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Abstract

Good image editing tools that modify colors of specified image regions or
deform the depicted objects have always been an important part of graph-
ics editors. Manual approaches to this task are too time-consuming, while
fully automatic methods are not robust enough. Thus, the ideal editing
method should include a combination of manual and automated com-
ponents. This thesis shows that radial basis functions provide a suitable
“engine” for two common image editing problems, where interactivity re-
quires both reasonable performance and fast training.

There are many freeform image deformation methods to be used, each
having advantages and disadvantages. This thesis explores the use of ra-
dial basis functions for freeform image deformation and compares it to a
standard approach that uses B-spline warping.

Edit propagation is a promising user-guided color editing technique,
which, instead of requiring precise selection of the region being edited,
accepts color edits as a few brush strokes over an image region and then
propagates these edits to the regions with similar appearance. This thesis
focuses on an approach to edit propagation, which considers user input
as an incomplete set of values of an intended edit function. The approach
interpolates between the user input values using radial basis functions to
find the edit function for the whole image.

While the existing approach applies the user-specified edits to all the
regions with similar colors, this thesis presents an extension that propa-
gates the edits more selectively. In addition to color information of each
image point, it also takes the surrounding texture into account and bet-
ter distinguishes different objects, giving the algorithm more information



about the user-specified region and making the edit propagation more pre-
cise.
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Chapter 1

Introduction

1.1 Problem statement

With the increase in the use of digital images over the last decades, con-
venient ways to edit or deform such images are of importance not only
for professionals, but also for the average users. However, for large im-
ages and complex or subtle editing tasks, manual approaches are too time-
consuming while fully automatic methods are not robust enough to pro-
vide visually acceptable results.

The ideal editing method includes a combination of manual and au-
tomated components. Such user-guided editing tools should contain ele-
ments of automation that require only a few intuitive guidelines from the
user and provide high-quality results. The tool aims at successfully inter-
preting the given instructions and applying specified edits to the image,
while relieving the user from doing numerous similar routines.

A mathematical method, known as function interpolation, also infers a
complete result from an incomplete input. It takes a few function values
at predefined points as input and then processes this data to be able to
estimate the value at any point, based on the user-defined set of points.
Considering user editing instructions as values of the sought function, it

1



2 CHAPTER 1. INTRODUCTION

is easy to pose and solve several common image editing operations using
function interpolation.

This thesis explores some of the advanced applications of user-guided
editing and shows that interpolation approaches, based on Radial Basis
Functions (RBF), can handle several problems while easily accepting user
input. In particular, we will show that editing of object shape and colors
can both be formulated using this approach.

1.2 Background

Digital images, such as photographs, are acquired by photosensors of the
camera that detect intensity of light, reflected from the scene. However,
inappropriate settings or inaccuracies in the chosen camera position may
result in an undesired perspective, shape or size of image components. For
images or photographs, editing by deformation may be necessary to edit
or eliminate various kinds of optical distortions. Artists or even average
users also might want to deform images arbitrarily for creative purposes,
varying deformation parameters to achieve miscellaneous goals; from en-
larging objects of the scene to scaling face features and creating caricatures,
comic or monster faces. In all of these cases, techniques that move, scale,
rotate and deform various parts of image are useful.

Another important application of image deformation is aligning two
similar images together by deforming one of them. The process is known
as image registration and is used to find correspondence and aligning
transformation in numerous areas like medical imaging, remote sensing
or face recognition. For example, medical scans taken at different times
are aligned to identify changes in patients’ conditions, while scans of dif-
ferent modalities are aligned to combine their information on a single scan.
Therefore, finding an aligning deformation is an essential part of the reg-
istration process.

On the other hand, colour editing may also be required for a digital
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photograph, where slightly incorrect camera settings have resulted in dull
or inexpressive colours. But even in an image with colours as realistic as
possible, there might still be a need to emphasize the key objects, for exam-
ple, by editing some of the colors or making them more deep or saturated.

The majority of such manipulations need to be applied to a particular
region of the image and normally require the user to specify such region
with a selection tool or by creating a layer mask. Manual selection of the
region boundary is a tedious and time-consuming task, which gets even
harder for regions whose actual boundaries are complex and lie between
the pixels. This results in a series of pixels with intermediate colours, such
as the ones on the boundaries of fuzzy objects like hair or grass. Such
boundaries, if creating the mask, must be carefully feathered to produce a
seamless and artifact-free result.

One of the ways to avoid such selections would be to let the user man-
ually specify the edits (change of color, luminance, saturation, etc.) for a
small set of pixels, then hand these to the program that will find the re-
gions with similar appearance and apply further edits to those regions.
The problem of processing user-specified edits and applying them to the
right regions of an image is called edit propagation.

1.3 Research goals

Radial Basis Function interpolation is in the main focus of this thesis. RBF
interpolation is shown as a useful theoretic tool for user-guided image
editing, with successful applications to image deformation and color edit-
ing.

Existing methods of image deformation and shape editing are numer-
ous, each having different types of parameters, structure and applications.
For example, some methods [41] use regular grids of control points whose
movements influence deformations of regions between them, while oth-
ers [4, 3] allow arbitrary number of scattered control points, giving more
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user guidance. At the same time, some deformation methods apply better
in fully-automatic regime but may fail in the complex cases, while some
produce more impressive results but require strict user guidance.

This thesis considers various user-guided approaches and cases when
they are easily applicable. In addition to an overview of such approaches,
details of implementation are given for the two of them (B-spline warping
and RBF warping) along with a comparison of advantages and potential
applications.

To edit the color of a specific image region, the user has to specify a
color change and a particular region. This can either be done manually or
by edit propagation, which is a semi-automatic user-guided process. The
problem of edit propagation is relatively new and was first formulated as
an optimization problem of finding the best edit function subject to opti-
mization constraints, given the user input.

However, a couple of novel approaches, such as RBF interpolation [24]
and Locally Linear Embedding [7], were introduced recently. The the-
sis focuses on the interpolation-driven approach since it uses radial basis
functions, which are in the central focus of our work. For a small set of pix-
els with user-specified edits, the approach uses color information to find
pixels with similar appearance and to propagate edits to those pixels. But,
as described in the section 4.3, such approach can apply changes to other
objects that the user did not mean to edit, if their color just happens to be
similar to the specified areas.

While looking for pixels with similar appearance, we are not limiting
ourselves with just the color information, but also considering the change
of texture and its patterns. The resulting improved algorithm, therefore,
performs more accurate and selective propagation of user-specified edits.

Following are the key contributions, covered by the thesis:

• An overview of manual, automatic and user-guided methods of de-
formation, with preference given to user-guided ones;
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• A detailed comparison of B-spline warping and radial basis function
warping, along with some of their sample results and implementa-
tion details;

• A theoretical outline of edit propagation using RBF interpolation,
followed by sample results and implementation details;

• An extension to the existing edit propagation approach, which makes
the propagation more selective and texture-aware without requiring
explicit segmentation of the image.

1.4 Thesis outline

The rest of the work is organised as follows. Chapter 2 provides a litera-
ture survey on the whole range of topics that our research touches, to give
an outline of the current state of art. Chapters 3 and 4, the core of this
thesis, explain the main ideas and theory behind them, presenting a full
description of the performed work along with experimental results and
discussion. Finally, Chapter 5 provides the conclusion of this thesis.
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Chapter 2

Literature Survey

Digital images are organized as a table of color values, known as pixels.
Color of each pixel is represented by a single value for grayscale pixels,
three values for the majority of color pixels, or more. Image width is the
number n of its pixel columns, height m is the number of pixel rows, while
both these numbers denote the image resolution n×m. In this thesis, pixels
are also referred to simply as points. Instead of using sequential integer
numbering (xint = 1, 2, ..., width and yint = 1, ..., height), floating point
coordinates are used for the convenience of mathematical calculations:

xfloat =
xint
width

, xfloat ∈ [0, 1]

yfloat =
yint

height
, yfloat ∈ [0, 1]

2.1 Image deformation

Image warping is a general term that denotes an arbitrary image distor-
tion. A warping is a function W : R2 → R2 , which maps every position
(x, y) on the initial image to a position (u, v) on the resulting image:

(u, v) = W (x, y)

7
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A more detailed survey on image warping can be found in [15]. Intu-
itively, warping is a deformation function that specifies where each pixel
of the image is shifted. But it is almost impossible to define such a function
for each pixel manually. Therefore, warping functions are usually defined
by a set of parameters, which are used as constraints to derive the function
over the whole image plane, through a warping algorithm.

Having those methods available, generation of a warp with known pa-
rameters is a simple task. However, depending on the specific application
of the sought warping, search strategies for the warping parameters may
vary. Examples of such applications are:

• The removal of optical distortions caused by a camera or viewing
perspective;

• Metamorphosis or morphing between two images;

• Registration or alignment of two or more images.

Some of these require the user to set the parameters manually, while
others are semi- or fully-automatic. Since our work is focused on user-
guided editing, we will use this division in the following sections to briefly
outline various warping methods and elements of user guidance in each
of them.

