre interface, and hence the driving force for absorption of gold onto the wool fibre 

was higher.  This allowed for faster absorption of AuCl4
-
, whilst the shorter soaking times 

limited diffusion through the fibres, resulting in higher gold concentrations at the fibre 

surface, which was hopefully to lead to the development of an increased amount of 

nanoparticles at the surface, and hence the production of brighter, more vibrantly coloured 

composite materials. 

 

Table 5.2: Au
3+

 solutions employed in the attempted production of vibrant pink coloured composites. 

Au
3+

 conc. 
(M) 

Au
3+

 conc. 
(ppm) 

Volume 4 wt % 
Au

3+
 (µL) 

Solvent 
Volume (ml) 

1.02 x 10
-3 

200 50 10 

1.21 x 10
-3 

240 60 10 

1.42 x 10
-3 

280 70 10 

1.63 x 10
-3 

320 80 10 

 

Figure 5.40 and Figure 5.41 offer pictures of gold nanoparticle-merino wool composites 

prepared by soaking untreated semi-worsted merino wool a 320 ppm (1.6 x 10
-3

 M) Au
3+

 

solution for 5 minutes to 6 hours, followed by ageing at 50 °C for 24 or 72 hours.  It is 
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apparent from these images that the desired vibrant pink coloured composites were not 

produced, rather the materials appeared dull and spectrally impure relative to their analogous 

materials prepared with a soaking time of 24 hours, which as described in section 5.1.2.1 

above.  This is likely due to the agglomeration of nanoparticles at the fibre surface, occurring 

as a result of insufficient stabilisation of the large amount of nanoparticles present at the fibre 

surface.  Additionally, AA studies showed that high concentrations of gold had been 

absorbed, approximately 102–316 ppm, depending on the soaking time (Table 5.3, Figure 

5.42)), which would increase the number of nanoparticles formed at the fibre surface, 

increasing the ratio of nanoparticles to wool and thus the probability of agglomeration. 

 

 

Figure 5.40: Gold nanoparticle-merino wool composites prepared by soaking untreated semi-worsted 

merino wool in a 320 pp, (1.6 x 10
-3

 M) Au
3+

 solution for 1, 3 or 6 hours at RT, followed by ageing at 50 

°C for 24 hours in Millipore water (top) or a dilute HCl solution (40 µL 0.1 M HCl → 10 ml H2O) 

(bottom). 

 

Figure 5.41: Gold nanoparticle-merino wool composites prepared by soaking untreated semi-worsted 

merino wool in a 320 ppm (1.6 x 10
-3

 M) Au
3+

 solution for 5-50 minutes at RT, followed by ageing in 

Millipore water for 72 hours at 50 °C. 
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Table 5.3: Absorption of Au
3+

 by untreated semi-worsted merino wool from a 320 ppm (1.6 x 10
-3 

M) Au
3+

 

solution at RT. 

 Au
3+

 concentration (ppm) 

Soaking Time (minutes) In solution Absorbed* 

2 218 102 

5 154 166 

10 115 205 

15 80 240 

20 60 260 

30 24 296 

40 8 312 

60 4 316 

180 1 319 

360 1 319 

1140 0 320 

*Note: the concentration of Au
3+

 absorbed was determined by the difference between the 

amount of Au
3+

 in solution following soaking and the initial concentration. 

 
Figure 5.42: Absorption of Au

3+
 by untreated semi-worsted merino wool from a 320 ppm (1.6 x 10

-3 
M) 

Au
3+

 solution at RT. 

 

In an attempt to improve the spectral purity of the gold nanoparticle-merino wool materials, 

and to increase the vibrancy of their colour, the amount of gold absorbed was reduced by 

decreasing the soaking times so that approximately 8.12 x 10
-6

 moles of gold were absorbed, 
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(the same amount as absorbed in the normal system employing a 160 ppm (8.13 x 10
-4

 M) 

Au
3+

 solution and a soaking time, at RT of 24 hours).  Additionally, following soaking in the 

Au
3+

 solutions, the merino wool fibres were transferred to alternate solutions (Millipore 

water or dilute aqueous HCl (40 µL 0.1 M HCl → 10 ml H2O), soaked for a further 23 hours 

at RT and then aged at 50 °C for 24-168 hours.  A picture of such samples is shown in Figure 

5.43 below.  It is apparent that vibrant pink coloured materials were not produced in this 

approach.  Employing extended soaking times (24 hours) at RT, allows for the diffusion of 

Au
3+

 through the fibres, decreasing the concentration of Au
3+

 at the fibre surface, which was 

a principal aim of this approach. 

 

 
Figure 5.43: Gold nanoparticle-merino wool composites prepared by soaking untreated semi-worsted 

merino wool various gold solutions at RT, followed by soaking in Millipore water or an aqueous HCl 

solution (40 μL of 0.1 M HCl → 10 ml H2O) for a further 23 hours at RT, and ageing at 50 °C for 24-168 

hours. The samples on the bottom are prepared in the normal way (employing a Au
3+

 solution of 160 ppm 

(8.13 x 10
-4

 M), a soaking time of 24 hours, and the original soaking solution as the ageing solution). 
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As such, the best method by which to produce vibrant pink coloured materials appears to be 

one in which the wool is soaked in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at 

RT, following which it is transferred to a 0.1 M NaCl solution and aged at 50 °C for 24 hours 

(section 5.1.2.3). 

 

5.1.2.7 pH 

 

A further factor that influenced the colour of the resultant composite materials was the pH of 

the reaction solutions.  Depending on the Au
3+ 

 concentration, the pH of the soaking solution 

was generally between 2.5-3.  However adjusting the pH of the soaking solution to pH 7 or 

10 through the addition of aqueous base adversely affected the colour of the resultant 

composite materials.  (It should be noted that these values are only representative of the 

original pH of the soaking solutions.  Over the period of an hour, the pH of the solutions 

dropped to approximately 5.3 and 6.7 in the pH 7 and 10 systems respectively.  This occurred 

due to the amphoteric nature of merino wool, in which the carboxylic acid  and amine groups 

titrated the added base, achieving equilibrium at the wool surface).[39]  The colour of these 

materials was very under developed; even with 168 h ageing at 50 °C the produced materials 

were a pale, spectrally impure purple colour (Figure 5.44). 

 

 

Figure 5.44: Gold nanoparticle-merino wool composites prepared by adjusting the pH of the 160 ppm 

(8.13 x 10
-4

 M) Au
3+

 soaking solution to pH 7 (left) or 10 (right), soaking at RT for 24 hours and ageing at 

50 °C for 168 hours. 

 

Uptake studies revealed that adjusting the pH of the soaking solution to 7 or 10, decreased 

the Au
3+

 absorption rate (see section 5.4), and hence the amount of Au
3+

 absorbed and 
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available for the formation of nanoparticulate Au
0
.  This would account for the decreased 

colour intensity of the gold nanoparticle-merino wool composites prepared with soaking 

solutions of increased pH.  At a pH of 5.3 or 6.7, (the equilibrium pH of the pH 7 and 10 

systems respectively), the wool fibre would exert a net negative charge, and thus 

electrostatically repel the AuCl4
-
 ion, (the gold species absorbed).  As such, when ageing 

began, only a relatively small percentage of Au
3+

 had been absorbed (66 %, 105 ppm in the 

pH 7 system, compared to 99% or 158 ppm in the conventional system employing a pH of 

2.7) and the concentration of Au
3+

 in solution was relatively high.  Instead of continuing to 

absorb during ageing, the Au
3+

 in solution was reduced to nanoparticulate Au
0
, evidenced by 

a change in colour of the solution to wine red, a colour typical of colloidal gold.  This 

reduction was likely to be facilitated by low molecular weight peptides displaced from wool 

when ageing in water at temperature of 50 °C or higher.[225] 

 

Alternatively, adjusting the pH of the soaking system to pH 7 once absorption of AuCl4
-
 had 

occurred (after 1 hour) was not entirely detrimental to colour development; instead increasing 

the Au
3+

 to Au
0
 reduction rate, and hence colour development in the resultant composites.  

Figure 5.45 offers a picture of such samples, and compares them to corresponding 

composites prepared with a soaking solution of pH 2.7.  It is apparent that the materials in 

which the pH of the soaking solution had been adjusted following AuCl4
-
 absorption 

developed colour at a faster rate than the conventional systems, achieving a deep, regal 

purple colour after 48 hours ageing at 50 °C rather than 168 hours.  However the colour of 

these composites is not as spectrally pure as those prepared in a soaking solution of constant 

pH, suggesting slight agglomeration of some of the nanoparticles on the fibre surface, as seen 

in similarly coloured composites. 
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Figure 5.45: Gold nanoparticle-merino wool composites prepared by soaking in a 160 ppm (8.13 x 10

-4
 M) 

Au
3+

 for 24 hours, followed by ageing at 50 °C for 24-168 hours. The samples on top were prepared by 

altering the pH of the soaking solution to pH 7 once the majority of Au
3+

 had been absorbed. 

 

Similar effects were observed when adjusting the pH of the heating/ageing solution.  

Adjusting the pH of the ageing solution to approximately 9 increased the speed at which the 

colour of the composite materials developed (Figure 5.46).  (It should be noted that, as with 

the soaking solutions, these values are only representative of the original pH of the ageing 

solutions, with the pH of the 4, 7, 9 and 12 systems reaching an equilibrium pH of 3.5, 5.3, 

5.5 and 8.5 respectively).  This is likely to occur as increasing the pH acts to destabilise the 

AuCl4
-
 system so that Au

0
 becomes the favoured species, increasing the Au

3+
 to Au

0
 

reduction rate.[17] 

 

Increasing the pH further to 12 resulted in the formation of yellow coloured composites.  The 

yellow colour of these materials is due to the presence of Au(OH)3 (discussed in further 

detail in section 5.5.1 below).  Raising the pH of the gold solution to 12 through the addition 

of a base hydrolyses the AuCl4
-
 ion to form six major species of the general form 

[Au(OH)xCl4-x]
-
 depending on the pH and extent of hydrolysis, which in turn is dependent 

upon the pH.[226]  Out of these six species, only [Au(OH)3Cl]
-
 is insoluble, precipitating as 

Au(OH)3.  [Au(OH)3Cl]
-
 is the prevalent form of gold in the pH range of 8–9,[227] thus by 

adjusting the pH to 12, which following equilibrium with the wool results in a solution pH of 

approximately 8.5, it is likely that any absorbed AuCl4
-
 would precipitate as Au(OH)3. 
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Figure 5.46: Gold nanoparticle-merino wool composites prepared by soaking in a 160 ppm Au

3+
 (8.13 x 

10
-4

 M) solution for 24 hours at RT, following which the pH of the reaction mixture was adjusted to 4, 7, 9 

or 12, and the samples heated for 24 – 168 hours at 50 ° C. 

 

Figure 5.47 offers SEM micrographs of a composite prepared with a pH 12 ageing solution.  

The cuticle cells of the wool fibres in these materials do not look as defined as those of 

untreated merino wool, suggesting the fibre may have been damaged by the high pH of the 

ageing solution.  Additionally, it is very difficult to discern any nanoparticulate gold on the 

fibre, however there are large amorphous deposits which EDS verifies as being gold (Figure 

5.48).  These large clumps of gold are consistent with the precipitation of Au(OH)3.  They 

are also evident in TEM micrographs of such materials (Figure 5.49).  Additionally, TEM 

suggests that there is also a very small percentage of nanoparticulate gold present in these 

samples (highlighted by the arrows in Figure 5.49).  These are likely to form during the 

soaking period, as SEM and TEM analysis of samples that had been soaked in a 160 ppm 

(8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, showed the presence of a very small 

amount of five-fold twinned gold nanoparticles, approximately 10–20 nm in diameter (Figure 

5.50).  However these nanoparticles do not impart any colour to the composite materials as 

they are present in such a small amount. 
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Figure 5.47: SEM micrographs of a gold nanoparticle-merino wool composite prepared by soaking in a 

160 ppm Au
3+

 (8.13 x 10
-4

 M) solution for 24 hours at RT, following which the pH of the reaction mixture 

was adjusted to 12, and the samples heated for 168 hours at 50 ° C. Note: the micrograph on the right is 

the centre image viewed under backscatter conditions. 

  
Figure 5.48: SEM (left) and corresponding Au EDS map (right) of a gold nanoparticle-merino wool 

composite prepared by soaking in a 160 ppm Au
3+

 (8.13 x 10
-4

 M) solution for 24 hours at RT, following 

which the pH of the reaction mixture was adjusted to 12, and the samples heated for 168 hours at 50 ° C. 

High concentrations of gold are depicted in white. 

1 µm 1 µm 1 µm 
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Figure 5.49: Increasing magnification TEM micrographs of a gold nanoparticle-merino wool composite 

prepared by soaking in a 160 ppm Au
3+

 (8.13 x 10
-4

 M) solution for 24 hours at RT, following which the 

pH of the reaction mixture was adjusted to 12, and the samples heated for 168 hours at 50 ° C. 

   

   

Figure 5.50: Increasing magnification SEM (top) and TEM (bottom) micrographs of a gold nanoparticle-

merino wool composite prepared by soaking in a 160 ppm Au
3+

 (8.13 x 10
-4

 M) solution for 24 hours at 

RT. 

 

0.5 µm 100 nm 20 nm 

1 µm 1 µm 1 µm 
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5.1.3 Acid Treated Semi-Worsted Gilled Sliver 

 

In an attempt to broaden the colour spectrum of the gold nanoparticle-merino wool 

composite materials, merino wool was treated with 0.1 M HCl prior to being introduced into 

the Au
3+

 solutions (outlined in section 2.2.2.3.1).  This was unsuccessful as the colour of the 

resulting composites was significantly lighter than the corresponding materials prepared from 

untreated merino wool (Figure 5.51.), suggesting less Au
3+

 had been reduced to 

nanoparticulate Au
0
. 

 

  

Figure 5.51: Gold nanoparticle-merino wool composites prepared from acid treated merino wool (left) 

and un-treated merino wool (right). Prepared by dispersing the respective merino wool in a 160 ppm 

Au
3+

 (8.13 x 10
-4

 M) solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours. 

 

In general, the treatment of wool with acid hydrolyzes the peptide bonds of the keratin chains 

(the proteins found in merino wool).[82] 

-NH-CHR-CO-NH-CHR‘-CO-  →  -NH-CHR-COOH + H2N-CHR‘-CO- 

However it has also been shown that acidic chloride solutions (of a pH less than 2) are 

capable of breaking the thioester bond between the wool and fatty acid layer (18-MEA) on 

the surface through oxidation of the sulfur.[55, 82]  This results in a lipid reduced surface 

with a percentage of the cysteine and cystine sulfur components oxidised to cysteic acid 

residues.  The oxidation of these sulfur containing groups to cysteic acid may account for the 

reduced colour intensity of the gold-nanoparticle merino wool composites, prepared from 

acid pre-treated merino wool, as cystine and to a lesser extent cysteine may be involved in 

the reduction of Au
3+

 to nanoparticulate Au
0
 (section 5.6), thus their oxidation would 

decrease the reducing capacity of the wool. 
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5.1.4 KOH/MeOH Treated Semi-Worsted Gilled Sliver 

 

As with acid pre-treatment, alcoholic base treatment removes the lipid layer from the surface 

of merino wool, (section 1.2.2.1.3), however this occurs to a greater extent.  As such, 

KOH/MeOH pre-treatments were undertaken to investigate whether removal of this lipid 

layer would facilitate the production of gold nanoparticle-merino wool composites by 

allowing for greater ease of penetration of gold ions into the fibre.  The use of alcoholic 

alkali pre-treated merino wool (prepared according to the procedure outlined in section 

2.2.2.3.1) as the fibre substrate in the production of gold nanoparticle-merino wool 

composites produced materials for which the colour was very under developed (Figure 5.52), 

(even following extended ageing times, (168 hours at 50 ºC)) and much lighter in colour than 

the corresponding materials prepared from untreated merino wool.  

 

Time in KOH/MeOH 

 

Figure 5.52: Gold nanoparticle-merino wool composites prepared with merino wool which had been 

soaked in a 0.1 M KOH/MeOH solution for 5, 10 or  30 minutes, followed by a 160 ppm Au
3+

 (8.13 x 10
-4

 

M) solution for 24 hours at RT and heated at 50 °C for 168 hours. 

 

As shown in section 5.4 below, removal of the lipid layer through KOH/MeOH pre-treatment 

was successful in accelerating the absorption of AuCl4
-
 by merino wool, however once 

absorbed the wool was not able to facilitate the reduction of Au
3+

 to nanoparticulate Au
0
.  

This is likely due to the fact that in addition to removing the lipid layer, alkaline solutions 

also attack cystine residues in wool, forming lanthionine groups.[39, 82]  This is thought to 

occur via attack at the β-carbon.  The principal reaction steps are outlined in scheme (5.1): 
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              |                                      |                           |                                                  | 

             NH                                 C=O                    NH                                            C=O 

              |                                      |            OH
-
        |                                                  | 

             CH─CH2─S─S─CH2─CH          →        CH─CH2─S─S
-
  +  HO─CH2─CH 

              |                                      |                           |                                                  | 

             C=O                               NH                      C=O                                           NH 

              |                                      |                           |                                                  | 

                         Cystine                                                                   ↓ -S
-
, -OH

-
                    (5.1) 

 

                                                                                           |                                 | 

                                                                                          CH─CH2─S─CH2─CH 

                                                                                           |                                 | 

                                                                                          C=O                          NH 

                                                                                           |                                 | 

                                                                                                    Lanthionine 
 

Lanthionine crosslinks are slightly more stable than the disulfide bonds of cystine,[82] and 

therefore the treatment of merino wool with base and the formation of such groups may 

decrease the reducing capacity of merino wool, accounting for the poor colour development 

in composites employing such pre-treated fibres.  Due to time constraints, SEM analysis of 

such materials was not able to be undertaken, however from comparisons of similarly 

coloured composites, it is likely that these composites did not possess a large amount of gold 

nanoparticles. 

 

5.1.5 Chlorine Hercosett Treated Semi-Worsted Gilled Sliver 

 

The chlorine Hercosett shrink resist treatment is one of the most common surface treatments 

applied to woollen textiles destined for use in clothing applications (section 1.2.1.2.5), as 

such it was employed as an alternative substrate in the production of gold nanoparticle-

merino wool composite materials.  Employing such chlorine Hercosett shrink resist treated 

(Cl/H treated) merino wool was unsuccessful.  The colour of the resultant composite 

materials was very under developed, and did not vary to a great extent from that of untreated 

merino (Figure 5.53).  Even after 168 hours ageing at 50 °C, only a faint, spectrally impure 

pink tinge had developed, and this was very non-uniform.  
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Figure 5.53: Gold nanoparticle-merino wool composites prepared by soaking Cl/H treated merino wool 

in an 80, 120 or 160 ppm Au
3+

 (4.06 x 10
-4

, 6.09 x 10
-4

 or 8.13 x 10
-4

 M respectively) solution for 24 hours 

at RT, followed by ageing at 50 ºC for 24 – 168 hours. 

 

Figure 5.54 offers increasing magnification SEM micrographs of gold nanoparticle-merino 

wool composites incorporating Cl/H treated merino wool, prepared by soaking the fibres in 

an 80 or 160 ppm (4.06 x 10
-4

 or 8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed 

by ageing at 50 °C for 24 or 168 hours.  Comparing these micrographs to those of composites 

incorporating untreated semi-worsted merino wool show clear differences (Figure 5.15).  At 

low magnifications a discernable difference between the wool fibres themselves is observed.  

In the Cl/H treated fibres the cuticles are obscured by the Hercosett polymer, giving the 

fibres a much smoother appearance.  Additionally, in the materials incorporating Cl/H treated 

merino wool, there are many fewer nanoparticles on the fibre surface, and those present are 

not confined to the cuticle edges, rather they are spread across the fibre surface.  When 

employing a Au
3+

 concentration of 80 ppm (4.06 x 10
-4

 M) and an ageing time (at 50 °C) of 

24 hours, the nanoparticles in the resultant composites appear to be spherical or five-fold 

twinned in shape, approximately 20-25 nm in diameter, and as such are similar in 

morphology to those in composites incorporating untreated semi-worsted merino as the fibre 

substrate.  Increasing the ageing time to 168 hours did not change the size or shape of the 

nanoparticles, rather slightly more were produced.  Similar trends were observed when 

increasing the Au
3+

 concentration to 160 ppm (8.13 x 10
-4

 M).  The nanoparticles in 

composites prepared with 24 hours ageing at 50 °C were of comparable size as seen with 80 

ppm (4.06 x 10
-4

 M) Au
3+

 solutions, notably 20-25 nm in diameter.  Employing an ageing 

time of 168 hours produced similarly sized nanoparticles, however they were dramatically 
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increased in number, spreading across the fibre surface and completely encapsulating it.  In 

all composites incorporating Cl/H treated merino wool, there were populations of 

agglomerated nanoparticles, with the occurrence of these agglomerates increasing with 

increased ageing times and higher Au
3+

 concentrations.  The presence of these agglomerated 

particles would give rise to the murky, spectrally impure colour of the composites. 

   

   

   

   

Figure 5.54: Increasing magnification SEM micrographs of gold nanoparticle-merino wool composites 

prepared by soaking Cl/H treated merino wool in an 80 (a) and b)) or 160 ppm (c) and d)) (4.06 x 10
-4

 or 

8.13 x 10
-4

 M respectively) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 24 (a) and c)) 

or 168 hours (b) and d)). 

a) 

b) 

c) 

d) 

c) 

d) 

10 µm 1 µm 100 nm 

100 nm 1 µm 10 µm 

1 µm 1 µm 100 nm 

100 nm 1 µm 10 µm 
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Cross sectional SEM analysis showed the gold nanoparticles in the composites prepared from 

Cl/H treated merino wool to reside preferentially at the fibre surface, with little to no 

nanoparticles evident in the centre (Figure 5.55).  However EDS analysis of the same cross 

section revealed high concentrations of gold within the fibre centre (particularly in the 

paracortex where the concentration of sulfur is high) (Figure 5.56).  This suggests that gold 

diffused into the centre of the fibres, however was not reduced to nanoparticulate Au
0
, or if it 

was the nanoparticles formed were too small to be viewed under SEM analysis. 

 

 

Figure 5.55: Cross sectional SEM micrograph of a gold nanoparticle-merino wool composite prepared by 

soaking Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4 

 M) Au
3+

 solution for 24 hours at RT, followed 

by ageing at 50 ºC for 168 hours. 
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Figure 5.56: Cross sectional SEM and corresponding Au, N and S EDS maps of a gold nanoparticle 

merino wool composite prepared by soaking Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4 

 M) Au
3+

 

solution for 24 hours at RT, followed by ageing at 50 ºC for 168 hours. 

 

5.1.5.1 KOH Treated Chlorine Hercosett Semi-Worsted Gilled Sliver 

 

Pre-treating the Cl/H treated merino wool fibres with 0.1 M KOH solutions (as outlined in 

section 2.2.2.3.1) significantly increased the colour of the resultant composites incorporating 

Cl/H treated merino wool, producing vibrant pink or purple coloured materials, depending on 

the Au
3+

 concentration and ageing time (Figure 5.57).  Although improved by comparison 

with the composites incorporating untreated Cl/H treated merino wool, the colour of these 

composites was still non-uniform.   

 

1 µm 
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Figure 5.57: Gold nanoparticle-merino wool composites prepared by soaking base treated-Cl/H treated 

semi-worsted merino wool in a 40, 80 or 160 ppm (2.03 x 10
-4

, 4.06 x 10
-4

 or 8.13 x 10
-4

 M respectively) 

Au
3+

 solution for 0 or 24 hours at RT, followed by ageing at 50 °C for 24-168 hours. 

 

Figure 5.58 offers increasing magnification SEM micrographs of gold nanoparticle-merino 

wool composites incorporating KOH pre-treated Cl/H treated merino wool, prepared by 

soaking the pre-treated fibres in an 80 or 160 ppm (4.06 x 10
-4

 or 8.13 x 10
-4

 M) Au
3+

 

solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours.  Comparing these 

micrographs to those of composites incorporating Cl/H treated merino wool shows clear 

differences.  Base treating Cl/H treated merino wool prior to addition to the Au
3+

 solutions 

dramatically increased the amount of nanoparticles on the fibre surface.  These nanoparticles 

spread evenly across the fibre surface, completely encapsulating it.  When employing a Au
3+

 

concentration of 80 ppm (4.06 x 10
-4

 M), and an ageing time of 168 hours, the nanoparticles 

in the resultant composite materials are on average much smaller than those seen in the 

corresponding composites incorporating either untreated semi-worsted merino wool or Cl/H 

treated merino wool, existing as spherical nanoparticles, approximately 10-15 nm in 
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diameter; however there are some larger, approximately 20-25 nm particles present.  

Increasing the Au
3+

 concentration to 160 ppm (8.13 x 10
-4

 M) also produced composites with 

a mixture of both small, approximately 10-15 nm in diameter, and large, approximately 25-

30 nm diameter spherical nanoparticles.  Compared to the composite materials produced with 

untreated Cl/H treated merino wool, the nanoparticles in these materials are more dispersed 

and isolated, and combined with the slightly smaller average size of the nanoparticles, these 

factors would account for the much more spectrally pure, intense colour of the composites 

induced by base pre-treatment. 

 

   

   

Figure 5.58: Increasing magnification SEM micrographs of gold nanoparticle-merino wool composites 

prepared by soaking KOH pre-treated Cl/H treated merino wool in a top: 80 ppm (4.06 x 10
-4

 M) or 

bottom: 160 ppm (8.13 x 10
-4 

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 ºC for 168 

hours. 

 

As with the composites incorporating untreated Cl/H treated merino wool as the base fibre, 

cross sectional SEM micrographs show the nanoparticles in these materials to reside 

preferentially at the fibre surface rather than being dispersed throughout the centre, appearing 

to be lodged in the Hercosett polymer encapsulating the fibres (Figure 5.59). 

 

10 µm 

10 µm 

1 µm 

1 µm 

100 nm 

100 nm 
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Figure 5.59: Cross sectional SEM micrograph of a gold nanoparticle-merino wool composite prepared by 

soaking KOH pre-treated Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4 

 M) Au
3+

 solution for 24 

hours at RT, followed by ageing at 50 ºC for 168 hours. 

 

During the production of these composite materials, gold nanoparticles were formed in the 

reaction solution during ageing.  This was evidenced by the development of a deep pink 

colour in the reaction solution.  Figure 5.60 offers TEM micrographs of such ageing solutions 

that had been evaporated on a copper TEM grid.  It is clear from these micrographs that 

nanoparticles had formed in solution.  These nanoparticles were spherical or five-fold 

twinned in morphology, ranging in size from approximately 5-20nm in diameter. 

 

  

Figure 5.60: TEM micrographs of the gold nanoparticles formed in solution when ageing KOH treated 

Cl/H treated merino wool. 
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5.1.6 Untreated Worsted Combed Top 

 

Employing merino wool prepared via the worsted processing route as the base substrate in 

the production of gold nanoparticle-merino wool composites produced materials that were 

less intense and more spectrally impure in colour relative to their analogous materials 

prepared with merino processed via the semi-worsted route (Figure 5.61). 

 

 

Figure 5.61: Gold nanoparticle-merino wool composites prepared with untreated semi-worsted merino 

wool (top) or worsted merino wool (bottom). Samples were soaked in a 160 ppm Au
3+

 (8.13 x 10
-4

 M) 

solution for 24 hours at RT, followed by ageing at 50 °C for 24–168 hours. 

 

Comparing SEM micrographs of gold nanoparticle-merino wool composites prepared with 

worsted merino wool to those employing semi-worsted merino wool reveals the former to 

possess less gold nanoparticles than the latter.  The nanoparticles are of comparable size, 

approximately 20–30 nm in diameter, and appear to be spherical in morphology (although 

five-fold twinned particles are not discernable at the resolutions offered in SEM, they cannot 

be ruled out as they are the common morphological form of gold seen in the gold 

nanoparticle-merino wool composites) (Figure 5.62).  Additionally, compared to composites 

incorporating semi-worsted merino wool, there are also areas of agglomerated nanoparticles 

(confirmed by EDS analysis (Figure 5.63)).  The decreased amount of nanoparticles, and the 

presence of agglomerated particles would account for the less intense and spectrally impure 

colour of these composite materials. 
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Figure 5.62: Top and bottom: Increasing magnification SEM micrographs of a gold nanoparticle-merino 

wool composite employing worsted merino wool. Composite prepared by soaking merino wool in a 160 

ppm Au
3+

 (8.13 x 10
-4

 M) solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours. 

  

Figure 5.63: SEM micrograph (left) and the corresponding Au EDS map (right), of a gold nanoparticle-

merino wool composite employing worsted merino wool. Composite prepared by soaking merino wool in 

a 160 ppm Au
3+

 (8.13 x 10
-4

 M) solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours. 

 

The chemical composition of worsted and semi-worsted merino wool is the same, so it is 

unlikely that the decreased amount of nanoparticles formed in the gold nanoparticle-merino 

wool composites incorporating worsted merino wool arose due to irregularities in its 

chemical composition.  Uptake studies (see section 5.4) show that the absorption of Au
3+

 by 

worsted and semi-worsted merino wool is similar, thus the limited colour development of the 

1 µm 

10 µm 

1 µm 

1 µm 

100 nm 
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composites prepared from worsted merino wool was likely related to the reduction of Au
3+

 to 

nanoparticulate Au
0
.  The worsted and semi-worsted merino wools are of comparable 

diameters, notably 22.4 and 22.2 µm respectively so the difference in their ability to reduce 

Au
3+

 is not due to a concentration effect (discussed in section 5.1.2.5 and section 5.6). 

 

As discussed in section 1.2.2.1.4, the principal differences between the semi-worsted and 

worsted processing routes are the number of steps involved and hence the requirements of the 

systems in terms of lubrication.  The worsted processing route is more complex than the 

semi-worsted route, involving additional steps and as such it utilises a greater amount of 

lubricants (of different types, see section 1.2.2.1.4).  In both systems, lubricants are applied 

in 0.8–3 wt %, and unless the wool is re-scoured following processing, these lubricants 

remain on the wool surface.  This affects the surface properties of the processed wool, and 

hence wools which have been processed via the worsted or semi-worsted systems may differ 

in their surface chemistry.   

 

As such, it is likely that the decreased ability of merino wool processed via the worsted route 

to facilitate the reduction of Au
3+

 to nanoparticulate Au
0
 may be due to the presence of 

lubricants on the fibre surface.  To investigate whether this was the case, worsted merino 

wool fibres were pre-treated prior to addition to the Au
3+

 solution in an attempt to remove 

such lubricants.  This involved cleaning the fibres by Soxhlet extraction in a 2:1 mixture of 

chloroform/methanol for 5 hours (as described in section 2.2.2.3.1).  Figure 5.64 offers a 

picture of the composite materials prepared from such Soxhlet extracted cleaned fibres, and 

compares them to the corresponding materials prepared from untreated worsted merino wool.  

It is apparent that the colour of the composites incorporating the Soxhlet extracted fibres are 

much more developed, intense and spectrally pure relative to the composites prepared with 

untreated fibres, and are comparable in colour to the corresponding materials prepared from 

semi-worsted merino wool (Figure 5.36).  This suggests that the presence of the lubricants on 

the surface of the worsted fibres adversely affected the ability of the wool to reduce Au
3+

 to 

nanoparticulate Au
0
.  Additionally it is likely that agglomerations of nanoparticles formed as 

the lubricants may have obstructed the contact between the nanoparticles and wool fibres, 

thus hindering the stabilisation effect imparted to the nanoparticles by the proteins in the 

wool, resulting in increased agglomeration of these nanoparticles. 
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Figure 5.64: Gold nanoparticle-merino wool composites prepared from Soxhlet treated worsted merino 

wool (top) and untreated worsted merino wool (bottom). Prepared by soaking in a 160 ppm Au
3+

 (8.13 x 

10
-4

 M) solution for 24 hours at RT, followed by ageing at 50 °C for 24 of 168 hours. 

 

5.2 Colour 

 

The colour of the gold nanoparticle-merino wool composites prepared through utilisation of 

the redox active nature of the proteins present in merino wool was characterised through 

UV/Vis spectroscopy and via analysis of their CIE L*, a*, b*, 457 nm brightness and 580 nm 

brightness values.  A comprehensive set of CIE values are offered in Appendix II.  In 

general, an increase in the amount of similarly sized nanoparticles (both on the surface and 

within the centre of fibres) corresponded to a change in composite colour from pale pink to 

pink, purple, light grey to steely grey.  This suggests that as with the gold nanoparticle-

merino wool composites prepared via the seed mediated approach (section 8.1.3.2), the 

change in reflected colour of these materials was initially due to an increase in the 

concentration of similarly sized nanoparticles followed by an increase in particle size, and 

extent of agglomeration. 

 

Various factors influenced the colour of the resultant composites, including the ageing time, 

soaking and ageing solution composition (including pH), ageing temperature, the Au
3+

 

concentration, fibre pre-treatments and processing routes.  As mentioned, the CIE L*, a*, b*, 

457 nm brightness and 580 nm brightness values of the composites reflected these changes, 
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in particular the a* and b* values.  The CIE a* value indicates the colour of a sample 

between red (positive a* values) and green (negative a* values), whilst b* values indicate 

yellow (positive b*) or blue (negative b*) hues.  Therefore by monitoring the measured a* 

and b* values of prepared gold nanoparticle-merino wool composites, the colour 

development observed by the eye may be confirmed. 

 

When employing a Au
3+

 concentration of 160 ppm (8.13 x 10
-4

 M), increasing the ageing 

time from 24 to 168 hours resulted in a change in composite colour from light pink to pink 

and finally purple.  This colour change was reflected in the CIE L*, a* and b* values of the 

composite materials.  Increasing the ageing time from 24 to 168 hours saw a gradual increase 

in a* values, and a corresponding decrease in b* values of the produced materials, with the 

greatest changes occurring between 72 and 168 hours ageing (Figure 5.65).  These changes 

correspond to the observed colour change from pink to increasingly deeper shades of pink to 

purple induced with prolonged ageing times.  

 

 

Figure 5.65: Changes in the a* and b* CIE values of gold nanoparticle-merino wool composites induced 

with increasing ageing time at 50 ° C. 
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In addition to the ageing time, the composition of the soaking and ageing solutions 

influenced the colour of the resultant materials.  Soaking and ageing in solutions of lower 

ionic strength than the original Au
3+

 soaking solution produced materials that were less 

intense and spectrally pure than their corresponding materials which employed the original 

Au
3+

 soaking and ageing solution.  This observed decrease in colour intensity was reflected 

in the a* and b* values of the composites, which on average were lower and higher 

respectively (Table 5.4, and Appendix II).  Alternatively, employing soaking and ageing 

solutions of increased ionic strength, for example 0.1 M NaCl or MgCl2 initially produced 

composite materials that were more vibrant in colour.  However a deep, regal purple colour 

was not obtainable in these systems.  These vibrant colours, and also the failure to produce 

the deep purple coloured composites was reflected in comparisons of the the a* and b* 

values of the materials, with those utilising 0.1 M NaCl soaking and ageing solutions initially 

exhibiting higher and lower a* and b* values respectively compared to materials prepared 

with the original Au
3+

 soaking and ageing solutions.  However after 168 hours of ageing, 

these values did not increase and decrease to such an extent as those of the materials aged in 

the original Au
3+

 soaking solution (Figure 5.66, Table 5.4). 

 

 

Figure 5.66: CIE a* and b* values of gold nanoparticle-merino wool composites utilising the original Au
3+

 

soaking solution or 0.1 M NaCl as the ageing solution. 
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Table 5.4: CIE a* and b* values for gold nanoparticle-merino wool composites prepared from alternate 

ageing solutions. Employing a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, a soaking time, at RT of 24 hours 

and ageing times at 50 °C of 24-168 hours. 

Ageing 
Solution 

Ageing Time 
(hours, 50 °C) 

a* b* 

Original Au
3+

 
soaking 
solution 

24 3.9 4.6 

48 5.5 3.4 

72 7.6 3.2 

168 14.8 0.4 

H2O 24 3.3 4.6 

 168 5.8 5.3 

40 µL 0.1 M 
HCl → 10ml 

H2O 

24 3.6 5.1 

168 5.7 4.6 

40 µL 0.1 M 
NaCl → 10ml 

H2O 

24 3.3 4.9 

168 5.8 4.9 

0.1 M NaCl 24 3.2 2.4 

 48 6.6 -0.5 

 72 5.0 1.6 

 168 6.1 1.1 

 

The ageing temperature also influenced the colour of the resultant gold nanoparticle-merino 

wool composites, with temperatures of greater than 50 °C producing spectrally impure 

materials whose colour was less intense than the corresponding materials prepared with an 

ageing temperature of 50 °C.  This variation in colour, induced by different ageing 

temperatures was confirmed in the CIE a* and b* values, which on average were lower and 

higher respectively than the corresponding composites prepared at 50 °C (Figure 5.67, and 

Appendix II). 
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Figure 5.67: Changes in the a* and b* CIE values of gold nanoparticle-merino wool composites induced 

with different ageing temperatures. 

 

As mentioned above, increasing the Au
3+

 concentration from approximately 80 to 160 ppm 

(4.06 x 10
-4

 – 8.13 x 10
-4

 M respectively) did not alter the hue of the resultant composites, 

rather it intensified their pink or purple colour.  With a soaking time, at RT, of 24 hours, and 

an ageing time, at 50 °C, of 168 hours, increasing the Au
3+ 

concentration from 80 to 160 ppm 

saw the production of more intense purple coloured materials, and this was reflected in the a* 

and b* values of the composites, with those prepared with higher Au
3+

 concentrations 

possessing higher a* and lower b* values (Figure 5.68, and Appendix II). 
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Figure 5.68: Changes in the a* CIE values of gold nanoparticle-merino wool composites prepared with 

increasing Au
3+

 concentrations. 

 

Altering the pH of both the soaking and ageing solutions influenced the colour of the 

resultant composite materials.  Increasing the pH of the soaking solutions (whilst the 

absorption of Au
3+

 was occurring) was detrimental on colour development, producing murky, 

spectrally impure coloured materials, which even after 168 hours ageing at 50 °C, were very 

under-developed with respect to colour.  The CIE a* and b* values of these materials 

reflected their under developed colour, as compared to materials prepared with a soaking 

solution of pH 2.7, the a* and b* values were lower and higher respectively (Table 5.5 below 

and Appendix II). 

 

Table 5.5: CIE a* and b* values of gold nanoparticle-merino wool composites, prepared with a gold 

concentration of 160 ppm (8.13 x 10
-4

 M), soaking time of 24 hours and ageing time, at 50 °C of 168 h . 

Shows the effect of the soaking solution pH 

Soaking 
Solution pH 

a* b* 

2.7 14.8 0.4 

7 3.7 7.6 

9 4.8 5.9 
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Alternatively, increasing the pH of the ageing solutions acted to increase the rate of reduction 

of Au
3+

 to nanoparticulate Au
0
, subsequently accelerating colour development in such 

materials.  Comparing the CIE values of composites prepared in ageing solutions of pH 4, 7 

or 9 to those prepared with ageing solutions of pH 2.7, (the pH of the typical 160 ppm Au
3+

 

(8.13 x 10
-4

 M) solution) confirms the increased speed of the reduction of Au
3+

 to 

nanoparticulate Au
0
 and subsequent colour development (Appendix II).  Figure 5.69 and 

Figure 5.70 offer graphs of a* and b* against time respectively for composites prepared from 

ageing solutions of various pHs.  It can be seen that increasing the pH of the ageing solution 

to a maximum of pH 9 increases the rate of colour development, with higher a* values 

(reflective of redder materials) achieved in shorter time periods.  Similar trends were 

observed in the b* values, however these fell rather than rose, reflecting the development of 

the purple colour observed in the composite materials.  Employing an ageing solution with a 

pH of 12 produced yellow coloured materials, and this is reflected in b* values of these 

materials, as they are much higher than the corresponding materials prepared with ageing 

solutions of pH < 9. 

 

 

Figure 5.69: Changes in the a* CIE values of gold nanoparticle-merino wool composites prepared with 

ageing solutions of elevated pH. 
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Figure 5.70: Changes in the b* CIE values of gold nanoparticle-merino wool composites prepared with 

ageing solutions of elevated pH. 

 

Pre-treating semi-worsted merino wool prior to addition to the Au
3+

 soaking solution also 

influenced the colour of the composites.  Both acid and base pre-treatments markedly 

reduced the ability of the wool to facilitate the reduction of Au
3+

 to nanoparticulate Au
0
, 

producing materials that did not differ to a great extent in colour from the base merino wool 

fibres.  Compared to composites prepared with untreated merino wool, the CIE L* values 

(which measure a materials degree of lightness) of materials incorporating either acid or base 

treated merino wool were higher.  Additionally, the a* and b* values were lower and higher 

respectively, verifying the less pronounced purple colour of the composites prepared from 

acid or base treated merino wool (Table 5.6). 

 

In addition to employing pre-treated merino wool as the base fibre, employing Cl/H treated 

semi-worsted merino wool also influenced the colour of the resultant composite materials, 

resulting in the production of much less intensely coloured composites.  Comparing the CIE 

a* and b* values of such materials to their analogues incorporating untreated semi-worsted 

merino illustrates this (Table 5.7, and Appendix II).  The a* values of the Cl/H composites 

were lower than the corresponding materials prepared from untreated merino wool, 
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Table 5.6: CIE L*, a* and b* values of gold nanoparticle-merino wool composites prepared from HCl or 

KOH/EtOH pre-treated merino wool (top three data rows) and untreated merino wool (bottom data 

row). 

 Pre-treatment 

 HCl KOH/EtOH HCl KOH/EtOH HCl KOH/EtOH 

Pre-treatment 
Time (mins) 

L* a* b* 

5 62.1 63.4 3.1 3.3 8.1 7.2 

10 63.7 65.9 3.3 2.2 6.9 7.8 

30 65.8 71.7 2.9 3.8 7.1 7.2 

0 (no pre-
treatment) 

45.7 14.8 0.4 

 

Table 5.7: CIE a* and b* values of gold nanoparticle-merino wool composites prepared from Cl/H 

treated and untreated merino wool 

   a* b* 

Gold Conc. 
(M) 

Soak Time 
(Hours, RT) 

Heat Time 
(Hours, 50 ºC) 

Cl/H 
Treated 

Untreated Cl/H 
Treated 

Untreated 

4.06 x 10
-4

 
(80 ppm) 

24 24 0.3 3.8 7.7 5.7 

 48 0.6 8.8 8.1 3.1 

  72 1.9 3.3 9.3 4.6 

  168 5.6 11.7 7.6 2.1 

6.09 x 10
-4

 
(120 ppm) 

24 24 -0.2 4.6 8.1 5.9 

 48 1.3 6.0 10.1 3.0 

  72 1.7 8.2 8.9 3.2 

  168 7.3 12.3 6.5 1.4 

8.13 x 10
-4

 
(160 ppm) 

24 24 0.4 3.9 8.5 4.6 

 48 2.1 5.5 9.3 3.4 

  72 2.4 7.6 8.7 3.2 

  168 7.4  7.6  

 

confirming the markedly less intense pink and purple colour of the former materials.  

Additionally the b* values of the Cl/H composites were higher than the corresponding 
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materials prepared from untreated merino wool, again reflecting the decreased intensity of 

the pink and purple colour of the Cl/H materials. 

 

Base treating the Cl/H treated semi-worsted merino wool dramatically increased the colour 

intensity of the resultant materials, producing vibrant pink or purple coloured composites 

depending on the Au
3+

 concentration and ageing time.  This was illustrated by comparing the 

a* and b* values of the two sets of materials, which were higher and lower respectively.  

Additionally, the L*, 457 nm and 580 nm brightness values of the materials prepared with 

base treated Cl/H treated merino wool were higher than the values obtained when using 

untreated Cl/H treated merino wool, confirming the observed increased brightness of the 

former materials (Table 5.8, and Appendix II).  

 

Table 5.8: CIE L*, a* and b* values of gold nanoparticle-merino wool composites prepared from 

untreated or base treated Cl/H treated merino wool. Employing a Au
3+

 concentration of 160 ppm (8.13 x 

10
-4

 M) and a soaking time, at RT of 24 hours. 

 a* b* L* 

Heat Time (Hours, 
50 °C) 

Untreated Base 
Treated 

Untreated Base 
Treated 

Untreated Base 
Treated 

24 0.4 6 8.5 7 76.6 72 

48 2.1 7 9.3 7 69.4 74 

72 2.4 7 8.7 6 70.0 74 

168 7.4 8 7.6 4 57.6 76 

 

The processing route employed when preparing the merino wool fibres also influenced the 

colour of the composite materials.  Utilising worsted merino wool in place of semi-worsted 

merino wool decreased the intensity and clarity of the resultant materials.  The CIE a*, b* 

and brightness values reflect this (Appendix II).  After 168 hours ageing, the a* value of 

materials incorporating worsted merino wool had only increased from -1.3 (for untreated 

worsted merino wool) to 5.6, whilst those prepared with semi-worsted merino wool increased 

from -0.8 (for untreated semi-worsted merino wool) to 14.8, reflecting the decreased redness 

of the former materials.  Additionally, the b* values (with higher values denoting a more 
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yellow hue and lower blue) of composites prepared from worsted merino wool were higher 

than the corresponding materials prepared from semi-worsted merino wool, verifying the 

observation that worsted merino wool produced materials that were less purple in colour than 

did semi-worsted merino wool (Figure 5.71).  Comparing the 457 and 580 nm brightness 

values of composites prepared from worsted or semi-worsted merino wool also illustrated 

this, with the brightness values of the worsted materials being higher and closer to that of the 

untreated merino wool (Figure 5.72). 

 

 

Figure 5.71: Changes in CIE a* and b* values of gold nanoparticle-merino wool composites 

incorporating worsted or semi-worsted merino wool. 
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Figure 5.72: Changes in CIE 475 and 580 nm brightness values of gold nanoparticle-merino wool 

composites incorporating worsted or semi-worsted merino wool. 

 

Cleaning the worsted merino wool fibres via Soxhlet extraction prior to addition to the Au
3+

 

soaking solution resulted in the production of much more intense, spectrally pure coloured 

composites.  Comparing the CIE a* and b* values of the composites prepared from Soxhlet 

treated worsted merino wool and untreated worsted merino wool confirmed this (Appendix 

II).  The composites incorporating the Soxhlet treated fibres exhibited higher a* values and 

lower b* values than the corresponding untreated composites (Table 5.9).  As higher a* and 

b* values depict redder and bluer material respectively, these changes confirm the observed 

deeper purple colour of the composites prepared from Soxhlet treated materials. 

