Advanced NMR
Methodologies in Rock Core
Analysis

Huabing Liu

A thesis
submitted to the Victoria University of Wellington
in fulfilment of the
requirements for the degree of
Doctor of Philosophy
in Physics.

Victoria University of Wellington
2015






Abstract

'"H NMR techniques have gained extensive acceptance in petrophysics
for the evaluation of fluid-saturating reservoir rocks. This thesis presents
the development of new NMR methods regarding the reserves (determina-
tion of pore length scales and surface relaxivities), productivity (estimates
of permeability) and recovery of fluids (resolves of saturation evolution) in
rocks.

Traditionally, pore lengths are evaluated from the ground relaxation
eigenmodes of spin-bearing molecules in pore space. This evaluation is not
straightforward since it is affected by surface relaxivity. Here, we use an
approach to determine pore length from detecting the high relaxation eigen-
modes, in which way the eigenvalue spectrum directly scales to the pore
size distribution. Based on this, we extend this approach for the use with
low-field NMR spectrometers and 2D NMR eigenmode correlation meth-
ods. Surface relaxivity can be further extracted from these 2D correlation
maps, which is in agreement with an independent NMR measurement.

Permeability is generally estimated from surface relaxation via empir-
ical pore-network models. However, for heterogeneous rocks a single (or
averaged) permeability value may not be adequate. Therefore, we measure
surface relaxation in conjunction with MRI techniques. Permeability pro-
files can then be obtained from spatially resolved relaxation maps yielding
local connectedness between adjacent slices. The results are confirmed by
the comparison of brine-permeability measurements.

MRI experiments of fluids in rocks at reservoir-like conditions may
yield optimized recovery strategies of reservoir fluids. In this context we

combine MRI with diffusion-relaxation correlation measurements during



flooding intervals. The results provide substantial information, such as
flooding front and saturation profiles of immiscible fluids discriminated by
fluid type.
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Chapter 1
Introduction

As a typical but complex porous material, rock core provides essential
data for the exploration, evaluation and production of reservoirs in petro-
leum, geothermal and hydrological industries. These rock samples allow
geoscientists to examine the first-hand depositional sequences penetrated
by a drill bit [1, 2]. They offer direct evidence of the presence, distribution
and deliverability of geothermal gas, ground water, hydrocarbons and
can reveal variations in reservoir traits that might not be detected through
down-hole logging measurements alone.

Plenty of methods have been developed to study the rock samples
regarding the relationship between their physical responses and corres-
ponding petrological properties [3, 4]. Those methods can be categorized
into two classes. The first type adopts direct imaging pattern, such as
Magnetic Resonance Imaging (MRI), Scanning Electron Microscopy (SEM),
thin-section optical micrography and X-ray computed-tomography (CT).
These techniques can visualize the interior solid matrix structure or fluid
distribution of the core samples straightforwardly. The second type, on the
other hand, relies on indirect imaging techniques, for instance Small-Angle
Neutron Scattering (SANS), gas adsorption isotherms, Mercury Intrusion
Porosimetry (MIP), Nuclear Magnetic Resonance (NMR), Electron Spin
Resonance (ESR), electrical resistivity, and acoustic waveform, therefore,

1



2 CHAPTER 1. INTRODUCTION

yield the volumetric properties of rock cores.

FIG. 1.1: 1.5 inch rock cores with different lithologies studied in laboratory. Photo
provided by Mark Hunter from Magritek Ltd.

During this PhD project, NMR has continued its development as an
unique tool for investigating rock cores, to unravel the morphology features
and the hierarchy of interactions with fluids confined in its pore space.
It is one of the non-invasive techniques to offer “body check” for rock
samples and deliver substantial petrophysical parameters [5-8]. In this
context, relaxation time/diffusion coefficient distributions, as well as their
multi-dimensional correlation maps, are routinely utilized to characterize
pore size, wetting state, fluids types, and quantify individual fluid phase
saturations [9-11]. Meanwhile, MRI was introduced to provide insight of
the presence of fluid bearing in the pore network and monitor “real-time”
fluid invasion profiles during core flooding experiments [6, 12].

In this thesis, three important characteristics, pore length scales, per-
meability and fluid saturation profile, with respect to the reserves, pro-
ductivity and recovery of the rocks, are studied respectively. Before in-
volving into any technical details of the developed methods in this thesis, a
brief review of NMR and its application in rock core analysis is given in
Chapter 2 and Chapter 3.

Chapter 2 presents NMR principle and fundamentals, including some



necessary concepts (for instance relaxation and diffusion), experimental
techniques, instrument and data processing protocols. Many emerging MR
methods relevant to the topic of this thesis, such as fast 77 encoding and D
encoding, and multi-dimensional NMR techniques, are briefly introduced
or summarized in this chapter. Afterwards, Chapter 3 outlines the current
study of NMR application in rock core analysis. Two special consideration,
nuclear species and magnet types used in MR rock core analysis are ad-
dressed first. Various petrophysical parameters, including porosity, pore
length, heterogeneity degree, tortuosity, permeability, wettability as well as
the fluid transport, can be obtained by using the techniques developed in
NMR context.

Based on the knowledge from Chapter 2 and Chapter 3, we start to
introduce the methods we developed and the hardware we implemented
from Chapter 4 to Chapter 6.

Pore length is a critical structural parameter describing the dimension
of the pores preserving reservoir fluid in porous rocks [1]. Routine MR
techniques, such as surface relaxation distributions and time-dependent
diffusion coefficient measurement, are utilized to determine pore lengths
of rock cores [5, 13-15]. However, surface relaxation measurements are
normally convoluted with surface relaxivities, which makes themselves
indirect to determine pore length scales. Time-dependent diffusion coef-
ficient measurement provides a mean value of pore size in rock, which is
probably inadequate to describe the complex pore structure. Therefore,
it is necessary to develop and implement a method which is capable to
measure pore length distribution straightforwardly. Chapter 4 presents
the theory and experimental results on pore length scales of rock cores by
detecting the high eigenmodes of spin bearing molecules satisfying the
diffusion equation in the presence of internal magnetic fields B;,,. Since
higher relaxation eigenmodes (with mode index n > 0) are ascribed to the
molecules diffusion process in pore space, it provides a direct access to
pore length a. This method can be also extended to low-field NMR context
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by optimizing the encoding time for molecules experiencing strong enough
modulation in pore space. Furthermore, this methodology was combined
with relaxometry measurements into a two-dimensional experiment, which
provides correlation between pore length and relaxation time. This correla-
tion technique allows one to extract information on the surface relaxivity
of the rock cores. The estimated surface relaxivities are then compared and

confirmed by the values from an independent NMR method.

Permeability is a function measuring the ease with which a fluid flows
through a porous media and is an important input to model the reservoir
behavior to optimize the underground resources exploration. It is generally
predicted from surface relaxation distribution via empirical pore-network
models [5, 16-22]. However, for some heterogeous rocks a single (or aver-
aged) permeability value may not be adequate to reflect the permeability
variation in some local regimes. In order to improve the permeability
evaluation of heterogeneous rock cores, Chapter 5 introduces a custom-
ized spatially-resolved NMR relaxation profile technique. A fast relaxation
encoding method was firstly implemented in the field as low as 2 MHz.
Later on, a phase encoded gradient was applied in conjunction with the
aforementioned fast relaxation method. Two permeability models were
subsequently utilized to interpret the obtained spatially-resolved relaxa-
tion map to obtain the permeability profile. One was directly applying
empirical formula consecutively along the imaging direction. The other
model evaluates the permeability profile by further considering a proposed
local connectedness factor between the adjacent resolved imaging slices.
The results from both models can reveal the variation of heterogeneity
and permeability of rock plugs. Finally, by comparing these results with
independent brine permeability values in different types of rock samples,
it is advisable to adopt the later model when trying to understand the local
permeability of rock samples.

Most reservoir rocks are buried in the formation approximately thou-

sands meter deep, where the in-situ temperatures and pressures are much



higher as compared to conditions on the surface ground [2, 23]. In this
case, fluid properties (e.g. viscosity) in porous rocks depend strongly on
temperature and pressure, leading to a complex mechanism of oil recovery
in oilfields [1]. Therefore, in order to characterize fluid properties and
model fluid transport, it is necessary to provide reservoir-like temperat-
ures and pressures whilst the experiments are performed in laboratory
measurements. Moreover, it is desirable and meaningful to understand the
reservoir fluid transport and its recovery mechanism within more than one
fluid phase. In this case, although it is routinely applied to differentiate
fluid types and evaluate the relative saturation, 2D diffusion-relaxation
correlation experiment fails to monitor the fluid displacement and flooding
front since it is a volumetric method [9, 11, 24-26]. Chapter 6 introduces the
work on setting up an overburden system and analyzing the rock plugs on
emerging NMR instrument at reservoir-like conditions. 1D NMR relaxation
and 2D diffusion-relaxation correlation distributions of fluid-saturated rock
cores were measured in conjunction with 1D NMR imaging. By performing
these spatially resolved NMR relaxometry and diffusometry experiments
during flooding multi-phase fluids through the rock core, it is possible to
obtain porosity, fluid saturation and residual fluid content profiles under
reservoir-like conditions. Moreover, by tuning the surroundings of the
studied sample ( for instance temperatures) and quantitatively estimate
the relative saturation of individual fluid from the spatially-resolved D-T,
experimental results performed with this NMR setup, it may inform fluid
recovery enhancement strategies during the flooding process.

Finally, conclusions regarding the methods developed during this PhD
works and its application to rock cores are given in the Chapter 7 of this
thesis.
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Chapter 2

NMR Fundamentals

As an unique technique developed for 70 years, Nuclear Magnetic Resonance
(NMR) has contributed four Nobel prizes in the progress of multiple disciplines.
Since utilizing NMR as major protocol in this thesis, the necessary fundamentals
of NMR, from its theory and pulse sequences, to instruments as well as data

processing are briefly reviewed in this chapter.

2.1 Theory

2.1.1 Polarization

NMR phenomenon can be observed in atomic nuclei that possess a non-
zero spin angular momentum Al and a collinear dipolar magnetic moment
1 described as [27]:

i = ~yhl. (2.1)

Here v is gyromagnetic ratio and % is Planks constant divided by 2. I
is the dimensionless angular momentum and I” has eigenvalues / which
are either integer or half-integer.

By placing the atomic nuclei in an external magnetic field B, applied

along the z-axis in the laboratory frame of reference, the energy splits due

7



8 CHAPTER 2. NMR FUNDAMENTALS

to Zeeman interaction. For a simple quantum mechanical description, the

Hamiltonian of the spin system in individual energy state is given by [27]:
H = —yhByl, (2.2)

where I, is the z component of I. The eigenvalues of this Hamiltonian is
any one of a discrete set of integer or half-integer values in the range 7/,
I —1, ..., —I and one can easily find that there exists 2/ + 1 allowed energy
levels. Since we exclusively study 'H nucleus with I = 1 in this thesis,
there are only two energy states and the energy gap between these two
states is:

AE = vhBy. (2.3)

Within assemblies consisting of a large number of nuclear spins, the
populations of the spins precessing along B, (referred to as the case of low
energy state) and against B (referred to as the case of high energy state)
are not identical and the ratio of the final equilibrium populations in these

two states can be described by Boltzmann distribution [28]:

n, AE vhBy
s ——— ) = — 24
g P ( /{ZBT> b ( ]{PBT ( )

where n| and n; represent the populations of the spins belong to high and
low energy levels, respectively. kp is the Boltzmann constant (=1.381x10 ~2* J/K)
and T is the temperature. The excess occupation in the lower energy state
leads to an excess of magnetic moments oriented along B, thus building
up a macroscopic magnetization M,. Therefore it can be calculated by

summing up all the possible magnetic moments 1 in the spin 1 system by:

No

ne —n
My = Z iz = Mpplzt + Ny flr) = %75 (2.5)
=1

where N, stands for the total spin population in the system and . is the



2.1. THEORY 9

z-component of the magnetic moment.

By using Taylor expansion of the Boltzmann exponential under the
condition of the high temperature approximation (kg7 > AFE), Eq. 2.4 can

be easily simplified to be ”jn ~1-— X‘BTO, and therefore:
1 B

No

No __yhB
%[1 — _‘]Yngig] N 5 eXp ( k379> N % - vhB
1 — yhiBo __~hBo 2 QICBT

~ (6
2kpT exp( 2kBT> }

Similarly, we can derive the population of spins along B, to be:

~ No {1 + ”hBO] | 2.7)

"y %epT

Therefore, the population difference of the spins in these two energy
levels AN would be:

N,
AN:nT—n¢z—O{

(2.8)

vhBy
5 .

kgT

By substituting Eq. 2.8 into Eq. 2.5, the net magnetization in the spin 1

system M, can then be expressed as:

232
I By
M, = N, .
0 O 4kpT

(2.9)

It is worth mentioning that )/, is the source of all NMR signal which
will be manipulated and eventually detected during NMR experiments.
Since it is derived from the individual spins rotating around By, the net
magnetization M, will also precess around B, and its precessing angular
frequency is given by:

wo = 7By (2.10)

where wj is called the Larmor frequency.
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2.1.2 Excitation and relaxation

In order to observe the NMR phenomenon, the spins need to be per-
turbed away from the steady state after their polarization. Spins can be
excited by irradiating the sample with photons of the same energy as given
in Eq. 2.3. Currently this is achieved by applying an independently oscil-
lating magnetic field B; perpendicular to the static magnetic field By. In
particular, B; needs to precess along the same direction of B, and with
a frequency, wp,, same to the Larmor frequency wy in order to effectively

manipulate the M, vector'.

By

y rot

X rot

FIG. 2.1: Schematic of rotating frame.

For the purpose of visualizing this excitation process in a more conveni-
ent way, a frame of reference, different from the laboratory frame, named
rotating frame, is utilized and shown in Fig. 2.1. In this new frame, z, 2o
and yo are considered rotating with an angular frequency of wy, therefore,
the precession of 1 is no need to be considered. Consequently, the emit-
ted B, will be stationary in the transverse plan to B, and its excitation or
manipulation to M, can be illustrated using vector model, which simplifies

a sophisticated quantum mechanical phenomenon through a classical view-

IThe applied alternating field B; is a linearly polarized field with a pattern of
2B;cos(wp, t). For easily understanding its interaction with My, it is considered as su-
perimposition of B exp(iwp,t) and B; exp(—iwp, t), where the first component will be
responsible for the resonance phenomenon when wg, =wy, whereas the second one is
counter-rotating and can be neglected in the condition of B; < By [28].
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point. In this thesis, we stick to use the rotating frame when discussing
the manipulation of the net magnetization M, and the axes of the rotating

frame, z, r,o; and y,; are referred to as z, x and y.

With the concepts of net magnetization vector M, and rotating frame
at hand, the Bloch equations can be employed to describe the manipula-
tion (excitation) and time evolution (relaxation) process of magnetization
according to the classical torque theory [29]:

dM

—r = M(1) x B(t) - RMM(t) — M(0)) 2.11)

where M, B and R can be considered as vectors and matrices. The elements
M,
inM are | M,

yil’

M,

which represent the magnetization components in different

B,
directions. The elements in B are | B, |, standing for the magnetic field

0
components. The third element is 0 instead of B, here since the rotation

along B is neglected in the rotating frame with the resonant condition of
wp, = wp. R matrix determines the relaxation process of the magnetization

1T, 0 0
vector. The elementsin Rare | 0 1/7; 0 |. Here 75 characterizes
0 0 1T

the relaxation process of the transverse magnetization components and 7}
for the longitudinal magnetization component. The details of 75 and 7}

will be discussed later.

By applying an oscillating field B; in the transverse plane of the rotating
frame (shown in Fig. 2.2 (a)), the effective B vector will be [B ,; By 4; 0],
where B, , and B, , are the projection of B; along = and y axes. The solution
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of Eq. 2.11 in this case can be given as:

B
M, (t) = My - cos [arctan(Bl’y)} - sin(vy B t)

1,z

B
M,(t) = M, - sin [arctan(Bl’y)} - sin(yByt)

lx

M, (t) = My - cos (yByt) (2.12)

in the initial condition that M(0) = [0;0; M,]. Here the effect from the
second term in Eq. 2.11 during the evolution time ¢ is ignored.

(a) (b)

FIG. 2.2: Schematic of excitation (a) and relaxation (b) in the rotating frame.

If the emission of B, field is stopped, the spin system prefers to recover
to the thermal equilibrium state. From the view of magnetization vector,
it will precess along B, and be driven back to z-axis. Again, considering
B = [0;0; 0] in Eq. 2.11, the solution during this procedure is determined by
T, and 77 in matrix R, which characterize the time of magnetization decay

in the transverse plan and recovery along z-axis, respectively. Therefore,
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the individual components in Eq. 2.11 in this case will be:

dM, M,
at T
a, M,
a T
dM, My, — M,
— . 2.13
dt Ty (2.13)

The solutions of these above equations are given as:

M. (t) = M.(0) exp (—Ti1> + M, {1 —exp (—Tiﬂ (2.14)

where the initial magnetization along each direction, 1, (0), M,(0) and
M., (0) can be obtained from the final solution of Eq. 2.12.

T, also called the spin-lattice relaxation time, corresponds to the process
of establishing (or re-establishing) the spin population distribution accord-
ing to the thermodynamic equilibrium and therefore the net magnetization
in the magnetic field. 75, which is also known as spin-spin relaxation time,
determines the loss of phase coherence among nuclei and therefore the
magnetization decay rate in the transverse plane. Note that the return of
magnetization to the z-direction inherently causes the loss of magnetization
in the z-y plane, as a result, 7} > 75 in any spin system. The details of
measuring these two relaxation times during NMR experiments will be

introduced in Sec. 2.2.3.

So far, we consider a uniform B, distributed across the sample space.
However, in most situations, this is not true because of the B, distortion
due to the properties of magnets or samples. Thus, the magnetization in an

elementary volume will process within a local frequency wjocal proportional
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to the local field strength By oca1 according to Eq. 2.10. As a result, the spin
precession dephases rapidly and the transverse magnetization decay in
the z-y plane is accelerated. A characteristic time 73, so-called transverse
relaxation time due to the field inhomogeneities, is utilized to describe this

procedure and is given as:

1 1 1

— = = = 2.15
TQ* T2 + TZInhomo ( )

Therefore, a relationship of 7, > T can be readily concluded from
Eq. 2.15.

2.2 Experimental techniques

2.2.1 Pulse sequences ingredients

As discussed in Sec. 2.1.2, an oscillating magnetic field B; is necessary
for observing NMR phenomenon. This field is realized by applying a pulse
in Radio-Frequency (RF) range 2. For further encoding the magnetization
phase in the transverse plane, additional pulses named as Pulsed Field
Gradients (PFG) can be utilized. A number of these two elements, which
are arrayed and ordered in a so-called NMR pulse sequence, are generally
applied to study NMR characteristics of the spin systems, for instance 7,
T5, Ty or diffusion.

As illustrated in Fig. 2.3, an RF pulse is emitted to tip the net magnetiz-
ation M, from z axis to a certain angle. The tip angle a is determined by
the product of gyro-magnetic ratio v, field strength B, and pulse duration
tp, a = Bit, according to Eq. 2.12. The orientation of RF pulse can be
manipulated by choosing the pulse phase accordingly .

PFG pulses are essential in spatial imaging and diffusion experiments

2The frequency falls into microwave frequency (typically GHz) for Electron Spin
Resonance (ESR)
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RF

(a) (b)

FIG. 2.3: (a) An RF pulse rotating magnetization vector by an angle of a along
the z-axis. (b) Magnetization vector tipped by RF pulse.

to encode the spin phase. To apply this pulse across the sample, an extra

magnetic field is superimposed to By, and its components in different

OB, . 0B, . 0B,
ox ' Oy ' 0z

Fig. 2.4, this phase ¢ is proportional to the pulsed gradient duration § and

directions are given as G = [G,;G,;G.] = | ]. As shown in

intensity G.

G

(a) X Yy

(b)
FIG. 2.4: (a) A pulsed field gradient with duration of § and strength of G. (b)
Transverse magnetization vector driven by pulsed field gradient.

2.2.2 Free induction decay and spin echo

Free induction decay. In order to obtain a maximum signal in the
transverse plane, a RF pulse rotating M by 7/2 is generally applied. The
magnetization decay in the transverse plane is then caused by the loss of
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phase coherence in the spin ensemble, which is driven by the molecular
interaction or by the magnetic field inhomogeneities. This process can be
recorded as a signal called Free Induced Decay (FID). The pulse program
and the acquired FID signal is shown in Fig. 2.5. The FID signal decay

follows:

M(t) = My - exp (—%) (2.16)

where the decay rate of FID is 1/73.

e 1\ |

t
FIG. 2.5: Pulse sequence for detecting FID signal.

SIE

Spin echo. The attenuation due to magnetic inhomogeneities in the FID
signal can be reversibly compensated by a subsequent 7 RF pulse in the
pulse sequence [30]. The pulse program and the acquired signal are shown
in Fig. 2.6.

INE

x

FID Echo
R J\

T T ﬂ\ ¢

FIG. 2.6: Pulse sequence for detecting spin echo.

After an initial 7/2 pulse, the magnetization vector is rotated into the
transverse plane (Fig. 2.7 (a)) and start dephasing with 1/75 (Fig. 2.7 (b)).
By applying an additional 7 pulse after 7 time, the dephased magnetiza-
tion components will be rotated to opposite phases (Fig. 2.7 (c)) and start
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rephasing in the transverse plane (Fig. 2.7 (d)). After an equivalent 7 time
period, the magnetization can be refocused and a signal can be captured
after 27 time. This signal is named as spin echo.

During this rephasing process, the field non-uniformities coming from
the applied field B, and the local field due to susceptibility differences can
be reversed by 180° since they are time-independent. However, those time-
dependent fluctuating fields, which is due to the vibration and rotation
of neighboring nuclei and is characterized by 75, cannot be reversed. The
echo is thus weaker than the initial amplitude and its intensity is given as:

M(271) = My - exp (—2—T) (2.17)

(0) (d)

FIG. 2.7: The process of forming spin echo using magnetization vector.

The invention of this pulse sequence [30] is a huge contribution to NMR
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society since it allows NMR signal surviving in a time scale in the order of
T5, which is much longer compared to 75 order, thus broadening the NMR
observation window. In the following, many techniques for a range of
applications, for instance 7, measurement, imaging and molecular mobility

observation, are inspired from or based on spin echo pulse sequences.

2.2.3 Relaxometry

The study of spin systems returning to its thermal equilibrium status
is referred to as NMR relaxometry [31]. Two notations, 7} and 75, are
used to describe the process of magnetization evolution along different
directions. T3, which is so-called spin-lattice or longitudinal relaxation, is
a joint property of the spin system and its environment. Its value reflects
how efficiently the magnetic energy of the spin system transfer to or from
its surroundings. A large 77 means weak coupling and slow process for
the spin system to achieve thermal equilibrium and thus build up M,
along the direction of By. 75 is so-called spin-spin or transverse relaxation.
It characterizes the magnetization attenuation of the spin system in the
transverse plane, which is caused by the loss of the phase coherence due
to local field fluctuations between neighboring spins. Both 7; and 75 are
measured by using the relevant pulse sequences and can often be linked to
particular properties of the sample under study, such as fluid presence or
material structure.