2.1.1 Manual deformation

A warping function usually deforms the image without changing the col-
ors and aims to distort it. Another technique, called morphing, aims at cre-
ating a smooth transition between two images by a combination of warp-
ing deformation and color blending.

In his survey on basic image morphing methods, Wolberg [41] provides
an overview of D. Smythe’s approach that uses mesh warping for morphing
between two faces. Two meshes denote two grids of control points located
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at their corresponding features (nose tip, eyebrows, etc.) on both the source
(initial) image and the target (final) image. A smooth transition is then
created between the control points of two grids, while their displacements
are interpolated to be applied to all of the pixels. Spline interpolation, used
in the approach, is explained in detail in Chapter 3 of this thesis. Finally,
adding the transition between colors completes the morphing process.

Beier and Neely [4] propose another approach, field morphing. As a
variant of Shepard’s interpolation [2], it uses a simpler interface where the
user needs to specify just two or more lines on the source image, and their
new positions and lengths on the target image. While correspondences
between the points on the pairs of lines are given straight away, mapping
for the rest of the points is defined as a weighted sum that depends on the
distance from each of the lines. The approach simplifies the specification
of features by allowing to place them on arbitrary positions without any
grid structure. Overall, the approach is more user-friendly and gives users
more freedom, but also requires careful handling in order to avoid possible
deformation artifacts.

Arad et al. [3] apply radial basis functions to image warping. Instead
of using lines, as in Beier’s approach, the user is required to specify a set
of scattered control points, as well as their locations on the final warped
image. Displacement values of each control point are then used for inter-
polation using radial basis functions. Similarly to Beier’s approach, warp-
ing for each point is computed as a weighted sum of terms that depend
on the radial distance from each of the control points. The approach also
has fewer possible artifacts, as it is easier for the user to avoid overlaps
of its single control points’ movements, whereas long feature lines contain
more points, are rather cumbersome and more likely to intersect with each
other.

So far we can observe a general distinction between existing methods:
some types of warping are obliged to have control points in a hierarchy
or structure and some simply use scattered control points with arbitrary
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user-specified positions. The latter provides more user interaction, but
may also increase complexity and the time for warp computation.

2.1.2 Automatic registration

In the previous section, we considered warping methods that let users
manually set warping parameters, such as the positions of control points.
However, we also mentioned an application of image warping that re-
quires an automatic selection of its parameters: this is necessary when we
need to find a deformation that aligns two or more similar objects. This
problem, known as image registration, has numerous applications, includ-
ing:

• Medicine, when comparing MRI scans acquired from subjects at dif-
ferent times or aligning images with different modalities (e.g. MR
and CT);

• Remote sensing, when putting several satellite images into one coor-
dinate system;

• Modelling, when building a statistical model out of a series of images,
such as human faces;

• Recognition, when comparing an input image with images in database
to find closest match.

The process of registration usually involves two sets of data (pixels,
points, contours, etc.) that are referred to as source A and target B. Then,
while transforming the source set, similarity measures (or cost functions)
are used to deduce a shape of the source that is most similar to the target.
In the case of a rigid image registration, for example, one image is usually
aligned to another by a Euclidean transformation. Images get aligned,
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when the similarity measure of the deformed source and the target is ei-
ther maximized or minimized – depending on the kind of measure that is
used.

Definition 1 To register one set of data S (source) to another set T (target) is
to find a transformation W, such that the value of chosen similarity measure
M(W(S), T) is optimal.

An effective registration algorithm should be able to register similar
objects on different images through the analysis and identification of their
features and characteristics, rather than just using some predefined knowl-
edge about these objects. Although there are a huge number of registration
approaches, whose strategy depends on degrees of freedom for image de-
formation, class of aligned objects or the actual applications, medical im-
age registration is by now one of most well-researched branches that also
gives a good introduction into the registration problem in general [18].
Moreover, three abstract components of registration can be outlined:

• Similarity measure or a cost function, which quantifies the difference
between two objects (source and target), using any chosen parame-
ters, such as pixel intensity. It is the tool for the algorithm to deter-
mine if changes in the source object are desirable.

• Set of transformations to be used in order to make the changes. For the
above-mentioned rigid case, they are: translation and rotation of the
whole object - without changing its structure. Restrictions may also
be required, as if we need only smooth deformations.

• Optimization or the logic by which the transformations are applied
- in order to perform more suitable transformations, decrease the
resulting number of iterations and calculate the similarity measure
efficiently.

These components are important to specify when implementing a reg-
istration. Therefore, we will consider the most common types of image
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registration approaches, based on their similarity measures, aligning func-
tions and other noticeable features and principles that were used. How-
ever, we will not cover the choice of optimization techniques, as it falls
into the category of numerical methods which can be found in collections
like [31].

The first type to consider is intensity-based image registration. As men-
tioned previously, images are commonly represented as tables of pixels,
where each cell stores its color information in the form of a single grayscale
intensity value or several values of color channels. In the case of medical
imaging (MRI, CT, etc.), grayscale voxel intensity usually means different
qualities of the matter, depending on how it resonates with an electro-
magnetic field. A sequence of such flat medical images of a subject can be
assembled into a volume image, represented as grids of voxels (volume
pixels). But regardless of the particular information that images carry, the
purpose of an intensity-based registration approach is to align source and
target images, based on the comparison of their intensity or color values.

One of the simplest similarity measures that compares intensity values
of source and target images is the sum of squared differences.

Definition 2 Sum of squared intensity differences (SSD) of two images S and T
represents a mean squared error between their intensities and is expressed by the
formula:

SSD =
∑

(x,y)∈[1,w]×[1,h]

|IS(x, y)− IT (x, y)|2

where IS(x, y), IT (x, y) are the intensity values of source and target at point (x, y)

and w, h are the width and height of the images respectively.

SSD is used in registration of images, MRI scans, volume images [17,
34] and others. However, the measure is not invariant to different lighting
conditions or image modalities.

Another well-known measure is mutual information (MI), which orig-
inated from information theory. It was first used for registration as a mea-
sure that better handles multimodality images – such as MR, CT or PET
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[8, 29, 38]. It relies on intensity distributions rather than intensity values
and is based on joint entropy H(S, T ) – a measure of information in the two
images combined [29, 18] – which, in turn, is based on the concept of joint
probability.

Definition 3 Suppose our source and target images (S, T ) have w × h pixels
with corresponding intensity values IS(x, y), IT (x, y) ∈ [0, 255] ∀x = 1, ..., w

and y = 1, ..., h. Then, for two arbitrary intensity values i and j ∈ [0, 255], the
joint probability p(i, j) is the ratio between the number of pixel positions (x, y)

such that IS(x, y) = i, IT (x, y) = j and the overall number of pixels:

p(i, j) =
#{(x, y) | IS(x, y) = i, IT (x, y) = j}

w · h

Figure 2.1: A joint histogram.

Since there are only 2562 pairs
of intensity values, we can plot
probabilities of all the intensity
pairs on a 256 × 256 graph, known
as the joint histogram. The range
of p(i, j) is [0, 1], but if we multi-
ply all these values by 255, we can
represent the histogram as a square
grayscale image (Figure 2.1), where
the brightest points correspond to
most probable intensity pairs. For
two copies of the same image, the
intensities are equal for all the positions of pixels and therefore its his-
togram is visually represented as points on the diagonal. On the contrary,
a dispersed joint histogram with lots of non-zero values outside the diag-
onal, indicates the discrepancy of the intensities and a degree of misalign-
ment between two images.

All joint probability values are used to calculate the joint entropy:

H(S, T ) = −
∑
s

∑
t

p(s, t) log p(s, t)
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Finally, mutual information of source and target images is given by:

MI(S, T ) = H(S) +H(T )−H(S, T )

where H(S) and H(T ) are the individual entropies, calculated using indi-
vidual probabilities:

H(S) = −
∑
s

p(s) log p(s); p(i) =
#{(x, y) | IS(x, y) = i}

w · h

H(T ) = −
∑
t

p(t) log p(t); p(i) =
#{(x, y) | IT (x, y) = i}

w · h

If S and T are totally unrelated, their mutual information will be equal
to 0. Their joint entropy, in this case, will be equal to the sum of the indi-
vidual entropies H(S) and H(T ), otherwise it will be less than that. This
way, to register two images we have to minimize H(S, T ) in order to max-
imize the information they share.

The above-mentioned SSD and MI were used in our experiments (out-
lined in the next chapter) as the most common similarity measures. But
implementing a registration approach, it is also necessary to specify the set
of aligning transformations. Earlier, we defined rigid registration, which
uses only Euclidean transformations (translation and rotation), which are
used in the papers referred to above [17, 8, 29, 38]. But there is also a
non-rigid kind of registration – any registration that allows changes of the
object’s inner structure during alignment.