 

Table 5.9: CIE a* and b* values for gold nanoparticle-merino wool composites prepared from Soxhlet 

treated worsted merino wool and untreated worsted merino wool. 

Ageing Time (hours, 
50 °C) 

24 hours 168 hours 

Base Fibre Soxhlet 
Treated 

Untreated Soxhlet 
Treated 

Untreated 

a* 5.3 4.6 9.8 5.6 

b* 6.8 5.1 0.4 2.4 
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The colour change in the composites and the relationship between the size and shape of the 

nanoparticles bound to the merino wool fibres was also shown in SEM analysis, TEM 

analysis and UV/Vis spectroscopy.  In general, progressing through the colour spectrum from 

light pink to pink and pink to a deep, regal purple initially saw an increase in the 

concentration of similarly sized spherical and five-fold twinned nanoparticles (approximately 

20-25 nm) on the fibre surface, followed by the formation of smaller, (approximately 5-10 

nm in diameter) spherical nanoparticles in the fibre centre (Figure 5.73). 

 

  

  

Figure 5.73: Gold nanoparticle-merino wool composites, showing the relationship between the pink and 

purple colour of these materials and the size, shape and distribution of the gold nanoparticles. In the pink 

coloured materials the nanoparticles are located predominantly at the cuticle edges, whilst in the purple 

materials the nanoparticles spread slightly across the fibre surface. The purple materials also possess 

smaller nanoparticles (approximately 5-10 nm in diameter) in the fibre centre. 

 

This change in colour from light pink through increasingly deeper shades of pink to purple 

with increased ageing time was reflected in the Kubelka Munk transformed UV/Vis 

reflection spectra of the composites (Figure 5.74).  Increasing the ageing time at 50 °C from 

1 µm 

1 µm 
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24 to 72 hours saw the gradual increase in intensity of the peak centred at 541 nm.  This 

position of this peak is in the range expected for spherical or five-fold twinned gold 

nanoparticles approximately 20-25 nm in diameter, and as such agrees with the SEM and 

TEM observations made in section 5.1.1.2.2 above.  Increasing the ageing time further to 168 

hours saw a dramatic increase in intensity of this peak, and also a slight broadening.  The 

increase in intensity of this peak corresponds to the formation of a greater number of 

similarly sized nanoparticles on the fibre surface, whilst the broadening is likely 

representative of the range of particle sizes present in the purple coloured composites, due to 

the formation of smaller, approximately 5-10 nm in diameter, nanoparticles in the fibre 

centres.  

 

 

Figure 5.74: Kubelka Munk transformed UV/Vis reflection spectra of light pink to purple coloured gold 

nanoparticle-merino wool composites. 

 

The grey colours observed in composites prepared with no soaking at RT, and very high Au
3+

 

concentrations arose due to the formation of slightly larger gold nanoparticles, and also the 

presence of agglomerates, with nanoparticles forming on the fibre surface rather than in the 

centre.  Typically, lighter grey coloured materials possessed both five-fold twinned 

nanoparticles (approximately 30-40 nm in diameter) and triangular and truncated triangular 

nanoplates (approximately 50-100 nm in diameter) (Figure 5.75 top), whilst in the darker 

nm 
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grey materials, these particles were larger, approximately 50-60 nm and 100 nm in diameter 

respectively (Figure 5.75 bottom).  Both exhibited agglomerated nanoparticles, however 

these were more pronounced in the darker grey composites.  The presence of the 

agglomerated nanoparticles greatly increased the full width at half maximum of the plasmon 

peaks in the Kubelka Munk transformed UV/Vis spectra of the composites, and a new peak, 

reported to be due to the longitudinal plasmon band of anisotropic nanoparticles such as 

triangular nanoplates,[211] was seen at approximately 708 nm (Figure 5.76). 

 

  

  

Figure 5.75: Gold nanoparticle-merino wool composites, showing the relationship between the light (top) 

and dark (bottom) grey colour of these materials and the size, shape and distribution of the gold 

nanoparticles. These materials possess gold nanoparticles in a range of sizes and shapes, with 

agglomerations seen. 

1 µm 100 nm 

100 nm 1 µm 
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Figure 5.76: Kubelka Munk transformed UV/Vis reflection spectra of light pink to purple and grey 

coloured gold nanoparticle-merino wool composites. 

 

Agglomerated nanoparticles were also evident in materials that had been prepared without 

soaking in Au
3+

 prior to ageing, and were a common morphological feature of murky, 

spectrally impure coloured composites (Figure 5.77 top).  Alternatively, vibrant coloured 

materials possessed a high concentration of isolated nanoparticles, present preferentially at 

the surface of the fibre, rather than in the centre.  This was the case for composites prepared 

with a soaking and ageing solution of increased ionic strength, and a short (24 hour) ageing 

time, with these nanoparticles being spheres approximately 20-30 nm in diameter (Figure 

5.77 middle).  Additionally, base treated Cl/H treated materials also produced very vibrant 

coloured composites (although these colours were non-uniform) with the vibrant coloured 

fibres possessing an extremely high concentration of spherical nanoparticles, approximately 

10-20 nm in diameter, located across the fibre surface (Figure 5.77 bottom). 

 

 

nm 
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Figure 5.77: Gold nanoparticle-merino wool composites, showing the relationship between the spectrally 

impure and vibrant colour of these materials and the size, shape and distribution of the gold 

nanoparticles. 

 

The yellow colour of composites prepared with ageing solutions of pH 12, arose due to 

precipitated Au(OH)3, rather than nanoparticulate Au
0
.  This was present as large, amorphous 

deposits on the surface of the merino wool fibres (Figure 5.78). 

 

1 µm 1 µm 

1 µm 1 µm 

1 µm 100 nm 
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Figure 5.78: Gold nanoparticle-merino wool composites, showing the relationship between the yellow 

colour of these materials and the size, shape and distribution of the gold, here present as amorphous 

Au(OH)3. 

 

5.3 Confirmation of Gold 

 

The presence of gold in the gold nanoparticle-merino wool composites prepared using the 

reducing nature of the proteins within the fibre was first suggested with SEM backscatter, 

and subsequently confirmed with EDS and XPS analysis.  As an example, Figure 5.79 shows 

SEM micrographs of two gold nanoparticle-merino wool composite prepared by soaking 

either untreated, semi-worsted merino wool (top) or base treated Cl/H treated merino wool 

(bottom) in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing 

at 50 °C for 24 hours or 168 hours respectively.  The micrographs on the left are viewed 

under secondary electron conditions, whilst the ones on the right are viewed under back 

scatter conditions.  The intensity of the backscatter signal is directly related to atomic 

number, with heavier elements reflecting more signal than lighter elements and thus 

appearing brighter, or whiter.  As such, when viewed under backscatter conditions, the gold 

nanoparticles, which have higher atomic numbers than the main constituents of merino wool, 

notably C, S, N and O, should appear much brighter.  Comparing the micrographs on the left 

and right in Figure 5.79 shows this to be the case as the nanoparticles that are weakly evident 

when viewed under secondary electron conditions become increasingly apparent in back 

scatter conditions, appearing as bright white dots. 

 

The presence of gold, as suggested by back scatter SEM was confirmed by EDS mapping and 

elemental analysis.  Figure 5.80, 5.82, 5.84 and 5.86 offer SEM and corresponding gold  

1 µm 
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Figure 5.79: SEM micrographs of a gold nanoparticle-merino wool composite viewed under secondary 

electron (left) and back scatter conditions (right). Prepared by soaking untreated semi-worsted merino 

wool (top) or base treated Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 

hours at RT, followed by ageing at 50 °C for 24 or 168 hours respectively. 

 

EDS maps of gold nanoparticle-merino wool composites prepared by soaking untreated 

semi-worsted merino wool in various Au
3+

 solutions for 0 or 24 hours at RT, followed by 

ageing at 50 or 80 °C for 24-168 hours.  High concentrations of gold are depicted in bright 

white or red areas, and correspond to the areas where gold nanoparticles are seen in the 

corresponding SEM micrographs, confirming the bright white dots (spherical or five-fold 

twinned particles) and triangular nanoplates evident on the various composite materials to be 

gold.  These nanoparticles were generally found along the cuticle edges of the fibre, however 

when Cl/H treated and base treated Cl/H treated merino wool was employed as the substrate, 

there was a high concentration of gold uniformly spread across the surface of the fibre 

(Figure 5.88).  Additionally, Figures 5.81, 5.83, 5.85, 5.87 and 5.89 offer spectral snap shots 

of the areas under analysis, and substantiate the presence of gold due to the existence of the 

gold peaks. 
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Figure 5.80: SEM and corresponding gold EDS map of a gold nanoparticle-merino wool composite 

prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 

24 hours at RT, followed by ageing at 50 °C for 24 hours. 
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Figure 5.81: EDS spectrum of the gold nanoparticle-merino wool composite shown in Figure 5.80. 
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 Au M 2.0 µm  

Figure 5.82: SEM and corresponding gold EDS map of a gold nanoparticle-merino wool composite 

prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 

24 hours at RT, followed by ageing at 50 °C for 168 hours. 

 

Figure 5.83: EDS spectrum of the gold nanoparticle-merino wool composite shown in Figure 5.82. 
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Figure 5.84: SEM and corresponding gold EDS map of a gold nanoparticle-merino wool composite 

prepared by soaking untreated semi-worsted merino wool in a 960 ppm (4.87 x 10
-3

 M) Au
3+

 solution for 

24 hours at RT, followed by ageing at 50 °C for 24 hours. 
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Figure 5.85: EDS spectrum of the gold nanoparticle-merino wool composite shown in Figure 5.84. 
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 Au M 1.0 µm  

Figure 5.86: SEM and corresponding gold EDS map of a gold nanoparticle-merino wool composite 

prepared by soaking untreated semi-worsted merino wool in a 1040 ppm (5.28 x 10
-3

 M) Au
3+

 solution for 

24 hours at RT, followed by ageing at 50 °C for 24 hours. 

 

Figure 5.87: EDS spectrum of the gold nanoparticle-merino wool composite shown in Figure 5.86. 
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 Au M 10 µm  

Figure 5.88: SEM and corresponding Au EDS micrograph of a gold nanoparticle-merino wool composite 

prepared by soaking KOH Cl/H treated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 

solution for 24 hours at RT, followed by ageing at 50 °C for 24 hours. 

 

 

Figure 5.89: EDS spectrum of the gold nanoparticle-merino wool composite shown in Figure 5.88. 
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Scanning transmission electron microscopy (STEM), which relative to SEM, offers increased 

resolution, additionally confirmed the nanoparticles on the gold nanoparticle-merino wool 

composites to be gold.  Figure 5.90 offers a TEM micrograph of a composite material 

prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 

solution for 24 hours at RT, followed by ageing at 50 °C for 24 hours.  The corresponding 

Au STEM map shows that where the nanoparticles are located, there are very high 

concentrations of gold (depicted in bright green/white).  These STEM micrographs are 

typical of all gold nanoparticle-merino wool composites produced. 

 

BF 100 nm  Au M 100 nm  

Figure 5.90: TEM and corresponding Au STEM micrograph of a gold nanoparticle-merino wool 

composite prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 

solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours. 

 

XPS, which combines elemental peak areas with relative sensitivity factors (Au 17.12, 

section 2.3.6) provided quantitative analysis of the elemental composition of the top 10 nm of 

the gold nanoparticle-merino wool composites (the depth from which photo electrons 

generated during the XPS process are able to return), and additionally XPS confirmed the 

presence of gold (Figure 5.91, Table 5.10).  The amount of gold present in the composites 

was dependent upon the fibre substrate and amount of Au
3+

 employed.  When incorporating 

untreated semi-worsted merino wool, a Au
3+

 concentration of 160 ppm (8.13 x 10
-4

 M) and 

an ageing time of 24 or 168 hours, the resultant composites contained 0.21 or 0.27 % gold 

respectively.  The amount of gold present in composites prepared from untreated worsted 

merino wool was similar, notably 0.28 or 0.33 %.  However when employing Cl/H treated 

merino wool as the fibre substrate, the amount of gold present in the resulting composites 
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was considerably less, notably 0.05 % (prepared with a Au
3+

 of 160 ppm (8.13 x 10
-4

 M) and 

ageing time of 168 hours).  Base treating these fibres increased the amount of gold in the 

resultant composites to 0.78 %.  

 

  

  

  

Figure 5.91: Wide XPS scans of gold nanoparticle-merino wool composites prepared by soaking 

untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by ageing at 50 °C for (a) 24 hours or (b) 168 hours. (c and d) are analogues of (a) and (b) 

however untreated worsted merino wool was used as the fibre substrate. (e and f) Composite prepared by 

Cl/H treated semi-worsted merino wool (e) or base treated Cl/H treated merino wool (f) in a 160 ppm 

(8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours. 

Si 2p Si 2p 
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Table 5.10: Amount of gold present on or near the the surface of gold nanoparticle-merino wool 

composites prepared with a Au
3+

 concentration of 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, a soaking time 

at RT of 24 hours and various ageing times. Determined by XPS. 

Fibre Substrate Ageing Time (hours, 50 °C) % Gold  
(± 10 %) 

Untreated semi-worsted merino 24 0.21 

 168 0.27 

Cl/H treated semi-worsted merino 168 0.05 

Base treated Cl/H treated semi-worsted merino 168 0.78 

Untreated worsted merino 24 0.28 

 168 0.33 

 

Examination of the deconvoluted, high resolution Au 4f spectra of the various composites 

showed the relative percentages of Au
3+

, Au
+
 (in the form of Au-S) and Au

0
 (Table 5.11).  

When employing untreated semi-worsted merino wool as the fibre substrate, a Au
3+

 

concentration of 160 ppm (8.13 x 10
-4

 M) and a soaking time, at RT, of 24 hours, increasing 

the ageing time from 0 to 24 hours and 24 to 168 hours saw a decrease in Au
3+

 from 55 % to 

44 % and 44 to 16 % respectively.  This decrease in Au
3+

 was accompanied by a 

corresponding increase in Au
+
 and Au

0
 from 42 and 3 % to 48 and 8 % respectively after 24 

hours ageing, and 74 and 10 % after 168 hours.  This decrease in Au
3+

 and subsequent 

increase in Au
+
 and Au

0
 with prolonged ageing is reflective of the increase in nanoparticle 

population with increasing ageing.  Alternatively, when the fibres were not soaked in Au
3+

 

solutions prior to ageing, the resultant composite materials possessed less Au
3+

 and more 

Au
0
.  As XPS is a surface technique, only analysing the top 10 nm of a sample, this suggests 

that not soaking in Au
3+

 prior to ageing resulted in the formation of more nanoparticles at the 

fibre surface, confirming the observations made by SEM analysis (section 5.1.2.1). 

 

Employing untreated worsted merino wool as the substrate in place of untreated semi-

worsted merino wool saw an increase in the amount of Au
3+

 present in the composites 

prepared with an ageing time of 24 hours.  This suggests less Au
3+

 had been reduced to 

nanoparticulate Au
0
.  Increasing the ageing time to 168 hours saw a decrease in Au

3+
 and a 

subsequent increase in Au
0
.  Comparing these values to those recorded in composites 
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incorporating untreated semi-worsted merino wool reveals the amount of Au
3+

 and Au
0
 to be 

greater in the worsted materials, and the amount of Au
+
 to be less.  SEM analysis showed the 

composites prepared from worsted merino wool to possess less nanoparticles relative to those 

prepared from semi-worsted merino wool, so the higher values of Au
3+

 are expected, 

although the larger amounts of Au
0
 are not, as SEM showed these materials to possess fewer 

nanoparticles.  However SEM also showed the materials prepared from worsted merino wool 

to possess a proportion of agglomerated nanoparticles.  The effective surface area of the 

agglomerates would be lower than isolated nanoparticles, and as such they would exhibit less 

Au
+
 (in the form of Au-S interactions occurring at the surface of the nanoparticles), behaving 

more as Au
0
, bulk gold.  This is discussed in greater detail in section 5.5.3 below. 

 

Similar trends were observed when incorporating Cl/H treated merino wool as the fibre 

substrate.  XPS showed there to be a greater percentage of Au
3+

 and Au
0
, and less Au-S 

relative to the composites utilising untreated semi-worsted merino wool as the base fibre.  

Again this is reflective of the dull, spectrally impure colour of these materials, due to the 

increased amount of agglomerates present on their surface.  Base treating the Cl/H treated 

merino wool decreased the amount of Au
3+

 and Au
0
, and increased the amount of Au-S, 

bringing the values closer to those reported in composites employing untreated merino wool.  

This confirms the smaller average size, and increased dispersity of the nanoparticles present 

in composites incorporating base treated Cl/H treated merino wool.  The form of the 

nanoparticles in all gold nanoparticle-merino wool composite materials is discussed in 

greater detail in section 5.5 below. 

 
Table5.11: Au 4f XPS assignments for gold nanoparticle-merino wool composites prepared with 160 ppm 

(8.13 x 10
-4

 M) Au
3+

 solutions. 

Fibre Substrate Soaking Time 
(Hours, RT) 

Ageing Time 
(Hours, 50 °C) 

% Au
0
  

(± 10 %) 
% Au

+
  

(± 10 %) 
(Au-S) 

% Au
3+

 
(± 10 %) 

Untreated semi-worsted 
merino wool 

24 0 3 42 55 

24 24 8 48 44 

  168 10 74 16 

 0 24 11 53 36 

  168 18 46 36 
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Fibre Substrate Soaking Time 
(Hours, RT) 

Ageing Time 
(Hours, 50 °C) 

% Au
0
  

(± 10 %) 
% Au

+
  

(± 10 %) 
(Au-S) 

% Au
3+

 
(± 10 %) 

Untreated worsted merino wool 24 24 0 32 68 

  168 18 40 42 

Cl/H treated merino wool 24 168 38 39 23 

Base treated Cl/H merino wool 24 168 31 51 18 

 

5.4 Extent of Gold Uptake by Merino Wool Fibres 

 

The uptake of gold by merino wool during the production of gold nanoparticle-merino wool 

composites was quantitatively analysed by atomic absorption (AA).  The procedure is 

provided in section 2.2.2.3.4 and 2.3.4.  However briefly, this was completed by measuring 

the amount of residual gold in solution following the removal of the merino wool fibres at 

defined times.  The uptake of gold by merino wool was influenced by the soaking 

(absorption) solution temperature, soaking solution pH and fibre pre-treatment.  

Comprehensive tables of uptake results are provided in Appendix III. 

 

When employing untreated semi-worsted merino wool as the fibre substrate, a Au
3+

 

concentration of 160 ppm (8.13 x 10
-4

 M) with a pH of 2.7, the absorption of gold was 

complete following one hour soaking at RT.  Increasing the temperature of the soaking 

solution to 50 °C increased the rate of absorption, so that the majority of gold was absorbed 

after approximately 20 minutes (Figure 5.92). 
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Figure 5.92: Gold uptake by untreated semi-worsted merino wool at RT or 50 °C. A Au
3+

 concentration 

of 160 ppm (8.13 x 10
-4

 M) with a pH of 2.7 was employed. 

 

Increasing the Au
3+

 concentration to 320 ppm (1.62 x 10
-3

 M) whilst keeping the 

wool:solution volume ratio constant (therefore adding greater amounts of Au
3+

) slightly 

increased the absorption rate, so that at room temperature the majority of gold was absorbed 

by the wool after approximately 40-50 minutes (Figure 5.93).  Similar effects were seen 

when increasing the Au
3+

 concentration by reducing the solvent volume (thus keeping the 

ratio of wool:amount of Au
3+

 constant) (Figure 5.94).  This is logical as increasing the Au
3+

 

concentration, either through the addition of more Au
3+

, or a reduction of the solvent volume, 

creates a greater concentration gradient at the solution/wool fibre interface, thus providing a 

greater driving force for the absorption of gold by merino wool. 

 

Increasing the pH of the Au
3+

 soaking solution to 5 or 7 dramatically decreased the rate of 

gold absorption by merino wool, to the extent that even following 24 hours soaking at RT 

only 66 %, 105 ppm and 94 %, 150 ppm of the gold had been absorbed in the pH 7 and 5 

systems respectively (Figure 5.95).  As mentioned previously, due to the presence of both 

amine and carboxylic acid groups, wool behaves in an amphoteric manner, displaying an 

isoelectric point of approximately 5.[222]  Therefore at pH 5, the surface charge of the wool 

fibre would be largely neutral, however at pH 7 it would possess a negative charge.  If gold 

was being absorbed in the form of Au
3+

, due to electrostatic attractions the absorption would 
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Figure 5.93: Gold absorption by untreated semi-worsted merino wool at RT, employing a Au

3+
 

concentration of 160, 200, 240, 280 or 320 ppm (8.13 x 10
-4

 M, 1.01 x 10
-3

, 1.22 x 10
-3

, 1.42 x 10
-3

 and 1.62 x 

10
-3

 M respectively) all with a pH of approximately 2.7. Shows the effect the Au
3+

 concentration has on 

absorption. 

 

Figure 5.94: Gold absorption by untreated semi-worsted merino wool at RT, employing Au
3+

 

concentrations in the range of 160-400 ppm, achieved with lower solvent volumes Shows the effect the 

Au
3+

 concentration has on absorption. 

 

be expected to increase with increasing pH.  However as it decreases with increasing pH, it is 

likely that it is AuCl4
-
 that is absorbed, as higher pHs induce a net negative charge at the 
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wool fibre surface, acting to electrostatically repel AuCl4
-
 and thus decrease the gold 

absorption rate. 

 

 

Figure 5.95: Gold absorption by untreated semi-worsted merino wool at RT. Shows the effect increasing 

the pH of the soaking solution has on absorption. 

 

In addition to adjusting the pH of the soaking solution, pre-treating the merino wool fibres 

prior to addition to the Au
3+

 solution also influenced the rate of absorption.  Pre-treating the 

fibres with dilute acid slightly increased the gold absorption rate (Figure 5.96).  This is likely 

due to additional amine groups on the surface of the wool fibre becoming protonated, thus 

increasing the positive charge at the wool fibre surface and therefore the electrostatic 

attraction between the wool fibre and negatively charged AuCl4
-
.  However pre-treating the 

merino wool fibres with a dilute alcoholic base solution (0.1 M KOH in EtOH), also acted to 

increase the rate of gold absorption (Figure 5.96), which is counterintuitive as base pre-

treating should act to de-protonate the wool fibre surface, inducing a more negative surface 

charge and thus lessening the electrostatic attraction between the wool fibre and AuCl4
-
, 

hence producing a slower absorption rate.  However as mentioned in section 5.1.4, in 

addition to de-protonating the surface of the wool fibre, dilute alcoholic alkaline solutions 

also remove the lipid layer from the surface of the merino wool.  Sterically this would allow 

for a greater ease of penetration of AuCl4
-
 into the wool fibres, and hence a faster absorption. 
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Figure 5.96: Gold absorption, at RT, of acid pre-treated, KOH/EtOH pre-treated and untreated semi-

worsted merino wool. 

 

Employing Cl/H treated semi-worsted merino wool in place of untreated merino wool as the 

fibre substrate, dramatically increased the absorption rate of gold by the wool fibres (Figure 

5.97).  This is likely due to both the highly cationic nature of the Hercosett polymer bound to 

the surface of the Cl/H treated fibres, and also its propensity to swell, swelling up to ten 

times its original volume when dispersed in water, thus making the absorption of the 

negatively charged AuCl4
-
 group increasingly facile as a result of both electrostatic 

attractions and steric ease.  Pre-treating Cl/H treated merino wool fibres with dilute KOH did 

not alter the gold absorption rate (Figure 5.97). 
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Figure 5.97: Gold absorption by untreated, Cl/H treated and KOH treated Cl/H treated semi-worsted 

merino wool at RT. 

 

Employing untreated worsted merino wool in place of untreated semi-worsted merino wool 

as the fibre substrate did not alter the rate of absorption of gold by the fibres, with the 

majority of gold being absorbed following 1 hour soaking at RT (Figure 5.98).  This suggests 

that the lubricants present on the surface of the worsted fibres did not influence or affect the 

absorption of gold, and the decreased colour intensity of the composites made from these 

fibres was due to the decreased ability of these materials to facilitate the reduction of Au
3+

 to 

Au
0
 nanoparticles. 

 

Considering the effect of the soaking/absorption solution pH and also fibre pre-treatments on 

the rate of gold absorption by wool, with faster absorptions occurring when the merino wool 

fibres possess a negative surface charge (and also when there is less steric hindrance 

imparted by lipids etc bound to the fibre surface) AuCl4
-
 rather than Au

3+
 is the likely gold 

species absorbed by merino wool. 
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Figure 5.98: Gold absorption by untreated worsted and semi-worsted merino wool at RT. 

 

5.5 Bonding of Gold Nanoparticles to Merino Wool Fibres 

 

As mentioned, keratin is the main constituent of merino wool fibres, and as such offers 

numerous sites through which the gold nanoparticles could potentially bond, particularly in 

the form of sulfur (thiol, disulfide) and or nitrogen (amine, amide etc) containing amino acid 

groups.  To investigate this bonding, EDS and XPS analysis of the produced composites was 

undertaken. 

 

5.5.1 Untreated Semi-Worsted Gilled Sliver 

 

Figure 5.99 offers the EDS spectrum of a gold nanoparticle-merino wool composite, and 

Figure 5.100 the cross sectional SEM and corresponding EDS micrographs.  This material 

was prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) 

Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours, and is typical of 

all composite materials prepared with a soaking time, at RT, of at least 24 hours.  The main 

elemental constituents of merino wool are present, notably carbon, nitrogen, sulfur and 

oxygen (Figure 5.99).  There are also low concentrations of chlorine, likely a residue of 
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AuCl4
-
.  As seen previously in section 5.3, gold is present both of the surface, and also 

throughout the centre of the merino wool fibres.  Of note is that where there are high 

concentrations of gold, there are also high concentrations of sulfur (indicated by bright pink 

or white areas in the Au and S EDS maps).  This is most apparent in the lower left hand 

quadrant of the wool fibre, which due to its relatively high sulfur content, can be identified as 

the paracortex.  Additionally, high resolution STEM micrographs also show that where there 

are high concentrations of gold, there are also high concentrations of sulfur (Figure 5.101).  

This overlay of gold and sulfur suggests a chemical affinity of gold for suflur in the wool, 

most likely in the main sulfur containing amino acids cysteine and cystine, and may indicate 

the bonding between the gold nanoparticles and wool to be via Au-S bonds. 

 

 

Figure 5.99: EDS spectrum of a gold nanoparticle-merino wool composite material prepared by soaking 

untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by ageing at 50 °C for 168 hours. 
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Figure 5.100: Cross sectional SEM micrograph and corresponding EDS micrographs of a gold 

nanoparticle-merino wool composite material, prepared by soaking untreated semi-worsted merino wool 

in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours. 

BF 100 nm  Au M 100 nm   

Figure 5.101: TEM and corresponding Au and S STEM micrographs of a gold nanoparticle-merino wool 

composite prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 

solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours. 

 

This gold-sulfur interaction was confirmed in XPS analysis of the gold nanoparticle-merino 

wool composites.  A complete list of peak assignments is provided in Table 5.12 below.  This 

interaction was particularly apparent when comparing the S 2p spectra of the composites to 
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that of the base fibre; untreated semi-worsted merino wool, and also through analysis of the 

Au 4f spectrum of the composite.  The S 2p spectrum of both untreated semi-worsted merino 

wool, and a composite prepared by soaking such wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 

solution for 24 hours at RT, followed by ageing at 50 °C for 24 or 168 hours shows peaks 

representative of the main sulfur containing groups (thiol groups of cysteine (-SH), and 

disulfide groups of cystine (S-S)) and cysteic acid (-SO3
-
 an oxidised form of sulfur) (Figure 

5.102).[172, 228]  Additionally, a new set of peaks centred at approximately 161.5 and 161.7 

eV, which were absent in the base merino wool appeared in the composite material.  This set 

of peaks is representative of a S-Au interaction,[217] and substantiate the chemical affinity of 

gold for sulfur suggested in EDS analysis.  Employing an ageing time of 168 hours saw an 

increase in the area of this peak, from 6 % to 9 %, reflective of the increased amount of 

nanoparticles which formed with increased ageing times (Table 5.12). 

 

  

  

Figure 5.102: a and c) high resolution S 2p XPS spectra of gold nanoparticle-merino wool composites 

prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 

24 hours at RT, followed by ageing at 50 °C for 24 or 168 hours respectively. b) and d) an overlay (in red) 

of untreated semi-worsted merino wool. 
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This Au-S interaction was also illustrated in the Au 4f spectra of the composite materials.  

Figure 5.103 offers the high resolution Au 4f XPS spectra of these materials.  The expected 

asymmetrical 7/2 and 5/2 peaks of Au
0
 are evident at ~ 84.0 and 87.6 eV respectively.  While 

the spacing between the two peaks matches that of the bulk metal, both have shifted to higher 

binding energies by approximately 1 eV.  This shift is believed to be due to the 

nanoparticulate nature of the gold particles, as when the size of the particle decreases, the d-

electron count also decreases resulting in reduced repulsive forces between the d-electrons 

and core electrons.[229-231]  Additionally, it has been reported that the hole produced from 

the XPS photoemission process is not effectively screened in nanoparticles, resulting in the 

positive shift in binding energy of nanoparticles relative to the bulk metal.[231]  This shift 

may also be due to the presence of S bound to the surface of the nanoparticles, as similar 

shifts to higher binding energies were observed for Au nanoparticles capped with 

cysteine.[217]  Opposite effects have been observed for nanoparticles capped with nitrogen 

containing groups.[201] 

 

  

Figure 5.103: High resolution Au 4f XPS spectra of gold nanoparticle-merino wool composites prepared 

by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours 

at RT, followed by ageing at 50 °C for 24 or 168 hours (a) and b) respectively). 

 

Additionally, broad peaks indicative of Au
3+

 were present at approximately 85.5 and 89.1 

eV, suggesting a percentage of unreduced Au
3+

.  However the predominant peaks are those 

indicating a Au-S bond, centred at approximately 85.0 and 88.6 eV.  Considering the relative 

percentages of Au
0
 and Au

+
 (in the form of Au-S), it is likely that the gold nanoparticles 

bound to the surface of the merino wool fibres possess Au
0
 cores, surrounded by Au

+
 ions 
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that bind to the wool fibre via Au-S bonds, most likely through the main sulfur containing 

amino acids cystine and cysteine (Figure 5.104).  Due to the limitations of XPS, in which the 

irradiating x-rays only penetrate the top 10 nm of a sample, the bonding between the 

nanoparticles residing in the centre of the fibre and the fibre cannot be proposed with as 

much certainty.  However as cross sectional EDS analysis showed areas of high 

concentrations of gold to correlate with areas of high concentrations of sulfur, it is likely that 

the bonding between the nanoparticles and merino wool fibre is the same regardless of the 

location of the nanoparticles (either on the surface or in the centre of the fibres). 

 

 

Figure 5.104: Schematic illustrating the proposed bonding of gold nanoparticles to merino wool fibres. 

 

Additionally there was no conclusive evidence of alternate forms of bonding, such as Au-N 

(through amine groups) or Au-O (through carboxylate groups) bonding.  This was seen 

through comparisons between the high resolution C 1s, N 1s and O 1s spectra of the 

composite materials and untreated semi-worsted merino, in which only slight differences in 

the N 1s spectra were discernable, with the C 1s and O 1s spectra remaining unchanged upon 

incorporation of the gold nanoparticles (Figure 5.105 and Figure 5.106).  There was a slight 

downward shift, and broadening in the peaks of both amine, imine and oxidised nitrogen 

(centred at approximately 400 and 401.9 eV respectively) in the N 1s spectra of the 

composites, suggesting the nitrogen groups may be slightly involved in bonding to the gold 

nanoparticles.  However, as was the case in the bonding between the merino wool fibres and 
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TSC or TA capped gold nanoparticles, a direct N-Au bond, illustrated by a peak centred at 

398.5 eV in the N 1s spectrum was not evident, nor was a C-N-Au bond, which would be 

expected to appear in the C 1s spectrum at 283.3 eV.  Additionally, if there were direct Au-N 

bonds, the Au
0
 peaks in the Au 4f spectra of the composites would be expected to shift to 

lower binding energies relative to bulk Au
0
 rather than higher.[201]  Therefore instead of 

reflecting a direct Au-N bond, the shifts in the nitrogen peaks are likely a result of the S 

atoms in the main S containing amino acids binding to the Au
0
 nanoparticles. 

 

  

  

  

Figure 5.105: High resolution XPS spectra of C 1s (a), N 1s (c) and O 1s (e) of a gold nanoparticle merino 

wool composite prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) 

Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 24 hours. b), d) and f) show an overlay 

or the corresponding C 1s, N 1s and O 1s spectra of untreated semi-worsted merino wool (in red). 
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Figure 5.106: High resolution XPS spectra of C 1s (a), N 1s (c) and O 1s (e) of a gold nanoparticle merino 

wool composite prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) 

Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours. b), d) and f) show an overlay 

or the corresponding C 1s, N 1s and O 1s spectra of untreated semi-worsted merino wool (in red). 
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Table 5.12: XPS assignments for untreated semi-worsted merino wool and gold nanoparticle-merino wool 

composites (prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 

solution for 24 hours at RT, followed by ageing at 50 °C for 24 or 168 hours). 

   Composite Materials 

  Merino Wool 24 h Ageing 168 h Ageing 

  Binding Energy (eV ± 0.2 eV) and Relative 
Percentage (± 10 %) 

C 1s C-C, C-H 285.00 (63 %) 285.00 (62 %) 285.00 (61 %) 

 C-O, C-N, C-S 286.20 (27 %) 286.13 (27 %) 286.01 (28 %) 

 C=O 288.30 (10 %) 288.30 (11 %) 288.35 (11 %) 

N 1s N-H, =N- 400.43 (88 %) 400.26 (81 %) 400.23 (92 %) 

 -N-O- 401.90 (12 %) 401.66 (19 %) 401.61 (8 %) 

O 1s Average O 
environment 

532.14 (86 %) 532.14 (70 )- 532.00 (92 %) 

 -OH 533.5 (14 %) 533.34 (30 %) 533.70 (8 %) 

S 2p Average S 
environment S3/2 

164.02 (62 %) 163.99 (50 %) 163.93 (40 %) 

 Average S 
environment S3/2 

165.20 (31 %) 165.17 (25 %) 165.11 (18 %) 

 SO3
-
3/2 168.44 (5 %) 168.21 (10 %) 168.16 (18 %) 

 SO3
-
1/2 169.62 (2 %) 169.39 (8 %) 169.34 (15 %) 

 S-Au3/2 — 161.52 (3 %) 161.53 (5 %) 

 S-Au1/2 — 162.70 (3 %) 162.71 (4 %) 

Au 4f Au
0
7/2 — 83.96 (3 %) 83.92 (4 %) 

 Au-S7/2 — 84.87 (26 %) 84.89 (32 %) 

 Au
3+

7/2 — 85.48 (28 %) 85.52 (21 %) 

 Au
0
5/2 — 87.63 (2 %) 87.58 (3%) 

 Au-S5/2 — 88.54 (20 %) 88.56 (24 %) 

 Au
3+

5/2 — 89.15 (21 %) 89.19 (16 %) 

 

Changing the reaction conditions, such as the soaking and ageing solution composition and 

soaking time did not alter the way in which the gold nanoparticles bound to the merino wool 

fibres; the bonding was still predominantly via Au-S bonds.  Figure 5.107 and Figure 5.108 

offer the high resolution S 2p, Au 4f, C 1s, N 1s and O 1s XPS spectra of gold nanoparticle-
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merino wool composites prepared with an ageing solution of altered pH (pH 12) and no 

soaking time respectively.  The peak assignments are summarised in Table 5.13.  The Au-S 

bonding was evidenced by the appearance of the peak‘s centred at approximately 161.70 and 

162.88 eV in the S 2p spectra of the composite materials, and the peaks at approximately 

85.0 and 88.6 eV in the Au 4f spectra, all of which are indicative of a Au-S bond (Figure 

5.107 and Figure 5.108 a and b).  Additionally the peaks corresponding to amine and imine 

groups and oxidised nitrogen groups shifted relative to the base merino wool, which as was 

the case above, is likely a result of the nanoparticles bonding to the S atoms in these amino 

acids.  There was no concrete evidence of any other groups in merino wool bonding with the 

gold nanoparticles, as relative to the base fibre, there were no major changes in the C 1s, N 

1s and O 1s XPS spectra of the composites (Figure 5.107 and Figure 5.108 d).   

 

Additionally, adjusting the pH of the ageing solution to 12 induced the formation of Au(OH)3 

particles rather than Au
0
 nanoparticles.  This was shown in the Au 4f and O 1s XPS spectra 

of such composite materials (Figure 5.107 b and e respectively).  Peaks indicative of 

nanoparticulate Au
0
 (centred at approximately 84.0 and 87.6 eV) were much reduced in the 

Au 4f spectrum of the composites, and there was an increase in the proportion of Au
3+

, which 

combined with the peak centred at 529.8 eV in the O 1s spectrum, which is indicative of 

Au(OH)3, suggests the gold in these composites to be predominantly Au(OH)3.  This still 

binds to the wool via Au-S bonds (evidenced by the Au-S peaks in the Au 4f and S 2p 

spectra).
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Figure 5.107: High resolution S 2p (a), Au 4f (b), C 1s (c), N 1s (d) and O 1s (e) XPS spectra of a gold 

nanoparticle-merino wool composite prepared by soaking untreated semi-worsted merino wool in a 160 

ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by adjusting the pH of the ageing solution 

to 12 and ageing at 50 ºC for 168 hours. 
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Figure 5.108: High resolution S 2p (a), Au 4f (b), C 1s (c), N 1s (d) and O 1s (e) XPS spectra of a gold 

nanoparticle-merino wool composite prepared by ageing untreated semi-worsted merino wool in a 160 

ppm (8.13 x 10
-4

 M) Au
3+

 solution for 168 hours at 50 ºC. (Note, no soaking at RT prior to ageing). 
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Table 5.13: XPS assignments of untreated semi-worsted merino wool and gold nanoparticle-merino wool 

composite materials, prepared with altered soaking and ageing solutions, soaking times and ageing 

temperatures. 

   Composite Materials 

  Merino Wool Ageing solution 
of Altered pH 

No soak at RT 

  Binding Energy (eV ± 0.2 eV) and Relative 
Percentage (± 10 %) 

C 1s C-C, C-H 285.00 (63 %) 285.00 (47 %) 285.00 (38 %) 

 C-O, C-N, C-S 286.20 (27 %) 285.87 (41 %) 285.85 (46 %) 

 C=O 288.30 (10 %) 288.37 (12 %) 288.33 (16 %) 

N 1s N-H, =N- 400.43 (88 %) 400.20 (88 %) 400.30 (72 %) 

 -N-O- 401.90 (12 %) 401.20 (12 %) 401.41 (28 %) 

O 1s Average O 
environment 

532.14 (86 %) 531.81 (66 %) 532.10 (76 %) 

 -OH 533.5 (14 %) 532.91 (30 %) 533.60 (24 %) 

 Au(OH)3 — 529.80 (4 %) — 

S 2p Average S 
environment S3/2 

164.02 (62 %) 163.97 (51 %) 164.06 (51 %) 

 Average S 
environment S1/2 

165.20 (31 %) 165.15 (26 %) 165.24 (26 %) 

 SO3
-
3/2 168.44 (5 %) 167.76 (12 %) 167.98 (13 %) 

 SO3
-
1/2 169.62 (2 %) 168.94 (4 %) 169.16 (5 %) 

 S-Au3/2 — 161.62 (5 %) 161.89 (4 %) 

 S-Au1/2 — 162.80 (2 %) 163.07 (1 %) 

Au 4f Au
0
7/2 — 83.29 (2 %) 84.02 (11 %) 

 Au-S7/2 — 84.66 (32 %) 85.06 (27 %) 

 Au
3+

7/2 — 85.05 (22 %) 85.60 (18 %) 

 Au
0
5/2 — 86.89 (0 %) 87.62 (8 %) 

 Au-S5/2 — 88.26 (21 %) 88.66 (19 %) 

 Au
3+

5/2 — 88.65 (23 %) 89.20 (18 %) 
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5.5.2 KOH/MeOH Treated Semi-Worsted Gilled Sliver 

 

As discussed in section 5.1.4, employing KOH/MeOH pre-treated merino wool as the fibre 

substrate was unsuccessful in the production of gold nanoparticle-merino wool composites, 

as the colour of the resultant materials was very under-developed.  Comparisons drawn from 

SEM analysis of similarly coloured composites suggested this lack of colour to be due to the 

formation of an insufficient amount of nanoparticles.  The high resolution S 2p and Au 4f 

spectra of these composites show gold to be present and to bond to the wool via Au-S bonds, 

evidenced by the 3/2 and 1/2 peaks centred at 161.97 and 163.15 eV in the S 2p spectrum 

(Figure 5.109 left), and the Au-S 7/2 and 5/2 peaks centred at 84.82 and 88.42 eV 

respectively in the Au 4f spectrum (Figure 5.109 right).  However the gold in these 

composites is present largely as unreduced Au
3+

 or Au
+
 (in the form of Au-S).  No 

nanoparticulate Au
0
, (illustrated by peaks centred at approximately 84 and 87.6 eV) is 

evident.  As with gold nanoparticle-merino wool composites employing untreated semi-

worsted merino wool as the fibre substrate, there was insufficient evidence to suggest 

bonding to alternate groups, as there were no major changes in the C 1s, N 1s and O 1s 

spectra upon incorporation of the gold nanoparticles.  (These spectra are not shown). 

 

  

Figure 5.109: High resolution S 2p (left) and Au 4f (right) XPS spectra of a gold nanoparticle-merino 

wool composite prepared by soaking KOH/MeOH treated semi-worsted merino wool in a 160 ppm (8.13 

x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours. 
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Table 5.14: XPS assignments for KOH/MeOH treated semi-worsted merino wool and gold nanoparticle-

merino wool composites (prepared by soaking KOH/MeOH treated semi-worsted merino wool in a 160 

ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 24 or 168 hours). 

  KOH/MeOH Treated 

Merino Wool 

Composite 

  168 h Ageing 

  Binding Energy (eV ± 0.2 eV) and Relative 
Percentage (± 10 %) 

C 1s C-C, C-H 285.00 (33 %) 285.00 (55 %) 

 C-O, C-N, C-S 286.20 (25 %) 286.20 (25 %) 

 C=O 288.20 (42 %) 288.09 (20 %) 

N 1s N-H, =N- 400.46 (46 %) 400.54 (64 %) 

 -N-O- 402.51 (54 %) 401.53 (36 %) 

O 1s Average O 
environment 

531.8 (40 %) 531.92 (62 %) 

 -OH 533.53 (60 %) 533.00 (38 %) 

S 2p Average S 
environment S3/2 

163.98 (55 %) 163.94 (48 %) 

 Average S 
environment S1/2 

165.19 (27 %) 165.12 (24 %) 

 SO3
-
3/2 167.37 (10 %) 167.58 (13 %) 

 SO3
-
1/2 168.55 (8 %) 168.76 (11 %) 

 S-Au3/2 — 162.00 (2 %) 

 S-Au1/2 — 163.15 (2 %) 

Au 4f Au
0
7/2 — — 

 Au-S7/2 — 84.82 (31 %) 

 Au
3+

7/2 — 85.51 (23 %) 

 Au
0
5/2 — — 

 Au-S5/2 — 88.42 (24 %) 

 Au
3+

5/2 — 89.11 (22 %) 

 

5.5.3 Untreated Worsted Combed Top 

 

The bonding between the gold nanoparticles and untreated worsted combed top was the same 

as that between the nanoparticles and untreated semi-worsted merino wool; notably via Au-S 

bonds.  Again this was evidenced by the 3/2 and 1/2 peaks centred at 161.50 and 162.68 eV 
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in the S 2p spectra of a composite (prepared by soaking untreated worsted merino wool in a 

160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 

168 hours) (Figure 5.110, Table 5.15).  Additionally, the predominant peaks in the Au 4f 

spectra of the composites were those indicative of a Au-S bond, present at 84.86 and 88.55 

eV (Figure 5.111).  There were also slight shifts and broadening of the amine, imine and 

oxidised nitrogen peaks N-C (Figure 5.113 c and d).  This was also the case in composites 

incorporating semi-worsted merino wool and is therefore likely reflective of the gold 

nanoparticles bonding to the sulfur atoms in the main S containing amino acids rather than 

indicating direct Au-N bonds, as these are not seen in the C 1s or Au 4f spectra of the 

composites. 

 

  

Figure 5.110: a) high resolution S 2p XPS spectra of gold nanoparticle-merino wool composites prepared 

by soaking untreated worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by ageing at 50 °C for 168 hours. b) an overlay (in red) of untreated worsted merino wool. 

 

Figure 5.111: a) high resolution Au 4f XPS spectra of a gold nanoparticle-merino wool composite 

prepared by soaking untreated worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 

hours at RT, followed by ageing at 50 °C for 168 hours. 
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Comparing the C 1s, N 1s and O 1s spectra of the composite materials to those of worsted 

merino wool, revealed very slight changes (Figure 5.112, Figure 5.113, Table 5.15).  In the C 

1s spectrum there is an increase in intensity and area of the peak centred at 286.2 eV, 

representative of C-N, C-S and C-O bonding.  As there are no corresponding changes in 

other spectra to account for the increase in the amount of C-N, C-S and C-O species on the 

composite surface, it is likely that this change is due to impurities introduced to the samples 

(it is very easy to introduce carbon based impurities to materials during sample preparation, 

particularly in the form of oil etc). 

 

  

  

Figure 5.112: High resolution C 1s (a) and N 1s (c) XPS spectra of a gold nanoparticle merino wool 

composite prepared by soaking untreated worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution 

for 24 hours at RT, followed by ageing at 50 °C for 168 hours. b) and d) and f) show an overlay or the 

corresponding spectra of untreated worsted merino wool (in red). 
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Figure 5.113: High resolution O 1s (a) XPS spectra of a gold nanoparticle merino wool composite 

prepared by soaking untreated worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 

hours at RT, followed by ageing at 50 °C for 168 hours. b) shows an overlay or the corresponding spectra 

of untreated worsted merino wool (in red). 