Inversion recovery pulse sequence can be employed to extract 7 re-
laxation time. Given a 7 RF pulse at the beginning of the pulse sequence
shown in Fig. 2.8 (a), M.(0) is —M, according to Eq. 2.12. Then after an
evolution time Ty, the magnetization along z axis is given as:

Tw

M, (Tw) = M, - {1 — 2exp (—?1)} (2.18)

according to Eq. 2.13. A 7/2 RF pulse is then utilized to rotate M, (Ty) to
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z-y plane, the intensity of which is detected by the amplitude of the FID

signal.
T
Lp--mmmes JREE W E W W any
2 _o§ -
YID E 0 s
RF § = N H
Tw ¢ y
02 04 06 08 1
Ty [s]
(a) (b)

FIG. 2.8: (a) Inversion recovery pulse sequence for measuring longitudinal relax-
ation time 77. (b) An example of 77 measurement of doped water with 77 = 105
ms.

A series of FID signals within variable lengths of 7y can be acquired
and T} can be extracted from these data points (An example dataset shown
in Fig. 2.8 (b)). Between two successive measurements with different Ty
times, a repetition time of 57} needs to be satisfied in order to recover to
thermal equilibrium for the spin system. This condition leads to a time-
consuming acquisition for 77 measurement. Rapid encoding methods, for
example suggested in [32], can be implemented to record the evolution
of M, by using small tip angle pulses. The details and application of this
technique will be discussed in Chapter. 5.

In order to study 75 relaxation, a classical pulse sequence, Carr-Purcell-
Meiboom-Gill (CPMG), can be utilized [33, 34]. It is developed based on
spin echo pulse sequence and the pulse programme is shown in Fig. 2.9 (a).
By applying 7 pulse in a repeated way, a series of successive spin echoes
can be recorded and 75 information is stored in the peak decay of the spin

echo train.
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B

RF

01 02 03 04 05 06 07
t [s]

(a) (b)

FIG. 2.9: (a) Pulse sequence for transverse relaxation time 75 measurement. (b)
An example dataset measured from doped water sample with 75 = 100 ms. The
black curve is the amplitude attenuation of the acquired echoes from CPMG pulse
sequence, which is compared with a reference FID signal with red color here.
A relative slow decay rate of black curve as compared to red one indicates that
Ty > T3

The acquired echo intensities can be found in Fig. 2.9 (b) and follow:

M(n-27) = My - exp (—” ' 27) (2.19)
15

where n is the number of the acquired echoes and 27 is denoted to be
Tx which is named as the echo spacing of CPMG pulse sequence. The
attenuation of CPMG signal, which is characterized by 75, arises from spin-
spin interactions due to the vibration and rotation of neighboring spins. It
may be additionally affected by translational diffusion of molecules within
the field inhomogeneities. Therefore, an echo spacing 7% as short as NMR
probe can accept is normally adopted in CPMG pulse sequence in order to

minimize the influence of molecular diffusion in field inhomogeneities.

Compared to FID signal, CPMG echo train allows one to study the re-
laxation properties in a more approachable way without the influence from
the inhomogeneities of magnetic fields (see in Fig. 2.9 (b)). Therefore, it is

extensively applied in many fields. It is even robust to extract the transverse
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relaxation properties of the spin system in some extremely inhomogeneous

cases by using this technique [35].

2.2.4 Diffusion

Diffusion is the molecular displacement of particles (spin-carrying mo-
lecules in this thesis). There are two types of diffusion. One is called
transport diffusion related to the concentration differences in the neigh-
boring sections. Another one is self diffusion due to the interaction of the
molecules undergoing thermal motion. This process is characterized by self-
diffusion coefficient D. This characteristic parameter reflects the mobility
of molecules and therefore can be used to identify the fluid compositions.
We concentrate the study of this thesis on self-diffusion.

The mobility of molecules is expressed by the propagator Ps(r, |1, ).
This function describes the probability of a particle starting off at r and
being located at r’ after time ¢ later. In a system with a large number of
molecules, the averaged propagator theory relates to diffusion process
by using diffusion equation (Fick’s Second Law) 9P, /0t = DV?P, and its

solution along a certain axis (e.g. z) is given as [36, 37]:

— 1 22
Py(z,t) = it exp {_E} (2.20)

with an initial condition of zero displacement for the molecules P,(z,t) =
§(z) and boundary condition Ps(z, ©) — 0 where O is the diffusion obser-
vation time when z — oo.

PFG-NMR is a unique technique that measures directly the probabil-
ity distribution of molecular displacements within the samples, averaged
over each individual starting point. As seen from Eq. 2.20, this measured
averaged propagator, or its second moment, so-called mean square dis-
placement, scales to diffusion coefficient value of the molecules D. Thus, D

values can be extracted from PFG-NMR experimental results.
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Two magnetic field gradients with a duration of  and separated by a
time interval of A are used in order to detect the molecular displacement. ¢
is narrow enough here so that the molecular diffusion during this period is
negligible [38]. A phase shift of spin-carrying molecules during A can be
recorded using this gradient pair. The net phase shift will be zero for the
molecules with zero displacement and would be v6GZ for the molecule
with a displacement of Z along the applied gradient GG. Therefore, the
detected NMR signal as the ensemble average would be the integral over
the phases of spin-carrying molecules considering their probability to be

located in a certain part of the sample:
M(G,A) = My, / P,(z,t) exp [iv6GZ] dZ. (2.21)

Here, Z is the molecular displacement along the applied gradient dir-
ection (z-direction here). Solving Eq. 2.21 using the expression of P,(z,t)
given in Eq. 2.20, the measured PFG-NMR signal will be:

M(G) = My - exp [—7*G*6*DA] (2.22)

where the exponential term can be corrected to exp[—72G?6>D(A — §/3)]
considering a finite gradient duration. PFG NMR is generally based on the
Pulsed Gradient Spin Echo (PGSE) [39] or the Pulse Gradient STimulated
Echo (PGSTE) [40]. An example of measured PGSE signals in three liquids
with different self-diffusion coefficients are presented in Fig. 2.10 (b).
There are two advanced NMR methods detecting mean square displace-
ment and further analyzing diffusion coefficient in a one-shot measurement.
One is implemented by designing a second order field with linear gradient
(rather than constant one) across the sample. The data points with different
G-values can be acquired in parallel from the segment volume of the sample
resolved by imaging method and D can be extracted according to Eq. 2.22
[41]. Another approach is named as Multiple Modulation Multiple Echoes
(MMME). By adopting a customized phase cycling, this method selects the
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FIG. 2.10: PGSE pulse sequence (a) and the experimental datasets in eth-
anol(magenta (), water (red UJ) and acetone (blue A)(b). The straight lines fitted
from the datasets stand for the results of D being 1.14x107% m?/s, 2.31x107°
m?/s and 4.58x107? m?/s in ethanol, water and acetone at 25 °C, respectively.

independent echo pattern along the acquisition time period. Each echo is
sensitive to a certain coherence pathway” in spin dynamics which links to
diffusion with a corresponding factor. The modulation of those echoes and
the fitting of the echo amplitudes yields diffusion information [44].

2.2.5 Magnetic Resonance Imaging

The principle of reconstructing a spin density map using NMR and
its Fourier relationship between the spin density and the acquired NMR
signal was reported in the early 1970’s [45, 46]. This imaging technique
was then widely referred to as Magnetic Resonance Imaging (MRI) and is
used as a routine approach in health care and in clinical environments. It is
furthermore used in many research disciplines, such as medical, biological
and material sciences [38, 47, 48].

In order to take a “shoot” of an NMR image, a special designed magnetic

3A coherence pathway is the sequence of coherence orders for the magnetization
evolving through the experiment. All NMR measurements start with zero order coherence
(z-direction magnetization) and should end with a coherence order of -1 [42, 43].
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field, normally linear with a constant gradient, is required and applied
across the sample. By using this, the Larmor frequency w of the regional
spins depends on the local magnetic field strength, therefore the spatial
spin density is labelled by w. To simplify the notation, we address the 1D
case in this context. As a result, the local w is expressed as:

w(z) =vBy + gz (2.23)

where g is the magnetic field gradient applied along = direction. Thus, the
detected NMR signal from an elementary volume within a slice with a
length of dz would be:

dM(t) x &(z)dz expliw(z)t] (2.24)

where £(2) is the spatially distributed spin density and the desired value one
wants to obtain from the MRI measurement. By neglecting 75, in Eq. 2.23
(since it only introduces a global but constant phase factor), the acquired
signal for an ensemble of elementary volumes with local frequencies can

be expressed as:
M(k) = / £(2)e™ = dz (2.25)
where k is introduced as a wave vector and equals to ygd /2.

Since k is the reciprocal space of z in Eq. 2.25, the proton density £(z)

can be determined from the measured signal M (k) and is expressed as:

£(z) = / M (k)e™ ™= qf (2.26)

by using well-known Fourier transform (details of data processing will be
discussed in Sec. 2.5). As a result, the signal M (k) and proton density £(z)
are mutually conjugate, which is the fundamental relationship of NMR
imaging [49].

To encode the spatial position, MRI is generally based on either fre-
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quency or phase encoded imaging (shown in Fig. 2.11). A magnetic field
gradient is applied during signal acquisition for frequency encoded ima-
ging, ensuring spatially distributed resonance frequencies which return
the image of the sample upon Fourier transform of the acquired MRI sig-
nal. The Field Of View (FOV) for this imaging method is determined to
be: 27 /vgAt, where g is the gradient strength and At is the time interval
between neighboring acquired points (aka dwell time) [6, 38, 48]. In order
to obtain an image using the phase encoded MRI method, a set of gradients
within variable amplitudes is applied during a fixed time period ¢ before
acquisition. This returns a set of experiments with varying phases in the
acquired MRI signal (only the echo amplitude is needed), which again
provides an image after Fourier transform. In this case, the FOV is determ-
ined as M7 /Y gmaxd With gmax being the maximum intensity of the phase
gradient. The imaging resolution Az is FOV/m, where m is the number of
acquired points in frequency-encoded imaging and the number of gradient
steps in phase encoded imaging, respectively [38, 48, 50].
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FIG. 2.11: (a) One-dimensional frequency-encoded imaging pulse sequence. (b)
One-dimensional phase-encoded imaging pulse sequence.

Since the spatial information can be encoded in a one-shot signal acquis-

ition under fixed amplitude of the imaging gradient, frequency-encoded



26 CHAPTER 2. NMR FUNDAMENTALS

methods are generally faster as compared to phase-encoded. However, 75
effects will irreversibly impact the obtained imaging profile during the ac-
quisition time, leading to the absence of signal with short T, relaxation time.
The phase-encoded method on the other hand uses short signal acquisi-
tion time at the cost of experimental time. As a result, it minimizes image
distortion due to field inhomogeneities from external or induced magnetic
tields, and can therefore offer more accurate imaging profiles. Nevertheless,
both methods can be employed and combined for high-dimension imaging
considering the time efficiency and accuracy [38, 51].

2.3 Multi-dimensional NMR techniques

Various multi-dimensional NMR methods have emerged allowing for
much more detailed insights of the sample properties. According to their
pulse sequences and data processing methods (detailed discussed in Sec-
tion 2.5), the developed multi-dimensional NMR techniques can be classi-

tied into three major categories (shown in Tab. 2.1):

e Fourier-Fourier NMR: Oscillatory NMR signals are naturally ana-
lyzed using Fourier techniques. In this context, multi-dimensional
COrrelation SpectroscopY (COSY) have been widely used to under-
stand the structure of macromolecules, such as protein [52]. Other
experiments obtaining oscillatory datasets, such as Velocity EXchange
SpectroscopY (VEXSY), Positional EXchange SpectroscopY (POXSY),
multi-dimensional propagators, observing the molecules velocities
or displacement exchange in a different sub-ensemble, are also parts
of this category [53-57]. Furthermore, by observing the molecular
motion during variable time intervals in local induced magnetic field
exchange experiment, molecular migration and heterogeneity inform-
ation can be investigated [58-60]. In MR imaging context, frequency
and phase encoded methods are normally combined with slice selec-

tion. This encoding protocol yields multi-dimensional k-space data,
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therefore provides 2D /3D imaging [38, 48]. In order to overcome
the limitation of the imaging resolution in k-space, emerging multi-
dimensional g-space imaging can increase resolution down to ym by
utilizing diffusing molecules as imaging agent [61, 62].

e Laplace-Laplace NMR: Signals acquired in relaxometry /diffusometry
experiments normally attenuate exponentially and the corresponding
data processing approach operates in the space referred to as Laplace
domain (detailed given in Section 2.5.2). Plenty of multi-dimensional
NMR experiments have been developed based on their 1D coun-
terparts. They can be categorized into two major sorts, correlation
and exchange approaches. Multi-dimensional correlation experiments,
such as Relaxation-Relaxation Correlation SpectroscopY (RRCOSY),
Diffusion-Relaxation Correlation SpectroscopY (DRCOSY), Relaxation-
Internal gradients Correlation SpectroscopY (RICOSY), Diffusion-
Relaxation-Internal Gradient Correlation SpectroscopY (DRICOSY)
and Diffusion-Diffusion COrrelation SpectroscopY (DDCOSY), couples
multiple NMR or NMR-related properties in one experiment, mak-
ing it easier to understand the dependence and correlation between
those parameters [9, 63—-68] (details shown in Chapter 4). Recently, a
novel framework of multi-dimensional RRCOSY technique, denoted
as eigenmode correlation experiment, has been developed and ap-
plied in porous media to obtain pore morphology and pore surface
information (details in Chapter 4). Multi-dimensional exchange ex-
periments, such as Relaxation EXchange SpectroscopY (REXSY) and
Diffusion EXchange SpectroscopY (DEXSY) provide insights on the
pore structure through the migration of spin population over mixing
time [32, 69, 70].

e Fourier-Laplace NMR: By considering the merits of Fourier and
Laplace NMR methods, these two techniques are easily married in

the context of spectroscopy/imaging with relaxation/diffusion. For
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instance, Diffusion-Ordered SpectroscopY (DOSY) and Relaxation-
Relaxation-Ordered SpectroscopY (RROSY) yield diffusion and re-
laxation correlation maps of molecular compositions within differ-
ent chemical shift values [32, 71, 72]. Propagator-resolved relaxa-
tion and REXSY methods monitor the molecular translational dis-
placements in certain size range in flow experiments and track how
far fluid molecules move during the experimental mixing time to
estimate critical pore morphologies [73-75]. Lastly, by combing
the k-space imaging method with relaxation/diffusion and multi-
dimensional RRCOSY/RDCOSY measurements,spatially-resolved
relaxation/diffusion profiles and RRCOSY /RDCOSY maps provide
local information on pore structure or fluid distribution [76-80].

2.4 Instrumentation

The basic components of an NMR analyzer are shown in Fig. 2.12. It nor-
mally consists of a probe, a console and a computer. The probe has a magnet
for generating B field for polarization, a RF coil providing B field to ex-
cite spin system and later detecting NMR signal, and optionally gradient
layers applying pulsed field gradients for imaging or diffusion measure-
ments. The magnet can be permanent or super-conducting. Depending on
the functions and application, the magnet strengths are normally 0.2 T~
3.0 T for imaging [6, 47, 48, 88], 1.0 T~ 21.0 T for spectroscopy [89, 90] and
0.012 T~ 9.4 T for relaxometry [7, 16, 69]. There exists many options for
RF coils depending on the measuring patterns, such as solenoid, bird cage,
saddle and surface coils, etc. The RF coil is tuned to the required NMR
frequency and matched to 50 €2 impedance, in order to deliver the max-
imum RF power from the transmitter to the probe and the maximum signal
received from the probe to the receiver. The tip angle o can be adjusted by
the strength of B, or the duration ¢, according to Fig. 2.3. In this thesis, we
adapt o by modifying the strength of B;. This is achieved by controlling



29

2.4. INSTRUMENTATION

521 ASXHY paajosaz-1oyededor g
¥z “c/] UOISNJJIP IO UOT)eXe[dI (1T
/ m _
WMWM“ sonEWMO\WMH%mx@EM paajosar-A[renyedg ode[deT]-IaLmog
-UOT}exe[d
[z mmw_\mm_ mM%MuMM.ﬁm%DM paajosar-Adodsondadg
[0Z "89] Asxada SSueyoxy
[69 “c€l ASXHY . .
[79] Asodaa PORICETRITET
[98-¥8 V¢l ASODIIA ‘ASODIA ‘ASOD¥A UORR[RLIOD
[€8 ‘28 “€9] ASODTY
[09-8¢] U pley dnpudew paonpuy SO
[£6-¢5]  AndwpoaA ‘10yededoi ‘ASXOd ‘ASXHA K
[18 29] Sureur aoeds-b SuSew TOLMO-I9HNO]
[8% “s¢] Surewr ooeds-y : I
[z¢] ASOD Adoosoxadg
OUDIDJY reyuswrrodxy SuIa)| sar1039a3e))

*sanbruyoa) YIAN [eUOISUSWIp-HNU JO Sa110331e)) [T d[qeL



30 CHAPTER 2. NMR FUNDAMENTALS

the current strength in RF coil delivered by the RF power amplifier of the
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amplifie L
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FIG. 2.12: Schematic of an NMR analyzer.

The console or spectrometer which is connected to the probe is operated
by the computer. Controlled by the pulse program from the computer,
transmitter sends the excitation impulses generated by a synthesizer inside.
After that, these pulses are amplified to a required excitation power level
by the power amplifier. Then the energy is transmitted to the RF coil to
irradiate the sample via a transmit-receiver switch, the so-called duplexer.
Through another amplifier to magnify the induced signal from the RF
coil to a receivable level and a Analogue-to-Digital Converter (ADC), the
receiver will obtain a quadrature signal with both real and imaginary parts.

The gradient modulator provides the time-dependent currents and
drives the gradient layers to generate additional magnetic fields in the
sensitive volume. Those fields with well-defined gradients can be widely
utilized, such as to optimize the homogeneity of the major static field B,
to encode the position information in imaging experiments or/and observe

the molecular motion process in NMR diffusion measurements.

4Denoted in deciBels (dB) unit, the difference of 6 dB would be a ratio of 107%-1%6 ~ .25
for power attenuation, which approximately halves the intensity of B;. This relationship
is normally kept in /2 and 7 pulses in this thesis.
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2.5 Data processing

There are mainly two types of data patterns exhibiting in NMR experi-
ments: oscillatory and exponential. Therefore, the corresponding methods
treating each type of them and extracting the involved NMR properties are
discussed in this section.

2.5.1 Fourier Transform (FT)

A generalized expression of oscillatory signals from NMR spectroscopy
or imaging experiments can be given in Eq. 2.27 as:

+o0
ft) = \/%/ F(w) exp(iwt)dw (2.27)

where F'(w) is the distribution function in the reciprocal space. Depending
on the cases, it could be specified to NMR spectra or spatial spin density
distributions (as discussed in Eq. 2.25 and 2.26). In order to obtain F'(w),

the “time-domain” signal f(¢) will be transformed into “frequency-domain’

by using Fourier Transform (FT):
1 +o00
F(w) = Nors /OO f(t) exp(—iwt)dt. (2.28)

Here, the terms of “time-domain” and “frequency-domain” have wider
meaning. Taking NMR spectroscopy in chemical analysis as an example,
the acquired FID signal is a “time-domain” dataset and the obtained nuclei
spectrum can be considered as the data along “frequency-domain”. A
similar case of such a data pair can be found in an imaging dataset (shown
in Fig. 2.13). As discussed in Eq. 2.25 and 2.26, the time-domain data refers
to k-space data and it can be transformed into frequency-domain which

relates to real space.
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FIG. 2.13: A two-dimensional k-space data measured from phantom (a) and
its FT imaging result (b). Here k-space signal and its transformed image can be
considered as “time-domain" and “frequency-domain” datasets, respectively.

2.5.2 Inverse Laplace Transform (ILT)

In relaxometry or diffusometry measurements, the acquired signals
normally follow multi-exponential decay and their expression can be gen-

eralized as:
g(t) = /exp(—st)f(s)ds = /K(t, s)f(s)ds (2.29)

where ¢(t) is the measured NMR signal, f(s) represents the relaxometry or
diffusometry information, depending on the case, s can be self-diffusion
coefficient D or relaxation rates 1/71 2. K(t,s) is the kernel matrix with
an exponential form in the case of 1D relaxation/diffusion experiments or
multi-dimensional NMR experiments. This equation thus follows the form
of Laplace Transform (LT).

In order to obtain the relaxometry or diffusometry properties of the
materials discussed in Sec. 2.2.3 and Sec. 2.2.4, the data processing in this

problem consists of finding the function f(s) given a continuous kernel
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function K(¢,s) and a function g¢(¢). This process is known as Inverse
Laplace Transform (ILT) and falls into the context of a well-known “Fred-
holm integrals of the first kind”, which is typically ill-posed °.

To solve this problem in a stabilized way, it is typically more convenient
to decompose ILT problem into transforms consisting of linear functions. A
general approach called optimization is applied in this context in the first
step:

A

f = argmin [|g — K f|]? (2.30)
f=0

where || - - - || is the /; (Euclidean) norm. Many methods were developed to
solve this optimization problem, such as NNLS [91], Maximum entropy
[92] and Tikhonov regularization [93]. In this thesis, we focus on using
the last one. Tikhonov regularization offers a more refined resolution by

attaching an extra smooth term. The expression is given as:
f = argmin lg — K f1I* + lLFI1? (2.31)

where )\ is smoothing parameter applied to the final solution. The smooth-
ing degree is controlled by tuning A that acts as a weight on the significant
singular values of kernel matrix K. Therefore, the perturbation due to
smaller singular values in the final solution can be suppressed. The choice
of using an optimized ) is critical. An overestimated A will introduce too
much interference to the final solution whereas an underestimated one is
inappropriate to stabilize the discrete solution. Thus, many methods, such
as L-curve, S-curve, can be utilized to determine an optimized A over a
pre-defined range of A values. After fixing the A value used in Eq. 2.31, the

5The problem R of determining a function f(s) € F through a given function g(t) € G,
f(s) = R[s, g(t)] (where F and G are function spaces) is ill-posed if any of the following
conditions can not be satisfied:

A. For every function g(t) € G, there exists a solution f(s) of the problem.
B. The solution f(s) is unique for a given g(¢).
C. The dependence of the solution f(s) on g(¢) is continuous in the space of F and G.
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distribution function f can be obtained using Butler-Reeds-Dawson (BRD)
method [94].

The steps of obtaining f are achieved by solving K'(K - K’ + A -1)7'§
according to Eq. 2.31:

1: After choosing ), a vector ¢ = (K - K’ 4+ A - I)"!§ can be calculated

first.

2: Using this ¢ vector, a temporary solution f can be obtained. There
are possibilities of existing negative elements in vector f, which is
meaningless in physical concept. Therefore, a non-negative restraint

needs to be employed in next step.

3: Locating the negative elements in f and zero-filling the corresponding
elements in the matrix K’. An updated vector ¢’ can be calculated

using the new matrix K.

4: ITterate step 3 until the difference between neighboring obtained c
vectors is smaller than a pre-set threshold value. Then the final con-
vergence solution f = K'(K - K’ + X -1)"1.