Such types of deformations as RBF-based warping [14, 32] or spline-
based warping [35, 34], surveyed in previous sections, have been used
to perform non-rigid registration. Applications include aligning scans of
the subject at different times to identify changes in the patient’s body [14]
(such as tumour growth) or different poses of the subject [34] (to make
a deformable model), where non-rigid deformations are required. This
thesis also presents an implementation of non-rigid registration, as one of
the image editing examples.
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However, there is another significant group of approaches that is im-
possible not to mention in this survey: feature-based registration. Feature-
based methods find correspondence between image features such as land-
marks, lines, contours, etc. It is rather easy when the nature or type of
object is known: in the case of face tracking, for example, feature points
can be detected according to the intensity patterns and relative locations
of the face features – a well-known application of the belief propagation
algorithm [33, 21]. After features are detected on both source and target
faces, registration is easy to perform.

But there are algorithms that work without prior knowledge about the
depicted objects – those are based on the distribution of intensity gradients
in local parts of an image. One of these feature descriptors is the histogram
of oriented gradients (or HOG [9]).

Probably the most famous feature-based algorithm, known as scale-
invariant feature transform (SIFT [26]), computes gradient orientation based
descriptors (similar to HOG) for automatically identified keypoints. Those
descriptors are invariant to uniform scaling, orientation, and partially in-
variant to affine distortion and illumination changes. Detection of SIFT
keypoints starts from constructing a scale space by repeatedly convolv-
ing (blurring) the initial image intensity values with Gaussians to produce
a set of Gaussian images. Adjacent Gaussian images are subtracted to
produce the difference-of-Gaussian images and the process is repeated for
Gaussian images of different scale, down-sampled by a factor of 2. Then,
maxima and minima of the difference-of-Gaussian images are detected by
comparing a pixel to its neighbors in regions at the current and adjacent
scales. Those optima are then filtered by the algorithm by a threshold on
minimum contrast and on the ratio of principal curvatures to achieve the
resulting keypoints.

To make the descriptors of the achieved keypoints invariant to rota-
tion, they are assigned one or more orientations based on local image gra-
dient directions. Keypoint descriptors are built by computing the gradient
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magnitude and orientation at each image sample point around the key-
point and forming a set of orientation histograms. An additional Gaussian
weighting function is applied to give less importance to gradients farther
away from the keypoint centre. Finally, the descriptor is produced as a 128
element vector from the values of these histograms.

Keypoint-based registration is then performed by aligning keypoint
pairs with minimum Euclidean distance for the corresponding descrip-
tor vectors. Zaharescu et al. [43] later extended techniques, based on his-
togram of oriented gradients, to the case of 3D meshes with the MeshDOG
feature point detector that seeks extrema of the Laplacian of a scale-space
representation of any scalar function defined on a discrete manifold (gen-
eralization of the image intensity function) and a MeshHOG descriptor
which is a generalization of the histogram of oriented gradients.

2.2 Edit propagation

Edit propagation allows the user to adjust the color of an image by mak-
ing a few isolated examples of the desired changes in the form of brush
strokes. Edit propagation is generally implemented as an optimization
that prefers color and spatial proximity, subject to interpolating the con-
straints specified by the user.

Lischinski et al. [25] proposed an interactive tool that applies tonal ad-
justments to images from a few user strokes. The adjustments are made
to the stroke pixels, and then propagated to the whole region with similar
luminance using an edge-preserving energy minimization method. This
method, however, may fail for parts of images with complex texture or
pattern. An et al. [1] follows the work of Lischinski and applies edit not
only to regions with similar luminance, but to any region with similar ap-
pearance. To identify such regions, appearance distance is introduced as
a tool to assess the similarity of two pixels through their feature vectors.
The assessed features include pixel color as well as the average and stan-
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dard deviation of the color in a fixed-size neighborhood around the pixel
to account for texture variations.

Xu et al. [42] continue the work on affinity-based edit propagation, us-
ing an optimization problem formulation, similar to [1]. However, to re-
duce the complexity of this optimization, authors group individual pixels
into clusters and compute affinity among cluster centers. Thus clustering
pixels by K-d tree partitioning is an efficient alternative to the computation
of affinity between all pixel pairs.

Chen et al. [7] apply Locally Linear Embedding to image pixels, which
represents each pixel as a linear combination of its neighbors and builds
a lower dimensional manifold that preserves this relationship. Instead of
just requiring similar pixels to receive similar amounts of edits, the method
tends to maintain the manifold structure formed by the pixels in their fea-
ture space (e.g. colour space). One of the positive outcomes is the main-
tained relationship between ambiguous pixels with blended colours and
their neighbours, which helps to edit such pixels more precisely and to
avoid artifacts that usually occur at object boundaries.

Li et al. [24] considered edit propagation as a scattered data interpo-
lation problem, rather than an optimization problem. From several user
strokes of white color for areas to edit and black strokes to constrain the
colors, the authors constructed a weight function with given values of 0
and 1 for user-specified set of points. The function is then interpolated
by radial basis functions (RBF) in 5-dimensional XY RGB space (2 coordi-
nates and 3 color channels) to also take into account affinity between col-
ors. The space, therefore, is denoted as the affinity space. After the editing
weights are interpolated for all of the pixels, arbitrary edits can be applied
to the image and to take maximal effect on the pixels with big weights
(close to 1), while fading closer to the boundary of the edited region.

One of the noticeable features of the interpolation-based edit propa-
gation approach, stated in [24], is that since negative interpolation coeffi-
cients (the ones that each basis function is multiplied by) cause unwanted
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edits in distant parts of the image, those are eliminated by a non-negative
constraint. However, to enforce that constraint, non-negative least squares
optimization is required, making the approach still include elements of the
optimization.

Our extension of the interpolation-based edit propagation approach,
explained in the section 4.3 of this thesis, uses extended XY RGB+ affin-
ity space where interpolations take place. Extended coordinates of such
space characterize each point more precisely, taking into account not only
colors, but also texture variations. But unlike the work of [1], where only
the two texture features (average and standard deviation) were used for
texture identification, a series of spatial and frequency characteristics, re-
ceived by applying Gabor filters to the image, are considered and applied.
Additional innovations of our method are described in section 4.3.

2.3 Gabor filters

Campbell et al. [6] were among the first scientists to conduct research on
simple cells of the mammalian visual cortex and measure their responses
to the frequency of impulses or the contrast sensitivity. After that, math-
ematical models of image representation in visual cortex followed, based
on both spatial and spatial frequency variables.

The first of such models, presented by Marčelja [27] in one-dimensional
form and by Daugman [10] in two-dimensional form, used Gabor func-
tions to describe the receptive fields of simple cells in the visual cortex,
due to their simultaneous maximal localization in space and frequency
domains.

One of the later works by Daugman [11] provided a more complete
method to represent 2D signals (digital images) using Gabor functions as
a basis. The compact representation stores three layers of coefficients that
correspond to each specific Gabor function of the basis. Daugman also
demonstrates reconstruction of the image from these values of coefficients
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without noticeable loss of information, along with applications of the tech-
nique in image compression. A significant theoretical advance was done
later by Lee [23], in his proof that under several proposed conditions, a set
of continuous 2D Gabor wavelets provides a complete representation of
any image.

Jain and Farrokhnia [19] proposed a texture segmentation approach
that uses Gabor filters. They use sets of values, obtained by applying var-
ious Gabor filters to an image, as texture features of the single points to
better distinguish them. Given those features, the corresponding pixels
are then clustered by an unsupervised clustering algorithm to produce a
segmentation of the image parts with different texture. This application
of Gabor functions and corresponding filters received sufficient attention
and was used in several further texture segmentation approaches, extend-
ing it to the color domain [28] or adding rotation invariance [44].

However, a cornerstone in such segmentation methods is the possibil-
ity of selecting an arbitrary number of filters to get a number of texture fea-
tures. It creates a trade-off between precision, achieved by computing and
comparing a large number of those features, and the actual computational
efficiency. Thus, several works have focused on designing the optimal set
of Gabor filters [16, 13, 37] ever since their first usage in texture analysis.

2.4 Random projection

Since we use values from Gabor filters as features to extendXY RGB affin-
ity space of image pixels, values achieved as a result of every filter lie in
an extra dimension. A large number of such features impacts the speed of
the algorithm, as well as raise other non-intuitive aspects of data in high
dimensions, known as the curse of dimensionality. One of these aspects
is that the amount of training data needed for regression is exponential in
the number of dimensions.

There are many approaches to reducing the dimensionality of the space:
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Principal Component Analysis [40], various manifold learning approaches
(e.g. Isomap [39] and Locally Linear Embedding [36]), etc. However,
this thesis explores the random projection approach, inspired by Johnson–
Lindenstrauss lemma [20], which states thatN points in a high-dimensional
space can be projected into a space of about logN dimension, with inter-
point distances approximately preserved. The projection can then be ac-
complished by simply multiplying the original data for every pixel with an
appropriately constructed random matrix [5]. The approach is explained
in more detail in section 4.4.



Chapter 3

User-guided Image Deformation
using RBF

This thesis investigates user assisted image editing with radial basis func-
tions (RBF) in two case studies:

• Image deformation – comparison of RBF-based approach with auto-
matic registration using B-splines shows advantages and disadvan-
tages of the approaches.

• Edit propagation – RBF interpolation is applied to this task, and a new
algorithm that outperforms previous work in the area is introduced.