Table 5.15: XPS assignments for a gold nanoparticle-merino wool composite material employing worsted 

merino wool as the fibre substrate, a Au
3+

 concentration of 160 ppm (8.13 x 10
-4

 M), a soaking time, at 

RT, of 24 hours and an ageing time, at 50 ºC or 168 hours. 

   Composite 

  Worsted Merino Wool 168 h Ageing 

  Binding Energy (eV ± 0.2 eV) and Relative 
Percentage (± 10 %) 

C 1s C-C, C-H 285.00 (52 %) 285.00 (31 %) 

 C-O, C-N, C-S 286.07 (36 %) 286.2 (49 %) 

 C=O 288.34 (12 %) 288.3 (20 %) 

N 1s N-H, =N- 400.13 (81 %) 400.28 (63 %) 

 -N-O- 401.03 (19 %) 401.59 (37 %) 

O 1s Average O 
environment 

531.80 (76 %) 532.11 (68 %) 

 -OH 533.07 (24 %) 533.92 (32 %) 

S 2p Average S 
environment S3/2 

164.03 (51 %) 164.15 (50 %) 

 Average S 
environment S1/2 

165.21 (26 %) 165.33 (25 %) 

 SO3
-
3/2 168.15 (13 %) 168.46 (15 %) 

 SO3
-
1/2 169.33 (10 %) 169.64 (7 %) 

 S-Au3/2 — 161.50 (2 %) 

 S-Au1/2  162.68 (1 %) 

Au 4f Au
0
7/2 — 84.62 (13 %) 

 Au-S7/2 — 85.22 (27 %) 

 Au
3+

7/2 — 85.92 (30 %) 

 Au
0
5/2 — 88.22 (5 %) 

 Au-S5/2 — 88.82 (13 %) 

 Au
3+

5/2 — 89.52 (12 %) 

a) b) 
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5.5.4 Chlorine Hercosett Treated Semi-Worsted Gilled Sliver 

 

Figure 5.114 offers the EDS spectrum of a gold nanoparticle-merino wool composite 

prepared from Cl/H treated merino wool, whilst Figure 5.115 offers the cross sectional SEM 

and corresponding EDS micrographs.  This composite material was prepared by soaking 

Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by ageing at 50 °C for 168 hours.  As with the composites prepared from untreated 

merino wool, both the EDS spectrum (Figure 5.114) and maps (Figure 5.115) show the 

composites prepared from Cl/H treated merino wool to consist of the main elements of 

merino wool, notably carbon, nitrogen, sulfur and oxygen.  There are also low concentrations 

of chlorine present, again likely a residual of AuCl4
-
, and also remaining from the oxidation 

of the wool fibres during the Cl/H treatment.  As discussed previously in section 5.1.5, cross 

sectional EDS analysis showed that the gold in these composites was not confined to the 

surface of the fibres, rather it spread throughout the centre.  However when viewed under the 

SEM, nanoparticles were not evident in the fibre centre.  As with all other composite 

materials, there is the suggestion of Au-S interactions between the gold nanoparticles and 

wool fibre, as where there are high concentrations of sulfur, there are also high 

concentrations of gold. 

 
Figure 5.114: EDS spectrum of a gold nanoparticle-merino wool composite material prepared by soaking 

Cl/H treated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by ageing at 50 °C for 168 hours. 

keV 

C
o
u
n
ts
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Figure 5.115: Cross sectional SEM micrograph and corresponding EDS micrographs of a gold 

nanoparticle-merino wool composite material, prepared by soaking Cl/H treated semi-worsted merino 

wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 168 

hours. 

 

XPS confirmed the bonding between the nanoparticles and wool fibre to be via Au-S 

bonding.  It also suggested bonding of the gold nanoparticles to nitrogen groups.  A 

comprehensive list of XPS peak assignments is provided in Table 5.16 below.  The Au-S 

bonding was illustrated when comparing the high resolution, deconvoluted S 2p XPS spectra 

of the composites to that of the base fibre, Cl/H treated merino wool (Figure 5.116 a and b).  

Both spectra show the S 2/3 and 1/2 peaks representing the average sulfur environment of 

wool (S-H groups of cysteine and S-S groups of cystine), however the major peak‘s are the 

3/2 and 1/2 peaks of cysteic acid (-SO3
-
 ), the product of the oxidation of disulfide groups of 

cystine (occurring during the Cl/H treatment (see section 1.2.2.1.5)), accounting for 

approximatley 88 % of the sulfur species, compared to approximatley 7 % in untreated 

merino wool.  Additionally, the S 2p spectrum of the composite also displayed a small set of 
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peaks centred at 161.94 and 163.12 eV, which are representative of Au-S bonding, 

confirming the bonding between the gold nanoparticles and Cl/H treated merino wool fibres 

to occur through S atoms in the protein constituent of wool.  This Au-S bonding was also 

shown in the Au 4f spectrum of the composite (Figure 5.116 c).  As in the materials 

incorporating untreated merino wool as the fibre substrate, peaks indicating Au-S bonds, 

centred at 84.9 and 88.5 eV are present. 

 

  

 

Figure 5.116: High resolution S 2p (a) and Au 4f (c) XPS spectra of gold nanoparticle-merino wool 

composites prepared by soaking Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 

24 hours at RT, followed by ageing at 50 °C for 168 hours. b) An overlay (in red) of the S 2p XPS 

spectrum of Cl/H treated merino wool. 

 

In addition to bonding to sulfur groups, the gold nanoparticles also appeared to bond to the 

wool via Au-N bonds.  This was evidenced by the appearance of the peak centred at 397.53 

eV in the N 1s spectrum of the composites.[201]  This peak was absent in the N 1s spectrum 

of Cl/H treated merino wool (Figure 5.117).  Additionally the N peaks of amine, imine and 

oxidised N groups shifted slightly, indicating the involvement of these groups (through either 

or both the N or S atoms) in bonding to the gold nanoparticles. 
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Figure 5.117: a) High resolution N 1s spectra of a gold nanoparticle-merino wool composite prepared by 

soaking Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed 

by ageing at 50 ºC for 168 hours. b) An overlay (in red) of the N 1s XPS spectrum of Cl/H treated merino 

wool. 

 

Comparing the high resolution C 1s and O 1s XPS spectra of the composites to that of the 

base fibre, Cl/H treated merino wool does not yield any further information about the mode 

of bonding between the gold nanoparticles and wool fibres (Figure 5.118), as there are only 

very minimal changes in these spectra upon inclusion of the gold nanoparticles.  

  

  
Figure 5.118: High resolution C 1s (a) and O 1s (c) XPS spectra of gold nanoparticle-merino wool 

composites prepared by soaking Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 

24 hours at RT, followed by ageing at 50 °C for 168 hours. b and d) offer an overlay (in red) of the C 1s 

and O 1s XPS spectrum of Cl/H treated merino wool respectively. 
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Table 5.16: XPS assignments for Cl/H treated semi-worsted merino wool and gold nanoparticle-merino 

wool composites (prepared by soaking Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 

solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours). 

  Cl/H Treated Merino 
Wool 

Gold Nanoparticle-Merino 
Wool Composite 

  Binding Energy (eV ± 0.2 eV) and Relative Percentage 
(± 10 %) 

C 1s C-C, C-H 285.00 (61 %) 285.00 (64 %) 

 C-O, C-N, C-S 286.20 (27 %) 268.18 (26 %) 

 C=O 288.00 (12 %) 288.10 (10 %) 

N 1s N-H, =N- 399.70 (86 %) 400.09 (75 %) 

 N-O 401.66 (14 %) 401.46 (12 %) 

 NO2
- 

— 402.77 (11 %) 

 N-Au — 397.53 (2 %) 

O 1s Average O 
environment 

531.97 (94 %) 531.99 (79 %) 

 -OH 533.50 (6 %) 533.30 (21 %) 

S 2p Average S 
environment S3/2 

164.10 (6 %) 164.20 (6 %) 

 Average S 
environment S1/2 

165.23 (3 %) 165.38 (3 %) 

 SO3
-
3/2 168.20 (49 %) 168.27 (48 %) 

 SO3
-
1/2 169.38 (42 %) 169.45 (40 %) 

 S-Au3/2 — 161.94 (2 %) 

 S-Au1/2 — 163.12 (1 %) 

Au 4f Au
0
7/2 — 83.94 (25 %) 

 Au-S7/2 — 84.79 (29 %) 

 Au
3+

7/2 — 85.70 (4 %) 

 Au
0
5/2 — 87.61 (18 %) 

 Au-S5/2 — 88.46 (21 %) 

 Au
3+

5/2 — 89.37 (3 %) 

 

5.5.4.1 KOH Treated Chlorine Hercosett Treated Semi-Worsted Gilled Sliver 

 

Pre-treating the Cl/H treated merino wool fibres with 0.1 M KOH prior to addition to the 

Au
3+

 solution did not alter the mode of bonding between the gold nanoparticles and wool 
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fibres.  The bonding between the nanoparticles and wool fibres still occurred through S and 

to a lesser extent N atoms in the wool fibre.  The former was evidenced by the set of peaks 

centred at 161.90 and 161.08 eV in the S 2p spectrum of the composite (Figure 5.119 a) and 

also the peaks at 85.06 and 88.66 in the Au 4f spectrum (Figure 5.119 c).  Bonding of the 

gold nanoparticles to N groups was illustrated by the peak centred at 389.36 eV in the N 1s 

spectrum (Figure 5.120).  A complete list of peak assignments is provided in Table 5.17. 

  

 
Figure 5.119: High resolution S 2p (a) and Au 4f (c) XPS spectra of gold nanoparticle-merino wool 

composites prepared by soaking KOH pre-treated Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4

 M) 

Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours. b) An overlay (in red) of the 

S 2p XPS spectrum of KOH pre-treated Cl/H treated merino wool. 

  
Figure 5.120: a) High resolution N 1s XPS spectra of gold nanoparticle-merino wool composites prepared 

by soaking KOH pre-treated Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 

hours at RT, followed by ageing at 50 °C for 168 hours. b) An overlay (in red) of the N 1s XPS spectrum 

of KOH pre-treated Cl/H treated merino wool. 
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Table 5.17: XPS assignments for KOH pre-treated Cl/H treated semi-worsted merino wool and gold 

nanoparticle-merino wool composites (prepared by soaking KOH pre-treated Cl/H treated merino wool 

in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours). 

  Cl/H Treated Merino 
Wool 

Gold Nanoparticle-Merino 
Wool Composite 

  Binding Energy (eV ± 0.2 eV) and Relative Percentage 
(± 10 %) 

C 1s C-C, C-H 285.00 (61 %) 285.00 (47 %) 

 C-O, C-N, C-S 286.20 (27 %) 268.20 (35 %) 

 C=O 288.00 (12 %) 288.00 (18 %) 

N 1s N-H, =N- 399.70 (86 %) 400.11 (78 %) 

 N-O 401.66 (14 %) 401.65 (12 %) 

 NO2
- 

— 402.94 (9 %) 

 N-Au — 397.56 (1 %) 

O 1s Average O 
environment 

531.97 (94 %) 532.12 (75 %) 

 -OH 533.50 (6 %) 533.47 (25 %) 

S 2p Average S 
environment S3/2 

164.10 (6 %) 164.20 (7 %) 

 Average S 
environment S1/2 

165.23 (3 %) 165.40 (3 %) 

 SO3
-
3/2 168.20 (49 %) 168.47 (45 %) 

 SO3
-
1/2 169.38 (42 %) 169.65 (38 %) 

 S-Au3/2 — 161.90 (4 %) 

 S-Au1/2 — 163.08 (3 %) 

Au 4f Au
0
7/2 — 84.07 (19 %) 

 Au-S7/2 — 85.06 (24 %) 

 Au
3+

7/2 — 85.74 (11 %) 

 Au
0
5/2 — 87.67 (12 %) 

 Au-S5/2 — 88.66 (19 %) 

 Au
3+

5/2 — 89.34 (14 %) 

 

 

 

 



 

 

287 

5.6 Proposed Mechanism of Formation 

 

The preparation of the gold nanoparticle-merino wool composites involved the reduction of 

Au
3+

 to nanoparticulate Au
0
 on the surface and within the centre of merino wool fibres, with 

simultaneous stabilisation of the produced nanoparticles and bonding to the merino wool 

fibres.  This reduction was facilitated by the keratin proteins present in merino wool, with the 

oxidation of functional groups in this protein forming a redox couple and providing the 

necessary electrons for the Au
3+

 to Au
0
 reduction.  As mentioned, the production of the gold 

nanoparticle-merino wool composite materials involved soaking merino wool fibres in a 

Au
3+

 solution at RT, followed by ageing at 50 °C for 24-168 hours. 

 

Absorption studies suggested that gold was absorbed by the merino wool fibres as the AuCl4
-
 

complex (see section 5.4).  At room temperature, complete absorption from solution is 

usually achieved after approximately 1 hour, however a soaking time of at least 24 hours was 

required to achieve a uniform distribution of AuCl4
-
 on the surface and throughout the centre 

of the fibres as a result of diffusion.  Studies on the uptake of organic dyes by wool fibres 

have shown that dyes penetrate/absorb via junctions between wool cuticle cells.[232]  Once 

absorbed, the dyestuffs were shown to diffuse throughout all of the non-keratinous regions of 

the wool fibre (those regions separating the four layers of the cuticle and the cuticle and 

cortex), and also the endocuticle (inner most cuticle cell) and intermacrofibrillar material 

regions of the cell membrane complex.[233, 234]  The final stage of dyestuff diffusion inside 

wool fibres entails a progressive transfer of dye into the sulfur-rich matrix proteins 

surrounding microfibrils in the cortical cells.[39] 

 

SEM and EDS analysis of the gold nanoparticle-merino wool complexes suggests that the 

absorption of AuCl4
-
 by the wool fibres, and its subsequent diffusion through the fibres is not 

dissimilar to that of traditional dyestuffs.  The gold nanoparticles in the composites were 

commonly found to reside along the edges of the cuticle cells, suggesting these areas to be 

points of entry for the AuCl4
-
 complex.  Additionally, cross sectional EDS analysis showed 

high concentrations of gold to be present at the fibre surface following 1 hour soaking at RT 

(Figure 5.121 a and b), with increasing soaking times seeing a spread of gold throughout the 
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fibre centre, so that following 24 hours soaking, there were high concentrations of gold both 

on the surface and within the fibre centre, particularly in the sulfur rich paracortex (Figure 

5.121 c-e). 

 

  

  

 

Figure 5.121: Cross sectional SEM micrograph (a and c) and corresponding Au (b and d) or S (e) EDS 

maps of merino wool fibres soaked in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 1 (a and b) or 24 hours 

(c-d) at RT. 

 

a) b) 

c) d) 

e) 
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During the soaking of merino wool fibres in Au
3+

 solutions a colour change of the solution 

from yellow to colourless was observed after approximately 1 hour, visually confirming the 

majority of AuCl4
-
 to be absorbed.  A simultaneous yellowing of the submerged wool fibres 

was also noted, however this yellow colour faded over the course of soaking so that after 24 

hours, the merino wool fibres were similar in colour to untreated merino wool.  XPS analysis 

of merino wool fibres that had been soaked at RT in Au
3+

 solutions for increasing amounts of 

time suggested that during soaking, a percentage of Au
3+

 was reduced to Au
+
, forming some 

kind of Au-S complex (Figure 5.122).  This would account for the decreased yellow colour 

of the wool fibres occurring with prolonged soaking.  Following 1 hour soaking, 67 % of the 

gold absorbed into the merino wool fibres was present as Au
3+

, with the remaining 33 % 

being Au
+
 bound to S.  After 24 hours of soaking, the percentage of Au

+
 increased to 42 %, 

and a very small percentage, 3 %, of nanoparticulate Au
0
 appeared (Table 5.18).  As 

mentioned in section 5.1.2.7, SEM and TEM analysis of merino wool that had been soaked in 

a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, showed the presence of a very 

small amount of five-fold twinned gold nanoparticles, approximately 10–20 nm in diameter, 

however these nanoparticles did not impart any colour to the composite materials as they 

were present in such a low concentration. 

 

  

Figure 5.122: High resolution Au 4f XPS spectra of merino wool fibres that had been soaked in a 160 

ppm (8.13 x10
-4

 M) Au
3+

 solution, at RT, for a) 1 hour or b) 24 hours. 
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Table 5.18: Au 4f XPS assignments for merino wool soaked in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, at 

RT, for 1 or 24 hours. 

Soaking Time 
(Hours, RT) 

% Au
3+

  
(± 10 %) 

% Au
+
  

(± 10 %) 
(Au-S) 

% Au
0
  

(± 10 %) 

1 67 33 0 

24 55 42 3 

 

The decrease in Au
3+

 and increase in both Au
+
 and Au

0
 upon extended soaking times 

suggests that during soaking, a percentage of Au
3+

 was reduced to Au
+
, with continued 

soaking reducing either or both of Au
3+

 and Au
+
 to nanoparticulate Au

0
.  Comparing the 

relative percentages of Au
3+

, Au
+
 and Au

0
 present in merino wool soaked in Au

3+
 for 1 hour 

or 24 hours at RT, and composite materials prepared by soaking merino wool in Au
3+

 for 24 

hours at RT followed by ageing for 24 or 168 hours (therefore materials in which more Au
0
 

nanoparticles had been formed) saw a trend in the relative amounts of the various forms of 

gold.  Increasing the soaking time, at RT, and subsequently the ageing time saw an increase 

in the Au
+ 

: Au
3+

 ratio, from 0.49 in merino wool soaked in Au
3+

 for 1 hour to 1.51 in a 

composite material prepared with an ageing time of 168 hours (Table 5.19).  This suggests 

that the continued formation of Au
0
 nanoparticles occurred through the reduction of 

additional Au
3+

 rather than Au
+
, with the Au-S complexes likely to act as nucleation sites for 

this reduction and formation of nanoparticulate Au
0
. 

 

Table 5.19: Au 4f XPS assignments for merino wool soaked in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, at 

RT, for 1 or 24 hours, and gold nanoparticle-merino wool composites (prepared by soaking untreated 

semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by 

ageing at 50 °C for 24 or 168 hours). 

Soaking Time 
(Hours, RT) 

Ageing Time 
(Hours, 50 °C) 

% Au
3+  

(± 10 %) 
% Au

+
  

(± 10 %) 
(Au-S) 

Au
+
 : Au

3+ 
% Au

0
  

(± 10 %) 

1 ─ 67 33 0.49 0 

24 ─ 55 42 0.76 3 

24 24 49 46 0.94 5 

24 168 37 56 1.51 7 
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The reduction of Au
3+

 to nanoparticulate Au
0
,
 
occurring to a slight extent during soaking and 

much more extensively during ageing, must be accompanied and facilitated by the oxidation 

of one or more functional group in the protein fibres of merino wool.  This redox pair was 

ascertained when comparing the deconvoluted high resolution S 2p spectra of various merino 

wool-gold materials and the base fibre, untreated semi-worsted merino wool.  Firstly to 

investigate the reduction of Au
3+

 to Au
+
 and then a small amount of Au

3+
 to nanoparticulate 

Au
0
 occurring during soaking at RT, the deconvoluted, high resolution S 2p XPS spectra of 

merino wool soaked in Au
3+

 at RT for 1 or 24 hours were compared to untreated semi-

worsted merino wool, with clear differences observed (Figure 5.123).  The first was the 

presence of the set of peak‘s centred at approximately 161.5–162 and 162.7-163.2 eV in the 

wool-gold materials.  These peaks were absent in merino alone, and as discussed in section 

5.5.1 are indicative of Au-S bonding.  The peak ratio of the various sulfur species also 

changed with increasing soaking times (Table 5.20).  In the base fibre the average S 

environment of wool (S-S, S-H) accounted for ~ 97 % of S species.  Soaking the merino 

wool fibres in Au
3+

 solutions at RT saw a decrease in peak area relating to the average S 

environment of wool, to 80 % after 1 hour soaking and 67 % after 24 hours.  This decrease 

was accompanied by an increase in the percentage of oxidised sulfur, cysteic acid (SO3
-
, the 

product of the oxidation of cystine), from 7 % in untreated merino wool, to 16 % in merino 

wool soaked in Au
3+

 for 1 hour at RT and 30 % for merino wool soaked in Au
3+

 for 24 hours. 
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Figure 5.123: High resolution S 2p XPS spectra of a) untreated semi-worsted merino wool, b) untreated 

semi-worsted merino wool soaked in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 1 hour at RT and c) 

soaked for 24 hours at RT. 

 

Table 5.20: Relative percentage of sulfur species in untreated semi-worsted merino wool and merino wool 

soaked in a 160 pppm (8.13 x 10
-4

 M) Au
3+

 solution at RT for 1 or 24 hours. 

 Soaking Time, RT 

 0 hours 1 hour 24 hours 

S Species Relative Percentage (%± 10 %)) 

Average S 
environment 

(S-S, S-H) 

93 80 67 

SO3
- 

7 16 30 

S-Au — 4 3 

 

The decrease in the average S environment of wool (cystine(S-S-) and cysteine (S-H) 

groups), and subsequent increase in cysteic acid (the oxidation product of cystine) suggests 

that the Au
3+

 to Au
+
 and Au

3+
 to Au

0
 reductions were facilitated by the oxidation of the 
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disulfide groups of cystine to cysteic acid.  The continued reduction of Au
3+

 to 

nanoparticulate Au
0
, occurring during ageing was also thought to occur due to the oxidation 

of cystine to cysteic acid.  Figure 5.124 offers a comparison of the deconvoluted, high 

resolution S 2p XPS spectra of gold nanoparticle-merino wool composites (prepared by 

soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solutions for 

24 hours at RT, followed by ageing at 50 °C for 24 or 168 hours) and the base fibre, 

untreated semi-worsted merino wool.  For ease of viewing only the 3/2 deconvoluted peaks 

are shown.  From a comparison of these spectra it can be seen that increasing the ageing 

time, and hence the amount of Au
3+

 reduced to Au
0
, saw a decrease in the amount of cystine 

(evidenced by a decrease in peak area for the peak indicating the average S environment), 

with a subsequent increase in the amount of the oxidised form of cystine, cysteic acid (SO3
-
) 

(Table 5.21). 

 

 

Figure 5.124: Comparisons of the deconvoluted high resolution S 2p XPS spectra of untreated semi-

worsted merino wool (black lines) and gold nanoparticle merino wool composites, prepared by soaking 

untreated merino-wool in a 160 ppm Au
3+

 (8.13 x 10
-4

 M) solution for 24 hours at RT followed by ageing 

at 50 °C for 24 (green lines) or 168 hours (red lines). 
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Table 5.21: Relative percentage of sulfur species in untreated semi-worsted merino wool, wool soaked in 

Au
3+

 at RT, and gold nanoparticle-merino wool composites (prepared by soaking untreated semi-worsted 

merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C 

for 24 or 168 hours). 

   Composite Material 

 
Merino Wool 

Merino Wool Soaked 
in Au

3+
 (24 hours) 

24 h Ageing 168 h Ageing 

S Species Relative Percentage (% ± 10 %) 

Average S 
environment 

(S-S, S-H) 

93 67 75 58 

SO3
- 

7 30 18 33 

S-Au — 3 6 9 

 

As a control, the high resolution S 2p XPS spectrum of merino wool that has been soaked in 

a pH 3 solution for 24 hours at RT, followed by heating at 50 °C for 168 hours is offered in 

Figure 5.125.  This sample comprises 12 % oxidised sulfur.  This is slightly higher than that 

of untreated merino wool (which contained 7 % oxidised sulfur) however it is still markedly 

less than that of the gold nanoparticle-merino wool composites which exhibited ~ 33 % 

oxidised sulfur.  

 

 

Figure 5.125: High resolution S 2p XPS spectrum of merino wool that had been soaked in a pH 3 solution 

for 24 hours at RT, followed by heating at 50 °C for 168 hours. 
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Comparing the deconvoluted, high resolution C 1s, N 1s and O 1s XPS spectra of the 

composite materials to those of untreated semi-worsted merino wool showed very little 

change, and as such did not provide substantial evidence for the oxidation of alternate 

functional groups, such as amines etc in merino wool during the production of the composite 

materials (see section 5.5.1, Figure 5.105, Figure 5.106 and Table 5.12).  This confirms that, 

at least on and near the surface of the wool fibres, the reduction of Au
3+

 to nanoparticulate 

Au
0
 was induced by and coupled with the oxidation of cystine to cysteic acid.   

 

The reduction mechanism for the formation of the nanoparticles in the centre of the fibres 

cannot be proposed with as much certainty due to the detection limits of XPS, which only 

provides information about the top 10 nm of a sample.  However as high concentrations of 

gold in the fibre centre were seen to correlate to areas of high concentrations of sulfur, 

(notably in the paracortex) it is highly likely that nanoparticles were also formed in these 

areas, with the reduction facilitated by the sulfur containing amino acid cystine.  The fact that 

these nanoparticles were only evident in materials that had been prepared with an extended 

ageing time, 168 hours, obviously shows that they took a long time to form.  As gold was 

shown to reside in the fibre centres after 24 hours soaking at RT, the delayed formation of 

these nanoparticles was not due to lack of gold in these areas.  Rather it may be related to 

steric hindrance as the paracortex is much denser than the orthocortex,[46] and as such the 

firmly packed paracortical cells may impair the nucleation of gold ions and hence the 

production of Au
0
 nanoparticles. 

 

In light of these results, the following mechanism is proposed for the formation of the gold 

nanoparticle-merino wool composites prepared through the redox properties of the protein 

fibres in merino wool.  During soaking at RT, Au
3+

 in the form of AuCl4
-
 is absorbed by the 

wool fibres.  The Cl
-
 ions are likely electrostatically attracted to positively charged amine 

groups on the wool fibre destabilising the AuCl4
-
 complex and facilitating the reduction of 

Au
3+

 to Au
+
 by the disulfide containing amino acid cystine (scheme 5.2), (Figure 5.126 (1) 

and (2)).  (It should be noted that due to the low concentration of Au
3+

 employed in the 

production of these materials (approximately 1.6 wt %), following the reduction of Au
3+

 to 

Au
+
 and later Au

0
, there would still remain a large concentration of un-oxidised disulfide 
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groups, as cystine accounts for approximately 8-10 wt % of the wool fibre).[39]  The 

resultant Au
+
 ions then bond to the wool fibre by mean of a coordinate covalent Au-S bond 

(most likely through the main sulfur containing amino acids cystine and or cysteine (Figure 

5.126 (3)), involving expansion of the valence shell of gold to 6s orbitals.  As this reduction 

proceeded, Cl
-
 ions were seen to simultaneously diffuse back into solution (Figure 5.126 and 

Figure 5.127). 

 

Au
3+

  +  2e
-
   →   Au

+
  

R-S-S-R  +  3H2O   →   2R-SO3H  +  5H
+
  +  5e

- 
 

2R-S-S-R  +  6H2O  +  5Au
3+

   →   4R-SO3H  + 10H
+
  +  5Au

+
 (5.2) 

 

 

Figure 5.126: Schematic illustrating the electrostatic attraction between the Cl
-
 ions of AuCl4

-
 and 

positively charged amine groups (1), destabilising the AuCl4
-
 complex and facilitating the Au

3+
 to Au

+
 

reduction (2). The resultant Au
+
 ions are thought to bond to the wool fibre via a Au-S bond (3). 

 

Employing prolonged soaking and subsequently ageing times saw the reduction of additional 

Au
3+

 to nanoparticulate Au
0
.  Again this reduction was facilitated by the oxidation of the 

disulfide groups of cystine to cysteic acid.  Due to aurophilicity which sees Au
+
 ions attracted 

to other Au
+
 ions,[235, 236] it is likely that the Au

+
 in the Au-S complexes would be 

attracted to each other forming nanoclusters on which the additional Au
3+

 may accumulate 

(Figure 5.128 top). As the ratio of wool fibre protein (acting as a dual reductant and 
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stabiliser) to Au
3+

 is high in these syntheses, it is likely that these clusters would grow into 

discrete nanoparticles through the reduction of Au
3+

 ions adsorbed onto the nanocluster 

surface, forming relatively small, monodisperse particles (as seen in SEM and TEM 

micrographs, see section 5.1.2, Figure 5.15).  As mentioned, this reduction was accompanied 

by the oxidation of cystine to cysteic acid.  The cystine groups do not need to be in direct 

contact with the gold nanoclusters, as the reaction is carried out in ionic solutions and 

electrons liberated from the cystine oxidation can be transferred to the nearest gold 

nanoclusters, providing the necessary electrons for the Au
3+ 

to Au
0
 reduction (Figure 5.128).  

XPS showed these nanoparticles to bond to the wool fibre via Au-S bonds (section 5.5.1).  

This would lower the surface energy of the nanoparticles, and stabilise the nanoparticles 

towards aggregation as a consequence of Ostwald Ripening. 

 

 

Figure 5.127: Concentration of chloride in the reaction mixture against time. 
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Figure 5.128: Schematic illustration showing the formation of gold nanoclusters and their subsequent 

reduction to nanoparticulate Au
0
. 

 

Raman spectroscopy was employed with the aim of further clarifying the production 

mechanism of the gold nanoparticle-merino wool composites.  It was hoped that comparisons 

of the spectra of the composites and base fibre would confirm the role of cystine in the 

reduction of Au
3+

 to Au
0
 and the formation of the composite materials.  A gold nanoparticle-

merino wool composite prepared by ageing untreated semi-worsted merino wool in an 800 

ppm Au
3+

 solution for 24 hours at 50 °C was chosen as a representative of the composite 

materials as it possessed a very high concentration of nanoparticles at the wool fibre surface, 

increasing the likelihood of observing differences between the spectra of the base fibre and 

composite, as the formation of an increased amount of nanoparticles would require the 

oxidation of an increased percentage of functional groups in the wool fibre protein. 
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Figure 5.129 offers the Raman spectra of the gold nanoparticle-merino wool composite, 

collected with a 633 nm laser.  This is the only region in which signals were obtained, with 

any lines in the 3500-1800 cm
-1

 region being obscured by the natural fluorescence of the 

wool fibre,[237] which also impaired the collection of spectra for the base fibres under these 

conditions.  The Raman spectroscopic signal is often enhanced by noble metal nanoparticles 

due to the surface sensitive process termed surface enhanced Raman spectroscopy (SERS), in 

which the Raman signal of molecules in close proximity to the nanoparticles have the 

potential to be enhanced by a factor of up to 10
14

 – 10
15

 (section 2.3.11).  Therefore the 

enhancement, appearance or loss of certain signals may provide information about the 

functional groups in the vicinity of the gold nanoparticles, and hence provide information 

about the reducing nature of merino wool. 

 

 

Figure 5.129: SERS spectrum of a gold nanoparticle-merino wool composite. 

 

Characteristic signals associated with the protein fibre of merino wool are seen in the SERS 

spectra of the composite material, notably the lines in the region of approximately 1670–

1650 cm
-1

 and 1270 cm
-1

 (CONH2) and 1450 cm
-1

 (C-H bending).[50, 237]  Signals specific 

to the aromatic amino acids tryptophan are also seen at 1370 and 1350 cm
-1

 and tyrosine at 
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1209, 844 and 819 cm
-1

.[50]  These amino acids are particularly Raman active, which is 

likely to account for their appearance.  However of particular interest are the peaks in the 

1200-1000 cm
-1

 region.  These have been assigned to partially oxidised disulfide species such 

as cystine monoxide and dioxide as well as cysteic acid, which exhibits a strong, 

characteristic peak at 1041 cm
-1

, assignable to the S=O symmetric stretching vibration.  

Cystine itself exhibits a S-S stretch near 510cm
-1

,[50] and this is absent or greatly diminished 

in the SERS spectra of the composite. 

 

As mentioned above, due to the natural fluorescence of merino wool a Raman spectrum of 

the base fibres could not be collected under these conditions, instead near infra-red light was 

employed.  Figure 5.130 offers the FT-IT Raman spectra of untreated semi-worsted merino 

wool.  This spectra is not dissimilar to that of the SERS Raman spectra of the composite, 

with characteristic signals associated with the protein fibre of merino wool seen in the lines 

at ~1670 cm
-1

 and 1270 cm
-1

 (CONH2) and 1456 cm
-1

 (C-H bending) (Table 5.22).[50]  

However of particular difference is the absence of the peaks associated with oxidised cystine, 

and the presence of the signal at approximately 520 cm
-1

, which is characteristic of the S-S 

stretch of cystine.  The presence of the signals of the oxidation productions of cystine, and 

the loss or marked decrease of the S-S cystine signal in the SERS spectra of the composite 

materials suggest that the reduction of Au
3+

 to Au
0
 was facilitated by the oxidation of cystine 

to cysteic acid, substantiating the mechanism of formation of the gold nanoparticle-merino 

wool composites proposed above. 

 

The role of cystine in the production of the gold nanoparticle-merino wool composites was 

investigated experimentally by reducing the cystine concentration in merino wool, and hence 

its reducing capability.  This was achieved by reducing the disulfide groups of cystine to thiol 

groups with tris(2-carboxyethly)phosphine (TCEP), and then alkylating the resultant thiols 

(with maleic acid) to prevent their re-oxidation.  This was carried out according to the 

Sweetman and Maclaren procedure outlined in section 2.2.2.3.1.[238]  The reduction of the 

disulfide groups by TCEP is thought to occur via a nucleophilic attack at a sulfur atom by the 

phosphine, involving the expansion of the valence shell of sulfur to 3d orbitals, followed by a 

nucleophilic displacement (scheme 5.3).[238-240] 
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Figure 5.130: FT-IR Raman spectra of untreated semi-worsted merino wool. 

 

Table 5.22: Vibrational assignments of untreated semi-worsted merino wool and a gold nanoparticle-

merino wool composite. 

Transition (cm
-1

) Proposed Assignment[50] 

3320 N-H stretching 

3068 C-N-H bending 

2936 CH3 stretching 

1670, 1270 CONH2 stretching 

1456 C-H bending 

500 S-S stretching 

 

(5.3)[238] 

Figure 5.131 and Figure 5.132 offer pictures of gold nanoparticle-merino wool composites 

prepared with reduced (TCEP treated) and alkylated (TCEP + maleic acid treated) merino 

wool respectively.  Pictures of composites incorporating merino wool soaked in a pH 4.5 and 
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pH 4.5 + pH 8 buffer solution are also shown as controls, illustrating the effect the reduction 

and alkylation conditions had on the reducing capability of the fibres.  From these pictures it 

can be seen that reducing and alkylating merino wool fibres prior to addition to the Au
3+

 

solutions dramatically reduced their ability to reduce Au
3+

 to nanoparticulate Au
0
, resulting 

in the production of very under developed, spectrally impure coloured composite materials. 

 
Figure 5.131: Gold nanoparticle-merino wool composites prepared by soaking TCEP pre-treated merino 

wool, merino wool that had been soaked in a pH 4.5 buffer and untreated merino wool in a 160 ppm (8.13 

x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 24 or 168 hours. 

 

XPS suggested the reduction of the disulfide groups of cystine by TCEP to be successful.  In 

TCEP treated and alkylated merino wool there was a slight shift in the peak representing the 

average sulfur containing groups to lower binding energies (Figure 5.133), suggesting that 

there was a greater percentage of thiol functional groups relative to disulfide groups.[187]  

Examination of the deconvoluted, high resolution Au 4f XPS spectra of a gold nanoparticle-

merino wool composite incorporating TCEP treated and alkylated merino wool (prepared 

with a soaking time, at RT of 24 hours and an ageing time, at 50 °C of 168 hours) showed the 

gold in these materials to be predominantly unreduced Au
3+

 (94 %), with a small amount of 

Au
+

 (in the form of Au-S) (5 %) and a very small amount, 1 %, of nanoparticulate Au
0
 

(Figure 5.134).  These values may not be entirely correct as there may be slightly more Au
+
 

and Au
0
, as these peaks may have been over shadowed by the very broad Au

3+
 peaks.  The 

extremely small amount of Au
0
 nanoparticles on these fibres would account for the very 

under-developed colour of the materials. 
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Figure 5.132: Gold nanoparticle-merino wool composites prepared by soaking TCEP + maleic acid pre-

treated merino wool, merino wool that had been soaked in a pH 4.5 and pH 8 buffer and untreated 

merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C 

for 24 or 168 hours. 

 

  

Figure 5.133: High resolution S 2p XPS spectra of a) TCEP treated merino wool and b) an overlay (in 

red) of untreated semi-worsted merino wool. 
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Figure 5.134: High resolution Au 4f XPS spectra of a gold nanoparticle-merino wool composites prepared 

by soaking TCEP treated and alkylated merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 

hours at RT, followed by ageing at 50 °C for 168 hours. 

 

Examination of the C 1s, N 1s and S 2p XPS spectra of the gold nanoparticle-merino wool 

composites incorporating TCEP treated and alkylated merino wool suggested that any gold 

nanoparticles formed in these materials bind to the wool fibres via both Au-S and Au-N 

bonds (Figure 5.135).  The Au-S bonding was evidenced by the set of peaks centred at 

161.25 and 162.43 eV in the S 2p spectrum, and the Au-N bonding by the peaks at 283.5 eV 

and 398.8 eV in the C 1s and N 1s spectra respectively.  This suggests that due to reduction 

and alkylation, the number of S sites available for bonding was decreased relative to 

untreated merino wool, and as such bonding to N groups occurred. 

 

Although bonding to nitrogen containing groups occurred, during the production of these 

composite materials there was no evidence of the oxidation of nitrogen containing functional 

groups such as amines, which would be illustrated by the presence of a peak centred at 

approximately 402 eV in the N 1s spectra.  Rather the reduction of the very small amount of 

Au
0
 nanoparticles appeared to occur via the conventional route, notably via oxidation of a 

percentage of unreduced cystine disulfides to cysteic acid.  This only occurred to a very small 

extent, and was evidenced by the slight increase in amount of cysteic acid relative to the 

general S environment of the wool (Figure 5.136, Table 5.23).  As these changes were so 

minimal, and there were markedly less Au
0
 nanoparticles formed when employing TCEP 

treated and alkylated merino wool (as shown by XPS), it is highly likely that the reduction of 

Au
3+

 to Au
0
 during the production of the gold nanoparticle-merino wool composite materials 

is facilitated by the oxidation of cystine to cysteic acid. 
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Figure 5.135: High resolution C 1s (a), N 1s (b) and S 2p (c) XPS spectra of a gold nanoparticle-merino 

wool composites prepared by soaking TCEP treated and alkylated merino wool in a 160 ppm (8.13 x 10
-4

 

M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours. 

 

 

Figure 5.136: An overlay of the high resolution S 2p XPS spectra of a gold nanoparticle-merino wool 

composites prepared by soaking TCEP treated and alkylated merino wool in a 160 ppm (8.13 x 10
-4

 M) 

Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours (black lines) and TCEP 

treated and alkylated merino wool (red lines). 

 

-N-O-
 

-NH- 

=N-
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Table 5.23: S 2p XPS assignments of untreated TCEP treated and alkylated merino wool, and a gold 

nanoparticle-merino wool composite prepared from these fibres. 

 TCEP treated 
and alkylated 
Merino Wool 

Composite Material 

S Species Relative Percentage (% ± 10 %) 

Average S 
environment 

(S-S, S-H) 

84 80 

SO3
- 

16 14 

S-Au ─ 6 

Av S : SO3
- 

0.19 0.18 

 

It makes sense therefore that when employing Cl/H treated merino wool as the fibre substrate 

in place of untreated merino wool during the production of the gold nanoparticle-merino 

wool composites the ability of the fibres to reduce Au
3+

 to nanoparticulate Au
0
 was 

drastically reduced.  This was observed in the production of gold nanoparticle-merino wool 

composites prepared from Cl/H treated merino wool, as employing ageing times of less than 

168 hours (regardless of the Au
3+

 concentration) produced materials that were not dissimilar 

in colour to that of the base fibres, with SEM and XPS analysis of these materials revealing 

the presence of very little nanoparticulate Au
0
 (see sections 5.1.5 and 5.3).  However when 

ageing times of 168 hours were employed nanoparticles were seen to form on the fibre 

surface.  This imparted a rather spectrally impure, non-uniform purple colour to the 

materials. 

 

During Cl/H treatments the surface cystine groups of the wool fibres are oxidised to cysteic 

acid, thus dramatically reducing the ability of the fibres to reduce Au
3+

 to nanoparticulate 

Au
0
.  This would account for the markedly underdeveloped colour of the composites 

prepared with an ageing time of less than 168 hours.  However the fact that nanoparticles 

were formed when ageing times of 168 hours were employed, suggests that something other 

than the disulfide groups of cystine was facilitating the Au
3+

 to Au
0
 reduction. 
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Examination of the deconvoluted high resolution XPS spectra of the composite materials 

prepared from Cl/H treated merino, employing an ageing time of 168 hours suggested it was 

the Hercosett polymer on the surface of the fibres reducing Au
3+

 to Au
0
.  Figure 5.137 offers 

a comparison of the deconvoluted, high resolution N 1s XPS spectra of a gold nanoparticle-

merino wool composite (prepared by soaking Cl/H treated merino wool in a 160 ppm (8.13 x 

10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours) and the 

base fibre Cl/H treated merino wool.  Several changes are observed in the spectra of the 

fibres upon inclusion of the gold nanoparticles; there is a shift in the amine and imine peaks 

and the formation of a new peak (centred at ~397.53 eV) which as described in section 5.5.4, 

is likely reflective of the gold nanoparticles bonding to nitrogen atoms in either the fibre or 

the Hercosett polymer encapsulating the fibre.   

 

  

Figure 5.137: a) High resolution N 1s spectra of a gold nanoparticle-merino wool composite prepared by 

soaking Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed 

by ageing at 50 ºC for 168 hours. b) An overlay (in red) of the N 1s XPS spectrum of Cl/H treated merino 

wool. 

 

Additionally, a new peak centred at 402.77 eV appeared in the composite.  This peak has 

been reported to be representative of nitro groups (NO2
-
),[241] which can be formed through 

the oxidation of primary amines.  Both the protein fibres in the wool, and to a much lesser 

extent the Hercosett polymer possess primary amines (the latter found at the polymers 

terminating ends).  It is unlikely that the amine groups in the wool fibres would undergo 

oxidation as this was not seen during the production of composites prepared from untreated 

merino wool.  Oxidation of the primary amines at the terminating ends of the Hercosett 
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polymer may occur; however as this polymer forms crosslinks via condensation reactions, 

these groups are present in very low concentrations.  Prolonged heating in mildly acidic 

aqueous solutions (occurring during ageing) may hydrolyse a percentage of these crosslinks, 

leaving them available for oxidation, which if this is the case would account for the 

formation of nanoparticulate Au
0
 and subsequent development of colour occurring only after 

168 hours ageing. 

 

In addition to the oxidation of amine groups to nitro groups, the Au
3+

 to Au
0
 reduction may 

have been facilitated by the oxidation of the secondary alcohols of the Hercosett polymer to a 

ketone.  However examination of the deconvoluted, high resolution O 1s XPS spectra of a 

gold nanoparticle-merino wool composite prepared from Cl/H treated merino wool, and Cl/H 

treated merino wool itself reveal little to no changes (Figure 5.138), therefore discrediting 

this reaction mechanism.  Once formed, these nanoparticles appeared to bond to the Cl/H 

treated merino wool through both N and S atoms (see section 5.5.4). 

 

  

Figure 5.138: a) High resolution O 1s spectra of a gold nanoparticle-merino wool composite prepared by 

soaking Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed 

by ageing at 50 ºC for 168 hours. b) An overlay (in red) of the O 1s XPS spectrum of Cl/H treated merino 

wool. 

 

Pre-treating the Cl/H treated merino wool fibres with 0.1 M KOH solutions (as outlined in 

section 2.2.2.3.1) dramatically increased the colour of the resultant composites incorporating 

Cl/H treated merino wool, due to the formation of a much larger concentration of 
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nanoparticles (see section 5.1.5.1).  These nanoparticles were located primarily on the surface 

of the wool fibres, and appeared to be lodged in the Hercosett polymer encapsulating the 

fibres.  Additionally, during the ageing process, gold nanoparticles were formed in solution, 

something that did not occur in any other woollen system. 

 

This suggests that base treating the Cl/H treated merino wool prior to addition to the Au
3+

 

solution dramatically enhanced the proteins‘ or the Hercosett polymer‘s ability to facilitate 

the Au
3+

 to Au
0
 reduction.  As it was the Hercosett polymer that was thought to be 

facilitating this reduction in the composite materials incorporating untreated Cl/H treated 

merino wool, it is likely that it was this polymer rather than the wool fibres facilitating the 

reduction in this case, with base treating making it more susceptible to oxidation.   

 

The Hercosett polymer is a polyamide epichlorhydrin type polymer which is capable of 

crosslinking via condensation reactions through primary and secondary amino groups in the 

polyamide backbone.  Thus it contains amide functional groups, which under mildly basic 

conditions can undergo hydrolysis to yield carboxylic acids and secondary amines (scheme 

5.4).  These reactions may occur within individual polymer moieties or between them, 

breaking crosslinks within the polymer 
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If amide hydrolysis was occurring during base treatment there would be more amine groups 

available to facilitate the Au
3+

 to Au
0
 reduction (in the form of terminal amine groups or 

amines formed through the hydrolysis of the amides in individual polymer molecules), thus 

increasing the reducing capability of the Cl/H treated merino wool.  The fact that 

nanoparticles were also formed in solution suggests that something was released from the 

Cl/H treated wool fibre during the course of the reaction.  This may be small amine 
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containing molecules which could then reduce Au
3+

 to nanoparticulate Au
0
, (themselves 

being oxidized to some form of nitro compound) and simultaneously stabilise the resultant 

nanoparticles. 

 

XPS was unable to substantiate or confirm these theories, as the deconvoluted, high 

resolution C 1s, N 1s, O 1s and S 2p XPS spectra of Cl/H treated merino wool remained 

largely unchanged following base treatment (Figure 5.139 and Figure 5.140).  There were 

slight changes in the position of both the amine/imine peak and nitrogen bound to oxygen 

peak in the base treated fibres however this did not provide substantial evidence of amide 

hydrolysis.   

 

  

  

Figure 5.139: High resolution C 1s (a) and N 1s (c) XPS spectra of base treated Cl/H treated merino wool. 

b) and d) show an overlay or the corresponding C 1s and N 1s spectra of untreated Cl/H treated merino 

wool (in red). 
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Figure 5.140: High resolution O 1s(a) and S 2p (c) XPS spectra of base treated Cl/H treated merino wool. 

b) and d) show an overlay or the corresponding O 1s and S 2p spectra of untreated Cl/H treated merino 

wool (in red). 