For two-dimensional Laplace experiments, the measured g would be a
matrix with large size corresponding to kernel matrices K7 and K. In order
to obtain f in an appropriate way, a compressed approach is implemented
on g by using truncated kernel matrices K, and K. Considering the import-
ance of the information contained in kernel matrices, one can truncate them
using Singular Value Decomposition (§VD) method. These under-sized
kernel matrices K and K, are employed to compress the acquired signal
g to be g, the size of which depends on the number of truncated singular
values. Therefore, g becomes a matrix with much smaller size as compared
to g and this multi-dimensional data set can be rearranged to an 1D case.
Here, K’ = K, ® K,, where ® denotes the tensor product [84, 95-99]. An
example of 2D time-domain data from doped water sample and its ILT

result was shown in Fig. 2.14.
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FIG. 2.14: (a) D-T5 experimental data from doped water sample. A combination
pulse sequence of PGSTE with CPMG is used to acquire the data. The data size is
35x3000. Gradient G linearly ramps up from 0.006 T/m to 0.25 T/m in 40 steps.
Echo spacing 7§ is 200 ps, and echo number is 3000. Only four data traces are
shown here. (b) The correlation function F(D, T,) distribution. The horizontal
dashed line represents a self-diffusion coefficient value of 2.3x107% m?/s at 25°C.

The limitation, resolution and uncertainty of the results yielded from
ILT algorithm were also discussed [100-105] and new methods in the frame
of ILT [106-113] were further developed to suite some particular cases.
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Chapter 3

Rock Core Analysis using NMR

NMR techniques specialized for petrophysical application are reviewed in this
chapter. Particular issues of performing NMR measurements in rock analysis are
addressed first. Many petrophyscial characteristics, such as porosity, pore length,
permeability, tortuosity and a dynamic flooding process can be easily obtained or
well described by using this non-invasive technique.

3.1 Particular consideration for NMR in rocks

3.1.1 Nuclear species

There are plenty of nuclei investigated in NMR rock core analysis. As
a major candidate, 'H is dominantly studied in rock core analysis since
hydrogen-rich fluids (water and hydrocarbon) are the most interesting
species in geological and geophysical contexts. Meanwhile, other nuclei
such as '*C [114, 115], **Na [8, 116, 117], "Li and "F [118], and hyper-
polarized noble gas '??Xe [119-121], are also utilized to provide distinctive
information, such as organic matter content, salinity and long-distance
heterogeneity. Because these investigations are based on “exotic” nuclei,
these methods can be considered as unconventional NMR protocols in rock
analysis. The details for these nucleus (including hydrogen) with their

37
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Larmor frequencies at 1 T, natural abundance and spin number are given
in Table. 3.1.

Table 3.1: Properties of nuclear species used in NMR rock core analysis. Data
adapted from [4, 48, 122].

Species Resonance Natural Spin number
frequency for 1T abundance I
field (MHz) (%)
'H 42.576 99.984 1/2
"Li 16.546 92.410 3/2
13C 10.705 1.108 1/2
YF 40.055 100.000 1/2
*Na 11.262 100.000 3/2
129X e 11.777 26.440 1/2

3.1.2 Magnet strength

The NMR magnets provide the By field and its strength determines
signal intensity in NMR analysis according to Eq. 2.9. However, rock
samples are complex regarding to solid purity, compositions, pore network
structures and saturating fluids. Such complexity will influence the actual
local magnetic field strength in the sample when the rock is exposed to the
magnetic field By. Therefore, it is essential to choose a proper magnet for
NMR petrophysical application.

Rock core analysis using NMR can be carried out for instance at high
magnetic field strength which are typical for clinical purpose (magnet
strength > 1.5 T and corresponding to 'H Larmor frequency > 64 MHz).
In this case, many imaging techniques developed for studying biological
tissue can be “translated” to the imaging of rock cores [123-125]. However,
extra consideration needs to be taken into account before performing MRI
on rock cores at such field strengths because image results may carry

artefacts due to the susceptibility contrasts between the solid grains and
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pore filling fluids. The existence of paramagnetic impurities in rocks will
introduce extra relaxation effects and thus deteriorate the imaging results.
Nevertheless, particular imaging protocols, such as SPRITE [126] and EPI
[127], are still successfully implemented and supply fluid presence and

structural information of rock cores.

(a) High-field (b) Interediate-field (c) Low-field

FIG. 3.1: NMR instruments that can be utilized for rock core analysis in Victoria
University of Wellington. The corresponding 'H frequencies are (a) 400 MHz, (b)
64 MHz and (c) 2 MHz, respectively.

With the extension and development of NMR techniques, low-field
NMR obtains wide acceptance in petropysical applications since it appeases
the interaction effect between rock cores and magnets. In this context,
there are mainly two ways to carry out NMR measurements regarding
their magnet layouts. The first one is similar to the typical high-field
magnet construction (outside-in, a magnet bore with sample inside) and
another one uses unilateral magnetic field, which is so-called inside-out.
The measured sample in the later pattern is not restricted by the available
volume of the magnet, therefore, obtaining more and more interests from
industry fields [16, 26, 35, 128-131]. In laboratory measurements, the first
layout normally adopts a magnet field strength of 0.05 T (corresponding
to 2 MHz 'H Larmor frequency, as seen in Fig. 3.1 (c)) since it is close to
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the field strength for NMR well-logging used in the oils field down-hole
measurements [128, 129, 132, 133]. As a result, experimental results from
laboratory can be used to calibrate the NMR well-logging data [89, 134,
135]. These measurements mainly rely on some robust methods, such
as relaxometry and diffusometry techniques. Imaging methods are still
possible, but mainly focused on 1D considering Signal-to-Noise ratios

(SNR) of the dataset and the measurement efficiency.

Recently, an intermediate-field NMR instrument (magnet strength ~ 0.3 T
and corresponding to 12.5 MHz 'H Larmor frequency) is recommended
and believed to be a promising choice for NMR core analysis, since it com-
promises between the requirements of relaxometry/diffusometry and MRI

protocols in rock cores [7, 8, 136].

It is worth mentioning that the huge “magnet”-earth (the field strength
18~65 uT, corresponding to 0.8~2.8 kHz 'H Larmor frequency), is used in
Magnetic Resonance Sounding (MRS) for exploiting hydraulic formations.
Commonly, T is measured in this context. More advanced methods and
instruments for acquiring 7, and 7} curves are developed recently [137-
143].

3.1.3 Internal magnetic field 5;,

When performing NMR analysis on fluid-saturated rock cores, there
will inevitably be local spatial variations in the magnetic field due to the
susceptibility contrast between sediment grains and pore filling fluid. This

spatial variation is named as internal magnetic field B;,, [5, 144].

In order to understand the spatial variation and dependence of this
induced magnetic field in pore space, rock core can be “digitized” to indi-
vidual sediment grains. Considering a spherical grain with susceptibility
of x, in the fluid with susceptibility of x, the magnetic dipole moment of

this grain at the static magnetic field B, can be approximately expressed as:
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4 ~
m = §7TR35xB0k (3.1)

where dx = |x, — xs|, denoted as the susceptibility contrast between the
grain and the fluid. R is the radius of this grain.

The induced magnetic field according to this magnetic dipole moment
m at a distance of r can be calculated as:

3(m-1)r — [r’m
rf?

B, (r) = (3.2)
Since the magnitude of this locally induced field, |B;,|, are far smaller
than By, in the NMR context we only consider the component of B;,, along
By, and referred to as B;,,.
For the case of dense packed grains, the induced magnetic field B;,, in
the particular position in the pore space can be computed as a superposition
of the induced magnetic field from each individual grain (see in Fig. 3.2).

Therefore, it can be expressed as:
By =Y Bl (i) (3.3)
k

where 74, is the distance between the k-th grain to the calculated position.
Therefore, as shown in Fig. 3.2, the intensity of internal magnetic field B;,, is
relatively higher in the area close to the corners of pore voids as compared
to the centre of the pore space.

People took a lot of efforts to investigate the dependence of B;,, during
NMR experiments [85, 86, 145-147]. These computational or experimental
work suggested two major features of B;,. Firstly, B;, is proportional to
the applied magnetic field By. This is easy to understand from Eq. 3.1 and
Eq. 3.2. As aresult, this intrinsic field will affect interpreting NMR results
in rocks particularly at high field strength magnet, such as spectroscopy
[148], transverse relaxation time/pore geometry [149-151] and imaging

[48], and needs to be suppressed by novel pulse sequence and strategies
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Solid matrix : Solid grain

Pore fluid _~

FIG. 3.2: Geometry of local magnetic fields in rock pore space. Note that the map
color close to the middle section is shallower, which represents a relatively lower
intensity of internal magnetic field B;,, compared to the area close to the corners
of pore voids.

[148, 152-156]. Secondly, the variation of B;,, occurs primarily over the pore
length scale. Therefore, this inherent field can be employed as a “finger-
print” to determine the pore length scales [157, 158] and to characterize the
heterogeneity of the structural compositions [159, 160].

3.2 Porosity ¢

Porosity ¢, or pore volume fraction, is an important parameter determ-
ining the fluid reserves in reservoirs [161]. It is defined by the volume
ratio of the void space to the rock sample, therefore, is always expressed in
percentage. According to Eq. 2.9, NMR signal arises from the fluid spins
bearing in the open or connected pore voids and this phenomenon can be
straightforwardly utilized to determine porosity. As a result, the porosity
obtained from NMR technique is called “effective porosity" rather than
“total porosity" [4] as shown in Fig. 3.3 (a). In the mean time, a calibration
sample needs to be used to quantify the signal amplitude in the unit volume.
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The porosity calculation of rock cores from NMR signals is described as:

b= So(rock) (3.4)

; NS(rock) — V(rock)
So(calib) - Ns(zglcib) ' V(Zglcib)

where Sy represents the initial amplitude of NMR signal, which links to
the net magnetization M,, and therefore is proportional to the amount of
fluid. VS is Number of Scan during the experiments and V' stands for the
sample volume. An example of obtained NMR porosities comparing to
weighing porosities in rock cores is shown in Fig. 3.3 (b). The correlating
dots are mainly located along the diagonal line within the dashed lines
representing a range of £1 porosity unit (p.u.), which gives an indication
of NMR reliability in rock core porosity measurements.
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FIG. 3.3: (a) Schematic of pore network diagram. Because of the NMR principle,
the “dead” pores isolated from the saturating fluid contribute no NMR signals.
(b) Comparison of weighing porosity with NMR porosity in 1.5 inch rock cores
saturated with distilled water. The dashed lines indicate a range of +1 porosity
unit (p.u.).
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3.3 Porelength a

Pore length is a critical structural parameter of porous rocks. The theory
of using NMR to determine this dimension mainly relies on Bloch-Torrey
equation, which describes the liquid molecules diffusion in pore space and
the interaction in pore surface area [162]. A customary solution of the Bloch-
Torrey equation is suggested in terms of a serial expansion of eigenmodes
[163, 164]. These can be categorized into ground and high excited modes
according to their spatial dependence, which are sensitive to the relaxation
of pore fluid spins at the pore surface and their diffusion in the pore space,
respectively. Since both mechanisms relate to pore morphology, according
methods based on these two eigenmodes are developed to determine the
pore length a independently.

3.3.1 Surface relaxation

Because of the presence of paramagnetic impurities, the spin relaxation
is accelerated near the pore walls, which is referred to as surface relaxation.
This concept actually corresponds to the ground eigenmode (with an index
of n = 0) of relaxation in the diffusion equation [163], which characterizes
the interaction of saturating fluid spins in the vicinity of the pore surface
(as shown in Fig. 3.4 (a)). The decay rates of the measured signals according
to surface relaxation will be given as [165]:

%,2 ~ pra- ; (3.5)
where S/V is the surface-to-volume ratio which describes the pore size a
assuming a certain pore shape. p is the surface relaxivity at the solid /fluid
interface. Normally p can be obtained by matching 1D 7; (or 75) distribu-
tion with the pore length scales measured from Mercury injection, time-
dependent diffusion coefficients or BET gas absorption [166—170]. Other
advanced techniques determining p will be discussed in details in Sec. 4.3.
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Nevertheless, the signal attenuation ascribed to surface relaxation can be

acquired using the pulse sequences introduced in Sec. 2.2.3.

10°  10° 10" 10 10'
Relazation Time [s]
(a) (b)

FIG. 3.4: (a) The notation of fluid spins experiencing surface relaxation close to
pore wall area. (b) An example of T} (red solid) and 75 (blue dashed) relaxation
time distributions in limestone at 2 MHz NMR measurement. The comparable
distributions agree with Eq. 3.5.

Note that the measured magnetization normally exhibits multi-exponential
decay in rock samples since there always exists broaden pore size distribu-
tion ranging over several length orders. As a result, the dataset is usually
processed using ILT algorithm as discussed in Sec. 2.5.2. Afterwards, relaxa-
tion time distributions can be obtained in laboratory or in-situ well-logging
measurements (as seen in Fig. 3.4 (b)) and these results will indicate pore
size distributions of rocks [5, 13, 14].

Compared to T} acquisition, 75 measurements in rock cores are more
rapid, however, they are also more sensitive to the induced internal mag-
netic fields B;,, especially at high B, field strength as indicated in Sec-
tion 3.1.3. An efficient calibration strategy for obtaining reliable 75 distribu-
tions at high-field NMR rock measurements is suggested in [150].
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3.3.2 High relaxation eigenmode

The pore length distributions from the surface relaxation measurements
are always convoluted with surface relaxivities p, leading to be an indirect
protocol for determining pore size. Since higher relaxation eigenmodes
(with mode index n > 0) are ascribed to the diffusion process of spin-
carrying molecules in pore space, it provides a straightforward access to
pore length a. However, the signal intensity in relaxation measurement
is dominated by the ground eigenmode and the contribution from high
eigenmodes are too weak to be detected. As a result, it is essential to
enhance the weights of high eigenmodes before extracting the pore length
a.

One relevant technique was developed depending on the inherent mag-
netic fields B, in pore space [157, 158]. As concluded in Sec. 3.1.3, the
spatial variation of B, acts primarily over the pore length. Within a well-
defined encoding period, the magnetization profile in pore space can be
modulated similar to B;,,. Furthermore, the evolution of this modulated
magnetization maybe recorded and the contributions from high eigen-
modes during this procedure largely enhanced. Consequently, the decay
rates from the contribution of high mode can be transformed to pore length
scales. A more detailed explanation of this technique will be discussed in
Sec. 4.1.1 in Chapter. 4.

3.3.3 Other methods

There are some other NMR methods yielding pore length information
of rock cores. By observing the molecular mobility in confining pore space,
the restricted diffusion at variable observation time periods delivers a
mean surface-volume ratio [166, 171]. Another method reconstructs pore
length scales from grain size distribution obtained from Bayesian magnetic
resonance approach [169]. Furthermore, NMR cryoporometry has ability

to obtain the pore size ranging from nm to ym via observing the depressed
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melting point of liquid confined in pore space [172-174].

3.4 Heterogeneity

Many types of heterogeneities are adopted to describe the variation of
petrophysical property in different scales, such as microscopic (pore/grain-
scale) heterogeneity, mesoscopic (well-scale) heterogeneity and macro-
scopic (inter well-scale) heterogeneity [1]. In this thesis, we concentrate on
the microscopic heterogeneity.

Microscopic heterogeneity provides the clues about the processes of
sediments deposition and subsequent compaction, cementation and/or
dissolution during the geological evolution period. Variations in this scale
largely influences some petrophysical characteristics, such as permeable
and mechanical behaviors. Two general features, pore-network structure
and mineral compositions, are normally associated with microscopic het-
erogeneity.

Direct NMR methods to evaluate the structural and compositional het-
erogeneity of rocks are by labelling the broadness of pore length and grain
size distributions [169]. The wider of these scales, the more heterogeneous
pore system or solid matrix would be. Furthermore, multi-dimensional
RRCOSY and RREXSY methods can also be utilized in a higher domain,
to obtain the pore-network hierarchy and the pore-to-pore connectivity
in different regimes [63, 69]. Moreover, solid composition variation over
certain length scales can be estimated by correlating longitudinal relaxation
distribution with susceptibility contrast spectrum in 2D correlation maps
[160].

Meanwhile, the heterogeneity information can be gained from vari-
ous MRI techniques by visualizing the spatial presence of fluid and solid
components in the MR images [50, 78, 123-126, 175]. An example of MR
image in a heterogeneous rock sample is given in Fig. 3.5 where the local

heterogeneity details can easily be recognized.
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FIG. 3.5: A heterogeneous rock cores with red-brown quartz bedding plane
structure (a). 2D spin echo image of this rock plug (b). The result is 128 x128 with
a resolution of 1.2 mm. The unit of the MR imagine is ¢V /kHz.

3.5 Tortuosity 7' and permeability «

Tortuosity 7' describes the sinuosity and interconnectedness of the pore
channel/network [176]. As can been seen in Fig. 3.6 (a), it is typically
defined by the square of ratio between sample length L and flow-path
length Ly: T = (L/Lt)*.

Because of the sensitivity to spin-bearing particle diffusion process,
NMR measurement can yield tortuosity information of porous materials.
When liquid/gas molecules diffuse in the pore space, their mobility will be
restricted by the boundary of pore walls. The effective diffusion coefficient
is a function of the observation time and it can be measured by PFG NMR

techniques. The attenuation of the apparent diffusion coefficient would
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follow the two-point Padé approximation [15]:

4vDoA S i ( 1 > DoA

TV Dol
% 19f 4/DoAs S ~ 01 DoA’ (3.6)
(1—F—¢>+ﬁv+<1—p—¢> Dof

where A is the diffusion observation time, I is the electrical formation
factor and defined by Oprine / Obrine-saturated rock- ¢ is the sample porosity. The
product of F and ¢ refers to the tortuosity of rock T. /D0 is the hetero-
geneity length scale of the medium, which is expected to be proportional
to the grain size. It will be typically much larger than the diffusion length
V6DyA in rocks. As can be seen in Fig. 3.6 (b), the tortuosity T' can be
readily extracted by fitting these time-dependent diffusion coefficient data
points.

1 2
V6D)A  [m] x 10"
(b)

FIG. 3.6: Tortuosity definition (a) and normalized time-dependent diffusion
coefficient of sandstone (red triangle) and limestone (blue diamond) core plugs
plotted versus diffusion length /6Dy A (b). A is diffusion observation time which
is varied during each steps of this experiment. Solid curves are Padé approximant
fitting Eq. 3.6. The obtained 7' is 4.88 in sandstone and 1.84 in limestone.

Permeability x characterizes the ease of fluid flowing through porous
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media and can be conceptually thought as the cross-sectional area of ef-
fective pore channels [161]. Therefore, permeability has an unit of length
squared .

Within the extensive NMR research work in porous media, it is believed
that permeability strongly links to porosity ¢ and relaxation time (which
relates to pore size) of porous materials [5, 16-18]. Typically, there are two
empirical models utilized to predict permeability from NMR experimental
results. The first one is suggested in [19]:

k=c-¢t [E} (3.7)

BVI
where c is an empirical factor related to the lithology of rocks, FFI is Free
Fluid Index and BVI is Bulk Volume Irreducible of fluid in porous materials.
As shown in Fig. 3.7 (a), the fractions of these two volumes can be obtained
by comparing NMR relaxation distributions before and after the centrifuge

experiments.

Another pore system model is suggested in [20-22] and defined by:
k=c-¢* T} . (3.8)

As indicated by a dashed line in Fig. 3.7 (b), T, is the logarithmic mean
value of the acquired relaxation distributions and is defined as:

logy (Tam) = 2= [Mogjf;o ) (3.9)

where M), represents the probability (amplitude) of the i-th 7, component.
Both models have been utilized in laboratory core analysis and can be fur-
ther adopted in down-hole NMR well logging to estimate in-situ formation
permeabilities.

There are plenty of other independent NMR method to characterize per-

!Common unit in petroleum engineering is Darcy or miliDarcy, 1 mD ~ 10~3um?2.
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meability of rock cores, for instance by means of time-dependent diffusion
[120, 177, 178], propagator and velocity measurements [179].
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FIG. 3.7: (a) Red curves are the relaxation distributions before centrifuge and
the blue curves are the results after centrifuge measurement, respectively. The
amount of FFI and BVI can be determined from the cumulative plateaus before
and after the centrifuge and used for the permeability estimation from Eq. 3.7.
(b) Permeability estimation from Eq. 3.8. Vertical dashed line corresponds to the
log-mean value of relaxation distribution.

3.6 Fluids identification and wettability

Fluid typing: Underground resources exploitation in petroleum, geo-
thermal and hydrological fields always involves multiple types of flu-
ids/gas. Therefore, it is important for petrophysicists to understand the
fluid types and their viscous properties. A common NMR technique to
identify fluids is 1D or 2D diffusometry since it is inherently sensitive to
the molecular mobility [9, 11, 24-26, 39, 40, 49]. Therefore, it allows one to
identify different fluids and quantify individual fluid saturation in rock
samples. Moreover, T3 /15 ratio can also be used as an indicator to identify
the fluid types [180].

Wettability is the tendency of a fluid to spread on and preferentially
adhere to or “wet” a solid surface in the presence of other immiscible
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FIG. 3.8: (a) Wettability defined by a contact angle 6. The yellow sphere and the
blue layer represent oil droplet and water film. 6y, 6, and 65 indicate the water-
wetting, mixing-wetting and oil-wetting, respectively. (b) 2D D-T5 correlation
distribution of an oil-bearing rock core after water-flooding experiment. The
horizontal dashed line represents a self-diffusion coefficient value of 2.3x10~?
m?/s. The slope dash line represents hydrocarbon correlation line of D =5 x 10719
T5. The water distribution exhibits a tendency of smaller D values with decreasing
Ty, which indicates the existence of water sinks close to solid surface and therefore
implies water-wet status of this rock plug.

fluids [181]. It is critical to have the knowledge of reservoir wettability at
hand because it influences residual oil saturation, relative permeability, and
capillary pressure. A popular laboratory indicator of wettability is contact
angle § measured in water-oil-solid systems as shown in Fig. 3.8 (a).

Traditionally, wettability of partially saturated rocks can be determined
by comparing either 7} or minimal diffusion-effect 7, distributions of fluid
measured in rocks with the result from bulk fluid (i.e., outside the rocks)
[182-190]. If the fluid has a comparable behavior inside and outside of the
rock core, it would be non-wetting fluid, otherwise, it will be a wetting-fluid

if it sticks to the surface of pore matrix and experiences surface relaxation
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effect. As a more comprehensive technique, 2D D-7; NMR correlation
result shown in Fig. 3.8 (b) indicates the fluid present in different regions
of the pore space and their interactions with the solid surface wall, thus
yielding the wetting status of rock samples [24, 25, 191].

3.7 Flooding process

Rock core flooding experiments are important to understand under-
ground fluid flow, saturation and recovery mechanisms. In order to per-
form flooding experiments in the laboratory, a specialized core holder with
strong and sustainable materials needs to be implemented first to maintain
the core plug in pressurized conditions.

In particular, some more special design requirements occur for NMR-
friendly rock holder in flooding experiments. Its body and other accessories
should be at least non-magnetic materials, such as polymer or ceramic, to
avoid distorting NMR signal [134, 192, 193]. Even though the holders could
be metallic vessels considering its relatively low cost, the induced eddy
currents need to be measured and removed from the acquired signal using
mathematical operation during the data analysis [194-199].