This chapter starts with an outline of the most simple and easy-to-
understand approaches to image deformation and continue with the more
advanced ones. One type of method, explained later in this chapter, ap-
plies better to automatic deformations and works better with algorithmic
manipulation of its parameters. It is presented in contrast to the methods
with more user-guidance to easily demonstrate the benefits of providing
the user with a more intuitive editing interface as well as more freedom in
handling it.

21
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3.1 Basic image deformation

Suppose we need to change the shape of some objects depicted in the im-
age or its segments: for example, to make a face look like a caricature,
cartoon or superhero character (Figure 3.1).

Figure 3.1: An image with an example of desired deformation result (car-
toon shaped eyes).

Obviously, due to the number of pixels, this task is intractable to per-
form only by moving single pixels manually. The next sections give an
overview of several deformation tools and the theory behind them, as well
as automated and semi-automated approaches for different cases of image
deformation.

3.1.1 Baseline method: B-spline warping

Image warping is a method of free-form image deformation. Although
there are several approaches to implement it, the most easy-to-understand
is to subdivide the image using a uniform grid and to manipulate the ver-
tices of this grid as control points. As a result, movement of a control point
will also move the pixels in the adjacent rectangles.

In the case of cubic B-spline warping, displacement values for every
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point of the image are calculated as a weighted sum of the displacements
of the 16 (4x4) control points that surround that point. The weighting
principle is easier to explain in a one-dimensional case, as shown in Fig-
ure 3.2. Suppose for the point x in 1D space we know the displacements
p1, p2, p3, p4 for its 4 neighboring control points, such that: x1 < x2 < x <

x3 < x4.

Figure 3.2: Four control points x1, x2, x3, x4 with their displacements and a
sample point x with an unknown displacement value.

The resulting displacement of the point x depends on where it is lo-
cated between x2 and x3. More specifically, a ∆-length interval between x2

and x3 is scaled down to [0, 1] by a function u(x) = (x − x2)/∆, providing
local coordinates on this interval. Obviously, u(x2) = 0 and u(x3) = 1.
Then, displacement function d(u(x)) is a sum of control point displace-
ments pi weighted by basis cubic polynomials βi(u(x)) (Figure 3.3):

d(u) =
4∑
i=1

piβi(u)

where
β1(u) =

(1− u)3

6

β2(u) =
(3u3 − 6u2 + 4)3

6

β3(u) =
−3u3 + 3u2 + 3u+ 1

6

β4(u) =
u3

6

This way, the function gives highest weights to the displacements of
the control points in immediate proximity to x (i.e. x2 and x3) and smaller
weights to the two further control points (x1 and x4).
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Figure 3.3: Basis functions β1(u), β2(u), β3(u) and β4(u).

For the 2D case, the sum is a bit more complex, since we need to take
into account the displacements pxi,j, pyi,j (1 ≤ i, j ≤ 4) of 16 neighbor-
ing control points along both x and y. Then, the displacement d(x, y) =

(dx(x, y), dy(x, y)) is calculated as:

dx(x, y) = [β1(u) β2(u) β3(u) β4(u)]


px1,1 px1,2 px1,3 px1,4

px2,1 px2,2 px2,3 px2,4

px3,1 px3,2 px3,3 px3,4

px4,1 px4,2 px4,3 px4,4



β1(v)

β2(v)

β3(v)

β4(v)



dy(x, y) = [β1(v) β2(v) β3(v) β4(v)]


py1,1 py1,2 py1,3 py1,4

py2,1 py2,2 py2,3 py2,4

py3,1 py3,2 py3,3 py3,4

py4,1 py4,2 py4,3 py4,4



β1(u)

β2(u)

β3(u)

β4(u)


where the local coordinates of the ∆x × ∆y frame between four central
control points are given by u(x) = (x− x2,2)/∆x and v(y) = (y − y2,2)/∆y.

An example of a spline warping result is presented in Figure 3.4. Dis-
placed control points just influence a local, relatively small region around
them and the rest of the points serve as a constraint. Therefore, the more
detailed or intricate we want or deformation to be, the denser grid of
points we should use. For example, if we want to make the nose smaller
on the image, we can use different grids of points to deform it and achieve
different results (Figures 3.5).
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Figure 3.4: Result of the deformation after displacing two (yellow) of the
control points.

Figure 3.5: Nose deformations with a 4x4 grid (left) and a 10x10 grid (right)
with outer points omitted.

The user must, therefore, decide which area should be influenced by
the deformation and adjust the control points of the grid of corresponding
size to deform it, followed by smaller deformations using denser grids.
However, given several grids of various sizes, setting positions for all the
control points may turn out to be a laborious task that needs automation.
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The next section considers one of the ways to automate such a warping
using image registration.

3.1.2 Application: automatic image registration

As explained in the literature survey, we need at least two images – source
and target – to generate a warping deformation that aligns them. As a real-
istic case with enough complexity, slightly altered grayscale photographs
of the same face were used for our registration (Figure 3.6). Registration
in this case is called local as it is enough to register only a smaller part of
the image.

Figure 3.6: Source, target and intensity differences.

Next, we are going to specify our registration problem.

Given:

• set Ω of all the grayscale images with n× n pixels;

• source and target images S, T ∈ Ω with intensity values at every
pixel:

IS(xi, yj), IT (xi, yj); i, j = 1, ..., n

where i and j are the horizontal and vertical positions of a single
image pixel, and (xi, yj) ∈ [0, 1]2 are their corresponding real coordi-
nates respectively (xi = i/n, yj = j/n);
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• sum of squared differences between source and target intensities as
similarity measure:

SSD(S, T ) =
n∑

i,j=1

|IS(xi, yj)− IT (xi, yj)|2

• a set CP of m initial positions of control points that parameterize the
warping function:

CP = {cp1, ..., cpm}

where cpk ∈ [0, 1]2. Points are initially placed in a regular grid and
provide an identity warping when supplied to the warping function.

• B-spline warping function W : (Ω,R2m) → Ω that for a given image
p ∈ Ω and a set of control point positionsCP ∈ R2m returns a warped
image W (p, CP ) ∈ Ω.

Sought: a set of parameters for the warping function – in particular, a
set of control point positions:

CP ′ = {cp′1, ..., cp′m}

that provides a deformation of the source image S:

Sdfm = W (S,CP ′)

such that the deformed source Sdfm is as similar to the target T as possible,
in terms of SSD:

SSD(W (S,CP ′), T ) ≤ SSD(W (S,CP ), T ) ∀ CP ∈ [0, 1]2m

Next, we are going to give a high-level explanation of how the registra-
tion is performed, outline the important features used in our implementa-
tion and present a scheme of the algorithm in the form of pseudocode.

We have already specified such important instruments as the similar-
ity measure (sum of squared intensity differences) and means of deforma-
tion (B-spline warping) for our algorithm. Then, we also choose BOBYQA
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(Bound Optimization BY Quadratic Approximation [30]) as an optimiza-
tion method in our implementation: BOBYQA is a derivative-free solver of
constrained optimization problems, which is handy in our case as we are
looking for bounded displacements for a set of control points.

In general, we need to hand the cost function fcost(·) along with start-
ing arguments {cp1, ..., cpm} to the optimizer and to receive the resulting
optimal points {cp′1, ..., cp′m}. However, given 2m variables that need ad-
justment, the optimization can be exponential in the number of variables
in the worst case. Therefore, to increase speed and efficiency, we have to
cut some unnecessary elements of deformation and cost functions:

• Number of control points. There is no need to optimize a big num-
ber of control points at once, especially those that are far from each
other and whose areas of influence do not overlap. Hence, we iden-
tify points {cpk}whose neighborhoods on source and target have the
biggest sum of squared intensity differences – by a localized SSD:

SSDloc(S, T, cpk) =
∑

‖cpk−(xi,yj)‖<r

|IS(xi, yj)− IT (xi, yj)|2

where r is a preset value of neighborhood radius. Then, only this
reduced set

{
c̄p1, ..., c̄pq

}
with q � m is optimized by BOBYQA: al-

though the optimizer has access to all the control points from CP to
perform trial warpings, most of them are fixed during optimization
and do not affect the efficiency.

• Evaluation of the cost function. We do not need to create separate im-
ages for the source, warped by every trial combination of control
point positions – this will result in unnecessary memory operations.
Since we just need to compare it with the target, for each pixel of
the source we can simply calculate its new warped position and add
up intensity differences with the target pixels at the corresponding
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positions:

fcost(S, T, CP ) =
n∑

i,j=1

|IS(xi, yj)− IT (Eval(xi, yj, CP ))|2

where Eval(xi, yi, CP ) = (x̄i, ȳi) returns the coordinates of a pixel
after the warping, defined by the set of control points CP . While
SSDloc is used to find points whose neighborhoods have the biggest
SSD, fcost is used to compare SSD values before and after the par-
ticular warping is applied – to see if it makes the source more similar
to the target.

Figure 3.7: Warping with optimized control points and the target image.

Figure 3.8: New target image.