 

Comparisons of the XPS spectra of base treated Cl/H treated merino wool and a gold 

nanoparticle-merino wool composite prepared from such fibres did however provide 

information about the reduction mechanism.  There was a much greater percentage of nitro 

groups in the composite materials relative to base treated Cl/H treated merino wool, 

suggesting that a proportion of amines had been oxidised (Figure 5.141).  The oxidised amine 

groups accounted for 25 % of the nitrogen species, 14 % more than observed in composite 

materials prepared with untreated Cl/H treated merino wool, suggesting that a greater 

percentage of amines had been oxidised, in turn reducing more Au
3+

 to nanoparticulate Au
0
. 

 

a) b) 
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Figure 5.141: a) High resolution N 1s XPS spectra of gold nanoparticle-merino wool composites prepared 

by soaking KOH pre-treated Cl/H treated merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 

hours at RT, followed by ageing at 50 °C for 168 hours. b) An overlay (in red) of the N 1s XPS spectrum 

of KOH pre-treated Cl/H treated merino wool. 

 

5.7 Colour Fastness, Light Fastness, Washability and Wearability 

 

The applicability of the gold nanoparticle-merino wool composite materials (prepared 

through utilisation of the redox active nature of the proteins present in merino wool) for use 

in consumer products was investigated by testing their colour fastness to washing, rubbing, 

chlorinated water and light. 

 

The colour stability of the materials is dependent upon the stability of the nanoparticle size, 

and also the robustness of the bond between the nanoparticles and wool fibres.  As 

mentioned, nanoparticles possess high surface energies making them extremely reactive so 

that without surface passivation they tend to agglomerate together as a result of Ostwald 

Ripening.  Immobilising the gold nanoparticles on the wool fibre imparts stability to the 

nanoparticles as the proteins present in merino wool, in particular the sulfur containing amino 

acids cystine and cysteine, bind to the nanoparticles acting as a capping agent.  In theory this 

should stabilise the nanoparticles and hence the colour of the resultant gold nanoparticle-

merino wool composites. 
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The stability of the bond between the gold nanoparticles and merino wool fibres, and hence 

the colour stability of the composite materials was investigated via stimulated washability 

test (as outlined in section 2.3.14).  This involved agitating the samples in a 0.1 wt % 

dishwashing liquid solution for half an hour to 24 hours at room temperature or 50 ºC.  

Composites prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 

10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 24 or 168 hours 

were chosen as representatives of the composites materials, as these were the most uniform, 

spectrally pure coloured textiles prepared through utilisation of the redox active nature of 

merino wool. 

 

Figure 5.142 and Figure 5.143 offer photographs of samples that have been in the washing 

solution for 0.5 to 24 hours.  Visually it appears that the colour of either set of samples had 

remained constant and not faded upon washing, even following extended washing (24 hours) 

at elevated temperatures (50 °C). 

 

 

Figure 5.142: Gold nanoparticle-merino wool composites (prepared by soaking untreated semi-worsted 

merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT followed by heating at 50 °C 

for 24 hours) following simulated washability tests. 



 

 

314 

 

Figure 5.143: Gold nanoparticle-merino wool composites (prepared by soaking untreated semi-worsted 

merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT followed by heating at 50 °C 

for 168 hours) following simulated washability tests. 

 

The CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of the composite 

materials following washing are provided in Appendix IV.  When washing either sample at 

RT, there were only very minimal decreases in the 457 nm brightness and 580 nm brightness 

values.  These decreases occurred during the first half hour of washing, following which the 

values remained relatively constant (Figure 5.144 and Figure 5.145).  These changes were 

more pronounced when washing at 50 °C.  This suggests that upon washing the composite 

materials became slightly lighter, most likely due to the dislodgement of nanoparticles 

loosely bound to the surface of the merino wool fibres.  However as there was no apparent 

colour change upon washing observed by the eye, this lightening was minimal. 
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Figure 5.144: Changes in L*, a*, b*, 457 nm brightness and 580 nm brightness values for a gold 

nanoparticle-merino composite (prepared by soaking untreated semi-worsted merino wool in a 160 ppm 

(8.13 x 10
-4

 M) Au
3+

 solution for 24 hours followed by heating at 50 °C for 24 hours) following simulated 

washability tests show the colour change due to washing. Washing at RT (black lines) or 50 ºC (red lines). 

 

Figure 5.145: Changes in L*, a*, b*, 457 nm brightness and 580 nm brightness values for a gold 

nanoparticle-merino composite (prepared by soaking untreated semi-worsted merino wool in a 160 ppm 

(8.13 x 10
-4

 M) Au
3+

 solution for 24 hours followed by heating at 50 °C for 168 hours) following simulated 

washability tests show the colour change due to washing. Washing at RT (black lines) or 50 ºC (red lines). 
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The colour fastness of these materials was tested further according to industry standard tests 

(see section 2.3.14).  A summary of the results of these tests is provided in Table 5.24 below.  

Colour fastness to washing tests were carried out at AgResearch Ltd, Lincoln, according to 

the industry standard Woolmark Company Test Method 5 procedure.  Possible results of 

these tests are grades ranging from 1 to 5, with 1 being poor and 5 excellent.  Both samples 

(those that had been aged for 24 hours and those that had been aged for 168 hours) achieved 

excellent results, obtaining grades of 4-5, and are therefore colourfast with respect to 

washing, confirming the results obtained from the preliminary tests reported above. 

 

In addition to testing the materials for colour fastness to washing, colour fastness to 

chlorinated swimming pool water and rubbing tests were also undertaken.  The obtainable 

grades for these tests are 1 to 5, with a grade of 1 denoting a severe change in colour and 5 no 

change in colour.  In all, the gold nanoparticle-merino wool composites obtained on average 

a grade of 4-5, proving these materials to be extremely colour fast with respect to chlorinated 

swimming pool water and also rubbing in both wet and dry conditions. 

 

It is likely that the materials were so colour fast with respect to washing in detergent and 

chlorinated swimming pool waters and also to rubbing in both wet and dry conditions as the 

nanoparticles are bound to the wool fibres via strong Au-S bonds.  Additionally, these 

nanoparticles, which impart colour to the composites are not present solely on the surface of 

the fibre, rather they also reside under the cuticle cells and throughout the fibre centres.  This 

makes these materials viable products for consumer applications, as their colour will not fade 

upon washing or rub off during wear. 

 

In addition to colour fastness to washing and rubbing, the gold nanoparticle-merino wool 

materials were very light fast, obtaining a grade of 6 in industry standard tests, where a grade 

of 1 denotes poor light fastness and 8 excellent light fastness.  A pass rate for apparel is a 

grade of 4-5.  The slight change in colour of these materials during these tests was due to a 

yellowing of the merino wool itself, not the gold nanoparticles bound to it.  The superior light 

fastness of these materials is an advantage considering the propensity of traditional organic 

dyes to fade or denature in light. 
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Table 5.24: Results of industry standard colour fastness and light fastness tests. Note: the values in 

brackets are the obtainable grades, with the lowest being poor and highest excellent. 

  Colour Fastness To: 

Sample Light Fastness 
(1-8) 

Washing 
(1-5) 

Chlorinated 
Water (1-5) 

Rubbing-Dry 
(1-5) 

Rubbing-Wet 
(1-5) 

Pink-24 h Age 6 4-5 4-5 4-5 4-5 

Purple-168 h Age 6 4-5 4-5 4-5 4-5 

 

5.8 Leaching 

 

Little is known about the long term health and environmental impact of nanoparticles; hence 

it is important to limit their leaching from consumer products.  As such, quantitative analysis 

of the washing solutions (obtained during the preliminary colour fastness to washing tests 

carried out in section 5.7 above) was undertaken to determine the amount of gold leached 

from the gold nanoparticle-merino wool composites during washing (see sections 2.2.2.5 and 

2.3.4 for procedural details).  Again composite materials prepared by soaking untreated semi-

worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by ageing at 50 °C for 24 or 168 hours were chosen as representatives of the 

composites materials.   

 

AA studies of the washing solutions revealed the leaching of very low amounts of gold, up to 

a maximum of 0.6 ppm ± 0.5 ppm, less than 1 wt % of the total gold loading for samples 

prepared with an ageing time of 24 hours, and 3.5 ppm, or approximately 2 wt % of the total 

gold loading for those prepared with 168 hours ageing (Table 5.25).  These amounts are very 

low, and complement the results obtained in the colour fastness to washing tests, where the 

materials did not undergo any marked colour change even following extensive washing at 

elevated temperatures.   

 

It is interesting to note that the purple coloured gold nanoparticle-merino wool composites, 

prepared with an ageing time of 168 hours leached more gold than those prepared with an 
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ageing time of 24 hours.  This is likely related to the increased amount of nanoparticles 

forming on the surface of the materials prepared with longer ageing times, with a similar 

percentage of gold leaching from nanoparticles bound to the surface of the fibres in each 

composite.  Work will be undertaken in the future to determine the form of this leached gold. 

 

Table 5.25: Gold leached from gold nanoparticle-merino wool composites (prepared by soaking 

untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by ageing at 50 °C for 24 or 168 hours) following simulated washability testing. 

Sample Washing 
Temperature 

Washing 
Time (hours) 

Gold Leached 
(ppm) ± 0.5 

ppm 

Gold Leached 
(% total gold 

loading) 

Pink, Soak 160 
ppm Au

3+
 24 h RT, 

heat 50 °C 24 h 

RT 0.5 0.4 < 1 

 1 0.3 < 1 

 2 0.3 < 1 

  5 0.4 < 1 

  24 0.6 < 1 

 50 ºC 0.5 0.4 < 1 

  1 0.6 < 1 

  2 0.5 < 1 

  5 0.5 < 1 

  24 0.6 < 1 

Purple, Soak 160 
ppm Au

3+
 24 h RT, 

heat 50 °C 168 h 

RT 0.5 2.3 2 

 1 2.4 2 

 2 3.0 2 

 5 2.1 1 

  24 2.3 1 

 50 ºC 0.5 3.5 2 

  1 2.9 2 

  2 2.5 2 

  5 2.5 2 

  24 2.6 2 
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5.9 Anti-microbial and Insecticide Properties 

 

As with the Ag-PMA-clay composites, the gold nanoparticle-merino wool composites were 

tested for anti-microbial activity against the bacteria Staphylococcus aureus according to the 

procedure outlined in section 2.3.13. Composites prepared by soaking untreated semi-

worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by heating at 50 °C for 24 or 168 hours were chosen and tested as representatives.   

 

Figure 5.146 offers a picture of a range of gold nanoparticle-merino wool composite 

materials embedded on agar plates that have been incubated with Staphylococcus aureus for 

24 hours and sterilized.  Since the bacterium grows up to but not upon the samples they resist 

microbial attack, classing them as being bacteriostatic.  Both the composite prepared with an 

ageing time of 24 hours and that prepared with 168 hours ageing exhibited comparable 

results. 

 

   

Figure 5.146: Gold nanoparticle-merino wool composites embedded on agar plates incubated with 

Staphylococcus aureus. Left: prepared by soaking untreated semi-worsted merino wool in a 160 ppm 

(8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 24 hours. Middle and 

right: prepared by ageing untreated semi-worsted merino wool in a 960 ppm (4.87 x 10
-3

 M) or 1040 (5.28 

x 10
-3

 M) Au
3+

 solution respectively for 24 hours at 50 °C. 

 

These gold nanoparticle-merino wool composites prepared by the redox active nature of the 

wool were also tested for their ability to resist the growth of moth larvae.  Table 5.26 offers 

the results of Tineola bisselliella (moth larvae) bioassays carried out on three gold 
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nanoparticle-merino wool composites.  The materials were prepared by soaking untreated 

semi-worsted merino wool in varying amounts of Au
3+

, notably 3.2, 32 and 160 ppm (1.62 x 

10
-5

,
 
1.62 x 10

-4
 and 8.13 x 10

-4
 M respectively) at RT for 24 hours, followed by ageing at 50 

°C for 168 hours.  To exert resistance to the growth of moth larvae a sample must exhibit a 

mass loss of 15 mg or less, or a mortality rate of greater than 90 %.  If this mortality rate was 

achieved the mass loss was irrelevant, and losses of over 15 mg were acceptable.  Table 5.26 

shows the results of the moth larvae bioassays.  It can be seen that increasing the 

concentration of Au
3+ 

employed in the production of the composites increased the material‘s 

ability to inhibit the growth of moth larvae, however only the sample prepared with a 160 

ppm (8.13 x 10
-4

 M) Au
3+

 induced a mortality rate of more than 90 %, and therefore was 

defined as being capable of resisting the growth of moth larvae.   

 

Table 5.26: Results of Tineola bisselliella (moth larvae) bioassays. Note, % pupation refers to the % of 

moth larvae reaching the pupa stage, the stage of metamorphosis that immediately precedes the adult 

stage. 

Sample Au 
concentration 

(ppm) 

Mortality 
(%) 

Pupation 
(%) 

Mass loss (mg) 
 ± standard 

error of mean 

Pass (P),  
fail (F) or 

borderline  
(B) 

Control 11.1 1.7 129.1 ± 13.8 n.a. 

Au 3.2 30.0 0.0 96.1 ± 14.9 F 

Au 32 44.9 0.0 83.0 ± 14.5 F 

Au 160 92.8 0.0 54.4 ± 5.7 P 

 

In addition to testing for resistance to the growth of moth larvae, the ability of the gold 

nanoparticle-merino wool composites to resist the growth of the furniture carpet beetle 

Anthrenocerus flavipes was also tested.  The criterion which dictates whether or not a 

material is capable of inducing resistance to beetle larval growth is the same as that of the 

moth larvae tests, notably the material must exhibit a mass loss of 15 mg or less or induce a 

beetle larvae mortality rate of at least 90 % (at which point the mass loss is irrelevant).  The 

gold nanoparticle-merino wool composite that exhibited resistance to the growth of moth 

larvae (prepared by soaking untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 

M) Au
3+

 solution for 24 hours at RT, followed by heating at 50 °C for 168 hours) was tested 
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for beetle larvae resistance, and the results of these bioassays are shown in Table 5.27 below.  

Unfortunately this material narrowly failed the bioassay, exhibiting a mass loss of 15.3 mg.  

This bioassay was carried out on a composite material in the top form.  As such the fibres 

were very loose and significant fibre loss was observed during the process of the mortality 

assessment.  AgResearch advised that if the same bioassays had been carried out on a woven 

fabric rather than a loose top the mass loss of the sample would have been lower, and it is 

highly probable that the gold nanoparticle-merino wool composites would have been 

effective in inhibiting the damage caused by beetle larvae.   

 

Table 5.27: Results of Anthrenocerus flavipes (beetle larvae) bioassays. Note, % pupation refers to the % 

of moth larvae reaching the pupa stage, the stage of metamorphosis that immediately precedes the adult 

stage. 

Sample Au 
concentratio

n (ppm) 

Mortality 
(%) 

Mass  
loss 

(mg)  

Mass loss 
(% of the 
voracity 
control) 

Pass (P),  
fail (F) or 

borderline  
(B) 

Control 0.0 76.0 n.a n.a. 

Au 160 0.0 15.3 20.1 F 

 

The resistance to the growth of moth larvae, and the potential resistance to the growth of 

beetle larvae exerted by the gold nanoparticle-merino wool composites is exciting, as it 

provides an alternative to the traditionally used permethrin, a broad-spectrum insecticide 

traditionally used by the wool industry to control insects that feed on wool (such as moths 

and beetles).  This insecticide is finding disfavour, failing to meet a selection of international 

effluent discharge standards, as it has been shown to be toxic to aquatic invertebrates, 

affecting the growth of insects in rivers which are the first stage in a rivers ecological 

chain.[242]  There have also been resistance issues with permethrin, causing increasing 

amounts to be used to ensure its effectiveness.   

 

There have been a selection of scientific reports on the use of gold complexes and gold 

nanoparticles as anti-microbial agents, anti-tumour agents, and also in the treatment of 

rheumatoid arthritis (see section 1.3.4.2).  It is generally proposed that the anti-microbial, 
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anti-tumour etc activity of gold arises due to the instability of gold ions (Au
3+

, Au
+
) in 

biological environments, with many Au
3+

 or Au
+
 complexes being capable of being reduced 

to Au
+
 or Au

0
 by biologically occurring reductants such as thiols (-SH) or disulfides (-S-S-), 

which are themselves oxidised, inhibiting processes essential to cellular survival.  To the best 

of our knowledge there have been no scientific reports on the use of gold complexes or gold 

nanoparticles as moth and or beetle insecticides, however it is likely that the gold 

nanoparticle-merino wool composites resist the growth of moth larvae (and potentially beetle 

larvae) in a similar way, notably through the oxidation of functional groups in these 

organisms.  XPS analysis showed the gold nanoparticle-merino wool composites tested 

(prepared with an ageing time of 168 hours) to possess a percentage of unreduced Au
3+

, and 

also Au
+
 in the form of Au-S bonds between the nanoparticles and wool fibres (see section 

5.3).  It is possible that these Au
3+

 ions come in contact with the larvae when they eat the 

wool whereby Au
3+

 are reduced to Au
+
 or Au

0
 by functional groups in the larval cellular 

makeup, resulting in the inhibition of processes essential to cellular survival.  If this is the 

case composites prepared with a shorter ageing time should be expected to exhibit increased 

insecticidal properties, as these materials possess a greater amount of Au
3+

.  Future work is 

planned to test this. 

 

5.10 Chlorine Hercosett Shrink Resistance Treatment 

 

The chlorine Hercosett shrink resistance treatment is the most common surface treatment 

applied to wool textiles as it allows woollen fabrics to be washed without significant felting 

and/or shrinkage.  This treatment is particularly common in textiles destined for use in 

garments.  As considerable difficulties were encountered when employing Cl/H treated 

merino wool as the fibre substrate in the production of the gold nanoparticle-merino wool 

composites (see section 5.1.5) Cl/H treatments were applied to the composite materials post 

inclusion of the gold nanoparticles. 

 

Figure 5.147 shows gold nanoparticle-merino wool composites (prepared by soaking 

untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours 

at RT, followed by heating at 50 °C for 24 or 168 hours) both before and after Cl/H 
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treatment.  The treatment clearly had a detrimental effect on the colour of the materials, 

causing both materials to turn a yellow/gold colour.  This was much more pronounced in the 

pink composites prepared with an ageing time of 24 hours.  During the Cl/H process, 

oxidation of the fibres occurs through exposure to chlorine gas or hypochlorite.  As such, the 

observed discolouration is likely due to oxidation of the Au
0
 nanoparticles to Au

3+
 (scheme 

4.4), which subsequently combines with the generated Cl
-
 ions to form yellow AuCl4

-
 

(scheme 4.5).  The Cl/H treatment is surface specific, and as such it is probable that only the 

nanoparticles residing on the surface of the wool fibres are oxidized.   

 

  

  

Figure 5.147: Left top and bottom: gold nanoparticle-merino wool composites (prepared by soaking 

untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by heating at 50 °C for 24 (top) or 168 (bottom) hours). Right: the same composite materials 

following chlorine Hercosett treatment. 
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It is likely that discolouration was more pronounced in the composites that had been aged for 

24 hours rather than 168 hours as prior to exposure to the oxidizing conditions, the former 

materials possessed a greater percentage of Au
3+

 (as shown by XPS analysis, see section 5.3) 

which increases following Cl/H treatment.  This higher concentration of Au
3+

 would combine 

with the Cl
-
 ions forming a greater concentration of yellow AuCl4

-
.  Additionally, these pink 

coloured composites (prepared with an ageing time of 25 hours) possessed fewer 

nanoparticles on the surface of the fibres compared to those prepared with an ageing time of 

168 hours.  Therefore once surface oxidation had occurred there would be fewer 

nanoparticles present in the pink materials causing the yellow colour of AuCl4
-
 to be more 

pronounced.  SEM and TEM analysis showed the materials prepared with an ageing time of 

168 hours contained small gold nanoparticles in the fibre centre.  These were absent in 

materials prepared with an ageing time of 24 hours.  As the Cl/H treatment is surface 

specific, the nanoparticles in the centre of the fibres would not be affected, and as such would 

still exhibit surface plasmon resonances, which combined with the greater concentration of 

nanoparticles on the fibre surface, would account for the decreased discolouration of these 

materials. 

 

As with the Cl/H treated gold nanoparticle-merino wool composites prepared through 

incorporation of TSC reduced and stabilised gold nanoparticles, XPS of these Cl/H treated 

composites is required to confirm that the discolouration arises due to the re-oxidation of Au
0
 

to Au
3+

 and subsequent formation of AuCl4
-
.  This will be carried out in future work.  

 

5.11 Electrical Conductivity 

 

The electrical conductivities of the gold nanoparticle-merino wool composites were analysed 

through implementation of the linear four point probe method (see section 2.3.7 for details).  

Regardless of the synthesis conditions employed, the conductivity of these composite 

materials fell below the detection limits of the apparatus employed.  The low conductivity of 

the composite materials is likely related to the distribution of the gold nanoparticles on the 

fibres.  As shown in section 5.1, the nanoparticles commonly resided along the edges of the 

fibre cuticles, and did not form a continuous coating.  This isolation of the nanoparticles 
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would impair the flow of electrons through/along the fibres, resulting in their apparently low 

conductivity. 

 

Although the linear four point probe method classed the gold nanoparticle-merino wool 

composite materials as being non-conductive, when spinning the materials into a yarn 

significantly less static electricity build up was noted.  

 

5.12 Scale up and Commercialisation 

 

The production of gold nanoparticle-merino wool composite materials prepared through the 

redox properties of the protein fibres has been successfully scaled up to a large laboratory 

scale.  Sufficient deep and light purple coloured gold nanoparticle-merino wool material has 

been produced to enable it to be hand spun into a yarn (Figure 5.148 left), with the latter 

subsequently hand woven into the world‘s first ‗golden wool‘ scarf (Figure 5.148 right) 

whose colour emanates solely from the gold nanoparticles it contains.  Large samples 

(approximately 1 kg batches) of light pink and deep, regal purple coloured composite 

materials have also been produced. 

 

Together with samples of gold nanoparticle-merino wool composites in a range of colours, 

these materials have been showcased at numerous national and international science and 

textiles conferences,[243-246] where they were very well received, sparking interest from 

several key plays in the textiles industry, including Wool Partners International Ltd, the 

World Gold Council, Cariaggi (an Italian spinning company supplying yarn to premier 

international fashion houses), John Smedley UK (a high quality fine knitwear manufacturer 

and retailer), NZ Merino Ltd and New Zealand Trade and Enterprise.  Following discussions 

with several of these companies, we are currently in the process of commercialising this 

technology. 
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Figure 5.148: Examples of gold nanoparticle-merino wool sample that has been hand spun into a yarn 

(left) and subsequently hand woven into a scarf (right). 

 

 

5.13 Conclusions 

 

Gold nanoparticle-merino wool composites were successfully produced in the absence of an 

external reducing agent.  The proteins present in merino wool acted as redox active 

biotemplates, facilitating the reduction of Au
3+

 to nanoparticulate Au
0
, with simultaneous 

binding of the produced nanoparticles both on the surface and within the centre of the fibres.   

 

When synthesising gold nanoparticle-merino wool composites the base fibre used in 

production greatly influenced the resultant materials.  There was very limited success when 

employing merino wool in a woven cloth or spun fibre form, as the resultant composite 

materials were very non-uniform in colour.  The best results were obtained when employing 
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untreated merino wool in sliver (top) form, as it was possible to produce uniform, and 

spectrally pure coloured composite materials.  When merino wool processed via the worsted 

route was employed as the base fibre, it was necessary to firstly clean the fibres via a Soxhlet 

extraction, thus removing additional processing lubricants found on the fibre surface. 

 

Pre-treating the merino wool fibres prior to addition to Au
3+

 solutions was unsuccessful, and 

in general produced materials that were not dissimilar in colour to untreated merino wool.  

However when Cl/H treated merino wool was used as the base fibres, a colour development 

appeared with prolonged ageing.  Base treating the Cl/H treated merino wool dramatically 

increased this colour development, and hence the reduction of Au
3+

 to nanoparticulate Au
0
 in 

such materials.  In contrast to untreated merino wool in which the Au
3+

 to Au
0
 reduction was 

facilitated by the proteins present in the fibres, in Cl/H treated merino wool the reduction 

appeared to be facilitated by the Hercosett polymer, specifically its amine groups.  It was 

proposed that base treating Cl/H treated merino wool liberated more amine groups and hence 

increased the reducing capacity of the treated fibres. 

 

In addition to the base fibre employed in the production of the gold nanoparticle-merino wool 

composites, the reaction parameters also influenced the colour of the resultant materials.  

Even though atomic absorption studies showed the majority of gold (in the form of AuCl4
-
) 

was absorbed by the wool fibres after 1-6 hours at RT, a soaking time of at least 24 hours 

was required to ensure an even distribution of AuCl4
-
/Au

3+
 throughout the fibre as a result of 

diffusion.  This was assisted by gentle agitation so as not to cause matting of the fibres or 

shrinkage of the wool.  If soaking times of less than 24 hours were employed the resultant 

materials possessed a high percentage of agglomerated gold nanoparticles on the fibre 

surface, likely due to insufficient diffusion of Au
3+

 into the wool fibre, forming an increased 

number of nanoparticles at the fibre surface and hence resulting in insufficient stabilisation of 

the initially produced nanoparticles due to the high ratio of gold to wool.  Although in 

general the formation of such agglomerated nanoparticles was undesirable as it produced 

spectrally impure coloured composite materials, employing very high concentrations of Au
3+

 

(greater than 840 ppm) and no soaking allowed for the production of grey coloured 

composites.  Attractive bluey grey to steely grey coloured materials were produced in this 

way, however as so much gold went into their production, it was a very uneconomical 
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approach and an alternative method for the production of grey coloured gold nanoparticle-

merino wool composites is offered in chapter 8 below. 

 

An ageing temperature of 50 °C was determined to be ideal, with temperatures of 80 °C 

increasing the Au
3+

 to Au
0
 reduction resulting in the formation of agglomerated particles.  

When employing a Au
3+

 concentration of 160 ppm (8.13 x 10
-4

 M) increasing the ageing 

time, at 50 °C from 24-72 hours saw the production of a greater concentration of 

spherical/five-fold twinned nanoparticles, approximately 20-25 nm in diameter.  These 

nanoparticles resided preferentially along the cuticle edges.  However when ageing for 168 

hours these nanoparticles spread slightly across the fibre surface, and small spherical 

nanoparticles, approximately 5-10 nm in diameter were seen to form in the fibre centres.  

This increase in the concentration of similarly sized nanoparticles on the fibre surface 

corresponded to an increase in intensity of the pink colour of the composites, whilst the 

formation of smaller nanoparticles in the fibre centre induced a change in composite colour 

to a deep regal purple.  Increasing the ageing time further did not alter the colour of the 

resultant materials. 

 

The composition of both the soaking and ageing solutions influenced the uptake of AuCl4
-
 

and the ability of the proteins in merino wool to facilitate the Au
3+

 to Au
0

 reduction and 

hence the colour of the resultant materials.  A pH of 2.7 was determined to be optimal for the 

soaking solution, with lower pH‘s damaging the wool fibre and higher reducing the uptake of 

AuCl4
-
.  However once AuCl4

-
 was absorbed and had diffused through the fibre (therefore 

after soaking) increasing the pH of the ageing solution to a maximum of 9 (which following 

equilibrium with the fibre became 5.5) destabilised the AuCl4
-
 system so that Au

0
 became the 

favoured species, increasing the Au
3+

 to Au
0
 reduction rate, and producing a deep regal 

purple coloured composite with shorter ageing times. 

 

In addition to pH, the presence of electrolytes in the soaking and ageing solutions also 

influenced the ability of merino wool to reduce Au
3+

.  Increasing the electrolyte 

concentration of the soaking and or ageing solution increased the transfer of electrons 

between the wool fibre (the reductant) and the Au
3+

 ions, producing more nanoparticles in a 
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shorter amount of time.  (This occurred even when the electrolyte concentration of the 

soaking solution was increased independently to the ageing solution, as the electrolytes were 

seen to remain in the fibres once they were removed from the soaking solution).  This 

resulted in the formation of a greater concentration of slightly smaller nanoparticles at the 

fibre surface, and hence more intense pink coloured composites when shorter (less than 168 

hours) ageing times were employed.  However the deep purple colour observed when 

soaking and ageing in the original Au
3+

 solutions was not obtained in these materials, which 

was proposed to be due to electrolytes in the fibre centres hindering Au
3+

 ions coming 

together to nucleate and hence forming nanoparticles. 

 

When soaking and ageing solutions of decreased electrolyte concentrations were employed 

(for example distilled water) the colour of the composite materials decreased in intensity.  

Interestingly, when soaking and ageing solutions of nearly identical ionic strength to the 

original 160 ppm Au
3+

 soaking solution (for example a 10 ml aqueous solution containing 40 

μL of 0.1 M HCl) the colour of the resultant materials was still lighter and underdeveloped 

relative to those prepared with the original soaking and ageing solutions, thus suggesting 

other ions (such as sodium or calcium) may be released from the wool fibres during soaking, 

increasing the ionic strength of the soaking solution from that originally calculated. 

 

The concentration of the dissolved Au
3+

 or AuCl4
-
 in relation to the amount and surface area 

of the wool fibre is important.  When the concentration of the dissolved Au
3+

 or AuCl4
-
 is 

increased but the same overall gold to wool fibre ratio is used, i.e. a lesser solution volume is 

used; the colour of the resultant material is more intense.  This was found to be related to the 

surface density of absorbed AuCl4
-
, as higher Au

3+
 concentrations results in more AuCl4

-
 at 

the wool fibre surface, inducing more collisions between Au
3+

 ions and hence nucleations, 

forming more nanoparticles and deeper, more intensely coloured composite materials.  A 

desirable consequence of this is that the same colour can be achieved by using a higher 

concentration of Au
3+

 or AuCl4
-
 in solution but a reduced solution volume in relation to the 

amount of wool fibre and hence a reduced amount of gold to weight of wool overall. 
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EDS and XPS suggest the gold nanoparticles bind to the merino wool fibres primarily via 

coordinative covalent Au-S bonds, most likely in the main sulfur containing amino acids 

cystine and cysteine.  The one exception to this was when Cl/H treated merino wool was 

employed as the fibre substrate, as in these composite materials the nanoparticles appeared to 

bond to the wool through both Au-S and Au-N bonds, the latter most likely through nitrogen 

atoms in the Hercosett polymer encapsulating such fibres. 

 

The proposed mechanism of formation of the gold nanoparticle-merino wool composites 

involves the reduction of Au
3+

 to nanoparticulate Au
0
 by the disulfide groups of the amino 

acid cystine, which themselves are oxidised to cysteic acid.  During soaking, a percentage of 

Au
3+

 was seen to be reduced to Au
+
 by cystine, forming some kind of Au-S complex.  Upon 

ageing it is proposed that these Au-S complexes act as nucleation sites for the reduction of 

Au
3+

 to Au
0
, again facilitated by the oxidation of nearby disulfide groups of cystine, with the 

transfer of electrons from these oxidation reactions facilitated by the electrolytes present in 

the ageing solutions. 

 

The applicability of these gold nanoparticle-merino wool composites in consumer products 

was investigated by testing their colourfastness to washing, rubbing in both wet and dry 

conditions, chlorinated water and light.  They performed very well with respect to all of these 

industry standard tests, achieving values greater than a pass.  It is likely that the materials 

performed to well with respect to colourfastness as the nanoparticles (which were inducing 

the colour) are bound to the fibres via strong Au-S bonds, and also because they were 

dispersed throughout the fibre centre rather than simply binding to the surface.  The gold 

nanoparticle-merino wool composites also resisted microbial attach, inhibited the growth of 

moth larvae and reduced the build up of static electricity during spinning.  However they did 

discolour following Cl/H treatment, which as with the composites prepared through the 

incorporation of TSC or TA reduced and stabilised gold nanoparticles, was thought to be due 

to the re-oxidation of Au
0
 to Au

3+
, and the subsequent formation of AuCl4

-
.  As it is common 

to Cl/H treat merino wool prior to its use in fashion garments (a target market for these 

materials) the discolouration of the composite materials during Cl/H treatments needs to be 

addressed, or garments made from such materials will have to be dry-cleaned rather than 

washed. 
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The production of the gold nanoparticle-merino wool composites has been scaled up to 

produce sufficient amounts of a light purple coloured material which was hand spun into a 

yarn and subsequently hand woven into a scarf.  Large quantities of pink and deep regal 

purple coloured materials have also been produced.  Together with a selection of all materials 

of all colours that can be produced, these have been showcased at national and international 

science and textiles conferences were they were very well received. 
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6. GOLD NANOPARTICLE-CROSSBRED WOOL COMPOSITES 

 

As a proof of concept, the production of gold nanoparticle-fibre composites, prepared 

through utilisation of the redox active nature of the fibre substrate was extended to crossbred 

wools.  By definition crossbred wools comprise of a group of thicker diameter wools (greater 

than 35.4 µm).  Aside from the fibre diameter, the only major difference between crossbred 

wool and merino wool is the relative proportions of paracortical and orthocortical cells.  In 

merino wool the paracortex accounts for approximately 10-40 % of the cortex, and is 

arranged bilaterally with the orthocortex (Figure 6.1).[46, 247]  However in crossbred wool 

the paracortex makes up approximately 50-70 % of the cortex, and the bilateral asymmetry 

observed in merino wool fibres is replaced by cylindrical asymmetry, with the paracortex 

found along the outer edge of the cortex (Figure 6.1).[44, 46] 

 

  

Figure 6.1: Cross sectional light micrographs of merino wool (left) and crossbred wool fibres (right) dyed 

with methylene blue to differentiate between the paracortex (P- lightly stained) and orthocortex (O- 

darkly stained).[46] 

 

The gold nanoparticle-crossbred wool composite materials were prepared via the same 

procedures used to produce the gold nanoparticle-merino wool materials.  These procedures 

are outlined in section 2.2.2.3.   

 

6.1 Physical Characterisation and Morphology 

 

Figure 6.2 offers a picture of gold nanoparticle-crossbred wool composite materials prepared 

with various Au
3+

 solutions (80-160 ppm, (4.06 x 10
-4

 – 8.13 x 10
-4

 M)), a soaking time of 24 
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hours and ageing times of 24-168 hours.  It is apparent from this image that increasing both 

the Au
3+

 concentration and also the ageing time only slightly intensified the colour of the 

resultant materials, with a deep regal purple coloured material produced with low Au
3+

 

concentrations and short ageing times.  This is in contrast to what was observed with the 

composites incorporating merino wool, as to achieve a similar deep regal purple colour with 

merino wool, a Au
3+

 concentration of at least 160 ppm (8.13 x 10
-4

 M) and an ageing time of 

168 hours was required.   

 

 

Figure 6.2: Gold nanoparticle-crossbred wool composite materials, prepared by soaking crossbred wool 

fibres in an 80, 120 or 160 ppm (4.06 x 10
-4

, 6.09 x 10
-4

 and 8.13 x 10
-4

 M) Au
3+

 solutions for 24 hours at 

RT, followed by ageing at 50 °C for 24-168 hours. 

 

Figure 6.3 offers increasing magnification SEM micrographs of gold nanoparticle-crossbred 

wool composites prepared by soaking the fibres in an 80 or 160 ppm (4.06 x 10
-4

 or 8.13 x 

10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 24 or 168 hours.  

All of these materials possess spherical nanoparticles (approximately 20-30 nm in diameter), 

hexagonal platelets (approximately 100-300 nm in diameter), triangles (approximately 100 

nm in diameter) and truncated triangles (approximately 100 nm in diameter) in similar 

concentrations.  Increasing both the ageing time and Au
3+

 concentration appeared to increase 

the amount of spherical nanoparticles present, but only to a very small extent, and this is 
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reflective of the relatively constant colour of the materials, with only a slight increase in 

intensity of the composites purple colour occurring with prolonged ageing and the use of 

increased Au
3+

 concentrations.  Compared to the analogous composites incorporating merino 

wool, these materials possess a much larger concentration of gold nanoparticles with a 

broader spread in morphologies. 

 

   

   

   

   

Figure 6.3: Gold nanoparticle-crossbred wool composite materials, prepared by soaking crossbred wool 

fibres in an 80 ppm (4.06 x 10
-4

 M) (a and b) or 160 ppm (8.13 x 10
-4

 M) (c and d) Au
3+

 solution for 

solutions for 24 hours at RT, followed by ageing at 50 °C for 24 (a and c) or 168 hours (b and d). 

10 µm 1 µm 100 nm 

100 nm 1 µm 10 µm 

10 µm 1 µm 100 nm 

100 nm 

100 nm 1 µm 10 µm 
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It is likely that the higher percentage of anisotropic, hexagonal, triangular and truncated 

triangular gold nanoparticles observed in these materials relative to those prepared from 

merino wool are due to the specific surface area of the fibres.  The fibre diameter of 

crossbred wool is much larger than that of merino, (~35 µm compared to ~20 µm) therefore 

for the same weight of fibres, the specific surface area of the crossbred wool is lower.  Hence 

for the same ratio of Au
3+

 : wool : solution volume, there is a higher density of absorbed Au
3+

 

at the surface of the crossbred wools.  As such when the initial nucleation events occur, a 

smaller percentage of Au
3+

 would initially be reduced (relative to the merino wool systems), 

leaving a relatively high concentration of unreduced Au
3+

 at the fibre surface.   

 

As discussed in section 1.3.3 and 5.1.2.1 it is probable that a percentage of these initially 

formed nanoparticles would contain twin plane defects, creating favourable sites (grooves) 

for additional Au
3+

 ions to adsorb and become reduced, thus resulting in specific sides of the 

particles growing faster than others; promoting the formation of anisotropic nanoparticles.  

The unreduced Au
3+

 in solution may adsorb into these defects, and form hexagonal, 

triangular or truncated triangular nanoplates.  The twin plane defect containing particles were 

also observed in the merino wool systems (see section 5.1.2.1), however due to the lower 

absorbed surface density of Au
3+

 in these systems (due to the larger specific surface area of 

merino wool) once these particles were formed there would be less Au
3+

 present to adsorb 

onto them and grow into anisotropic particles. 

 

The fact that deep regal purple coloured composites were formed with lower Au
3+

 

concentrations and shorter ageing times when employing crossbred wool as the base fibre in 

place of merino wool was also likely related to the different fibre diameters and hence the 

difference in surface areas of the fibre types.  The smaller surface area per unit mass of the 

crossbred wool, and hence the larger density of Au
3+

 at the fibre surface, would induce a 

greater amount of collisions between the Au
3+

 ions, and hence more nucleations and 

nanoparticle formation in a shorter period of time, which would account for the development 

of the deep regal purple colour of the gold nanoparticle-crossbred wool materials after only 

24 hours ageing.  This would also explain why similar coloured gold nanoparticle-crossbred 

wool composites were formed with a much lower Au
3+

 concentration (80 ppm) relative to the 

merino wool materials, as there would be a similar density of Au
3+

 absorbed at the surface of 
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the crossbred fibres prepared with 80 ppm Au
3+

 solutions and the merino wool composites 

prepared with 160 ppm Au
3+ 

solutions. 

 

Cross sectional SEM and EDS analysis of the gold nanoparticle-crossbred wool composite 

materials suggested the gold nanoparticles reside preferentially at or near the surface of the 

wool fibres (Figure 6.4), even following prolonged soaking and ageing times (during which 

the diffusion of gold through the fibre could be accomplished).  The fact that the gold 

nanoparticles, and also high concentrations of gold were found nearer to the fibre surface 

may be due to two reasons.  Firstly the absorption of gold by the crossbred wool fibres was 

much slower than that observed for merino (see section 5.4), so that when ageing, and the 

reduction of Au
3+

 began, there would be a higher concentration of gold at or near the surface 

of the crossbred fibres, and as this reduction was seen to be faster in the crossbred systems 

(illustrated by the development of a deep purple colour after only 24 hours ageing) the Au
3+

 

would be reduced to nanoparticulate Au
0
 before it had time to diffuse through the fibres to a 

large extent. 

 

  

Figure 6.4: Left: cross sectional SEM micrograph and right: corresponding Au EDS map of a gold 

nanoparticle-crossbred composite prepared by soaking crossbred wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 

solution for 24 hours at RT, followed by ageing at 50 °C for 168 hours. 

 

Alternatively, the high concentration of gold nanoparticles on or near the surface of the 

crossbred wool fibres may be due to the physical structure of these fibres.  As mentioned 
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above, the paracortex and orthocortex of crossbred wool is arranged with cylindrical 

asymmetry, and the paracortex (the sulfur rich region of the cortex) is located at the outer 

edge of the cortex.  Therefore if cystine was facilitating the reduction of Au
3+

 to 

nanoparticulate Au
0
, it is in these regions that the reduction would be more likely to occur 

resulting in high concentrations of nanoparticles near the fibre surface. 

 

6.2 Colour 

 

The colour of the gold nanoparticle-crossbred wool composites were characterised through 

UV/Vis spectroscopy and via analysis of their CIE L*, a*, b*, 457 nm brightness and 580 nm 

brightness values.  In general, an increase in concentration of nanoparticles of similar size 

and shape corresponded to a darkening and increase in intensity of the deep purple colour of 

the composite materials.   

 

As with the analogous merino wool composites, the colour of the composites prepared with 

crossbred wool was influenced by the Au
3+

 concentration and ageing time, however these 

effects were quite minimal, with only a very slight increase in intensity of the colour of the 

composites occurring with increased Au
3+

 concentrations and ageing times.  It is likely that 

other factors such as the soaking time, composition of the soaking and ageing solutions and 

the ageing temperature would also influence the colour of the composite materials, however 

as the synthesis of the gold nanoparticle-crossbred wool composites was simply a proof of 

concept, the effect of these parameters were not investigated. 

 

As mentioned, the CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of the 

composites reflected these very slight changes.  A comprehensive set of CIE values are 

offered in Appendix V.  Increasing both the ageing time (Figure 6.5 and Figure 6.6) and also 

the Au
3+

 concentration (Figure 6.7) saw a general decrease in the L* values (with L* = 100 

being white and L* = 0 black), and 457 nm brightness and 580 nm brightness values, 

confirming the visual darkening of the composites with increased ageing times and Au
3+

 

concentrations.  There was also a corresponding increase in a* values and decrease in b* 



 

 

338 

values.  As high a* and b* values denote a redder and yellow coloured material respectively, 

whilst lower denote greener and bluer, an increase in a* values with a corresponding 

decrease in b* values with increased ageing times and Au
3+ 

concentrations reflects the 

observed development of the deeper purple colour.  The slopes of all of these lines are lower 

than those of the gold nanoparticle-merino wool composite materials (Figure 5.65) reflecting 

the faster rate of Au
3+

 to nanoparticulate Au
0
 in the gold nanoparticle-crossbred wool 

composites, with the colour of such materials being largely developed after 24 hours ageing. 

 

 

Figure 6.5: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for gold nanoparticle-

crossbred wool composites prepared by soaking the fibres in an 80 ppm (4.06 x 10
-4

 M) Au
3+

 solution for 

24 hours at RT, followed by ageing, at 50 °C for 24-168 hours. 
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Figure 6.6: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for gold nanoparticle-

crossbred wool composites prepared by soaking the fibres in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 

24 hours at RT, followed by ageing, at 50 °C for 24-168 hours. 

 

Figure 6.7: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for gold nanoparticle-

crossbred wool composites prepared by soaking the fibres in an 80, 120 or 160 ppm (4.06 x 10
-4

, 6.09 x 10
-

4
 or 8.13 x 10

-4
 M) Au

3+
 solution for 24 hours at RT, followed by ageing, at 50 °C for 168 hours. 

 

UV/Vis spectroscopy of the crossbred-Au materials also illustrated the colour development 

induced with increasing ageing times and Au
3+

 concentrations.  The Kubelka Munk 

transformed UV/Vis spectra of gold nanoparticle-crossbred wool composites display four 
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discernable peaks, centred at approximately 450, 515, 546 and 700 nm (Figure 6.8 and Figure 

6.9).  The peaks centred at 450, 515 and 700 nm related to the plasmon bands of anisotropic 

gold nanoparticles.  The two former peaks correspond to the transverse plasmon bands of 

triangular gold nanoparticles and hexagonal/platelet gold nanoparticles respectively, whilst 

the latter corresponds to longitudinal plasmon bands of such particles.[210]  The peak 

centred at approximately 546 nm is in the range expected for spherical or five-fold twinned 

gold nanoparticles approximately 20-30 nm in diameter.  (This is slightly higher than that 

seen for the spherical nanoparticles in the merino wool composites, reflecting the slightly 

larger size of the nanoparticles in the crossbred wool composites). The presence of all of 

these peaks agree with the SEM observations made in section 5.1 above, reflecting the range 

of morphological forms found in these composite materials. 

 

Figure 6.8 shows that increasing the ageing time from 24-168 hours, progressively increased 

the intensity of all plasmon bands, reflecting the SEM observations made above in which 

longer ageing times produced more nanoparticles of similar size and shape.  Increasing the 

gold concentration from 120 ppm (4.06 x 10
-4

 M) to 160 ppm (8.13 x 10
-4

 M) also induced an 

increase in intensity of these peaks (Figure 6.9), again reflecting the increase in concentration 

of similarly sized and shaped nanoparticles, and hence a deepening in colour intensity of the 

resultant materials.  

 

Figure 6.8: Kubelka Munk transformed UV/Vis reflection spectra of gold nanoparticle-crossbred wool 

composites prepared by soaking crossbred wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at 

RT, followed by ageing at 50 °C for 24-168 hours. 
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Figure 6.9: Kubelka Munk transformed UV/Vis reflection spectra of gold nanoparticle-crossbred wool 

composites prepared by soaking crossbred wool in an 80, 120 or 160 ppm (4.09 x 10
-4

, 6.09 x 10
-4

 or 8.13 x 

10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 24-168 hours. 