In order to provide the required temperatures for the loaded rock core,
a typical way is wrapping heating tapes around the rock core in the pres-
surized holder. However, this approach does not fit the NMR case since it
will perturb RF pulses and pulsed field gradients. Therefore, a special fluid
which does not contribute to the NMR signal should be used instead as a
confining fluid which circulates around the loaded sample. The pressure
and temperature can then be controlled via pressurizing and heating up
the confining fluid. A more detailed introduction about such instrument
set-up will be discussed in Chapter 6.

MRI techniques are routinely applied to visualize and quantify flow pro-
cesses in rock cores. To obtain “real-time” information, fast MRI techniques

which have been developed for medical diagnosis have been modified and
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adopted for petrophyscial applications [126, 127, 200]. Meanwhile, some
other means, such as flow propagator and relaxation time distributions are
employed to observe the fluid transport and saturation in rocks during
flooding process [74, 201-208]. While performing NMR measurements, dif-
ferent types of fluids and/or gases, for instance brine, CO; and deuterium
oxide D,O, can be pressurized and flooded through core plugs, in order to

study the recovery mechanism of reservoir rock cores [12, 209-220].



Chapter 4
Pore length and surface relaxivity

In this chapter, we lay out the theory needed for pore length scales and surface
relaxivity determination in rock cores. Pore size is measured relying on high
excited relaxation eigenmode in pore space. One-dimensional (1D) results from
different types of rock cores at two field strengths proved the feasibility of this
approach. Furthermore, the ground and higher relaxation eigenmodes can be
coupled and measured in 2D experiments, which provides the distribution of pore
length correlated to NMR relaxation times. Subsequently, surface relaxivities
of rock cores can be extracted from the obtained 2D eigenmode correlation maps
[82, 83].

4.1 Pore length determination

411 Review of pore length determination using the first

excited mode (n = 1)

When molecular diffusion happens within both volume relaxivity v and
surface spin absorbing wall characterized by p, the local magnetization

density m(r,t) in certain pore volume satisfies the following equation:

%m(r, t) = DV?m(r,t) — vm(r,t) (4.1)

55
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with a pore/matrix boundary condition of (7 - DVm + pm)|s = 0. Here
r is the spin position, D is the diffusion coefficient of the saturating fluid
and is considered spatially constant, and 7 is the normal unitary vector
outward pointing from the pore/matrix interface. This formalism is also
the fundamental of many NMR simulation tools in porous materials, such
as random walk [221, 222] and Multiple Correlation Function (MCF ) [164].

Eq. 4.1 is a typical Partial Differential Equation (PDE) if neglecting the
effect from bulk relaxation and the general solution can be obtained by
separating the variables r and ¢. The result is given as:

m(r,t) = Z Appn(r)e T2 (4.2)
n=0

where ¢,, are orthogonal, normalized eigenfunctions of the diffusion equa-
tion and 1/77', are the corresponding eigenvalues when the magnetization
is along the longitudinal axis or in the transverse plane [163]. While the
ground eigenfunction ¢ is approximately constant, the higher eigenfunc-
tions will oscillate in pore space. The eigenmode amplitude A, can be
calculated using the orthogonal property of eigenfunctions and the initial

magnetization:
1
A, = v /m(r,O)gpn(F)dV. (4.3)

Considering the behavior of eigenfunctions in the pore space, the
ground mode amplitude will be approximately m,/V but the amplitude of
higher modes will be small assuming a uniform magnetization profile.

For a spherical pore space (a common assumption in porous media

research) the decay times 7,, for spherical pore space are given as:

. 6p‘i - when n =0
T2 ~ 3 (4.4)

41‘;? when n>1

under the condition of fast diffusion region (pa/D < 1), where the (, are
the positive roots for the equation 1 — (, cot {, = pa/2D [163, 164, 223].
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Here, a is the diameter of the sphere and p is the surface relaxivity affecting
longitudinal or transverse magnetization whichever one is involved during
the diffusion observation time. The decay time of the ground mode 77, will
always be larger under this condition, than 7', with n > 1.

Since the detected signal is the integral of the magnetization over the
pore space, the result will be a multi-exponential decay weighted by the
relative intensity of each mode [163]:

m(t) = / m(r, )dV =mg- Y ILe T2 (4.5)
n=0

where I, = [[ ¢,dV] ? is the relative intensity of n-th mode of the diffu-
sion equation. As an example, the eigenvalues and relative intensities of
different eigenmodes in analytical solution of sphere is given in Fig. 4.1.

1 1
0.8 ] 0.8
<
~ 0§ ] 0.6
<
0.4 ] 0.4
0.2 ] 0.2 ]
C—1 ‘0 ‘l ‘ 3 O—1 fS
100 10° 100 100 10 100 10 100 100 10
pa/D pa/D
(a) (b)

FIG. 4.1: The eigenvalues (a) and relative intensities (b) of eigenmodes in an
analytical solution of sphere suggested by Ref. [163]. The characteristics of the
modes from n = 0 to n = 3 are denoted by the curves with black, blue, red
and pink colors, respectively. Within the condition of fast diffusion limits, the
eigensolution will consist of smaller eigenvalues and lower relative intensities
with increasing order of eigenmodes.
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As seen from Eq. 4.4, the decay time of the ground mode (n = 0)
depends on the pore length a and surface relaxivity p, while the high
modes (n > 1) of the diffusion equation are independent of p and therefore
are more suitable for determining the pore length even in the presence of
surface relaxivity heterogeneity. However, the relative intensities of the
high modes are much weaker compared to the intensity of ground mode
as shown in Fig. 4.1 (b). In order to take advantage of the high modes for
the detection of pore length scale, the contribution of the high modes to the
signal must be enhanced.

One efficient approach to enhance the contributions from the first ex-
cited mode (n=1) in the presence of spatially distributed internal magnetic
tield B;, was developed for porous media [157, 224]. The 1D signal pulse
sequence and reference pulse sequence used in this technique are shown in
Fig. 4.2.

5 5 5
/\]Echo
te Laife le J "
s
i T s
2 2 2
\]j'ID
le Laife "

FIG. 4.2: 1D signal pulse sequence (top) and reference pulse sequence (bottom)
are used to detect high eigenmode in porous media [157]. Here ¢, is the encoding
period and ¢4 is the observation time of molecular diffusion. The phase cycling
used in the signal and reference pulse sequences is given in Tab. 4.1. The intensities
of the acquired stimulated echoes and FIDs can then be observed as a function of

taift-

In the 1D signal pulse sequence, the first 7/2 RF pulse rotates the longit-

udinal magnetization in the transverse plane. During the encoding period
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of t., the magnetization in pore space will be modulated with an encoding
phase @ in the presence of the induced magnetic fields B;,, which varies in
space:

m(r,te) = m(r,0)e”® = m(r,0)e "Bin (e (4.6)

Here, the nuclei should be considered as immobile during the encod-
ing time ¢, for the modulation of the magnetization profile, otherwise an
integral of the internal magnetic fields has to be used instead of B;,(r) in

the exponential term.

The second 7/2 RF pulse stores the dephased magnetization back to the
longitudinal direction. After this, the magnetization evolution during the
observation time ¢q4i¢ will undergo spin-lattice relaxation 7;. By choosing
the phase of the second 7/2 RF pulse to be incremented by 90° as compared
to the first 7/2 RF pulse, one can select only the sine component of the
magnetization and store it back in the longitudinal direction [225]. This
component is of interest because it allows us to suppress the contribution
from the ground 7; mode, since the initial magnetization is m(7, t.) and
the amplitude of ground mode Ay = (1/V) - [ m(F, te)podV = (1/V) -
J m(7,0) sin ®pydV ~ 0 according to Eq. 4.3. The phase cycling of this 1D
signal pulse sequence is given in the left of Table. 4.1. The phase of the
first three 7 /2 pulses, ¢1, ¢2, ¢3, and the acquisition phase, ¢ 4.,, are cycled
through the experiment to excite the higher 7} mode of relaxation time in

the 1%t domain.

In order to characterize the pore size distribution in an explicit way, the
tirst T} mode (n = 1) should be excited predominantly. This is achieved
by satisfying the weak dephasing condition YyAB;,t. < 1, where AB;,
represents the square root of the second moment of internal magnetic fields
B, [225]. Hence the signal equation for the acquired stimulated echo
amplitude E(tqi¢) will be:

E(taisr) = mp - <Ioe_tdiﬁ/ T4 1e_tdiff/Tll> (4.7)
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where, I, and I are the relative intensities of the ground and first 77 mode,
respectively. Similarly, 7 and 7| are the respective decay times. According
to Eq. 4.2, 4.3 and 4.5, the relative intensity of the ground 7} mode I, would
be:

Iy = / OV - / sin ®YdV (4.8)

To isolate the contribution of the ground 77 mode during the observation
time tqir, the 1D reference pulse sequence is applied. The m RF pulse
in the middle of the magnetization preparation period cancels the phase
accumulation due to B;,,. The phase cycling of this 1D signal pulse sequence
is given in the right of Table. 4.1. The phase of the first three 7/2 pulses,
o1, ¢2, 93, the phase of 7 pulse ¢4, and the acquisition phase, ¢4.,, are
cycled through the experiment to excite the ground 7} mode of relaxation
time in the 1°' domain. As a result, the magnetization after the second
7/2 RF pulse is uniform in the pore space, giving the initial condition

(F 2t.) = m(2te)/V. In this case, the amplitude of the ground mode

= (1/V) - [ m(F,2te)odV = m(2t.)/V according to Eq. 4.3. The ground

mode dominates in the diffusion equation again and the FID attenuation is
only caused by the ground 7; mode during ¢4i:

R(taifr) = mg - e~ "ot/ ™ (4.9)

To eliminate the contribution from ground 77 mode in Eq. 4.7, the value
of I; is determined using the ratio E(tgi)/ R(taitr) = Io at long tgi¢. Using
I for scaling of R(t4) such that its amplitude matches the contribution of
the ground eigenmode in Eq. 4.7, one is able to subtract Eq. 4.9 from Eq. 4.7
as E(tqist) — Io - R(tqir) which results in:

tai A g DE?
S(taier) = mg - I exp (— jlff) = myg - I exp (—M) . (4.10)

2
1 a/

S(taitr) expresses the signal decay mainly due to the first 7) mode (when

neglecting higher orders), where the exponential decay term 4D(?/a? gives
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us direct access to the the pore length as per Eq. 4.4.

Since most rocks have a distribution of pore lengths, the measured
signal will be the sum of the contributions from all pores within the sample.
As each pore with length a obeys Eq. 4.10, the signal attenuation of the
sample will follow a multi-exponential decay

S(taier) = ]1/F(a) exp (—ZHLZDC%) da (4.11)

a

where F'(a) is the pore length distribution of rock samples. Typically a 1D
numerical inversion method is used to obtain the 7| distribution from the
data set, and the pore length scales of rock cores can thus be acquired via
a =20, \/D_Tll from Eq. 4.4 (¢; ~ 4.49 in the condition of the fast diffusion
limits [223]). It is worth noting that the even higher modes (n > 1) actually
still contribute to the signal decay in Eq. 4.10, although they are negligible
compare to the first excited mode. Some other pore parameters, such as
pore shape or curvature, probably can be studied from the contribution of
these modes (n > 1) in the data set using sophisticated math algorithm,
which is beyond the discussion of this work.

With the above knowledge at hand, we can now discuss the high ei-
genmode detection at low-field and the implementation of 2D eigenmodes
correlation techniques.

4.1.2 Strategies of the first excited mode detection in low-
field NMR

In low-field NMR context for instance a industrial benchmark field
strength of 0.05 T (corresponding to 2 MHz 'H Larmor frequency), the
internal magnetic fields B;,, are weak compared to high-field, since the
range of B, is proportional to the static magnetic field B, according to
Eq. 3.2 [144]. Even though B;,, are weak, they are still accessible [145] and

can be utilized to build a non-uniform magnetization profile in the pore
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Table 4.1: Phase cycling for the 1D signal pulse sequence (Left) and reference
pulse sequence (Right). ¢1, ¢2, ¢3 and ¢4 and ¢ 4., are the phase of the first three
/2 pulses, 7 pulse and the acquisition phase, respectively.

O1 Q2 B3 Ps Dacg

o 0 0 =/2 =w/2

O1 P2 O3 Dacg ™ 0 0 w/2 3m/2

/2 0 0 =w/2 0O n 0 7w/2 3rn/2
3n/2 0 0 37m/2 T © 0 w/2 =x/2
/2 w 0 371/2 0 0 0 37/2 =/2
3n/2 m 0 w/2 T 0 0 37/2 37n/2
0 7 0 37/2 3n/2

T ©m 0 37/2 x/2

space. In turn this gives us the ability to enhance relative intensity of the
high eigenmode.

One possible strategy for the detection of high eigenmodes at low-
tield is by elongating t.. This allows the encoding phase ® to evolve
to the point of detection, since the strength of the encoding phase ® is
characterized by yAx Byt.. If t. is short, the encoding phase will not evolve
significantly and the magnetization at different positions of the pore will
appear uniform. This will lead to the dominance of the ground mode in
the solution of the diffusion equation in the pore space as seen in Eq. 4.2.
By extending the encoding period ¢, the spins will accumulate sufficient
phase difference due to the precession in the internal magnetic fields B;,,,
giving rise to the non-uniform magnetization profile. This will enhance
the contribution of high eigenmodes in Eq. 4.2, thus allowing a pore length
scale determination at low-field NMR. However, ¢, can not be set too long,
because the weak dephasing condition must be satisfied to maintain the
dominant contribution from the first 77 mode. Secondly, a long ¢, will limit
pore length detection to /D, due to molecular diffusion.
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Table 4.2: Eigenmode measured in different 1D NMR experiments

Pulse sequence Ground mode First mode
CPMG [33, 34] 09, 7Y X
Small « pulse train [32] o0, 70 X
Inversion Recovery o0, 70 X
DDIF-signal [157] o9, 1P b, i
DDIF-reference [157] o9, 1P X

4.1.3 Summary of eigenmode involved in 1D NMR

As indicated in Fig. 4.1 (b), the contribution of the ground eigenmode
dominates in the NMR signals within a uniform magnetization profile over
the pore space. Therefore, for most of the routine NMR measurements such
as CPMG, inversion/saturation recovery, and small tip angle pulse train,
the involved eigenmode of the spin relaxation during the experiments are
always the ground 75 and 7} mode. The higher modes with oscillating
eigenfunctions, however, are hardly accessible. By utilizing the induced
magnetic fields distributed in the pore space, the distribution of the initial
magnetization profile can be modulated. Thus, the relative intensities of
the eigenmodes are adjusted and the high mode containing abundant pore

morphology information is feasible to be detected in 1D NMR experiments.

4.2 2D relaxation eigenmode correlation

Recent developed 2D NMR techniques provide more detailed insight
of heterogeneous material properties through correlation and exchange
patterns as compared to their 1D counterparts, such as characterizing the
internal structure and molecular diffusion behavior in restricted geometries
[9, 63-68]. For a typical 2D correlation experiment, two separated periods
P, and Pj are varied in the pulse sequence involving two different spin
dynamics. Then the spatial magnetization evolution can be characterized

by two basis sets corresponding to the individual eigenfunctions ¢, ¢j;,



64 CHAPTER 4. PORE LENGTH AND SURFACE RELAXIVITY

and decay times 7.)", 75. Therefore, the signal acquired in the 2D experiment
is the integral of the spatial magnetization in the pore space [226, 227]:

m(P,, P3) = /m(r, P,, P3)dV

P, Py
=mo- > I, - - 4.12
mo ; ,eXp( T;n)exp< rg> (4.12)
where I, ,, = [ @3(r)dV - [ @(r)pl(r)dV - [ ¢ (r)dV, which is the correla-
tion intensity of m-th eigenmode in the first period F, and n-th eigenmode
in the second period P;.

4.2.1 Correlation of ground 75 and first 71 mode

As can be seen in Eq. 4.4, if the detection of the first excited 77 mode
and ground 75 mode are combined in a 2D experiment, it will provide the
information of pore length, a and pore surface relaxivity, p, simultaneously.
To achieve this, a CPMG pulse train can be performed after the aforemen-
tioned 1D pulse sequences in Fig. 4.2 to correlate the pore length scale with
the transverse relaxation time 75. The pulse sequences are shown in Fig. 4.3.

During this experiment, the spins will experience both 77 and 7, dynam-
ics. According to Eq. 4.12, if neglecting the T effect during the 1°* domain,
the acquired data using the 2D signal pulse sequence can be expressed as:

E(tgitt, NTg) = /m(r;tdiff; NTg)dV

tai NT;
=my - Z I exp (— :nif) exp (— TnE> (4.13)
m,n 1

2

where 7{" and 73 are the decay times of m-th 71 mode and n-th 7; mode,
and I, , is the correlation intensity of these two modes.

The 1% domain of the 2D correlation sequence pulse sequence is adopted
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FIG. 4.3: 2D signal (top) and reference (bottom) pulse sequence used to correlate
the high and ground eigenmode of diffusion equation. T is echo spacing and N
is echo number of CPMG pulse train. The phase cycling used in this 2D pulse
sequence is given in Tab. 4.3. The amplitudes of the echo trains from these two
pulse sequences can then be acquired under a series of 4.

from 1D case (see top in Fig. 4.3) and encodes the information from the
ground and first 7 mode. At the end of the 1°* domain, a stimulated echo is
observed as the magnetization is refocused, leading to a situation where the
ground 7, mode dominates the second stage of the 2D pulse sequence. The
phase cycling of this 2D pulse sequence is given in the left of Table. 4.3. The
phase of the first three 7/2 pulses, ¢1, ¢2, ¢3, the phase of = pulse ¢4, and
the acquisition phase, ¢ 44, are cycled through the experiment to excite the
higher T} mode of relaxation time in the 1°* domain and ground 7, mode
in the second period. As a result, the acquired data from 2D signal pulse

sequence can be approximately expressed as:

tai NT;
E(taiss, NTg) = my - {10,0 exp (— ioff> exp (_ TOE)}

2

tai NT;
+mg - [1170 exp (— dlff) exp (— OE>} (4.14)
71 T2
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Table 4.3: Phase cycling for 2D ground 75 and first 773 mode correlation signal
pulse sequence (Left) and reference pulse sequence (Right). ¢1, ¢2, ¢3 and ¢4 and
¢ Acq are the phase of the first three 7/2 pulses, 7 pulse and the acquisition phase,
respectively.

P1 P2 Pz Q1 Pag P1 P2 P35 P1 Pac
T w2 w/2 w/2 o« 0 0 0 =/2 =7/2
0 w/2 w/2 x/2 0 T 0 0 w/2 37n/2
T 3w/2 7w/2 7/2 0 0O = 0 =w/2 3n/2
0 37/2 wn/2 w/2 =« T m 0 w/2 7w/2
T w2 7w/2 3n/2 =« 0O 0 0 37/2 =/2
0 =n/2 x/2 3n/2 0 T 0 0 37/2 3rn/2
T 3r/2 7w/2 3w/2 0 0O 7 0 37/2 3n/2
0 3n/2 w/2 3n/2 =« T 7m 0 37/2 =w/2

where the first term represents the contribution from the correlation of
ground 77 and 75, modes, and the second term is the signal involving the
tirst 71 mode and ground 75 mode correlation.

In order to calibrate the effect of ground 77 mode in the first stage of
this experiment, the aforementioned reference pulse sequence is followed
by CPMG pulse train (see bottom in Fig. 4.3). The phase cycling of this
2D pulse sequence is given in the right part of Table. 4.3. The phase of the
first three 7/2 pulses, ¢1, ¢2, ¢3, the phase of 7 pulse ¢4, and the acquisition
phase, ¢4, are cycled through the experiment. As the effect of the internal
magnetic fields is compensated by the m RF pulse in the middle of the
modulation period, only the ground 7} mode is present during ¢4i¢ and the
acquired data from this 2D reference pulse sequence is described as:

tai NTj
R(taitr, NTg) =~ myg - exp (— :(ff> exp <— TUE) (4.15)

1 2

To extract the contribution from the high and ground-eigenmode cor-
relation, the factor of I, needs to be calculated in order to eliminate the
first term of Eq. 4.14. As there is mainly ground mode contribution in-

volved in the 2™ domain i.e. CPMG pulse train, the relative intensity
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Ioo = [3dV - [ @3p0dV - [ sin @pdV. According to Eq. 4.8, the relative
intensity I, in the 1D signal pulse sequence shown in Section 4.1.1 can be
estimated as Iy = [ ¢{dV - [ sin ®p{dV. With an assumption that the fast
diffusion limits can be satisfied for the sample, the eigenfunction ¢ for the
ground 7> mode would be constant [158, 163], resulting to the equivalent
values for Iy and I,. As a result, R(tqitt, N15) multiplied by I, can be
subtracted from E(tqifr, NT%) (similar to the 1D case), giving a 2D data set
characterized by the first 71 mode and ground 75 mode:

tai NT;
S(taise, NTg) = mg - I1 g exp (— :1&> exp (— T0E>

1 2

Utqie D3 NT;
=my - [10exp (—%Cl) exp (— T0E> (4.16)

2

Similarly to the 1D case, the signal from a rock sample with a distribu-
tion of pore lengths a will be the sum of the contributions from all pores in

the system. As a result, Eq. 4.16 can be rewritten as:

B 4t 4igg DC? ) _

a?

S(tair, NTg) = 1 o // F(a,T,)exp (

N1
exp (— E) dadTy. (4.17)
15

Since the relaxation effect during the 2"¢ domain of the pulse sequence
is mainly contributed from the ground 7, mode, the high and ground-
eigenmode correlation function can be obtained using 2D numerical in-

version algorithm [95] and rescaled to pore length-relaxation correlation
function F'(a,Ty) via a & 2(;+/DT}.

4.2.2 Correlation of ground 7} and first 77 mode

Similarly, the correlation of the ground and the first excited 7} mode

will provide the information of pore length, a and pore surface relaxivity,
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p1 simultaneously if the detection of these two eigenmodes are combined
in a 2D experiment. To achieve this, a small tip angle pulse train will be
complemented after the aforementioned 1D signal pulse sequences (shown
in Fig. 4.4). During the 2" domain of this pulse sequence, the evolution
of the magnetization aligning along 2 axis can be recorded by acquiring
the amplitude of FID using the small tip angle pulse train [32]. The phase
cycling of this 2D pulse sequence is shown in Table. 4.4. ¢1, ¢2, ¢3 and ¢4, P,
and ¢ 4., represent the phase of the first four 7 /2 pulses, small tip angle and
the acquisition, respectively. Using the magnetization vector expression
given in Eq. 2.12, the FID intensity after the N-th a pulse in the 2" domain

of the 2D pulse sequence can be expressed as a recursion expression:

@ 2 ta ta :
My = {M(N_l) exp <_T1) + M, (1 — exp (_ﬁ))] sin «v
t, t.
Mz = | M7 —— My(1— —— 4.18
N [ (N—1) €XP ( T1) + My ( exp ( Tl))] cos « (4.18)

where N represents the number of the small tip angle pulses and ¢, is the
signal evolution time between the adjacent FID acquisition. M’ and M},
stand for the magnetization components in the transverse plane and along
the longitudinal axis, respectively. For an initial condition, M} = M;sin a
and M{ = M,cosa. Therefore, by using the phase cycling suggested in
Table. 4.4, the magnetization recovery term My(1 — exp(—;—al)) in Eq. 4.18

can be cancelled, leaving a decay term that expressed as:

(N — l)ta

M((N — 1)t,) = 2Mysin« - exp [—
1

] -cos (4.19)

As a result, according to Eq. 4.12, the acquired data using the 2D pulse
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sequence can be expressed as:
E(tdiff, (N — 1)ta) = /m(r,tdiff, (N — 1)ta)dV

tdi N — 1)t
=mg - meﬂ exp (— dlff) exp [—(—n)a} cos™V o - sin Q,

m
T T

(4.20)

where 71" and 7" are the decay times of m-th and n-th 7} mode, and 1, ,, is
the correlation intensity of the eigenmodes. The degree of o corresponds to
the tip angle of the pulses in the 2" domain.