Following these principles for the
two images, cost function and con-
trol points of a warping are given
to BOBY QA(S, T,

{
c̄p1, ..., c̄pq

}
, fcost) and

modified gradually on each iteration to
achieve the warped result of the registra-
tion (Figure 3.7).

After we have succeeded with local
registration, the next goal is to register two
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images that differ not just at a single neighborhood, but at almost every
point. In this experiment, the target image was created by the whirlpool
effect in Photoshop, applied to the source (Figure 3.8).

Since such deformation is global, there are too many points whose
neighborhoods has sufficient values of SSD between source and target.
Therefore, the approach is slightly different:

• Iterating over the most problematic neighborhoods. We split the optimiza-
tion on iterations, where on each iteration we take a single control
point cpk whose neighborhood has the maximal SSD and hand it
to the optimizer, along with a set of its neighboring control points{
ĉp1, ..., ĉpq

}
. Knowing that the optimizer will only modify control

points that affect this neighborhood, we can also localize the trial
warping and omit the computations of differences outside it in our
cost function:

fcost(S, T, CP, cpk) =
∑

‖cpk−(xi,yj)‖<r

|Is(xi, yj)− It(Eval(xi, yj))|2

where r is the preset radius of region, influenced by any movements
of cpk and its neighbors

{
ĉp1, ..., ĉpq

}
.

• Single warping instead of a composition of warpings. After every run of
BOBYQA on the subset

{
ĉp1, ..., ĉpq

}
of control point positions, we

receive a more optimal set {ĉp′1, ..., ĉp′q} of positions, which we re-
assign in CP and finalize the iteration. One of the ways to proceed
would be to apply the warping W (S,CP ) = S ′ to the source im-
age, then make S ′ the new source image and to store the resulting
transformation as a composition of warpings found on each itera-
tion. However, applying too many warpings will cause degradation
of the image due to repeated sampling and increase SSD even in ar-
eas that were not supposed to be modified. Therefore, we will stick
to the search of a single warping, defined by the positions CP of
control points, which we will gradually modify.
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• Multiresolution approach. To reduce the number of evaluations, we
create a higher level of iteration over the image resolution. On the
first iterations, we run the optimizer on low-resolution copies of im-
ages, reduce the number of pixels and computations on them (Figure
3.9). We then gradually increase resolution on every iteration to in-
crease precision of the registration approach.

Figure 3.9: Run of the algorithm on low resolution versions of the image.
Sample deformation results (5 selected steps) with altered control points
(green) and the target image (bottom right).

A result in the actual resolution is shown in Figure 3.10. The algorithm
concentrates more on the eyes, since that area has bigger intensity gaps
and thus more information, while features like nostrils are just two gray
lines. In order to align those features better we have to either add face
feature extraction or use other cost functions that better characterize those
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features.

The presented implementation demonstrates the automated usage of
image editing tools, such as B-spline warping: in the case when an im-
age is too hard to warp manually, we can find another sample image that
looks like the desired result of warping – and hand both of these images
as source and target to the registration algorithm, which will adjust the
deformation parameters automatically.

We finish our baseline experiment by providing the final pseudocode
of our algorithm.

Algorithm 1 Global intensity-based registration

1: CP = {cp1, ..., cpm} initial set of the control points in a regular grid
2: for (i = 5; i ≥ 1; i−−) do
3: decrease the resolution of source and target i times: S ← Si, T ← Ti

4: ssdV al = SSDglob(W (Si, CP ), Ti) – value of the SSD on this step
5: ptsChecked = [ ] – empty list for points that have been modified
6: while (length(ptsChecked) < m) do
7: find a point cpk ∈ CP , whose neighborhood has the biggest SSD

cpk = argmax
cpk /∈ptsChecked

SSDloc(Si, Ti, cpk)

8: find the closest neighboring points for cpk:
{
c̄p1, ..., c̄pq

}
9: run the optimizer and then modify the set of points:

CP ← BOBY QA(Si, Ti,
{
cpk, c̄p1, ..., c̄pq

}
, f̄cost)

10: if (ssdV al < SSDglob(W (Si, CP ), Ti)) then SSD not decreased
11: set the modified points back CP ←

{
cpk, c̄p1, ..., c̄pq

}
12: add cpk to the ptsChecked array not to get back to it
13: else ssdV al← SSDglob(W (Si, CP ), Ti)

14: return CP
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Figure 3.10: Result of registration and the target image (full resolution).

3.2 Interpolation by radial basis functions

Suppose we have a function f(x) whose values are known for some x1,x2,

...,xn values of the argument (also known as data points):

f(xi) = fi, for 1 ≤ i ≤ n.

Interpolation, in this case, is a method of constructing intermediate
function values for the rest of the points. An example of interpolation,
shown in Figure 3.11, was done using radial basis functions (RBF), which
are one of the most commonly used scattered data interpolation techniques.

RBF interpolation is a weighted sum of radial basis functions. Each
basis function is centered at a data point:

f̃(x) =
n∑
k=1

wkφ(‖x− xk‖), (3.1)

where φ is a function from [0,∞) to R and {wk} is a set of weights. The
function φ is called radial since its value depends only on the distance from
the origin, so that φ(x) = φ(‖x‖) and the influence of a single data point
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Figure 3.11: RBF interpolation with a Gaussian kernel φ(r) = exp(−r2/2σ2)

on any interpolated point is constant on a circle, centered at that point.
An advantage is that regardless of the number of dimensions of the input
space, φ just takes one argument.

The resulting interpolation also depends on the choice of RBF kernel,
that is, the particular form of the function φ. There are numerous kernel
functions, however one of the most commonly used is Gaussian kernel, as
seen in Figure 3.11:

φGauss(r) = e−
r2

2σ2 (3.2)

After the kernel function is chosen, we need to calculate the RBF weights
from interpolation conditions. Those are obtained from a linear system ex-
pressing that the function f̃(x) should have specified values f̃(xi) = fi at
our n given data points:

f̃(xi) =
n∑
k=1

wkφ(‖xi − xk‖) = fi, for 1 ≤ i ≤ n. (3.3)

This is a linear system of equations where RBF weights wk are the
unknowns. For any pair of data points (xi,xk), we can easily calculate
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φ(‖xi − xk‖). Denoting φi,k ≡ φ(‖xi − xk‖), it is possible to represent the
interpolation conditions as:

Φ · w =


φ1,1 φ1,2 φ1,3 · · ·
φ2,1 φ2,2 · · ·
φ3,1 · · ·

...



w1

w2

w3

...

 =


f1

f2

f3

...

 = F (3.4)

By solving this square system with as n equations and n unknowns,
we can calculate weights and put them into the formula 3.1 to get the final
interpolation function, that returns a result for any intermediate point x.

3.2.1 Image warping using RBF interpolation

Now suppose we have selected a set of control points {(xi, yi) | 0 ≤ i ≤ n}
on an image and have specified where each of them should go during the
deformation. In the user interface, this can be done by two clicks for each
point, however it will be stored simply as the displacement values for each
of these points. Next, we can consider a function D: R2 → R2 that for each
point returns its displacement values:

D(xi, yi) = (dxi, dyi), ∀i : 0 ≤ i ≤ n

the D function is easier to interpolate as two separate functions:

Dx(xi, yi) = dxi, Dy(xi, yi) = dyi, ∀i : 0 ≤ i ≤ n

where dxi and dyi are values of displacement along x and y axes for the
point (xi, yi). Important to notice, that for some points the user must spec-
ify zero displacement values (dxi = 0, dyi = 0): these are necessary restric-
tions for the points that need to stay on their places.

Interpolating both Dx(·) and Dy(·) will provide us with displacements
for any point (x, y) of the image, depending on its distance to the points
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with specified displacements:

Dx(x, y) =
N∑
k

wkφ(
√

(x− xk)2 + (y − yk)2),

and the corresponding sum forDy(·). The example results of this displace-
ment interpolation are demonstrated in the next section, along with a com-
parison of RBF and B-spline warping approaches.

3.3 Results and discussion

One of the advantages of the spline interpolation is that it is local, i.e.,
an interpolated displacement value of a point depends only on displace-
ments of control points around it and, this way, needs no computations of
distances from the interpolated point to each of the control points, as in
the case with the RBF interpolation. A fixed-size set of neighboring con-
trol points (such as 4x4 in cubic case) is enough to interpolate each point
using a cubic spline basis.

On the other hand, RBF interpolation applies better for scattered data
with no grid structure, but with arbitrary positions for control points,
where each of those influences each interpolated displacement. This may
be superior for user-guided editing. It relieves the user from the rou-
tine of selecting the size of the control point grid, modifying each control
point over the affected regions and deciding which blocks of control points
should be moved together.

For example, if we want to make the smile wider on the photograph
(Figure 3.12) using spline warping, we have to move several points of a
row up, and to move several points of another row down. However, since
control points of a grid are located slightly away from the lips, the result-
ing deformation enlarges the whole area between the points, but not the
actual smile. This can be solved by:
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Figure 3.12: From left to right: initial image of G.W. Bush, deformed image
with control points, final result of attempt to enlarge the smile.