 

6.3 Confirmation of Gold 

 

As with the gold nanoparticle-merino wool composites, the presence of gold in the materials 

prepared from crossbred wool was first suggested by backscatter SEM, and confirmed by 

EDS and XPS analysis.  As an example, Figure 6.10 offers SEM micrographs of composite 

materials prepared by soaking crossbred wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 

24 hours at RT, followed by ageing at 50 °C for 24 or 168 hours.  The micrographs on the 

left were collected with a secondary electron detector whilst those on the right were collected 

with a backscatter electron detector.  It is clear from these micrographs that when viewed 

under backscatter conditions, the gold nanoparticles residing on the fibres are much more 

apparent, appearing as bright white dots or triangles etc (depending on the morphology of the 

nanoparticles).  As the intensity of the backscatter signal is directly related to atomic number, 

heavier elements reflect more signal than lighter elements, causing the gold nanoparticles to 

appear much brighter than the rest of the wool fibre, which is primarily comprises carbon, 

nitrogen, oxygen and sulfur. 
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Figure 6.10: SEM micrographs of gold nanoparticle-crossbred wool composite materials (prepared by 

soaking the fibres in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 

°C for 24 hours (top) or 168 hours (bottom)). The micrographs on the left are collected with a secondary 

electron detector whilst those on the right are detected with a back scatter detector. 

 

EDS analysis confirmed these bright white particles to be gold.  Figure 6.11 offers SEM 

micrographs and the corresponding EDS Au maps of a selection of gold nanoparticle-

crossbred wool composite materials.  These maps show high concentrations of gold (depicted 

in bright white or red areas in the Au maps) to correlate to the position of the particles in the 

fibres.  Additionally, Figure 6.12 and Figure 6.13 offer spectral snap shots of the areas under 

analysis, and substantiate the presence of gold due to the existence of the gold peaks. 

 

1 µm 1 µm 

10 µm 10 µm 
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Figure 6.11: SEM micrographs and corresponding EDS Au maps of gold nanoparticle-crossbred wool 

composite materials. 

 

 
Figure 6.12: EDS spectrum of the gold nanoparticle-crossbred wool composite shown in Figure 6.11 top. 

 

10 µm 

100 nm 
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Figure 6.13: EDS spectrum of the gold nanoparticle-crossbred wool composite shown in Figure 6.11 

bottom. 

 

XPS further substantiated the presence of gold in the gold nanoparticle-crossbred wool 

composite materials, showing the composites prepared with a Au
3+

 concentration of 160 ppm 

(8.13 x 10
-4

 M) Au
3+

 to consist of 0.18 % gold (Figure 6.14, Table 6.1).  Examination of the 

deconvoluted, high resolution Au 4f XPS spectra of the composite materials showed the 

relative percentages of Au
3+

, Au
+
 (in the form of Au-S) and Au

0 
(Table 6.1).  When 

employing a Au
3+

 concentration of 160 ppm (8.13 x 10
-4

 M) Au
3+

, with a soaking time of 24 

hours, increasing the ageing time from 24 to 168 hours saw a decrease in the amount of Au
3+

 

from 46 % to 25 %.  This decrease in Au
3+

 was accompanied by a simultaneous increase in 

both Au
+
 (in the form of Au

+
 bound to S) and nanoparticulate Au

0
.  This suggests that with 

increasing ageing times, more Au
3+

 was reduced to nanoparticulate Au
0
. 
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Figure 6.14: Wide XPS scans of gold nanoparticle-crossbred wool composites prepared by soaking the 

fibres in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for a) 24 

hours or b) 168 hours. 

 

Table 6.1: Amount of gold present in gold nanoparticle-crossbred wool composites prepared by soaking 

the fibres in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 

24 or 168 hours. 

Au
3+

 
Concentration 

Ageing Time 
(hours, 50 °C) 

% Gold (± 10 %) % Au
3+

  
(± 10 %) 

% Au
+
  

(± 10 %) 
% Au

0
  

(± 10 %) 

160 ppm  
(8.13 x 10

-4
 M) 

24 0.19 46 50 4 

168 0.18 25 57 18 

 

6.4 Extent of Gold Uptake by Crossbred Wool Fibres 

 

The uptake of gold by crossbred wool during the production of gold nanoparticle-crossbred 

wool composites was quantitatively analysed by atomic absorption (AA).  The procedure is 

described in section 2.2.3.4, 2.3.4 and briefly in section 5.4.  When employing a Au
3+

 

concentration of 160 ppm (8.13 x 10
-4

 M) the absorption of gold by crossbred wool at RT 

was complete after approximately 6 hours (Table 6.2).  This is markedly slower than the 

absorption of gold by merino wool fibres (Figure 6.15 and Figure 6.16), with absorption of 

gold by these fibres being largely complete after only an hour.  It is likely that the gold 

absorption rate was slower with crossbred wool relative to merino wool as the surface area of 

crossbred wool is much lower, thus presenting less sites for the gold ions to absorb onto and 

diffuse into the fibres. 
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Figure 6.15: Gold uptake by crossbred or merino wool at RT. A Au
3+

 concentration of 160 ppm (8.13 x 

10
-4

 M) was employed. 

 

Figure 6.16: Gold uptake by crossbred or merino wool at RT. A Au
3+

 concentration of 160 ppm (8.13 x 

10
-4

 M) was employed. 
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Table 6.2: Absorption of gold by crossbred and merino wool at RT. A Au
3+

 concentration of 160 ppm 

(8.13 x 10
-4

 M) was employed. 

 Amount of Au
3+

 remaining in the soaking 
solution (ppm) 

Soaking/Absorption 
Time (minutes) 

Crossbred Wool  Merino Wool 

2 135 118 

5 110 80 

10 98 62 

15 82 43 

20 80 30 

30 78 17 

40 70 7 

60 66 1 

180 33 0 

360 1 0 

1440 0 0 

 

6.5 Bonding of Gold Nanoparticles to Crossbred Wool Fibres 

 

As the chemical composition of crossbred wool is not dissimilar to that of merino wool, there 

are numerous sites in keratin (the major protein constituent of both fibres) to which the gold 

nanoparticles could bond, notably sulfur (thiols, disulfides), and or nitrogen (amine) 

containing amino acids.  To investigate this bonding, EDS and XPS analysis of the produced 

composites was undertaken. 

 

As with the composites prepared with merino wool, EDS analysis of the gold nanoparticle-

crossbred composites showed that where there were high concentrations of gold, there were 

also high concentrations of sulfur (Figure 6.17), suggesting a chemical affinity of gold for 

sulfur in the protein fibres of the wool. 
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Figure 6.17: Cross sectional Au (left) and S (right) EDS maps of a gold nanoparticle-crossbred wool 

composite prepared by soaking crossbred wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at 

RT, followed by ageing at 50 °C for 168 hours. 

 

This Au-S interaction was confirmed when comparing the deconvoluted high resolution S 2p 

XPS spectra of a gold nanoparticle-crossbred wool composite to that of crossbred wool 

(Figure 6.18).  Upon inclusion of the gold nanoparticles, a new set of peaks centred at 162.35 

and 163.53 eV, indicative of Au-S bonding arises.  As with the merino wool composites, this 

Au-S bonding was further confirmed in the Au 4f XPS spectra of the composites (Figure 

6.19), as the main peaks in this spectrum are those of the 7/2 and 5/2 peaks of Au-S, centred 

at 84.05 and 87.65 eV respectively.  As mentioned in section 6.3, there is also a percentage of 

nanoparticulate Au
0
 and unreduced Au

3+
.  The N 1s and O 1s XPS spectra of the composites 

is not dissimilar to those of the base fibres (as such they are not shown here), and as such 

there is no evidence of the gold nanoparticles bonding to other elements, such as oxygen or 

nitrogen.  A comprehensive list of peak assignments is provided in Table 6.3 below. 

 

  
Figure 6.18: a) high resolution S 2p XPS spectra of gold nanoparticle-crossbred wool composites 

prepared by soaking crossbred wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by ageing at 50 °C for 168 hours. b) an overlay (in red) of crossbred wool. 
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Figure 6.19: a) high resolution Au 4f XPS spectra of gold nanoparticle-crossbred wool composites 

prepared by soaking crossbred wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by ageing at 50 °C for 168 hours. 

Table 6.3: XPS assignments of crossbred wool and gold nanoparticle-crossbred wool composite materials, 

prepared by soaking crossbred wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by ageing at 50 °C for 168 hours. 

  Crossbred Wool Composite 

  Binding Energy (eV ± 0.2 eV) and Relative 
Percentage (± 10 %) 

C 1s C-C, C-H 285.00 (44 %) 285.00 (64 %) 

 C-O, C-N, C-S 286.20 (29 %) 286.20 (23 %) 

 C-O-C=O 287.27 (18 %) 287.41 (2 %) 

 C=O 288.30 (9 %) 288.25 (10 %) 

N 1s N-H, =N- 400.21 (51 %) 400.11 (58 %) 

 -N-O- 401.38 (49 %) 401.06 (42 %) 

O 1s Average O 
environment 

531.84 (22 %) 531.75 (58 %) 

 -OH 533.27 (36 %) 532.86 (31 %) 

 C-O-C=O 534.7 (42 %) 534.32 (11 %) 

S 2p Average S 
environment S3/2 

164.18 (38 %) 164.09 (41 %) 

 Average S 
environment S1/2 

165.36 (19 %) 165.27 (21 %) 

 SO3
-
3/2 168.08 (29 %) 168.33 (18 %) 

 SO3
-
1/2 169.26 (14 %) 169.51 (15 %) 

 S-Au3/2 — 162.35 (3 %) 

 S-Au1/2  163.53 (2 %) 
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  Crossbred Wool Composite 

  Binding Energy (eV) and Relative 
Percentage 

Au 4f Au
0
7/2 — 84.05 (11 %) 

 Au-S7/2 — 85.06 (33 %) 

 Au
3+

7/2 — 86.00 (13 %) 

 Au
0
5/2 — 87.65 (7 %) 

 Au-S5/2 — 88.64 (24 %) 

 Au
3+

5/2 — 89.60 (12 %) 

 

6.6 Proposed Mechanism of Formation 

 

The formation mechanism of the gold nanoparticle-crossbred wool composites is not 

dissimilar to that of the merino wool materials, which considering the similar chemical 

composition of the two fibres, is not unexpected.  Comparisons of the XPS spectra of the 

crossbred composites and crossbred wool itself suggest that the Au
3+

 to Au
0
 reduction was 

facilitated by, and coupled with the oxidation of the disulfide group of cystine to cysteic acid. 

 

As with the merino wool systems, reduction of Au
3+

 to Au
+
, forming some kind of Au-S 

complex with the protein fibres in the wool, appeared to occur during the 24 hour soaking 

period.  This was evidenced in analysis of the high resolution Au 4f and S 2p XPS spectra of 

crossbred wool that had been soaked in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours 

at RT.  Peaks centred at 85.00 and 88.60 eV appeared in the Au 4f spectra, and a peak 

centred at 162.00 eV appeared in the S 2p spectra (Figure 6.20).  Upon ageing, a greater 

percentage of Au
3+

 was reduced to Au
+
 and nanoparticulate Au

0
 (Table 6.4).  The reduction 

of Au
3+

 to Au
+
 and Au

0
, occurring during soaking, and to a much greater extent during 

ageing was accompanied by a decrease in peak area associated with cystine, and an increase 

in peak area of cysteic acid (Figure 6.21), confirming the role of cystine in the reduction of 

Au
3+

 to Au
+
 and nanoparticulate Au

0
. 
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Figure 6.20: High resolution Au 4f (a) and S 2p (b) XPS spectra of crossbred wool fibres that had been 

soaked in a 160 ppm (8.13 x10
-4

 M) Au
3+

 solution, at RT for 24 hours. 

Table 6.4: Amount of gold present in crossbred wool soaked in Au
3+

 and gold nanoparticle-crossbred 

wool composite materials. 

 % Au
3+

  

(± 10 %) 

% Au
+
 (± 10 %) 

(Au-S) 
% Au

0
 (± 10 

%) 

24 h Soak 70 30 0 

24 h Soak + 24 h Age 46 50 4 

24 h Soak + 168 h Age 25 57 18 

 

Figure 6.21 Comparisons of the deconvoluted high resolution S 2p XPS spectra of crossbred wool (black 

lines) and gold nanoparticle-crossbred wool composites, prepared by soaking fibres in a 160 ppm Au
3+

 

(8.13 x 10
-4

 M) solution for 24 hours at RT followed by ageing at 50 °C for 24 (green lines) or 168 hours 

(red lines). 
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6.7 Colourfastness to Washing 

 

As with the merino wool composites, the colourfastness to washing of the gold nanoparticle-

crossbred wool composites were tested according to the synthesis outlines in section 2.3.13.  

A composite material prepared by soaking crossbred wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 

solution for 24 hours at RT and ageing, at 50 °C for 168 hours was chosen as a representative 

of the gold nanoparticle-crossbred wool materials. 

 

Visually these materials appear to be very colourfast with respect to washing, as they do not 

seem to change colour even after prolonged washing at elevated temperatures (Figure 6.22).  

This is confirmed in the CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of 

the washed composites, as these values remained relatively constant (Appendix VI). 

 

 

Figure 6.22: Gold nanoparticle-crossbred wool composites prepared by soaking crossbred wool in a 160 

ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT and ageing, at 50 °C for 168 hours, following 

simulated washability testing. 

 

6.8 Leaching 

 

Quantitative analysis of the washing solutions obtained during simulated washability testing 

(section 6.7) was undertaken to establish the amount of gold leached from the composites 

during washing (Table 6.5).  The amount of gold leached from these materials was very low, 
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leaching a maximum of 1.9 % of the total gold loading, complementing the results obtained 

in the colour fastness to washing tests, where the materials did not undergo any marked 

colour change even following extensive washing at elevated temperatures.  Similar results 

were obtained with the gold nanoparticle-merino wool composites (section 5.8). 

 

Table 6.5: Gold leached from gold nanoparticle-crossbred wool composites (prepared by soaking 

crossbred wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C 

for 24 or 168 hours) following simulated washability testing. 

Washing Time 

(Hours) 

Washing 

Temperature 

Gold Leached 

(ppm) ± 0.5 ppm 

% Total Gold 

Loading 

0.5 RT 1 0.6 

1  2 1.3 

2  2 1.3 

5 RT 1 0.6 

24  2 1.3 

0.5 50 °C 2 1.3 

1  2 1.3 

2  2 1.3 

5  3 1.9 

24  2 1.3 

 

6.9 Scale Up 

 

As with the gold nanoparticle-merino wool composite materials, the production of crossbred 

composites has also been scaled up, producing large (approximately 10 kg) quantities of a 

deep regal purple coloured material, which is destined to be spun into a yarn and 

subsequently woven into a carpet. 
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6.10 Conclusions 

 

As a proof of concept, the production of gold nanoparticle-merino wool composite materials 

was extended to include crossbred wool as a base fibre.  This was successful, with the 

production of regal purple coloured gold nanoparticle-crossbred wool composites. 

 

Increasing both the Au
3+

 concentration and also the ageing time only slightly intensified the 

purple colour of the resultant materials, with a deep, regal purple coloured material produced 

with low Au
3+

 concentrations and short ageing times.  The increase in intensity of the purple 

colour upon increasing Au
3+

 concentrations and ageing times corresponded to a small 

increase in concentration of spherical gold nanoparticles, approximately 20-30 nm in 

diameter, located on the fibre surface.  In addition to the spherical nanoparticles, all gold 

nanoparticle-crossbred wool composites possessed gold nanoparticles in a range of 

morphologies, notably hexagonal platelets (approximately 100-300 nm in diameter), triangles 

(approximately 100 nm in diameter) and truncated triangles (approximately 100 nm in 

diameter) in similar concentrations. 

 

The much broader range of gold nanoparticle morphologies observed in the crossbred wool 

systems, and also the increased Au
3+

 to Au
0
 reduction rate relative to that seen in the merino 

wool composites is proposed to be due to the increased fibre diameter of crossbred wool, and 

hence its decreased specific surface area.  With the same ratio of Au
3+

 : wool : solvent 

volume, there is a higher density of absorbed Au
3+

 at the surface of the crossbred wools, 

therefore when initial nucleation events occur, a smaller percentage of Au
3+

 would be 

reduced (compared to the merino wool systems), leaving a relatively high concentration of 

unreduced Au
3+

 at the fibre surface.  This has the potential to adsorb into any twin plane 

defects present in the initially formed nanoparticles, increasing the probability of the 

production of anisotropic gold nanoparticles.  Additionally, the higher Au
3+

 surface density 

would lead to more collisions between Au
3+

 ions, more nucleations and hence more 

nanoparticles formed at the surface of the fibres in a shorter amount of time, and the 

development of a rich regal purple colour in less time. 
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As with the merino systems, the reduction of Au
3+

 to nanoparticulate Au
0
 by crossbred wool 

was proposed to be facilitated by the oxidation of cystine to cysteic acid, with bonding of the 

produced gold nanoparticles to the crossbred wool fibres occurring by means of Au-S bonds.  

The gold nanoparticle-crossbred composite materials were very colourfast to washing. 
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7 GOLD NANOPARTICLE-SILK COMPOSITES 

 

Since both merino wool and crossbred wool proved to be successful in facilitating the 

reduction of Au
3+

 to nanoparticulate Au
0
, producing textiles whose colour derived from the 

surface plasmons of the gold nanoparticles bound to the fibres, we were interested to see 

whether alternative natural protein fibres were also capable of facilitating this reduction, thus 

broadening the suite of natural fibre-gold nanoparticle composite materials.  As such silk was 

employed as the base fibre in the production of gold nanoparticle-silk composite materials. 

 

7.1 Physical Characterisation and Morphology 

 

In a typical reaction, the production of gold nanoparticle-silk composites involved dispersing 

fibres in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution at room temperature for 0-24 hours, 

following which some samples were aged by heating at 50 °C for 24–168 hours.  This was 

carried out at various pH‘s (notably 2.7, 7, 9-10 or 12).  As with the composites incorporating 

merino wool, the colour and colour intensity of the resultant gold nanoparticle-silk 

composites was changed by systematically altering the soaking time, ageing time and 

soaking and ageing solution pH.  Figure 7.1 shows a picture of a selection of gold 

nanoparticle-silk composites, illustrating the obtainable colour range.  These composite 

materials still retain the shine, and iridescent lustre for which silk is renowned.   

 

 

Figure 7.1: A selection of gold nanoparticle-silk composites. 

 

When employing a soaking solution pH of 2.7 (the pH of the traditional 160 ppm, 8.13 x 10
-4

 

M Au
3+

 solution) a colour development was observed in the fibres during soaking at RT 
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(Figure 7.2).  Heating the materials post soaking produced deeper purple coloured materials, 

however these were a little spectrally impure, with prolonged heating slightly intensifying the 

colour (Figure 7.3).  In addition to nanoparticles forming on the silk fibres whilst soaking at 

RT, nanoparticles also formed in the soaking solution after approximately half an hour‘s 

soaking, evidenced by a change in colour of the solution from yellow of AuCl4
-
 to colourless 

and then a deep red wine colour.  This colour intensified remained relatively constant during 

ageing, suggesting that the produced nanoparticles did not re-absorb onto the silk fibres.  

This is discussed in more detail in section 7.6.  

 

 

Figure 7.2: Gold nanoparticle-silk composite materials, prepared by soaking silk in a 160 ppm (8.13 x 10
-4

 

M) Au
3+

 solution for 10 minutes to 24 hours at RT. 

 

Figure 7.3: Gold nanoparticle-silk composite materials, prepared by soaking silk in a 160 ppm (8.13 x 10
-4

 

M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 24-168 hours. 

 

The increase in colour intensity of the gold nanoparticle-silk composites upon prolonged 

soaking and ageing times corresponded to an increase in the amount of similarly sized and 

shaped nanoparticles on the fibre surface.  These nanoparticles were predominantly spherical 

or five-fold twinned in morphology, being smaller, approximately 5-10 nm in diameter, or 

larger approximately 20-40 nm in diameter, with agglomerations of a percentage of the larger 

nanoparticles seen (Figure 7.4).  There were also a small amount of triangular nanoplates, 

approximately 80-100 nm in diameter.  The presence of these agglomerated nanoparticles, 
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and also the range in particle size and shape would account for the slightly spectrally impure 

colour of the composite materials prepared with a soaking and ageing solution pH of 

approximately 2.7. 

 

   

   

   

Figure 7.4: Gold nanoparticle-silk composite materials, prepared by soaking silk fibres in a 160 ppm 

(8.13 x 10
-4

 M) Au
3+

 solution for 10 minutes (top) or 24 hours at RT (middle), followed by ageing at 50 °C 

for 168 hours (bottom). 

 

Cross sectional analysis of the gold nanoparticle-silk composites showed the nanoparticles to 

reside preferentially on the surface of the silk fibres (Figure 7.5).  EDS analysis of the same 

cross section showed that in addition to gold nanoparticles forming predominantly on the 

fibre surface, very little gold diffused into the centre of the fibres, with high concentrations 

found solely on the fibre surface (Figure 7.6). 

1 µm 

1 µm 

100 nm 

1 µm 

1 µm 

100 nm 

100 nm 1 µm 1 µm 
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Figure 7.5: Cross sectional SEM micrographs of a gold nanoparticle-silk composite prepared by soaking 

silk fibres in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by ageing at 50 °C for 

168 hours. 

  

Figure 7.6: Cross sectional SEM micrograph (left) and corresponding Au EDS map of a gold 

nanoparticle-silk composite prepared by soaking silk fibres in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 

24 hours at RT, followed by ageing at 50 °C for 168 hours. 

 

Increasing the pH of the soaking and hence ageing solution to approximately 7 and then 9-10 

resulted in the formation of vibrant purple and pink/purple coloured composites respectively 

(Figure 7.7).  Increasing the pH further to 12 produced materials that were not dissimilar in 

colour to that of the base silk fibres.  (It should be noted that much like the merino wool 

systems, these pHs were only the initial pHs of the reaction solutions, as once added, the silk 

fibres titrated the additional base, resulting in an end pH of approximately 5.5, 7.8 and 9 for 

the pH 7, 9-10 and 12 systems respectively).  These materials were prepared by soaking the 

silk fibres at RT in Au
3+

 solutions of altered pH for 10 minutes to 24 hours followed by 

ageing at 50 °C for 24 hours.  Increasing the ageing time further did not change the colour of 

1 µm 

1 µm 
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the resultant materials.  It can be seen from Figure 7.7, that a soaking time of one hour was 

sufficient to allow for the production of a uniformly coloured composite material, as 

increasing the soaking time to 24 hours did not alter the colour of the resultant materials.   

Contrary to the materials prepared with a soaking solution pH of 2.7, no colour development 

was observed in these materials or the reaction mixture during soaking.  However upon 

ageing, nanoparticles were seen to form in the pH 7 and 9-10 soaking solutions.  This was 

evidenced by the development of a wine red or pink colour respectively.  Figure 7.8 offers 

TEM micrographs of a sample of the pH 9-10 ageing solution, and shows the nanoparticles to 

consist of a range of morphologies, from spheres and five-fold twinned particles 

(approximately 15-20 nm in diameter) to triangular nanoplates and rods (approximately 30 

and 50 nm in diameter respectively). 

 

 

Figure 7.7: A selection of gold nanoparticle-silk composite materials prepared by soaking silk in a 160 

ppm (8.13 x 10
-4

 M) Au
3+

, with a pH of 7, 9-10 or 12, for 10 minutes – 24 hours at RT, followed by ageing 

at 50 °C for 24 hours. 
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Figure 7.8: Increasing magnification TEM micrographs of an evaporated sample of the pH 9-10 ageing 

solution. 

 

Figure 7.9 offers SEM micrographs of composite materials that have been prepared with 

soaking and ageing solutions of increasing pH.  It can be seen from these micrographs that 

relative to those produced with a soaking and ageing solution pH of 2.7, increasing the pH to 

7 resulted in the formation of slightly smaller (approximately 10-15 nm in diameter), 

spherical nanoparticles.  The percentage of agglomerated nanoparticles, and the presence of 

anisotropic triangular nanoplates also decreased in these materials.  Increasing the pH of the 

soaking and ageing solution to 9-10 decreased the presence of agglomerated nanoparticles 

further still, with the nanoparticles present being spheres, approximately 10-15 nm in 

diameter (Figure 7.9 middle).  The anisotropic triangular nanoplates and nanorods observed 

in the pH 9-10 ageing solutions were not seen in the composites.  When employing a pH 12 

soaking and ageing solution, dramatically fewer nanoparticles were formed (Figure 7.9 

bottom). 

 

Cross sectional SEM analysis of the composite materials prepared with pH 9-10 soaking and 

ageing solutions showed gold nanoparticles to be formed both on the surface and also within 

centre of the fibres (Figure 7.10).  TEM revealed the nanoparticles residing in the centre of 

the fibres to be a lot smaller, approximately 5-10 nm in diameter (Figure 7.11). 
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Figure 7.9: Increasing magnification SEM micrographs of gold nanoparticle-silk composites prepared by 

soaking silk fibres in a pH 7 (top), 9-10 (middle) or 12 (bottom) 160 ppm (8.13 x10
4
 M) Au

3+
 solution for 6 

hours at RT, followed by ageing at 50 °C for 24 hours. 

  

Figure 7.10: Cross sectional SEM micrographs of a gold nanoparticle-silk composite prepared by soaking 

silk fibres in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution at pH 9-10 for 6 hours at RT, followed by ageing at 

50 °C for 168 hours. 
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1 µm 100 nm 
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Figure 7.11: TEM micrographs of a silk seed prepared with a 6 hour soaking time in a pH 9-10 gold 

solution and 24 hours heating at 50 °C. Left: Micrograph showing fibre surface and centre. Middle: 

Micrograph showing nanoparticles on the fibre surface and right: micrograph showing nanoparticles in 

the fibre centre. 

 

7.2 Colour 

 

The colours of the gold nanoparticle-silk composites were characterised through UV/Vis 

spectroscopy and via analysis of their CIE L*, a*, b*, 457 nm brightness and 580 nm 

brightness values.  In general, an increase in the concentration of nanoparticles of similar size 

and shape corresponded to a darkening and increase in intensity of the deep purple colour of 

the composite materials prepared with a soaking and ageing solution pH of 2.7, whilst 

increasing the pH of the soaking and ageing solutions to a maximum of approximately 10 

corresponded to the production of smaller, increasingly isolated nanoparticles reflecting the 

more vibrant pink colour of such materials (Figure 7.12). 

 

   

Figure 7.12: Relationship between size, shape and concentration of nanoparticles on the silk fibre and the 

colour of the resultant composite materials. 

 

100 nm 100 nm 100 nm 
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As mentioned, the CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of the 

composite materials reflected the colour change induced by increasing soaking and ageing 

times (when employing a soaking and ageing solution with a pH of 2.7) and increasing 

solution pHs.  A comprehensive set of CIE values are offered in Appendix VII.  When 

employing a pH 2.7 soaking and ageing solution, nanoparticles were seen to form on the silk 

fibres during soaking at RT, producing light purple coloured materials.  Employing 

increasing ageing times intensified this purple colour, however it still remained relatively 

spectrally impure.  The development of the purple colour during soaking, and its subsequent 

intensification with ageing was accompanied by a general decrease in L*, 457 nm brightness 

and 580 nm brightness values, confirming the observed darkening of the materials.  

Additionally, increasing the soaking and ageing times increased the a* values and decreased 

the b* values of the resultant materials, reflecting their more purple colour (Figure 7.13 and 

Figure 7.14). 

 

 

Figure 7.13: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for silk fibres soaked in a 

160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, with a pH of 2.7 for 10 minutes to 24 hours at RT. 
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Figure 7.14: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for gold nanoparticle-silk 

composites, prepared by soaking silk in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, with a pH of 2.7 for 24 

hours at RT followed by ageing at 50 °C for 0-168 hours. 

 

Increasing the pH of the soaking and ageing solution to a maximum of 10 produced pinker 

coloured materials.  This was reflected in the a* values of the composites, with those 

prepared with soaking and ageing solutions of higher pH exhibiting much larger a* values 

(Table 7.1) 

 

Table 7.1: CIE a* values for gold nanoparticle-silk composites prepared by soaking silk in a 160 ppm 

(8.13 x 10
-4

 M) Au
3+

 solution, with a pH of 2.7, 7 or 9-10 for 24 or 6 hours at RT, followed by ageing at 50 

°C for 24 hours. 

Soaking and Ageing 
Solution pH 

a* 

2.7 9 

7 20 

9-10 24 

 

UV/Vis spectroscopy of the crossbred-Au materials also illustrated the colour development 

induced with increasing ageing times and the pH of the soaking and ageing solution.  
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Similarly to the gold nanoparticle-crossbred wool composites, the Kubelka Munk 

transformed reflectance UV/Vis spectra of gold nanoparticle-silk composites display four 

discernable peaks, centred at approximately 450, 512, 552 and 700 nm (Figure 7.15 and 

Figure 7.16).  The peaks centred at 450, 515 and 700 nm related to the plasmon bands of 

anisotropic gold nanoparticles.  The two former peaks correspond to the transverse plasmon 

bands of triangular gold nanoparticles and hexagonal/platelet gold nanoparticles respectively, 

whilst the latter corresponds to longitudinal plasmon bands of such particles.[210]  The peak 

centred at approximately 552 nm is in the range expected for spherical or five-fold twinned 

gold nanoparticles approximately 20-40 nm in diameter.  When employing a soaking and 

ageing solution pH of 2.7, increasing the ageing time from 24-168 hours progressively 

increased the intensity of the plasmon peaks, reflecting the observed increase in intensity of 

the colour of the resultant materials (Figure 7.15). 

 

 

Figure 7.15: Kubelka Munk transformed UV/Vis reflection spectra of gold nanoparticle-silk composites 

prepared by soaking silk in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, with a pH of 2.7 for 24 hours at RT, 

followed by ageing at 50 °C for 24-168 hours. 

 

Increasing the pH of the soaking and ageing solutions also saw an increase in intensity of the 

plasmon bands of the gold nanoparticles bound to the silk fibres.  Additionally, this increase 

in intensity was accompanied by a slight red shift in the peak characteristic of spherical or 
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five-fold twinned particles (centred at approximately 550 nm), and a decrease in full width at 

half maximum, reflecting the formation of smaller, increasingly isolated nanoparticles 

induced with higher pHs.  Increasing the pH further to pH 12 produced materials that were 

not dissimilar in colour to the base silk fibres, and as such their UV/Vis spectra are 

comparable (Figure 7.16). 

 

 

Figure 7.16: Kubelka Munk transformed UV/Vis reflection spectra of silk and gold nanoparticle-silk 

composites prepared by soaking silk in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, with a pH of 2.7, 7, 9-10 

or 12 for 6 hours at RT, followed by ageing at 50 °C for 24 hours. 

 

7.3 Confirmation of Gold 

 

As with all other gold nanoparticle-natural fibre composites, the presence gold in the 

materials prepared from silk was first suggested by backscatter SEM microscopy, and 

confirmed by EDS and XPS analysis.  As an example Figure 7.17 offers SEM micrographs, 

(collected with a secondary electron detector and a backscatter electron detector), of a gold 

nanoparticle-silk composite.  It is clear from these micrographs that when viewed under 

backscatter conditions, the gold nanoparticles residing on the silk fibres are much more 

apparent, appearing bright white in colour. 
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Figure 7.17: SEM micrographs of a gold nanoparticle-silk composite prepared by soaking silk fibres in a 

160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, at pH 7 for 6 hours at RT, followed by ageing at 50 °C for 24 

hours. 

 

EDS analysis of the silk composites further substantiated the presence of gold on the silk 

fibres, confirming the bright white particles observed under backscatter SEM conditions to 

be gold.  Figure 7.18 and Figure 7.20 offer SEM micrographs and the corresponding EDS Au 

maps of a selection of gold nanoparticle-silk composite materials.  These maps show high 

concentrations of gold (depicted in bright white or red areas in the Au maps) to correlate to 

the position of the particles in the fibres.  Additionally, Figure 7.19 and Figure 7.21 offer 

spectral snap shots of the areas under analysis, and substantiate the presence of gold due to 

the existence of the gold peaks. 

  

Figure 7.18: SEM micrograph and corresponding Au EDS map of a gold nanoparticle-silk composite 

prepared by soaking silk in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, at pH 7, for 6 hours at RT, followed 

by ageing at 50 °C for 24 hours. 
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Figure 7.19: EDS spectra of the gold nanoparticle-silk composite shown in Figure 7.18. 

  

Figure 7.20: SEM micrograph and corresponding Au EDS map of a gold nanoparticle-silk composite 

prepared by soaking silk in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, at pH 9-10, for 6 hours at RT, 

followed by ageing at 50 °C for 24 hours. 
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Figure 7.21: EDS spectra of the gold nanoparticle-silk composite shown in Figure 7.20. 

 

XPS further substantiated the presence of gold in the gold nanoparticle-silk composite 

materials, showing those prepared with a soaking and ageing solution pH of 9-10 or 12 to 

consist of 1 and 0.09 % gold respectively (Figure 7.22).  Due to unavailability of the XPS 

spectrometer, analysis of composite materials prepared with a soaking and ageing pH of 2.7 

or 7 could not be undertaken, however from SEM and EDS analysis it is suggested that these 

materials would possess a similar amount of gold as those prepared with a pH 9-10 soaking 

and ageing solution. 
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Figure 7.22: Wide XPS scans of gold nanoparticle-silk composites prepared by soaking the fibres in a 160 

ppm (8.13 x 10
-4

 M) Au
3+

 solution for 6 hours at RT, with a pH of a) 9-10 or b) 12, followed by ageing at 

50 °C for 24 hours. 

 

Examination of the deconvoluted, high resolution Au 4f XPS spectra of a composite material 

prepared with a Au
3+

 concentration of 160 ppm (8.13 x 10
-4

 M) at pH 9-10, a soaking time of 

6 hours and an ageing time of 24 hours, showed the gold in this material to be predominantly 

Au
3+

 (60 %), with the remaining 40 % being nanoparticulate Au
0
.  Therefore after 24 hours 

ageing at 50 °C, only a percentage of Au
3+

 had been reduced to Au
0
.  It is likely that 

continued ageing would reduce more Au
3+

 to Au
0
. 

 

7.4 Extent of Gold Uptake by Silk Fibres 

 

The uptake of gold by silk during the production of gold nanoparticle-silk composites was 

quantitatively analysed by atomic absorption (AA).  The procedure is provided in section 

2.2.2.3.4, 2.3.4 and briefly in section 5.4.  When employing a Au
3+

 concentration of 160 ppm 

(8.13 x 10
-4

 M) with a pH of 2.7, the absorption of gold at RT by silk fibres appeared to be 

complete after approximately 6 hours (Figure 7.23).  Increasing the soaking temperature to 

50 °C slightly increased the rate of absorption so that the majority of gold was absorbed after 

3.5 hours.  It is interesting to note that during soaking the first 10-15 minutes of soaking, the 

gold concentration rapidly decreased and then rose slightly, following which it again 

decreased (Figure 7.24).  As this was observed in all pH 2.7 systems analysed, it is unlikely 

Si 2p 
Si 2p 

Ca 2p 
Ca 2p 
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to be due to experimental uncertainties, rather it likely indicates that gold is initially absorbed 

by the silk fibres, following which a percentage is released and then perhaps re-absorbed.   

 

 

Figure 7.23: Gold uptake by silk at RT and 50 °C. A Au
3+

 concentration of 160 ppm (8.13 x 10
-4

 M), with 

a pH of 2.7 was employed. 

  

Figure 7.24: Gold uptake by silk at RT and 50 °C. A Au
3+

 concentration of 160 ppm (8.13 x 10
-4

 M), with 

a pH of 2.7 was employed. 

 



 

 

373 

As mentioned in section 7.1, when employing a pH 2.7 soaking solution, nanoparticles were 

seen to form in solution after half an hour‘s soaking.  Atomic absorption spectroscopy detects 

ground state ions when they are dissolved, and cannot detect colloidal Au
0
.  Therefore it is 

likely that the formation of these nanoparticles accounts for the apparent decrease in the gold 

concentration for soaking times of greater than half an hour and as such the absorption data 

past this time point is inaccurate.  It is therefore probable that gold is initially absorbed by the 

silk fibres, and then re-released, most likely due to the dislodgement of sericin. 

 

Increasing the pH of the soaking solution to 9-10 decreases the gold absorption rate, such that 

following 24 hours soaking at RT, approximately 5 ppm gold remained in solution (Figure 

7.25).   No nanoparticles were observed to form during soaking in solutions of pH 9-10 and 

hence this data can be considered relatively accurate.  The isoelectric point of silk is 

approximately 4.5, so with a soaking solution pH of 9-10, the silk fibre would possess a net 

negative charge.  As such, the decreased absorption suggests that as with the merino, it is the 

negatively charged AuCl4
-
 complex that is absorbed by the silk fibres rather than Au

3+
, with 

the higher pH causing the negatively charged fibre to electrostatically repel the AuCl4
-
 ion.  

 

 

Figure 7.25: Gold uptake by silk at RT. A Au
3+

 concentration of 160 ppm (8.13 x 10
-4

 M), with a pH of 2.7 

or 9-10 was employed. 
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7.5 Bonding of Gold Nanoparticles to Silk Fibres 

 

Silk is a natural fibre, comprising two major protein constituents, fibroin and sericin, the 

former accounting for approximately 70-80 % of the silk thread (section 1.2.2.2).  As such, it 

offers numerous sites through which the gold nanoparticles could potentially bond, in 

particular nitrogen (amine, amide etc) or oxygen containing amino acid groups.  Fibroin and 

sericin contain markedly less cystine than keratin, and as such there are less sulfur atoms 

available for bonding.  To investigate the bonding between the gold nanoparticles and silk 

fibres EDS and XPS analysis of the produced composites was undertaken. 

 

Figure 7.26 offers a cross sectional SEM micrograph, and corresponding EDS elemental 

maps of a gold nanoparticle-silk composite prepared by soaking silk fibres in a 160 ppm 

(8.13 x 10
-4

 M) Au
3+

 solution, with a pH or 9-10 for 6 hours at RT, followed by ageing at 50 

°C for 24 hours.  Unlike the composite materials incorporating merino or crossbred wool, no 

apparent correlations between high concentrations of gold (shown in red areas in the gold 

map) and sulfur are seen, which is likely due to the low concentrations of sulfur in silk.  

Areas of high concentration carbon, nitrogen and oxygen correlate to areas of high 

concentrations of gold, however as there are high concentrations of these elements 

throughout the whole fibre, this does not provide an insight into the mode of bonding 

between the nanoparticles and silk fibres. 

 

In an effort to elucidate this mode of bonding, XPS analysis was employed, and comparisons 

between the base fibre, silk and a composite (prepared by soaking silk fibres in a 160 ppm 

(8.13 x 10
-4

 M) Au
3+

 solution, with a pH or 9-10 for 6 hours at RT, followed by ageing at 50 

°C for 24 hours) was undertaken.  A complete list of XPS assignments is provided in Table 

7.2.  Comparisons of the deconvoluted high resolution N 1s XPS spectra of a composite and 

silk provide insight into this bonding.  The high resolution N 1s spectra of silk can be 

resolved into two peaks, centred at 400.27 and 401.70 eV, the former representing amine and 

immine groups and the latter nitrogen bound to oxygen (Figure 7.27 b).  The N 1s spectrum 

of the composite also exhibits these peaks, however two new peaks centred at 403.56 and 

398.32 eV also appear (Figure 7.27 a).  The former peak is related to the mechanism of 
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formation of the composites (see section 7.6) however the latter indicates a Au-N bond,[17, 

201] suggesting the gold nanoparticles may bind to the silk fibres through nitrogen 

containing groups. 

   

   

Figure 7.26: Cross sectional SEM micrograph and corresponding EDS micrographs of a gold 

nanoparticle-silk composite material, prepared by soaking silk fibres in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 

solution, with a pH of 9-10 for 6 hours at RT, followed by ageing at 50 °C for 24 hours. 

  

Figure 7.27: a) high resolution N 1s XPS spectrum of a gold nanoparticle-silk composite prepared by 

soaking silk in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, with a pH of 9-10 for 6 hours at RT, followed by 

ageing at 50 °C for 24 hours. b) an overlay (in red) of silk. 

 

Examination of the deconvoluted, high resolution Au 4f XPS spectra of the gold 

nanoparticle-silk composite did not confirm the bonding between the nanoparticles and silk 

to be via Au-N bonds.  Figure 7.28 offers the Au 4f spectra, which exhibits four peaks, 

1 µm 
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notably the 7/2 and 5/2 peaks of nanoparticulate Au
0
 (centred at 84.22 and 87.82 eV 

respectively) and unreduced Au
3+

 peaks (centred at 85.33 and 88.93 eV respectively).  The 

nanoparticulate Au
0
 peaks have shifted to slightly higher binding energies relative to the Au

0
 

peaks observed in the merino and crossbred wool composites.  Generally this is thought to 

occur due to the presence of sulfur bound to the surface of the nanoparticles, with nitrogen 

bound to the surface causing a shift in the Au
0
 peaks to lower binding energy.  However as 

no direct Au-S bond was evident in these spectra, (and those seen in the S 2p spectra of the 

composites were not well resolved (see below)), this shift is likely not due to a Au-S 

interaction.  Rather it may be related to the size of the nanoparticles.  The gold nanoparticles 

residing on the surface of the silk fibres are smaller than those on the merino and crossbred 

wool fibres (approximately 15-20 nm in diameter compared to approximately 20-30 nm in 

diameter).  It has been reported that decreasing the size of nanoparticles progressively 

increases their binding energies.[231]  As such, although direct Au-N interactions (illustrated 

by a shift in the Au
0
 peaks to slightly lower binding energies relative to nanoparticulate Au

0
) 

cannot be ascertained from this spectrum, they may still be present, and simply be over 

ridden by the size induced shift. 

 

 
Figure 7.28: High resolution Au 4f XPS spectra of a gold nanoparticle-silk composite prepared by 

soaking silk in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, with a pH of 9-10 for 6 hours at RT, followed by 

ageing at 50 °C for 24 hours 

 

In addition to the gold nanoparticles binding to the silk fibres through nitrogen groups, 

comparisons of the deconvoluted, high resolution S 2p XPS spectra of a composite and silk 

suggests that there may also be a small percentage of bonding of the nanoparticles to sulfur 

moieties in the silk, evidenced by the peak centred at 161.63 eV in the S 2p spectra of the 
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composite (Figure 7.29).  (Due to the low concentration of sulfur in silk, the S 2p spectra of 

both the composite and silk itself exhibited a poor signal to noise ratio, so the assignment of 

this Au-S peak is not without caution. Note also that single peaks have been fitted rather than 

the 3/2 and 1/2 doublets due to the poor signal to noise ratio).  If this bonding is genuine, it is 

likely to occur through sulfur atoms present in sericin, rather than in the fibroin filaments, as 

sericin contains approximately 5 times as much sulfur, (in the form of cystine groups), than 

fibroin. 

 

  
Figure 7.29: a) high resolution S 2p XPS spectra of a gold nanoparticle-silk composite prepared by 

soaking silk in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, with a pH of 9-10 for 6 hours at RT, followed by 

ageing at 50 °C for 24 hours. b) an overlay (in red) of silk. 

 

Examination of the high resolution C 1s and O 1s XPS spectra of the composites only reveals 

slight changes from those of silk, with the observed changes reflective of the transformations 

occurring in silk during the reduction of Au
3+

 to nanoparticulate Au
0
 (section 7.6).  As such, 

the bonding between the gold nanoparticles and silk fibres is likely to occur through nitrogen 

containing groups in the silk fibroin, and to a lesser extent sulfur groups in sericin. 
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Table 7.2: XPS assignments for silk and a gold nanoparticle-silk composite (prepared by soaking silk in a 

160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, with a pH of 9-10 for 6 hours at RT, followed by ageing at 50 °C 

for 24 hours).[219] 

  Silk Composite 

  Binding Energy (eV ± 0.2 eV) and Relative 
Percentage (± 10 %) 

C 1s C-C, C-H 285.00 (79 %) 285.00 (55 %) 

 C-O, C-N 286.50 (14 %) 286.35 (21 %) 

 C=O, N-C=O 288.00 (4 %) 287.88 (21 %) 

 O-C=O 289.00 (3 %) 289.2 (3 %) 

N 1s N-H, =N- 400.27 (93 %) 400.23 (72 %) 

 -N-O- 401.70 (7 %) 401.70 (13 %) 

 -NO2
- 

— 402.73 (13 %) 

 N-Au — 398.28 (2 %) 

O 1s Average O 
environment 

532.15 (69 %) 532.09 (62 %) 

 -OH 533.59 (31 %) 533.60 (31 %) 

 =O (quinone) — 534.92 (7 %) 

S 2p S-S 164.15 (23 %) 164.40 (6 %) 

 SO3
- 

168.47 (77 %) 168.71 (82 %) 

 S-Au — 161.60 (12 %) 

Au 4f Au
0
7/2 — 84.22 (23 %) 

 Au
3+

7/2 — 85.33 (31 %) 

 Au
0
5/2 — 87.82 (18 %) 

 Au
3+

5/2 — 88.93 (28 %) 

 

7.6 Proposed Mechanism of Formation 

 

The preparation of the gold nanoparticle-silk composites involved the reduction of Au
3+

 to 

nanoparticulate Au
0
.  Depending on the pH of the soaking and hence ageing solutions, this 

reduction occurred at the silk fibre surface, in the fibre centres or even in solution.  The 

protein fibres in silk, fibroin, sericin or both, acted as a redox active bio-template, facilitating 
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the reduction of Au
3+

 to nanoparticulate Au
0
.  As mentioned, the production of the gold 

nanoparticle-silk composite materials involved soaking silk fibres in a 160 ppm (8.13 x 10
-4

 

M) Au
3+

 solution, with a pH of 2.7, 9-10 or 12 for 6 or 24 hours at RT, followed by ageing at 

50 °C for 24-168 hours. 

 

XPS analysis was employed to elucidate this mechanism of formation, providing insight into 

which functional groups were involved in the Au
3+

 to Au
0
 reduction.  Comparisons of the 

deconvoluted high resolution N 1s XPS spectra of a composite material (prepared by soaking 

silk fibres in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, with an initial pH of 9-10, for 6 hours 

followed by ageing at 50 °C for 24 hours) to that of silk revealed clear differences.  Upon 

reduction of Au
3+

 to nanoparticulate Au
0
, a new peak centred at 402.73 eV appears, and the 

percentage of N-O groups increases from 7 to 13 % (Figure 7.30, Table 7.2).  This suggests 

that during the reduction of Au
3+

, various nitrogen containing groups, such as amines, were 

oxidised to nitrosyl or nitrite groups. 