\ 15t domain , 2nd domain J
«Q
\FID
1
te tdiff te Zfa t
Loop xN

FIG. 4.4: 2D NMR pulse sequence used to correlate the ground and first excited
eigenmode. ¢, is the encoding period and ¢4 is the observation time of molecular
diffusion. t, is the period for the acquisition of FID signal. The o pulses have
the same duration of 7/2 and 7 pulses and the adjusted pulse power. The homo-
spoil gradients represented by the rectangles were used to cancel the unwanted
coherence pathway in the acquired signal. The phase cycling used in this pulse
sequence is given in Tab. 4.4.

As discussed in Section 4.1.1, by adopting the strategy from 1D case in
the 1% domain of the 2D pulse sequence, the information from the ground
and first 7; mode can be both encoded. At the end of the 1%t domain, the
magnetization is refocused and rotated back along the longitudinal axis,
leading to a situation where the ground 77 mode dominates the second
stage of the 2D pulse sequence. As a result, the acquired data from 2D
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Table 4.4: Phase cycling for 2D ground and first 773 mode correlation pulse se-
quence. ¢1, 2, ¢3 and ¢4, ¢, and ¢ 4., represent the phase of the first four 7 /2
pulses, small tip angle and the acquisition, respectively.

$1 D2 D3 Qs Do Dac
/2 0 0 wm w/2 x/2
3r7/2 0 0 =w w/2 3m/2
/2 w 0 w w/2 3m/2
3n/2 7 0 7w 7w/2 w2
T2 0 0 0 w/2 7/2
37/2 0 0 0 =/2 37m/2
/2 w® 0 0 =w/2 37n/2
3n/2 7 0 0 =n/2 =x/2

pulse sequence can be further approximately expressed as:

E(taigr, (N — 1)t,) = mg - cos™ ta-sina

t i N —1 ta t i N -1 ta
. {fo,o exp (— i(ff) exp [_%] + I pexp (— ilff> exp {——( " ) H :
1 1 1 1
(4.21)

As seen from Eq. 4.21, the first term in the right bracket is the contri-
bution from self-correlation of the ground 77 mode, and the second term
represents the signal experiencing the first and ground 7} eigenmodes cor-
relation, the detection of which is at the heart of this part of the work. As
can be expected, the distribution of the first term will lay along the diagonal
line of 73-T; correlation map and the second term will appear away from
the diagonal line.

To extract the second term in Eq. 4.21, the ground 7} contribution in
the 1% domain needs to be calibrated out. It is notable that the ground 7}
eigenmode is already detected in the 2"! domain of this technique, which
exactly provides a means to obtain the weight of ground 77 mode and
isolate the first 71 mode contribution in the 1% domain. The detailed steps

to obtain the first and ground 7 eigenmodes correlation contribution are
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given as follows:

1: Calibrating the amplitudes of 2D signal E(tgis, (N — 1)t,) in Eq. 4.21

by cos™¥ !« - sin « first.

2: Processing the calibrated E (%4, (N —1)t,) by using 2D ILT and obtain-
ing the correlation distribution (7Y 7)) This obtained function

is actually F'([ro, 71],70).

3: Evaluating the relative intensities of the ground 7} mode /; in order

to eliminate it from the higher modes in the 1%t domain.

4: Obtaining a data matrix S(t4i, (N —1)t,) by compensating the ground-
ground 7 eigenmode correlation contribution in Eq. 4.21 and can
thus be expressed as:

1

4tdifngf) exp {_ (N — 1)ta}
T '

Ldi N —1)t,
S(tdiff7 (N - 1)ta) =mg - [170 exp (— j_lff) exp {_#}

=my - [1pexp (— >

(4.22)

For a porous system, the signal with a distribution of pore lengths a will
be the sum of the contributions from all pores in the system. As a result,
Eq. 4.22 can be rewritten as

4151 D
S(taist, (N — 1)ta _]10// a,T}) exp< dff C1>

{—M} dadT; (4.23)

exp E
1

which allows one to obtain the pore length-relaxation correlation function
F(a,Ty) using a 2D ILT algorithm.
In this experiment, the eigenmodes excited by this pulse sequence are

only from longitudinal relaxation 77, which leads to two advantages of this
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strategy. Firstly, the magnetization was restored along the longitudinal axis
after the fourth 90° pulse, which indicates a re-established uniform magnet-
ization profile along the pore space. Therefore, only the ground 77 mode
will be dominantly excited during the 2"4 domain of signal acquisition and
the detected signal can be employed to isolate the contribution from the
ground 77 mode in the 1% encoding period. By this means, the correlation
distribution of high- and ground 7} mode can be obtained with no needs of
the reference pulse sequence as compared to the correlation experiment of
ground 75 and first 73 mode. Secondly, the intensity of 2D spectrum in this
method can be guaranteed non-negative because of the orthogonality of the
eigenmodes involved during the successive time domains, and therefore
it naturally avoids the misinterpretation from the non-negative restrains
during 2D ILT [227].

Independently, in order to validate the eigenmodes detected in the
pulse sequence given in Fig. 4.4, an extra 2D pulse sequence is utilized to
couple only the ground 7} mode in two successive dimensions. The pulse
sequence is shown in Fig. 4.5 and its phase cycling given in Table. 4.5.

1% domain 2"d domain
m m w
T T z T
2 2 2 2
a
\]j'ID
1 -
L] Laifs Le| fa t
Loop xN

FIG. 4.5: 2D NMR pulse sequence used to validate the ground and first excited 7
mode correlation experiments. Two extra 7 pulses are inserted in the 1% domain.
The phase cycling used in this pulse sequence is given in Tab. 4.5.

Similarly to 1D reference pulse sequence shown in the bottom of Fig. 4.2,

a m pulse is inserted in the middle of the first two /2 pulse, to compensate
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Table 4.5: Phase cycling for validating 2D ground and first 73 mode correlation
pulse sequence. ¢1, ¢2, ¢3 and ¢4, ¢5, o and ¢ 4., are the phase of the first four
7/2 pulses, m pulse, small tip angle pulse, and the acquisition, respectively.

O1 P2 93 P4 5 Do Dacg
o 0 0 w 7w/2 w2 O
T 0 0 =7 @/2 7w/2 7
0O = 0 w #/2 w/2 0
T m 0 7® @w/2 7w/2 7
0O 0 0 m @/2 7w/2 0
™ 0 0 =7 @2 w2 7
0O = 0 =n 7w/2 w/2 O
™ m 0 7w 7w/2 7w/2 =

the dephasing effect due to the induced magnetic fields. As a result, only
the ground 7} mode is detected in the 1°* domain of this 2D experiments. By
applying the small tip angle train in the 2" domain, the ground 7} mode is
obtained again and the required 2D data can be expressed as:

S(taiee, (N — 1)ta) = mg - exp (—t:ioff) exp [—%} . (4.24)

1 1

4.3 Estimation of surface relaxivity

Surface relaxivity p reflects the interaction strength of fluid nuclear spins
and pore surfaces. A typical approach to evaluate the surface relaxivity of
rock samples in NMR is matching the 1D relaxation time distribution with
the pore length scales [166-170]. Another approach is performing the Padé
approximation on the calculated D(73) curve from 2D D-T), correlation
map [228, 229]. As discussed in Eq. 3.6, the apparent diffusion coefficient
of fluid molecules D, in porous media will attenuate from its self diffusion
coefficient D, because of the restriction of the pore boundary [49]. Therefore,

within a certain observation time A of molecular diffusion, D, will decrease



74 CHAPTER 4. PORE LENGTH AND SURFACE RELAXIVITY

more from Dy in the smaller pore whereas is close to Dy in the larger pore.

Since 75 is a pore length related parameter, the relationship of D(75) in

different pore regimes can be obtained from D-T, correlation maps using

the substitution of 75 values to the Padé approximation of D, used in
Eq. 3.6:

D(T3) ~1— ’YL

Dy O+

where D(T3) is the logarithmic mean value of D in each 75 value. § =

9%2 , which is a value reflecting the short-time behavior of D,. T5 is the

surface relaxation contribution of 75. v =1 — F%z)'

to the tortuosity of the rock samples. As seen from Eq. 4.25, the surface

(4.25)

which is a factor related

relaxivity p, can be easily extracted from the obtained D(75) curve with the

pre-knowledge of the formation factor /" and porosity ¢ of rock samples.

4.3.1 Estimation of surface relaxivity p;

Surface relaxivity p, can be estimated based on the correlation function
of pore length and relaxation time F'(a,T,) acquired in Section 4.2.1. With
the assumption of spherical pore shape, the relationship between transverse
relaxation time 75 and pore length (or pore diameter) a can be derived from

Eq. 3.5 as:
1

T~ — a.
? 6p2

(4.26)

The relationship 75(a) can be easily obtained from the 2D correlation
function F(a,T3) and the relaxation time 75 can be reinterpreted as a func-
tion of a. Thus the horizontal-to-vertical ratios of the correlation function
T5(a) along the a axes can be calculated and the results allow one to extract
the effective surface relaxivity p, of rock cores. Since the relaxation time 7
is not strongly affected by the diffusion in internal magnetic field gradients,
the relationship of Eq. 4.26 is more suitable in the low-field although the

signal-to-noise is lower compared to the high-field.
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4.3.2 Estimation of surface relaxivity p;

Similarly, the surface relaxivity p; will be estimated based on the cor-
relation function of pore length and relaxation time F'(a,7}) acquired in
Section 4.2.2. Again, the relationship between longitudinal relaxation time
Ty and pore length (or pore diameter) a can be derived from Eq. 3.5 as:

T, ~ — a. (4.27)

The relationship 7} (a) can be obtained from 2D correlation function
F(a,Ty) and the effective surface relaxivity p; of rock cores can be estimated
from 77 (a).

4.4 Experimental

Two rock samples with different lithologies (Parker sandstone: porosity,
16.4%; gas permeability, 30 mD and Winterset limestone: porosity, 24.4%;
gas permeability, 15 mD) were studied in the 73-75 eigenmode correlation
experiment. The 1D experiments were performed on a 2 MHz Rock Core
Analyser (Magritek Ltd, Wellington, NZ). Both rock samples had the ex-
ternal dimensions of 38 mm diameter and 63 mm length. The RF pulse
length was set to be 25 us. The encoding period t. was 1.5 ms in Parker
sandstone and 9 ms in Winterset limestone. The observation time ¢4;¢ var-
ied from 0.5 ms to 3000 ms in Parker sandstone and to 6000 ms in Winterset
limestone in 50 steps logarithmically. To validate the results of pore length
scale, the 1D experiments of these two rock cores were performed on a
prototype 64 MHz cryogen free NMR Imaging system (Cryogenic Ltd, Lon-
don, UK) with homebuilt gradients and RF coil operated by a Kea console
(Magritek Ltd, Wellington, NZ). The encoding period ¢, was chosen to be
400 ps in both rock cores. The broadening of the NMR line-width due
to the internal magnetic field gradients alone can be extracted from the
decay rates of the FID signals [230], which resulted in 13 Hz at 2 MHz
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and 334 Hz at 64 MHz for sandstone and 8 Hz at 2 MHz and 207 Hz at
64 MHz for limestone. These line-width combined with the corresponding
encoding period t. satisfy the weak encoding condition yAB;,t. < 1 as
discussed in section 4.1.1. T-T5 eigenmode correlation experiments were
performed with the same parameters for the 1D stimulated echo sequence
and followed by a CPMG pulse train on the 2 MHz Rock Core Analyzer.
The echo spacing T was 125 ps and echo number N was 6400 in sandstone
and 24000 in limestone. Each data set was averaged 64 times for both 1D
and 2D cases, resulting in a total acquisition time of 5 hrs.

Two rock samples (Nugget sandstone: porosity, 10.5%; gas permeability,
3 mD and Winterset limestone: porosity, 24.4%; gas permeability, 15 mD)
were adapted in the 7}-7 eigenmode correlation experiment on a prototype
64 MHz cryogen free NMR Imaging system (Cryogenic Ltd, London, UK)
with homebuilt gradients and RF coils operated by a Kea console (Magritek
Ltd, Wellington, NZ). The RF pulse length was set to be 60 us. The encoding
period t. was 400 us in both rock cores. The observation time ¢qi¢ varied
from 0.5 ms to 3000 ms in sandstone and to 6000 ms in limestone in 50 steps
logarithmically. The small tip angle « is modified to be 8°. The acquisition
time ¢, was 6.4 ms in Nugget sandstone and 20.48 ms in Winterset limestone.
The number of FID was fixed to be 120 in both cores.

4,5 Results

4.5.1 1D experimental results

Before presenting the 2D eigenmode correlation experimental results,
we prefer to show the 1D pore length scales of the rock cores used in this
work first.

The 1D experimental data of Parker sandstone is illustrated in Fig. 4.6 (a).
It can be seen from the data plot that the magnitude from the 1D signal

pulse sequence (diamond) rapidly attenuates for short ¢4 values, compare
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to reference pulse sequence (triangle), however both data sets appear to
decay at the same rates at the long ¢4i¢. This shows that the high and ground
T1 mode are dominant at the beginning of the observation time and only
the ground 77 mode survives at long t4;¢ for the 1D signal pulse sequence.
The relative intensity of the ground mode in Eq. 4.7 can then be calculated
using the ratio of these two data sets at long tqis, i.e. Iy = 725 ~ 0.69. An
extra data set with ¢.=400 ps (circle in Fig. 4.6 (a)) was acquired using the
1D signal pulse sequence in Fig. 4.2, decaying at approximately the same
rates as the reference data. This proves that the high 7; mode with a short
encoding time ¢, is too weak to be detected at low-field.

To extract the pore length scales from Parker sandstone, the reference
data is first multiplied by I, giving us the “normalized” reference data set
which is then subtracted from the the 1D signal data, leaving us with a 1D
data S(t4itr) shown in the inset of Fig. 4.6 (a). Then 1D inversion algorithm
was used to obtain decay time 7} distribution from S(¢4;¢), which directly
yields us the pore length distribution according to a ~ 2¢;+/D}.
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FIG. 4.6: (a) The ﬁlgrmahzed 1D experimental data of Pz(arLer sandstone. The
triangle and diamond markers represent the amplitudes from 1D reference and
signal pulse sequences, respectively. The circles represent the amplitudes from 1D
signal pulse sequence with ¢.=400 us. The right inset gives the result of S(t4is); (b)
The pore length scales of Parker sandstone determined at 2 MHz (solid lines) and
64 MHz (dashed lines), respectively.

As illustrated in Fig. 4.6 (b), the pore length distributions of sandstone
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from 2 MHz and 64 MHz show good correspondence, which demonstrates
that the method of using high eigenmode to determine pore length scales is
teasible even at 2 MHz. The relative pore length distribution expands less
than one and a half orders of magnitude with a logarithmic mean value of
around 18.9 ym. Some regions with small pore length were not resolved
at 2 MHz, which is ascribed to the longer t. used in low-field experiments.
During this period, the molecules diffuse over the local pore length and the
non-uniform magnetization profile is averaged out in those pores.

The 1D experimental data of Winterset limestone is shown in Fig. 4.7 (a).
The data from 1D signal and reference pulse sequences exhibit similar
decay pattern compared to the sandstone results and the relative intensity
of the limestone I, = %35 ~ 0.74. Again, the extra data set with ¢.=400 ps
(circle in Fig. 4.7 (a)) attenuates at approximately the same rates as the
reference data and proves that the first 7} mode with a shorter encoding

time ¢, is too weak to be detected.
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FIG. 4.7: (a) The n(o1)‘malized 1D experimental data of Winterset limestone. The
triangle and diamond markers represent the amplitudes from 1D reference and
signal pulse sequences, respectively. The circles represent the amplitudes from 1D
signal pulse sequence with ¢,=400 us. The right inset gives the result of S(¢4is); (b)
The pore length scales of Winterset limestone determined at 2 MHz (solid lines)
and 64 MHz (dashed lines), respectively.

The extracted pore length distributions of Winterset limestone from 1D
data S(tqifr) are shown in Fig. 4.7 (b) and correspond well at 2 MHz and
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64 MHz. The relative pore length distribution extends almost two orders of
magnitude with the logarithmic mean pore length of 40.9 m. Thus, from
the comparison of these features in two rock samples, a conclusion can be
drawn that there are bigger pores and more heterogeneous pore network
in Winterset limestone than that in Parker sandstone.

Moreover, the 1D experimental data of Nugget sandstone at 64 MHz is
illustrated in Fig. 4.8 (a). It can be seen from the data plot that the magnitude
from the 1D signal pulse sequence (diamond) rapidly attenuates for short
tais values, compare to reference pulse sequence (triangle), however both
data sets appear to decay at the same rates at the long t4¢. The relative
intensity of the ground mode in Eq. 4.7 can then be calculated using the
5 ~ 0.85.

Subsequently, the reference data is first multiplied by [, giving us the

ratio of these two data sets at long ¢4, i.e. Iy =

“normalized” reference data set which is then subtracted from the the 1D sig-
nal data, leaving us with a 1D data S(¢4i¢) shown in the inset of Fig. 4.8 (a).
Then 1D inversion algorithm was used to obtain decay time 7 distribution
from S(tqitt), which directly yields us the pore length distribution according
to a = 2(;1/Dr{. As illustrated in Fig. 4.8 (b), the pore length distribution
expands around one order of magnitude with a logarithmic mean value of
around 10.3 pm.

4.5.2 T)-T, eigenmode correlation results
2D correlation results

The 2D experimental data E(tgi, NTg) and R(tqir, NTg) of the sand-
stone were acquired using the pulse sequences shown in Fig. 4.3. In order
to isolate the contribution from ground eigenmodes correlation from the
first term of Eq. 4.14, the value of /;, should be determined. As discussed
in Section. 4.2.1, Iy, would be approximately the same as [, in the 1D
experiment, assuming that the contribution from ground eigenmode is pre-
dominant during the CPMG acquisition. To validate this, the first column
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FIG. 4.8: (a) The normalized 1D experimental data of Nugget sandstone. The
triangle and diamond markers represent the amplitudes from 1D reference and
signal pulse sequences, respectively. The right inset gives the result of S(¢4i); (b)
The determined pore length scales of Nugget sandstone.

from the data sets of the 2D signal and reference pulse sequences are shown
in Fig. 4.9 (a) and the value of [, was estimated to be 0.68, which is close
to Iy (= 0.69) in 1D experiment. Subsequently, E(tqis, N1E) was subtracted
from “normalized” Iy - R(taitr, N1k), leaving a 2D data set S(tqitr, N1E) as
shown in Fig. 4.9 (b). The 2D data decays dramatically along t4;¢ axis while
attenuating gradually along the CPMG acquisition, which suggests that
a comparably higher mode is being contributed to S(tqifr, NT%) along tgi

axis.

The correlation distribution of 2D eigenmodes F(7], 73) was acquired
from S(taitr, NTg) using 2D numerical inversion algorithm. Meanwhile, the
ground modes correlation function F (1), 7)) was obtained from 2D refer-
ence data R(tg, NTE) as a comparison. The results of these two correlation
functions are shown in Fig. 4.10. The color scales are identical to compare
the intensities of these 2D correlation maps, while the 1D projected curves
are normalized in order to examine the coincidence of T, distributions in
a proper way. It is worth noting that a larger optimized regularization
factor should be chosen during the processing of S(tai, NTt) because of

the poorer signal-to-noise ratio compared to R(tqitr, NT%).
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FIG. 4.9: (a) The first column from the data matrices of 2D signal pulse sequence
(diamond) and 2D reference pulse sequence (triangle); (b) the data set S(tg;, N1E)
in the sandstone at 2 MHz. To better observe the amplitude attenuation along the
observation time ?4isf, the logarithmic scale is used and only the time range from
0.5 ms to 187 ms was shown.
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FIG. 4.10: Comparison of the distribution functions (a) F({,79) and (b) F (7}, 79)

in the sandstone at 2 MHz. These 2D maps have the uniform color scale while
their projected curves were normalized to better compare the pattern of the distri-
butions.

As depicted in Fig. 4.10 (a), the eigenmodes correlation distribution
F (7, 73) from S(tai, NTE) is located below the diagonal line (1; = 7). In

contrast, the distribution of the ground mode correlation function F(7{, 73)
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mainly aligns along the diagonal line and extends with a 7, /7, ratio of
around 1.7, which implies a strong correlation of ground 7; and 75> modes
at low-field. Both correlation maps in Fig. 4.10 have nearly identical 75
distributions, indicating the common contribution from the ground 75
mode in these two data sets. However, the T} values in F(7], 7)) are smaller
compared to the 1D projected T; of F(7{, 73).

The 2D data sets E(tqir, NTg) and R(tqisr, NTg) of the limestone were
acquired and processed using the same procedure as for the sandstone.
Iy o was calculated to be 0.75 according to the ratio of the first columns of
E(tgitt, NTg) and R(tqir, NTg) (Fig. 4.11 (a)), which again is close to [, (~
0.74) of the 1D result. Using the determined [, the 2D data S(¢a, NTx)
was calculated from E(tqi, NTg) and R(tqisr, N1g) with the result shown in
Fig. 4.11 (b). As seen from this figure, the 2D data decay is slower along 4y
axis compared to the data in Fig. 4.9 (b), which implies that larger decay
time 7 and bigger pores contribute to the signal in the limestone than the

sandstone.
% T 0.35
3
= &W 03
= -0.1 v,
§ 10 ‘O‘ZV v, 1025
< ‘e . v 02
=3 v .
3\)) 0.3 v
. 0.3 v o
% 10 . v
S 'S 5 0.1
26 ¢ 0.05
=, 1004 | | | | ¢ i

0 100 200 300 400 0.5 1 15 2 25
L aiff /rnS Echo time /s

(a) (b)
FIG. 4.11: (a) The first columns of the data matrices of F (g, N1g) (diamond) and
R(t4itf, NTx) (triangle) in the limestone; (b) the data set S(tg4itf, NT%) in limestone
at 2 MHz. Only the data in the range of ¢4;¢ 0.5 ms to 418 ms is shown.