• Making the grid of control points more dense – which results in a
bigger set of control points that needs careful handling and therefore
increases the possibility of artifacts. The warping demonstrated in
Figure 3.13 involved only vertical control point displacements but
even those were numerous. The warped smile was closer to the de-
sired result, but the lower lip still turned out a bit asymmetric;

• Changing initial positions of control points (Figure 3.14) to coincide
with the features. This requires a non-uniform grid of control points,
which is only possible if control point positions are interpolated in-
stead of displacements. It gives the user a chance to locate control
points on any desired features. Grids of lower density, in turn, al-
low easier manipulation both vertically and horizontally – resulting
smile in Figure 3.14 was stretched in both directions. However, un-
careful handling still resulted in small artifacts like curvy upper lip,
different sized ears or folds between nearby points.

Obviously, it is possible to master the manipulation of these points so
as not to cause unwanted artifacts, but the above-mentioned difficulties
result in an inevitable conclusion for spline warping: there is always a
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Figure 3.13: Deformation using a denser grid of control points.

Figure 3.14: From left to right: new initial positions of control points, de-
formed image with these control points, final result.

trade-off between detailed deformation (needs more points in a grid) and
easy control over the control point grid.

Unlike the spline warping, which required at least 10x10 control point
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grid, the RBF displacement interpolation demonstrated in Figure 3.15 used
only 13 control points: where 8 of them are constraining “anchors” and 5
are specified displacements, denoted by red arrows. It is typical of the RBF
approach: the smaller number of required control points saves user effort,
while allowing rather intuitive instructions: “these points stay on their places
and these points should be moved here and here”.

Moreover, the result of the deformation is smooth and without notice-
able artifacts – despite the length of the stretch, which is about two times
bigger than in previous examples. This way, the result demonstrates the
ability of the approach to handle highly elastic deformations.

Figure 3.15: Initial conditions and the result of RBF warping.

On the other hand, RBF warping requires that the user is clear which
points should be moved where. Therefore, if used for image registration,
there is an extra problem of identifying positions of control points to be
manipulated – this task is usually performed manually [14, 22].
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Chapter 4

Texture-aware Edit Propagation
using RBF

This chapter introduces an approach to process user-specified color edits
and propagate them to the whole image. Such edits are made in the form
of strokes that change the colour or hue of an initial set of pixels. Our algo-
rithm then analyzes that kind of input, as well as the image itself, in order
to apply the edits to a wider area of similar pixels that the user originally
meant to edit. In other words, it evaluates the amount of alteration each
pixel of the image receives, based on the known set of initial edits.

Then, the existing edit propagation method is extended by enabling it
to distinguish parts of images not only with different colors, but also with
different texture. As a result, such an edit propagation approach gives
users the ability to apply edits more selectively – only to the objects or
regions with similar appearance, in terms of both texture and colors.

4.1 Edit propagation using RBF interpolation

Apart from using radial basis functions to interpolate deformations of im-
age points and apply them to the whole regions around those points, sim-

41
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ilar interpolation techniques can be used to edit colors of the image – by
the interpolation of input edits for some of its points.

Suppose we have three edit functions hr, hg, hb : (x, y) ∈ R2 → R that
for some set of n input pixels of an RGB image return the values of edits
for its red, green and blue channels:

hr(xi, yi) = redi ; hg(xi, yi) = greeni ; hb(xi, yi) = bluei , 1 ≤ i ≤ n

where redi, greeni and bluei are the values that need to be added to the
color channels of the pixel with coordinates xi and yi. Those values can be
set by brush strokes of various kinds: for example, one that changes the
hue is demonstrated in Figure 4.1a. For the regions that need no changes
we apply a constraint indicated by setting edits at those pixels to zero
hr,g,b(x, y) = (0, 0, 0) and marking them with black strokes.

(a) (b)

Figure 4.1: (a) Image with user-specified edits (strokes). (b) Edits interpo-
lated in coordinate space only.

The next thing to do is to interpolate each of the three functions in
order to get a smooth editing effect over the intuitively-marked region.
However, it is obvious from Figure 4.1b that interpolated edits are just
being propagated to nearby pixels, while fading closer to the locations of
black strokes.

A way to propagate the edits to the pixels of similar colors would be
to interpolate extended versions of the functions hr, hg and hb. Instead of
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working in XY coordinate space, suppose we are looking for three func-
tions h̃r, h̃g, h̃b : R5 → R with domain XY RGB, that is, the coordinate
space united with the color space.

In this space, distance is small only for the points whose locations on
the image are close and whose colors are similar. In this way, just a simple
extension of the editing functions’ domain results in a much more accurate
color edit, where a field of purple flowers from Figure 4.1a is turned red
in Figure 4.2.

Figure 4.2: A result of edit interpolation in XY RGB space.

A similar RBF interpolation-based approach was proposed by Li et
al. [24], however it is slightly different from the scheme, described above.
Instead of performing edit interpolation for all three color channels in their
work, [24] use interpolation to weigh each pixel from 0 to 1, similarly to
creating an image matte. Interpolation conditions for the weight (matting)
function M : R5 → [0, 1] are set to 1 at chosen n pixels that need editing
(marked with white strokes):

M(xi, yi, ri, gi, bi) = M(xi) = 1 (1 ≤ i ≤ n)
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while the areas that need to retain their color are marked with black strokes,
and the function M there is set to zero.

After M is interpolated and the weights are known, arbitrary edits can
be applied to the image and will have maximal effect on the pixels with
big weights (close to 1), fading closer to the boundary. The color I ′ of the
edited pixel with a feature vector x = (x, y, r, g, b) can be denoted as:

I ′(x) = M(x) · e+ (1−M(x)) I(x)

where I(x) is the color of the pixel on the original image and e is the color
applied in editing.

Another one of the algorithm’s features is the constraint on the RBF
weights wi (equation 3.4, Φw = F ) to be non-negative. The proposed con-
straint is based on the observation that negative weights cause edits in
distant parts of the image to be unusually high, and is aimed at eliminat-
ing such coefficients. The weights wi ≥ 0 are found using non-negative
least squares optimization. And although results of the optimization may
differ from the exact solution, non-negative weights ensure that the edits
diminish in distant portions of the image.

Since the matrix Φ (equation 3.4, Φw = F ) with interpolation condi-
tions is filled only with non-negative values, it is impossible to enforce the
non-negative constraint on w, when vector F have negative values of the
function that is being interpolated. It is not the case with the non-negative
function M , but if we are interpolating edit functions like (h̃r, h̃g, h̃b) di-
rectly, we might need to interpolate their negative values as well. For ex-
ample, if we need to decrease the value of the red channel, the value of
edit h̃r(xi, yi, ri, gi, bi) might be negative for some i.

Another disadvantage is that after M is interpolated, we can only use
its values to apply a single edit e to the set of pixels with weightsM(x) > 0.
It would be impossible to make several different edits to different regions
as shown in Figure 4.3, where interpolation was done without the non-
negative constraint.
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Figure 4.3: Image with user strokes of different colors (red and green) and
the result of edit interpolation.

In our approach, we leave the non-negative constraint behind and aim
to prevent the above-mentioned unwanted edits by other means, includ-
ing adjusting σ of the kernel (eq. 3.2) or applying more interpolation con-
straints using black strokes.

We also extend the domain of our interpolated edit function by adding
a series of extra dimensions to XY RGB space. Extended coordinates of
such an “XY RGB+” space provide more features for each pixel, making
the pixel affinity more accurate and this way preventing the edits from
being applied to the regions with different texture, despite the similarity
in colors.

4.2 Gabor wavelets and filters

In a broad sense, texture of an image is a set of intensity variations that
take place on each of its parts. On such images, each particular intensity
variation can be considered as a fluctuation or oscillation of intensity val-
ues over some surrounding region. To be able to describe those oscillations
in mathematical terms, we are going to reference wavelets: wave-like oscil-
lations with an amplitude that diminishes to zero away from the centre
(Figure 4.4). A wavelet is a prototypical case of an oscillation with known
or preset parameters, while several wavelets with different parameters can
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be used as a basis to decompose and process more complex functions or
signals. Images can be considered as two dimensional signals and pro-
cessed using two dimensional wavelets. In the following sections we are
going to use the Gabor wavelets, which have been already used in a num-
ber of works for extraction of texture features from images and texture
segmentation.

Figure 4.4: Real and imaginary parts of a Gabor wavelet.

While wavelets just serve as basis functions, the actual signal process-
ing tool is a digital filter – a system that performs mathematical operations
on signals. An image filter can be represented by its kernel: a matrix of
pixels in which each pixel is assigned a value or a weight. Such matrices
are usually much smaller than the images, for example, two of the Gabor
kernels, represented in Figure 4.5, are only 35x35 pixels each.

Figure 4.5: Two Gabor kernels.