 

  

Figure 7.30: a) high resolution N 1s XPS spectra of a gold nanoparticle-silk composite prepared by 

soaking silk in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, with a pH of 9-10 for 6 hours at RT, followed by 

ageing at 50 °C for 24 hours. b) an overlay (in red) of silk. 

 

Additionally, Zhou and co-workers [79] have reported the use of silk fibroin (dissolved silk 

proteins) as a redox active bio-template, facilitating the reduction of Au
3+

 (in the form of 

AuCl4
-
) to nanoparticulate Au

0
, forming a core–shell gold colloid–silk fibroin bioconjugate.  

Silk fibroin fibres (degummed silk fibres) have also been reported to be successful in the 

reduction of Ag
+
 (in the form of AgNO3) to Ag

0
 nanoparticles.[248]  In both systems the 
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Au
3+

 to Au
0
 or Ag

+
 to Ag

0
 reduction was said to be facilitated by the tyrosine amino acids 

present in the fibroin component of silk, in which the phenolic functionality of this amino 

acid was oxidised to a quinone (scheme 7.1).   

 

O

N

R R

O

H

H

N

R R

O

O

H
2 2

                                     (7.1) 

As such, in addition to nitrogen containing functional groups (such as amines), tyrosine 

residuals in silk may also be facilitating the reduction of Au
3+

 to nanoparticulate Au
0
.  

Examination of the deconvoluted high resolution C 1s and O 1s XPS spectra of a composite 

and silk provide evidence for the involvement of tyrosine in the Au
3+

 reduction.  

Comparisons of the C 1s XPS spectra of a composite and silk show a significant increase in 

area of the peak corresponding to carbonyl carbons (from 4 to 24 %, Figure 7.31 a and b).  

Additionally, a new peak centred at 531.92 eV appeared in the O 1s spectrum of the 

composite (Figure 7.31 c and d).  This peak has been reported to arise due to the presence of 

carbonyl quinones.[248]  Combined, these observations suggest that tyrosine may be 

involved in the Au
3+

 reduction, with oxidation of its phenolic groups to a carbonyl quinone. 

 

In addition to nanoparticles forming on the silk fibre, when employing a soaking/ageing 

solution pH of 2.7 or 9-10, nanoparticles were seen to form in solution during soaking and 

ageing respectively.  As such, something that was capable of facilitating the Au
3+

 to 

nanoparticulate Au
0
 reduction must have been liberated from the silk fibres during soaking in 

a pH 2.7 solution, and ageing in a pH 9-10 solution.  This was likely to be sericin, a 

(relatively) sulfur rich glue like protein surrounding the fibroins.  Generally sericin is 

removed from silk fibres prior to dyeing as it has a great influence on dyeing silk, with many 

defects found in dyed silk arising due to its incomplete removal.  The removal of sericin is 



 

 

381 

  

  

Figure 7.31: High resolution XPS spectra of C 1s (a) and O 1s (c) of a gold nanoparticle silk composite 

prepared by soaking silk in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, with a pH of 9-10 for 6 hours at RT, 

followed by ageing at 50 °C for 24 hours. b) and d) show an overlay or the corresponding C 1s and O 1s 

spectra of silk (in red). 

 

called degumming (see section 1.2.2.2.3), which usually employs hot dilute soap or alkaline 

solutions and occasionally dilute aqueous acids.[97]  As such, if sericin was not completely 

removed from the silk fibres when employing a Au
3+

 solution with a pH of 2.7, the acidic 

conditions may have dislodged sufficient sericin from the silk fibres during soaking to 

facilitate the reduction of Au
3+

 to nanoparticulate Au
0
.  Alternatively when employing a Au

3+
 

solution of pH 9-10, (which after equilibrium with the silk fibres results in a solution pH of 

approximately 7.8) it is likely that heat would be required to remove sericin from the silk 

fibres, due to the more mild conditions relative to the pH 2.7 solutions. 

 

In an effort to ascertain whether sericin was released from the silk fibres whilst soaking in a 

pH 2.7 soaking system, or ageing in a pH 9-10 solution, and then reducing Au
3+

, XPS 

analysis of a sample of a pH 2.7 Au
3+

 soaking solution in which silk fibres had been 
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immersed was undertaken.  Figure 7.32 offers a wide XPS scan, and shows the sample to 

contain oxygen, nitrogen, carbon, sulfur and gold, suggesting that sericin may have been 

released from the silk fibres into solution, whereupon it reduced Au
3+

 to Au
0
.  (Calcium and 

silicon were also present however they are likely to be impurities as calcium silicate is 

manufactured on a large scale in the lab in which this sample was prepared). 

 

 

Figure 7.32: Wide XPS scan of the evaporated pH 2.7 Au
3+

 soaking solution in which silk fibres had been 

soaked. 

 

Examination of the deconvoluted, high resolution XPS spectra of this sample substantiated 

this proposal, as the C 1s, N 1s, O 1s and S 2p spectra exhibited peaks corresponding to a 

range of functional groups typical to the amino acid makeup of sericin (Figure 7.33 a-d, 

Table 7.3).  Additionally, peaks denoting oxidised nitrogen and sulfur groups were observed 

in the N 1s and S 2p spectra, centred at 405.43 and 168.38 eV respectively (Figure 7.33 b and 

d).  This suggests that the formation of the gold nanoparticles in the soaking solution may 

have been facilitated by the oxidation of both nitrogen and sulfur groups in the amino acids 

of sericin.  Additionally, peaks denoting N-Au bonds were seen in the C 1s and N 1s spectra, 

centred at 28.5 and 398.4 eV respectively, suggesting that once formed, the gold 

nanoparticles may have been stabilised by a layer of nitrogen containing groups.  The S 2p 

spectrum exhibited a peak typical of Au-S bonds, centred at 161.30 eV, suggesting that sulfur 

atoms may also bond to the surface of the gold nanoparticles, thus also stabilising the 

produced particles.  Examination of the deconvoluted Au 4f XPS spectra of this sample 

confirmed the role of nitrogen and sulfur atoms in the stabilisation of the gold nanoparticles, 

with peaks representative of nanoparticulate Au
0
 surrounded by both nitrogen and sulfur 

present (Figure 7.33 e,Table 7.3).   
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Figure 7.33: High resolution C 1s (a), N 1s (b), O 1s (c), 2 Sp (d) and Au 4f (e) XPS spectra of a pH 2.7 

Au
3+

 soaking solution following the soaking of silk fibres at RT. 
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Table 7.3: XPS assignments of a pH 2.7 Au
3+

 soaking solution following the soaking of silk fibres at RT. 

  Binding Energy (eV ± 0.2 eV) and 
Relative Percentage (± 10 %) 

C 1s C-C, C-H 285.00 (52 %) 

 C-O, C-N 286.50 (13 %) 

 C=O, N-C=O 288.00 (10 %) 

 C-N-Au 283.50 (25 %) 

N 1s N-H, =N- 399.70 (43 %) 

 -N-O- 400.79 (11 %) 

 -NO2
- 

405.43 (14 %) 

 N-Au 398.4 (32 %) 

O 1s Average O 
environment 

430.07 (67 %) 

 -OH 531.04 (33 %) 

S 2p S-S 164.0 (6 %) 

 SO3
- 

168.38 (85 %) 

 S-Au 161.30 (9 %) 

Au 4f Au
0
7/2 (Au

0
-S) 82.84 (25 %) 

 Au
0
7/2 (Au

0
-N) 84.02 (17 %) 

 Au-S7/2 84.99 (12 %) 

 Au
0
5/2 (Au

0
-S) 86.44 (20 %) 

 Au
0
5/2 (Au

0
-N) 87.62 (14 %) 

 Au-S5/2 88.59 (12 %) 

 

In an attempt to ascertain whether sericin was liberated from the silk fibres during soaking or 

ageing in pH 2.7 or 9-10 Au
3+

 solutions respectively, the silk fibres were degummed prior to 

addition to the Au
3+

 solutions.  This involved heating the fibres (1 g) (under reflux) in a 

Na2CO3 solution (10 ml, 0.1 M) for 1 hour, and then washing well with distilled water.  

Figure 7.34 offers a comparison of gold nanoparticle-silk composites prepared with untreated 

or degummed silk.  It is apparent from this photograph that employing degummed silk 

produces composite materials that are uneven in colour, and slightly decreased in intensity 

relative to those prepared with untreated silk.  Additionally, UV/Vis analysis of the gold 

colloid produced from either system whilst ageing shows the intensity of the plasmon band of 
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the gold nanoparticles produced in the degummed systems to be less than that of the 

untreated systems, suggesting a lower concentration of nanoparticles were formed when 

employing degummed silk (Figure 7.35).  This is likely due to the fact that when employing 

degummed silk, there was less sericin present to be liberated from the fibres, and hence less 

available to facilitate the Au
3+

 to Au
0
 reduction. 

 

 

Figure 7.34: Gold nanoparticle-silk composites prepared by soaking untreated (top) or degummed silk 

(bottom) in a 160 ppm Au
3+

 solution, with a pH of 9-10, for 10 minutes or 24 hours, followed by ageing at 

50 °C for 24 hours. 

 

Figure 7.35: UV/Vis spectra of the gold colloids produced in the ageing solutions of untreated or 

degummed silk. 
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Considering all obtained results, it is likely that the production of the gold nanoparticle-silk 

composites involved the absorption of Au
3+

 (in the form of AuCl4
-
), whereupon it was 

reduced to nanoparticulate Au
0
 by a combination of amine and tyrosine moieties.  

Additionally, nanoparticles were observed to form in solution due to the dislodgement of 

sericin, which reduced Au
3+

 to Au
0
, whilst the amine and disulfide groups of this protein 

were oxidised to nitrosyl and cysteic acid groups respectively.  The nanoparticles formed in 

solution did not appear to re-absorb onto the silk fibres. 

 

7.7 Colourfastness to Washing 

 

As with all other gold nanoparticle-natural fibre composites, the colourfastness to washing of 

the gold nanoparticle-silk composites were tested according to the synthesis outlines in 

section 2.3.14.  Composite materials prepared by soaking silk in a 160 ppm (8.13 x 10
-4

 M) 

Au
3+

 solution, with a pH of 2.7 or 9-10 for 6 or 24 hours at RT and ageing, at 50 °C for 168 

hours or 24 hours respectively were chosen as representatives of the gold nanoparticle-silk 

materials. 

 

Figure 7.36 and Figure 7.37 offer photographs of samples that have been in the washing 

solution for half an hour to 24 hours.  Visually it appears that the colour of both sets of 

samples has faded upon washing, those prepared with a soaking and ageing solution pH of 

2.7 slightly more so, suggesting they were not very colourfast to washing.  (It should be 

noted that the colour of the samples prepared with a soaking and ageing solution pH of 9-10 

was very non-uniform, even before washing.  These materials were prepared on a larger 

scale, and when doing so difficulties in achieving a uniform colour was encountered). 
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Figure 7.36: Gold nanoparticle-silk composites prepared by soaking crossbred wool in a 160 ppm (8.13 x 

10
-4

 M) Au
3+

 solution with a pH of 2.7 for 24 hours at RT and ageing, at 50 °C for 168 hours, following 

simulated washability testing at RT and 50 °C. 

 

Figure 7.37: Gold nanoparticle-silk composites prepared by soaking crossbred wool in a 160 ppm (8.13 x 

10
-4

 M) Au
3+

 solution with a pH of 9-10 for 6 hours at RT and ageing, at 50 °C for 24 hours, following 

simulated washability testing at RT and 50 °C. 

 

The CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of the composite 

materials following washing are provided in Appendix X.  Following washing there was a 

general increase in L*, 457 nm brightness and 580 nm brightness values of the materials 

prepared with a soaking and ageing solution pH of 2.7, confirming the visual lightening, or 

colour fading upon increased washing times.  This was more pronounced with washing 

temperatures of 50 °C (Figure 7.38).  It is difficult to obtain any information from the CIE 

values of composites prepared with a pH 9-10 soaking and ageing solution following 

washing as the colour of the unwashed material was so uneven.  However following washing 

there was a slight increase in both L*, 457 nm brightness and 580 nm brightness values, 

reflecting the observed lightening of these materials following washing.   

Washing Time (Hours, 50 °C) 
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Figure 7.38: Changes in L*, a*, b*, 457 nm brightness and 580 nm brightness values for a gold 

nanoparticle-silk composite (prepared by soaking silk in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution, with a 

pH of 2.7 for 24 hours at RT followed by heating at 50 °C for 24 hours) following simulated washability 

tests show the colour change due to washing. Washing at RT (black lines) or 50 ºC (red lines). 

 

7.8 Leaching 

 

Quantitative analysis of the washing solutions obtained during simulated washability testing 

(section 7.7) was undertaken to establish the amount of gold leached from the composites 

during washing (Table 7.4).  The amount of gold leached from the materials prepared with a 

pH 2.7 soaking and ageing solution was greater than that leached from materials prepared 

with a pH 9-10 soaking and ageing solution, leaching a maximum of 4 ppm ± 0.5 ppm, or < 1 

% of the total gold loading respectively.  This complements the results obtained in the colour 

fastness to washing tests, where the materials prepared with a soaking and ageing solution of 

pH 2.7 appeared to exhibit a greater change in colour than those prepared with pH 9-10 

solutions.   

 

As colourfastness to washing, and hence the amount of gold leached during washing is 

related to the robustness of the bond between the gold nanoparticles and silk fibres, the 
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decreased colourfastness and greater amount of gold leached from the materials prepared 

with pH 2.7 soaking and ageing solutions suggests that the bond between the nanoparticles 

and silk fibres was not as strong in these materials.  This is likely due to the difference in 

physical morphology, and the position of the nanoparticles in the two composites.  As shown 

above in section 7.1, employing a soaking and ageing solution pH of 2.7 saw the majority of 

nanoparticles form on the surface of the silk fibres, where they could be dislodged during 

washing.  However when a soaking and ageing solution of pH 9-10 was used, nanoparticles 

formed both on the surface and within the centre of the silk fibres.   

 

Table 7.4: Gold leached from gold nanoparticle-silk composites (prepared by soaking silk in a 160 ppm 

(8.13 x 10
-4

 M) Au
3+

 solution, with a pH of 2.7 or 9-10 for 6 or 24 hours at RT, followed by ageing at 50 °C 

for 168 or 24 hours respectively) following simulated washability testing. 

Washing 
Temperature 

Washing 
Time (hours) 

pH of Soaking and Ageing Solution 

pH 2.7 pH 9-10 

  ppm ± 0.5 
ppm 

% Total Gold 
Loading 

ppm ± 0.5 
ppm 

% Total Gold 
Loading 

RT 0.5 4.8 3 0.5 < 1 

 1 5.2 3 0.4 < 1 

 2 4.6 3 0.3 < 1 

 5 6.1 4 0.3 < 1 

 24 4.7 3 0.4 < 1 

50 ° C 0.5 6.0 4 0.5 < 1 

 1 6.7 4. 0.6 < 1 

 2 5.6 4 0.5 < 1 

 5 4.9 3 0.8 < 1 

 24 5.3 3 1.3 < 1 
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7.9 Conclusions 

 

The production of gold nanoparticle-silk composite material prepared through the redox 

active proteins in silk was successful, producing deep regal purple or pink/purple coloured 

composites respectively when a pH 2.7 or 9-10 Au
3+

 solution was employed.  These 

materials retained the original shine and lustre inherent to silk. 

 

When employing a Au
3+

 solution with a pH of 2.7 nanoparticles were formed during soaking, 

indicated by the development of a purple colour in the silk fibres.  Prolonged soaking and 

subsequently ageing intensified this colour, and corresponded to an increase in concentration 

of similarly sized and shaped nanoparticles located primarily at the silk fibre surface.  These 

nanoparticles were spherical or five-fold twinned in morphology, being smaller, 

approximately 5-10 nm in diameter, or larger approximately 20-40 nm in diameter, with 

agglomerations of a percentage of the larger nanoparticles seen.  There were also a small 

amount of triangular nanoplates, approximately 80-100 nm in diameter. 

 

Increasing the pH of the soaking and hence ageing solution to approximately 7 and then 9-10 

resulted in the formation of vibrant purple and pink/purple coloured composites respectively 

whilst increasing the pH further to 12 produced materials that were similar in colour to that 

of the base silk fibres.  These colour developments and hence the reduction of Au
3+

 to 

nanoparticulate Au
0
 were complete after 24 hours ageing, and a soaking time of 6 hours was 

sufficient for the absorption and diffusion of AuCl4
-
 onto and through the fibres.  The change 

in colour from a deep regal purple to a pink/purple induced with increased pH, corresponded 

to the production of slightly smaller, increasingly isolated gold nanoparticles, located both on 

the surface, and also within the centre of the silk fibres. 

 

XPS suggested that the reduction of Au
3+

 to nanoparticulate Au
0
 was facilitated by the 

oxidation of amine and tyrosine residuals in the silks‘ fibroin fibres.  Additionally, when a 

pH 2.7 or 9-10 soaking and ageing solution was employed nanoparticles were seen to form in 

solution during soaking and ageing respectively.  This was proposed to occur through the 
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dislodgement of sericin from the silk fibres, which reduced Au
3+

 in solution to Au
0
, whilst 

the amine and disulfide groups of this protein were oxidised to nitrosyl and cysteic acid 

groups respectively.  The nanoparticles formed in solution did not appear to re-absorb onto 

the silk fibres.  The nanoparticles reduced by the fibroin proteins of silk appeared to bond to 

the silk through nitrogen groups, and also through sulfur groups, most likely in any sericin 

remaining on the silk fibres. 

 

In contrast to the gold nanoparticle-merino wool and crossbred wool composite materials, the 

gold nanoparticle-silk composites did not appear to be as colourfast with respect to washing, 

with both the materials prepared with a pH 2.7 and 9-10 soaking and ageing solutions fading 

upon washing, the former more so.  This decreased colourfastness is related to the relative 

strengths of the bonds between the nanoparticles and natural fibres, and suggests the Au-N 

bonding in the silk composites to be weaker than the Au-S bonding in the merino and 

crossbred wool composites. 
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8. SEED MEDIATED GROWTH OF GOLD NANOPARTICLES BY AN 

EXTERNAL REDUCTANT EMPLOYING GOLD NANOPARTICLE-FIBRE 

COMPOSITE MATERIALS AS SEED SOURCES 

 

8.1 Gold Nanoparticle-Merino Wool Composites 

 

In an attempt to reduce the amount of gold used in the production of grey coloured gold 

nanoparticle-merino wool composites, a seed mediated growth approach was undertaken.  

The process is based on a synthesis reported by Brown and co-workers,[173] and is outlined 

in section 2.2.2.4.  It involved the surface catalysed reduction of Au
3+ 

to Au
0
 by NH2OH in 

the presence of gold nanoparticle-merino wool composites (termed seeds).  Depending on the 

seed, gold concentration and ratio of [Au
3+

]:[NH2OH] the resultant materials ranged in 

colour from purple to light grey with a tinge of pink, steely grey and purple/grey. 

 

8.1.1 Seeds 

 

The seed sources employed were prepared by utilising the redox active nature of merino 

wool, which involved the absorption and subsequent reduction of Au
3+

 to nanoparticulate 

Au
0
 by merino wool.  As outlined in Table 8.1, preparation of the seed sources (labelled 1-

10) involved soaking untreated merino wool in gold solutions of various concentrations, 

under gentle agitation at RT, followed by heating at 50 °C for 24, 72 or 168 h. 

 

The physical characterisation and morphology of these seeds is described in detail in sections 

5.1, 6.1 and 7.1.  However briefly, seed 1 is representative of a composite in which the 

nanoparticles are very small and present predominantly on the fibre surface.  The 

nanoparticles in seeds 2, 5, 8-10 are also located predominantly on the surface, however they 

are slightly larger than those found in seed 1.  In seeds 3, 4, 6 and 7 nanoparticles are found 

both on the surface, and within the centre of the fibres 
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Table 8.1: Seed source preparation. Note, 0.1 g of merino wool was used in each system. 

Seed Gold Solution 
(Vol 4 wt % Au

3+
 added) 

Soak Time 
(RT, hours) 

Heat Time 
(50 °C hours) 

Colour 

1 40 μL → 10 ml 6 — Very faint pink 

2 20 µL → 10 ml
 

24 24 Pale pink 

3 20 µL → 10 ml 24 72  Pink 

4 20 µL → 10 ml 24 168 Pale purple 

5 40 µL → 10 ml 24 24 Pink 

6 40 µL → 10 ml 24 72 Pink/purple 

7 40 µL → 10 ml 24 168 Deep purple 

8 40 µL → 6 ml 24 24 Pink 

9 50 µL → 6 ml 24 24 Pink 

10 60 µL → 6 ml 24 24 Pink 

 

During the preparation of the seeds, increasing the heating time from 24 to 168 hours resulted 

in an increased amount of Au
3+

 being reduced to Au
0
, forming as small (approximately 5 nm 

diameter) spherical nanoparticles in the centre of the fibres.  The size and proportion of 

nanoparticles on the surface of the fibres remained relatively constant following prolonged 

heating, with these nanoparticles being predominantly five-fold twinned particles, 

approximately 20 – 25 nm in diameter (Figure 8.1 and Figure 8.2).  Increasing the gold 

concentration saw a general increase in the amount of nanoparticles both on the surface, and 

in the centre of the fibres.  With no heating, as was the case with seed 1, Au
3+

 or Au
+
 were 

the predominant forms of gold (determined by XPS analysis Table8.2).  Little Au
3+ 

had been 

reduced to nanoparticulate Au
0
, with any nanoparticles formed being relatively small 

(approximately 5 – 10 nm in diameter) and present predominantly on the surface of the wool 

fibres (Figure 8.1 a and Figure 8.4). 
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Figure 8.1: TEM micrographs of a) seed 1, b) seed 5 and c) seed 7. Showing initially the increase in 

amount of nanoparticles on the fibre surface and then in the centre with prolonged heating. 

   
Figure 8.2: SEM micrographs of seeds 5, 6 and 7 (left to right). These appear similar in morphology. 

Table 8.2: Relative percentage of Au
0
 and Au

3+ 
present in the seeds 1 and 7. Illustrating the effect of 

prolonged heating. 

Seed Heating Time 
(50 °C, hours) 

Au
3+

/Au
+ 

% Au
0
 

1 0 97.0 3 

7 168 90 10 

 

As listed in Table 8.1, the seeds ranged in colour from light pink to purple (Figure 8.3), with 

increasing gold concentrations producing more intensely coloured seeds, and longer heating 

times darker colours. 

 

 

Figure 8.3: Seeds. Top, left to right, seed 1-5. Bottom, left to right, seed 6-10. 

 

 

500 nm 500 nm 500 nm 

10 µm 10 µm 10 µm 
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8.1.2 Preliminary Syntheses 

 

Initially, the reaction procedure was not altered greatly from that reported by Brown and co-

workers.[173]  The concentration of NH2OH was kept constant at 2.50 x 10
-4

 M, and the 

amount of gold added was varied, so that in the end solutions the concentration ratio of 

[NH2OH]:[Au
3+

] varied from 1:1 to 1:8 (refer to section 2.2.2.4 for details).  Two gold 

nanoparticle-merino wool materials were chosen as seed sources, notably seeds 1 and 7 

(Table 8.1).  As mentioned above, seed 1 was representative of a material in which the gold 

was present mainly as Au
3+ 

or Au
+
, with a very low proportion of small Au

0
 nanoparticles 

(approximately 5 – 10 nm in diameter) present predominantly on the surface of the wool 

fibres (Figure 8.1 a).  Alternatively, in seed 7, the wool had been soaked in gold for an 

extended period of time prior to heating at 50 °C for 168 h.  As such an increased amount of 

Au
3+

 had been reduced to Au
0 

nanoparticles (Table 8.2), which were located both on the fibre 

surface and throughout the centre (Figure 8.1 c).  The nanoparticles on the surface of these 

materials were slightly larger than those in seed 1 (approximately 10 – 20 nm in diameter) 

(Figure 8.4 a and b), whilst those in the centre were of comparable size (approximately 5 nm 

in diameter) (Figure 8.4 c). 

 

   

Figure 8.4: TEM micrographs of a) seed 1 and b-c) seed 7. Showing high magnification images of the 

nanoparticles on the fibre surface (a and b) and in the fibre centre (c). 

 

The gold nanoparticle-merino wool composites produced from seed 1 ranged in colour from 

a murky purple to dirty golden brown (Figure 8.5, top), whilst those produced from seed 7 

appeared deep purple to dark purple/black (Figure 8.5, bottom).  The colour change is 

reflected in the Kubelka Munk transformed UV/Vis reflection spectra of the materials.  

Higher ratios of [NH2OH]:[Au
3+

] (increasing to a ratio of 1:8) induced an increase in 

10 nm 50 nm 10 nm 
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intensity and broadening of the gold plasmon band centred at approximately 538 nm (Figure 

8.6 and Figure 8.7).  The CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of 

the resultant composites are offered in Appendix IX, and show a general decrease in the 457 

nm brightness and 580 nm brightness values of the composites upon increasing ratios of 

[NH2OH]:[Au
3+

], confirming the visual darkening of the materials. 

 

 

Figure 8.5: Composites prepared via the seed mediated approach. Top: produced from seed 1 and 

bottom: from seed 7. 

 

Figure 8.6: Kubelka Munk transformed UV/Vis reflection spectrum of gold nanoparticle-merino wool 

composites prepared via the seed mediated approach, utilising seed 1. 
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Figure 8.7: Kubelka Munk transformed UV/Vis reflection spectrum of gold nanoparticle-merino wool 

composites prepared via the seed mediated approach, utilising seed 7. 

 

As a primary aim of this seed mediated approach was to produce grey coloured materials 

with the lowest amount of gold possible, the colours of the composites produced from this 

initial approach were unsatisfactory.  Too much gold was employed in the synthesis, and the 

resultant materials were not grey.  As such the synthesis method was altered, and the results 

of these altered syntheses are outlined below. 

 

8.1.3 Altered Syntheses 

 

In an attempt to lower the amount of gold used in the seed mediated approach, whilst 

producing a grey coloured composite, the synthesis method was modified so that the 

concentration of Au
3+ 

remained constant, whilst the concentration of NH2OH varied.  Gold 

concentrations ranging from 2.50 x 10
-4

 to 1.35 x 10
-3

 M were employed, and the 

concentration ratio of [Au
3+

]:[NH2OH] was varied between 1:1 and 1:128.  Additionally, 

numerous seeds were employed. 
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8.1.3.1 Physical Characterisation and Morphology 

 

Depending on the seed, gold concentration and ratio of [Au
3+

]:[NH2OH] the gold 

nanoparticle-merino wool composites prepared via this altered approach ranged in colour 

from purple to light grey with a tinge of pink, steely grey and purple/grey (Figure 8.8 to 

Figure 8.11).  Seeds 2, 5, 8-10 were the most successful, producing grey coloured 

composites.  The composites produced from seeds 3, 4, 6 and 7 appeared more purple in 

colour, regardless of the gold concentration or ratio of [Au
3+

]:[NH2OH] employed. 

 

 

Figure 8.8: Gold nanoparticle-merino wool composites prepared with a 2.5 x 10
-4

 M gold solution (12.3 

µL 4 wt % Au
3+

 to 10 ml) and corresponding seeds. 
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Figure 8.9: Gold nanoparticle-merino wool composites prepared with a 4.2 x 10

-4
 or 6.8 x 10

-4
 M gold 

solution (12.3 or 20 µL 4 wt % Au
3+

 to 6 ml) and corresponding seeds. 

 
Figure 8.10: Gold nanoparticle-merino wool composites prepared with a 1.02 x 10

-3
 or 1.35 x 10

-3
 M gold 

solution (30 or 40 µL 4 wt % Au
3+

 to 6 ml) and corresponding seeds. 
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Figure 8.11: Gold nanoparticle-merino wool composites prepared with a 4.2 x 10
-4

 or 6.8 x 10
-4

 M gold 

solution (12.3 or 20 µL 4 wt % Au
3+

 to 6 ml) and corresponding seeds. 

 

SEM and TEM analysis (Figure 8.12 and Figure 8.13 respectively) suggested nanoparticle 

growth occurred in areas where nanoparticles resided in the seed materials, notably along the 

cuticle edges.  Figure 8.12 offers increasing magnification SEM micrographs of a gold 

nanoparticle-merino wool composite prepared from seed 5, with an initial gold concentration 

of 2.50 x 10
-4

 M and a [Au
3+

]:[NH2OH] ratio of 1:1, and also the corresponding micrographs 

of seed 5.  At low magnifications a discernable morphological difference is not apparent 

between the composite and seed, however increasing magnifications reveal the presence of a 

slightly greater proportion of nanoparticles located along the cuticle edges in the composite.  

TEM confirms these nanoparticles to be largely spherical in morphology, approximately 30 

nm in diameter (Figure 8.13). 

 

Increasing the ratio of [Au
3+

]:[NH2OH] to 1:8 saw an even greater amount agglomerates at 

the cuticle edges (Figure 8.14).  However a more pronounced morphological difference was 

seen in the composites when the initial gold concentration was increased.  Figure 8.15 offers 

increasing magnification SEM micrographs of composites prepared from seed 5, a 

[Au
3+

]:[NH2OH] ratio of 1:16, and gold concentrations ranging from 2.50 x 10
-4

 M to 6.80 x 

10
-4

 M.  It is apparent that when higher gold concentrations are employed, the resultant 

materials posses a much greater proportion of agglomerated nanoparticles, located along the 

edges of the merino wool cuticles, with TEM showing these agglomerated particles to be 
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Figure 8.12:Top: increasing magnification SEM micrographs of a gold nanoparticle-merino wool 

composite prepared via the seed mediated approach, utilising seed 5, a gold concentration of 2.5 x 10
-4

 M 

and a 1:1 ratio of [Au
3+

]:[NH2OH]. Bottom: Increasing magnification SEM micrographs of seed 5. 

 

Figure 8.13: TEM micrograph of a gold nanoparticle-merino wool composite prepared via the seed 

mediated approach. Shows gold nanoparticles agglomerated at a cuticle edge. 

 

irregularly shaped, ranging in size from approximately 50-100 nm in diameter (Figure 8.16 

top).  However when the gold concentration was increased further to 1.02 x 10
-3

 M and 1.35 

x 10
-3

 M, the size of the agglomerated particles increased, with large, approximately 100 nm 

in diameter agglomerates present (Figure 8.16 middle and bottom).  Additionally, new 

smaller gold nanoparticles (approximately 10-20 nm in diameter) appeared on the merino 

wool surfaces (Figure 8.16 middle and bottom and Figure 8.17).  It is likely that this occurred 

as at these gold concentrations the ratio of gold seeds (nanoparticles) to Au
3+

 is very high, 

10 µm 

10 µm 100 nm 1 µm 

1 µm 100 nm 
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with both growth on the preformed seeds and new nucleation events more likely to occur 

compared to systems with low gold concentrations (discussed in further depth in section 

8.1.3.4 below).  Similar results have been reported by Jana and co-workers [249] during the 

seed mediated growth of gold nanoparticles. 

 

   

Figure 8.14: Increasing magnification SEM micrographs of a gold nanoparticle-merino wool composite 

prepared via the seed mediated approach, utilising seed 5, a gold concentration of 2.5 x 10
-4

 M and a 1:8 

ratio of [Au
3+

]:[NH2OH]. 

   

   

   

Figure 8.15: Increasing magnification SEM micrographs of gold nanoparticle-merino wool composites 

prepared via the seed mediated approach, utilising seed 5, a [Au
3+

]:[NH2OH] concentration ratio of 1:16 

and a gold concentration of, top: 2.5 x 10
-4

 M, middle: 4.2 x 10
-4

 M and bottom: 6.8 x 10
-4

 M. 

10 µm 1 µm 100 nm 

10 µm 1 µm 

1 µm 10 µm 100 nm 

1 µm 

100 nm 10 µm 1 µm 
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Figure 8.16: TEM micrographs of gold nanoparticle-merino wool composites prepared via the seed 

mediated approach, utilising seed 5, a [Au
3+

]:[NH2OH] concentration ratio of 1:16 and a gold 

concentration of top: 4.2 x 10
-4

 M and middle and bottom: 1.35 x 10
-3

 M. 

   

  

Figure 8.17: Increasing magnification SEM micrographs of gold nanoparticle-merino wool composites 

prepared via the seed mediated approach, utilising seed 5, a [Au
3+

]:[NH2OH] concentration ratio of 1:16 

and a gold concentration of, top: 1.02 x 10
-3

 M and bottom: 1.35 x 10
-3

 M. 

 

500 nm 

100 nm 50 nm 20 nm 

500 nm 50 nm 

10 nm 20 nm 20 nm 
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As mentioned, employing different seed sources also influenced the colour of the resultant 

composite, with materials incorporating seeds containing both nanoparticulate Au
0
 and 

unreduced Au
3+

 (seeds 2, 5, 8-10) producing grey coloured composites whilst seeds in which 

a greater proportion of Au
3+

 had been reduced to Au
0
, (with the additional Au

0
 forming 

predominantly as nanoparticles in the fibre centres), generating materials that were more 

purple/black in colour.  Comparing the SEM micrographs of the grey composites prepared 

from seed 5, to those of the purple/black materials prepared from seed 7, show those made 

from seed 5 to have slightly greater amounts of agglomerated nanoparticles on the fibre 

surface.  This is likely due to the fact that there was more Au
3+

 present in seed 5 compared to 

seed 7, which could also be reduced by NH2OH.  Additionally, TEM analysis of materials 

prepared from seed 5 (Figure 8.16) revealed the small nanoparticles residing in the centre of 

the fibres to remain unchanged in the composites, they did not increase in size, suggesting 

the gold catalysed reduction of Au
3+

 took place predominantly on the nanoparticles bound to 

the fibre surfaces.   

 

  

  

Figure 8.17: Increasing magnification SEM micrographs of gold nanoparticle-merino wool composites 

prepared from seed 5 (top) and seed 7 (bottom), employing a gold concentration of 2.50 x 10
-4

 M, and a 

[Au
3+

]:[NH2OH] concentration ratio of 1:16. 
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10 µm 

1 µm 

1 µm 
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8.1.3.2 Colour 

 

The colour of the composites produced via the seed mediated approach were characterised 

through UV/Vis spectroscopy and via analysis of their CIE L*, a*, b*, 457 nm brightness and 

580 nm brightness values.  A full set of CIE values are provided in Appendix V.  In general, 

an increase in average size, and the subsequent formation and growth of gold nanoparticle 

agglomerates on the surface of merino wool fibres corresponded to a change in composite 

colour from pink to grey or purple to purple/black.  This suggests that the change in reflected 

colour was due to a corresponding increase in particle size and also the extent of 

agglomeration. 

 

As outlined above, when utilising seeds 2, 5, 8-10, where the nanoparticles are located 

predominantly on the fibre surfaces and there is unreduced Au
3+

 present in the seeds, 

increasing the ratio of [Au
3+

]:[NH2OH] from 1:1 to 1:128 resulted in a slight greying of the 

resultant composites.  This grey was more apparent in composites incorporating seeds 

prepared with a greater concentration of gold (10 > 9 > 8 > 5 > 2).  The seeds prepared with 

greater concentrations of gold had more nanoparticles on the merino wool surface, and thus 

more sites at which the surface catalysed reduction of Au
3+

 to Au
0
 could occur.  They also 

had an increased amount of unreduced Au
3+

, which could be reduced by NH2OH, producing 

more Au
0
. Alternatively, the composites produced from seeds 3, 4, 6 and 7 appeared more 

purple than grey in colour.  Increasing the ratio of [Au
3+

]:[NH2OH] deepened the purple 

colour, producing purple/black coloured materials.  It is likely that the composites produced 

from these seeds appeared more purple/black than grey as the reduction of additional Au
3+

 by 

NH2OH occurred primarily on the gold nanoparticles bound to the surface of merino wool 

fibres, rather than those in the centre (as shown by SEM and TEM analysis).  Therefore the 

small nanoparticles in the fibre centres in seeds 3, 4, 6 and 7 would not increase in size 

during the formation of the composites, and the materials produced from these seeds would 

possess both larger nanoparticles on the fibre surface and smaller nanoparticles 

(approximately 5 nm in diameter) in the centre, with both exhibiting different surface 

plasmon resonances.  Hence the grey colour resulting from agglomerates formed on the fibre 

surface would be combined with the purple of those in the centre.  Additionally, in these 

seeds (3, 4, 6 and 7) a greater percentage of Au
3+

 had been reduced to Au
0
 during the seed 
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production, as such there would be less Au
3+

 present that could be reduced by NH2OH and be 

incorporated in the growth of larger gold nanoparticles or agglomerates. 

 

This change in colour to grey or purple/black upon increasing the ratio of [Au
3+

]:[NH2OH] 

was reflected in the CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of the 

resultant composites (Table 8.3).  The values for L*, which measure a materials degree of 

whiteness (with L*=100 being white, and L*=0 being black), of a composite prepared from 

seed 2, with a [Au
3+

]:[NH2OH] ratio of 1:1 to 1:128 decreased slightly from 44 to 42.  The 

values of the composites prepared from seed 5, which had a greater concentration of gold and 

hence a larger number of nanoparticles on the seed were lower still, notably 43 and 39 

([Au
3+

]:[NH2OH] ratio of 1:1 and 1:128 respectively), confirming the more pronounced 

greyness of these materials.  The L* values of all composites were substantially lower than 

those of their corresponding seeds.   

 

There was a small amount of variation in the a* values of the composites upon increasing the 

ratio of [Au
3+

]:[NH2OH], however there was a general minor increase in these values, 

reflecting the slight red tinge observed in some samples.  This was more apparent in 

composites produced from seed 2 rather than seed 5 or 7, as there were not as many 

agglomerates in such composites, hence they did not appear as grey in colour.  Increasing the 

ratio of [Au
3+

]:[NH2OH] used in the production of composites incorporating seeds 3, 4, 6 and 

7 also resulted in increased a* values, and as mentioned, these materials were more 

purple/black than grey and as such their a* values were higher than those from composites 

incorporating seeds 2, 5 or 7. 

 

Increasing the ratio of [Au
3+

]:[NH2OH] decreased the value of b* (positive b* = yellow, 

negative blue) of composites produced from all seeds.  The b* values were lower when seeds 

2 or 5 were employed as these materials appeared more blue grey than those produced from 

seeds 3, 4, 6 or 7.  Finally the 457 and 580 nm brightness values of all composites decreased, 

mirroring their darkening upon increasing ratios of [Au
3+

]:[NH2OH]. 
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Table 8.3: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for composites prepared 

using a gold solution concentration of 2.50 x 10
-4

 moldm
-3

. Shows the effect of increasing the ratio of 

[Au
3+

]:[NH2OH] (refer toFigure 8.8-Figure 8.11 for pictures of these materials). 

Seed [Au
3+

]:[NH2OH] L* a* b* 457 nm 

brightness 

580 nm 

brightness 

2 — 56.2 3.7 3.9 22 25 

2 1:1 43.8 9.2 0.5 14 14 

 1:128 41. 6 7.7 -1.8 12 13 

3 — 53.6 7.2 3.0 20 22 

 1:1 46.6 13.9 0.9 15 17 

 1:8 40.4 11 -0.6 12 12 

4 — 43.7 7.4 1.9 13 14 

 1:1 44.0 6.9 0.8 9 9 

 1:8 43.1 5.9 1.5 13 14 

5 — 58.2 6.2 4.5 24 27 

 1:1 42.8 5.6 -1.8 14 13 

 1:128 38.9 1.4 -1.3 13 13 

6 — 47.3 6.2 2.9 15 17 

 1:1 40.2 10.4 0.8 12 12 

 1:8 35.8 3.9 -0.2 9 9 

7 — 31.3 13.7 -0.7 7 7 

 1:1 30.5 15.3 -1.7 7 6 

 1:8 26.1 12.9 -1.6 5 5 

 

Increasing the gold concentration had a more substantial effect on the colour development of 

the composites than did altering the ratio of [Au
3+

]:[NH2OH].  Figure 8.20 offers a picture of 

composites prepared from seeds 2, 5 and 7, whilst Figure 8.19 shows those prepared from 
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seeds 8-10.  It is evident from these images that with a [Au
3+

]:[NH2OH] ratio of 1:128, 

increasing the gold concentration from 2.50 x 10
-4

 to 6.8 x 10
-4

 M caused composites 

produced from seed 2, 5, 8-10 to become a deeper grey, (the materials with a greater amount 

of nanoparticles on the fibre surfaces more so, 10 > 9 > 8 > 7 > 5), whilst those produced 

from seed 7 (in which nanoparticles were present both on the surface and in the centre of the 

fibres) became a deeper purple/black.  Increasing the concentration further to 1.35 x 10
-3

 M 

saw the appearance of a slight purple tinge in materials prepared from seed 2 and 5.  The 

purple/black colour of those produced from seed 7 simply deepened.  It is likely that the 

colour change to grey and then purple/grey observed from composites incorporating seeds 2, 

5, 8-10 arose primarily from an increased amount of agglomerates, and then due to the 

formation of smaller nanoparticles, giving rise to the slight purple hues.  Smaller 

nanoparticles may have formed due to the gold concentration being closer to that of the 

critical nucleation of gold, with higher concentrations promoting increased collisions 

between particles, resulting in the formation of nuclei which could potentially act as gold 

seeds to catalyse the reduction of Au
3+

 to Au
0
 by NH2OH.  Additionally, numerous groups 

have reported the formation of a greater amount of smaller nanoparticles during the surface 

catalysed reduction of Au
3+

 by NH2OH when the ratio of Au
3+ 

to seeds is increased (more 

Au
3+

 relative to seeds).[104, 114, 249, 250] 

 

 
Figure 8.19: Gold nanoparticle-merino wool composites produced from seeds 8-10. A colour change upon 

increasing gold concentration is apparent. 
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Figure 8.20: Gold nanoparticle-merino wool composites produced from seeds 2, 5 and 7. A colour change 

upon increasing gold concentration is apparent. 

 

The colour change to a deeper grey observed in composites produced from seeds 2, 5, 8-10, 

and then grey with a tinge of purple in 2 and 5 upon increasing gold concentrations, and the 

deepening purple/black colour of those incorporating seed 7 was reflected in the CIE values 

of the materials (Table 8.4).  In the production of all composites increasing the gold 

concentration resulted in a general decrease in L*, 457 nm brightness and 580 nm brightness 

values confirming the visual darkening of the samples.  The change to a deeper grey, and 

then grey/purple observed for seeds 2 and 5 was accompanied by a decrease, and subsequent 

increase in a* values (with larger a* values depicting a redder colour).  The a* values of the 

composites produced from seed 7 remained relatively constant. 
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Table 8.4: CIE L*, a*, b* 457 nm brightness and 580 nm brightness values of composites prepared from 

seeds 2, 5, 7, 8-10, with a [Au
3+

]:[NH2OH] ratio of 1:128. Illustrates the effect of increasing gold 

concentrations. (Refer to Figure 8.19 and Figure 8.20 for pictures of these materials). 

Seed Gold 

Concentration 

(mol dm
-3

) 

L* a* b* 457 nm 

Brightness 

580 nm 

Brightness 

2 2.5 x 10
-4

 41. 6 5.8 -1.8 12 13 

 4.2 x 10
-4

 45.4 3.5 -1.3 15 15 

 6.8 x 10
-4

 43.8 2.6 -1.9 15 14 

 1.02 x 10
-3

 34.9 6.2 -1.8 9 8 

 1.35 x 10
-3

 31.3 7.7 -0.4 7 7 

5 2.5 x 10
-4

 38.9 1.4 -1.3 13 13 

 4.2 x 10
-4

 40.8 1.2 -0.3 12 12 

 6.8 x 10
-4

 31.7 4.8 -1.1 7 7 

 1.02 x 10
-3

 34.5 6.4 1.1 8 9 

 1.35 x 10
-3

 32.5 5.5 0.3 7 8 

7 2.5 x 10
-4

 26.7 5.2 -2.5 5 5 

 4.2 x 10
-4

 24.4 5.9 -2.6 5 4 

 6.8 x 10
-4

 24.5 5.6 -3.0 5 4 

 1.02 x 10
-3

 24.1 7.6 -3.0. 5 4 

 1.35 x 10
-3

 22.0 6.6 -2.0 4 4 

8 4.2 x 10
-4

 47.1 2.3 -2.9 18 16 

 6.8 x 10
-4

 39.7 2.5 -0.4 11 11 

9 4.2 x 10
-4

 42.8 3.5 -3.0 14 13 

 6.8 x 10
-4

 41.1 1.4 -1.9 13 12 

10 4.2 x 10
-4

 46.7 1.8 -1.1 16 16 

 6.8 x 10
-4

 36.8 2.6 0.4 13 13 
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The colour change in the composites and the relationship between the size and shape of the 

nanoparticles bound to the fibres was also shown in SEM and TEM analysis and UV/Vis 

spectroscopy.  With pale grey/pink coloured materials containing a small amount of largely 

isolated nanoparticales, approximately 30 nm in diameter, and greyer materials containing an 

increased amount of larger (approximately 50 nm in diameter) nanoparticles, agglomerated 

together.  Materials produced with gold concentrations greater than 1.02 x 10
-3

 M possessed 

both agglomerated and isolated particles (Figure 8.21). 

 

  

  

Figure 8.21: SEM micrographs of gold nanoparticle-merino wool composites prepared via the seed 

mediated approach. Shows the relationship between the colour of the composites and the size of the 

nanoparticles bound to the fibre surface. 

 

As mentioned, increasing the number of gold nanoparticles bound to the surface of the seeds 

resulted in the production of greyer coloured composites.  For example seed 10 produced 

greyer coloured materials than did seed 9, 8, 5 or 2.  This colour development is reflected in 

the Kubelka Munk transformed UV/Vis reflection spectra of the composites, as progressing 

from materials prepared from seed 2, to 5, 8, 9 or 10 saw a broadening of the pseudo 

absorption peak (Figure 8.22).  As the full width at half maximum of the plasmon peak is 

related to the extent of agglomeration, the broadening of this peak upon progressing through 

1 µm 1 µm 

1 µm 100 nm 
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the seeds and producing greyer coloured composites confirms previous conclusions drawn 

from SEM and TEM analysis, that proposed the grey colour to arise due to nanoparticles 

agglomerated on the fibre surfaces.   