Subsequently, the correlation function F (7], 7)) was obtained from
S(taitr, NTg) using 2D numerical inversion algorithm and was compared

with the ground mode correlation function F(), 7)) from 2D reference data
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of limestone. The results of these two correlation functions are shown in
Fig. 4.12. These two distributions are located in different zones of the ;-7
correlation domain. Both 2D maps have almost identical 7, but different
7, distributions. The projected 1D 7; result in Fig. 4.12 (a) shifts towards
smaller values compared with the 7 distribution of F(7}, 73) in Fig. 4.12 (b)

similar to the case in the sandstone.
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FIG. 4.12: Compargsz)n of the distribution functions obtainegi %rorn (@) S(tgir, NTE)
and (b) R(tqifr, N1g) in the limestone at 2 MHz. The uniform color scale was used
in the 2D maps, but the projected 1D curves were normalized to better compare
the distributions in F({,79) and F(}, 79).

To yield the correlation map of pore length a and 75, the acquired 2D
correlation functions F(7{,7y) were rescaled along the vertical axis via
a =~ 2(;v/Dr}. The correlation functions F(a,T;) of the sandstone and
limestone samples are shown in Fig. 4.13 along with the projections of pore
length scales and 75 relaxation distributions. In order to compare to the
1D results, data from Fig. 4.6 (b) and Fig. 4.7 (b) is presented using dashed
lines.

As shown in Fig. 4.13 (a), the 1D projected pore length scales correspond
well to the result from 1D experiment in sandstone, which confirms the

result of 2D eigenmode correlation experiment. The 2D distribution can
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FIG. 4.13: The distributions of correlation functions F'(a, T) of sandstone (a) and

limestone (b) at 2 MHz. The dashed lines in these 2D maps represent the correlation
line with ps = 30 um/s in sandstone and 15 um/s in limestone. The red dashed
lines represent the pore length scales from 1D experiments and were normalized
for the comparison with 1D projected pore size distribution from F'(a, T5).

be separated into two parts according to the tendency of the distribution
and each part exhibits different correlation information of pore length
and T5. For the distribution in the 75 range from 0.1 s to 0.6 s, it shows a
strong linear relationship and lies along the dashed line representing the
surface relaxivity of p, =30 um/s, which is a reasonable value in sandstone
[168]. For the distribution in the 75 range from 0.1 s to smaller values,
the distribution deviates more from the dashed line with decreasing of 75
value. The variation of the correlation map indicates the larger values of
surface relaxivities occurred in the smaller pores, which may be caused by
the existence of strong paramagnetic materials (clay for example) in those
pore regions.

The correlation function F'(a,T3) of the limestone sample lies along
the correlated dashed line corresponding to the surface relaxivity of p,
=15 pm/s, which demonstrates that the pore surface property of this rock
is more homogeneous than that of the sandstone sample since it does not
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deviate from the dashed line. The estimated p, value is smaller compared
to the result of sandstone, which is attributed to the small density of para-
magnetic impurities at the pore surface. The 1D projected pore length scales
corresponds reasonably well to the distribution from the 1D experiment
although the result from the sandstone appears to be more consistent.

Surface relaxivity p,

As discussed in Section 4.3.1, the surface relaxivity can be estimated
from the 2D correlation function F'(a,T3). The relationship of 75(a) can
be established from calculating the logarithmic mean value of 75 for each
pore length a in the 2D map of F'(a,T,). As a result, the slope of T5(a) in
the linear scale relates to the effective surface relaxivity of rock samples
according to Eq. 4.26.

The results of 7T5(a) in sandstone and limestone were calculated from
Fig. 4.13 and are illustrated in Fig. 4.14. Both results exhibit monotonic
relationships of pore length and 75 in the pore regions. Moreover, the
sandstone curve lies above the limestone, which indicates larger surface
relaxivities in sandstone than in limestone.

The slope of the result in sandstone varies in the different pore regimes,
which implies heterogeneous surface properties in the pores. The surface
relaxivity was estimated to be around 30 ;m/s in the pore length ranging
from 10 sim to 70 yim, and was continuously increasing in the pores smaller
than 10 ym, which was indicated in the inset of Fig. 4.14. These charac-
teristics follow the distribution of F'(a,T3) in Fig. 4.13 (a) and confirm the
larger surface relaxivities p, in smaller pores. In the result of limestone,
the plot is mostly linear for 75 values up to 1 s. The surface relaxivity in
limestone was then estimated to be 15 ym/s, which matches well with the
result of the dashed line in Fig. 4.13 (b). The uprising of the tail above 1 s
was caused by the particular shape of the 2D map which may lead to a
slightly distorted functional dependency of 75(a) when using the log mean

of T, along the values of a. A different averaging method more suitable
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for the shape of the contour may lead to more consistent result but were
not explored in the context of this work. Besides that, the complexity of
the pore shape will break the assumption of spherical pores in Eq. 4.26 and
might introduce the deviation of the result.
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FIG. 4.14: The results of T5(a) in sandstone (square) and limestone (diamond). To
better present the feature of surface relaxivities in these two rock samples, the
transposed data is plotted. The straight dashed lines corresponding to the surface
relaxivities of 30 um/s and 15 um/s are plotted to show the linearity of pore length
a and T». A geometrical factor of 6 is considered according to Eq. 4.26. The inset
shows the T5(a) results in smaller pore regime.

In order to validate the obtained surface relaxivities, two critical charac-
teristic lengths for molecular diffusion in pore space are compared in these
two rock cores. An effective length I, = D/p, is used in order to charac-
terize the distance travelled by the molecules between the first collision
onto the surface sink [231]. This characteristic length is estimated to be
80 pm in this sandstone and 160 pm in the limestone. Since there are two
dimensions of measurements, pore length a and 75, affecting the determin-
ation of surface relaxivities, the diffusion length /; along these two domains
are evaluated, respectively. For diffusion length along 7, measurement
domain, l; = +/DTg = 0.55 um for Ty = 125 us. For diffusion length along
pore scale domain, the largest pore size is 70 ;m in sandstone and 130 ;m

in limestone, which corresponds to the longest diffusion observation time
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taise of 100 ms and 400 ms, therefore, the diffusion lengths under these times
are 16 ym and 32 ym. Both cases indicate that the diffusion length in 2D
experiment is smaller than the characteristic length [,, which implies that
the molecules in the pore experience enough collision close to the surface.
As a result, the pore surface area should be well sampled by the molecular
mobility during the 2D experiment and the obtained surface relaxivites
should be consistent.

To validate this conclusion, the surface relaxivities of these two rock
samples were measured using Padé approximation from the 2D D-T5 cor-
relation map [228]. The formation factor /' was independently measured to
be 40.8 in sandstone and 7.5 in limestone. The diffusion encoding time A in
2D D-T; correlation experiment was 45 ms. These parameters were then put
into the Padé approximation procedure as the necessary factors in Eq. 4.15.
The 2D experimental results are given in Fig. 4.15 and the estimated surface
relaxivities p, were 25 um/s in sandstone and 12 ym/s in limestone. The
values correspond well with the results of p, in the limestone and was
underestimated in the sandstone. This inconsistency is probably due to the
non-negligible internal gradient effect during the diffusion encoding time
A.

It is worth noting that the experimental data acquired from the Padé
approximation method will be additionally attenuated because of the re-
laxation effect presence during the diffusion encoding time A. This effect
is relatively weak in the eigenmode correlation experiments because of
the shorter phase encoding period t. compared to A in Padé diffusion-
relaxation correlation. As a result, the surface information of the pores with
comparably small size and significant internal gradients can be preserved

and evaluated using the eigenmodes correlation method.
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FIG. 4.15: Padé approximation on the correlation functions F'(D, T3) in sandstone
(a) and limestone (b) at 2 MHz. The horizontal and vertical dashed lines in these 2D
maps represent the normalized diffusion coefficient line and the bulk 75 relaxation
time for water, respectively. The black solid lines are the correlation of logarithmic
mean value of D distribution along 7> domain and the blue dashed lines are the
Padé approximation of the black solid lines using Eq. 4.15. The fitting results yield
that py = 25 um/s in sandstone and 12 ym/s in limestone.

4.5.3 T)-T) eigenmode correlation results
2D correlation results

The acquired 2D data of the rock samples by using the pulse sequence
given in Fig. 4.4 were processed using 2D ILT and the results were shown in
Fig. 4.16 (a) for Nugget sandstone and Fig. 4.17 (a) for Winterset limestone.
Meanwhile, independent experiments were performed based on the pulse
sequence given in Fig. 4.5, only for validating the experimental results of
tirst and ground 77 mode correlation. The results from this experiment were
given in Fig. 4.16 (b) for Nugget sandstone and Fig. 4.17 (b) for Winterset
limestone.

From the comparison of the experimental results from Nugget sand-
stone and Winterset limestone shown in Fig. 4.16 (b) and Fig. 4.17 (b), it
is easy to observe that the ground 7; self-correlation distribution mainly
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FIG. 4.16: The ground and first 773 mode correlation map (a) and ground 7 mode
self-correlation map (b) in Nugget sandstone obtained according to Eq. 4.21. The
solid diagonal lines represent equal eigenvalues in 2D correlation maps.

lies along the diagonal line, which proves that only the ground 7} mode
contributed during the 1% and 2™ domain of this 2D experiment. How-
ever, in the ground and first 7} eigenmode correlation results shown in
Fig. 4.16 (a) and Fig. 4.17 (a), there exist two discernible areas in the distri-
bution, one along the diagonal line and a second one below the diagonal
line. The part aligning along the diagonal line stands for the signal from
the ground 77 mode correlation while the part below the diagonal line
represents the signal from the ground and first 7; mode correlation. Since
the first 7 eigenvalue is smaller than the ground 7; eigenvalue, this part
of the distribution is located below the diagonal line. These two parts, if
explained by the NMR response equation, exactly correspond to the two
exponential terms in Eq. 4.21. Moreover, by comparing the 1D projected
curves in the top and right panels of 2D correlation maps, we can observe
that there are comparable 7; values in the major section of these two 1D

distributions, and extra segment with smaller 7; values in the right panel.
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FIG. 4.17: The ground and first 773 mode correlation map (a) and ground 77 mode
self-correlation map (b) in Winterset limestone obtained according to Eq. 4.21. The
solid diagonal lines represent equal eigenvalues in 2D correlation maps.

This is a straightforward evidence that there is only ground 7} eigenmode
contribution in the 2"* domain of the acquisition, while in the 1°' domain,
the ground and first 77 mode are both detected. In order to extract the
pore size information, the contribution from the ground 7; mode in the 1%
domain needs to be eliminated.

As already mentioned in Section 4.2.2, the isolation of the ground T
mode contribution in the 1% domain relies on the data from 2"¢ domain
rather than an extra reference acquisition. In order to illustrate the steps
to obtain the ground and first 7' correlation map, we briefly revisit these

steps here:
1: Calibrating the amplitudes of 2D signal E(tqit, (N — 1)t,) in Eq. 4.21.

2: Obtaining the correlation distribution F(71%Y, 724 from the calib-
rated E(tq, (N — 1)t,) using 2D ILT. As indicated in Fig. 4.16 (a) and
Fig. 4.17 (a), the obtained distribution function is F'([r, 7], 7).
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3: Evaluating the relative intensities of the ground 7} mode ;o and then

eliminate it from the signal in the 1t domain.

4: Obtaining the data matrix S(tgi, (N — 1)t,) given in Eq. 4.22. Pro-
cessing it using 2D ILT to be F'(7y, 79) and rescale it further to F'(a, T7).

Therefore, it is notable that the determination of factor [, is critical
in the calculation of F(71, 7). As discussed in Section 4.2, Ioo = [ ¢%dV -
JdV - [sin@pldV ~ [ @dV - [ sin @p{dV, which is approximately the
value of I calculated in 1D experiment. As a result, I, instead of I, will
be estimated in this case.

In order to obtain this factor, the first row (green circle) and first column
(blue diamond) of the 2D data matrices after Step 1 were extracted and
plotted in Fig. 4.18 (a) and Fig. 4.19 (a). The first row stands for the signal
attenuation due to the ground 77 mode only and the first column for the
decay dominantly caused by the ground and first 7} modes. That is the
reason why the dataset along the 1°* domain decay faster than the data
along the 2™ domain of the acquisition. By fitting the later dataset using 1D
ILT, a new data vector representing the ground 7} mode contribution under
each tqif can then be interpolated and shown as red triangle. Consequently,
the value of I, can be determined using the ratio of the data along the 1°
domain and the rebuilt data vector at long ¢gi.

After consecutively applying this obtained value in the 2D data matrices,
Step 4 can be carried out to obtain the data matrix S(tg, (N — 1)ta). The
2D datasets in these two rock cores are shown in Fig. 4.18 (b) and Fig. 4.19
(b). The data attenuate more rapidly along the ¢4 domain in these two surf
maps, revealing the high 77 mode contribution in this dimension. Then the
ground and first 77 mode correlation function F(y, 7) can be obtained and
shown in Fig. 4.20. By comparing and observing the location and range of
these two distributions, we notice that they exhibit shorter 7; eigenvalue in
the 1°* domain which correspond to the distributions below the diagonal
lines in Fig. 4.16 (a) and Fig. 4.17 (a), respectively.
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FIG. 4.18: (a) The data sets from 1%t domain (diamond) and from 2" domain
(circle). The triangle markers represent the reconstructed data set corresponding
to the same ¢4 of data acquired in the first domain; (b) the S(tgisf, (N — 1)t,) data
matrix in sandstone at 64 MHz.

The obtained correlation function F (71, 79) can be further translated to
F(a, Ty) along the vertical axis via a ~ 2(,/D7}. The correlation functions
F(a,Ty) of the sandstone and limestone samples are given in Fig. 4.21 along
with the projections of pore length scales and 75 relaxation distributions.
In order to compare to the 1D results, data from Fig. 4.8 (b) and Fig. 4.7 (b)
is presented using red dashed lines.

In both cases, the 1D projected pore length scales correspond well to
the 1D experimental results, which confirms the result of 2D 73-T} eigen-
mode correlation experiment. The 2D distribution functions F'(a,T}) are
broadened as compared to the obtained F'(a,T,) from 7}-T) eigenmode cor-
relation experiment given in Fig. 4.13, which is due to the bigger smoothing
parameters used in the ILT because of the data amplitudes calibration
in the Step 1 of the data processing. Nevertheless, strong correlation of
pore length and 7} relaxation can still be observed from these 2D maps.
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FIG. 4.19: (a) The data sets from 1% domain (diamond) and from 2"¢ domain
(circle). The triangle markers represent the reconstructed data set corresponding
to the same t4;¢ of data acquired in the first domain; (b) the S(tg¢, (N — 1)ta) data
matrix in limestone at 64 MHz.

The dashed lines representing the surface relaxivity of p; =18 ym/s in the
sandstone and p; =8 um/s in the limestone can be marked to indicate the

tendency and correlation of the obtained F'(a,77) maps.

Surface relaxivity p;

As discussed in Section 4.3.2, the surface relaxivity can be estimated
from the 2D correlation function F(a,T;). The relationship of 7’ (a) can
be established from calculating the logarithmic mean value of 7; for each
pore length a in the 2D map of F'(a,T7). As a result, the slope of T} (a) in
the linear scale relates to the effective surface relaxivity of rock samples
according to Eq. 4.27.

The results of 77 (a) in sandstone and limestone were calculated from
Fig. 4.21 and plotted in Fig. 4.22. Both results exhibit monotonic relation-

ships of pore length and 7 in the pore regions. Moreover, the sandstone
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FIG. 4.20: The first and ground 71 mode correlation map in Nugget sandstone (a)
and Winterset limestone (b) obtained according to Eq. 4.22.

curve lies above the limestone, which indicates larger surface relaxivities
in sandstone than in limestone. The surface relaxivity of sandstone was
estimated to be around 18 ym/s in the pore length ranging from 10 ym
to 70 pm, and was continuously increasing in the pores smaller than 10
pum. These characteristics follow the distribution of F'(a,T}) in Fig. 4.21 (a)
and confirm the larger surface relaxivities p; in smaller pores. The surface
relaxivity in Winterset limestone was then estimated to be 8 ym/s, which
matches the result of the dashed line in Fig. 4.21 (b). Similar to the case of
surface relaxivity p,, the complexity of the actual pore shape as compared
to the assumed spherical pore in Eq. 4.27 may introduce further deviations

from a simple linear relationship.
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FIG. 4.21: The distributions of correlation functions F'(a,T}) of Nugget sandstone
(a) and Winterset limestone (b). The dashed lines in these 2D maps represent
the correlation line with p; = 18 um/s in sandstone and 8 pum/s in limestone.
The red dashed lines represent the pore length scales from 1D experiments and

were normalized for the comparison with 1D projected pore size distribution from
F (a, T1 ) .
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FIG. 4.22: The results of T’ (a) in sandstone(square) and limestone (diamond). To
better present the feature of surface relaxivities in these two rock samples, the
transposed data is plotted. The straight dashed lines corresponding to the surface
relaxivities of 18 um/s and 8 um/s are plotted to show the linearity of pore length
a and T7. A geometrical factor of 6 is considered according to Eq. 4.27.
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Chapter 5
Local Permeability Estimation

In order to estimate permeability from relaxation time distribution, relaxation
property of rock cores were spatially resolved along the cylindrical axis using
magnetic resonance imaging. Moreover, a factor defining the local connectedness
can be extracted from calculating the correlation degree of adjacent relaxation time
distributions from the neighbouring two resolved slices. Consequently, a permeab-
ility profile can be estimated and the local connectivity property of rock cores can
be characterized considering the local porosity ¢, relaxation time distribution, and
the connected factor consecutively along cylindrical axis.

5.1 Methodology

As discussed in Chapter 3, surface relaxation 7; and 75 distributions of
rock samples indicate pore length information and can be used to estimate
permeability. In this chapter, we choose T} relaxation since it is intrinsically
immune to the induced internal magnetic fields B;,,. Before going deep into
the heart of this chapter, we firstly review a unique method suggested in

[32], which yields 7} relaxation distribution in a rapid way.

97
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5.1.1 Fast encoding 7} relaxation

The inversion recovery pulse sequence shown in Fig. 2.8 is traditionally
utilized for 7} measurement. However, it is a time-consuming technique
since the spin system needs to recover to thermal equilibrium state before
recording the magnetization under each evolution time 7. There are
many techniques that have been developed to accelerate the 73 acquisition
[32, 232-234]. One of these approaches, using small tip angle pulses to
encode 77 information [32], is shown in Fig. 5.1. This approach, which has
been used in Chapter 4 for encoding the ground relaxation eigenmode, will

be employed as the base of the imaging pulse sequence in this chapter.

Ty
%:c gix
Uy
RF P
T\ T t
ta

G — —
t

Loop xN

FIG. 5.1: Pulse sequence for rapidly encoding T’ information [32]. a represents the
tip angle of the looping pulses and the blocks along G track are homo-spoil gradi-
ents for cancelling the unwanted magnetization existing in the transverse plane.
ta is the encoding spacing of two succesive a pulses. A two-step phase cycling
is used for the second 7/2 pulse to select the decay pattern of the magnetization
evolution along the longitudinal axis.

The idea of this pulse sequence is recording the magnetization decay

aligning along the longitudinal axis rather than its recovery procedure.
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With the first three pulses tipping the magnetization to the longitudinal
axis, a train of small tip angle pulses is applied later on to manipulate this
magnetization. By using a two-step phase cycling of the second 7/2 RF
pulse [32], the magnetization after each small o pulse can be expressed as:

(N_l)'ta

M((N —1)-ty) = 2Mpsin « - exp (— T
1

) -cosV ta (5.1)
where N represents the number of the small tip angle pulses and ¢, is the
signal evolution time between the adjacent FID acquisition. This magnet-
ization attenuation is actually identical to Eq. 4.19 in Chapter 4, which

expresses the signal decay due to the ground 7} mode.

The signal evolution of this technique is a “CPMG-like” attenuation
and therefore this measurement speeds up the 7} acquisition without the
needs of recovering the magnetization back to thermal equilibrium. For
the multiple 77 components which exist in porous materials, Eq. 5.1 can be
extended to as:

(N —1)-t,

M((N—1)-t,) = QMO/F(Tl)- {exp (— T ) sina - CosN_la} dTy.

(5.2)

Before obtaining the 7} distribution function F'(77) by using ILT, the
measured signal needs to be calibrated via dividing the intensities of FID

signals by corresponding factors cos™ ™!

a. For the practical purpose, a
compromising loop number N can be chosen in the range of [50, 200] con-
sidering the number of homo-spoil gradients used and the data points we
need to record according to T} relaxation. Moreover, it is worth noting that
the essential of this fast technique is the utility of small tip angle pulses.
This advantage, however, will deliver a comparably low SNR for the ac-
quired signal. Therefore, it is critical to choose an optimized tip angle «,
especially in the low-field application. Firstly, o can not be too small since
the SNR of the acquired data is proportional to sin . Meanwhile, a should

not be too large, otherwise only a limited number of data points can be
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acquired. A good starting point to optimize « in this experiment would
be the Ernest angle, which is estimated by arccos[exp(—t,/T})]. Therefore,
an acceptable « in the range of 5° to 9° is advisable from our experimental

experience.

5.1.2 Spatially-resolved 7} relaxation profile

After introducing this fast 77 encoded method, we extend it to resolve
the 77 information along a spatial axis by combing it with an imaging tech-
nique, in order to obtain the local relaxation information of the measured
samples. The pulse sequence for spatially resolved T} mapping is shown in
Fig. 5.2 and the pulse phase cycling given in Tab. 5.1.

NIE
SIE]

RF

G g max
1 17,

5 Loop xN

f—

FIG. 5.2: Pulse sequence for spatially resolved 77 mapping. The number of the
acquired echoes is N and ¢ is the phase encoded gradient. This gradient ramps
from —gmax up to gmax linearly in m steps.

This pulse programme has two major modifications based on the pulse
sequence shown in Fig. 5.1. Firstly, a phase gradient is applied after the

a pulse to encode the spatial information. The k-space pattern is then
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Table 5.1: Phase cycling used in phase encoded T} imaging in Fig. 5.2. ¢1, ¢2, ¢3,
¢4 and ¢ 4.4, stand for the phases of the first 7 /2 pulse, the first 7 pulse, the second
7/2 pulse, the following 7 pulses and the acquisition phase.

o1 P2 3 Q4 Qacq
/2 w 7w/2 o« 0
/2 7w 3w/2 7 T
3n/2 wm w2 w 0
3n/2 w 3m/2 o« T
/2 7 7w/2 w/2 0
/2 w 3w/2 w/2 7
3n/2 w w2 w/2 0
3n/2 7w 3n/2 w/2 o«

recorded in the peak amplitude of the following echo. Secondly, an extra 7
pulse needs to be applied after the echo acquisition. This pulse is necessary
because of the additional 7 pulse just after the o pulse. While the additional
7 pulse after the a pulse refocuses the magnetization in the transverse
plane (and form an echo) it simultaneously rotates the z-component of
the magnetization as described in Eq. 4.18 to the opposite direction. This
will distort the magnetization evolution along the z direction and the T}
acquisition using small tip angle according to Eq. 5.1 fails. Therefore, the
rotated z-component magnetization needs to be tipped back to its original
direction using the extra 7 pulse after the echo.

By using this pulse sequence, the obtained signal can be given as:

M(k,N-t,) = // F(z,Ty)-exp(i2rkz)- exp(—Nj;lta)sin& -cos’ ta| dzdTy

(5.3)
with & = Ygmax0/Mmm. gmax is the maximum gradient intensity, J is the
duration of this gradient and m is the step number of varying the gradient
intensity from —gmax t0 gmax. 2 is the gradient direction which coincides

with the cylindrical axis of the rock cores in this work.