To apply the filter, we convolve
its kernel with the image, by slid-
ing the center of the kernel over
every pixel and multiplying each
value in the kernel by the inten-
sity value of the pixel directly un-
derneath it. These values are then
summed together, divided by the
overall number of terms and stored as the resulting output intensity of
the pixel that was directly under the center of the kernel.
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Each Gabor kernel has two parameters: frequency λ and direction θ.
When convolved with the image, the Gabor kernel reflects energy at that
specific frequency and direction. By giving the highest response (returning
the highest value) at the locations with corresponding intensity changes,
the filter provides a localized frequency description and captures local fea-
tures of the signal.

For example, the two Gabor kernels shown above have the same fre-
quency but different direction: θ1 = 0 (vertical) and θ2 = π/2 (horizontal).
The results of convolving those kernels with a simple image of a brick
pavement (that just has vertical and horizontal lines) are illustrated in the
Figure 4.6.

Figure 4.6: An image of a brick pavement and its convolution with two
Gabor kernels of different directions.

It is easy to see from the examples that convolution with each partic-
ular kernel highlights only the intensity fluctuations of its particular ori-
entation. Another one of the kernel parameters, frequency, is responsible
for the size of the details it captures. In the Figure 4.7 (middle) we can see
the result of convolving another image with a kernel: the waves on the
water surface got highlighted. Then, convolving it with a kernel that has
twice the frequency, results in (Figure 4.7, right) highlighting the smaller
details. For more efficient processing of colored textures in further algo-
rithms, we consider intensity values of corresponding grayscale textures
of the sample images, rather than each color channel separately.
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Figure 4.7: An image of a windsurfer on the water surface and its convo-
lution with two Gabor kernels of different frequencies.

The ability to give a response to the details with certain properties
makes the Gabor filters valuable in edge detection and texture segmen-
tation. Moreover, simple cells in the visual cortex of the brain of mammal
species are proven to be modelled by Gabor functions [6, 27], creating a
hypothesis that the Gabor filters work similar to the part of perception
process in the human visual system.

4.3 Edit propagation using Gabor filters

Now suppose we have an image with two different objects on it that have
similar shades of color (e.g. house and field in Figure 4.8a), and we want
to edit just one of them while constraining another one to be unchanged.
However the approach, outlined earlier in this section, almost ignores the
constraints that we put on the house of the same color (Figure 4.8b), mak-
ing it greenish.

This happens because, given only the positions and colors of the user-
specified pixels, the affinity is strong for all the pixels with the similar
shades of color, shown in Figure 4.9a. Edits are therefore still propagated
to the pixels of the similar color, including the part with the house. More-
over, the constraints put on the part of the same color produce negative
weights in the interpolation, resulting in editing another part of the house
with purple color, which is the opposite to green.
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(a) (b)

Figure 4.8: (a) Image with specified edits, RAW image courtesy of Elio
Ausili . (b) Result of applying an existing edit propagation approach.

The way to distinguish a pixel of the house from a pixel of the field
is obvious from the results of one of the Gabor filters (Figure 4.9b): the
Gabor values for the house (light gray and white) are different from the
ones for the field (dark gray and black). Thus, by the analysis of Gabor
values, it is possible to differentiate between the two objects of similar
color but different texture, we propose that those values can be used as
extra coordinates of our points.

(a) (b)

Figure 4.9: (a) Pixels that have strong affinity with the user-specified ones.
(b) Result of applying Gabor filter to the original image.

Suppose we selected a set of filters, including m groups, each with its

https://flic.kr/ps/2URDpy
https://flic.kr/ps/2URDpy
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own frequency (λ1, ..., λm). Then, each one of those groups also has 6 filters
with different directions (kπ/6, k = 0, ..., 5):

θ1 = 0, θ2 =
π

6
, θ3 =

π

3
, θ4 =

π

2
, θ5 =

2π

3
, θ6 =

5π

6
.

Even though we are free to use any arbitrary filter, the proposed set
of 6m filters (with varying number and values of frequencies) was used
in most of our experiments and is helpful to specify our notations unam-
biguously.

To extend our XY RGB space, we first apply each of 6m filters to our
original image (Figure 4.10) and get 6m resulting images with a Gabor
value in each pixel. This allows us to consider each pixel p as a point in a
R5+6m space:

p = (x, y, r, g, b, g11, g21, g31, g41, g51, g61, g12, ..., g6m)

where gij is the Gabor value at a point of an image, convolved with the
Gabor kernel of direction θi and frequency λj . Now, having the same edits
at some points pi, as specified at Figure 4.9a, we need to interpolate three
editing functions h̄r, h̄g, h̄b : R5+6m → R, for each of the three RGB color
channels:

h̄r(pi) = redi ; h̄g(pi) = greeni ; h̄b(pi) = bluei , 1 ≤ i ≤ n

Here, as before, we put our interpolation conditions into the system Φ ·
w = F (equation 3.4) and solve it for the weights w, to get the interpolated
values of (h̄r, h̄g, h̄b) at all of the points:

h̄r(p) =
n∑
i=0

wriφ(‖p− pi‖), h̄g(p) =
n∑
i=0

wgiφ(‖p− pi‖), (4.1)

h̄b(p) =
n∑
i=0

wbiφ(‖p− pi‖)

However, another issue should be considered: even though the inter-
polation kernel φ only depends on the distance between p and pi, this
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Figure 4.10: Results of selected 24 Gabor filters with frequencies 0.1, 0.25,
0.4, 0.55 applied to an image.

distance can be computed in various ways. The most common way is the
Euclidean distance:

‖p− q‖ =
√

(p− q) · (p− q) =

√√√√5+6m∑
i

(pi − qi)2 (4.2)

where p,q ∈ R5+6m are any two points in our affinity space, and pi, qi are
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the i-th coordinates of those points.

But in this sum of squared differences, we may also need to manually
select weights ωi to emphasize particular dimensions:

‖p− q‖Ω =

√√√√5+6m∑
i

ωi(pi − qi)2 =
√

(p− q) · Ω · (p− q) (4.3)

where Ω is a diagonal matrix of all the weights:

Ω =



ω1 0 0 · · · 0

0 ω2 · · · 0

0 · · · ...
... . . . 0

0 0 ω5+6m


(4.4)

Proper tuning of these weights in our distance function helps achieve
desired interpolation results. For example, varying values of ωi we can
tune our edit propagation to be based on high-frequency details rather
than low-frequency ones, or we can assign small weights to color differ-
ences, so edits will be propagated to a wider range of colors. A sample
result of edit propagation, achieved after weight adjustment, is presented
in Figure 4.11.

4.4 Random projection

Using Gabor values as extra components of pixels’ feature vectors, we
work in at least (5 + q · r)-dimensional space, where q is the number of
directions and r is the number of frequencies of the chosen Gabor filters.
The large number q · r of filters adds computational cost. As well, a large
number of features requires consideration of high-dimensional phenom-
ena (collectively known as the curse of dimensionality [12]). For example,
the amount of training data required for classification or regression may
scale exponentially in the number of dimensions.
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Figure 4.11: Results of edit propagation, performed as an interpolation of
edits in selected high-dimensional space with 24 Gabor filters.

There are a number of approaches to dimensionality reduction, includ-
ing several that were surveyed in Chapter 2. In this work we explore a ran-
dom projection approach based on the Johnson Lindenstrauss lemma [19].
This lemma states that N points in a high-dimensional space can be pro-
jected into a space of about logN dimension, with inter-point distances
approximately preserved. Suppose we have a set of q · r Gabor values for
every pixel of the image:

g = (g11, ..., gqr)

The projection XRP of such set of Gabor values can then be accom-
plished by simply multiplying the original data g for every pixel with an
appropriately constructed random matrix R:

XRP
s×1 = Rs×qrgqr×1
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where s < qr is the number of dimensions of the projected data and the
matrix R is a randomly generated matrix with variance 1/s.

The matrix R is generated only once and then multiplied with the vec-
tor of Gabor values for every pixel. However, after the dimensionality re-
duction is performed, it would be impossible to apply weight adjustment
for the same set of dimensions, as done in the equation 4.3 by the matrix
of weights Ω. For this reason, R can be initially multiplied with Ω:

XRP
s×1 = (Rs×qrΩ)gqr×1

Figure 4.12: Result of edit propagation, performed as an interpolation of
edits using 400 Gabor filters.

When the number of dimensions is big enough, the distribution of ran-
dom values preserves distances between points well: looking at the result
of edit propagation using 400 Gabor values (Figure 4.12), reduced to 40
by the random projection method, it is hard to tell the difference with the
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original result that did not use random projection (Figure 4.11). However,
applying the random projection to a space with a relatively low number of
dimensions may produce different results for different random matrices
(Figure 4.13).

Figure 4.13: Two results of edit propagation with random projection
method, applied to the space with 24 dimensions (Gabor values): despite
the same initial parameters, right image receives bigger amount of edit.

Moreover, the complexity of the whole edit propagation procedure can
be done by the analysis of how the numbers of dimensions (Gabor val-
ues) and RBF data points (equation 4.2) affect the overall number of basic
operations performed (such as multiplications). At the first step of dimen-
sionality reduction, the original data g for every pixel is multiplied with
a constructed random matrix R, requiring s · qr multiplications times the
number of image pixels. Then, computation of distances from every pixel
to each of the data points requires s · n multiplications times the number
of pixels, where n is the number of data points. Therefore, total amount of
multiplications for every pixel during an interpolation with dimensional-
ity reduction is: s · (qr + n).