 

Correspondingly, seeds with an increased amount of nanoparticles in the fibre centres (seed 7 

> 6 > 4 > 3) produced purple/black materials, with the composites produced from seed 7 

being more purple/black than those produced from seed 5.  Again this colour change is 

depicted in the Kubelka Munk transformed UV/Vis reflection spectra of the composites, with 

the plasmon band of the gold in these materials being narrower than the grey materials 

(Figure 8.22). 

 

 

Figure 8.22: Kubelka Munk transformed UV/Vis reflection spectra of composites prepared from various 

seeds, with a gold concentration of 4.2 x 10
-4

 M and a [Au
3+

]:[NH2OH] ratio of 1:128. 

 

Similar to the colour change induced by different seeds, the colour change resulting from 

increasing gold concentrations is also evident in UV/Vis spectroscopy.  Figure 8.23 offers the 

Kubelka Munk transformed UV/Vis reflection spectra of composites produced from seed 5 

with increasing gold concentrations.  The ratio of [Au
3+

]:[NH2OH] remained constant at 
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1:128.  Again, an increased grey colour, induced with higher gold concentrations resulted in 

increased agglomeration on the fibre surfaces and a corresponding broadening of the gold 

plasmon band centred at approximately 558 nm.  The increased greying upon increasing the 

ratio of [Au
3+

]:[NH2OH] also resulted in a broadening, and slight blue shift of this plasmon 

peak (Figure 8.24). 

 
Figure 8.23: Kubelka Munk transformed UV/Vis reflection spectra of composites prepared seed 5 with 

various gold concentrations and a [Au
3+

]:[NH2OH] ratio of 1:128. 

 
Figure 8.24: Kubelka Munk transformed UV/Vis reflection spectra of composites prepared seed 5 with a 

gold concentration of 4.2 x 10
-4

 M and various [Au
3+

]:[NH2OH] ratios. 
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8.1.3.3 Confirmation of Gold 

 

The presence of gold in the composites prepared via the seed mediated approach was 

established with EDS and XPS.  EDS confirmed the bright white dots evident on the surface 

of the composites viewed under backscatter conditions to be gold.  Figure 8.25 and Figure 

8.27 offer the SEM and corresponding Au EDS maps of composites prepared from seed 5, a 

gold concentration of 4.2 x 10
-4

 M, and a [Au
3+

]:[NH2OH] concentration ratio of 1:16 and 

1:128 respectively.  High concentrations of gold are depicted in red and white areas.  

Additionally, Figure 8.26 and Figure 8.28 offer spectral snap shots of the areas under 

analysis, and substantiate the existence of gold due to the presence of the gold peaks. 

 

  

Figure 8.25: Left: Cross sectional SEM micrograph of a gold nanoparticle-merino wool composite 

prepared via the seed mediated approach, utilising seed 5, a gold concentration of 4.2 x 10
-4

 M and a 

[Au
3+

]:[NH2OH] concentration ratio of 1:16,  and right: the corresponding EDS map. 

 
Figure 8.26: EDS spectrum of the gold nanoparticle-merino wool composite shown in Figure 8.25. 

1 µm 
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Figure 8.27: Left: Cross sectional SEM micrograph of a gold nanoparticle-merino wool composite 

prepared via the seed mediated approach, utilising seed 5, a gold concentration of 4.2 x 10
-4

 M and a 

[Au
3+

]:[NH2OH] concentration ratio of 1:128,  and right: the corresponding EDS map. 

 

Figure 8.28 EDS spectrum of the gold nanoparticle-merino wool composite shown in Figure 8.27. 

 

 

 

100 nm 
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8.1.3.4 Proposed Mechanism for Seeded Growth and Bonding of Gold to Merino wool 

Fibres 

 

The reduction of Au
3+

 to Au
0
 by NH2OH occurs according the following scheme: 

HAuCl4 + NH2OH.HCl  →  Au + 5HCl +NO                                     (8.1) 

Under the reaction conditions employed, NH2OH is incapable of reducing Au
3+

 in solution.  

However the reduction is catalysed by Au
0
, so that in general when gold nanoparticles are 

present, no new nucleation occurs in solution and all additional Au
3+ 

is reduced at the surface 

of the existing gold nanoparticles, causing them to increase in size. 

 

The inability of NH2OH to reduce gold in solution was illustrated experimentally through the 

addition of NH2OH to a gold solution (4.2 x 10
-4

 M, end [Au
3+

]:[NH2OH] concentration ratio 

of 1:16), and also to a gold solution containing untreated merino at RT.  No colour change 

was observed in either the solution or the wool, suggesting little to no Au
3+

 had been reduced 

to nanoparticulate Au
0
 (Figure 8.29).  This was confirmed by XPS analysis, as the gold in the 

merino wool soaked in the Au
3+

/NH2OH solution was predominantly Au
3+

 (82.7 %) with the 

remainder being a Au-N complex (Figure 8.30). 

 

  

Figure 8.29:Left: a solution containing Au
3+

 and NH2OH that had been left to react over night. Middle: 

the same solution also containing untreated merino wool, and right: the same merino wool following 24 

hours in the Au
3+

/NH2OH. 
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Figure 8.30: High resolution Au 4f XPS spectrum of merino wool soaked in a Au
3+

/NH2OH solution for 

24 hours at RT. 

 

Furthermore, as shown previously the formation of larger gold nanoparticles, and 

nanoparticle agglomerations in the composites generally occurred in areas where gold 

nanoparticles were commonly found in the seeds, notably along cuticle edges, with new 

nucleation and the formation of isolated particles only occurring with relatively high 

concentrations of gold.  These observations substantiate the suggestion that in general the 

reduction of additional Au
3+

 occurred predominantly on the surface of existing gold 

nanoparticles.  This was demonstrated by XPS analysis, which showed the bonding between 

the gold in the composites to be similar to that of the gold in the seed particles, notably via a 

Au-S bond.  The bonding between the gold and wool in the seeds is discussed in detail in 

section 6.5, and is illustrated in the deconvoluted high resolution S 2p spectra, typical of most 

seeds, by the peak‘s centred between approximately 161.5–162 eV.[217, 251]  Additionally, 

the predominant peaks in the Au 4f spectra of the seeds are the 7/2 and 5/2 peaks of Au-S 

(Figure 8.30).[217] 

 

Figure 8.31 and Figure 8.32 a and c show the high resolution C 1s, N 1s, O 1s and S 2p XPS 

spectra of a composite prepared from seed 5, with a gold concentration of 4.2 x 10
-4

 M, and a 

[Au
3+

]:[NH2OH] concentration ratio of 1:16, whilst Figure 8.31, Figure 8.32 b and Figure 

8.32 d offer an overlay of the corresponding seed used in the production of the composites.  

A complete list of peak assignments is provided in Table 8.5 below.  It is evident from these 

spectra that the chemical environment of C, O and S does not change to a great extent upon 

the reduction of additional Au
3+

.  However two new peaks centred at 398.4 and 403.00 eV 

appeared in the N 1s spectrum of the composite.  The former peak has been reported to be 
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indicative of a direct N-Au bond, and the latter oxidised nitrogen species.[201, 252]  As a C-

N-Au bond was not seen in the C 1s spectrum of this composite, it is likely that the N-Au 

interaction arose due to any unreduced NH2OH capping the produced nanoparticles, or 

absorbed onto the wool fibre.  Additionally, the presence of the peak at 403.00 eV suggests 

that during the reduction of Au
3+

 by NH2OH, a small proportion of nitrogen containing 

groups such as amines were oxidised to nitrosyl (NO) or nitrite (NO
2-

) groups.   

 

Oxidation of the wool fibres during the production of the composites was also evidenced in 

the S 2p spectrum, with a decrease in area of the peak corresponding to the average sulfur 

environment in the seed, from75 % to 65 % in the composite, and an increase in the peak 

indicative of cysteic acid (-SO3
-
), the oxidised form of cystine, from 18 % to 19 % (Figure 

8.32 g-h).  There was also a slight broadening of the S-Au peaks in the composites, centred at 

~161.33 and 162.44 eV.  This suggests an increase in the variability of the S-Au binding 

environment, due to the broad size range of the gold nanoparticles and the presence of 

agglomerates. 

  

  

Figure 8.31: High resolution C 1s (a-b) and N 1s (c-d) XPS spectra of a gold nanoparticle-merino wool 

composite prepared via the seed mediated approach. Figures (b and d) show an overlay of the 

corresponding C 1s and N 1s spectra of the seed material (in red). 
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Figure 8.32: High resolution O 1s (a) and S 2p (c) XPS spectra of a gold nanoparticle-merino wool 

composite prepared via the seed mediated approach. Figures (b and d) show an overlay of the 

corresponding O 1s and S 2p spectra of the seed material (in red). 

 

Comparing the high resolution Au 4f spectra of seed 5 to that of its composite showed slight 

changes (Figure 8.33).  Notably a decrease in Au
3+

, from 44 % in the seed to 28 % in the 

composite, suggesting that not only was the additional Au
3+

 reduced by NH2OH during the 

seed mediated process, but also any Au
3+

 present in the seeds.  There was also a substantial 

increase in Au
0
, from 8.1 % in the seeds to 21.8 % in the composite.  In addition to being due 

to an increased amount of Au
0
, this increase is likely reflective of the larger average size of 

the gold nanoparticles in the composites, as bigger particles have smaller surface areas, thus 

exhibiting a greater proportion of Au
0
 than Au-S (owing to gold atoms on the surface of the 

particles binding to S groups in wool). 

 

a) 
b) 
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Figure 8.33:a) High resolution Au 4f XPS spectra of a gold nanoparticle-merino wool composite prepared 

via the seed mediated approach. b) overlay of the corresponding spectra of the seed material (red). 

Table 8.5: XPS assignments for merino wool, seed 5, and a gold nanoparticle-merino wool composite 

(prepared from seed 5, a gold concentration of 4.2 x 10
-4

 M and a [Au
3+

]:[NH2OH] concentration ratio of 

1:16). 

     Composite Materials 

  Merino Wool Seed Composite 

  Binding Energy (eV ± 0.2 eV) 

C 1s C-C, C-H 285.00 285.00 285.00 

 C-O, C-N, C-S 286.20 286.13 286.20 

 C=O 288.30 288.30 288.30 

N 1s N-H, =N- 400.43 400.23 400.08 

 -N-O- 401.90 401.67 401.08 

 Nox
 
(NO

2-
) — — 403.00 

 N-Au — — 398.4 

O 1s Average O 
environment 

532.14 532.14 531.96 

 -OH 533.5 533.34 533.17 

S 2p Average S 
environment S3/2 

164.02 163.99 164.00 

 Average S 
environment S3/2 

165.20 165.17 165.19 

 SO3
-
3/2 168.44 168.21 168.18 

 SO3
-
1/2 169.62 169.39 169.36 

 S-Au3/2 — 161.52 161.05 

 S-Au1/2 — 162.70 162.17 
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   Composite Materials 

  Merino Wool Seed Composite 

  Binding Energy (eV ± 0.2 eV) 

Au 4f Au
0
7/2 — 84.00 84.19 

 Au-S7/2 — 84.86 85.07 

 Au
3+

7/2 — 85.49 85.8 

 Au
0
5/2 — 87.60 87.79 

 Au-S5/2 — 88.55 88.67 

 Au
3+

5/2 — 89.29 89.40 

 

Cross sectional SEM and EDS analysis suggested that the reduction of Au
3+

 to Au
0
 took 

place largely on the nanoparticles bound to the surface of merino wool fibres, rather than on 

those in the centre.  Figure 8.34 (left) is typical of a cross sectional SEM micrograph of 

composites prepared via the seed mediated approach, whilst Figure 8.34 (right) offers the 

corresponding EDS map, where high concentrations of gold are shown in bright white.  The 

nanoparticle agglomerates are clearly evident on the surface of the fibre, however they are 

absent in the centre.  This is confirmed in the line profile of the EDS map (Figure 8.35), 

which provides information about elemental distribution within a specific area, as it shows a 

much greater concentration of gold on the outer edges of the fibre compared to the centre. 

 

  

Figure 8.34: Left: Cross sectional SEM micrograph of a gold nanoparticle-merino wool composite 

prepared via the seed mediated approach, utilising seed 5, a gold concentration of 4.2 x 10
-4

 M and a 

1:128 ratio of [Au
3+

]:[NH2OH] and right: the corresponding EDS map. 

10 µm 
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Figure 8.35: Left: Gold EDS map of a gold nanoparticle-merino wool composite prepared via the seed 

mediated approach, and right: the corresponding line profile showing higher concentrations of gold on 

the surface of the fibre than in the centre. 

 

Additional nanoparticle formation solely on the particles residing on the fibre surface 

complements experimental data that examined the rate of the reaction.  The growth of Au
0
 

nanoparticles by Au
3+

/NH2OH mixtures was followed by UV/Vis spectroscopy, and also 

visually through colour development.  In order to track the reduction rate, seed 5 was 

dispersed in a gold solution and various amounts of NH2OH were added dropwise with 

stirring (so that the final gold concentration was 2.50 x 10
-4

 M) to give a [Au
3+

]:[NH2OH] 

ratio of 1:1, 1:8 or 1:16.  The reaction was then left to proceed for 2 minutes to 5 hours, after 

which the reaction was stopped by removing and washing the wool.  Figure 8.36 offers a 

picture of the resultant composites following reaction for 2 minutes to 5 hours.  Visually it 

appears that with a [Au
3+

]:[NH2OH] ratio of 1:1 the reaction was largely complete after an 

hour, and this time was shorter when a ratio of 1:8 or 1:16 was employed, as in these systems 

the final grey colour appeared to have developed after approximately 30 or 15 minutes 

respectively.  This colour development was accompanied by an increase in intensity of the 

gold plasmon band centred at approximately 550 nm, which appeared to reach a maximum, 

and then vary slightly in intensity after 60, 30 or 15 minutes in the systems employing a 

[Au
3+

]:[NH2OH] ratio of 1:1, 1:8 or 1:16 respectively (Figure 8.37 to Figure 8.39).  The fast 

reaction time observed in these systems would account for additional nanoparticle growth 

occurring predominantly on the surface or outer edge of the merino wool fibres, as in this 

time it is likely that the gold would be absorbed onto the wool, but have insufficient time to 

diffuse through to the centre prior to being reduced. 
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Figure 8.36: Gold nanoparticle-merino wool composites prepared from seed 5, and a [Au

3+
]:[NH2OH] 

ratio of 1:1 (top), 1:8 (middle) or 1:16 (bottom), showing colour development with increased reaction 

time. 

 

 

Figure 8.37: Kubelka Munk transformed UV/Vis reflection spectra of composites prepared from seed 5, 

with a gold concentration of 2.50 10
-4

 M and a [Au
3+

]:[NH2OH] ratio of 1:1. 
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Figure 8.38: Kubelka Munk transformed UV/Vis reflection spectra of composites prepared from seed 5, 

with a gold concentration of 2.50 10
-4

 M and a [Au
3+

]:[NH2OH] ratio of 1:8. 

 

  

Figure 8.39: Kubelka Munk transformed UV/Vis reflection spectra of composites prepared from seed 5, 

with a gold concentration of 2.50 x 10
-4

 M and a [Au
3+

]:[NH2OH] ratio of 1:16. 
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8.1.3.5 Colourfastness to Washing 

 

The colourfastness of the gold nanoparticle-merino wool composites prepared via the seed 

mediated approach were analysed through simulated washability tests.  The methodology is 

outlined in section 2.3.14.  Figure 8.40 shows a picture of a composite material prepared 

from seed 5, a gold concentration of 4.2 x 10
-4

 M and a [Au
3+

]:[NH2OH] ratio of 1:64.  This 

material was chosen to be representative of all composites, as it was made from a seed with a 

medium amount of gold, employing an intermediate gold concentration and ratio of 

[Au
3+

]:[NH2OH]. 

 

 
Figure 8.40: Gold nanoparticle-merino wool composites prepared from seed 5, a gold concentration of 4.2 

x 10
-4

 M and a [Au
3+

]:[NH2OH] ratio of 1:64 following simulated washability testing. 

 

Visually, this composite appears to be colourfast to washing, exhibiting no apparent change 

in colour even after 24 hours simulated washing at 50 ° C.  This apparent colourfastness was 

reflected in the Kubelka Munk transformed UV/Vis reflection spectrum of the washed 

samples (Figure 3.41), as there was negligible change in position or full width at half 

maximum of the plasmon band of the gold bound to the composites.  There was a slight 

variation in intensity of this peak, however this variation is minimal and is likely due to 

experimental uncertainties (amount of sample etc) rather than a change in colour.  

Additionally the CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of the 

composite did not change to a great extent following washing (Table 8.6).  It is likely that 

these materials are so colourfast with respect to washing as the gold is bound to the merino 

wool fibres via a strong Au-S bond (suggested by XPS analysis (section 8.1.3.4)). 
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Figure 3.41: Kubelka Munk transformed UV/Vis reflection spectra of a gold nanoparticle-merino wool 

composite following simulated washability testing. 

Table 8.6: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of a gold nanoparticle-merino 

wool composite following simulated washability testing. 

Washing 
Temperature 

Washing time 
(hours) 

L* a* b* 457 nm 
brightness 

580 nm 
brightness 

— 0 37.2 2.4 -2.0 10 9 

RT 0.5 39.6 2.2 -1.2 12 11 

 1 42.2 3.0 -1.7 13 13 

 2 37.8 2.7 1.2 11 10 

 5 41.2 3.0 -1.8 13 12 

 24 36.1 2.9 -1.6 10 9 

50 ° C 0.5 40.6 2.3 -0.6 12 11 

 1 39.8 3.0 -1.0 12 11 

 2 39.1 3.5 -1.3 11 11 

 24 39.3 3.3 -1.4 11 11 

 

8.1.3.6 Leaching 

 

Quantitative analysis of the washing solutions obtained during simulated washability testing 

(section 8.1.3.5) was undertaken to establish the amount of gold leached from the composites 

during washing.  Table 8.7 lists the amount of gold leached from the composite material and 
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its corresponding seed.  In both cases this amount is very low, up to a maximum of 1.1 % 

total gold loading from the composite and 0.36 % from the seed.  (The total gold loading was 

based on the amount of gold used in the seed preparation and in the preparation of the 

composite materials).  In general slightly more gold is leached from the composite relative to 

the seed, which is likely due to the fact that in the composite materials the majority of gold is 

present on the fibre surface, whereas in the composites it is also present just under the surface 

of the fibre cuticles (see section 5.1 and 5.7), resulting in more difficult dislodgement.  

However the amount of gold leached from the composites is minimal, and does not adversely 

affect the colour of the materials, making them potentially viable products for consumer 

applications. 

 

Table 8.7: Gold leached from a gold nanoparticle-merino wool composite (prepared via the seed 

mediated approach) and the corresponding seed source following simulated washability testing. 

Washing 
Temperature 

Washing 
Time (hours) 

Gold Leached (ppm) 

  Seed Composite 

  ppm ± 0.5 
ppm 

% Total Gold 
Loading 

pppm ± 
0.5 ppm 

% Total 
Gold 

Loading 

RT 0.5 0.4 0.2 0.8 0.3 

 1 0.3 0.2 0.9 0.4 

 2 0.3 0.2 0.8 0.3 

 5 0.4 0.3 0.6 0.3 

 24 0.6 0.3 1.0 0.4 

50 ° C 0.5 0.4 0.3 1.7 0.7 

 1 0.6 0.4 2.5 1.1 

 2 0.5 0.3 2.7 1.1 

 24 0.5 0.3 1.7 0.7 
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8.1.3.7 Chlorine Hercosett Treatment 

 

In order to ascertain the applicability of the gold nanoparticle-merino wool composites 

prepared via the seed mediated approach in consumer applications, shrink resistant chlorine 

Hercosett treatments were applied.  As with the colourfastness to washing and leaching tests, 

this treatment was undertaken on a composite prepared from seed 5, with a gold 

concentration of 4.2 x 10
-4

 M and a [Au
3+

]:[NH2OH] ratio of 1:64.  Figure 8.42 shows this 

composite material both before and after chlorine Hercosett treatment.  The treatment clearly 

had a detrimental effect on the colour of the composite, causing areas to turn a dirty 

gold/brown colour.  As with all other gold nanoparticle-merino wool composites (sections 

4.1.2.7 and 5.10), this colour change is likely due to the oxidation of the Au
0
 nanoparticles 

bound to the fibres to Au
3+

 (scheme 4.4), which subsequently combine with Cl
-
 ions 

generated in the process, forming yellow/brown AuCl4
-
 (scheme 4.5). 

 

 

Figure 8.42: Right: a gold nanoparticle-merino wool composite prepared via the seed mediated approach. 

Left: the same composite material following chlorine Hercosett treatment. 
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8.2 Alternative Substrates 

 

This technology was extended to alternative substrates, notably crossbred wool and silk, with 

relatively successful results.  As with the merino wool composites, the colour of the resultant 

materials was dependent upon the seed, gold concentration and ratio of [Au
3+

]:[NH2OH] 

employed, with those incorporating crossbred wool ranging in colour from light grey/pink to 

grey and dark purple/black, and silk from light grey to dark purple/black.  The production of 

these composites was based on the most successful synthesis methods of the merino wool 

materials, notably gold concentrations of 4.2 x 10
-4

 M or 6.77 x 10
-4 

M were employed and 

the ratio of [Au
3+

]:[NH2OH] varied from 1:16 to 1:128. 

 

8.2.1 Crossbred Wool 

 

As with merino wool and silk, the seed mediated approach was successfully employed in the 

production of grey coloured gold nanoparticle-crossbred wool composites. 

 

8.2.1.1 Seeds 

 

Crossbred wool is not dissimilar to merino wool in its chemical composition, with the main 

differences being the average fibre diameter and typical processing routes.  As a result, in 

much the same way as merino wool, the redox nature of crossbred wools was exploited in the 

reduction of Au
3+

 to nanoparticulate Au
0
 producing seeds.  This involved soaking crossbred 

wool in gold solutions at room temperature, with gentle agitation, followed by ageing at 50 º 

C for various times (Table8.8). 

 

 

 

 



 

 

430 

Table 8.8: Gold nanoparticle-crossbred wool seed source preparation. 

Seed Gold Solution 
(Vol 4 wt % Au

3+
 added) 

Soak Time 
(RT, hours) 

Heat Time 
(50 °C hours) 

Colour 
(Figure 8.43) 

1 10 μL → 10 ml 24 24 Very faint pink 

2 
 

 168 Faint pink 

3 20 μL → 10 ml  24 Pink 

4   268 Deep pink 

5 40 μL → 10 ml  24 Purple 

6   268 Deep purple 

 

 

Figure 8.43: Seeds used in the production of gold nanoparticle-crossbred wool composites. 

 

The characterization of these seeds is provided in detail in section 5.2, as with merino wool, 

increasing the concentration of gold employed in the production of these materials resulted in 

a greater amount of gold nanoparticles incorporated into the fibres.  These nanoparticles were 

predominantly spheres, (approximately 20 nm in diameter), however they also formed as 

hexagons (approximately 50 nm in diameter), triangles (approximately 70-100 nm in 

diameter) and truncated triangles (approximately 50 – 100 nm in diameter).  Increasing the 

ageing time also saw a slight increase in amount of gold nanoparticles in the fibres (Figure 

8.44), however unlike in merino wool, these nanoparticles were formed predominantly on the 

fibre surfaces rather than in the centre (Figure 8.45) (see section 5.2). 
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Figure 8.44: Increasing magnification SEM micrographs of seeds employed in the production of gold 

nanoparticle-crossbred wool composites. Top to bottom, seed 1, seed 3, seed 4 and seed 6. 

  

Figure 8.45: Cross sectional SEM micrographs of seed 4 (left) and seed 6 (right). 

 

10 µm 

1 µm 100 nm 

100 nm 1 µm 

10 µm 

10 µm 1 µm 100 nm 

1 µm 100 nm 10 µm 

10 µm 10 µm 
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8.2.1.2 Physical Characterisation and Morphology 

 

The resultant gold nanoparticle-crossbred wool composites ranged in colour from light 

pink/grey to deep purple/grey (Figure 8.46).  As with the systems incorporating merino wool 

and silk, these colours were dependent upon the seed, gold concentration and ratio of 

[Au
3+

]:[NH2OH] employed. 

 

Due to the time constraints imparted on this research, a comprehensive morphological study 

of the produced composites could not be carried out.  However SEM analysis of a composite 

prepared from seed 2, a gold concentration of 4.2 x 10
-4

 M and a [Au
3+

]:[NH2OH] 

concentration ratio of 1:128 was undertaken, and similar trends to those seen in the merino 

wool and silk systems were observed.  The results are offered in Figure 8.47 below. 

 

The presence of both large, micron scale gold nanoparticles and agglomerated nanoparticles 

are evident on the surface of the crossbred wool fibres (circled).  There are also smaller, 

approximately 20 nm diameter nanoparticles present that do not appear to have increased in 

size during the reduction of additional Au
3+

 to Au
0
 by NH2OH.  These nanoparticles may 

have remained unchanged following the production of the composites as the nanoparticles in 

the seeds are located primarily on the surface of the wool fibres rather than also in the centre, 

as is the case with the merino wool seeds.  Therefore during the production of the 

composites, there may have been excess sites at which the surface catalysed reduction of 

Au
3+

 could occur, resulting in some particles not increasing in size. 
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Figure 8.46: Gold nanoparticle-crossbred wool composites prepared via the seed mediated approach. 

  
Figure 8.47: Increasing micrographs of a gold nanoparticle-crossbred wool composite prepared from 

seed 2, a gold concentration of 4.2 x 10
-4

 M and a [Au
3+

]:[NH2OH] concentration ratio of 1:128. 

 

Additionally, it is likely that the composites prepared from seed 1 or 4 were slightly greyer in 

colour than those prepared from seed 3 or 6, (which were more purple/black), was related to 

the ratio of Au
3+

:Au
0
 present in the seeds.  As compared to seed 3 or 6, less Au

3+
 had been 

reduced to Au
0
 in seeds 1 or 4.  Therefore  there were fewer gold surfaces at which the 

reduction of additional Au
3+

 by NH2OH could occur, and relatively more Au
3+

 to reduce, 

10 µm 10 µm 
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resulting in materials with an increased amount of agglomerates present in the composite 

relative to isolated particles. 

 

Similarly, the presence of these smaller nanoparticles would account for the fact that the 

majority of gold nanoparticle-crossbred composites exhibited a slight purple or pink tinge, 

rather than appearing purely grey in colour, as was the case with a selection of the merino 

wool composite materials (Figure 8.11).   

 

8.2.1.3 Colour 

 

As with the merino wool and silk materials prepared via the seed mediated approach, the 

factors that exerted the greatest influence on the colour of the crossbred composites were the 

seed and the gold concentration.  In general, employing seeds containing greater 

concentrations of unreduced gold (seeds 1 or 4), saw the production of greyer coloured 

materials, whilst those prepared from seeds in which there was a higher ratio of Au
0
:Au

3+
 

(seeds 2-3, 5-6) appeared more purple/black in colour.  It was suggested above that the 

colour of the composites was related to the ratio of large, agglomerated gold nanoparticles 

and smaller isolated particles.  With higher ratios (more agglomerated particles relative to 

isolated particles) producing greyer materials, and lower, purple/black materials.  This was 

reflected in the Kubelka Munk transformed UV/Vis reflection spectrum of composites 

prepared from seed 1 and seed 3, under identical reaction conditions, as the plasmon peak of 

those prepared from seed 1 exhibited a broader full width at half maximum than those 

materials prepared from seed 3 (Figure 8.48), suggesting more agglomeration in materials 

prepared from seed 1 compared to seed 3. 

 

Similar to the merino wool and silk materials, depending on the seed source employed, 

increasing the gold concentration, and also the ratio of [Au
3+

]:[NH2OH] resulted in the 

production of greyer or darker purple/black coloured materials.  Again this is mirrored in the 

Kubelka Munk transformed UV/Vis reflection spectrum of the gold nanoparticle-crossbred 

wool composites, with higher gold concentrations inducing either an increase in the full 
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width at half maximum, or an increase in intensity, of the plasmon peak centred at 

approximately 550 nm for systems incorporating seed 1 and 4 (Figure 8.49) or 2-3 and 5-6 

respectively (Figure 8.50).  The peaks centred at approximately 508 and 700 nm, which are 

representative of the transverse and longitudinal plasmon bands of anisotropic gold 

nanoparticles did not change position or full width at half maximum, suggesting they did not 

increase in size to a great extent during the production of the composites. 

 

Figure 8.48: Kubelka Munk transformed UV/Vis reflection spectra of composites prepared from seed 1 

and seed 3, with a gold concentration of 6.77 x 10
-4

 M and a [Au
3+

]:[NH2OH] concentration ratio of 1:128. 

 

Figure 8.49: Kubelka Munk transformed UV/Vis reflection spectra of composites prepared from seed 1, 

various gold concentrations and ratios of [Au
3+

]:[NH2OH]. 
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Figure 8.50: Kubelka Munk transformed UV/Vis reflection spectra of composites prepared from seed 4, 

various gold concentrations and ratios of [Au
3+

]:[NH2OH]. 

 

8.2.1.4 Bonding of Gold Nanoparticles to Crossbred Wool Fibres 

 

As the gold nanoparticle-crossbred wool composites are not dissimilar to the corresponding 

merino wool materials, it is likely that bonding between the gold nanoparticles in the 

composites and the crossbred wool fibres occur in much the same way as the bonding 

between the gold and crossbred wool in the seeds, as was the case with the merino wool 

composites.  SEM analysis suggested this, as the formation of larger gold particles and 

agglomerates occurred in areas where nanoparticles predominantly resided in the seeds, 

notably along cuticle edges.  And as the reduction of Au
3+

 to Au
0
 by NH2OH is greatly 

accelerated by gold surfaces, it is likely that similar to the merino wool systems, the 

reduction of additional Au
3+

 occurred directly on the surface of the nanoparticles in the 

seeds, not altering the bonding between the crossbred wool fibres and gold nanoparticles. 
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8.2.1.5 Colourfastness to Washing 

 

As with the merino wool and silk composites, the colourfastness to washing of the gold 

nanoparticle-crossbred wool materials were tested according to the synthesis outlined in 

section 2.3.14.  A composite prepared from seed 1, a gold concentration of 4.2 x 10
-4

 M and a 

[Au
3+

]:[NH2OH] ratio of 1:16 was chosen to be representative of gold nanoparticle-crossbred 

composites prepared via the seed mediated approach 

 

 

Figure 8.51: Gold nanoparticle-crossbred wool composites prepared from seed 1, a gold concentration of 

4.2 x 10
-4

 M and a [Au
3+

]:[NH2OH] ratio of 1:16 following simulated washability testing. 

 

Visually these materials appeared to be colourfast with respect to washing, exhibiting no 

apparent colour change even following 24 hours washing at 50 °C (Figure 8.51).  This colour 

stability is illustrated in the Kubelka Munk transformed UV/Vis reflection spectrum of the 

composite following washing, as the plasmon band of the gold attached to the composites, 

centred at approximately 550 nm, does not change position or intensity significantly (Figure 

8.52).  There is however a slight decrease in full width at half maximum of this peak 

following two hours washing at RT.  This did not decrease any further following extended 

washing.  This decrease in peak width was more apparent at 50 °C, however as with washing 

at RT, prolonged washing did not accentuate this change.  This suggests the dislodgment of 

weakly bound surface atoms during washing, and a slight change in colour from grey to grey 

with a slightly redder hue, although this is not discernable to the naked eye. 
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Figure 8.52: Kubelka Munk transformed UV/Vis reflection spectra of a gold nanoparticle-crossbred 

composite following washing at RT or 50 ° C. 

 

8.2.1.6 Leaching 

 

Quantitative analysis of the washing solutions (section 8.2.1.5) suggested the leaching of 

very low amounts of gold, up to a maximum of 4.8 ppm ± 0.5 ppm, or 2 % of the total gold 

loading (comparable to that of the seed source) (Table 8.9) confirming the very minor 

narrowing of the plasmon band of gold in the washed composites, and their visual 

colourfastness to washing. 
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Table 8.9: Gold leached from a gold nanoparticle-crossbred composite (prepared via the seed mediated 

approach) and the corresponding seed source following simulated washability testing. 

Washing 
Temperature 

Washing 
Time (hours) 

Gold Leached (ppm) ± 0.5 ppm 

  Seed Composite 

  ppm ± 0.5 
ppm 

% Total Gold 
Loading 

ppm ± 0.5 
ppm 

% Total 
Gold 

Loading 

RT 0.5 1.3 0.8 1.2 0.5 

 1 1.8 1.1 1.1 0.5 

 2 1.7 1.0 1.4 0.6 

 5 1.4 0.9 1.9 0.8 

 24 2.1 1.3 1.9 0.4 

50 ° C 0.5 2.5 1.6 2.2 0.9 

 1 2.2 1.4 4.8 2.0 

 2 2.2 1.4 3.7 2.0 

 5 2.6 1.6 3.0 1.2 

 24 2.2 1.4 3.5 1.4 

 

 

8.3.2 Silk 

 

8.3.2.1 Seeds 

 

As with merino wool, the redox nature of silk (described in detail in section 7.6) was 

exploited in the production of seed sources.  This involved dispersing silk in a 160 ppm 

(8.125 x 10
-4

 M) gold solution, at various pH‘s, followed by heating at 50 °C for extended 

periods of time.  The seed production methods are outlined in Table 8.10 below.  
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Table 8.10: Gold nanoparticle-silk seed source preparation. (Note a gold concentration of 160 ppm (8.125 

x 10
-4

 M) was employed in the synthesis). 

Seed pH Soak Time 

(RT, hours) 

Age Time 

(50 ° C, hours) 

Colour 

1 3 1 ─ Very pale purple 

2  5 ─ Pale purple 

3  6 24 Dark purple 

4  ─ 1 Pale purple 

5  ─ 5 Purple 

6 9-10 1 ─ White 

7  5 ─ White 

8  6 24 Bright purple 

9  ─ 1 Pale pink 

 

When prepared at a pH of 3, the gold nanoparticles formed predominantly on the surface of 

the silk fibres, rather than in the centre (Figure 8.53 top), with increasing soaking and ageing 

times producing materials with a greater proportion of gold nanoparticles (approximately 15-

20 nm in diameter) on the silk surface (Figure 8.54).  Increasing the pH, from ~ 3 to 9-10 

(which falls to a pH of approximately 7.8 due to the buffer effect of the amino acids in the 

silk fibres) results in a slower reduction of Au
3+

 to Au
0
 by the silk, and thus Au

3+
 is capable 

of diffusing through to the centre of the fibre prior to being reduced to Au
0
, resulting in the 

formation of slightly smaller spherical nanoparticles both on the surface of the fibre 

(approximately 10-15 nm in diameter) (Figure 8.53 bottom and Figure 8.56 middle), and also 

in the centre (approximately 5-10 nm in diameter) (see section 7.1) (Figure 8.55 and Figure 

8.56 right). 
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Figure 8.53: Increasing magnification (left to right) cross sectional SEM micrographs of silk seeds 

prepared with one hour soaking at RT followed by 24 hours at 50 ° C. Top: the gold solution had a pH of 

~3, whilst the bottom had a pH of 9-10. 

  

Figure 8.54: a) SEM micrographs of silk seeds prepared at RT, with a pH 3 gold solution, 10 minutes 

(left) and 1 hour reaction time (right ). Shows effect of increasing soaking time. 

1 µm 

100 nm 1 µm 

1 µm 100 nm 

1 µm 
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Figure 8.55: SEM micrographs of gold nanoparticle-silk composites prepared with a 6 hour soaking time 

and 24 hour heating time. a) Soaking in a gold solution of pH 3, b) and c) pH 9-10. Shows effect of 

increased pH. 

   

Figure 8.56: TEM micrographs of a silk seed prepared with a 6 hour soaking time in a pH 9-10 gold 

solution and 24 hours heating at 50 °C. Left: Micrograph showing fibre surface and centre. Middle: 

Micrograph showing nanoparticles on the fibre surface and right: micrograph showing nanoparticles in 

the fibre centre. 

 

8.3.2.2 Physical Characterisation and Morphology 

 

The resultant gold nanoparticle-silk composites ranged in colour from very pale grey to 

purple/black (Figure 8.57 and Figure 8.58).  As with the corresponding composites 

incorporating merino wool, seeds in which nanoparticles had formed and which also 

possessed a greater proportion of unreduced Au
3+

, notably seeds 9 and 1, were the most 

successful in the production of grey coloured composites.  (The reaction time employed in 

the preparation of seeds 6 and 7 was insufficient to produce a significant number of gold 

nanoparticles), whilst those prepared from seeds 2, 3, 8, 4 and 5 appeared more purple than 

grey, regardless of the gold concentration or [Au
3+

]:[NH2OH] ratio. 

 

1 µm 1 µm 1 µm 
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Figure 8.57: Gold nanoparticle-silk composites prepared from seed 3 (top) and seed 8 (bottom), 

employing a gold concentration of 4.2 x 10
-4

 M or 6.77 x 10
-4

 M, and a [Au
3+

]:[NH2OH] ratio of 1:16–

1:128. 

 
Figure 8.58: Gold nanoparticle-silk composites prepared from seeds 1, 2, 4, 5, 6, 7 and 9 (top to bottom), 

employing a gold concentration of 4.2 x 10
-4

 M or 6.77 x 10
-4

 M, and a [Au
3+

]:[NH2OH] ratio of between 

1:16 – 1:128. 
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SEM revealed the gold in the silk composites to be present largely as 50 nm nanoparticles, 

agglomerated together.  Although they are not apparent in the obtained micrographs, it is 

likely that anisotropic gold nanoparticles, such as triangular nanoplates are also present on 

these materials, as they were present in the seed sources, and UV/Vis spectroscopy of the 

composites suggests their presence (section 8.3.2.3).  It can be seen from Figure 8.59 that 

similarly to the corresponding gold nanoparticle-merino wool composites, increasing both 

the gold concentration and the ratio of [Au
3+

]:[NH2OH] resulted in the formation of a greater 

amount of similarly sized (approximately 50 nm in diameter) nanoparticles, agglomerated 

together.  Also similarly to the merino wool composites, the reduction of additional Au
3+

 to 

Au
0
 appeared to occur predominantly on the surface of the silk fibres (Figure 8.60). 

 

   

   

Figure 8.59: Increasing magnification SEM micrographs of gold nanoparticle-silk composites prepared 

via the seed mediated approach. Top: incorporating seed 1, a gold concentration of 4.2 x 10
-4

 M and a 

[Au
3+

]:[NH2OH] ratio of 1:16. Bottom: incorporating seed 1, a gold concentration of 6.8 x 10
-4

 M and a 

[Au
3+

]:[NH2OH] ratio of 1:128. 

 

The morphology of composites prepared from alternative seeds could not be characterized 

due to time constraints.  However it is likely that as with the merino wool materials, the more 

purple/black coloured composites (prepared from seeds 2-5) possessed both large 

agglomerates and smaller isolated nanoparticles upon which additional Au
3+

 had not been 

reduced further to Au
0
. 

100 nm 1 µm 1 µm 

1 µm 1 µm 100 nm 
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Figure 8.60: Cross sectional SEM micrograph of a gold nanoparticle-silk composite prepared via the seed 

mediated approach. 

 

8.3.2.3 Colour 

 

As with the composites incorporating merino wool, the variables that had the largest 

influence on colour development in the silk materials were the seed source and gold 

concentration.  All seeds employed in the production of the silk composites were made with 

160 ppm Au
3+

, with the only difference in the seed synthesis being the pH of the reaction 

mixture and the reaction time.  As mentioned, during the production of the seeds, increasing 

the reaction time resulted in the production of a greater number of nanoparticles deposited on 

the silk surface (approximately 20-25 nm in diameter), whilst increasing the pH slowed the 

reduction rate and resulted in the formation of a decreased amount of much smaller 

nanoparticles both on the surface and within the fibres (approximately 5-10 and 10-15 nm in 

diameter respectively). 

 

Composites prepared from seeds with a large amount of both unreduced Au
3+

 and 

nanoparticulate Au
0
, notably seeds 1 and 9 were the most successful in the production of grey 

coloured composites (Figure 8.58).  Seeds 6 and 7 also possessed a large amount of Au
3+

, 

however NH2OH was unable to reduce a substantial amount of Au
3+

 in these seeds as they 

had insufficient nanoparticulate Au
0
 to catalyse the reduction.  Utilising seeds in which more 

Au
3+

 had been reduced to Au
0
 (seeds 2, 3, 4, 5 and 8) resulted in the production of darker 

1 µm 
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purple/black coloured composites.  Considering this, there must exist a relationship between 

the colour of the resultant composites and the ratio of Au
3+

:Au
0
 present in the seeds. 

 

The influence of the seeds on the colour of the resultant composites is mirrored in the 

Kubelka Munk transformed UV/Vis reflection spectra of the materials (Figure 8.61).  When 

employing a Au
3+

 concentration of 6.77 x 10
-4

 M, and a [Au
3+

]:[NH2OH] ratio of 1:128 the 

resultant composites prepared from seed 6, in which there was a large proportion of Au
3+

, but 

no Au
0
, were white/colourless and as such did not exhibit any plasmon bands.  Employing 

seed 9, in which there was more Au
3+

 but still some Au
0
 saw the formation of grey coloured 

composites, and a very broad peak in the UV/Vis spectrum centred at approximately 565 nm, 

and two smaller peaks at approximately 508 and 700 nm.  Utilising seed 4 in which the 

majority of Au
3+

 had been reduced to Au
0
 produced purple/black coloured composites, which 

exhibited a slightly narrower plasmon peak centred at approximately 550 nm, with the same 

small peaks at approximately 508 and 700 nm.  The peaks centred at 550 nm are indicative of 

spherical or five-fold twinned gold nanoparticles, whilst those at 508 and 700 nm represent 

the transverse and longitudinal plasmon bands respectively of anisotropic gold nanoparticles.  

The decrease in full width at half maximum of the main peak at 550 nm, and its slight 

increase in intensity seen when employing seed 4 reflects the increased spectral purity of 

these composites. 

 

Figure 8.61: Kubelka Munk transformed UV/Vis reflection spectra of composites prepared from various 

seeds, with a gold concentration of 4.2 x 10
-4

 M and a a [Au
3+

]:[NH2OH] ratio of 1:128. 
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In addition to the seed source, altering the amount of gold employed in the production of the 

composites also influenced the colour of the resultant materials, with increased gold 

concentrations producing deeper grey or purple/black coloured composites.  SEM analysis 

suggested this colour change was due to a concentration effect, with more gold producing 

composites with an increased amount of nanoparticles.  Again this colour change is 

illustrated in the Kubelka Munk transformed UV/Vis reflection spectra of the materials with 

increasing gold concentrations inducing an increase in intensity, blue shift and broadening of 

the plasmon bands centred at approximately 565 and 560 nm in the grey and purple/black 

coloured materials respectively (Figure 8.62 and Figure 8.63 respectively).  The peaks 

representing anisotropic gold nanoparticles (centred at approximately 508 and 700 nm 

remained in relatively constant positions, suggesting they did not increase in size to any 

extent). 

 

 

Figure 8.62: Kubelka Munk transformed UV/Vis reflection spectra of composites prepared from seed 9, 

with various gold concentrations and ratios of [Au
3+

]:[NH2OH]. 
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Figure 8.63: Kubelka Munk transformed UV/Vis reflection spectra of composites prepared from seed 5, 

with various gold concentrations and ratios of [Au
3+

]:[NH2OH]. 

 

The CIE L*, a*, b*, 457 nm brightness values and 580 nm brightness values of all gold 

nanoparticle-silk composites produced are provided in Appendix XI and reflect the materials 

colour change resulting from the utilisation of alternate seeds and gold concentrations. 

 

8.3.2.4 Confirmation of Gold 

 

As with the merino wool composites prepared via the seed mediated approach, the presence 

of gold in the silk materials was established with EDS.  EDS confirmed the bright white dots 

evident on the surface of the composites evident when viewed under backscatter conditions, 

to be gold.  Figure 8.64 offers the SEM and corresponding Au EDS map of a composite 

prepared from seed 1, a gold concentration of 4.2 x 10
-4

 M, and a [Au
3+

]:[NH2OH] 

concentration ratio of 1:16.  High concentrations of gold are depicted in red and white areas.  

Additionally, Figure 8.65 offers a spectral snap shot of the area under analysis in Figure 8.64 

and substantiates the existence of gold due to the presence of the gold peak. 
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Figure 8.64: Left: Cross sectional SEM micrograph of a gold nanoparticle-silk composite prepared via 

the seed mediated approach and right: the corresponding EDS map. 

 

Figure 8.65: EDS spectrum of the gold nanoparticle-silk composite shown in Figure 8.64. 

 

8.3.2.5 Bonding of Gold Nanoparticles to Silk Fibres 

 

It is likely that the production of gold nanoparticle-silk composites occurred via a similar 

reaction mechanism to that of the corresponding merino wool materials, notably via the 

NH2OH gold surface catalysed reduction of Au
3+

 to Au
0
, resulting in the growth and 

agglomeration of gold nanoparticles present on the surface of the silk fibres (seeds).  As such 
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the bonding between the nanoparticles in the composites should be comparable to that of the 

bonding between the gold nanoparticles and silk in the seeds, notably through N-Au and S-

Au bonds (see section 7.5).  XPS studies will be undertaken in the future to verify/confirm 

this mode of bonding. 

 

8.3.2.6 Colourfastness to Washing 

 

As with the merino wool composites, the colourfastness to washing of the gold nanoparticle-

silk composites were tested according to the synthesis outlined in section 2.3.14.  A 

composite prepared from seed 1, a gold concentration of 4.2 x 10
-4

 M and a [Au
3+

]:[NH2OH] 

ratio of 1:16 was chosen to be representative of gold nanoparticle-silk composites prepared 

via the seed mediated approach. 

 

 

Figure 8.66: Gold nanoparticle-silk composites prepared from seed 1, a gold concentration of 4.2 x 10
-4

 M 

and a [Au
3+

]:[NH2OH] ratio of 1:16 following simulated washability testing. 

 

Visually these materials appear to be fairly colourfast with respect to washing, however there 

is a slight change from grey to purple with increased washing time and temperature (Figure 

8.66).  This is reflected in the Kubelka Munk transformed UV/Vis reflection spectrum of the 

washed samples, with continued washing resulting in a decrease in full width at half 

maximum of the gold plasmon peak (centred at approximately 545 nm) of the composites 

following washing (Figure 8.67).  This decrease is more apparent when washing at 50 °C 

compared to RT.  As the full width at half maximum of the plasmon peak is related to the 
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extent of agglomeration, and also the range of particle sizes and shapes present, this observed 

decrease is likely reflective of a dislodgement of loosely bound agglomerates. 