To process this acquired 2D data, FT is firstly employed to transfer each
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phase pattern to be a imaging profile. Then the exponential decay data in
each position is treated by using ILT to yield the resolved T} distribution
function F'(z,T1).

5.1.3 Permeability profile

The spatially resolved T} profile of rock cores carry several important
petrophysical parameters which can be further employed to characterize
the interior structure properties of the samples. In each resolved slice,
the local T} distribution contains the pore size information. With the spa-
tially resolved T result from a calibration sample representing 100% pore
volume, the signal intensity can be rescaled to be local porosity according
to Eq. 3.4. Therefore, the corresponding permeability can be estimated
using these two information according to Eq. 3.8, which is similar to the
permeability curves estimated from relaxation time distributions for each
layer formation in NMR well-logging interpretations as shown in Fig. 3.7.
This consecutive calculation along the cylindrical axis of the sample will
yield a local permeability value in analogue to the global permeability
given by Eq. 3.8 as:

/ﬂ:;ocal =cC- (Tflgm)2(¢i)4 (54)

where c is an empirical factor related to the rock type. As suggested in
the literatures, c= 1.6 mD/(ms)? for sandstone [21], and 0.1 mD/(ms)? for

limestone [22, 235]. ¢' is the porosity for i*" slice and 77, is the logarithmic

lgm
mean value of 7} distribution from i slice, which Canioe calculated based
on Eq. 3.9. This approach from Eq. 5.4 is similar to the method as suggested
in Ref. [236].

Eq. 5.4 reveals local permeability and therefore indicates the heterogen-
eous property of the studied material. However, this evaluation does not
consider the connectedness between adjacent layers and might lead to a
misinterpretation of some local permeable information. To illustrate this

point, consider a two-layer porous medium model. One layer contains
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large pores but within a low porosity (for instance 77,4, = 0.5 s, and ¢ =
0.15). This layer represents some zones within vugs in a rock. Another one,
by contrast, exists high population of small pores (for instance 774, = 0.05
s, and ¢ = 0.45). This layer could stand for some tight zones within micro-
capillary/fractures in rock. The permeability values from these two layers
are approximately equivalent (= 150 mD with ¢ equal to 1.6 mD/(ms)?) ac-
cording to Eq. 5.4. However, the fluid can hardly flows along this medium
because the significant difference of pore sizes between these two layers
will largely exacerbate the pressure resistance for the flowing fluid. As a

result, the internal connectedness should be considered in this local region.

Here, a factor P is defined in order to take into account the local con-
nectedness. It can be calculated from matching the adjacent relaxation
distributions in neighboring slices (as shown in Fig. 5.3). This is based
on the plausible assumption that pores will be well connected between
two slices if these two T distributions are highly similar to each other. On
the contrary, differences (mismatches) of 77 distributions would indicate
changes and discontinuities in the pore structure most likely leading to
increased transport resistances. As a result, the defined P! between the
i and (i 4+ 1)™ slices is obtained by integrating the intersection between
two adjacent slices and normalized by the union of their 7; relaxation
distributions: _

b [Min(AD,ATTY)?
j=a o ALATH
Length[Union(A?, Ai+1)]’

Pt = (5.5)

Here A’ is the j* normalized amplitude of the T} distribution in the i*"
slice, the sum of which along the T} axis is proportional to the local porosity
of this slice. The index a, b stand for the intersection boundaries of T;
distributions from two adjacent slices shown in Fig. 5.3. The denominator
in Eq. 5.5 is the union components number of these two 77 distributions,
which is used to normalize the intersection area of these two 7T distributions
calculated in the nominator of Eq. 5.5. From the definition of the parameter

P! one can find that this connectedness (or penalty) factor is 1 in the
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FIG. 5.3: A proposed model to calculate local permeability connected factor P%+1.
The purple and green blocks are the two adjacent 77 distributions. The index a,
b, c and d along T domain represent the intersection and union boundaries of T
distributions from two adjacent slices.

case of identical distributions (total match) and is 0 in the non-matching
distributions. Based on this, a local permeability within two adjacent slices
considering the proposed connectedness factor can be defined as:

iyi+1

Kiocal = €~ TZ ’ TH—I (¢Z ' ¢i+1)2 : Pi7i+1- (56)

llgm ligm

5.2 Experimental

Two rock samples are selected and their permeability profiles are stud-
ied in this chapter. One is sandstone with porosity of 10.5% and brine
permeability of 3 mD. Another one is a limestone core with porosity of
36.5% and permeability of 90 mD.

Before acquiring the spatially-resolved T} relaxation profiles, 2D ima-
ging is used in order to visualize the interior structure of the rock samples.
The NMR system consists of a cryogen free NMR Imaging system (Cryo-
genic Ltd, London, UK, 64 MHz) with homebuilt gradients and RF coil
operated by a Kea console (Magritek Ltd, Wellington, NZ). A spin echo
imaging technique is used with a RF pulse length of 30 is and an echo spa-
cing of 10 ms. The number of pixels in the frequency and phase encoding
directions are 128 each. The field of view is 150x 150 mm?.

The imaging results of the sandstone and limestone cores are given
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in Fig. 5.4. It is easy to visualize that the sandstone is fine-to-medium
grained, red-brown quartz with a bedding (in-between dark slices) plane
structure which is observable through the highlighted bands in the image.
For the limestone core, a high heterogeneity can be observed from the
photography by eyes and 2D MR imaging result. The lower intensity in the
image corresponds to the large grain in the middle of the core.

120,
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FIG. 5.4: Rock samples used for studying the permeability properties (left column)
and their 2D MRI imaging results (right column). The imaging field of view is
150x150 mm with a spatial resolution of 1.17 mm. The unit of the MR imagines in
the right column is 'V /kHz.
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All fast encoding 73 and spatially-resolved 7} measurements are based
on the rapid encoding given in Fig. 5.1 and are implemented on 2 MHz
Rock Core Analyzer (Magritek Limited Company). In the fast 77 encoding
experiment, the RF pulse length is 25 us, the amplitude of 90° RF pulse is
-9.5 dB, and the amplitude of 180° RF pulse is -3.5 dB, the amplitude of small
tip angle o RF pulse is -32.75 dB, which corresponds to 5.3°. As denoted in
Fig. 5.1, the number of FID is set to be 100. The acquisition time ¢, is chosen
to be 6.12 ms in sandstone and 26.6 ms in limestone. 7 is 50 us. Within a
number of 64 scans and 6000 ms repetition time, the acquisition time is 6
min. Independently, inversion-recovery pulse sequence as discussed in
Fig. 2.8 is applied to compare the 7 results. Ty varies from 1 ms to 1500 ms
in the sandstone and to 6000 ms in the limestone in 35 steps logarithmically.
Within a number of 16 scans and 6000 ms, the experimental time using this
pulse sequence is approximately 63 min.

As denoted in Fig. 5.2, a phase encoded gradient is applied to obtain
the imaging pattern for spatially-encoded T profiles based on the same ex-
perimental parameters adopted from the fast 77 encoding experiment. The
imaging resolution is set to be 1.5 mm. The length of phase encoding gradi-
ent ¢ is 100 ps. Within a number of 64 phase gradient steps and 6000 ms
repetition time, the acquisition time for the rock samples is approximately
6 hours.

5.3 Results

5.3.1 Fast encoded 7} data and distributions

The measured T} data and inversion results of the sandstone are given
in Fig. 5.5. In order to compare these two data sets, the measured data from
the inversion-recovery pulse sequence is converted from the recovery to
the attenuation pattern and only shown up to 0.9 s. It is easy to observe

that the data from fast encoding method (blue diamond) are comparable
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with the result from the traditional inversion-recovery (red triangle) pulse
sequence. Furthermore, the 7 distributions after ILT inversion as given in
Fig. 5.5 (b) show good correspondence. Meanwhile, the measured 7' data
and inversion results of the limestone are given in Fig. 5.6. Again, when
comparing the results from the inversion recovery and the fast encoded
method, similar features in both the time domain and the 7} ILT domain

can be found.
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FIG. 5.5: (a) The comparison of the experimental data between fast encoding T
(blue diamond) and inversion-recovery (red triangle) techniques in the sandstone
sample. The inset emphasizes the experimental data in the time scale ranging to
0.1 s. (b) The comparison of the relaxation distributions between fast encoding
Ti (blue dashed) and inversion-recovery (red solid) techniques in the sandstone
sample.

Note that the tails of the fast encoded 7T datasets in these two cases
are more noisy compared to the data from the inversion recovery pulse se-
quence. This is ascribed to more acquisition points used in the fast encoded
T1 measurements. However, the experimental results from sandstone and
limestone samples suggest that this fast encoding method can yield reliable
datasets and 7 distributions, even in the field strength as low as at 2 MHz.
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FIG. 5.6: (a) The comparison of the experimental data between fast encoding 7'
(blue diamond) and inversion-recovery (red triangle) techniques in the limestone
sample. The inset emphasizes the experimental data in the time scale ranging to
0.5 s. (b) The comparison of the relaxation distributions between fast encoding
T (blue dashed) and inversion-recovery (red solid) techniques in the limestone
sample.

5.3.2 Spatially-resolved 7 profiles

Spatially-resolved T} profiles of the sandstone and limestone samples
are shown in Fig. 5.7. The projections in the top and right panels of the
2D maps represent the 7 distributions and the porosity profiles along
cylindrical axis, respectively. In order to obtain the absolute porosity, the
signal intensity in each slice is rescaled by the experimental result from a
calibration sample with 100% pore volume. The blue dashed lines in the
right panels are the weighing porosities obtained before NMR experiments
were performed. It is apparent that the projected porosity profiles, the
values of which are comparable to the weighing porosities, characterize the
local hydrogen distribution and therefore indicate the heterogeneity degree
of rock samples. Besides that, the projected 73 distributions of these two
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rock cores are compared with the non-spatially resolved 7 results obtained
from the fast encoding pulse sequence shown in Fig. 5.1. The projected
Ty distributions for both cases agree reasonably well, although there are
some deviations which may be caused by more complex manipulation of
the magnetization in spatially-resolved 7} profile due to the extra 7 pulse

used in Fig. 5.2.
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FIG. 5.7: Spatially resolved 77 mapping in the sandstone (a) and limestone
sample (b). The right and top projections of the spatially-resolved 77 maps are the
distributions of porosity along cylindrical axis and the 77 distributions. The black
dashed lines are the 77 distributions acquired using the pulse sequence shown in
Fig. 5.1. The blue dashed lines in the right panel represent the weighing porosity
of each core plugs.

From the spatially-resolved 7T distributions given in Fig. 5.7, it is easy
to observe that the major distribution in the sandstone core sits in the
Ty relaxation range from 0.01 s to 0.3 s, while expands from 0.03 s up
to 2 s in the limestone. This implies a smaller pore length scales in the
sandstone and more heterogeneous pore network in the limestone core. By
comparing these two relaxation profiles along the cylindrical axis of cores,
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the sandstone appears to be relatively uniform while the limestone reveals
more fluctuation and particularly a dip zone in the middle of core. This
indicates that this core has a more heterogeneous solid matrix as compared
to the sandstone. Notably, this conclusion agrees with the rock core imaging
results given in Fig. 5.4.

5.3.3 Permeability profiles

Using the obtained 7} profiles and the model defined in Section 5.1.3,
two local permeability profiles of these two rock samples, with and without
considering the connectedness factor P*'*! can be calculated based on
Eq. 5.6 and Eq. 5.4 and are given in Fig. 5.8. The curves are the permeability
profiles calculated with (blue) and without (pink) considering P, respect-
ively. Black dot lines represent the permeability values from brine flowing
measurements.

Analogue to a series circuit in electronics, the rock slice with the worst
permeability determines the moveability of the saturating fluid in the rock
core. This can be seen from the comparison of the lowest value of the
obtained permeability profile along the cylindrical axis with the brine
permeability in both rock cores in Fig. 5.8. Note that the permeability
profiles which are calculated using the connectedness factor P as defined
in Eq. 5.5 approaches closer to the reference brine permeability line than
the curve without considering P.

In order to quantitatively evaluate these results, the upscaling technique
is utilized to obtain an averaged permeability from its profile [237-239]. The
calculated results are denoted using blue and pink dashed lines in Fig. 5.8.
Here, the averaged permeability of the sandstone with and without con-
sidering the connectedness factor are 3.21 mD and 6.83 mD, respectively,
compared to its brine permeability of 3 mD. Similarly, the averaged per-
meability of the limestone with and without considering the connectedness
factor are 132 mD and 151 mD, respectively, compared to its brine per-
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FIG. 5.8: Permeability profiles estimated in the sandstone (a) and limestone cores
(b). The blue and pink curves are the permeability profiles calculated with and
without considering the proposed penalty factor, respectively. Black dashed lines
represent the brine-permeability measurement values. Blue and pink dashed lines
are the renormalization of permeability profiles with and without considering the
connectedness factor P+,

meability of 90 mD. Both cases indicate that the averaged permeability
values from considering the connectedness factor P are closer to the brine
permeabilities as compared to the values without considering the connec-
tedness factor. As a result, a better description of the permeable properties
can be obtained if a connectedness factor P according to Eq. 5.5 between
two adjacent resolved slices is taken into account.

Moreover, by comparing the rock core imaging results given in Fig. 5.4,
with the local permeability profiles it is evident that the spatial hetero-

geneities of rocks along their cylindrical axis are reflected well by both
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methods, thus making 1D spatially resolved relaxation maps as a source
for the permeability profile an available alternative to 2D imaging.



Chapter 6

Multi-phase Fluid Flooding

In this chapter, an overburden system was utilized to pressurize rock cores
at required temperatures and pressures. Furthermore, spatially resolved NMR
techniques were combined with relaxation time (11 and T5) and relaxation-diffusion
correlation (D-T,) experiments and implemented on a low-field NMR rock core
analyzer. The property and distribution of oil saturating rock core were studied at
different temperatures before flooding experiment. Subsequently, the conditions
of secondary oil recovery were investigated by flooding water through an oil-
bearing rock plug [240]. To our knowledge, this is for the first time to combine
spatially-resolved NMR relaxometry/diffusometry technique with overburden
system, to monitor the multi-phase fluid transport in rock core at different confining

conditions.

6.1 Hardware configuration

6.1.1 Overburden system

A commercial 2 MHz NMR analyzer equipped with a shielded 1D
gradient coil (Magritek, Ltd.) was used to acquire NMR data in this work
[89]. The RF probe has a dimension of 10 cm length and 5.4 cm diameter.

This setup is complemented with a Daedalus Innovations overburden

113
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rock holder (see in Fig. 6.1), which maintains required temperatures and
pressures for the rock plug under study [193].

Flooding fluid inlet *

Mount

Heat shrink Sleeve :

]
Rock core

Confining fluid

Confining fluid inlet f
(a)

FIG. 6.1: (a) Schematic of overburden rock holder. Red and blue arrows indicate
the flow direction of flooding fluid and confining fluid, respectively. (b) The
individual components of the overburden rock holder. The parts from left to right
columns are rock core, heat shrink sleeve, mount, holder ceramic housing and
brass end plugs. The yellow wire in the bottom end plug is used to ground the
rock holder electronically.

As shown in Fig. 6.1, the rock core is mounted in the rock holder before
performing the experiments. It is placed between two PEAK mounts first,
wrapped by heat shrink sleeve, and then loaded in the chamber of the
overburden holder. Two brass plugs are screwed in each end of the ceramic
holder housing to seal the overburden cell. It is worth noting that the
materials of the rock holder, especially the section close to the detection

volume of the NMR system, are chosen to be non-magnetic as to avoid
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interference with the NMR experiments.

Subsequently, the cell holding the rock plug is loaded in the bore of
NMR system and is connected to two external circuits. These two circuits
will provide pressurized fluid flooding through rock samples (left plumbing
in Fig. 6.2), and the confining pressure and temperature for the rock plug
(right loop in Fig. 6.2), respectively.
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FIG. 6.2: Schematic of overburden rock holder combining with low-field NMR
system for high pressure and temperature experiments. Red and blue arrows
indicate the flow direction of flooding fluid and confining fluid, respectively. The
bold line in the confining part represents the plumbing with tubing insulation. P
in the circuit stands for pressure gauge and T for thermocouple.

To achieve the desired confining temperature and pressure for the rock
plug, two ISCO syringe pumps are used to drive confining fluid flow as
shown in Fig. 6.2. There are two requirements the confining fluids needs to
meet. Firstly, the fluid should undertake the function for heat transfer at
high temperatures. Secondly, it should not contain hydrogen. Accordingly,
perfluro polyether (PFPE, C5,F102016") is chosen as the confining fluid to

circulate in the plumbing and rock holder chamber. A heating exchange

Molecular weight: 1020, density: 1.82 g/mL, boiling point: 230°C, thermal conductiv-
ity: 0.065 W/(m-K), dynamic viscosity: 8 cP.
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coil immersed in the heating bath after the syringe pump ensures the
required temperature of PFPE before entering the pressure cell. Another
exchange coil in the chiller will cool down the confining fluid after the cell.
Before the confining fluid is flowing back to the reservoir, a back pressure
regulator (BPR 1) is implemented which controls the pressure surrounding
the rock core. On-site pressures and temperatures are logged to monitor
the confining conditions of the loaded rock core real-time. A rupture disc is
used to protect the plumbing from too high pressures. Furthermore, a high-
pressure crank pump is connected to the inlet end of the flooding channel
of the overburden rock holder to provide flooding conditions. Water can be
imbibed and then pressurized through the rock core in this work. Another
back pressure regulator (BPR 2) is used to control the flooding pressure.

Subsequently, a rock sample saturating with diesel is loaded in the pres-
surized cell and the pressure and temperature data from different sites are
logged after the entire system reaches thermal equilibrium. Experimental
test data as shown in Table. 6.1 confirm the compatibility between oper-
ational NMR system and the overburden system. Note that the pressure
drop in the confining circulation plumbing rises up with an increasing flow
rate as driven by the syringe pump. On the contrary the pressure drop
decreases with increasing of the temperature, which is due to the viscosity
reduction of the heated confining fluid at higher temperatures. The temper-
ature of the RF coil can rises up to 70°C, which needs to be kept in mind for
the influence to the sensitivity of the RF coil. The temperature gradient of
the sample is 3.4°C for a flow rate of 150 mL/min and 200°C of the heating
bath temperature. Under this circumstance, the convection current of this
rock core is evaluated by using the theory of Rayleigh-Bernard instability
considering its permeability value. The Rayleigh number in this case is
calculated to be approximately 107%, which is quite small as compared
to the criteria Rayleigh number of 1708 [241]. Thus, there should not be
strong convection effects in this rock core experiment. Consequently, this
set-up satisfies our requirements and will be the experimental condition



6.1. HARDWARE CONFIGURATION 117

for temperature dependent experiments under high pressure.

Table 6.1: Pressure and temperature data monitored at different sites. Q is the
flow rate which can be precisely controlled by ISCO syringe pump. For different
temperature traces, 1 is for heating bath, 2 for magnet, 3 for RF coil, 4 for the
confining fluid after heating bath, 5 for the confining fluid after cooling bath, 6
from rock core top, 7 from rock core bottom and A stands for the temperature
gradient across the rock sample. AP is the pressure drop across the entire confining
circulation plumbing.

Q Temperature (°C) AP
(mL/min) 1 2 3 4 5 6 7 A (psi)
50 100 262 397 836 175 639 720 81 83

50 150 259 488 131.1 174 962 101.2 5.0 74
50 200 28 613 1755 18.0 1245 1298 53 68

100 100 259 417 871 191 733 789 56 173
100 150 264 53.6 1314 20.6 1103 113.7 3.4 149
100 200 316 727 1798 257 146.6 1519 53 126

150 100 24 401 832 203 770 791 21 279
150 150 26.5 54.0 125.6 303 1123 1152 29 212
150 150 294 56.6 1262 320 113.0 1164 34 207
150 200 30 73.6 1784 499 1543 1577 34 165

6.1.2 Sensitivity for NMR measurements

In order to examine the sensitivity and stability of the NMR analyzer
with the implemented overburden system at different temperature ratings,
a pure fluid, tetradecane, is placed in a Teflon holder and loaded in the
pressured cell for test measurements (see in Fig. 6.3 (a)). According to
Boltzmann distribution given in Eq. 2.4 and Curie Law in Eq. 2.9, the
measured signal amplitude will inherently decrease with raising the sample
temperatures. Therefore, a CPMG pulse sequence is applied to obtain the
signal at different temperatures. The initial amplitude and the noise level
of CPMG echo trains is given in Fig. 6.3 (b)).
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FIG. 6.3: (a) Sensitivity test of the entire system. A pure fluid, tetradecane
CH3(CHz2)12CH3 is used and loaded in a Teflon holder. The boiling point of
tetradecane is 253°C. (b) The initial amplitudes and noise level of the CPMG
signals at different temperatures. The SNR (see inset) is still above 100 using 4
scans at 155 °C (b).

Note that the amplitudes of CPMG signals attenuate with increasing of
the sample temperature, which can be explained by Eq. 2.9. The Root Mean
Square (RMS) of the noise data is relatively constant along the horizontal
axis, which demonstrate the reliability of RF coil in this case. Furthermore,
by calculating the SNRs of the CPMG signals shown in the inset of Fig. 6.3,
we prove that data acquisition is of high quality using only 4 scans even up
to 155 °C sample temperature. Therefore, the sensitivity and stability of the
NMR analyzer is well established with this configuration.

6.2 Methodology

6.2.1 Spatially-resolved relaxation profiles

In the context of petrophysical analysis using low-field NMR meas-
urements, the longitudinal relaxation 7} and transverse relaxation 7; are
mostly used to study fluid-saturated rock cores. This may provide informa-
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tion on the pore volume and pore size distributions. The 1D phase encoded
imaging technique combined with 75 relaxation measurements, as shown
in Fig. 6.4, can yield spatially resolved T, profiles [77, 242-244]. The first
period covered by T5; is the phase encoded imaging part of the experiment,
providing the 1D image (profile). The following section, consisting of the
180° pulse train acquires the NMR echo decay, which is determined by the
transverse relaxation 75. Similarly, as given in Fig. 5.2, spatially resolved T;
profiles can be obtained by measuring 7 using rapid acquisition schemes
as suggested in [32, 233], again in conjunction with the 1D imaging method.

T T
echo
RF j\
Tk Tk t
bp
= Loop xN
G g gmax

FIG. 6.4: NMR pulse sequence for spatially resolved 75 profiles by using phase
encoded methods [242]. g is the imaging gradient which has variable intensities
with a duration of ¢,. T is the echo spacing during the acquisition of the 75
measurement.

The acquired data for spatially resolved 7, experiments can be expressed

as:

M(k, NTg) = //F(Z7T2) - exp(i2mkz) - exp <_]\;TE

2

) d=dT, (6.1

while the pulse sequence for the spatially resolved 7T’ imaging is shown
in Fig. 5.2 and the acquired data expression is already given Eq. 5.3 of
Chapter 5. The k vector is expressed as vgt,/mn. gmax is the maximum

gradient intensity, ¢, is the duration of this gradient and m is the step
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number of varying the gradient intensity from —gmax tO gmax. 2 is the
gradient direction which coincides with the cylindrical axis of the rock
cores in this work.