For the interpolation without dimensionality reduction, computation
of distances from every pixel to each of the data points (equation 4.3) re-
quires qr · n multiplications times the number of pixels. Thus, the edit
propagation approach with dimensionality reduction requires k times less
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multiplications for every pixel, where k is the ratio:

k =
qr · n

s · (qr + n)

In both of the above-mentioned cases (with qr = 24 and qr = 400),
we used about 100 data points (n = 100). However, in the relatively low-
dimensional space of 24 Gabor values, it was possible to reduce the dimen-
sionality to the minimum of 12, otherwise the precision was unacceptably
low:

k24→12 =
24 · 100

12 · (24 + 100)
=

2400

1488
≈ 1.6

But if using a big number of Gabor values, such as 400 in total, the
complexity is reduced significantly:

k400→40 =
400 · 100

40 · (400 + 100)
=

40000

5000
= 8.

Therefore, the given scheme reduces speed successfully, but only gen-
erates consistent results in spaces of unreasonably high dimension.

4.5 Results and discussion

In an example of edit propagation, presented in the Figure 4.8a, we used
strokes of bright green color to make the applied edits more obvious. As
the result (Figure 4.11), edits got propagated only to the region with the
specified texture: Figure 4.14 demonstrates a comparison of edits, applied
to the image with and without using Gabor values as image features.

It is also important to note that, despite the restriction on the texture,
there is a chance for some undesired pixels to still have similar appearance
to the user-specified ones (in terms of Gabor features) and to receive small
amounts of edits. This shortcoming can be seen in the upper half of Figure
4.14 (right), however it is less obvious in our next examples, when using
more natural colors.



4.5. RESULTS AND DISCUSSION 57

Figure 4.14: Edits of green color, applied after RBF interpolation with Ga-
bor features (right) and without Gabor features (left). Zero edits are de-
noted as gray.

To get such results, however, proper tuning of a series of parameters is
required. Appropriate values were selected experimentally for the follow-
ing list:

• Set of frequencies and directions of the Gabor filters (section 4.2);

• Weights ωi on the diagonal of matrix Ω (equation 4.3);

• σ coefficient of the Gaussian kernel (equation 3.2).

Figure 4.15: Results of convolving the sample image with kernels of fre-
quencies 0.1, 0.175 and 0.25 (from left to right), cropped for convenience.
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The selection started with a frequency λ1 = 0.1. The corresponding ker-
nel (Figure 4.5) is 35x35 pixels in size (convolving an image with a kernel of
a lower frequency takes too long due to an even bigger size of such kernel).
Then, from the results of convolutions with kernels of higher frequencies
(Figure 4.15), it is clear that the middle result (λ = 0.175) is similar to the
results on both left and right sides. Due to concerns about duplicated tex-
ture information and computational efficiency, λ2 = 0.25 was selected as
the next value of frequency.

Figure 4.16: Results of convolving the sample image with kernels of direc-
tion 2

3
π and frequencies 0.4, 0.5, 0.6 (from left to right).

On the other hand, Figure 4.16 shows that kernels of high frequencies
capture similar details. Based on this observation, a frequency λ3 = 0.4

was added to get a minimum set of three frequencies: one low, one middle
and one high. For the case of very small details, one more frequency λ4 =

0.55 was also put into the set optionally.

The results of filters with different directions are shown in Figure 4.17.
The image in the middle (θ = π

12
) also appears to combine some informa-

tion from both left and right results, leading us to the selection of a π
6
-step

between the directions of kernels. This concludes our choice of six direc-
tions (kπ/6, k = 0, ..., 5) and gives us the total of 24 corresponding kernels
and filters, mentioned previously in Figure 4.10.

Obviously, this selected set of filters is minimal, and can be extended
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Figure 4.17: Results of convolving the sample image with kernels of fre-
quency 0.4 and directions 0, π

12
, π

6
(from left to right).

if more details are required. The efficiency of using a bigger set of filters
can also be increased by applying dimensionality reduction, explained in
section 4.4 of the previous chapter.

Figure 4.18: Results of edit propagation that use different weights for Ga-
bor features during interpolation.

The edit propagation procedure was then tested on a series of param-
eter values to adjust the weights ωi (equations 4.3 and 4.4) for all of the
Gabor features. Figure 4.18 demonstrates three of the sample outputs that
have insufficient, moderate and excessive edits. With all weights for Gabor
features set about the same (ω = 1.0), the result (left) is similar to the one
that use no Gabor features at all: the edits are propagated to the building
as well. But setting weights too high (ω = 5.0, right) puts too much em-
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phasis on the Gabor features and results in the lack of edits for some parts
of texture. Selecting a weight in the middle (ω ≈ 3.0, middle) produces the
desired result.

The final parameter to adjust is σ (Figure 4.19): a coefficient of the
Gaussian kernel (equation 3.2), also known as the kernel width. If σ is
set too low (σ = 0.1, left), the edits diminish sharply away from the user-
specified strokes, while high kernel width results in edits applied to a
much wider region (σ = 0.3, right). As before, we select a value in the
middle (σ ≈ 0.19, middle) that provides the best results.

Figure 4.19: Results of edit propagation that use different width of Gaus-
sian interpolation kernel (0.1, 0.2 and 0.3).

Two more images with user-specified strokes are presented in Figure
4.20 to demonstrate the success of our method. The results of edit propa-
gation (both with and without Gabor features) are shown in detail in the
following figures.

Figure 4.21 demonstrates the propagation of yellow-colored strokes to
a green lawn. Without using Gabor features (Figure 4.21a), some of the
green plants also received some edits (most obvious on their light parts).
Shades of blue also appeared on the green leaves away from constraining
strokes, as a consequence of negative interpolation weights. On the other
hand, interpolation with Gabor features left most of the plants unaltered,
only altering the lawn (Figure 4.21b).
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Another example in Figure 4.22 shows the propagation of red-colored
strokes to a brick wall. Since the dark brown color of bricks is similar to the
color of the wooden door, it also receives edits if not using Gabor features.
Moreover, negative interpolation coefficients slightly alter the white wall
making it bluish. An approach that uses Gabor features (Figure 4.22b)
prevents those edits, altering the colors of the desired areas only.

Figure 4.20: Two more images with user-specified strokes of yellow and
red colors.
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(a) RBF interpolation

(b) RBF+ Gabor

Figure 4.21: Edit propagation results for yellow strokes, applied to the
lawn.
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(a) RBF interpolation

(b) RBF + Gabor

Figure 4.22: Results for red strokes, propagated to the bricks of the wall.
RAW image courtesy of Edward Musiak, https://flic.kr/ps/FRqCG .
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Chapter 5

Conclusion and Future Work

In this thesis, radial basis function regression was shown to be a useful
tool for user-guided image editing, with successful applications to image
deformation and color editing. Some enhancements were also made to the
space of RBF interpolation of color edits, making the result of editing more
precise.

The thesis compared B-spline and RBF interpolation approached to im-
age deformation. In B-spline warping approaches, there is a notable trade-
off between an easy control over the control point grid and a level of detail
for the deformation: more detailed deformations need more points in the
control point grid. Using B-splines for warping, the user usually has to
either place control points on a grid that does not necessarily align with
features of the images, or to adjust some of the redundant control points
that are an essential part of the grid structure.

Warping that uses RBF, conversely, allows placing a suitable number
of control points at desired, semantic locations (such as the corner of the
mouth) along with a specification of where each control point should be
moved. RBF allows the control points to be placed exactly where desired,
and only at those places. Then, given the positions of the control points
along with the desired movements, it provides smooth and artifact-free
results of the deformation.

65
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Next, this thesis presented a texture-aware extension to the edit prop-
agation approach, based on RBF interpolation. Extending XY RGB fea-
ture space with Gabor features makes the propagation more selective and
allows edits to be applied according to the texture and colors of the re-
gions rather than colors solely. It also provides a good alternative to the
non-negative constraint on interpolation and does not require numerical
optimization.

On the other hand, problems of high-dimensional spaces may arise if
working with a large number of Gabor features. We found that the ran-
dom projection technique (see section 4.4) applies only to the spaces with
irrelevantly high numbers of dimensions. For the cases with a relatively
small number of Gabor features (e.g. 18-24 in the presented examples),
compact and accurate representation of the image texture features is still
an open problem.

Minor faults of the method were also observed in the regions where
Gabor values partly coincided with the values for edited regions, resulting
in slight edits of undesired pixels (upper half of Figure 4.14). Small bits of
texture that carry uniform color are especially liable for this defect. This
way, the problem of finding an accurate affinity function for two sets of
Gabor features also needs to be addressed in future work.

Still, results of experiments demonstrate the success of using Gabor
features to better distinguish points with different textured appearances.
These results were also achieved without requiring explicit segmentation
of the image. The approach can be used for texture-aware user-guided
edit propagation.
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