 

 

Figure 8.67: Kubelka Munk transformed UV/Vis reflection spectra of a gold nanoparticle-silk composite 

following simulated washability testing. 

 

These gold nanoparticle-silk composites do not appear to be as colourfast with respect to 

washing compared to the corresponding merino or crossbred wool materials (sections 8.1.3.5 

and 6.2.1.5 respectively).  This may be attributable to the relative colour stability of the seed 

sources.  The gold nanoparticles in the merino wool seeds are strongly bound to the fibres via 

a Au-S bond, and as such they, and the corresponding larger particles that grow around these 

are not easily dislodged.  However in the silk seeds the gold is bound via a combination of 

Au-N bonds and through sericin, which can potentially be removed from silk fibres by 

washing at elevated temperatures. 

 

8.3.2.7 Leaching 

 

Quantitative analysis of the washing solutions obtained during simulated washability testing 

(section 8.3.2.6) was undertaken to establish the amount of gold leached from the composites 
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during washing.  Table 8.11 lists the amount of gold leached from the composite material and 

its corresponding seed.  The maximum amount of gold leached from the composite materials 

was 5.0 % of the total gold loading, and that of the corresponding seed 4.2 %, with the 

difference likely to be due to the dislodgement of weakly bound agglomerates in the 

composite materials.  Compared to the merino and crossbred wool materials, the amount of 

gold leached from the silk materials is relatively large, approximately five times as much, 

and infers that the colour stability of the composites is directly related to the colour stability 

of the incorporated seeds, which is dependent upon the strength of the bond between the 

nanoparticles and fibres. 

 

Table 8.11: Gold leached from a gold nanoparticle-silk composite (prepared via the seed mediated 

approach) and the corresponding seed source following simulated washability testing. 

Washing 

Temperature 

Washing 

Time (hours) 

Gold Leached (ppm) ± 0.5 ppm 

Seed Composite 

  ppm ± 0.5 

ppm 

% Total Gold 

Loading 

ppm ± 

0.5 ppm 

% Total Gold 

Loading 

RT 0.5 4.8 3.0 9.3 3.9 

 1 5.2 3.3 12.1 5.0 

 2 4.6 2.9 5.3 2.2 

 5 6.1 3.8 8.6 3.6 

 24 4.7 2.9 7.4 3.1 

50 ° C 0.5 6.0 3.7 9.8 4.1 

 1 6.7 4.2 11.1 4.6 

 2 5.6 3.5 6.2 2.6 

 5 4.9 3.1 8.1 3.4 

 24 5.3 3.3 10.3 4.5 
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Although the amount of gold leached is not large, it does adversely affect the colour of the 

composites, and as such further research is required to limit this leaching and improve the 

colour stability to washing of these materials prior to their potential incorporation into 

consumer products. 

 

8.3 Conclusions 

 

The seed mediated approach was successful in producing dark coloured (dark purple, grey 

etc) gold nanoparticle-merino wool and silk composites with a minimal amount of gold.  

Gold nanoparticle-crossbred wool materials were also synthesized, however this approach 

was not as successful the majority of resultant materials exhibited a slight pink/purple tinge. 

 

The reduction of additional Au
3+

 by NH2OH occurred predominantly on the gold 

nanoparticles located at the fibre surface of the seeds, rather than on those in the centre.  

Greater concentrations of gold, (up to 6.77 x 10
-4

 M) and to a lesser extent higher ratios of 

[Au
3+

]:[NH2OH], resulted in the formation of larger nanoparticles and an increased amount 

of agglomerates at the fibre cuticles, which depending on the seed employed, produced 

darker grey or purple/black coloured composites.  However with a gold concentration of 1.02 

x 10
-3

 M or higher, new nucleation events occurred, imparting a slight pink/purple tinge to 

the resultant composites. 

 

The ratio of Au
3+

:Au
0
 present in the seeds exerted a major influence on the colour of the 

resultant materials, with composites prepared from seeds in which there was both Au
0
 and 

Au
3+

 present producing greyer coloured materials, whilst those in which there was 

predominantly only Au
0
 resulting in more purple/black coloured materials.  The purple/black 

colour of the composites appeared to be due to the presence of smaller nanoparticles that did 

not increase in size during the reduction of additional Au
3+

 by NH2OH.  In the merino wool 

system these smaller nanoparticles resided in the fibre centre, whilst in the silk and crossbred 

materials they were located predominantly on the surface of the fibres. 
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As the formation of larger gold nanoparticles and nanoparticle agglomerates appeared to 

occur solely on the surface of the gold nanoparticles bound to the seeds, the bonding between 

the gold nanoparticles and fibres in the composite materials was not dissimilar to that in the 

seeds.  In the merino wool and crossbred materials this bonding was via strong Au-S bonds, 

whilst in the silk materials the bonding occurred through Au-S and Au-N bonds and also 

through sericin, which can be dislodged with elevated temperature. 

 

The colourfastness of these materials to washing appeared to be directly related to the colour 

stability of the incorporated seeds, which is dependent upon the strength of the bond between 

the nanoparticles and fibres.  As such, the gold nanoparticle-merino and crossbred wool 

composites, in which the gold was bound via strong Au-S bonds, were very colour fast to 

washing, leaching up to a maximum of 1.1 and 2 % of the total gold loading respectively.  

However the gold nanoparticle-silk composites were not as colourfast, since the bonding 

between the nanoparticles and silk fibres in the seed sources was not very strong 

(predominantly through Au-N bonds rather than Au-S bonds), resulting in up to 5 % of the 

total gold loading being leached from the composites during washing, adversely affecting 

their colour. 

 

A shrink resistant chlorine Hercosett treatment was applied to a gold nanoparticle-merino 

wool composite in an attempt to ascertain the applicability of incorporating materials 

prepared via the seed mediated approach into consumer applications.  Unfortunately this 

treatment had a detrimental effect on the colour of this composite, due to the re oxidation of 

gold nanoparticles located at the fibre surface, and subsequent formation of AuCl4
-
.  As such, 

if these materials are to find application in fine knitwear (one target market) further work is 

required to make these materials capable of withstanding chlorine Hercosett treatments, as 

such shrink resistance surface treatments are common practice for materials destined for 

these end uses.  Such treatments are not applied to wool used in carpets, and such these 

materials have the potential be used without further treatment in carpet manufacture. 
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9. Summary 

 

Gold and silver nanoparticles have been successfully combined in a synergistic manner with 

particulate (kaolinite and halloysite clays) and fibrous (merino wool, crossbred wool and 

silk) substrates, producing novel multi-functional materials that have the potential to be 

incorporated into commercial products or act alone as high-value multi-functional entities. 

 

Specifically, silver nanoparticle-kaolinite and halloysite composite materials were produced 

through a layer-by-layer deposition approach, involving the ex-situ preparation of PMA 

capped silver nanoparticles and their subsequent attachment to the clay particles by means of 

an electrostatic interaction with PDADMAC, a cationic polymeric linker bound to the clay 

surfaces.  This resulted in the production of purple or yellow coloured composite materials, 

capable of actively hindering the growth of the bacterium Staphylococcus aureus.   

 

The production of gold nanoparticle-natural fibre composite materials was achieved through 

three major approaches.  Firstly gold nanoparticles were produced ex-situ by TSC or TA and 

subsequently attached to merino wool fibres.  Depending on the amount of TSC or TA 

employed in the production of the nanoparticles incorporated in the composites, the resultant 

gold nanoparticle-merino wool materials ranged in colour from pale yellow to grey and 

murky light pink to purple.  These nanoparticles were found to reside preferentially on the 

surface of the wool fibres, with bonding occurring through electrostatic interaction between 

the wool and TSC or TA bi-layer surrounding the nanoparticles, or directly via N-Au and S-

Au bonds following displacement of the capping agent by N and S atoms of wool.  These 

materials displayed relatively poor colourfastness properties. 

 

Alternatively, gold nanoparticle-natural fibre (notably merino wool, crossbred wool and silk) 

composite materials were produced in the absence of an external reducing agent.  The 

reduction of Au
3+

 to nanoparticulate Au
0
 was facilitated by the proteins present in the fibres, 

notably cystine in merino and crossbred wools, and amine, tyrosine and to lesser extent 

cystine moieties in silk.  The resultant nanoparticles bound to the natural fibres via strong 
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covalent Au-S bonds in merino and crossbred wool and Au-N bonds, with a small amount of 

Au-S bonds in silk.  In general the nanoparticles were found to reside both on the surface and 

within the centre of the fibres, with an exception being the deep purple coloured silk 

composites, in which the nanoparticles resided predominantly on the fibre surface. 

 

The robust bonding between the gold nanoparticles and merino wool and crossbred wool, and 

also their distribution in the fibres (both on the surface and throughout the fibre centre) 

resulted in these materials being very colourfast to washing and rubbing.  The bonding 

between the gold nanoparticles and silk fibres was on average not as strong, and as such 

these materials displayed decreased colour stabilities.  In addition to inducing 

optical/colourant properties to the natural fibres, similarly to the silver nanoparticle-clay 

composites, the gold nanoparticles also imparted resistance to microbial attack and provided 

insecticide properties 

 

The final method by which gold nanoparticle-natural fibre composite materials were 

produced involved a seed mediated growth approach, in which additional Au
3+

 was reduced 

to Au
0
 by NH2OH.  The reduction of Au

3+
 by NH2OH is catalysed by Au

0
, and in the 

presence of gold nanoparticle-natural fibre composites, (prepared through the redox 

properties of the fibres) this occurred predominantly on the gold nanoparticles located at the 

surface of the fibres in the composite materials, rather than on those in the centre, resulting in 

the formation of larger gold nanoparticles and nanoparticle agglomerates.  This method was 

successful in producing dark coloured (dark purple, grey etc) gold nanoparticle-merino wool 

and silk composites with a minimal amount of gold.  Gold nanoparticle-crossbred wool 

materials were also synthesized, however this approach was not as successful as the majority 

of resultant materials exhibited a slight pink/purple tinge. 

 

As the formation of larger gold nanoparticles and nanoparticle agglomerates appeared to 

occur solely on the surface of the gold nanoparticles bound to the seeds, the bonding between 

the gold nanoparticles and fibres in the composite materials was not dissimilar to that in the 

seeds.  The colourfastness of these materials was directly related to the colour stability of the 

incorporated seeds, which is dependent upon the strength of the bond between the 
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nanoparticles and fibres.  As such, the gold nanoparticle-merino and crossbred wool 

composites were very colourfast, however the nanoparticle-silk composites prepared via the 

seed mediated growth approach were not as colourfast. 

 

A selection of gold nanoparticle-natural fibre composite materials representing the range of 

colours obtainable when employing all three methods have been showcased at national and 

international science and textile conferences, where they, and this technology, were very well 

received, sparking interest from several key industrial players including Wool Partners 

International Ltd, the World Gold Council, Cariaggi (an Italian spinning company who 

provide fine yarn for premier fashion houses), John Smedley UK (a high quality fine 

knitwear manufacturer and retailer), NZ Merino Ltd and New Zealand Trade and Enterprise.  

Following discussions with several of these companies, we are currently in the process of 

commercialising the technology that utilises the redox active properties of the natural fibres 

to reduce Au
3+

.  A preliminary business case has been prepared and discussions are 

underway with numerous key players in the New Zealand wool industry and international 

high-end textile manufacturers and suppliers.  So as hoped, this technology has the potential 

to add significant value to New Zealand wool, and the New Zealand wool industry.  The 

technological knowledge obtained during the course of this research programme will be 

beneficial during scale-up productions that will undoubtedly be required during 

commercialisation.  The technology has been protected by a New Zealand and a PCT patent 

specification.[171] 

 

Estimated costs for the production of the gold nanoparticle-natural fibre composites and 

silver nanoparticle-clay composites are offered in Table 9.1 below.  These prices are based 

solely on the amount of silver or gold used in the production of the composites. 
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Table 9.1: Estimated cost of silver nanoparticle-clay composite materials and gold nanoparticle-fibre 

composite materials. Based on the amount of silver and gold used in their production.*
1 

 Silver Nanoparticle-Clay 

Composites 

Gold Nanoparticle-Natural Fibre Composites 

 Photo Induced 

Method 

(section 3) 

NaBH4 

Reduction 

(section 3) 

ex-situ 

Preparation (TSC 

or TA) (section 4) 

in-situ 

Preparation 

(sections 5-

7)*
2 

Seeded 

Growth 

(section 

8)*
3 

Amount 

Ag/Au (g) per 

1 kg clay or 

fibre 

43.15 g Ag 0.86 g Ag 16 g Au 16 g Au 20.92 – 

32.00 g Au 

Cost per kg 

($NZ) 

$40.98 $0.82 $914.56 $914.56 $1195.79 –

$ 1829.12 

*1 Silver price $949.84 $NZ/kg. Gold price $57160.18 $NZ/kg.[253] 

*2 Based on the use of a 160 ppm (8.13 x 10-4 M) Au3+ solution 

*3 Based on the use of seed 5 (section 8.1.1) and 49.2 – 160 ppm (4.16 x 10-4 – 8.13 x 10-4 M) Au3+ solutions . 
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10. APPENDICES 

 

Appendix I 

 

Table 10.1: CIE L*, a*, b*, 457 brightness and 580 brightness values following simulated washability 

tests for gold nanoparticle-merino wool composites incorporating TSC prepared nanoparticles. 

Temperature Washing 
Time 

(hours) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

RT 0 48.5 0.5 -2.9 19 17 

0.5 66.2 1.6 -2.3 39 35 

 1 62.3 0.9 -2.3 33 30 

 2 64.9 1.7 -1.8 36 33 

 5 63.7 1.6 -2.1 34 32 

 24 58.3 2.3 -2.4 28 26 

50 ºC 0.5 67.3 0.9 -1.4 38 36 

1 64.8 0.6 -1.6 35 33 

 2 62.0 1.4 -1.8 32 30 

 5 66.9 0.9 -1.9 38 36 

 24 61.3 1.6 -2.0 31 29 

 

Table 10.2: CIE L*, a*, b*, 457 brightness and 580 brightness values following simulated washability 

tests for gold nanoparticle-merino wool composites incorporating TA prepared nanoparticles. 

Temperature Washing 
Time 

(hours) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

RT 0 50.8 3.9 3.8 17 20 

0.5 67.0 1.1 8.3 32 38 

 1 63.9 0.9 8.2 28 34 

 2 63.1 1.0 7.1 29 32 
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Temperature Washing 
Time 

(hours) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

 5 63.1 1.0 5.8 30 32 

 24 74.7 1.0 8.2 42 49 

50 ºC 0.5 69.3 0.3 7.6 35 41 

1 67.7 0.1 7.5 33 38 

 2 70.1 0.4 7.0 36 42 

 5 75.7 0.7 6.6 43 44 

 24 74.7 0.8 6.4 44 51 

 

Appendix II 

 

Table 10.3: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of gold nanoparticle-merino 

wool composites prepared by soaking untreated merino wool in an 80, 120 or 160 ppm Au
3+

 (4.06, 6.09 or 

8.13 x 10
-4

 M) solution for 24 hours at RT followed by ageing at 50 °C for 24 – 168 hours. Shows the effect 

of increased gold concentrations and ageing times on colour development. 

Gold 
Conc. (M) 

Soaking 
Time 

(Hours, RT) 

Ageing Time 
(Hours, 50 ° 

C) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

4.06 x 10
-4

 
(80 ppm) 

24 24 63.8 3.8 5.7 29 34 

 48 52.3 8.8 3.1 19 21 

  72 52.5 3.3 4.6 20 21 

  168 64.3 11.7 2.1 30 34 

6.09 x 10
-4

 
(120 ppm) 

24 24 71.8 4.6 5.9 39 45 

 48 52.7 6.0 3.0 20 21 

  72 50.6 8.2 3.2 18 20 

  168 42.8 12.3 1.4 13 14 

8.13 x 10
-4

 
(160 ppm) 

24 24 64.8 3.9 4.6 31 35 

 48 62.4 5.5 3.4 29 31 

  72 60.4 7.6 3.2 29 29 

  168 45.7 14.8 0.4 15 16 
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Table 10.4: CIE L* a*, b*, 457 nm brightness and 580 nm brightness values for gold nanoparticle-merino 

wool composites prepared from alternate ageing solutions. Employing a 160 ppm (8.13 x 10
-4

 M) Au
3+

 

solution, a soaking time, at RT of 24 hours and ageing times at 50 °C of 24-168 hours. 

Gold 
Conc. (M) 

Ageing 
Solution 

Ageing Time 
(Hours, 50 ° 

C) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

8.13 x 10
-4

 
(160 ppm) 

0.1 M NaCl 24 68.2 3.2 2.4 37 39 

 48 65.7 6.6 -0.5 36 35 

  72 70.2 5.0 1.6 40 42 

  168 62.0 6.1 1.1 31 30 

 H2O 24 72.0 3.3 4.6 41 44 

 168 54.0 5.8 5.3 20 45 

 40 µL 0.1 M 
HCl → 10ml 

H2O 

24 67.7 3.6 5.1 34 39 

 168 58.3 5.7 4.6 24 27 

 40 µL 0.1 M 
NaCl → 

10ml H2O 

24 72.0 3.3 4.9 40 44 

 168 65.5 5.8 4.9 32 35 

 

Table 10.5: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of gold nanoparticle-merino 

wool composites prepared by soaking untreated merino wool in an 80, 120 or 160 ppm Au
3+

 (4.06, 6.09 or 

8.13 x 10
-4

 M) solution for 24 hours at RT followed by ageing at 80 °C for 24 – 168 hours. Shows the effect 

of ageing temperature on colour development. 

Gold 
Conc. (M) 

Soaking 
Time 

(Hours, RT) 

Ageing Time 
(Hours, 50 ° 

C) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

4.06 x 10
-4

 
(80 ppm) 

24 24 67.3 1.6 11.2 30 39 

 168 69.8 -0.2 14.5 31 42 

6.09 x 10
-4

 
(120 ppm) 

24 24 60.6 7.8 6.4 25 30 

 168 56.1 6.9 6.3 21 25 

8.13 x 10
-4

 
(160 ppm) 

24 24 57.1 8.8 7.9 21 26 

 48 48.1 9.5 7.4 14 18 

  72 54.2 9.6 6.3 20 23 

  168 51.1 6.5 9.4 16 20 
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Table 10.6: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of gold nanoparticle-merino 

wool composites prepared by soaking untreated merino wool in a 160 ppm Au
3+

 (8.13 x 10
-4

 M) solution 

with a pH of 7 or 10for 24 hours at RT followed by ageing at 50 °C for 168 hours. Shows the effect of pH 

of the soaking solution on colour development. 

Gold 
Conc. (M) 

Soaking 
Solution pH 

Ageing Time 
(Hours, 50 ° 

C) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

8.13 x 10
-4

 
(160 ppm) 

7 168 68.4 3.7 7.6 33 40 

10 168 64.5 4.8 5.9 30 35 

 

Table 10.7: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of gold nanoparticle-merino 

wool composites prepared by soaking untreated merino wool in a 160 ppm Au
3+

 (8.13 x 10
-4

 M) solution 

with a pH of 3for 24 hours at RT followed by adjusting the pH to 4, 7, 9 or 12 and ageing at 50 °C for 24 – 

168 hours. Shows the effect of pH of the ageing solution on colour development. 

Gold 
Conc. (M) 

Ageing 
Solution pH 

Ageing Time 
(Hours, 50 ° 

C) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

8.13 x 10
-4

 
(160 ppm) 

4 24 63.6 5.2 5.1 29 33 

 48 55.6 6.7 3.8 22 24 

  72 51.2 9.4 3.4 18 20 

  168 38.9 13.6 0.9 10 11 

 7 24 59.5 5.5 4.6 25 28 

 48 56.0 7.6 3.5 22 25 

  72 46.0 12.3 2.2 15 16 

  168 33.7 14.8 0.9 8 8 

 9 24 60.4 6.5 6.9 25 30 

 48 49.8 9.6 3.4 17 19 

  72 40.5 11.9 2.3 11 12 

  168 38.4 15.3 0.2 10 11 

 12 24 56.7 2.8 14.8 18 27 

  48 56.2 2.3 15.8 17 26 

  72 56.9 2.8 16.5 17 27 

  168 54.7 2.4 21.7 13 25 
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Table 10.8: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of gold nanoparticle-merino 

wool composites prepared by soaking untreated merino wool processed via the worsted route in a 160 

ppm Au
3+

 (8.13 x 10
-4

 M) solution for 24 hours at RT followed by ageing at 50 °C for 24 – 168 hours. 

Gold 
Conc. (M) 

Soaking 
Time 

(Hours, RT) 

Ageing Time 
(Hours, 50 ° 

C) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

8.13 x 10
-4

 
(160 ppm) 

24 24 63.5 4.4 5.1 29 33 

 48 62.9 4.6 4.6 29 32 

  72 62.3 4.5 4.4 28 31 

  168 57.4 5.6 2.4 24 25 

 

Table 10.9: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of gold nanoparticle-merino 

wool composites prepared by soaking Soxhlet pre-treated merino wool processed via the worsted route in 

a 160 ppm Au
3+

 (8.13 x 10
-4

 M) solution for 24 hours at RT followed by ageing at 50 °C for 24 or 168 

hours. 

Gold 
Conc. (M) 

Soaking 
Time 

(Hours, RT) 

Ageing Time 
(Hours, 50 ° 

C) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

8.13 x 10
-4

 
(160 ppm) 

24 24 62.7 5.3 6.8 27 32 

 168 51.9 9.8 0.4 20 20 

 

Table 10.10: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of gold nanoparticle-

merino wool composites prepared by soaking merino wool in a 0.1 M HCl solution for 5, 10 or 15 mins, 

followed by soaking in a 160 ppm Au
3+

 (8.13 x 10
-4

 M) solution for 24 hours at RT and ageing at 50 °C for 

168 hours. 

Gold 
Conc. (M) 

Time in HCl 
(mins, RT) 

Soaking 
Time (Hours, 

RT) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

8.13 x 10
-4

 
(160 ppm) 

5 24 62.1 3.1 8.1 31 36 

10  63.7 3.3 6.9 34 29 

 30  65.8 2.9 7.1 35 37 
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Table 10.11: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of gold nanoparticle-

merino wool composites prepared by soaking merino wool in a 0.1 M KOH/EtOH solution for 5, 10 or 15 

mins, followed by soaking in a 160 ppm Au
3+

 (8.13 x 10
-4

 M) solution for 24 hours at RT and ageing at 50 

°C for 168 hours. 

Gold 
Conc. (M) 

Time in 
KOH (mins, 

RT) 

Soaking 
Time (Hours, 

RT) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

8.13 x 10
-4

 
(160 ppm) 

5 24 63.4 3.3 7.2 28 36 

10  65.9 2.2 7.8 30 36 

 30  71.7 3.8 7.2 38 44 

 

Table 10.12: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of gold nanoparticle-

merino wool composites prepared by soaking Cl/H treated merino wool in an 80, 120 or 160 ppm Au
3+

 

(4.06, 6.09 or 8.13 x 10
-4

 M) solution for 24 hours at RT followed by ageing at 50 °C for 24 – 168 hours. 

Gold 
Conc. (M) 

Soaking 
Time 

(Hours, RT) 

Ageing Time 
(Hours, 50 ° 

C) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

4.06 x 10
-4

 
(80 ppm) 

24 24 76.1 0.3 7.7 44 51 

 48 72.9 0.6 8.1 39 46 

  72 75.0 1.9 9.3 41 50 

  168 61.9 5.6 7.6 26 32 

6.09 x 10
-4

 
(120 ppm) 

24 24 74.8 -0.2 8.1 42 49 

 48 70.3 1.3 10.1 34 43 

  72 67.5 1.7 8.9 32 38 

  168 56.1 7.3 6.5 21 25 

8.13 x 10
-4

 
(160 ppm) 

24 24 76.6 0.4 8.5 44 52 

 48 69.4 2.1 9.3 34 41 

  72 70.0 2.4 8.7 35 44 

  168 57.6 7.4 7.6 22 27 
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Table 10.13: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values of gold nanoparticle-

merino wool composites prepared by soaking base treated Cl/H treated merino wool in a 160 ppm Au
3+

 

(8.13 x 10
-4

 M) solution for 24 hours at RT followed by ageing at 50 °C for 24 – 168 hours. 

Gold 
Conc. (M) 

Soak Time 
(Hours, RT) 

Heat Time 
(Hours, 50 ºC) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

8.13 x 10
-4

 
(160 ppm) 

24 24 72 6 7 41 43 

 48 74 7 7 41 47 

 72 74 7 6 40 46 

  168 76 8 4 42 46 

 

 

Appendix III 

 

Table 10.14: Absorption of gold by untreated semi-worsted merino wool at RT or 50°C. A Au
3+

 

concentration of 160 ppm (8.13 x 10
-4

 M) was eemployed. 

 Au
3+

 Concentration (ppm) 

 Soaking/Absorption Temperature 

Soaking/Absorption 
Time (minutes) 

RT 50 °C 

2 118 85 

5 80 37 

10 62 13 

15 43 6 

20 30 2 

30 17 1 

40 7 1 

60 1 0 

180 0 0 

360 0 0 

1440 0 0 

 



 

 

466 

Table 10.15: Absorption of gold by untreated semi-worsted merino wool at RT. Au
3+

 increased through 

the addition of more Au
3+, constant wool:solution volume. 

 Au
3+

 Concentration (ppm, moldm
-3

) 

Soaking/Absorption 
Time (mins) 

160, 8.13 
x 10

-3
 

200, 1.01 
x 10

-3-
 

240, 1.22 
x 10

-3
  

280, 1.42 x 
10

-3
 

320, 1.62 
x 10

—3
 

2 118 144 150 173 218 

5 80 91 120 144 154 

10 62 60 76 105 129 

15 43 42 49 68 40 

20 30 23 36 38 60 

30 17 7 8 20 24 

40 7 2 4 6 8 

60 1 1 1 2 4 

180 0 0 0 1 1 

360 0 0 0 0 0 

1440 0 0 0 0 0 

 

Table 10.16: Absorption of gold by untreated semi-worsted merino wool at RT. Au
3+

 increased by 

lowering the solvent volume. 

 Au
3+

 Concentration (ppm, moldm
-3

) and Solution 
Composition (Vol 4 wt % Au

3+
 (µL) added to Vol. H2O (ml)) 

Soaking/Absorption 
Time (mins) 

160, 8.13 
x 10

-3
 

40 → 10 

213, 1.08 
x 10

-3-
 

40 → 7.5 

320, 1.60 
x 10

-3
  

40 → 5 

400, 2.03 
x 10

-3
 

40 → 4 

200, 1.01 
x 10

—3
 

40 → 20 

2 118 160 229 280 120 

5 80 141 156 171 71 

10 62 88 93 107 22 

15 43 58 34 38 7 

20 30 25 30 32 5 

30 17 11 5 5 3 

40 7 4 5 6 2 

60 1 1 1 1 0 
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 Au
3+

 Concentration (ppm, moldm
-3

) and Solution 
Composition (Vol 4 wt % Au

3+
 (µL) added to Vol. H2O (ml)) 

Soaking/Absorption 
Time (mins) 

160, 8.13 
x 10

-3
 

40 → 10 
 

160, 8.13 
x 10

-3
 

40 → 10 
 

160, 8.13 
x 10

-3
 

40 → 10 

180 0 1 0 0 0 

360 0 0 0 0 0 

1440 0 0 0 0 0 

 

Table 10.17: Gold absorption by untreated semi-worsted merino wool at RT. A Au
3+

 concentration of 160 

ppm (8.13 x 10
-4

 M) was employed. 

 Au
3+

 Concentration (ppm) 

 Soaking/Absorption Solution pH 

Soaking/Absorption 
Time (mins) 

2.7 5 7 

2 118 160 150 

5 80 159 137 

10 62 153 135 

15 43 147 132 

20 30 140 128 

30 17 130 120 

40 7 124 118 

60 1 123 114 

180 0 98 73 

360 0 40 63 

1440 0 10 55 
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Table 10.18: Gold absorption by untreated or treated semi-worsted merino wool. 

 Au
3+

 Concentration (ppm) 

 Merino Wool Fibre Pre-treatment 

Soaking/Absorption 
Time (mins) 

Untreated Acid Treated KOH/EtOH 
Treated 

Cl/H 
Treated 

KOH Treated 
Cl/H Treated 

2 118 120 80 40 118 

5 80 66 65 10 80 

10 62 13 62 0 62 

15 43 8 60 0 44 

20 30 6 60 1 30 

30 17 6 45 1 17 

40 7 1 32 1 7 

60 1 1 1 1 1 

180 0 1 0 0 0 

360 0 0 0 0 0 

1440 0 0 0 0 0 

 
Table 10.19: Gold absorption by untreated worsted and semi-worsted merino wool at RT. 

 Au
3+

 Concentration (ppm) 

 Merino Wool Fibre 

Soaking/Absorption 
Time (minutes) 

Worsted Semi-worsted 

2 118 130 

5 80 90 

10 62 50 

15 43 38 

20 30 23 

30 17 10 

40 7 8 

60 1 2 

180 0 0 

360 0 0 

1440 0 0 
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Appendix IV 

 

Table 10.20: CIE Co-ordinates of a gold nanoparticle-merino wool composite (prepared by soaking 

untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by heating at 50 °C for 24 hours) following washing. 

Temperature Washing 
Time 

(hours) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

RT 0 64.8 3.9 4.6 31 35 

0.5 60.88 4.20 5.32 32 34 

 1 57.00 3.8 4.97 31 34 

 2 60.49 3.81 4.67 31 35 

 5 60.89 3.76 4.51 30 34 

 24 60.48 4.10 4.62 31 34 

50 ºC 0.5 64.62 4.10 4.40 29 34 

1 61.03 3.72 4.45 30 35 

 2 62.34 3.89 4.52 31 35 

 5 61.30 4.00 4.60 31 34 

 24 60.13 4.02 4.55 30 35 

 

Table 10.21: CIE Co-ordinates of a gold nanoparticle-merino wool composite (prepared by soaking 

untreated semi-worsted merino wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, 

followed by heating at 50 °C for 168 hours) following washing. 

Temperature Washing 
Time 

(hours) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

RT 0 45.7 14.8 0.4 15 16 

0.5 44.0 14.06 -0.98 10 14 

 1 38.4 14.72 -0.01 14 11 

 2 41.2 15.91 -1.36 13 12 

 5 41.6 15.20 -0.52 12 12 

 24 39.8 16.17 -0.13 11 11 

50 ºC 0.5 40.4 15.72 -0.43 12 12  
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Temperature Washing 
Time 

(hours) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

 1 36.3 17.03 0.20 10 11 

 2 39.5 17.00 -0.21 11 11 

 5 36.1 16.72 -0.13 11 10 

 24 36.8 15.76 0.20 10 10 

 

Appendix V 

 

Table 10.22: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for gold nanoparticle-

crossbred wool composite materials. 

Gold 
Conc. (M) 

Soaking 
Time 

(Hours, RT) 

Ageing Time 
(Hours, 50 ° 

C) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

4.06 x 10
-4

 
(80 ppm) 

24 24 47.1 9.7 0.7 16 17 

 48 47.2 9.4 0.4 16 17 

  72 45.2 9.0 0.7 14 15 

  168 40.5 9.6 0.3 11 12 

6.09 x 10
-4

 
(120 ppm) 

24 24 39.9 9.6 0.2 11 12  

 48 35.2 11.9 -0.7 9 9 

  72 39.84 12.3 -0.6 11 12 

  168 37.8 11.8 -0.6 10 10 

8.13 x 10
-4

 
(160 ppm) 

24 24 44.2 8.5 1.2 14 14 

 48 31.2 11.7 0.6 7 7 

  72 32.7 10.7 -0.1 7 8 

  168 28.5 10.5 -1.2 6 6 
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Appendix VI 

 

Table 10.23: CIE Co-ordinates of a gold nanoparticle-crossbred wool composite (prepared by soaking 

crossbred wool in a 160 ppm (8.13 x 10
-4

 M) Au
3+

 solution for 24 hours at RT, followed by heating at 50 

°C for 168 hours) following washing. 

Temperature Washing 
Time 

(hours) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

RT 0 30 16 -1 10 6 

0.5 37 16 -1 10 10 

 1 35 14 0 8 9 

 2 37 15 -1 10 10 

 5 34 15 -1 8 8 

 24 33 15 0 8 8 

50 ºC 0.5 36 16 0 9 10 

1 30 14 0 6 6 

 2 36 16 0 9 10 

 5 38 16 0 10 11 

 24 31 15 0 7 7 

 

 

Appendix VII 

 

Table 10.24: CIE Co-ordinates of a gold nanoparticle-silk composite prepared by soaking silk in a 160 

ppm (8.13 x 10
-4

 M) Au
3+

 solution with a pH of 2.7 for 24 hours at RT, followed by heating at 50 °C for 

24-168 hours. 

Gold 
Conc. (M) 

Soaking 
Time (RT) 

Ageing Time 
(Hours, 50 ° C) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

8.13 x 10
-4

 
(160 

ppm), pH 
2.7 

10 min ─ 49.0 7.2 2.9 17 19 

0.5 h  47.1 8.1 2.7 16 18 

1 h  37.3 7.9 -1.0 10 10 
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Gold 
Conc. (M) 

Soaking 
Time (RT) 

Ageing Time 
(Hours, 50 ° C) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

 3 h  35.8 9.1 -2.3 9 9 

 24 h  35.1 9.2 -3.3 10 9 

 24 h 24 37.2 9.3 -2.8 10 10 

  48 37.6 10.5 -3.9 11 10 

  168 32.1 11.1 -5.5 8 6 

 

Table 10.25: CIE Co-ordinates of a gold nanoparticle-silk composite prepared by soaking silk in a 160 

ppm (8.13 x 10
-4

 M) Au
3+

 solution with a pH of 7, 9-10 or 12 for 10 minutes or 6 hours at RT, followed by 

heating at 50 °C for 24 hours. 

pH Soaking 
Time (RT) 

Ageing Time 
(Hours, 50 ° 

C) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

7 10 mins 24 37.1 20.5 -1.1 7 7 

6 h  37.4 16.1 -2.5 7 6 

9-10 10 mins 24 39.8 24.8 0.1 7 8 

6 h  39.3 24.5 0.4 8 10 

12 6 h 24 84.7 1.1 6.1 57 66 

 

Appendix VIII 

 

Table 10.26: CIE Co-ordinates of a gold nanoparticle-silk composite (prepared by soaking silk in a 160 

ppm (8.13 x 10
-4

 M) Au
3+

 solution with a pH of 2.7 for 24 hours at RT, followed by heating at 50 °C for 

168 hours) following washing. 

Temperature Washing 
Time 

(hours) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

RT 0 35.1 10.4 -3.2 9 9 

0.5 33.3 6.3 -4.1 9 8 

 1 31.1 6.0 -4.4 8 7 

 2 33.7 5.0 -3.2 9 8 

 5 35.5 5.8 -4.5 10 10 
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Temperature Washing 
Time 

(hours) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

 24 35.2 4.4 -5.8 10 11 

50 ºC 0.5 31.6 6.3 -6.6 8 7 

1 32.9 8.1 -5.2 8 7 

 2 31.1 10.6 -5.1 8 7 

 5 32.0 6.4 -6.2 8 7 

 24 42.9 5.9 -6.3 11 12 

 

Table 10.27: CIE Co-ordinates of a gold nanoparticle-silk composite (prepared by soaking silk in a 160 

ppm (8.13 x 10
-4

 M) Au
3+

 solution with a pH of 9-10 for 6 hours at RT, followed by heating at 50 °C for 24 

hours) following washing. 

Temperature Washing 
Time 

(hours) 

L* a* b* 457 nm 
Brightness 

580 nm 
Brightness 

RT 0 71.1 10.1 4.1 39 45 

0.5 48.6 16.1 3.0 16 19 

 1 48.2 17.0 2.1 16 19 

 2 60.8 12.0 4.0 27 31 

 5 50.8 9.7 3.7 17 20 

 24 54.6 12.9 3.35 21 24 

50 ºC 0.5 55.0 15.1 3.7 21 25 

1 57.1 15.1 4.8 22 27 

 2 66.1 11.1 2.9 33 38 

 5 44.6 14.4 3.4 13 16 

 24 45.7 16.7 2.4 14 17 

 

 

 

 



 

 

474 

Appendix IX 

 

Table 10.28: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for composites prepared 

via the preliminary synthesis route, using a NH2OH concentration of 2.50 x 10
-4

 moldm
-3

. 

Seed [NH2OH]:[Au
3+

] L* a* b* 457 nm 

brightness 

580 nm 

brightness 

1 1:1 5.3 2.2 12.67 13 15 

 1:2 5.7 5.3 8.80 10 12 

 1:4 5.5 7.5 9.11 12 13 

 1:8 5.9 8.8 10.43 14 16 

7 1:1 53.6 7.2 2.97 20 22 

 1:2 43.7 7.4 1.93 13 14 

 1:4 58.2 6.2 4.48 24 27 

 1:8 47.3 6.2 2.87 15 17 

 

Appendix X 

 

Table 10.29: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for composites prepared 

using a gold solution concentration of 2.50 x 10
-4

 moldm
-3

. 

Seed [Au
3+

]:[NH2OH] L* A* b* 457 nm 

brightness 

580 nm 

brightness 

2 — 56.2 3.7 3.9 22 25 

2 1:1 43.8 9.2 0.5 14 14 

 1:2 47.5 3.3 0.1 17 16 

 1:4 49.7 8.5 -1.0 19 19 

 1:8 43.8 8.2 -0.3 14 14 
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Seed [Au
3+

]:[NH2OH] L* A* b* 457 nm 

brightness 

580 nm 

brightness 

 1:16 48.9 4.3 -2.0 19 17 

 1:32 43.7 3.7 -1.8 14 13 

 1:64 49.7 3.3 -1.9 19 18 

 1:128 41. 6 5.8 -1.8 12 13 

3 — 53.6 7.2 3.0 20 22 

 1:1 46.6 13.9 0.9 15 17 

 1:8 40.5 11 -0.6 12 12 

4 — 43.7 7.4 1.9 13 14 

 1:1 44.0 6.9 0.8 9 9 

 1:8 43.1 5.9 1.5 13 14 

5 — 58.2 6.2 4.5 24 27 

 1:1 42.8 5.6 -1.8 14 13 

 1:8 37.4 3.5 -1.7 10 10 

 1:16 39.5 3.0 -0.9 11 11 

 1:64 40.1 1.9 -2.3 12 10 

 1:128 38.9 1.4 -1.3 13 13 

6 — 47.3 6.2 2.9 15 17 

 1:1 40.3 10.4 0.8 12 12 

 1:8 35.8 3.9 -0.2 9 9 

7 — 31.3 13.7 -0.7 7 7 

 1:1 30.5 15.3 -1.7 7 6 

 1:8 26.7 5.2 -2.5 5 5 
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Table 10.30: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for composites prepared 

using a gold solution concentration of 4.2 x 10
-4

 moldm
-3

. 

Seed [Au
3+

]:[NH2OH] L* a* b* 457 nm 
brightness 

580 nm 
brightness 

2 — 56.2 3.7 3.9 22 25 

 1:16 40.8 4.5 -2.2 13 12 

 1:128 45.4 3.5 -1.3 15 15 

3 — 53.6 7.2 3.0 20 22 

 1:16 43.3 7.9 -1.6 14 14 

 1:128 45.0 4.0 -2.0 15 14 

5 — 58.2 6.2 4.5 24 27 

 1:16 48.4 1.6 -0.9 18 12 

 1:128 40.8 1.2 -0.3 12 12 

6 — 47.3 6.2 2.9 15 17 

 1:16 33.8 7.8 -1.2 8 5 

 1:28 26.9 10.2 -1.0 5 5 

7 — 31.3 13.7 -0.7 7 7 

 1:16 22.6 8.5 -2.8 4 4 

 1:28 24.4 5.9 -2.6 5 4 

8 — 39.6 -0.2 -1.0 11 11 

 1:16 51.2 0.7 -0.9 20 19 

 1:28 47.1 2.3 -2.9 18 16 

9 — 41.8 0.0 -0. 13 12 

 1:16 44.8 2.5 -1.1 15 14 

 1:28 42.8 3.5 -3.0 14 13 

10 — 37.7 0.9 -0.1 10 10 

 1:16 40.6 2.6 0.0 12 12 

 1:28 46.7 1.8 -1.1 16 16 
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Table 10.31: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for composites prepared 

using a gold solution concentration of 6.8 x 10
-4

 moldm
-3

. 

Seed [Au
3+

]:[NH2OH] L* a* b* 457 nm 
brightness 

580 nm 
brightness 

2 — 56.2 3.7 3.9 22 25 

 1:16 44.1 4.8 -2.6 15 14 

 1:128 43.8 2.6 -1.9 15 14 

3 — 53.6 7.2 3.0 20 22 

 1:16 31.5 8.3 -1.9 7 7 

 1:128 34.4 2.9 -3.4 9 8 

5 — 58.2 6.2 4.5 24 27 

 1:16 34.4 5.7 -0.9 9 8 

 1:128 31.7 4.8 -1.1 7 7 

6 — 47.3 6.2 2.9 15 17 

 1:16 31.6 6.9 -1.0 7 7 

 1:28 28.4 6.2 -3.2 6 6 

7 — 31.3 13.7 -0.7 7 7 

 1:16 30.5 9.0 -3.8 7 6 

 1:28 24.5 5.6 -3.0 5 4 

8 — 39.6 -0.2 -1.0 11 11 

 1:16 43.4 2.9 -0.2 14 13 

 1:28 39.7 2.5 -0.4 11 11 

9 — 41.8 0.0 -0.7 13 12 

 1:16 34.1 4.4 0.2 8 8 

 1:28 41.1 1.4 -1.9 13 12 

10 — 37.7 0.9 -0.1 10 10 

 1:16 43.1 2.4 0.4 13 13 

 1:28 36.8 2.6 0.4 13 13 
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Table 10.32: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for composites prepared 

using a gold solution concentration of 1.02 x 10
-3

 moldm
-3

. 

Seed [Au
3+

]:[NH2OH] L* a* b* 457 nm 

brightness 

580 nm 

brightness 

2 — 56.2 3.7 3.9 22 25 

 1:16 32.1 5.9 0.5 7 7 

 1:128 34.9 6.2 -1.8 9 9 

5 — 58.2 6.2 4.5 24 27 

 1:16 37.6 5.0 1.9 7 8 

 1:128 34.5 6.4 1.1 8 9 

7 — 31.3 13.7 -0.7 7 7 

 1:16 19.8 10.0 -1.4 3 3 

 1:28 24.1 7.6 -3.0 5 4 

 

Table 10.33: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for composites prepared 

using a gold solution concentration of 1.35 x 10
-3

 moldm
-3

. 

Seed [Au
3+

]:[NH2OH] L* A* b* 457 nm 
brightness 

580 nm 
brightness 

2 — 56.2 3.7 3.9 22 25 

 1:16 36.4 5.3 -0.8 10 9 

 1:128 31.3 7.7 -0.4 7 7 

5 — 58.2 6.2 4.5 24 27 

 1:16 33.1 5.0 1.9 7 8 

 1:128 32.5 5.5 0.3 7 8 

7 — 31.3 13.7 -0.7 7 7 

 1:16 20.4 6.9 -2.2 3 3 

 1:28 22.0 6.6 -2 4 4 
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Appendix XI 

 

Table 10.34: CIE L*, a*, b*, 457 nm brightness and 580 nm brightness values for gold nanoparticle-silk 

composites. 

Seed Gold conc. 

(moldm
-3

) 

[Au
3+

]:[NH2OH] L* A* b* 457 nm 

brightness 

580 nm 

brightness 

1 4.2 x 10
-4 

1:16 32.3 2.8 0.1 7 7 

  1:128 34.0 0.6 0.8 8 9 

 6.77 x 10
-4

 1:16 28.4 4.7 2.3 5 6 

  1:128 30.2 2.9 1.5 6 6 

2 4.2 x 10
-4 

1:16 23.4 5.4 -1.3 4 4 

  1:128 20.4 3.9 -1.0 3 3 

 6.77 x 10
-4

 1:16 23. 6.0 -1.6 4 4 

  1:128 19.1 4.0 -0.2 3 3 

3 4.2 x 10
-4 

1:16 21.5 13.3 -0.6 3 4 

  1:128 17.2 11.2 0.5 2 3 

 6.77 x 10
-4

 1:16 19.5 12.4 1.2 3 3 

  1:128 17.8 10.6 0.9 2 3 

4 4.2 x 10
-4 

1:16 24.4 5.2 -1.3 4 4 

  1:128 23.8 3.4 -0.3 4 4 

 6.77 x 10
-4

 1:16 23.9 5.4 -0.2 4 4 

  1:128 23.9 3.8 0.1 4 4 

5 4.2 x 10
-4 

1:16 27.9 6.7 -2.0 6 6 

  1:128 27.1 2.9 -1.5 6 5 

 6.77 x 10
-4

 1:16 25.2 5.1 -0.8 5 5 

  1:128 21.9 4.2 -0.4 4 4 
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Seed Gold conc. 

(moldm
-3

) 

[Au
3+

]:[NH2OH] L* A* b* 457 nm 

brightness 

580 nm 

brightness 

6 4.2 x 10
-4 

1:16 60.8 -0.7 3.2 27 30 

  1:128 62.2 -0.2 3.6 28 31 

 6.77 x 10
-4

 1:16 56.0 0.0 3.6 22 24 

  1:128 58.4 -0.3 3.6 24 27 

7 4.2 x 10
-4 

1:16 54.0 -0.7 1.7 21 22 

  1:128 55.6 -0.4 2.6 22 24 

 6.77 x 10
-4

 1:16 53.1 0.2 3.0 20 22 

  1:128 53.1 -0.2 3.3 19 22 

8 4.2 x 10
-4 

1:16 26.4 10.2 -3.0 6 5 

  1:128 28.6 11.2 -3.6 7 6 

 6.77 x 10
-4

 1:16 21.8 10.9 -2.6 4 4 

  1:128 22.6 10.9 -2.6 4 4 

9 4.2 x 10
-4 

1:16 36.6 -0.3 -2.2 10 9 

  1:128 39.42 -0.7 -0.4 11 11 

 6.77 x 10
-4

 1:16 34.16 -0.4 -0.7 8 8 

  1:128 36.3 -0.6 0.1 9 9 
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