Both spatially resolved T} and 75 imaging methods yield two-dimensional
datasets and a two-step data process is needed to extract the spatial relax-
ation distribution function F'(z,T}) or F(z,T3). Firstly, Fourier transform
is employed to transform the encoded phase information into positions,
returning the fluid content in each resolved slice (pixel). A customized ILT
algorithm is then applied to obtain the spatial resolved relaxation distribu-
tion function [6]. It is worth noting that F'(z, 77) and F'(z,T%) are akin to the
curves from NMR well logging operated in the oilfield, where the sensor
is pulled from the down-hole up to the surface and provide relaxation

distributions from each vertical layer in the formation.

6.2.2 Spatially-resolved D-T5 correlation maps

Besides relaxation measurements, diffusion coefficients of fluids can be
measured by NMR techniques [40, 49]. This allows one to identify different
fluid types and quantify fluid saturation in rock samples. In this case, 2D
D-T5 NMR correlation technique provides substantial information in rock
core analysis, such as fluid typing and wettability indication in multi-phase
experiments. Furthermore, spatially resolved D-T; distribution provides
the aforementioned information along a certain core axis and potentially
indicates progress of oil recovery or monitors the saturation level of rock
cores [79]. While incorporating the 2D relaxation-diffusion correlation
experiment with the 1D imaging technique, thus making the experiment
3D, the entire experimental time should be taken into account for practical
reasons. Therefore, the frequency encoding method should be preferred
because of a similar experimental time as compared to the 2D correlation
experiment without spatial resolution.

The pulse sequence for spatially resolved D-T, distribution is shown in



6.3. EXPERIMENTAL 121

Fig. 6.5 and the signal decay is expressed as:

M(k,G,NTg) = ///F(Z,D,Tz) - exp(i2mkz)
NTg

-exp(—720°G*D(A — §/3)) - exp (— T
2

) dzdT,  (6.2)

where k=vgt,/2n. A is the diffusion observation time and ¢ is the duration
of the gradients for diffusion encoding. N is the number of the acquired
echoes. The result is a 3D data matrix acquired during the spatially resolved
D-T, experiment. To obtain the final map, Fourier transform is performed
on each acquired echo to obtain the spatial imaging profile. Then 2D ILT
algorithm is applied subsequently for the 2D exponential data decay in
each slice, in order to extract the local D-T5 distribution function F'(z, D, T5)
[95].
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FIG. 6.5: NMR pulse sequence for spatially resolved D-T> map, details are shown
in [79]. A is the diffusion observation time and ¢ is the gradient duration. G and g
are the gradients for encoding diffusion coefficient and position, respectively. T
is the echo spacing and ¢, is the echo acquisition time.

6.3 Experimental

Samples. An Edwards Brown limestone core was used here to study
fluid presence and multi-phase fluid flooding at different temperatures.
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The core porosity is 36.5% and the permeability is 90 mD. The rock core has
a dimension of 6.3 cm length and 3.84 cm diameter. Before the experiment,
the core plug was dried in an oven at 60°C for 48 h, until no hydrogen
signal was detected in NMR measurements. Afterwards it was saturated
with diesel (Hydrogen index HI=1.023). In order to recall the properties of
this rock cores, its 1D imaging profile and pore length scale are given in
Fig. 6.6 (b) and (c). The heterogeneity of the rock sample can be recognized
from the comparison of the acquired porosity profile and weighing porosity
indicated by a dashed line. Large grains existing close to the plug middle
might lead to the section with reduced porosity. This rock plug has a wide
range of pore length from approximately 1 ym to 100 pum, indicating a

highly heterogeneous pore system.
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FIG. 6.6: Edwards Brown plug used in this work (a), its porosity profile (b)
determined by 1D imaging, and its pore length scales (c) determined by DDIF
technique [157].

Basic parameters in NMR experiments. The duration of 90 and 180°
pulses in the NMR experiments were kept to be 25 us (to ensure the same
RF-pulse frequency bandwidth) while the amplitudes were adjusted ac-
cordingly. The amplitude of 90° and 180° RF pulses are -9.5 dB and -3.5
dB, respectively. T3, 15 and D-T; experiments were performed as routine

measurements for determining the global properties of the fluid in the rock
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core. Relaxation time 75 distributions were determined using the CPMG
[34] pulse sequence with an echo spacing of 150 us and 12000 echoes. A
dataset with SNR=450 was acquired within a 4-scan measurement lasting
45 s. In the fast encoding 77 measurement, the small tip angle o was set
to be 5.3° and the number of small tip angle pulse is 250. The acquisition
time ¢, was optimized to be 25.6 ms. The entire experimental time was 6
min using 32 scans. D-T; correlation distributions were obtained with a
gradient duration ¢ = 5 ms and diffusion observation time A = 40 ms. The
maximum gradient G for encoding diffusion was up to 0.4 T/m in 40 steps

linearly. The echo spacing was 150 us and the number of echoes was 12000.

Before flooding: static measurement. Because of the smaller impact
of T;, relaxation during the imaging encoding period, the phase-encoded
T, method as shown in Fig. 6.4 was used to extract spatially resolved 75
profiles in the case of static fluid measurement. The spatial resolution was
1.5 mm and the number of imaging gradients m was 64. The echo spacing
in the first stage 7%; in Fig. 6.4 was set to be 500 us and the duration of the
phase gradient was 100 us. The echo spacing in the second stage was set to
be 150 ps and the number of echoes was 12000. With an 8-scan measurement
for each imaging gradient step, phase-encoded T, profile datasets have
been acquired within 1.5 h. For phase encoded 77 measurement, the spatial
resolution was 3 mm and the number of imaging gradients m was 32. The
data can be acquired within 3.5 h with a 32-scan measurement for each

imaging gradient step.

Before flooding, the confining pressure was set to be 1000 psi by adjust-
ing BPR 1 in the confining circuit. To study the temperature-dependence
of oil properties and distribution in rock plug, the temperatures of rock
sample were set to be 25°C, 55°C and 80°C with a constant flow rate of
150 mL/min for the confining fluid PFPE heated in the heating bath. Dur-
ing this measurement, the inlet and outlet of flooding channel were both
switched off to avoid the saturated oil being driven out while maintaining

the confining pressure.
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Flooding measurements. In the flooding experiment, to obtain spa-
tially resolved D-T distribution efficiently, the frequency encoded imaging
method as shown in Fig. 6.5 was used. The experimental parameters used
here have been optimized to ensure comparable results obtained from
frequency encoded 75 profiles as compared to phase encoded 7, method.
The intensity of the frequency gradient g was chosen to be 12 mT/m. The
number of acquired data points for each echo was 256 and the dwell time
was 2 us. This ensured the acquisition of the full echo with in the read
gradient g. The echo spacing with T = 800 ;s was chosen accordingly to
suit the acquisition of the full echo. The number of echoes was 3000. For
the acquisition in the diffusion dimension, the gradient duration 6 was 5
ms and the diffusion observation time A was 40 ms. The gradient G for dif-
fusion encoding varied up to 0.4 T/m in 12 steps linearly. The experimental

time was 20 mins using 16 scans.

To investigate the oil recovery procedure, water was injected into the
oil-saturated rock core confined in the overburden cell. During the flooding
experiment, to avoid water bypassing the core and travel between the core
sample and confining fluid, the overburden pressure was set to be at least
300 psi higher than the inlet pressure of the crank pump. Therefore, the
pressure before BPR 1 was kept to be 1000 psi and the initial pressure for
crank pump was 700 psi. The pressure before BPR 2 was set to 500 psi.
The entire flooding procedure is carried out in small individual steps as
indicated on the horizontal axis in Fig. 6.11. The crank pump is suspended
after each flooding step. Spatially resolved D-T; NMR measurements are
carried out after there are no reading changes from these two pressure
gauges between the confined rock core. After that further flooding steps
were applied in the same manner until the oil signal (as estimated from
the spatially resolved D-T, maps) settled to a new stationary value. Finally,
this was then followed by an increase of the sample temperature and a next
set of flooding and NMR measurements was acquired, thus revealing the

temperature dependence of the water-flooding-oil process in the rock core.
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Three experimental temperatures, 25°C, 55°C and 80°C, have been adopted

in this work.

6.4 Results

6.4.1 Porosity profile and fluid distribution

Before spatially resolved measurements were performed, 75, 77 and
D-T, distributions at three temperatures at 1000 psi were acquired (Fig. 6.7).
T;, distributions at the three temperatures indicate two components of oil
in the pore space (light component corresponds to larger 75 value while
heavy components has a smaller 75 value). With increasing temperature, 7
distribution gradually shifts towards longer relaxation time, which implies
a decrease of oil viscosity [245, 246]. When the sample confining temperat-
ure was increased from 55°C to 80°C, the heavy component was less shifted
as compared to the light counter-part, which might be caused by a weaker
temperature dependence as compared to light one. Likewise, T; results
obtained from rapid encoding method (shown in Fig. 5.1) progressively
increase with heating up the rock core, which again suggest the decrease of
the oil viscosity.

The diffusion-relaxation time correlation distributions of this oil-saturated
rock plug under different temperatures were obtained and presented in
Fig. 6.8. Because of relaxation effects during the diffusion observation
time, the heavy component with short 75 relaxation time in the correlation
experiments were missing compared to the 1D relaxation results. Never-
theless, a reasonable prediction of the oil viscous properties is still possible
since the light component predominates this oil as shown in 1D 75 spectra.
Meanwhile, these 2D distributions exhibit a strong correlation between
diffusion coefficient D and relaxation time 75, a feature that is similar to
that in bulk oil. It indicates non oil-wet status for this rock plug. This is
probably ascribed to a thin water film absorbed at the pore walls that have
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FIG. 6.7: (a) Transverse relaxation 75 and (b) longitudinal relaxation 7' distribu-
tions of oil saturating rock at 1000 psi. The dash, solid and dot dash lines represent
the distributions at 25°C, 55°C and 80°C respectively. The regularization factor

during the inversion is 1 in 75 and 33 in 7 data process. The T distribution of
bulk diesel at 25°C is given in the inset of (a).

not entirely dried out during the sample preparation. This amount of water,
although not observable during the experiment, results in the wettability
of this rock plug. The distributions shift along the hydrocarbon line even
at temperatures of up to 80°C, proves the decrease of oil viscosity. The
shape of the D and T, distributions remain almost the same, indicating a
nearly stable composition of the oil in the pore space within the chosen

temperature range [246].

Spatially resolved 77 and 75 profiles at 25°C are presented in Fig. 6.9 a
and b, respectively. Similar features, such as the heterogeneity of porosity
profile, can be observed along the cylindrical axis in both maps. Because
of the long ¢, time adopted here, heavy component of oil is absent in all
resolved T profiles, while is still visible in 75 profiles. Both projected T}
and T, distributions are comparable with the rock experimental results
shown in Fig. 6.7 (a) and (b). Furthermore, spatially resolved T, experi-
ments were performed at confining temperatures of 55°C and 80°C in order
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FIG. 6.8: Diffusion-relaxation time correlation D-T5 distributions of the used
oil-saturated rock core at 1000 psi. The slope dash line represents hydrocarbon
correlation line of D =5 x 1071975,

to investigate the oil temperature-dependent behaviour. The varying 75
and spatial features as seen at 55°C and 80°C are not understood yet and
remain subject to further research. Many reasons are probably ascribed
to this phenomenon, one of which might be the partial drainage of the
rock core. Nevertheless, projections onto the spatial and 7, domains re-
main reasonable and confirm a shift of 7, towards higher temperatures as

expected.

In summary, the oil situated in the rock core becomes less viscous with
increasing the confining temperature, which is revealed from 77 and 75
distributions as well as from the D-T5 correlation distributions. The spatial
T;, profiles taken along the cylindrical core at different temperatures return

distinct distributions and thus oil properties varying with temperature.
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FIG. 6.9: (a) Spatially resolved T} profile at 25°C and 7> profiles at (b) 25°C, (c)
55°C and (d) 80°C at 1000 psi. The top panel presents the projected 75 relaxation
distribution and right panel gives the porosity profile. The blue dashed line in the
right panel corresponds to the weighing porosity value measured in 25°C.



6.4. RESULTS 129

6.4.2 In-situ water flooding measurement

In this section, multi-phase fluid transport processes at different tem-
peratures are observed by using the spatially resolved D-T, technique. The
oil-saturated rock plug was firstly flooded by water at 25°C and 1000 psi.
Subsequently, two further flooding steps at 55°C and 80°C were performed
to investigate the temperature dependence during the flooding process.
The spatially resolved D-T, profiles before, during and after water flooding
at 25°C are compared and presented in Fig. 6.10. In order to visualize the
existence of two different fluid phases, two reference planes indicating oil
(left) and water (right) were added in to the figures as grey planes.
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FIG. 6.10: Spatially resolved D-T5 profile before water flooding (a), and after
0.1 PV (b) and 1 PV (c) water flooding at 25°C. Two reference planes indicating
hydrocarbon and water were plotted in order to identify the spatial distributions
of oil and water signals.

The distribution function F(z, D, T,) before water flooding (shown in
Fig. 6.10 (a)) mainly extends along the hydrocarbon plane indicating oil
saturating from top to bottom in the rock plug. After flooding an amount
of water corresponding to 0.1 Pore Volume (PV) through the rock, there
appears a distinct distribution neighbouring the oil signal and laying along
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water reference plane (Fig. 6.10 (b)). This signal extends along the water
plane after 1 PV water flooding (shown in Fig. 6.10 (c)). From the reference
planes, it can be distinguished that the left column represents residual oil
while the right one is the injected water. Therefore, it is feasible to extract the
spatially resolved residual oil and water saturation from this distribution,
and estimate oil recovery efficiency. The volume of flooding water was
incremented up to 2.2 PV and two subsequent flooding experiments at
55°C and 80°C were performed with equal amount of water flooding.

The intensities of oil and water signals in the spatially resolved D-T,
maps of each water flooding step can be readily integrated and plotted as

relative water and oil saturation (shown in Fig. 6.11).
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FIG. 6.11: Relative water (red diamond) and oil (green square) saturation estimated
from the spatially resolved D-T> maps. The entire flooding procedure is performed
under three confining temperatures (25°C, 55°C and 80°C). The amount of the
flooding water is normalized with the pore volume (PV) of the rock plug here.
During the flooding in each temperature, the water volume is incremented to
22PV.

For the water-flooding procedure at 25°C, the relative oil saturation
drops rapidly with increasing the flooding water volume, and reaches a
plateau after 1 PV water injection. Further flooding shows no obvious oil
yield in this rock plug. By increasing the rock temperature, the relative
oil saturation continues to decrease because of the higher oil mobility, and

quickly converges to a constant level again. The residual oil saturation is
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still above 50% even at rock temperatures up to 80°C, which is a higher
value as compared to common water-flooding-oil experiments (lower than
40% of residual oil saturation). This may due to the relatively high flow
rate of the flooding water (approximately 0.25 mL/s) provided by the crank
pump in this case. In order to investigate the multi-phase fluid interaction,
all distributions at the end of flooding process under three temperatures
were projected into the D-T5, dimension and shown in Fig. 6.12. Regardless
of longitudinal relaxation during the diffusion observation time, the ratio
of water and oil varies gradually with increasing rock temperature, which
can be observed from the projected diffusion coefficients in the right panel

of each distribution.
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FIG. 6.12: Projected D-T5 correlation distribution at (a) 25°C, (b) 55°C and (c)
80°C. The horizontal lines represent water diffusion coefficient at 25°C (= 2.3x 10~
m?/s), at 55°C (=4.4x107% m?/s), and at 80°C (=6.6x10~? m?/s) [247]. The slope
dash line represents hydrocarbon correlation line of D=5 x 10~!°T%. The top panel
presents the projected relaxation distribution and right panel shows the projected
diffusion coefficient distribution.

In the mean time, the 3D distributions at the end of flooding process
under the three temperatures were also projected into the spatially-resolved
D profile and shown in Fig. 6.13. In these three maps, the relative saturation
profiles of oil and water can be obtained and the gap between these two
saturation profiles is narrower and narrower with increasing rock temper-

ature, indicating the gradual output of oil from the flooded rock core. The
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results from Fig. 6.12 and Fig. 6.13 exhibit the same features as shown in
the relative saturation data in Fig. 6.11, and imply a process of enhanced
oil recovery by flooding the rock plug at higher temperatures. Further oil
recovery strategy, such as gas, thermal or chemical polymer injection may
be studied with the developed setup, potentially leading to a higher yield
of hydrocarbons.
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FIG. 6.13: Projected spatially resolved D profiles at (a) 25°C, (b) 55°C and (c) 80°C.
The vertical lines represent the water diffusion coefficient at 25°C (= 2.3x107?
m?/s), at 55°C (=4.4x107? m?/s), and at 80°C (=6.6x10~? m?/s). The top panel is
the projected diffusion coefficient distribution while the right panel is the satura-
tion profiles. The blue solid line is along the residual oil saturation and the pink
dashed line indicates water saturation.



Chapter 7
Conclusions and discussions

In this thesis, we proposed an integrated NMR toolbox within the
developed techniques and implemented experimental set-up. These meth-
odologies help expand our knowledge to three petrophysical aspects of
fluid-bearing rocks, including pore length scales characterization, local
permeability estimation and multi-phase fluids flooding evaluation.

Firstly, by extending the length of the phase encoding period t., we
successfully demonstrated that it is possible to use higher eigenmodes in
the diffusion equation to determine the pore length scales of rock samples
at frequencies as low as 2 MHz. The results we obtained at 2 MHz were
compared and confirmed by the measurements performed on a 64 MHz
system. This extension allows one to directly understand the pore sizes
of rock cores using lower field, but cheaper NMR instruments, therefore,
can largely broaden people’s research on rock core analysis. Based on this
knowledge, an eigenmode correlation experiment was proposed which
coupled the high T eigenmode with the ground 7, mode at 2 MHz. By
using this 2D approach, correlation maps of pore length scales a and relax-
ation time 7T, have been obtained which also enable the direct extraction
of surface relaxivity p,. The experimental results of two rock cores with
different lithology and their p, values have been confirmed independently
through diffusion-relaxation correlation method. Both methods suggest

133
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larger p, values in sandstone as compared to the p, of limestone. Even
though, it is still worth mentioning an intrinsic advantage of the eigenmode
correlation method as compared to D-T5 experiment in this context. Since
the smaller transverse relaxation effects during the 1* domain of this 2D
experiment, it is possible to gain the details of the pores with comparably
smaller scales and significant internal gradients using this eigenmode cor-
relation method. So far, this approach has been adopted by other groups to
extract surface relaxivity p, to calculate the relaxation/permeation length
in porous materials [231] and to identify the surface interactions close to
pore sinks when multi-phase fluids present in rock cores [248]. Beyond
the above techniques, a further 2D variant in the eigenmode correlation
framework was subsequently developed by coupling the high 7; eigen-
mode with the ground 7} mode at high-field (64 MHz). Besides the pore
length a-T correlation information as well as the surface relaxivity p; from
it, the utilization of fast 7} encoded in the 2" domain of this 2D approach
provides a means for obtaining the reference signal without the need of a
separate reference experiment (as necessary for the 7'-75 eigenmode cor-
relation method). Moreover, the theory of T}-7; eigenmode correlation
method implies that there would be no negative peaks/distributions on 2D
correlation maps because of the orthogonality of eigenfunctions from two
successive domains. This will conveniently lead the dataset processing to
be immune to the non-negative restraint during ILT analysis as discussed
in Sec. 2.5.2. Since these two proposed 2D techniques offer alternative
ways of determining surface relaxivities, it enables one to obtain pore geo-
metry information from simple 1D NMR relaxation measurements after

re-calibration of relaxivities to pore length scales.

In the next chapter, we moved forward to explore the permeability of
rock cores by utilizing a specialized spatially-resolved 7T} profile technique
based on rapid 7} encoding method. The microscopic (pore length related)
and macroscopic (heterogeneity) information of rock cores can be simultan-

eously obtained from the spatially-resolved 7} maps. Since 7} distribution
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indicates the pore length and pore structure in porous materials, a further
factor P“"*! characterizing the local connectedness between neighboring
resolved slices was determined by calculating the matching degree of their
T, distributions. Therefore, the permeability value of two adjoining re-
solved rock slices can be easily evaluated using the local porosity and the
relaxation distributions from 7} profile experimental results, optionally
considering the connectedness factor P. The estimation of the local per-
meability can be consecutively executed along the cylindrical axis of rock
plug and yield therefore its permeability profile. By performing the de-
signed pulse sequence and the proposed model on two types of rock cores,
we found that the permeability profiles reveal the variation of permeable
property and associated spatial heterogeneity of the sample under studied.
Moreover, we can conclude that the results considering the connectedness
factor between adjacent slices along the flowing direction improves the
evaluation of the local permeability when comparing the results to the
measured brine permeability values. During the implementation of this
spatially-resolved 7} technique at low-field NMR context, we may notice
that a compromise of experimental time and efficiency should be always
taken into account as compared to its application at high-field, especially
when adopting the tip angle « in the pulse sequence. Although utilizing
T7 imaging maps in this chapter, we believe that the idea of employing the
defined local connectedness factor P can be extended to any other kinds
of spatially-resolved relaxation profile cases, for instance 75 profiles at dif-
ferent field strengths, during evaluating the spatial permeability of rock
cores.

In the last part, we studied the multi-phase fluid flooding process in rock
plugs with the implemented high pressure/temperature NMR overburden
system. We started this chapter from the stationary measurements, which
means that no flooding provided for the saturating fluids. The employed
spatially resolved 7} and 75 relaxation techniques provide direct insight

into the local properties of fluid situated in rock cores at reservoir-like
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conditions. Besides that, spatially resolved D-T, method yields substantial
information such as wetting status, residual oil/water saturation profiles,
and their dependence on temperature. Regarding the flooding experiments,
the hardware set-up and the implemented NMR methods provide the base
for the investigations of displacement front and residual oil saturation in
the context of enhancement oil recovery. By incrementally increasing the
amount of flooding water, the experimental results suggested a process of
enhanced oil recovery by flooding the rock plug at higher temperatures.
Two further streams could be possibly carried out from this thesis.
Firstly, it would be applicable to extend the strategy of permeability estim-
ation within the proposed connectedness factor P in Chapter 5 to 2D or
even 3D cases relying on the combination of high-dimensional MR imaging
techniques with relaxation measurements. If considering the directional
dependence of the proposed connectedness factor, this extension will allow
one to characterize the variation of permeability properties in any spa-
tial path. More interestingly, the emerging upscaling techniques are more
suitable on higher-dimensional NMR results, thus the renormalized per-
meability values can be utilized to evaluate the permeability anisotropy and
flow dispersion along different fluid transport directions in rock samples
[238, 239]. Another potential work is to upgrade the entire hardware sys-
tem to supply more reasonable flooding flow rates with proper pumps,
therefore quantifying the fluid transport and recovery in a more realistic
way in Chapter 6. Based on this, some appropriate fast imaging methods,
as well as the compressed sensing technique, which has been already used
in the MRI rock core analysis [249, 250], might be introduced in order to
accelerate the data acquisition during spatially resolved D-T5 technique.
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